MySQL Connector/J Developer Guide

MySQL Connector/J Developer Guide
Abstract

This manual describes how to install, configure, and develop database applications using MySQL Connector/J, the
JDBC driver for communicating with MySQL servers.

For release notes detailing the changes in each release of Connector/J, see MySQL Connector/J Release Notes.

Document generated on: 2014-03-11 (revision: 38019)

http://dev.mysql.com/doc/relnotes/connector-j/en/

Table of Contents

Preface and Legal NOTICEScoouiuiiiiiiiee ettt e et e e et e et e e e eaa s %

1 Overview Of MYSQL CONNECIOIT . ..oouiiiiiiii ettt e e et e e e 1

2 CONNECTONT VEBISIONS ...ttt ettt ettt e ettt e e et e e et et e e et et e e et et e e e e et e e e e eba s 3

2.1 Connector/J Release Notes and Change HiStOrYovoiiiiiiiiiiiiiieiiii e 3

2.2 Java VErSiONS SUPPOITEAuuuiiiiiiiieii ittt ettt e et e e e e et eeene s 3

3 CoNNECTONI INSTAIIALION ...c.eueiieeii ettt e et e e et e e e e e e e ne s 5

3.1 Installing Connector/J from a Binary DiStribULIONoiiiiiiiiiiiiiieii e 5

3.2 Installing the Driver and Configuring the CLASSPATH ..o 5

3.3 Upgrading from an OlAder VEISIONuieiiiiiiieiiii ettt ettt e et e e et e e e et e e eane e eeenes 6

3.3.1 Upgrading to MySQL CONNECLONJ 5.1.X w.uuuiiiiiiieiiiiiiei ettt 7

3.3.2 JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or NeWerc.cc..eceeuee. 7

3.3.3 Upgrading from MySQL Connector/J 3.0 10 3.1 ...couuuiiiiiiiiiieiiiie e 7

3.4 Installing from the Development SOUICE TrEEcoouuiiiiiiiiii e 9

4 CONNECTLONI EXBMPIES ..ottt e et e et e et e e et et aeeeera s 11

5 Connector/J (JDBC) RETEIEINCEouuiiiiiiiii ettt e e e 13
5.1 Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/

SO PP PP T PPPUPTPRPPPN 13

5.1.1 Properties Files for the useConfi gs OPLONcoouuuiiiiiiiieii e 33

5.2 JDBC API IMpPIementation NOTEScoouiiiiiiiiii ettt e e enaens 34

5.3 Java, JDBC and MYSQL TYPES ..ceuuuiiiiiiieiiiii ettt ettt ettt e et e e e e e 37

5.4 Using Character Sets and UNICOUEciiiiiiiiiiiiii ittt ettt e e e e e e 39

5.5 Connecting Securely USING SSL ...t 41

5.6 Connecting Using PAM AUthentiCationooiiiiiiiiiiii e 44

5.7 Using Master/Slave Replication with ReplicationConnectionccccoeveiiiiiiiiiiiiieeiiieeeens 44

5.8 Mapping MySQL Error Numbers to JDBC SQLState COUEScccevuiieiiiiiiieiiiiiieeeeiiieeeeeine 44

SR B = T O O] g [o1=T o] £ PP 49

6.1 Connecting to MySQL Using the JDBC Dr i ver Manager Interfacecc.ccooceevivviiiiiinneennnnn. 49

6.2 Using JDBC St at enrent Objects to EXeCULe SQLcoovuiiiiiiiiiiiiiiii e 50

6.3 Using JDBC Cal | abl eSt at enent s to Execute Stored Proceduresc.ccooeeeviiieiiiineennns 51

6.4 Retrieving AUTO_| NCREMENT Column Values through JDBCccooviiiiiiiiiiieiiiiieceiieeees 54

7 Connection Pooling With CONNECTOIiiiiii et 59

8 MUILI-HOSE CONNECTIONS ...ttt ettt ettt e e et e et et e e et et e e e ee e e eenba e eeenes 63

8.1 Configuring Load Balancing with CONNECLONJ ...t 63

8.2 Configuring Failover with CONNECIONJoouuiiiiii e 65

8.3 Master/Slave Replication with ReplicationCoNNECIONvviiiiiiiiiiiiiii e 67

9 Using the Connector/J INtErceptor CIASSEScccuuuiiiiiiiieiiiti e eees 73

10 Using ConNector/J WIth TOMCALiiiiiiiiiiii et e 75

11 Using ConNECTOII WItN JBOSScceutiiiiiiie ettt ettt e et e e e e s 77

12 Using ConNECtOr/J WItN SPIINGuuiiiiiieiiii ettt e e et e e e et e e e et e e e ent e eeens 79

12.1 USING JADCTENMPI G € ouuiiiiiiiieieii ettt ettt e et e e b 80

12.2 TranSactioNal JDBEC ACCESSccuuuuiiiiitiiaetiit ettt ettt e et e et e e et eeeeae s 82

12.3 Connection Pooling WIth SPIiNGooeeiiii e 83

13 Using Connector/J With GIASSFISNcoouiiiiiii e 85

13.1 A Simple JSP Application with Glassfish, Connector/J and MySQLcccccoeeviiiiiiiiiinneennns 86

13.2 A Simple Servlet with Glassfish, Connector/J and MySQLcooeiiiiiiiiiiiiinieiiiieeeiieees 88

14 Using Connector/J with MYSQL FabIICiiiiiiiiiiiiii e 93

15 Troubleshooting Connector/J APPHCALIONSccouuiiiiiiii e e 95

16 Known 1SSUES and LIMItALIONSuiiiiiieiiiii ettt ettt et e e e e e e b s 105

o] gl g =Tol (o] /A BT U] o] o Jo] o AN TP PSPPSR 107

17.1 Connector/J COMMUNILY SUPPOITieiiieiiitie ettt ettt et e ettt e e e e e ean e e ennans 107

17.2 How to Report Connector/J Bugs or Problemsoooooiiiiii e 107

MySQL Connector/J Developer Guide

A Licenses for Third-Party COMPONENTSiiiiiiiiiieii e e e e e e e e e e e e e e e e e aaaeees 109
YN R AN g1 2@ o o] Tt = g PP 109
A.2 C3P0 JDBC LIBrary LICENSEccouuiiiiiiiiii ettt e e e e e et e e e aan s 110
A.3 GNU Lesser General Public License Version 2.1, February 1999cccoovviiiiiiiiiiiineeinnees 110
A.4 jboss-common-jdbC-WrapPer.jar LICENSEiviuuieiiiieiiiieeee e e e e e e e e e e aaens 118
ALS NANOXML LICEBNSE ...uiiiiiiiee ettt ettt e e e e e et e e e et e e e eat e e e eaanaeaennes 118
F N I 0TG- T N Tt =Y g T 119
A.7 Simple Logging Facade for Java (SLF4J) LICENSEccvvviiiiiiiiiii e 119

Preface and Legal Notices

This manual describes how to install, configure, and develop database applications using MySQL
Connector/J, the JDBC driver for communicating with MySQL servers.

Legal Notices

Copyright © 1998, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and

technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be
subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle
Corporation and/or its affiliates, and shall not be used without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only.

It may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement

Legal Notices

only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or functionality
described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this material is subject to the terms and conditions of your
Oracle Software License and Service Agreement, which has been executed and with which you agree

to comply. This document and information contained herein may not be disclosed, copied, reproduced,

or distributed to anyone outside Oracle without prior written consent of Oracle or as specifically provided
below. This document is not part of your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is built
and produced, please visit MySQL Contact & Questions.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can
discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the
MySQL Documentation Library.

vi

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

Chapter 1 Overview of MySQL Connector/J

MySQL provides connectivity for client applications developed in the Java programming language through
a JDBC driver, which is called MySQL Connector/J.

MySQL Connector/J is a JDBC Type 4 driver. Different versions are available that are compatible with
the JDBC 3.0 and JDBC 4.0 specifications. The Type 4 designation means that the driver is a pure Java
implementation of the MySQL protocol and does not rely on the MySQL client libraries.

For large-scale programs that use common design patterns of data access, consider using one of the
popular persistence frameworks such as Hibernate, Spring's JDBC templates or Ibatis SQL Maps to
reduce the amount of JDBC code for you to debug, tune, secure, and maintain.

Key Topics
» For help with connection strings, connection options, and setting up your connection through JDBC, see

Section 5.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/
J”.

http://www.hibernate.org/
http://www.springframework.org/
http://ibatis.apache.org/

Chapter 2 Connector/J Versions

Table of Contents

2.1 Connector/J Release Notes and Change HiSIOrYviiiiiiiiiiii e 3
2.2 Java VErSIONS SUPPOITEU ...oouuuiiiiiitiei ittt e e e e et e e et et e e et et e e e e ebt e e e eeta e eeeetaaeaees

There are currently four versions of MySQL Connector/J available:

Connector/J 5.1 is the Type 4 pure Java JDBC driver, which conforms to the JDBC 3.0 and JDBC 4.0
specifications. It provides compatibility with all the functionality of MySQL, including 4.1, 5.0, 5.1, 5.5,
5.6, and 5.7. Connector/J 5.1 provides ease of development features, including auto-registration with
the Driver Manager, standardized validity checks, categorized SQLExceptions, support for the JDBC-4.0
XML processing, per connection client information, NCHAR, NVARCHAR and NCLOB types. This release
also includes all bug fixes up to and including Connector/J 5.0.6.

Connector/J 5.0 provides support for all the functionality offered by Connector/J 3.1 and includes
distributed transaction (XA) support.

Connector/J 3.1 was designed for connectivity to MySQL 4.1 and MySQL 5.0 servers and provides
support for all the functionality in MySQL 5.0 except distributed transaction (XA) support.

Connector/J 3.0 provides core functionality and was designed for connectivity to MySQL 3.x or MySQL
4.1 servers, although it provides basic compatibility with later versions of MySQL. Connector/J 3.0 does
not support server-side prepared statements, and does not support any of the features in versions of
MySQL later than 4.1.

The following table summarizes the Connector/J versions available, along with the details of JDBC driver
type, what version of the JDBC API it supports, what versions of MySQL Server it works with, and whether
it is currently supported or not:

Table 2.1 Summary of Connector/J Versions

Connector/J Driver Type JDBC version MySQL Server Status

version version

5.1 4 3.0,4.0 4.1,5.0,5.1, 5.5, Recommended
5.6,5.7 version

5.0 4 3.0 41,5.0 Released version

3.1 4 3.0 4.1,5.0 Obsolete

3.0 4 3.0 3.x, 4.1 Obsolete

The current recommended version for Connector/J is 5.1. This guide covers all four connector versions,
with specific notes given where a setting applies to a specific option.

2.1 Connector/J Release Notes and Change History

For details of new features and bug fixes in each Connector/J release, see the MySQL Connector/J
Release Notes.

2.2 Java Versions Supported

The following table summarizes what version of Java RTE is required to use Connector/J with Java
applications, and what version of JDK is required to build Connector/J source code:

http://dev.mysql.com/doc/refman/5.6/en/char.html
http://dev.mysql.com/doc/refman/5.6/en/char.html
http://dev.mysql.com/doc/relnotes/connector-j/en/
http://dev.mysql.com/doc/relnotes/connector-j/en/

Java Versions Supported

Table 2.2 Summary of Java Versions Required by Connector/J

Connector/J version Java RTE required JDK required (to build source
code)

51 1.5.x, 1.6.x, 1.7.x 1.6.x and 1.5.x

5.0 1.3.x,1.4x, 15X, 1.6.x 1.4.2,15Xx, 1.6.x

3.1 1.2.x,1.3.x,1.4.x,1.5x, 1.6.x 1.4.2,15x,1.6.x

3.0 1.2.x,1.3.x,1.4.x, 1.5.x, 1.6.x 1.4.2,1.5x, 1.6.x

If you are building Connector/J from source code using the source distribution (see Section 3.4, “Installing
from the Development Source Tree”), you must use JDK 1.4.2 or newer to compile the Connector package.
For Connector/J 5.1, you must have both JDK-1.6.x and JDK-1.5.x installed to be able to build the source

code.

Java 1.7 support requires Connector/J 5.1.21 and higher. Several JDBC 4.1 methods were implemented
for the first time in Connector/J 5.1.21.

Because of the implementation of | ava. sqgl . Savepoi nt, Connector/J 3.1.0 and newer will not run
on a Java runtime older than 1.4 unless the class verifier is turned off (by setting the - Xveri f y: none
option to the Java runtime). This is because the class verifier will try to load the class definition for

j ava. sgl . Savepoi nt even though it is not accessed by the driver unless you actually use savepoint
functionality.

Caching functionality provided by Connector/J 3.1.0 or newer is also not available on JVMs older than
1.4.x,asitreliesonjava. util . Li nkedHashMap which was first available in JDK-1.4.0.

MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.x.

Chapter 3 Connector/J Installation

Table of Contents

3.1 Installing Connector/J from a Binary DiStriDULIONiiiiiiiiiiiii e 5
3.2 Installing the Driver and Configuring the CLASSPATHuuiiiiii e 5
3.3 Upgrading from an OldEr VEISIONiiiiiiiieiiii ettt ettt et e e aa e e eneens 6
3.3.1 Upgrading to MySQL CONNECION I 5.1.X ...eiiiiiieiiiieeieiie ettt 7
3.3.2 JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or NEWEercccoveveveeennneennnn. 7
3.3.3 Upgrading from MySQL Connector/J 3.0 10 3.1 ...uuiiiiiiiieiiii e 7
3.4 Installing from the Development SOUICE TIEEcoiiuiii i 9

You can install the Connector/J package using either the binary or source distribution. The binary
distribution provides the easiest method for installation; the source distribution lets you customize
your installation further. With either solution, you manually add the Connector/J location to your Java
CLASSPATH.

If you are upgrading from a previous version, read the upgrade information in Section 3.3, “Upgrading from
an Older Version” before continuing.

Connector/J is also available as part of the Maven project. For more information, and to download the
Connector/J JAR files, see the Maven repository.

3.1 Installing Connector/J from a Binary Distribution

For the easiest method of installation, use the binary distribution of the Connector/J package. The binary
distribution is available either as a tar/gzip or zip file. Extract it to a suitable location, then optionally make
the information about the package available by changing your CLASSPATH (see Section 3.2, “Installing the
Driver and Configuring the CLASSPATH").

MySQL Connector/J is distributed as a . zi p or . t ar . gz archive containing the sources, the class files,
and the JAR archive named nysql - connect or - j ava-versi on-bin.jar.

Starting with Connector/J 3.1.9, the . cl ass files that constitute the JAR files are only included as part of
the driver JAR file.

Starting with Connector/J 3.1.8, the archive also includes a debug build of the driver in a file named
nysql - connect or - j ava- ver si on- bi n-g. j ar. Do not use the debug build of the driver unless
instructed to do so when reporting a problem or a bug, as it is not designed to be run in production
environments, and will have adverse performance impact when used. The debug binary also depends on
the Aspect/J runtime library, which is located in the src/ | i b/ aspectjrt. | ar file that comes with the
Connector/J distribution.

Use the appropriate graphical or command-line utility to extract the distribution (for example, WinZip for
the .zip archive, and t ar for the .tar.gz archive). Because there are potentially long file names in the
distribution, we use the GNU tar archive format. Use GNU tar (or an application that understands the GNU
tar archive format) to unpack the .tar.gz variant of the distribution.

3.2 Installing the Driver and Configuring the CLASSPATH

Once you have extracted the distribution archive, you can install the driver by placing mysql - connect or -
j ava-version-bin.jar inyourclasspath, either by adding the full path to it to your CLASSPATH
environment variable, or by directly specifying it with the command line switch - cp when starting the JVM.

http://www.ibiblio.org/maven/

Upgrading from an Older Version

To use the driver with the JDBC Dr i ver Manager , use com nysql . j dbc. Dri ver as the class that
implements j ava. sql . Dri ver.

You can set the CLASSPATH environment variable under Unix, Linux or Mac OS X either locally for a user
within their . profi | e, .| ogi n or other login file. You can also set it globally by editing the global / et c/
profil e file.

For example, add the Connector/J driver to your CLASSPATH using one of the following forms, depending
on your command shell:

Bour ne-conpati bl e shell (sh, ksh, bash, zsh):
shel | > export CLASSPATH=/ pat h/ nysql - connect or -j ava- ver - bi n. j ar : $CLASSPATH

C shell (csh, tcsh):
shel | > set env CLASSPATH / pat h/ mysqgl - connect or -j ava- ver - bi n. j ar : $CLASSPATH

Within Windows 2000, Windows XP, Windows Server 2003 and Windows Vista, you set the environment
variable through the System Control Panel.

To use MySQL Connector/J with an application server such as GlassFish, Tomcat or JBoss, read your
vendor's documentation for more information on how to configure third-party class libraries, as most
application servers ignore the CLASSPATH environment variable. For configuration examples for some
J2EE application servers, see Chapter 7, Connection Pooling with Connector/J Section 8.1, “Configuring
Load Balancing with Connector/J”, and Section 8.2, “Configuring Failover with Connector/J”. However,
the authoritative source for JDBC connection pool configuration information for your particular application
server is the documentation for that application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the
driver's . j ar file in the VEB- | NF/ | i b subdirectory of your webapp, as this is a standard location for third
party class libraries in J2EE web applications.

You can also use the Mysql Dat aSour ce or Mysgl Connect i onPool Dat aSour ce classes in the
com nysql . j dbc. j dbc2. opti onal package, if your J2EE application server supports or requires
them. Starting with Connector/J 5.0.0, the j avax. sgl . XADat aSour ce interface is implemented using
the com nysql . j dbc. j dbc2. opti onal . Mysql XADat aSour ce class, which supports XA distributed
transactions when used in combination with MySQL server version 5.0.

The various Mysql Dat aSour ce classes support the following parameters (through standard set
mutators):

e user
* password

» server Nane (see the previous section about fail-over hosts)
» dat abaseNane

e port

3.3 Upgrading from an Older Version

This section has information for users who are upgrading from one version of Connector/J to another,

or to a new version of the MySQL server that supports a more recent level of JDBC. A newer version of
Connector/J might include changes to support new features, improve existing functionality, or comply with
new standards.

Upgrading to MySQL Connector/J 5.1.x

3.3.1 Upgrading to MySQL Connector/J 5.1.x

* In Connector/J 5.0.x and earlier, the alias for a table in a SELECT statement is returned when accessing
the result set metadata using Resul t Set Met aDat a. get Col utmNane() . This behavior however is
not JDBC compliant, and in Connector/J 5.1 this behavior was changed so that the original table name,
rather than the alias, is returned.

The JDBC-compliant behavior is designed to let API users reconstruct the DML statement based on the
metadata within Resul t Set and Resul t Set Met aDat a.

You can get the alias for a column in a result set by calling

Resul t Set Met aDat a. get Col utmLabel () . To use the old noncompliant behavior with

Resul t Set Met aDat a. get Col utmNane(), use the used dAl i asMet adat aBehavi or option and
set the value to t r ue.

