SYM-1
MONITOR
THEORY OF OPERATIONS

MANUAL

By Robert A. Peck
Copyright 1980
Robert A. Peck

All Rights Reserved

Sym-1 is a trademark
of

Synerteck Systems Corporation

INTRODUCTION-

‘This Monitor Theory of Operations Manual is intended
for use by péesent owners of the SYM-I Reference Manual.
The primary burpose is to'provide_the user with a series
of flow-narratives describing the sequence of events for
most of the monitor routines.

The Monitor assembly language coding is, for the
most part, reasonably well-commented. However due to the
~considerable effort at reuse of various routines, (and well
done I might add) the flow and purpose of certain of the
subroutines is not exactly obvious.

This manual then is intended to help the user who
has some familiarity with assembly language programming
to understand these routines more easily. By this means,
these routines may find more use within the users programs.

One might have tackled this project by setting up a
sét of flow charts, one for each routine or subroutine.

I felt that the flow-narrative approach would provide a
reasonable amount of information as to intents and cases
and would save the user the cost of the drawings and
the magnitude of paper this would have taken.

If you should encounter difficulties in understanding
any of these routines or discover any typos or context errors,
I would appreciate hearing about them. The appropriate
corrections/clarifications may then be added to the next
printing, benefitting all other SYM-1 users. If you desire
a written response to your inquiries, please include a self
addressed stamped envelope. For more data, see notes in the
Bibliography.

’

Robert A. Peck, May 1980.

TOPIC PAGE

General Introduction e 1
Handling The System RAM 1
Register Save And Restore : ‘ 3
Hex Keypad 1/0 Routines 8
Command Interpretation 19
Zero Parameter Commands 23
One Parameter Commmands 26
Two Parameter Commands 32
Three Parameter Commands 36
Paper Tape I/0 Routines | 44
TTY Terminal I/0 Routines 47
Keyboard FAST-SCAN Routines) ¢
ASCII Keyboard Interface ' _ 52
The ResetESequence 55
CRT Terminal I/0 56
Tape I/0 Routines 58
Use of the Monitor Subroutines 62
Use of the Monitor Itself as a Subroutine - 62
Interrupt Handling Routines 70
SYM Reference Manual Corrections | 73
Bibliography and Notes 74
ACKNOWLEDGEMENTS-

I wish to thank Synertek Systems for their support of
this project, which included the permission to use
excerpts of the Monitor listing in this manual. I would

also like to thank Dr. H. Luxenberg for his support and
encouragement.

g

General Introdq;tion

Throughout the monitor routines, there is a néed to store registers,
éccess input and output ports, set up time intervals and to interact with
the user. Since these are repetitive actions, various monitor subroutines have
been defined which are used many times, rather than rewriting the same code

“each time. By this method, the monitor ROM is able to hold a much larger
number of routines than would have been possible if no subroutine calls were
used.'

Use of these subroutines could probably reduce the amount of code which
we have to write into our own programs. Therefore, the following sections
attempt to explain the function and operating sequence of all of the monitor
subroutines.

Handling the System RAM-

Various monitor routines require access to the system RAM. This RAM
‘area is normally write-protected. When a monitor subroutine which writes the
system RAM js called by another monitor subroutine, a JSR to the ACCESS
subroutine .always preceeds it. Therefbre, to use these particular routines,
we must either call ACCESS first, or modify the hardware to remove the write-
protection from the system RAM. For any monitor routine which uses the SYSRAM,
we must remembe} to call ACCESS before using that routine or we will get

unpredictable results.

ACCESS

NACCES

Callby208 8 v
Removes the write-protection from the system RAM. Has no effect

on any registers because it uses SAVER subroutine first, then

restores all registers afterwards. Sets U29 pin 2 to a logical 1.

If the user has a need to speed up the routine, the same effect can

be had by the following sequence: it is written as a subroutine

and could be used as a substitute for ACCESS.

48 PHA ‘ Save A

AD 01 AC LDA OR3A Set this bit

09 01 ORA #01 to allow .

8D 01 AC STA OR3A writing SYSRAM

AD 03 AC LDA DDR3A Define this

09 01 ORA #01 ‘bit as an _
8D 03 AC STA DDR3A output L
68 PLA Restore A

60 RTS Return from subroutine

Call by 20 9C 8B

Adds write-protection to system RAM. Has no effect on registers.
Sets U29 pin 2 to logic 0. As with the ACCESS routine, it calls
SAVER which stores all registers, then the RESALL routine restores
all registers. Since the only register affected by the routine is
the A accumulator, we cou]d-simu1ate this routine in fewer bytes by

the following subroutine:

48 PHA ' Save A

AD 01.Ac LDA OR3A Set this bit
29 FE AND #FE ‘to prevent

8D 01 AC STA OR3A writing SYSRAM
AD 03 AC LDA DDR3A Define this
09 01 ORA #01 bit as an

8D 03 AC ‘STA DDR3A output

68 ’ ﬁLA Restore A

60 RTS Return

The purpose for presenting alternate ways of accomplishing certain of
the functions is for illustration only. It is not intended to be a criticism
of the methods actually used. It is intended rather to demonstrate, by
example, what the routine is trying to accomplish. The general purpose usage
of various subroutines such as SAVER, for example, made it much more expedient
to use existing save-routines rather than to provide a special coding noted
above for a single purpose. All such suggestgg alternatives which follow,
then, are intended for a similar purpose; that is, as an aid to the users
understanding of the monitor as written.

Register Save and Restore-

The previous example dealt with a substitute for the routine ACCESS
Since the routine is used quite extensively throughout the monitor, it
would seem an appropriate time to study this routine in depth.

The saver routine makes extensive use of the system stack. To be sure

the reader is familiar with stack operation, a small review of the stack

definition is in order.

-3-

The stack pointer is an internal register which points to the next
available memory location in a RAM area where a data variable may be stored.
Pushing an item onto the stack comprises storing the variable in the location
;pecified by the stack pointer, then automatically decrementing the stack
pointer to point to the next lTower RAM location. Pulling an item off of the
stack entails auto-incrementing the stack pointer, then moving the data from
- the -location it now points to, into the selected register. Multiple “pushes”
will stack the data into the memory on a last-in-first-out basis. As a final
note, the stack pointer is only eight bits wide. There is an extra ;01“ in
hex as a wired-in part of each stack address. Therefore, the stack points to
an area 0100-01FF. A

With this as background, we are about to proceed on the description of

o,

SAVER's operation. The chart below will illustrate in column one the value of;%¢)

L,

the stack pointer. S represents the stack value just before entering the
subroutine SAVER. S-1, S-2, etc represent intermediate values of the stack.
During the SAVER routine, the stack pointer vq]ue is transferred to the index
register. Column 2 represents the indexed location of the data. Column 3
represents the appearance of the stack.after the registers are pushed in.
Column 4 represents the final appearance of the stack after the data has been
moved around a bit.

The reason the data is moved is to allow for three separate restore
register routines after SAVER, specifically RESXAF, RESXF, and RESALL. The
explanation for these follows this table.

Indexed Stack Data Location

Stack Value Initial Contents Final Contents Comments-(final) -

S 0109, X PCH Flags Condition Codes
S-1 008, X, PCL . A Accumulator

5-2 0107, X Flags X Index-X

s-3 0106,X B U Index-Y

s-4 0105,% A PCH Return Address-
s-5 0104,X A ' PCL from SAVER

S-6 0103,X , Flags

s-7 0102,X A

s-8 0101,X X

$-9 0100,X ==-e-ccemmmecmcccmcaeccsocommmeeonoonone Stack value during

data reshuffle

The stack was transferred to the index register so that we could pre-
cisely locate and reshuffle the stack contents. When we entered the‘SAVER
routine, the return address from the routine was already on the stack at
locations S and S-1. If we want to leave the registers on the stack when
returning from SAVER, we have to move the return address down on the stack to
a point beyond where the registers will be stored. Thus the reshuffle is
needed.

For the sake of example, let's assume the stack value S was FF when we
started to enter SAVER. It could be any value, but this will serve as a
discussion point. Therefore, when all registers have been pushed onto the
stack (after location 8191 has been executed), the stack actual value and now
the index regi;ter current value will be F6.

The instruction at 8192 says LDA 0109,X. This means take the X register
contents, add 109 hex, and use this as the effective address from which the A
register will be loaded. In this case, the resultant address is 109 + F6 =
01FF. This means we are moving the PCH value to the accumulator (PCH = high
byte of subroutine return address).

The rest of the address pointers into the stack area are viewed in the

same manner.

No matter what the current value of the stack pointer happens to be, the
SAVER routine will sti]] function the same way. After 8191 is executed, the 5'\
stack value is, in symbol1c notation, "S-9" relative to its contents before
SAVER is called. Therefore, to point to PCH value as shown above, we take
(s-9) + 0100 + 9 which gives us the effectivé addreés hhere the PCH is
stored.

when the RTS from SAVER is executed, the return address is pulled from
the stack locations S-5, S-4 and becomes the new contents of the program
counéér. The stack value is now S-4 (4 less than before we entered the
SAVER routine), since the now we have the saved flags, A, X and Y occupying
positions within the stack.

To restore the registers, we have a choice. To restore all registers,
we jump to RESALL (not JSR). This one jncrements the current stack value
from S-4 to S-3, then moves this value into accumﬁ1ator A, then from A into ¥
(Restores the original Y value). It restores X fraom location S-2 in the same
manner. It then pulls A from location S-1 and pulls the flags from location S.

The rout1ne RESXF and RESXAF are each just earlier entry points to the
same program sequence which leads into RESALL. ' If we enter at RESXF, the
current value of the flags will be stored at the stack location which had held
the saved value of the flags. Then RESALL will put the current value of the
flags back into the flag register on completion of the routine. The same
holds true for RESXAF; we store the current A contents in place of the saved A
contents, then continue at RESXF, then RESALL.

To allow the reader to follow the coding of RESXF and RESXAF, the table
below shows the stack contents and indexed relative addressing as was done

for the SAVER routine earlier. Again the value S refers to the stack pointer

value before SAVER was executed.

At the end of the RESALL routine is an RTS, a return from subroutine.
When we enter a particular subroutine where we must make use of the registers
within the subroutine, it is wise to use SAVER first. Therefore, before

SAVER was executed, the return address for the subroutine which calls SAVER

Indexed Stack
Data Location

0104,X
0103,X

0102, X
0101,X
0100, X

‘Indexed Stack
Data Location

0105, X
0104, X
0103, X
0102, X
0101,X

Current Final (before continuing
Contents Contents (with RESALL)

Saved Flags New flags

Saved A (or Saved A (or
new A) new A)

Saved X Saved X

Saved Y Saved Y

New flags = -==--o-- stack value

entering RESALL

Current Final (before continuing
Contents Contents (with RESXF)

Saved Flags Saved flags

Saved A New A

Saved X Saved X

Saved Y Saved Y

NewA = ccocem.- stack value

entering RESXF

is already on the stack (at relative locations S + 1 and S + 2).

After all of the registers and flags have been restored then, the stack

value will be S.

return address from the subroutine (which called SAVER) is pulled off the

stack.

Thus the RTS causes it to become S + 1 then S + 2 as the

before the subroutine sequence began.

-7-

This restores the stack pointer to the same value it started from

Hex Keypad I/0 Routines:

The basic cowmunications with the user of this single board computer
takes place through the Hex Keypad and diSp]ay (if no other 1/0 is available).

These keypad/display routines are-described next.

The Hex Keyboard I1/0 routine takes care of not- only the keyboard, but
also scans the display. Since it serves as the main I/0 technique for our
single board computer, we should undestand how the routine functions. Many of
the other routines use these I/0 routines as well. The main KEYPAD 1/0

_subroutine is GETKEY. | ‘
GETKEY - Call Saver: save register contents on the stack
Call GK (explained next section) Returns with ASCII in A’
Was the key found the ASCII key? (hex “FE“)
If not, exit the routine with the actual
ASC11 or hash code in the A-register. .
If it as the ASCII key: Call GK, returns with hex in X
transfer X to A
shift A left 4 times
store A in scratch loc. E
Call GK, returns with hex in X
transfer X to A
clear carry
add scratch loc. E to A
return with ASC11 in A
(Assembles a pair of hex digits into an ASCII
character equivalent)
Restores all registers except A (where ASCII is) and F.

Subroutine GK, called by GETKEY, calls some subroutines of its own;

and as we shall see, GK does most of the work in the hex keypad I/0 routine.

-8-

S

»®

GK - 1. Zeros out keyboard shift flag (so a shift can be sensed if it
happens)

2. JSR To IJSCNV
This subroutine does a number of things, including
; | scanning the keybéard and the display. It is a
{ vectored scan routine in that IJSCNV points to
Tocation A670 in SYSRAM. IF we want an alternate
output scan routine we must change the vector at
A670 to point to our own scan subroutine; but we
'will for the moment continue talking about the
default scan routine at 8906 as pointed to by the
| current IJSCNV vector. 8906 is the SCAND routine.
§§Aﬂ§ - Configures the 6532 ports as outputs. Port B to select which
digit to be turned on (through U37 output) and Port A to out-
put the segment codes from the DISBUF memory area for éach
- digit as selected.

When entering SCAND, the A register is loaded with the value 9, then
subroutine CONFIG is called. |

CONFIG calls SAVER, then makes two loops through a routine which pulls
values out of two tables. VALSP2 contains data direction register and 1/0
register control information for Port B of the 6532, Table VALS contains the
same information for Port A.

The index register contents is the former register A contents and is
used as the pointer into each of these tables. Thus, in this example, loca-
tion VALS + 9 = 8BCF, so FF will be stored at location A401. The Y register
is decremented by one (to zero) then the 1oop repeats, storing 00 at location

A402 and 00 at A400. These actions have the effect of defining both Port A

i -9-

and Port B (excegt for most significahtrbit of Port A) as outputs and setting i
the initial value of all ouputs to zero.

