
bst tools

User Manual

v 0.04

30 Apr 2010

©Copyright Brad Campbell / Viridian Consulting 2010



VIRIDIAN Consulting

Table of Contents
1 Introduction..........................................................................................................................1
2 bstl – Command Line Loader / Unloader............................................................................2
3 bstc – Command Line Compiler..........................................................................................3

3.1 Usage...........................................................................................................................3
3.1.1 (-p) Loading a Propeller........................................................................................4
3.1.2 (-b) Saving a Propeller binary to disk...................................................................4
3.1.3 (-e) Saving a Propeller eeprom file to disk...........................................................5
3.1.4 (-a) Creating a Propeller Source Archive.............................................................5
3.1.5 (-c) Creating a DAT file for use by a C compiler (advanced)...............................5
3.1.6 (-d) Specify the serial port to use to load a Propeller...........................................6
3.1.7 (-D) Define a pre-processor symbol (advanced)..................................................6
3.1.8 (-f) Download at double speed.............................................................................6
3.1.9 (-l) Generate compiler list files..............................................................................7
3.1.10 (-L) Library Path..................................................................................................7
3.1.11 (-o) Output Filename..........................................................................................7
3.1.12 (-O) Optimisation options...................................................................................7
3.1.13 (-W) Error / Warning levels.................................................................................8
3.1.14 (-q) Be vewy, vewy, qwiet. I'm hunting Wabbits!................................................8
3.1.15 (-v) Display version information..........................................................................8

4 bst – The GUI IDE...............................................................................................................9
4.1 The main workspace....................................................................................................9

4.1.1 The Directory Tree..............................................................................................10
4.1.1.1 Configuring the Directory Tree....................................................................10

4.1.2 File Selector Box................................................................................................10
4.1.3 The Tab Bar........................................................................................................11

4.2 Getting started with bst..............................................................................................12
4.2.1 Compiler Search Paths......................................................................................12
4.2.2 Fonts...................................................................................................................12
4.2.3 Serial port configuration.....................................................................................13
4.2.4 Multi-port configuration (One Propeller per editor tab).......................................14

4.3 Using bst....................................................................................................................15
4.3.1 (Ctrl-Shift-I/U) Block indenting ...........................................................................15
4.3.2 (Ctrl-Space) Sub object details...........................................................................15
4.3.3 (Context menu) Select Files Directory...............................................................15
4.3.4 (Context menu) Open Object Under Cursor.......................................................16
4.3.5 (Ctrl-G) (Context menu) Go to line.....................................................................16
4.3.6 Code Folding......................................................................................................16
4.3.7 (File->Create Propeller Archive) Creating a Propeller Archive..........................17

4.4 The List Window........................................................................................................18
4.5 The Project File..........................................................................................................19
4.6 The Serial Terminal...................................................................................................20
4.7 Under the bonnet (hood)............................................................................................21

4.7.1 Persistent Configuration Files............................................................................21
4.7.2 Recovery Files....................................................................................................21

5 SPIN Language Extensions..............................................................................................23

bst_manual_0.04 - 30 Apr 2010



VIRIDIAN Consulting
5.1 #define and friends....................................................................................................23
5.2 @@@ - The absolute address operator...................................................................23
5.3 Bytecode() (advanced)..............................................................................................24
5.4 The VARX block (advanced).....................................................................................25

6 Compiler optimisation options...........................................................................................26
6.1 (-Oa) Enable all optimisations...................................................................................26
6.2 (-Ob) Bigger Constants..............................................................................................26
6.3 (-Oc) Fold Constants.................................................................................................26
6.4 (-Og) Generic safe optimisations...............................................................................27
6.5 (-Or) Remove unused SPIN methods/objects...........................................................27
6.6 (-Ou) Fold Unary........................................................................................................27
6.7 (-Ox) Non-Parallax compatible extensions................................................................27

7 Anatomy of a list file..........................................................................................................28
7.1.1.1 Global header..............................................................................................29
7.1.1.2 Object header..............................................................................................30
7.1.1.3 Spin Method................................................................................................30

8 Warranty Statement..........................................................................................................31
8.1 Disclaimer of Warranty..............................................................................................31
8.2 Limitation of Liability..................................................................................................31

bst_manual_0.04 - 30 Apr 2010





1 Introduction VIRIDIAN Consulting

1 Introduction
The bst tool set is a multi-platform set of tools for developing with the Parallax Propeller microcontroller. 

bst stands for “Brad's Spin Tool”, however it is never capitalised.

The bst tool set currently targets and supports the following architectures and operating systems :

 i386-linux-gtk2

 PowerPC-darwin (Mac OSX 10.4->10.6)

 i386-darwin (Mac OSX 10.4->10.6)

 i386-Win32 (Windows 95->Windows 7)

The current tool kit consists of three parts :

1. bstl – The command line loader / unloader

2. bstc – The command line loader / compiler

3. bst – The fully integrated GUI IDE

The latest version of the bst tools can always be found linked from http://www.fnarfbargle.com/bst.html

There are often development snapshots posted to http://www.fnarfbargle.com/bst/snapshots

The code in the snapshot directory is very much a work in progress and often represents experimental 

features as the development progresses. It has the potential to be unstable or break badly. If it breaks, you 

do however get to keep both pieces.

bst_manual_0.04 - 30 Apr 2010 Page 1 ©Copyright Brad Campbell / Viridian Consulting 2010

This manual is intended for users with a firm grasp of Propeller Chip concepts. 

New users are recommended to read the manual that comes with the Parallax Propeller Tool in order to gain 

familiarity with the basic concepts prior to attempting use of bst.

http://www.fnarfbargle.com/bst.html
http://www.fnarfbargle.com/bst/snapshots


2 bstl – Command Line Loader / Unloader VIRIDIAN Consulting

2 bstl – Command Line Loader / Unloader
bstl  was  developed  initially  as  a  test  for  the  cross-platform  toolchain  and  to  experiment  with  different 

algorithms for loading the Propeller chip. The program is dual purpose, which is to take a Propeller binary 

(*.binary) or eeprom (*.eeprom) file (as generated by the Propeller Tool) and load it into a Propeller chip via a 

serial port, or suck the program out of a Propeller chip and save it back as an eeprom file.

Asking bstl for its command line options will give you the following :

On Linux & OSX, it  will  attempt to autodetect  the first  USB->Serial  port  (as encountered when using a 

Parallax PropPlug, or generic PL2303 converter). On Win32 it will simply try COM2. If it does not find your 

Propeller, you must tell it where it is using the -d command line option.

The -f option runs the download at twice the baud rate used by the Parallax tools. This has the ability to 

shave 30% of the download time off when loading a large file. If you suffer reliability issues using -f, simply 

leave it out to use the standard download speed.

Versions  0.07-Pre1  or  later  have  a  new feature  to  read  the  contents  of  an  eeprom connected  to  the 

Propeller. If you've lost your source code, or simply want to upload the eeprom to preserve user settings (in 

which case the checksum will need re-calculating before you can re-download), you can use the -u option. 

