
Nascom 2 Microcomputer

DOCUMENTATION

The Noscofn Microco/*ipi/<C'$ Otvi^ion of Lucdt Lofftc Lmtitod f080fV9S

tti6 fiQTii to Any ipoc$1itBUo<i >0 ff^'S tffOCf^OfB lo

iCCOf^9h^t With future d9¥9fOprnen($

jt Copyjft^bf I I ngir / /mted

Nascom Microcomputars
Division of Lucas Logic Limited

Welton Road Wedgnock Industrial Estate
Warwick CV34 5PZ
Tel: 0926 497733 Telex: 312333

Lucas Logic

CONTENTS

1. introduction

l-l Introduction to this naniia)
a. Conventions
b. Dotlnitions

1-2 Modes of Operation
1-3 Fornats

a. Lli>u&

b. fWIarks
c. Error Messages

1-4 Editing - elementary provisions
a. Correcting Single Characters
b. Correcting Lines
c. Correcting Whole Programs

1- 5 Program Input with Nas—sys

2. Expressions and Statements

2- 1 Fiqj re fis loti s

a. Constants
b. Variables
C, Array Variables - the OLM Statement
d. Opetnlois and Precedence

e. Logical Operations
f. The l.ET Statement

2-2 Branching and Loops
a. Branching

1) GOTO
2) IF...THEN
3) ON...GOTO

h. Loops - FOR and NEXT Statements
c. Subroutines - GOSL'B and RETURN Statements
d. Memory Llaitations

2- 3 Input/Output
a. INPUT
b. PRINT
C. DATA, READ, RESTORE
d. eSAVE, CLOAD
e. Miscellaneous

1) WAIT
21 PEEK,POKE
•3) DEEK,DOKE
k) OUT.INP

3. Functions

3- 1 Intrinsic Functions
3-2 Usor-Deflned Functions - the DEIF Statement
3- 3 Errors

4. Strings
4- 1 String Data
4-2 String Operations

a. Comparison Operators
b. String Expressions
c. Input/Output

4-3 String Functions

5. Additional Commands
a. Monitor

b. Width
e. CLS
d, SCREEN
e. LINES

t. SET
g. RESET
h. POINT

i. Data Input with Nas-sys
j. Printer Support
k. Aborting programs

Page

5.1

5.1

5.1
5.1

5.2

5.2

5.3

5. 3

5.5

5.6

5.9

5.9
5.9
5.9

5.10
5.10

5.10

5.10

5.11

PP/019

6. Lists and Directories 5.12

6-1 Commands 5.12
6-2 Statements 5.12
6-3 Intrinsic Functions 5.14
6-4 Special Characters 5.15
6-5 Error Messages 5.15
6-6 Reserved Words 5.16

7. Running Basic 5.17

Appendices

A. ASCII Character Codes 5.18
B. Speed and Space Hints 5.19
c. Mathematical Functions 5.20
D, ^'ascoIll BASIC and Macblne Language 5.21
E. Using the cassette Interface 5.22
F. Converting BASIC Programs Not written for Sascon Computers 5.23
Tt. Storage Used 5.24
II. Useful Books 5.25
I. Useful Routines 5.26
J. Single character Input of Reserved Words 5.27

Index

PF/019 Page 5.1

Issue 2

1. INTRODUCTION

NascoB 8K Basic Is based on Microsoft Basic, wbicb bas become the Industry standard, and offers
a high degree ol campataDiJity wltb (tl\>gi'aS$ published in books and magazines.

It offers 7-<ilglt floating point numbers in the range 1.70141E7S to 2.<)'597E-'?S, I'ull trigunonetrlc
functions, string handling and PIO control. User functions can bo written in machine code or
Basic to provide additional flexibility.

In addition, a number of extra features have been included:

- it works with Nosbug T2, T*» and Nas-sys
- with Nas-sys, provides powerful on screen, in line editing I'acilltles for data and programs.
- it has efear screen and cursor positioning functions for screen formatting.
- improved LIST command for use «ltb Xascon display.

support of printers or terminals attached o.g, via serial interface,
- Improved cassette handling with program Identification and error checking of both programs

and data (many olJior systems can allow data to be misread)
suppori. ol the Naseom graphics options using SET, HKSKT and nUNT commanas

1-1 Introduction to this manual

This manual doscrilios the features orjeied by Nasem 8K Basic. II is not Inteiidod to be used
as an Introduction to programming in Basic - many such books are avallablo elsewhere (see
Appendix H)

o. Conventlona. For the sake of simplicity, some conventions will be followed in discussing
the features of the Nascoa BASIC language.

1. Words printed in capital letters must be written exactly as shown. These are mostly
names of Instructions and commands.

2. Items enclosed in angle brackets (<>) must be supplied as explained in the text. Items
in square brackets (Cl) are optiooal. Items in both kinds of brackets, C<W>J , for examplo, are
to be supplied If the optional feature is used. Items followed by dots (...) may be repeatod or
deleted as necessary.

3. Shift/ or Control/ followed by a latter means the character Is typed by holding down
the Shift or Control key and typing tbe indicated letter.

4. All Indicated punctuation must be supplied.

b. Definitions. Some terms wbicb will become important are as follows:

Alphanumeric character: All letters and numerals taken together are called alphanumeric
characters,

Enter, Newline or Carriage Return: Refers both to the key on the terminal which causes the
carriage, print head or cursor to move to the beginning of the next line and to the oommand
that the return key Issues which terminates a BASIC line.

Command Level: After BASIC prints OK, It Is at the command level. This means it is ready to
accept cominaads.

Cnmirands and Statoirants: Instructions In Naseom BASIC aro loosely divided into two olaaes,
Commands and Btatements. Commands are Instructions normally used only In direct mode (see Modes
of Operation, section 1-2). Some commands, such as CONT, may only be used In direct mode since
they have no meaning as program statements. Some commands are not normally used as program state¬
ments because they cause a return to cummaud level. But most comuiauds will Xlrnl occasional use
as program statements. Statements are instructions that are normally used in Indirect mode.
Some statements, such as DEF, may only be used io indirect mode.

Edit! The process of doloting, adding and substituting lines in a program and that of preparing
data for output according to a predetermined format will both be referred to as "editing". The
particular neanlng In use will be clear from the context.

Integer F.xprossion: An expression whose value is truncated to an integer. The ooniponetits of
the expression need not be of integer typo.

Reserved Words; Some words are reserved by BASIC for use as statements and oommands. These are
called reserved words and they may not be used in variable or function names.

String Literal: A string of characters enclosed by quotation marks (") whlcb is to be input or
output exactly as It appears. The quotation marks are not part of the string literal, nor may
a string literal contain quotation marks. {""HI, THERE"" is not leeal.)

Type: While tho actual device used to enter information into tbe computer differs from system
to system, this manual will use the word "typo" to refer to the process of entry. The user
types, the computer prints. Type also refers to the classifications of numbers and strings.

1-2 Modes of Operation

Naseom BASIC provides for operation of the computer in two different modes. In the direct mode,
the statements or commands are executed as they aro entered into the onniputfir. Results of
arithmetic and logical operations are displayed and stored for later use, but the instructions
themselves are lost after execution. This mode Is useful for debugging and for using BASIC
In a "calculator" mode for quick computations which do not justify the design and coding of
complots programs.

In the Indirect mode, the computer executes instructlous from a program stored In memory,
Program lines are entered into memory If they are preceded by a line number. Execution of the
program Is initiated by tbe RUN comiands.

1“3 Formats

a. Lines. Tbe line Is the fuDdameotal unit of a Nascoa BASIC program, Tbe format for a
Naseom BASIC line is as follows:

nnnnn <BAS1C 8tatement>{:<BASJC statement)...]

PP/019 Page 5.2
Issue 2

Each Naacoiii BASIC line begins with a numher. The nuober corresponds to the address of the line
In memory and Indicates the order in which the statements in the lino will be executed In the
program. It also provides for brancblng linkages and for editing. Line numbers must be in the
range 0 to 65529. A good proex^mming practice is to use an increment of 5 or IO between
successive line numbers to allow for insertions.

Following the line number, one or more BASIC statements are written. The first word of a state¬
ment identifies the operations to bo performed. The list of arguments which follows tho identi¬
fying word serves several purposes. It con contain (or refer symbolically to) tho data which
is to he operated upon by the statement. In some important instructions, tho operation to be
perfomiod dopondu upon conditioQs or opinions specified in the list.

Each type of statement will be considered in detail in sections 2, 5 and 4.

b. REWarks. In many cases, a program can be moie easily understood if it contains remarks
and explanations as well as the statements of the program proper. In Kescon BASIC, the REM
statement allows such commeuts to be Included without affecting execution of the program. The
format of the HEM statement is as follows:

HE>f <re(narks>

A REM Btatement ie not executed by BASIC, but branching statements may link Into it. REM
statemonts are terminated by the carriage return or the end of the line but not by a colon,

ibcaniple: PQ LOOP5FOR I=1T010 -the FOR statement will not be executed
101 FOR 1=1 TO 10: RH4 IK) TDIS LOOP-thfs FOB statement will be executed

e. Errors When tho BASIC interpreter detects an error that will cause the program to be
terminated, It prints an error message. The error message formats In Nascom BASIC aro as

follows: Direct statement ?.XX ERROB
Indirect statement ?XX ERROR IN nnnnn

XX is the error code or message (see section 6-5 for a list of error codes and messagas) and
.nnnnn is the line number where tho error occurred. Each statement bos its own particular
possible errors In addition to the general errors In syntax. These errors will be discussed
in the description of the individual statements.

More than one statement can ho written on one line if they are separated by colons (:). Any
number of statements can be joined this way provided that the line is no more than 7- characters
long. When used with Nas-sys in normal mode, linos cannot be greater than 48 characters.
However 72 character lines can be Inserted by entering Monttor mode, issuing an XO command and
returning to Ha.sir. by typing Z.

1-4 Editing - elementary provisions

Editing features are provided in Naacom BASIC $0 that mistakes can be corrected and features
can he added and deleted without affecting the remainder of the program. If necessaiy, tho
whole program may be deleted.

The following facilities are available with Nasbug T2 and T4 and Nas-sys In XO mode (l.e,
supporting an external teimlnal),

a. Correcting single characters. If an Incorrect character is detected in a line as it Is
being typed, it can be corrected immediately with the backspace key. Each stroke of the key
deletes the Immediately preceding character. If there Is no preceding character, a carriage
return is issued and a new liuo is begun. Once the unwanted characters arc removed, they can
be replaced simply by typing the rest of the line desired.

When RUBOUT (control Z) is typed, the previous character Is deleted and echoed. E>ich siiucesstve
HUBOUT prints the next character to be deleted. Typing a new character prints the now character.

