Contents

Summary
ASSIGN
SYSCOPY
MODE
FDU
FORMAT
XM
FLASH
FDISK80
TALK
RTC
TIMER
INTTEST
FAT

RomWBW Applications

Wayne Warthen

Monday 23 March 2020

12
14
15
16
19
21
23
24
26
28
30

TUNE

34

Summary

RomWBW includes a small suite of custom applications to maximize the
features available. In general, these applications are operating system
agnostic — they run under any of the included operating systems. However,
they all require RomWBW — they are not generic CP/M applications.

Most of the applications are custom written for RomWBW. However, some are
standard CP/M applications that have been adapted to run under RomWBW
(e.g., XModem). The applications are generally matched to the version
of RomWBW they are distributed with. So, if you upgrade the version of
RomWBW in your system ROM, you will want to copy the corresponding
applications to any storage devices you are using.

Most of the applications are included on the RomWBW ROM disk, so they
are easy to access.

The applications are also included with all of the operating system disk
images provided with RomWBW. So, a simple way to ensure you have
matching applications is to write the disk images onto your disk media when
upgrading your ROM. Of course, this will destroy any existing data on your
disk media, so don’t do this if you are saving any data on the media.

Most of the applications are included as source code in the RomWBW
distribution and are built in the normal build process. The source code is
found in the Source\Apps directory of the distribution. The binary executable
applications are found in the Binary\Apps directory.

The following table clarifies where each of the applications can be found:

Application ROM Disk Boot Disks Apps Dir

ASSIGN Yes Yes Yes
SYSCOPY Yes Yes Yes
MODE Yes Yes Yes
FDU Yes Yes Yes

Application ROM Disk Boot Disks Apps Dir

FORMAT Yes Yes Yes
XM Yes Yes Yes
FLASH Yes Yes Yes
FDISK80 Yes Yes Yes
TALK Yes Yes Yes
RTC Yes Yes Yes
TIMER Yes Yes Yes
INTTEST Yes Yes Yes
FAT No Yes Yes
TUNE No Yes Yes

ASSIGN

RomWBW includes a flexible mechanism for associating the operating sys-
tem drive letters (A: - P:) to the physical devices in the system. Drive letter
assignments can be changed on a running operating system without reboot-
ing. The ASSIGN command facilitates this by allowing you to display, assign,
reassign, or remove the drive letter assignments.

Syntax

ASSIGN /7

ASSIGN /L

ASSIGN [<drv>],...
ASSIGN<drv>=[<device> :[<slice>]],...
ASSIGN<tgtdrv>=<srcdrv>,...

Usage
ASSIGN /7 will display brief command usage and version information.

ASSIGN /L will display a list of all the devices available to be used in drive
assignments in the running system. The devices listed may or may not
contain media. Although some device types support the use of slices, the list
does not indicate this.

ASSIGN with no parameters will list all of the current drive assignments.

ASSIGN<drv> will display the assignment for the specific drive For example,
ASSIGN C: will display the assignment for drive C:.

ASSIGN<drv>=<device> [: <slice>] will assign (or reassign) a drive letter to
a new device and (optionally) slice. If no slice is specified, then slice 0 is
assumed. For example, ASSIGN C:=IDEO will assign drive letter C: to device
IDEO, slice 0. ASSIGN D:=IDEO:3 will assign drive letter D: to device IDEO
slice 3.

ASSIGN<drv>= can be used to remove the assignment from a drive letter. So,
ASSIGN E:= will remove the association of drive letter E: from any previous
device.

ASSIGN<tgtdrv>=<srcdrv> is used to swap the assignments of two drive
letters. For example, ASSIGN C:=D: will swap the device assignments of C:
and D..

The ASSIGN command supports “stacking” of instructions. For example,
ASSIGN C:=IDE0:0,D:=IDEO:1,E:=will assign C: and D: to the first two slices
of IDE 0 and will unassign E:.

When the command runs it will echo the resultant assignments to the console
to confirm it’s actions. It will also display the remaining space available in
disk buffers.

Notes

If the ASSIGN command encounters any rule violations or errors, it will abort
with an error and none of the drive assignments will be implemented. In
other words, the command is atomic and will either completely succeed or
completely fail.