This will connect to the Propeller and download a small program into RAM. This copies the contents of the 

first 32k of eeprom into RAM, performs a 16 bit CRC on it and then uploads the contents to the PC. The PC 

receives the contents, checks the resulting CRC and writes it out to a file as named on the command line. If 

using the -u option without a file name, the whole process still occurs however there is no file written to disk. 

This is useful for testing communications integrity.

bst_manual_0.04 - 30 Apr 2010 Page 2 ©Copyright Brad Campbell / Viridian Consulting 2010

Program Usage :- bstl (Options) <FileName> 
-d <filename> - Serial device to use (Default /dev/ttyUSB1) 
-p [123] - Program Mode 
    1 - Ram only (Default) 
    2 - Eeprom and shutdown 
    3 - Eeprom and Run 
-f Load at high speed 
-t Test mode (Undocumented) 
-l Test mode (Undocumented) 
-h  - Show this help 
-u Read Propellers EEPROM into file <FileName> - WARNING will overwrite it if it exists with no prompt!



3 bstc – Command Line Compiler VIRIDIAN Consulting

3 bstc – Command Line Compiler
bstc was written as a simple command line compiler to compile Propeller *.spin files. It handles generic 

Propeller Tool compatible spin files and aims to generate 100% bit-for-bit identical binaries.

The command line for the compiler is significantly more complex than for the loader. The current help and 

usage information is listed below :

3.1 Usage
bstc requires as a minimum, the filename of the source you wish to compile.

bst_manual_0.04 - 30 Apr 2010 Page 3 ©Copyright Brad Campbell / Viridian Consulting 2010

Brads Spin Tool Compiler v0.15.4-pre8 - Copyright 2008,2009,2010 All rights reserved 
Compiled for i386 Linux at 14:43:25 on 2010/04/20 
Program Usage :- bstc (Options) Filename[.spin] 
 -a            - Create Propeller object archive zipfile 
 -b            - Write .binary file 
 -c            - Write .dat file for C-Compiler (Drops a <filename.dat> file) 
 -d <device>   - Device to load to (Default : ) 
 -D <define>   - Define a pre-processor symbol (may be used multiple times) 
 -e            - Write .eeprom file 
 -f            - Double download baud rate 
 -h            - Display this help information 
 -l[sma]       - Generate listfile (s) For source code / (m) for Machine readable - Debugger style 
listing / (a) standard boring listfile 
 -L <Lib Path> - Add a library path or file holding library path(s) to the searchpath (may be used 
multiple times) 
 -o <filename> - Output [.list/.eeprom/.binary/.zip] Filename (Defaults to input Filename without .spin) 
 -O <options>  - Optimise Binary (HIGHLY EXPERIMENTAL!!!!!) 
    a          - Enable all optmisations (Be careful! No, really) 
    b          - Bigger constants (should be slightly faster at the expense of code size) 
    c          - Fold Constants 
    g          - Generic "safe" size optimisations for smaller/faster code, however not what the Parallax 
compiler will generate 
    r          - Remove unused Spin Methods 
    u          - Fold Unary "-" Operations on Constants if it will make the code smaller 
    x          - Non-Parallax compatible extensions 
 -p[012]       - Program Chip on device (-d) 
    0          - Load Ram and run 
    1          - Load EEProm and shutdown 
    2          - Load EEProm and run 
 -w[012]        -  Error/Warning  level  -  0  -  Errors  only  /  1  -  Error/Warning  /  2  - 
Error/Warning/Information (Default 0) 
 -q            - Be silent except for GCC style errors and warnings 
 -v            - Get program version information 

brad@bkmac:~$ bstc test.spin 
Brads  Spin  Tool  Compiler  v0.15.4-pre8  -  Copyright 
2008,2009,2010 All rights reserved 
Compiled for i386 Linux at 14:43:25 on 2010/04/20 
Loading Object test 
Program size is 3 longs 
Compiled 1 Lines of Code in 0.001 Seconds 



3.1 Usage VIRIDIAN Consulting
It will simply compile the file and tell you if you have any errors :

To do anything else useful, you need to use some of the optional command line parameters.

3.1.1 (-p) Loading a Propeller
There are three ways to load a program into a Propeller target. These three options are specified using the 

command line (-p).

● -p0 – Load the program to Propeller RAM and run it

● -p1 – Load the program to an attached EEPROM and halt

● -p2 – Load the program to an attached EEPROM and run the program

The options are mutually exclusive and only one may be specified at a time.

3.1.2 (-b) Saving a Propeller binary to disk
The (-b) option allows you to save the compiled binary to disk in a Propeller Tool compatible binary format. 

The binary file is saved (by default) to the same directory as the original top source file, and named as the 

top source file.

 

bst_manual_0.04 - 30 Apr 2010 Page 4 ©Copyright Brad Campbell / Viridian Consulting 2010

brad@bkmac:~$ bstc test.spin 
Brads  Spin  Tool  Compiler  v0.15.4-pre8  -  Copyright 
2008,2009,2010 All rights reserved 
Compiled for i386 Linux at 14:43:25 on 2010/04/20 
Loading Object test 

test(2,3) Error : Unresolved Symbol - X 
  X := 1 
__^ 

Compiled 2 Lines of Code in 0.001 Seconds 

brad@bkmac:~/proptest$ ls 
test.spin 
brad@bkmac:~/proptest$ bstc -b test.spin 
Brads  Spin  Tool  Compiler  v0.15.4-pre8  -  Copyright 
2008,2009,2010 All rights reserved 
Compiled for i386 Linux at 14:43:25 on 2010/04/20 
Loading Object test 
Program size is 3 longs 
Compiled 2 Lines of Code in 0.001 Seconds 
brad@bkmac:~/proptest$ ls 
test.binary  test.spin 

NOTE : There may be issues currently with RS232-Propeller interfaces based on discrete Transistors. The 

design as published by Parallax has the DTR polarity inverted to that used by the FTDI (PropPlug) 

interface. This has been proved to cause issues with the ability of bstc to detect and load the Propeller. It is 

hoped this can be rectified prior to the release of bstc v0.16



3.1 Usage VIRIDIAN Consulting

3.1.3 (-e) Saving a Propeller eeprom file to disk
The (-e) option allows you to save the compiled binary to disk in a Propeller Tool compatible eeprom format. 

The eeprom file is saved (by default) to the same directory as the original top source file, and named as the 

top source file.

The eeprom file format is simply an extended version of the binary format suitable to be loaded into an 

eeprom using an external programmer rather than the Propeller itself.

3.1.4 (-a) Creating a Propeller Source Archive
The (-a) option creates a zipped archive of your Propeller source files similar to the one created by the 

“Create  Archive”  function  in  the  Parallax  Propeller  Tool.  There  are  a  few caveats  to  the  bstc  version 

however :

● The tool will not properly archive source files that are pointed to by symbolic links

● The source code must compile with no errors

If the source contains errors, bstc will refuse to create any output files in any case. If one of your source files 

is pointed to by a symbolic link (for example you have one object name linked to another and the spin file 

references the name of the link) then the archive will be created, however the linked file will be empty.

3.1.5 (-c) Creating a DAT file for use by a C compiler (advanced)
Early in the development of C for the Propeller,  it  was common for drivers  (such as TV or VGA) to be 

compiled using the Propeller Tool. The binary portion of the driver (the code intended to be loaded into a 

COG) was then manually stripped out and inserted as a binary blob to be linked into projects developed 

using a C compiler.