Example: Typing two RUBOUTS deleted the and 'X' which
were suhsflquent.ly replaced by Y= .

b. Correcting lines. A line being typed may he deleted hy typing an at-slgn (@) instead
of typing a carriage return. A carriage return is printed automatically after the line Is
deleted. Typing Control/U has the same effect.

c. Correcting whole programs. The NW comnaad causes the entire current program and all
variables to be delated. NEW is generally used to clear memory space preparatory to entering
a new program.

1-5 Program Input with Nas-sys

When usod with Nas-sys, the full range of editing facilities are available, and the line
displayed on the screen is passed to the Basic interpreter by the Enter or Newline key. In
addition to editing the current line, this allows you to list a program, edit lines on the
screen and re-enter the updated lines. But note that data tnput is normally dealt with on a
character by character basis as outlined in 1-4, above. (see also 5).

PF/019 Page 5.3
Issue 2

2. STATPtENTS EXPRESSIONS

2-1 Expressions

TTiB simplest BASIC expressions are single constants, variables and function calls,

a. Constants. Na&coa RASIC accepts Integers, floating point real numbers or strings as
constants. See section 'i-l. Some examples of acceptable nnmertc constants follow:

123
3.1'tl
0.043f^
1.05E4.05

Data Input from tbe tenslnal or numeric constants In a program may have any number of digits
up to the length of a line {see section 1-3a). However, only the first 7 digits of a number
arn significant find the seventh digit, is rniindod up. Therefore, the Command

PRINT 1,234567890123
produces tho following output:

1.23'i57
OK

Ths format of a printed number is detemlned by the following rules:
1, IX the number Is negative, a minus sign (-) is printed to the left of the number.

If the numbor is positive, a space Is printed.
2. If the absolute value of tbe number Is an Integer in tbe range 0 to 999999i It is

printed as an Integer.
3. If the absolute value of tho number is greater than or equal to .01 and less than

or equal to 999999, it Is printed in fixed point notation with no exponent.
4, If the number does not fall into categories 2, or 3 scientlfio notation Is used.

The format of scientific notation Is as follows:
SX.XXXXXESTT

Where S stands for the signs of the mantissa and the exponent (they need not be the same, of
course), X for the digits of tbo mantissa and T for tho digits of the expooent. E and D may
be lead "...Limes ten to the power,,,." Hon-signtftcant zeros are suppressed in the mantissa

but two digits are always printed in tbe exponent, Tbe sign convention In rule 1 is followed
for the mantissa. The exponent must be In tbe range -38 to +38. The largest number that may
he represented In Nascom BASIC Is 1.70141^8, tbo smallest positive number Is 2.9387E-38, The
following are examplos of numbers as Input and as output by Nascom BASIC:

Number Nascom BASIC Output

+1
-1
6523
1E20
-12.345671i-10
1.234567E-7
1000000
.1
.01

.000123
-25.460

1
-1
6523
1E20
-1.23456E-09

I.23457E-07
IE+06

.1

.01

1.23E-04
-25.46

In all formats, a space Is printed after the number.

h. Variables.
1. A variable represents symbolically any number tdilch Is assigned to It. Tho value of

a variable may be assigned explicitly by tbe programmer or may be assigned as the result of
calculations in a program. Before a variable is assigned a value, Its value Is assumed to be
zero. In Nascom BASIC, the variable name may be any length, but any alphanumeric characters
after the first two are ignored. The first character must be a letter, No reserved words may
appear as variable names or within variable names. The following are examples of legal and
illegal BASIC variahloes

Legal Illegal

A ^ (first character must be alphabetic)
7.1
TP TO (variable names cannot be reserved words)
PSTG?
COUNT BGOTO (variable names cannot contain reserved words)

A variable may also i-upresent a string. Use of this feature Is discussed In section 4.

Internally, BASIC handles all numbers to binary. Therefore, some 8 digit single precision
numbers may be handled correctly.

c. Array Variables. It is often aftvantageons to refer to several variables by tbe same
name. In matrix calculations, for example, tbe computer handles each element of tbe matrix
separately, hut it Is convenient for tbe programmer to refer to tbe whole matrix as a unit.
For this purpose, Nascom BASIC provides subscripted variables, or arrays. Tbe form of an array
variable is as follows;

VV(<suhscrlpt> t,<8ub9cript>..,1)

Where VT is a variable name and the subscripts are integer expressions. Subscripts may be
enclosed in parentheses or square brackets. An array variable may have as many dimensions as
will fit on a single line aod can be accommodated in the memory space available. The smallest
subscript Is zero.

PF/019
Page 5.4
Issue 2

Esanples. ^ sixth eloaent of array A. The first element Is A(0).

ARRAYfl 2*J) The address of this elenent In a two-dimensional array Is
’ detei-nlnud l>y oraluatlng the exprossions in parentheses at

the time of the reference to the array and truncating to
Integers. If 1=3 and J=2,«i, this refers to AmUY(3.2).

The DIM statement allocotoa storage for array Tariahlos and sets all array elements to zero

The form of the DIM statement is as follows;

DIM W{<subscript> [, <suhscript>..)

Whore W is a legal variable name. Subscript la an Integer expression which spociftes the
largest possible subscript for that dimension. Each DIM statement may apply to more than
one array variable. Some examples follows

113 DIM A(3), 1^(2^2.2)

115 DIM Ol(N’)^'z [2+1) Arrays may be dimensioned dynamically during program
execution. At the time the DIM is executed, the expression
within the parentheses Is evaluated and the results truncated

to integer.
If no DIM statement has been executed before an array variable is found in a program, BASIC
assumes the variable to have a maxlmuB subscript of IO (11 elements) for each dimension In the
reference. A BS or SUBSCHIPT OUT OF RAMGE error message will be issued if an attempt is made
to reference an array element which Is outside the space allocated In Its
ment. This can occur when the wrong number of dimensions is used in an array element reference.

For example:
30 LET A(1,2,3)«X when A has been dimensioned by
10 DIM A(2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM stutoooul for an array is found after that
array has been dimensioned. This often occurs when a DIM statonont appears after an array has

been given Its default dimension of 10.

d Operators and Precedence. Nascoa BASIC provides a full range of arlthinotic and logical
operators. The order of execution of operations io an oxprosslon Is always according to their
precedence as shown in the table below. The order can be specified explicitly by the use of
parentheses in the normal algebraic fashion.

Table of Precedence

Operators are shown here in decreasing order of precodonco. Operators listed in the same entry
In Lhe table have the some procodonoe aod are executed in order from left to right in an expression.

1. t^resslons enclosed in parentheses ()
2. T exponentiation. Any number to the zero power Is 1, Zero to a negative power causes

Q /O or DIVISION BY ZERO error.

3. - negation, the unary minus operator.
4. *,/ multiplication and division.
5. +.- addition and subtraction
6. relational operators

B equal
<> not equal
< less than
> greater tban

<=,=< less than or equal to
>=,=> greater than or equal to

7. NOT logical, bitwise negation
8. AND logical, bitwise disjunction
9. OR logical, bitwise conjunction

Relational operators nay be used In any exprossions. Relational expressions have the value

either of True (-1) or False (o).

e liopical Operations. Logical operators may he used for bit manipulation and Boolean
algebraic functions. The ANU, OR, NOT, operators convert their arguments into sixteen bit,
signed, two's complement integers in the range -32768 to 32767» After the operations are
performed, the result is returned In the same foni and range. If the arguments are not in this
range, an PC or ILLEGAL FUNCTION CALL error message will be printed and evociitifin will be termin¬
ated, Truth tables for the logical operators appear below. The operations are performed bitwise
that is, corresponding bits of each argument are examined and the result computed one bit at a
time. In binary operations, bit 7 is the most slgnlftcaot bit of a byte and bit 0 is the least
significant,

AND X Y X AND Y

1 1 1
10 0
0 1 0
0 0 0

OR
X Y X OR Y
1 1 1
1 0 1
0 1 1
0 0 0

NOT
X NOT X
1 0

0 1

PF/019 rage O.lj
Issue 2

Some ezBinples will

63 AND 16=16
15 AND 14=1^
-1 AND 8=8
<t OR 2=6
10 OB 10=10
-1 OH -2--1

NOT 0=-1

NOT X=-(X+1)

serve to show bow the logical operations work:

63sblnary 111111 anil l6=blMar> 10000, so 63 AND 16=16
15=Mnary 1111 and 1'i=hiaary 1110, so 15 AND I4=binary 1110=14
-1=blnary 1111111111111111 and 8=l)tnary 1000. so -1 AND 8=8
4=biBary 100 and 2*binary 10 so 4 OR 2=btnar>' 110=6
binary 1010 OR'd with Itself Is 1010=10
-1-l>tnary 1111111111111111 and -2= 1111111111111110, so -1 OK -2=-1
the bit complement of sixteen zeros is sixteen ones, which is the two's
complegtent representation of -1.
the two's complement of any number is tho bit complement plus ono.

A typical use of lofilcal operations is 'masking', testing a binary number for some predeter¬
mined pattern of bits. Such numbers might come from the computer's Input ports and would then
reflect the condition of some external device. FVirther applications of logical operations will
be considered In the discussion of the IF statement.

f. The LET statement. Tlie LET statement is used to assign a value to a variable. The form
is as follows;

1,ET <VV>= <ezpro3sloD>

Where W is a variable name and tho expressionis any valid Nascon BASIC arithmetic or logical
or string expression. Examples:

IOOO LET v-x

110 LET 1=1*1 the '=' sign here means 'is replaced by

The word LET in a LET statement Is optional, so algebraic equations such ass 120 V=..')''‘'(X+2)
are legal assignment statements.

A SN or SYNTAX EIIROH message is printed when BASIC detects incorrect form, illegal characters
In a line, Incorrect punctuation or missing parentheses. An OV or OVERFLCHs' error occurs when the
result of a calculation Is too large to bo represented by Nascom BASIC's number formats. All
numbers must be within the range IE-38 to 1.70141E58 or -IE-38 to -1.70141E3S, An attempt to
divide by zero results In the /O or DIVISION BY ZERO error message.

For a discussion of strings, string variables and string operations, see section 4.

2-2 Branching, Loops and Subroutines

a. Branching. In addition to the sequential execution of program lines, BASIC provides
for changing the order of execution. This provision Is called branching and is the basis of
programmed decision making and loops. The statements in Nascom BASIC which provide for
branching are the GOTO, IF,..TUE3J and ON...GOTO statements.

