Propeller Programming Using the
Digi XBee S6B Wi-Fi Module

Abstract

Since 2006, the Propeller P8X32A microcontroller was typically programmed via a desktop computer host with
downloads achieved over a connected serial or USB cable. Recent years have seen expanded host options
and wireless download methods. This document details a process of wireless downloading over a Wi-Fi
medium using Digi’'s XBee S6B Wi-Fi Module.

Table of Contents

This remainder of this document is organized into the following sections:

Background

Concept
Details

Application Service

Transmitted Packets

Received Packets
Packet Acknowledgements
Command Responses
What about Serial Responses?

Example #1

Example #2

Example #3

Encoding
Packets 1..2

Packets 3..n
Micro Boot Loader
Transmission Logistics
Phase 1
Phase 2
Download Process
Appendix A: Leading Packets’ Contents
Packet #1
TxHandshake Array (Input)
RawlLoaderimage Array (Input)
Packet Contents (Output)
Revision History

Background

The Propeller contains a ROM-resident boot loader that is responsible for receiving new Propeller Applications
and booting up existing applications from an external EEPROM. When receiving new applications from a host
computer, this boot loader uses a sophisticated identification process, a specially-encoded payload, and a
well-timed transmission protocol to properly receive and validate Propeller Applications.

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 1 of 21

The key to programming the Propeller is to generate a reset pulse (that reboots the Propeller), then start
communication around 100 ms after the transmitted reset pulse, and also deliver the application image as a
stream of bytes in the proper order without any large delays in-between bytes. For the Propeller’s built-in boot
loader, any delay between any two bytes of that stream greater than 100 ms is too much.

This process works well over wired connections to ensure consistent and valid application images, but the
inherent timing constraints often interfere with successful delivery over wireless mediums.

The technique described here demonstrates one way to overcome these timing issues using features of the
XBee Wi-Fi and attributes of Internet Protocol.

Concept

Wi-Fi is a network medium that transports information using various protocols, including the well-known TCP/IP
and UDP/IP protocol combinations. These protocols transmit data in bursts, called packets. Though each
packet is transmitted as a complete unit, they are each limited in size, causing most communications to require
multiple packets.

Many conditions cause packets to be received out of sequence, arrive corrupted, or be lost in transmission.
Conveniently, the receiving side automatically verifies packets and throws away those that are corrupted;
however, lost or out-of-sequence conditions need to be handled automatically, by using TCP, or manually,
when using UDP.

The XBee Wi-Fi can receive packets up to 1,400 bytes in size. When packets are transmitted to the XBee
Wi-Fi’s Serial Service, their payloads (data) are stored in a serial output buffer and transmitted serially in a
strictly-timed fashion (at a preset baud rate) to the Propeller. The serial output buffer is limited to about 2,000
bytes and empties at a predictable rate according to baud rate and flow control conditions. If a new packet’'s
payload can not completely fit into the serial output buffer's remaining space at the moment it’s received, it is
thrown away.

When using IP to transmit, the delays between any two packets can be unpredictable and extensive. Even with
use of the serial output buffer, delays between bytes that span packet borders can far exceed the 100 ms time
limit of the Propeller’s built-in boot loader.

All of these factors make for plenty of opportunities to fail, and each must be overcome to ensure a consistent
and reliable experience for the Propeller developer.

The solution employed here focuses on the attributes of XBee Wi-Fi and IP communication that are speedy,
regular, and fall within the expected behavior of the built-in boot loader. These attributes are exploited at the
start of every download process to reliably deliver a small download-compatible application stream. The
resulting application then runs immediately to assist with the remainder of the download in an IP-compatible
fashion and launches the final target application in its place.

This solution can be summed as the following techniques:
1. Using UDP instead of TCP for more consistent and faster timing.
2. Utilizing XBee’s time-to-hold I/O option to generate consistent pulses.
3. Enabling XBee’s serial flow-control, preventing early arrival of the serial stream after reset pulse.
4. Filling the first packet with a complete handshake sequence and micro boot loader application.

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 -7/25/2014 Page 2 of 21

5. Issuing a second packet containing only timing templates to complete the initial delivery.
6. Transceiving the actual target application with the temporarily-running micro boot loader.

The micro boot loader application stuffed into the first packet is a small, specially-designed boot loader
replacement. It launches right after delivery and carries on the remainder of the download communication. The
micro boot loader runs at a fast, accurate speed (based on the Propeller's development board crystal),
receiving the target application image from the host at swift pace with built-in accommodation for IP traffic
delays and packet loss.

From the user’s perspective, the result is a quick wireless download that a behaves similar to a cable-based
download, with the only caveat being the need for an on-board crystal.

Details

The program and source code written to develop and test this downloading process is provided as an example
project archive. You can also find it from the Parallax download page by searching with “Propeller IP Loader” in
the Download Title field. At this time, it is still a work-in-progress and will continue to be updated as necessary
to refine the experience. Check back and download again if you're interested in updates. The test program
executable currently runs in Windows (32 or 64-bit) and will likely be expanded to support Mac before
development is finished.

For an overview of the source code and development tips, watch this source code overview video.

The following sections give needed background information and details that are needed to fully understand the
details of the download process.

Application Service

The XBee Wi-Fi S6B modules feature an “Application Service” communication channel. The Application
Service is used to configure the XBee’s settings over Wi-Fi and can also be used to send information intended
for Wi-Fi-to-Serial transfer. The solution employed in our case uses UDP to engage this Application Service
from a network client to do both of these things.

This is what is meant wherever the instructions in the Download Process section say “Send...packet,” or when
the source code looks like “xBee . SenduDP...,” Or “xBee.sSetItem...,” OF “XBee.GetItem...”

The Application Service is not the same as the Application Programming Interface
(API). Do not confuse the two. The Application Service is documented in Digi’'s Wi-Fi
RF Module manual in the XBee IP Services chapter. Ignore the Local Host section;
focus attention on the Network Client section.