This option was added to allow people to compile an unmodified spin file, and allow bstc to output only the 

desired binary portion without any other processing required. I don't think it's ever been used, however it 

does work.

If for some reason you want a binary image of only the DAT section of  your top object. This is the command 

for you!

bst_manual_0.04 - 30 Apr 2010 Page 5 ©Copyright Brad Campbell / Viridian Consulting 2010

brad@bkmac:~/proptest$ bstc -a test.spin 
Brads Spin Tool Compiler v0.15.4-pre8 - Copyright 2008,2009,2010 All rights reserved 
Compiled for i386 Linux at 14:43:25 on 2010/04/20 
Loading Object test 
Program size is 3 longs 
Compiled 2 Lines of Code in 0.001 Seconds 
brad@bkmac:~/proptest$ ls 
test.binary  test-bstc-archive-100420-171319.zip  test.spin 
brad@bkmac:~/proptest$ unzip -t test-bstc-archive-100420-171319.zip 
Archive:  test-bstc-archive-100420-171319.zip 
    testing: test.spin                OK 
    testing: _readme_.txt             OK 
No errors detected in compressed data of test-bstc-archive-100420-171319.zip. 



3.1 Usage VIRIDIAN Consulting
3.1.6 (-d) Specify the serial port to use to load a Propeller
If you find the default configuration does not work for you, or you have multiple Propellers connected to your 

machine, this allows you to manually specify which port to use.

3.1.7 (-D) Define a pre-processor symbol (advanced)
Calling the code in bstc a pre-processor is probably a stretch. It supports basic conditional compilation only 

at the current time, however this option allows you to specify symbols on the command line rather than 

inserting #define in the files to be compiled.

3.1.8 (-f) Download at double speed
The Propeller tool talks to the Propeller at 115,200 baud and uses a fixed bit packing scheme. bstc uses a 

“dense packing” scheme based on one devised by “hippy” on the Parallax Forums. This increases download 

efficiency (and therefore speed) by about 25% on average. The (-f) option also doubles the baud rate to 

230,400 baud. This shaves approximately 30% more off the download time of large files.

My tests have shown it to be 100% reliable with all the hardware I have to test on, and so I use it all the time. 

If you experience issues with it, I'd like to know about it, but you can always omit it and go back to the slower 

rate.

bst_manual_0.04 - 30 Apr 2010 Page 6 ©Copyright Brad Campbell / Viridian Consulting 2010

brad@bkmac:~/proptest$ bstc -d /dev/ttyUSB1 -p0 test.spin 
Brads Spin Tool Compiler v0.15.4-pre8 - Copyright 2008,2009,2010 All rights reserved 
Compiled for i386 Linux at 14:43:25 on 2010/04/20 
Loading Object test 
Program size is 3 longs 
Compiled 2 Lines of Code in 0.001 Seconds 
We found a Propeller Version 1 
Propeller Load took 0.304 Seconds 



3.1 Usage VIRIDIAN Consulting

3.1.9 (-l) Generate compiler list files
It is often useful to be able to look at the generated output of a compiler in some form of human readable 

fashion, if for no other reason than to go “Ah!, that's why it does that”. List files were (are) a notable absence 

from the Parallax tools and have been sorely missed. bstc was written from the ground up to generate clear, 

concise  human  readable  versions  of  compiled  SPIN  and  PASM  code  to  enable  the  programmer  to 

understand precisely what is going on under the bonnet (hood for those across the pond).

bstc understands three possible list file options. (-la) generates a straight compiler list file. (-ls) generates a 

list file with the original source lines inserted above each piece of generated code. (-lm) generates a list file 

with additional information to assist in being parsed by a debugger.

See Section 7 for a basic explanation of the contents of the list file

3.1.10 (-L) Library Path
This option specifies where the compiler might search for library source files. It may be specified as many 

times as you like to list multiple library directories. The compiler will always try the same directory as the 

source file first, then it will search the library paths in the order given for sub-object files.

3.1.11 (-o) Output Filename
By default, all output files (*.binary / *.eeprom / *.dat / *.list) are named with the same file name as the source 

file. The -o parameter allows you to specify an alternate name for the output files.

The following example compiles test.spin into a binary named “john.binary”

The compiler automatically names the extension of the filename appropriately.

3.1.12 (-O) Optimisation options
bstc has the ability to perform some basic optimisation on the source being compiled. See Section 6 for 

details and function of the available options.

bst_manual_0.04 - 30 Apr 2010 Page 7 ©Copyright Brad Campbell / Viridian Consulting 2010

rad@bkmac:~/proptest$ bstc -o john -b -ls test.spin 
Brads Spin Tool Compiler v0.15.4-pre10 - Copyright 2008,2009,2010 All rights reserved 
Compiled for i386 Linux at 22:00:43 on 2010/04/21 
Loading Object test 
Loading Object Blink 
Program size is 12 longs 
Compiled 16 Lines of Code in 0.035 Seconds 
brad@bkmac:~/proptest$ ls 
blink.spin  john.binary  john.list  test.spin 



3.1 Usage VIRIDIAN Consulting

3.1.13 (-W) Error / Warning levels
This option controls the verbosity of the compilers output. There are three levels (0/1/2).

● -W0 – Only display errors in the compilation

● -W1 – Display errors and warnings generated (Jmp without # - for example)

● -W2 – Display errors, warnings and information

Warnings are generated for common errors that have generated code that might not do what you want it to 

do. Warnings can be disabled on a particular line (for example using a variable for a jmp in PASM) by adding 

an '!W as the start of a comment on that source line.

The information display can be a little overwhelming at times, as it analyses your spin methods and tries to 

inform  you  of  unused  components  that  are  consuming  extra  space  (such  as  unused  global  and  local 

variables & unused SPIN methods). For this reason, it defaults to disabled and must be explicitly enabled 

with -W2 to display its output.

The default error level is 0.

3.1.14 (-q) Be vewy, vewy, qwiet. I'm hunting Wabbits!
The -q option is there for the hard-core Makefile users who want the compiler to do what it does, with the 

minimum of fuss or noise. It will only report errors, and attempt to report them in a fashion compatible with 

the output of the GNU compilers. It's not as beginner friendly, but it's far more concise.

3.1.15 (-v) Display version information
Does precisely what it says on the tin.

bst_manual_0.04 - 30 Apr 2010 Page 8 ©Copyright Brad Campbell / Viridian Consulting 2010



4 bst – The GUI IDE VIRIDIAN Consulting

4 bst – The GUI IDE
bst  is  a  full-featured GUI  IDE that  tries to  include all  the basic  requirements for  developing a Parallax 

Propeller application in the one single binary. It requires no installation, just unzip and go.

Due to the nature of the platforms bst runs on, there are some minor “behind the scenes” variations in the 

program with regard to system specific configuration items. In this manual, all configuration examples are for 

the Linux variant and valid for all platforms unless otherwise noted.

