
PROPIO - VGA Video and Keyboard Card with SD Disk:

The PropIO card is interesting because it provides a way to
avoid allocating a PC as a separate terminal device. The
PS/2 keyboard becomes the input and the VGA driver local to
the propeller chip becomes the video output device. The
bonus is the micro SD card on the board which provides a
disk for handling larger files than the RAM disk built into
the SBC memory domain.

There are, however, a few challenges that come up when one
gets around to actually building and booting the PropIO
card. The keyboard and VGA video plugs are something of a
challenge to find as the PS/2 keyboard and VGA display are
considered obsolete by many, although there are a lot of
these devices currently in use. The SD connector comes in
a variety of shapes and sizes, but in this case there is a
part number and it is available, or there is a pre-
configured Spark Fun substitute if you prefer.

The next issue is to find a few of the resistor values
called for on the BOM. The 240 ohm resistors (R19, R21,
and R23) are part of the analog video-out lines supporting
the Red, Green, and Blue color signals. These resistors
are not commonly found, with the closest substitutes being
220 and 270 ohms. These resistors are connected in series
with commonly available 470 ohm resistors in a divider
network aimed at providing four analog voltage levels for
color intensity (0, 0.35. 0.68, and 1.0 volts DC). If you
work out the divider resistances including the 75 ohm input
impedance of the monitor it will become clear that 220 ohm
resistors will work. The same is true for the vertical and
horizontal sync current limit resistors (R24 and R25).
Another strategy is to buy larger tolerance resistors (10%
rather than 5% or 1% types) and selecting the values
closest to 240 ohms with an ohm meter.

There is another hardware issue noted in the documentation
in case you plan to use the serial circuit for booting the
propeller. The silk screen layer component outline is
incorrect for transistors Q1 and Q3. Thus, it is important
to compare the PCB traces on the card with the schematic
and put the emitter and collector leads in the correct
holes rather than use the outline orientation for pin
placement. Look at the orientation of these transistors in
this picture:

The Propeller processor chip has a firmware EEPROM (24C512)
which stores the operating code for the processor set
supporting the VGA and keyboard operation. This code is
downloaded to the Propeller when the card powers up. The
code in the prom therefore has to be loaded prior to first
use of the card. The code to be loaded can be found in the
Support folder of the ROMWBW directory; and is the only
firmware that will properly interface with the CP/M Bios
code in PRP.asm. The procedure is as follows:

1. Open the ROMWBW directory, unzip the files, and
find the folder marked SUPPORT. Under SUPPORT
you will find the folder marked PROPIO. Under
PROPIO, there is a file named PropIO.eeprom,
which is the code that goes in the 24C512 boot
EEprom. There is also a folder marked SPIN which
is the set of executable programs necessary for
the Prop P8X32A to handle the keyboard input and
the VGA output driver facilities; the source code
for the EEprom code.

2. The Parallax website has a propeller development

tool called Propeller Tool v1.3.2. This is a
firmware development environment, which supports

developing code or downloading RAM/ROM code.
Down load this file to your computer and run the
installer. Appendix 1 briefly describes the
install and use of this tool for those who are
working with these tools for the first time.

At start-up, the Propeller chip looks for a reset
(low to high) on pin 11, and then attempts to
communicate with a terminal device via pins 39
and 40 through the serial port built around Q1-
Q3. Alternatively the parallel Prop Plug (a USB
to 3.3 TTL and protocol converter) can be
employed using the same chip serial IO scheme.
If serial input is not available (operating
rather than in a boot mode), the chip loads the
24C512 EEprom code into Cog0 along with the SPIN
interpreter and executes the code from the ROM.

3. When it finds the Programming Plug, the propeller

and PC PropToolv1.3.2 work together to load the
PropIO.eeprom code down to the propeller which in
turn writes it to the EEprom, where it can be
retrieved for the next operating cycle. This
pass-through-write has to be accomplished once
before the card will operate from power-up.

4. Note that the PropIO.eeprom is the pre-built code

segment aimed at operational use, it does not
include the Parallax Serial Terminal facility
which is only built when debug is the conditional
assembly choice. If implemented in a custom
build, this terminal runs at 9600 baud to a
terminal or the development tool.