Transmitted Packets

UDP packets meant for the Application Service must be sent to port 3054 ($BEE, or cleverly, 0xBEE; i.e.:
<xbee_ip_address>:3054) and must include an additional 8-byte header preceding the data. The header is in
this format:

Byte # 0 1 2 3 4 5 6 7

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 -7/25/2014 Page 3 of 21

http://www.google.com/url?q=http%3A%2F%2Fwww.parallax.com%2Fsites%2Fdefault%2Ffiles%2Fdownloads%2FPropeller-IP-Loader-v0.9.zip&sa=D&sntz=1&usg=AFQjCNGc9w2xSUepDZlUGXAP9s3ReiXTeA
http://www.google.com/url?q=http%3A%2F%2Fwww.parallax.com%2Fsites%2Fdefault%2Ffiles%2Fdownloads%2FPropeller-IP-Loader-v0.9.zip&sa=D&sntz=1&usg=AFQjCNGc9w2xSUepDZlUGXAP9s3ReiXTeA
http://www.google.com/url?q=http%3A%2F%2Fwww.parallax.com%2Fdownloads&sa=D&sntz=1&usg=AFQjCNFoNznOfIjfLcCvbbVFdOwbE5JfDQ
https://drive.google.com/a/parallax.com/file/d/0B0tev9Y3WaL4dzhQYzRDTGlfV3c/edit?usp=sharing

Field Header_ID Header_ID# n/a n/a Command Options

The field names shown here and below are renamed for clarity, but their meaning and purpose matches the documented nature in the Network Client section of the wi-Fi RF Module manual.

Header_ID : Two-byte random number; any random number will do.

Header_ID” : Two-byte number equal to Header_ID’s value XOR’d with $4242.

n/a : One-byte value; reserved for future use; set to 0 for now.

Command : One-byte purpose indicator; use $00 for Serial Data, or $02 for Remote Command.
Options : One-byte option indicator; use $00 for none, or $02 to request packet acknowledgement.

Using packet acknowledgement is recommended and can be advantageous when
using XBee Wi-Fi’'s UDP-based Application Service.

Additionally, if the Command is $02 (Remote Command), the bytes immediately following this header (bytes
8..11+) must be in this format:

Byte # 8 9 10 11 12+

Field Frame_ID Apply AT_Command Params

Frame_ID : One-byte value; set to 1.

Apply : One-byte action indicator; use 0 to queue command only, or 2 to apply command(s).
AT_Command : Two-byte (two character) AT command

Params : Parameter value(s); this field exists only if the AT_Command has additional parameters.

If the Command is $00, the above format does not apply; rather, serial data should immediately follow the
header, starting with byte 8.

Received Packets
There are two types of packets received from the Application Service following a transmitted packet, Packet
Acknowledgements and Command Responses.

Packet Acknowledgements

Packet Acknowledgements are received only if they are requested by the previous transmitted packet; a $02
value in the Options field. Packet Acknowledgements are 8 bytes long and follow a similar format as the
header:

Byte # 0 1 2 3 4 5 6 7
Field Header_ID Header_ID# n/a n/a Ack n/a
e Header_ID : Two-byte random number generated by the XBee Wi-Fi.

e Header_ID” : Two-byte number equal to Header_ID’s value XOR’d with $4242.

e n/a: One-byte value; reserved for future use; may be various values; ignore for now.

e Ack: Always $80.

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 4 of 21

Command Responses

Command Responses consist of a leading header and data following it. The leading 8-byte header is a
duplicate of the header from the packet to which it is responding to, except that the Command field has its bit 7
set and the Options field is $00. For example, if a packet meant as a remote command ($02) was transmitted,
the response packet would have $82 in the Command field.

For responses to remote commands, the bytes following the header follow this format:

Byte # 8 9 10 11 12+

Field Frame_ID AT_Command Status Params

e Frame_ID : One-byte value; same as used in transmitted packet.

e AT_Command : Two-byte (two character) AT Command value; same as used in transmitted packet.
e Status : One-byte value; 0 = OK, 1 = ERROR, 2 = Invalid Command, 3 = Invalid Parameter.

e Params : Zero or more bytes of data, in binary or ASCII format depending on the command. If the

command was to set (ie; not requesting a “write”), this field doesn’t exist.

What about Serial Responses?

If a Serial Packet was sent (Command field was $00), a response packet is received from the XBee Wi-Fi only
if a packet acknowledgement was also requested (Option field was $02), in which case the response is in the
Packet Acknowledgements format, noted earlier.

Any other response to a Serial Packet is a response from the Propeller itself, not a response from teh XBee
Wi-Fi’s Application Service. The Propeller's responses contain raw data that do not conform to any of the
formats listed here and must be interpreted according to what is expected at that moment.

In the examples below, the bytes are shown in transmitted order, left-to-right.

Example #1
A transmitted request to get (read) the XBee’s IP Address (using the “MY” command; IP Network Address)
looks like this 11-byte sequence:

Field Header_ID Header_ID* n/a n/a | Command Options Frame_ID Apply | AT_Command

Value $81 $14 $C3 $56 $00 | $00 $02 $02 $01 $02 $4D $59

The Header_ID / Header_ID" values are different every time because we choose values randomly.

The received packet acknowledgement looks like this 8-byte sequence:

Field Header_ID Header_ID* n/a n/a Ack n/a

Value $EB $1C $A9 $5E $00 | $00 $80 $00

The Header_ID / Header_ID” values used by acknowledgements like this one intentionally do not match the transmitted packet.
The n/a values may not be $00; this is normal.
The Ack value does not reflect that of the transmitted packet's Command value; this is normal.

And the received packet response looks like this 16-byte sequence:

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 -7/25/2014 Page 5 of 21

Field Header_ID Header_ID* n/a n/a Comman Options Frame_ID | AT_Command Status Params
d
Value $81 $14 $C3 $56 $00 | $00 $82 $02 $01 $4D $59 $00 $Co 2398 $01

The Header_ID / Header_ID* values match the transmitted packet that the packet is responding to.

The Command is that of the transmitted packet but with bit 7 set.
A Status of $00 means OK.
The returned sequence in Params is the requested data; in this case $CO, $A8, $01, $89 means the XBee's IP address is 192.168.1.137.