In Connector/J 5.0.x, the default value of used dAl i asMet adat aBehavi or wastr ue, butin
Connector/J 5.1 this was changed to a default value of f al se.

3.3.2 JIDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

» Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character encoding
was not supported by the server, however the JDBC driver could use it, allowing storage of multiple
character setsin | at i nl tables on the server.

Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this
functionality, and can not upgrade them to use the official Unicode character support in MySQL server
version 4.1 or newer, add the following property to your connection URL:

used dUTF8Behavi or =t r ue

» Server-side Prepared Statements - Connector/J 3.1 will automatically detect and use server-side
prepared statements when they are available (MySQL server version 4.1.0 and newer). If your
application encounters issues with server-side prepared statements, you can revert to the older client-
side emulated prepared statement code that is still presently used for MySQL servers older than 4.1.0
with the following connection property:

useServer PrepSt nt s=f al se

3.3.3 Upgrading from MySQL Connector/J 3.0to 3.1

Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible. Major
changes are isolated to new functionality exposed in MySQL-4.1 and newer, which includes Unicode
character sets, server-side prepared statements, SQLSt at e codes returned in error messages by the
server and various performance enhancements that can be enabled or disabled using configuration
properties.

* Unicode Character Sets: See the next section, as well as Character Set Support, for information on this
MySQL feature. If you have something misconfigured, it will usually show up as an error with a message
similarto | | | egal mi x of collations.

e Server-side Prepared Statements: Connector/J 3.1 will automatically detect and use server-side
prepared statements when they are available (MySQL server version 4.1.0 and newer).

Starting with version 3.1.7, the driver scans SQL you are preparing using all variants of
Connecti on. prepar eSt at enent () to determine if it is a supported type of statement to prepare on
the server side, and if it is not supported by the server, it instead prepares it as a client-side emulated

http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/charset.html

Upgrading from MySQL Connector/J 3.0 to 3.1

prepared statement. You can disable this feature by passing enul at eUnsupport edPst nt s=f al se in
your JDBC URL.

If your application encounters issues with server-side prepared statements, you can revert to the older
client-side emulated prepared statement code that is still presently used for MySQL servers older than
4.1.0 with the connection property useSer ver PrepSt nt s=f al se.

Datetimes with all-zero components (0000- 00- 00 .. .): These values cannot be represented reliably
in Java. Connector/J 3.0.x always converted them to NULL when being read from a ResultSet.

Connector/J 3.1 throws an exception by default when these values are encountered, as this is the most
correct behavior according to the JDBC and SQL standards. This behavior can be modified using the
zer oDat eTi meBehavi or configuration property. The permissible values are:

« except i on (the default), which throws an SQLException with an SQLState of S1009.
e convert ToNul I, which returns NULL instead of the date.

¢ round, which rounds the date to the nearest closest value which is 0001- 01- 01.

Starting with Connector/J 3.1.7, Resul t Set . get St ri ng() can be decoupled from this behavior using
noDat eti neSt ri ngSync=t r ue (the default value is f al se) so that you can retrieve the unaltered
all-zero value as a String. Note that this also precludes using any time zone conversions, therefore the
driver will not allow you to enable noDat et i meSt ri ngSync and useTi nezone at the same time.

New SQLState Codes: Connector/J 3.1 uses SQL:1999 SQLState codes returned by the MySQL server
(if supported), which are different from the legacy X/Open state codes that Connector/J 3.0 uses. If
connected to a MySQL server older than MySQL-4.1.0 (the oldest version to return SQLStates as part
of the error code), the driver will use a built-in mapping. You can revert to the old mapping by using the
configuration property useSql St at eCodes=f al se.

Resul t Set . get String(): Calling Resul t Set . get Stri ng() on a BLOB column will now return the
address of the byt e[] array that represents it, instead of a St r i ng representation of the BLOB. BLOB
values have no character set, so they cannot be converted to j ava. | ang. St ri ngs without data loss or
corruption.

To store strings in MySQL with LOB behavior, use one of the TEXT types, which the driver will treat as a
j ava. sqgl . C ob.

Debug builds: Starting with Connector/J 3.1.8 a debug build of the driver in a file named nysql -
connector-java-version-bi n-g. | ar is shipped alongside the normal binary jar file that is named
nysql - connect or-j ava-versi on-bin.jar.

Starting with Connector/J 3.1.9, we do not ship the . cl ass files unbundled, they are only available in
the JAR archives that ship with the driver.

Do not use the debug build of the driver unless instructed to do so when reporting a problem or bug, as

it is not designed to be run in production environments, and will have adverse performance impact when
used. The debug binary also depends on the Aspect/J runtime library, which is located in the src/ | i b/
aspectjrt.jar file that comes with the Connector/J distribution.

http://dev.mysql.com/doc/refman/5.6/en/blob.html
http://dev.mysql.com/doc/refman/5.6/en/blob.html
http://dev.mysql.com/doc/refman/5.6/en/blob.html
http://dev.mysql.com/doc/refman/5.6/en/blob.html

Installing from the Development Source Tree

3.4 Installing from the Development Source Tree

Caution

Read this section only if you are interested in helping us test our new code. To just
get MySQL Connector/J up and running on your system, use a standard binary
release distribution.

To install MySQL Connector/J from the development source tree, make sure that you have the following
software on your system:

» A Bazaar client, to check out the sources from our Launchpad repository (available from http://bazaar-
vcs.org/).

» Apache Ant version 1.7 or newer (available from http://ant.apache.org/).

» JDK 1.4.2 or later. Although MySQL Connector/J can be be used with older JDKs, compiling it from
source requires at least JDK 1.4.2. To build Connector/J 5.1 requires JDK 1.6.x and an older JDK such
as JDK 1.5.x; point your JAVA HOVE environment variable at the older installation.

» The Ant Contrib and Junit libraries.
To check out and compile a specific branch of MySQL Connector/J, follow these steps:
1. Check out the latest code from the branch that you want with one of the following commands.

The source code repository for MySQL Connector/J is located on Launchpad at https://
code.launchpad.net/connectorj. To check out the latest development branch, use:

shel | > bzr branch | p: connectorji

This creates a connect orj subdirectory in the current directory that contains the latest sources for the
requested branch.

To check out the latest 5.1 code, use:

shel | > bzr branch | p: connectorj/5.1
This creates a 5. 1 subdirectory in the current directory containing the latest 5.1 code.

2. To build Connector/J 5.1, make sure that you have both JDK 1.6.x installed and an older JDK such as
JDK 1.5.x. This is because Connector/J supports both JDBC 3.0 (which was prior to JDK 1.6.x) and
JDBC 4.0. Set your JAVA HOVE environment variable to the path of the older JDK installation.

3. Place the required extra libraries, ant - contri b. jar andj unit. | ar, in a separate directory—for
example, "C:\connectorj-extralibs".

4. Change your current working directory to either the connect orj or 5. 1 directory, depending on which
branch you intend to build.

5. To build Connector/J 5.1, edit the bui | d. xm to reflect the locations of your JDK 1.6.x installation and
the extra libraries. The lines to change are:

<property nanme="com mysql.j dbc.java6.javac" value="C:\jvns\jdkl. 6.0\bin\javac. exe" />
<property name="com nmysql.jdbc.java6.rtjar" value="C \jvns\jdkl.6.0\jre\lib\rt.jar" />
<property nanme="com nmysql.j dbc.extra.libs" value="C:.\connectorj-extralibs" />

http://bazaar-vcs.org/
http://bazaar-vcs.org/
http://ant.apache.org/
https://code.launchpad.net/connectorj
https://code.launchpad.net/connectorj

Installing from the Development Source Tree

Alternatively, you can set the value of these property names through the Ant - D option.

6. Issue the following command to compile the driver and create a . | ar file suitable for installation:

shel | > ant di st

This creates a bui | d directory in the current directory, where all build output will go. A directory is
created in the bui | d directory that includes the version number of the sources you are building from.
This directory contains the sources, compiled . cl ass files, and a . j ar file suitable for deployment.
For other possible targets, including ones that will create a fully packaged distribution, issue the
following command:

shel | > ant -projecthelp

7. Anewly created . j ar file containing the JDBC driver will be placed in the directory bui | d/ nmysql -
connect or-j ava- versi on.

Install the newly created JDBC driver as you would a binary . j ar file that you download from MySQL,
by following the instructions in Section 3.2, “Installing the Driver and Configuring the CLASSPATH".

A package containing both the binary and source code for Connector/J 5.1 can also be found at the
following location: Connector/J 5.1 Download

10

http://dev.mysql.com/downloads/connector/j/5.1.html

Chapter 4 Connector/J Examples

Examples of using Connector/J are located throughout this document. This section provides a summary
and links to these examples.

» Example 6.1, “Connector/J: Obtaining a connection from the Dr i ver Manager”

» Example 6.2, “Connector/J: Using java.sql.Statement to execute a SELECT query”
» Example 6.3, “Connector/J: Calling Stored Procedures”

» Example 6.4, “Connector/J: Using Connect i on. prepareCal | ()”

» Example 6.5, “Connector/J: Registering output parameters”

» Example 6.6, “Connector/J: Setting Cal | abl eSt at enent input parameters”

» Example 6.7, “Connector/J: Retrieving results and output parameter values”

» Example 6.8, “Connector/J: Retrieving AUTO | NCREMENT column values using
St at enent . get Gener at edKeys()”

» Example 6.9, “Connector/J: Retrieving AUTO_| NCREVENT column values using SELECT
LAST | NSERT I D()”

» Example 6.10, “Connector/J: Retrieving AUTO_| NCREMENT column values in Updat abl e
Resul t Set s”

« Example 7.1, “Connector/J: Using a connection pool with a J2EE application server”

» Example 15.1, “Connector/J: Example of transaction with retry logic”

11

12

Chapter 5 Connector/J (JDBC) Reference

Table of Contents

5.1 Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J 13

5.1.1 Properties Files for the useConf i gs OPLIONvvviniiiiieii e e e e 33
5.2 JDBC API IMplementation NOTEScccuuiiiii i e e e e e e e e e e e e e e e e aanas 34
5.3 Java, JDBC and MYSQL TYPES ..iuuuiiiuuieitiieiiii et eeet s et e e et seeata e e et e e et e et eean e eataaeanaeetnaeeanneeanaees 37
5.4 Using Character Sets and UNICOUEiiiiiiiiiiiii e e e e e e e e e e e et e e e e e e e e e eaens 39
5.5 Connecting SECUrElY USING SSL ...uuiiiiiiiii it e e e e e e e e et e e e e e e aeeaaeeannaees 41
5.6 Connecting Using PAM AUtNENTICAtIONoiiueiiiii i e e e e e e e e e e eanes 44
5.7 Using Master/Slave Replication with ReplicationConnectioncoccciiiiiiiiiiii i, 44
5.8 Mapping MySQL Error Numbers to JDBC SQLState COUESccvuvvviiiiiiiiiiiieiii e e e e 44

This section of the manual contains reference material for MySQL Connector/J.

5.1 Driver/Datasource Class Names, URL Syntax and Configuration
Properties for Connector/J

The name of the class that implements j ava. sql . Dri ver in MySQL Connector/J is

com nysql .jdbc. Driver.Theorg.gjt.mmnysql.Driver class name is also usable for backward
compatibility with MM.MySQL, the predecessor of Connector/J. Use this class name when registering the
driver, or when otherwise configuring software to use MySQL Connector/J.

JDBC URL Format

The JDBC URL format for MySQL Connector/J is as follows, with items in square brackets ([,]) being
optional:

jdbc: nysql ://[host][,failoverhost...][:port]/[database] »
[?propertyNanel] [=pr opertyVal uel] [&r opertyNane2] [=pr opertyVal ue2] ..

If the host name is not specified, it defaults to 127. 0. 0. 1. If the port is not specified, it defaults to 3306,
the default port number for MySQL servers.

jdbc: nysqgl ://[host:port],[host:port].../[database] »
[?propertyNanel] [=pr opertyVal uel] [&r opertyNane2] [=pr opertyVal ue2] ..

Here is a sample connection URL:

jdbc: nysql : / /1 ocal host : 3306/ saki | a?profi |l eSQL=t r ue

IPv6 Connections

For IPv6 connections, use this alternative syntax to specify hosts in the URL, addr ess=(key=val ue) .
Supported keys are:

e (protocol =tcp), or (protocol =pi pe) for named pipes on Windows.
* (path=pat h_t o_pi pe) for named pipes.
* (host =host nane) for TCP connections.

e (port=port_nunber) for TCP connections.

13

Initial Database for Connection

For example:

j dbc: nysql : // addr ess=(pr ot ocol =t cp) (host =l ocal host) (port =3306) (user =t est)/db

Any other parameters are treated as host-specific properties that follow the conventions of the JDBC URL
properties. This now allows per-host overrides of any configuration property for multi-host connections

(that is, when using failover, load balancing, or replication). Limit the overrides to user, password, network
timeouts and statement and metadata cache sizes; the results of other per-host overrides are not defined.

Initial Database for Connection

If the database is not specified, the connection is made with no default database. In this case, either call
the set Cat al og() method on the Connection instance, or fully specify table names using the database
name (that is, SELECT dbnane. t abl enane. col nanme FROM dbnane. t abl enane. . .) in your SQL.
Opening a connection without specifying the database to use is generally only useful when building tools
that work with multiple databases, such as GUI database managers.

Note

Always use the Connect i on. set Cat al og() method to specify the desired

database in JDBC applications, rather than the USE dat abase statement.
Failover Support

MySQL Connector/J has failover support. This enables the driver to fail over to any number of

slave hosts and still perform read-only queries. Failover only happens when the connection is in an

aut oCommi t (true) state, because failover cannot happen reliably when a transaction is in progress.
Most application servers and connection pools set aut oCommi t to t r ue at the end of every transaction/

connection use.
The failover functionality has the following behavior:

 If the URL property aut oReconnect is f al se: Failover only happens at connection initialization, and
failback occurs when the driver determines that the first host has become available again.

* If the URL property aut oReconnect ist r ue: Failover happens when the driver determines that the
connection has failed (checked before every query), and falls back to the first host when it determines
that the host has become available again (after quer i esBef or eRet r yMast er queries have been
issued).

In either case, whenever you are connected to a “failed-over” server, the connection is set to read-only
state, so queries that attempt to modify data will throw exceptions (the query will never be processed by
the MySQL server).

Setting Configuration Properties

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless
otherwise noted, properties can be set for a Dat aSour ce object or for a Connect i on object.

Configuration properties can be set in one of the following ways:

* Using the set * () methods on MySQL implementations of j ava. sql . Dat aSour ce (which is the
preferred method when using implementations of | ava. sqgl . Dat aSour ce):

e com nysql . jdbc.jdbc2. optional . Mysql Dat aSour ce

e comnysql . jdbc.jdbc2.optional.Msql Connecti onPool Dat aSour ce

14

http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_transaction

Setting Configuration Properties

e As a key/value pairinthe j ava. uti|. Properti es instance passed to
Dri ver Manager . get Connection() orDriver. connect ()

» As a JDBC URL parameter in the URL givento j ava. sql . Dri ver Manager . get Connecti on(),
java. sql . Driver.connect () orthe MySQL implementations of the j avax. sql . Dat aSour ce

set URL() method.

Note

If the mechanism you use to configure a JDBC URL is XML-based, use the XML
character literal & to separate configuration parameters, as the ampersand
is a reserved character for XML.

The properties are listed in the following tables.

Connection/Authentication.

Property Name

Definition

Default
Value

Since
Version

user

The user to connect as

all
versions

password

The password to use when connecting

all
versions

socketFactory

The name of the class that the driver should

use for creating socket connections to the

server. This class must implement the interface
‘com.mysql.jdbc.SocketFactory' and have public no-
args constructor.

com.mysq

[3dh8.Stan

dardSoc

connectTimeout

Timeout for socket connect (in milliseconds), with 0
being no timeout. Only works on JDK-1.4 or newer.
Defaults to '0'".

3.01

socketTimeout

Timeout on network socket operations (0, the
default means no timeout).

3.0.1

connectionLifecyclelnterceptors

A comma-delimited list of classes that implement
"com.mysql.jdbc.ConnectionLifecyclelnterceptor”
that should notified of connection lifecycle

events (creation, destruction, commit, rollback,
setCatalog and setAutoCommit) and potentially
alter the execution of these commands.
ConnectionLifecyclelnterceptors are "stackable",
more than one interceptor may be specified via the
configuration property as a comma-delimited list,
with the interceptors executed in order from left to
right.

514

useConfigs

Load the comma-delimited list of configuration
properties before parsing the URL or applying
user-specified properties. These configurations
are explained in the 'Configurations' of the
documentation.

3.15

authenticationPlugins

Comma-delimited list of classes that implement
com.mysql.jdbc.AuthenticationPlugin and which

5.1.19

15

Setting Configuration Properties

will be used for authentication unless disabled by
"disabledAuthenticationPlugins" property.

defaultAuthenticationPlugin

Name of a class implementing
com.mysql.jdbc.AuthenticationPlugin which will

be used as the default authentication plugin

(see below). It is an error to use a class which

is not listed in "authenticationPlugins” nor it is

one of the built-in plugins. It is an error to set

as default a plugin which was disabled with
"disabledAuthenticationPlugins" property. It is an
error to set this value to null or the empty string (i.e.
there must be at least a valid default authentication
plugin specified for the connection, meeting all
constraints listed above).

com.mys(lgdbd&uth

entication. M

disabledAuthenticationPlugins

Comma-delimited list of classes implementing
com.mysql.jdbc.AuthenticationPlugin or
mechanisms, i.e. "mysql_native_password". The
authentication plugins or mechanisms listed will not
be used for authentication which will fail if it requires
one of them. It is an error to disable the default
authentication plugin (either the one named by
"defaultAuthenticationPlugin" property or the hard-
coded one if "defaultAuthenticationPlugin” property
is not set).

5.1.19

disconnectOnExpiredPassword

df "disconnectOnExpiredPasswords" is set to
"false" and password is expired then server
enters "sandbox" mode and sends ERR(08001,
ER_MUST_CHANGE_PASSWORD) for all
commands that are not needed to set a new
password until a new password is set.

true

5.1.23

interactiveClient

Set the CLIENT_INTERACTIVE flag, which
tells MySQL to timeout connections based
on INTERACTIVE_TIMEOUT instead of
WAIT_TIMEOUT

false

3.1.0

localSocketAddress

Hostname or IP address given to explicitly configure
the interface that the driver will bind the client side of
the TCP/IP connection to when connecting.

5.0.5

propertiesTransform

An implementation of
com.mysql.jdbc.ConnectionPropertiesTransform
that the driver will use to modify URL properties
passed to the driver before attempting a connection

3.14

useCompression

Use zlib compression when communicating with the
server (true/false)? Defaults to 'false’.

false

3.0.17

Networking.

