
APPLICATION NOTE

SAA7195A (VMC+)
For

Video Capture Applications

AN96059

Philips

Semiconductors

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

2

Abstract

SAA7195A is the core device used in many multimedia PC add-on cards that were designed to demonstrate the
performance of various desktop video chipset from Philips Semiconductors. Typical applications of these cards
are video display and capture in PC environment, image processing in medical and scientific equipment.
SAA7195A is a highly integrated and complicated device. This note tries to explain some of those complex
functions and disclose some tricks on how to efficiently use this device. Nevertheless, this note only serves as a
reference for users of SAA7195A. Depending on applications, there might be some discrepancies between the
content in this note and the actual programming of the chip under that applications. Once such discrepancies
arise, users should always resolve problems according to the data sheet of SAA7195A and seek technical
support from Philips Semiconductors.

Purchase of Philips I2C components conveys a
license under the Philips I2C patent to use the
components in the I2C system, provided the sys-
tem conforms to the I2C specifications defined by
Philips.

© Philips Electronics N.V.1996

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copy-right owner.

The information presented in this document does not form part of any quotation or contract, is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent- or other indus-
trial or intellectual property rights.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

3

APPLICATION NOTE

SAA7195A (VMC+)
For

Video Capture Applications
AN96059

Author(s):

Bruce Lei, Jeffrey Chang

Regional Sales Office - Southern East Asia

Industrial Regional Application Laboratory

Taipei-Taiwan

Keywords

VMC+
DPC7167

CCIR
NTSC, PAL & SECAM

Color Key
VLUT

Extended Memory
UMA

Date: 01, September, 1996

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

4

Summary

SAA7195A (also nicknamed as “VMC+”) plays as the heart in a video capture subsystem
under PC environment. There are more than 70 registers inside performing the functions of
video in/out format conversion, scan rate conversion, video sizing and scaling, frame buffer
control, host interface and video capturing back to host. Except that it can not be booted up
by itself, VMC+ actually acts like a special-purpose CPU.

Instead of the basic programming of VMC+ which can be found in the data book, this note will
focus on the more advanced techniques in programming this chip. One of the main purposes
of this note is trying to resolve some tricky problems that users could encounter and are not
able to find out the solutions from data book. Therefore, in writing this note and explaining the
techniques, we assume that the readers already have some experience in using this device
and basic knowledge of video capturing in a PC system.

Although VMC+ can be used in many different applications and systems (e.g. DOS & MS-
Windows in PC, MAC and medical equipment), we will illustrate those techniques by
examples in MS-Windows application only, since that is the most popular application in the
PC world for video display and capture now.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

5

CONTENTS

1. INTRODUCTION.. 6

2. BASIC VIDEO DISPLAY AND WINDOW POSITIONING BY VMC+........................... 7
2.1. Basic Video Display... 7
2.2. Window Positioning... 10

3. SCALING AND ZOOMING ... 12
3.1. Setting Up For Basic Scaling And Zooming.. 12
3.2. Scaling And Zooming Under Different System Configuration 14

4. APPLICATIONS OF VIDEO LOOK UP TABLES IN VMC+ 16

5. VIDEO CAPTURING TO PC SYSTEMS VIA MEMORY MAPPING APPROACH...... 20
5.1. Memory Schemes In The Current PC ... 20
5.2. Extended Memory Mapping Approach... 21
5.3. UMA Mapping Approach ... 23

6. VIDEO CAPTURING TO PC SYSTEMS VIA I/O MAPPING APPROACH. 28

7. MISCELLANEOUS ADJUSTMENTS OF VMC+ ON VARIOUS SYSTEM
CONFIGURATION ... 37
7.1. Detection Of The Frontend Video Decoders ... 37
7.2. Detection Of The Graphics Modes And Adjustments Of VMC+ In PC

Environment ... 39

8. REFERENCE ... 44

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

6

1. INTRODUCTION

Video display and capture in a PC system is one of the most important functions in the
multimedia world now. There are many ways with a lot of various devices from famous chip
vendors that can achieve this job. For the end users, it is getting much less hassle of the
current architecture than the one used 3 years ago. However, from the programmers’ and
system designers’ point of view, none of them are simple or easy. SAA7195A is definitely not
the best solution for video capture now. But it does play a special role among the devices of
the desktop video chipset from Philips Semiconductors. Since VMC+ is used in so many
desktop video application boards(DTV6, SAA7168 demo board, DPC7167, DPC7140 and
VideoBlaster from Creative Lab,...etc.), therefore fully understand how this device work will be
very important to the programmers and system developers of those application boards.

In this note, we often use example codes from the software of DPC7167 demo board running
under Video For Windows (VFW) application and we program this device based on the
DPC7167 hardware configuration. We do so not only that it’s convenient to us but also
because VFW is a recognized standard software for video capturing and DPC7167 is a
typical traditional video capture card. However, users should keep in mind that all of these
codes and setup should be easily changed and adapted into your proprietary systems. Please
refer to application note AN95056 - “User’s Manual: DPC7167 Demo Board” and AN95058 -
“Source Code VFW Driver for DPC7167 Demo Board” for questions specific to the DPC7167
board.

Contents in this note are grouped in different topics (chapters) by their property and start from
simpler to more complex ones, from programming within device to the whole system. There
are total six topics as follows:

1) Basic video display and window positioning by VMC+.

2) Scaling and zooming.

3) Applications of video look up tables in VMC+.

4) Video capturing to PC systems via memory mapping approach.

5) Video capturing to PC systems via I/O mapping approach.

6) Miscellaneous adjustments of VMC+ on various system configuration.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

7

2. BASIC VIDEO DISPLAY AND WINDOW POSITIONING BY VMC+

This chapter shows how to use VMC+ to display video overlaid with VGA graphics and how to
position the video window under MS-Windows environment.

2.1. Basic Video Display

One of the main tasks of SAA7195A is to do scan rate conversion so that low scan rate
interlace video can be overlaid with the high scan rate noninterlace graphics. To perform this
job, a video memory (frame buffer) that can hold a full size of video frames is needed. VMC+
will store the input video fields into frame buffer with the video clock and sync first, then read
out the video data from this buffer with graphics clock and sync. During this process, video
cropping, scaling and zooming are accomplished at the same time as well. Figure 2.1
simplifies and illustrates this process.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

V id eo In pu t F ie ld s V id eo M em o r y M o n ito r S cr e en

S ca lin g (d o w n) Z o o m in g (S c a lin g u p)

V x S ta r tO /E
V y S ta r tO /E

V x L e n g th O /E
V y L e n g th O /E

W r S ta r tA d r O /E
W r L in e In c O /E

R d S t a r tA d r O /E
R d L in e In c

D x S ta r t
D y S ta r t

D x L e n g th
D y L e n g th

V x S ca leO /E
V y S ca leO /E

D x Z o o m
D y Z o o m

 Figure 2.1

For most video, a complete frame (the actual picture we see on TV screen) is composed of
two interlace fields. VMC+ takes interlace fields as input and stores in video memory as
noninterlace frame format1. It assigns a reference origin (0,0) point to every input video
frame. This origin is defined as the upper left corner of a complete video frame. It is located at
the starting point of HREF (signal from video decoder) in horizontal direction and the next line
after Vertical-Sync (from video decoder as well) in vertical direction.