Example #2

A transmitted request to set (write) the XBee’s DIO6 Configuration (to set it to RTS flow control (1)) looks like
this 13-byte sequence:

Field Header_ID Header_ID* n/a n/a | Command Options Frame_ID | Apply | AT_Command Params
Value $B8 $2E $FA $6C $00 | $00 $02 $02 $01 $02 $44 $36 $01
The Header_|D / Header_ID* values are different every time because we choose values randomly.
Since this is a set (write) command, the Params field follows; in this case $01 means 1/O 6 should be set to perform RTS flow control functionality.
The received packet acknowledgement looks like this 8-byte sequence:
Field Header_ID Header_ID# n/a n/a Ack n/a
Value $C7 $48 $85 $0A $00 | $00 $80 $00
The Header_ID / Header_ID* values used by acknowledgements like this one intentionally do not match the transmitted packet.
The n/a values may not be $00; this is normal.
The Ack value does not reflect that of the transmitted packet's Command value; this is normal.
And the received packet response looks like this 12-byte sequence:
Field Header_ID Header_ID# n/a n/a Comman Options Frame_ID AT_Comman
d d Status
Value $B8 $2E $FA $6C $00 | $00 $82 $02 $01 $44 $36 $00
The Header_|D / Header_|D* values match the transmitted packet that the packet is responding to.
The Command is that of the transmitted packet but with bit 7 set.
A Status of $00 means OK.
Since this in response to a set (write) command, the Params field does not exist.
Example #3
A transmitted request to send serial data to the Propeller begins this sequence:
Field Header_ID Header_ID* n/a n/a | Command Options Data
Value $A8 $BD $EA $FF $00 | $00 $00 $02 $F9 $F9 ... $F9
The Header_|D / Header_|D* values are different every time because we choose values randomly.
Since this is a request to send serial data, the data itself follows free-form immediately after the 8-byte header; in this case, it's a number of Propeller timing templates.
The received packet acknowledgement looks like this 8-byte sequence:
Field Header_ID Header_ID* n/a n/a Ack n/a
Value $E6 $90 $A4 $D2 $EF | $CF $80 $00
The Header_ID / Header_ID* values used by acknowledgements like this one intentionally do not match the transmitted packet.
The n/a values may not be $00, like in this example; just ignore them.
The Ack value does not reflect that of the transmitted packet's Command value; this is normal.
In this case, the Propeller (not the XBee Wi-Fi itself) may respond with a serial packet:
Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 -7/25/2014 Page 6 of 21

Field Data

Value $FE

The Data field is just free-form data of various lengths depending on the nature of the response/

Encoding
There are two different data encoding techniques used for this transmission.

Packets 1..2

The first two packets of the transmission (handshake + micro boot loader and timing templates) are encoded
using a special data translation that represents bit values (0 and 1) as two different low-bit patterns. In the
example source code, the first two packets are generated in their proper encoding by the Main unit’s
TForm1.GenerateLoaderPacket method.

The standard Propeller download protocol is designed to use the Propeller’s internal
R/C oscillator and be compatible with both RS-232-like and TTL/CMOS serial
signalling. Since R/C oscillators are known to be inaccurate (very sensitive to voltage
temperature, and process), the protocol relies on a receive-measure-respond
mechanism where only low pulses matter (high pulses are ignored) and the Propeller
doesn’t speak unless spoken to at that moment. The Propeller’s built-in boot loader
measures the low pulses at specific points in the host computer’s transmissions to
determine the widths of two pulse types (called ‘t" and ‘2t’) which themselves
represent binary 1 and binary 0 values, respectively. The timing of these measured
low-pulse widths is reproduced in the Propeller’'s responses to the host computer.
This frees the Propeller from the need for an accurate clock source and a specific
baud rate at startup. The downside is that only a few data bits can be expressed per
logical byte of transmission; 3-bits per byte (11 bytes per long) for the normal encodin
scheme used by legacy software.

For those familiar with the standard Propeller download encoding, the data in the first packet will appear
different due to more optimal encoding. This is just like normal Propeller download image encoding, but with
data bits packed as tightly as possible; 3, 4, or 5 bits per byte as opposed to strictly 3 bits per byte. The first
packet is encoded very tightly in order to squeeze the handshake and micro boot loader application image into
its limited space. For example, normally the handshake sequence is two back-to-back blocks of 250 bytes
each, plus an additional 8 bytes to transfer the Propeller version number; 508 bytes all-together. But with
optimal encoding, this is squeezed down to just 198 bytes, leaving more space afterwards for the micro boot
loader code. See Appendix A: Leading Packet's Contents for an example of the contents of Packets 1..2.

Packets 3..n

The third through the remaining packets are encoded differently. Since they are transferred after the micro boot
loader starts, and since it runs based on an accurate clock source, the data is encoded in normal fashion (bit
for bit; 8-bits per byte; 4 bytes per long). This amounts to a 2.75x speed increase for target application transfer
and easier handling on both sides of the stream. From the developer’s perspective, this data is easy to
prepare; it can simply be copied as-is from the binary image generated by the compiler since it's already in the
correct format and byte order.

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 -7/25/2014 Page 7 of 21

Micro Boot Loader

The source code of the micro boot loader (called IP_Loader.spin) is included with the download noted at the top
of the Details section. It is written in Propeller Assembly, except for the single Spin statement to get it to launch.
Once launched, Main RAM is completely free to be rewritten with the target application image that the micro
boot loader receives.

Unfortunately, even with clever programming techniques, there’s not enough space in the first packet to fit a
complete loader; that is, one that can receive, acknowledge, program RAM, program EEPROM, verify, finalize,
and launch target applications.

Instead, the micro boot loader is actually delivered in parts, with the first part (first packet) being the core (which
handles reception, acknowledgement, and programming of RAM) and the remaining features are delivered only
as-needed in special executable packets that follow the target application’s packets.

At this time, the program EEPROM feature is not implemented. Appropriate modifications will be made soon to
add this feature and updated downloads and documentation will be released at that time.

This code is written in a very tight manner, opting for careful balance of code size,
timing, and protocol efficiency. For those up to the challenge, this loader can be
modified or replaced with new code using similar techniques to implement even more
advanced loaders.

The executable images of each of the parts of this micro boot loader are included in the example application’s
Main unit, inside the TForm1.GenerateLoaderPacket method. The GenerateLoaderPacket method’s job is to
create each of these special packets when requested; automatically performing all the necessary touch-up and
encoding. Read the many comments within this method to learn more details. See Appendix A: Leading
Packet's Contents for an example of the binary image of this Micro Boot Loader within the first packet.

The process used to get the executable images into the method is:
e Compile and save the micro boot loader (IP_Loader.spin) as a binary file using
Propeller Tool’s “View Info,” “Save Binary File” feature.
e Run the PropellerStream.exe program (included in the download archive).
e Click the “Load Propeller Application” button and select the saved binary file.
e Copy the desired sections of code generated by the previous step and paste
them in place of their related sections in the GenerateLoaderPacket method.