4.1 The main workspace

The main bst workspace consists of 5 main areas :

● The Directory Tree

● File Selector Box

● Tab Area

● Editor Space

● Status Bar

bst_manual_0.04 - 30 Apr 2010 Page 9 ©Copyright Brad Campbell / Viridian Consulting 2010



4.1 The main workspace VIRIDIAN Consulting
4.1.1 The Directory Tree
The directory tree provides a representation of each root path configured in the IDE.

Clicking on a directory in the tree causes the filtered contents to be displayed in the File Selector  Box 

immediately below.

If directories have been added or removed outside of bst while it is open, a right-click on the Directory Tree 

box will allow you to refresh the contents.

4.1.1.1 Configuring the Directory Tree

Unlike  the  Propeller  Tool,  which  displays  every  available  storage  device  connected  to  the  system and 

dynamically adds and removes them as filesystems come and go, bst requires you to manually configure the 

directories you want to be visible.

There  are  a  number  of  reasons  it  has  been  implemented  this  way,  but  the  foremost  is  speed.  bst  is 

developed in an environment with lots of network shares over unreliable links, and having the tools rescan 

entire directory  trees at  inopportune times causes significant  delays.  By configuring manually,  you have 

precisely what you want, where you want and nothing else.

The directory configuration is accessed from the IDE Preferences Dialog.

It creates different initial defaults depending on the platform it is running on.

To add a directory, simply click [Add] and browse to the directory you wish to add. To rename the directory 

as displayed in the Tree, click on the name to select it for editing and change as desired.

To remove a directory, click it to highlight and simply click [Remove].

When you close the Preferences dialog, the directory tree will refresh with your updated preferences.

4.1.2 File Selector Box
The file selector displays the filtered contents of the directory selected in the Directory Tree. The filter can be 

adjusted using the box immediately at the base of the File Selector Box. Double clicking on any of the files in 

the list will open them using the correct part of bst.

If files have been added outside of bst, clicking again on the directory in the Directory Tree will cause the File 

Selector box to be refreshed.

bst_manual_0.04 - 30 Apr 2010 Page 10 ©Copyright Brad Campbell / Viridian Consulting 2010



4.1 The main workspace VIRIDIAN Consulting

4.1.3 The Tab Bar
Each open file in bst is given its own editor tab. The tab selector component allows you to switch, close, 

save, open and generally manipulate the files with the right-click context menu.

Version 0.19.4-Pre12 or later also allow you to re-order the tabs using the “Move tab left  /  right”  menu 

options in the context menu.

The red close button on the far right of the tab bar closes the currently active tab (as does Ctrl-W).

bst_manual_0.04 - 30 Apr 2010 Page 11 ©Copyright Brad Campbell / Viridian Consulting 2010

Warning : In versions prior to 0.19.4-Pre12, the right-click menu operates on the currently selected tab, 

NOT the tab you are right-clicking over! The title at the top of the context menu displays the name of the tab 

the menu is associated with.



4.2 Getting started with bst VIRIDIAN Consulting

4.2 Getting started with bst
bst requires some basic configuration prior to getting started with a project.  The following items are the 

minimum requirement to ensure your bst experience is as pain-free as possible.

4.2.1 Compiler Search Paths

Unlike the Propeller  Tool,  which has a single  library  path,  bst  allows a list  of  paths to search for your 

Propeller Object files. It is important before you start to configure at least your basic library path to allow the 

bst compiler to find your library objects. These can be assigned in the Compiler Preferences dialog in the 

Tools menu.

The library paths are searched in logical order from top to bottom, so if you have three FullDuplex.spin files it 

will use the first one it finds.

4.2.2 Fonts
Each platform has a different way of managing fonts.

Windows users can install the Parallax Propeller Tool first. This will install the Propeller font for you and you 

should be good to go. On Windows Vista, there can sometimes be an issue with the Propeller Font not being 

available to all users, so you may have to locate it (Propeller.ttf) and install it in the Control Panel Fonts 

widget manually before bst can see it.

OSX and Linux users must download a modified version of the Propeller font. I can't stress this enough, the 

font supplied with the Parallax Propeller Tool is BROKEN on Linux and OSX. If you install it by mistake, it will 

cause all sorts of horrible things to occur that are hard to debug. Please install the correct font. The location 

of the correct font is kept up to date here : http://propeller.wikispaces.com/Propeller+Font.

OSX users can install the font simply by double clicking on it and clicking the “Install” button.

Linux users have to figure out where their particular distribution installs the fonts! On an Ubuntu system, the 

are located in ~/.fonts. The easy install is to copy the modified Propeller.ttf there and to log out and back in 

again.

bst_manual_0.04 - 30 Apr 2010 Page 12 ©Copyright Brad Campbell / Viridian Consulting 2010

http://propeller.wikispaces.com/Propeller+Font


4.2 Getting started with bst VIRIDIAN Consulting

4.2.3 Serial port configuration
Windows and OSX users MUST install the ftdi serial drivers (if you are using a Parallax product like a demo 

board or PropPlug) before any of this is going to work. You need the FTDI VCP (Virtual COM Port) drivers. 

Windows users will likely have them installed already if you installed the Propeller Tool first as detailed above 

to get the font.

Linux users are generally good to go out of the box (you can check lsmod to see if ftdi-sio is there after you 

plug your device in, if you are unsure)

bst has a good go at auto-detecting relevant serial ports on the systems it runs on. In the event of it not 

picking up your serial port you can manually configure your port from the IDE Preferences dialog

The [Browse] button is irrelevant on Windows. On Linux & OSX it allows you to browse the filesystem looking 

for the port you are after (*nix – Everything is a file!).

[Rescan] will refresh the box looking for any ports that might have been added since you opened the search 

box (ever wondered where your Prop was and realised it was not plugged in?)

[Test] will attempt to connect to a Propeller on the selected port and query its version information.

If you have a port selected manually (there is a port name in the bottom box - /dev/ttyUSB1 above) the [Auto] 

button will clear that and put bst back into auto-detect mode.

[Find Prop] will try and test every detected serial port on the system sequentially until it detects a Propeller. It 

will then leave that port manually selected.

You can also type the port name or direct path into the box at the bottom to manually force bst to use a 

certain port.

Generally, leaving things set to auto “just works”. If it should, and it doesn't we'd like to hear about it.

bst_manual_0.04 - 30 Apr 2010 Page 13 ©Copyright Brad Campbell / Viridian Consulting 2010



4.2 Getting started with bst VIRIDIAN Consulting

4.2.4 Multi-port configuration (One Propeller per editor tab)
If you are developing more complex projects and have the need to write and test code for more than one 

Propeller  at  a  time,  bst  allows  you  to  assign  a  Propeller  to  an  editor  tab individually.  To compile  and 

download you simply select the tab you want and press F10. bst will  make sure the correct Propeller is 

selected and loaded.

To enable this feature, you need to make sure the option is checked in IDE Preferences (it can cause some 

confusion, so it's not enabled by default).

Then, from the right-click context menu inside the editor tab itself, simply select “Assign Propeller”. You are 

presented with the ports configuration dialog shown above and you can manually assign a port to a propeller.

