
basic-80

reference

manual

This manual is a reference for Microsoft's BASIC-80 language, release 5.0 and later.

There are significant differences between the 5.0 release of BASlC-80 and the previous releases

(release 4.51 and earlier). If you have programs written under a previous release of BA51C-80,

check Appendix A for new features in 5.0 that may affect execution.

BASIC-80 Reference Manual

CONTENTS

INTRODUCTION

CHAPTER 1 General Information About BASIC-BO

CHAPTER 2 BASIC-80 Commands and Statements

CHAPTER 3 BASIC-80 Functions

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

APPENDIX L

APPENDIX M

New Features in BASIC-80, Release 5.0

BASIC-80 Disk I/O

Assembly Language Subroutines

BASIC-80 with the CP/M Operating System

BASIC-80 with the ISIS-II Operating System

BASIC-80 with the TEKDOS Operating System

BASIC-80 with the Intel SBC and MDS Systems

Standalone Disk BASIC

Converting Programs to BASIC-80

Summary of Error Codes and Error Messages

Mathematical Functions

Microsoft BASIC Compiler

ASCII Character Codes

Introduction

BASIC-80 is the most extensive implementation of BASIC
available for the 8080 and 28 microprocessors. In its
fifth major release (Release 5-0), BASIC-80 meets the ANSI
qualifications for BASIC, as set forth in document
BSRX3. 60-1978. Each release of BASIC-80 consists of three
upward compatible versions: 8K, Extended and Disk. This
manual is a reference for all three versions of BASIC-80,
release 5,0 and later. This manual is also a reference for
Microsoft BASIC-8 6 and the Microsoft BASIC Compiler

-

BASIC-86 is currently available in Extended and Disk
Standalone versions, which are comparable to the BASIC-80
Extended and Disk Standalone versions.

There are significant differences between the 5.0 release of
BASIC-80 and the previous releases (release 4.51 and
earlier) . If you have programs written under a previous
release of BASIC-80, check Appendix A for new features in
5.0 that may affect execution.

The manual is divided into three large chapters plus a
number of appendices. Chapter , 1 covers a variety of topics,
largely pertaining to information representation when using
BASIC-80. Chapter 2 contains the syntax and semantics of
every command and statement in BASIC-80, ordered
alphabetically. Chapter 3 describes all of BASIC-80 's
intrinsic functions, also ordered alphabetically. The
appendices contain information pertaining to individual
operating systems; plus lists of error messages, ASCII
codes, and math functions; and helpful information on
assembly language subroutines and disk I/O.

CHAPTER 1

GENERAL INFORMATION ABOUT BASlC-80

1-1 INITIALIZATION

The procedure for initialization will vary with different
implementations of BASIC-80. Check the appropriate appendix
at the back of this manual to determine how BASIC-80 is
initialized with your operating system-

1.2 MODES OF OPERATION

When BASIC-80 is initialized, it types the prompt "Ok".
"Ok" means BASIC-80 is at command level, that is, it is
ready to accept commands. At this point, BASIC-80 may be
used in either of two modes : the direct mode or the
indirect mode.

In the direct mode, BASIC statements and commands are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for using BASIC as a
"calculator" for quick computations that do not require a
complete program.

The indirect mode is the mode used for entering programs.
Program lines are preceded by line numbers and are stored in
memory. The program stored in memory is executed by
entering the RUN command.

1.3 LINE FORMAT

Program lines in a BASIC program have the following format
(square brackets indicate optional)

:

nnnnn BASIC statement [:BASIC statement.-.] <carriage return>

GENERAL INFORMATION ABOUT BASIC-80 Page 1-2

At the programmer * s option, more than one BASIC statement
may be placed on a line, but each statement on a line must
be separated from the last by a colon,

A BASIC program line always begins with a line number, ends
with a carriage return, and may contain a maximum of;

72 characters in BK BASIC-80
255 characters in Extended and Disk BASIC-80.

In Extended and Disk versions, it is possible to extend a
logical line over more than one physical line by use of the
terminal* s <line feed> key. <Line feed> lets you continue
typing a logical line on the next physical line without
entering a <carriage return>. (In the 8K version, <line
feed> has no effect.)

1.3.1 Line Numbers

Every BASIC program line begins with a line number. Line
numbers indicate the order in which the program lines are
stored in memory and are also used as references when
branching and editing- Line numbers must be in the range
to 65529. In the Extended and Disk versions, a period (.

)

may be used in EDIT, LIST, AUTO and DELETE commands to refer
to the current line.

GENERAL INFORMATION ABOUT BASlC-80 Page 1-3

1.4 CHARACTER SET

The BASIC-BO character set is comprised of alphabetic
characters, numeric characters and special characters.

The alphabetic characters in BASIC-80 are the upper case and
lower case letters of the alphabet-

The numeric characters in BASIC-80 are the digits through
9.

The following special characters and terminal keys are
recognized by BASIC-80:

Character Name

/

(

)

%

#

$
1

i

&

<

>

\
@

<rubout>
<escape>

<tab>

<line fe
<car riag

retur

ed>
e
n>

Blank
Equal sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number (or pound) sign
Dollar sign
Exclamation point
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon
Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At-sign
Underscore
Deletes last character typed-
Escapes Edit Mode subcommands.
See Section 2 .16.
Moves print position to next tab stop
Tab stops are every eight columns.
Moves to next physical line.

Terminates input of a line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-4

1.4.1 Control Characters

The following control characters are in BASIC-80:

Control-A Enters Edit Mode on the line being typed-

Control-C

Control-G

Control-H

Control-I

Control-O

Control-R

Control-S

Control-Q

Control-U

Interrupts program execution and returns to
BASIC-80 command level

-

Rings the bell at the terminal.

Backspace. Deletes the last character typed.

Tab. Tab stops are every eight columns.

Halts program output while execution
continues- A second Control-O restarts
output-

Retypes the line that is currently being
typed.

Suspends program execution-

Resumes program execution after a Control-S.

Deletes the line that is currently being
typed

-

1.5 CONSTANTS

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric-

A string constant is a sequence of up to 255 alphanumeric
characters enclosed in double quotation marks- Examples of

string constants:

"HELLO"
"$25,000.00"
"Number of Employees"

Numeric constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas- There are five
types of numeric constants:

1. Integer constants

2, Fixed Point
constants

Whole numbers between -3 27 68 and
+32767. Integer constants do not
have decimal points-

Positive or negative real numbers,
i.e., numbers that contain decimal
points-

GENERAL INFORMATION ABOUT BASIC-80 Page 1-5

3- Floating Point
constants

4. Hex constants

5. Octal constants

Positive or negative numbers repre-
sented in exponential form (similar
to scientific notation) A
floating point constant consists of
an optionally signed integer or
fixed point number (the mantissa)
followed by the letter E and an
optionally signed integer (the
exponent) . The allowable range for
floating point constants is 10-38
to 10+38,
Examples:

235.988E-7 = ,0000235988
2359E6 = 2359000000

(Double precision floating point
constants use the letter D instead
of E. See Section 1-5.1.)

Hexadecimal numbers with the prefix
&H- Examples:

&H76
'SH32F

Octal numbers with the prefix &0 or
&. Examples:

&0347
S1234

1.5.1 Sinole And Double Precision Form For Numeric Constants

In the 8K version of BASIC-BO, all numeric constants are
single precision numbers. They are stored with 7 digits of
precision^ and printed with up to 6 digits-

In the Extended and Disk versions, however, numeric
constants may be either single precision or double precision
numbers. With double precision, the numbers are stored with
16 digits of precision, and printed with up to 16 digits.

GENERAL INFORMATION ABOUT BASIC-8 Page 1-6

A single precision constant is any numeric constant that
has:

1. seven or fewer digits, or

2- exponential form using E, or

3. a trailing exclamation point (!)

A double precision constant is any numeric constant that
has:

1- eight or more digits, or

2. exponential form using D, or

3. a trailing number sign (#)

Examples:

Single Precision Constants Double Precision Constants

46.8 345692811
-l,09E-06 -1.09 4 32D-06
3489.0 3489. 0#
22.51 7654321.1234

1-6 VARIABLES

Variables are names used to represent values that are used
in a BASIC program. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is
assigned a value, its value is assumed to be zero.

1.6.1 Variable Names And Declaration Characters

BASIC-80 variable names may be any length , however , in the
8K version, only the first two characters are significant.
In the Extended and Disk versions, up to 40 characters are
significant. The characters allowed in a variable name are
letters and numbers, and the decimal point is allowed in
Extended and Disk variable names. The first character must
be a letter. Special type declaration characters are also
allowed — see below,

A variable name may not be a reserved word. The Extended
and Disk versions allow embedded reserved words; the 8K
version does not. If a variable begins with FN, it is
assumed to be a call to a user -defined function. Reserved
words include all BASIC-80 commands, statements, function

GENERAL INFORMATION ABOUT BASIC-80 Page 1-7

names and operator names.

Variables may represent either a numeric value or a string-
String variable names are written with a dollar sign ($) as
the last character- For example: AS = "SALES REPORT". The
dollar sign is a variable type declaration character, that
is, it "declares" that the variable will represent a string.

In the Extended and Disk versions, numeric variable names
may declare integer , single or double precision values.
(All numeric values in 8K are single precision.) The type
declaration characters for these variable names are as
follows:

% Integer variable

i Single precision variable

Double precision variable

The default type for a numeric variable name is single
precision.

Examples of BASlC-80 variable ^ames follow.

In Extended and Disk versions:

PI* declares a double precision value
MINIMUM! declares a single precision value
LIMIT% declares an integer value

In 8K, Ex.tended and Disk versions:

N$ declares a string value
ABC represents a single precision value

In the Extended and Disk versions of BASIC-80, there is a
second method by which variable types may be declared. The
aASIC-80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be
included in a program to declare the types for certain
variable names. These statements are described in detail in
Section 2.12.

1,6,2 Array Variables

An array is a group or table of values referenced by the
same variable name. Each element in an array is referenced
by an array variable that is subscripted with an integer or
an integer expression. An array variable name has as many
subscripts as there are dimensions in the array. For
example V(10) would reference a value in a one-dimension
array, T(l,4) would reference a value in a two-dimension
array, and so on. The maximum number of dimensions for an

GENERAL INFORMATION ABOUT BASIC-80 Page 1-8

array is 255, The maximum number of elements per dimension
is 32767.

1-6.3 Space Requirements

VARIABLES:

INTEGER
SINGLE PRECISION

DOUBLE PRECISION

BYTES

2
4

8

ARRAYS

:

INTEGER
SINGLE PRECISION

DOUBLE PRECISION

BYTES

2 per element
4 per element
8 per element

STRINGS:

3 bytes overhead plus the present contents of the string

1.7 TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from
one type to another- The following rules and examples
should be kept in mind-

1. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name- (If a string variable is set equal to a
numeric value or vice versa , a "Type mismatch"
error occurs-

)

Example:

10 A% = 23.42
20 PRINT A%
RUN
23

2. During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation is returned to this
degree of precision.
Examples

:

10 D# = 65/7 The arithmetic was performed

GENERAL INFORMATION ABOUT BASIC-80 Page 1-9

20 PRINT D# in double precision and the
RUN result was returned in D#
.8571428571428571 as a double precision value.

10 D = 6#/7 The arithmetic was performed
20 PRINT D in double precision and the
RUN result was returned to D (single
.857143 precision variable) , rounded and

printed as a single precision
value.

3. Logical operators (see Section 1-8.3) convert their
operands to integers and return an integer result.
Operands must be in the range -32768 to 32767 or an
"Overflow" error occurs.

4

.

When a floating point value- is converted to an
integer, the fractional portion is rounded.
Example:

10 C% = 55.88
20 PRINT C%
RUN
56

5. If a double precision variable is assigned a single
precision value, only the first seven digits,
rounded, of the converted number will be valid.
This is because only seven digits of accuracy were
supplied with the single precision value- The
absolute value of the difference between the
printed double precision number and the original
single precision value will be less than 6.3E-8
times the original single precision value.
Example:

10 A = 2.04
20 B# = A
30 PRINT A;B#
RUN
2-04 2.0 39 999961853027

1-8 EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or
a variable, or it may combine constants and variables with
operators to produce a single value.

Operators perform mathematical or logical operations on
values. The operators provided by BASIC-80 may be divided
into four categories:

GENERAL INFORMATION ABOUT BASIC-80 Page 1-10

1. Arithmetic

2. Relational

3- Logical

4- Functional

1.8,1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation Sample Expression

Exponentiation X"Y

- Negation -X

*// Multiplication, Floating X*Y
Point Division X/Y

+/- Addition, Subtraction X+Y

To change the order in which the operations are performed,
use parentheses- Operations within parentheses are
performed first. Inside parentheses, the usual order of
operations is maintained.

Here are some sample algebraic expressions and their BASIC
counterparts.

Algebraic Expression BASIC Expression

X+2Y X+Y*2

X- ~ X-Y/2
Z

XY
Z

X*Y/Z

^i±X (X+Y)/Z
Z

(X^)^ (X"2)"Y

X(-Y) X*{-Y) Two consecutive
operators must
be separated by
parentheses-

GENERAL INFORMATION ABOUT BASlC-80 Page 1-11

1.8.1,1 Integer Division And Modulus Arithmetic -

Two additional operators are available in Extended and Disk
versions of BASIC-80 : Integer division and modulus
arithmetic.

Integer division is denoted by the bask slash (\) . The
operands are rounded to integers (must be in the range
-32768 to 32767) before the division is performed, and the
quotient is truncated to an integer.
For example

:

10\4 = 2
25.68\6.99 = 3

The precedence of integer division is just after
multiplication and floating point division.

Modulus arithmetic is denoted by the operator MOD. It gives
the integer value that is the remainder of an integer
division- For example

:

10-4 MOD 4=2 (10/4=2 with a remainder 2)
25-68 MOD 6-99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
division.

1.8,1.2 Overflow And Division By Zero -

If, during the evaluation of an expression, a division by
zero is encountered, the "Division by zero" error message is
displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution
continues- If the evaluation of an exponentiation results
in zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infinity
is supplied as the result of the exponentiation, and
execution continues-

If overflow occurs, the "Overflow" error message is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues-

1.8.2 Relational Operators

Relational operators are used to compare two values- The
result of the comparison is either "true" (-1) or "false"
(0) . This result may then used to make a decision regarding
program flow. (See IF, Section 2.26.)

GENERAL INFORMATION ABOUT BASIC-80 Page 1-12

Operator Relation Tested Expression

Equality X=Y

<> Inequality XoY

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a
variable. See LET, Section 2.30.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y < (T-l)/Z

is true if the value of X plus Y is less than the value of
T-1 divided by Z. More examples:

IF SIN(X)<0 GOTO lOOG
IF I MOD J <> THEN K=K+1

1.8-3 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true" (not zero)
or "false" (zero). In an expression, logical operations are
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of
precedence

.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-13

NOT
X NOT X
1

1

AND
X y X AND Y
1 1 1
1

1

OR
X Y X OR Y
1 1 1
1 1

1 1

XOR
X y X XOR Y
1 1
1 1

1 1

IMP
X y X IMP y
1 1 1
1

1 1
1

EQV
X Y X EQV y
1 1 1
1

1

1

Just as the relational operators can be used to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision (see IF, Section 2.26). For
example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to
sixteen bit, signed, two* s complement integers in the range
-32768 to +327 67. (If the operands are not in this range,
an error results.) If both operands are supplied as or -1,
logical operators return or -1, The given operation is

GENERAL INFORMATION ABOUT BASIC-80 Page 1-14

performed on these integers in bitwise fashion, i.e., each
bit ot the resvilt is determined by the corresponding bits in
the two operands.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator may be used to "mask" all but one of the bits of a
status byte at a machine I/O port- The OR operator may be
used to "merge" two bytes to create a particular binary
value. The following examples will help demonstrate how the
logical operators work.

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

IS AND 14=14 15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

-1 AND 8=B -1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8=8

4 OR 2=6 4 = binary 100 and 2 = binary 10,
so 4 OR 2 = 6 (binary 110)

10 OR 10=10 10 = binary 1010, so 1010 OR 1010 =
1010 (10)

-1 OR -2=-l -1 = binary llllllllllllllll and
-2 = binary 1111111111111110,
so -1 OR -2 = -1. The bit
complement of sixteen zeros is
sixteen ones, which is the
two's complement representation of -1,

NOT X=-(X+1) The two * s complement of any integer
is the bit complement plus one.