1 This is not the only way to store video in frame buffer. Video fields can be stored differently for even and odd
fields in a more complex method. For illustration purpose, we use this simplified architecture that we used in
DPC7167 software

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

8

With this origin as a reference, register “VxStartO/E” (reg. index 65 & 85)2 and “VyStartO/E”3

(index 6B & 8B) specify the upper left corner of the rectangle area that we want to process
and store in the frame buffer; while “VxLengthO/E” and “VyLengthO/E” indicate the length and
width of this rectangle area. The so-called video cropping is performed with these four
parameters programmed.

A physical origin of the whole frame buffer is supposed to be at the point with both row and
column address being 0. Hence, “WrStartAdrO/E” specify the starting point where the actual
video pixel (from either odd or even fields) data should be stored with reference to the origin
of this buffer. Since the video pixels sent to this buffer are actually a continuos stream for
each scan line in a video field, instead of defining a rectangle area, defining a “Line
Increment” parameter is better in this case. “WrLineIncO/E” define the incremental values for
writing a new scan line with reference to the starting point of the previous line. One more
advantage of the use of this line increment is to do interlace and non-interlace conversion.
With “WrLineIncO/E” specified as double the length of a scan line, a interlace video can be
stored in the buffer as the following example (Figure 2.2):

WrStartAdrO WrStartAdrE

First line (odd field) 2nd line (even field)

3rd line (odd field)

4th line (even field) 5th line

(odd field) 6th line (even field)

nth line (odd field)

n+2th line (odd field)

Last line (even field)

Frame buffer empty space

n+1th line (even field)

. . . .

WrLineIncO: Distance from to

WrLineIncE: Distance from to

 Figure 2.2

2 “VxStartO/E” means VxstartO and VxStartE two different registers, for our example, and in most cases, they
will be programmed with the same value to have a consistent video picture.
3 All the registers related to video acquisition and storing i.e. Vx(y)StartO/E, Vx(y)LengthO/E, WrStartAdrO/E,
WrLineIncO/E, RdStartAdrO/E and RdLineInc are counted in video pixels.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

9

With sequential reading from the starting point at first line to the ending at the last line, a non-
interlace video is formed. While reading the video data from the frame buffer to the display
device, another video cropping process can be performed as shown in Figure 2.1.
“RdStartAdrO/E” specify the upper left corner of the video area intended for display.
“RdLineInc” indicates the increment value calculated in the way as “WrLineIncO/E”.

For the final display in a non-interlace mode, “RdStartAdrO” and “RdStartAdrE” are usually
programmed with the same value, while “RdLineInc” will only be half of the value in
“WrLineIncO/E” as in our previous example. For interlace mode, “RdStartAdrO” and
“RdStartAdrE” are to be filled with the starting point of the intended display area in the odd
fields and even fields respectively, usually “RdStartAdrE” is at the same position but next line
after “RdStartAdrO”, while “RdLineInc” will be programmed the same value as “WrLineIncO/E”
as in our previous example. This is illustrated in the following figure (Figure 2.3).

RdStartAdrO/E if noninterlace RdStartAdrE
if interlace

First line (odd field) 2nd line (even field)

3rd line (odd field)

4th line (even field) 5th line

(odd field) 6th line (even field)

nth line (odd field)

n+2th line (odd field)

Last line (even field)

Frame buffer empty space

n+1th line (even field)

. . . .

RdLineInc for noninterlace: Distance from to

to

RdStartAdrO if interlace

RdLineInc for interlace : Distance from

 Figure 2.3

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

10

2.2. Window Positioning

The final display position on monitor screen is controlled by the registers “DxStart”, “DyStart”,
“DxLength” and “DyLength”4 with reference to the upper left corner of the screen of graphics
display. Please refer to Figure 3.3.4 on page 119 of SAA7195A data book for details of this
positioning control. Note that there are two auxiliary registers “DXOffset” and “DYOffset” for
global control of this positioning. i.e. For different graphics mode, the distances between the
origin (upper left corner) of the screen to the inactive edges of DHS and DVS (for graphics
display) are different in most cases. By adjusting these two registers, the video window can
be right at the desired location and these registers need to be set only once for a specific
graphics mode. Please refer to Figure 3.3.12 on page 126 in SAA7195A data book for more
details. We now summarize the use of both these two sets of position control registers in the
following figure (Figure 2.4).

DHS

DVS
DXOffset

DYOffset

< DxStart >

< DyStart >

< DyLength >

< DxLength >

Origin of the graphics screen

Video Display W indow

Graphics Display

 Figure 2.4

The video window overlaid with graphics is supposed to move around free within the whole
screen. However, when the left border of the video window moves and exceeds the left border
of the screen; “DxStart” must be set to zero. All of these registers need to be set with positive
number. Since there is no 2’s complements interpretation, setting an negative number in the
high level program will be mistaken as a huge positive number into the chip.

4 All the registers related to the display i.e. Dx(y)Start, Dx(y)Length, DX(Y)Offset are counted in graphics pixels
(equivalent to one cycle of DCLK).

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

11

Besides the above mentioned registers, three more registers are related to the display
position control; they are reg. 42, 43 & 44. Bit 0 - 4 in reg. 42 (CKeyMode) control the delay of
the color key. By adjusting this parameter, it can compensate the difference of delay in
RAMDAC on the VGA board and the Mixer-DAC on the video board. When there is mis-
alignment on the video with graphics (e.g. a graphics shadow with the color set in
“CKeyComp” register on the cursor, when cursor moves into the video window); That is what
we mean mis-alignment. By tuning the value of this register, it would eventually make the
video and graphics align together, i.e. the shadow in the video should be gone.

Register 43 (“HrefDel”) controls the delay of the signal “HREFOUT” (pin 50) from VMC+.
Increasing the value of this register will shift the left edge of the video to right one pixel a
step. Since the active edge of this signal it to indicate the starting point (first pixel) of a video
scan line to be displayed under the graphics mode, therefore when YUV format is being used
for the video in frame buffer, only one out of two adjacent number (either odd or even number
depending on hardware configuration) can be set into this register to have the correct color
display.

If there are still mis-alignment of the graphics color on the edges of the video window after
adjusting the above two registers, try changing the value of register 44 (“VidSelDel”). This will
allow you to shift the starting point (left border) of the color key to match with the border of the
video window exactly. With programming to the above registers, color key activation, active
video starting point and the border of the video window can be all matched together in the
horizontal direction.

It is much simpler in aligning the video and graphics in the vertical direction. Unless the user
want to do video cropping, otherwise there are only “DYOffset” and “DyStart” two registers
can be adjusted to serve this purpose. The function and meaning of these two registers have
been discussed in the previous paragraphs.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

12

3. SCALING AND ZOOMING

For SAA7195A, scaling is done in the video acquisition process i.e. after VMC+ gets the
video data and before it places into the frame buffer (please refer to Figure 2.1). VMC+ is
only able to scale down the picture at this stage. Scaling up (named as zooming for this
device) is done when VMC+ reads out the data from frame buffer to the video backend
devices (usually a DAC with a mixer); at this stage, only scaling up is possible by altering the
speed of SCLK.