Property Name

Definition

Default
Value

Since
Version

maxAllowedPacket

Maximum allowed packet size to send to
server. If not set, the value of system variable
'max_allowed_packet' will be used to initialize this

-1

5.1.8

16

Setting Configuration Properties

upon connecting. This value will not take effect if set
larger than the value of 'max_allowed_packet'. Also,
due to an internal dependency with the property
"blobSendChunkSize", this setting has a minimum
value of "8203" if "useServerPrepStmts" is set to
"true”.

tcpKeepAlive

If connecting using TCP/IP, should the driver set
SO_KEEPALIVE?

true

5.0.7

tcpNoDelay

If connecting using TCP/IP, should the driver
set SO_TCP_NODELAY (disabling the Nagle
Algorithm)?

true

5.0.7

tcpRcvBuf

If connecting using TCP/IP, should the driver set
SO_RCV_BUF to the given value? The default
value of '0', means use the platform default value for
this property)

5.0.7

tcpSndBuf

If connecting using TCP/IP, should the driver set
SO_SND_BUF to the given value? The default
value of '0', means use the platform default value for
this property)

5.0.7

tcpTrafficClass

If connecting using TCP/IP, should the driver set
traffic class or type-of-service fields ?See the
documentation for java.net.Socket.setTrafficClass()
for more information.

5.0.7

High Availability and Clustering.

Property Name

Definition

Default
Value

Since
Version

autoReconnect

Should the driver try to re-establish stale and/or
dead connections? If enabled the driver will throw
an exception for a queries issued on a stale or dead
connection, which belong to the current transaction,
but will attempt reconnect before the next query
issued on the connection in a new transaction. The
use of this feature is not recommended, because

it has side effects related to session state and

data consistency when applications don't handle
SQLExceptions properly, and is only designed to

be used when you are unable to configure your
application to handle SQLExceptions resulting from
dead and stale connections properly. Alternatively,
as a last option, investigate setting the MySQL
server variable "wait_timeout" to a high value, rather
than the default of 8 hours.

false

1.1

autoReconnectForPools

Use a reconnection strategy appropriate for
connection pools (defaults to ‘false’)

false

3.1.3

failOverReadOnly

When failing over in autoReconnect mode, should
the connection be set to 'read-only'?

true

3.0.12

maxReconnects

Maximum number of reconnects to attempt if
autoReconnect is true, default is '3'.

11

17

Setting Configuration Properties

reconnectAtTxEnd If autoReconnect is set to true, should the false 3.0.10
driver attempt reconnections at the end of every
transaction?

retriesAllDown When using loadbalancing, the number of times 120 5.1.6

the driver should cycle through available hosts,
attempting to connect. Between cycles, the driver
will pause for 250ms if no servers are available.

initialTimeout If autoReconnect is enabled, the initial time to wait |2 1.1
between re-connect attempts (in seconds, defaults
to '2).

roundRobinLoadBalance When autoReconnect is enabled, and false 3.1.2

failoverReadonly is false, should we pick hosts to
connect to on a round-robin basis?

queriesBeforeRetryMaster Number of queries to issue before falling 50 3.0.2
back to master when failed over (when using
multi-host failover). Whichever condition

is met first, 'queriesBeforeRetryMaster' or
'secondsBeforeRetryMaster' will cause an attempt to
be made to reconnect to the master. Defaults to 50.

secondsBeforeRetryMaster How long should the driver wait, when failed over, |30 3.0.2
before attempting

allowMasterDownConnections |Should replication-aware driver establish false 5.1.27
connections to slaves when connection to master
servers cannot be established at initial connection?
Defaults to 'false’, which will cause SQLEXxception
when configured master hosts are all unavailable
when establishing a new replication-aware
Connection.

replicationEnableJMX Enables JMX-based management of load-balanced |false 5.1.27
connection groups, including live addition/removal of
hosts from load-balancing pool.

selfDestructOnPingMaxOperationlf set to a non-zero value, the driver will report 0 5.1.6
close the connection and report failure when
Connection.ping() or Connection.isValid(int) is called
if the connection's count of commands sent to the
server exceeds this value.

selfDestructOnPingSecondsLifefinset to a non-zero value, the driver will report 0 5.1.6
close the connection and report failure when
Connection.ping() or Connection.isValid(int) is called
if the connection's lifetime exceeds this value.

resourceld A globally unique name that identifies the resource 5.0.1
that this datasource or connection is connected to,
used for XAResource.isSameRM() when the driver
can't determine this value based on hostnames
used in the URL

Security.

Property Name Definition Default |Since
Value Version

18

Setting Configuration Properties

allowMultiQueries

Allow the use of ;' to delimit multiple queries
during one statement (true/false), defaults to
‘false’, and does not affect the addBatch() and
executeBatch() methods, which instead rely on
rewriteBatchStatements.

false

3.1.1

useSSL

Use SSL when communicating with the server (true/
false), defaults to ‘'false’

false

3.0.2

requireSSL

Require SSL connection if useSSL=true? (defaults
to ‘'false’).

false

3.1.0

verifyServerCertificate

If "useSSL" is set to "true", should the driver verify
the server's certificate? When using this feature,
the keystore parameters should be specified by the
“clientCertificateKeyStore*" properties, rather than
system properties.

true

5.1.6

clientCertificateKeyStoreUrl

URL to the client certificate KeyStore (if not
specified, use defaults)

5.1.0

clientCertificateKeyStoreType

KeyStore type for client certificates (NULL or empty
means use the default, which is "JKS". Standard
keystore types supported by the JVM are "JKS"
and "PKCS12", your environment may have more
available depending on what security products are
installed and available to the JVM.

JKS

5.1.0

clientCertificateKeyStorePassw

dPdssword for the client certificates KeyStore

5.1.0

trustCertificateKeyStoreUrl

URL to the trusted root certificate KeyStore (if not
specified, use defaults)

5.1.0

trustCertificateKeyStoreType

KeyStore type for trusted root certificates (NULL

or empty means use the default, which is "JKS".
Standard keystore types supported by the JVM are
"JKS" and "PKCS12", your environment may have
more available depending on what security products
are installed and available to the JVM.

JKS

5.1.0

trustCertificateKeyStorePasswq

fdassword for the trusted root certificates KeyStore

5.1.0

allowLoadLocallnfile

Should the driver allow use of 'LOAD DATA LOCAL
INFILE..." (defaults to 'true").

true

3.0.3

allowUrlinLocallnfile

Should the driver allow URLs in 'LOAD DATA
LOCAL INFILE' statements?

false

3.14

paranoid

Take measures to prevent exposure sensitive
information in error messages and clear data
structures holding sensitive data when possible?
(defaults to 'false’)

false

3.0.1

passwordCharacterEncoding

What character encoding is used for passwords?
Leaving this set to the default value (null), uses the
platform character set, which works for ISO8859 1
(i.e. "latin1") passwords. For passwords in other
character encodings, the encoding will have to be
specified with this property, as it's not possible for
the driver to auto-detect this.

5.1.7

Performance Extensions.

19

Setting Configuration Properties

Property Name

Definition

Default
Value

Since
Version

callableStmtCacheSize

If ‘cacheCallableStmts' is enabled, how many
callable statements should be cached?

100

3.1.2

metadataCacheSize

The number of queries to cache ResultSetMetadata
for if cacheResultSetMetaData is set to
'true' (default 50)

50

3.11

uselLocalSessionState

Should the driver refer to the internal values

of autocommit and transaction isolation that

are set by Connection.setAutoCommit() and
Connection.setTransactionlsolation() and
transaction state as maintained by the protocol,
rather than querying the database or blindly sending
commands to the database for commit() or rollback()
method calls?

false

3.1.7

uselLocalTransactionState

Should the driver use the in-transaction state
provided by the MySQL protocol to determine if a
commit() or rollback() should actually be sent to the
database?

false

5.1.7

prepStmtCacheSize

If prepared statement caching is enabled, how many
prepared statements should be cached?

25

3.0.10

prepStmtCacheSqlLimit

If prepared statement caching is enabled, what's the
largest SQL the driver will cache the parsing for?

256

3.0.10

parselnfoCacheFactory

Name of a class implementing
com.mysql.jdbc.CacheAdapterFactory, which will be
used to create caches for the parsed representation
of client-side prepared statements.

com.mysqlgdbé.PerC

serverConfigCacheFactory

Name of a class implementing
com.mysql.jdbc.CacheAdapterFactory<String,
Map<String, String>>, which will be used to create
caches for MySQL server configuration values

com.mysdlgdbéd.Per\

alwaysSendSetlsolation

Should the driver always

communicate with the database when
Connection.setTransactionlsolation() is

called? If set to false, the driver will only
communicate with the database when the
requested transaction isolation is different than
the whichever is newer, the last value that was
set via Connection.setTransactionlsolation(), or
the value that was read from the server when
the connection was established. Note that
uselLocalSessionState=true will force the same
behavior as alwaysSendSetlsolation=false,
regardless of how alwaysSendSetlsolation is set.

true

3.1.7

maintainTimeStats

Should the driver maintain various internal timers

to enable idle time calculations as well as more
verbose error messages when the connection to the
server fails? Setting this property to false removes

true

3.1.9

20

onnectionLF

mServerCol

Setting Configuration Properties

at least two calls to System.getCurrentTimeMillis()
per query.

useCursorFetch

If connected to MySQL > 5.0.2, and setFetchSize()
> 0 on a statement, should that statement use
cursor-based fetching to retrieve rows?

false

5.0.0

blobSendChunkSize

Chunk size to use when sending BLOB/CLOBs via
ServerPreparedStatements. Note that this value
cannot exceed the value of "maxAllowedPacket"
and, if that is the case, then this value will be
corrected automatically.

1048576

3.1.9

cacheCallableStmts

Should the driver cache the parsing stage of
CallableStatements

false

3.1.2

cachePrepStmts

Should the driver cache the parsing stage of
PreparedStatements of client-side prepared
statements, the "check" for suitability of server-
side prepared and server-side prepared statements
themselves?

false

3.0.10

cacheResultSetMetadata

Should the driver cache ResultSetMetaData for
Statements and PreparedStatements? (Req.
JDK-1.4+, true/false, default 'false")

false

3.11

cacheServerConfiguration

Should the driver cache the results of 'SHOW
VARIABLES' and 'SHOW COLLATION' on a per-
URL basis?

false

3.15

defaultFetchSize

The driver will call setFetchSize(n) with this value on
all newly-created Statements

3.1.9

dontTrackOpenResources

The JDBC specification requires the driver to
automatically track and close resources, however if
your application doesn't do a good job of explicitly
calling close() on statements or result sets, this
can cause memory leakage. Setting this property
to true relaxes this constraint, and can be more
memory efficient for some applications. Also the
automatic closing of the Statement and current
ResultSet in Statement.closeOnCompletion()

and Statement.getMoreResults
([Statement.CLOSE_CURRENT_RESULT |
Statement.CLOSE_ALL RESULTS]), respectively,
ceases to happen. This property automatically sets
holdResultsOpenOverStatementClose=true.

false

3.1.7

dynamicCalendars

Should the driver retrieve the default calendar when
required, or cache it per connection/session?

false

3.15

elideSetAutoCommits

If using MySQL-4.1 or newer, should the driver
only issue 'set autocommit=n' queries when the
server's state doesn't match the requested state by
Connection.setAutoCommit(boolean)?

false

3.13

enableQueryTimeouts

When enabled, query timeouts set via
Statement.setQueryTimeout() use a shared
java.util. Timer instance for scheduling. Even if
the timeout doesn't expire before the query is

true

5.0.6

21

Setting Configuration Properties

processed, there will be memory used by the
TimerTask for the given timeout which won't be
reclaimed until the time the timeout would have
expired if it hadn't been cancelled by the driver.
High-load environments might want to consider
disabling this functionality.

holdResultsOpenOverStatement&hoskd the driver close result sets on

Statement.close() as required by the JDBC
specification?

false

3.1.7

largeRowSizeThreshold

What size result set row should the JDBC driver
consider "large", and thus use a more memory-
efficient way of representing the row internally?

2048

5.11

loadBalanceStrategy

If using a load-balanced connection to

connect to SQL nodes in a MySQL Cluster/

NDB configuration (by using the URL prefix
"jdbc:mysql:loadbalance://"), which load balancing
algorithm should the driver use: (1) "random" - the
driver will pick a random host for each request.
This tends to work better than round-robin, as the
randomness will somewhat account for spreading
loads where requests vary in response time, while
round-robin can sometimes lead to overloaded
nodes if there are variations in response times
across the workload. (2) "bestResponseTime" - the
driver will route the request to the host that had the
best response time for the previous transaction.

random

5.0.6

locatorFetchBufferSize

If 'emulateLocators' is configured to 'true’, what size
buffer should be used when fetching BLOB data for
getBinarylnputStream?

1048576

3.2.1

rewriteBatchedStatements

Should the driver use multiqueries (irregardless

of the setting of "allowMultiQueries") as well as
rewriting of prepared statements for INSERT

into multi-value inserts when executeBatch()

is called? Notice that this has the potential for

SQL injection if using plain java.sgl.Statements
and your code doesn't sanitize input correctly.
Notice that for prepared statements, server-

side prepared statements can not currently

take advantage of this rewrite option, and that

if you don't specify stream lengths when using
PreparedStatement.set*Stream(), the driver won't
be able to determine the optimum number of
parameters per batch and you might receive an
error from the driver that the resultant packet is too
large. Statement.getGeneratedKeys() for these
rewritten statements only works when the entire
batch includes INSERT statements. Please be
aware using rewriteBatchedStatements=true with
INSERT .. ON DUPLICATE KEY UPDATE that for
rewritten statement server returns only one value
as sum of all affected (or found) rows in batch and it
isn't possible to map it correctly to initial statements;

false

3.1.13

22

Setting Configuration Properties

in this case driver returns the total result as a result
of each batch statement, i.e. the only unambiguous
result is 0.

useDirectRowUnpack

Use newer result set row unpacking code that skips
a copy from network buffers to a MySQL packet
instance and instead reads directly into the result
set row data buffers.

true

511

useDynamicCharsetinfo

Should the driver use a per-connection cache of
character set information queried from the server
when necessary, or use a built-in static mapping
that is more efficient, but isn't aware of custom
character sets or character sets implemented after
the release of the JDBC driver?

true

5.0.6

useFastDateParsing

Use internal String->Date/Time/Timestamp
conversion routines to avoid excessive object
creation?

true

5.0.5

useFastintParsing

Use internal String->Integer conversion routines to
avoid excessive object creation?

true

3.14

useJvmCharsetConverters

Always use the character encoding routines built
into the JVM, rather than using lookup tables for
single-byte character sets?

false

5.0.1

useReadAheadlnput

Use newer, optimized non-blocking, buffered input
stream when reading from the server?

true

3.15

Debugging/Profiling.

Property Name

Definition

Default
Value

Since
Version

logger

The name of a class that implements
"com.mysql.jdbc.log.Log" that will be

used to log messages to. (default is
"com.mysql.jdbc.log.StandardLogger”, which logs to
STDERR)

com.mysq|

[3dbt.log.S

gatherPerfMetrics

Should the driver gather performance metrics,
and report them via the configured logger every
‘reportMetricsintervalMillis’ milliseconds?

false

3.1.2

profileSQL

Trace queries and their execution/fetch times to the
configured logger (true/false) defaults to 'false'

false

3.1.0

profileSql

Deprecated, use 'profileSQL' instead. Trace queries
and their execution/fetch times on STDERR (true/
false) defaults to ‘false’

2.0.14

reportMetricsintervalMillis

If 'gatherPerfMetrics' is enabled, how often should
they be logged (in ms)?

30000

3.1.2

maxQuerySizeTolLog

Controls the maximum length/size of a query that
will get logged when profiling or tracing

2048

3.1.3

packetDebugBufferSize

The maximum number of packets to retain when
‘enablePacketDebug’ is true

20

3.1.3

slowQueryThresholdMillis

If 'logSlowQueries' is enabled, how long should a
query (in ms) before it is logged as 'slow'?

2000

3.12

23

tandard

Setting Configuration Properties

slowQueryThresholdNanos

If 'useNanosForElapsedTime' is set to true, and
this property is set to a non-zero value, the driver
will use this threshold (in nanosecond units) to
determine if a query was slow.

0 5.0.7

useUsageAdvisor

Should the driver issue 'usage' warnings advising
proper and efficient usage of JDBC and MySQL
Connector/J to the log (true/false, defaults to
'false’)?

false 3.1.1

autoGenerateTestcaseScript

Should the driver dump the SQL it is executing,
including server-side prepared statements to
STDERR?

false 3.1.9

autoSlowLog

Instead of using slowQueryThreshold* to determine
if a query is slow enough to be logged, maintain
statistics that allow the driver to determine queries
that are outside the 99th percentile?

true 514

clientinfoProvider

The name of a class that implements the
com.mysql.jdbc.JDBC4ClientinfoProvider interface
in order to support JDBC-4.0's Connection.get/
setClientinfo() methods

com.mysql5db6.JDB

C4Comment

dumpMetadataOnColumnNotFg

@habuld the driver dump the field-level metadata
of a result set into the exception message when
ResultSet.findColumn() fails?

false 3.1.13

dumpQueriesOnException Should the driver dump the contents of the false 3.1.3
guery sent to the server in the message for
SQLExceptions?

enablePacketDebug When enabled, a ring-buffer of false 3.1.3

'‘packetDebugBufferSize' packets will be kept, and
dumped when exceptions are thrown in key areas in
the driver's code

explainSlowQueries If 'logSlowQueries' is enabled, should the driver false 3.1.2
automatically issue an 'EXPLAIN' on the server and
send the results to the configured log at a WARN
level?

includelnnodbStatusinDeadlockxdaptdahe output of "SHOW ENGINE INNODB false 5.0.7

STATUS" in exception messages when deadlock
exceptions are detected?

includeThreadDumplnDeadlock

Exclepgoasurrent Java thread dump in exception
messages when deadlock exceptions are detected?

false 5.1.15

includeThreadNamesAsStatem

dintastentieminame of the current thread as a
comment visible in "SHOW PROCESSLIST", or in
Innodb deadlock dumps, useful in correlation with
“"includelnnodbStatusinDeadlockExceptions=true"
and
"includeThreadDumplnDeadlockExceptions=true".

false 5.1.15

logSlowQueries

Should queries that take longer than
'slowQueryThresholdMillis' be logged?

false 3.1.2

24

Setting Configuration Properties

logXaCommands

Should the driver log XA commands sent by
MysglXaConnection to the server, at the DEBUG
level of logging?

false

5.0.5

profilerEventHandler

Name of a class that implements the interface
com.mysql.jdbc.profiler.ProfilerEventHandler that
will be used to handle profiling/tracing events.

com.mysdl5dbé.profi

resultSetSizeThreshold

If the usage advisor is enabled, how many rows
should a result set contain before the driver warns
that it is suspiciously large?

100

5.0.5

traceProtocol

Should trace-level network protocol be logged?

false

3.1.2

useNanosForElapsedTime

For profiling/debugging functionality that measures
elapsed time, should the driver try to use
nanoseconds resolution if available (JDK >=1.5)?

false

5.0.7

Miscellaneous.