All assigned drives utilize disk buffer space from a limited pool. The ASSIGN
command will display the amount of buffer space remaining after an assign
command is executed. Buffer space is freed if a drive is unassigned. If
the total assignments exceed the available disk buffer space available, the
command will abort with an error message.

The ASSIGN command does not check to see if the device and slice being
assigned actually contains readable media. If the assigned device has no
media, you will receive an I/O error when you attempt to use the drive letter.

The ASSIGN command will not allow you to specify a slice (other than zero)
for devices that do not support slices (such as floppy drives or RAM/ROM
disks).

The ASSIGN command does not check that the media is large enough to
support the slice you specify. In other words, you could potentially assign a
drive letter to a slice that is beyond the end of the media in a device. In this
case, subsequent attempts to use that drive letter will result in an I/O error.

Additionally, the ASSIGN command does not check to see if the slice specified
refers to an area on your media that is occupied by other data (such as a
FAT filesystem).

You will not be allowed to assign multiple drive letters to a single device and
slice. In other words, only one drive letter may refer to a single filesystem at
a time.

Drive letter A: must always be assigned to a device and slice. The ASSIGN
command will enforce this.

The changes made by this command are not permanent. The assignments
will persist through a warm start, but when you reboot your system, all drive
letters will return to their default assignments. A SUBMIT batch file can be
used to setup desired drive assignments automatically at boot.

Floppy disk drives and RAM/ROM drives do not have slices. A slice should
only be specified for hard disk devices (SD, IDE, PPIDE).

Only one drive letter may be assigned to a specific device/unit/slice at a time.
Attempts to assign a duplicate drive letter will fail and display an error. If you
wish to assign a different drive letter to a device/unit/slice, unassign the the
existing drive letter first.

Be aware that this command will allow you to reassign or remove the assign-
ment of your system drive letter. This can cause your operating system to
fail and force you to reboot.

This command is particularly sensitive to being matched to the appropriate
version of the RomWBW ROM you are using. Be very careful to keep all
copies of ASSIGN.COM up to date with your ROM.

Etymology

The ASSIGN command is an original product and the source code is provided
in the RomWBW distribution.

SYSCOPY

To make disk media bootable, you must write a system boot image onto the
system tracks of the of the media. The SYSCOPY allows you to read or write
the system boot image of disk media.

Syntax

SYSCOPY<dest>=<src>

<dest> is the drive to receive the operating system image or alternatively a
filename to save the operating system image

<src> is the drive containing an operating system image or alternatively a
filename containing the system image to be placed on the destination

Usage

Both <dest> and <src> can refer to either a drive letter or a file. If a drive
letter is specified, the system boot image will be read or written to the system
tracks of the drive. If a filename is specified, the system boot image will be
read or written to the specified filename.

SYSCOPY C:=ZSYS.SYS will read a system boot image from the file ZSYS.SYS
and write it onto the system tracks of drive C.:.

SYSCOPY A:0S.SYS=C: will capture the system boot image from the system
tracks of drive C: and store it in the file A:0S.SYS.

SYSCOPY D:=C: will copy the system tracks from drive C: onto the system
tracks of drive D.:.

Notes

The RomWBW ROM disk contains files with the system boot image for Z-
System and CP/M 2.2. These files are called CPM.SYS and ZSYS.SYS
respectively. These files can be used as the source of a SYSCOPY command
to make a disk bootable with the corresponding operating system.

CP/M 3 uses a two phase boot process. To make a CP/M 3 drive bootable,
you need to put “CPMLDR.SYS” on the boot tracks of the disk and be sure
that the drive also contains the “CPM.SYS” file. The “CPMLDR.SYS” file is
not included on the ROM disk, but is found on the CP/M 3 disk image.

ZPM3 is similar to CP/M 3. You also put “CPMLDR.SYS” on the system
tracks of the drive to make it bootable. The ZPM3 operating system is in the
file called “CPM3.SYS” on the ZPMS3 disk image. It may seem confusing that
ZPM3 is in the file called CPM3.SYS, but it is normal for ZPMS3.

For the purposes of booting an operating system, each disk slice is consid-
ered it's own operating system. Each slice can be made bootable with it’'s
own system tracks.