1. GOTO is an unconditional branch. Its form Is as follows:
GOTO dmDmnrai)

After the GOTO statement is executed, execution continues at line number mmtnmm
2. IF,..THEN Is a conditional branch. Its fora Is as follows:

1F <expres s i ouy TB£K ^luBrnmi^
Where the expression Is a valid arithmetic, relational or logical expression and rnmnunm is a
line number. If the expression Is evaluated as non-sero, BASIC continues at line moimmin. Other¬
wise, execution resumes at the next line after the IP,..THEN statement. An alternate form of
the IP,.,THEN statement Is as follows;

IF<expressloD>THEN <statement>
Where the statement Is any Nascom BASIC statement. Examples:

10 IF A-1I0 THEN 40 If the expression A=10 is true, BASIC branches to line 40.
Otherwise, execution proceeds at the next line.

15 IF A<B*C OR X THHi 100 The expression after IF Is evaluated and if tho value
of the expression is non-zero, tbe statement branches to line IOO
Otherwise execution contlnaes on tbe next line,

20 IF X THEN 25 If X Is not zero, tho statement branches to line 25
30 IF XsY THEK PRINT X If the expression XsY is true (Its value Is non-zero),

the PRINT statement is executed. Otherwise, tho PRINT statement Is not executed.
In either case, execution continues with the line after the IF...THEN statement.

35 IF X=Y*3 GOTO 39 Equivalent te tbe corresponding IF,..THEN statement, except
that GOTO must be followed by a line number and not by another statement.

3. ON...GOTO provides for another typo of conditional branch. Its form is as follows:
ON<0xpresslon>GOTO<li8t of lino numhorsy

After the value of the expression is truncated to an integer, say I, the statement causes BASIC
to branch to the line whose number Is Itb in tho list. Tho statement may be followed by as many
line numbers as will fit on one line, if 1=0 or is greater than tbe number of lines in the list,
execution will continue at the next line after tbe ON...GOTO statement. I must not be less than
zero or greater than 255, or an PC or ILLEGAL FUNCTION CALL error will result.

b. Loops. It is often desirable to perfom tbe sane calculations on different data or
repetitively on the same data. For this purpose, BASIC provides the FOE and NEXT statements.
The form of the FOR statement Is as follows:

FOR<varlable>=<X>TO<Y>fSTEP <ZW
where X,Y and Z are expressions. When the FOR statement is encountered for the first time, the
expressions are evaluated. The variable is set to the value of X which is called the initial
value. BASIC then executes tbe statements which follow tbe FOR statement in the usual manner.
When a NEXT statement is encountered, the step Z is added to the variable which is then tested
against the final value Y, If Z, the step, is positive and the variable is less than or equal
to the final value, or If tbe step is negative and tbe variable Is greater than or equal to the
final value, then BASIC branches back to the statement immediately following tbe FOR statomont.
Otherwise, execution proceeds with tbe statement following tbe NEXT, If tbe step is iiuL speci¬
fied, it is assumed to be 1.
Examples:

IO FOB 1=2 TO 11 The loop is executed 10 times with the variable I taking on
each integral value from 2 to 11.

PP/019
Page 5.6
Issue 2

20 TOR V=1 TO t).?

30 FOR V=10-*N TO 'i.k/'/, STEP SQR(R)

This loop will execute 9 times until V Is
greater than 9.3
The initial, final and step expressions need
not he integral, but they will be evaluated
onlv once, before looping begins.
This loop will be executed 9 times.

..NEXT loop within the con-
40 FOR v=9 TO 1 STEP -1

FOR...NEXT loops may be nested. That is, BASIC will execute a FOR.,
text of another loop. An example of two nested loops follows:

100 FOR 1=1 TO 10
120 FOR J=1 TO I
130 PRINT A(1 ,.J)
140 NEXT J
130 NEXT T . „

Line 130 will print 1 element of A for 1=1, 2 for 1=2 and so on. if loops are nested, they
must have different loop variable names. The NEXT statoment for the inside loop variable
(J in the example) must appear before that for the outside variable (I). Any number of levels
of nesting Is allowed up to the limit of available nonory.

The NEXT Statement is of the form:
NEXT f<varlable> r, <varlable>...)! _ _ •,

Where each variable is the loop variable of a FOR loop for which the NEXT statement is tho end
point. NEXT without a variable will match the most recent FOR statement. In the case of nested
loops which have the same end potnt, a single NEXT statement may be used for all of them, pc
first variable in the list must be that of tbe most recent loop, the second of the next most
recent and so on. Tf RASIC encounters a NEXT statement before Its corresponding FOR statement
has been executed, an NF or NEXT WITHOUT FOR error message is Issued and execution is torminated.

c. Subroutines. If the same operation or series of operations are to be perfomed In several
places in a program, storage space requirements and programming time will be minimized by the use
of subroutines. A subroutine is a series of statements which are executed in the normal fashion
upon being branched to hy a GOSUB statement. Execution of the subroutine is tenutnated by the
RETURN statement which branches back to the statement after the most recent GOSUB. The format
of the GOSUB statoment is as follows:

GOSUBxline numher> . j
where the line number is that of tho first line of the subroutine. A subroutine may be calloa
from more than one place in a program, and a subroutine may contain a call to another subroutine.
Such subroutine nesting is limited only by available memory. Subroutines may be bronehod to
conditionally by use of tbe ON...GOSUB statement, whose form Is as follows:

ON<expresslon> GOSUB <ltst of line numbers)
The execution is the same as ON...GOTO except that the line numbers are those of the first lines
of subroutines. Execution continues at the next statement after the C»J...GOSUB upon return from

one of the subroutines.

d. OUT OF MEMORY errors. While nesting in loops, subroutines and branching Is not limited
by BASIC, memory size limitations restrict the size and complexity of programs. The OM or OUT
OF MEMORY error message is issued when a program requires more memory than is available. Soe
Appendix B for an explanation of tbe amount of memory required to run programs.

2-3 Input/Output

a. INPUT. Tho INPUT statement causes data Input to be requested from the terminal. The
format of tho INPUT statement is as follows:

INPUTt'.list of variables)
The effect of tbe INPUT statement is to cause the values typed on the terminal to be assigned
to the variables in the list. When an INPUT statement ts executed, a question mark (?) is
printed on the terminal slgnallloe a request for information. Tho operator types the required
numbers or strings separated by commas and types "enter". If the data entered is invalid
(strings were entered when numbers were requested, etc.) BASIC prints 'REDO FROM START? and
waits for the correct data to he entered. If more data was requested by the INPUT statement
than was typed, ?? Is printed on the teniioal and execution awaits the needed data. If more
data was typed than was requested, the warning 'EXTRA IGNORED' is printed and execution proceeds.
After all the requested data is input, execution continues normally at the statement following
tho INPUT. An optional prompt string may ho added to an INPUT Statement.

INPUT f'Cprompt striog>"<vartahle list>
Execution of the statement causes the prompt string to be printed before the question mark,
all operations proceed as above. The prompt string must be enclosed in double quotation marks
(”) and must be separated from the variable list by a semicolon (;). Example:

100 INPUT "WHAT'S TEE VALUE";X,y causes tbe following output:
WHAT'S THE VALUE?

The requested values of X and Y are typed after the ? A carriage return or enter in response to
an INPUT statement will cause execution to continue with tho values of the variables In the

variable list unchanged.

b. PRINT. The PRINT statement causes tho Mascom to print data on the CRT or other terminal
as appropriate. The simplest PRINT statement Is;

PRINT
which prints a carriage retum. The effect ts to skip a line. The more usual PRINT statement
has the following form:

PRINT list of expressions
which causes the values of the expressions in the list to be printed. String literals may be
printed if they are enclosed in double quotation marks (").

The position of printing is detennined by tho punctuation used to separate the entries in the
list. Nasoom BASIC divides the printing line into zones of 14 spaces each. A comma causes
printing of the value of the next expression to begin at the beginning of the next 14 column
zone. A semicolon (;) causes tho noxt printing to begin iraediatoly after the last value
printed. If a comma or semicolon terminates the list of expressions, the next PRINT statement
begins printing on the same line according to tbe conditions above. Otherwise, a carriage

return Is printed.

PF/019 Page 5.7

Issue 2

C. DATA, READ, RESTORE.

1. The DATA statement. Numerical or string data needed in a program nay be written
Into the program statements themselves, Input from peripheral devlce.s or read irom DATA state-
nents. The foimat of the DATA statement Is as follows:

DATA<list>
where the entrle.s In the list are numerical or string constants separated by cuninas, ITie
effect of the statement is to store the list of values In aeaory in coded form for access by
the READ statement. Examples;

10 DATA 1,2.-1E5, .0<l
20 DATA "Aim", NASOOM

Leading and ti-alling spacos In string values are suppressed unless the string Is onclosed by

douhlo quotation marks.
2. The READ statement. The data stored by DATA statements is accessed by IITAD state¬

ments which have the following form:
RiAD<list of variables>

where the entries In the list are varlahln names separated by commas. The effect of the READ
statement is to u.ssigti the values in the DATA lists to the corresponding variables in the READ
statement list. This is done one by one from left to right until the READ list Is exhausted.

If there are nioi'o names in the READ list than values tn the DATA lists, an OD or OUT OF DATA
error message is issued. If there are more values stored in DATA statements than are read by
a READ statement, the next HEAD statement to be executed will begin with the next unread DATA
list entry. A single READ statement may access more than one DATA statement, and more than one
READ statement may access the data in a single DATA statement.

An SN or SYNTAX ERROR message can result from an improperly formatted DATA list. The line number
in the error messago refers to the actual line of the DATA statement in which the error occurred.

3. RESTORE Statement. After the RESTORE statement is executed, the next piece of data
accessed by a READ statement will be the first entry of the first DATA list in the program. This
allows re-READlng the data,

d. CSAVElng and CLOADing Arrays. Numeric arrays may be saved on cassette or loaded from
cassette using CSAVE* and CLQAD* The formats of the statements are:

C.SAVE* ^rray nam^
and

CLOAD*<array name")
The array is written out in binary with four octal 210 header bytes to indicate the start of data.
These bytes are searched for when CT.OADing the array. Thn number of bytes written is four plus

'i* (dumber of elements^ for the array
When an array is written out or read In, the elements of the array are written out with the left¬
most subscript varying most quickly, the next leftmost second, etc:

DIM A(10)
CSAVE*A

writes out A(o),A{1),,..A(10)
DIM A(10,10)

CSAVE*A
writes out A(0,0), A{1,0)...A(10,0),A(10,1)...A(10,10)
Using this fact, it is possible to write out an array as a two dimensional array and read it
back in as a single dimensional array, etc.