1.8.4 Functional Operators

A function is used in an expression to call a predetermined
operation that is to be performed on an operand. BASIC-80
has "intrinsic" functions that reside in the system, such as
SQR (square root) or SIN (sine) , All of BASlC-80 '

s

intrinsic functions are described in Chapter 3

.

BASIC-80 also allows "user defined" functions that are
written by the programmer. See DEF FN, Section 2 . 11,

GENERAL INFORMATION ABOUT BASIC-80 Page 1-15

1.8.5 String Operations

Strings may be concatenated using +. For example:

10- AS^'-FILE" : B$ = "NAME"
20 PRINT A$ + B$
30 PRINT "NEW " + A$ + B$
RUN
FILENAME
NEW FILENAME

Strings may be compared using the same relational operators
that are used with numbers;

String comparisons are made by taking one character at a

time from each string and comparing the ASCII codes- If all
the ASCII codes are the same, the strings are equal- If the
ASCII codes differ, the lower code number precedes the
higher- If, during string comparison, the end of one string
is reached , the shorter string is said to be smaller-
Leading and trailing blanks are significant- Examples:

"AA** < "AB"
"FILENAME" = "FILENAME"
"X&" > "X#"
"CL " > "CL"
"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test string values
or to alphabetize strings. All string constants used in
comparison expressions must be enclosed in quotation marks.

1-9 INPUT EDITING

If an incorrect character is entered as a line is being
typed, it can be deleted with the RUBOUT key or with
Control-H. Rubout surrounds the deleted character (s) with
backslashes, and Control-H has the effect of backspacing
over a character and erasing it. Once a character (s) has
been deleted, simply continue typing the line as desired-

To delete a line that is in the process of being typed, type
Control-U. A carriage return is executed automatically
after the line is deleted.

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
BASIC-80 will automatically replace the old line with the
new line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-16

More sophisticated editing capabilities are provided in the
Extended and Disk versions of BASIC-80. See EDIT, Section
2.16-

To delete the entire program that is currently residing in
memory, enter the NEW command. (See Section 2.41.) NEW is
usually used to clear memory prior to entering a new
program.

1-10 ERROR MESSAGES

If BASIC-80 detects an error that causes program execution
to terminate, an error message is printed- In the 8K
version, only the error code is printed. In the Extended
and Disk versions, the entire error message is printed. For
a complete list of BASIC-80 error codes and error messages,
see Appendix J.

CHAPTER 2

BASIC-80 COMMANDS AND STATEMENTS

All of the BASIC-80 commands and statements are described in
this chapter. Each description is formatted as follows:

Format: Shows the correct format for the instruction.
See below for format notation-

Versions: Lists the versions of BASIC-80
in which the instruction is available.

Purpose: Tells what the instruction is used for.

Remarks: Describes in detail how the instruction
is used.

Example: Shows sample programs or program segments
that demonstrate the use of the instruction.

Format Notation
Wherever the format for a statement or command is given, the
following rules apply:

1. Items in capital letters must be input as shown.

2. Items in lower case letters enclosed in angle
brackets (< >) are to be supplied by the user.

3. Items in square brackets {[]) are optional,

4

.

All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

5. Items followed by an ellipsis (...) may be repeated
any number of times (up to the length of the line)

,

BASIC-80 COMMANDS AND STATEME^3TS Page 2-2

2 . 1 AUTO

Format;

Versions

Purpose:

Remarks:

AUTO [<line number> {
, < increment> 1]

Extended, Disk

To generate a line number
every carriage return.

automatically after

AUTO begins numbering at <line number > and
increments each subsequent line number by
<increment> . The default for both values is 10.
If <line number > is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, typing a
carriage return immediately after the asterisk
will save the line and generate the next Line
number.

AUTO is terminated by typing Control-C. The
line in which Control-C is typed is not saved

-

After Control-C is typed, BASIC returns to
command level.

Example: AUTO 100,50

AUTO

Generates line numbers 100,
150, 200 ...

Generates line numbers 10,
20, 30, 40 ...

BASIC-BO COMMANDS AND STATEMENTS Page 2-3

2.2 CALL

Format: CALL <variable name> [(<argumerit list>)

]

Version: Extended, Disk

Purpose; To call an assembly language subroutine

-

Remarks: The CALL statement is one way to transfer
program flow to an external subroutine, (See
also the USR function. Section 3.40)

<variable nanie> contains an address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable
name. <argument list> contains the arguments
that are passed to the external subroutine.
<argument list> may contain only variables.

The CALL statement generates the same calling
sequence used by Microsoft's FORTRAN, COBOL and
BASIC compilers.

Example: 110 MYROUT=&HD000
120 CALL MYROUT(I,J,K)

NOTE: For a BASIC Compiler program, line 110 is not
needed because the address of MYROUT will be
assigned by the linking loader at load time-

BASIC-80 COMMANDS AND STATEMENTS Page 2-4

2-3 CHAIN

Format: CHAIN [MERGE] <f ilenaine> [, [<line number exp>]
[,ALL] [,DELETE<range>]

]

Version: Disk

Purpose: To call a program and pass variables to it from
the current program.

Remarks: <f ilename> is the name of the program that is
called. Example:

CHAIN"PROGl"

<line number exp> is a line number or an
expression that evaluates to a line number in

the called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins at the first line.
Example:

CHAIN"PROG1",1000

<line number exp> is not affected by a RENUM
command.

With the ALL option, every variable in the
current program is passed to the called program.
If the ALL option is omitted, the current
program must contain a COMMON statement to list
the variables that are passed. See Section 2.7.
Example:

CHAIN"PR0G1", 1000, ALL

If the MERGE option is included, it allows a

subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is
performed with the current program and the
called program. The called program must be an
ASCII file if it. is to be MERGEd. Example:

CHAIN MERGE"GVRLAy",1000

After an overlay is brought in, it is usually
desirable to delete it so that a new overlay may
be brought in. To do this use the DELETE
option. Example

:

CHAIN MERGE"0VRLAy2", 1000, DELETE 1000-5000

The line numbers in <range> are affected by the
RENUM command.

BASIC-80 COMMANDS AND STATEMENTS Page 2-5

NOTE

NOTE

The CHAIN statement with MERGE option leaves the
files open and preserves the current OPTION BASE
setting.

If the MERGE option is omitted, CHAIN does not
preserve variable types or user -defined
functions for use by the chained program. That
is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN
statements containing shared variables must be
restated in the chained program.

NOTE The Microsoft BASIC compiler does not support
the ALL, MERGE, DELETE, and LINE number exp>

Thus, the statement format is
If you wish to maintain

the BASIC compiler , it is
COMMON be used to pass

overlays not be used. The
leaves the files open during

options to CHAIN.
CHAIN FILENAME>-
compa tibility with
recommended that
variables and that
CHAIN statement
CHAINing.

BASIC-80 COMMANDS AND STATEMENTS Page 2-6

2,4 CLEAR

Format

;

Versions;

Purpose

:

Remarks:

NOTE:

NOTE

CLEAR (, [<expressionl>] [
, <expression2>]

]

8K, Extended, Disk

To set all numeric variables to zero, all string
variables to null, and to close all open files;
and, optionally, to set the end of memory and
the amount of stack space

-

<expressionl> is a memory location which, if
specified, sets the highest location available
for use by BASIC-80.

<expression2> sets aside stack space for BASIC.
The default is 256 bytes or one-eighth of the
available memory, whichever is smaller

.

In previous versions of BASIC-80, <expressionl>
set the amount of string space, and
<expression2> set the end of memory. BASIC-80,
release 5,0 and later, allocates string space
dynamically. An "Out of string space error"
occurs only if there is no free memory left for
BASIC to use.

The BASIC Compiler supports the CLEAR statement
with the restriction that EXPRESSI0N1> and
EXPRESSI0N2> must be integer expressions. If a

value of is given for either expression, the
appropriate default is used. The default stack
size is 256 bytes, and the default top of memory
is the current top of memory- The CLEAR
statement performs the following actions:

Closes all files
Clears all COMMON and user variables
Resets the stack and string space
Releases all disk buffers

Examples

:

CLEAR

CLEAR ,32768

CLEAR , ,2000

CLEAR ,32768,2000

BASIC-80 COMMANDS AND STATEMENTS Page 2-7

2 . 5 CLOAD

Formats: CLOAD <filename>

CLOAD? <filenanie>

CLOAD* <array name>

Versions: 8K (cassette). Extended (cassette)

Purpose: To load a program or an array from cassette tape
into memory.

Remarks: CLOAD executes a NEW command before it loads the
program from cassette tape . <filename> is the
string expression or the first character of the
string expression that was specified when the
program was CSAVEd.

CLOAD? verifies tapes by comparing the program
currently in memory with the file on tape that
has the same filename. If they are the same,
BASIC-80 prints Ok. If not, BASIC-80 prints NO
GOOD.

CLOAD* loads a numeric array that has been saved
on tape . The data on tape is loaded into the
array called <array name> specified when the
array was CSAVE*ed.

CLOAD and CLOAD? are always entered at command
level as direct mode commands- CLOAD* may be
entered at command level or used as a program
statement. Make sure the array has been
DIMensioned before it is loaded. BASIC-80
always returns to command level after a CLOAD,
CLOAD? or CLOAD* is executed- Before a CLOAD
is executed, make sure the cassette recorder is
properly connected and in the Play mode, and the
tape is possitioned correctly-

See also CSAVE, Section 2-9.

NOTE: CLOAD and CSAVE are not included
implementations of BASIC-80.

Example: CLOAD "MAX2"

Loads file "M** into memory

-

m all

BASIC-80 COMMANDS AND STATEMENTS Page 2-8

2.6 CLOSE

Format: CLOSE[[#] <f ile number> [, [#] <f ile number. ..>]]

Version: Disk

Purpose: To conclude I/O to a disk file-

Remarks: <f ile number > is the number under which the file
was OPENed, A CLOSE with no arguments closes
all open files.

The association between a particular file and
file number terminates upon execution of a
CLOSE, The file may then be reOPENed using the
same or a different file number; likewise, that
file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command always
CLOSE all disk files automatically- (STOP does
not close disk files.

)

Example: See Appendix B,

BASIC-80 COMMANDS AND STATEMENTS Page 2-9

2 . 7 COMMON

Format: COMMON <list of vatiables>

Version: Disk

Purpose: To pass variables to a CHAINed program.

Remarks; The COMMON statement is used in conjunction with
the CHAIN statement. COMMON statements may
appear anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending "{)" to the variable name. If all
variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

Example: 100 COMMON A,B,C,D(),G$
110 CHAIN "PROG3",10

NOTE: The BASIC Compiler supports a modified version
of the COMMON statement. The COMMON statement
must appear in a program before any executable
statements- The current non-executable
statements are

:

COMMON
DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM
OPTION BASE
REM
% INCLUDE

Arrays in COMMON must be declared in preceding
DIM statements.

The standard form of the COMMON statement is
referred to as blank COMMON. FORTRAN style
named COMMON areas are also supported; however,
the variables are not preserved across CHAINS.
The syntax for named COMMON is as follows:

COMMON /NAME>/ LIST of variables>

where NAME> is 1 to 6 alphanumeric characters
starting with a letter- This is useful for
communicating with FORTRAN and assembly language
routines without having to explicityly pass
parameters in the CALL statement.

BASIC-80 COMMANDS AND STATEMENTS Page 2-10

The blank COMMON size and order of variables
must be the same in the CHAINing and CHAINed-to
programs- With the BASIC Compiler, the best way
to insure this is to place all blank COMMON
declarations in a single include file and use
the %INCLUDE statement in each program- For
example

:

MENU. HAS
10 % INCLUDE COMDEF

1000 CHAIN "PROGl"

PROGl.BAS
10 %INCLUDE COMDEF

. 2000 CHAIN "MENU

COMDEF -HAS
100 DIM A(IOO) ,B$(200)
110 COMMON I,J,K,A, {)

120 COMMON A?,B$, ,X,Y,Z

BASIC-BO COMMANDS AND STATEMENTS Page 2-11

2,8 CONT

Format: CONT

Versions: 8K, Extended, Disk

Purpose: To continue program execution after a Control-C
has been typed, or a STOP or END statement has
been executed.

Remarks: Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
string) .

CONT is usually used in conjunction with STOP
for debugg ing . When execution is stopped

,

intermediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.
With the Extended and Disk versions, CONT may be
used to continue execution after an error.

CONT is invalid if the program has been edited
dur ing the break - In 8K BASIC-80 , execution
cannot be CONTinued if a direct mode error has
occurred during the break.

Example: See example Section 2.61, STOP-

BASIC-80 COMMANDS AND STATEMENTS Page 2-12

2.9 CSAVE

Formats: CSAVE < string express ion

>

CSAVE* <array variable nanie>

Versions: 8K (cassette). Extended (cassette)

Purpose: To save the program or an array currently in
memory on cassette tape.

Remarks: Each program or array saved on tape is
identified by a filename- When the command
CSAVE <string expression> is executed, BASIC-80
saves the program currently in memory on tape
and uses the first character in < string
expression> as the filename- <string
expression> may be more than one character, but
only the first character is used for the
filename.

When the command CSAVE* <array variable name> is
executed, BASIC-80 saves the specified array on
tape. The array must be a numeric array. The
elements of a multidimensional array are saved
with the leftmost subscript changing fas test

-

CSAVE may be used as a program statement or as a

direct mode command-

Before a CSAVE or CSAVE* is executed, make sure
the cassette recorder is properly connected and
in the Record mode.

See also CLOAD, Section 2.5.

NOTE: CSAVE and CLOAD are not included in all
implementations of BASIC-80.

Example: CSAVE "TIMER"

Saves the program currently in memory on
cassette under filename "T".

BASIC-80 COMMANDS AND STATEMENTS Page 2-13

2.10 DATA

Format: DATA <list of constant s>

Versions: BK, Extended, Disk

Purpose: To store the numeric and string constants that
are accessed by the program' s READ statement (s)

-

(See READ, Section 2.54)

Remarks: DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a line (separated by commas) , and any
number of DATA statements may be used in a
program. The READ statements access the DATA
statements in order (by line number) and the
data contained therein may be thought of as one
continuous list of items, regardless of how many
items are on a line or where the lines are
placed in the program.

<list of con Stan ts> may contain numeric
constants in any format, i.e. , fixed point,
floating point or integer . (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be surrounded
by double quotation marks only if they contain
commas, colons or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed

-

The variable type (numeric or string) given in
the READ statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the beginning
by use of the RESTORE statement (Section 2.57).

Example: See examples in Section 2.54, READ.

BASIC-80 COMMANDS AND STATEMENTS Page 2-14

2.11 DEF FN

Format: DEF FN<name> [{<parameter list>)] =<function definition>

Versions: 8K, Extended, Disk

Purpose: To define and name a function that is written by
the user.

Remarks: <name> must be a legal variable name. This
name , preceded by FN, becomes the name of the
function. <parameter list> is comprised of
those variable names in the function definition
that are to be replaced when the function is
called. The items in the list are separated by
commas. <function definition> is an expression
that performs the operation of the function. It
is limited to one line. Variable names that
appear in this expression serve only to define
the function; they do not affect program
variables that have the same name. A variable
name used in a function definition may or may
not appear in the parameter list- If it does,
the value of the parameter is supplied when the
function is called. Otherwise, the current
value of the variable is used.

The variables in the parameter list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call,
(Remember, in the 8K version only one argument
is allowed in a function call, therefore the DEF
FN statement will contain only one variable.)

In Extended and Disk BASIC-80, user-defined
functions may be numeric or string; in 8K,
user-defined string functions are not allowed.
If a type is specified in the function name , the
value of the expression is forced to that type
before it is returned to the calling statement.
If a type is specified in the function name and
the argument type does not match , a "Type
mismatch" error occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a
function is called before it has been defined,
an "Undefined user function" error occurs- DEF
FN is illegal in the direct mode.

BASIC-BO COMMANDS AND STATEMENTS Page 2-15

Example:

410 DEF FNAB(X,y)=X"3/y"2
420 T=FNAB{I,J)

Line 410 defines the function FNAB. The
function is called in line 420.

BASIC-80 COMMANDS AND STATEMENTS Page 2-16

2.12 DEFINT/SNG/DBL/STR

Format:

Versions

Purpose

:

Remarks:

Examples:

DEF<type> <range(s) of letter s>

where <type> is INT, SNG, DBL, or STR

Extended, Disk

To declare variable types as integer,
precision, double precision, or string-

single

will be that
declaration

A DEFtype statement declares that the variable
names beginning with the letter (s) specified

type variable. However, a type
character always takes precedence

over a DEFtype statement in the typing of a

variable.