3.1. Setting Up For Basic Scaling And Zooming

Unless in some special applications, Vx(y)ScaleO and Vx(y)ScaleE for odd and even fields
are usually programmed with the same value just like Vx(y)StartO/E to get a consistent video
display. While VxScaleO/E control the scaling factor in horizontal direction, VyScaleO/E
control the vertical direction. All these four registers are evaluated in the following formula to
get the actual scaling factor:

SF = (1024 - R)/1024

where SF is the scaling factor, R is the value programmed in the registers

For example, programming a value of 512 into VxScaleO/E will get an SF of 1/2 and result in
a video of half of the original size horizontally. With these control registers, a pseudo linear
scaling is implemented. By “linear”, we mean that VMC+ is able to scale the video into any
random size users want. However, the actual scaling performed is to scale down the video to
1023/1024, 1022/1024, 1021/1024..... 3/1024, 2/1024, 1/1024 of the original size in both
horizontal and vertical direction.

Instead of the whole frame of the original video, the area of the video to be scaled down is
defined by Vx(y)StartO/E and Vx(y)LengthO/E. This rectangle has to be confined within the
original frame, otherwise junk pixels may appear in the scaled video. When no cropping of
video is needed, then these four registers would be programmed with the exact size of one
field of the original video. For a typical NTSC video, this size would be 640 by 240 (5) for each
odd and even field.

When scaling down to certain small size in horizontal direction, artifacts may occur in the
video picture. Resetting bit 3 in register 2B to zero will activate the decimation filter for
horizontal scaling which can smooth the coarse image artifacts phenomenon. This is due to
the fact that artifacts are caused by high frequency components while this decimation filter is
actually a low pass filter. However, this reduction of artifacts is not free. It’s under the price of
sacrificing the sharpness of the image. Therefore, unless a real small picture need to be
displayed, usually we don’t use this decimation filter.

5 Usually we program VyStartO/E with a value of 10, indicating that we drop the first 10 lines out from the
original video, since the real active video starts from line 22 for each field; and the counting start point for
VyStatO/E is at around the 10th line in a field.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

13

Basic zooming is proceeded in a similar way as scaling except the equation of zooming factor
is different as follows:

ZF = 1024/(1024 - R)

Where ZF is the zooming factor and R is the value setting in registers “DxZoom” and
“DyZoom”. For example, setting DxZoom to 768 will enlarge the video four times in the
horizontal direction. Unlike scaling, there is no filter in VMC+ to reduce the artifacts (blocky
effect) caused by zooming. The more you zoom, the worse the blocky effect is.

The area to be zoomed and displayed is controlled by the registers “RdStartAdrO/E” and
“RdLincInc” (refer to Figure 2.1). Again, this rectangle area defined by these registers has to
be confined within the rectangle defined by “WrStartAdrO/E” and “WrLineIncO/E” to avoid
unexpected video to get in. The whole process from input video to final display can be
illustrated more by the following figure (Figure 3.1).

 Figure 3.1

From time to time, when scaling down the video vertically to certain sizes (usually to less than
half of the original height), mis-alignment of video might occur and cause incorrect interlace of
the original odd and even fields. When this happens, you may try to increase the
“WrStartAdrO/E” to 3 times of the length of one scan line, if the original setting is the length of
one scan line. This is due to some discrepancy of calculation inside the VMC+ scaler.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

14

3.2. Scaling And Zooming Under Different System Configuration

The size of frame buffer under VMC+ control is usually one Mbytes (for 16-bit/pixel in dual
bank mode). The advantages of using memory in dual bank mode are not just to double the
addressing space of VMC+ but also to reduce the display clock to half, so that the video
subsystem controlled by VMC+ can be run at a higher display clock (usually from VGA via
feature connector). In terms of PC graphics, the video subsystem can work with VGA card at
a much higher graphics resolution mode than with the single bank mode. However, single
bank mode costs much less than dual bank mode (since it only uses half of the VRAM in dual
bank mode). Another problem arises when using single bank mode, which can only store up
to 512x512 pixels in the buffer. A regular video input frame (e.g. 720x480 for a CCIR NTSC
format) needs more space than that to be stored. In such case, the trick to display the full size
of the picture is as follows:

1). store only one field (either odd or even) in the frame buffer (only take 720x240). This could
be done by setting register 30 “VdAcqMode” bit 6 or 7 to zero . (please refer to page 129 in
data book).

2). then zoom up twice in the vertical direction when read it out from the frame buffer. This
could be done by setting register B0 and B1 “DYZoom” to 512.

We do not lose any video information since we didn’t scale down the original video. We might
see some artifacts in vertical direction; but that’s a tradeoff in terms of cost.

The size of a video input frame depends on the output format of the frontend video decoder.
For Philips SAA7110, square pixel format is the standard (640x480 for NTSC, 768x576 for
PAL & SECAM). For SAA7111, it can output the video in either CCIR-601 or CCIR-656
formats. Both formats will give a full frame in the size of 720x480 for NTSC or 720x576 for
PAL & SECAM. There are some other video formats from other chip vendors which are
different from the above mentioned. Although they are all different in pixel clock frequency,
this does not bother VMC+. What need to be cared are the scaling factors for different
format.

When VMC+ is used in the PC environment, 4:3 aspect ratio need to be maintained to avoid
any deformation of the shapes of the objects in the original video. Except the square pixel
format from SAA7110, which has already output in 4:3 aspect ratio, all the other formats need
to be scaled or zoomed somehow to match the aspect ratio, when a full size of frame is to be
displayed. For example, a CCIR-601 PAL format (720x576) needs to be either scaled down
vertically from 576 to 540 or zoomed up horizontally from 720 to 768 to maintain the aspect
ratio. (please refer to Figure 3.2).

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

15

576

Capture
frames to
PC system
with correct
aspect ratio

720

An original video frame
(eg. output from Philips
decoder SAA7111)

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

720 (4)

540 (3)

Scaled Video

Frame Buffer

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Frame Buffer

Unscaled Video

720

576

A
n

oth
er w

ay

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

720 (4)

540 (3)

768

576

directly

display

Zoom

Up
Zoomed Video

Not good
for capture

Graphics

Graphics

** For both alternatives, to display the full size of a CCIR PAL frame
need to have the graphics mode of at least 800x600 resolution.

 Figure 3.2

We would recommend to always use scaling for this kind of adaptation of video formats
instead of zooming for the following reasons:

1). Scaling down the video then storing in the frame buffer requires less space in memory
than storing the original video in buffer first then zooming up.

2). If the video pictures are to be captured into the system besides display, then doing scaling
before saving into the frame buffer is a necessary procedure. Otherwise, the pictures
captured will not have a correct aspect ratio.

3). There is a decimation filter in scaling that can be used to smooth the picture; while no filter
is there for zooming.