NascoDi Basic also generates a sumcheck at the end of the data. If the sumcheck falls on input,
the message "Bad" is displayed and it is then possible to restart the program and try to road
the data again.

e. Miscellaneous Input/Output.
1. WAIT. The status of Input ports can be monitored by the WAIT command which has the

following format:
WAIT<I,J>C,<K>:i

whore 1 is the number of the port being monitored and J and K are integer expressions. The port
status is exclusive ORd with K and tbe result is ANDed with J. Execution is suspended until a
non-zoro value results. J picks the bits of port I to bo tostod and execution is euepondod until
those bits differ from the corresponding bits of K. Execution resumes at the next statement
after the WAIT. If K is omitted, it Is assumed to he zero. I,J and K must be in tbe range 0 to
235. Examples:

WAIT 20,6 ElxecutlOD stops until either bit 1 or bit 2 of port 20 are equal
to 1. (Bit 0 Is least significant bit, 7 Is tbe most significant.)
Execution resumes at the next statement.

WAIT 10,255.7 Execution stops until any of the most significant 5 bits of port
10 are one or any of the least significant 3 bits are zero.
Execution resumes at the next statement.

2. POKE, PEEK Data may be entered into memory in binary form with the POKE statement
whose format ie ae follows;

POKE <I,J>
where I and J are Integer expressions, POKE stores the byte J into the location specified by
the value of I. I must be loss than 32768, J must be in the range 0 to 255. Data may be POKEd
into memory above location 32768 by making 1 a negative number. In that case, I is computed by
subtracting 65536 from tbe desired address. To POKE data into location 45000, for example, I is
45000-65536=-205,36. Care must be taken not to POKE data Into the storage area occupied by BASIC
or tbe system may be POKEkJ to death, and RASTC will have to he restnrted.

The complementary function to POKE is PEEK. The format for a PEEK call is as follows:
PEEK(I)

where I is an integer expression specifying the address from which a byte is read. I is chosen
in tbe same way as in the POKE statement. The value returned is an integer between 0 and 255.
A major use of PEEK and POKE is to pass arguments and results to and from machine language
subroutines.

PP/019 Page 5.9
Issue 2

3. DOKE, DEEX. These are double length versions of POKE anti PEEK l.o. J may be In
the range +3276? to -32768 calculated as for I on previous page. The least significant byte

is stored In address I, and the aost significant in 1+1, so It can be used for storing 16 bit
nuBbers or addresses for use by machine code subroutines.

4. OUT, INP. The format of the ODT statement Is as follows:
OUT <I,J>

Where I and J are integer expressions. OUT sends the byte signified by J to output port I.
I and J must be in the range 0 to 255.

The INP function is called as follows:
INP«I>)

INP reads a byts from port I where 1 is an integer expression in the range 0 to 255. Example:
20 IF INP(J)=16 THEN PRINT "ON"

PF/Ol9
Page 5.9
Issue 2

3. FUNCTIONS

The format Nascom BASIC allows functions to be rolarencod In mathematical function notation,
of a function call is os follows!

Whore^thrDMie*^irtha?Of a previously defined function and the argument is an expression. Only
one argument is allowed. Function calls may be components of expressions, so statements like

10 LET T=(F*:5IN(T))/P and
20 C=SQR(At2+IJ't2»2*A*B*C0S(T))

are legal.

3_1 Intrinsic Functions

Nascom BASIC provides several frequently used functions which may be called fi-om any program
without further doflnttion. For a list of intrinsic functions, see section

3-2 User-Defined Functions

a The DEF sLaleiiiont. The progrmmiicr nay doflno functions which are not included in the
list of intrinsic functions by means of the DEF statement. The fonii of the DEF statement is as

follows:
DEF<functlon nanie>(<variable name»=<expression>

where the function name must be PW followed by a legal Tarlahle name and a 'dummy variable
name. The dummy variable represents the argument variable or value in the function call, cnly
one areument Is allowed for a user-defined function. Any expression may appear on the right
Bide of the equation, hut It H»jst be limited to one line. User-dofined string functions are
not allowed. Examples of valid functions are:.

10 DEP FNFT0C(T)“(T-32)*5/9
12 DEF FNRAI)IDEG)=3.1'ii59/180*DEG When called with the measure of an angle in degrees,

returns the radian equivalent.

A function may be redefined by executing another DEF statement with the same name. A JEl stato-
ment must be executed before the function it defines may be called. .. n
h, USH. The USn function allows calls to assembly language auhrniitines. bee appendix u

3-3 Errors

An FC or ILLEGAL FUNCTION CALL error results when an Improper call is inade Lo a function. Some

places this might occur are the following:
1, A negative array subscript. LET A{-1)*0, for example.
2. An array suhsoript that is too large 03276?)
3, Negative or zero argument for LOG
4. Negative argument for SQR
3, AtB with A negative and B not an Integer.
6 A call to USR with no nddrass patched for the aachino language subroutine.
?! Improper arguments to MIOS, LEPTj, BIGinS, IMP, OUT, wait, peek, POKE, TAB, SPC, INSTH,

STllINoj, SPAC^ or ON...GOTO.
An attempt to call a user-defined function wbich has not previously appeared in a DEI statement
will cause a UF or UNDEFINED USER FUNCTION error.

A TM or TYPE MISMATCH error will occur if a function which expects a string argument is given
a numeric value or vice-versa.

PF/019
Page 5.10
Issue '4

4. STEINGS

In Kascoo BASIC expressions may either have unoierlc value or my be strings of
Nascon BASIC provides a complete coBpleBent of statements and function for manipulating
data. Many of the statements have already been discussed so only their particular application

to strings will be treated In this section.

4-1 String Data
A string is a list of alpbanumertc characters which may be from 0 to 255 characters in length.
Strings may he stated ejcplicitly as constants or referred to s^boUcally by variahles.
constants are delimited by quotation narks at the beginning and end. A string variable name
ends wlLh a dollar sign (f). Examploss

A$=”ABCD’' Sets the variable A$ to the four character string "ABCD'
B9$="14A/56’' Sets the variable B9f to the six character string "14A/56"
FOOFOO$='’E$’' Sets the variable POOPOO^ to the two character string ”E5

Strings input to an INPUT statement need not he surrounded by quotation marks.

String arrays may be dimensioned exactly as any other kind of array by use of the DIM statemyt,
Each element of a string array is a string which may be up to 255 characters long. The total
number of string characters in use at any point in the oxecutron of n program must not axcyd
the total allocation of string space or an OS or OUT OP STHTNC SPACE error will result, string
space is allocated by the CLEAR command which is explained in section 6-2.

4-2 String Operations

a. Comparison Operators. The comparison operators for strings are the sene as those for

numbers:
= equal
<> not equal
< less than
> greotor than

-i,<= less than or equal to
=>,>■ greater than or equal to

Comparison Is made character by character on the basis of ASCII codes ubttl a yfference is
found. If, while comparison is proceeding, the end of one string is reached, the snorter string
is considered to be smaller. ASCII codes may be found In Appendix A. Examples:

A<Z ASCII A is 065, Z is 090
1<A ASCII 1 Is 049

’'A">"A” Leading and trailing blanks are significant In string literals.

b. String Expressions, String expressions are composed of string literals, string yylables
and string function calls connected by the + or concatenation operator. The effect or the eaten
ation operator is to add the string on the right side of the operator to the end of the string on
the left. If the result of coneatenatton is a string more than 255 characters long, an Lb or
STRING TOO LONG error message will be issued and execution will be terminated.

c. Input/Output, The same
be used for string data, as we

1, INPUT, PRINT. The
Strings need not be enclosed
ignored and the string will he

10 INPUT Z00$,P00$
20 INPUT X?

30 PRINT THERE”

2. DATA, HEAD, DATA
data. For format conventions.

statements used for input anU output of normal iiumoric data may

INPUT and PRINT statements read and write strings on ths terminal,
n quotation marks, but if they are not, leading blanks will be
terminated when the first comna or colon is encountered. Examples;

Reads two strings
Reads one string and assigns it to the variable X$
Prints two strings. Including all epacas and punctuation In
second.
and READ statements for string data are the same as for numeric
see the explanation of INPUT and PRINT above.

the

4-5 String Functions

The format for intrinsic string function calls is the seme as that for numeric functions. For
the list of string functions, see section 6-5. String function names must end with a dollar sign.

Page 5.11
Issue 2

Nascoa 8K Basic has a nunher of conoands which are not normally found In 8K Basics, In
addition to the DEEK and DOKE functions described In section 2-3 facilities are provided to
call the monitor, manipulate the Nascoa display screen, support add-on terminals and printers,
and support graphics hardware.

a. MONITOR. This command transfers command to the monitor. Control can he restored to
Basic from Nas-sys by using the monitor command J for a complete re-start, or Z for a warm
start preserving programs etc. Note that, if breakpoints are set In order to de-bug a machine
code subroutine, you should return to Basic by issuing an EPFEA, or EEFFO command as J and Z
do not set breakpoints. The monitor conrnand is often useful for issuing an XO command to turn
on a printer.

b. WIDTH K. Input and output lines are normally assumed to be 47 characters long. Howsver
this can be inconvenient when supporting a printer. WIDTH (N) changes the assumed line buffer
to N characters, where N Is in the range 1 to 255,

On output to the serial port a newline will be generated automatically after N characters.
Newlines will be generated every 48 characters on the Nascom display in addition to an additional
one alter N characters.

On input, the assumed line Input buffer will be N or 72 characters, whichever is the longer.
When entering data or programs witb Nasbug T2 or T4, an Internal newline will be generated after
47 characters too. When entering programs under Nas-sys normal mode the lino width is assumed to
be 46 characters and is not affected by the WIDTH command.

Note that WIDTH does not affect the calculation which determines whether a number can be printed
Lu Ibe curreiiL line (see 2-1(a)). This can be nuOXfied by

POKE 4163, (INT(N/14)-1)*14
where N is the line width in characters,

e. CLS cloaro the screen under all nonitora

d. SCREEN X.V sets the cursor position to character position X, line Y. X is in the range
1 to 48, Y is in the range 1 to 16. Note that line 16 Is at the top of the screen and Is not
scrolled. Line 1 is the next line down, and line 15 le at the bottom.
The Commands SCREEN 24,8

PRINT "HELLO"
will result in the message HELLO being printed at character position 24, line 8.

Note that with Nas-sys, only one character at a time can bo printed on line 16, as the act of
inorementing the cursor position results in it being set to the bottom of the screen, hut this
can be overcome by using the routine in Appendix 1,

0, Lines N Normally, a UST command will scroll five lines of program and wait for a newline
character to he typed on the keyboard before scrolling another five lines. This default of five
can be changed by the LINES command o.g. to 14 to scan larger pages of program, or to a larger
number to allow listing to a sez-ial pirinter,

N must be In the range +3876? to -52768. Negative numbers are treated as 65536 + N.