If no type declaration statements are
encountered, BASIC-80 assumes all variables
without declaration characters are single
precision variables.

10 DEFDBL L-P All variables beginning with
the letters L, M, N, O, and P
will be double precision
variables.

10 DEFSTR A Ail variables beginning^ with
the letter A will be string
variables.

10 DEFINT I-N,W-2
All variable beginning with
the letters I, J, K, L, M,
N, W, X, Y, 2 will be integer
variables.

BASIC-80 COMMANDS AND STATEMENTS Page 2-17

2.13 DEF USR

Format:

Versions

Purpose:

Remarks;

DEF USR[<digit>] s=<integer expression>

Extended, Disk

To specify the starting address of an assembly
language subroutine-

<digit> may be any digit from to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, DEF USRO is assumed- The value of
< integer expression> is the starting address of
the USR routine- See Appendix C, Assembly
Language Subroutines.

Any number of DEF USR statements may appear in a
program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary*

Example

:

200 DEF USR0=24000
210 X=USR0{Y''2/2-89)

BASIC-BO COMMANDS AND STATEMENTS Page 2-18

2.14 DELETE

Format; DELETE[<line number>] [-<line number>]

Versions: Extended, Disk

Purpose: To delete program lines.

Remarks: BASIC-80 always returns to command level after a

DELETE is executed- If <line number> does not
exist, an "Illegal function call" error occurs.

Examples: DELETE 40 Deletes line 40

DELETE 40-100 Deletes lines 40 through
100, inclusive

DELETE-40 Deletes all lines up to
and including line 40

BASIC-80 COMMANDS AND STATEMENTS Page 2-19

2,15 DIM

Format: DIM <list of subscripted variables>

Versions: 8K, Extended, Disk

Purpose: To specify the maximum values for array variable
subscripts and allocate storage accordingly.

Remarks: If an array variable name is used without a DIM
statement, the maximum value of its subscript (s)

is assumed to be 10, If a subscript is used
that is greater than the maximum specified, a
"Subscript out of range" error occurs. The
minimum value for a subscript is always ,

unless otherwise specified with the OPTION BASE
statement (see Section 2.46).

The DIM statement sets all the elements of the
specified arrays to an initial value of 2ero,

Example: 10 DIM A (20)
20 FOR 1=0 TO 20
30 READ A(I)
40 NEXT I

BASIC-80 COMMANDS AND STATEMENTS Page 2-20

2.16 EDIT

Format: EDIT <Iine noniber>

Versions: Extended, Disk

Purpose : To enter Edit Mode at the specified line-

Remarks: In Edit Mode » it is possible to edit portions of
a line without retyping the entire line- Upon
entering Edit Mode, BASIC-BO types the line
number of the line to he edited, then it types a
space and waits for an Edit Mode subcommand-

Edit Mode Subcommands

Edit Mode subcommands are used to move the
cursor or to insert, delete, replace, or search
for text within a line. The subcommands are not
echoed. Most of the Edit Mode subcommands may
be preceded by an integer which causes the
command to be executed that number of times-
When a preceding integer is not specified, it is
assumed to be 1.

Edit Mode subcommands may be categorized
according to the following functions:

1. Moving the cursor

2. Inserting text

3

.

Deleting text

4

.

Finding text

5. Replacing text

6- Ending and restarting Edit Mode

NOTE

In the descriptions that follow, <ch>
represents any character, <text>
represents a string of characters of
arbitrary length, [i] represents an
optional integer (the default is 1) , and
$ represents the Escape (or Altmode)
key.

BASlC-80 COMMANDS AND STATEMENTS Page 2-21

1. Moving the Cursor

Space Use the space bar to move the cursor to the
right. [i] Space moves the cursor i spaces to
the right. Characters are printed as you space
over them.

Rubout In Edit Mode, [i] Rubout moves the cursor i

spaces to the left (backspaces) . Characters are
printed as you backspace over them.

2- Inserting Text

I I<text>5 inserts <text> at the current cursor
position- The inserted characters are printed
on the terminal- To terminate insertion, type
Escape- If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Rubout, Delete, or
Underscore key on the terminal may be used to
delete characters to the left of the cursor.
Rubout will print out the characters as you
backspace over them. Delete and Underscore will
print an Underscore for each character that you
backspace over- If an attempt is made to insert
a character that will make the line longer than
255 characters, a bell (Control-G) is typed and
the character is not printed.

X The X subcommand is used to extend the line- X
moves the cursor to the end of the line, goes
into insert mode, and allows insertion of text
as if an Insert command had been given- When
you are finished extending the line, type Escape
or Carriage Return.

3, Deleting Text

D [i]D deletes i characters to the right of the
cursor. The deleted characters are echoed
between backslashes, and the cursor is
positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, iD deletes the
remainder of the line-

H H deletes all characters to the right of the
cursor and then automatically enters insert
mode- H is useful for replacing statements at
the end of a line-

4. Finding Text

S The subcommand [i] S<ch> searches for the ith

BASIC-80 COMMANDS AND STATEMENTS Page 2-22

occurrence of <ch> and positions the cursor
before it. The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of
the line. All characters passed over during the
search are printed.

K The subcommand IilK<ch> is similar to Ii]S<ch>,
except all the characters passed over in the
search are deleted. The cursor is positioned
before <ch>, and the deleted characters are
enclosed in backslashes-

Replacing Text

C The subcommand C<ch> changes the next character
to <ch>. If you wish to change the next i

characters, use the subcommand iC, followed by i

characters. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode-

Ending and Restarting Edit Mode

<cr> Typing Carriage Return prints the remainder of
the line, saves the changes you made and exits
Edit Mode.

E The E subcommand has the same effect as Carriage
Return, except the remainder of the line is not
printed.

Q The Q subcommand returns to BASIC-80 command
level, without saving any of the changes that
were made to the line during Edit Mode.

li The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the line, still
in Edit Mode- L is usually used to list the
line when you first enter Edit Mode.

A The A subcommand lets you begin editing a line
over again. It restores the original line and
repositions the cursor at the beginning.

NOTE

If BASIC-80 receives an unrecognizable
command or illegal character while in
Edit Mode, it prints a bell (Control-G)
and the command or character is ignored.

BASIC-80 COMMANDS AND STATEMENTS Page 2-23

Syntax Errors

When a Syntax Error is encountered during
execution of a program, BASIC-80 automatically
enters Edit Mode at the line that caused the
error* For example

:

10 K = 2(4)
RUN
?Syntax error in 10
10

When you finish editing the line and type
Carriage Return (or the E subcommand) , BASIC-BO
reinserts the line, which causes all variable
values to be lost. To preserve the variable
values for examination , first exit Edit Mode
with the Q subcommand. BASIC-80 will return to
command level, and all variable values will be
preserved-

Control-A

To enter Edit Mode on the line you are currently
typing , type Control-A- BASIC-80 responds with
a carriage return, an exclamation point (!) and
a space. The cursor will be positioned at the
first character in the line. Proceed by typing
an Edit Mode subcommand.

NOTE

Remember, if you have just entered a
line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode
at the current line. (The line number
symbol " .

" always refer s to the current
line.

)

BASIC-80 COMMANDS AND STATEMENTS Page 2-24

2.17 END

Format: END

Versions: 8K, Extended, Disk

Purpose: To terminate program execution, close all files
and return to command level

.

Remarks: END statements may be placed anywhere in the
program to terminate execution- Unlike the STOP
statement/ END does not cause a BREAK message to
be printed. An END statement at the end of a

program is optional. BASIC-80 always returns to
command level after an END is executed-

Example: 520 IF K>1000 THEN END ELSE GOTO 20

BA5IC-80 COMMANDS AND STATEMENTS Page 2-25

2.18 ERASE

Format:

Versions:

Purpose:

Remarks:

VOTE:

Example

;

ERASE <list of array var iables>

Extended, Disk

To eliminate arrays from a program.

Ar rays may be redimensioned after they are
ERASEd, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a "Redimensioned array" error
occur s-

The Microsoft BASIC compiler <3oes not support
ERASE,

450 ERASE A,B
460 DIM B(99)

BASIC-80 COMMANDS AND STATEMENTS Page 2-26

2. 19 ERR AND ERL VARIABLES

When an error handling subroutine is entered,
the variable ERR contains the error code for the
error and the variable ERL contains the line
number of the line in which the error was
detected. The ERR and ERL variables are usually
used in IF THEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was a
direct mode statement, ERL will contain 65535.
To test if an error occurred in a direct
statement, use IF 65535 = ERL THEN ...
Otherwise, use

IF ERR = error code THEN ...

IF ERL = line number TEEVi ...

If the line number is not on the right side of
the relational operator, it cannot be renumbered
by RENUM, Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement,
BASIC-80 's error codes are listed in Appendix J.
(For Standalone Disk BASIC error codes, see
Appendix H.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-27

2.20 ERROR

Format: ERROR < integer express ion>

Versions: Extended, Disk

Purpose: 1) To simulate the occurrence of a BASIC-80
error; or 2) to allow error codes to be
defined by the user.

Remarks: The value of < integer express ion> must be
greater than and less than 255- If the value
of < integer express ion> equals an error code
already in use by BASIC-80 (see Appendix J) , the
ERROR statement will simulate the occurrence of
that error, and the corresponding error message
will be printed- (See Example 1.)

To define your own error code, use a value that
is greater than any used by BASIC-80 's error
codes- (It is preferable to use the highest
available values, so compatibility may be
maintained when more error codes are added to
BASIC-BO.) This user-defined error code may then
be conveniently handled in an error trap
routine, (See Exafnple 2.)

If an ERROR statement specifies a code for which
no error message has been defined, BASIC-80.
responds with the message UNPRINTABLE ERROR.
Execution of an ERROR statement for which there
is no error trap routine causes an error message
to be printed and execution to halt-

Example 1: LIST
10 S = 10
20 T = 5

30 ERROR S + T
40 END
Ok
RUN
String too long in line 30

Or , in direct mode

:

Ok
ERROR 15 (you type this line)
String too long (BASIC-80 types this line)
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-28

Example 2:

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 IF B > 5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL =130 THEN RESUME 120

BASIC-80 COMMANDS AND STATEMENTS Page 2-29

2.21 FIELD

Format: FIEI.D[#] <file number> , <f ield width> AS <string variable>

Version: Disk

Purpose: To allocate space for variables in a random file
buffer-

Remarks: To get data out of a random buffer after a GET
or to enter data before a PUT, a FIELD statement
must have been executed.

<f ile number > is the number under which the file
was OPENed. <field width> is the number of
characters to be allocated to <string variable>.
For example,

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the next 10 positions to ID$, and the next 40
positions to ADD$. FIELD does NOT place any
data in the random file buffer. (See LSET/RSET
and GET,)

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPENed.
Otherwise, a "Field overflow" error occurs,
(The default record length is 128.)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in effect at the same
time.

Example: See Appendix B.

NOTE: Do not use a FIELDed variable name in an INPUT
or LET statement . Once a variable name is
FIELDed, it points to the correct place in the
random file buffer. If a subsequent INPUT or
LET statement with that variable name is
executed, the variable's pointer is moved to
string space.

BA5IC-80 COMMANDS AND STATEMENTS Page 2-30

2.22 FOR. .

.

NEXT

Forinat: FOR <variable>=x TO y (STEP z]

NEXT [<variable>) [,<variable>]

where x, y and z are numeric expressions.

Versions: 8K, Extended, Disk

Purpose: To allow a series of instructions to be
performed in a loop a given number of times.

Remarks: <variable> is used as a counter. The first
numeric expression (x) is the initial value of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is incremented by the amount
specified by STEP, A check is performed to see
if the value of the counter is now greater than
the final value (y) - If it is not greater,
BASIC-80 branches back to the statement after
the FOR statement and the process is repeated.
If it is greater , execution continues with the
statement following the NEXT statement- This is
a FOR- -.NEXT loop. If STEP is not specified,
the increment is assumed to be one. If STEP is
negative, the final value of the counter is set
to be less than the initial value. The counter
is decremented each time through the loop, and
the loop is executed until the counter is less
than the final value.

The body of the loop is skipped if the initial
value of the loop times the sign of the step
exceeds the final value times the sign of the
step.

Nested Loops
FOR. ..NEXT loops may be nested, that is, a
FOR... NEXT loop may be placed within the context
of another FOR. , .NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter- The NEXT statement for the
inside loop must appear before that for the
outside loop- If nested loops have the same end
point, a single NEXT statement may be used for
all of them-

The variable (s) in the NEXT statement may be

BASIC-80 COMMANDS AND STATEMENTS Page 2-31

omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message is issued and execution is
terminated

,

Example 1: 10 K=10
20 FOR 1=1 TO K STEP 2
30 PRINT I;
40 K=K+10
50 PRINT K
60 NEXT
RUN
1 20
3 30
5 40
7 50
9 60

Ok

Example 2: 10 J=a
20 FOR 1=1 TO J
30 PRINT I

40 NEXT I

In this example , the loop does not execute
because the initial value of the loop exceeds
the final value-

Example 3: 10 1=5
20 FOR 1=1 TO 1+5
30 PRINT I;
4 NEXT
RUN123456789 10
Ok

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial value is set. {Note:
Previous versions of BASIC-80 set the initial
value of the loop variable before setting the
final value; i.e., the above loop would have
executed six times,)

BASIC-80 COMMANDS AND STATEMENTS Page 2-32

2,23 GET

Format: GET [#3<file number> [r <record number>]

Version: Disk

Purpose: To read a record from a random disk file into a

random buffer.

Remarks : <f ile nuinber> is the number under which the file
was OPENed. If <record number> is omitted, the
next record (after the last GET) is read into
the buffer. The largest possible record number
is 32767.

Example: See Appendix B.

NOTE: After a GET statement, INPUTS and LINE INPUT*
may be done to read characters from the random
file buffer.

BASIC-80 COMMANDS AND STATEMENTS Page 2-33

2.24 GOSUB. . -RETURN

Format: GOSUB <line number>

Versions

Purpose

:

Remarks:.

Example:

RETURN

8K, Extended, Disk

To branch to and return from a subroutine.

<line nuinber>
subroutine.

is the first line of the

return at
Subroutines
but it is
be readily

A subroutine may be called any number of times
in a program, and a subroutine may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory-

The RETURN statement (s) in a subroutine cause
BASIC-80 to branch back to the statement
following the most recent GOSUB statement, A
subroutine may contain more than one RETURN
statement, should logic dictate a
different points in the subroutine,
may appear anywhere in the program,
recommended that the subroutine
distinguishable from the main program. To
prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around
the subroutine.

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
5 PRINT " IN";
60 PRINT " PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-34

2-25 GOTO

Format:

Versions

Purpose:

Remarks:

GOTO <1 i ne numbe r >

8K, Extended, Disk

To branch unconditionally out of the normal
program sequence to a specified line number.

If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after <line number >.

Example: LIST
10 READ R
20 PRINT "R =";R,
30 A = 3-14*R'^2
40 PRINT "AREA =";A
50 GOTO 10
60 DATA 5,7,12
Ok
RUN
R = 5 AREA = 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
?Out of data in 10
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-35

2.26 IF. ..THEN[,. ,ELSE] AND IF.. -GOTO

Focmat: IF <expression> THEN <statement (s) >
|
<llne nuTnber>

(ELSE <statement (s) > (<line numbeol

Format: IF <€Xpression> GOTO <line number>

[ELSE <statement (s) > | <line number>]

Versions: 8K, Extended, Disk

NOTE; The ELSE clause is allowed only in Extended and
Disk versions-

Purpose: To make a decision regarding program flow based
on the result returned by an expression.

Remarks: If the result of <expression> is not zero, the
THEN or GOTO Clause is executed, THEN may be
followed by either a line number for branching
or one or more statements to be executed. GOTO
is always followed by a line number. If the
result of <expression> is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if
present, is executed- Execution continues with
the next executable statement. (ELSE is allowed
only in Extended and Disk versions.) Extended
and Disk versions allow a comma before THEN,

Nesting of IF Statements

In the Extended and Disk versions,
IF. , .THEN. . .ELSE statements may be nested.
Nesting is limited only by the length of the
line. For example

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EOOAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "hoc"

will not print "A<>C" when AOB.

