Ethernut
Software Manual

EMBEDDED ETHERNET ETHERNUT

Manual Revision: 2.4
Issue date: November 2005

Copyright 2001-2005 by egnite Software GmbH. All rights reserved.

egnite makes no warranty for the use of its products and assumes no
responsibility for any errors which may appear in this document nor does it make
a commitment to update the information contained herein.

egnite products are not intended for use in medical, life saving or life sustaining
applications.

egnite retains the right to make changes to these specifications at any time,
without notice.

All product names referenced herein are trademarks of their respective
companies. Ethernut is a registered trademark of egnite Software GmbH.

Contents

About Nut/OS and Nut/Net i it i e 1
NUE/OS Featureso e et e e e 1
Nut/Net Featuresc.i i e e 1

Quick Start with ICCAVR e e 2
Installing ICCAVR e e e 2
Installing NUt/OS e 2
Configuring NUt/OS 4
Configuring ImageCraft 8
Creating the First Nut/OS Application 11

Quick Start with AVR-GCC on Linuxviiti i iiie e 14
Installing AVR-GCC on LinUXt 14
Installing NUt/OS o e e e 14
Configuring NUt/OS e e e 14
Creating the First Nut/OS Application 19

Quick Start with WIinAVR e e e 22
Installing AVR-GCC on Windowsttt i 22
Installing NUt/OS e e 22
Configuring NUt/OS e 24
Creating the First Nut/OS Applicationo, 27

Running the Embedded Webserver 29

NUT/OS . et e e e e 31
System Initialization e e 31
Thread Management i e 31
Timer Management e e 32
Heap Management i et 33
Event Management e 33
Stream /0 . ..o e e e 34
File System o e e e e 36
Device Drivers e e 36

NUE/NEE . e e et e e e e e 37
Network Device Initialization with DHCP 37
Socket APl ... e e 38
Protocols ...t e e 40
Conversion FUNCLioN e e 41
Network Buffers e e 41

Simple TCP Server et et 43
Initializing the Ethernet Device 43
ConnectingaClienttoaServer 44
Communicating with the Client 45
Trying the Sample Code e 46

Reference Material i e e a7

Troubleshooting ... i i e e e e 49

About Nut/OS and Nut/Net

About Nut/OS and Nut/Net

Connects embedded applications to a local Ethernet and the global Internet.

Nut/OS Features

Nut/OS is a very simple Realtime Operating System (RTOS) providing the
following features

B Open Source

B Modular design

m Highly portable (AVR and ARM7 available, more to come)
B Cooperative multithreading

B Event queues

B Dynamic memory management

W Timer support

B Stream I/O functions

B Expandable device driver interface

B File system support

Nut/Net Features
Nut/Net is a TCP/IP stack providing
B Open Source
® ARP, IP, UDP, ICMP and TCP protocol over Ethernet and PPP
B Automatic configuration via DHCP
B HTTP API with file system access and CGlI functions
B SNTP, DNS, Syslog, TFTP, FTP and more
B TCP and UDP socket API for other protocols

The first decision, that has to be made for the AVR platform, is to select the
development environment you want to use, either ImageCraft's ICCAVR or
GNU's AVR-GCC. The commercial ImageCraft Compiler offers an advanced IDE
and is the first choice of most professional developers using a Windows PC. The
GNU compiler is available for Linux and Windows.

For the ARM platform only GCC had been tested.

The next chapters will guide you to quickly set up and start Nut/OS application
development for each environment. It is assumed, that you are using Nut/OS
3.9.9 or above.

Ethernut Software Manual

Quick Start with ICCAVR

Getting a professional environment up and running.

Users of GCC will skip this chapter.

Not all sample applications may run with the demo version. A license is available
from most distributors of the Ethernut Hardware or from ImageCraft directly.

Installing ICCAVR

This guide has been tested with ICCAVR Version 7.03C with Beta2 Patch and may
work with Version 6.31A. Please follow the installation instructions that came
with your compiler. By default the target directory will be C:\icc7avr or C:\iccavr
for the Version 6.

Installing Nut/OS

The installation for Windows is packed into a self-extracting executable named
et hernut - X Y. Z. exe, where X.Y.Z has to be replaced with the version number.
The file contains the complete code, some Nut/OS tools and the API reference.

x|
After starting the installation, you can choose the =y Please select alanguage,
language. The selected language is used during the ==
installation only. All other parts and the Nut/OS -
documentation are available in English only. o | conesl |
=[Ol

After selecting the installer
language and clicking OK, a
welcome screen will appear.
Click Next to continue.

Welcome to the Nut/OS 3.9.9 Setup
Wizard

This wizard will guide you through the installation of MubiOS

It is recommended that you close all other applications
before starting Setup. This will make it possible to update
relevant system files without having to rebook your
compuker,

Click Next ko continue,

Caneel

The next dialog lists all Nut/OS

components, which are
included in the installation. If
unsure, leave Full selected and
click Next to continue.

You can now select the
installation directory. By
default all files will be installed
inC. \ethernut-XY.Zand
the source code will be
installed in C: \ et her nut -

X. Y. Z\ nut, which is called the
top source directory or the
source tree.

Click Install to start the
installation.

The next dialog will show the
installation progress. This will
take a few seconds. You can
click Show details to view the
list of files being installed.

= Nut/D5 3.9.9 Setup

Choose Components

Choose which features of Wub/OS 3,9.9 you want to install,

Quick Start with ICCAVR

=lofx]
=]

S

Check the components you want ko install and uncheck the compaonents you don't want kg

install, Click Mext to continue,

Select the bype of install:

Or, select the optional
components yau wish ko
install:

Space required: 23, 1MB

Niullsaft InstallSystem v, 06

I -

Nuk{OS

Mut/Met

Maruals
Development Tools
Application Samples
[#-[#] Ethernut Bootloadsrs

— Description

Prsition your Mouse oyer a component bo see ks
description;,

< Back I Mexk = I

Cancel |

= Nut/DS 3.9.9 Setup

Choose Install Location

Choose the Folder in which to install Nutfos 3.9.9,

=101
=

S

Setup will install Mut/OS 3.9.9 in the following Folder, Tainstall in a different. Folder, click

Browse and select another folder, Click Install to start the installation.

"Dcstination Falder

Browse. .. |

Space required: 23, 1MB
Space available: 19.6GE

Hullsoft Install Systenm w206

< Back I Install I

Cancel |

2 MNut/0S 3.9.9 Setup

Installing

Flease wait while Mut/O3 39,9 is being installed,

=0l x]
=]

S

Extract: dir_000039, htrnl

|

ullsoft Install Systenm 2,06

= Back [ext =

Cance|

Ethernut Software Manual

When all files had been copied
to the installation directory, a
final dialog appears. We will
later use the ImageCraft IDE to
start the Nut/OS Configurator.
Thus, leave the checkbox to
Start Nut/OS Configurator
unchecked.

Click Finish to close the
installation wizard.

S £

Completing the Nut/0OS 3.9.9 Setup
Wizard

MutfOS 3.9.9 has been installed on your computer,

Click Finish to close this wizard,

hittp: jhanana. ethernut. de

< Back I Einish I Cancel

Configuring Nut/OS

Start the ImageCraft IDE and select Configure Tools from the Tools menu.

Enter Nut / OS Confi gur at or as a menu name,
select nut conf . exe in the Nut/OS installation
directory

(C:\ et hernut-x.y.z\nutconf. exe) as the
Program and enter the installation directory
(C:\ et hernut-x.y. z) as the Initial Directory.
Then click on Add to store this new entry and
click on OK to return to the main window. Now
you can select Nut/OS Configurator from the
Tools menu. This will start the Nut/OS
Configurator. In this chapter we will not handle
the details of this tool, but concentrate on the
ICCAVR specific settings.

Configure Tool x|

Add |
Change |

Delete |
—Program Option:

Menu Name: INut.-"DS Configurator Clear Fields |
Frogram: Ic:\elhernut-3.8.9\nut Browse. .. |

rfiguirator

Parameters: I
Initial Directary: Ic:\elhemut-B.S.B

™ Capture Dutput [DOS /Console Mode Program only)

When started, a file 21x
selection dialog is Suchenin: [=3 conf | e ® ek E-
presented If nOt already |_Jarch #| charonZ.conf stkSDl.cnnF
dISp|ayed, naV|gate to gc %emunix.conf wolf.conF

- cpp | ethernut103. conf ¥nut-100, conf
the nut / Conf d|reCt0ry, et Qethernutle.conF xnut-lDD-atQDcaanS.t
Whel’e the hardwa re | dev Qetharnutwg.cnnf xnut-lDD-atmegalZS.cw

_fs QethamutZDa.chf xnut-lDS.cUnF

configuration files are

located.
1 pro

arthernet1,conf
at91eb40a,conf

<

Select the configuration
file for your board and

Q ethernutz1b,conf

Q ethernut30;
a ethernubznd TPt Configuration File
a ghasxportz. Grifie: 2,40 KB

Q MMnet0Z, conf

click on Open.

D ateiname: ||

Dateityp: INutz’DS Configuration [*.conf]

j (Offnen
[~ |

Abbrechen

108

B et her nut 13f. conf for board versions 1.3 Rev-F or previous.

W et her nut 13g. conf for board version 1.3 Rev-G.

W et her nut 21b. conf for board versions 2.0 Rev-A or 2.1 Rev-B.

Quick Start with ICCAVR

The selected file will be loaded and =bRARELETEEIRC LI E=
. . File Edit Yiew Buld Help
the hardware related configuration

for this board will be automatically
set by the Configurator. Then the
main configuration window will
receive the focus.

ponents “ || Propert | Yalue
Hardware Platform
Tools
Architecture
RTOS Kernel
Device drivers

. . € runtime (tool specfic) I I
Select Settings from the Edit entry € rantime (torgat coo

of the main menu. - @ Hetwork (geners)

L=

3] -
(09:59:45: Mut/05 Configurator Yersion 1.2.3

(09:59:45: Linked to wewidgets 2.6.0

(09:59:45: Running on “Windows 2000 [build 2195, Service Pack 4]
10:02:27. Loading c/ethernut-3.9.9/nut/conf/repasitary. nut
10:02:27: Loading C:/ethernut-3.9.9/nut/conl/ethernut21 b.conf
10:02:27: Ok

N | T 2 K

The settings notebook with four pages
named Repository, Build, Tools and Samples Renssioy |guid | Todls | Sampes]

will appear. Usually the first page can be left Fenustuwruc

x

unChanged, The entry SpeC|f|eS the path to Ic:x’athemut—:}.9.Sz’nutx’confz’raposilory.nut Browse. .. |
the Nut/OS component repository. Use
slashes instead of backslashes with path

names. —— = |
The first entry on the second page specifies the path x|
to the source tree. The Configurator will scan this Repostory Build | Taols | Samples|
directory for predefined platform settings and add ~ Source Direstary

them to the Platform drop down list. If this list is [crabami 38t Browse..
empty, make sure that the first entry points to the

correct Source Directory. and that this directory Platfom [oviice 7]

contains a file named Makedef s. avr-i cc.

= Include Directari

Select avr - i cc as the platform. Fst [Bowse.

The First and Last Include Directories should be left T
empty. If using ICCAVR V6, enter the path of your e |

ImageCraft include directory as the Last include] it
dil’eCtOI’y. Ic'!ethernut-?.ﬂﬁ.-"nuth\d Browse. .. |
For the next step it is important to understand, that ~ Install Direclor

we distinguish between the source directory and the [e/ethent 33 amiba Bowss.. |
build directory. During Nut/OS installation, the

Nut/OS source code is copied to the source =]
directory. Files in the source directory will not

LCancel |

change and no new files will be added to this directory. On the other hand, all
system configurations will result in one or more new header files, which will be
created by the Configurator in the build tree. Later, when building the newly
configured system, the compiler will first check the build tree for the required
header files. The big advantage is, that we are able to create several system
builds for different configurations from a single source tree, e.g. building Nut/OS
for different Ethernut board revisions.

The build directory can be located anywhere, but it is recommended to put it in
the parent of the top source directory and choose a meaningful name. For
example, if Nut/OS has been installed in C. / et her nut - 3. 9. 9/ nut, then

C. / Et her nut/ nut bl d- 21b-i cc would be a good directory name to build a

Ethernut Software Manual

system for Ethernut 2.1 Rev-B with ICCAVR. Using the Browse button offers to
create new directories.

Finally enter an Install Directory. It is recommended, to specify a directory within
the build tree. Previous versions of the ImageCraft compiler can't search more
than one directory for libraries. Thus it was required to enter the path name of
the ICCAVR lib directory. After system build, the Configurator will copy the
libraries to this destination.

|
On the third page enter the paths to the Repostory | Buld Tools | Samples |
directories containing the required tools, e

Sepa rated Wlth SemiCOIi It iS Very importa nt to Ic::\ethemut-3.S.S\nut\tools\win32;C:\iccv?aw\bin;

add one additional semicolon after the last path.
The Nut/OS tools should be first, followed by the o | _ coree |
ImageCraft bin directory.