The following three commands are for ase with the simple graphics option on Nascom 1 or Nascom 2
with the graphic character set. Points can he set black or white on a grid 96 points wide by 48
points high, with 0,0 being in the top left band corner.

f. SET{X,Y) sets point X,Y bright
g. RESET (X,Y) tr point X,T Is bright, sets It dark
h. POINT {x,y) an integer function which returns the value 1 If point X,Y Is set bright,

0 If not.
Note that X and Y must be in the range 0 to 95 and 0 to 47 respectively. Points with Y values
In the range 45-47 appear on the top (iinscrolled) line, otherwise points will appear on appro¬
priate lines, descending as the value of Y Increases.
The line which a point appears on is calculated as L= 1NT(Y*3) + 1
The oharaeter position a point appeara on is calculatod aa C- INT(X+2) * 1
Characters other than the graphic characters COH to PFH are overwritten by SET and ignored by
RESET and POINT.

i. Data Input under Nas-sys. Under Nas—sys in normal mode, data is input one character at a
time, as it Is with Nasbug T2 and T4, This allows INPUT statements to appear at any position on
the screen with complete flexibility. Two additional nodes of data Innut are provided.

DOKE 4175, -25
causes a newline to be generated on INPUT ttnd data is input using the Nas-sys editing features,

DOKE 4175, -6670
causes similar results, but omits the newline, so the data input will include anything else on
the line eg, the question mark and any proapt message printed by the INPUT statement. The addi¬
tional characters can be stripped off by string manipulation in the usual way,

DOKE 4175, -6649
restores normal operation. Care should he taken «dien using these commands, as incorrect arguments
wn1 cause the system to crash. The values may change at a future date with now issues of the
Basic Interpreter,

J. Printer Support. In addition to printers and terainals attached via the serial interface,
printers can be interfaced to the PTO on the Nascom. Soutines to drive such printers can be
Included and switched on and off using DOKE and POKE commands (see appropriate monitor manual
for detailed information),

k. Aborting Programs. Escape (Shift and Newline) stops and aborts a running program (see 6-4)
but only when typed on the Nascom keyboard. Generating an NMI (non maskable Interrupt) has the
same effect. It is not possible to abort in this way from a cassette read or write operation,
but a similar effect can be achieved by hitting reset and entering the "Z" command.

PF/Ol9

5. ADDITIONAL COMMANDS

PP/019 Page 5.12
Issue 2

6. LISTS AND DIRECTORIES

6-1 ConmaDds

Commands direct Nascom BASIC to arrange memory and Input/output facilities, to list and edit
programs and to handle other housekeeping details In support of program execution, Kascotn
BASIC aooepts commands after it prints 'OK' and is at comiand level. The table below lists
the commands in alphabetical order.

Conmand
Cl,RAH

Sots all program variables to zero
CLEAR«expresSion>I
Same as CLEAR but sets string space (see 4-1) to the value of the expression. If no argument
is given, s Irlcig will reisaiii uuvbttnged* Wlieu Na&fuua BASIC i» sL^trteU, siring space is

set to 50 bytes,
CLOAD^trlng expression)
Causes the proeram on cassette tape designated by tbe first character of ("STltlNG expression^ to
be loaded Into memory. A KEW command is Issued before the program is loaded.
CLOAJl?<Btring expression)
Verifies that the program specified is loadable and error free.
CLOAD'*'<array namo^

Loads the specified array from cassette tape. May be used as a program statement.
CONT
Continues program execution after an Escape has been typed or a STOP or END statement has
iieen executed. Execution resumes at tbe statement after tbe break occurred unless input from
the terminal was interrupted. In that case, execution resumes with the reprinting of the prompt
(? or prompt string), CON'P is useful in debugging, especially where an 'infinite loop' is sus¬
pected. An infinite loop is a series of statements from which there is no escape. Typing Escape
causes a break In execution and puts BASIC in coDnand level. Direct mode statements can then be
used to print intermediate values, change the values of variables, etc. Execution can be re¬
started by typing the CONT command, or by executing a direct mode GOTO statement, which causes
execution to resurae dt tbe specilled lipe pu9bei'»

Execution cannot be continued if a direct mode error has occurred during the break, Execution
cannot continue if the program was modified during the break.
CSAVE<itrtng expression>

Causes the program currently in memory to bo saved on cassette tape under the name specified by
the first character of <strlng expression).
CSAVE*(array nam$
Causes the array named to be saved on cassette tape. May be used as a program statement.

LIST
Lists the program currently in memory starting with the lowest numbered line. Listing is tenc-
inated either by the eno of tbe program or by typing Escape (Shift & Newline)
LISTC<llue number>l
Prints the current program beginning at the specified line. The LIST command will print n lines
(where n is 5 or as modified by the LINES connand) and wait for enter/newllne to be typed before
continuing. Typing ESCAPE returns control to Baste,
NEW
Deletes the current program and clears all variables. Used before entering a new program.
NULL^integer expre ssiotb
Sets tbe number of nulls to be planted at tbe end of each line. For 10 character per second
tape punches, <lnteger expressioi^ should be >>3. For 30 cps punches, it should be >=3, When
tapes are not being punched, integer expresslod) should be 0 or 1 for Teletypes* and Teletype
compatible CRT's. It should be 2 or 5 for 30 cps bard copy printers. The default value Is 0,
Note that the Nascom monitors will normally ignore nulls on output, but a suitable delay can
usually be generated by setting NULL 255. Nulls are passed to user I/O drivers.
HlINC<llne number>]
starts execution of tho program currently In memory at tbe lino specified. If tbe line number
is omitted, execution begins at tbe lowest line number.

6-2 Statomonta

Tho following table of statements Is listed in alphabetical order. In tbe table, X and Y stand
for any expressions allowed in the version under consideration. I aod J stand for expressions
whose values are truncated to integers. V and W are any variable names. Tbe format for a Nascom
BASIC line is as follows:
<nnnoi^ <statoraent>f: <atatement>..
where nnnnn is the line number

DATA DATA<llst>
specifies data to be read by a READ statement. List elements can be numbers or strings. List
elements are separated by commas,

DEP DEF FNV{<W>) = <X>
Defines a usor-deflned function. Function name is FN followed by a legal variable name. Defin¬
itions are restricted to one line (72 characters).

DOKE DOKE <I>,<J>
Stores J in memory location I and 1+1. If I or J are negative, they are Interpreted as 65536 + I
or J, as appropriate.

* Teletype is a registered trademark of the Teletype Corporation.

PF/019 Page 5.13
Issue 2

DIM DJM.<.VX<IX,J...])C....]
Allocates space for array variables. More tbao one variable may be dimensioneii by one l)I^l
statement up to the limit oT the line. The value of each eicprflssion gives the inaximuri sub¬
script possible. The smallest subscript is 0. Without a DIM statement, an array Is aseumot]
to have maximum subscript Of 10 for each dimension referenced. For example, A(l,J) Is assunieJ
to have 121 elements, from A(o,0) to A(10,10) unless otherwise diroonsionod In a DIM statement.

END END
Terminates execution oT a program.

FOR 10H<V>=<X>T-0<Y>[S'I'EP<Z>1
Allovs repeated execution of the same statenonts. First execution sets VeX, Execution proceeds
normally until NEXT is encountered. 'I Is added to V, then, IF Z<0 and V>=Y, or if Z>0 and V<aY,
BASIC branches back to the statement after FOB. Otherwise, execution continues with the state¬
ment after NEXT.

GOTO C010<nnnnn>
Unconditional branch to lino number

GOSuii 003i:n<miiinn>
Unconditional branch to subroutine beginning at line imnnn.

IF...(}OTO IF <X> GOTO<nnnniO^
Same as IF...THEN except GOTO can only be followed by a lino number and not another statement,

IF.. .t::en if<x>thek<y>
or IF<X>TUEN<statement>(:statement...1

If value of X<)0, branches to lino nunbor or statement after THEN. Otherwise, execution proceed
at the line after the IF...THEN.

INPUT INPIJT<V>[,<W>_1
Causes BASIC to request input from terminal. Values typed on the terminal are assigned to the
variables in the list,

LET LET <V>=<X>
Assigns the value of the expression to the variable. The word LET is optional.

LINES LINES <A>
Sets the number of lines printed by a LIST coraBand before pausing to n,

NEXT NEXT [<V>, ..]
Last statement of a FOR loop. V is the variable of the most recent loop, W of the next most
recent and so on. NEXT without a variable terminates the most recent FOR loop.

ON...GOTO 0N<'J>G0T0<’li9t of line numbers>
Branches to line whose number is Ith In the list. List elements are separated by commas. If
1=0 or> number of elements in the list, execution continues at next statement. If 1(0 or >233,
an error results,

ON..,rrOSUD ON <I> GtlSUB <llst>
Same as ON...GOTO except list elements are Initial lino numbers of subroutines,

OUT OUT<I>,<J>
Sends byte J to port 1. 0(»I,J<=255.

POKE P0KE<I>,<J>
Stores byte J in memory location derived from I, 0<=J<=255;-32768<I<65536. If 1 is negative,
address is 65536*1, it 1 is positive, address=I.

PRINT PRINT<X>t,<Y>.
Causes values of expressions in the list to be printed on tbe terminal. Spacing Is determined
by punctuation.

Punctuation Spacing - next printing begins:
, at beginning of next 14 column zone
; immediately
other or none at beginning of next line,

string literals may be printed 11 enclosed by (") marks.

READ HEAD<V>I,<Vf>...l
Assigns values in DATA statements to variables. Values are assigned In sequence with the first
value in tbe first DATA statement.

REM REMt<reinark>l
Allows Insertion of remarks. Not executed, but may be branched into. In extended versions,
remarks may be added to tbe end of a line preceded by a single quotation mark (')•

RESTORE RESTORE
Allows data from DATA statements to be reread. Next READ statement after RESTORE begins with
first data of first data statemept,

RETURN RETURN
Terminates a subroutine. Branches to the statement after tbe most recent GOSUB,

SCREEN SCREEN <X>,<Y>
Sets the cursor position to character position X, line T.

STOP STOP
Stops program execution, BASIC enters oomiaDd level and prints BREAK IN LINE nnoun.

WAIT WAIT<I>,<J>t,<K>l
Status of port I is XOR'd with K and ANP’ed with J.

Continuea execution awaits non—zero result, K defanlta to 0. oC=T..I,K<=255.

WIDTH WIDTH <n>
Sets tbe width of input and print buffers to n (see 5 (b)).

pf/019
Page S.14

Issue ,2

6-3 III I rill sic Fuiic tl oiis

Naseom BASIC provides several coaaonly used algebraic and string functions which may be called
front any program without further definition. The functions in the following table are listed
In alphabetical ordnr. The notation to the right of the Call Format Is the versions In which
the function Is available. As usual, X and Y stand for expressions, 1 and J for integer
expressions and X$ and T$ for string expressions.

Function Call Fomat

ADS ABS(X)
Returns absolute value of expression X. ADS(x)=X if X>=o,—X if X<o.