Property Name

Definition

Default
Value

Since
Version

useUnicode

Should the driver use Unicode character encodings
when handling strings? Should only be used

when the driver can't determine the character set
mapping, or you are trying to 'force' the driver to use
a character set that MySQL either doesn't natively
support (such as UTF-8), true/false, defaults to 'true'

true

1.1g

characterEncoding

If 'useUnicode' is set to true, what character
encoding should the driver use when dealing with
strings? (defaults is to 'autodetect')

1.1g

characterSetResults

Character set to tell the server to return results as.

3.0.13

connectionAttributes

A comma-delimited list of user-defined key:value
pairs (in addition to standard MySQL-defined
key:value pairs) to be passed to MySQL Server

for display as connection attributes in the
PERFORMANCE_SCHEMA.SESSION_CONNECT _|
table. Example usage:
connectionAttributes=key1:valuel,key2:value2 This
functionality is available for use with MySQL Server
version 5.6 or later only. Earlier versions of MySQL
Server do not support connection attributes, causing
this configuration option will be ignored. Setting
connectionAttributes=none will cause connection
attribute processing to be bypassed, for situations
where Connection creation/initialization speed is
critical.

ATTRS

5.1.25

connectionCollation

If set, tells the server to use this collation via 'set
collation_connection'

3.0.13

useBlobToStoreUTF80QutsideB

MTlls the driver to treat [MEDIUM/LONG]BLOB
columns as [LONG]VARCHAR columns holding text
encoded in UTF-8 that has characters outside the
BMP (4-byte encodings), which MySQL server can't

false

handle natively.

5.1.3

25

er.Loggi

Setting Configuration Properties

utf8OutsideBmpExcludedColur

WemeBagBlobToStoreUTF80utsideBMP"

is set to "true”, column names matching the
given regex will still be treated as BLOBs
unless they match the regex specified for
"utf8OutsideBmplincludedColumnNamePattern".
The regex must follow the patterns used for the
java.util.regex package.

5.1.3

utf8OutsideBmplincludedColum

MseddB apetify exclusion rules to
"utf80utsideBmpExcludedColumnNamePattern".
The regex must follow the patterns used for the
java.util.regex package.

5.1.3

loadBalanceEnableJMX

Enables JMX-based management of load-balanced
connection groups, including live addition/removal of
hosts from load-balancing pool.

false

5.1.13

sessionVariables

A comma-separated list of name/value pairs to be
sent as SET SESSION ... to the server when the
driver connects.

3.1.8

useColumnNamesInFindColum

rPrior to JDBC-4.0, the JDBC specification had a
bug related to what could be given as a "column
name" to ResultSet methods like findColumn(),

or getters that took a String property. JDBC-4.0
clarified "column name" to mean the label,

as given in an "AS" clause and returned by
ResultSetMetaData.getColumnLabel(), and if

no AS clause, the column name. Setting this
property to "true" will give behavior that is congruent
to JDBC-3.0 and earlier versions of the JDBC
specification, but which because of the specification
bug could give unexpected results. This property

is preferred over "useOldAliasMetadataBehavior"
unless you need the specific behavior that it
provides with respect to ResultSetMetadata.

false

5.1.7

allowNanAndInf

Should the driver allow NaN or +/- INF values in
PreparedStatement.setDouble()?

false

3.15

autoClosePStmtStreams

Should the driver automatically call .close() on
streams/readers passed as arguments via set*()
methods?

false

3.1.12

autoDeserialize

Should the driver automatically detect and de-
serialize objects stored in BLOB fields?

false

3.15

blobsAreStrings

Should the driver always treat BLOBs as Strings
- specifically to work around dubious metadata
returned by the server for GROUP BY clauses?

false

5.0.8

capitalizeTypeNames

Capitalize type names in DatabaseMetaData?
(usually only useful when using WebObijects, true/
false, defaults to 'false’)

true

2.0.7

clobCharacterEncoding

The character encoding to use for sending and
retrieving TEXT, MEDIUMTEXT and LONGTEXT
values instead of the configured connection

characterEncoding

5.0.0

26

Setting Configuration Properties

clobberStreamingResults

This will cause a 'streaming' ResultSet to be
automatically closed, and any outstanding data still
streaming from the server to be discarded if another
query is executed before all the data has been read
from the server.

false

3.0.9

compensateOnDuplicateKeyUp

dahheCloltiis driver compensate for the update counts
of "ON DUPLICATE KEY" INSERT statements (2 =
1, 0 = 1) when using prepared statements?

false

5.1.7

continueBatchOnError

Should the driver continue processing batch
commands if one statement fails. The JDBC spec
allows either way (defaults to 'true’).

true

3.0.3

createDatabaselfNotExist

Creates the database given in the URL if it doesn't
yet exist. Assumes the configured user has
permissions to create databases.

false

3.1.9

detectCustomCollations

Should the driver detect custom charsets/collations
installed on server (true/false, defaults to 'false’). If
this option set to 'true’ driver gets actual charsets/
collations from server each time connection
establishes. This could slow down connection
initialization significantly.

false

5.1.29

emptyStringsConvertToZero

Should the driver allow conversions from empty
string fields to numeric values of '0'?

true

3.1.8

emulateLocators

Should the driver emulate java.sql.Blobs with
locators? With this feature enabled, the driver will
delay loading the actual Blob data until the one of
the retrieval methods (getinputStream(), getBytes(),
and so forth) on the blob data stream has been
accessed. For this to work, you must use a column
alias with the value of the column to the actual
name of the Blob. The feature also has the following
restrictions: The SELECT that created the result
set must reference only one table, the table must
have a primary key; the SELECT must alias the
original blob column name, specified as a string,

to an alternate name; the SELECT must cover all
columns that make up the primary key.

false

3.1.0

emulateUnsupportedPstmts

Should the driver detect prepared statements that
are not supported by the server, and replace them
with client-side emulated versions?

true

3.1.7

exceptioninterceptors

Comma-delimited list of classes that implement
com.mysql.jdbc.Exceptioninterceptor. These
classes will be instantiated one per Connection
instance, and all SQLExceptions thrown by the
driver will be allowed to be intercepted by these
interceptors, in a chained fashion, with the first class
listed as the head of the chain.

5.1.8

functionsNeverReturnBlobs

Should the driver always treat data from functions
returning BLOBs as Strings - specifically to work
around dubious metadata returned by the server for
GROUP BY clauses?

false

5.0.8

27

Setting Configuration Properties

generateSimpleParameterMeta

dBiteuld the driver generate simplified parameter
metadata for PreparedStatements when no
metadata is available either because the server
couldn't support preparing the statement, or server-
side prepared statements are disabled?

false

5.0.5

getProceduresReturnsFunction

sPre-JDBC4 DatabaseMetaData API has only the
getProcedures() and getProcedureColumns()
methods, so they return metadata info for

both stored procedures and functions. JDBC4
was extended with the getFunctions() and
getFunctionColumns() methods and the

expected behaviours of previous methods

are not well defined. For JDBC4 and higher,
default 'true’ value of the option means that calls
of DatabaseMetaData.getProcedures() and
DatabaseMetaData.getProcedureColumns()
return metadata for both procedures and functions
as before, keeping backward compatibility.

Setting this property to ‘false’ decouples
Connector/J from its pre-JDBC4 behaviours

for DatabaseMetaData.getProcedures() and
DatabaseMetaData.getProcedureColumns(), forcing
them to return metadata for procedures only.

true

5.1.26

ignoreNonTxTables

Ignore non-transactional table warning for rollback?
(defaults to 'false).

false

3.0.9

jdbcCompliantTruncation

Should the driver throw java.sgl.DataTruncation
exceptions when data is truncated as is required by
the JDBC specification when connected to a server
that supports warnings (MySQL 4.1.0 and newer)?
This property has no effect if the server sql-mode
includes STRICT_TRANS_TABLES.

true

3.1.2

loadBalanceAutoCommitStateni

PvitlRadead-balancing is enabled

for auto-commit statements (via
loadBalanceAutoCommitStatementThreshold), the
statement counter will only increment when the SQL
matches the regular expression. By default, every
statement issued matches.

5.1.15

loadBalanceAutoCommitStaten

wviiEhrasihmidommit is enabled, the number of
statements which should be executed before
triggering load-balancing to rebalance. Default
value of 0 causes load-balanced connections to
only rebalance when exceptions are encountered,
or auto-commit is disabled and transactions are
explicitly committed or rolled back.

5.1.15

loadBalanceBlacklistTimeout

Time in milliseconds between checks of servers
which are unavailable, by controlling how long a
server lives in the global blackilist.

5.1.0

loadBalanceConnectionGroup

Logical group of load-balanced connections within
a classloader, used to manage different groups
independently. If not specified, live management of

load-balanced connections is disabled.

5.1.13

28

Setting Configuration Properties

loadBalanceExceptionChecker

Fully-qualified class name of custom

exception checker. The class must implement
com.mysql.jdbc.LoadBalanceExceptionChecker
interface, and is used to inspect SQLExceptions and
determine whether they should trigger fail-over to
another host in a load-balanced deployment.

com.mysdlﬁdb&Stan

dardLoa

loadBalancePingTimeout

Time in milliseconds to wait for ping response from
each of load-balanced physical connections when
using load-balanced Connection.

5.1.13

loadBalanceSQLEXxceptionSubg

Beghadodelimited list of classes/interfaces used
by default load-balanced exception checker to
determine whether a given SQLException should
trigger failover. The comparison is done using
Class.isInstance(SQLEXxception) using the thrown
SQLEXxception.

5.1.13

loadBalanceSQLStateFailover

Comma-delimited list of SQLState codes used

by default load-balanced exception checker

to determine whether a given SQLException
should trigger failover. The SQLState of a given
SQLException is evaluated to determine whether it
begins with any value in the comma-delimited list.

5.1.13

loadBalanceValidateConnectiorj

Shéwapiseivad-balanced Connection explicitly
check whether the connection is live when swapping
to a new physical connection at commit/rollback?

false

5.1.13

maxRows

The maximum number of rows to return (0, the
default means return all rows).

all
versions

netTimeoutForStreamingResult

sWhat value should the driver automatically set
the server setting 'net_write_timeout' to when the
streaming result sets feature is in use? (value has
unit of seconds, the value '0' means the driver will
not try and adjust this value)

600

5.1.0

noAccessToProcedureBodies

When determining procedure parameter types
for CallableStatements, and the connected user
can't access procedure bodies through "SHOW
CREATE PROCEDURE" or select on mysql.proc
should the driver instead create basic metadata
(all parameters reported as IN VARCHARS, but
allowing registerOutParameter() to be called on
them anyway) instead of throwing an exception?

false

5.0.3

noDatetimeStringSync

Don't ensure that
ResultSet.getDatetimeType().toString().equals(Resul

false
[Set.getStr

3.17
ng()

noTimezoneConversionForTime

:Dgpé convert TIME values using the server
timezone if 'useTimezone'="true’

false

5.0.0

nullCatalogMeansCurrent

When DatabaseMetadataMethods ask for a 'catalog’
parameter, does the value null mean use the current
catalog? (this is not JDBC-compliant, but follows
legacy behavior from earlier versions of the driver)

true

3.1.8

nullNamePatternMatchesAll

Should DatabaseMetaData methods that accept

*pattern parameters treat null the same as '%' (this

true

3.1.8

29

Setting Configuration Properties

is not JDBC-compliant, however older versions
of the driver accepted this departure from the
specification)

overrideSupportsintegrityEnhan

&hmetdRaeiliver return "true" for
DatabaseMetaData.supportsintegrityEnhancementFs
even if the database doesn't support it to
workaround applications that require this method to
return "true" to signal support of foreign keys, even
though the SQL specification states that this facility
contains much more than just foreign key support
(one such application being OpenOffice)?

false
cility()

3.1.12

padCharsWithSpace

If a result set column has the CHAR type and

the value does not fill the amount of characters
specified in the DDL for the column, should the
driver pad the remaining characters with space (for
ANSI compliance)?

false

5.0.6

pedantic

Follow the JDBC spec to the letter.

false

3.0.0

pinGlobalTxToPhysicalConnect

Wihen using XAConnections, should the driver
ensure that operations on a given XID are always
routed to the same physical connection? This allows
the XAConnection to support "XA START ... JOIN"
after "XA END" has been called

false

5.0.1

populatelnsertRowWithDefaultV

sUresn using ResultSets that are
CONCUR_UPDATABLE, should the driver pre-
populate the "insert" row with default values from
the DDL for the table used in the query so those
values are immediately available for ResultSet
accessors? This functionality requires a call to the
database for metadata each time a result set of this
type is created. If disabled (the default), the default
values will be populated by the an internal call to
refreshRow() which pulls back default values and/or
values changed by triggers.

false

5.0.5

processEscapeCodesForPrepS

t8itsuld the driver process escape codes in queries
that are prepared?

true

3.1.12

queryTimeoutKillsConnection

If the timeout given in Statement.setQueryTimeout()
expires, should the driver forcibly abort the
Connection instead of attempting to abort the
query?

false

5.1.9

relaxAutoCommit

If the version of MySQL the driver connects to does

not support transactions, still allow calls to commit(),
rollback() and setAutoCommit() (true/false, defaults

to ‘false")?

false

2.0.13

retainStatementAfterResultSet(

lBiseuld the driver retain the Statement reference in
a ResultSet after ResultSet.close() has been called.
This is not JDBC-compliant after JDBC-4.0.

false

3.1.11

rollbackOnPooledClose

Should the driver issue a rollback() when the logical

connection in a pool is closed?

true

3.0.15

30

Setting Configuration Properties

runningCTS13

Enables workarounds for bugs in Sun's JDBC
compliance testsuite version 1.3

false

3.1.7

serverTimezone

Override detection/mapping of timezone. Used
when timezone from server doesn't map to Java
timezone

3.0.2

statementinterceptors

A comma-delimited list of classes that implement
"com.mysql.jdbc.Statementinterceptor” that should
be placed "in between" query execution to influence
the results. Statementinterceptors are "chainable”,
the results returned by the "current" interceptor will
be passed on to the next in in the chain, from left-to-
right order, as specified in this property.

511

strictFloatingPoint

Used only in older versions of compliance test

false

3.0.0

strictUpdates

Should the driver do strict checking (all primary
keys selected) of updatable result sets (true, false,
defaults to 'true’)?

true

3.04

tinyIntlisBit

Should the driver treat the datatype TINYINT(1) as
the BIT type (because the server silently converts
BIT -> TINYINT(1) when creating tables)?

true

3.0.16

transformedBitlsBoolean

If the driver converts TINYINT(1) to a different type,
should it use BOOLEAN instead of BIT for future
compatibility with MySQL-5.0, as MySQL-5.0 has a
BIT type?

false

3.1.9

treatUtiIDateAsTimestamp

Should the driver treat java.util.Date
as a TIMESTAMP for the purposes of
PreparedStatement.setObject()?

true

5.0.5

ultraDevHack

Create PreparedStatements for prepareCall() when
required, because UltraDev is broken and issues

a prepareCall() for _all_ statements? (true/false,
defaults to 'false’)

false

2.0.3

useAffectedRows

Don't set the CLIENT_FOUND_ROWS flag when
connecting to the server (not JDBC-compliant, will
break most applications that rely on "found" rows
vs. "affected rows" for DML statements), but does
cause "correct" update counts from "INSERT ...
ON DUPLICATE KEY UPDATE" statements to be
returned by the server.

false

5.1.7

useGmtMillisForDatetimes

Convert between session timezone and GMT before
creating Date and Timestamp instances (value

of "false" is legacy behavior, "true" leads to more
JDBC-compliant behavior.

false

3.1.12

useHostsInPrivileges

Add '@hostname' to users in
DatabaseMetaData.getColumn/TablePrivileges()
(true/false), defaults to 'true'.

true

3.0.2

uselnformationSchema

When connected to MySQL-5.0.7 or newer, should
the driver use the INFORMATION_SCHEMA to
derive information used by DatabaseMetaData?

false

5.0.0

31

Setting Configuration Properties

useJDBCCompliantTimezoneS

h8hould the driver use JDBC-compliant rules

when converting TIME/TIMESTAMP/DATETIME
values' timezone information for those JDBC
arguments which take a java.util.Calendar
argument? (Notice that this option is exclusive of the
"useTimezone=true" configuration option.)

false

5.0.0

uselLegacyDatetimeCode

Use code for DATE/TIME/DATETIME/TIMESTAMP
handling in result sets and statements that
consistently handles timezone conversions from
client to server and back again, or use the legacy
code for these datatypes that has been in the driver
for backwards-compatibility?

true

5.1.6

useOldAliasMetadataBehavior

Should the driver use the legacy behavior

for "AS" clauses on columns and tables,

and only return aliases (if any) for
ResultSetMetaData.getColumnName() or
ResultSetMetaData.getTableName() rather than the
original column/table name? In 5.0.x, the default
value was true.

false

5.04

useOldUTF8Behavior

Use the UTF-8 behavior the driver did when
communicating with 4.0 and older servers

false

3.1.6

useOnlyServerErrorMessages

Don't prepend 'standard' SQLState error messages
to error messages returned by the server.

true

3.0.15

useSSPSCompatibleTimezonedifigrating from an environment

that was using server-side prepared

statements, and the configuration property
"useJDBCCompliantTimeZoneShift" set to "true",
use compatible behavior when not using server-side
prepared statements when sending TIMESTAMP
values to the MySQL server.

false

5.0.5

useServerPrepStmts

Use server-side prepared statements if the server
supports them?

false

3.1.0

useSglStateCodes

Use SQL Standard state codes instead of 'legacy' X/
Open/SQL state codes (true/false), default is 'true’

true

3.1.3

useStreamLengthsinPrepStmts

Honor stream length parameter in
PreparedStatement/ResultSet.setXXXStream()
method calls (true/false, defaults to 'true’)?

true

3.0.2

useTimezone

Convert time/date types between client and server
timezones (true/false, defaults to 'false’)?

false

3.0.2

useUnbufferedinput

Don't use BufferedinputStream for reading data
from the server

true

3.0.11

yearlsDateType

Should the JDBC driver treat the MySQL type
"YEAR" as a java.sqgl.Date, or as a SHORT?

true

3.1.9

zeroDateTimeBehavior

What should happen when the driver encounters
DATETIME values that are composed entirely

of zeros (used by MySQL to represent invalid
dates)? Valid values are "exception”, "round" and
"convertToNull".

exception

3.14

32

Properties Files for the useConf i gs Option

Connector/J also supports access to MySQL using named pipes on Windows NT, Windows 2000,

or Windows XP using the NanedPi peSocket Fact ory as a plugin-socket factory using the

socket Fact ory property. If you do not use a nanedPi pePat h property, the default of ' \'\ . \ pi pe

\ MySQL" is used. If you use the NanedPi peSocket Fact or y, the host name and port number values in
the JDBC url are ignored. To enable this feature, use:

socket Fact ory=com nysql . j dbc. NanmedPi peSocket Fact ory

Named pipes only work when connecting to a MySQL server on the same physical machine where the
JDBC driver is running. In simple performance tests, named pipe access is between 30%-50% faster than
the standard TCP/IP access. However, this varies per system, and nhamed pipes are slower than TCP/IP in
many Windows configurations.