SCAND then continues after configuration with two scan control loops.
The outer loop consists of the selection of one of the 6 digits to display
- and the outpg} of the selected digit's segment display data and, of the DISBUF
area to Port A. The inner loop is a timing loop at 891D-891F. This allows
each digit to be active for a minimum of 80 clock cycles, then the next digit
}»1siselected. | o

To clarify this further, this is a multiplexed output display. This
means that all six digits have all their segment a's connected togefher. all
segment b's, etc. When we feed the data out to Port A, all six digits then
receive the same command - to turn on specific segments. However, a path to

the return side of the power supply is only provided for one single digit at a

ted, turned on for a period of time, then turned off so the next one may be
addressed. The scanning takes place fast enough and often enough that the
user would believe that all digits are on simultaneously.

The routine proceeds as follows: Set ub X-register as loop counter for
six digits output. Load A register with the segment codes from (DISBUF + X)
address. Set the output register to zero. (This prevents a ghost of any
digit from appearing on the previous digit during the transition time). Turn
on the ground return path for the next digit. Output the digit segment from
register A. Load Y as a time delay loop counter. Stay in a loop for 80 clock
cycles while the segments for that digit are being displayed. Repeat the
process until all 6 digits have been scanned once.

-10-

Subroutine SCAND ends with an entry to KEYQ. This KEYQ routine calls
CONFIG to define.Port B as an output and all but the MSB of A as an output.
It then reads'the input Port A, tests the value and sets the Z flag to 1 if

no key is down. (Result of the Port A data read is zero).

Continuing with our discussion of subroutine GK, at location 88D7, we
have a BEQ GK1. As noted above, after SCAND, the Z flag will be set if any
key is down This means that before any key is held down, the scanning of the
,,”keypad will continue ﬁhi]e it is waiting for a keypress. When it senses a key
down, the subroutine LRNKEY is executed. This stores what was read from
Port A on the 6532 in scratch location F (after stripping off the two most
significant bits). Then sets Port A as an output and Port B as an input on
bits 0-3 so that it can determine which column of the keyboard has a key
down. The information stored in Tocation A63F (SCRF) defines which keyboard
row was pressed and the data read from the input Port B defines which column.
Therefore, the intersection of row and column defines the specific key pressed.

The routine LRNKEY concludes by determining in which column the key-
press occurred and appending an ID number to the row information obtained
" from Port A. The number thus formed becomes fhe value in the accumulator
against which the various entries in the ASCII to SYM table may be compared.
The number in the accumulator is compared, one step at a time to those
. numbers in the table titled "SYM" (Yocation 8BD6). The index register is
incremented each time a comparison is made. When a match is found, the
contents of the index register is moved into accumulator A, then is modified
by the contents of the keyboard shift flag. It is transferred back to the X
register where it is used as a counter into the table titled SC11 (Tocation
8BEF). The accumulator is loaded from this table and a return is made to the
calling routine (in this case) to 88DC.

-11-

7

P : . -

After the keypress is interpreted, we push the ASCII data onto the
stack and save the hex data from the x-register on the stack as well.
Then call BEEP to tell the user a keypfess has been sensed.
' Now KEYQ is called again to see if the key is still down. If so, it
stays in the loop calling KEYQ waiting for the release. (Try any key entry,

as long as key is pressed, display stays blank waiting for release -

-operates during monitor routine execution). If key release is sensed, we

use JSR NOBEEP as a delay tactic, then use KEYQ again to loop back if there

was keybounce on release. At the exit, ASCII value 1s restored to A after

the hex value is restored to X (if key was 0-9 or A-F). During the second part

of the GETKEY routine, if the ASCII key had been sensed as the initial key-

press, the routine pulls the hex value"of the next keypress out of the X

register, shifts it left 4 places and stores it in SCRE (scratch location E). ij:!
Another pass through GK picks up another hex digit in the X register which is
added to the previous shifted digit, forming a two digit ASCl1l representation

of a pair of hex digits separately entered. With this in the accumulator, the
routine GETKEY then ends normally, restoring the registers.

A special note is in order here regarding the difference between GK and
GETKEY. The hex representation of the}keypress is dnly available in the X
register if GK is used. IF GETKEY is used, SAVER is called and RESXAF is used
afterwards. This means that whatever the contents of the X register was

before GETKEY is called will be the same afterwards. Only GK leaves hex in X.

“a

-12-

Since the keyboard I/0 routine used the onboard beeper, it might be
appropriate to discuss the BEEP routine here.

BEEP begins with a JSR to SAVER, then configures Port B on the 6532 as
an input for bits 0, 1, 2 and 3. It also sets bits 0, 1, 2 high (onboard
pullup resistors cause a high here). This causes selectfon of U37 output 7
to which the beeper buffer transistor is connected.

Bit 3 is used within the routine to enable and disable the output selector U37
which produces a square wave audio output to the beeper based on the timing
constants used within the routine itself.

The X register holds a duration constant (loaded at 897A) which ;peci-
fied how long the beep will be active during a selection. To produce an
output, we load A with a value 8 and store it at location A402. This dis-
ables the output (forces pin 7 of U37 high). Then a JSR to BE2 takes place.
This is a delay loop which takes 132 cycles to accomplish. (2 cycles for
LDY, plus 26 loops of DEY (2) combined with BEQ (3 cycles) back to the DEY).
After this delay is over, we load A with a 6 and store at A402. This enables
the output to U37 forcing pin 7 (oﬁtput 6) of U37 low. Then the delay
routine BE2 is used again. The cycle repeats until a total of 70 hex cycles
have occurred. \

The beep routine can also be used as a general purpose delay by using
JSR_NOBEEP instead of JSR BEEP. This configures the output port differently

" and only makes use of the routine itself to waste time.

-13-

The BEEP routine was modified by Synertek Systems to form a higher level

output than originally used in SUPERMON 1.0. The beeper itself is not actually

an audio speaker. Rather it is a transducer. As such, it has {ts highest

output when operaé%ng within a specific frequency range.

You may select to use your own version of the beep routine by including

in your program the following type of code.

This will demonstrate the

available frequency range and you may make your own choice of how to modify

the routiqe,

0200
0203
0205
0208
020A
020C
020F
0212
0214
0217
021A
0218
0210
0220
0223
0226
0229

- 022¢
022F

0300
0302
0303
0305

20
A9
20
A2
A9

20
A9

20
CA

20
20
20
20
20
20
4C

A0

DO
60

BEBES8S

- o
> w

-n
(o]

88

89

A4
03

A4
03

89
89
89
89
89
89
02

-14-

BEEPER DEMO

DEMO
NEXT

DEMO2

NEWBE?2
N2

JSR
LDA
JSR
LDX
LDA
STA
JSR
LDA
STA
JSR
DEX
BNE
JSR
JSR
JSR
JSR
JSR
JSR
JMP

LDY
DEY
BNE
RTS

ACCESS
#$0D

" CONFIG

#$70

#08

PBDA .
NEWBE 2

#06

PBDA

NEWBE2

DEMO2
NOBEEP
NOBEEP
NOBEEP
NCBEEP
NOBEEP
NOBEEP
NEXT

#3$1A

NEWBEZ N2

f%%

After Toading this demo, begin at location 200 (GO 200 CR). Try chang-
ing location 209. This will vary the duration of the tone. Try changing
location 301. This will change the frequency of the tone.

Note that as specified, JSR NOBEEP could be used as a general purpose
:delay loop and has been used as such here - 6 uses of delay from 021D

through 022E.

_Regarding such uses of general purpose delays, you'1l note that during
the delay period, the display remained blank. If it doesn't matter whether
the display is active during the delay period, we could instead make use of
the DELAY subroutine.

To do this, in place of the code at 021D in the beeper DEMO, use the
following: ' ’ .

021D A9 09 LDA #09
021F 8 56 A6 STA v
0222 20 5A 83 JSR DELAY
0225 4C 03 02 JMP NEXT

and run the DEMO again. Now during the delay period, the display shows
whatever was last p]acéd into the display buffer. in this case ".G 200". The
duration of the delay is controlled by the byte at 0Z21E.

DEFAY itself begins at location 835A. Let's Took now at the way it
performs. It begins by loading the index register frém the Trace Velocity
location (A656) and adjusting the value in scratch locations 8 and 9 (SCRS,
SCR9) to a value of (FFFF minus (2 raised to the X power)). The vectored scan
display routine is used as a part of the delay loop and it stays in this

delay loop until 2 to the X display subroutines have been executed.

-15-

As part of this delay loop, fhe keyboard'status is checked. If the

INSTAT routine finds any key down, the delay routine will be terminated.

Thus, if your routines use the delay routine and you have set the delay

constant too large, you can speed up the overall exetution by repeated key-

presses. This may be especially useful during trace of routines using the

autotrace function suggested in the SYM Reference Manual, to speed through

portions of the program where no problems occur and get to the problem area

faster.

This early escape facility may be demonstrated by the following program

sequence:

0200
0203
0205
0208
0208
020E
0211
0213
0214

0216
0219
021¢C
021F
0222
0224
0226
0228
0228

20
A9

20
20
20
BO
EA
A9
20
20
20
20
AS
69
85
20
4c

86
0B
56
5A
72
86
FB

20
47
47
47
47
00
01
00
FA
03

88

A6
83
89
83

8A
8A
8A
8A

82
02

BEGIN

DLYA

JSR
LDA
STA
JSR
JSR
JSR
BCS
NOP
LDA
JSR
JSR
JSR
JSR
LDAZ
ADC
STAZ
JSR
JMP

-16-

ACCESS
#%0B
v
DELAY
BEEP
INSTAT
DLYA

#520
OUTCHR
OUTCHR

- OUTCHR

OUTCHR
00

#01

00
OUTBYT
0203

Set Delay
Delay
BEEP

wait for key release

ASC11 space

To display

4

Times

Total

Get Display Val
Add 1

Put it back
Send it out
Go back

Note: If we are using the early escape from delay in a repetitive se-
quence, we must also use subro&gfne INSTATJand the branch back to the INSTAT
call as shoﬁn in 20€ through 212. Otherwise a double escape will take place
because the key has not been released.‘ Rerun the program with "EA" in all
locations 20E through 212 and see what happens. ’

The early escape demo uses two monitor subroutines OUTCHR and OUTBYT.
Let's take a closer Took at these.

OUTCHR begins by-saving the registers with SAVER. The TECHO flag is

“checked to see if a character is to be output to the terminal. If so a jump
to (89C1) OUTDSP occurs.

If the ASCII character in register A is the Bell character, a jump into
the BEEP routine occurs with no effect on the display.

If not the Bell, it tests for a comma (ASCIT 2C). If a comma is speci-
fied, it will load the segment content of the rightmost digit of the display
from RDIG of the display buffer DISBUF, and will turn on the most significant
bit, representing the decimal point.

If the ASCII in A is neither the bell nor the comma, the x register is
loaded as a counter and pointer to search a table known as ASCIMl. After each
comparison is tried, the contents of x is reduced by one. When (and if) a
match is found, the segments to be turned on are found from the SEGSM1, using
the current x register contents as a pointer into that table. This segment
code is loaded into register A, then pushed onto the stack.

At this point, the DISBUF area is moved around to make room for the new
digit. Using the x register as a loop counter and pointer, Digit 2 segment
codes are moved to the Digit 1 position, Digit 3 to Digit 2 and so forth.
Finally the segment codes representing the new entry are pulled off the stack
and stored in the RDIG (Digit 6) position.

-17-

Now when the SCAND routine is called, the segment codes for the six scan
locations will be.output fraom DI§§UF.V

When we use the OUTBYT routine rather fhan OUTCHR, we are attempting to
output two hex digiég instead of one. These hex digits are the hex interpret-
ation of the upper (most significant) 4-bit nibble and the hex interpretation
of-the lower 4-bit nibble.

OUTBYT begins by pushing A register onto the stack twice. The reason
for this will be explained later. It then does a Togical shift right 4 times.
This has the effect of moving the high 4 bit nibble into the right 4-bit
ﬁ}bblé position, shifting zerbéiintb the left-most 4 positions.

How about an example. Let's say we're trying to output “5E", using
OUTBYT, to the display. The result in the A register up to this point
(after the right shifts) is "05". Now we take this results nibble and JSR to
NBASOC (8A44) which directs us to JSR NIBASC (8309). The feason for the
double JSR will become apparent later.

NIBASC takes the figure in the A register and compares it to "0A". If
it is less than OA (00-09) all we need to do is to add hex 30 to the number to
convert it to its equivalent in ASCII. Then we can returﬁ from this routine.
When the compare instruction was used, the carry flag is set if the result of
the A-contents minus OA was greater than or equal to zero. This results in a
branch to NIBALF (8313) where we add a hex 36 plus carry which results in a
conversion from OA-OF to ASCII equivalent in A of 41-46. Then the RTS is

A

executed. -
The return takes us to 8A47, which is OUTCHR. Therefore, the first
character representing the most significant 4 bits of our byte to be output,
has been sent to the display. The RTS at the end of OUTCHR takes us back into
the OUTBYT routine at 8303. Here we pull the intended output byte off the
-18-

RN o

£

stack again, don't do the left shifts, and ;end it through NBASOC again. This
results in sending:fhe ASCII equivalent of the Tow nibble into the display.
In our example, we;;e now set "OE* to NBASOC and wind up with hex 45 as we
enter OUTCHR. As this is the ASCII equivalent for E, we have fulfilled the
goal of OUTBYT, sending 5, then E into the display.

Now that we've analyzed the basic I/0 routines for keypad/hex display
communications, let's look at some of the ways the monitor circuit uses them.

COMMAND INTERPRETATION

Commands are input to thé monitor in the GETCOM subroutine. At BOFF,
the display line is cleared by the transmission of a carriage return-line feed
(JSR CRLF). Then the prompt character, a period, is output to the display.

INCHR subroutine is called (at 8107). This cycles through the input
vector at INJINg (called from 8AlE) to receive an ASCII character from either
the terminal or the keypad, whichever routine address is specified ét the
input vector locations A661 and A662.

At 8A21, whether the ASCII data was obtained from the terminal or the
display, we still can treat it the same way: Remove the barity bit (if any)
This is the most significant bit so AND-7F is done. Then we look to see if we
have received a lower-case ASCII character (Tower case ASCII a-z are 61-7A
hex). Rather than have separate routines to handle upper and lower case
letters, we convert the lower case to upper case letters by dropping the
“5" bit thru an AND-DF at 8A2B.