ASC ASC(X$)
Returns the ASCII code of tho first character of ttio String X$. ASCII codes are in appendix A.

ATN ATN(X)
Returns arctangent (X). Result is in radians in range -pl/2 to pl/2,

CHRj CHR$(I)
Returns a string whose one element has ASCII code I. ASCII codes are in Appendix A,

COS COS(X)
Returns cos(X). X is in radians,

EXP EXP(X)
Returns e to tho power x, X muet be

FEE FBE(O)
Returns number of bytes In memory not being used by BASIC. If argument Is a string, returns
number of free bytes in string space.

INP INP{I)
Reads a byte from port I.

INT INKX)
Returns the largest integer <=X

LEFTS LEPT$(X$,I)
Returns leftmost I characters of string X$

LEM lem(x$)

Returns length of string X$, Non-printing characters and blanks are counted.

LOG LOG(X)
Returns natural log of X. X>0

MiD$ mid$(x4,i(,j3)
Without J, returns rightmost characters from \$ beginning with the Ith character. If I>LEN(X*),
MlDj returns the null string. 0(1(255. With 3 arguments, returns a string of length J of char¬
acters from X$ beginning with the Ith character, if J Is greater than the number of characters
in X$ to the right of I, MIDS returns the rest of the string. 0<sj<s255i

POS POS(I)
Returns present column position of terminal's print head. Leftmost position =0.

RND RND(X)
Returns a random number between 0 and 1. X<0 starts a new sequence of random numbers, X^O
gives the next random number in the sequence. X=0 gives the last number returned. Sequences
Started with the same negative number will be the sane.

RIGUT$ RIGeTi(X$,l)
Kelunis I'ightiuost I characters of string X$. If l=LI3l(l^), returns X$.

5GK sca^Cx)
If X>0, returns 1, if X=0 returns 0, if X<0, returns -1. For example,
ON SGN(X)+2 GOTO 100,200,300 branches to 100 If X is negative, 200 if X is 0 and 300 if X is
positive,
SIN SIN(X)
Returns the sine of the value of X in radians. COS(X)=Sni{X+3.1b159/2).

SPC SPC{I)
Prints I blanks on terminal, 0(sl<=255

SQR sqr(x)

Returns square root of X. X must be >=0

STR| STR$(X)
Heturos string representation of Talue of X*

TAB TAB(I)
Spaces to position I on tbe temlnal. Space 0 is the leftmost space, 71 the rightmost. If the
carriage is already beyond space I, TAB has no affect. 0<-*I<-255. May only be used in PRINT
statements.

TAN TAN(X)
Returns tangent(X). X Is In radians,

USE USR(X)
Calls the user's machine language subroutine with argument X.

VAL VAL(X*)

Returns numerical value of string xi. If first character of X$ is not or a digit, VAL(x$)=o,

pr/019
Page “i -1 R

Issue 2

6-4 Special Characters

Nascoin BASIC recognizes several characters in the ASCII font as having special functions In

carriage control, editing and program interruption. Characters such as Control/C, Control/S,

etc., are typed by holding down the Control key and typing the designated letter. The special

characters are listed in the table below. Note that those marked with an asterisk do not

apply when inputting using Nas-sys in normal mode.

• @ ® (Escape or shift + Newline for Nas-sys]

Erases current line and executes carriage return

(backspace)

Erases last character typed. If there is no last character types a carriage return.

, _ (underline)

same as backspace.

Newline (or Enter)

Returns print head or cursor to beginning of the next line.

Escape (shift + newline)

Interrupts execution of current program or list comnand. Takes effect after execution of the

current statement or after listing the current line. Program execution can be continued by

typing any character, except that typing a further Escape causes BASIC to go to command level

and types OK.

CONT command resumes exeuctlon. See section 6-1.

Note: The Keys must be depressed on the Hascom keyboard. Pressing ESC on an attached serial

terminal has no effect.

Separates statements in a line.

j 7
Equivalent to PRINT statement.

* Rubout (Control Z)

Deletes previous character on an input line. First Rubout prints the last character to be

printed. Each successive Rubout prints the next character to the iett and deletes it typing

a new character causing the new character to be printed.

* Control/R

Prints newline and echos the line)ielng input.

Control/U

Same as ?

Lower Case Input

Lower case alphabetic characters are always echoed as lower case, but LIST and PRINT will trans¬

late lower case to upper case, if the lower case characters are not part of string literals, REH

statements or single quote (') remarks.

6-5 Error Messages

After an error occurs, BASIC returns to command level and types OK. Variable values and the

program test remain intact, butthe program cannot be continued by the CONT command. All GOSUB

and FOR context ia lost. The px'Ogram may be coiitliiued by diirect inode GOTO Injwevex . When an

error occurs in a direct statement, no line number is printed. Format of error messages:

Direct Statement ?XX ERROR

Indirect Statement ?XX ERROR IN YYYYY

where XX is the error code and TiTtY is the line number where the error occurred. The following

are the possible error codes and their meanings:

ERROR CODE EXTENDED ERROR MESSAGE

BS SUBSCRIPT OUT OF RANGE

An attempt was made to reference an array element which Is outside the dimensions of the array.

This error can occur if the wrong number of dimensions are used In an array reference. For example:

LET A (1,1,L)=Z

when A has already been dimensioned by DIM A (10,10)

DD REDIMENSIONED ARRAY

After an array was dimensioned, another dimension statement for the same array was encountered.

This error often occurs if an array has been given the defult dimension of 10 and later in the

program a DIM statement is found for the same array.

FC ILLEGAL FUNCTION CALL

The parameter passed to a math or string function was out of range. FC errors can occur due to:

1. a negative array subscript (LET A (-1)=0)

2. an unreasonably large array subscript 032767)
3. LOG with negative or zero argument
4• SQR with negative argument

5s A B with A negative and 6 not an integer

6. a call to USR l>efore the address of a machine language subroutine has been entered,

7. calls to MID^, LEFTf, RIGHTf, INP, OUT, WAIT, SCEIEEN, WIDTH, SET, RESET, POINT, DEEK,

DOKE, PEEK, POKE, TAB, SPC, or ON...GOTO with an improper argument.

MO MISSING OPERAND

No operand has been given to the ccxnmand. CSAVE without a file name is illegal.

PK/019 Page 5.16

Issue 2

ID II.LB&AL raUBCT
INPUT and DEP are Illegal In the direct mode.

NF NEXT VITHOUT FOB
The variable la a NEXT statement corresponds to no previously executed FOR statement,

OD OUT OF DATA
A READ statement vas executed but all of tho DATA statements tn the program have already been
road. The program tried to read too much data or ineufficient data was Included in the program.

OM OUT OP MEMORY
Program Is too large, has too many variables, too many FOR loops, too many GOSUBs or too com¬
plicated esqjres si one . Nee Appendix C.

OV OVERFLOW
The result of a calculation was too large to be represented In BASIC's number format. If an
underflow occurs, zero is given as the result and ezecutioD continues without any error message
being printed.

SN SYNTAX ERROR
Missing parentliesls In an expression. Illegal character In a line. Incorrect punctuation, etc.

ilG RETURN WITnOUT GOSUB
A RETURN staicitiont was encountered before a previous GOSUB statement was executed. '

UL UNDEnSKD LINE
Tho line reforonco In a GOTO, GOSUB, or IP... TEEN was to a line which does not exist.

/O DIVISION DY ZERO
Can occur with Integer division and MOD as well as floating point division. 0 to a negative
power also causes a DIVISION BT ZESiO error.

CN CAN'T CONTINUE
Attempt to continue a program wbon none exists, an error occurred, or after a modification was
mudu to Cho program.

LS STRING TO LONG
An attempt was made to create a string more that 255 characters long.

OS OUT OF STRING SPACE
String variables exceed amount of string apace allocated for them. Use tbe CLEAR command to
allocate more string space or use smaller strings or fewer string variables.

ST STRING FOWULA TOO CCMPLEX
A string expression was too long or too cooplex. Break it into two or more shorter ones.

TM TYPE MISMATCH
The left hand side of an assignment statement was a numeric variable and the right band side
was a string, or vice-versa? or a function which expected a string argument was given a numeric
one or vice-versa,

UF UNDEFINED USER FTOCTTOM
Reference was made to a user defined function which bad never been defined.

6-6 Reserved Words

Some words are reserved by the Nascon BASIC interpreter for use as statements, commands, opera¬
tors, etc. and thus may not be used for variahle or function names. The reserved words are
listed below. In addition to these words, intrinsic function names are reserved words,

RESERVED WORDS

ni.FAR NEW AND OUT
DATA NEXT CONT POINT
DIM PRINT DEF RESET
END READ DOKE POKE
FOR REM FN SCREEN
GOSUD RETURN LINES SET
GOTO RUN NOT spe
IF STOP NULL WAIT
INPUT TO ON WIDTH
LET
LIST

TAB
THIN
USR

OR

PF/019
Page 5.17
Issue ^

7 nUMNING BASIC

Basic Is dlstrlbuteO on 1 x 8K byte HOM or 8 x 1K byte EPROM’s and Should bo situated ironi

EOOOH to FPFFH.

The following entry points are available for running basic.
a) EOOOII - cold start entered by typing EEOOO - when nsed with Nas-sys also resets the

b) FFFAH - normal cold start. Entered by typing .f under Nas-sys or EFFFA undei' Nasbug
- does not reset the nonitor

c) FFKDH - warm start. Altered by typing Z under Kos-sys or EFFFD under Xasbug -

retains any programs etc. in store and can only be used after the system has been
inltialtsed by entering at EOOO or FFPA

when initialised, the system responds wltb the message
Memory Size?
You should then type either __

a) a newline or enter character, after which the Basic will use all available store

above 1000H, or . . „ t
b) a decimal address representing the highest store location you wish Basic to use. in

this way you can reserve space at the top of store for user machine code routines.
when successfully started, Basic prints the message

NASCOM ROM BASIC Ver 4.7
Copyright (c) 1978 by Microsoft
<n> Bytes free

where <M> is the number of bytes available for progran and data, and enters Basic cotmuand mode
Programs or direct commands can then bo entered.

pf/019
Page 5.13
Issue 2

APPEKDIX A

ASCII CHARACTER COT>KS

DECIMAL CHAR. DECIMAL CUAfte DECIMAL CHAR.