Since video capture is done by reading the video data from the frame buffer to the system
main memory, therefore the size, alignment and format (with scaling or not) for the video data
stored in the frame buffer are very important to the correct capture. This issue will be
discussed in later chapters.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

16

4. APPLICATIONS OF VIDEO LOOK UP TABLES IN VMC+

There are two Video Look Up Tables (VLUT) inside VMC+. Lots of applications can utilize
these VLUTs for special features. One of the best applications is to adjust color saturation,
luminance brightness and contrast via programming of these VLUTs.

The VLUTs in VMC+ consist of two 256 x 8 bit RAMs. One RAM is located in the luminance
signal path which allows to set brightness and contrast. The other one is located in the
chrominance signal path (which means it effects the Cb and Cr signals in the same manner)
where the color saturation can be adjusted.

These luminance and chrominance RAMs can be loaded individually. The starting address
(set in the register VLUTIndex, reg. 27) indicates the location of the first byte to be written into
the RAM, while the data to be written are stored in VLUTDataY (reg. 28) or VLUTDataC
(reg.29). The following data bytes will be written into the RAM in an auto-increment mode with
the increment value of one.

The “Brightness” adjusts the luminance intensity of the video picture. In general, this
parameter will affect all the pixels in the picture with a equal magnitude on the luminance
values.

The “Contrast” controls the relative difference between higher and lower intensity luminance
values of the video picture. Higher values of “Contrast” cause pixels with darker luminance to
tend toward black and lighter luminance to tend toward white. Lower values of “Contrast”
cause luminance values of all pixels to move toward medium luminance values.

As mentioned above, the output luminance (Yo) is determined by the following equation:

Yo = C * (Yi - 128) / 128 + B

 where

Yo = Output luminance [0, 255],

Yi = Input luminance [0, 255],

B = Brightness [0, 255],

C = Contrast [0, 255]

The “Saturation” controls the color intensity of the video picture. Higher values of “Saturation”
cause larger color gain, while lower values cause smaller color gain. The output chrominance
(UVo) is determined by the following equation :

UVo = S * (UVi - 128) / 128 + 128

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

17

 where

UVo = Output chrominance [0, 255],

 UVi = Input chrominance [0, 255],

S = Saturation [0, 255]

For using the VLUT of VMC+ in the above application, the following C sample code is
included here for reference.

/* ---

 VMC_SetVLUT -

 --- */

BOOL FAR PASCAL EXPORT VMC_SetVLUT (

WORD wBright, // [0, 255] - (default: 128)

WORD wContrast, // [0, 255] - (default: 128)

WORD wSaturate // [0, 255] - (default: 128)

)

{

WORD wIdx;

float fLuminance;

float fChrominance;

long lData;

DWORD dwTick; // Added by Jeffrey DEC 11 '95

if (pSAA7195A == NULL)

pSAA7195A = VmcOpen();

if (pSAA7195A == NULL)

return(FALSE);

VMC_FreezeVideo();

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

18

dwTick = GetTickCount();

while (GetTickCount() < dwTick + 100) /* Delay 100ms */

;

for (wIdx = 0; wIdx < 256; wIdx++)

{

VmcSetReg(pSAA7195A, VLUTIndex, (long) wIdx); // VLUT Address

// Luminance (Y)

// Y = (C / 128) * X + B - C,

// = C * (X - 128) / 128 + B,

// where Y: Luminance, [16,235] for CCIR-601 standard.

// C: Contrast, [0, 255]

// B: Brightness, [0, 255]

fLuminance = (float) wContrast / 128.0F * wIdx + wBright -
wContrast;

lData = (long) max(min(fLuminance, 235), 16);

VmcSetReg(pSAA7195A, VLUTDataY, lData); // Y (Luminance)

// Chrominance (UV)

// UV = (S / 128) * X + 128 - S

// = S * (X - 128) / 128 + 128

// where S: Saturation, [0, 255]

// UV: Chrominance [16, 240] for CCIR-601 standard

fChrominance = (float) wSaturate / 128.0F * wIdx + 128.0F -
wSaturate;

lData = (long) max(min(fChrominance, 240), 16);

VmcSetReg(pSAA7195A, VLUTDataC, lData); // Chrominance

} /* for wIdx */

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

19

dwTick = GetTickCount();

while (GetTickCount() < dwTick + 100) /* Delay 100ms */

;

VMC_UnFreezeVideo();

return(TRUE);

} /* VMC_SetVLUT */

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

20

5. VIDEO CAPTURING TO PC SYSTEMS VIA MEMORY MAPPING
APPROACH

To capture motion video down to PC systems via SAA7195A is a complicated task, which
involves the understanding of VMC+, DOS, MS-Windows and the memory schemes under
PC environment. Lots of coding also involved to accomplish this job. We will first explain the
memory schemes in the current PCs, then discuss the capturing to system via extended and
upper memory approach respectively.

5.1. Memory Schemes In The Current PC

The content of this section is out of our scope here. However, in order to explain well the
capturing of video via VMC+, this memory architecture still needs to be understood first. With
the following figure (Figure 5.1), we illustrate the memory schemes used by the current PC.
The readers should refer to other books dedicated in this topic for more details.

#1

#0

#2

HMA

Extended
Memory

Upper
Memory
Block

XMS
Scope

EMB

8086
Address
Space

80286
Address
Space

#0

#1

#2

#3

#4

#5

#6

#7

0

640K

1024K

1088K

16M

#N-1

#N

......

Memory
MappingPhysical

Pages

Expanded Memory
Logical Pages

Conventional
Memory

HMA: High Memory Area

EMB: Extended Memory Block

UMB: Upper Memory Block

 Figure 5.1: EMS/XMS Diagram

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

21

The Extended Memory Specification (XMS) arbitrates the use of memory lying outside the
conventional DOS domain of the first 1Mbytes. Of particular concern as computing hardware
increases in sophistication is the potentially vast amount of extended memory that may be
installed above the 1Mbytes boundary of the 8086 address space. The 80286 and more
modern processors can form addresses with more than the 20 bits to which the 8086 is
limited, but not by following the real-mode rule (for 80286 or later CPU) for combining 16-bit
segments and offsets. With only a few exceptions, the protected mode of these newer
processors is required to get at extended memory, putting this practically unbounded region
outside the range of normal DOS memory management.

Furthermore, a real-mode environment is ideal for many purposes requiring moderate
resources and only minimal assistance from an operating system. The XMS acts as a
supplement, presenting the additional resource of extended memory without the trapping that
may make a protected-mode operating system seem extravagant. When extra power is
needed, the XMS is an essential agent in the smooth transition to protected mode, offering
the means through which the protected-mode software may preserve extended memory
already being used by real-mode programs. In short, the XMS is the means by which DOS
may usefully serve as a launching pad to protected mode but not lose touch with its basic
configuration in real mode.