Now we find out if the character was a Control-0 (control key plus the
Tetter 0 together). If it was, it causes a change in state of the bit 6 of
the TECHO flag. If this flag is a 1, there will be an output to the display
during command execution. If this bit is off (a zero), it inhibits output to .
the display.

-19.

Just before we exit the INCHR routine, we campare the incoming character

-—

s N

to the carriage‘réturn ASCII (60). Then we use RESXAF to go back. Therefore,
the flags will be set by the compare and carried intact back to the calling
routine. '

' If the zero flag is set in the return to BIDA,‘it means the input
character (command-input) was the carriage return. We will therefore branch
back to 80FF, Butput another carriage return, line feed and prompt Character
Then we will await another command.

If a null character or delimiter character (00 or 7F) are received as
input, we ignore them and go to look for an executable command. If we find an
L, S, or U, we have to "hash" together this input and the next input character
to form the SYM command hash equivalents for L1, L2, S1, S2, or UO-U7. (1f
these were keypad inputs, the hash codes would have béen received directly,
but we need two keys to express the same thing if coming from a terminal). -
The hashing of the load commands at 812F is accomplished by taking a %*ﬁ
byte 01, getting and adding the next character from the terminal (in this case
an ASCII 1 or 2 (31 or 32) resulting in 32 or 33 hex. Then we strip of f the
left 4 bits (AND-OF) then (OR-10) insert the last hash bit. This results in
either a hash 12 or 13 which are L1 and L2 commands.

The hashing of the S or U commands is a little different. We take the
ASCII S or U (53 or 55) and shift left twice (result 54 or 4C). We store
the result in LSTCOM, get another character, adding in LSTCOM, strip off the
left 4 bits and add on the hash bit. This results in the codes for S1, $S2,
(1D, 1E) or UO-U7 (14-1B).

Then at STOCOM (store command) we put it at LSTCOM (last command). Now
we do a JSR SPACE which sends an ASCII code 20 (blank space) to the display.
Now we do a JSR to PSHOVE twice, followed by a jump to PARM. Now that we have'

received a command, we must go and get zero to three parameters.

-20-

The subroutine PSHOVE shifts the input parameters down one position each
time it is called.. Specifically pafaméter‘3 moves to parameter 2 position
while parameter 2:is moved to parameter 1 position and parameter 1 is shifted
out and lost entirely. Parameter 3 becomes zero.

These are all 16 bit parameters, each occupying two 8 bit locations.

The PSHOVE routine uses the index register to Toop through the bit shift
instructions from 820A to 821C a total of 16 times. The initial shift is an
arithmetic shift left pf P3L, the Tow byte of paréheter 3. This shoves the
ulefimost bit of P3L into the carry bit and a zero into the rightmost bit. The
rest of the bit shifting for these parameters is done usihg ROL (rotate left)
instructions. The carry bit enters the rightmost position of the next byte
and the leftmost bit enters the carry during the shift. Therefore 16 shifts
will entirely move each parameter as noted above, leaving a zero in the last
(P3) position. Since we called PSHOVE‘twice, we'll enter PARM with zeros in
the P3 and P2 positions.

At PARM (8220) we use SAVER to save the registers. Then initialize
PARNR (parameter number) to zero. Later, based on this number, we will Jumpt
to specific areas to process commands having 0, 1, 2 or 3 parameters. Now we
use PSHOVE again to zero out the Pl position Ss well.

Now its time to fetch parameters. INCHR is called to get the characters.
If the input charcter is a delimiter (parameter separator) such as a comma or
minus sign, we see if we have already processed 3 parameters (at 8244). If
not, we shove the existing parameters down one position with PSHOVE. (Has the
same effect as entering 0000 as a parameter followed by the delimiter).

If a hex character (0-F) is entered, it is converted by ASCMIB to a low
nibble (4 bits) and all 4 bits are shifted a bit at a time into P3L while the
existing bits in the leftmost 4 are shifted into P3H. This allows us to

=21~

delete leading zeros on parameter entry since there will be zeros in each
parameter to beg;nfwith. We afE shifting 1n the data from the right and
pushing leading zeros ahead of the data as we shift it into each parameter.
The nibbles are continiuously shifted until a delimiter or the carriage return
is sensed. : ’
’ To verify this, you may try the following. Store the following program:
0200 20 72 89 GX JSR BEEP
0203 4C 00 02 JMP GX
Then try entering:
GO 88880200 CR
This will beep the beeper continuously because your actual GO command'is
interpreted as GO 0200 CR. So if you make an error during a parameter entry,
just keep hitting hex (0-F) keys until the correct digits appear as the last 4
entered, then use the delimiter or carriage return normally. Also if a
mistake has been made, make sure you use the leading zeros for the correction gil

since the parameters are each defined by the last 4 digits input.

As we sense each of the delimiters, we add one to PARNR. When the
carriage return is sensed, we close out the GETCOM routine leaving the
carriage return character in accumulator A. If by chance we were forced back
to the calling routine by the use of a non-hex character sensed in ASCNIB, the
ASCII for that character would remain in the accumulator and we would enter
DISPAT with something other than 0D.

If something other than OD is in the accumulator, it means we have
entered something like "D5G0". This does not match the normal command/delimiter
sequence defined by the monitor. It therefore jumps to the unrecognized
sequence vector which, as a default, directs us to the ERMSG routine. If we
had invented a new command sequence, to direct the monitor into this, we would
change the address at A66A, A66B to point to our own routine which checks for

this command sequence. -
-22-

The DISPAT subroutine does nothing more than load the accumulator with
the last command entered (LSTCOM) and Toad the index register with the para-
meter number PARNR (says how many parametérs were entered with the command).
Then it jumps to to BZPARM (O parameters) or B1PARM or B2PARM or B3PARM for 1,
2, or 3 parameters entered. Each of these execute blocks are constructed in a
¢imilar manner in that each compares the number in the accumulator in turn to
each command it understands, then either begins to execute it or branches to
another comparison: If none is found, it jumps to the Unrecognized Command
,,mVectpr (stored at AGGD; A66E). The default address is again the ERMSG routine
but as with the Unrecognized Syntax Vector, we can store our own address
at A66D, A66E, (low byte, high byte) and thereby dinvent our own commands.

Since we've now established the methods used to access the keypad
commands, we'll proceed to examine the routines individually. We'll bégin
with the zero parameter commands.

ZERO PARAMETER COMMANDS

The first one we encdunter is R - the register display command. At 8399
we start with a carriage return-line feed, then send “50" to the display, an
ASCII P. A JSR SPACE follows, sending an ASCII blank to the display. Then we
use the OUTPC routine to pull the current prodram counter (user PC) from its
temporary storage space (A659, A65A), the high byte, then the low byte,
sending each to the display using OUTBYT. On this initial display for the
program counter, the last item we send to the display is a COMMA through
COMINB.

Next it gets a keystroke from the keypad or terminal (must be hex O-F
keys). Then gets a second keystroke, using ASCNIB each time it assembles both

into a single byte in A.

1
.

On the return, this byte is stored in scratch location 4 (SCR4) and
INBYTE is called to obtain two more hei keystrokes. The combination of all 4
strokes represents a user-desired change to the program counter contents and
these entry digits in the SYSRAM. On the exit from the monitor (via a CR) the
;egister contents present at the time this routine is entered will be pulled
from the SYSRAM and will again become the contepts of those same registers on

return to the user program.

" To clarify this further, when a BRK/NMI/IRQ interrupt is issued, the
contents of all of the registers are placed in temporary storage locations
during the appropriate interrupt service routine. At the end of the inter-
rupt routine it takes those registers from the places in the memory where
they were stored and puts them back. §o if we change those numbers while
they're in the memory, the return from the interrupt will put those new
numbers in the registers for you.

Having seen how we could use the R command to change the user-PC con-
tents, we have to understand what this means. We are changing‘the program
counter contents to tell the processor to continue the program at a location
other than the location it would have gone to on its return from the interrupt.
Thus using break commands, we can manually alter the sequence of program
operations through the change to the user-PC during register display.

We've gone through the program counter display function. This is the
only 4 digit 335p1ay/4 digit change routine in this sequence. Therefore, it
was kept separate. The other registers, being only two hex digits, can be
displayed in a loop from 83D5 to 83F2.

In each case, the routine begins by retrieving the name of the register

(from RGNAM) and sending it to the display, then sending three blank spaces to.
the display. Any change bytes are input and placed in their appropriate spot
-24-

£

T

—

in the SYSRAM just like the user:ﬁc sequence above.

The Y register is used to contro! which register is being displayed.
Indexed addressing modes are used for retrieval of register names and for
placement of data‘within the SYSRAM.

After each register is displayed and/or changed, the Y-register is
incremented one which points to the next register name and the next register
'éontent within the group. We display stack, flags, A, X, Y, then the current
Y reaches 6, forcing us back to the program counter display again.

After each character is input from the keyboard; we use the ADVCK

“(Advance-Check) subroutine to determine whether the input character is the
forward-arrow or an ASCII blank (hex 20) has been input. If it has, the
routine advances to the next register display. Receipt of a CR charécter will
cause an exit = returning to the calling routine.

The next routine in the zero parameter block is the GO command. The
zero parameter GO is primarily used during DEBUG operations to follow program
execution (outside of the monitor circuit) one step at a time. This restores
all registers to their former contents before the interrupt and program
execution continues at the location pointed to by the program counter.

The paper tape load routine follows next in this zero parameter execute
block. This routine is covered in a separate section, along with the save
paper tape subroutine.

The next one encountered is the DEPOSIT. With zero parameters, it jumps
into the one parameter DEPOSIT routine at NEWLN (new line - 84El). This will
follow the normal DEPOSIT sequence, using the current contents of OOFE and
O0FF as the pointer to where the data will be deposited. The MEMORY and
VERIFY zero parameter commands also assume the old FE, FF contents are to be
used. These are explained in the next section on one parameter commands, but
before the jump (to VER1 + 4), VERIFY takes the contents of FE and FF and puts’
it into P3L and P3H for further use within the one parameter VERIFY command.

-25-

-~

The final Ewofzero—parameter commsnds=are the L1 and L2 commands. These ?
are the load KIM or-load HISPD tape records. The Y register is set up to
jndicate tape mode. Then a jump to the tape routine is executed. The zero
parameter section concludes at 84D7 with a jump to A66D - the Unrecognized
Cﬁmmand Vector.™ As with the Unrecognized Syntax Vector, the default jump is
to the error message routine. However, we can change this vectored address
at A66D, A66E to point to our own command interpreter if not recognized by
‘SYM. -
ONE PARAMETER COMMANDS

Before discussing the one parameter commands, we must take note'of the
methods used in entry and access of the parameters. From a standpoint of a
basfc description, one might expect PIH and PIL to be involved in a one-parameter
command sequence in that they are parts (high byte, low byte) of parameter one. _
This is not true. The single parameter commands involve P3H, P3L. The ﬁ:}
two parameter commands involve P2H, P2L as the "first" one, and P3H, P3L as
the "second". Of course the three-parameter commands have P1H, PIL as the
first, P2H, P2L as the second, and P3H, P3L as.the third parameter. This
should be kept in mind through the discussion of these 1,2 or 3 position
command sequences.
The reason this does not match the “"basic description" lies in the
manner in which the shifting of parameters takes place during PSHOVE. If you
go back to that description, you'll find they are set up as
P1H PIL P2H P2L P3H P3L
00000000 00000000 00000000 00000000 00000000 00000000
Qhere each new parameter enters P3H and P3L and PSHOVE moves everything left.

16 bits to make room for another parameter to be entered.

-26-

Back to the subject at hand, one parameter commands. The first one we
encounter is DEPOSIT (84DE). The first activity is a JSR P3SCR. This
subroutine moves the parameter 3 high and low bytes to OOFF and OOFE respec-
tively then returns. This allow the processor to use the indirect indexed
addressing mode later in the program. (84F0, 84F2)..

Next we output a carriage return, line'feed, and the contents of loca-
tions FF, FE which are the 4 digits which represent the memory location at
which we wish to begin'to deposit data. This part is accomlished by the JSR
;CkLﬁSZ (8316). As mayvbe seen from following that routine, at 8316 we output
the CR, LF, then Toad X with contents of OOFF and load A with contents of
OOFE, and jump to OUTXAH. OUTXAH pushes A onto the stack, moves X into A and
calls OUTBYT (causes output of contents of OOFF to the display). Then Ais
pulled off the stack and OUTBYT is called again (contents of OOFE).

When we return to the calling ro§t1ne, at 84E4, we set up the X register
as a counter with contents = 8. Then we output a space to the display and go
to the keyboard to get a byte to be deposited into that memory location. As
noted, INBYTE is the routine which accepts and assembles.two ASCII characters
into a single hex byte.

If we fail to use "hex" keys 0-9 or A-F auring this operation, we will
exit the routine with the carry set and ASCII for that key in the A register.
This combination will jump us from 84EE to 8501 through to 8553 to 8554. The
return will cause an error to be displayed.

If we use legal keys, the routine tries to write into the specified

Tocation (code at 84F0), specifically add content of Y to word found at OOFE,

0OFF and use this as the address which will be written into. Then it compares
what is in the A register to what is in the location. If not equal, it means we
could not write in the selected location. It is either a ROM or other -

-27-

non-writeable area. The monitor sends a question mark to the display (JSR OUTQM),

-
A

then proceeds to the next oper;tion. If'eﬁua1, no question mark.

The routine called next (at 84F9) is INCCMP which might be interpreted
as increment and compare. We take the Syte stored at OOFE and increment it.
If the result is zero, we also increment the byte stored at OOFF. As an
example, if we were to begin depositing bytes at 02FF, we would want the next
byte to be at 0300. So since OOFE contains the low byte of this address
parameter and OdFF the high byte, you can see that this method will correctly
increment our address. o

We have to decrement the X register (at 84FC) and determine if 8 bytes
| have been input. If so, a new line is needed since we have output an address
to the display and 8 bytes with spaces between them. ‘(see examples in the
Sym Reference Manual).

One last option this routine allows is a test for an ASCII space (hex i
20) as an input. This does not cause any character to be stored and simply
skips us to the next memory location.