To create your own socket factories, follow the example code in
com nysql . j dbc. NamedPi peSocket Fact ory, orcom nysql . j dbc. St andar dSocket Fact ory.

5.1.1 Properties Files for the useConf i gs Option

The useConf i gs connection option is convenient shorthand for specifying combinations of options

for particular scenarios. The argument values you can use with this option correspond to the names of

. properti es files within the Connector/J nysqgl - connect or - j ava- ver si on- bi n.] ar JAR file. For
example, the Connector/J 5.1.9 driver includes the following configuration properties files:

$ unzip nysqgl -connector-java-5.1.19-bin.jar '*/configs/*'
Archive: nysql-connector-java-5.1.19-bin.jar
creating: com nysql/jdbc/configs/
nflating: conml nmysql/jdbc/configs/3-0-Conpat.properties
nflating: conl nmysql/jdbc/configs/5-0-Conpat.properties
nflating: conml nysql/jdbc/configs/clusterBase. properties
nflating: conml nmysql/jdbc/configs/col dFusi on. properties
nflating: coml nysql/jdbc/configs/full Debug. properties
nflating: coml nmysql/jdbc/configs/ maxPerfornmance. properties
nflating: conml nysql/jdbc/configs/sol ari sMaxPerformance. properties

To specify one of these combinations of options, specify useConf i gs=3- 0- Conpat ,

useConfi gs=maxPer f or mance, and so on. The following sections show the options that are part of each
useConfi gs setting. For the details of why each one is included, see the comments in the . properti es
files.

3-0-Compat

enptyStri ngsConvert ToZer o=t r ue

j dbcConpl i ant Truncat i on=f al se

noDat eti meStri ngSync=true

nul | Cat al ogMeansCurrent =true

nul | NamePat t er nMat chesAl | =t rue
transf or nedBi t | sBool ean=f al se

dont TrackOpenResour ces=t r ue

zer oDat eTi neBehavi or =convert ToNul |
useSer ver PrepSt nt s=f al se

aut oCl osePSt nt St r eans=t r ue

pr ocessEscapeCodesFor PrepSt nt s=f al se
useFast Dat ePar si ng=f al se

popul at el nsert RowW t hDef aul t Val ues=f al se
useDi r ect RowUnpack=f al se

5-0-Compat

33

JDBC API Implementation Notes

useDi r ect RowUnpack=f al se

clusterBase

aut oReconnect =tr ue
fail Over ReadOnl y=f al se
r oundRobi nLoadBal ance=t r ue

coldFusion

useDynam cChar set | nf o=f al se
al waysSendSet | sol ati on=f al se
uselocal Sessi onSt at e=true
aut oReconnect =t r ue

fullDebug

profil eSQL=true

gat her Per Metri cs=true
useUsageAdvi sor =t r ue

| 0ogSl owQueri es=true
expl ai nS| owQueri es=true

maxPerformance

cachePrepSt nt s=true

cacheCal | abl eSt nt s=true
cacheSer ver Conf i gurati on=true
uselLocal Sessi onSt at e=t r ue

el i deSet Aut oCommi t s=t r ue

al waysSendSet | sol ati on=f al se
enabl eQuer yTi meout s=f al se

solarisMaxPerformance

useUnbuf f er edl nput =f al se
useReadAheadl nput =f al se
mai nt ai nTi meSt at s=f al se

5.2 JDBC API Implementation Notes

MySQL Connector/J passes all of the tests in the publicly available version of Oracle's JDBC compliance
test suite. This section gives details on an interface-by-interface level about implementation decisions that
might affect how you code applications with MySQL Connector/J. The JDBC specification is vague about
how certain functionality should be implemented, or the specification enables leeway in implementation.

« BLOB

Starting with Connector/J version 3.1.0, you can emulate BLOBs with locators by adding the property
emul at eLocat or s=t r ue to your JDBC URL. Using this method, the driver will delay loading the actual
BLOB data until you retrieve the other data and then use retrieval methods (get | nput St reant),

get Byt es(), and so forth) on the BLOB data stream.

You must use a column alias with the value of the column to the actual name of the BLOB, for example:

SELECT id, 'data' as bl ob_data from bl obt abl e

34

JDBC API Implementation Notes

You must also follow these rules:

e The SELECT must reference only one table. The table must have a primary key.

e The SELECT must alias the original BLOB column name, specified as a string, to an alternate name.
e The SELECT must cover all columns that make up the primary key.

The BLOB implementation does not allow in-place modification (they are copies, as reported by the
Dat abaseMet aDat a. | ocat or sUpdat eCopi es() method). Because of this, use the corresponding
Pr epar edSt at enent . set Bl ob() or Resul t Set . updat eBl ob() (in the case of updatable result
sets) methods to save changes back to the database.

CallableStatement

Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL version
5.0 or newer using the Cal | abl eSt at enent interface. Currently, the get Par anet er Met aDat a()
method of Cal | abl eSt at enent is not supported.

CLOB

The CLOB implementation does not allow in-place modification (they are copies, as reported

by the Dat abaseMet aDat a. | ocat or sUpdat eCopi es() method). Because of this, use the
Prepar edSt at enent . set Cl ob() method to save changes back to the database. The JDBC API
does not have a Resul t Set . updat eCl ob() method.

Connection

Unlike the pre-Connector/J JDBC driver (MM MySQL), the i sCl osed() method does not ping the server
to determine if it is available. In accordance with the JDBC specification, it only returns true if cl osed()
has been called on the connection. If you need to determine if the connection is still valid, issue a simple
query, such as SELECT 1. The driver will throw an exception if the connection is no longer valid.

DatabaseMetaData

Foreign key information (get | npor t edKeys() /get Export edKeys() and get Cr ossRef erence())
is only available from | nnoDB tables. The driver uses SHON CREATE TABLE to retrieve this information,
so if any other storage engines add support for foreign keys, the driver would transparently support them
as well.

PreparedStatement

PreparedStatements are implemented by the driver, as MySQL does not have a prepared
statement feature. Because of this, the driver does not implement get Par anet er Met aDat a() or
get Met aDat a() as it would require the driver to have a complete SQL parser in the client.

Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and binary-encoded
result sets are used when the server supports them.

Take care when using a server-side prepared statement with large parameters that are set using
setBi naryStrean(), setAscii Strean{(), set Uni codeStrean(), set Bl ob(), orset Cd ob().
To re-execute the statement with any large parameter changed to a nonlarge parameter, call

cl ear Par anet er s() and set all parameters again. The reason for this is as follows:

« During both server-side prepared statements and client-side emulation, large data is exchanged only
when Pr epar edSt at enent . execut e() is called.

35

http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.6/en/show-create-table.html

JDBC API Implementation Notes

« Once that has been done, the stream used to read the data on the client side is closed (as per the
JDBC spec), and cannot be read from again.

« If a parameter changes from large to nonlarge, the driver must reset the server-side state of the
prepared statement to allow the parameter that is being changed to take the place of the prior large
value. This removes all of the large data that has already been sent to the server, thus requiring the
data to be re-sent, using the set Bi naryStrean(), set Ascii Strean(), set Uni codeStrean(),
set Bl ob() orset Cl ob() method.

Consequently, to change the type of a parameter to a nonlarge one, you must call
cl ear Par anet er s() and set all parameters of the prepared statement again before it can be re-
executed.

ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most
efficient way to operate, and due to the design of the MySQL network protocol is easier to implement. If
you are working with ResultSets that have a large number of rows or large values, and cannot allocate
heap space in your JVM for the memory required, you can tell the driver to stream the results back one
row at a time.

To enable this functionality, create a St at enent instance in the following manner:

stmt = conn. createStatenent (j ava. sql . Resul t Set . TYPE_FORWARD_ONLY,
j ava. sql . Resul t Set . CONCUR_READ ONLY) ;
stnt.set FetchSi ze(l nteger. M N_VALUE) ;

The combination of a forward-only, read-only result set, with a fetch size of | nt eger . M N_VALUE
serves as a signal to the driver to stream result sets row-by-row. After this, any result sets created with
the statement will be retrieved row-by-row.

There are some caveats with this approach. You must read all of the rows in the result set (or close it)
before you can issue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be Myl SAMtable-level locks
or row-level locks in some other storage engine such as | nnoDB) is when the statement completes.

If the statement is within scope of a transaction, then locks are released when the transaction completes
(which implies that the statement needs to complete first). As with most other databases, statements
are not complete until all the results pending on the statement are read or the active result set for the
statement is closed.

Therefore, if using streaming results, process them as quickly as possible if you want to maintain
concurrent access to the tables referenced by the statement producing the result set.

ResultSetMetaData

The i sAut ol ncr enent () method only works when using MySQL servers 4.0 and newer.
Statement

When using versions of the JDBC driver earlier than 3.2.1, and connected to server versions earlier

than 5.0.3, the set Fet chSi ze() method has no effect, other than to toggle result set streaming as
described above.

36

Java, JDBC and MySQL Types

Connector/J 5.0.0 and later include support for both St at enent . cancel () and

St at enent . set Quer yTi neout () . Both require MySQL 5.0.0 or newer server, and require a
separate connection to issue the KI LL QUERY statement. In the case of set Quer yTi neout (), the
implementation creates an additional thread to handle the timeout functionality.

Note

Failures to cancel the statement for set Quer yTi neout () may manifest
themselves as Runt i mneExcept i on rather than failing silently, as there is
currently no way to unblock the thread that is executing the query being cancelled
due to timeout expiration and have it throw the exception instead.

Note

The MySQL statement KI LL QUERY (which is what the driver uses to
implement St at enent . cancel ()) is non-deterministic; thus, avoid the use
of St at ement . cancel () if possible. If no query is in process, the next query
issued will be killed by the server. This race condition is guarded against as of
Connector/J 5.1.18.

MySQL does not support SQL cursors, and the JDBC driver doesn't emulate them, so
set Cur sor Nane() has no effect.

Connector/J 5.1.3 and later include two additional methods:

e« setLocal InfilelnputStrean() setsan | nput St r eaminstance that will be used to send data to
the MySQL server for a LOAD DATA LOCAL | NFI LE statement rather than a Fi | el nput St r eamor
URLI nput St r eamthat represents the path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL | NFI LE statement,
and will automatically be closed by the driver, so it needs to be reset before each call to execut e* ()
that would cause the MySQL server to request data to fulfill the request for LOAD DATA LOCAL

I NFI LE.

If this value is set to NULL, the driver will revert to using a Fi | el nput St r eamor URLI nput St r eam
as required.

e get Local I nfil el nput Streant() returns the | nput St r eaminstance that will be used to send data
in response to a LOAD DATA LOCAL | NFI LE statement.

This method returns NULL if no such stream has been set using set Local I nfil el nput Strean().

5.3 Java, JDBC and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java
data types.

In general, any MySQL data type can be converted to aj ava. | ang. St ri ng, and any numeric type
can be converted to any of the Java humeric types, although round-off, overflow, or loss of precision may
occur.

Note

All TEXT types return Types. LONGVARCHAR with different get Pr eci si on()
values (65535, 255, 16777215, and 2147483647 respectively) with

37

http://dev.mysql.com/doc/refman/5.6/en/kill.html
http://dev.mysql.com/doc/refman/5.6/en/kill.html
http://dev.mysql.com/doc/refman/5.6/en/load-data.html
http://dev.mysql.com/doc/refman/5.6/en/load-data.html
http://dev.mysql.com/doc/refman/5.6/en/load-data.html
http://dev.mysql.com/doc/refman/5.6/en/load-data.html
http://dev.mysql.com/doc/refman/5.6/en/load-data.html

Java, JDBC and MySQL Types

get Col umType() returning - 1. This behavior is intentional even though

TI NYTEXT does not fall, regarding to its size, within the LONGVARCHAR
category. This is to avoid different handling inside the same base type. And
get Col umType() returns - 1 because the internal server handling is of type
TEXT, which is similar to BLOB.

Also note that get Col utmTypeNane() will return VARCHAR even though
get Col umType() returns Types. LONGVARCHAR, because VARCHAR is the
designated column database-specific name for this type.

Starting with Connector/J 3.1.0, the JDBC driver issues warnings or throws Dat aTr uncat i on exceptions
as is required by the JDBC specification unless the connection was configured not to do so by using the
property j dbcConpl i ant Truncat i on and setting itto f al se.

The conversions that are always guaranteed to work are listed in the following table. The first column lists
one or more MySQL data types, and the second column lists one or more Java types to which the MySQL
types can be converted.

Table 5.1 Connection Properties - Miscellaneous

These MySQL Data Types Can always be converted to these Java types
CHAR, VARCHAR, BLOB, TEXT, ENUM and java.lang. String, java.io.|nputStream
SET java.io. Reader, java.sql. Bl ob,

java. sgl . d ob
FLOAT, REAL, DOUBLE PRECI Sl ON, java.lang. String, java.lang. Short,
NUVERI C, DECI MAL, TI NYI NT, SMALLI NT, java. l ang. I nteger, java.lang. Long,
VEDI UM NT, | NTEGER, BI G NT j ava. | ang. Doubl e, java. nmat h. Bi gDeci nal
DATE, TI Mg, DATETI ME, TI MESTAWVP java.lang. String, java.sql.Date,

j ava. sql . Ti mest anp

Note

Round-off, overflow or loss of precision may occur if you choose a Java humeric
data type that has less precision or capacity than the MySQL data type you are
converting to/from.

The Resul t Set . get Obj ect () method uses the type conversions between MySQL and

Java types, following the JDBC specification where appropriate. The value returned by

Resul t Set Met aDat a. Get Col unmCl assNane() is also shown below. For more information on the
j ava. sql . Types classes see Java 2 Platform Types.

Table 5.2 MySQL Types to Java Types for ResultSet.getObject()

MySQL Type Name Return value of Returned as Java Class
CGet Col umd assNane

BI T(1) (newin BIT j ava. | ang. Bool ean

MySQL-5.0)

BIT(> 1) (newin BIT byt e[]

MySQL-5.0)

TI NYI NT TI NYI NT j ava. | ang. Bool ean if the configuration property
tinylntlisBit issettotrue (the default) and
the storage size is 1, or j ava. | ang. | nt eger if
not.

38

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html

Using Character Sets and Unicode

MySQL Type Name Return value of Returned as Java Class
CGet Col umd assNane

BOOL, BOOLEAN TI NYI NT See TI NYI NT, above as these are aliases for
TI NYI NT(1), currently.

SMALLI NT[(M] SMALLI NT [UNSI GNED] |j ava. | ang. | nt eger (regardless if UNSI GNED or

[UNSI GNED] not)

MEDI UM NT[(M] MVEDI UM NT java. |l ang. | nt eger, if UNSI GNED

[UNSI GNED) [UNSI GNED) java. |l ang. Long (C/J 3.1 and earlier), or
java. | ang. I nt eger for C/J 5.0 and later

I NT, | NTEGER[(M] | NTEGER [UNSI GNED] |j ava. | ang. | nt eger, if UNSI GNED

[UNSI GNED] j ava. |l ang. Long

BIGNT[(M] Bl G NT [UNSI GNED] j ava. |l ang. Long, if UNSIGNED

[UNSI GNEDJ j ava. mat h. Bi gl nt eger

FLOAT[(M D)] FLOAT j ava. | ang. Fl oat

DOUBLE[(M B)] DOUBLE java. |l ang. Doubl e

DECI MAL[(M, D))] DECI MAL j ava. mat h. Bi gDeci nal

DATE DATE java. sqgl . Dat e

DATETI ME DATETI ME j ava. sql . Ti mest anp

TI MESTAMP[(M] TI MESTAMP java.sqgl . Ti mest anp

TI ME TI ME java.sql . Time

YEAR[(2] 4)] YEAR If year | sDat eType configuration property is

setto f al se, then the returned object type is
java.sql . Short.If settotrue (the default), then
the returned object is of type j ava. sql . Dat e with
the date set to January 1st, at midnight.

CHAR(M CHAR j ava. | ang. Stri ng (unless the character set for
the column is BI NARY, then byt e[] is returned.

VARCHAR(M [Bl NARY] | VARCHAR j ava. |l ang. Stri ng (unless the character set for
the column is Bl NARY, then byt e[] is returned.

Bl NARY(M Bl NARY byte[]

VARBI NARY(M VARBI NARY byt e[]

TI NYBLOB TI NYBLOB byt e[]

TI NYTEXT VARCHAR java.lang. String

BLOB BLOB byte[]

TEXT VARCHAR java.l ang. String

MEDI UVBLOB MEDI UMBLOB byt e[]

VEDI UMTEXT VARCHAR java.lang. String

LONGBLOB LONGBLOB byte[]

LONGTEXT VARCHAR java.l ang. String

ENUM ' val uel', ' val ug@HAR. .) java.lang. String

SET(' val uel', "' val ue2CHAR.) java.lang. String

5.4 Using Character Sets and Unicode

39

Number of Encodings Per Connection

All strings sent from the JDBC driver to the server are converted automatically from native Java Unicode
form to the client character encoding, including all queries sent using St at enent . execut e(),

St at enent . execut eUpdat e(), St at enent . execut eQuer y() as well as all Pr epar edSt at enent
and Cal | abl eSt at enent parameters with the exclusion of parameters set using set Byt es(),
setBinaryStrean(), setAscii Stream(), set Uni codeSt rean() and set Bl ob().

Number of Encodings Per Connection

In MySQL Server 4.1 and higher, Connector/J supports a single character encoding between client
and server, and any number of character encodings for data returned by the server to the client in
Resul t Set s.

Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which
could either be automatically detected from the server configuration, or could be configured by the user
through the useUni code and char act er Encodi ng properties.

Setting the Character Encoding

The character encoding between client and server is automatically detected upon connection. You specify
the encoding on the server using the char act er _set server for server versions 4.1.0 and newer, and
char act er _set system variable for server versions older than 4.1.0. The driver automatically uses the
encoding specified by the server. For more information, see Server Character Set and Collation.

For example, to use 4-byte UTF-8 character sets with Connector/J, configure the MySQL server
with char act er _set server =ut f 8nb4, and leave char act er Encodi ng out of the Connector/J
connection string. Connector/J will then autodetect the UTF-8 setting.

To override the automatically detected encoding on the client side, use the char act er Encodi ng property
in the URL used to connect to the server.

To allow multiple character sets to be sent from the client, use the UTF-8 encoding, either by configuring
ut f 8 as the default server character set, or by configuring the JDBC driver to use UTF-8 through the
char act er Encodi ng property.