SYSCOPY uses drive letters to specify where to read/write the system boot
images. However, at startup, the boot loaded will require you to enter the
actual disk device and slice to boot from. So, you need to be careful to pay
attention to the device and slice that is assigned to a drive letter so you will
know what to enter at the boot loader prompt. By way of explanation, the
boot loader does not know about drive letters because the operating system
is not loaded yet.

If you want to put a a boot system image on a device and slice that is not
currently assigned to a drive letter, you will need to assign a drive letter first.

Not all disk formats include space for system tracks. Such disk formats cannot
contains a system boot image and, therefore, cannot be made bootable. The
best example of such disk formats are the ROM and RAM disks. To maximize
usable file space on these drives, they do not have system tracks. Obviously,

10

ROM operating system is supported by choosing a ROM operating system
at the boot loader prompt. Any attempt to write a system boot image to
disk media with no system tracks will cause SYSCOPY to fail with an error
message.

The system boot images are paired with the ROM version in your system.
So, you must take care to update the system tracks of any bootable disk
when you upgrade your ROM firmware.

The system boot images are not tied to specific hardware configurations.
System boot images and operating systems provided with RomWBW will
work with any supported RomWBW platform or hardware as long as they are
the same version as the RomWBW firmware.

Etymology

The SYSCOPY command is an original product and the source code is provided
in the RomWBW distribution.

11

MODE

The MODE command allows you to adjust the operating characteristics such
as baud rate, data bits, stop bits, and parity bits of serial ports dynamically.

Syntax

MODE /7 MODE COM<n>: [<baud> [, <parity> [, <databits> [, <stopbits>11]]
[/P]

/7 displays command usage and version information
<n> is the character device unit number

<baud> is numerical baudrate

<parity> is (N)one, (O)dd, (E)ven, (M)ark, or (S)pace
<databtts> is number of data bits, typically 7 or 8
<stopbits> is number of stop bits, typically 1 or 2

/P prompts user prior to setting new configuration

Usage
MODE /7 will display basic command usage and version information.
MODE with no parameters will list all devices and their current configuration.

MODE <n> will display the current configuration of the specified character
device unit.

MODE COM<n>: [<baud> [, <parity> [, <databits> [, <stopbits>]111]
[/P] requests that the specified configuration be set on the character device
unit. You can use commas with no values to leave some values unchanged.
As an example, MODE COMO: 9600,,,2 will setup character device unit O for
9600 baud and 2 stop bits while leaving data bits and stop bits as is.

12

Appending /P in a command specifying a new configuration will cause the
terminal output to pause and wait for the user to press a key. This allows the
user to change the local terminal setup before continuing.

Notes

Specified baud rate and line characteristics must be supported by the serial
unit. Any parameters not specified will remain unchanged.

Changes are not persisted and will revert to system defaults at next system
boot.

Not all character devices support all MODE options. Some devices (notably
ASCI devices) have limited baud rate divisors. An attempt to set a baud rate
that the device cannot support will fail with an error message.

Etymology

The SYSCOPY command is an original product and the source code is provided
in the RomWBW distribution.

13

FDU

The FDU application is a Floppy Disk Utility that provides functions to format
and test floppy disk media.

Syntax

FDU

Usage

This application has an interactive user interface. At startup, you will be
prompted to select the floppy interface hardware in your system. Following
this, you will see the main menu of the program with many functions to
manage floppy disk drives.

The primary documentation for this application is in a file called “FDU.txt” in
the Doc directory of the RomWBW distribution. Please consult this file for
usage information.

Notes

This application interfaces directly to the floppy hardware in your system. It
does not use the RomWBW HBIOS. This means that even if your system
is not configured for floppy drives, you can still use FDU to test your floppy
drives and format floppy media. This also means it is critical that you choose
the correct hardware interface from the initial selection when starting the
application.

Etymology

The FDU command is an original product and the source code is provided in
the RomWBW distribution.

14

FORMAT

This application is just a placeholder for a future version that will make it
simpler to format media including floppy disks.

Syntax

FORMAT

Notes

This application currently just displays a few lines of information briefly
instructing a user how to format media. It performs no actual function beyond
this display currently.

Etymology

The FORMAT command is an original product and the source code is provided
in the RomWBW distribution.