The routine is ended by receipt of a CR character (ASCII 0D) which
causes a fallout at locations 850E, 850F, following the compare instruction at
8503.

The MEMORY routine (8514) starts in the same way as the deposit, by
output of CR, LF, then the start address from parameter 3 (the one parameter
entered), setting up OOFE and OOFF as well. Then it outputs a comma at 851A
(on the SYM hex display, a comma is a decimal point, which, in this case,
separates the memory location information from the data byte).

Now we load A with the contents of the byte located at the address
contained in OOFE (1o) and OOFF (hi). A JSR To OBCMIN (at 8521) takes us to
 81D3 where, as the comments state, we output a byte (from A), output a comma

(turn on Decimal Point of RDIG) then input a byte. Again a legal byte
-28-

combination of hex characters must be input or else a return with an error
will occur. . |

Then we store that value just input and verify it. (At 8528, 852A). As
with the deposit routine, we output a question mark if the verify failed and
continue on with the next location.

INCCMP is used here also to allow the advance to the next Tocation.
However, in this case we have a number of ways to get there. Specifically, a

_fOrwqrd arrow (hex 3E) or a space bar (hex 20) will advance it to the next
Tocation.

If we used a reverse arrow (hex 3C) the machine would go to PRVLOC
(previous location - 8555) and call DECCMP instead of INCCMP. This DECCMP, at
82BE does a double byte subtract-one on the contents of OOFE and OOFF,
just as INCCMP was a double byte add-one. This moves our pointer to the
previous memory location, and we jump back to NENLOC through the di;play output
routines again.

The use of a plus-sign sends us to LOCP8 (855B) which is a double
byte add-8 to the contents of QOFE, OOFF. A minus sign %n turn sends us
to LOCM8 (8569) which is a double byte subtract-8 from the contents of
OOFE, OOFF. Then we go to NEWLOC (8517) where the pointer now shows either a
Tocation 8 bytes more or 8 bytes less than the previously displayed address.

As with the DEPOSIT, a carriage return will cause an exit to the calling
routine (Return from JSR OBCMIN at 8524 will cause a jump to NH42-8537, then
to EXITM1-8577¢and return if hex "OD" had been the input character - the CR
key). -

The next one-parameter command is “GO", routine beginning at 857D. A
CR, LF is sent to start the display on a new line. Then it uses JSR NACCES
to set the write protect bit on the system RAM area.

-29-

Since the 6502 has a limited stack area, this routine tries to allow the
maximum possible space to the user. ﬂSo it Toads X with hex FF and transfers X
to the stack pointér. The stack value now is Ol1FF. Next it pushes the ;'3

(return address -f) onto the stack. Iq this case it is 7FFF in hex.

Then it pushes parameter 3 hi and P3L bytes onto the stack, loads A
with the flag register contents stored in location ﬁﬁ (A65C) and pushes this

onto the stack. Then restores X, Y and A registers to their original con-
tents fram locations XR, YR, AR and executes a RTI (return from interrupt).

The RTI has the effect of pulling the flag register contents from the
RStack and restoring them to fﬁé flag register. Then pulling the next two

bytes off the stack making that the contents of the program counter where the
next instruction is to be found. For the "GO" routine, this points to the
first location of the user program.
Now would be a good time to emphasize the difference between RTS and
RTI. You noted above that in an RTI execution,;we pull the flag reéister i?év
contents off the stack, then the new program counter contents. "
For an RIS, the flags are not involved. Instead two bytes are pulled
off the stack ;nd put in the program counter. Then the ﬁrogram counter is
incremented by one and the resultant value is ‘the address where the next
instruction is located.
Using the GO routine itself as an example, you'll recal we pushed "7FFF"
onto the stack before heading into the user's program.

If, at the very end of a user's program, an RTS is executed, we would
pull 7FFF off the stack (assuming an equal number of pushes-pulls JSR-RTS
before this occurred). The RTS action increments this address giving us 7FFF
+1 = 8000 where it finds its next instruction. This is the cold start entry
into the monitor.

=30

Now we come to the one-parameter VERIFY (859A) routine. This is to
output a checksum for a total of 8 bytes qnly beginning at the address
specified in para&eter 34, 3L. Rather thén write a separate routine for this,
including output.controls and checksum routines, this one parameter routine
moves P3H into P2H and P3L into P2L, then adds hex 7 to the original value in
P3H, P3L and stores it in P3H, P3L. The result theﬁ looks Tike an entry of
two parameters for the verify routine, which then allows a Jjump into the two
parameter veri%y at 8640, See that description for the way the verify ends.
o Following VERIFY is thg‘area which handles the JUMP command (at 85B8).
Only JUMP O through'JUMP 7 afe valid commands. The addresses of the areas
ca]led by the JUMP are contained in the system RAM at A620-A62F.

Since these are all two byte addresses, to do a table search and jump,
any comparison must be by increments of two so that we point to the correct
location. Let‘silook at how the routine accomplishes this correctly.

This value is put in the Y register and ié used as a pointer'into the
JUMP table (JTABLE). Since each value possible in Y is a multiple of two
bytes, we will point to either the hi byte (JTABLE+l, Y) or the low byte
(JTABLE, Y) of the selected address no matter which va1ué 0-7 had been in the
accumulator in the first place.

To do the jump itself, we follow the same steps we used for the GO
routine above. Specifically restore the stack value to O1FF at 85C4, push
JFFF on the stack (translates into 8000-monitor cold start on RTS), then load
into A the hi byte of the jump address, push onto stack, load To byte, -push on
stack, then finally go the NR10 (8408) which is the same sequence followed at the
end of the one parameter GO routine as described earlier.

The next'singie-parameter routine (at 85D7) is the tape-load. If KIM
format (L1-hex 12) we must set KIM mode LDY #00, then be sure that ID byte
selected is not FF (KIM format tape load does not provide for program

-31-

-

»

relocation - in a one parameter “only sequence, must reload into same location

-—

RN

from where it was damped). Then move the parameters around, P3 into P1 posit1on,

and jump to the tape load routine.

If we're in the SYM format load (one parameter), we will load the tape
ﬁede into Y (LDY #80), move P3 to P2, then jump to the tape load routine. A
separate description of the tape routines occurs later in this book.

~ The second last of the one-parameter monitor routines is the Write-
Protect RAM. We can select to-write-protect 1, 2, or 3. These numbers
represent the area from 0400-07FF (1), 0800-O0BFF (2) or 0CO0-OFFF (3).

This routine takes the parameters P3H and P3L and moves the bits around
until they are within a 3 bit range which controls the actual write protect.
Specifically, the entry might be W 101 CR, meaning Protect 400-7FF, unprotect
800-BFF and protect COO-FFF. ‘

This routine takes P3H and P3L, represented in hex by 0101 which is 0000
0001 0000 0001 in binary. These bits then we send to output register 3A
(location ACO1). This will cause the appropriate segments to be protected if
the jumpers are installed at JJ-42, KK-43 and LL-44.

The last of the one-parameter commands is the CALCULATE function. Since
this is a one, two or three parameter command, we'll save it for later in the
three parameter area.

TWO-PARAMETER COMMANDS

The first one we encounter is STORE-DOUBLE-BYTE. This is used for
changing address vectors within memory. We think of addresses as we might
normally encounter them - high byte then low byte. However, the processor, as
it increments the program counter, musf find the Tow byte first, then the
high byte to form the complete address. This routine allows us to specify
the address vector location and its location in the “"ordinary" logical 4

-32-

digit sequence and has the processor take and store it away in the sequence
= (lo-high) which it will use itself.
At 861D it éa]]s P3SCR subroutine to inftialize OOFE, OOFF to the value
} in parameter 3, then stores parameter 2H, 2L in the‘selected locations using
| ;he indirect indexed mode in the correct order. A return to the calling
routine occurs on completion.
The next two-parameter command is encountered at 8633. This is the
_memory search conmand. The function of this two-parameter version of the
memory search is to begin searching the memory for a specified data byte.
The search starts at the location pointed to by the bytes stored at locations
OOFE, OOFF and ends with the location shown in the second parameter entered.
As we locate this byte, we can step forward or back from the point to
examine or modify this, or surrounding- memory locations.
To clarify this further, a specific example is in order. Try'the
- following sequence:

M 200 CR 11 22 33 44 55 66 77 88 minus-sign RSTthen..

M 44-220 CR. |

What we did was to fill locations 200-207 with bytes 11-88, then step
back 8 bytes to location 200 to see what we've done. When we are in the
memory display routine, (refer back to one parameter MEM command), we are
storing the address of the data in location OOFE (Tow byte) and OOFF (high
byte). Then we use this data from these locations to point to the data byte
to display via the indirect indexed mode.

When we hit the reset (RST) key, the data in OOFE and OOFF is not distur-
bed. Now if we come back to the two parameter memory command, we will treat it
like a three parameter memory command instead. Specifically, we will begin a
search for byte “44" ending at location 220 and beginning at the location

-33-

already specified (in this case 200), where the beginning address is stored in

locations OOFE, OOFF.

Throughout the monitor program. s same —

these:same locations and thi

g mode is used for data retrieva1 and display. Therefore, these same

addressin
emory search and display technique

two parameter m s may be used in combination

with many commands.
Just to confirm this, with the data still in place at 200-207 from the
previous example, try the following:
© SHIFT DEPOSIT 200 CR 00 R
MEM 48-220 CR
g at 201 and

nd as a search for byte 44 beginnin

This treats the MEM comma
effect is exactly the same as in

ending at 220. You will note that the

the first example.
G0 200 CR. This fortes a program C

the sequence MEM 44-220 CR again causes

Also try: ontrolled break dis-

playing *0201.0". From this point,

o~

the same display and operation as in the preceding two examples %;?

or the memory function, at 8633

In the two-phase evaluation routines f

the low byte of parameter 2 is copied into the low byte of parameter 1. Then

a jump into the 3-parame

ter memory routine takes place. As you will notice,

ow the JSR P2SCR which would have moved

the point of entry at 8808 is bel
meter 2 into OOFE, OOFF. So we hav

allowing for the operation described
As noted earli

e left the original value in those

para
above.

Jocations,
er, the zero parameter

the VERIFY command.

Now we come to
parameter verify by picking u

0 a one- p the

VERIFY command was converted t
Then in the one parameter VERIFY area,

starting address out of OOFE, OOFF.

parameter entry, evaluated

we saw the one parameter entry converted to a two-

here by the two-parameter command sequence.

“n

h -34-

As a reminder the function of the VERIFY is to add up all of the hex
values of data bytés between tﬁé addressesfentered at the first parameter
through and includ?ng the byte at the second address entered.

The first_action taken (8640) is'to move parameter 2 into OOFE, OOFF.
(Another remin&ér - two parameter commands use P2 aﬁd P3, not P1 and P2). Then
Qe do a JSR ZERCK which is to zero the checksum scratch area (SCR6, SCR7).

Now a Toop is set up (8649) using the X-register as a counter. At 8648
output a space. Then load the byte pointed to by the éddress stored at OOFE,
OOFF into the A-register. The CHKSAD (820D) subroutine is called to add the

current contents of the A-register into the checksum. .

You will note that CHKSAD uses the system stack. This leaves the byte
in the A-register on its return. We then call OUTBYT to display this byte
after adding it to the checksum.

Next, INCCMP (increment word at OOFE, OOFF and compare to parameter 3) is
called. If we have added up all bytes between the two limits specified, a
branch to V1 (866E) is made. If not, we will continue to add bytes to the
checksum and output them until 8 bytes are output (controlled by the X-register
Toop). Then a comma is output, followed by output of the low byte of the
checksum. The comma, then checksum low output is accomplished by the JSR
OCMCK.

_ The routine continues by starting a new line (by the loop back from 866A
to 8646 and output of address, space, ((byte, space) times 7), byte, comma,
checksum Tow until the upper limit has been reached.

At V1 (866E) we go in a loop from 866E to 8676 just "using up" the
X-register counts with no further output, then output the low byte of the
checksum. On the next line, the output of the Tow and high byte of the

checksum will occur. (Called from 8684).

-35-

As a special note, if we are using a printer to output the VERIFY
routine, each of the lines of 6utﬁd£ uﬁil, as noted above, have at its end the o
low byte of the total-to-this-point checksum. It will therefore not match the
line-by-line checksum which one might éenerate if these lines were verfied one
at a time.

The next routine using two parameters 1s the KIM format load. At 868C
the low byte of P2 is loaded and checked that it is “Ff". This ID byte
indicates that the tape record is to be loaded into an area different than the
area it occupied at the time of the dump. The P3 parameter then will indicate
the starting address for the load.

Within this section of the routine, we set the tape mode to indicate KIM
format by loading the Y-register with zero, then jumping into the tape routine
at location L11D (85£9). (Note that the SYM Referencé Manual contains a
typographical error in the comment field for location 8493; should be "MODE =

’ﬁ?ﬁc

KIM*). We'll continue the tape load and save routine description later.

The SAVP (Save Paper Tape) is the last of the specific two-parameter
commands. We'll save this command for the paper-tape section which follows
later in this manual.

The CALC or EXEC commands can have two parameters also, however, we'll

cover those cases in their separate areas under the three parameter commands.

THREE PARAMETER COMMANDS

The FILL:%ommand is the first one encountered at 8718. Locations OOFE
and OOFF are initialized to the value give in Parameter 2 (JSR P2SCR).

The byte at PIL is the byte we wish to store at all locations between
Parameter 2 and Parameter 3 address. Therefore, PIL is loaded into the A
register (at 8729) and is stored, using indirect indexed mode, in the address

pointed to by bytes in OOFE, OOFF. Then the store is verified by a comparison

-36-

to the A-register contents using the Saﬁe addressing mode.

If an error occurs (write into a ROM location or a bad memory bit), the
ERCNT (error count) is incremented and the routine continues. INCCMP is used
here again to increment OOFE, OOFF to point to the mext Tocation and to
¢ompare that end value to Parameter 3. '

When we finish the FILL, we branch from 8731 to 87AF where the error
count is tested. If greater than zero, the error count value is left in the
A-register and the carr} is set. If the routine has been called by the normal
monitor call sequence (beginning at 8006), the ERMSG routine will output this
count if the carry flag is set. | '

One final note about the error count foop is in order. This is ghe
provision for eliminating wraparound. Specifically the FILL routine calls
the BRTT (87C1) subrou;ine. If this w&s not done, errors in multiples of 256
would never be reported since a change from FF to 00 would occur each time.
With this provision, 255 errors or more will be reported as "ER FF".