When specifying character encodings on the client side, use Java-style names. The following table lists
MySQL character set names and the corresponding Java-style names:

Table 5.3 MySQL to Java Encoding Name Translations

MySQL Character Set Name Java-Style Character Encoding Name

asci i US- ASCI |

bi g5 Bi g5

gbk GBK

sjis SJI'S (or Cp932 or MsS932 for MySQ
Server < 4.1.11)

cp932 Cp932 or MS932 (MySQL Server > 4.1.11)

gb2312 EUC_CN

ujis EUC JP

euckr EUC KR

latinl Cpl1252

latin2 | SC8859_2

greek | SC8859 7

40

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.6/en/charset-server.html
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_character_set_server

Connecting Securely Using SSL

MySQL Character Set Name Java-Style Character Encoding Name

hebr ew | SC8859 8

cp866 Cp866

tis620 TI S620

cpl250 Cp1250

cpl251 Cp1251

cpl257 Cpl257

macr onan Mac Roman

macce MacCent r al Eur ope

utf8 UTF- 8

ucs2 Uni codeBi g
Warning

Do not issue the query set nanes with Connector/J, as the driver will not detect
that the character set has changed, and will continue to use the character set
detected during the initial connection setup.

5.5 Connecting Securely Using SSL

SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC driver
and the server. There is a performance penalty for enabling SSL, the severity of which depends on
multiple factors including (but not limited to) the size of the query, the amount of data returned, the server
hardware, the SSL library used, the network bandwidth, and so on.

For SSL support to work, you must have the following:

» A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not
currently work with a JDK that you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the following
JSSE bug: http://developer.java.sun.com/developer/bugParade/bugs/4273544.html

» A MySQL server that supports SSL and has been compiled and configured to do so, which is MySQL
4.0.4 or later. For more information, see Configuring MySQL for SSL.

* A client certificate (covered later in this section)

The system works through two Java truststore files, one file contains the certificate information for

the server (t r ust st or e in the examples below). The other file contains the certificate for the client

(keyst or e in the examples below). All Java truststore files are password protected by supplying a suitable
password to the keyt ool when you create the files. You need the file names and associated passwords to
create an SSL connection.

You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL
server CA Certificate is located in the SSL subdirectory of the MySQL source distribution. This is what
SSL will use to determine if you are communicating with a secure MySQL server. Alternatively, use the CA
Certificate that you have generated or been provided with by your SSL provider.

To use Java's keyt ool to create a truststore in the current directory , and import the server's CA
certificate (cacert . pen), you can do the following (assuming that keyt ool is in your path. The keyt ool
is typically located in the bi n subdirectory of your JDK or JRE):

shel | > keytool -inport -alias nysql Server CACert \

41

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://dev.mysql.com/doc/refman/5.6/en/configuring-for-ssl.html

Connecting Securely Using SSL

-file cacert.pem -keystore truststore

Enter the password when prompted for the keystore file. Interaction with keyt ool looks like this:

Enter keystore password: *xxxxxxxx
Onner: EMAI LADDRESS=wal r us@xanpl e. com CN=Wal rus,
O=MySQL AB, L=Orenburg, ST=Sone-State, C=RU
| ssuer: EMAI LADDRESS=wal r us@xanpl e. com CN=Wl rus,
O=MySQL AB, L=Orenburg, ST=Sone-State, C=RU
Serial nunber: O
Valid from
Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:
MD5: 61:91: AO: F2: 03: 07: 61: 7A: 81: 38: 66: DA: 19: C4: 8D: AB
SHA1: 25:77:41:05: D5: AD: 99: 8C: 14: 8C: CA: 68: 9C: 2F: B8: 89: C3: 34: 4D: 6C
Trust this certificate? [no]: vyes
Certificate was added to keystore

You then have two options: either import the client certificate that matches the CA certificate you just
imported, or create a new client certificate.

Importing an existing certificate requires the certificate to be in DER format. You can use openssl to
convert an existing certificate into the new format. For example:

shel | > openssl x509 -outformDER -in client-cert.pem-out client.cert

Now import the converted certificate into your keystore using keyt ool :

shel | > keytool -inmport -file client.cert -keystore keystore -alias nysqlCientCertificate

To generate your own client certificate, use keyt ool to create a suitable certificate and add it to the
keyst or e file:

shel | > keyt ool -genkey -keyalg rsa \
-alias nysglClientCertificate -keystore keystore

Keytool will prompt you for the following information, and create a keystore named keyst or e in the
current directory.

Respond with information that is appropriate for your situation:

Enter keystore password: rx**xxxxx
What is your first and | ast name?
[Unknown] : Matt hews
What is the nane of your organizational unit?
[Unknown] : Sof t war e Devel oprment
What is the nane of your organization?
[Unknown] : MySQL AB
What is the nane of your City or Locality?
[Unknown] : Fl ossnoor
VWhat is the nane of your State or Province?
[Unknown] : IL
What is the two-letter country code for this unit?
[Unknown] : US
I s <CN=Matthews, OU=Software Devel opment, O=MySQ. AB,
L=Fl ossnoor, ST=IL, C=US> correct?

[no]: 'y

Enter key password for <mysqgl ClientCertificate>
(RETURN i f same as keystore password):

42

Connecting Securely Using SSL

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the
following system properties when you start your JVM, replacing pat h_to_keystore_ fi | e with the full
path to the keystore file you created, path_to_truststore_fil e with the path to the truststore file
you created, and using the appropriate password values for each property. You can do this either on the
command line:

-D avax. net. ssl . keyStore=path_t o_keystore_file

- D avax. net . ssl . keySt or ePasswor d=passwor d

-D avax. net.ssl.trustStore=path_to_truststore_file
- D avax. net . ssl . trust St or ePasswor d=passwor d

Or you can set the values directly within the application:

System set Property("javax. net.ssl.keyStore","path_to_keystore file");
System set Property("javax. net.ssl . keySt orePassword", "password");

System set Property("javax.net.ssl.trustStore","path to truststore file");
System set Property("javax. net.ssl.trust St orePassword", "password");

You will also need to set useSSL to t r ue in your connection parameters for MySQL Connector/
J, either by adding useSSL=t r ue to your URL, or by setting the property useSSL to t r ue in the
java.util.Properties instance you pass to Dri ver Manager . get Connecti on().

You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the
following key events:

*** CientHello, v3.1

RandonCooki e: GMI: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, »
54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, »
217, 219, 239, 202, 19, 121, 78 }

Session ID: {}

C pher Suites: { O, 5, 0, 4, 0, 9, 0, 10, O, 18, 0, 19, 0, 3, 0, 17 }

Conpressi on Methods: { O }

* k k

[wite] MD5 and SHA1 hashes: |len = 59

0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A0C ...7..=....... J.
0010: 36 F4 00 A8 37 67 D7 40 10 8A E1 BE 84 99 02 D9 6...70.@.......
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00yN..........

0030: OA 00 12 00 13 00 03 00 11 01 OO

main, WRITE: SSL v3.1 Handshake, |ength = 59

mai n, READ: SSL v3.1 Handshake, length = 74

*** ServerHello, v3.1

RandonCooki e: GMI: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, »
202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, »
132, 110, 82, 148, 160, 92 }

Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, »
182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, »
219, 158, 177, 187, 143}

Ci pher Suite: { 0, 51}

Conpr essi on Met hod: 0

%% Created: [Session-1, SSL_RSA WTH RCA_128 SHA]

** SSI. RSA W TH_RC4 128 SHA

[read] MD5 and SHA1l hashes: len = 74

0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.Ct2.g.d

0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA03 :.0.d.B..S..*..

0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7/F FCFE B2 .nR .\ ..T5Q...

0030: B3 44 3F B6 9E 1E 0B 96 4F AA 4C FF 5C OF E2 18 .D?..... OL.\...

0040: 11 B1 DB 9E B1 BB 8F 00 05 0O

mai n, READ: SSL v3.1 Handshake, length = 1712

43

Connecting Using PAM Authentication

JSSE provides debugging (to st dout) when you set the following system property: -

Dj avax. net . debug=al | This will tell you what keystores and truststores are being used, as well as what
is going on during the SSL handshake and certificate exchange. It will be helpful when trying to determine
what is not working when trying to get an SSL connection to happen.

5.6 Connecting Using PAM Authentication

Java applications using Connector/J 5.1.21 and higher can connect to MySQL servers that use the
pluggable authentication module (PAM) authentication scheme.

For PAM authentication to work, you must have the following:

* A MySQL server that supports PAM authentication: a commercial distribution of MySQL 5.5.16 or higher.
See The PAM Authentication Plugin for more information. Connector/J implements the same cleartext
authentication method as in The Cleartext Client-Side Authentication Plugin.

» SSL capability, as explained in Section 5.5, “Connecting Securely Using SSL". Because the PAM
authentication scheme sends the original password to the server, the connection to the server must be
encrypted.

PAM authentication support is enabled by default in Connector/J 5.1.21 and up, so no extra configuration is
needed.

To disable the PAM authentication feature, specify nysql _cl ear _passwor d (the method) or

com nysql . j dbc. aut henti cati on. Mysql C ear Passwor dPI ugi n (the class name) in the comma-
separated list of arguments for the di sabl edAut hent i cat i onPl ugi ns connection option. See
Section 5.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J”
for details about that connection option.

5.7 Using Master/Slave Replication with ReplicationConnection

See Section 8.3, “Master/Slave Replication with ReplicationConnection” for details on the topic.

5.8 Mapping MySQL Error Numbers to JDBC SQLState Codes

The table below provides a mapping of the MySQL error numbers to JDBC SQLSt at e values.
Table 5.4 Mapping of MySQL Error Numbers to SQLStates

My SRLSQL | LegQL
ErroError |(X/ |Standard
Numiame |OpeBQL State
SQL State

102fER_DURPSKEXB000
103/ER_OUTSFIBENIORY
103ER_OUTSORMSOKT MEMORY
104{ER_CONDSDOMBNI4ERROR
104fER_BADOBMEISERROR
104fFER_HANOSBSDIERROR
104/ER_DBASTIBERENIED_ERROR
104FER_ACCEEXEBENIED ERROR

1047/ER_UNK ‘JDOM_ERROR

44

http://dev.mysql.com/doc/refman/5.6/en/pam-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.6/en/cleartext-authentication-plugin.html

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySRILSQL |Legi@@L
ErroError |(X/ |Standard
Numidame |OpeBQL State
SQL State

105(ER_TABHOERISIS ERROR

1051ER_BAD4ZB@PE0FRROR

105ER_NONSLOGBOERROR

105FR_SERSEHIBSLITDOWN

105/ER_BADSBIZSERROR

5

105FER_WR(SNGRREIMD WITH_GROUP

L

105fFR_WR(INGBEOUP_FIELD

£

™,
k(A

105[ER_WRCBIGE Opﬂ)_SELECT

105fER_WRONSEYSOUE_COUNT

1058ER_TOQSILAMEROMENT

g
1S

106(ER_DUPSEIREISPAME

106/ER_DUPSK@E

106fER_DUPSEO®

106FER_WR(BIGUREID_SPEC

106/ER_PARSFD(HERFIOR

106FER_EMPA20RIDRY

106 ER_NONBMNI@2ARZBLE

I:,g

106[ER_INVARIDCE EW\U LT

106fER_MULSIPIGRIRI_KEY

z

106ER_TOOSMUPODREY'S

107(ER_TOOSMEIPODREY PARTS

107[ER_TOOQSLOHEDOKEY

1077ER_KEYSTOMPOPN_DOES NOT_EXITS

107[ER_BLOB10GEIDAS_KEY

107 ER_TOQSBMN [0 DLENGTH

107EER_WR(BIGRROIMD KEY

108(ER_FORSINGBSOOSE

108[ER_IPS(IBRABRROR

108fER_NO | SUGZRSUDEX

108FR_WR(SNGRRHIMD TERMINATORS

108/ER_BLOBSOBRIDINO_TERMINATED

109(ER_CANS1BERODVE_ALL_FIELDS

1091ER_CANS10BEIPOFIELD OR_KEY

110[ER_BLOB1G@RADHAVE_DEFAULT

110(ER_WR(INGRREDNAME

110FER_WR(BGAPABLE_NAME

45

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySRILSQL |Legi@@L
ErroError |(X/ |Standard
Numidame |OpeBQL State
SQL State

110ZER_TOOQSBOBROBOECT

110fER_UNKSIDMROBIROCEDURE

110/ER_WR(B{GARAFAMCOUNT TO_PROCEDURE

110ER_UNKSMERSTABLE

111ER_FIELBl_GUEEIPGIED_TWICE

111£R_UN<‘SEqmpED EXTENSION

111FR_TAB saopm@uo HAVE_COLUMNS

1115ER_UNKS DIHARACTER SET

111ER_TOOQSBIBRROWSIZE

112(ER_WR(BIGE@LDER_JOIN

1120FR_NULBS10@RODON_IN_INDEX

112 ER_HOSOB_(D%B(_OIIZKED

113(ER_HOSITSNRYOPRIVILEGED

113[EFR_PASSIMPRDDANONYMOUS_USER

1137ER_PASSIMDPRDONOT ALLOWED

113FER_PASSWDRDOOO MATCH

113FER_WR(BGEYS0UE_COUNT_ON_ROW

113$R_|Nvmogma@ OF NULL

113ER_REGEMORERROR

114(ER_MIX S1I0@@REUP_FUNC_AND_FIELDS

1141ER_NONEXIGZMNG_GRANT

114fFR_TABISIA@ZEES_DENIED_ERROR

114FR_COLBMIBROQESS_DENIED_ERROR

114ER_ILLESHICEIRANT_FOR_TABLE

114FER_GRASIDAPRONG _HOST_OR_USER

114fER_NO | SUG#RSOBLE

1147ER_NONEX@PMG_TABLE_GRANT

1148FER_NOTSAQRUPED_COMMAND

114ER_SYN $A(BP_IEG[RDR

1150ER_AB(Q armpmgaDNNECHON

115FER_NETSRAGEEIL TOO_LARGE

115/FR_NETSREBBSERROR_FROM_PIPE

1158ER_NET SiqSOERROR

115ER_NET SRQ(DIKSCEB OUT_OF_ORDER

115/ ER_NETS1 ERESS_ERROR

115fFR_NETSRE@BSERROR

46

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySRILSQL |Legi@@L
ErroError |(X/ |Standard
Numidame |OpeBQL State
SQL State

115ER_NETSREBBSINTERRUPTED

116(ER_NETSEBBEBOION_WRITE

116[ER_NETSARIBSOINTERRUPTED

116fER_TOOSLAMEDOSTRING

116{FER_TABISEL0G@®NI0 HANDLE_BLOB

116/ER_TABISEL0G@®NI0 HANDLE_AUTO_INCREMENT

116fER_WR(BMGRRONAMN_NAME

116/ER_WRCNGEREN COLUMN

116fER_DUPSWOE3OED

117(ER_BLOBI1RE@YOPOITHOUT LENGTH

117(ER_PRINMARGRGPNT HAVE_ NULL

117ER_TOOSMUPODROWS

117/FER_REQSIREB0PRIMARY KEY

117/ER_CHESKJGMEDOBUCH TABLE

1178FER_CHESKOMEDPDOMPLEMENTED

117ER_CANSL [FKEG[H] S_DURING_AN_TRANSACTION

118£ER_NEV\S¥(MBSDII\IG CONNECTION

118ER_MA<ﬂEqMUn READ

119£R_MA<ﬂmmm$Uu WRITE

120£R_TOO§ JDOSER_CONNECTIONS

120FER_LOCKLOBAITOT IMEOUT

120fER_REAB1GEEONOTRANSACTION

1211FR_NO |BEGBESRION_TO_CREATE_USER

121FER_LOC QMDCK

121FER_NO | REFERENCED ROW

121ER_ROVWS18CREFERENCED

121FR_CONSI@BSI._MASTER

1220FR_WR(BIGENQPOBER_OF COLUMNS_IN_SELECT

122 EER_USEZB;O{GQ(IR EACHED

123(ER_NO | BEBGR00D

123[ER_WR{SNGAVAME_FOR_VAR

123ER_WR(BIGRPYPE_FOR_VAR

123/ER_CANS10&EO@PTION_HERE

123FR_NOTSSUFEIPRTED YET

1236ER_WR(BIGRPROODEF

1241ER_OPEEBE(I)|(H!1_(IDOLUMNS

47

Mapping MySQL Error Numbers to JDBC SQLState Codes

My $SRLSQL
ErroError
Num¥ame

Leg@L
(X/ |Standard

OpeBQL State
SQL State

124ER_SUH

QUEROONO_1_ROW

124/ER_ILLE

SIIREEERENCE

1248 R_DERSID T_HAVE_ALIAS

124ER_SEL

mq@n&hmJCED

125(ER_TAEB

ISELEiD_O\IOT_ALLOWED_H ERE

125[FR_NOTSSOWBWRTED AUTH_MODE

125ER_SPA

BiK0 T _HAVE_NULL

125FR_COl

| BADBIINOPCHARSET_MISMATCH

126[ER_WA

RHLOMIODEEW RECORDS

126(ER_WA

HLOMIODMANY RECORDS

126@FR_WA

RHLOGLONOTO NOTNULL

126/ ER_WA

HLABADAOOUT OF RANGE

126EER_WA

RANLABADAOTRUNCATED

128(ER_WR

(HIGAMBDOE_FOR_INDEX

1281ER_WR

(BIGARANOE_FOR_CATALOG

128ER_UNHK

_SIIDPIMQED'ORAGE_ENGINE

48

Chapter 6 JDBC Concepts

Table of Contents

6.1 Connecting to MySQL Using the JDBC Dri ver Manager Interfaceccooeevveviiiiviiiiviiniiiiienineens 49
6.2 Using JDBC St at enent Objects 10 EXECULE SQLiviiiiiiicii e e e 50
6.3 Using JDBC Cal | abl eSt at enent s to Execute Stored Procedurescooceveveviiviniviiiievinennnnn, 51
6.4 Retrieving AUTO | NCREMVENT Column Values through JDBCcoiiiiiiiiiiieii e 54

This section provides some general JDBC background.

6.1 Connecting to MySQL Using the JDBC Dri ver Manager Interface

When you are using JDBC outside of an application server, the Dr i ver Manager class manages the
establishment of Connections.

Specify to the Dr i ver Manager which JDBC drivers to try to make Connections with. The easiest way

to do this is to use Cl ass. f or Nane() on the class that implements the j ava. sql . Dri ver interface.
With MySQL Connector/J, the name of this class is com nysql . j dbc. Dri ver . With this method, you
could use an external configuration file to supply the driver class hame and driver parameters to use when
connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the nai n()
method of your application. If testing this code, first read the installation section at Chapter 3, Connector/J
Installation, to make sure you have connector installed correctly and the CLASSPATH set up. Also, ensure
that MySQL is configured to accept external TCP/IP connections.

i mport java.sql.Connecti on;
i mport java.sql.DriverManager;
i mport java.sql.SQLException;

/] Notice, do not inport comnysql.jdbc.*
/1 or you will have probl ens!

public class LoadDriver {
public static void main(String[] args) {

try {
/1 The new nstance() call is a work around for sone
/1 broken Java i npl enent ati ons

Cl ass. forNane("com nysql . jdbc. Driver").new nstance();
} catch (Exception ex) {

/1 handl e the error
}

}

After the driver has been registered with the Dr i ver Manager , you can obtain a Connect i on instance
that is connected to a particular database by calling Dri ver Manager . get Connecti on():

Example 6.1 Connector/J: Obtaining a connection from the Dri ver Manager

If you have not already done so, please review the section Section 6.1, “Connecting to MySQL Using the
JDBC Dri ver Manager Interface” before working with these examples.