The tools directory contains a set of executables, which are required to build the
system on the Windows PC. Most of them mimic Unix like commands, which are
typically more powerful than their Windows counterparts. Some of them do not
like backslashes. That's why we specify all paths with slashes. However, the
Tools Path itself is passed to the Windows command line interpreter, which
requires backslashes. Thus, we must use backslashes here.

Entries on the last page of the settings notebook are x|
used to create a sample application directory. Repositon | Buld | Teols Samples |
Nut/OS comes with a few samples, which Application Directory

demonstrate its capabilities. This includes the HTTP [e:tethemrut3 3 imuere] | Browse.. |
server we are going to build in this chapter. The

Configurator can create a new directory for you, Pogamnet [avdude 7]
copying the sources from the source tree and
creating ImageCraft project files. Such a directory T

may also host your own Nut/OS applications later.

The Programmer selection can be left alone, because the ICCAVR IDE provides
its own programming interface. Press OK to save your entries.

AP Nut/05 Configurator - ethernut21b -3l x|

File Edit Yew Buld Help

e m 7

52 Mukos Components 1| Propert | alug

[+ Hardware Platform Enahled Yes
= @ Tools Provides TOOL_CC_AYR, TOOL_ICC

[T GCC For ARM File: includejcfalarch.h
[~ GEC Far ARM (no libc) Macra ICCAYR

[~ GCC For AYR. Active True

[G For Linux

2l IrnaoecCraft For AVE
GCC Settings

W ImageCraft AVR Settings
1@ Architecture 2| |
| - Target CPU

i T akmel ATmega 103

¥ Atmel ATmega 128

[T Atmel ATIOCAM12E Ll

10:27:01: Mut/05 Caonfigurator Wersion 1.2.3

10:27:01: Linked to wewidgets 2.6.0

10:27:01: Running on Windows 2000 [build 2195, Service Pack 4)
10:43:24: Loading o /ethernut-3.9.9/nut/ conffrepositarg. nut
10:43:24: Loading C: /ethernut-3.9.9/nut/conf /ethernut 21 b.conf
10:43:24: 0K

Make sure you have deselected all athe
compilers.

Ll

N Bl 3 K

We are back to Configurator’s main window with one configuration option left.
Actually we already selected the proper tools when specifying the platform. Due
to the internal structure used by the Configurator, we need to specify once again,
that we are going to use the ImageCraft compiler. Click on Tools in the tree

Quick Start with ICCAVR

shown on the left to open the trunk, deselect any GCC entry and select
ImageCraft for AVR.

Finally we are ready to build the configured Nut/OS. Select Build Nut/OS from
the Build item of the main menu. After confirming two message boxes, the
configuration tool prepares a new build directory or modifies an already existing
one, using the build path specified in the settings notebook. It creates a set of
files including some C language header files in a subdirectory named cfg. These
files are added to the Nut/OS source code to tailor the system to a specific
hardware.

The Configurator will then run an external utility to clean any previous build
(make cl ean), create new libraries (make al |) and finally copy them to the
install directory (make install).

As a result, we get the following ICCAVR libraries:
M libnutarch.a (Architecture dependent library)
B libnutcrt.a (C runtime support library)
B libnutdev.a (Device driver library)
M libnutfs.a (File system library)
M libnutnet.a (Network library)
M libnutos.a (RTOS library)
W libnutpro.a (Protocol library)
B crtenutram.o (Runtime initialization for Ethernut 1.3 Rev-G)
W crtnutram.o (Runtime initialization for all other boards)

B nutinit.o (Nut/OS initialization)

Buitd =l
If this step fails, check your settings again. If you can't Q Buiding NUt/OS Failed! Continue?
determine the problem and if you're using a licensed
version, try the command line to fix this or at least find e

out more about what went wrong. The compiler demo
will not run on the command line.

Open a DOS window, change to the build directory directory and enter

PATH=c:\ et hernut-3. 9. 9\ nut\t ool s\wi n32; c:\i cc7avr\ bi n; %ATH%

to add the directories containing all required tools to your PATH environment.
The directories given above are an example. You may have installed ImageCraft
and Nut/OS in different directories.

Enter
nmake cl ean
followed by

make install

At the end you should see some kind of error message. If this is all Greek to you,
best check the Ethernut FAQ before asking the Ethernut mailing list for further
assistance.

Ethernut Software Manual

If everything went fine, we will set up a sample directory. Although possible, we
will not touch the source directory, which contains the application samples.
Instead we will use the Configurator to create a copy of the sample directory for
us.

Select Create Sample Directory from the Build entry of the main menu. After

confirming the message box, the Configurator will create a new or update an
existing directory for application development and fill in a copy of the Nut/OS
sample applications.

Configuring ImageCraft

Everything is ready to try our first Ethernut project. Go back to the ImageCraft
IDE. If it has been started for the first time, the IDE will appear without any
opened project.

Elmagetraﬂ: IDE for ICCAYR (ADYANCED) [Dongle ¥ersion - | Dlﬂ
File Edit Search Wiew Project Studio+ RCS Tools Terminal Help
hodg|/+ 865 aDEEE «R
Fraject | Brnwserl

--J¢€ WO PROJECT OPEN

[|[Mo Open Fie | 7

Select Open... from the project menu, navigate to the Nut/OS sample directory
and load the project file httpd.prj, which is located in the subdirectory httpd.

21
Suchen in: Ia hitpd j - cf B~

The prepared webserver project
contains most required settings. Later |=lwdem
on, you will create your own projects

and refer to the following steps to

configure it.

If the project files in your Nut/OS

distribution had been created for a Dateiname: itmen |
different version of the ImageCraft Daicibm [FrciectFies (] =] abkreshen |

compiler, you will see a warning
message, reminding you to select the

™ Schreibgeschiitzt offnen

correct target. You can ignore this for now, we will get to this step anyway.

Quick Start with ICCAVR

Select Options... from the project menu and click x
on the tab named Paths. Two additional paths Pat | Gngir| Tag| G ko]

had been added to the Include Paths, Inchude Paths [vothemi3 8 Fwitihinchide ethemy | Add.
c:\ethernut-3.9.9\nutbld\include and e :c.\mm,_aﬁﬁ\mm,d\m ﬁ'
c:\ethernut-3.9.9\ nut\include. This way I B

ICCAVR will search C header files in the Nut/OS
build directory first, then in the original Nut/OS
source directory and finally in its own include
directory, which doesn’t need to be specified.

NOTE: The compiler driver automatically adds <install raot>hincluds as the,
default include path and <install raot>\ib a3 the default ibrary path. You do not
need to add them to the respective edit boxes ahove

¥ ou may enter multple paths in the "Inchude Paths” and the "Library Paths™
fislds.

In other words, the files located in the build tree
will override the original header files in the
source tree, which in turn will override the
original ICC header files.

0K | coneel |

SetAs Default| Load Defaul |

Help

The entry marked Library Path points to the directory, which contains our readily
build Nut/OS libraries.

Click on the Compiler tab and verify, that all options are correctly set. Code size
reduction is optional and only available in the professional version of the
ImageCraft compiler.

Compiler Options

Paths ~ Compiler | Targetl Config Salvnl
I™ Stict ANSI C Checkings

¥ Accept Extensions [C++ comments, binary constants)

Add __MCU enhanced to the macro
definitions only, if you are compiling
for the ATmega128 CPU.

Add ETHERNUT2 to the macro
definitions only, if you are compiling
for the Ethernut 2.0 or 2.1 board.

In any case you need to add
__HARVARD ARCH__. All Macro Defines
should be separated by spaces.

The robi command entered for the
Execute Command After Successful
Build at the bottom can be used to
convert a hex file to a raw binary and
is not required. You may use raw
binary files later, when replacing the
JTAG or ISP adapter by the Ethernet

[~ int size enum [for backward compatibility]
M acro Define(s): Undefine(z]

|ETHEHNUT2_MEU_enhanced_HA I
Output Format ICDFF;’HEX

e i
D|:|t|m|zat|onsi.l_nalS Laft

=l
2R Studio Version [COFF)
 Studio 3.1

" Studio 4.0 to 4.05

[~ Code Compression

' Studio 4.05 and above

[~ Global Dptimizations ID

Optimizations are restricted to Advanced and Professional versions. 45 trials of
each optimization are avaiable for evaluation. The trials can not be renewed.
Code Compression (if applicable] iz available in the A0% and PRO versions and
Global Optimizations [if applicable] is available only in the PRO version.

Execute Command After Successful Build:
Ic::\ethemut-i}.S.S\nut\tools\win32\robi %p.hex Zp.bin

Cancel | Set Az Delaultl Load Default I Help

bootloader. Loading programs into the Ethernut via a bootloader is much faster
than any other method of in-system-programming.

Click on the Target tab. Again make sure, that the right options are set.
Specifically check the device for ATmega103 or ATmega128.

Ethernut Software Manual

10

x| The following Additional Libs are

required for the webserver project:

Paths I Compier Target | Caonfig Salvol

r~Device Configuratior PRINTF Yersior
IATMaga‘IZB j £ small [int only, na madifier) nut pr 0 nut f S nut net nutos
Memory Sizes (Bytest 7| | ¢ long [+ long, and modifiers) nutdev nutcrt nutarch
Pogrambemay |0+20000 float [+flact, [needs » BK]]

|4DSE
[ata feman [&R Studio Simulator 10
EEFRDH |4E|95 Addtional Lib. (e

Tewt Address [wWORD] IDx4E ™ Stings in FLASH orily

If your application requires floating
point operations, replace nutcrt by
nutcrtf. This will, however, produce

Data Address (BYTE) I[m oo Advanced——————————————
¥ Use long CALLAKP Retun Stack 5izs 16 larger code.
v | Enh. o [I
) Enznesd Curs Mon-default Startup
7|10 Regs Ofset Internal SRAR
™ Use RAMPZ/ELPM Unused ROM Fill Bytes I
—Boot Loader Optian:
~Pragram Ty . Other Dptiors I-ucllnulram.u ch
& Application | Boot Size [~ DoNOT use R20.R23
" Boot Loader JNone j
IEHtemal 32K SRAM j Mate on External RaM |

0k, I Cancel | SetAsDefauItI LoadDefauItI Help |

For Other Options enter

-ucrtnutramo c:\ethernut-3.9.9\ nutbld\lib\nutinit.o

or for Ethernut 1.3 Rev-G

-ucrtenutramo c:\ethernut-3.9.9\ nutbld\lib\nutinit.o

This will instruct the compiler to use a Nut/OS specific runtime initialization
routine. The main difference to the standard routine is, that Nutlnit is called
before main, so any RTOS specific initialization is hidden from your application
code. You can simply start coding main, while the idle thread and the Nut/OS
timer is already running in the background. In fact, main is started as a Nut/OS
thread. This feature makes Nut/OS applications look like normal C programs and
preserves portability.

Most Nut/OS applications will need more than the 4 kBytes of RAM provided
internally by the ATmega CPU. Thus, the compiler is intentionally set to External
32k SRAM. You can find more information about this topic in a separate
document named Nut/OS Memory Considerations.

We ignore the last page for Salvo settings. Salvo is another RTOS similar to
Nut/OS. Press OK to close the Compiler Option Window.

Specially for our HTTP Server project, another entry in Tools Menu will be
helpful. Select Configure Tool and add the following entries in the Edit Tool
Menu Dialog.

xl
. ‘Create urom.c. Add

Menu Name: Create urom c - |
Program: c: \ et her nut - Change |
3.9.9\ nut\tool s\wi n32\ crurom exe

Parameters: -r -ourom c sanpl e Delete |
Initial Directory: c: \ et her nut - ~Frogram Optian

3.9.9\ nutapp\ httpd MenuName: [Create wom.c _ClearFields |
Activate Ca ptu re Ou‘tput Pragram: Ic:\elhemut-3.9.9\nut\ Browse. ..

. - . . Parameters: - . 1
The crurom utility converts all files in a directory o [1-ouronc sample
. .. . nitial Directon: [3.9,
to a C source file. This is used to include HTML o B ehema 399w
- . . v Capture Dutput (OS5 AC le Mode Py]
files, images, Java Applets or other stuff into the i Srese Toe ThaEm oy

Quick Start with ICCAVR

Webserver's simple file system. The C source will be compiled and linked to the

Nut/OS code.

Creating the First Nut/OS Application

By default Nut/OS uses DHCP to automatically setup its TCP/IP configuration.

Even without DHCP, typical applications will store these settings in the on-chip
EEPROM. In order not to overload this tutorial, we will use hard coded

addresses.