The interface of VMC+ supports two different PC-bus configuration the ISA-bus and the
NuBus. It is used to control the functions of the VMC+ as well as to read or write data from/to
the video frame buffer. The ISA-bus interface of VMC+ supports memory access and I/O
access. Its interface configuration can be used in any Intel 80x86 AT-bus design system (IBM
compatibles) down to IBM-XT computers which are not able to run in the protected mode. In
order to overcome the 16MBytes memory address range problem, another alternative is built
in via access of the UMA (Upper Memory Area), also named as UMB (Upper Memory Block).
We will illustrate both these memory mapping approach by examples in the next two sections.

5.2. Extended Memory Mapping Approach

Normally, we access video memory using XMS (Extended Memory Specification) approach.
The starting address of the frame buffer on the video subsystem could be located at 1 Mega,
2 Mega, 3 Mega ... to 15 Mega when mapping to main memory on systems. However, it will
not be permitted to map the video memory to the location that could overlap with the main
memory. Let’s demonstrate the method by the following example.

Example 1 : If there are 1M bytes video memory (in mux mode) on video board and 8M
bytes main memory in our computer, we choose 15 Mega as the starting address of the video
memory. The programming of VMC+ is as follows :

Step 1 . Set Command (0x00) to 0xD5 (refer to page 104, VMC+ data book) since we
access dual bank (mux mode) video memory by memory mapping approach.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

22

Step 2 . Set MEMCtrl (0x17) to 0x03 (refer to page 112, VMC+ data book) to use XMS
(extended memory) approach.

Step 3 . Set MemBaseBank (0x10) to 0x0F (refer to page 109, VMC+ data book), since
the frame buffer address starts from 15 Mega of main memory. Value set in the bits 4-5 of this
register represents the bank number of the physical memory on the video subsystem. This
physical memory is local to the VMC+ and up to 4 Mbytes. For most system with only 1
Mbytes or less local video memory, these bits should be set to 0.

The following sample program will show you how to set the registers of VMC+ when using
XMS approach.

/* ---

 VMC_SetVRAMBaseAddr -

 --- */

BOOL FAR PASCAL EXPORT VMC_SetVRAMBaseAddr (

BYTE BaseAddr,

BYTE Range

)

{

if (pSAA7195A == NULL)

pSAA7195A = VmcOpen();

if (pSAA7195A == NULL)

return(FALSE);

// [1] p109 Memory base address and memory banking

// 7 6 5 4 3 2 1 0

// | | | | |_|_|_|_ Memory base address [23:20]

// | | |_|_________ Memory bank

VmcSetReg(pSAA7195A, MemBaseBank, BaseAddr);

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

23

// [1] p112 Memory control

// MemCtrl 0 0 := 16 KByte; UMA only

// 0 1 := 32 KByte; UMA only

// 1 0 := 64 KByte; UMA only

// 1 1 := 1 MByte; Extended Memory only

VmcSetReg(pSAA7195A, MemCtrl, 0x03);

 return(TRUE);

} /* VMC_SetVRAMBaseAddr */

If there are 16M bytes (or more) of main memory on the system, the above method for video
capturing won’t work. To resolve this problem, the programmers need to use either UMA
mapping or I/O access unless there is some way to disable a range (1 Mbytes for example) of
the main memory. On some latest PC, they do have an option in the BIOS setup to disable
one Mbytes of the main memory for video subsystem to use (called memory hole, usually at
15 to 16 Mbytes). Turning on this option in BIOS setup will enable us to use extended
memory for video capture again.

5.3. UMA Mapping Approach

When using UMA mapping, a segment of memory in this UMA region (from 640K to 1Mbytes)
needs to be reserved as a window for mapping the video memory to main memory. The
segment size can be programmed in the VMC+ as 16K, 32K or 64K.

As an example, the following table (Table 5-1) shows some available segments (in 16K page
size) in the UMA region in a typical PC. The reason we choose 16K as page size is that the
smaller the page size is, the more the segments could be available. These available
segments can be different from PC to PC; or even in the same PC, it could be different from
time to time due to changes in the system setup. Note that all the addresses in this table are
“segment address”, which is used by CPU to access to a physical memory location by adding
this segment address with the offset address. Both the “segment” and “offset” address are
only 16 bits and specific to Intel’s 80x86.

 Table 5-1: UMA address and range

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

24

Frame Buffer Base Address Address Excluding Rang

B000 B000 - B3FF

B400 B400 - B7FF

D000 D000 - D3FF

D400 D400 - D7FF

D800 D800 - DBFF

DC00 DC00 - DFFF

E000 E000 - E3FF

E400 E400 - E7FF

E800 E800 - EBFF

EC00 EC00 - EFFF

In the application software of DPC7167 demo board (Figure 7.1), we provide the above 10
entries for video capturing via UMA access. Again, they are only for reference. The system
programmers of VMC+ should find out and make his/her own list of available segments.

Nevertheless, the segment you choose for VMC+ for video capturing today may be invalid
and cause conflicts with other application software tomorrow due to change in UMA
arrangement. Therefore a better solution for this issue is to reserve a piece of memory in
UMA every time when you turn on your machine; and set up your video application software
to always use this piece of memory. This could be done by adding a statement in the top of
your CONFIG.SYS file under the root directory. For example;

DEVICE = C:\DOS\EMM386.EXE RAM X=D000-D3FF

After the execution of this CONFIG.SYS, UMA ranged from D000 to D3FF has been reserved
and no other application (device drivers) can use until the booting process is finished. Thus
ensure this range of memory can be used by our video application.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

25

Following two examples will show you how to use the UMA-feature registers of VMC+ to do
video capturing. Please refer to page 110-111 of VMC+ data book for more information.

Example 2 : To set up VMC+ for video capturing to use UMA ranged from DC00 to DCFF
(16K bytes of page size) for a total video memory 1Mbytes. The UMA-feature registers can be
programmed as follows :

Step 1 . Set MemBaseBank (0x10) to 0 (refer to page 109, VMC+ data book), since we
only have 1 Mbytes video memory.

Step 2 . Set MEMCtrl (0x17) to 0 (refer to page 112, VMC+ data book) to select 16K bytes
as the page size for UMA access.

Step 3 . Set UMAbase (0x18) to 0x17 (refer to page 112, VMC+ data book) to form a base
starting address at DC00 (absolute address DC000)

UMA area base = 512K bytes + UMAbase * 16K

UMAbase = (UMA area base - 512K) / 16K

= (0xDC000 - 0x80000) / 0x4000

= 0x17

Step 4 . Set UMAbank (0x19) from 0 to “PMAX” once a time, step by step with increment
value of 1. “PMAX” is the last page number and calculated as:

PMAX = (total video memory / page size) - 1

For the above example, PMAX is (1Mbytes / 16Kbytes) - 1 = 63. Thus the programmer needs
to set this register to 0 at first time, wait for the first block transfer to complete, then set to 1
at second time, wait for transfer to complete, set to 2 at the third time... and finally set to 63 at
the last time and then transfer the last block.

Example 3 : If there are 512K bytes video memory and the page size is 32K bytes which
are to be mapped to UMA ranged from B000 to B7FF. For video capturing on such system,
the UMA-feature registers will be programmed as follows :

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

26

Step 1 . Set MemBaseBank (0x10) to 0 (refer to page 109, VMC+ data book), since we
have less than 1 Mbytes video memory local to VMC+.