Transmission Logistics

Some care needs to be taken to transmit each packet to its destination. As said earlier, many conditions cause
packet interruption. Luckily, UDP automatically handles corruption by dropping the affected packets, but we
must handle retransmission due to dropped packets, dropping of duplication packets, and out-of-order packets.

There are two phases of transmission involved here.
e Phase 1: Before the micro boot loader is loaded and running.

e Phase 2: After the micro boot loader is loaded and running.

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 -7/25/2014 Page 8 of 21

Phase 1

During this phase, the host computer transmits packets and expects a response in the form of an Application
Service packet acknowledgement and/or a second response in the form of a command response. [f it doesn’t
receive the expected response after a short timeout, it retransmits the packet again. This happens a limited
number of times; 3 times max, for example. If confirmation is ultimately not obtained, the host gives up with a
hard error condition.

This is happening by design in the example code implemented in the calls like “xBee.sendupr...,” or
“XBee.SetItem.. .," or “xBee.GetItem...”

Phase 2

Once the micro boot loader is loaded and running, our task focuses on delivering packets in a slightly different
fashion. Though it may still use the Application Service’s packet acknowledgement feature, the automatic
retransmission handled by the lower-level code (references like “xBece . sendupr”) is disabled.

Instead, the host follows this process:
e Host: transmits a packet and expects a positive or negative acknowledgement in response.

o No acknowledgement is treated like a negative acknowledgement.

Host: transmits the next packet only after receiving positive acknowledgement of the previous.

Host: retransmits the previous packet when it sees a negative acknowledgement. This is a soft error

condition.
o This happens a limited number of times; 3 times max, for example. If confirmation is ultimately

not obtained, the host gives up with a hard error condition.

Meanwhile, the running micro boot loader follows this process:
e Micro boot loader: receives a packet and transmits a positive or negative acknowledgement
o Positive is when it expected the received packet, negative is otherwise.
e Micro boot loader: writes the expected packet to RAM and discards the unexpected packet

The host’s part of this process is handled by the code detailed by the steps in the Download Process.

Download Process
The numbered steps below describe the major points of the wireless download process, with subitems giving
more details for that point. For a summary view, just read the numbered steps.

The example program’s source code (written in Delphi; a Pascal variant) is referred to in the steps below with
references to the containing unit and method names

Many of the major points relate directly to the logic analyzer capture below— a zoomed-out view of a sample

application download from the Propeller’s perspective. Annotated versions of this image will appear below the
major points that drive them.

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 -7/25/2014 Page 9 of 21

Q Saleae Logic 1.1.15 - [Connected] - [24 MHz, 1 B Samples]

[1BSamples =] [24MHz =] | Start J

0 - Reset Bkl

" 2-Propeller Tx Fiini-Tm

b J

=3 o }\5..

Some non-essential details, such as implementation choices and certain error handling, are intentionally left out
of the description below. Study the example code to see everything in detail.

Points to remember:
e For every wireless download, there are actually two applications delivered— a micro boot loader (first

packet + second verification packet), and the target application (third and later packets + remaining
verification packets).

e The first packet and final packets are created by the TForm1.GenerateLoaderPacket method. This is
explained in the Encoding and Micro Boot Loader sections, above.

e Transmissions take place over UDP/IP and target the XBee’s Application Service, explained in the
Application Service section, above.

e Retransmissions are handled as noted in the Transmission Logistics section, above.

The download process is as follows:

1. Calculate total packet count for the target application
a. Equation: binary image size (in bytes) / (max packet size - packet header)
i. max packet size is likely 1392 bytes (obtained from XBee’s NP attribute)
ii. packet header is 4 bytes
iii. round up the result to include last partial packet.
b. Code: [Main.pas - TForm1.TransmitButtonClick]
TotalPackets := Round(FBinSize*4 / (XBee.MaxDataSize-4*1));
2. Setinitial Packet ID to the total packet count
a. Note: Packet ID is needed for generating the micro boot loader and for each packet that follows
delivery of the micro boot loader. The first long (4 bytes) of each packet contains a unique
packet identifier. The first such packet is numbered (identified) with the total packet count of the
target application. The Packet ID value decrements for each successive packet.
3. Calculate target application checksum as a long value
a. Note: This value is needed later for target application verification.
b. Algorithm: Simple additive checksum.
e Clear checksum (long; 4 bytes, unsigned)
e lteratively add the value of each target application image byte to checksum
e lteratively add the value of each byte of the Initial Call Frame (eight bytes = $FF, $FF,
$F9, $FF, $FF, $FF, $F9, $FF) to checksum

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 10 of 21

o Note: This is a static sequence whose checksum could be precalculated
c. Code: [Main.pas - TForm1.TransmitButtonClick]

Checksum : 0;
for i := 0 to FBinSize*4-1 do inc (Checksum, FBinImagel[i])
for i := 0 to high(InitCallFrame) do inc(Checksum, InitCallFrame[i]);

4. Open UDP socket to XBee'’s Serial Service
a. Note: Abort on error
b. Destination: XBee’s IP address and serial service port; defined by DE attribute; typically 9750
($2616)
c. Code: [Main.pas - TForm1.TransmitButtonClick]
if not XBee.ConnectSerialUDP then...
5. Generate Loader Packet
a. Note: This is the initial packet that contains a compressed Propeller handshake stream plus
micro boot loader, and more. Before insertion into the packet, the micro boot loader image is
“touched up” to set its timing parameters and it’s initial expected Packet ID, then it's checksum is
recalculated and the entire resulting image is translated into compressed standard Propeller
download encoding. See Encoding and Micro Boot Loader.
b. Code: [Main.pas - TForm1.TransmitButtonClick]

GeneratelLoaderPacket (1tCore, TotalPackets) ;
6. Set XBee Configuration and Generate Reset and Serlal Hold Signal
a. Algorithm: Set configuration first...
i. Set XBee’s Serial Service to use UDP packets (IP = $00)

1. Note: This step is desired, but at this time, an XBee Wi-Fi firmware bug makes
this dangerous. Until it’s fixed, do not set this programmatically, it must be set
manually via XCTU. Digi intends to fix this bug soon.

ii. Set Serial-to-IP destination to host IP address (DL = ip_address)
iii. Set output mask to default (OM = $7FFF)

iv. Enable RTS flow control pin (D6 = $01)

v. Set serial hold pin to output low (D4 = $04)

vi. Setreset pin to output high (D2 = $05)

vii. Set serial hold pin’s timer to 200 ms (T4 = 2)
viii. Setreset pin’s timerto 100 ms (T2 =1)

ix. Set Serial Mode to transparent (AP = $00)

1. Note: This step is desired, but at this time, an XBee Wi-Fi firmware bug makes
this dangerous Until it’s fixed, do not set this programmatically, it must be set
manually via XCTU. Digi intends to fix this bug soon.