000 XUL 043 + 086 V

001 SOH 044 f 087 w

002 STX 045 - 088 X

003 ETX 046 089 Y

OO^t EOT 047 / 090 z

005 ENQ 046 0 091 r
oofi ACK 049 1 092 \
007 BEL 050 2 093 1
006 })S 051 3 094

009 HT 052 4 095 <

010 LF 053 5 096 T

oil VT 054 6 097 a

012 FF 055 7 098 h

013 CR 056 8 099 c

014 SO 057 9 100 d

015 SI 058 • 101 e

016 DLE 059 • t 102 f

017 on 060 < 103 g
018 DC2 06I 104 h

019 DC3 062 105 1

020 DC4 063 ? 106 j
021 NAK 064 9 107 k

022 SYN 065 A 108 1

023 ETB 066 B 109 m

024 CAN 067 C 110 n

023 EM 068 1) 111 0

026 SUB 069 B 112 P

027 ESCAPE 070 P 113 q
028 PS 071 G 114 r

029 GS 072 H 115 s

030 RS 073 I 116 t

031 US 074 J 117 u

032 SPACE 075 K lie V

033 1 076 L 119 w

034 IT 077 M 120 X

035 078 N 121 y
036 $ 079 0 122 z

037 % 080 P 123 {
038 & 081 a 124 \
039 1 082 R 125)
040 (083 s 126 —

041) 084 T 127 DEL

042 * 085 U

LFsLlne Feed FFaForm Feed CR=Carriage Eletum DEL=KubOut

Using ASCII cofles — the CHR$ Junction.

CHRi{X) returns a string whose one character is that with ASCII cede X, ASC(X$) converts the
Hist cliai-acter ol' a string to Its ASCII doclnal value.

One ol the most coimnon uses ol CHRfe is to send a special character to the user's terotoal.
The most often used of these characters Is the BEL (ASCII 7). Printing this character will
cause a bell to ring on some temlnais and a Deep on many CBT’s. This may be used as a pre¬
face to an error message, as a novoJty, or just to wake up the user 11 he has lallen asleep.

Example:
PHTNT CHRS(7)i

Another major use ol special characters is on those CHT's that have cursor positioning and
other special lunctlons (such as turning on a bard copy printer). For example, on some CRT's
a Iona feed (CHii$(12)) will cause the screen to erase and the cursor to "home" or move to the
upper left corner.

Some CRT's give the user the capahlllty of drawing graphs and curves In a special polnt-plotte
mode. This feature may easily be taken advantage ol through use of Nascom BASIC's CHB$

function.

PP/019

Aprojoix B

Page 5.19
Issue i

SPACE AMD SPEED LtlNTS

A. Space Allocation

The BeiDory apace required for a prograa depends, of course, on the nupher and kind of elements
in the prograo. The fo>lovlng table contains inforaatlon on tho space required for the various
program elemen ts.

Element Space Required

Variables
nuEDoi'ic 6 bytes

Arrays
strings and floating pt. (no of elements)* 6 + 5 + (no of dlBenslons)*2 bytes

Functions
intrinsic 1 byte for tbe call
user-defined 6 bytes for tho definition

Reserved Words 1 byto each

Other Characters
1 byte each

Stack Space
active FOR loop 16 bytes
active GOSL'B 9 bytes
parentheses 6 bytes each sot
temporary

result 10 bytes

Basic itself occupies 8K of ROM

B, Space Hints

The space required to run a program may bo significantly reduced vrithniit affecting execution
by following a few of the following bints:

1, Use multiple statements per line. Each line bas a 5 byte overhead for the line
number, etc., so the fewer lines there are, the less storage is required.

2. Delete unnecessary spaces. Instead of writing
10 PRINT X.Y.Z

use
10 PHINTX,y,Z

3. Delete HEM statements to save 1 byte for BEM and 1 byte for each character of the
remark.

4. Use variables Instead of constants, especially vdien the same value is used several
times. For example, using tbe constant 3.14159 ton times in a program uses 40 bytes more space
than assigning

10 P=3.14159
once and using P tan times.

5. Using END as the last statement of a program Is not necessary and takes one byte extra
6. Reuse unneeded variables instead of defining new variables,
7. Use subroutines Instead of writing the same code several times.
8. Use The zero elemeiits of arrays. Bumember the ai-ray dimensioned by

100 DIM Ado)
has eleven elements, A(o) through A(10).

C. Speed Ilints

1, Deleting spaces and statements gives a small but significant decrease In execu¬
tion time.

2, Variables are set up In a table In ttie order of their first appearance in tho program.
Later in the program, BASIC searches t?« table for tho variable at each reference. Variables
at the head of the table take loss time to search for than those at the end. Therefore, reuse
variable names and kaap the list nf variables as short as possible.

3, Use NEXT without the Index variable.
4, Use variables instead of constants, especially In FOR loops and other code that must

be executed repeatedly,
5, String variables set up a descriptor which contains the length of the string and a

pointer to tho first memory location of tbo string. As strings are manipulated, string space
fills up with Intermodtate results and extraneous material as well as the desired string Infor¬
mation. When this happens, BASIC’s "garbage collection" routine clears out the unwanted mat¬
erial. The frequency of garbage collection is inversely proportional to the amount of string
space. The more string space there is, tbe longer It takes to fill with garbage, Tbe time
garbage collection takes is proportional to the square of tho number of string variables. There
fore, to minimize garbage collection time, make string space as large as possible and use as
few string variables as passible.

PP/019 Page 5.20

Issue 2

APPENDIX C

WATHIXATIDAI, FT7»iCTT0WS

1, Derived Functions

The following I'unctions. wbtle not intrinsic to Nascom BASIC, can be calculated using the
existing BASIC functions:

Flinction BASIC equivalent

SECANT
COSECANT
COTANGtMT
INVERSE SINE
INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYTERROLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT
INVERSE HYPERBOLIC COSECANT
INVERSE HYPERBOLIC COTANGENT

SEC(X) = 1/C0S(X)
CSC(X) = 1/SIN(X)
COT(X) = I/TANIX)
ahcsin(x) = ath(x/sqe(-x*x+i))

ARCCOS(X) = -ATK (VSQB(-X*X*1))
fl.STOS

ARCSEC(X) = ATN(XSQH{X*X-1))
+S(»(SGN(X)-1)*1,5708

ARCCSC{X) = ATN(1/SQR(X*X-1))
4(SCN(X)-1)*1.5708

ABCOOT{X) * ATN(X)+i.5708
SINH(X) = (EXP(X)-EXP<-X)5/2
COSH(X) = (EXP(x)*EXP(-X))/2
TANH(X) = EXP(-X)/EXP(X)4EXP{-X))

*2+1
SECH(X) = 2/(EXP(X)+EXP(»X})
CSCH(X) = 2/(EXP(X)-EXP(-X))
COTHCx) - KXP(_I)/{EIP(X)-EXP(-X))

*2+1
ARCSINH X) = L0G(X+SQR(X*X+1))
ARCCOSHIX) = LOG(X+SOR(X*X+-1))
ARCTANH(X) = LOG((1+X)/(1-X))/2
ARCSECH X) = L0G((SQR(-X*X+1)+1)/X)
ARCCSCH(x) = L0G<(S<1N(X)*SQR(X*X+1)+1}/X
ARCCOTH(X) = L0G((X+1)/(X-1))/2

APrENDIX D

bash; AXD ASSB4BH UNGUAGE

Naseom BASIC has provisions tor interraelng with assenUly lauguage tuotines. Tbo USn
function allows Naseom BASIC programs to call assembly language subroutines in the same

manner as BASIC functions.

The first step in setting up a maohlne language suhroutlne for a BASIC program is to set
aside tnetnory space. When BASIC asks, "MEMORY Si ZE7" during Initialization, the response
should be the top of memory available minus the amount needed for the assembly language
routine. BASIC uses a]l the bytes it can find from location 409^ up, so the topmost 1ona-
tions in memory can he used for usor supplied routines. Locations from OCOOO to 1000H not
used by the Nasnom monitor can also he used for user written routines. If the answer to the
memory'SIZE? question Is too small, BASIC vfill ask the question again until it gets all the
memory It needs. Sec Appendix C for Naseom BASIC's memory roqulrements.

The assembly lunguago routine mav be loaded into memory in the usual way, or from a BASIC
program □i0&ns of a POKE or t)OKR RtAtowfluiv*

The starting address of the assembly language routine goes in USRLOC, a two byte location in
meraorv situated at lOOhH and 1005H (least significant byte In 10040 most significant In 1005H).
The function USR calls the routlQu wbuse address is in DSHLOC. Initially, USHl.OC contains the
address of ILLFUN, the routine which gives the FC or ILLEGAL FUNCTION CALL error, if USR is
palled without an address loaded in USRLOC, an ILLEGAL FUNCTION CALL error results.

When USR is called, the stack pointer Is set up for 8 levels (16 bytes) of stack storage. If
more stack space is needed, BASIC's stack can be saved and a new stack set up for use by the
assembly language routine. BASIC's stack must be restored, however, before returning from the
user routine.

All memory and all the registers can be changed by a user's assembly language routine. Of
course, memory locations within BASIC ought not to be changed, nor should more bytes he
popped off the stack than were put on It.

USR Is called with a single argument. The assembly language routine can retrieve this argu¬
ment by calling the routine whose address is in locations BOOBH and EOOCH. The low-order
byte of the address is in EXIOBII and the hlgh-order in EOOCH. This routine (DEINT) stores the

argument In the register pair CD,EJ.

The ai-gumuiiL is Lruncated to an Integer and if It is not in the range -32768 to 32767, an FC

error occurs.

To pass a result bach from an assembly language routine, load the value in register pair tA,B^.
This value must be a signed, 16 bit Integer as denned above. Then call the louLlne whose
address is In locations BOOM and EOOEH. If this routine ts not called, USB(X) returns X. To
return to BASIC, then, the assembly language routine executes a RET instruction.

Any interrupt handling routines should save the stack, registers A-L and the PSW. They should
also reenable Interrupts before returning since an interrupt automatically disables all further
Interrupts once It is roceived.

There is only one way to call an assembly language routine but this does not limit the pro¬
grammer to only one assembly language routine. The argument of USR can be used to designate
which routine Is being called. Additional arguments can he passed through the use of POKE or
DOKE and values may be passed back by PEEK or DESK.

PP/019 Page 5.22
Issue 2

APPKNDIX E

USING THE CASSETTE INTERFACE

PrograiDS nay bo saveil on cassette tape by means of the CSAVE cooiniand. CSAVE nay be used in
either direct or indirect mode, and its foniat Is as folJovfs:

CSAVE <string exprossiony

The program currently in memory i* saved on cassette under the name specified by the first
character of the <strlng expresslon>. Note that the program named A is saved by CSAVE "A”.
After CSAVE is completod, BASIC always returns to connand level. Programs are written on
tape in BASIC's internal representation. Variable values are not saved on tape, although an
indirect mode CSAVE does not affect the variable values of the program currently in memory.
The nurabor of nulls (soe fWLL command) has no effect on the operation of CSAVE, Before using
CSAVE, turn on the cassette recorder. Make sure tbe tape Is in the proper position then put

the recorder in HECORD mode.

eSAve first writes a block header cuniatnlng the first character of tho string oKprossion and
tben calls the appropriate monitor routine to dunp the program.