On OSX and Windows, this is a bit neater as OSX names its ports with the serial number of the PropPlug, 

and Windows creates a new port for every individual serial converter it ever sees. Linux simply numbers 

them in the order they were plugged in (gurus can change that by modifying your udev rules however).

bst_manual_0.04 - 30 Apr 2010 Page 14 ©Copyright Brad Campbell / Viridian Consulting 2010



4.3 Using bst VIRIDIAN Consulting

4.3 Using bst

4.3.1 (Ctrl-Shift-I/U) Block indenting 
The Propeller tool allows you to indent a selected 

block of code using the Tab Key. In bst the code is 

indented  using  Ctrl-Shift-I  and  un-indented  using 

Ctrl-Shift-U.  Each  press  results  in  a  change of  2 

spaces forwards or back. (Cmd - [ / ] on OSX)

4.3.2 (Ctrl-Space) Sub object details
Once a file has been successfully compiled using 

any of the F8->F11 options (F9 is the quickest), its 

symbol table becomes available in the editor until 

the file is modified. bst has the ability to display the 

export  table  of  sub object  by pressing Ctrl-Space 

while the symbol is selected with the mouse. In the 

example shown, we clicked between the “t” and the 

“v” to make sure the cursor was in/on the word and 

pressed  Ctrl-Space.  The  export  table  pops  up  to 

display the available functions in the object.

4.3.3 (Context menu) Select Files Directory

Often when working on files in systems with a large quantity of library directories, it's handy to be able to 

browse other library files in the same directory. By selecting this item in a tab's context menu, the directory 

tree is  immediately taken to  the location of  the source file,  and the file  selector  box populated with  its 

contents. It's also handy for checking the location of sub-objects that throw errors or warnings.

bst_manual_0.04 - 30 Apr 2010 Page 15 ©Copyright Brad Campbell / Viridian Consulting 2010

Warning : If you have “Remove unused SPIN Methods” enabled, the displayed symbols will only show 

methods actually compiled into the object. Currently unused methods are excluded.



4.3 Using bst VIRIDIAN Consulting
4.3.4 (Context menu) Open Object Under Cursor

After a successful compile and prior to the source 

being modified, placing the cursor on the symbol of 

a  sub-object  will  cause  the  “Open  Object  under 

Cursor” item to be enabled in the context menu. It 

does precisely what it says and simply opens the 

sub-object in a new tab, or selects the objects tab if 

it's already open.

4.3.5 (Ctrl-G) (Context menu) Go to line
In large source files it is convenient to be able to jump directly to a specific line. This menu opens a small 

dialog to allow you to enter the desired line to jump to.

4.3.6 Code Folding
Code folding is a neat addition to any source editor when working on large source files. It enables individual 

methods to be worked on without the clutter of nearby source code, and the convenience of the displayed 

adjacent code headers.

Code folding is tied to the display of line numbers 

(toggled with Ctrl-Shift-L) and is only enabled when 

numbering is visible.

Code can be folded and unfolded by clicking on the 

little  [+]  /  [-]  icons  next  to  the  line  numbers.  In 

addition, the entire file can be folded and unfolded 

using the right-click context  menu and Ctrl-U will 

fold all blocks in a file.

The folded state of  each file  is  stored inside the 

(optional) Project File for later recall.

bst_manual_0.04 - 30 Apr 2010 Page 16 ©Copyright Brad Campbell / Viridian Consulting 2010



4.3 Using bst VIRIDIAN Consulting

4.3.7 (File->Create Propeller Archive) Creating a Propeller Archive.
The Propeller Tool has the ability to create a zip file containing all  the source files required to build the 

currently opened project (this includes library objects and data files). bst has the ability to do the same thing 

with  one limitation.  Your  program must  compile  without  error  to  allow an archive  to  be built.  This  is  a 

limitation that stems from the archiver implementation inside the compiler (it uses the archiver built into bstc 

to do the dirty work). The work around if you need to send someone a broken archive is to comment out the 

offending code to allow the project to compile.

The archive name is titled the same as the top object file postfixed by the time and date of the archive, and it 

is saved automatically in the same directory as the top source file.

bst_manual_0.04 - 30 Apr 2010 Page 17 ©Copyright Brad Campbell / Viridian Consulting 2010

NOTE : bst is currently incapable of creating PropBASIC source file archives.



4.4 The List Window VIRIDIAN Consulting

4.4 The List Window
Just as the list file output in bstc (-ls) presents a “compilers eye” view of the generated source, bst includes a 

separate List Window. 

This can be opened and left  open.  Each time a file  is compiled,  the compiled listing is updated in this 

window. It enables a programmer to  really see what is going on under the covers and help to understand 

why things do what they do. The list window is not docked or tied to the Main IDE window and can be moved 

around where convenient. It loses its source contents when closed, but can be closed and opened at any 

time.

See Section 7 for a basic explanation of the contents of the list file

bst_manual_0.04 - 30 Apr 2010 Page 18 ©Copyright Brad Campbell / Viridian Consulting 2010



4.5 The Project File VIRIDIAN Consulting

4.5 The Project File
A Project is simply an extended set of preferences that defines :

● Which source files are open

● Where each source file is scrolled to

● What parts of each source file are folded

● (Optionally) Which Propeller Serial Port is assigned to each source file

● A project specific set of Pre-Processor Symbol definitions

● A project specific set of compiler options

● A project specific set of compiler search paths

● Which directory the Directory Tree is pointing to

When a new project file is created, it simply takes all the settings from the current session.

Additionally, to facilitate complex or special configurations, you can define separate compiler search paths, 

and compiler optimisation options in the Project Options dialog. This allows you to override the global search 

path and options settings defined in the bst configuration. The search path is overridden if there are  any 

search paths defined in the Project Options. The compiler optimisations require you to check the “Override 

global compiler optimisations” box before they take effect.

Opening a project file will see all tabs restored to precisely where they were when the project was last saved.

A useful option is to have bst re-open the project file that was open when it was closed last. This provides for 

a nice persistent workspace where you can always pick up right where you left off. This is configured in the 

IDE Preferences dialog.

bst_manual_0.04 - 30 Apr 2010 Page 19 ©Copyright Brad Campbell / Viridian Consulting 2010

Warning : When you close the Project File, all files in the editor are closed simultaneously!

NOTE : The open objects are currently stored in the project file with absolute path names, so moving project 

files across operating systems or different machines is unlikely to provide happy results. (This is scheduled 

for rectification prior to v0.20)



4.6 The Serial Terminal VIRIDIAN Consulting
4.6 The Serial Terminal
The serial terminal built into bst is designed as a basic debugging tool. It allows communication with any 

devices connected to a serial port, and has the ability to send and receive in either ASCII or Hexadecimal 

notation. The serial terminal also has a separate Hex window which operates simultaneously with the ASCII 

window to allow easy monitoring of data coming into the system. The Hex window allows the composition of 

Hexadecimal strings in the bottom box and sends them over the wire as composed in RAW form.