Xx. Set baud rate to initial speed (BD = 115200)
xi. Set parity to none (NB = $00)
xii. Set stop bits to one (SB = 0)
xiii. Set packetization timeout to three character times (RO = 3)
b. Algorithm: ...then set reset pin low and serial hold pin high (10 = $0010). Abort on error.
Note: Pulse and hold timing is controlled by XBee’s pin timers (set in configuration step).
d. Code: [Main.pas - TForm1.TransmitButtonClick]
GenerateResetSignal;
e. Code: [Main.pas - TForm1.GenerateResetSignal]
if EnforceXBeeConfiguration then

if not XBee.SetItem (xbOutputState, $0010) then

13

raise Exception.Create ('Error Generating Reset Signal');

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 11 of 21

f. Code: [Main.pas - TForm1.EnforceXBeeConfiguration]

Q Salese Logic 1.1.15 - [Connected] - [24 MHz, 1B Samples]

[1Bsamples ~| [24mHz =] | Start | Resetpulse (100 ms low)

2-Propeller Tx WIS

Serial hold-off (200 ms delay after start of reset;
100 ms after end of reset)

* Serial hold pin signal is not shown here, but the effects are seen in the delay of the serial stream on the Propeller's Rx
pin.

7. Send first packet (handshake + micro boot loader)

a. This happens immediately after sending the reset and hold command packet, very close to the
0.0s mark (start of reset pulse) on the image below, but the serial hold-off pulse prevents serial
data from leaving the XBee until 200 ms after start of reset.

b. Note: Abort on error

c. Code: [Ma/n pas - TForm1.TransmitButtonClick]
if not X e.SendUDP (TxBuf, True, False) then

raise EHardDownload.Create ('Error:

Can not send connection request!');
Q, Saleae Logic 1.1.15 - [Connected] - [24 MHz, 1 B Samples]

[1Bsamples | [aambz =] | Start] '

Hanshake + Micro Boot Loader

2-Propeller Tx =

* The Propeller's handshake response (Propeller Tx signal) is generated concurrent with reception of host’'s Handshake +

Micro Boot Loader packet (Propeller Rx signal) but still needs to transmit back through the network. We’ll ook for it later in
the process.

8. Wait long enough to line up verification packet
a. Period: Reset period (200 ms) + first packet’s serial transfer time + 20 ms
b. Code: [Main.pas - TForm1.TransmitButtonClick]

IndySleep (200 + Trunc (Length (TxBuf)*10 / InitialBaud * 1000) + 20);

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 12 of 21

Q Saleae Logic 1115 - [Connected] - [24 MHz, 1 B Samples]

[1BSamples +| [2amHz ~] [Start \]

0- Reset £ -3i.]

Wait to line up verification packet

2~ Propeller Tx Nl T

= -y >;'" —

A/

* The built-in booter is ready to deliver the RAM checksum response during a 100 ms window starting as early as 52 ms,
and as late as about 163 ms, after the end of the first packet, depending on voltage, temperature, and process conditions.
However, it needs to receive a timing template for it to respond. The waiting period of this step is meant to roughly align a
full packet of timing templates (in the next step) across this time window.

9. Build and send second packet (verification), then wait for serial transmission period
a. Note: This is a full packet of just the timing templates (bytes of value $F9) needed by the built-in
boot loader to complete it's application verification and launch process. The delay afterward
helps apply the majority of the next step’s receive timeout to a valid time window in the
communication sequence.
b. Code: [Main.pas - TForm1.TransmitButtonClick]

SetLength (TxBuf, XBee.MaxDataSize);

FillChar (TxBuf[0], XBee.Ms SF9) ;
if not XBee.SendUDP (TxBuf, True, False) then
r ownload.Create ('Error: Can not reque connection response!');
Indy p (Trunc (Length (TxBuf)*10 / InitialBaud * 1000));
Q Saleae Logic 11.15 - [Connected] - [24 MHz, 1 B Samples]
[1BSamples ~| [22MHz ~] | Start J I
s)

0 - Reset £ kY] Verification packet; full packet of timing

templates to engage Propeller
acknowledgment and application launch

2-PropellerTx i Tm

=N 2 >;. —

L/

* The Propeller's RAM checksum response (Propeller Tx signal) is generated concurrent with reception of host’s verification
packet (Propeller Rx signal), but still needs to transmit back through the network. We'll look for it later in the process.

10. Receive handshake plus version response; loop to discard any leading garbage.
a. Note: Discarding of leading garbage is necessary in case previous Propeller application was
serially transmitting before it was reset.
b. Algorithm: Receive packet of 129 bytes.
e First 125 bytes must match the expected RxHandshake stream.

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 13 of 21

e The last 4 bytes contain the 8-bit Propeller version in the following form (where ‘X’ bits
should be ignored and numbered bits (‘0’, ‘1, etc.) indicate bit position of the
corresponding 8-bit version value.

-byte 1- -byte 2- -byte 3- -byte 4-
xx1xxxx0 xx3xXXX2 XX5XXxx4 XXTXXXX0
c. Code: [Main.pas - global const section]
SerTimeout = 1000;