If an IF. , -THEN statement is followed by a line
number in the direct mode , an "Undefined line"
error results unless a statement with the
specified line number had previously been
entered in the indirect mode.

BASIC-80 COMMANDS AND STATEMENTS Page 2-36

NOTE: When using IF to test equality foe a value that
is the result of a floating point computation,
remeinber that the internal representation of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1,0, use:

IF ABS (A-1.0) <l-0E-6 THEN ...

This test returns true if the value of A is 1.0
with a relative error of less than l-OE-6.

Example 1: 200 IF I THEN GET#1,I

This statement GETs record number I if I is not
zero.

Example 2: 100 IF (K20) * {I>10) THEN DB=1979-1 :GOTO 300
110 PRINT "OUT OF RANGE"

In this example , a test determines if I is
greater than 10 and less than 20. If I is in
this range, DB is calculated and execution
branches to line 300. If I is not in this
range, execution continues with line 110.

Example 3: 210 IF lOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of a variable (lOFLAG)

.

If lOFLAG is zero, output goes to the line
printer, otherwise output goes to the terminal.

BASIC-80 COMMANDS AND STATEMENTS Page 2-37

2,27 INPUT

Format: INPUT[;] [<"prompt string"> ;] <list of variables>

Versions: 8K, Extended, Disk

Purpose: To allow input from the terminal during program
execution-

Remarks: When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. If
<"prompt string"> is included, the string is
printed before the question- mark. The required
data is then entered at the terminal.

A comma may be used instead of a semicolon after
the prompt string to suppress the question mark.
For example, the statement INPUT "ENTER
BIRTHDATE" ,B$ will print the prompt with no
question mark.

If INPUT is immediately followed by a semicolon,
then the carriage return typed by the user to
input data does not echo a carriage return/line
feed sequence.

The data that is entered is assigned to the
variable (s) given in <variable list>. The
number of data items supplied must be the same
as the number of variables in the list- Data
items are separated by commas-

The variable names in the list may be numeric or
string variable names (including subscripted
variables) . The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPUT
statement need not be surrounded by quotation
marks-

)

Responding to INPUT with too many or too few
items, or with the wrong type of value (numeric
instead of string, etc.) causes the messsage
"?Redo from start" to be printed- No assignment
of input values is made until an acceptable
response is given,

In the 8K version, INPUT is illegal in the
direct mode.

BASIC-80 COMMANDS AND STATEMENTS Page 2-38

Examples: 10 INPUT X
20 PRINT X "SQUARED IS" X*2
30 END
RUN
? 5 (The 5 was typed in by the user

in response to the question mark.)
5 SQUARED IS 25

Ok

LIST
10 PI=3.14
20 INPUT "WHAT IS THE RADIUS" ;R
30 A=PI*R'*2
40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT
€0 GOTO 20
Ok
RUN
WHAT IS THE RADIUS? 7.4 (User types 7-4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc-

BASIC-80 COMMANDS AND STATEMENTS Page 2-39

2.28 INPUT#

Format: INPUTS<file number> , <variable list>

Version; Disk

Purpose: To read data items from a sequential disk file
and assign them to program variables-

Remarks; <f ile number > is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must
match the type specified by the variable name-

)

With INPUT#, no question mark is printed, as
with INPUT.

The data items in the file should appear just as
they would if data were being typed in response
to an INPUT statement. With numeric values,
leading spaces, carriage returns and line feeds
are ignored. The first character encountered
that is not a space, carriage return or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return , line feed or comma

.

If BASIC-80 is scanning the sequential data file
for a string item, leading spaces, carriage
returns and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first
character is a quotation mark (") r the string
item will consist of all characters read between
the first quotation mark and the second. Thus,
a quoted string may not contain a quotation mark
as a character- If the first character of the
string is not a quotation mark, the string is an
unquoted string , and will terminate on a comma

,

carriage or line feed (or after 255 characters
have been read) , If end of file is reached when
a numeric or string item is being INPUT, the
item is terminated.

Example: See Appendix B-

BASIC-80 COMMANDS AND STATEMENTS Page 2-40

2.29 KILL

Focmat: KILL <filename>

Version: Disk

Purpose: To delete a file from disk.

Remarks: If a KILL statement is given for a file that is
currently OPEN, a "File already open" error
occurs-

KILL is used for all types of disk files:
program files, random data files and sequential
data files.

Example: 200 KILL "DATAl"

See also Appendix B,

BASIC-80 COMMANDS AND STATEMENTS Page 2-41

2.30 LET

Format: [LET] <variable>=<expression>

Versions: 8K, Extended, Disk

Purpose: To assign the value of an expression to a
variable.

Remarks: Notice the word LET is optional, i.e., the equal
sign is sufficient when assigning an expression
to a variable name.

Example: 110 LET D=12
120 LET E=12"2
130 LET F=12"4
14 LET SUM=D+E+F

or

110 D=12
120 E=12"2
130 F=12''4
140 SUM=D-I-E+F

BASIC-80 COMMANDS AND STATEMENTS Page 2-42

2.31 LINE INPUT

Format: LINE INPUT[;][< "prompt str ing'*> ;] <string variable>

Versions; Extended, Disk

Purpose: To input an entire line (up to 254 characters)
to a string variable, without the use of
delimiters.

Remarks: The prompt string is a string literal that is
printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return is
assigned to <string vartabie>- However, if a
line feed/carriage return sequence (this order
only) is encountered , both characters are
echoed; but the carriage return is ignored, the
line feed is put into STRING variable>, and data
input continues.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a
carriage return/line feed sequence at the
terminal-

A LINE INPUT may be escaped by typing Control-C-
BASIC-80 will return to command level and type
Ok. Typing CONT resumes execution at the LINE
INPUT.

Example: See Example, Section 2.32, LINE INPUTtt-

BASIC-80 COMMANDS AND STATEMENTS Page 2-43

2.32 LINE INPUT!

Format: LINE INPUT#<file number> , <str ing variable>

Version: Disk

Purpose: To read an entire line (up to 254 characters),
without delimiters, from a sequential disk data
file to a string variable.

Remarks: <f ile number > is the number under which the file
was OPENed. < string variable> is the variable
name to which the line will be assigned. LINE
INPUT# reads all characters in the sequential
file up to a carriage return. It then skips
over the carriage return/line feed sequence, and
the next LINE INPUT# reads all characters up to
the next carriage return. (If a line
feed/carriage return sequence is encountered, it
is preserved.)

LINE INPUT# is especially useful if each line of
a data file has been broken into fields, or if a
BASIC-80 program saved in ASCII mode is being
read as data by another program.

Example: 10 OPEN "0",1,"LIST"
20 LINE INPUT "CUSTOMER INFORMATION? ";C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN "I", 1, "LIST"
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-4 4

2.33 LIST

Format 1: LIST [<line number>)

Versions: 8K, Extended, Disk

Format 2: LIST [<line number> [- C<line number>I]]

Versions: Extended, Disk

Purpose: To list all or part of the program currently in
memory at the terminal.

Remarks: BASIC-80 always returns to command level after a
LIST i s executed

.

Format 1: If <line number> is omitted, the
program is listed beginning at the lowest line
number, (Listing is terminated either by the
end of the program or by typing Control-C-) . If
<line number> is included, the 8K version will
list the program beginning at that line; and
the Extended and Disk versions will list only
the specified line.

Format 2 : This format allows the following
options:

1. If only the first number is specified, that
line and all higher-numbered lines are
listed.

2. If only the second number is specified, all
lines from the beginning of the program
through that line are listed,

3. If both numbers are specified, the entire
range is listed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-45

Examples: Format 1

LIST

LIST 500

Lists the program currently
in memory.

In the 8K version, lists
all programs lines from
500 to the end.
In Extended and Disk

,

lists line 500.

Format 2:

LIST 150-

LIST -1000

Lists all lines from 150
to the end.

Lists all lines from the
lowest number through 1000

LIST 150-1000 Lists lines 150 through
1000, inclusive.

BASIC-80 COMMANDS AND STATEMENTS Page 2-46

2.34 LLIST

Format: LLIST [<line number> [- [<line number>lll

Versions: Extended, Disk

Purpose; To list all or part of the program currently in
memory at the line printer.

Remarks: LLIST assumes a 132-character wide printer.

BASlC-80 always returns to command level after
an LLIST is executed. The options for LLIST are
the same as for LIST, Format 2.

NOTE: LLIST and LPRINT are not included in all
implementations of BASIC-80.

Example: See the examples for LIST, Format 2.

BASIC-80 COMMANDS AND STATEMENTS Page 2-47

2.35 LOAD

Format:

Version:

Purpose:

Remarks:

LOAD <filename>[,R]

Disk

To load a file from disk into memory.

<filename> is the name that was used when the
file was SAVEd- (With CP/M, the default
extension .BAS is supplied.)

LOAD closes all open files and deletes all
variables and program lines currently residing
in memory before it loads the designated
program. However, if the "R" option is used
with LOAD, the program is RUN after it is
LOADed, and all open data files are kept open.
Thus, LOAD with the "R" option may be used to
chain several programs (or segments of the same
program) . Information may be passed between the
programs using their disk data files.

Example LOAD "STRTRK",R

BASIC-80 COMMANDS AND STATEMENTS Page 2-48

2.36 LPRINT AND LPRINT USING

Format:

Versions

Purpose:

Remarks:

NOTE:

LPRINT l<list of expressions>)

LPRINT USING <string exp>;<list of expressions>

Extended, Disk

To print data at the line printer-

Same as PRINT and PRINT USING, except output
goes to the line printer. See Section 2-49 and
Section 2.50.

LPRINT assumes a 132-character-wide printer.

LPRINT and LLIST are not included in all
implementations of BASIC-80.

BASlC-80 COMMANDS AND STATEMENTS Page 2-49

2.37 LSET AND RSET

Format:

Version:

Purpose:

Remarks:

Examples:

NOTE:

LSET <string variable>
RSET < string variable

>

Disk

< string expression>
< string expression>

To move data from memory to a random file buffer
(in preparation for a PUT statement)

•

If < string expression> requires fewer bytes than
were FIELDed to < string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string- (Spaces are used to
pad the extra positions-) If the string is too
long for the field, characters are dropped from
the right. Numeric values must be converted to
strings before they are LSET or RSET. See the
MKI$, MKS$, MKD$ functions. Section 3.25.

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC($)

See also Appendix B.

LSET or RSET may also be used with a non-fielded
string variable to left-justify or right-justify
a string in a given field. For example, the
program lines

110 A$=SPACE5(20)
120 RSET A$=N$

right-justify the string N$ in a 20 -character
field. This can be very handy for formatting
printed output*

BASIC-80 COMMANDS AND STATEMENTS Page 2-50

2.38 MERGE

Format:

Version

Purpose

Remarks

MERGE <filename>

Disk

To merge a specified disk file into the
currently in memory.

program

Example:

<f ilename> is the name used when the file was
SAVEd. (With CP/M, the default extension ,BAS
is supplied.) The file must have been SAVEd in
ASCII format. (If not, a "Bad file mode" error
occurs.)

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting" the program lines on
disk Into the program in memory.)

BASIC-80 always returns to command level after
executing a MERGE command.

MERGE "NUMBRS"

BASIC-80 COMMANDS AND STATEMENTS Page 2-51

2.39 MID$

Format: MID$(<string expl> ,n I ,ni]) =<str ing exp2>

where n and m are integer expressions and
< string expl> and <string exp2> are string
expressions.

Versions: Extended, Disk

Purpose: To replace a portion of one string with another
string.

Remarks: The characters in <string expl>, beginning at
position n, are replaced by the characters in
< string exp2>- The optional m refers to the
number of characters from < string exp2> that
will be used in the replacement- If m is
omitted, all of <string exp2> is used. However,
regardless of whether m is omitted or included,
the replacement of characters never goes beyond
the original length of <string expl>.

Example: 10 A$="KANSAS CITY, MO"
20 MIDCA,14) ="KS"
30 PRINT A$
RUN
KANSAS CITY, KS

MID$ is also a function that returns a substring
of a given string. See Section 3.24.

BASIC-80 COMMANDS AND STATEMENTS Page 2-52

2.40 NAME

Format; NAME <old filenamo AS <new filenamO

Version: Disk

Purpose: To change the name of a disk file.

Remarks: <old filename> must exist and <new filename>
must not exist; otherwise an error will result.
After a NAME command ^ the file exists on the
same disk, in the same area of disk space, with
the new name.

Example: Ok
NAME "ACCTS" AS "LEDGER"
Ok

In this example, the file that was
formerly named ACCTS will now be named LEDGER:

BASIC-80 COMMANDS AND STATEMENTS Page 2-53

2.41 NEW

Format:

Versions:

Purpose:

Remarks:

NEW

8K, Extended, Disk

To delete the program currently
clear all variables.

in memory and

NEW is entered at command level to clear memory
before entering a new program- BASIC-80 always
returns to command level after a NEW is
executed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-54

2.42 NULL

Format: NULL <integer expression>

Versions: 8K, Extended, Disk

Purpose: To set the number of nulls to be printed at the
end of each line.

Remarks: For 10-character-per-second tape punches,
< integer expression> should be >=3. When tapes
are not being punched, < integer expression>
should be or 1 for Teletypes and
Teletype-compatible CRTs. <integer expression>
should be 2 or 3 for 30 cps hard copy printers.
The default value is 0.

Example : Ok
NULL 2

Ok
100 INPUT X
200 IF X<50 GOTO 800

Two null characters will be printed after each
line-

BASIC-80 COMMANDS AND STATEMENTS Page 2-55

2.4 3 ON ERROR GOTO

Format;

Versions

Purpose:

Remarks:

NOTE:

ON ERROR GOTO <line number>

Extended, Disk

To enable error trapping and specify the first
line of the error handling subroutine.

Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.

,

Syntax errors) , will cause a jump to the
specified error handling subroutine- If <line
number> does not exist, an "Undefined line"
error results. To disable error trapping,
execute an ON ERROR GOTO 0- Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO statement that appears in an
error trapping subroutine causes BASIC-80 to
stop and print the error message for the error
that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO if an error is encountered for
which there is no recovery action.

If an error occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error
handling subroutine.

Example: 10 ON ERROR GOTO 1000

BASIC-80 COMMANDS AND STATEMENTS Page 2-56

2.44 ON...GOSUB AND ON. . .GOTO

Format: ON <expression> GOTO <list of line nuinbers>

ON <expression> GOSUB <list of line number s>

Versions: 8K, Extended, Disk

Purpose: To branch to one of several specified line
numbers , depending on the value returned when an
expression is evaluated.

Remarks: The value of <expression> determines which line
number in the list will be used for branching.
For example, if the value ife three, the third
line number in the list will be the destination
of the branch. (If the value is a non-integer,
the fractional portion is rounded.)

In the ON.. ,00506 statement, each line number in
the list must be the first line number of a
subroutine.

If the value of <expression> is zero or greater
than the number of items in the list (but less
than or equal to 255) , BASIC continues with the
next executable statement. If the value of
<expression> is negative or greater than 255, an
"Illegal function call" error occurs.

Example: 100 ON L-1 GOTO 150,300,320,390

BASIC-80 COMMANDS AND STATEMENTS Page 2-57

2.45 OPEN

Format: OPEN <mode>, [i] <f ile number >, <filename> , [<reclen>]

Version: Disk

Purpose: To allow I/O to a disk file.

Remarks; A disk file must be OPENed before any disk I/O
operation can be performed on that file- OPEN
allocates a buffer for I/O to the file and
determines the mode of access that will be used
with the buffer.

NOTE:

Example:

<mode> is a string expression whose
character is one of the following:

specifies sequential output mode

1 specifies sequential input mode

first

R specifies random input/output mode

<file number> is an integer expression whose
value is between one and fifteen- The number is
then associated with the file for as long as it
is OPEN and is used to refer other disk I/O
statements to the file.

<filename> is a string expression containing a

name that conforms to your operating system'

s

rules for disk filenames.

<reclen> is an integer expression which, if
included , sets the record length for random
files- The default record length is 128 bytes.
See also page A-3.

A file can be OPENed for sequential input or
random access on more than one file number at a

time. A file may be OPENed for output, however,
on only one file number at a time.

10 OPEN "I",2,"INVEN"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-58

2.46 OPTION BASE

Format: OPTION BASE n
where n is 1 or

Versions: 8K, Extended, Disk

Purpose: To declare the minimum value for array
subscripts-

Remarks: The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript
may have is one.