The Serial terminal is fully integrated with bst, such that there is no need to manually disconnect / connect 

prior to downloading a propeller. bst will check to see if the terminal is using the port it needs to download to, 

and will  manage the terminals connection in the background to ensure an uninterrupted download to the 

Propeller.

bst_manual_0.04 - 30 Apr 2010 Page 20 ©Copyright Brad Campbell / Viridian Consulting 2010

NOTE : bst has issues on OSX with the control over the DTR line (used to reset the Propeller). The terminal 

will stand one connection to the Propeller after it has been loaded. The next disconnect/reconnect cycle will 

see the Propeller reset. This has not proven to be much of an issue, but it's worth noting.



4.7 Under the bonnet (hood) VIRIDIAN Consulting

4.7 Under the bonnet (hood)
What follows is some basic background information on some of the less visible parts of bst. It may assist in 

debugging or understanding what is going on when something goes wrong.

4.7.1 Persistent Configuration Files
bst   stores  persistent  configuration  information  on  your  system  in  a  single  location.  This  is  to  allow 

configuration details, specific preferences and niceties like recent files lists to persist across bst sessions.

On Linux the configuration resides in your home directory ( ~/.bst.ini )

On OSX the configuration resides in your home directory ( ~/Library/Preferences/bst.ini )

On Win32 the configuration resides in the System Registry ( HKEY_CURRENT_USER\software\camsoft\bst\0.1 )

In the case that something does go horribly wrong, it's sometimes quite helpful if you can send these files to 

the developer to assist in tracking down the problem.

If all else fails you can always delete these and start clean. 

4.7.2 Recovery Files
bst is very much beta software and from time to time can crash with ugly error messages (although less 

frequently these days). To this end, bst has a “recovery save” mechanism whereby the contents of any tab 

that is not completely saved to disk is saved into a single recovery file stream prior to each attempt at 

compilation. Additionally there is an option in the IDE Preferences to allow a periodic recovery save to occur 

while other activity is taking place.

Like the configuration files, each platform has a different location for the recovery file :

On Linux (~/.bst.recover)

On OSX (~/Library/Preferences/bst.recover)

On Win32 it's wherever your particular version of Windows wants to place your user files. The file is called 

.bst.recover but you are on your own locating it!

bst_manual_0.04 - 30 Apr 2010 Page 21 ©Copyright Brad Campbell / Viridian Consulting 2010



4.7 Under the bonnet (hood) VIRIDIAN Consulting
To work around an issue with a particular operating system not properly saving the recovery file before the 

entire OS crashed trying to access the Propellers serial port, bst saves each recovery file with the -new 

postfix. It then removes the old recovery file and renames the new one. This ensures that the file is properly 

on disk or in the filesystems journal before the old one is removed and provides an additional safety net.

The contents of the recovery file is relatively simple, but is composed of binary streams and metadata. We've 

not yet had to manually parse one, so the recovery mechanism seems relatively stable.

bst_manual_0.04 - 30 Apr 2010 Page 22 ©Copyright Brad Campbell / Viridian Consulting 2010



5 SPIN Language Extensions VIRIDIAN Consulting

5 SPIN Language Extensions

Like Michael Park's “homespun” compiler, bstc has some extensions to the reference spin language. These 

are minor additions that are seen to enhance the usability of the language under certain circumstances, 

however they render the source files incompatible with the Parallax Spin Compiler. All of these extensions 

require at a minimum the (-Ox) command line parameter to enable the “Non Parallax Compatible Extension” 

option in the compiler

5.1 #define and friends
bst has a very basic conditional pre-processor built into the tokeniser. This allows the conditional compilation 

of code based on symbol definitions. It behaves similarly to most other conditional compilation directives in 

other languages but has a few important points worth noting.

● Defined symbols are global, and therefore passed down to any source file compiled after the file in 

which the symbol was defined

● Symbols are not allowed to contain spaces (the first encounter whitespace delimits the symbol)

● Any text after a symbol on a pre-processor line is ignored

● #define I_am_a_symbol fred woz 'ere ← “fred woz 'ere” is completely ignored

bstc supports #define /  #undef /  #ifdef  /  #ifndef /  #elseifdef  /  #elseifndef  /  #else /  #endif  as conditional 

statements

bstc also supports #info / #warn / #error to allow comments to be inserted in the list file, or compilation to be 

halted with a user definable error message. Unlike the conditional statements, the #info / #warn / #error lines 

accept any message and will continue until the end of line.

5.2 @@@ - The absolute address operator
In SPIN methods, there are the @ & @@ operators.  In PASM you have @. In all  contexts they mean 

different things.

In SPIN, @ means “Give me the HUB address of that variable”. The interpreter does this at runtime as it only 

knows the absolute address when it know where it is in the Propeller. This applies to global (VAR), Local 

(PUB/PRI) and PASM (DAT) variables. The @ always returns the address of that variable in the HUB.

In SPIN, @@ means give me the compile-time offset (It's only used when referencing variables in a DAT 

block) plus the object base address (this results in the correct absolute HUB address). Again, its a runtime 

operator only.

bst_manual_0.04 - 30 Apr 2010 Page 23 ©Copyright Brad Campbell / Viridian Consulting 2010

NOTE : bst uses the bstc compiler internally, so where bstc is mentioned, bst is implied.

NOTE : All pre-processor statements must begin at the start of a line (Column 0)



5.2 @@@ - The absolute address operator VIRIDIAN Consulting
In PASM, @ means “Give me the offset of this symbol into the DAT section”. It is a relative value with its 

base as the start of the objects DAT block.

The @@@ operator results in a compile-time constant that gives the absolute hub address of the symbol in 

question. It's a special use symbol and it's not widely used. If you know you need it, you know what it is.

5.3 Bytecode() (advanced)
Have you seen the generated SPIN bytecode in the list files and though, “Gee, I'd like to be able to do 

something funky but  the compiler  won't  let  me” ?  If  so,  bytecode()  is  your  friend.  It  simply  inserts  raw 

bytecode into the SPIN method. It's also useful for those developing compilers, debuggers, de-compilers or 

manipulation tools to be able to have complete control over the code being inserted.

The following code example writes 12 to the first local variable, then writes 157 to the return value (Local 

variable 0). It's perfectly valid spin and the Bytecode($38,$9D,$61) is the equivalent of “Result:=157”

Code :

List:

bst_manual_0.04 - 30 Apr 2010 Page 24 ©Copyright Brad Campbell / Viridian Consulting 2010

PUB Fred | X
  X := 12
  Bytecode($38,$9D,$61)

Spin Block Fred with 0 Parameters and 1 Extra Stack Longs. Method 1
PUB Fred | X

Local Parameter DBASE:0000 - Result
Local Variable  DBASE:0004 - X
|===========================================================================|
2                        X := 12
Addr : 0018:          38 0C  : Constant 1 Bytes - 0C - $0000000C 12
Addr : 001A:             65  : Variable Operation Local Offset - 1 Write
3                        Bytecode($38,$9D,$61)
Addr : 001B:          38 9D  : Constant 1 Bytes - 9D - $0000009D 157
Addr : 001D:             61  : Variable Operation Local Offset - 0 Write
Addr : 001E:             32  : Return                                       

Warning : The Propeller Tool will compile the @@@ operator as valid code in a SPIN method, however it will 

give a result far from what you want it to do!