{The RxHandshake array consists of 125 bytes encoded to represent the expected
250-bit (125-byte @ 2 bits/byte) response of continuing-LFSR stream bits from
the Propeller, prompted by the timing templates following the TxHandshake
stream. }
RxHandshake : array[0..124] of byte =
($SEE, SCE, SCE, $SCF, $EF, $CF, SEE, SEF, SCF, $CF, SEF, SEF, SCF, $CE, $EF, $CF,
SEE, $EE, $CE, SEE, SEF, $SCF, $CE, $SEE, $CE, $CF, $EE, $EE, $EF, $CF, SEE, SCE,
SEE, $SCE, SEE, $SCF, SEF, SEE, SEF, SCE, SEE, SEE, $SCF, SEE, $SCF, SEE, SEE, SCF,
SEF, $SCE, SCF, SEE, SEF, SEE, SEE, SEE, SEE, SEF, SEE, $CF, SCF, SEF, SEE, $CE,
SEF, SEF, SEF, $SEF, SCE, SEF, SEE, $EF, $CF, SEF, SCF, $SCF, $CE, $CE, SCE, SCF,
SCF, $EF, $CE, SEE, $CF, SEE, $SEF, $CE, $CE, $CE, $EF, $EF, $CF, $CF, SEE, SEE,
SEE, $CE, SCF, $SCE, SCE, SCF, SCE, SEE, SEF, SEE, SEF, SEF, $CF, SEF, $CE, SCE,
SEF, $SCE, SEE, $SCE, SEF, SCE, SCE, SEE, $SCF, $CF, $SCE, $CF, SCF) ;
d. Code: [Main.pas - TForm1. TransmitButtonClick]
repeat {Flush receive buffer and get handshake response}
{Receive response}
if not XBee.ReceiveUDP (RxBuf, SerTimeout) then
raise ESoftDownload.Create('Error: No connection response from
Propeller!');

{Validate response}
if Length (RxBuf) = 129 then
begin
{Validate handshake response}
for 1 := 0 to 124 do if RxBuf[i] <> RxHandshake[i1] then
raise EHardDownload.Create ('Error: Unrecognized response - not a
Propeller?');

{Parse hardware version}
for i := 125 to 128 do FVersion := (FVersion shr 2 and $3F) or ((RxBuf[i]
and $1) shl 6) or ((RxBuf[i] and $20) shl 2);
if FVersion <> 1 then
raise EHardDownload.Create ('Error: Expected Propeller vl, but found
Propeller v' + FVersion.ToString); {Validate hardware version}

end;

{Loop if not correct (to flush receive buffer of previous data)}
until Length (RxBuf) = 129;

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 14 of 21

Q Saleac Logic 1115 - [Connected] - [24 MHz, 1B Samples]

[1BSamples +| [24mHz -] | Start J

1-PropellerRx i T

2-Propeller Tx T imi =

|
et

Propeller Handshake and Version Responsﬁ_

11. Receive RAM checksum response
a. Algorithm: Receive packet of 1 byte, equal to $FE. Abort if different length response; error, no
loader checksum response. Abort if different result; error, failed to deliver loader.
b. Code: [Main.pas - TForm1.TransmitButtonClick]

RAM Checksum R onse

v
X

{Receive

eUDP (RxBuf, Dynamic 1) then

Create ('Error:

if RxBuf[0]
raise EHardDownload.Create('Error: Failed to deliver loader');

Q Saleac Logic 1.115 - [Connected] - [24 MHz, 1 B Samples]

[1BSamples =] [24mHz =] | Start]

2-Propeller Tx 7w =

[« o — —— ‘4‘4*'*‘44**7_ -
-, Q >/ Propeller RAM Checksum Response

12. Receive micro boot loader’s “ready” signal
a. Algorithm: Receive packet of 4 bytes. Abort if different length response; error, no “ready” signal
from loader. Abort if response not equal to initial Packet ID (total packet count); error, loader’s
ready signal unrecognized.
b. Code: [Main.pas - TForm1.TransmitButtonClick]

Acknowledged e .ReceiveUDP (RxBuf, DynamicSerTimeout) ;

~d or (Length (RxBuf) <> 4) then

signal from loader!');

oad.Create('Error: No
if Cardinal (RxBuf[0]) <> PacketID then

ownload.Create ('Error: Loader''s "Ready" signal unrecognized!');

raise EHardL

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 15 of 21

Q Saleac Logic 1115 - [Connected] - [24 MHz, 1 B Samples]

[1BSamples ~| [24mHz ~] | Start | ‘

B ——
1 PropellerRx Bt

- IJW
— AR

’.‘."_ Micro Boot Loader's "Ready!" signal l

13. Switch to final baud rate
a. Note: final baud rate must be determined first, before generating the loader packet. The default

designed final baud rate is 921600 bps; based on the Propeller running at 80 MHz using a 5 MHz
crystal and a PLL tap of 16x.

b. Set baud rate to final speed (BD = 921600)

c. Code: [Main.pas - TForm1.TransmitButtonClick]

if not XBee.SetlItem(xbSerialBaud, FinalBaud) then

raise EHardDownload.Create('Error: Unable to increase connection speed!');
14. Transmit all target application packets
a. Algorithm: Determine packet length (header + lessor of packet limit or remaining image length).
Set first long to Packet ID, followed by next section of image. Transmit packet (retransmit as
necessary; see Transmission Logistics) Abort if unexpected response. Decrement Packet ID
and prep for next section of image.
b. Code: [Main.pas - TForm1.TransmitButtonClick]

{Transmit packetized target application}

i := 0;
repeat
{Determine packet length (in longs); header + packet limit or remaining data
length}
TxBufflLength := 1 + Min((XBee.MaxDataSize div 4)-1, FBinSize - 1i);
{ Set buffer length (Packet Length) (in bytes)}
SetLength (TxBuf, TxBufflLength*4);
Move (PacketID, TxBuf[0], 4);
Move (FBinImage [i*4], TxBuf[4], (TxBufflLength-1)*4);

if TransmitPacket <> PacketID-1 then

=

raise EHardDownload.Create ('Error: communication failed!');
{Increment image index}
inc (i, TxBuffLength-1);
{Decrement Packet ID (to next packet)}
dec (PacketID) ;
{repeat - Transmit target application packets...}

until PacketID = 0;

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 16 of 21

Q Saleac Logic 1115 - [Connected] - [24 MHz, 1 B Samples]

[1Bsamples -] [4mHz ~| | Start] '

Target Propeller Application Image
Packets and Micro Boot Loader
Acknowledgements

[T
i

15. Send verify RAM command and receive response
a. Algorithm: Generate verify RAM packet and transmit it. Abort if response not equal to negative of
target application checksum; error, RAM checksum failure.
b. Code: [Main.pas - TForm1.TransmitButtonClick]

verify RAM command}

cksum Failure!');

Q Salese Logic 1.1.15 - [Connected] - (24 MHz, 1B Samples]

[1BSamples v | [24MHz =] | Start J]

- Q N = Verification request and response

16. Send launch command and receive response
a. Code: [Main.pas - TForm1.TransmitButtonClick]
PacketID := -Checksum;

{Send verified/launch command}

Generatelos ket (ltLaunchStart, PacketID);
if Trans then
oad.Create ('Error: communication failed!');

STE ket (ltLaunchFinal, PacketID);
e.SendUDP (TxBuf, True, False);

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 17 of 21

Q Saleae Logic 1.1.15 - [Connected] - [24 MHz, 1 B Samples]

[1BSamples =] [24mHz ~| | Start J .