BASIC-80 COMMANDS AND STATEMENTS Page 2-59

2.47 OUT

Format: OUT I,

J

where I and J are integer expressions in the
range to 255.

Versions: 8K, Extended, Disk

Purpose: To send a byte to a machine output port.

Remarks: The integer expression I is the port number, and
the integer expression J is the data to be
transmitted.

Example: 100 OUT 32,100

BASIC-80 COMMANDS AND STATEMENTS Page 2-60

2.48 POKE

Format: POKE I,

J

where I and J are integer expressions

Versions: 8K, Extended, Disk

Purpose: To write a byte into a memory location.

Remarks: The integer expression I is the address of the
memory location to be POKEd. The integer
expression J is the data to be pOKEd. J must be
in the range to 255. In the 8K version, I

must be less than 32768. In the Extended and
Disk versions, 1 must be in the range to
65536.

With the 8K version, data may be POKEd into
memory locations above 32768 by supplying a
negative number for I. The value of I is
computed by subtracting 65536 from the desired
address. For example, to POKE data into
location 45000, I = 45000-65536, or -20536.

The complementary function to POKE is PEEK. The
argument to PEEK is an address from which a byte
is to be read. See Section 3.. 27,

POKE and PEEK are useful foe efficient data
storage , loading assembly language subroutines,
and passing arguments and results to and from
assembly language subroutines.

Example: 10 POKE &H5AQ0,&HFF

BASIC-80 COMMANDS AND STATEMENTS Page 2-61

2.49 PRINT

Format: PRINT [<list of expcessions>]

Versions: 8K, Extended, Disk

Purpose: To output data at the terminal.

Remarks: If <list of expressions> is omitted, a blank
line is printed. If <list of expressions> is
included, the values of the expressions are
printed at the terminal- The expressions in the
list may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks,)

Print Positions

The position of each printed item is determined
by the punctuation used to separate the items in
the list. BASIC-80 divides the line into print
zones of 14 spaces each. In the list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediately after the last value- Typing one or
more spaces between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly.
If the list of expressions terminates without a
comma or a semicolon, a carriage return is
printed at the end of the line. If the printed
line is longer than the terminal width, BASIC-80
goes to the next physical line and continues
printing-

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unsealed format no
less accurately than they can be represented in
the scaled format, are output using the unsealed
format. For example, lE-7 is output as .0000001
and lE-8(-7) is output as lE-OB- Double
precision numbers that can be represented with
16 or fewer digits in the unsealed format no
less accurately than they can be represented in
the scaled format, are output using the unsealed
format. For example, lD-15 is output as
.0000000000000001 and lD-16 is output as lD-16,

BASIC-80 COMMANDS AND STATEMENTS Page 2-62

A question mark may be used in place of the word
PRINT in a PRINT statement.

Example 1: 10 X-5
20 PRINT X+5, X-5, X*(-5), X"5
30 END
RUN
10 -25 3125

Ok

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

Example 2: LIST
10 INPUT X
20 PRINT X "SQUARED IS" X'^2 "AND";
30 PRINT X "CUBED IS" X"3
40 PRINT
50 GOTO 10
Ok
RUN
? 9
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line, and line 40 causes a
blank line to be printed before the next prompt.

Example 3: 10 FOR X == 1 TO 5
20 J=J+5
30 K=K+10
40 ?J;K;
50 NEXT X
Ok
RUN
5 10 10 20 15 30 20 40 25 50

Ok

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don't
forget, a number is always followed by a space
and positive numbers are preceded by a space.

)

In line 40, a question mark is used instead of
the word PRINT.

BASIC-80 COMMANDS AND STATEMENTS Page 2-63

2.50 PRINT USING

Format; PRINT USING <string exp>;<list of expressions>

Versions: Extended, Disk

Purpose: To print strings or numbers using a specified
format.

Remarks <list of expressions> is comprised of the string
and expressions or numeric expressions that are to
Examples: be printed, separated by semicolons. < string

exp> is a string literal (or variable) comprised
of special formatting characters- These
formatting characters (see below) determine the
field and the format of the printed strings or
numbers.

String Fields

When PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

"!" Specifies that only the first character in the
given string is to be printed*

"\n spaces\" Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed;
with one space, three characters will be
printed, and so on. If the string is longer
than the field, the extra characters are
ignored. If the field is lonnger than the
string, the string will be left-justified in the
field and padded with spaces on the right-
Example;

10 A$="LOOK":B$="OUT"
30 PRINT USING "!";A$;B$
40 PRINT USING "\ \";A$;B$
50 PRINT USING "\ \" ; A$;B$;

" ! !
"

RUN
LO
LOOKOUT
LOOK OUT !

!

BASIC-BO COMMANDS AND STATEMENTS Page 2-64

"S" Specifies a variable length string field. When
the field is specified with "&", the string is
output exactly as input. Example;

10 AS="LOOK":B$="OUT"
20 PRINT USING "!";A$;
30 PRINT USING "&";B$
RUN
LOUT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to
format the numeric field:

A number sign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be
right-justified (preceded by spaces) in the
field.

A decimal point may be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as if
necessary) . Numbers are rounded as necessacy-

PRINT USING "##.## ";.7B
0.75

PRINT USING "###.##";9a7,6S4
987.65

PRINT USING "##.## ";10.2,5. 3,66.789, -234
10.20 5.30 66,79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line-

A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number-

BA5IC-80 COMMANDS AND STATEMENTS Page 2-65

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING " +H.## ";-68.95,2.4,55.6,-.9
-68,95 +2-40 +55,60 -0.90

PRINT USING "##.##- ",--68.95,22. 449,-7.01
68.95- 22,45 7-01-

** A double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits,

PRINT USING "**#,# ";12. 39, -0-9, 765.1
*12.4 *-0.9 765.1

$$ A double dollar sign causes a dollar sign to be
printed to the immediate left of the focraatted
number . The S$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with 5$-
Negative numbers (pannot be used unless the minus
sign trails to th€ right-

PRINT USING '$$###. ##";456-78
5456.78

**i The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be aster i sk-filled and a
dollar sign will be printed before the number.
**$ specifies three more digit positions, one of
which is the doll a c sign-

PRINT USING "**5«*t.#»";2.34
***$2.34

A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point- A comma that is at
the end of the format string is printed as part
of the string, A comma specifies another digit
position- The comma has no effect if used with
the exponential (^^-'^) format,

PRINT USING "####, .##";1234.

5

1,234-50

PRINT USING "####. ##,";1234,

5

1234,50.

BASIC-80 COMMANDS AND STATEMENTS Page 2-66

/v/v/v/v Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be printed. Any decimal point
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or -

is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign.

PRINT USING "##.## ";234.56
2.35E+02

PRINT USING "-#### -";888888
.8889E+06

PRINT USING "+.## ";123
+ .12E4-03

An underscore in the format string causes the
next character to be output as a literal
character.

PRINT USING "_!##. ##_i";12. 34
112.34!

The literal character itself may be an
underscore by placing " " in the format string.

If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a percent
sign will be printed in front of the rounded
number

-

PRINT USING "##.##"; 111. 22
%111.22

PRINT USING ".##"?. 999
%l-00

If the number of digits specified exceeds 24, an
"Illegal function call" error will result.

BASIC-80 COMMANDS AND STATEMENT Page 2-67

2,51 PRINTt AND PRINTtt USING

Format: PRINT#<filenumbeo, [USING<string exp>;]<list of exps>

Version: Disk

Purpose: To write data to a sequential disk file-

Remarks: <file number> is the number used when the file
was OPENed for output. < string exp> is
comprised of formatting characters as described
in Section 2.50, PRINT USING. The expressions
in <li5t of expressions> are the numeric and/or
string expressions that will be written to the
file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk, just
as it would be displayed on the terminal with a
PRINT statement. For this reason, care should
be taken to delimit the data on the disk, so
that it will be input correctly from the disk.

In the list of expressions , numeric expressions
should be delimited by semicolons. For example,

PRlNT#l,A;B;C;X;y;Z

(If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to disk.)

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions-

For example, let A$="CAMERA" and B$="93604-l".
The statement

PRINT#1,A$;B$

would write CAMERA93604-1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the
problem, insert explicit delimiters into the
PRINTS statement as follows:

PRINT* 1,A$;",";BS

The image written to disk is

CAMERA, 93604-1

BASlC-80 COMMANDS AND STATEMENT Page 2-68

which can be read back into two string
variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them to disk
surrounded by explicit quotation marks,
CHR${34) .

For example, let A$="CAMERA, AUTOMATIC" and
B$=" 93604-1". The statement

PRINT#1,A$;B$

would write the following image to disk:

CAMERA, AUTOMATIC 93604-1

and the statement

INPUT* 1,A$,B$

would input "CAMERA" to AS and
"AUTOMATIC 93604-1" to B$- To separate these
strings properly on the disk, write double
quotes to the disk image using CHRS(34). The
statement

PRINT#1,CHR$(34) ;A$;CHR${34) ;CHR$(34) ;B$;CHR$(34)

writes the following image to disk:

"CAMERA, AUTOMATIC"" 93 604-1"

and the statement

INPUT#1,A$,B$

would input "CAMERA, AUTOMATIC" to A$ and
93604-1" to BS.

The PRINTt statement may also be used with the

USING option to control the format of the disk
file. For example

:

PRINT#l,USING"$$###.##,";J;K;r.

For more examples using PRINTS, see Appendix B.

See also WRITES, Section 2,68,

BASIC-80 COMMANDS AND STATEMENTS Page 2-69

2.52 PUT

Format:

Version

Purpose

Remarks

Example

NOTE:

PUT [#]<file number> t f <record number>l

Disk

To write a record from
random disk f ile-

a random buffer to a

<f ile number > is the number under which the file
was OPENed. If <record number > is omitted, the
record will have the next available record
number (after the last PUT) - The largest
possible record number is 32767. The smallest
record number is 1,

See Appendix B.

PRINTS, PRINT# USING, and WRITE# may be used to
put characters in the random file buffer before
a PUT statement.

In the case of WRITE#, BASIC-80 pads the buffer
with spaces up to the carriage return. Any
attempt to read or write past the end of the
buffer causes a "Field overflow" error.

BASIC-80 COMMANDS AND STATEMENTS Page 2-70

2.53 RANDOMIZE

Format: RANDOMIZE [<expression>]

Versions; Extended, Disk

Purpose : To reseed the random number generator

•

Remarks; If <expression> is omitted, BASIC-80 suspends
program execution and asks for a value by
printing

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every time
the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the
argument with each RUN.

Example: 10 RANDOMIZE
20 FOR 1=1 TO 5
30 PRINT RND;
4 NEXT I
RUN
Random Number Seed (-32768 to 32767)? 3 (user
types 3)
.88598 .484668 .58 6328 .119426 .709225

Ok
RUN
Random Number Seed (-32768 to 32767)? 4 (user
types 4 for new sequence)
.803506 .1624 62 .929364 .292 4 43 .322921

Ok
RUN
Random Number Seed (-32768 to 32767)? 3 (same
sequence as first RUN)
,88598 .4 84668 .586328 .1194 26 .709225

Ok

BASIC-80 COMMANDS AND STATEMENT Page 2-71

2.54 READ

Format:

Versions:

Purpose;

Remarks:

Example 1:

READ <list of variables>

8K, Extended, Disk

To read values from a DATA statement and assign
them to variables. (See DATA, Section 2.10.)

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis- READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a "Syntax
error" will result.

A single READ statement may access one or more
DATA statements (they will be accessed in
order) , or several READ statements may access
the same DATA statment. If the number of
variables in <list of variables> exceeds the
number of elements in the DATA statement (s) , an
OUT OF DATA message is printed. If the number
of variables specified is fewer than the number
of elements in the DATA statement (s) , subsequent
READ statements will begin reading data at the
first unread element- If there are no
subsequent READ statements, the extra data is
ignored.

To reread DATA statements from the start, use
the RESTORE statement (see RESTORE, Section
2.57)

80 FOR 1=1 TO 10
90 READ A (I)
100 NEXT I

110 DATA 3.08,5-19,3.12,3.98,4.24
120 DATA 5-08,5.55,4.00,3.16,3.37

This program segment READS the values from the
DATA Statements into the array A. After
execution, the value of A(l) will be 3-08, and
so on.

BASIC-80 COMMANDS AND STATEMENTS Page 2-72

Example 2: LIST
10 PRINT "CITY", "STATE", " ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
Ok

This program READs string and numeric data from
the DATA statement in line 30.

BASIC-80 COMMANDS AND STATEMENTS Page 2-73

2.55 REM

Format:

Versions:

Purpose:

Remarks:

Example:

REM <remark>

8K, Extended, Disk

To allow explanatory remarks to be inserted in a
program.

REM statements are not executed but are output
exactly as entered when the program is listed.

REM statements may be branched into (from a GOTO
or GOSUB statement) , and execution will continue
with the first executable statement after the
REM statement.

In the Extended and Disk versions, remarks may
be added to the end of a line by preceding the
remark with a single quotation mark instead of
:REM.

WARNING: Do not use this in a data statement as
it would be considered legal data.

120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1=1 TO 20
140 SUM=SUM + V(I)

or, with Extended and Disk versions:

120 FOR 1=1 TO 20
130 SUM=SUM+VU)
140 WEXT I

'CALCULATE AVERAGE VELOCITY

BASIC-80 COMMANDS AND TATEMENT Page 2-74

2.56 RENUM

Format:

Versions

Purpose:

Remarks:

NOTE:

RENUM [[<new number >][, I<old number>] [,<increment>]]]

Extended, Disk

To renumber program lines.

<new number> is the first line number to be used
in the new sequence. The default is 10- <old
number> is the line in the current program where
renumbering is to begin- The default is the
first line of the program. <increment> is the
increment to be used in the new sequence- The
default is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ON. .-GOTO,
ON.-.GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number
appears after one of these statements, the error
message "Undefined line xxxxx in yyyyy" is
printed. The incorrect line number reference
(xxxxx) is not changed by RENUM, but line number
yyyyy may be changed.

RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529-
An "Illegal function call" error will result-

Examoles RENUM

RENUM 300, ,50

RENUM 1000,900,20

Renumbers the entire program
The first new line number
will be 10, Lines will
increment by 10.

Renumbers the entire pro-
gram- The first new line
number will be 300- Lines
will increment by 50-

Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

BASIC-80 COMMANDS AND STATEMENTS Page 2-75

2.57 RESTORE

Format:

Versions

Purpose:

Remarks:

Example:

RESTORE [<line nuraber>]

8K, Extended, Disk

To allow DATA statements to
specified line.

be reread from a

After a RESTORE statement is executed, the next
READ statement accesses the first item in the
first DATA statement in the program. If <line
number > is specified, the next READ statement
accesses the first item in the specified DATA
statement.

10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79

BASIC-80 COMMANDS AND STATEMENTS Page 2-76

2.58 RESUME

Formats: RESUME

RESUME

RESUME NEXT

RESUME <line nuraber>

Versions: Extended , Disk

Purpose: To continue program execution after an error
recovery procedure has been performed.

Remarks: Any one of the four formats shown above may be
used, depending upon where execution is to
resume:

RESUME
or

RESUME

RESUME NEXT

Example:

Execution resumes at the
statement which caused the
error-

Execution resumes at the
statement immediately fol-
lowing the one which
caused the error -

RESUME <line number > Execution resumes at
<line number >-

A RESUME statement that is not in an error trap
routine causes a "RESUME without error" message
to be printed*

10 ON ERROR GOTO 900

900 IF (ERR=230) AND(ERL=90) THEN PRINT "TRY
AGAIN": RESUME 80

BASIC-80 COMMANDS AND STATEMENTS Page 2-77

2.59 RUN

Format It RUN [<line numbers)

Versions: 8K, Extended, Disk

Purpose: To execute the program currently in memory.

Remarks: If <line number> is specified, execution begins
on that line. Otherwise, execution begins at
the lowest line number, BASIC-80 always returns
to command level after a RUN is executed.

Example: RUN

Format 2: RUM <filename> { /R]

Version: Disk

Purpose: To load a file from disk into memory and run it-

Remarks: <filename> is the name used when the file was
SAVEd- (With Cp/M and ISIS-II, the default
extension .BAS is supplied.)

RUN closes all open files and deletes the
current contents of memory before loading the
designated program. However, with the "R"
option, all data files remain OPEN.

Example: RUN "NEWFIL",R

See also Appendix B,

NOTE,' The BASIC Compiler supports the RUN and RUN LINE
numbers forms of the RUN statement- The BASIC
Compiler does not support the "R" option with
RUN, If you want this feature, the CHAIN
statement should be used.