5. The entire VGA Terminal facility is contained in

the Propeller and the EEprom. The rest of the
chips are associated with bus access to the Prop
terminal. These can be inserted and tested
separately when the backplane is in use.

6. Plug in the Prop Plug and the computer will tell

you it has found new hardware, followed by
finding the driver pre-loaded above. The Prop
Plug has pin identification on the back side, and
the VSS goes to the Prop Plug ground which is the
lead outboard and away from the video plug. Look

for a red LED flash when the cpu and the plug
acknowledge each other.

7. Using the Prop Tool, open the PropIO.eeprom file

(file/open/PropIO.eeprom) and it comes up in the
Object Window. Select Load RAM, and it will load
the file to RAM and then to Prom, with a host of
red and blue LED flashes on the Prop Plug. When
both loads are complete, the program will execute
and the board will sign-on to the VGA monitor.
The keyboard still has to echo through the CP/M
system which is not yet connected so it will pass
init OK, but not work to the screen.

8. The monitor will write the Startup and Initialize

messages you found in the PripIO.spin file, along
with the “OK” feedback messages telling you that
all of the init details were completed OK. The
last message is the “PropIO Ready!” Message. The
version 0.92 prints in the lower right corner of
the screen on the blue line. Below is a picture
of the VGA screen (with some tilt to minimize the
camera flash) as it initializes:

9. The last step is to place both the N8VEM CPU and
the PropIO in the backplane sockets and power up
the pair with CPU JP2 removed. The VGA will run

the sign-on messages and then work with the CPU
as the CP/M terminal serial port.

10.Below is a picture of the assembled PropIO with a

red 5 volt power socket installed because my VGA
did not source 5 volts through the red JP1 jumper.

Note that the bus interface chips were not in
place for the initial confirmation of the VGA
terminal. Correct voltages were confirmed on all
sockets before any chips or peripheral devices
were plugged into the board.

Jumper JP1 is open to prevent sourcing 5 volts
into the VGA. I had intended to use the 5 volts
from the VGA to power the board for the first
terminal test and EEprom download, but this older
display was not destined to cooperate.

Before launching into the Write the Prom Exercise, lets
take a look at the files that will be down-loaded through
the prop chip to the EEPROM.

1. Go back to the ROMWBW folder and drill down to
the SUPPORT folder and find the folder called
PropIO. Inside, is the PropIO.eeprom file, which
is the pre-built production code binary for the
PropIO card 24C512 EEprom.

2. The propeller runs its applications from SPIN

code using its built-in SPIN Interpreter and a
small amount of assembly code. Start up the Prop
Tool (aka Propeller Tool v1.3.2), and use it to
open PropIO.spin, which is the starting point for
all of the Spin applications. This file will set
up Keyboard.spin to operate the PS2 keyboard,
Safe_spi.spin to support the SD disk, and
VGA_1024.spin to initialize the VGA and pass
operating control to VGA_hires_txt.spin).

3. There is a Parallax Serial Terminal tool which

can be built into the application binary which
provides a terminal window into the details of
the propeller execution of the spin code. This
piece of diagnostic code is not built into the
ROMWBW production binary.

4. For the inveterately curious, the files PRP.asm

and Prp_dph.asm are the code and file descriptors
for the CP/M bios end of the bios driver to
terminal firmware conversation. These files must
be matched with the provided PropIO SPIN firmware
in order to obtain proper operation of the card.

5. After poking around in the PropIO support code on

the card and in the Bios for a while, one just
starts to appreciate how massive an undertaking
ROMWBW really is; a matrix of multiple SBCs with
unique bios code versus a host of function
specific support cards with individual interface
requirements, all structured in one huge complex
conditional assembly environment. Some of the
support cards use non-Z80 processors and

languages which have to be understood in order to
bring these interfaces together. Wow!