49

Using JDBC St at enent Objects to Execute SQL

This example shows how you can obtain a Connect i on instance from the Dri ver Manager . There are
a few different signatures for the get Connecti on() method. Consult the APl documentation that comes
with your JDK for more specific information on how to use them.

i mport java.sql.Connecti on;
i mport java.sql.DriverManager;
i mport java.sql.SQLException;

Connection conn = null;

try {
conn =
Dri ver Manager . get Connecti on("j dbc: nysql : //1 ocal host/test?" +
"user =nont y&passwor d=gr eat sql db") ;

/1 Do sonething with the Connection

} catch (SQLException ex) {
/1 handle any errors
System out . println("SQLException: " + ex.getMessage());
Systemout.println("SQ.State: " + ex.getSQ.State());
System out . println("VendorError: " + ex.getErrorCode());

}

Once a Connect i on is established, it can be used to create St at enent and Pr epar edSt at enent
objects, as well as retrieve metadata about the database. This is explained in the following sections.

6.2 Using JDBC St at enent Objects to Execute SQL

St at enent objects allow you to execute basic SQL queries and retrieve the results through the
Resul t Set class, which is described later.

To create a St at enent instance, you call the cr eat eSt at ement () method on the
Connect i on object you have retrieved using one of the Dr i ver Manager . get Connecti on() or
Dat aSour ce. get Connecti on() methods described earlier.

Once you have a St at enent instance, you can execute a SELECT query by calling the
execut eQuery(String) method with the SQL you want to use.

To update data in the database, use the execut eUpdat e(Stri ng SQL) method. This method returns
the number of rows matched by the update statement, not the number of rows that were modified.

If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/l NSERT,
then you can use the execut e(String SQ.) method. This method will return true if the SQL query
was a SELECT, or false if it was an UPDATE, | NSERT, or DELETE statement. If the statement was a
SELECT query, you can retrieve the results by calling the get Resul t Set () method. If the statement
was an UPDATE, | NSERT, or DELETE statement, you can retrieve the affected rows count by calling
get Updat eCount () onthe St at ement instance.

Example 6.2 Connector/J: Using java.sql.Statement to execute a SELECT query

i mport java.sql.Connecti on;

i mport java.sql.DriverManager;
i mport java.sql.SQLException;
import java.sql.Statenent;
import java.sql.ResultSet;

/] assune that conn is an already created JDBC connection (see previous exanpl es)

50

http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/update.html
http://dev.mysql.com/doc/refman/5.6/en/insert.html
http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/update.html
http://dev.mysql.com/doc/refman/5.6/en/insert.html
http://dev.mysql.com/doc/refman/5.6/en/delete.html
http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/update.html
http://dev.mysql.com/doc/refman/5.6/en/insert.html
http://dev.mysql.com/doc/refman/5.6/en/delete.html

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

Statenent stnt = null;
ResultSet rs = null;

try {
stnt = conn.createStatenent();

rs = stnt.executeQuery("SELECT foo FROM bar");

/Il or alternatively, if you don't know ahead of tine that
/'l the query will be a SELECT...

if (stnt.execute("SELECT foo FROM bar")) {
rs = stnt.getResultSet();

}

/1 Now do sonething with the ResultSet

catch (SQLException ex){
/'l handl e any errors
System out . printl n("SQLException: " + ex.get Message());
Systemout.println("SQLState: " + ex.getSQ.State());

System out . println("VendorError: " + ex.getErrorCode());
}
finally {
/Il it is a good idea to rel ease
Il resources in a finally{} block
/1 in reverse-order of their creation
/1 if they are no-|onger needed
if (rs!=null) {
try {
rs.close();
} catch (SQLException sqlEx) { } // ignore
rs = null;
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException sqlEx) { } // ignore
stmt = null;
}
}

6.3 Using JDBC Cal | abl eSt at enent s to Execute Stored
Procedures

Starting with MySQL server version 5.0 when used with Connector/J 3.1.1 or newer, the
j ava. sql . Cal | abl eSt at enrent interface is fully implemented with the exception of the
get Par anet er Met aDat a() method.

For more information on MySQL stored procedures, please refer to http://dev.mysqgl.com/doc/mysql/en/
stored-routines.html.

Connector/J exposes stored procedure functionality through JDBC's Cal | abl eSt at enent interface.
Note

Current versions of MySQL server do not return enough information for the JDBC
driver to provide result set metadata for callable statements. This means that when
using Cal | abl eSt at ement , Resul t Set Met aDat a may return NULL.

51

http://dev.mysql.com/doc/mysql/en/stored-routines.html
http://dev.mysql.com/doc/mysql/en/stored-routines.html

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

The following example shows a stored procedure that returns the value of i nQut Par amincremented by 1,
and the string passed in using i nput Par amas a Resul t Set :

Example 6.3 Connector/J: Calling Stored Procedures
CREATE PROCEDURE denpSp(| N i nput Par am VARCHAR(255), \
I NOUT i nQut Par am | NT)

BEG N

DECLARE z | NT,;

SET z = inCQut Param + 1;

SET i nQut Param = z;

SELECT i nput Par am

SELECT CONCAT(' zyxw , i nput Paranj;
END

To use the denpbSp procedure with Connector/J, follow these steps:
1. Prepare the callable statement by using Connecti on. prepareCal | ().

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter
placeholders are not optional:

Example 6.4 Connector/J: Using Connecti on. prepareCal | ()

i mport java.sql.Call abl eSt at ement ;

/1

/] Prepare a call to the stored procedure 'denpSp'
/'l with two paraneters

/1

/1 Notice the use of JDBC-escape syntax ({call ...})
/1

Cal | abl eStatement cStmt = conn. prepareCal | (“{cal | denmoSp(?, ?)}");

cStnt.setString(1l, "abcdefg");
Note

Connecti on. prepareCal | () is an expensive method, due to the metadata
retrieval that the driver performs to support output parameters. For performance
reasons, minimize unnecessary calls to Connect i on. prepareCal | () by
reusing Cal | abl eSt at enent instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or | NOUT when you created
the stored procedure), JDBC requires that they be specified before statement execution using the
various r egi st er Qut put Par anmet er () methods in the Cal | abl eSt at ement interface:

Example 6.5 Connector/J: Registering output parameters

i mport java.sql. Types;

52

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

/1
/1
/1
/1
/1

Connector/J supports both naned and i ndexed
out put paranmeters. You can register output

paraneters using either nethod, as well

as retrieve output paraneters using either

met hod, regardl ess of what nethod was

used to register them

The fol |l owi ng exanpl es show how to use
the various met hods of registering

out put parameters (you should of course
use only one registration per paraneter).

Regi sters the second paraneter as output, and
uses the type 'I NTEGER for val ues returned from
get Obj ect ()

cStnt. registerQutParaneter (2, Types.|NTECGER);

/1
/1
/1
/1
/1

Regi sters the named paraneter 'inQutParam, and
uses the type 'I NTEGER for values returned from
get Obj ect ()

cStnt. registerCQutParaneter("inCQutParani, Types.|NTEGER);

Set the input parameters (if any exist)

Input and in/out parameters are set as for Pr epar edSt at enent objects. However,
Cal | abl eSt at enent also supports setting parameters by name:

Example 6.6 Connector/J: Setting Cal | abl eSt at enent input parameters

/1
/] Set a paraneter by index
/1

cStnt.setString(l, "abcdefg");
/1

/l Alternatively, set a paranmeter using
/] the paraneter name

/1
cStnt.setString("inputParaneter", "abcdefg");
/1
[/l Set the 'in/out' paraneter using an index
/1

cStnt.setlnt(2, 1);

/1

// Aternatively, set the "in/out' paraneter
/] by nane

/1

cStnt.setlnt("inQutParant, 1);

53

Retrieving AUTO | NCREMENT Column Values through JDBC

4. Execute the Cal | abl eSt at enent , and retrieve any result sets or output parameters.

Although Cal | abl eSt at enent supports calling any of the St at enent execute methods
(execut eUpdat e(), execut eQuery() orexecut e()), the most flexible method to call is
execut e(), as you do not need to know ahead of time if the stored procedure returns result sets:

Example 6.7 Connector/J: Retrieving results and output parameter values

bool ean hadResults = cStnt.execute();

/1
/1l Process all returned result sets
/1

whi | e (hadResults) {
ResultSet rs = cStnt.getResultSet();

/] process result set

hadResults = cStnt.get MoreResul ts();
}

/1

/'l Retrieve output paraneters

/1

/| Connector/J supports both index-based and
/'l name-based retrieval

/1

int outputValue = cStnt.getlnt(2); // index-based

out putVal ue = cStnt.getlnt("inQutParan'); // name-based

6.4 Retrieving AUTO | NCREMENT Column Values through JDBC

Before version 3.0 of the JDBC API, there was no standard way of retrieving key values from databases
that supported auto increment or identity columns. With older JDBC drivers for MySQL, you could

always use a MySQL-specific method on the St at enent interface, or issue the query SELECT

LAST_| NSERT I D() afterissuing an | NSERT to a table that had an AUTO | NCREMENT key. Using the
MySQL-specific method call isn't portable, and issuing a SELECT to get the AUTO_| NCREMVENT key's value
requires another round-trip to the database, which isn't as efficient as possible. The following code snippets
demonstrate the three different ways to retrieve AUTO | NCREMENT values. First, we demonstrate the use
of the new JDBC 3.0 method get Gener at edKeys() which is now the preferred method to use if you
need to retrieve AUTO | NCREMENT keys and have access to JDBC 3.0. The second example shows how
you can retrieve the same value using a standard SELECT LAST | NSERT_| D() query. The final example
shows how updatable result sets can retrieve the AUTO_| NCREMENT value when using the i nsert Row()
method.

Example 6.8 Connector/J: Retrieving AUTO_| NCREMENT column values using
St at ement . get Gener at edKeys()

Statenent stnt = null;

54

http://dev.mysql.com/doc/refman/5.6/en/insert.html
http://dev.mysql.com/doc/refman/5.6/en/select.html

Retrieving AUTO | NCREMENT Column Values through JDBC

ResultSet rs = null;

try {

/1

/]l Create a Statenment instance that we can use for
/1 '"normal' result sets assum ng you have a

/'l Connection 'conn' to a MySQL dat abase al r eady
/] avail abl e

stnt = conn. createSt at enent (j ava. sql . Resul t Set . TYPE_FORWARD_ONLY,
j ava. sqgl . Resul t Set . CONCUR_UPDATABLE) ;

/1
/1 1ssue the DDL queries for the table for this exanple
/1

st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(

" CREATE TABLE aut ol ncTutorial ("

+ "priKey INT NOT NULL AUTO | NCREMENT, "

+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");

/1

/'l Insert one row that will generate an AUTO | NCREMENT
/1 key in the 'priKey' field

/1

st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTutorial (dataField) "
+ "values ("Can | Get the Auto Increnent Field?)",
St at ement . RETURN_GENERATED_KEYS) ;

/1
/| Exanpl e of using Statenment.get Gener at edKeys()
/!l to retrieve the value of an auto-increnent

/] val ue
/1
i nt autol nckeyFromApi = -1;

rs = stnt.get Gener at edKeys();
if (rs.next()) {

aut ol ncKeyFromApi = rs.getlnt(1);
} else {

/1 throw an exception from here

}
rs.close();
rs = null;

System out . println("Key returned from get Gener at edKeys(): "
+ aut ol ncKeyFr omApi) ;

inally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
}
if (stnmt !'=null) {

55

Retrieving AUTO | NCREMENT Column Values through JDBC

try {
stnt.cl ose();

} catch (SQLException ex) {
/'l ignore

}
}

Example 6.9 Connector/J: Retrieving AUTO | NCREMENT column values using SELECT
LAST_| NSERT_| IX()

Statenent stnt = null;
ResultSet rs = null;

try {

/1
/|l Create a Statenent instance that we can use for
/1l "normal' result sets.

stnt = conn. createStatenent();

/1
/1 1ssue the DDL queries for the table for this exanple
/1

st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(

" CREATE TABLE autol ncTutorial ("

+ "priKey INT NOT NULL AUTO | NCREMENT,

+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");

/1

/'l Insert one row that will generate an AUTO | NCREMENT
/1 key in the 'priKey' field

/1

st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTutori al (dataFi el d)
+ "values ("Can | Get the Auto Increnent Field?)");

/1

/1l Use the MySQL LAST_I NSERT_I ()

/'l function to do the same thing as get Gener at edKeys()
/1

i nt autol nckeyFronfunc = -1;
rs = stnt.executeQuery("SELECT LAST_INSERT_ID()");

if (rs.next()) {

aut ol ncKeyFronfFunc = rs.getlnt(1);
} else {

/1 throw an exception from here

}

rs.close();

Systemout. println("Key returned from" +
"' SELECT LAST_INSERT_ID()': " +
aut ol ncKeyFr onfunc) ;

} finally {
if (rs!=null) {
try {
rs.close();

56

Retrieving AUTO | NCREMENT Column Values through JDBC

} catch (SQLException ex) {

/'l ignore
}
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException ex) {
/'l ignore
}
}

Example 6.10 Connector/J: Retrieving AUTO_| NCREMENT column values in Updat abl e Resul t Set's

Statenent stnt = null;
ResultSet rs = null;

try {

/1

/] Create a Statenent instance that we can use for
/1 "normal' result sets as well as an 'updatabl e’
/'l one, assuming you have a Connection 'conn' to
/'l a MySQ. dat abase al ready avail abl e

/1

stnt = conn. createSt at ement (j ava. sql . Resul t Set . TYPE_FORWARD_ONLY,
j ava. sgl . Resul t Set . CONCUR_UPDATABLE) ;

/1
/] 1ssue the DDL queries for the table for this exanple
/1

st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(

" CREATE TABLE autol ncTutorial ("

+ "priKey INT NOT NULL AUTO | NCREMENT,

+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");

/1

/] Exanple of retrieving an AUTO | NCREMENT key
/1 from an updatable result set

/1

rs = stnt.executeQuery("SELECT pri Key, dataField "
+ "FROM aut ol ncTutorial ");

rs. moveTol nsert Row() ;

rs.updateString("dataField, "AUTO | NCREMENT here?");
rs.insertRow();

/1

// the driver adds rows at the end

/1

rs.last();

/1

/1l W shoul d now be on the row we just inserted

/1

i nt autol nckeyFronRS = rs.getlnt("priKey");

57

Retrieving AUTO | NCREMENT Column Values through JDBC

rs.close();
rs = null;

Systemout. println("Key returned for inserted row
+ aut ol ncKeyFr onRS) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException ex) {
/'l ignore
}
}

}

Running the preceding example code should produce the following output:

Key returned from get Generat edKeys(): 1
Key returned from SELECT LAST_INSERT_ID(): 1
Key returned for inserted row. 2

At times, it can be tricky to use the SELECT LAST_| NSERT_| D() query, as that function's value is scoped
to a connection. So, if some other query happens on the same connection, the value is overwritten. On the
other hand, the get Gener at edKeys() method is scoped by the St at enent instance, so it can be used
even if other queries happen on the same connection, but not on the same St at enent instance.

58

Chapter 7 Connection Pooling with Connector/J

Connection pooling is a technique of creating and managing a pool of connections that are ready for use
by any thread that needs them. Connection pooling can greatly increase the performance of your Java
application, while reducing overall resource usage.

How Connection Pooling Works

Most applications only need a thread to have access to a JDBC connection when they are actively
processing a transaction, which often takes only milliseconds to complete. When not processing a
transaction, the connection sits idle. Connection pooling enables the idle connection to be used by some
other thread to do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a
connection from the pool. When the thread is finished using the connection, it returns it to the pool, so that
it can be used by any other threads.

When the connection is loaned out from the pool, it is used exclusively by the thread that

requested it. From a programming point of view, it is the same as if your thread called

Dri ver Manager . get Connecti on() every time it needed a JDBC connection. With connection pooling,
your thread may end up using either a new connection or an already-existing connection.

Benefits of Connection Pooling
The main benefits to connection pooling are:
* Reduced connection creation time.

Although this is not usually an issue with the quick connection setup that MySQL offers compared to
other databases, creating new JDBC connections still incurs networking and JDBC driver overhead that
will be avoided if connections are recycled.

» Simplified programming model.

When using connection pooling, each individual thread can act as though it has created its own JDBC
connection, allowing you to use straightforward JDBC programming techniques.

« Controlled resource usage.

If you create a new connection every time a thread needs one, rather than using connection pooling,
your application's resource usage can be wasteful and lead to unpredictable behavior under load.

Using Connection Pooling with Connector/J

Sun has standardized the concept of connection pooling in JDBC through the JDBC 2.0 Optional
interfaces, and all major application servers have implementations of these APIs that work with MySQL
Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it
through the Java Naming and Directory Interface (JNDI). The following code shows how you might use a
connection pool from an application deployed in a J2EE application server:

Example 7.1 Connector/J: Using a connection pool with a J2EE application server
i mport java.sqgl.Connecti on;

i mport java.sql.SQLException;
import java.sql. Statenent;

59

http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_thread
http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_transaction

Using Connection Pooling with Connector/J

i mport javax.nam ng. | nitial Context;
i mport javax. sql . Dat aSour ce;
public class MyServl etJspOE b {

public void doSonething() throws Exception {
/*

*

Create a JNDI Initial context to be able to

* | ookup the DataSource

*

* In production-|level code, this should be cached as

* an instance or static variable, as it can

* be quite expensive to create a JNDI context.

*

* Note: This code only works when you are using servlets
* or EJBs in a J2EE application server. If you are

* using connection pooling in standal one Java code, you
* will have to create/configure datasources using whatever
* mechani sns your particul ar connection pooling library
* provides.

*

/
Initial Context ctx = new Initial Context();

/*

* Lookup the DataSource, which will be backed by a pool

* that the application server provides. DataSource instances
* are al so a good candi date for caching as an instance

* variable, as JNDI | ookups can be expensive as well.

*/

Dat aSource ds =
(Dat aSour ce) ct x. | ookup("j ava: conp/ env/ j dbc/ MySQLDB") ;

/*

* The followi ng code is what woul d actually be in your
* Servlet, JSP or EJB 'service' nethod...where you need
* to work with a JDBC connecti on.