The BLOCK-MOVE routine comes next, beginning at 8740. It begins by
initializing the error count to zero. Then uses JSR P2$CR to move parameter
two into OOFE, OOFF. At 8484, parameter 1 is ﬁoved into OOFC and OOFD.

Next the most significant address bytes of both parameters are compared
to determine which direction the move is to take place. (Byte in A is PlH,
Byte in OOFF is P2H). If the carry is set, the result A - (M) was greater
than zero. This means we take the branch from 8754 to 875C to 8772. This
represents a block move in a positive direction. An example of this would be

SHIFT BMOV 0303-0300-0350 CR meaning take the contents of locations 300-350
and move them into 303-353.

-37-

If the direction was not calculated, one might have erroneously begun the
routine by moving 300 to 303, then 301 to 304, then 302 to 305 and so on. But
when we get tozﬁoving.303 to 306, we have'a problem in that we've wiped out
the section of code which we were trying to move. As a result, we would only
have duplicated the sequence from 300-302 throughoyt‘the whole move-space.

For this example, we had to begin the move at the top of the space
instead of the bottom. We would therefore move 350 to 353, then 34F to 352,
34F to 351 and so forth. This maintains the block of data exactly as expected.
hTheipode from 8772 thrbugh 879C sets up for this type of move.

This specific operation although done byte by byte in this area may be

summarized as follows:

Start with Parameter 1
ADD Parameter 3
Subtract ’ Parameter 2

Store results in O0OFC, OOFD
Set up OOFE, OOFF from parameter 3
| Move parameter 2 into parameter‘3 position
Then use the loop in BLP1 (879) to control the moves. Lets look at the
overlap example again so that we have some specific numbers to use.

The example was BMOV 303-300-350 CR

Parameter 1 is 0303
Add P3 0350

0653
Subtract P2 0300

Result (OOFC, OOFD) 0353
Lo Hi
Now move 0350 to OOFE, OOFF
Lo Hi

and move P2 to P3 position

-38-

S

;m;

What we have actually done here was to calculate the 4th parameter of
the move input. ,Once this is done, at BLP1 we ca]] BMOV subroutine.

BMOV loads A with data from the address pdihted to by OOFE, OOFF and

o

L)

stores it into the addreés pointed to by O0OFC, O0OFD. A verify comparison is
made and the error count is incremented before the return if the result of the
compare is not correct. On this first pass, it moves data from 0350 to

0353.

The BLOCK-MOVE in the negative direction is more straight-forward in
that ngwgpepia1 calculating is nee¢eq, This loop is contained within the area
875t through 8770. It does a move, returns, increments OOFC, OOFD as a 16-bit
word, then calls INCCMP to increment OOFE, OOFF as a 16-bit word and ‘compares
it to the contents of parameter 3. It will loop back until the move is
complete. ‘

A specific example (with overlap) would be the following - to close up‘a
space in the code if desired:

BMOV 300-303-353 CR

Because of the initial setup specified earlier, thg first move will be
from 0303 to 0300. Locations OOFE, OOFF will point to the value held in
parameter 2 at the beginning. Locations OOFC, OOFD will have been initialized
to the value in Parameter 1.

The loop will increment OOFC, OOFD as a 16 bit word, then call INCCMP to
increment OOFE, OOFF as a 16 bit word and compare to P3 value, moving the
bytes with BMOVE until the move is completed.

At this point, we encounter the setup for KIM and SYM format tape
saving. At 87D1 is the code executed if the KIM format (1D) command is
input. This sets the Y-register to zero (for KIM), and assures that the ID byte t
is not 00 or FF, then increments parameter 3 and jumps into the "SENTRY" point

in the tape load routine. (This is the SAVE-ENTRY point).

-390~

If the command had been 1E instead of 1D, the hispd (SYM) format would

have been selected by loqding hex 80 into Y. Then it branches back to S13C
87D3) to check that the ID byte is not 00 or FF; then jumps to “SENTRY" as
before.

At 87F2, we encounter the setup code for the 31parameter SYM format LOAD
command. In this case we are trying to load a tape record into an area
different from That which it originally occupied.

The ID byte requested must be FF, even though the ID byte on the tape is
not FF. If this is the correct first parameter, we branch to 87F9 which
increments parameter 3 (JSR INCP3). Then load Y with hex 80 to define high
speed mode and jump to "LENTRY" (8C78) which is the LOAD-ENTRY point of the
tape routines.

The tape load and save routines themselves are covered in a separate
section, so we'll continue with the reét of the 3 parameter commands here.

We had earlier seen that the two parameter MEMORY command converted
itself to.a three parameter command, then jumped to the 3-parameter area for
interpretafion. The point of entry from the two-parameter setup is at MEM3C.
The only step not executed in this case is JSR P2SCR which sets up the correct
value in OOFE, OOFF from parameter 2. Since tﬁe two parameter MEMORY command
is to use the "old" value, we need no setup and therefore skip that step.

Beginning at 8808, we load the byte we want to find into A. Then
compare it to the byte at the address pointed to in OOFE, OOFF (lo byte of
effective address, hi byte of effective address). If it is not equal,

INCCMP is called to see if we have searched beyond the upper search limit
specified in parameter 3. If not, the 16 bit word at OOFE, OOFF is incre-

mented and the comparison is tried again.

-40-

£,
L)

When the selected byte is found, at 881C we call NEWLOC (8517) to
display the address and contents of that address as already explained in the
one parameter MEMORY command. Now, while executing NEWLOC, all normal actions
of the one parameter MEMORY are valid, but in addition we can use the GO key.
This key results in a continuation of the search for-the specified byte
beginning at the current location displayed with the ending point still the
same. (Once we get to the end pont, we return to the calling routine). Refer
to the one parameter MEMORY routine description for further details.

,ﬁﬁi .The CALCULATE Fouéine comes next. This begins at 882B. It is very
straight-forward and is simply a 16-bit addition and subtraction leaving the
result of P1 + P2 - P3 in the X-register (8 bits-hi) and A-register (8
bits-l1o). At the end of the routine, output of the result is by a JSR
OUTXAH. This routine calls OUTBYT for the X-register contents, then OUTBYT
again to output the A contents to the d%sp1ay.

The last of the 3 parameter commands is the EXECUTE command. IF two or
three parameters are entered, the second and third are ignored by the routine
itself, but are stored in the Parameter 2 and Parameter 3 area where our own
routines could use them later. |

The standard version of the EXECUTE command uses one parameter. This
parameter represents the address where a command sequence is stored. The
sequence itself is stored as a series of ASCII characters which will be called
in by the monitor one at a time and executed as though they were keyboard
inputs.

Before we examine the routine, lets just take a quick example. Store

the following data in locations 200 and up.

-41-

0200 46 41 41 20 33 30 30 2

0208 33 46 46 0D 56 33 30 30

0210 20° 33 46 46 00 42 32 38

0218 30 20 33 30 30 20 33 37

0220 46 0D 00 ‘

This translates into: Fill AA - 300 - 3FF (CR)
VERIFY 300 - 3FF (CR)
BMOV 280 - 300 - 37F (CR)
Return to normal entry
from keypad

Now enter EXEC 200 CR and the above program sequence will occur'just as
though it was entered directly from the keyboard. Any keystroke sequence can
be called in this manner, but you cannot EXEC an EXEC command within this
block (no nested EXECS allowed).

When you try "nest" EXEC commands, the monitor will not execute them in
the expected manner. Just to illustrate exactly what occurs, with the above
data in place, also store.away the following:

0250 45 32 30 30 OD 45 32 30

0258 30 OD 45 32 30 30 OD 00

Translated from the ASCl1l, this would be:
EXEC 200 CR
EXEC 200 CR
EXEC 200 CR
Return to monitor

So try (from the monitor) EXEC 250 CR. Note that this takes the same

amount of time to execute as EXEC 200 CR above. But we should have executed

it three times, right? And this should take 3 times as long! This fllustrates

that execs cannot be nested.

. -42-

Let's examine the EXEC routine itself to see why this is true. We'll
begin with the case where no vectors‘héVe‘been modified and all inputs are
coming from the hex keypad.

Starting at 8855, the monitor looks at the input vector high byte at
A662 and compares it to the high byte of the execute_éector at A673. If they
are equal, it means we were trying to nest two execs. This has the effect of
an unconditional branch as we'll see in a moment.

Beginning at 885D and continuing through 8865, we will store away the

v'iﬁput vector in monitof scratch locations. Why? We are using a hex keypad or
a CRT or TTY terminal. When we logged into the SYM, the input vectors and
output vectors were configured to point to specific monitor routines for each
type of device. |

The next step at 8866 to 8871 is to change the input vector to péint to
the RIN routine (887E) in place of whichever input routine was in efect when
EXEC was entered. Then parameter 3 is moved to OOFA and OOFB to be used as a
pointer later. This will tell us where the next input byte will be stored,
to be used as though it was a keyboard input.

Looking at RIN, we see the indirect indexed mode used again to pick up
the byte pointed to by the address stored in 00FA, OOFB, If the byte is
non-zero, OOFA and OOFB are incremented as a 16-bit word, the "input charac-
ter" is echoed to the terminal if TECHO bit is set, and it returns to the
calling routinérwith the character in the A-register.

If the byte was a zero, the input vector is restored from the scratch
locations and INCHR is called so that we can grab the next character from the
input device rather than the RAM.

This gets us back to the reason for an inability to next EXEC commands.
Specifically we only have one set of scratch locations to use to store the
“01d" input vector when calling for RAM input. These locations must be

-43-

protected from over-writing after the fifst EXEC command so that we can
restore them correctly after seﬁsing.a zero byte. (Otherwise after a restore, {P
we'd still be poinzing to the RAM as thg input device).

To protect our return address, then, we branch from 8858 to 8872 if the
input vector had already been moved (and we are theréfore trying to execute an
EXEC within an EXEC). At this point, the new P3 within the second exec
becomes the new OOFA, OOFB pointer. This has the effect of a direct branch as
illustrated by the example we tried earlier. |
"PAPER_TAPE 1/0 ROUTINES '

The LOAD PAPER TAPE (LP) and SAVE PAPER TAPE (SP) commands are grouped

together here because of the fixed format that the paper tape uses. If we
know how the paper tape is punched in the first place, the reloading téch-
nique for the tape will be easy to follow as well.

The SP capmand accepts two parameters. The first is the starting RAM
location for aibaper tape dump (stored as Parameter 2). The second is the s
ending RAM location (stored as Parameter 3).

The routine begins at 869, saving the registers. Then it sets up OOFE,
OOFF from Parameter 2. At 86A3 is a JSR DIFF2.

At DIFF2, ZERCK is called to zero the checksum (16 bits). Then the
routine follow through the DIFFL before the return. This calculate the
difference between the current value in OOFE, OOFF and the ending address
contained in Parameter 3.

If the result is greater than zero, we branch fram 86A6 to 86AB where we
test to see if the maximum number of bytes per pape tape record have already
been transmitted. If so, we will go to SP2F (86BA) and output the following
to the tape punch: A colon, followed by the number of bytes contained in that

record, followed by the starting address (two bytes) of that block of data,
followed by the data itself.

‘ -44-

The colon in this case serves as a re;ord delimiter, pointing to the
start of the record. As such, it is not added into the checksum. The sub-
routine SVBYTE:35pused to output all o;her data to the paper tape, adding each
byte to the checksum along the way.

Each of the data bytes is output by the looﬁ é%tending from 86D2 through
86E7. In each case the loop is controlled by the initial value set to vari-
able RC (count of bytes in that record). This will a?ways be the value 10 hex

(MAXRC default at A658) until a number less than this is left as a difference
}Mbéiﬁeen P3 and the current vélue in OOFE, OOFF. The last record will then
hold the remainder of the bytes in the dump.

When the last byte of each tape record has been output, the checksum
bytes, hi then 1o will be output using OUTXAH. When the dump is ended, we
are required tb add ;00 CR to the tape in the offline mode. This is not part
of the SP routine. You will notice that the output routines used are OUTCHR,
OUTBYT and OUTXAH. To punch a paper tape our output vector will most likely
be pointing at the TTY routine. The TTY itself then, not only received and
prints the characters, but also punches the paper tape if the punch is on.

The LOAD PAPER TAPE routine follows a sequence to read and store the
data in the same order as it was stored in the first place.

We start at 841E saving the registers and output a carriage return, line
feed. Then we zero the error count and the checksum. Then it will begin to
read tape until it first encounters a semi-colon (loop from 842C to 8432).

At 8433, the first byte after the semicolon is read. If non-zero, it
branches to NUREC (new record - 8443) where it stores this first byte at RC
(bytes in this record). Then the next two bytes are loaded to set up OOFE
and O0FF as pointers to where the data will be stored.

The loop beginning at MORED (more data - 8454) uses the count stored in
RC as a control for how many bytes will be loaded from this record.

=45.

During the store operations, we also check whether the store operation
was good (845D) and increment the erkof count if any errors occur. While the <
load is in process:the subroutine LDBYTE is used to read the next byte with
INBYTE and add its value to the checksum using JSR CHKSAD.

After decrementing RC to zero, it indicates that all bytes of that
;ecord have been loaded, then the checksum is read from the tape and is
compared to the checksum calculated during the load. (Each record has two
checksum bytes). The monitor loops back here to LPZ (8429) to zero the

-checksum and begins to look for the start of the next record (next semi-colon).

At the end of the load, the end-of-the-file record which was manually
added to the tape, is sensed. Here's how that part works:

The semicolon is sensed at 842F, causing the next byte to be read. This
byte is a zero (00) indicating that there are no byte§ in this record. This
causes fall-thrbugh to 843A where the error count is checked. If no errors
occurred we end up at 8440 which is JMP RESXAF. This is our exit to restore ©
the registers except A and Flags.

when the return to the monitor occurs, if the paper tape reader is still
active, the next INBYTE sensed will be a CR (carriage return) character sending
the monitor into the warm-start loop. This was the last character of the
end-of-file record and ends the routine.