* " ImageCraft IDE for ICCAYR (PROFESSIONAL) -0l x|
File Edit Search Wiew Project Studio+ RCS Tools Terminal Help
™ O - o = = = 1001
DU + 06| 8&D0EHE 8
hitpserv.c | Frject | Browserl
= <] || [=-1¢€ HTTPD
* Simple multithreaded HTTP daemon. i El& Files
*] O urom. ¢
&l hitpserv.c
/% These values are used if there is no wvalid configurs Elg geadersl
#define MYMAC Ox00, Ox06, Ox98, 0x00, Ox00, 0x00 5---roi:2::;tml
#define MYIF "19z.165.192. 100" 0 form html
fdefine MYMASK ™255.255.2Z55.0")
e _'l_I
K — |

1:1 [

|C:hethemuthnutiappthitpdihttpsery.c

|C:hethemutinuthappicchhitpd

Open the file httpserv.c in the integrated editor. Consult your ICCAVR manual on
how to do this and how to use the editor. You probably have to change the IP

address and may also modify the IP mask to fit your network environment.

Otherwise your web browser won't be able to talk to your Ethernut Board later
on. If unsure what to do, better ask someone with IP network experience.

You can change the MAC Address to the one, which you received with your

Ethernut Board. For self build boards or other boards without MAC address, you

need at least to make sure, that the address is unique in your local network.

When selecting Make Project from the project menu, ICCAVR will compile and
link the webserver code. Check, that no errors occurred during this process. Refer

to the ICCAVR manual for further details.

11

Ethernut Software Manual

12

* ' ImageCraft IDE for ICCAYR (PROFESSIONAL) = =] |

File Edit Search Wiew Project Studio+ RCS Tools Terminal Help

™ 3 " e = Tt
ISuWe 406 |8 aDaEE 48
hitpsery.c | Fraject | Browser'
o [
* Associate & stream with the socket S0 we car
*f
if ((stresm = _fdopeni(int] sock, "r+p™) == 0]
printf("lsu] Creating stream device failed!\
b else {
/"T
* This API call saves us a lot of work. Io—d
* wlient's HTTP regquest, send any recqueste
* registered file system or handle CGI ricl;LI
b

I —

=1 & Documents
Q indes hitrnl
w4 form.html

igmavr -c -I..%..\includey -IC:%icchincludel -e -D_la=
igoavr —o httpd -LC:%ieehlibkl -g -ucrtatmega.o -hfur
Device 63% full.

Loheuhtoolsh\wind2hrobi Crihethernuthnut) appiceh httpdh
Done.

K — LILILI—I_'I

1.1 [|C:hethemutinuthappshitpdshittpsery. c |C:hethemutsnuthappicchhitpd

As a result of the this step, ICCAVR created several files in the project directory.
One is named httpserv.hex and contains the binary code in Intel Hex Format. The
second file, httpserv.cof, can be loaded into the AVR Studio Debugger and
contains the binary code plus additional debugging information.

Unless debugging is required, you can directly use the ICCAVR IDE to program
the ATmega flash memory with an ISP Adapter like the one you received with
your Ethernut Starter Kit. For debugging you need a JTAG Adapter with
debugging capabilities, for example the ATJTAGICE from Atmel. The JTAG
interface of the SP Duo doesn’t support debugging.

If not already done, connect the ISP Adapter to the Ethernut Board and the PC.
While doing this, you must have switched off the Ethernut's power supply.

In System Programming ll
i~ Programmer Interface advanced Manual bod

NOTE: NT /2K users must have Lock Bits: R | | I

 STK-200/300 | |adrministrative privilege to uze the

 5Piog parallel port interface, e Bl ﬂI EII
I Flash Design ICEs supported 5 TN
8 il under STK200 [PAR) and S1-Prog Chip Erase | he 1n : ;:‘D'”g'r”fnf‘_n“‘erfd

~ DT-005 [SER] modes. STKS00 requires
AR Studio to be installed.

Flease refer to the device specific

 STAVER X datasheet for lock bitz and fuze bits
STAVER is for the Lawicel's descriptions.
COMT - stéleR bootloading mode. |t does
niot support EEPROM ar werify
= function. rTarget Device Setting————————]
ISP Options... " lse Project-> Options-» Device setting
Additional STKS00.exe command line arguments % Performn Tiarget Signature Check
I —EEPROM Options———————————
[~ &uto Program &fter Compile [with Flash from project " Program with praject file.
...and selected EEPROM option) " Preserve existing cantent.
I~ “erify After Programming * Manual select

—Manual Program M0w!
"FLASH Options————— [Manual Selection File:

" Pragram with project autput fles. Select hew file for FLASH Browse. . |
& Manual select |EI:\ethernut\nul\appicc\htlpd\hltpd.hex

Program FLASH/EEPROM
—I Select .eep file for EEPROM Browse... |
Werify FLASH/EEPR O | I

ok |

Switch the Ethernut power supply back on and select In System Programmer
from the Tools menu. Then select the file httpserv.hex for the FLASH by clicking
on the Browse button. We do not need to program the EEPROM. Now press the

Quick Start with ICCAVR

button labeled Program FLASH/EEPROM to start in-system programming. This
takes some seconds. Some version of ICCAVR display an error message on
empty EEPROM entries. You can ignore this.

Finally press the OK button to close the In System Programming window. Your
Ethernut Board will immediately start the webserver application, waiting for a
web browser to connect.

Skip the next two chapters, which are related to GCC.

13

Ethernut Software Manual

14

Quick Start with AVR-GCC on Linux

Using free tools on a free platform.

Installing AVR-GCC on Linux
The Windows version of the compiler will be presented in the next chapter.

The following packages are required to build and install an AVR development
environment on Linux:

B GNU Binutils 2.14

B GNU Compiler Collection GCC 3.3.
B AVR Libc

B avrdude 5.0

Detailed information is available at
www.nongnu.org/avr-libc/user-manual/install_tools.html

Installing Nut/OS

The installation for Linux is as a compressed tar file. Execute

bzip2 -d ethernut-X Y.Z src.tar.bz2
tar -xvf ethernut-X Y.Z. src.tar

where XYZ has to be replaced by the version number. Change to the newly
created directory et hernut - X. Y. Z and run . / conf i gur e. However, make sure
to have the following source packages installed:

B wxGTK-2.6.0.tar.bz2
M lua-5.0.2.tar.gz
® doxygen 1.4.2
W graphviz 2.2.1

There may be binary packages for your specific Linux variant available too. Make
sure that they were build from exactly these sources.

Configuring Nut/OS

It is assumed, that you are running a GTK based window manager. Change to
the parent of the installation directory and enter

nut conf

This will execute the Nut/OS Configurator. In this chapter we will not explain the
details of this tool, but concentrate on the AVR-GCC specific settings.

Quick Start with AVR-GCC on Linux

When sta rted, a file selection 5 Perséniicher Ordner j athernut-2.5.5 I:en[J
dialog is presented. If not already | |E°=> - 5
. . [3 Dateisystem Name - | Letzte Anderung

dlsplayed, na\“gate to the [atarebana.conf Gestern
ethernut-X.Y.Z/nut/conf directory, | charanzcont Gesten

where the hardware configuration %::ﬁ:f: — J
files are Iocated' DetharnutlSq.conf Gestern
ethernut20a. conf Gestern

3 thermtzoncon -

& Hinzufiigen a NuUt/OS Configuration (*.conf) |w ‘

M Abbrechen B 6ffren ‘

Select the configuration file for your board:
W ethernut13f.conf for board versions 1.3 Rev-F or previous.
W ethernut13g.conf for board versions 1.3 Rev-G.
B ethernut21b.conf for board versions 2.0 Rev-A or Ethernut 2.1 Rev-B.

After pressing OK, the selected file will be loaded and the hardware related
configuration for this board will be automatically set by the Configurator. The
main configuration window will receive the focus. If the component tree is
empty, don’t worry. It's simply because the Configurator couldn’t find the
repository file. We will fix this soon.

€ Nut/0S Configurator - ethernut21b 2=
Fle Edt View Buld Help
EFIEXE

=l

-
— | Property |\¢"alue

——@ Hardware Platform

—H‘. Toals

—P‘. Architecture

—D—‘. FTOS Kernel |

—P‘. Device drivers Al [

b © runtime (tool specific)

—H‘. C runtime (target specific)

b Network (general)

—P‘. Metwork (application layer)
-

K] [] Ad

12:30:20: Mut/OS Configurator Version 1.2.3 o

12:30:20: Linked to wxWidgets 2.6.0

12:30:20: Running on Linux 2.4.27-2-k7 i686

12:30:21: Failed to load help file

12:37:38: Loading fhormefharald/ethernut-3.9.5fconfirepository. nut

12:37:38: Loading fhormefharald/ethernut-3.9.9/ confiethernut21b. conf
12:37:38: OK -

| | [|

From the Edit entry of the main menu select Settings. The settings notebook with
four pages named Repository, Build, Tools and Samples will appear.

15

Ethernut Software Manual

The first page defines the path the the so
called repository file. You may want
change the relative path to an absolute
one.

In case the main window didn’t show the
component tree, that's because the path
to the repository had been incorrect.

On the second page enter the correct top
source directory, /opt/ethernut/nut by
default. The Configurator will scan the
conf subdirectory in the specified path for
predefined platform settings and add
them to the Platform drop down list.

Select avr-gcc as the platform.

The entries for First and Last include
directories can be ignored when using
GCC. For special configurations they allow
to set include directories, which will be
searched before (First) or after (Last) the
standard directories in the source tree.

When building Nut/OS, the Configurator
will automatically add all Nut/OS include
directories.

It is important to note, that we distinguish

@ NutConf Settings

Repository | Build | Tools | Samples

Repository File

fhomefharald/ethernut-3. 9.9/ confirepository. nut Erowse...

=6

Dox

x Abbrechen

@ NutConf Settings

Repository Build | Tools | Samples

Source Directory

fhomelharald/ethernut-3.9.9

Platform
awr-gee w

Include Directaries

First |

Last |

Build Directary

fhomefharaldiethernut-3.9.9-bld-21b

Install Directary

fhomefharaldiethernut-3.9.9-bld- 21b/lib

=6

|

Browse..

Browse..

Erowse..

Browse...

Browse...

Iy i

Do

X Abbrechen

between the source directory and the build directory. The big advantage is, that
we are able to create several system builds for different configurations from a
single source tree, e.g. building Nut/OS for different Ethernut board revisions.

The build directory can be located anywhere, but it is recommended to use a
sibling of the source directory and choose a meaningful name. Using the Browse

button offers to create new directories.

Finally enter an Install Directory. It is a good idea to choose a directory within the

build tree, e.g. ~/ et hernut - 3. 9. 9- bl d/ | i b. After system build, the

Configurator will copy the libraries to this destination.

On the third page enter the paths to the
directories containing the required tools,
separated with semicoli. Do not miss to
add a semicolon after the last path. The
Nut/OS tools should be first, followed by
any optional directory, which is not
included in your PATH environment. The
Configurator will add these entries to an
existing PATH environment when running
the compiler.

Entries on the last page of the settings
notebook are used to create a sample
application directory. Nut/OS comes with
a few samples, which demonstrate its
capabilities. This includes the HTTP
server we are going to build in this
chapter. The configurator can create a
new directory for you, copying the
sources from the source tree and creating
templates for the Makefiles. Such a
directory will be also quite usefull when
writing your own Nut/OS applications
later.

When selecting the correct Programmer
from the drop down list, applications may
be build and uploaded to the target board
in one go with ‘make burn’. For the SP
Duo Programming Adapter select avr-
dude.

Press OK to save your entries.

Quick Start with AVR-GCC on Linux

@ NutConf Settings ®

Repository | Bulld Tools | Samples

Tool Paths

& oK x Abbrechen

& NutConf Settings @

Repository | Buid | Tools Samples

Application Directory

fhomefharaldiethernut-3.9.9-app-21b Erowse...
p
rogrammer [oo -

(:99!(| x Abbrechen

The focus returns to the Configurator’s main window. We are almost done, with
one configuration option left. Actually we already selected the proper tools when
specifying the platform. But due to the internal structures used by the
Configurator, we need to specify once more, that we are going to use GCC for
the AVR. Click on Tools in the tree on the left side of the main window to open
the trunk and activate GCC for AVR, if not already selected.

17

Ethernut Software Manual

18

(® Nut/0S Configurator - ethernut2lb Q®
Fle Edit View Buld Help
‘ Ed AP T
“ Tools =11 Property | Walue
[7 &eC for ARM Requires TOOL_CC_AVR -
T Gcc for ARM ino libe) Provides HW_TARGET, HW_MCU_AVR, H
W 6CC for AVR File includefcfalarch.h
I Gee for Linux Macro MCU_ATMEGA128 -
1" ImageCraft for AvR h | | ﬂ

—V‘—' GCC Settings
T indude debuginfo :Et
LI~ ARM Linker Script

LN ImageCraft AVR Settings

—V—‘, Architecture

= Target CPU

———I Atmel ATmega 103

I

———I" Atmel ATS0OCAN12E

]] A

S-bit RISC microcontroller with 128K bytes flash,

channel ADC, SP1 and TWI

bytes RAM, 4K bytes EEPROM, 64K bytes
a mermory space, 2 USARTs, 4 timers, 8-

12:30:20: Nut/OS Configurator Version 1.2.3

12:20:20: Linked to wxWidgets 2.6.0

12:20:20: Running on Linux 2.4 27-2-k7 i686

12:20:21: Failed to load help file

12:37:38: Loading fhomefharald/ethernut-3. 9. Sfconfirepository. nut
12:37:38 Loading fhomefharald/ethernut-3.9.5fconflethernut21b. conf
12:37:28: OK

| [|

We are ready to build the configured Nut/OS, which is done in two steps.