5.4 The VARX block (advanced) VIRIDIAN Consulting

5.4 The VARX block (advanced)
SPIN has a quirk that from time to time seems to drive people nuts. For reasons of efficiency (we'd guess 

anyway) it re-orders your variables as declared in a VAR block in the order declared, but sorted into LONG / 

WORD / BYTE order (to best preserve alignment and waste no space).

bstc has a nasty hack whereby you can prevent this from occurring. Rather than declare a VAR block, you 

can declare the block using VARX. This will pack the variables in precisely the order you specify them in that 

object. It will generate errors if you break the alignment rules to prevent you from generating broken code, so 

you will have to add manual padding to the array to ensure the variables are properly aligned.

This is not a modification we expect to see regular use, but it was more of an academic exercise to gauge 

the usefulness of the concept.

bst_manual_0.04 - 30 Apr 2010 Page 25 ©Copyright Brad Campbell / Viridian Consulting 2010

Warning : There is an important caveat with the use of VARX. It affects the ENTIRE object. Once you 

declare a VARX block in an object (even if you have multiple VAR blocks), All blocks become un-

packed.



6 Compiler optimisation options VIRIDIAN Consulting

6 Compiler optimisation options
The Parallax compiler is a relatively straight forward compiler. It simply translates what you have in your 

source file into object code, and compiles the object code into a single binary file. bstc has a few extra 

tweaks that can potentially save some space in the resulting memory map and maybe make your code go 

imperceptibly faster.

6.1 (-Oa) Enable all optimisations
This option is often the only one I use. It simply enables all the options detailed below simultaneously.

6.2 (-Ob) Bigger Constants
The  Parallax  compiler  has  a  trick  to  save  space,  whereby  large  constants  can  be  written  as  smaller 

constants preceded by a “!” negative operator. So $FFFABCD would be represented as !$5432. This is a 

great way to save a couple of bytes here and there and makes for much more compact code,  however it 

turns out it's actually faster to just load the large value (at the expense of code space). It's not much of an 

optimisation, but it's there “because we can”.

6.3 (-Oc) Fold Constants
The Propeller  Tool  compiler  provides  a  constant()  operator,  which  allows  the  use  of  complex constant 

expressions to be folded down to it's resulting value, saving space in the object and ensuring a faster run 

speed. bstc takes this to its next logical progression and does it for you. Any expressions in your code that 

have  compressible  constant  expressions  will  be  folded  down  to  the  smallest  possible  size  during  the 

compilation process.

Without -Oc

With -Oc

bst_manual_0.04 - 30 Apr 2010 Page 26 ©Copyright Brad Campbell / Viridian Consulting 2010

Con
  Seven = 7
PUB Fred | X
  X := 12 * 6 + 5 / Seven // 9

4                        X := 12 * 6 + 5 / Seven // 9
Addr : 0018:          38 0C  : Constant 1 Bytes - 0C - $0000000C 12
Addr : 001A:          38 06  : Constant 1 Bytes - 06 - $00000006 6
Addr : 001C:             F4  : Math Op *     
Addr : 001D:          38 05  : Constant 1 Bytes - 05 - $00000005 5
Addr : 001F:          37 22  : Constant Mask Y=34 Decrement 00000007 7
Addr : 0021:             F6  : Math Op /     
Addr : 0022:          38 09  : Constant 1 Bytes - 09 - $00000009 9
Addr : 0024:             F7  : Math Op //    
Addr : 0025:             EC  : Math Op +     
Addr : 0026:             65  : Variable Operation Local Offset - 1 Write       

4                        X := 12 * 6 + 5 / Seven // 9
Addr : 0018:          38 48  : Constant 1 Bytes - 48 - $00000048 72
Addr : 001A:             65  : Variable Operation Local Offset - 1 Write             



6.3 (-Oc) Fold Constants VIRIDIAN Consulting

“X := Constant(12 * 6 + 5 / Seven // 9)” would achieve the same result in the Parallax Compiler.

6.4 (-Og) Generic safe optimisations
Currently there is only one additional optimisation in this category. Again, for the purposes of much tighter 

code, the Parallax compiler has a clever bytecode pair for encoding even X^2 constants. This can pack large 

constants in a word of code quite neatly, however when encoding constants < $FF it's much slower than a 

simple constant load. In this instance bstc substitutes the operation with a straight constant load.

6.5 (-Or) Remove unused SPIN methods/objects
With this  option enabled,  bstc iteratively  removes all  unused SPIN object  code from your  program. For 

example, when writing code I often include the “simple_numbers” object, however I rarely use more than one 

method from that object in a program. In this instance, the remaining object code is simply consuming space 

that could otherwise be better used. In addition, each method or object consumes an additional 4 bytes 

(long) in the object  method table. By removing methods and objects that are not referenced, significant 

space  savings  may  be  realised  without  having  to  manually  strip  down  objects  or  customise  library 

components.

6.6 (-Ou) Fold Unary
Occasionally in SPIN code constants are described as negative numbers. The compiler can optionally store 

these as the “-” operator on the raw number. If this case occurs, and there is the ability to make the resulting 

code more compact, bstc will discard the “-” operator and negate the constant in the compiler.

6.7 (-Ox) Non-Parallax compatible extensions
This option must be enabled to allow bstc to parse source files that would fail the Parallax Compiler. Without 

this option, every file parsed by bstc should also compile cleanly with the original Parallax tools.

bst_manual_0.04 - 30 Apr 2010 Page 27 ©Copyright Brad Campbell / Viridian Consulting 2010



7 Anatomy of a list file VIRIDIAN Consulting

7 Anatomy of a list file
Lets look at a basic spin program and its associated list file

test.spin

blink.spin

Compilation

Now, we have a new file (test.list) in the same directory as the source files.

Let's break the list file down into pieces to see what it tells us :

bst_manual_0.04 - 30 Apr 2010 Page 28 ©Copyright Brad Campbell / Viridian Consulting 2010

CON 
  _clkmode      = xtal1 + pll16x 
  _xinfreq      = 5_000_000 

OBJ 
  Blink : "Blink" 

VAR 
  long Fred 
  byte Ada, Jean, May 

PUB Start | X 
  X := 1 
  Blink.Go 
  Ada := Jean 

PUB Go | Y 
  Y := 1 

brad@bkmac:~/proptest$ bstc -ls test.spin 
Brads Spin Tool Compiler v0.15.4-pre8 - Copyright 2008,2009,2010 All rights reserved 
Compiled for i386 Linux at 14:43:25 on 2010/04/20 
Loading Object test 
Loading Object Blink 
Program size is 9 longs 
Compiled 11 Lines of Code in 0.005 Seconds 



7 Anatomy of a list file VIRIDIAN Consulting

7.1.1.1 Global header

This is the global file header. It details the initial parameters for the SPIN interpreter, and the layout of the 

object files within the compiled binary.

We have two objects. Blink is a sub-object of test. The object code of the “test” object is located at $0010 in 

the binary image, and the object code of “Blink” is located at $0028.

PBASE is the start of the object code for the first object to run after the Propeller starts up.

VBASE is where the variables (anything declared in a VAR block) start after all the object code.

DBASE is where the stack (used by the SPIN interpreter) starts. (The stack grows from low addresses to 

high)

PCURR is the address of the first piece of bytecode to execute when the Propeller boots.