Progams may be loaded from cassette tape by means of tho CLOAD command, which has the same
format as CSAVE. The effect of OLQAD Is to execute a NEW command, clearing memory and all
variable values and loading tbe specified file Into meBory. When finished Nasoom
BASIC returns to command level. Reading starts by searching until 3 consecutive zeros are read.
BASIC will not return to oommand level after a CLOAD if it could not find the requested file,
or if the file was found but was mls-read. In that case, tbe computer will continue to search
until it is stopped and restarted. When a program is found tbe message

File program identifier Pound

la displayed. The method of displaying tho program as it is Input depends on the monitor in use
Data may ha read and written with tbe CSAVE* and CLOAD* connacds. The formats are as follows:

CSAVE*<array variable narnaj.
and

CLOAD*<array variable naBe>

Sou HooLLuu 2-Ad for a discussion of CSAVE* and CLOAD* for array data.

A suracheck is generated on input and output. If the suncbeck fails on input, the message "bad"
Is displayed and Basic returns to consaad level. Note that the incorrect data will have been
put in store.

In case of a misread, a direct GOTO or CLOAD connand can be used to cause the data to be re-read

Under Kas-sys, CLOAD?<string expreBsioit> reads the program from tape without putting it in store
and can be used to check that a program has beee correctly saved.

Note that you can also fool Basic Into LISTing or POINTing to tape or INPUTtiog programs or data
from tape by using the XO command under Nasbug T4 and Nas-sys. This is a useful way of storing
libraries of subroutines which can be input and used as part of different programs.

Further examples of storage and retrieval of tape data are contained in appendix I.

PF/019 Page 5.23
Issue ^

APPENDIX F

CONVERTING BASIC PROGRAMS

NOT WRITTEN FOR NASCOM COMPUTERS

Though inpleuientatlons of BASIC on different cunputers are in many ways similar, there are
some Incompatlhillties between Nascom BASIC and tho BASIC used on other computers.

1. Strings

A nvimber of BASK’s i'©<5iilre the length of strings to he dnniarnd before they are iisecJ. All
dimension statements of this type should he removed from the program. In some of these BASICS,
a declaration of the form A$(I.J) declares a string array of J elements each of which has a
length I. Convert DIM statements of this type to equivalent ones In Nascom BASIC: DIM A$(J),
Nascom BASIC uses '■ + " for string concatenation, not ” , " or " & Nascom BASIC uses 7jEl’T$,
RIOUTj and Mini to take substrings of strings. Some other BASICS use A^{l) to access the 1th
character of the string and A|(I,J) to take a substring of A$ from character position I
to character position J. Convert as follows:

OLD NEW
A$(I) MID^(AS,I,1)
Ai(I,J) MID$(AS,I,J-I+1)

This assumes that the
of an assignment. If
the string esrpresslon

reference to a subscript of A^ Is in an eicpresslon or is on the right side
the reference to A$ is on tho left band side of an assignment, and Is
used io replace characters In A^, convert as follows:

OLD
AS{l)=Xi
AS(T,.T) = Xf

NEW
A**LEPTS(A|,I-l)+X*+MIDS(A«,Itl)
A^=LEPrS(AS,I~l)+X$+MIDS(AS,J+1)

2. Multiple assignments.

Sumo BASICS alluw sLatements of tho form:

500 LET B=CaO

This statement weuld sot the variables B and C to aero. In Naeoora BASIC, this has an entirely
different effect. All the ”=" signs to tho right of the first one would be Interpreted as
logical comparison operators. This would set the variable B to -1 if C equaled 0, If C did
not equal 0, B would be set to 0, The easiest way to convert statements like this one is to
rewrite them as follows:

500 C=0:B=C

3. Some BASICS use "\" instead of "t" to delimit imiltiple staluiueiiLs uu a line. Change each
"V to lo the program,

4, Programs which use the MAT functions available In some BASiCs will have to be rewritten
using FOR,.,NEXT loops to perfom the appropriate operations.

PP/019
Page 5.24

Issue 2

APPENDIX G

STORAGE USED

Nascom Basic leaves locations between 0C80H (3200 aeciaal) and 1000H (W96 aectnal) lor use by
user Iiachitie code routines. It uses locations 1000H to 3E11H (A414) for workspace and resides
In EOOOH to FFFFH. Locations 3EiaH to BOOOH are therefore available for the users Basic

program and data.

PP/019 Page 5.25
Issue 2

APPENDIX H

DSEm BOOKS

You may rioa tne lollowlng Uoolcs useful. Tbey ara out intended to te a complete bibliography,
merely a list of books whlcb ve at Nascoo have seen and used.

1. General Introduction to Pragramitng In Basic

Basic Programming by John G. Kemery and Thomas E Kurtz, Pub. Wlloy

Instant Basic by Jerald R Brawn, Pub. Dlllthlum Press

Basic Basle by James S Coan, Pub. Jayden

Advanced Basic by James S Coan, Pub. Hayden

2. Games and Useful Programs

What To Do After You Kit Return (or PCC's First Book of Computer Games). Pub, People's
Computer Company

Sasio Computer Games, Ed, David H Ahl, Pub. Wozitaan Publishing

Basic Software Library (six volumes) R W Brown, Pub. Scientific Research Institute

PP/019 Page 5.26
Issue

APPENDIX 1

nSEFIJI. ROUTINES

1. Writing to line Ki (nop-sorolled) under Nas-sys

1 HFH Tins ROUTIKE WRITES TO LINE 16
2 REM USING NAS-SYS
10 CLS
20 SCREEN 1.15
25 HEM THAT PUTS IT ON BOTTOM LINE
50 rniNT "IIEADEH";
53 REM NOW WE ARE GOING TO COPY IT TO TOP
40 KOR C=2934 to 5000 STEP 2
50 DONE C+6'j,DEEK(C)
60 NEXT C
65 REM Cim$(27) GENERATES ESC=L1NB DELETE
70 PRINT 0HRi(27);
80 REM RF-ST OF PROGRAM CAN START HKHR

2, Fi'ogi~am lu convert Hex Bu»berfl to Deciiial

4 CLS
5 PRINT
10 INPUT"ENTER HEX No.''5Hf
20 T=0!D=1
30 FOR P=LEN(K$)-1 TO O STEP-1
40 C=ASC(MID$(H$,D,1))
50 DbD-i-1
60 IF (C>=48)*(C<=57) THEN C=C-48;G0T0 100
70 IF (C>=65)*-(C<=70) THEN C=C-55: GOTO loo
80 PRINT ’>ve Hex with no D.P. plea8©":G0T0
100 T=T+C*l6tP
110 NEXT
120 PRINT "Hex In Declnal ls";T
130 GOTO 5

A better way o£ writing lines 60 & 70 is s
60 IF C>= 48 AND C<= 57 THEN... etc.
70 IF C^- 65 AND 0<“ 70 THEN... etc.

5

3. To set X Mode under Nas-sys

10 DOKE 3189 , 1925
20 UOKE 3187 , 1917
30 POKE 3112 0 <optlon>
where option la 0, 1, 16, 17, ?2, 35, A8 or 49, as appropriate

e.g. to set XQ, option = 0
This routine can he used to turn a serial printer on under program control

4. To set N Mode under Nas-sys

10 DOKE 3189 , 1922
20 DOKE 3187 , 1919
This routine can he used to turn off a serial printer

5. To set U Mode under Nas-sys

In DOKE 3180 , 1921
20 DOKE 3187 , 1918
This can he used to set U code to support user-written l/O drivers.

6. To set Keyboard (Kl modes under Saa—ays

10 POKE 3111, <optlo9
where option = 0, 1, 4, or 5 to sot n.onsal, typewriter, graphics or t3T)ewrlter and graphics
mode,

7. To scan the keytoard for Input under Nas-sys

The following code sets up a USR call which scans the keyboard and returns the ASCII value
of any character typed on the keyboard, or zero if no character has been typed.

PF/019 Page 5.27
Issue 2

10 DOKE 3200 , 25511
20 UOKE 3202 , 312
30 DOKE 3204 , 18351
AO DOKE 3206 . 10927
50 DOKE 3209 . -8179
6o POKE 3210 , 233
70 DOKE 4100 , 3200

The USR call can he need as follows.
80 IF USH(O)<>0THEN GOTO 500

for ezanple.

Tho body of tho USR subroutine Is as followsi

0C80 DF 62
RST SCAL
DEFB ZIN J scan inputs

OC82 38 Ol JR C, CHAR 9 skip If char

0C84 AF XOH A ; clear A

0C85 47 CHAR LD B, A •
9 put char in B

0C86 AF XOR A #
9 clear A

0C87 2A OD EO LD HL(i*-E00D) •
9 get address in HL

OCSA E9 JP (Hli) 9 Junp and return

PF/019
Page 5.28
Issue 2

APPENDIX J

SINGI.E CHARACTER INPUT OF RESEaVEP VfOBDS

iDteraally, Basic stores reserved words in programs in the form of a single character reserved
word token, which has hit 8 set and bits 1 to 7 representing an index to a reserved word table.

The reserved word tokens can be generated directly, reducing the amount of typing required and

enabling ''longer" statoaents to be typed in on a single line.

To generate these tokens, it is necessary to hold down the "graphics" key on the keyboard plus
one or more other keys. Note that some characters may require "shift" to be held down
* etc.) and others way also require "control" to he held down too. When typing a program in this
way, a graphics character will he generated, but the program will LIST correctly with the reserved
words generated in full.

The keys required for each reserved word are as follows:

Reserved Words WnvR Rnserved Words
Graphics plus

Keys
Graphics

END Control Shift 8 NEW i
FDR Control A TAB(

NEXT Control B TO &

DATA Control C FN 1

{
)

INPUT Control D SPC(

DIM Control E THEN

READ Control F NOT *

LET Control a STEP +

GOTO Control H AND 1

RUN Control I OR 2

IF Control J SGN 6

HFSTORE Control K INT 7
GOSUB Control L ABS 8

RETUBN Control M USR 9

REX Control M PRE i

STOP Control O INP ,
OUT Control P POS <
ON Control Q SQR

NULL Control B RND >

WAIT Control S LOG 7

DEF Control T EXP Shift @

POKE Control U COS A

DOKE Control V SIN B

SCREEN Control V TAN C

LINES Control X ATN D

CLS Control Y PEEK E

WIDTH Control Z DEEK P

MONITOR Control C POINT G

SET Control \ LBi H

RESET Control 1 STR$ I

PRINT Control ♦ VAL J

CONT Control _(unaerliDe) ASC K

LIST space CHR$ l

CLEAR 1 left! M

CLOAD II RlGHTt N

CSAVE £ MID$ 0