First select Build Nut/OS from the Build entry
of the main menu. After confirming the
message box, the configuration tool prepares
a new build directory or modifies an already
existing one, using the build path specified in
the settings notebook. It creates a set of files
including some C language header files in a su

@ Generate Build (%]
Source directory: fhome/harald/ethernut-3.9.9
Build directory. fhomefharald/ethernut-3.9.9-bld-21b
Target platform: avr-ged

Do you like to generate this build tree?

X Abbrechen 5 oK

bdirectory named include/cfg.

These files are included into the Nut/OS source code to tailor the system to our

specific target hardware.

After confirming another message box, the
Configurator will run make clean, make all
and finally make install.

The Configurator created the following AVR
libraries:

€ Build Nut/0S (%)

Source directory: /hemefharald/ethernut-2.5.5

Build directary: fhormefharaldiethernut-2.9.9-kld-21k
Target platform: avr-gee

Install directery. jhornafharaldiethernut-32.9.9-bld-21k/lb

Do you like to build the Nut/OS libraries?

X Abbrechen

Do |

libnutarch.a (Architecture dependent libra
libnutcrt.a (C runtime support library)
libnutdev.a (Device driver library)

libnutfs.a (File system library)

libnutos.a (RTOS kernel library)

|
[]
|
B libnutnet.a (Network library)
|
B libnutpro.a (Protocol library)
[]

nutinit.o (RTOS initialization)

ry)

Quick Start with AVR-GCC on Linux

If this step fails, check your settings again. If you can't determine the problem,
then try the command line to fix this or at least find out more about what went
wrong. Change to the build directory directory and enter

export PATH=~/et hernut-3.9.9/nut/tools/linux: $PATH

to add the directories containing the Nut/OS tools to your PATH environment. To
build the libraries enter

make cl ean

followed by

make install

At the end you should see some kind of error message. Best check the Ethernut
FAQ or ask the Ethernut mailing list for further assistance.

Creating the First Nut/OS Application

Although possible, we will not modify the source directory, which contains the
application samples. Instead we will use the Configurator to create a copy of the
sample directory for us.

@ Creating samples X
Select Create Sample Directory from the @
. . Source drectory: fhomeafharaldiethernut-3.9. % app
Bulld ent ry Of th e main menu. Afte r Target directory: fhomelharald/ethernut-3.9.9-app-21b

Programmer avr-dude

confirming the message box, the
Configurator will create a new or update an
existing directory for application
development and fill in a copy of the Nut/OS
sample applications.

Do you like to create the sample directory?

By default Nut/OS uses DHCP to automatically setup its TCP/IP configuration.
Even without DHCP, typical applications will store these settings in the on-chip
EEPROM and thus will not require modifications of the source code. In order not
to overload this tutorial, we use hard coded addresses.

Run your favorite editor and load the file httpd/httpserv.c, which is located in the
sample directory just created. You probably have to change the IP address and
may also modify the IP mask to fit your network environment. Otherwise your
web browser won't be able to talk to your Ethernut Board later on. If unsure what
to do, better ask someone with IP network experience.

19

Ethernut Software Manual

foptiethernut/nut-app2lb/httpdihttpsenie - gedit

File Edit \iew Search Tools Documents Help

D .B 8 9 ¢ ¥ B R B

New Open Save Print Undo Redo Cut Copy Paste Find Replace

[#] httpservc %

* / s
/* These values are used if there is rmo valid configuration in EEPROM. */
#define MYMAC 0x00, Ox05, 0x98, 0x00, O0x00, OxOC
#define MYIP "192.168.192. 160"

#define MYMASK "255.255.255.08"

#include <string.h=
#include <iolh=

#1fdef ETHERNUTZ
#include <dev/lanclll.h>
#else

#include <dev/nicrtl.h=
#endif

JU S T SR S S

Ln 1, Col1 INS

You can also change the MAC Address to the one, which you received with your

Ethernut Board. For self build boards or other boards without MAC address, you

need at least to make sure, that the address is unique in your local network. Save
the changes.

When the Configurator created the sample directory, it added a user
configuration file with default settings for Ethernut 2 boards, or, more precisely,
for boards with the SMSC LAN91C111 Ethernet controller. If your board is
equipped with a different controller (e.g. Charon Il or Ethernut 1), you have to
modify a second file in the sample directory, named UserConf.mk. Load this file
in your editor and remove the entry

HWDEF += - DETHERNUT2

fopt/ethernut/nut-app2Lb/UserConf.mk - gedit

File Edit View Search Tools Documents Help

D .68 &8 %9 ¢ X8 H R M
New Open Save Print Undo Redo Cut Copy Paste Find Replace
[-] userconfmk X

Automatically created on Sat Sep 11 19:51:15 2004 -
#

You can use this-file to modify values in NutConf.mk

#

HWDEF += -DETHERNUTZ2

Ln 6 Col 21 INS

If you are creating the sample directory again using the same path, then the
Configurator will overwrite all changes, but it will never modify UserConf.mk.

We are ready to build the webserver application and program the resulting
binary into the target board.

Change to the httpd subdirectory within the sample directory and enter

make cl ean

followed by

make all
20

Quick Start with AVR-GCC on Linux

Check, that no errors occurred during this process. As a result, you will find the
newly created binary file named httpd.hex in Intel hex format.

For Linux we need to modify the file app/Makeburn.avr-dude in the source
directory. Change the line

BURNPORT=c ot
to
BURNPORT=/ dev/ t t ySO

If not already done, connect your programming adapter to the Ethernut board
and the proper PC interface and power up the Ethernut. In case you selected the
correct adapter in the Configurator’s settings dialog, you can simple enter

make burn

to upload the hex file to the Ethernut. You may consult the documentation of
your AVR programming software.

21

Ethernut Software Manual

22

Quick Start With WinAVR

Running free tools out of the box.

Installing AVR-GCC on Windows

WinAVR (pronounced "whenever") is a suite of executable, open source software
development tools for the AVR, hosted on the Windows platform. They are
mainly based on the GCC for AVR toolchain and are quite similar to the Linux
tools. Detailed information is available at winavr.sourceforge.net.

Installing Nut/OS

The installation for Windows is packed into a self-extracting executable named
et hernut - X Y. Z. exe, where X.Y.Z has to be replaced with the version number.
The file contains the complete code, some Nut/OS tools and the API reference.

x|
After starting the installation, you can choose the mly Please solct alanguage,
language. The selected language is used during the ==
installation only. All other parts and the Nut/OS -
documentation are available in English only. o | ol |
RIS

After selecting the installer
language and clicking OK, a
welcome screen will appear.
Click Next to continue.

Welcome to the Nut/OS 3.9.9 Setup
Wizard

This wizard will guide you through the installation of Mub/CS

It is recommended that you close all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboat your
compuker.

Click Mext ko continue.

Cancel |
1o
- - Choose Components
The n EXt dla Iog IIStS a I I N Ut/OS Choose which Features of Nuk/OS 3.9.9 vou want to install, El:.!
components, which are =
| nCI u ded n th e Insta I I ation. If Check the components you want to install and uncheck the components you don't wank o
unsure IeaVe FU I I Selected an d install, Click Mext ko continue,
click Next to continue. el i o of (it =

O, select the optional
Components you wish to
install:

MukOS

Mut et

Manuals
Development Tools
application Samples
Ethernut Bootloaders

~Description

Space required: 23, 1MB Position your mouse over a component ko see ks
description,

ullsaft: Install System w2, 06

< Back I Mext = I Cancel

Quick Start with WinAVR

SI=ES
Choose Install Location
YOU can now SeleCt th e Choose the Folder in which ta install NUEDS 3.9.9, El:ﬁ

installation directory. By
default all files will be installed o i instali nutjos 55,9 nthe follwing Folder. To nstsll i » dffereri Flder, clck
in C- \ et her nut _ X' Y' Z and Browse and select another Folder. Click Install ta start the installation.

the source code will be

installed in C: \ et her nut -

X. Y. Z\ nut, which is called the

top source directory or the F““”a”m Foldzr

Browse. ., |

source tree.

C||Ck /nsta” to start the Space required: 23, 1MB

i i 5 ilable: 19,668
installation. pace available
Niullsaft InstallSystem v, 06

< Back I Install I Cancel |

R IaTEY
. . Installing

The nex_t dlalog WI” ShOW the Please wait while MUt/OS 3.9.9 is being installed. El?
installation progress. This will =
take a few seconds. You can Extract: dir_D00039,himl
click Show details to view the]
list of files being installed.

Hullsoft Install Systenm w206

< Back | [ext = | Cance| |

=10l

When all files had been copied Completing the Nut/OS 3.9.9 Setup

to the installation directory, a Wizard
final dialog appears. Check the
checkbox to Start Nut/OS
Configurator and click Finish
to close the installation wizard.
This will start the Configurator,
which will be explained in the

next chapter.

Mut/25 3.9.9 has been instaled on your computer,

Click Finish to close this wizard,

[~ &kart Mut/OS Canfigu

The installation added a few
entries to your Windows start
menu, one of which is titled
Configure Development ek [Ensh | cancel
Environment. Use this entry
when you later want to start the Configurator again.

hktp: fhwnang . ethernut. de

23

Ethernut Software Manual

24

Configuring Nut/OS

When the Nut/OS Configurator hasn’t been started yet, select Configure
Development Environment from the Ethernut-3.9.6 entry in the Windows
Program Start Menu. In this chapter we will not go to the details of this tool, but
concentrate on the AVR-GCC specific settings.

2] x|
First, a file selection Suchenin: [3 conf R I = e

dialog is presented. If
not already displayed,
navigate to the nut/conf
directory, where the
hardware configuration

|_Jarch #| charonZ.conf stkS01. conf

c a emunix. conf wolf, conf

|_1cpp Q ethernut103, conf *nut-100, conf

dert Qetharnutle.cnnF xnut-lDD-atQDcaanB.t
| dev aetharnutwg.cnnf xnuHDD—atmegalZS.cw
| _fs @ ethernutz0a, conf *nut-105, conf

|_Jnet Q ethernutz1b,conf

- Tlos 9 ethernut30;
fl I es are Iocated . oo Q ethernutang TP Configuration File
arthernet1,.conf @ ghaxport2, EEHEI
at91eb40a,conf Q MMnet0Z, conf
Select the configuration 1! | I
file for your board and Dateiname: f =] Difren_|
press Open . Dateityp: INut/US Configuration [*.conf] j ml

%

B ethernut13f.conf for board versions 1.3 Rev-F or previous.
B ethernut13g.conf for board versions 1.3 Rev-G.

B ethernut21b.conf for board versions 2.0 Rev-A or Ethernut 2.1 Rev-B.

loix]
The selected file will be loaded = = = M HE
and the hardware related =
configuration for this board will

be automatically set by the
Configurator. When the main
configuration window receives
the focus, select Settings from
the Edit entry of the main menu.

& n

3

Propert: | Yalue

W Hardware Platform
@ Tools
@ Architecture
@ RTOS Kernel
@ Device drivers
m C runtime {tool specific) LI_I
m C runkime (target specific
- Metwork (general)
LS TS TN PR SR MO T

3] -
09:53:45: Nut/0S Configurator Version 1.2.3
09:53:45: Linked to wewidgets 2.6.0
09:53:45: Running on indows 2000 [build 2195, Service Pack 4]
10:02:27: Loading c:/ethernut-3.9.9/nut/conf/repositany. nut
10:02:27: Laading C:/ethernut-3.9.9/nut/conf /ethemut21b. conf

=

N | K 1 | K

10:02:27: Ok
| | |
x
The settings notebook with four pages named ~ feeesio |euid | Teok | Samples |
Repository, Build, Tools and Samples will gl
appear USUa”y the fl rst page can be Ieft Ic'x’ethemut-ﬂ 9 E/nut/conffrepaository. nut Browsze... |

unchanged. The entry points to the Nut/OS
component repository. It is important to note, o | cored |
that we use slashes instead of backslashes for
path names, because most tools we will use for building the system are
derivated from Unix programs. Some of them do not like backslashes.

Quick Start with WinAVR

x
On the second page enter the correct top source Reposicry Buld | Todls | Samples|
directory, where you installed Nut/OS. The [Seuree Dectary
Configurator will scan the conf subdirectory of the [e-/ethemut3 3 6t Browse..

specified path for predefined platform settings and
add them to the Platform drop down list.