Step 2 . Set MEMCtrl (0x17) to 1 (refer to page 112, VMC+ data book) to select 32K as
page size.

Step 3 . Set UMAbase (0x18) to 0x06 (refer to page 112, VMC+ data book). This value is
obtained by the following calculation:

UMA area base = 512K bytes + UMAbase * 32K bytes

UMAbase = (UMA area base - 512K) / 32K

= (0xB0000 - 0x80000) / 0x8000

= 0x06

Step 4 . Set UMAbank (0x19) from 0 (the 1st bank) to [(512K bytes / 32K bytes) - 1 = 15]
(the last bank) for a complete and sequential transfer of the entire frame buffer to main
memory on the system.

The following sample program shows how to set those registers of SAA7195A for UMA
access approach.

/* ***

fpCopyBuffer : Main memory pointer

glpFrameBuffer : Video memory pointer

fpCopyBufferT : Main memory pointer

glpUMAFrameBuffer : Main memory (UMA) pointer

 *** */

SAA7195A_SetReg(MemBaseBank, 0x00); // [1]p109

SAA7195A_SetReg(MemCtrl, 0x00); // [1]p112

SAA7195A_SetReg(UMAbase, gwUMABase); // [1]p112

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

27

for (i = 0; i <= PMAX ; i++)

{

SAA7195A_SetReg(UMAbank, i);

FullCopyBytes((BYTE huge*)fpCopyBufferT + (LONG)(0x4000L * i),

glpUMAFrameBuffer, 0x1000L);

} /* for i */

 RectCopyBytes((BYTE huge*)fpCopyBuffer, gwWidth * 2,

(BYTE huge*) fpCopyBufferT, 640 * 2,

0, 0, gwWidth * 2, gwHeight); /* MAPA.ASM */

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

28

6. VIDEO CAPTURING TO PC SYSTEMS VIA I/O MAPPING APPROACH.

All the registers in VMC+ are accessed by host system via I/O port access. However, before
using this device, it has to be initialized as follows: Up to four SAA7195A can be handled in
one system. The status of the USERIO[1:0] lines in the RESET phase (i.e. when the RESET
pin is held HIGH) determines the Chip-ID which is part of the base address (see below).
While latching the USERIO[1:0] status in the RESET phase, these pins are automatically set
to input. After RESET these pins are freely programmable as input or output ports.

After RESET the PC-Interface is in idle condition. It will not react on any input. In order to get
the interface working the port address (IO-Base address) has to be set first. This is done by
transmitting a special pattern (see below) to the parallel printer (Centronics) port address
(278h).

Parallel

Port
Address

1.
Header

2.
Header

3.
Header

4.
Header

5.
Header

6.
Header

7. Port
address

278 CD 48 EA 67 C6 EB XX

Note: all numbers in hexadecimal representation.

So the VMC+ port address is configured from of the bits [7:1] of the 7th header byte (above
figure) and the USERIO[1:0] settings as follows:

MSB LSB

[7] [6] [5] [4] [3] [2] [1] X X 0

USERIO[0]

USERIO[1]

Note: The numbers in brackets are the bit numbers of the header. Bit[0] is not used, the
LSB of the port address is always set to 0. The status of USERIO[1:0] is latched during
RESET only.

Example 4 : If we set the USERIO[1:0]=00 of VMC+ and choose 0x318 as port address,
we should transmit the address (see below) within a special pattern to the parallel printer.
Since

Port address = 0x318 = 11 0001 1000 (in binary)

so

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

29

MSB LSB

[7] [6] [5] [4] [3] [2] [1] X X 0

1 1 0 0 0 1 1 0

0xC6

Pattern as follows:

Parallel

Port
Address

1.
Header

2.
Header

3.
Header

4.
Header

5.
Header

6.
Header

7. Port
address

278 CD 48 EA 67 C6 EB C6

In order to set the port address of VMC+, we should transmit the pattern to parallel port as the
following C demo program :

// Name: WriteIOBase

// Description: Set VMC's I/O base address

// Parameter: Base I/O base address

// Note: Use "base | 0x400" for version 1

void CI2cDrv::WriteIOBase(unsigned base)

{

if ((base != 0) && (m_nVmc != -1))

{

_disable(); // Disable interrupts

unsigned lpt2 = LPT2 | (base & 0xFC00); // get upper bits...

_outp(lpt2, 0xCD); // Write header to LPT2:

_outp(lpt2, 0x48);

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

30

_outp(lpt2, 0xEA);

_outp(lpt2, 0x67);

_outp(lpt2, 0xC6);

_outp(lpt2, 0xEB);

_outp(lpt2, (base >> 2) & 0xFF); // Write Port address

_enable(); // Enable interrupts

}

}

In order to write data to any control register, their index (address of the register) has to be
selected first. The index is set in the port address (IO-Base address). The contents (data) of
the register are written via the (“port address” + 1) (as shown in Figure 6.1) in the WRITE
slow or fast mode defined by register “Command” (reg. 01, bit 2).

AD[7:0]

AD[7:0]

IO-Base address

IO-Base address + 1

VMC registers

Index

Data

 Figure 6.1 Registers access via I/O port

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

31

If we use IO-mapped approach to access video memory, it is necessary to program IO-feature
registers of VMC+. For examples: MemIndex, MemData and MemInc. The following figure
describes the principle operation.

Index

MemData

MemInc

MemIndex

VMC registers

Data

Video
Memory

Address

Data

 Figure 6.2

Example 5 : If there are 1M bytes video memory in single bank mode, we should program
the registers of VMC+ as follows:

Step 1 . Set Command (0x00) to 0x44 (refer to page 104, VMC+ data book), since we
access single bank video memory using IO-mapped approach.

Step 2 . Set MemInc (0x14 and 0x15) to 2 (refer to page 97 and 107, VMC+ data book).
For normal case, set this register to 2 for single bank mode and 1 for mux mode.

Step 3 . Set MemIndex (0x11, 0x12 and 0x13) to the location in the video memory which
the application software wants to access for video capturing.

Step 4 . Check the bit 7 of Status register (0x01) (refer to page 105, VMC+ data book).
Read memory data from the following register only when this bit is set to 1.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

32

Step 5 . Get the video data via MemData register (0x16) (refer to page 107, VMC+ data
book).

The following sample program (in Macro Assembly) will show you how to set the registers of
VMC+ for video capturing with IO-mapping approach.