15

XM

An adaptation of Ward Christensen’s X-Modem protocol for transferring files
between systems using a serial port.

Syntax

XM S<filename>
XM SK<fzlename>
XM L<lzbrary> <filename>
XM LK<lzbrary> <filename>
XM R<filename>

S: Send afile L: Send a file from a library R: Receive a file K: Use 1K blocksize
for transfer

<filename> is the name of a file to send or receive

<lzbrary> is the name of a library (.lbr) to extract a file to send

Usage

To transfer a file from your host computer to your RomWBW computer, do
the following:

1. Enter one of the XM receive commands specifying the name you want
to give to the received file.

2. On your host computer select a file to send and initiate the XModem
send operation.

To transfer a file from your RomWBW computer to your host computer, do
the following:

1. Enter one of the XM send commands specifying the name of the file to
be sent.

16

2. On your host computer, specify the name to assign to the received file
and initiate and XModem receive operation.

Please refer to the documentation of your host computer’s terminal emulation
software for specific instructions on how to use XModem.

Notes

The XModem adaptation that comes with RomWBW will automatically use
the primary character device unit (character device unit 0) for the file transfer.

XM attempts to determine the best way to drive the serial port based on your
hardware configuration. When possible, it will bypass the HBIOS for faster
operation. However, in many cases, it will use HBIOS so that flow control
can be used.

XM is dependent on a reliable communications channel. You must ensure
that the serial port can be serviced fast enough by either using a baud rate
that is low enough or ensuring that hardware flow control is fully functional
(end to end).

Etymology

The XM application provided in RomWBW is an adaptation of a pre-existing
XModem application. Based on the source code comments, it was originally
adapted from Ward Christensen’s MODEM2 by Keith Petersen and is labeled
version 12.5.

The original source of the application was found in the Walnut Creek CD-
ROM and is called XMDM125.ARK dated 7/15/86.

The actual application is virtually untouched in the RomWBW adaptation.
The majority of the work was in the modem driver which was enhanced to
detect the hardware being used and dynamically choose the appropriate
driver.

17

The source code is provided in the RomWBW distribution.

18

FLASH

Most of the hardware platforms that run RomWBW support the use of EEP-
ROMSs — Electronically Erasable Programmable ROMs. The FLASH application
can be used to reprogram such ROMS in-situ (in-place), thus making it pos-
sible to upgrade ROMs without a programmer or even removing the ROM
from your system.

This application is provided by Will Sowerbutts.

Syntax

FLASH READ<fzlename> [options]
FLASH VERIFY<f%lename> [options]
FLASH WRITE<f%lename> [options]

<filename> is the filename of the ROM image file
Options: (access method is auto-detected by default)

/PARTIAL: Allow flashing a large ROM from a smaller image file
/ROM: Allow read-only use of unknown chip types

/Z180DMA: Force Z180 DMA engine

/UNABIOS: Force UNA BIOS bank switching

/ROMWBW: Force RomWBW (v2.6+) bank switching

/ROMWBWOLD: Force RomWBW (v2.5 and earlier) bank switching
/P112: Force P112 bank switching

Usage

To program your EEPROM ROM chip, first transfer the file to your RomWBW
system. Then use the command FLASH WRITE *™. The application will
auto-detect the type of EEPROM chip you have, program it, and verify it.

You can use the FLASH READ form of the command to read the ROM image

19

from your system into a file. This is useful if you want to save a copy of your
current ROM before reprogramming it.

Although FLASH WRITE automatically performs a verification, you can manu-
ally perform a verification function with the FLASH VERIFY form of the com-
mand.

The author’s documentation for the application is found in the RomWBW
distribution in the Doc\Contrib directory.

Notes

The application supports a significant number of EEPROM parts. It should
automatically detect your part. If it does not recognize your chip, make sure
that you do not have a write protect jumper set — this jumper will cause the
ROM chip type to be unrecognized.

Reprogramming a ROM chip in-place is inherently dangerous. If anything
goes wrong, you will be left with a non-functional system and no ability to
run the FLASH application again. Use this application with caution and be
prepared to use a hardware ROM programmer to restore your system if
needed.

Etymology

This application was written and provided by Will Sowerbutts. He provides it
in binary format and is included in the RomWBW distribution as a binary file.