Flatform |

Select avr-gcc as the platform. [Include Directarie

First I Browse. ..
The entries for First and Last include directories can [|
be ignored when using GCC. For special Lest [Browss...
configurations they allow to set include directories,
which will be searched before (First) or after (Last) - Build Directory
the standard directories in the source tree. [e-etremuasbiibe rowse.. |
When building Nut/OS, the Configurator will [Install Directory
automatically add all Nut/OS include directories. [crethemuaabmuiaic Browss.. |

It is important to note, that we distinguish between T] oo |
the source directory and the build directory. The big = ==

advantage is, that we are able to create several system builds for different
configurations from a single source tree, e.g. building Nut/OS for different
Ethernut board revisions.

Nach einem Ordner durchsuchen 2x|

The build directory can be located anywhere, choose abuid diecory
but it is recommended to put it in the parent

of the top source directory and choose a B
meaningful name, like
c:/ethernut-3.9.6/nutbld -3 amp
Using the Browse button offers to create 58 s N
new directories. @ [arch
-3 bin
Finally enter an Install Directory. It is Sg -
recommended to choose a directory within w0 at
the build tree, e.g. o8 e
c:/ethernut-3.9.6/nutbld/lib. 00 eboct
During system build, the Configurator will [ig S
copy the libraries to this destination. R [

(0] 4 | Abbrechen | NeuerQrdnerI

N

zl

On the third page enter the paths to the Reposicry | Buld Tods | sampies|

directories containing the required tools, |T°°"
. . . - s fethemut-3.9.6/nut/tools Awin32;c: Awinavebince: Awinavr AutilsAbin;

separated with semicoli. Do not miss to - : : :

add a semicolon after the last path. The

Nut/OS tools should be first, followed by ot | caneel |

the paths to the WinAVR executables (bi n

and uti | s/ bi n), if they are not included in your standard PATH environment.
The Configurator will add these entries to the PATH environment when running
the compiler.

25

Ethernut Software Manual

26

NutConf Settings x|

Entries on the last page of the settings notebook are = fizessten] Buld | Teos Samples |

used to create a sample application directory.
Nut/OS comes with a few samples, which [:7ethermua-3 3 Snutape Browse... |
demonstrate its capabilities. This includes the HTTP

Frogiamrmer Iaw-uis -5 vl
server we are going to build in this chapter. The ’ 2ol
configurator can create a new directory for you,
copying the sources from the source tree and

Application Directary

jul s LCancel

creating templates for the Makefiles. Such a
directory may also host your own Nut/OS applications later.

It is quite useful to select a programmer from the drop down list, because
applications may be build and uploaded to the target board later in one go with
make burn.

Press OK to save your entries.

il
File Edit Build Help

=

|_ MukOS Companents 1| Propert | ‘alue

-1 Tools Provides TOOL_CC_AYR, TOOL_GCC, TOOL_CXY
i [T GCCFor ARM File include/cfafarch.b

[GCC For ARM {no libc) Macro AVR_GCC
2B 5CC For AR Active True
[T GCC For Linus Enabled fes
I ImageCraft for AR 4 | _>|
- GCC Settings Make sure vou have deselected all ather campilers. :I

-7 Indude debuginfa
[T ARM Linker Script
ImageCraft AvR Settings ;I

16:00:37: Nuk/0S Configurator Version 1.2.2

16:00:37: Linked to wwidgets 26.0

16:00:37: Running on*indows 2000 (buid 2195, Service Pack 4]
16:00:44: Loading c:/ethernut-3.9.6/nut/conffrepogitony. nut
16:00:44: Loading C: /ethernut-3.9.6/nut/conf/ethernut 21 b conf
1E:00:44: 0K

N K] | K

The focus returns to the Configurator's main window. We are almost done, with
just one configuration option left. Actually we already selected the proper tools
when specifying the platform. Due to the internal structures used by the
Configurator, we need to specify once again, that we are going to use GCC for
the AVR. Click on Tools in the tree on the left side of the main window to open
the trunk and activate GCC for AVR, if not already selected.

Build the configured Nut/OS is done in two steps.

First select Generate Build Tree from the Build entry of the main menu. After
confirming the message box, the configuration tool prepares a new build
directory or modifies an already existing one, using the build path specified in
the settings notebook. It creates a set of files including some C language header
files in a subdirectory named include/cfg. These files are included into the
Nut/OS source code to tailor the system to our specific target hardware.

Then select Build Nut/OS from the Build entry of the main menu. The
Configurator will now run make clean, make all and finally make install.

This step created the following AVR libraries:
W libnutcrt.a (C runtime support library)
W libnutcrtf.a (C runtime support library with floating point)
B libnutdev.a (Device driver library)

B libnutfs.a (File system library)

Quick Start with WinAVR

W libnutnet.a (Network library)
B libnutos.a (RTOS kernel library)
W libnutpro.a (Protocol library)
B nutinit.o (RTOS initialization)

If this fails, check your settings again. If you can't determine the problem try the
command line to fix this or at least find out more about what went wrong:

Open a DOS command line window, change to the build directory and enter

set PATH=c:\ et hernut-3.9.6\nut\tool s\w n32; PATHY

to add the directories containing the Nut/OS tools to your PATH environment.
Depending on your WinAVR installation, it may be required to add two more
directories:

set PATH=c:\ W nAVR\ bi n; c: \WnAVR\ uti | s\ bi n; %PATHY%

To manually build the libraries enter

make cl ean

followed by

make install

At the end you should see some kind of error message. Best check the Ethernut
FAQ or ask the Ethernut mailing list for further assistance.

Creating the First Nut/OS Application

Although possible, we will not modify the source directory, which contains the
application samples. Instead we will use the Configurator to create a copy of the
sample directory for us.

Select Create Sample Directory from the Build entry of the Configurator’'s main
menu. After confirming the message box, the Configurator will create a new or
update an existing directory for application development and fill in a copy of the
Nut/OS sample applications.

By default Nut/OS uses DHCP to automatically setup its TCP/IP configuration.
Even without DHCP, typical applications will store these settings in the on-chip
EEPROM and thus will not require modifications of the source code. In order not
to overload this tutorial, we use hard coded addresses.

Run your favorite editor and load the file httpd/httpserv.c, which is located in the
sample directory just created. You probably have to change the IP address and
may also modify the IP mask to fit your network environment. Otherwise your
web browser won't be able to talk to your Ethernut Board later on. If unsure what
to do, better ask someone with IP network experience.

27

Ethernut Software Manual

28

i

Datei Bearbeiten Suchen Ansicht Projekt Ausfibren Fehlersuche Werkzeuge CYS Fenster Hilfe

EEIN FEEIREEREEEEEIE T EEEEE R

I =l =

F4|r| httpserv.c |

— "]
Simple multithreaded HTTP dacmon. 1

*/

A* These walues are used if there is no valid configuration in EEDROM. */
#define MYMAC 0x00, Ox06, Ox98, 0x00, Ox00, Ox00

fidefine MYIP M19z.165.192 . 100"

#define MYMASK ™Z55.255.2Z55.0"

-
0| | »

SE Eompilerl E Hessourcenl d]]] Kompiligr Logl Q/ Fehlersuchel @ Suchergebnizze

1
[[[Einfiigen |BO7 Zeilen in Datei 4

You may also change the MAC Address to the one, which you received with your
Ethernut Board. For self build boards or other boards without MAC address, you
need at least to make sure, that the address is unique in your local network. Save
the changes.

When the Configurator created the sample directory, it added a user
configuration file with default settings for Ethernut 2 boards, or, more precisely,
for boards with the SMSC LAN91C111 Ethernet controller. If your board is
equipped with a different controller (e.g. Charon Il or Ethernut 1), you have to
modify a second file in the sample directory, named UserConf.mk. Load this file
in your editor and remove the entry

HWDEF += - DETHERNUT2

& UserConf.mk - Editor =10l

Datei Bearbeiten Format 2

utomatically created on Wed Sep 08 15:04:56 2004 ;I
#

Tou can use this file to wmodify waluezs in MutConf.mk

#

HUDEF += -DETHERNUTZ

|

If you are creating the sample directory again using the same path, then the
Configurator will overwrite all changes, but it will never modify UserConf.mk.

We are ready to build the webserver application and program the resulting
binary into the target board. Change to the httpd subdirectory within the sample
directory and enter

make cl ean
make all

Check, that no errors occurred during this process. As a result, we will find the
newly created binary named httpd.hex in Intel hex file format.

If not already done, connect your programming adapter to the Ethernut board
and the proper PC interface and power up the Ethernut. In case you selected the
correct adapter in the Configurator’s settings dialog, you can simple enter

make burn

to upload the hex file to the Ethernut. Otherwise consult the documentation of
your AVR programming software.

Running the Embedded Webserver

Running the Embedded Webserver

Connecting the 8-bit world.

Although this chapter looks quite ‘window-ish’, it’s targeted to Linux users too. In
the previous chapters we compiled the binary for our first Nut/OS application, an
embedded webserver, and uploaded it to the Ethernut board.

Most application samples use the serial port of the Ethernut board to provide
some feedback about program progress or any kind of errors that may occur.
Connect the serial port of your Ethernut with one of the serial ports on your PC
using the cable that came with your Ethernut Starter Kit or any 1:1 DB-9 cable.
There's no need to switch off the Ethernut, serial ports are quite safe and
protected against shortcuts or electrical discharge. But remember, not to touch
any bare contacts on the Ethernut board before taking some pre-cautions.
Dissipate static electricity by touching a grounded metal object.

Eigenschaften von COM2 2 x|

Now start your favorite terminal emulator on Ansehisseinselungen |
the PC or use the standard Hypertem on
Windows. The required settings for the serial
port are 115200 Baud, eight data bits, no
parity, one stop bit and no handshake. Datenbits: [a =]

Faritat: IKeine 'l
Stopphbits: |1 'l
Flusssteuerung: IKein 'l

Standard wiederherstellen |
ok I Abbrechenl Ubernehmenl

Bits pro Sekunde: | i)

,_,‘. Ethernut - HyperTerminal -0l x|

Datei Bearbeiten Ansicht Anrufen Ubertragung ?

Make sure, that the Ethernut Board

Ol 5|5] mis| 5]

is connected to your local network. =

Resetting your Ethernut by

press'ng the reset button on the Hut/03 3.4.1.1 HTTP Daemon...192.165.192.100 ready

board will produce some text

output in the terminal emulator's

window. e
« | » =
erbunden 00:00:59 [Ty [t15z00 801 [FF[GRC

The text on your system will differ, depending on your network configuration. If
your network doesn't use DHCP you may get something like this:

29

Ethernut Software Manual

g". Ethernut - HyperTerminal =]}

Datei Bearbeiten &nsicht Anrufen Obertragung 7

D 58

=

Nut/03 3.4.1.1 HTTP Daemon...EEPROM/DHCP/ARP config failed
192.168.192.100 ready

-

<

»
verbunden 00:06:51 [rTe [15z008w1 [RF [ERoS3 [WF g

Start a web browser on your PC. The URL to request is the IP address, which has
been printed on the terminal emulator. If everything went well, you will see the
main index page of the Ethernut webserver.

Mozilla {Build ID: 2002053012} M= B3
b D D |

[tniitea] 5]

Sy

Welcome to Ethernut HTTP

Flash demo

CGI Samples

Logi root
Pazsword: root

Parameter demo
Thread hst
Titner list

Soclet st

[0) @F EH | Document: Done [0.109 secs) = 8P

Congratulations, your embedded webserver is working!

The following chapters will introduce Nut/OS and Nut/Net in more detail. Some
of you may not be able to follow every part. Don’t worry. Try to code a few basic
samples and have a look to the list of books at the end of this manual.

30

Nut/OS

Nut/OS

A kernel routine overview.

Check the Nut/OS API Reference for a detailed description.

Be aware, that this chapter makes no attempts to explain details of the C
language. It is assumed that you have a basic knowledge of C programming.

System Initialization

By default, C programs are started with a routine called main. This isn't much
different in Nut/OS, however, the operating system requires certain initialization
before the application is started. This initialization is included in a module named
nutinit. It will initialize memory management and the thread system and start an
idle thread, which in turn initializes the timer functions. Finally the application
main routine is called. Because there's nothing to return to, this routine should
never do so.

A sample application called simple demonstrates the most simple application,
that could be build with Nut/OS. It does nothing else than running in an endless
loop, consuming CPU time.

#i ncl ude <conpil er. h>
int main(void)

for (;5);

The file compiler.h is included to fix a problem with AVR-GCC, which insists on
setting the stack pointer again on entry to main(). When using this compiler,
main is re-defined to NutAppMain. Other compilers won’t be hurt.

Almost all Nut/OS header files do include compiler.h. Thus it is required only
when no other header files are used in the application code.

Thread Management

Typically Nut/OS is at its most useful where there are several concurrent tasks
that need to be undertaken at the same time. To support this requirement,
Nut/OS offers some kind of light processes called threads. In this context a
thread is a sequence of executing software that can be considered to be logically
independent from other software that is running on the same CPU.

All threads are executing in the same address space using the same hardware
resources, which significantly reduces task switching overhead. Therefore it is
important to stop them from causing each other problems. This is particularly an
issue where two or more threads need to share a resources like memory
locations or peripheral devices.