Now that we know that each tape record has a semi-colon,byte count,
starting address, data content and checksum, can you guess why the end-of-file
record (;00 CR) is added manually instead of being added by the monitor after
each dump? Right! The paper tape can dump non-continuous blocks of records,

then load them back in with a single command. Example:

-46-

Sp 200

SP 310
SP 100
SP 0

215 CR
350 CR
140 CR

25 CR

plus manual entry ;00 CR

where reload is accomplished by:

LP CR

TERMINAL I/0 ROUTINES

The paper tape routines were based on the ability to talk to a paper-

"tapé reader-punch device, mbéivlikeiy attached to a teletype.

Before going into the routines themselves, we must first undergtand the

basic different between the Hex Keypad and a teletype or CRT terminal. The

onboard Hex keypad is a parallel input device.

The closure of each key repre-

sents an intersection between a row and a column of keys interpreted by the

monitor scanning the rows and columns to detemine which key is down.

The teletype or CRT terminal is, most often, a serial type of device,

requiring only one input bit and one output bit for full communications. The

timing of puls;§ on these inputs and output bits determines the data content.

The maximum rate of change in transitions per second which may be sent by

these single bits is known as the baud rate.

For the SYM, the format of the serial input string must be one start

bit, 8 data bits, and three stop bits.

This is illustrated in the diagram

below:
Serial String Data Format
LSB
1 1 0 1 0
no data present
Data Level
0 N .
¥ 1

8 data bits
start bit

-47-

L no data pr«

3 stop bits

when there are no transitions present, the input Tine is maintained as a
high. The first high to Tow transition seen is known as a start bit. This
stays low for one ‘bit time which is determined by the baud rate. Then, one fr
bit at a time beginning with the least signficant bit, the data is transitted.
Last, a series of 3 stop bits are transmitted. This means the data line
level returns to a high state for at least 3 bit times before the next start
bit comes along.

One thing'you’will notice about the above diagrem is the fact that a

continuous "1" level represents a no-signal-present condition. Each place
u”whefe an actual data bit (i)-is to be present, a zero level is the output.

Therefore, if we are to output binary data, it must be inverted before it
is output. Likewise after receiving a data bye, it must be inverted before
interpreting it. This is accomplished in the input and output routines by an
EOR #$FF.

Since we've outlined the requirements for the data format, Tet's see how

the SYM will produce this output. We'll assume our output vectors already
point to the terminal output routine at 8AAO.

At TOUT (8AAO) the ASCll character was in the A-reQister when OUTCHR was
called, is saved in location 00F9. The registers are saved and Port B bits 4
and 5 of the 6532 are set as outputs. (These are the CRT and TTY output

bit).
Then the ASCII is retrieved from OOF9, the X-register is loaded with hex

OB, and at 8ABl the data in A is inverted.

From this point onward, the carry bit will be our primary output vehicle,
controlling whether there will be a one or a zero sent to the output device.
The reason for this statement may be seen by an examination of the OUT routine.

At 8AD4, OUT begins by saving the current contents of A on the stack (it

may represent a whole or partially shifted ASCII character). Next it brings the

-48-

current Port B data register (6532) contents into A and sets the 4 most
significant bits to zero using an AND #$0F.

A branch to OUTONE (8ADE) is made if the carry is clear. Note that the
AND instruction has no effect on the carry flag. So if it was set on entry
to OUT, it will still be set here. .

Since the carry is set at 8AB3, we do not branch. Instead we OR the
Port B data with hex 30 which sets both the CRT and TTY output bits high when
the st9re operation at 8AEl is done, If each bit is high if the carry was
set, how then does the start bit become a zero? Well, the TTY output is
inverted by tr?nsistor Q30, providing the expected polarity for the signal.
the CRT output:at Q31 is inverted, expecting the opposite polarity for all
signals. From here onward, we'll just talk about the_TTY signals, having
standard polarity.

As noted earlier, when we set the carry and did a JSR OUT, it resulted
in a low autput. This was at 8AB3, 8AB4 in our TOUT routine. At 8AB7 we call
DLYF to delay a full bit time beore a new bit is to be output. One more short
delay loop from 8ABA through 8ABF is executed, then we get to output the next
bit.

Each data bit is shifted out into the carry by the LSR A instruction at’
8ACO, the X-register is decremented and a loop back to 8AB4 occurs until X
reaches zero. This outputs bit 0, 1, 2, 3, 4, 5, 6, 7, then 3 "zeros" (stop
bits, inverted output 1éve1 = 1) because the LSR A instructions shifts a zero
into the MSB each time it shifts the LSB into the carry bit. Then it delays a
full bit time for each bit output.

Where did the delay time come from? The particular value loaded in
SDBYTE (A651) establishes the delay period. And this SDBYTE value was estab-
lished at sign-on time. The monitor has to come as close as possible to the

bit times of the terminal we are using in order to have the two understand each

--49-

other. We'll get to that setup later. Before that we'll look at how data is
input in this serial format. N o —
The loop-at LOOK frém 8ASF to B8A69 is provided to watch the terminal
input lines continuously ;nt11 a start bit is located. If there is no start
bit forthcoming, at 8ASF the inputs will be zero. Tﬁis is AND'ed with TOUTFL
50 that only the 4MSB's will be examined (if TTY is active, TOUTFL = FO).
At TIN (BA6A) we've found the leading edge of the start bit, then we
delay half a bit time to put the evaluation roughly in the middle of the bit
cell time (in case there's some diffgrence between the transmit and receive -
"BAUD" rates we allow for some variation by keeping it in the center).
At 8A73, the carry is not set and a subtract with carry will occur. The
result of the subtraction will set up the carry bit for aﬁ‘output to the
terminal if the TECHO bit is set. It also sets'up the carry bit for tﬁe
sequence beginning at SAVE (8A87). If there is no output to the terminal
required (echo) we use DMY1 to delay the routine just as much as the echo é
would takes -
At save (8A87) the ROR A instruction causes the carry bit to enter the
MSB of the A register, all other bits move right one position, and the LSB
of A enters the carry. '
We continue to loop back through TIN until all bits have been received
and the sfop bits are recognized. Then at 8A% the received data is inverted
and left in A on the return to the calling routine.
This input routine from the terminal operates in the same way as the hex
keypad I/0 routine in that it stays within the routine continuously (endless
loop) until a keypress is detected. This type of action may not be desirable.
The following discussion digresses a bit, showing a set of useful routinesi
for the hex keypad or a parallel ASCII keyboard. Unfortunately, a serial

t

-50-

keyboard would not be applicable in this type of activity because of the
possibility of mis-timing on the receipt of start bits. Because of this, serial
keyboard "fast scan" might have to be dpne on an interrupt basis instead.

Al

KEYBOARD FAST-SCAN ROUTINES

Using the keyboard during a program without using the GETKEY routine may
be necessary where the speed of the program is critical. In particular, we
may just want to 1ook at the keyboard to see if a key is pressed, interpret
it and go on or simply decide to continue with program execution having found
no key down. The following routine illustrates this technique. It is
written as a fully relocatable subroutine so that it may be used immediately
in any progrém.

The New CHKKEY Routine

CHKKEY JSR ACCESS ; Unprotect SYSRAM

0200 20 86 8B

0203 20 88 81 JSR SAVER ; Save Registers

0206 20 23 89 JSR KEYQ ; Any key down?

0209 FO 15 BEQ CONTIN ; Continue previous ops
0208 20 2C 89 JSR LRNKEY ; Which key was it?

020E 48 PHA Store it

020F 20 72 89 JSR BEEP ; Tell user found one
0212 20 2389 TSTL JSR KEYQ , Still down?

0215 DO FB BNE TST1 ; Wait for release

0217 20 9B 89 JSR NOBEEP ; Debounce delay

021A 20 23 89 JSR KEYQ ; Check once more

0210 DO F3 BNE TST1 ; Wait again for release
021F 68 PLA ; Get ASCII value

0220 4C B8 81 CONTIN JMP RESXAF ; Keep ASCII in A, return

-51-

r————- —— — -

A Test Program ‘ _
0300 20 00 02 TESTR JSR CHKKEY

Look at Keypad

we

0303 FO 03 BEQ SCN . If none, skip output
; 0305 20 47 8A JSR OUTCHR 5 Send ASCII to DISBUF
| 0308 20 06 89 SCN JSR SCAND ; Scan Display
0308 4C 00 03 JMP TESTR ; Begin again -

To try the routine, enter GO 300 CR. You will notice that any key-press

will have exactly the same effect as it did while thé monitor was in direct

" control. This includes a blanking of display while the key is held down.
The blanking is required during the keypress for two reasons. The most

important is to avoid multiple entries where keybounce have have occurred.

(The processor executes instructions so fast it may interpret each "bounce" as

a separate entry). The other reason,.almost as impoftant, is that any keypress

during on onboard display scan, messes up the display. This is due'to the -
multiplexed nature of the display as well as the sharing of the display ports R
with the keypad.

In the February, 1980 issues of MICRO magazine, I presented a routine
for interfacing an ASCII keyboard to the SYM.. There were some errors which
crept in, one in the routine itself and the other in the initializer.
Particularly JSR OUTCHR was incorrectly typed as "AS5 F1" where it should have
been 20 47 8A. The other section improperly translated is INIT in the 6th
line, LDA #%40 should have been LDA #3$39, pointing to the KYSTAT routine.
The primary problem with the program-as-published was the accidental

deletion of the location-column. GKEY, although fully relocatable, started
for demonstration purposes at 0200, ended at 023D. The INIT routine, for demo
purposes, began at 0240. The vectors in INIT are to point to GKEY and KYSTAT

respectively, wherever they are relocated.

-

»

-52-

If you try that routine as corrécted, you'1ll notice that the display
remains lighted even while the key is held down.
The original routine was written by me in August, 1979 and I have since

then improved it to operate in the same way as the onboard keypad for more

‘consistent operation. This improved version is presented here.

A Modified ASC1l Keyboard Interface Routine

0200 20 86 8 GKEY JSR ACCESS ; Unprotect SYSRAM

0203 20 88 81 - JSR SAVER ; Save registers
0206 A9 00 LDA #00 ; Define User Port A
0308 8D 03 A8 STA A803 ; as an input
0208 AD 01 A8 LDA A801 s Get ASC11 if any
020E FO 13 BEQ GOBAK ; If none, exit
020F 48 PHA | ; Stack it
0210 20 72 89 JSR BEEP ; Tell user key found'
0213 20 24 02 TSTA JSR KYSTAT ; Key still down?
0216 DO FB BNE TSTA ; Wait in loop
0218 20 9B 89 JSR NOBEEP s Debounce delay
021B 20 24 02 JSR KYSTAT ;' Still down?
021E DO F3 BNE TSTA ; Keep waiting
0220 68 PLA > Bring ASCII back to A
0221 4C B8 81 GOBAK JMP RESXAF ; Restore reg except A, RTS.
0224 48 KYSTAT PHA ; Save A
0225 A9 00 LDA #00 ; Define user Port A
0227 8D 03 A8 STA A803 ; as input
022A AD 01 A8 LDA A801 ; Get ASCII if any
022D O0A ASLA ; Shift keystrobe into Carry
022E 68 PLA ; Réstore A (no effect on carry)
022F 60 RTS s Return

-53-

el

page locations other than those ordinarily used by the monitor. To initialize !

This routine above takes feuer bytes than the original and uses no zero

iy

the monitor to use the ASCII keyboard{ we'll use the following INIT routine.

1980 MICRO:

0230 20 86 8B INIT

0233 A9 00
0235 8D 61 46
0238 A9-02
023A 8D 62 46
023D A9 24
023F 8D 67 A6
0242 A9 02
0244 8D 68 A6
0247 4C 03 80

JSR ACCESS
LDA #L,GKEY
STA $A661
LDA #H,GKEY
STA $A662

LDA #L, KYSTAT ;

STA $A667

LDA #H,KYSTAT
STA $A668

JMP WARM

; Unprotect SYSRAM
. Modify keyboard INVEC

Modify status vector

; Warm Entry-Monitor

A quick refresher for those who may not have access to the February,

£
The ASCII keyboard is connected to user input Port A device U28 ™~

(I~

at connector AA with pin assignments as noted below:

ASCI1 Keyboard Connections:

0 1 2

AA-Connector Pins

v 3

3 4 5 6 Any key-down (+) strobe GND
CIZ NIT M 10 1

To relocate the GKEY routine, modify the address at 214, 215 and 21C, 21D

to point to the relocated KYSTAT routine.

The INIT routine will also have to

be modified to point to the new locations occupied by GKEY and KYSTAT. For

those of you not familiar with the RAE (SYM Resident Assembler-editor) format,

the notation in INIT showing LDA #H,KYSTAT or #L,KYSTAT means to take as an

immediate value the High or Low byte of the address KYSTAT.

The routine could also be generalized to accept any number of keyboards at

any number of input ports by modifying those locatfons showing addresses A801 and

A803.

For example, we could modify the SYM to add extra input ports as outlined

in the SYM Hardware Theory of Operations Manual, and change the instructions

--54-

-

at 208 and 227 to STA A002,Y (99 02 AO) and instructions at 20B and 22A
to LDA A000,Y (89 00 A0).

Then before ca111ng GKEY or KYSTAT, you would load Y with the value
representing which I/0 port is to be aécessed (hex 00 = Port B on I/0 chip 1;

hex 01 = Port A on I/0 chip 1, hex 10 = Port B on I/O chip 2; hex 11 = Port A

on I/0 chip 2 and so forth). This change will make the routine fully relo-
catable, eligible for ROM use and useful for more than one I/0 chip address

{good for 16 chips compris1ng 32 ASCII keyboards if desired). There are

“other, more efficient ways of handling mu]tiple input devices on minimal port

assignments, but that's a separate subject This just presents one possibility.

The Reset Sequence

Now that we've worked out the major part of the monitor subroutines,
(except for tape control routines which come later), ft's time to see what we
need to set up the monitor communications in the first place.

The reset function is fully described, from a hardware standpoint, in my
Hardware Theory Manual, however, as part of the reset function, the software
sequences are described in the following paragrahs.