2-Propeller e e m l’

B o f I Launchrequest, response, and signoff |

Appendix A: Leading Packets’ Contents

As explained in the Encoding through Micro Boot Loader sections, the first two packets are specially-encoded to
contain compressed information including the handshake stream and Micro Boot Loader. An example
input/output dataset is below for reference while developing, studying, or porting code to do this.

Packet #1

The TForm1.GenerateLoaderPacket method in the example source is responsible for generating the first
packet. This method contains a number of byte arrays used in the generation of special packets, the most
critical of which is the TxHandshake array and the RawLoaderlmage array . Since this data (the input) plus the
timing factors and target application size affects the contents of the first packet (the output), both the input data
and output contents are shown here for the first packet.

TxHandshake Array (Input)

This array contains the compressed handshake data that the host must transmit to the Propeller at the start of
the programming process. It's a contiguous stream of bytes, but is broken into groups here (and in the source
code) for clarity.

of handshake...}

29,829,829,529,529,529,529,529,529,529,529,529,529,529,529,529, {This is encoded as two pairs per}

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 18 of 21

$29,%29,%$29,$29,529,529,529,%$29,5$29,$29,$29,529,529,$29,5$29,$29,
$29,$29,$29,$29,5$29,%29,%29,$29,$29,$29,$29,$29,$29,$29,$29,$29,
$29,$29,$29,529,$29,$29,$29,$29,$29,$29,$29,$29,$29,$29, $29, $29,
$29,%29,%29,5$29,529,529,%29,%$29,529,5$29,5$29,529,529,%29,529, 529,
$29,529,%29,5$29,529,529,%29,529,5$29,5$29,5$29,529,529,%29,529, 529,
$29,$29,$29,%29,$29,%29,$29,$29,%29,$29,$29,$29,$29,

$29,%$29,$29,529,
to

version; two

$93,$92,8$92,8$92,$92,$92,$92,$92,$92,$92,$F2) ;

and

RawlLoaderlmage Array (Input)

{byte; 125 bytes}

{8 timing templates ('l' and '0")

receive 8-bit Propeller

pairs per byte; 4 bytes}

{Download command (1; program RAM

run); 11 bytes}

This array contains the raw binary image of the Micro Boot Loader. This data is processed by the
GenerateLoaderPacket method to 1) Patch it with the actual timing specs being used, the expected number of
target application packets, and the new image checksum, and 2) encode it using a compressed form of the

Propeller’'s download encoding algorithm.

RawLoaderImage : array[0..347] of byte =

($00, $B4,$C4,$04, $6F, $C3,$10,$00, $5C, $01,$64,501,$54,501, $68, 501,
$4C,$01,$02,5%00,%44,5$01,%00,5%00,%$48,3E8, $BF, $SAQ, $48, SEC, $SBF, $SAOQ,
$49,$A0, $BC, SA1, $01, $A0, SFC, $28, $F1, SAl, $BC, $80, SA0, $S9E, SCC, $SAO0,
$49,$A0, $BC, SF8, SF2, $8F, $3C, $61, 505, $9E, SFC, SE4, 504, SA4, SFC, $A0,
$4E, $A2, $BC, $A0, 508, $9C, $SFC, $20, $FF, $A2, $SFC, $60,$00, SA3, $FC, $68,
$01,SA2, $FC, $2C,$49, $SA0, $BC, SAO, $F1, SAl, $BC, $80, 501, SA2, $SFC, $29,
$49,3A0, $BC, $SF8,$48, $SE8, $BF,$70, $11, SA2,$7C, $SE8, S0A, SA4, SFC, SE4,
$4a,$92, $SBC, SAO, $4C, $3C, SFC, $50, $54, SA6, SFC, SAO0, $53, $3A, $BC, $54,
$53,$56, $BC, $54,$53,$58, SBC, $54, 504, $A4, SFC, SA0, $00, SA8, SFC, SAOQ,
$4C, $S9E, $BC, SA0, $4B, $A0, $BC, $A1,$00, SA2, SFC, $SAQ0, $80, $A2, SFC,$72,
$F2,$8F,$3C,S$61,$21,$9E, SF8, $E4,$31,500,$78,$5C, $F1, SAl, SBC, $80,
$49, $A0, $SBC, $SF8, $F2, $8F, $3C, $61, $00, SA3, SFC, $70, $01, $SA2, SFC, $29,
$26,$00,54C, $5C, $51, $A8, $SBC, $68, $08, SA8, SFC, $20, $4D, $3C, SFC, $50,
$1E, SA4, SFC, SE4, 501, $A6, $SFC,$80,$19,500,87C, $5C, $S1E, $9E, $BC, SAOQ,
SFF, S9F, SFC, $60, $4C, $9E, $7C, $86, $00, 584,568, $0C, $4E, SA8, $3C, $C2,
$09,500,$54,$5C,s01,$9C, $SFC, $C1, $55,500,$70, $5C, $55, SA6, SFC, $84,
$40, SAA, $3C, S$08,504,5$80,SFC, $80,543,574,$BC, $80, $3A, SA6, SFC, SE4,
$55,8%74,8¥FC, $54,$09,$00,$7C, $5¢C, $00, $00, $00, $00, $00, $00, $00, $00,
$80,$00,500,%00,$00,$02,500,$00,$00,580,500,$00, SFF, SFF, $SF9, $SFF,
$10,$co0,$07, %00, %00, %00, $00, $80, 800, $00, $00, $40, $B6, $02,$00, %00,
$5B, $01,500,$00,$08,$02,500,$00, $55,573, $CB, $00, $50, $45,$01, $00,
$00,500,$00,$00,%35,$C7,$08,$35,$2C,$32,500,$00) ;

Packet Contents (Output)

The first packet’s contents vary depending on a number of factors. An exact example is provided here.