; %%%

; IO1BankCopy -

; %%%

cProc IO1BankCopy, <NEAR, PASCAL, PUBLIC>, <SI,DS>

parmD pDst ; Pointer to dest memory

parmW wDstWidth ; Width of a dest scanline (in bytes)

parmW wIOPort ; I/O base port (Default: 318h)

parmW wSrcWidth ; Width of a src. scan line (in bytes)

parmW xSrc ; byte offset into scan

parmW ySrc ; scan to start from

parmW dxSrc ; number of bytes (per scan) to copy

parmW dySrc ; number of scans to copy

cBegin

CLD

PUSH ESI

PUSH EDI

MOVZX EDI, DI

LES DI, pDst

; Prepare for memory increment [1]p107

; for MemInc 14 <- 2

MOV DX, wIOPort

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

33

MOV AL, 14h

OUT DX, AL

INC DX ; Data Port

MOV AL, 02h ; [1]p97 Single bank pixel increment = 2

OUT DX, AL

; for MemInc 15 <- 0

MOV DX, wIOPort

MOV AL, 15h

OUT DX, AL

INC DX ; Data Port

MOV AL, 0

OUT DX, AL

; Finish memory increment

; Initial memory index for VMC+ [1]p107

MOV ESI, 0

MOV EBX, ESI

MOV CX, dxSrc ; 1 Pixel = 2 bytes

SHR CX, 1

NextLineIO1:

PUSH CX

; Prepare for memory index [1]p107

; for I/O base MemIndex 11 <- Memory Index (Address) low byte

MOV DX, wIOPort

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

34

MOV AL, 11h

OUT DX, AL

INC DX ; Data Port

MOV AL, BL

OUT DX, AL

SHR EBX, 8

; for I/O base MemIndex 12 <- Memory Index (Address) middle byte

MOV DX, wIOPort

MOV AL, 12h

OUT DX, AL

INC DX ; Data Port

MOV AL, BL

OUT DX, AL

SHR EBX, 8

; for I/O base MemIndex 13 <- Memory Index (Address) high byte

MOV DX, wIOPort

MOV AL, 13h

OUT DX, AL

INC DX ; Data Port

MOV AL, BL

OUT DX, AL

; Finish memory address

NextPixelIO1:

MOV DX, wIOPort

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

35

MOV AL, 01h ; misc state register

OUT DX, AL

INC DX ; Data Port

NotReady1:

IN AL, DX

TEST AL, 80h

JNZ NotReady1

; Get a pixel data

MOV DX, wIOPort ; Read 2 bytes

MOV AL, 16h

OUT DX, AL

INC DX ; Data Port

IN AL, DX ; 1st byte (2 bytes per pixel)

MOV ES:[EDI], AL

INC EDI

; INSB ; Please tell me why it does not work !

IN AL, DX ; 2nd byte (2 bytes per pixel)

MOV ES:[EDI], AL

INC EDI

; INSB ; Please tell me why it does not work !

LOOP NextPixelIO1

; Prepare memory index for next line VMC+ [1]p107

MOVZX EBX, wSrcWidth ; (in bytes) 1 pixel = 2 bytes

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

36

ADD ESI, EBX ; [1]p97 Single bank pixel increment = 2

MOV EBX, ESI

POP CX

DEC dySrc

JNZ NextLineIO1

POP EDI

POP ESI

cEnd ; IO1BankCopy

; --

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

37

7. MISCELLANEOUS ADJUSTMENTS OF VMC+ ON VARIOUS SYSTEM
CONFIGURATION

Due to the complexity of current PC systems and to make the end users be adapted with a
video capture card more convenient, sometimes it’s necessary to have the automatic
detection of some system configuration in the application software. Following sections are two
typical examples. Although they are not directly related to the VMC+, they are important from
a system point of view.

7.1. Detection Of The Frontend Video Decoders

Currently there are two main types of frontend video decoder from Philips Semiconductors
which can convert the analog CVBS signal to the digital YUV or RGB data; i.e. SAA7110 and
SAA7111. A typical video subsystem with SAA7110/11 and SAA7195A based on IBM-PC
main system is as follows

Philips
Semiconductors

Bruce Lei
11/1/96

SAA

ISA Interface

AAAA
AAAA

AAA
AAA

AAAA
AAAA

AAA
AAA

AAAA
AAAAAAA

AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA

AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

ISA Bus

Feature Connector

OCF1

VMC+

SAA
7195A

DPC7167 Demo board

Single Dual Bank

Graphic
subsystem

4 CVBS

2M-bit
VRAM

2M-bit
VRAM

SAA
7167

Analog
RGB

M
U

X

2 4 pcs vrams

I2C

7110/11
or

2 S-Video

 Figure 7.1

We will use the architecture of this demo board as an example to illustrate the methods we
adopted in this chapter. The setup and programming of SAA7110/11 and SAA7195A may be
different from what we discuss here if the system configuration is not the same as above one.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

38

On this DPC7167 demo board, either SAA7110 or SAA7111 can be plugged in. They are fully
compatible in hardware; but are completely different in register setting and slave address (for
I2C access, also named module address). Therefore the simplest way is to detect which one
by sending data to its specific slave address. If no “acknowledge” signal comes back from the
desired slave device, then this device is not present on the board6. The software should
switch to the other slave address for testing. Unless there are hardware problems on board,
otherwise one of the slave addresses (for SAA7110 or SAA7111) should respond to this
detecting procedure.

This process can be extended if there are more than above mentioned devices or if there are
I2C devices of which the slave address unknown. We can simply do a address scan from “00”
to “FF” (for current I2C device, there is only one byte for the address). While scanning to any
specific address, if there is an “ACK” signal received, then that specific device is confirmed to
be on the board. Following is a piece of sample code to do the address scan:

/* ---

I2C_Scan -

Return:

A pointer to an global array which holds all the slave addresses of the I2C devices it found in that
particular system.

*/

static int bI2C_addr[256], *pTmp; /* bI2C_addr[] is an global array that holds all the addresses

 it found in a ascending order, last one in this array is followed

 by consecutive zero to the end of the array. */

int* FAR PASCAL I2C_Scan (void)

{

 int iMad;

 BOOL bError;

 pTmp = bI2C_addr;

6 When there is no “ACK” signal back from the desired device, it means either this device is not present or it’s
there but there is hardware problem on the board. We exclude the latter case since we assume that all the
boards shipped to users are good boards.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

39

 for (iMad = 0x0; iMad < 0x100; iMad++)

 {

 I2C_Start(); /* perform a “START” condition */

 I2C_TxByte((BYTE)iMad); /* Send a slave address on I2C bus */

 bError = I2C_GetACK(); /* Check response (any “ACK” signal on I2C bus); if bError is

 FALSE, that means there is an I2C device with this slave

 address in this system. */

 I2C_Stop(); /* perform a “STOP” condition, this is necessary whether there is

 a slave device or not, otherwise bus might be halted. */

 if (! bError)

 *pTmp++ = iMad;

 } /* for iMad */

 return (bI2C_addr);

} /* I2C_Scan */

We don’t want to list the codes of those functions of I2C_Start(), I2CGetAck(), I2CTxByte()...
etc. in this note, since they are lengthy and out of the scope of our topics. However, all of
these information can be found in the VMC+ data book from page 184 thru page 193. For
more information of how to use I2C or its protocol, please refer to the Philips IC12 data
handbook - I2C peripherals.