DCURR is the initial stack pointer (always 8 bytes higher than the start of the stack)

So in this example, the first piece of bytecode in the “Start” method in object “test” resides at $001C in the 

hub, and this is where execution will commence.

In the list file, from here down each object is given its own separate section.

bst_manual_0.04 - 30 Apr 2010 Page 29 ©Copyright Brad Campbell / Viridian Consulting 2010

|===========================================================================| 
Objects : - 
test 
  | 
  +-Blink 

Object Address : 0010 : Object Name : test 
Object Address : 0028 : Object Name : Blink 

Binary Image Information : 
PBASE : 0010 
VBASE : 0034 
DBASE : 0044 
PCURR : 001C 
DCURR : 004C 
|===========================================================================| 



7 Anatomy of a list file VIRIDIAN Consulting

7.1.1.2 Object header

The object header details where the object resides, any constants it contains or exports and what and where 

its variables are. Constants are displayed with their contents in HEX then brackets containing the Decimal 

representation. If the constant is a floating point value the representation in brackets is the value in Decimal, 

while the HEX is what is passed to the compiler.

7.1.1.3 Spin Method

Each SPIN method has at least one local variable (the default RESULT variable). The header for each SPIN 

method details the location and size of each declared local variable (or parameter).

bst_manual_0.04 - 30 Apr 2010 Page 30 ©Copyright Brad Campbell / Viridian Consulting 2010

|===========================================================================| 
Object test 
Object Base is 0010 
|===========================================================================| 
Object Constants 
|===========================================================================| 
Constant _clkmode = 00000408 (1032) 
Constant _xinfreq = 004C4B40 (5000000) 
|===========================================================================| 
|===========================================================================| 
VBASE Global Variables 
|===========================================================================| 
VBASE : 0000 LONG Size 0004 Variable Fred 
VBASE : 0004 BYTE Size 0001 Variable Ada 
VBASE : 0005 BYTE Size 0001 Variable Jean 
VBASE : 0006 BYTE Size 0001 Variable May 
|===========================================================================| 

|===========================================================================| 
Spin Block Start with 0 Parameters and 1 Extra Stack Longs. Method 1 
PUB Start | X 

Local Parameter DBASE:0000 - Result 
Local Variable  DBASE:0004 - X 
|===========================================================================| 
13                        X := 1 
Addr : 001C:             36  : Constant 2 $00000001 
Addr : 001D:             65  : Variable Operation Local Offset - 1 Write 
14                        Blink.Go 
Addr : 001E:             01  : Drop Anchor   
Addr : 001F:       06 02 01  : Call Obj.Sub 2 1 
15                        Ada := Jean 
Addr : 0022:          88 05  : Memory Op Byte VBASE + READ Address = 0005 
Addr : 0024:          89 04  : Memory Op Byte VBASE + WRITE Address = 0004 
Addr : 0026:             32  : Return        



8 Warranty Statement VIRIDIAN Consulting

8 Warranty Statement
As much as I hate to have to do this, we live in a litigious society full of people ready to blame anyone else 

for their own stupidity (Coffee is HOT people!). Therefore I have to include the following statements. If and 

when people resume taking responsibility for their own actions, I look forward to being able to remove them.

8.1 Disclaimer of Warranty
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. 

EXCEPT  WHEN OTHERWISE STATED IN  WRITING THE  COPYRIGHT  HOLDERS  AND/OR OTHER 

PARTIES  PROVIDE  THE  PROGRAM  “AS  IS”  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER 

EXPRESSED  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF 

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE 

QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE 

DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

8.2 Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY 

COPYRIGHT HOLDER, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, 

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE 

PROGRAM  (INCLUDING  BUT  NOT  LIMITED  TO  LOSS  OF  DATA  OR  DATA  BEING  RENDERED 

INACCURATE  OR  LOSSES  SUSTAINED  BY  YOU  OR  THIRD  PARTIES  OR  A  FAILURE  OF  THE 

PROGRAM TO  OPERATE  WITH ANY  OTHER PROGRAMS),  EVEN  IF  SUCH HOLDER OR OTHER 

PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

bst_manual_0.04 - 30 Apr 2010 Page 31 ©Copyright Brad Campbell / Viridian Consulting 2010


	1 Introduction
	2 bstl – Command Line Loader / Unloader
	3 bstc – Command Line Compiler
	3.1 Usage
	3.1.1 (-p) Loading a Propeller
	3.1.2 (-b) Saving a Propeller binary to disk
	3.1.3 (-e) Saving a Propeller eeprom file to disk
	3.1.4 (-a) Creating a Propeller Source Archive
	3.1.5 (-c) Creating a DAT file for use by a C compiler (advanced)
	3.1.6 (-d) Specify the serial port to use to load a Propeller
	3.1.7 (-D) Define a pre-processor symbol (advanced)
	3.1.8 (-f) Download at double speed
	3.1.9 (-l) Generate compiler list files
	3.1.10 (-L) Library Path
	3.1.11 (-o) Output Filename
	3.1.12 (-O) Optimisation options
	3.1.13 (-W) Error / Warning levels
	3.1.14 (-q) Be vewy, vewy, qwiet. I'm hunting Wabbits!
	3.1.15 (-v) Display version information


	4 bst – The GUI IDE
	4.1 The main workspace
	4.1.1 The Directory Tree
	4.1.1.1 Configuring the Directory Tree

	4.1.2 File Selector Box
	4.1.3 The Tab Bar

	4.2 Getting started with bst
	4.2.1 Compiler Search Paths
	4.2.2 Fonts
	4.2.3 Serial port configuration
	4.2.4 Multi-port configuration (One Propeller per editor tab)

	4.3 Using bst
	4.3.1 (Ctrl-Shift-I/U) Block indenting 
	4.3.2 (Ctrl-Space) Sub object details
	4.3.3 (Context menu) Select Files Directory
	4.3.4 (Context menu) Open Object Under Cursor
	4.3.5 (Ctrl-G) (Context menu) Go to line
	4.3.6 Code Folding
	4.3.7 (File->Create Propeller Archive) Creating a Propeller Archive.

	4.4 The List Window
	4.5 The Project File
	4.6 The Serial Terminal
	4.7 Under the bonnet (hood)
	4.7.1 Persistent Configuration Files
	4.7.2 Recovery Files


	5 SPIN Language Extensions
	5.1 #define and friends
	5.2 @@@ - The absolute address operator
	5.3 Bytecode() (advanced)
	5.4 The VARX block (advanced)

	6 Compiler optimisation options
	6.1 (-Oa) Enable all optimisations
	6.2 (-Ob) Bigger Constants
	6.3 (-Oc) Fold Constants
	6.4 (-Og) Generic safe optimisations
	6.5 (-Or) Remove unused SPIN methods/objects
	6.6 (-Ou) Fold Unary
	6.7 (-Ox) Non-Parallax compatible extensions

	7 Anatomy of a list file
	7.1.1.1 Global header
	7.1.1.2 Object header
	7.1.1.3 Spin Method

	8 Warranty Statement
	8.1 Disclaimer of Warranty
	8.2 Limitation of Liability.