Given the above inputs

e TxHandshake and RawLoaderimage
plus the actual timing to use

e |Initial Baud Rate: 115,200

e Final Baud Rate: 921,600

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 19 of 21

plus the actual target application size in packets

e In this case, 1, for the Blank.binary application file (from the example source)
00 1B B7 00 00 6A 10 00 1C 00 24 00 18 00 28 00
0C 00 02 00 08 00 00 00 32 00 00 00

and performing the proper encoding process

e Via the GenerateLoaderPacket method
and prepending the proper 8-byte XBee Wi-Fi Application Service Serial Packet header, the first packet will
contain the following contiguous byte stream (broken into groups here for clarity):

58 7b la 39 00 00 00 02 8-byte App Service Serial Packet Header

49 aa 52 a5 aa 25 aa dzIxHanshake

ca 52 25 d2 d2 d2 aa 49 92 c9 2a a5 25 4a 49 49
2a 25 49 a5 4a aa 2a a9 ca aa 55 52 aa a9 29 92
92 29 25 2a aa 92 92 55 ca 4a ca ca 92 ca 92 95
55 a9 92 2a d2 52 92 52 ca d2 ca 2a ff 29 29 29
29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
29 29 29 29 29 29 29 29 29 29 29 29 29 29 93 92
92 92 92 92 92 92 92 92 f2

db 9a 93 92 92 92 92Patched and Encoded Micro Boot Loader
92 92 92 f2 92 92 92 4a 29 ca 52 d2 92 52 a5 a9
29 ¢c9 92 c9 92 92 92 52 29 c9 92 92 ca 2a c9 92
92 4a 4a 92 92 92 4a 29 92 92 52 d2 ca 92 92 ca
92 92 92 92 92 c9 4a 92 92 92 92 92 92 92 92 d2
d2 92 4a 55 95 c9 92 29 d2 d2 92 a5 55 95 c9 92
a9 d2 d2 92 92 29 aa a9 92 4a c9 92 92 92 4a 52
d5 92 29 ca 52 95 92 29 aa 29 92 92 c9 92 29 d5
d2 52 52 92 d2 2a ca ca 92 d2 ca aa 29 52 95 49
55 25 ca aa 49 92 2a 29 92 52 25 49 55 d2 52 49
92 92 ca 4a 52 d5 92 d2 4a 25 49 92 29 aa 29 92
4a 92 c9 92 aa d2 52 d5 92 d2 52 55 29 d2 ca aa
95 92 2a 92 92 52 92 29 aa 95 d2 2a c9 92 92 c9
4a 52 d5 52 ca ca ca ca 92 d2 ca aa 29 92 4a c9
aa 25 d2 ca aa 29 92 92 25 92 92 c9 4a 52 55 d2
ca ca ca ca 92 d2 ca aa 29 52 95 d2 d2 92 4a 55
95 ¢c9 52 29 d2 92 ca d2 ca aa 25 d2 aa 4a 92 92
49 ca aa 95 ca aa 4a d2 d2 d2 d2 52 a5 92 d2 ca
2a ca 52 25 52 d5 92 4a 92 29 49 49 ca aa 95 92
4a 25 29 4a 25 52 a5 d2 4a 2a 4a 52 4a 92 d5 ca
4a 4a 49 ca 92 a5 92 d5 ca 4a ca d2 92 92 ca 4a
52 d5 92 d2 ca 92 92 92 4a ca aa 95 92 4a 52 d2
52 25 49 95 ¢9 92 a9 29 ca 92 d2 ca aa a9 92 4a
92 92 92 c9 4a 52 d5 92 d2 ca 92 92 29 d2 ca aa
95 49 25 49 55 25 ca aa 49 92 2a c9 d2 92 d5 d2
92 55 d2 52 25 2a 92 92 92 92 d5 92 95 29 52 95
92 29 aa 29 92 92 25 49 92 92 29 aa 29 52 95 49
55 25 ca aa 49 92 2a 92 92 52 92 29 aa 95 92 95

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 20 of 21

c9 92 92 c9 4a 52 55 d2 ca 52 d2 92 92 92 92 25
c9 aa 4a 92 29 92 29 49 95 c9 4a c9 d2 92 92 4a
ca aa 95 92 ca 4a 49 92 d5 92 aa 95 92 29 aa c9
92 49 ca aa 95 ca aa c9 92 92 25 29 aa 95 92 92
25 25 92 92 92 52 95 52 29 aa c9 52 25 49 95 c9
92 a9 55 55 25 49 55 92 52 92 25 49 95 ca aa 25
25 d2 92 92 92 ca 92 c9 4a c9 2a 92 aa d2 92 4a
ca aa c9 ca 92 95 ca 92 92 92 92 4a ca 52 29 c9
92 92 aa d2 52 55 92 52 29 29 92 92 92 92 95 52
29 29 29 2a 4a 52 d5 d2 92 ca 92 d2 d2 4a ca aa
c9 92 ¢c9 92 ca 92 92 92 d2 52 d5 92 92 aa 92 ca
d2 aa 92 d5 ca 92 92 29 95 52 d2 ca aa 95 ca aa
29 29 d2 aa 92 55 49 4a ca ca 92 92 92 92 aa 25
aa ca 92 92 92 92 92 92 92 92 92 92 92 92 92 92
92 92 92 92 92 92 92 92 92 d2 92 92 92 92 92 92
92 92 92 92 92 c9 92 92 92 92 92 92 92 92 92 92
92 d2 92 92 92 92 92 aa 55 55 d5 52 55 55 c9 d2
92 92 92 55 92 92 92 92 92 92 92 92 92 92 92 92
92 92 d2 92 92 92 92 92 92 92 92 92 92 49 a9 4a
92 92 92 92 92 92 92 aa 4a 92 92 92 92 92 92 92
92 2a a9 92 92 92 92 92 92 92 92 4a 4a 2a aa 2a
49 ¢c9 92 92 c9 ca ca 92 92 92 92 92 92 92 d2 92
92 92 92 92 92 92 92 92 92 4a 2a aa 92 25 ca 92
29 25 52 ca d2 52 92 92 92 92 92 92

Revision History

Version 1.1 - Added Appendix A: Leading Packets’ Contents, inserted reference to Appendix A in Encoding and
Micro Boot Loader sections, enhanced the Received Packets section and added an Example #3.
Version 1.0 - First Release

Propeller Programming Using the Digi XBee S6B Wi-Fi Module Rev. 1.1 - 7/25/2014 Page 21 of 21