The source code for this application can be found at the FLASH4 GitHub
repository.

20

https://github.com/willsowerbutts/flash4
https://github.com/willsowerbutts/flash4

FDISK80

RomWBW supports disk media with MS-DOS FAT filesystems (see FAT
application). If you wish to put a FAT filesystem on your media, the FDISK80
application can be used to partition your media which is required in order to
add a FAT filesystem.

This application is provided by John Coffman.

Usage

FDISK80 is an interactive application. At startup it will ask you for the disk
unit that you want to partition. When your RomWBW system boots, it will
display a table with the disk unit numbers. Use the disk unit numbers from
that table to enter the desired disk unit to partition.

FDISK80 operates very much like other FDISK disk partitioning applications.
Please refer to the file called “FDisk Manual.pdf” in the Doc directory of the
RomWBW distribution for further instructions.

There is also more information on using FAT partitions with RomWBW in
the “RomWBW Getting Started.pdf” document in the Doc directory of the
distribution.

Notes

Partitioning of RomWBW media is only required if you want to add a FAT
filesystem to your media. Do not partition your media if you are simply using
it for RomWBW. To be clear, RomWBW slices do not require partitioning.

As described in “RomWBW Getting Started.pdf”, you should be careful when
adding a FAT partition to your media that the partition does not overlap with
the area of the media being used for RomWBW slices. The “(R)eserve”
function in FDISK80 can help prevent this.

21

Etymology

The source for this application was provided directly by John Coffman. It
is a C program and requires a build environment that includes the SDCC

compiler. As such, it is not included in the RomWBW build process, only the
binary executable is included.

Please contact John Coffman if you would like a copy of the source.

22

TALK

It is sometimes useful to direct your console input/output to a designated
serial port. For example, if you were to connect a modem to your second
serial port, you might want to connect directly to it and have everything you
type sent to it and everything it sends be shown on your console. The TALK
application does this.

Syntax

TALK [TTY:|CRT:|BAT:UC1:]

Usage
TALK operates at the operating system level (not HBIOS).

The parameter to TALK refers to logical CP/M serial devices. Upon execution
all characters types at the console will be sent to the device specified and all
characters received by the specified device will be echoes on the console.

Press Control+Z on the console to terminate the application.

Notes

This application is designed for CP/M 2.2 or Z-System. Use on later operating
systems such as CP/M 3 is not supported.

Etymology

The TALK command is an original product and the source code is provided in
the RomWBW distribution.

23

RTC

Many RomWBW systems provide real time clock hardware. The RTC appli-
cation is a simple, interactive program allowing you to display and set the
time and registers of the RTC.

Syntax

RTC

Usage

After startup, the application provides the following options:

Option Function

E)xit will terminate the application.

T) ime will display the time as read from the RTC hardware.

st(A)rt will restart the clock running if it is stopped.

Slet will program the RTC clock with the date/time previously
entered using the I)nit option.

R)aw will read the minute/second of the RTC clock iteratively
every time the space key is pressed. Press enter to end.

L)oop will read the full date/time of the RTC clock iteratively every
time the space key is pressed. Press enter to end.

C)harge will enable the battery charging function of the RTC.

N)ocharge will disable the battery charging functino of the RTC.

D)elay allows you to test the built-in timing delay in the program. It
is not unusual for it to be wrong.

Init allows you to enter a date/time value for subsequent
programming of the RTC using the S)et option.

Glet allows you to read the value of a non-volatile register in the

RTC.

24

Option Function

P)ut allows you to write the value of a non-volatile register in the
RTC.
B) oot will reboot your system.
H)elp displays brief help.
Notes

When using Get and Put options, the register number to read/write is entered
in hex. The non-volatile ram register numbers are 0x20-0x3F.

When entering values, you must enter exactly two hex characters. The
backspace key is not supported. You do not use enter after entering the two
hex characters. Yes, this should be improved.

The RTC application interacts directly with the RTC hardware bypassing
HBIOS.

Etymology

The RTC application was originally written by Andrew Lync as part of the
original ECB SBC board development. It has since been modified to support
most of the hardware variations included with RomWBW.