The reset pulse originates with the onboard 555 timer. It is triggered
either by the onboard reset switch or by power-on of the circuitry. (A
characteristic of the 555 timer is that in one-shot mode it will produce an
output pulse immediately on power-up, then it will wait for the trigger input
to produce any other pulse output).

The first reset function is to define the stack pointer contents as
hex FF. Next a hex CC is stored in PCR1 which is a control register on the
6532. This disables the power-on reset (POR) and turns off the tape motor.

Next, the interrupt (IRQ) is disabled by setting the 5th bit of the

flag register. Since we are unable to set the bit directly, the A register

-55-

is loaded with a hex 4 then is pushed qnto the stack. The stack contents
are pulled from ;he stack, setffng that bit. 7
Then the monitor removes the write protection from the system RAM
by the JSR ACCESS at 8B56. This prepafes the RAM from A620 through A67F to
be initialized to all of the "default” monitor-established values. These
Qa]ues are copied directly from the monitor ROM, Tocations 8FAO-8FFF by using
the index register as a loop counter and absolute-X-indexed addressing for the
Toad and store (loop from 8859 through 8B63). |
The next step is to tell the user that the monitor RAM is initialized.
This is accomplished by the LDA #7 and JSR OUTCHR at 8B66. If you go back to
89C6, it does a compare to a value 07, and if true, sounds the onboard keypad.
KSCONF is called to determine whether the onboard keypad is to be used or
an external CRT terminal. The monitor will remain in.a loop from 8B6C through
8B75 testing first the keypad, then the CRT terminal port for an active bit. -
If there is a keypad press, it jumps to MONENT (8B7C). {;y
The key keypad addresses are already copied into the input and output
vectors, so we don't have any changes to make here. MONENT, then, only needs
to restore the stack value to FF, unprotect the system RAM, then go to the
warm entry point for the monitor. Since this is the basic command entry 1oop,
we're now set to receive commands from the keypad.
CRT 1/0-
If we're running a CRT terminal, the SWLP loop will fall through the 8B76
where the input and output vectors are changed using subroutine VECSW. From
then on, each INSTAT, INCHR or OUTCHR subroutine call will go to the terminal
I/0 port rather than the onboard keypad routines.
Since the CRT terminal is a serial device, we'll have to find out how

fast the bits are coming at us from the terminal. Subroutine BAUD is called

for this.

-56-

Before discussing BAUD, we must firsf understand the sequence of
inputs which wll be(seen on theinput port when we try to log-on with the CRT
terminal. The instructions indicate that 5 "Q" is used.

Remember that for a CRT terminal a no-data signal is seen as a con-
tinuous O level. A start bit is a one level and each real 1-bit is a l level.
Note that bits are sent LSB first. Therefore a "Q" will look like this: (just

A

the opposite of the TTY format).

1 STO 1 2 3 4 5 6 7

0 X X X
no data Q\\ 1 0 1 0 1 0 0 0O stop-bits no data -

time t = 0

To find the correct baud rate, we start with Y equal to zero (8801).
Then SEEK the first zero transition (stay in a loop 8802 through 8B07 until
bit 7 of port at A402 first goes Tow). '

Now we can begin timing; use Jsé INK to increment Y, delay for a
certain time, then check if the input is still low. Stay in a Toop counting
the delay periods until input goes high. Do the same for one period where the
input is high.

Then we c%mpare the number found to the count which represents the nearest
standard value, and store the standard value at SDBYTE. From here on, SDBYTE
will establish our time delays for terminal I/0.

After the baud rate is established, we get to MONENT (8B7C) just as

before and enter the main monitor loop.

-57-

TAPE 1/0 ROUTINES-

There are two priﬁaryxéntrj points to the tape I/0 section
of the monitor. These are DUMPT at 8E87 and LOADT at 8C78.
These are to dump memory to tape or load memory from tape
respectively. As we did before with thg paper ‘tape routines,
we'll start with an examination of the dump routine.

Rather than attempt a deep analysis of these routines,
 the primary reference to the understanding of these sequences
‘would be the Appendix C of the SYM Reference Manual. Specifically,
the entirg sequence of the tape subroutines is structured to
output the precise order of characters indicated in each of the
tape formats. thh this appendix as a reference, we can begin a .
walk through the dump routine. .

At 8E87, subroutine START (8DA9) is called. This stores -
the Y register in location FD {called “mode"), unprotects
the SYSRAM, sets up for tape output, and calls ZERCK to zero
the checksum. Then it moves the start address of the dump
from parameter 2 to OOFE, OOFF and turns on the tape recorder.

At 8E8A, port B of the 6532 is loaded with the number 7.
This had the effect of applying 3.2 Volts (TTL high) across the
audio output voltage divider network R88, R89, R90. From this
point onward, this particular bit (pin 9 of U37) is manipulated
to put the audio out to the tape recorder.

The routines from S8E8F thru 8EF9 are configured to output
the control and data bytes in the order shown in Appendix C
of the Reference Manual.

-58-

You will notice that, as with all of the other monitor‘routines,
OOFE and OOFF are .used to hold" a cr{tiéa]fvalue. In this case
it is the current:address of the byte being dumped (see 8EFC).
After each byte, the contents of OOFE and OOFF are compared

to the ending address low and high to see if the last byte

‘has been sent out. (8ECE-8EDB). If not we stay on the loop
until the last byte is gone.

If we're done, the slash (end of record, hex 2F) is
~ﬁritten, then the cheéksum (2 bytes), then tow EOT characters
(hex 04). To exit, we go to 8041, clear carry, branch from
8D44 to 8DAE thru to 8DBB which turns off the tape motor. Then
return to the calling routine.

The output routine itself is located between 8FOE and
8F38. Wht is basically done here is to take the bits of the
output byte, one at a time, and shift them left thru the carry
bit. For every zero which enters the carry bit, there will be
no change in the output level. For every one-bit which enters
the carry bit, the output state of the tape audio bit will
change from a high to low or vice versa. '

The tape output for each bit is done in two segments.

The first is controlled by the Toop fram 8F1F to 8F24. The loop
constant is stored at TAPET1 (A635). The default value is 33.
The second loop is from 8F2C thru 8F31l. The delay copstant is
at TAPET2 (A63C), default value is 5A.

What actually goes on the tape, then, is a non-symmetric
waveform as shown in the figure below. This waveform should
aid in understanding how the readback circuit can distinguish

between a one and a zero when we try to reload the tape.

-59-

A SAMPLE SYM-FORMAT TAPE_WAVEFORM

. (only 3 bits shown ?or clarity)

Audio Out
To Tape

——————

-’

Tl T2 Tl T2 Tl T2
1 0 1

Because of the t1me constants used, hex 33 and hex 5A,

the waveform for a one spends roughly 1/3 of its time (first

segment in one state (hi or Tlo) then 2/3 of its time (second
segment) in the other state.

When we are trying to reload the waveform, we set the
high speed tape boundary at 46 hex. This is half way between
the two values 33 and 5A.

AR,

g

At 8D66, during readback is where the boundary is set up.
The RDBYTH routine at 8DE5S in conjunction with GETTR
at 8DCA sahples the input waveform from the signal conditioning
circuitry and looks for a level transition occurring within the
time representing 50 percent of a full expected timing cycle.

If there is a transition froma 1 to 0 or 0 to 1 ,the sensed
bit is a 1, just as it was recorded in the first place.
1f there was no transition within that time, thie bit sensed is a
zero.

The rest of the read-tape routines follow along to load the
data in the same format in which it was dumped. Again note that
OOFE and OOFF are used to hold the address of the data as it is

being read in from the tape.

-60-

Because the high speed values are stored in the RAM, we would be able
to change them if we wanted to do'so,f What would happen then 1s an increase
or decrease in-the packing density of the data on the tape with a correspond
decrease or increase in the speed with which programs may be loaded or store

Deperding on the quality of your tape and tape‘recorder. you may be
able to load or store programs up to 4 times faster. Try, for example,
storing 1A at A635, 2D at A63C and 23 at A632. Now try saving a tape file,
then reloading 1t._ It should save and load roughly twice as fast as before.
-Note that tape speed variations will be twice as critical now and the level
controls may need to be adjustéd.more cirtically.

Fro further data on modifications to the tape circuitry to‘accommodate
the higher speed, please refer the SYM-PHYSIS, the SYM users-group
newsletter. |

This monitor circuit is provided also with the ability to save and
load KIM format tapes. As with the high speed SYM format, the load and
save routines are directed towards the specific tape format shown in
Appendix C of the SYM Reference Manual.

As you will notice in the section from 8F56 to 8F97, the KIM character
store routine is very solidly controlled as to its timing (all constants
in ROM used in the timing loops). We could not change any of them as we
did for the:;YM format dump routine. .

However, if KIM-format tapes were dumped in a higher speed fashion,
such as by KIM Hypertape or Ultratape, maybe by changing (decreasing) the
value at A631 (KMBORY) one might be able to read these other formats
successfully. SYM-PHYSIS will soon be reporting on the success of such

attempts and this manual will be revised accordingly to report their results.

-61-

USE OF THE MONITOR SUBROUTINES-

The major portion of the monitor subroutines are shown in chapter 9 of
the SYM Reference Manual. Bécause of the use it has been given in this book, ;
NOBEEP (8998) should probably be mentioned here as a short term delay routine
(same duratidn as a BEEP routine but no output). You'll see it used again later.

For the rest of the monitor routines, as a general note the ACCESS
routine should be called in a users program (once at the beginning is usually
enough), before you try to use the monitor routines. This s because many
of them write into the SYSRAM as input buffers, parameter storage, scope
buffers, etc. This call to ACCESS is a part of my own general policy for
that reason. I‘pad considered removing the write protect monitor jumper (MM-45)
but I believe tﬁis facility may come in handy in the future.

Rather than go into further detail on the use of each of the monitor
routines, having already explained the individual operation of each, I'N
refer you to Chapter 9 of the SYM reference manual which has a summary of each;"”
1 will, however, be happy to answer any questions you'miy have about them.
Since we have already traced through each of the routines by means of the
flow narratives, the charts in chapter 9 of the reference manual can serve

as a useful guide for the use of most of the routines.

USE OF THE MONITOR ITSELF AS A SUBROUTINE

Lets say we had a need during our program to fill an area of memory
with a specific byte; to make a movement of a whole block of memory or
to load a specific program from the tape.

Much effort could ﬁave been dedicated here to tell you exactly what
parameters to set up and what new entry points would be used for each
monitor function as individually called. However you would then have

perhaps 25 different routines to look up and load, one for each monitor

function you wanted to use.

Fortunately there is one simple }oqtine I've developed which allows
you to call any of the monitor functions except JUMP or GO by a special use
of the EXEC function. (The JUMP and GO are restricted as explained below.)
The best part about this routine is that is may be called, as a subroutine,
“from a machine language program or BASIC or most any other program language.

Here it is:

SUBROUTINE EXECLNK - CALLING THE MONITOR FUNCTIONS
1000 20 86 8B EXECLNK - JSR ACCESS ;access SYSRAM

1003 20 88 81 JSR SAVER ;save registers

1006 A9 04 LDA #04 ;disable IRQ

1008 48 PHA

1009 28 PLP

100A A9 10 LDA #$10 ;point to area

100C 8D 4B A6 STA $A64B ;where ASCII-coded
100F A9 50 LDA #$50 smonitor commands

1011 8D 4A A6 STA $AG4A ;are stored

1014 20 55 88 JSR $8855 ;change INVEC to RIN
1017 A9 1B LDA #$18 | ;ESC char to KTM/2
1019 20 47 8A JSR OUTCHR ;sent it out

101C A9 45 LDA #'E ;clear screen char
101E 20 47 8A JSR OUTCHR ;sent to KTM

1021 20 9% 89 JSR NOBEEP ;delay while it clears
1024 20 35 80 JSR USRENT ;enter monitor

1027 20 86 8B JSR ACCESS ; (sometimes returns protected)
102A AD 3A A6 LDA $A63A ;restore

102D 8D 61 A6 STA $A661 syinvec to

1030 AD 3B A6 LDA $A63B ysame as

-63-

1033 8D 62 A6 STA $A662 ;before

1036 08 PHP - jreset interrupt

1037 68 PLA ;bit to allow d
1038 29 FB AND #$FB ;interrupts

103A 48 PHA ;again (set 1=0)

1038 28 pLP | '

103C 4C B8 81 JSR RESXAF ;(or RESXF or RESALL)

 Lets look at this routine in detail.

At 1000, we allow access to the System RAM. This is done so that we
can rewrite some of the input vectors. Then at 1003, we save the registers
with SAVER since some of the registers may be in use by the calling routine.

At 1006-1009 the I (interrupt disable) bit is set to prevent IRQ's
from messing up the program sequence. This is purely optional and, along
with the instructions from 1036-1038, (which restore the I bit to zero), v
could be deleted at the users option.

At 100A, parameter 3 is set up with the address in memory where we have
stored a block of ASCII encoded monitor commands. These are stored in the
same format expected by the "EXEC" command function.

A special note must be made of the restrictions on the command block
contents. Specifically, on entry to this routine, at 1014 we will be
changing the input vector, storing the old input vector in monitor
RAM scratchpad locations A63A and A63B. We also will have stored, on the
stack, the data, flags, and return addresses from the previous levels of
subroutine calls.

If we are ever fo get back to the calling routine, we cannot do anything
to disturb the previous contents of the stack. Both JUMP instruction and the

one parameter GO function set the stack pointer to $FF again, then push on thi

-64- -

address 7FFF representing (after autoincrément by 1) a return to the monitor
after the GO or JUMP routine 1§:comp]eted if an RTS is at the end of the
program sequence.fi

As a result 6f this reconfiguring qf the stack, to use this routine
we cannot allow the stack to be disturbed this way. So we will not use either
of these two types of commands within our execute block for this routine.

At 1017, we've returned from changing the input vector. Now the next
time the GETKEY routines are used, the monitor will be ready to find the input

_in the RAM instead of ‘from thg keyboard. (Keyboard will appear to be dead
until the input vector is somehow restored.)