BASlC-80 COMMANDS AND STATEMENTS Page 2-78

2.60 SAVE

Format; SAVE <f ilenanie> [, A |
,P]

Version: Disk

Purpose: To save a program file on disk.

Remarks; <filenanie> is a quoted string that conforms to
your operating system' s requirements for
filenames- (With CP/M, the default extension
.BAS is supplied.) If <filename> already exists,
the file will be written over.

Use the A option to save the file in ASCII
format. Otherwise, BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access
requires that files be in ASGii format. For
instance, the KERGE command requires and ASCII
format file, and some operating system commands
such as LIST may require an ASCII format file-

Use the P option to protect the file by saving
it in an encoded binary format. When a

protected file is later RUN (or LOADed) , any
attempt to list ot edit it will fail.

Examples: SAVE" COM2" ,A
SAVE"PROG",P

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-79

2.61 STOP

Format: STOP

Versions: 8K, Extended, Disk

Purpose: To terminate program execution and return to
command level

-

Remarks: STOP statements may be used anywhere in a

program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement
does not close files-

BASIC-80 always returns to command level after a

STOP is executed. Execution is resumed by
issuing a CONT command (see Section 2.8).

Example: 10 INPUT A,B,C
20 K=A*2*5.3:L=B''3/-26
30 STOP
40 M=C*K+100:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L
30.7692

Ok
CONT
115.9

Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-80

2.62 SWAP

Format:

Versions

Purpose:

Remarks:

Example;

SWAP <variable>,<variable>

Extended, Disk

To exchange the values of two variables.

Any type variable may be SWAPped (integer,
single precision, double precision, string) , but
the two variables must be of the same type or a
"Type mismatch" error results.

LIST
10 A$=" ONE " : B$=" ALL
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
RUN
Ok
ONE FDR ALL
ALL FOR ONE

Ok

: CS="FOR"

BASIC-80 COMMANDS AND STATEMENTS Page 2-81

2.63 TRON/TROFF

Format: TRON

TROFF

Versions: Extended, Disk

Purpose: To trace the execution of program statements.

Remarks: As an aid in debugging, the TRON statement
(executed in either the direct or indirect mode)
enables a trace flag that prints each line
number of the prog r am as it is executed - The
numbers appear enclosed in square brackets- The
trace flag is disabled with the TROFF statement
(or when a NEW command is executed)

.

Example: TRON
Ok
LIST
10 K=10

FOR J=l TO 2
L=K + 10
PRINT J;K;I,
K=K+10
NEXT
END

20
30
40
50
60
70
Ok
RUN
[10] [20] [30] [40]
[50][60J [301(40]
[50] [60] [70]
Ok
TROFF
Ok

1
2

10
20

20
30

BASIC-80 COMMANDS AND STATEMENTS Page 2-82

2.64 WAIT

Format: WAIT <port number >, If, J]
where I and J are integer expressions

Versions: 8K, Extended, Disk

Purpose: To suspend program execution while inonitoring

the status of a machine input port.

Remarks: The WAIT statement causes execution to be

suspended until a specified machine input port
develops a specified bit pattern. The data read

at the port is exclusive OR'ed with the integer
expression J, and then AND ' ed with I. If the

result is zero, BASIC-80 loops back and reads
the data at the port again. If the result is

nonzero, execution continues with the next
statement- If J is omitted, it is assumed to be
zero

CAUTION: It is possible to enter an infinite loop with
the WAIT statement, in which case it will be
necessary to manually restart the machine-

Example: 100 WAIT 32,2

BASIC-80 COMMANDS AND STATEMENTS Page 2-83

2.65 WHILE...MEND

Format: WHILE <expression>

[<loop statements>l

WEND

Versions: Extended, Disk

Purpose: To execute a series of statements in a loop as
long as a given condition is true.

Remarks: If <expression> is not zero (i.e., true), <loop
statements> are executed until the WEND
statement is encountered. BASIC then returns to
the WHILE statement and checks <expression>. If
it is still true, the process is repeated. If
it is not true, execution resumes with the
statement following the WEND statement.

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE. An
unmatched WHILE statement causes a "WHILE
without WEND" error , and an unmatched WEND
statement causes a "WEND without WHILE" error-

Example: 90 'BUBBLE SORT ARRAY A$
100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS=0
120 FOR 1=1 TO J-1
130 IF A${I)>A$(I+1) THEN

SWAP A$(I) ,A$(I+1) :FLIPS=1
140
150 WEND

NEXT I

BA5IC-80 COKKANOS AND STATEMENTS Page 2-84

2.66 WIDTH

Format: WIDTH tLPRINT] <integer expression>

Versions: Extended, Disk

Purpose: To set the printed line width in number of
characters for the terminal or line printer.

Remarks: If the LPRINT option is omitted, the line width
is set at the terminal. If LPRINT is included,
the line width is set at the line printer,

< integer expression> must have a value in the
range 15 to 255. The default width is 72
characters.

If <integer expression> is 255, the line width
is "infinite," that is, BASIC never inserts a

carriage return. However, the position of the
cursor or the print head, as given by the POS or
LPOS function, returns to zero after position
255.

Example: 10 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXY2"
RUN
ABCDEFGHIJKLMNOPQRSTUVWXY2
Ok
WIDTH 18
Ok
RUN
ABCDEFGHIJKLMNOPQR
STUVWXYZ
Ok

3ASIC-80 COMMANDS AND STATEMENTS Page 2-85

2.67 WRITE

Format: WRITE(<list of expressions>]

Version: Disk

Purpose: To output data at the terminal.

Remarks; If <list of expre5sions> is omitted, a blank
line is output. If <list of expressions> is
included, the values of te expressions are
output at thee terminal. The expressions in the
list may be numeric and/or string expressions,
and they must be separated by commas.

When the printed items are output, each item
will be separated from the last by a comma.
Printed strings will be delimited by quotation
marks. After the last item in the list is
printed, BASIC inserts a carriage return/line
feed.

WRITE outputs numeric values using the same
format as the PRINT statement. Section 2.49»

Example: 10 A=80 :B=90 :C$="THAT'S ALL"
20 WRITE A,B,C$
RUN
80, 90,"THAT'S ALL"

Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-86

2.68 WRITE#

Format: WRITER < file number >,< list of expressions>

Version: Disk

Purpose: To write data to a sequential file.

Remarks: <file number> is the number under which the file
was OPENed in "O" mode. The expressions in the
list are string or numeric expressions, and they
must be separated by commas

-

The difference between WRITES and PRINT* is that
WRITE# inserts commas between the the items as
they are written to disk and delimits strings
with quotation marks. Therefore, it is not
necessary for the user to put explicit
delimiters in the list- A carriage return/line
feed sequence is inserted after the last item in
the list is written to disk.

Example: Let A$="CAMERA" and B$="93604-l" . The
statement:

WRITE#1,A$,B$

writes the following image to disk:

"CAMERA", "93604-1"

A subsequent INPUT* statement, such as:

INPUT#1,A$,B$

would input "CAMERA" to A$ and "93604-1" to B$.

CHAPTER 3

BASIC-80 FUNCTIONS

The intrinsic functions provided by BASrC-80 are presented
in this chapter- The functions may be called from any
program without further definition.

Arguments to functions are always enclosed in parentheses.
In the formats given for the functions in this chapter, the
arguments have been abbreviated as follows:

X and y Represent any numeric expressions

I and J Represent integer expressions

X$ and Y$ Represent string expressions

If a floating point value is supplied where an integer is
required, BASIC-80 will round the fractional portion and use
the resulting integer.

NOTE

With the BASIC-80 and BASIC-86
interpreters, only integer and
single precision results are
returned by functions. Double
precision functions are
supported only by the BASIC
compiler-

BASIC-80 FUNCTIONS Page 3-2

3.1 ABS

Format: ABS(X)

Versions: 8K, Extended, Disk

Action: Returns the absolute value of the expression X,

Example: PRINT ABS{7*(-5))
35

Ok

3.2 ASC

Format:

Versions

Action:

Example

:

ASC(X$)

8K, Extended, Disk

Returns a numerical value that is the ASCII code
of the first character of the string X$, (See
Appendix M for ASCII codes.) If X$ is null, an
"Illegal function call" error is returned.

10 X$ = "TEST"
20 PRINT ASC{X$)
RUN
84

Ok

See the CHR$ function
conversion.

for ASCII-to-string

BASIC-80 FUNCTIONS Page 3-3

3-3 ATN

Format: ATN(X)

Versions: 8K, Extended, Disk

Action: Returns the arctangent of X in radians. Result
is in the range -pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
ATN is always performed in single precision.

Example: 10 INPUT X
20 PRINT ATN(X)
RUN
? 3
1.24905

Ok

3.4 CDBL

Format: CDBL(X)

Versions: Extended , Disk

Action: Converts X to a double precision number

Example: 10 A = 454.67
20 PRINT A;CDBL(A)
RUN
454.67 454.6700134277344

Ok

BASIC-80 FUNCTIONS Page 3-4

3.5 CHR$

Format: CHR$(I)

Versions: 8K, Extended, Disk

Action: Returns a string whose one element has ASCII
code I. (ASCII codes are listed in Appendix M.)
CHR$ is commonly used to send a special
character to the terminal . For instance , the
BEL character could be sent (CHRS (7)) as a
preface to an error message , or a form feed
could be sent (CHR$(12)) to clear a CRT screen
and return the cursor to the home position.

Example: PRINT CHR$(66)
B
Ok
See the ASC function for
conversion.

ASCI I-to-numeric

3,6 CINT

Format: CINT{X)

Versions: Extended, Disk

Action: Converts X to an integer by rounding the
fractional portion. If X is not in the range
-32768 to 32767, an "Overflow" error occurs.

Example: PRINT CINT(45-67)
46

Ok

See the CDBL and CSNG functions for converting
numbers to the double precision and single
precision data type. See also the FIX and INT
functions, both of which return integers.

BASIC-BO FUNCTIONS Page 3-5

3.7 COS

Format: COS(X)

Versions: 8K, Extended, Disk

Action : Returns the cosine of
calculation of COS (X)

precision.

Example: 10 X = 2*COS(.4)
20 PRINT X
RUN
1.84212

Ok

X in radians. The
is performed in single

3.8 CSNG

Format: CSNG(X)

Versions: Extended, Disk

Action: Converts X to a single precision number.

Example: 10 A# = 975.3421#
20 PRINT A#; CSNG(A#)
RUN
975.3421 975.342

Ok

See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types-

8ASIC-80 FUNCTIONS Page 3-6

3.9 CVI, CVS, CVD

Format:

Version

Action:

Example:

CVI(<2-byte
CVS(<4-byte
CVD{<8-byte

Disk

string>)
string>)
string>)

Convert string values to numeric values.
Numeric values that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to
an integer. CVS converts a 4-byte string to a
single precision number. CVD converts an 8-byte
string to a double precision number.

70 FIELD #1,4 AS N? , 12 AS B$, ...
80 GET #1
90 Y=CVS(N$)

See also MKI5, MKS$, MKD$, Section 3-25 and
Appendix B,

3.10 EOF

Format: EOF(<file number>)

Version: Disk

Action: Returns -1 (true) if the end of a sequential
file has been reached. Use EOF to test for

end-of-file while INPUTting, to avoid "Input
past end" errors.

Example: 10 OPEN "I'M, "DATA"
20 C=0
30 IF EOF(l) THEN 100
40 INPUT #1,M(C)
50 C=C+l:GOTO 30

BASIC-80 FUNCTIONS Page 3-7

3.11 E)CP

Format; EXP(X)

Versions; 8K, Extended, Disk

Action: Returns e to the power of X. X must be
<=87.3365. If EXP overflows, the "Overflow"
error message is displayed, machine infinity
wi th the appropr iate sign is suppl ied as the
result, and execution continues.

Example; 10 X = 5
20 PRINT EXP (X-1)
RUN
54.5982

Ok

3.12 FIX

Format: FIX(X)

Versions: Extended, Disk

Action: Returns the truncated integer part of X. PIX(X)
is equivalent to SGN (X) *INT(ABS (X)) - The major
difference between FIX and INT is that FIX does
not return the next lower number for negative X.

Examples: PRINT
58

Ok

PRINT
-58
Ok

FIX(58.75)

FIX{-58.7S)

BASIC-80 FUNCTIONS Page 3-B

3.13 FRE

Format: FRE(O)
FRE(X$)

Versions: 8K, Extended, Disk

Action: Arguments to FRE are dummy arguments, FRE
returns the number of bytes in memory not being
used by BASlC-80.

FRE("") forces a garbage collection before
returning the number of free bytes- BE
PATIENT: garbage collection may take 1 to 1-1/2
minutes- BASIC will not initiate garbage
collection until all free memory has been used
up. Therefore, using FRE("") periodically will
result in shorter delays for each garbage
collection.

Example: PRINT FRE(O)
14542

Ok

3.14 HEX$

Format: HEXS(X)

Versions: Extended, Disk

Action: Returns a string which represents the
hexadecimal value of the decimal argument. X is
rounded to an integer before HEX$ (X) is
evaluated.

Example; 10 INPUT X
20 A$ = HEX$(X)
30 PRINT X "DECIMAL IS " A$ " HEXADECIMAL"
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL

Ok

See the OCT$ function for octal conversion-

BASIC-80 FUNCTIONS Page 3-9

3.15 INKEY$

Format: INKEY$

Action: Returns either a one-character string containing
a character read from the terminal or a null
string if no character is pending at the
terminal. No characters will be echoed and all
characters are passed through tto the program
except for Control-C, which terminates the
program. (With the BASIC Compiler, Control-C is
also passed through to the program.)

Example: 1000 'TIMED INPUT SUBROUTINE
1010 RESPONSE$=""
1020 FOR I%=1 TO TIMELIMIT%
1030 A$=INKEy$: IF LEN(A$)=0 THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT%=0 : RETURN
1050 RESPONSE$=RESPONSE$+A$
1060 NEXT 1%
1070 TIME0UT%=1 t RETURN

3.16 INP

Format:

Versions:

Action:

Example:

INP (I)

8K, Extended, Disk

Returns the byte read from port I. I must be in
the range to 255. INP is the complementary
function to the OUT statement. Section 2,47.

100 A=INP(255)

BASIC-BO FUNCTIONS Page 3-10

3.17 INPUT$

Format:

Version:

Action:

Example 1:

INPUT${Xt,[nYn

Disk

Returns a string of X characters, read from the
terminal or from file number Y. If the terminal
is used for input, no characters will be echoed
and all control characters are passed through
except Control-C, which is used to interrupt the
execution of the INPUT$ function.

5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL
10 0PEN"I",1,"DATA*'
20 IF EOF(l) THEN 50
30 PRINT HEX$ (ASC (INPUTS (1, #1)))

;

40 GOTO 20
50 PRINT
60 END

Example 2

100 PRINT "TYPE P TO PROCEED OR S TO STOP'
110 X$=INPUTS(1)
120 IF X?="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100

BASIC-80 FUNCTIONS Page 3-11

3.18 INSTR

Format : INSTR ([I ,] X$, Y$)

Versions: Extended , Disk

Action: Searches for the first occurrence of string Y5
in X$ and returns the position at which the
match is found. Optional offset I sets the
position for starting the search. I must be in
the range 1 to 255. If I>LEN(X$) or if X$ is
null or if Y$ cannot be found, INSTR returns 0.
If y$ is null, INSTR returns I or 1- X$ and Y$
may be string variables, string expressions or
string literals.

Example: 10 X$ = "ABCDEB"
20 Y$ = "B"
30 PRINT INSTR(X$,Y$) ;INSTR(4,X$,y$)
RUN
2 6

Ok

NOTE: If 1=0 is specified, error message ILLEGAL
ARGUMENT IN <line number >" will be returned

BASIC-*80 FUNCTIONS Page 3-12

3-19 INT

Format:

Versions:

Action:

Examples:

INT(X)

8K, Extended, Disk

Returns the largest integer <=X.

PRINT INT(99.89)
99

Ok

PRINT INT{-12.11)
-13
Ok

See the FIX and CINT functions which also return
integer values.

3.20 LEFT$

Format : LEFT$ (X$, I)

Versions: 8K, Extended r Disk

Action: Returns a string comprised of the leftmost I

characters of X$. I must be in the range to
255- If I is greater than LEN(X$) , the entire
string (X$) will be returned. If 1=0, the null
string (length zero) is returned.