25

TIMER

Most RomWBW systems have a 50Hz periodic system timer. A counter is
incremented every time a timer tick occurs. The TIMER application displays
the value of the counter.

Syntax

TIMER TIMER /? TIMER /C

Usage

Use TIMER to display the current value of the counter.

Use TIMER /C to display the value of the counter continuously.
The display of the counter will be something like this:
00045444 Ticks, 0000162A.10 Seconds

The first number is the total number of ticks since system startup. The
second number is the total number of seconds since system startup.

Notes

The seconds value is displayed with a fractional value which is not a an
actual fraction, but rather the number of ticks past the seconds rollover. All
values are in hex.

The primary use of the TIMER application is to test the system timer function-
ality of your system.

In theory, you could capture the value before and after some process you
want to time.

26

Etymology

The TIMER command is an original product and the source code is provided
in the RomWBW distribution.

27

INTTEST

RomWBW includes an API allowing applications to “hook” interrupts. The
INTTEST application allows you to test this functionality.

Syntax

INTTEST

Usage

INTTEST is an interactive application. At startup, it will display a list of the
interrupt vector slots in your system along with the current vector address for
each of them.

It then prompts you to enter the slot number (in hex) of a vector to hook. After
entering this, the application will watch the hooked vector and countdown
from OxFF to 0x00 as interrupts are noted.

When the counter reaches 0x00, the interrupt is unhooked and the application
terminates. The application can also be terminated by pressing .

Notes

If your system is running without interrupts active, the application will termi-
nate immediately.

All slots have vectors even if the corresponding interrupt is not doing anything.
In this case, the vector is pointing to the “bad interrupt” handler.

If you hook a vector that is not receiving any interrupts, the downcounter will
not do anything.

28

Etymology

The INTTEST command is an original product and the source code is provided
in the RomWBW distribution.

29

FAT

The operating systems included with RomWBW do not have any native
ability to access MS-DOS FAT filesystems. The FAT application can be
used overcome this. It will allow you to transfer files between CP/M and FAT
filesystems (wildcards supported). It can also erase files, format, and list
directories of FAT filesystems.

Syntax

FAT DIR<path>
FAT COPY<src> <dst>

FAT REN<from> <to>

FAT DEL<path>[<file>/<dir>]
FAT MD<path>

FAT FORMAT<drv>

<path> is a FAT path

<src>, <dst> are FAT or CP/M filenames
<from>, <to> are FAT filenames

<file> is a FAT filename

<dzr> is a FAT directory name

<drv> is a RomWBW disk unit number

CP/M filespec: <d> :FILENAME.EXT (<d> is CP/M drive letter A-P)
FAT filespec: <u> :/DIR/FILENAME.EXT (<u> is RomWBW disk unit #)

Usage

The FAT application determines whether you are referring to a CP/M filesys-
tem or a FAT filesystem based on the way you specify the file or path. If the
file or path is prefixed with a number (n:), then it is assumed this is a FAT
filesystem reference and is referring to the FAT filesystem on RomWBW disk

30

unit ‘n’. Otherwise, the file specification is assumed to be a normal CP/M file
specification.

If you wanted to list the directory of the FAT filesystem on RomWBW disk
unit 2, you would use FAT DIR 2:. If you only wanted to see the “.TXT” files,
you would use FAT DIR 2:*.TXT.

If you wanted to copy all of the files on CP/M drive B: to the FAT filesystem
on RomWBW disk unit 4, you would use the command FAT COPY B:*.* 4:
If you wanted to copy the files to the “FOQO” directory, then you would use FAT
COPY B:*.* 4:\F00. To copy files in the opposite direction, you just reverse
the parameters.

To rename the file “XXX.DAT” to “YYY.DAT” on a FAT filesystem, you could
use a command like “FAT REN 2:XXX.DAT 2:YYY.DAT".

To delete a file “XXX.DAT” on a FAT filesystem in directory “FOQO”, you would
use a command like FAT DEL 2:\FOO\XXX.DAT.

To make a directory called “FOO2” on a FAT filesystem, you would use a
command line FAT MD 2:\F002.

To format the filesystem on a FAT partition, you would use a command like
FAT FORMAT 2:. Use this with caution because it will destroy all data on any
pre-existing FAT filesystem on disk unit 2.