The system works on the principle that the most urgent thread always runs. One
exception to this is when a CPU interrupt arrives and the interrupt has not been
disabled.

Each thread has a priority which is used to determine how urgent it is. This
priority ranges from 0 to 254, with the lowest value indicating the most urgent.

Nut/OS implements cooperative multithreading. That means, that threads are not
bound to a fixed time slice. Unless they are waiting for specific event or explicitly

31

Ethernut Software Manual

yielding the CPU, they can rely on not being stopped unexpectedly. However,
they may be interrupted by hardware interrupt signals. In opposite to pre-
emptive multithreading, cooperative multithreading simplifies resource sharing
and usually results in faster and smaller code.

As stated earlier, the main application thread is already running as a thread,
together with the background idle thread, which is not visible to the application.

Creating a new thread is done by calling NutThreadCreate. The code running as
a thread is nothing else than another C routine. To hide platform specific details,
applications should use the THREAD macro to declare those routines.

THREAD(Thr eadl, arg)

{
for (;3) {
Nut Sl eep(125);
}
}
i nt mai n(voi d)
{
Nut ThreadCreate("t1", Threadl, 0, 512);
for (;;) {
Nut Sl eep(125);
}
}

In this example the main thread creates a new thread before entering and
endless loop. The new thread will run in a similar senseless loop.

It is important to keep the cooperative nature of Nut/OS in mind. NutSleep,
which will be explained next, stops execution for a specified number of
milliseconds. If one of the loops would not call this or any other blocking
function like reading from a device or waiting for an event, then the other
threads would never gain CPU control.

Timer Management

Nut/OS provides time related services, allowing application to delay itself for an
integral number of system clock ticks by calling NutSleep(). A clock tick occurs
every 62.5 ms by default, but may vary depending on the configuration.

The following minimal application will run in an endless loop, but spend most of
the time sleeping for 125 milliseconds (two system clock ticks). During sleep
time, any other thread may take over. However, if no other thread is ready to run
or, as in our example, no other threads had been created, CPU control is passed
to the Nut/OS Idle Thread.

#i ncl ude <sys/tiner. h>
i nt main(void)
{
for (;3) {
Nut Sl eep(125);
}

}

Another useful routine is NutGetCpuClock, which returns the CPU clock in Hertz.

Beside these directly called API routines, device timeouts are handled by the
timer management. The following code fragment opens device “uart0” for binary
reading and writing and sets the read timeout to 1000 milliseconds.

int com
unsigned long tno = 1000;

com = _open("uart0", _O RDWR | _O BI NARY);
_ioctl (com UART_SETREADTI MEQUT, &t no);

Note, that Nut/OS uses on-chip hardware timer 0 of the ATmega CPU. All
remaining timers are available for the application. You can use them in cases
where the system timer resolution is insufficient.

Heap Management

Dynamic memory allocations are made from the heap. The heap is a global
resource containing all of the free memory in the system. The heap is handled as
a linked list of unused blocks of memory, the so called free-list.

Applications can use standard C calls to allocate and release memory blocks.
Allocating a buffer for 1024 bytes, senseless filling it with OxFF and releasing the
buffer again, will look like this.

char *buffer;

buffer = malloc(1024);

if (buffer) {
menset (buffer, OxFF, 1024);
free(buffer);

}
el se {

puts(“Qut of nenory error!”);
}

You should make intensive use of dynamic memory allocation for two reasons:

First, large local variables will occupy stack space. As each thread gets its own
stack, you may waste a lot of memory by reserving large stacks.

Second, large global variables occupy space during the complete lifetime of the
application, although they may not be used during that time. For some
environments the global variable space may be much more limited than heap
space.

Some developers argue, that dynamic memory allocation produces less reliable
code and is slower. If you agree to this opinion, allocate all memory once during
initialization.

The heap manager uses best fit, address ordered algorithm to keep the free-list
as defragmented as possible. This strategy is intended to ensure that more
useful allocations can be made. We end up with relatively few large free blocks
rather than lots of small ones.

Event Management

Threads may wait for events from other threads or interrupts or may post or
broadcast events to other threads.

For using events, a modified version of our thread example will look like this.

Nut/OS

33

Ethernut Software Manual

34

HANDLE evt _h;
THREAD(Thr eadl, arg)
{
for (;3) {
Nut Sl eep(125);
Nut Post Event (&evt _h);
}
}
i nt mai n(voi d)
{
Nut ThreadCreate("t1", Threadl, 0, 192);
for (;3) {
Nut Event WAi t (&evt _h, NUT_WAIT_I NFI NI TE) ;
}
}

Again Thread1 is running an endless loop of sleeps. The main thread waits for an
event posted to an event queue. Event queues are specified by variables of type
HANDLE. The endless loop of the main thread is blocked in NutEventWait() and
woken up each time an event is posted by Thread1.

Btw. it hadn’t been very smart to introduce the variable type HANDLE. But it's
there since the very early releases of Nut/OS and most people don’t care much.

Some more background information: Waiting threads line up in priority ordered
queues, so more than one thread may wait for the same event. Events are posted
to a wait queue, moving the thread from waiting (sleeping) state to the ready-to-
run state. A running thread may also broadcast an event to a specified queue,
waking up all threads on that queue.

Usually a woken up thread takes over the CPU, if it's priority is equal or higher
than the currently running thread. However, events can be posted
asynchronously, in which case the posting thread continues to run. Interrupt
routines must always post events asynchronously. Actually NutEventPostAsync
is one of the rare API routines which can be called by interrupt routines.

Stream /0

Typical C applications make use of the standard I/O library, which is provided by
the avr-libc for GCC and by ImageCraft’s libraries. However, only simple devices
are supported. Therefore Nut/OS provides its own library nutcrt, which overrides
the functions of the compiler's runtime library.

The list of available functions is quite impressive:

void clearerr(FILE * strean;

int fclose(FILE * streanm;

void fcloseall (void);

FILE *_fdopen(int fd, CONST char *nobde);

int feof (FILE * strean);

int ferror(FILE * strean;

int fflush(FILE * stream;

int fgetc(FILE * strean);

char *fgets(char *buffer, int count, FILE * strean);
int fileno(FILE * streamn;

void _flushall (void);

FI LE *fopen(CONST char *nane, CONST char *nopde);
int fprintf(FILE * stream CONST char *fnt, ...);
int fpurge(FILE * stream;

int fputc(int ¢, FILE * stream;
int fputs(CONST char *string, FILE * stream;

size_t fread(void *buffer, size_t size, size_t count, FILE * stream;

FI LE *freopen(CONST char *nane, CONST char *nobde, FILE * strean);
int fscanf(FILE * stream CONST char *fnt, ...);

int fseek(FILE * stream long offset, int origin);

long ftell (FILE * stream;

size_ t fwite(CONST void *data, size_t size, size_t count, FILE *
strean);

int getc(FILE * stream;

int getchar(void);

int kbhit(void);

char *gets(char *buffer);

nt printf(CONST char *fnt, ...);

nt putc(int c, FILE * stream;

nt putchar(int c);

nt puts(CONST char *string);

nt scanf (CONST char *fnt, ...);
nt sprintf(char *buffer, CONST char *fnt, ...);
nt sscanf (CONST char *string, CONST char *fnt, ...);

i
i
i
i
i
i
i
int ungetc(int ¢, FILE * stream;

int vfprintf(FILE * stream CONST char *fnt, va_ list ap);
int vfscanf(FILE * stream CONST char *fnt, va_list ap);

int vsprintf(char *buffer, CONST char *fnt, va_list ap);

int vsscanf (CONST char *string, CONST char *fmt, va_list ap);

In addition, the following low level I/O functions are available:

int _close(int fd);

int _open(CONST char *nane, int node);

int _read(int fd, void *buffer, size_t count);

int _wite(int fd, CONST void *buffer, size_t count);
int _ioctl(int fd, int cmd, void *buffer);

long _filelength(int fd);

This set of functions allows to port many existing PC applications without too

much effort. Nevertheless, there is an important difference to standard C
applications written for the PC. Typical embedded systems do not pre-define
devices for stdin, stdout and stderr. Thus, the well know ‘Hello world’

#i ncl ude <stdio. h>

int main(void)

{
}

printf("Hello world!\n");

requires a few additional lines of code on Nut/OS.

#i ncl ude <stdio. h>
#i ncl ude <dev/usartavr. h>

int main(void)
{
unsi gned | ong baud = 115200;
/* Register the device we want to use. */
Nut Regi st er Devi ce(&devUsart Avr0, 0, 0);
/* Assign the device to stdout. */
freopen("uartQ0", "w', stdout);
[* Optionally set the baudrate of the serial port. */
_ioctl (_fileno(stdout), UART_SETSPEED, &baud);

Nut/OS

35

Ethernut Software Manual

printf("Hello world!'\n");
}

Btw., a typical pitfall is to mix Nut/OS and compiler libraries for standard C
functions. If your application hangs in stdio functions or crashes when calling
them, then check your linker map file to make sure, that these functions are
loaded from Nut/OS libraries. If not, you may forgot to add nutcrt to the list of
libraries.

File System

Neither Nut/OS nor Nut/Net require a file system, but Webservers are designed
with a file system in mind. To make things easier for the programmer, Nut/OS
provides a very simple file system named UROM, where files are located in code
ROM. A special tool, crurom (create UROM) is used to convert directories into a
C source file, which is then compiled and linked to your application code.

In addition, a preview release of a read-only FAT file systems is available, which
requires additional hardware like an IDE or Compact Flash interface. This part is
still under heavy development. Visit the project page on the Ethernut website
and subscribe to the Ethernut mailing list for latest informations.

Device Drivers

Device drivers, wether written as Nut/OS extensions or as part of an application
can define there own interrupt routines (check the compiler documentation) or
may register callback routines by calling NutRegisterlrgHandler.

In opposite to desktop computers, tiny embedded systems do not provide a
memory management hardware unit to protect memory areas or I/0 port access.
As a result, there is no special ‘kernel mode’ for device drivers to run in. Thus,
there is no requirement for a device driver at all. To phrase it favorably,
application code can freely use any kind of resource.

One advantage of device drivers is still left for Nut/OS: Abstraction. If a device
driver exists for, let's say, an LCD display, it may be used with stdio streams like
other devices. Device usage can be switched easily by changing a few lines of
code. Look at our ‘Hello world’ output going to an LCD.

#i ncl ude <stdio. h>
#i ncl ude <dev/ hd44780. h>
#i ncl ude <dev/term h>

i nt main(voi d)

{
/* Register the device we want to use. */
Nut Regi st er Devi ce(&devLcd, 0, 0);
/* Assign the device to stdout. */
freopen("lcd", "w', stdout);
printf("Hello world!'\n");

}

Note, that real applications may contain a lot of input and output statements.
Using stream 1/O devices offers to write code, which is almost device
independent. Provided, that Nut/OS drivers exist for the devices to be used.

36

Nut/Net

Nut/Net

Network enabling, an overview.

Most TCP/IP implementations came from desktop PCs, requiring large code and
buffer space. Available memory of embedded systems like the Ethernut board is
much smaller. Nut/Net has been specifically designed for small systems.

Although this chapter tries to explain some basics, it makes no attempt to
describe all aspects of TCP/IP in full detail. It is assumed that you have a working
knowledge of the protocol.

Also check the Nut/OS API Reference for a detailed description.

Network Device Initialization With DHCP

Before using any Nut/Net function, the application must register the network
device driver by calling NutRegisterDevice and configure the network interface
by calling NutDhcplfConfig or similar routines. NutDhcplfConfig will try to
retrieve the local IP address, network mask and default gateway from a DHCP
server. If no DHCP server responds within a specified number of milliseconds,
NutDhcplfConfig uses the previously stored configuration from the on-chip
EEPROM of the ATmega CPU. If the EEPROM doesn't contain any valid address,
NutDhcplfConfig will wait for an ICMP packet and use the IP address contained in
its header. In this case the netmask will be 255.255.255.0 and no default gateway
will be configured.

Applications may also choose to configure a fixed IP address and network mask
by calling NutNetlfConfig or may even use both, NutDhcplfConfig and
NutNetlfConfig. To make things even more complicated, there are two IP
addresses stored in EEPROM, a soft and a hard one. The soft IP address is the
last used one. If Ethernut reboots and no DHCP server is available, then the soft
IP address will be used again. If, however, a hard IP address is stored in
EEPROM, NutDhcplfConfig will not send out any DHCP query, but use the hard IP
address immediately.

Even worse, DHCP requires an Ethernet (MAC) address to be assigned to the
node first, which can be passed to NutDhcplfConfig or may not be passed, in
which case the DHCP client expects this address in EEPROM. The following table
lists all Nut/Net specific item stored in the EEPROM.