The sequence from 1017-1023 is written for the KTM-2 teminal. It is a
screen clear sequnce which includes a delay while the KTM-2's processor is
clearing its RAM to blanks. (Without the delay we generate some garbage on
the screen when the next output occurs.) Again, this sequence is optional.

At 1024, we enter the monitor program at the USRENT (8035) point This
follows a pseudo-interrupt sequence which means that, as in IRQ or BRK
interrupts, the registers are saved within the SYSRAM in A65B-A65F and the
program counter contents in A659 and A65A. This is done so that the register
contents at the time of the interrupt may be displayed and to provide a place
from which they may be restored to their original value to continue program
execution when the interrupt sequence is completed. Further information
about interrupt handling may be found elsewhere in this manual.

Now that wé've entered the monitor at $8035, it will perform various
setup tasks, then it will do a warm start to the main monitor flow. This
folllows the sequence - get command, dispatch to execute it, write error msg
if appropriate, recycle to get command again.

Since we modified INVEC to point to RIN, (see code from 8855-887D), it

means that all commands will be taken in ASCII from that point in RAM specified

-65-.

in bytes stored at OOFE and OOFF. 'Just to supply an example, lets suppose
we wanted to Fifl AA-800-8FF and Block Move 900-800-8FF then to Verify ,
800-9FF and return control to the calling program. A sample program sequence

to do this follows next.

SAMPLE SEQUENCE USING EXECLNK

THE PROGRAM: 0200 20 00 10 " JSR EXECLNK
0203 00 BRK

THE_DATA: 1050 46 41 41 2C 38 30 30 2C 38 46 46 OD
" (F AA- 800 - 8TFF cr)

105C 42 39 30 30 2C 38 30 30 2C 38 46 46 0D
(8 900 - 800 - 8F F cr)

1069 56 38 30 30 2C 39 46 46 0D
(v 800 - 9F F cr)

1072 47 0D (For this EXECLNK, a]way§ the
(G cr) last command in the sequence)

You will %otice at the end of this data representing the execute
block, instead of a "00" which would normally represent the end of the block {ﬁ;
(refer to EXEC command description), we have used a "GO CR" instead.

This is a zero parameter GO conmand. As detailed earlier, this form
of the GO will not reinitialize the stack, bu§ will only resume the
execution of the program at the location referenced by PCHR, PCLR (A659,A65A)
after restoring all of the registers to their original contents at the time
of the interrupt.

Since the JSR to USRENT was treated as a pseudo-interrupt, it means we'll
be going back to location 1027 to find our next instruction (the first location
after the interrupt).

At 1027 we again must allow writing to SYSRAM because certain of the
monitor routines could cause it to be protected. We are going to need access
again so that we can restore the input vectors which are contained in the

SYSRAM

’, -66-

Next, the code from 102A-1035 performs the same function as RESTIV
(8899-88A4) but we've provided-the éxt}a,capabilities here to restore the
interrupt capacity (1036-103B) and to pass variables in A or F by the
jump to RESXAF.

For those of you who are using SYM BASIC, this .routine may be
¢alled from BASIC just as easily as fran a machine language routine.

A sample is shown below for your reference. To conserve memory,
you'll probably want to move it somewhere else. For the move, we'll

- discuss changes after'this example.

CALLING EXECLNK FROM BASIC (Assumes an 8K SYM)

Store the routine in 1000-103E, data in 1050-1073. Then cold
start BASIC as follows:

Memory Size? 3500 (cr)

Width? (cr)

10 PRINT "CALLING EXECLNK ROUTINE"
20 X=USR(&"1000",0)

30 PRINT "RETURNED OK"

40 END

If you RUN this routine, you'll see exactly the same result as
before but watch out when you're using monitor routines at the data
move level, they could clobber your BASIC text programs.

Lets talk about generalizing the program so that we could put
it into ROM if we wanted to. First, the routine itself was written
to be fully relocatable. This means we could decide to put it anywhere
in our memory spacé and it would work the same way without any changes.
But the execute block area would be fixed at $1050 so we'll have to do

something about that.

-67-

We have decided not to use the JUMP function while this routine

js active, so we baveva few monitor -RAM locations available to us.
Lets use A626-A62A for our data. Ohr changes to the program
will then be as follows:
At 100A, instead of A9 10
we'll use AD 27 Ab
(pushes everything else forward one location)
At 100F (now 1010) instead of A9 50
‘we'll use AD 26 A6
(pushes everything else forward one location)
At 103C (now 103E) instead of 4C B8 8l
we'll use 20 28 A6 4C B8 81
Now the final routine can be Tocated in ROM anywhere
in the memory..space. To use it, we can place the following
routine in RAM and execute it once. This routine sets up the
proper addresses of the execute block and for the ending routine
to be executed before returning to the main calling program.
To explain this further, in order to fully generalize the
ROM-able version of the EXECLNK routine, I have inserted a
JSR $A628 just prior to executing the JMP RESXAF at the end of
the routine. This allows the user to place the address of a
routine which he wishes to execute after the exec block is done
and just before returning to the calling program. The users code
will end with a 60 (RTS) which will allow for a normal return.
This address vector is set up by the code in 070D-0718
in the example which follows. The other function of this sample
setup routine is (0700-070C) to tell the EXECLNK subroutine the

beginning address of the ASCII encoded execute block of commands.

-68-

So just to repeat, to use the EXECLNK routine, store away your exec

block somewhere, then eXecute'a routine similar to this one to tell the

monitor where th%s execblock is Iocated'énd the address of the routine

you want executed before returning to the calling program. Here's the

sample setup routine.

0700
0703
0705
0708
070A
070D
070F
0712
0714
0717
0719
071C

20 86 88 SETUP
A9 10

8D 27 A6
A9 50
8D 26 A6
A9 4C

8D 28 A6
A9 07

8D 29 A6
A9 50

8D 2A A6
60 -.

JSR
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
RTS

ACCESS
#3510
$A627
#$50
$A626
#34C
$A628
#307
$A629
#3$50
$A62A

suse your choice

;of exec block area

ssetup a new vector
;for a routine to do
;before we return to
sthe calling routine
;As an example, use

;a routine at $0750

A test program would then be as follows...

Assuming I had, as in the previous example, stored my exec block

at 1050 and up, and had left the ROM-able version (modified as

suggested) at location 1000 and up, we could do the following

example.
0200
0203
0206

0750
0752
0755

20 00 07 TEST JSR SETUP

20 00 10
00

A9 58 ENDRTN
20 47 8A
60

JSR EXECLNK

BRK

LDA #'X

JSR OUTCHR

RTS

~69-

With the preceeding setups, start this routine at 0200.

INTERRUPT HANDLING ROUTINES-

Earlier we hag examined the effect that USRENT had in the process.
Before examining that one in detail, we'll take a look at the general
flow of interrupt handling. As this requires an understanding of the
way the processor handles interrupts in the first place, we'll review
that first.

A1l interrupts, when they occur, cause the processor to complete the
instruction which it is executing, then it will push the contents of the
-wprogram counter on the stack (HI byte then LO). Then the flag register is
pushed onto the stack. Then the program counter is loaded with the
address of the interrupt routine specific to that type of interrupt.-

The addresses for the specific routines are stored in FFFE,FFFF
(LO,HI) for IRQ or BRK interrupts and in FFFA,FFFB for NMI (nonmaskabie)
interrupts. Nonmaskable refers to a interrupt which will occur

regardless of whether the I flag is 1 or 0. Any interrupt will seé the @*\

f,-‘.
%

I flag so that we will prevent any other interrupts from occuring
if desired when we are busy processing the current one.

Since we -said the NMI interrupt was the only one we could not stop
with the I flag, lets look at this one first.

For a NMI interrupt, the address pulled out of FFFA and FFFB is 809E.
It accesses the SYSRAM and sets the carry bit. Then it calls SAVINT.

As of the entry to SAVINT, the stack's most recently added items
are the (return address-1) to the calling routine at 80A5, and the flags-
at-interrupt and the PCH, PCR-at-interrupt.

As we had done with SAVER, lets look at the stack relative to the
indexed-referenced locations. In the table which follows, S represents

the stack value just before the NMI occurs.

-70-

Indexed Stack Data Location

Stack Value Data Location Current Contents Contents after
v . ' o , before its RTS

S . 105,X PCH | Return Address Hi byte
S-1 104,X PCL Return Address Lo - 1
S-2 103,X Flags . Don't care

S-3 102,X Rtn addr Hi Don't care

S-4 101,X Rtn addr 1o-1 Don't care

S-5 100,X Stack value on entry to

o SAVINT

On entry to SAVINT, the A, X, and Y resisters are saved in their
respgctive areas AR, XR, YR (A65D, A65E, and A65F). Then, as with SAVER,
we transfer the Stack register to the index X regiséer sd that we know
where specific data can be found on the stack. Decimal mode is c]earéd
to prevent any difficulty with the arithmetic at 8072 and 807A.

 Then we pick up the PCL value from the stack (S-5+104 = S-l);
We then add $FF plus carry (recall that the carry bit was set before.
entry) with a result of a apparent addition of zero with a preset carry
bit for the next operation (this is significant for USRENT as described later.)
Then we store the result in PCLR (A659). We now pick up the PCH from "105,X"
adjust the value and store it at PCHR (A65A) and the flags from *103,X" and
store them at FR (A65C).

Since the flags and program counter are already put away for future use,
we no longer need to keep them on the stack. Therefore we can reshuffle the
stack as shown in the rightmost column of the above diagram. The stack pointer
is made "S-2" by the bytes at 8091 to 809%.

The last action of SAVINT is to increment the X register twice and store
its value at SR (A65B). This establishes the value the stack had at the time

the interrupt occurred. Then we return to the calling routine.

-71-

At 80A2, we call DBOFF (80D3) which dfsab]es the NMI interrupt
(note that we can disable it with hardware rather than with the I flag).
This is to stop any attempt to service 3 éecond NMI while the first one
is being serviced. Then we check TV (Trace Velocity) at A656. If it is
zero, we just jump to the display routine (PCH, PCL, plus a "2" are
.displayed to indicate an NMI). If TY is not zero, ge are involved in an
instruction trace (with delay). Since the trace function is covered in
the SYM Reference Manual, the description will not be repeated here.

. The fineal interrﬁpt seryice activity is a warm start to the
monitor from 80BD. This puts it into command entry mode.

Processing of the IRQ or BRK interrupts begin with the same
routine. From address FFFE and FFFF we get 800F as the starting
point whether IRQ or BRK interrupts have occurred. You'll notice
there is only one address pair for handling both types of interrupts.
It is up to us to determine which type of interrput had occurred aﬁd
process them differently if we wish. The code from 800F-8018 sets up
to discover if the BRK flag is on and allows for the transfer to the
appropriate service routfne.

Due to the use of interrupt vectors at 801F and 8026, the user can
change these vectors to establish his own IRQ or BRK service routines.
These vectors, stored at FFF6, FFF7, or FFF8, FFF9 can be changed by
calling ACCESS then storing new vectors at A676, A677 (FFF6,7) or
A678, A679 (FFF8,9) due to the mul;tiple address decoding of this area.
See my Hardware Theory of Operations Manual for further details on
incomplete address decoding.

The last of the interrupt handlers is USRENT, in actuality a

pseudo-interrupt generator. A jump to subroutine (JSR) to USRENT (8035)

-72-

?m,

causes the monitor to pretend an interrupt has occurred and to adjust
everything accordingly so as to proéess-it in the same way.

Since we entered at 8035 by means of the JSR, it means that the
return address - 1 will be located on the stack. This stack contents
is not what is expected by an interrupt processing routine. If you
‘refer to the 6502 Prograﬁming Manual, you'll find that during entry

to the interrupt, the processor has pushed the program counter contents

(actual return address, not return address - 1 as done with a JSR) onto

“the stack, then the flag register contents.

Since a JSR does not push the flag contents onto the stack, if we
are to handle this in the same manner as other interrupts, we must format
the stack in the same way and adjust the return addréss to reflect thg
correct return. At 8035, therefore, we push the flags onto the stack,
unprotect the SYSRAM, set the carry flég, and call SAVINT.

On our return, we increment PCLR (and PCHR if a carry resulted from
the PCLR adjust) which has the effect of correcting the program counter
contents for a correct return. Now everything appears as though a

true interrupt has occurred.

SYM REFERENCE MANUAL CORRECTIONS-

‘As an aid to the understanding of the routines presented in this
manual, it waszhecessary to examine the SYM Reference Manual rather
closely. I have therefore provided here a small set of corrections
to errors typeset in the June, 1979 printing as certain of them
tend to cause some difficulty.

Page C-2, 4th waveform is a “Squared 0"

Page H-1, KEYQ returns Z flag=0 (result is not zero) if any

key is pressed; same error at program lines 1195, 1223.

Location 8493: comment field should say "Mode = KIM"

BIBLIOGRAPHY

1) SYM/KIM Appendix to the First Book of Kim;
Robert A. Peck, 1979 .

2) SYM-1 Hardware Theory of Operations Manual;
Robert A. Peck, 1979

3) Exganding the SYM, Adding an ASCII Keyboard;
agazine, No. p. 5 plus corrections
MICRO Magazine, No. 24 p 39, Robert A. Peck
4) Staged Loading Techniaues for Segmented Prggrams;
agazine, No. . page 59, Robert A. Pec
5) 6532 Timer ; MICRO Magazine, No. 17 page 55,

Robert A. Peck

6) SYM Reference Manual

: Synertek Systems Corp
Third Printing, June, 1979.

7) SYM Programming Manual; Synertek Systems Corp
1978 ‘

»

8) SYM Hardware Manual; Synertek Systems Corp, 1978

9) 6502 Assembly Language Programming; Lance Levanthal,
sborne/McGraw Hill, .

10)The First Book of KIM; Jim Butterfield, Hayden Books £

Notes: A) Items 1, 2, 6, and 10 are available directly
from the me. Write for price and delivery
details.

B) The monitor, as noted, allows for easy user
expansion. One such expansion package I have
seen and used is by Jeff Holtzman. It includes
a disassembler, software settable breakpoints and
many other useful features. You may contact him
directly regarding price etc at: 6820 Delmar - 203
St. Louis, Mo. 63130

-74-