Notes

Partitioned or non-partitioned media is handled automatically. A floppy drive
is a good example of a non-partitioned FAT filesystem and will be recognized.
Larger media will typically have a partition table which will be recognized by
the application to find the FAT filesystem.

Although RomWBW-style CP/M media does not know anything about parti-
tion tables, it is entirely possible to have media that has both CP/M and FAT
file systems on it. This is accomplished by creating a FAT filesystem on the

31

media that starts on a track beyond the last track used by CP/M. Each CP/M
slice on a media will occupy 8,320K (16,640 sectors). So, make sure to start
your FAT partition beyond (< slice count> * 8,320K) or (<slice count * 16,640
sectors).

The application infers whether you are attempting to reference a FAT or
CP/M filesystem via the drive specifier (char before ‘’). A numeric drive
character specifies the HBIOS disk unit number for FAT access. An alpha (A-
P) character indicates a CP/M file system access targeting the specified drive
letter. If there is no drive character specified, the current CP/M filesystem
and current CP/M drive is assumed. For example:

2:README . TXT refers to FAT file “TREADME.TXT” on disk unit #2
C:README . TXT refers to CP/M file “README.TXT” on CP/M drive C
README. TXT refers to CP/M file “README.TXT” on the current CP/M

drive

Files with SYS, HIDDEN, or R/O only attributes are not given any special
treatment. Such files are found and processed like any other file. However,
any attempt to write to a read-only file will fail and the application will abort.

It is not currently possible to reference CP/M user areas other than the
current user. To copy files to alternate user areas, you must switch to the
desired user number first or use an additional step to copy the file to the
desired user area.

Accessing FAT filesystems on a floppy requires the use of RomWBW HBIOS
v2.9.1-pre.13 or greater.

Files written are not verified.

Wildcard matching in FAT filesystems is a bit unusual as implemented by
FatFs. See FatFs documentation.

32

Etymology

The FAT application is an original RomWBW work, but utilizes the FsFat
library for all of the FAT filesystem work. This application is written in C
and requires SDCC to compile. As such it is not part of the RomWBW build
process. However, the full project and source code is found in the FAT GitHub
Repository.

33

https://github.com/wwarthen/FAT
https://github.com/wwarthen/FAT

TUNE

If your RomWBW system has a sound card based on either an AY-3-8190 or
YM2149F sound chip, you can use the TUNE application to play PT or MYM
sound files.

Syntax

TUNE<fZlename>

<ftlename> is the name of a sound file ending in .PT2, .PT3, or MYM

Usage

The TUNE application supports PT and YM sound file formats. It determines
the format of the file from the extension of the file, so your tune filenames
should end in .PT2, .PT3, or .MYM.

To play a sound file, just use the command and specify the file to play after
the command. So, for example, TUNE ATTACK.PT2 will immediately begin
playing the PT sound file “ATTACK.PT2”.

Notes

The TUNE application automatically probes for compatible hardware at well
known port addresses at startup. It will auto-configure itself for the hardware
found. If no hardware is detected, it will abort with an error message.

On Z180 systems, I/O wait states are added when writing to the sound chip
to avoid exceeding it's speed limitations. On Z80 systems, you will need to
ensure that the CPU clock speed of your system does not exceed the timing
limitations of your sound chip.

The application probes for an active system timer and uses it to accurately
pace the sound file output. If no system timer is available, a delay loop is

34

calculated instead. The delay loop will not be as accurate as the system
timer.

All RomWBW operating system boot disks include a selection of sound files
in user area 3.

Etymology

The TUNE application was custom written for RomWBW. All of the hardware
interface code is specific to RomWBW. The sound file decoding software was
adapted and embedded from pre-existing sources. The YM player code is
from MYMPLAY 0.4 by Lieves!Tuore and the PT player code is (¢)2004-2007
S.V.Bulba vorobey@mail.khstu.ru.

The source code is provided in the RomWBW distribution.

35

mailto:vorobey@mail.khstu.ru

	Summary
	ASSIGN
	SYSCOPY
	MODE
	FDU
	FORMAT
	XM
	FLASH
	FDISK80
	TALK
	RTC
	TIMER
	INTTEST
	FAT
	TUNE