Example: 10 AS = "BASIC-80"
20 B$ = LEFT$(A$,5)
30 PRINT B$
BASIC
Ok

Also see the MID? and RIGHTS functions-

BASIC-80 FUNCTIONS Page 3-13

3.21 LEN

Format: LEN{X$)

Versions; 8K, Extended, Disk

Action: Returns the number of characters in X$
Non-printing characters and blanks are counted*

Example: 10 X$ = "PORTLAND, OREGON"
20 PRINT LEN(X$)
16

Ok

3.22 LOC

Format:

Version:

Action:

Example:

LOC (< file number >)

Disk

With random disk files , LOC returns the record
number just read or written from a GET or PUT-
If the file was opened but no disk I/O has been
performed yet, LOC returns a 0- With sequential
files, LOC returns the number of sectors (128
byte blocks) read from or written to the file
since it was OPENed-

200 IF LOC(1)>50 THEN STOP

BASIC-80 FUNCTIONS Page 3-14

3.23 LOG

Format: LOG{X)

Versions: 8K, Extended, Disk

Action: Returns the natural logarithm of X.
greater than zero.

Example: PRINT LOG (45/7)
1.86075

Ok

must be

3.24 LPOS

Format: LPOS(X)

Versions: Extended, Disk

Action: Returns the current position of the line printer
print head within the line printer buffer- Does
not necessarily give the physical position of
the print head. X is a dummy argument.

Example: 100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

BASIC-80 FUNCTIONS Page 3-15

3.25 MID$

Format:

Versions

Action;

Example:

NOTE:

MID${XS,I[,J])

8K, Extended, Disk

Returns a string of length J characters from X$
beginning with the Ith character. I and J must
be in the range 1 to 255. If J is omitted or if
there are fewer than J characters to the right
of the Ith character , all rightmost characters
beginning with the Ith character are returned.
If I>LEN(X$), MID$ returns a null string.

LIST
10 A$="GOOD "

20 B$="MORNING EVENING AFTERNOON"
30 PRINT A?;MIDS(B$,9,7)
Ok
RUN
GOOD EVENING
Ok

Also see the LEFTS and RIGHT? functions.

If 1=0 is specified, error message "ILLEGAL
ARGUMENT IN <line number>" will be returned-

3.26 MKI$, MKS$, MKD$

Format: MKI? {<integer expression>)
MKS? (<single precision expression>)
MKDS (<double precision expression>)

Version: Disk

Action: Convert numeric values to string values. Any
numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI5 converts an integer
to a 2-byte string- MKSS converts a single
precision number to a 4-byte string- MKD$
converts a double precision number to an 8-byte
string -

Example: 90 AMT=(K+T)
100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET DS = MKSS(AMT)
120 LSET NS = A$
130 PUT #1

BASIC-80 FUNCTIONS Page 3-16

3,27 OCT$

Format: OCT$(X)

Versions: Extended, Disk

Action: Returns a string which represents the octal
value of the decimal argument, X is rounded to
an integer before OCT$ (X) is evaluated.

Example: PRINT OCT$(24)
30

Ok

See the HEX$
conversion-

function for hexadecimal

3-28 PEEK

Format: PEEK (I)

Versions: 8K, Extended, Disk

Action: Returns the byte (decimal integer in the range
to 255) read from memory location I. With the
8K version of BASIC-80, I must be less than
32768, To PEEK at a memory location above
32768, subtract 65536 from the desired address-
With Extended and Disk BASIC-80, I must be in
the range to 65536, PEEK is the complementary
function to the POKE statement. Section 2.48,

Example: A=PEEK(&H5A00)

BASIC-80 FUNCTIONS Page 3-17

3.29 POS

Format: POS (I)

Versions: 8K, Extended, Disk

Action: Returns the current cursor position. The
leftmost position is 1. X is a dummy argument.

Example: IF POS(X)>60 THEN PRINT CHR${13)

Also see the LPOS function-

3.30 RIGHT?

Format : RIGHT? (X$, I)

Versions: 8K, Extended, Disk

Action: Returns the rightmost I characters of string X$.
If I=LEN(X$), returns X$. If 1=0, the null
string (length zero) is returned.

Example: 10 A$="DISK BASIC-80"
20 PRINT RIGHT? (A5, 8)
RUN
BASIC-80
Ok

Also see the MID? and LEFT? functions.

BASIC-80 FUNCTIONS Page 3-18

3.31 RND

Format: RND [(X)

J

Versions: 8K, Extended, Disk

Action: Returns a random number between and 1. The
same sequence of random numbers is generated
each time the program is RUN unless the random
number generator is reseeded (see RANDOMIZE,
Section 2.53). However, X<0 always restarts the
same sequence for any given X.

X>0 or X omitted generates the next random
number in the sequence. X=0 repeats the last
number generated-

Exaraple: 10 FOR 1=1 TO 5

20 PRINT INT[RND*100)

;

30 NEXT
RUN
24 30 31 5i 5

Ok

3.32 SGN

Format: SGN(X)

Versions: 8K, Extended, Disk

Action: If X>0, SGN(X) returns 1.

If X=0, SGN(X) returns 0-

If X<0, SGN(X) returns -1.

Example: ON SGN(X)+2 GOTO 100,200,300 branches to 100 if

X is negative, 200 if X is and 300 if X is

positive.

BASIC-80 FUNCTIONS Page 3-19

3.33 SIN

Format: SIN{X)

Versions: 8K, Extended, Disk

Action: Returns the sine of X in radians
calculated in single
COS(X)=SIN(X+3-14159/2) .

Example: PRINT SIN (1.5)
.997495

Ok

SIN(X) is
precision.

3.34 SPACE$

Format; SPACE? (X)

Versions: Extended, Disk

Action: Returns a string of spaces of length X. The
expression X is rounded to an integer and must
be in the range to 255,

Example: 10 FOR I = 1 TO 5

20 X$ = SPACE$(I)
30 PRINT X$;I
40 NEXT I

RUN
1
2
3
4

5

Ok

Also see the SPC function.

BASIC-80 FUNCTIONS Page 3-20

3.35 SPC

Format:

Versions:

Action:

Example:

SPC (I)

8K, Extended, Disk

Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I
must be in the range to 255. A*;' is assumed
to follow the SPC{I) command.

PRINT "OVER" SPC (15) "THERE-
OVER THERE
Ok

Also see the SPACE$ function-

3.36 SQR

Format: SQR(X)

Versions: 8K, Extended, Disk

Action: Returns the square root of X.

Example: 10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
RUN
10 3.16228
15 3.87298
20 4.47214
25 5

Ok

X must be >=0

BASIC-80 FUNCTIONS Page 3-21

3.37 STR$

Format: STR$(X)

Versions: 8K, Extended, Disk

Action: Returns a string representation of the value of
X.

Example: 5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER" ;N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,500

Also see the VAL function-

3.38 STRING$

Formats: STRING$(I,J)
STRING? (I, X$)

Versions: Extended, Disk

Action: Returns a string of length I whose characters
all have ASCII code J or the first character of
X§.

Example: 10 X$ = STRING$ {10 , 45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN

MONTHLY REPORT
Ok

BASIC-80 FUNCTIONS Page 3-22

3.39 TAB

Format: TAB (I)

Versions; 8K, Extended, Disk

Action: Spaces to position I on the terminal. If the
current print position is already beyond space
I, TAB goes to that position on the next line.
Space 1 is the leftmost position, and the
rightmost position is the width minus one. I

must be in the range 1 to 255. TAB may only be
used in PRINT and LPRINT statements-

Example: 10 PRINT "NAME" TAB (25) "AMOUNT" : PRINT
20 READ A$,B$
30 PRINT A$ TAB (25) B$
40 DATA "G- T. JONES" , "?25- 00"
RUN
NAME AMOUNT

G. T. JONES
Ok

$25.00

5.40 TAN

Format: TAN(X)

Versions: 8K, Extended, Disk

Action: Returns the tangent of X in radians- TAN (X) is
calculated in single precision. If TAN
overflows, the "Overflow" error message is
displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues-

Example: 10 Y = Q*TAN(X)/2

BASIC-80 FUNCTIONS Page 3-23

3.41 USR

Format :

Versions

Action:

Example:

USR[<digit>] (X)

8K, Extended, Disk

Calls the user's assembly language subroutine
with the argument X- <digit> is allowed in the
Extended and Disk versions only. <digit> is in
the range to 9 and corresponds to the digit
supplied with the DBF USR statement for that
routine- If <digit> is omitted, USRO is
assumed- See Appendix x.

40 B = T*SIN{Y)
50 C = USR(B/2)
60 D = USR(B/3)

3.42 VAL

Format: VAL(X$)

Versions: 8K, Extended, Disk

Action: Returns the numerical value of string XS. The
VAL function also strips leading blanks, tabs,
and linefeeds from the argument string- For
example,

VAL(" -3)

returns -3-

Example: 10 READ NAME$,CITY$, STATE$, ZIP$
20 IF VAL(2IP$)<90000 OR VAL (ZIP$) >96699 THEN
PRINT NAME$ TAB (25) "OUT OF STATE"
30 IF VAL(SIP$) >=90801 AND VAL { ZIP$) <=90815 THEN
PRINT NAME$ TAB (25) "LONG BEACH"

See the STRS
conversion.

function for numeric to string

BASIC-80 FUNCTIONS Page 3-24

3.43 VARPTR

Format 1:

Versions;

Format 2:

Version:

Action:

NOTE:

VARPTR (<vari able name>)

Extended, Disk

VARPTR (#<file number >)

Disk

Format 1

:

of data
value mus
to execu
function
name may
the addre
range 327
returned,
address.

Returns the address of the first byte
identified with <variable name>. A

t be assigned to <variable name> prior
tion of VARPTR. Otherwise an "Illegal
call" error results. Any type variable

be used (numeric, string, array) , and
ss returned will be an integer in the
67 to -32768. If a negative address is
add it to 65536 to obtain the actual

VARPTR is usually used to obtain the address of
a variable or array so it may be passed to an
assembly language subroutine . A function call
of the form VARPTR(A(0)) is usually specified
when passing an array, so that the
lowest-addressed element of the array is
returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

Format 2: For sequential files, returns the
starting address of the disk I/O buffer assigned
to <f ile number >. For random files, returns the
address of the FIELD buffer assigned to <file
number>.

In Standalone Disk BASIC, VARPTRC5<f ile number>)
returns the first byte of the file block- See
Appendix H.

Example 100 X=USR(VARPTR(Y)

)

APPENDIX C

Assembly Language Subroutines

All versions of BASIC-80 have provisions for interfacing
with assembly language subroutines- The USR function allows
assembly language subroutines to be called in the same way
BASIC'S intrinsic functions are called.

NOTE

The addresses of the DEINT,
GIVABF, MAKINT and FRCINT
routines are stored in
locations that must be
supplied individually for
different implementations of
BASIC.

C.l MEMORY ALLOCATION

Memory space must be set aside for an assembly language
subroutine before it can be loaded. During initialization,
enter the highest memory location minus the amount of memory
needed for the assembly language subroutine (s) . BASIC uses
all memory available from its starting location up, so only
the topmost locations in memory can be set aside for user
subroutines.

When an assembly language subroutine is called , the stack
pointer is set up for 8 levels (15 bytes) of stack storage.
If more stack space is needed , BASIC ' s stack can be saved
and a new stack set up for use by the assembly language
subroutine. BASIC'S stack must be restored, however, before
returning from the subroutine.

Page C-2

The assembly language subroutine may be loaded into memory
by means of the system monitor, or the BASIC POKE statement,
or (if the user has the MACRO-80 or FORTRAN-80 package)
routines may be assembled with MACRO-80 and loaded using
LINK-80.

C.2 ySR FUNCTION CALLS - 8K BASIC

The starting address of the assembly language subroutine
must be stored in USRLOC, a two-byte location in memory that
is supplied individually with different implementations of
BASIC-80. With 8K BASIC, the Starting address may be POKEd
into USRLOC. Store the low order byte first, followed by
the high order byte.

The function USR will call the routine whose address is in
USRLOC- Initially USRLOC contains the address of ILLFUN,
the routine that gives the "Illegal function call" error.
Therefore, if USR is called without changing the address in
USRLOC, an "Illegal function call" error results.

The format of a USR function call is

USR(argument)

where the argument is a numeric expression. To obtain the
argument, the assembly language subroutine must call the
routine DEINT. DEINT places the argument into the D,E
register pair as a 2-byte, 2's complement integer- (If the
argument is not in the range -32768 to 32767, an "Illegal
function call" error occurs.)

To pass the result back from an assembly language
subroutine, load the value in register pair [A,B] , and call
the routine GIVABF. If GIVABF is not called, USR{X) returns
X. To return to BASIC, the assembly language subroutine
must execute a RET instruction-

For example , here is an assembly
multiplies the argument by 2

:

language subroutine that

USRSUB: CALL DEINT
XCHG
DAD H
MOV A,H
MOV B,L
JMP GIVABF

;put arg in D,E
;move arg to H,L
7H,L=H,L+H,L
;move result to A,B

;pass result back and RETurn

Note that valid results will be obtained from this routine
for arguments in the range -16384<=x<=16383 - The single
instruction JMP GIVABF has the same effect as:

Page C-3

CALL GIVABF
RET

To return additional values to the program, load them into
memory and read them with the PEEK function.

There are several methods by which a program may call more
than one USR routine. For example, the starting address of
each routine may be POKEd into USRLOC prior to each USR
call, or the argument to USR could be an index into a table
of USR routines.

C-3 USR FUNCTION CALLS - EXTENDED AND DISK BASIC

In the Extended and Disk versions, the format of the USR
function is

USR[<digit>] (argument)

where DIGIT> is from to 9 and the argument is any numeric
or string expression. <digit> specifies which USR routine
is being called, and corresponds with the digit supplied in
the DEF USR statement for that routine. If <digit> is
omitted, USRO is assumed- The address given in the DEF USR
statement determines the starting address of the subroutine.

When the USR function call is made, register A contains a
value that specifies the type of argument that was given.
The value in A may be one of the following:

Value in A Type of Argument

2 Two-byte integer (two' s complement)

3 String

4 Single precision floating point number

8 Double precision floating point number

If the argument is a number , the [H,L] register pair points
to the Floating Point Accumulator (FAC) where the argument
is stored-

If the argument is an integer

:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and

Page C-4

FAC-2 contains the middle 8 bits of mantissa and
FAC-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied) - Bit 7 is
the sign of the number (O=positive, l=negative)

•

FAC is the exponent minus 128, and the binary
point is to the left of the most significant
bit of the mantissa.

If the argument is a double precision floating point number:

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits)

-

If the argument is a string, the (D,E3 register pair points
to 3 bytes called the "string descriptor .

" Byte of the
string descriptor contains the length of the string (0 to
255) . Bytes 1 and 2, respectively, are the lower and upper
8 bits of the string starting address in string space.

CAUTION: If the argument is a string literal in the
program, the string descriptor will point to program text.
Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +"" to the string
literal in the program. Example:

AS = "BASIC-80"+""

This will copy the string literal into string space and will
prevent alteration of program text during a subroutine call.

Usually, the value returned by a USR function is the same
type (integer, string, single precision or double precision)
as the argument that was passed to it- However, calling the
MAKINT routine returns the integer in [H,L] as the value of
the function, forcing the value returned by the function to
be integer- To execute MAKINT, use the following sequence
to return from the subroutine:

PUSH H ;save value to be returned
LHLD XXX ;get address of MAKINT routine
XTHL ; save return on stack and

;get back [H,L]
RET ; return

Also, the argument of the function, regardless of its type

,

may be forced to an integer by calling the FRCINT routine to
get the integer value of the argument in [H,L] . Execute the
following routine

:

LXI H ;get address of subroutine
;continuation
;place on stack
;get address of FRCINT

PUSH H
LHLD XXX
PCHL

SUBl: . - a •

Page C-5

C,4 CALL STATEMENT

Extended and Disk BASIC-80 user function calls may also be
made with the CALL statement. The calling sequence used is
the same as that in Microsoft's FORTRAN, COBOL and BASIC
compilers.

A CALL statement with no arguments generates a simple "CALL"
instruction. The corresponding subroutine should return via
a simple "RET." (CALL and RET are 8080 opcodes - see an 8080
reference manual for details-)

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument in the CALL
argument list, a parameter is passed to the subroutine.
That parameter is the address of the low byte of the
argument. Therefore, parameters always occupy two bytes
each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present) , and 3 in BC
(if present) -

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL.