Nane Type Def aul t Descri ption
Total size of the
si ze Byt e val ue |31 configuration structure.
Used to check validity.
Char act er Narme of the network
name et hO interface. Maximum size is
array
8 characters.
mac Byte array |000698000000 |0 PYtes unique MAC
addr ess.
i p_addr | P address |0.0.0.0 Last used | P address.
i p_mask | P address |255. 255. 255. 0 |Configured |P nask.
gat eway | P address (0.0.0.0 Default gateway |P.
ci p_addr | P address |0.0.0.0 Configured | P address.

37

Ethernut Software Manual

38

A certain part of code has been proven to fulfill most requirements:

i f (NutDhcplfConfig("eth0", 0, 60000)) {
u_char my_mac[] = { 0x00, 0x06, 0x98, 0x20, 0x00, 0x00 };
i f (NutDhcplfConfig("eth0", my_mac, 60000)) {
u_long ip_addr = inet_addr("192.168.192.100");
u_long ip_mask = inet_addr("255.255. 255.0");
Nut Net I f Config("eth0", my_mac, ip_addr, ip_mask);
}
}

In the first call to NutDhcplfConfig no MAC address is passed. If one is found in
EEPROM, then the DHCP server will be queried for the related IP settings and the
function returns 0. Otherwise it returns -1, but we do not know, wether the
EEPROM doesn’t contain a valid MAC address or DHCP failed. Thus
NutDhcplfConfig is called once again, but this time with a hard coded MAC
address. If it fails again, then we are sure, that there is no valid EEPROM
contents and no available DHCP server. Last thing we can do is to pass a hard
coded IP address and IP mask to NutNetlfConfig to get the network interface up
and running.

NutNetlfConfig will store the specified address as a hard IP address into the
EEPROM. Remember, that DHCP will check the hard IP address. When Ethernut
reboots again and call NutDhcplfConfig, it will use this hard IP address and never
try DHCP again unless the EEPROM is erased.

Why is this so complicated? Well, it isn’t really, but granted, it isn’t put straight
either. Since its early releases, this part had been changed often and confused
newcomers even more often. There are two things to consider. Nowadays most
networks use DHCP and when Ethernut initially boots with DHCP, it will reboot
without problems later. Second, setting up IP addresses is beyond the scope of
an operating system. Instead, this is part of the user interface and therefore part
of the application. From the application’s point of view, Nut/Net network
configuration is quite flexible.

Socket API

On top of the protocol stack Nut/Net provides an easy to use Application
Programming Interface (API) based on sockets. A socket can be thought of as a
plug socket, where applications can be attached to in order to transfer data
between them. Two items are used to establish a connection between
applications, the IP address to determine the host to connect to and a port
number to determine the specific application on that host.

Because Nut/Net is specifically designed for low end embedded systemes, its
socket APl is a subset of what is typically available on desktop computers and
differs in some aspects from the standard Berkeley interface. However,
programmers used to develop TCP/IP applications for desktop system will soon
become familiar with the Nut/Net socket API.

TCP/IP applications take over one of two possible roles, the server or the client
role. Servers use a specific port number, on which they listen for connection
requests. The port number of clients are automatically selected by Nut/Net.

Nut/Net provides a socket API for the TCP protocol as well as the UDP protocol.
The first step to be done is to create a socket by calling NutTcpCreateSocket or
NutUdpCreateSocket.

Nut/Net

TCP server applications will then call NutTcpAccept with a specific port number.
This call will block until a TCP client application tries to connect that port
number. After a connection has been established, both partners exchange data
by calling NutTcpSend and NutTcpReceive.

A simple TCP client looks like this:

TCPSOCKET *sock = Nut TcpCreat eSocket ();

Nut TcpConnect (sock, inet_addr(“192.168.192.2"), 80);
Nut TcpSend(sock, “Hello\r\n”, 7);

Nut TcpRecei ve(sock, buff, sizeof(buff));

Nut Tcpd oseSocket (sock) ;

A Nut/Net TCP server looks similar:

TCPSOCKET *sock = Nut TcpCreat eSocket ();
Nut TcpAccept (sock, 80)

Nut TcpRecei ve(sock, buff, sizeof(buff));
Nut TcpSend(sock, “2U2\r\n”, 5);

Nut Tcpd oseSocket (sock) ;

Furthermore, Nut/OS allows to attach TCP sockets to standard 1/0O streams, which
makes our code looking more familiar, at least for Linux people. The following
line is used to attach a connected socket to a Nut/OS stream.

stream = _fdopen((int)((uptr_t) sock), "r+b");

The code can use fprintf, fputs, fscanf, fgets and other stdio functions to talk TCP.

UDP server applications will provide their port number when calling
NutUdpCreateSocket, while UDP client applications pass a zero to this call, in
which case Nut/Net selects a port number greater than 1023, which is currently
not in use. Data is transferred by calling NutUdpSendTo and
NutUdpReceiveFrom, quite similar to the well known BSD functions sendto() and
recvfrom(). NutUdpDestroySocket may be called to release all memory occupied
by the UDP socket structure.

While UDP read provides a timeout parameter, TCP read doesn't. At least not
directly, but a some special ioctrls are available, including one to set the read
timeout. BSD calls them socket options, and so does Nut/Net.

unsigned long to = 1000; /* mllisecs */
Nut TcpSet SockOpt (sock, SO RCVTI MEO, &to, sizeof(to));

Like with most TCP/IP stacks, there is no provision to set any connection timeout
value and NutTcpConnect() may block for half a minute or more. That's how
TCP/IP is designed. Most people experience this from the webbrowser on the
desktop PC, when trying to connect a webserver that doesn’t respond.
Nevertheless, this seems to be unacceptable for embedded systems and may be
changed in later Nut/Net releases.

Another socket option allows to modify the TCP maximum segment size.

unsigned long to = 1024;
Nut TcpSet SockOpt (sock, TCP_MAXSEG, &nss, sizeof (mss));

It is also possible to define an initial TCP window size.

unsigned long win = 8192;

Nut TcpSet SockOpt (sock, SO RCVBUF, &win, sizeof (win)); ”

Ethernut Software Manual

40

The maximum segment size (MSS) and the initial window size may become
useful when you need the maximum TCP throughput. The 8-bit AVR CPU
running at 14.7456 MHz on the Ethernut easily reaches 2 MBit with the default
values.

One last note to an often asked question. The number of concurrent connections
is limited by memory space only. It is generally no problem to run several TCP
and/or UDP server and/or client connections on a single Ethernut. The application
may even use the same socket in more than one thread.

HTTP

The Hypertext Transfer Protocol (HTTP) is based on TCP. Nut/Net offers a set of
helper APIs to simplify writing Embedded Webservers, which are described in
detail in the Nut/OS API Reference.

TCP

The Transmission Control Protocol (TCP) is a connection oriented protocol for
reliable data transmission. Nut/Net takes care, that all data is transmitted reliable
and in correct order. On the other hand this protocol requires more code and
buffer space than any other part of Nut/Net.

Applications should use the socket APl to make use of the TCP protocol.

UDP

The advantage of the User Datagram Protocol (UDP) is its reduced overhead.
User data is encapsulated in only eight additional header bytes and needs not to
be buffered for retransmission. However, if telegrams get lost during
transmission, the application itself is responsible for recovery. Note also, that in
complex networks like the Internet, packets may not arrive in the same order as
they have been sent.

Applications should use the socket APl to make use of the UDP protocol.

ICMP

The Internet Control Message Protocol.

Nut/Net automatically responds to an ICMP echo request with an ICMP echo
reply, which is useful when testing network connections with a Packet InterNet
Groper (PING) program, which is available on nearly all TCP/IP implementations
for desktop computers.

IP

The Internet Protocol is used by UDP and TCP. Typical applications do not
directly use this network layer.

ARP

The Address Resolution Protocol is used by IP over Ethernet to resolve IP and
MAC address relations.

Ethernet Protocol
This physical network layer is used by IP, ICMP and ARP.

Nut/Net

PPP

The Point to Point is as an alternative to the Ethernet protocol and can be used
with serial ports, modems, GPRS etc.

Nut/Net provides PPP client mode only. That means, other nodes can be actively
connected, but Nut/Net can't listen to incoming connection attempts. This is
related to establishing PPP connections and should not be confused with
TCP/UDP client and server capabilities, which are fully available over PPP.

802.11 WLAN
Working with PCMCIA and CF cards, but experimental.

Bluetooth
Seems to be working too, but not included. Visit
http://btnode.ethz.ch/

for more information.

Conversion Functions

If multi-byte values are to be transferred over the network in binary form, the
most significant byte must always appear first, followed by less significant bytes.
This is called the network byte order, which differs from the host byte order, the
order how multi-byte values are stored in memory. The AVR compilers store
least significant bytes first. Several functions are provided to swap bytes from
network byte order to host byte order or vice versa.

htonl() and htons() convert 4-byte resp. 2-byte values from host to network byte
order, while ntohl() and ntohs() convert 4-byte resp. 2-byte values from network
to host byte order.

More conversions are provided by inet_addr() and inet_ntoa(). While the first
converts an IP address from the decimal dotted ASCII representation to a 32-bit
numeric value in network byte order, the second routine offers the reverse
function.

Network Buffers

Nut/Net uses a special internal representation of TCP/IP packets, which is
designed for minimal memory allocation and minimal copying when packets are
passed between layers. Application programmers don’t need to care about this
internal stuff. It is included here in case you might become interested in looking
to the Nut/Net source code. Network buffers are one of the central data structure
within Nut/Net.

A network buffer structure contains four equal substructures, each of which
contains a pointer to a data buffer and the length of that buffer. Each
substructure is associated to a specific protocol layer, datalink, network,
transport and application layer. An additional flag field in the network buffer
structure indicates, if the associated buffer has been dynamically allocated.

Network buffers are created and extended by calling NutNetBufAlloc and

destroyed by calling NutNetBufFree. When a new packet arrives at the network
interface, the driver creates a network buffer with all data stored in the datalink
substructure. The Ethernet layer will then split this buffer by simply setting the

pointer of the network buffer substructure beyond the Ethernet header and
41

Ethernut Software Manual

42

adjusting the buffer lengths before passing the packet to the IP or ARP layer. This
procedure is repeated by each layer and avoids copying data between buffers by
simple pointer arithmetic.

When application data is passed from the top layer down to the driver, each
layer allocates and fills only its specific part of the network buffer, leaving buffers
of upper layers untouched. There is no need to move a single data byte of an
upper layer to put a lower level header in front of it.

Simple TCP Server

Simple TCP Server

Walking through a typical Nut/Net application.

This chapter explains how to use Nut/OS and Nut/Net to create a simple TCP
server program.

Initializing the Ethernet Device

As with other Nut/OS applications you need to declare a function named main,
containing an endless loop. The loop should call NutSleep() or any other
blocking function to enable sibling threads to take over the CPU.

#i ncl ude <sys/tinmer.h>
int main(void)
{
for(;;) {
Nut Sl eep(500) ;
}

}

To communicate via Ethernet, you have to initialize the Ethernet hardware. This
takes two steps. The first is to register the device. A call to NutRegisterDevice will
add all hardware dependent routines and data structures to your final code. The
I/0 port address and interrupt number parameters of this call are left for
historical reasons and ignored by most device drivers.

Nut Regi st er Devi ce(&evEt hO, 0, 0);

devEthO is the device information structure of the LAN device driver. It contains

the device name (eth0), the type of this interface (IFTYP_NET) and, among other
things, the address of the hardware initialization routine. NutRegisterDevice will

set up some data structures and initialize the controller hardware.

Network devices require specific configurations, which is done by calling

Nut Net | f Confi g("ethO0", mac, 0, 0);

The first parameter is the name of the registered device. The second parameter
needs some additional attention. It's an array of 6 bytes, containing the MAC
address of the Ethernet controller. A MAC address, also referred to as the
hardware or Ethernet address is a unique number assigned to every Ethernet
node. The upper 24 bits are the manufacturer's ID, assigned by the IEEE
Standards Office. The ID of Ethernut boards manufactured by egnite Software
GmbH is 000698 hex. The lower 24 bits are the board's unique ID assigned by the
manufacturer of the board.

Nut/Net will store this address in EEPROM, but we may also define a static
variable to keep it in the application:

static u_char mac[] = { 0x00, 0x06, 0x98, 0x09, 0x09, 0x09 };

The two remaining parameters of NutNetlfConfig are used to specify the
minimum IP (Internet Protocol) information, the IP address of our node and the
network mask. In our example we simply set both to zero, which will invoke a
DHCP client to query this information from a DHCP server in the local network.

43

Ethernut Software Manual

44

Therefore it may take some seconds until the call returns, depending on the
response time of the DHCP server.

If there's no DHCP server available in your network, you must specify these two
4-byte values in network byte order. In this byte order the most significant byte is
stored at the first address of a multi byte value, which differs from the byte order
used by AVR processors (our host byte order). Fortunately Nut/Net provides a
routine named inet_addr, which takes a string containing the dotted decimal
form of an IP address and returns the required 4-byte value in host byte order.