Time for the Load the EEprom Exercise. The Prop Plug cable
from Parallax is the connection (USB on one end a 4 pin
connector on the other with a USB to 3.3 TTL converter)
between the code development tool and the hardware:

1. The Prop Plug needs to be connected between
the computer USB port and the connector on
the hardware board; orientation can be
confirmed by locating the ground pin which
is pin 1 on the 4 terminal connector.

2. The target board needs to have power applied

but without chips in order to confirm proper
power levels on all chips with a volt meter.
First check the LM3940 regulator for 5.0
volts and 3.3 volts, and then check all the
other chips with the help of the schematic.

3. With correct power verified, the power can

be removed and the Propeller and EEprom
memory chip placed in their respective
sockets (3.3 volt level). Bus buffer chips
are not needed for prop test or loading the
prom code so they can be deferred to the
backplane testing. All of the buffer chips
run from the 5.0 volt supply.

4. Using the Propeller Tool, open the ROMWBW

version of PropIO.eeprom file. The Tool
will bring up an Object Info window and show
a color coded representation of the memory
span from 0 to 32K in Hex format. The right
hand side of the display shows ASCII when
found and the snipits that appear confirm
the identity of the file that we loaded.

The screen messages that will paint on the
VGA screen can be found in the code on the
ASCII side of the screen.

5. Read across the bottom of the display, and
there are options to load this code to the
ROM memory and the Prop internal RAM memory.
Push the Load EEPROM button first to get the
external ROM written. The Tool will report
errors or success. After a successful load,
a reset pulse to the card without the
PropPlug in place will cause the PROM to be
loaded, executed, and the startup sequence
to be announced on the VGA screen.

6. The load strategy will be to power the board

from the VGA with jumper JP1 shorted. This
will supply power to the 24C512 EEProm and
the Propeller via the 3.3 volt regulator,
which is all we need to write the EEProm.

Once the Prom is written, it should be
feasible to reset the board without the Prop
Plug and the terminal should boot up from
the Prom and all of the start-up messages
should be evident. Only the Propeller, the
VGA, and the keyboard are required to run
the terminal sans the backplane and external
bus buffers.

With the VGA Terminal system working, the
external bus address must be set to the 40H
range. All of the remaining bus interface
chips must be installed on the PropIO. CPU
jumper JP2 must be removed, and then the

PropIO should provide VGA terminal services
over the external backplane and bus.

The PropIO SD disk facility was booted to the EEprom in the
VGA exercise, and will be tested later with separate
support documentation. This testing will confirm all of
the bus connections and buffers.

APPENDIX 1 – Parallax Tool Set

Journey to the Parallax Inc. website (http://www.parallax.com)
to find the propeller information set. The web page is
probably not exactly what you expected, but if you select
microcontrollers and then propeller, you will get a page with
the heading Propeller The Multicore Propeller Microcontroller
with a picture of the three chip packages that are available.

Half way down the page there is a heading for Propeller Tools.
In that space is the description of the software development
environment: “The Propeller Tool Software is the primary
development environment for Propeller programming in Spin and
Assembly Language. It includes many features to facilitate
organized development of object-based applications: multi-file
editing, code and document comments, color-coded blocks,
keyword highlighting, and multiple window and monitor support
aid in rapid code development. Optional view modes allow you
to quickly drill down to the information you need—by hiding
comment lines, method bodies, or by showing the object’s
compiled documentation only. Example objects, such as
keyboard, mouse, and graphics drivers, come standard with the
free Propeller Tool software.”

Double click on the Propeller Tool Software vector, and it
will take you to another page where you can download the tool
in zip format:

P8X32A-Setup-Propeller-Tool-
v1.3.2.zip

19.69
MB

Mon, 2012-10-08
15:42

Double click on the tool line and you will get a down-load
window asking if you would like to save this file. I tend to
store these installables in the Program file for disk C so I
always have the original files handy but separate, while I
actually install the tool in a directory structure that makes
sense for the development of the project code. Note that
there is also an older version Propeller Tool v1.2 which works
quite well (and the one I started with).

The installer asks you to register by name and organization
(ORG is not required) and does the dirty work. You must
accept the 2 drivers that support the USB interfaces. Create
a shortcut for your desktop and you are ready to go.