7.2. Detection Of The Graphics Modes And Adjustments Of VMC+ In PC
Environment

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

40

When VMC+ is used in PC environment, usually it needs to get information from the graphics
subsystem (via feature connectors in most cases) to perform the correct scan rate conversion
and color key overlay tasks. However, VMC+ won’t be able to tell the current graphics mode
(pseudo color or high color) by the information it receives from the feature connector. Instead
of sending the information about the current graphics mode by users, we implement this
procedure in the imbedded code of our application software. When the software is activated,
this code will get the VGA mode information from the system and set up VMC+ accordingly.
VMC+ can support color key in pseudo color (16 or 256 colors) and high color (32k or 64k
color) modes (not true color yet). There are mode 1 and 2 of high color modes; mode 1 is an
older and less popular mode in the systems nowadays. The setup of VMC+ could be almost
the same as pseudo color. Therefore, when we say high color; we mean mode 2. A simple
timing diagram for these graphics modes is as follows (Figure 7.2).

PCLK

Graphics
Pixel data

[Pseudo
Color

PCLK

Pixel data
[High

Color

PCLK

Pixel data
[High

Color

(mode 1)

(mode 2)

(On 8-bit Feature Connector)

(On 8-bit Feature
Connector)

(On 8-bit Feature
Connector)

{

1st Pixel

{

2nd Pixel

1st
Byte

2nd
Byte

3rd
Byte

4th
Byte

.

{

1st Pixel

{

2nd Pixel

1st
Byte

2nd
Byte

3rd
Byte

4th
Byte

.

1st Pixel 2nd Pixel 3rd Pixel 4th Pixel

 Figure 7.2

* Special remarks on Hi-color mode:

1). Hi-color mode 1: The first kind of Hi-color mode introduced to the market and less popular
now, which utilizes both edges of PCLK to latch one byte of pixel data (one pixel is composed
of 2 bytes data in Hi-color mode). Therefore, one complete PCLK cycle can carry two-byte
(which is one pixel) information. And the PCLK frequency is then the same as in Pseudo-color
mode. For the above reasons, while in Hi-color mode 1, we can do all the programming and
H/W setup as in Pseudo-color mode (except the color key value).

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

41

2). Hi-color mode 2: the more popular one being used now. As a regular clocking system,
each byte is transferred on each clock cycle. Hence one pixel needs two PCLK cycles to
transfer. Therefore the PCLK frequency is usually doubled than in Pseudo-color mode for the
same screen resolution.

The following sample code shows you how to use Windows Standard API to find out the
correct graphics modes. Unfortunately, there is no way to find out its mode number when the
system is in high color mode. This software always assumes mode 2 if high color mode is
detected. After executing the following code, VMC+ will be set up properly (by another piece
of code) according to the status the software detects. If after the whole process is done and
high color mode is detected; but the display is still not correct (scale up horizontally), then it’s
very likely that it is high color mode 1. Consequently, the users need to do some corrective
setup to VMC+ manually to fix the problem.

/* ---

The function of DPC7167_VgaMode_Detect() can only get the “Bits” and “Planes” info from the
system, the desired mode information need to be evaluated from these two numbers in a certain way as
showing in the following codes.

 Examples of “Bits” and “Planes” values of various graphics modes.

 Modes Bits Planes

 Standard VGA 1 4

 VGA (v3.0) 1 4

 Modes Bits Planes

 640 x 480 x 16 (pseudo color) 1 4

 640 x 480 x 256 (pseudo color) 8 1

 640 x 480 x 32K (high color) 16 1

 640 x 480 x 64K (high color) 16 1

 640 x 480 x 16.8M (true color) 24 1

*/

UINT FAR PASCAL EXPORT DPC7167_VgaMode_Detect (void)

{

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

42

 HDC hDC;

 int iBits;

 int iColorPlanes;

 hDC = CreateIC("DISPLAY", NULL, NULL, NULL); /* MS-Windows API */

 iBits = GetDeviceCaps(hDC, BITSPIXEL); /* MS-Windows API */

 iColorPlanes = GetDeviceCaps(hDC, PLANES); /* MS-Windows API */

 DeleteDC(hDC); /* MS-Windows API */

 switch (iBits * iColorPlanes)

 {

 case 4:

 case 8: /* 16 or 256 colors, Pseudo Color */

 return(0);

 break;

 case 16: /* 64K colors, Hi-Color */

 return(1);

 break;

 case 24: /* 16M colors, True Color */

 default:

 return(2);

 break;

 } /* end of “switch” */

} /* end of routine */

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

43

After successfully detecting the graphics modes, the software will need to program
“CKeyMode” (reg. 42, bit 5&6) of VMC+ with the correct mode first; then set up the color-key
registers “CKeyComp” (reg. 49) & “CKeyCompHi” (reg. 4A) with the correct value carefully.
Except the standard VGA mode from Microsoft, the color values of all the other modes really
depend on the VGA chip vendors. Although there is no standard for this, for your reference,
the following values are found in many graphics subsystems:

 Reg.49 Reg.4A Bit 5&6 of Reg. 42

 Standard VGA mode: 2D X 01

 16-color pseudo-color : 0D X 01

 256-color pseudo-color: FD X 01

 32K-color Hi-color (mode1): 1F X 01

 64K-color Hi-color (mode1): 1F X 01

 32K-color Hi-color (mode2): 1F 7C 1x

 64K-color Hi-color (mode2): 1F F8 1x

For DPC7167 demo board, In case that SAA7195A is not able to generate the color key on
boards. The key signal required for the mixer in SAA7167 can still be generated by SAA7167
internally (please refer to Figure 7.1). This process could be done by programming the
registers of SAA7167 properly. However, while in hi-color (or true-color) mode, SAA7167 can
only generate the color-key with all the same values of each bytes within that pixel.

Philips Semiconductors

SAA7195A (VMC+) for Video Capture
Applications

Application Note
AN96059

44

8. REFERENCE

1. “Video and Memory Controller (plus) - SAA7195A” data book, Mar. 1994.

2. Application Note - AN95056 “User’s Manual DPC7167 Demo Board”

3. Application Note - AN95058 “Source code DPC7167 Demo Board Video for Windows”

4. 1995 Data Handbook IC22, Philips Semiconductors.

5. “DOS Internals” - Geoff Chapell, Addison-Wesley, 1994.

	1. INTRODUCTION
	2. BASIC VIDEO DISPLAY AND WINDOW POSITIONING BY VMC+
	2.1. Basic Video Display
	2.2. Window Positioning

	3. SCALING AND ZOOMING
	3.1. Setting Up For Basic Scaling And Zooming
	3.2. Scaling And Zooming Under Different System Configuration

	4. APPLICATIONS OF VIDEO LOOK UP TABLES IN VMC+
	5. VIDEO CAPTURING TO PC SYSTEMS VIA MEMORY MAPPING APPROACH
	5.1. Memory Schemes In The Current PC
	5.2. Extended Memory Mapping Approach
	5.3. UMA Mapping Approach

	6. VIDEO CAPTURING TO PC SYSTEMS VIA I/O MAPPING APPROACH.
	7. MISCELLANEOUS ADJUSTMENTS OF VMC+ ON VARIOUS SYSTEM CONFIGURATION
	7.1. Detection Of The Frontend Video Decoders
	7.2. Detection Of The Graphics Modes And Adjustments Of VMC+ In PC Environment

	8. REFERENCE