If you want to assign IP address 192.168.171.2 with a network mask of
255.255.255.0, call:

Nut Net | f Confi g("ethO", mac, inet_addr("192.168.171.2"),
i net _addr (" 255. 255. 255.0"));

NutNetlfConfig will initialize the Ethernet controller hardware and should lit the
link LED on your board, if it is properly connected to an Ethernet hub or switch.
At this point Ethernut will already respond to ARP and ping requests:

#i ncl ude <dev/nicrtl.h>
#i ncl ude <sys/timer. h>
#i ncl ude <arpa/inet.h>

static u_char mac[] = { 0x00, 0x06, 0x98, 0x09, 0x09, 0x09 };

i nt nain(voi d)

{
Nut Regi st er Devi ce(&devEt hO, 0x8300, 5);
Nut Net | f Confi g("eth0", mac, 0, 0);
for(;;) {
Nut Sl eep(500) ;
}
}

Connecting a Client With a Server

Up to now we followed the standard path, common to all TCP/IP applications
created for Ethernut. The next task is to create the application specific part.

In order to communicate via TCP, we need a TCP socket, which is actually a data
structure containing all information about the state of a connection between two
applications.

TCPSOCKET *sock;

sock = Nut TcpCreat eSocket () ;

This call allocates the data structure from heap memory, initializes it and returns
a pointer to the structure. The next step specifies, wether we take over the client
or the server part of the communication. As a client we would try to connect to a
specified host on a specified port number. Here's an example to connect to port

12345 of the host with the IP address of 192.168.171.1:

Nut TcpConnect (sock, inet_addr("192.168.171.1"), 12345);

Simple TCP Server

In our sample application we decided to take over the server part, which is done
by calling

Nut TcpAccept (sock, 12345);

This call will block until a client tries to connect us. As soon as that happens, we
can send data to the client by calling NutTcpSend or receive data from the client
through NutTcpReceive.

Communicating with the Client

Most application protocols in the Internet environment exchange information by
transmitting ASCII text lines terminated by a carriage return followed by a line
feed character. This might not be a big problem while sending data, but it
requires some extra effort for incoming data, as arriving segments may contain
either a fraction of a line or multiple lines or both. And even sending data
becomes more complicated with numeric values, because we need to transfer
them to there ASCII representation first.

For stream devices Nut/OS offers the standard I/O stream library functions. In
order to use them, you need to attach a connected TCP socket to a stream.

FI LE *stream

stream = _fdopen((int)sock, "r+b");

This device can be used like any other Nut/OS stream device and simplifies
formatted and line oriented data I/0O.

The first thing servers usually do after a client connected them is to send a
welcome message:

fprintf(stream "200 Welcone to Ethernut\r\n");

Note, that it's a good idea to prepend a numeric code in front of server
responses. This way both, a human user as well as a client program can easily
interpret the message. On the other hand, the message above occupies 26 bytes
of SRAM space. Alternatives are:

fputs("200 OK\r\n", strean);

or

fputs_P(PSTR("200 Wl cone to Ethernut\r\n"), stream;

In the second example the message is stored in program space and only
temporarily copied to SRAM when needed. The PSTR() macro is only available
with AVR-GCC. When using ICCAVR, you have to write it in a different way:

prog_char vbanner_ P[] = "200 Welcone to Ethernut\r\n";
f puts_P(vbanner P, strean);

In the next step TCP servers typically await a command from the client, perform
the associated activity, return a response to the client and await the next
command.

45

Ethernut Hardware Manual

46

Disconnecting

Finally the client will disconnect or, as preferred, send a special command to
force the server to disconnect. The server will then call

fcl ose(stream;

to release all memory occupied by the stream device and then call

Nut TcpC oseSocket (sock) ;

to terminate the socket connection. Next, the server may create a new socket and
wait for a new client connection.

Trying the Sample Code

The complete source code of a TCP server example can be found in subdirectory
app/tcps of your installation directory. If there's no DHCP server in your local
network, you need to modify the call to NutNetlfConfig in the C source file
named tcps.c as explained above.

Note, that your PC and the Ethernut board should use the same network mask
but different IP addresses. And they must reside in the same network, unless you
add specific routes to the Nut/Net routing table. However, IP routing might get
rather complex and is beyond the scope of this manual. You might refer to a
good book explaining that matter.

Most local networks are configured as class C, which means, that a maximum of
254 different IP addresses are available and the IP network mask is specified as
255.255.255.0. All hosts in this network must have equal numbers in the first
three parts of their IP addresses. In this case 192.168.171.1 and 192.168.171.5
belong to the same network, but 192.168.171.1 and 192.168.181.5 don't.

After you have done the changes, open a Linux console or DOS prompt with the
GCC environment and enter

make

This will create an updated binary file named tcps.hex.

If your local network supports DHCP, you may use the precompiled binary for a
first try, but may later modify the default MAC address.

After programming your Ethernut board with this binary, open a Linux console
or DOS prompt window and type

tel net x.x.x.x 12345

replacing x.x.x.x with the IP address of your Ethernut board. The telnet window
should display

200 Wl come to tcps. Type help to get help.

You may now enter any of the following commands using lower case letters:

menory Di spl ays the nunber of avail abl e SRAM byt es.
t hr eads Lists all created threads.
timers Lists all running tiners.

Reference Material

Reference Material

Interested in more?

Books

Comer D. Internetworking with TCP/IP, Vol I: Principles, Protocols, and
Architecture, Prentice Hall

Covers many protocols, including IP, UDP, TCP, and gateway protocols. It also
includes discussions of higher level protocols such as FTP, TELNET and NFS.

Comer D., Stevens D. Internetworking with TCP/IP, Vol Il: Design, Implementation
and Internals, Prentice Hall

Discusses the implementation of the protocols with many code examples.

Comer D., Stevens D. Internetworking with TCP/IP, Vol lll: Client-Server
Programming and Applications, Prentice Hall

Discusses application programming using the internet protocols. It includes
examples of telnet, ftp clients and servers.

Stevens W. TCP/IP lllustrated Vol 1, Addison-Wesley

One of if not the most recommended introduction to the entire TCP/IP protocol
suite, covering all the major protocols and several important applications.

Stevens W. TCP/IP lllustrated Vol 2, Addison-Wesley

Discusses the internals of TCP/IP based on the Net/2 release of the Berkeley
System.

Stevens W. TCP/IP lllustrated Vol 3, Addison-Wesley

Covers some special topics of TCP/IP.

RFCs

RFCs (Request For Comment) are documents that define the protocols used in
the Internet. Some are standards, others are suggestions or even jokes. Many
Internet sites offer them for download via http or ftp.

Postel, Jon, RFC768: User Datagram Protocol

Postel, Jon, RFC791: Internet Protocol

Postel, Jon, RFC792: Internet Control Message Protocol

Postel, Jon, RFC793: Transmission Control Protocol

Plummer, D.C, RFC826: Ethernet Address Resolution Protocol

Braden, R.T, RFC1122: Requirements for Internet Hosts - Communication Layers

T. Berners-Lee, R. Fielding, and H. Frystyk, RFC1945: Hypertext Transfer Protocol

47

Ethernut Hardware Manual

48

Web Links
http://www.ethernut.de
http://www.egnite.de
http://www.atmel.com
http://www.avrfreaks.org

http://www.imagecraft.com

Ethernut support

Ethernut Online Shop

Manufacturers of AVR microcontrollers

Lots of useful infos about AVR microcontrollers

Compilers with commercial support

Troubleshooting

The source file uromec is
m ssi ng.

On the initial conpile or after
running ‘nmake clean’ this file does
not exist. It will be created by
the cruromutility. Wth GCC try
‘make uromc’ to find out, what's
goi ng wong. In nost cases ‘nake’
can’t find the cruromutility,
because it is not in the PATH
environment. On Linux you may have
to build this tool first. Change to
the directory nut/tools/crurom and
run ‘nmake install’. Wen using

| mmgeCraft, follow the instructions
in this manual to create a tool
menu entry for crurom exe
Unfortunately you need to edit this
entry when creating your own http
project in a different directory.

I"m running Linux. Either
the nutconf executable is
not avail abl e, does not
run or fails to build.

The Nut/OS Configurator is a
conpl ex application with nmany
dependencies and it is beyond the
scope of this nmanual to handle al
possible pitfalls. It is a good
idea to try one of the sanples
included in wxWdgets 2.6.0 first.
If this is working, you should try
the sane with Lua 5.02. If either
Lua or wxWdgets fail, try to get
hel p fromthese conmunities. Both
are running mailing lists with

hel pful users. After having passed
these steps, it should not be too
difficult to fix the Makefile in
tool s/ nutconf and successfully run
‘make install’. If all this doesn’t
help, try the configure script in
the Nut/OS source directory. W'd
like to provide a nore advanced
build configuration or readily
build binaries in the future. But
we probably need help from nore
advanced Linux users.

The Configurator fails on
W ndows with a m ssing
DLL.

At least MBVCR71.dll is mssing
with Nut/0S 3.9.6. You should be
able to get this file from another
source. Mcrosoft confirmed, that
it is freely redistributable.

Troubleshooting

49

Ethernut Hardware Manual

50

Pr obl em

Bui | ding for ARM H8/300
or any of the other
officially supported CPUs
fails.

Sol uti on

Only the ATnegal03/128, the GBA and
the AT91R40008 are ‘officially’
supported in Nut/OS version 3.9.9.
Anyway, only the AVR platform can
be considered stable, the system
for the ARMis quite new and partly
inconplete. Al remaining CPUs
offered in the Configurator are
more |ike ‘placehol ders’

What about the Linux
Enul at or ?

This enulation allows you to
develop and run Nut/ QS applications
on Linux. It has been created and
used by the ETH Zurich to devel op
their Nut/OS based Bl uetooth Stack
Initially limted to RS232

conmuni cation, enmulating TCP/IP
support has been added recently. I|f
the Configurator fails to correctly
setup the environnment, try the
configure script in the source
directory.

What about the
AT90CAN128?

Henri k Maier from FOCUS Software
Engi neering spent a lot of tine
with porting Nut/0OS to this device
just to find out, that the chip is
buggy. Atnel confirnmed, that the
AT90CAN128 fails, when the stack
poi nter addresses external RAM

Using | CCAVR V7 fails.
The previous version
wor ked.

Nut/OS 3.9.9 had been tested with
| CCAVR version 7. However, V7

installations are buggy. You need
V7.03C with Beta2 patch or above

Using GCC fails. Previous
versi ons wor ked.

There had been several changes in
the conpiler and avr-libc, which
regul arly broke Nut/GS
Unfortunately W nAVR-20050214 with
GCC 3.4.3, which seened to work
nice first, produces strange
results with fprintf. Another
problemis, that twi.h noved to
anot her directory. To solve this,
simply nove this file back to
avr/include/ avr/.

W nAVR- 20030913 with GCC 3.3.1 is
ol d, but produces reliable code.

Pr obl em

The Configurator’s nmain

wi ndow i s enpty. There's
no component tree shown.

Sol uti on

Make sure to set the correct path
to the repository on the first
settings page. Reload the
configuration file or restart the
Confi gurator.

Bui I ding Nut/OS for
platform XYZ fails with
errors. Using the old
nmet hod, building it
directly in the source
tree, fails too.

The configuration had been tested
with different settings. However,
sonme configurations may still fail
St andard builds should be done with
the Configurator, specifying a
separate build directory. (At the
time of this witing ‘standard
refers to configurations that
worked with Nut/OS 3.9.x.)

Sanpl es are not running
on Ethernut 1.3 Rev-G

Make sure you have sel ected the
correct configuration file for the
Nut/ OGS Configurator. Wen using

I mgeCraft, the ‘O her Options’
must include -ucrtenutram o instead
of -ucrtnutramo. The additiona
letter *e stands for early

Et hernet initialization.

The ftpd sanple is not
runni ng on Ethernut 1.3.

The ftp server needs a file system
with wite access. The Peanut file
system used in this sanple can not
run on Ethernut 1.3, because this
board doesn’t provi de banked
nenory.

TCP and UDP sanples are
not running on Ethernut
1. x.

When creating a new sanple tree
the Configurator creates
UserConf.mk in this directory for
Et hernut 2. Use a text editor and
renmove the ETHERNUT2 entry. Wth
the ImageCraft IDE this is no
problem but still the ETHERNUT2
macro shoul d be defined for

Et hernut 2.x boards only.

I can’t figure out, how
to solve ny problem

The Ethernut nmailing |ist
(preferably the English list en-
nut - di scussion) is the recommended
forum for Nut/OS users. Please be
aware, that all the hel pful people
are volunteers. Mke sure, that
your question is not answered in
the FAQ Try to be as friendly as
possi bl e and post Nut/OS rel ated
nmessages only. Do not ask questions
about general programing or
networ ki ng. There are be better

pl aces to get answers in such
cases.

Troubleshooting

51

egnite Software GmbH
Erinstr. 9

44575 Castrop-Rauxel
Germany

Phone +49 (0)23 05-44 12 56
Fax +49 (0)23 05-44 14 87

Email info@egnite.de

http://www.egnite.de
http://www.ethernut.de