When you first start Propeller Tool 1.3.2, it may tell you
that it has found a file type that does not fit into its
expected file types (it expects .spin and .eeprom, but
apparently does not recognize .binary). I chose Cancel to
ignore the .binary type and have not yet been slapped down for
carelessness. The Propeller Tool then comes up and you can
select to OPEN the Propeller SPIN codes in the SUPPORT
directory of ROMWBW.

There is a slightly more “rustic” propeller development tool
available that is command line oriented: “The Parallax
Propellent software is a Windows-based tool for compiling and
downloading to the Parallax Propeller chip without using the
Propeller Tool development software. The Propellent Executable
provides the ability to do things like compile Spin source,
save it as a binary or EEPROM image, identify a connected
Propeller chip, and download to the Propeller chip, all via
simple command-line switches or drag-and-drop operations.” As
always, Beauty is in the eye of the beholder.

P8X32A-Propellent-
v1.6.zip

738.73 KB Thu, 2013-04-04
10:18

It is also worthwhile to note that there is a Parallax
Propeller Library Exchange which is a collection of
applications from the public domain which are available
without warranty or support. These applications are good
examples of how things could (or should not?) be done.

There is an Open Propeller Project, not associated with
Parallax, which is hosted by Ken Gracey which provides some
forum support and example applications and code.

And last, but not least, there is an Open source GCC
Project with language, tool, and example application
support: “The Propeller GCC Compiler tool-chain is an open-
source, multi-OS, and multi-lingual compiler that targets
the Parallax Propeller's unique multi-core architecture.
Parallax has collaborated with industry experts to develop
all aspects of the tool chain, including the creation of a
new development environment that simplifies writing code,
compilation, and downloading to a Propeller board. Using

the Large Memory Model (LMM) and Extended Memory Model
(XMM) gives the developer the ability to write C or C++
programs that run faster than Spin or exceed Spin's 32 KB
program size limit, respectively. Example objects,
including C objects, are available through the Propeller
Object Exchange.”

And just when you thought we were done, there are the USB
drivers for the Parallax Prop Plug. These can be found under
the USB DRIVERS area of the standard Parallax Website
(WWW.Parallax.com/usbdrivers). These need to be downloaded
before the hardware is plugged into the USB port so that the
computer will be able to find the right drivers for the new
hardware the computer system has found. There is a zip with
all the stuff you need, and the Wizard executable which will
do the hard work:

Install-Parallax-USB-Drivers-
v2.08.24.exe

2.43
MB

Fri, 2012-09-28
15:55

Install-Parallax-USB-Drivers-
v2.08.24.zip

1.71
MB

Fri, 2012-09-28
15:55

 APPENDIX 2 PROPELLER STARTUP PROCESS

Upon power-up (+ 100 ms), RESn low-to-high, or software reset:

1. The Propeller chip starts its internal clock in slow mode (≈
20 kHz), delays for 50 ms (reset delay), switches the internal
clock to fast mode (≈ 12 MHz), and then loads and runs the
built-in Boot Loader program in the first processor (Cog 0).

2. The Boot Loader performs one or more of the following tasks,

in order:

a. Detects communication from a host, such as a PC, on pins
P30 and P31. If communication from a host is detected, the
Boot Loader converses with the host to identify the Propeller
chip and possibly download a program into Main RAM and
optionally into an external 32 KB EEPROM.

b. If no host communication was detected, the Boot Loader
looks for an external 32 KB EEPROM (24LC256) on pins P28 and
P29. If an EEPROM is detected, the entire 32 KB data image is
loaded into the Propeller chip’s Main RAM.

c. If no EEPROM was detected, the boot loader stops, Cog 0 is
terminated, the Propeller chip goes into shutdown mode, and
all I/O pins are set to inputs (high impedance).

3. If either step 2a or 2b was successful in loading a program
into the Main RAM, and a suspend command was not given by the
host, then Cog 0 is reloaded with the built-in Spin
Interpreter and the user code is executed from Main RAM.

 **** The source for the above startup procedure is the

Parallax Propeller chip datasheet documentation.