2. Parameter 2 in DE-

3- Parameters 3 through n in a contiguous data
block, BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3).

Note that, with this scheme, the subroutine must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. There are no checks for
the correct number or type of parameters-

If the subroutine expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument
transfer routine is named $AT (located in the FORTRAN
library, FORLIB.REL), and is called with HL pointing to the
local data area, BC pointing to the third parameter, and A
containing the number of arguments to transfer (i.e. , the
total number of arguments minus 2) . The subroutine is

Page C-6

responsible for saving the first two parameters before
calling $AT. For example, if a subroutine expects 5
parameters, it should look like:

SUBR: SHLD Pi
XCHG
SHLD P2
MVI A, 3

LXI H,P3
CALL $AT

;SAVE PARAMETER 1

SAVE PARAMETER 2

NO- OF PARAMETERS LEFT
POINTER TO LOCAL AREA
TRANSFER THE OTHER 3 PARAMETERS

[Body of subroutine]

RET
PI: DS 2
P2: DS 2
P3: DS 6

RETURN TO CALLER
SPACE FOR PARAMETER 1
SPACE FOR PARAMETER 2
SPACE FOR PARAMETERS 3-5

A listing of the argument transfer routine $AT follows.

00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300

[B,C]
[H,L]
[A]

$AT:

ATI:

ARGUMENT TRANSFER
POINTS TO 3RD PARAM.
POINTS TO LOCAL STORAGE FOR PARAM 3

CONTAINS THE # OF PARAMS TO XFER (TOTAL-2)

ENTRY
XCHG
MOV
MOV
MOV
INX
MOV
INX
XCHG
MOV
INX
MOV
INX
XCHG
DCR
JNZ
RET

$AT

H,B
L,C
CM
H
B,M
H

M,C
H
M,B
H

A
ATI

;SAVE [H,L] IN [D,E]

;[H,L] = PTR TO PARAMS

; [B,C1 - PARAM ADR
;[H,L] POINTS TO LOCAL STORAGE

STORE PARAM IN LOCAL AREA
SINCE GOING BACK TO ATI
TRANSFERRED ALL PARAMS?
NO, COPY MORE
YES, RETURN

Page C-7

When accessing parameters in a subroutine, don*t forget that
they are pointers to the actual arguments passed,

NOTE

It is entirely up to the
programmer to see to it that
the arguments in the calling
program match in number , type ,

and length with the parameters
expected by the subroutine.
This applies to BASIC
subroutines, as well as those
written in assembly language.

C.5 INTERRUPTS

Assembly language subroutines can be written to handle
interrupts. All interrupt handling routines should save the
stack, register A-t. and the PSW. Interrupts should always
be re-enabled before returning from the subroutine. , since
an interrupt automatically disables all further interrupts
once it is received. The user should be aware of which
interrupt vectors are free in the particular version of
BASIC that has been supplied. (Note to CP/M users: In CP/M
BASIC, all interrupt vectors are free.)

APPENDIX D

BASIC-80 with the CP/M Operating System

The CP/M version of BASIC-80 (MBASIC) is supplied on a
standard size 3740 single density diskette. The name of the
file is MBASIC-COM- (A 28K or larger CP/M system is
recommended.)

To run MBASIC, bring up CP/M and type the following:

A>MBASIC <carriage return>

The system will reply:

xxxx Bytes Free
BASIC-80 Version 5-0
(CP/M Version)
Copyright 1978 (C) by Microsoft
Created: dd-mmm-yy
Ok

MBASIC is the same as Disk BASIC-80 as described in this
manual, with the following exceptions:

D-1 INITIALIZATION

The initialization dialog has been replaced by a set of
options which are placed after the MBASIC command to CP/M-
The format of the command line is:

A>MBASIC [<filename>] [/F:<number of f iles>] [/M: <highest memory location
[/S:<maxiraum record size>]

If <f ilename> is present, MBASIC proceeds as if a RUN
<filename> command were typed after initialization is
complete. A default extension of .BAS is used if none is
supplied and the filename is less than 9 characters long.
This allows BASIC programs to be executed in batch mode
using the SUBMIT facility of CP/M. Such programs should
include a SYSTEM statement (see below) to return to CP/M
when they have finished, allowing the next program in the

Page D-2

batch stream to execute.

If /F:<number of files> is present, it sets the number of
disk data files that may be open at any one time during the
execution of a BASIC program. Each file data block
allocated in this fashion requires 166 bytes of memory- If
the /F option is omitted, the number of files defaults to 3.

The /MKhighest memory location> option sets the highest
memory location that will be used by MBASIC- In some cases
it is desirable to set the amount of memory well below the
CP/M ' s FDOS to reserve space for assembly language
subroutines- In all cases, <highest memory location> should
be below the start of FDOS (whose address is contained in
locations 6 and 7) . If the /M option is omitted, all memory
up to the start of FDOS is used.

/S:<maximum record size> may be added at the end of the
command line to set the maximum record size for use with
random files. The default record size is 128 bytes.

NOTE

<number of files> , <highest
memory location>, and <maximum
record size> are numbers that
may be either decimal, octal
(preceded by SO) or
hexadecimal (preceded by &H) •

Examples:

A>MBASIC PAYROLL. BAS

A>MBASIC INVENT/F:6

A>MBASIC /M:32768

Use all memory and 3 files,
load and execute PAYROLL. BAS.

Use all memory and 6 files,
load and execute INVENT- BAS.

Use first 32k of memory and
3 files.

A>MBASIC DATACK/F:2/M:&H9 000
Use first 36K of memory, 2
files, and execute DATACK.BAS

D'2 DISK FILES

Disk filenames follow the normal CP/M naming conventions.
All filenames may include A; or B: as the first two
characters to specify a disk drive, otherwise the currently
selected drive is assumed- A default extension of -BAS is

Page D-3

used on LOAD, SAVE, MERGE and RUN <filename> commands if no
". " appears in the filename and the filename is less than 9

characters long.

For systems with CP/M 2.x, large random files are supported.
The maximum logical record number is 32767. If a record
size of 256 is specified, then files up to 8 megabytes can
be accessed.

D.3 FILES COMMAND

Format; FILES [<filename>]

Purpose: To print the names of files residing on the
current disk.

Remarks: If <filename> is omitted, all the files on the
currently selected drive will be listed.
<filename> is a string formula which may contain
question marks (?) to match any character in the
filename or extension. An asterisk (*) as the
first character of the filename or extension
will match any file or any extension.

Examples: FILES
FILES "*.BAS"
FILES "B:*.*"
FILES "TEST7.BAS"

D.4 RESET COMMAND

Format:

Purpose:

Remarks:

RESET

To close all disk files and write the
information to a diskette before it
from a disk drive.

directory
is removed

Always execute a RESET command before removing a

diskette from a disk drive. Otherwise, when the
diskette is used again, it will not have the
current directory information written on the
directory track,

RESET closes all open files on all drives and
writes the directory track to every diskette
with open files.

Page D-4

D.5 LOF FUNCTION

Format: XiOF{<file nuinber>)

Action: Returns the number of records present in the
last extent read or written. If the file does
not exceed one extent (128 records) , then LOF
returns the true length of the file.

Example: 110 IF NUM%>L0F(1) THEN PRINT "INVALID ENTRY"

D.6 EOF

With CP/M, the EOF function may be used with random files.
If a GET is done past the end of file, EOF will return -1.
This may be used to find the size of a file using a binary
search or other algorithra-

D-7 MISCELLANEOUS

1- CSAVE and CLOAD are not implemented.

2. To return to CP/M, use the SYSTEM command or
statement. SYSTEM closes all files and then
performs a CP/M warm start. Control-C always
returns to MBASIC, not to CP/M.

3. FRCINT is at 103 hex and MAKINT is at 105 hex-
(Add 1000 hex for ADDS versions, 4000 for SBC CP/M
versions-

)

INDEX

% INCLUDE L-4

ABS 3-2

Addition 1-10
ALL 2-4, 2-9
Arctangent 3-3

Array variables 1-7, 2-9, 2-19, L-5
Arrays 1-7, 2-7, 2-12, 2-25
ASC 3-2
ASCII codes 3-2, 3-4
ASCII format 2-4, 2-50, 2-78, L-1
Assembly language subroutines 2-3, 2-17, 2-60, 3-23 to 3-24,

C-1, L-2
ATN 3-3, L-4
ATTR$ H-5
ATTRIB E-2
AUTO 1-2, 2-2

Boolean operators 1-12

CALL 2-3, C-5, L-2
Carriage return 1-3, 2-37, 2-42 to 2-43,

2-84 to 2-86
Cassette tape , • 2-7, 2-12
CDBL 3-3
CHAIN 2-4, 2-9, L-2
Character set 1-3
CHR$ 3-4
CINT 3-4
CLEAR 2-6, A-1, L-2
CLOAD 2-7
CLOAD* - - . , 2-7
CLOAD? 2-7
CLOSE 2-8, B-3, B-8
Command level 1-1
COMMON 2-4, 2-9, L-2
Concatenation 1-15
Constants 1-4
CONT 2-11, 2-42
Control characters 1-4
Control-A 2-23
COS 3-5, L-4
CP/M 2-47, 2-50, 2-77 to 2-78,

B-1, D-1
CSAVE 2-12
CSAVE* 2-12
CSNG 3-5
CVD 3-6, B-8
CVI 3-6, B-8
CVS 3-6, B-8

DATA 2-13, 2-75
DEF FN 2-14
DEF USR 2-17, 3-23
DEFDBL 1-7, 2-16, L-2
DEFINT 1-7, 2-16, L-2
DEFSNG 1-7, 2-16, L-2
DEFSTR 1-7, 2-16, L-2
DEINT C-1, G-1
DELETE 1-2, 2-4, 2-18
DIM 2-19, L-3
Direct mode 1-lr 2-35, 2-55, L-1
Division 1-10
Double precision 1-5, 2-16, 2-61, 3-3, A-1,

L-4
DSKIS H-2, H-13
DSKO$ H-2, H-13

EDIT 1-2, 2-20
Edit mode 1-4, 2-20, L-1
END 2-8, 2-11, 2-24, 2-33,

L-3
EOF 3-6, B-3, B-5, D-4
ERASE 2-25, L-3
ERL 2-26
ERR 2-26
ERROR 2-27
Error codes 1-16, 2-26 to 2-27, J-1
Error messages 1-16, J-1, L-2
Error trapping 2-26 to 2-27, 2-55, 2-76,

B-7, L-3
Escape 1-3, 2-20
EXP 3-7, L-4
Exponentiation 1-10 to 1-11, L-4
Expressions --.. 1-9

FIELD 2-29, B-8, H-11
FILES D-3, H-2
FIX 3-7
FOR... NEXT 2-30, A-1, L-3
FORMAT program H-10
FPOS H-2
FRCINT C-1, C-4, D-4, G-1
FRE 3-8
Functions 1-14 , 2-14 , 3-1 , K-1

GET 2-29 , 2-32, B-8 , D-4

,

H-7
GIVABF C-1 to C-2, G-1
GIVINT E-2
GOSUB 2-33
GOTO 2-33 to 2-34

HEX$ 3-8
Hexadecimal 1-5, 3-8

IF. . .GOTO 2-35
IF. . .THEN 2-26, 2-35
IF. . .THEN. . .ELSE 2-35

Indirect mode 1-1
INKEY$ 3-9
INP 3-9
INPUT 2-11, 2-29, 2-37, A-2

,

B-9
INPUT$ 3-10
INPUT# H-7
INPUT# B-3
INPUT* 2-39
INSTR 3-11
INT 3-7, 3-12
Integer 3-4, 3-7, 3-12
Integer division 1-11
INTEL G-1
Interrupts C-7
ISIS-II 2-77, E-1

KILL 2-40, B-2

LEFT$ 3-12
LEN 3-13
LET 2-29, 2-41, B-9
LFILES H-2
Line feed 1-2, 2-37, 2-42 to 2-43,

2-85 to 2-86, L-1
LINE INPUT 2-42
LINE INPUT# B-3
LINE INPUT# 2-43
Line numbers 1-1 to 1-2, 2-2, 2-74,

L-2
Line printer 2-46, 2-48, 2-84, 3-14,

A-2, E-2
Lines 1-1, L-1
LIST 1-2, 2-44
LLIST 2-46, F-1, G-2
LOAD 2-47, 2-78, B-1
LOG 3-13, B-3, B-5, B-8 , H-2
LOF D-4, H-2
LOG 3-14, L-4
Logical operators 1-12
Loops 2-30 , 2-83
LPOS 2-84, 3-14
LPRINT 2-48, 2-84, F-1, G-2
LPRINT USING 2-48
LSET 2-49, B-8

MAKINT C-1, C-4, D-4, E-2, G-1
MBASIC D-1
MDS G-1
MERGE 2-4, 2-50, B-2
MID$ 2-51, 3-15, I-l
MKD$ 3-15, B-8
MKI$ 3-15, B-8
MKS$ 3-15, B-8
MOD operator 1-11
Modulus arithmetic 1-11
MOUNT H-3
Multiplication 1-10

NAME 2-52
Negation 1-10
NEW 2-8, 2-53
NULL 2-54
Numeric constants 1-4
Numeric variables 1-7

0CT5 3-16

Octal 1-5 r 3-16
ON ERROR GOTO ..-.---.. 2-55, L-3
ON..-GOSUB 2-56
ON.. -GOTO 2-56
OPEN 2-8, 2-29, 2-57, B-3,

B-8, H-5 to H-6
Operators 1-9, 1-11 to 1-13, 1-15,

L-4
OPTION BASE 2-58
OUT 2-59
Overflow 1-11, 3-7, 3-22, A-1,

L-4
Overlay 2-4

Paper tape 2-54
PEEK 2-60, 3-16
POKE 2-60, 3-16
POS 2-84, 3-17
PRINT 2-61, A-1
PRINT USING 2-63, A-2
PRINT! H-7
PRINT# USING B-5
PRINT# USING B-3
PRINT* B-3
PRINT* USING 2-67
PRINT* 2-67
Protected files 2-78, A-2, B-2
PUT 2-29, 2-69, B-8, H-7

Random files 2-29, 2-32, 2-40, 2-49,
2-57, 2-69, 3-13, 3-15,
B-7, D-4

Random numbers 2-70, 3-18
RANDOMIZE 2-70, 3-18, A-1
READ 2-71, 2-7 5
Relational operators 1-11
REM 2-73, L-3
REMOVE H-3
RENUM 2-4, 2-26, 2-74
RESET D-3
RESTORE 2-75
RESUME 2-76, L-3
RETURN 2-33
RIGHT? 3-17
RND 2-70, 3-18, A-1
RSET 2-49, B-8
Rubout 1-3, 1-15, 2-21
RUN 2-77 to 2-78, B-2, L-2

SAVE 2-47, 2-77 to 2-78, B-1

SBC G-1
Sequential files 2-39 to 2-40, 2-43, 2-57,

2-67, 2-86, 3-6, 3-13,
B-3

SET H-4
SGN 3-18
SIN 3-19, L-4
Single precision 1-5, 2-16, 2-51, 3-5, A-1
Soace Requirements for variables 1-8
SPACES 3-19
SPC 3-20
SQR 3-20, L-4
Standalone Disk BASIC H-1
STOP 2-11, 2-24, 2-33, 2-79,

L-3
STR$ 3-21
String constants 1-4
String functions 3-6, 3-11 to 3-13, 3-15,

3-17, 3-21, 3-23, I-l
String operators 1-15
String space 2-6, 3-8, A-1, B-9
String Variables L-4
String variables 1-7, 2-16, 2-42 to 2-43
STRING? 3-21
Subroutines 2-3, 2-33, 2-56, C-1
Subscripts 1-7, 2-19, 2-58, L-3
Subtraction .*. 1-10
SWAP 2-80
SYSTEM D-4, F-1

TAB 3-22
Tab 1-3 to 1-4
TAN 3-22, L-4
TEKDOS F-1
TROFF 2-81, L-3
TRON 2-81, L-3

USR 2-17, 3-23, C-1
USRLOC C-2, G-1

VAL 3-23
Variables 1-6, L-5
VARPTR 3-24, H-10

WAIT 2-82
WEND 2-83, L-3
WHILE 2-83, L-3
WIDTH 2-84, A-2
WIDTH LPRINT 2-84, A-2
WRITE 2-85
WRITE# B-3
WRITE* 2-86