*/

Connection conn = null;
Statenent stnt = null;

try {
conn = ds. get Connection();

/
Now, use normal JDBC progranming to work with
MySQL, nmaking sure to cl ose each resource when you're
finished with it, which permits the connecti on pool
resources to be recovered as quickly as possible

/

E R

stnt = conn.createStatenent();
stnt. execut e(" SOVE SQL QUERY");

stnt.cl ose();
stnt = null;

conn. cl ose();
conn = null;
} finally {
/*
* close any jdbc instances here that weren't
* explicitly closed during normal code path, so

60

Sizing the Connection Pool

* that we don't 'leak' resources..
&

if (stnt !'=null) {
try {
stnt. cl ose()
} catch (sql exception sqgl ex) {
/'l ignore, as we can't do anything about it here

}
stmt = null
}
if (conn !'=null) {
try {
conn. cl ose()
} catch (sql exception sqglex) {
/'l ignore, as we can't do anything about it here
}
conn = nul |
}

}

As shown in the example above, after obtaining the JNDI | ni ti al Cont ext , and looking up the
Dat aSour ce, the rest of the code follows familiar JDBC conventions.

When using connection pooling, always make sure that connections, and anything created by them

(such as statements or result sets) are closed. This rule applies no matter what happens in your code
(exceptions, flow-of-control, and so forth). When these objects are closed, they can be re-used; otherwise,
they will be stranded, which means that the MySQL server resources they represent (such as buffers,
locks, or sockets) are tied up for some time, or in the worst case can be tied up forever.

Sizing the Connection Pool

Each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client
and server side. Every connection limits how many resources there are available to your application as
well as the MySQL server. Many of these resources will be used whether or not the connection is actually
doing any useful work! Connection pools can be tuned to maximize performance, while keeping resource
utilization below the point where your application will start to fail rather than just run slower.

The optimal size for the connection pool depends on anticipated load and average database transaction
time. In practice, the optimal connection pool size can be smaller than you might expect. If you take Sun's
Java Petstore blueprint application for example, a connection pool of 15-20 connections can serve a
relatively moderate load (600 concurrent users) using MySQL and Tomcat with acceptable response times.

To correctly size a connection pool for your application, create load test scripts with tools such as Apache
JMeter or The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of
connections to be unbounded, run a load test, and measure the largest amount of concurrently used
connections. You can then work backward from there to determine what values of minimum and maximum
pooled connections give the best performance for your particular application.

Validating Connections

MySQL Connector/J can validate the connection by executing a lightweight ping against a server. In the
case of load-balanced connections, this is performed against all active pooled internal connections that are

61

Validating Connections

retained. This is beneficial to Java applications using connection pools, as the pool can use this feature to
validate connections. Depending on your connection pool and configuration, this validation can be carried
out at different times:

1. Before the pool returns a connection to the application.
2. When the application returns a connection to the pool.
3. During periodic checks of idle connections.

To use this feature, specify a validation query in your connection pool that starts with / * pi ng

*/ . Note that the syntax must be exactly as specified. This will cause the driver send a ping to the
server and return a dummy lightweight result set. When using a Repl i cat i onConnect i on or
LoadBal ancedConnect i on, the ping will be sent across all active connections.

It is critical that the syntax be specified correctly. The syntax needs to be exact for reasons of efficiency, as
this test is done for every statement that is executed:

protected static final String PING MARKER = "/* ping */";

it (sql.charAt(0) == '/') {
if (sqgl.startsWth(PlI NG MARKER)) {
doPi ngl nst ead() ;

None of the following snippets will work, because the ping syntax is sensitive to whitespace, capitalization,
and placement:

sgql = "/* PING */ SELECT 1";

sql = "SELECT 1 /* ping*/";

sql = "/*ping*/ SELECT 1";

sql =" /* ping */ SELECT 1";

sql = "/*to ping or not to ping*/ SELECT 1";

All of the previous statements will issue a normal SELECT statement and will not be transformed into
the lightweight ping. Further, for load-balanced connections, the statement will be executed against one
connection in the internal pool, rather than validating each underlying physical connection. This results
in the non-active physical connections assuming a stale state, and they may die. If Connector/J then re-
balances, it might select a dead connection, resulting in an exception being passed to the application.
To help prevent this, you can use | oadBal anceVal i dat eConnecti onOnSwapSer ver to validate the
connection before use.

If your Connector/J deployment uses a connection pool that allows you to specify a validation query, take
advantage of it, but ensure that the query starts exactly with / * pi ng */. This is particularly important
if you are using the load-balancing or replication-aware features of Connector/J, as it will help keep alive
connections which otherwise will go stale and die, causing problems later.

62

Chapter 8 Multi-Host Connections

Table of Contents

8.1 Configuring Load Balancing with CONNECIONJccouiiiiiii i e 63
8.2 Configuring Failover With CONNECIONJcouuiiiiieii e e e e e e e eaneees 65
8.3 Master/Slave Replication with ReplicationCONNECLIONcccvviiiiiiiiiiii e 67

The following sections discuss a number of topics that involve multi-host connections, namely: server load-
balancing, fail-over, and replication.

Developers should know the following things about multi-host connections that are managed through
Connector/J:

» Each multi-host connection is a wrapper of the underlying physical connections.

» Each of the underlying physical connections has its own session. Sessions cannot be tracked, shared, or
copied, given the MySQL architecture.

» Every switch between physical connections means a switch between sessions.

» Within a transaction boundary, there are no switches between physical connections. Beyond a
transaction boundary, there is no guarantee that a switch does not occur.

Note

If an application reuses session-scope data (for example, variables, SSPs)
beyond a transaction boundary, failures are possible, as a switch between the
physical connections (which is also a switch between sessions) might occur.
Therefore, the application should re-prepare the session data and also restart the
last transaction in case of an exception, or it should re-prepare session data for
each new transaction if it does not want to deal with exception handling.

8.1 Configuring Load Balancing with Connector/J

Connector/J has long provided an effective means to distribute read/write load across multiple MySQL
server instances for Cluster or master-master replication deployments. Starting with Connector/J 5.1.3, you
can now dynamically configure load-balanced connections, with no service outage. In-process transactions
are not lost, and no application exceptions are generated if any application is trying to use that particular
server instance.

There are two connection string options associated with this functionality:

* | oadBal anceConnect i onG oup — This provides the ability to group connections from different
sources. This allows you to manage these JDBC sources within a single class loader in any combination
you choose. If they use the same configuration, and you want to manage them as a logical single
group, give them the same name. This is the key property for management: if you do not define a
name (string) for | oadBal anceConnect i onG oup, you cannot manage the connections. All load-
balanced connections sharing the same | oadBal anceConnect i onG oup value, regardless of how the
application creates them, will be managed together.

* | oadBal anceEnabl eJMX — The ability to manage the connections is exposed when you define
al oadBal anceConnect i onG oup, but if you want to manage this externally, enable JMX by
setting this property to t r ue. This enables a JMX implementation, which exposes the management

63

Configuring Load Balancing with Connector/J

and monitoring operations of a connection group. Further, start your application with the -
Dcom sun. managenent . j nxr enot e JVM flag. You can then perform connect and perform operations
using a JMX client such as j consol e.

Once a connection has been made using the correct connection string options, a number of monitoring
properties are available:

» Current active host count.

Current active physical connection count.

Current active logical connection count.

Total logical connections created.

Total transaction count.

The following management operations can also be performed:

* Add host.

* Remove host.

The JMX interface, com nysql . j dbc. j nx. LoadBal anceConnect i onG oupManager MBean, has the
following methods:

e int getActiveHost Count (String group);

i nt get Tot al Host Count (String group);

| ong
| ong
| ong
| ong
| ong
voi d
voi d

voi d

get Tot al Logi cal Connecti onCount (Stri ng group);

get Acti veLogi cal Connecti onCount (String group);

get Acti vePhysi cal Connecti onCount (String group);

get Tot al Physi cal Connecti onCount (String group);

get Tot al Transacti onCount (String group);

renoveHost (String group, String host) throws SQLException;

st opNewConnecti onsToHost (String group, String host) throws SQLException;

addHost (String group, String host, bool ean forExisting);

String getActiveHostsList(String group);

String get Regi st eredConnecti onG oups();

The get Regi st er edConnect i onG oups() method returns the names of all connection groups defined
in that class loader.

You can test this setup with the following code:

public class Test {

private static String URL = "jdbc: nysqgl : | oadbal ance: //" +

"l ocal host : 3306, | ocal host: 3310/t est ?" +

64

Configuring Failover with Connector/J

"| oadBal anceConnect i onG oup=fi r st & oadBal anceEnabl eJMX=t r ue";

public static void main(String[] args) throws Exception {
new Thr ead(new Repeater()).start();
new Thread(new Repeater()).start();
new Thr ead(new Repeater()).start();

}

stati c Connection get NewConnection() throws SQLException, C assNot FoundException {

Cl ass. for Nane("com nysql . jdbc. Driver");
return DriverManager. get Connecti on(URL, "root", "");

}

static void executeSi npl eTransacti on(Connection ¢, int conn, int trans){
try {
c. set Aut oConmmi t (f al se);
Statenent s = c.createStatenent();

s. execut eQuery(" SELECT SLEEP(1) /* Connection: " + conn + ", transaction:

c.comm t();
} catch (SQLException e) {
e.printStackTrace();
}
}

public static class Repeater inplenments Runnable {
public void run() {
for(int i=0; i < 100; i++){
try {
Connection ¢ = get NewConnecti on();
for(int j=0; j < 10; j++){
execut eSi npl eTransaction(c, i, j);
Thr ead. sl eep(Mat h. round(100 * Math. random()));
}
c.close();
Thr ead. sl eep(100) ;
} catch (Exception e) {
e.printStackTrace();
}

After compiling, the application can be started with the - Dcom sun. managenent . j nxr enot e
flag, to enable remote management. j consol e can then be started. The Test main class

will be listed by j consol e. Select this and click Connect. You can then navigate to the

com nysql . j dbc. j mx. LoadBal anceConnect i onGr oupManager bean. At this point, you can click on

various operations and examine the returned result.

'+ trans + "

If you now had an additional instance of MySQL running on port 3309, you could ensure that Connector/J

starts using it by using the addHost () , which is exposed in j consol e. Note that these operations can be

performed dynamically without having to stop the application running.

For further information on the combination of load balancing and failover, see Section 8.2, “Configuring

Failover with Connector/J”.

8.2 Configuring Failover with Connector/J

Connector/J provides a useful load-balancing implementation for Cluster or multi-master deployments, as
explained in Section 8.1, “Configuring Load Balancing with Connector/J”. As of Connector/J 5.1.12, this
same implementation is used for balancing load between read-only slaves with Repl i cati onDri ver.
When trying to balance workload between multiple servers, the driver has to determine when it is safe to

65

* [

)

Configuring Failover with Connector/J

swap servers, doing so in the middle of a transaction, for example, could cause problems. It is important
not to lose state information. For this reason, Connector/J will only try to pick a new server when one of the
following happens:

1.
2.

3.

At transaction boundaries (transactions are explicitly committed or rolled back).
A communication exception (SQL State starting with "08") is encountered.

When a SQLExcept i on matches conditions defined by user, using the extension points defined by
the | oadBal anceSQL.St at eFai | over, | oadBal anceSQLExcept i onSubcl assFai | over or
| oadBal anceExcept i onChecker properties.

The third condition revolves around three new properties introduced with Connector/J 5.1.13. It allows you
to control which SQLExcept i ons trigger failover.

| oadBal anceExcept i onChecker - The | oadBal anceExcept i onChecker property

is really the key. This takes a fully-qualified class name which implements the new

com nysql . j dbc. LoadBal anceExcept i onChecker interface. This interface is very simple, and you
only need to implement the following method:

publ i ¢ bool ean shoul dExcepti onTri gger Fai | over (SQLExcepti on ex)

A SQLExcept i on is passed in, and a boolean returned. A value of t r ue triggers a failover, f al se does
not.

You can use this to implement your own custom logic. An example where this might be useful is when
dealing with transient errors when using MySQL Cluster, where certain buffers may become overloaded.
The following code snippet illustrates this:

public class NdbLoadBal anceExcept i onChecker
ext ends St andardLoadBal anceExcepti onChecker {

publ i ¢ bool ean shoul dExcepti onTri gger Fai | over (SQLException ex) {
return super.shoul dExcepti onTri gger Fai | over (ex)
|| checkNdbException(ex);
}

private bool ean checkNdbExcepti on(SQLExcepti on ex) {

/'l Have to parse the nessage since nost NDB errors

/] are mapped to the same DEMC.
return (ex.get Message().startsWth("Lock wait tineout exceeded") ||
(ex. get Message().startsWth("Got tenporary error")
&& ex. get Message().endsWth("from NDB")));

}
}

The code above extends com nysql . j dbc. St andar dLoadBal anceExcept i onChecker,
which is the default implementation. There are a few convenient shortcuts built into this, for those
who want to have some level of control using properties, without writing Java code. This default
implementation uses the two remaining properties: | oadBal anceSQLSt at eFai | over and

| oadBal anceSQLExcept i onSubcl assFai | over.

| oadBal anceSQLSt at eFai | over - allows you to define a comma-delimited list of SQLSt at e code
prefixes, against which a SQLExcept i on is compared. If the prefix matches, failover is triggered. So, for
example, the following would trigger a failover if a given SQLExcept i on starts with "00", or is "12345";

66

Master/Slave Replication with ReplicationConnection

| oadBal anceSQ_St at eFai | over =00, 12345

» | oadBal anceSQLExcepti onSubcl assFai | over - can be used in conjunction with
| oadBal anceSQLSt at eFai | over or on its own. If you want certain subclasses of SQLExcept i on to
trigger failover, simply provide a comma-delimited list of fully-qualified class or interface names to check
against. For example, if you want all SQLTr ansi ent Connect i onExcept i ons to trigger failover, you
would specify:

| oadBal anceSQLExcept i onSubcl assFai | over =j ava. sql . SQLTr ansi ent Connect i onExcepti on

While the three fail-over conditions enumerated earlier suit most situations, if aut ocommi t is enabled,
Connector/J never re-balances, and continues using the same physical connection. This can be
problematic, particularly when load-balancing is being used to distribute read-only load across multiple
slaves. However, Connector/J can be configured to re-balance after a certain number of statements are
executed, when aut ocomni t is enabled. This functionality is dependent upon the following properties:

» | oadBal anceAut oConmmi t St at enent Thr eshol d — defines the number of matching statements
which will trigger the driver to potentially swap physical server connections. The default value, 0, retains
the behavior that connections with aut oconmi t enabled are never balanced.

» | oadBal anceAut oConmmi t St at enent Regex — the regular expression against which statements must
match. The default value, blank, matches all statements. So, for example, using the following properties
will cause Connector/J to re-balance after every third statement that contains the string “test”:

| oadBal anceAut oConmi t St at enent Thr eshol d=3
| oadBal anceAut oConmi t St at enent Regex=. *t est . *

| oadBal anceAut oConmi t St at enent Regex can prove useful in a number of situations. Your
application may use temporary tables, server-side session state variables, or connection state, where
letting the driver arbitrarily swap physical connections before processing is complete could cause data
loss or other problems. This allows you to identify a trigger statement that is only executed when it is
safe to swap physical connections.

8.3 Master/Slave Replication with ReplicationConnection

This section describe a number of features of Connector/J's support for replication-aware deployments.

Scaling out Read Load by Distributing Read Traffic to Slaves

Connector/J 3.1.7 and higher includes a variant of the driver that will automatically send queries to
a read/write master, or a failover or round-robin loadbalanced set of slaves based on the state of
Connecti on. get ReadOnl y() .

An application signals that it wants a transaction to be read-only by calling

Connection. set ReadOnl y(t rue), this replication-aware connection will use one of the slave
connections, which are load-balanced per-vm using a round-robin scheme (a given connection is sticky to
a slave unless that slave is removed from service). If you have a write transaction, or if you have a read
that is time-sensitive (remember, replication in MySQL is asynchronous), set the connection to be not read-
only, by calling Connect i on. set ReadOnl y(f al se) and the driver will ensure that further calls are

sent to the master MySQL server. The driver takes care of propagating the current state of autocommit,
isolation level, and catalog between all of the connections that it uses to accomplish this load balancing
functionality.

To enable this functionality, use the com nysql . j dbc. Repl i cati onDri ver class when configuring
your application server's connection pool or when creating an instance of a JDBC driver for your

67

Scaling out Read Load by Distributing Read Traffic to Slaves

standalone application. Because it accepts the same URL format as the standard MySQL JDBC driver,
Repl i cationDri ver does not currently work with j ava. sql . Dri ver Manager -based connection
creation unless it is the only MySQL JDBC driver registered with the Dr i ver Manager .

Here is a short example of how Repl i cati onDri ver might be used in a standalone application:

i mport java.sql.Connecti on;

import java.sql.ResultSet;

inmport java.util.Properties;

i mport com nysql . j dbc. ReplicationDri ver;

public class ReplicationDriverDenp {

public static void main(String[] args) throws Exception {
ReplicationDriver driver = new ReplicationDriver();

Properties props = new Properties();

/'l We want this for failover on the slaves
props. put ("aut oReconnect", "true");

/'l W& want to | oad bal ance between the sl aves
props. put ("roundRobi nLoadBal ance", "true");

props. put ("user", "foo");
props. put ("password", "bar");
/1

/! Looks like a normal MySQL JDBC url, with a

/'l comma-separated |ist of hosts, the first

/'l being the 'master', the rest being any nunber

/'l of slaves that the driver will |oad bal ance agai nst
/1

Connection conn =
driver.connect ("jdbc: nysqgl:replication://master, sl avel, sl ave2, sl ave3/test",
props);

/1

/1l Performread/wite work on the naster

/'l by setting the read-only flag to "fal se"
/1

conn. set ReadOnl y(f al se);

conn. set Aut oComnmi t (f al se) ;

conn. cr eat eSt at enent () . execut eUpdat e(" UPDATE sone_table");
conn.comit();

/1

/1 Now, do a query froma slave, the driver automatically picks one
/1 fromthe |ist

/1

conn. set ReadOnl y(true);

ResultSet rs =
conn. creat eSt at enent () . execut eQuery (" SELECT a,b FROM alt _tabl e");

Consider investigating the Load Balancing JDBC Pool (I bpool) tool, which provides a wrapper around the
standard JDBC driver and enables you to use DB connection pools that includes checks for system failures

68

Support for Multiple-Master Replication Topographies

and uneven load distribution. For more information, see Load Balancing JDBC Driver for MySQL (mysq|l-
Ibpool).

Support for Multiple-Master Replication Topographies

Since Connector/J 5.1.27, multi-master replication topographies are supported. They can be specified
using the following host definition syntax:

addr ess=(host =host nane) (port =3306) (t ype=[mast er | sl ave])

The definition described above assumes that the first (and only the first) host is the master. Supporting
deployments with an arbitrary number of masters and slaves requires a different URL syntax for specifying
different properties for specific hosts, which is just an expansion of the legacy URL syntax with the property
type=[mast er| sl ave] ; for example:

jdbc: nysql : //address=(t ype=nast er) (host =mast er 1host), addr ess=(t ype=nast er) (host =nmast er 2host), addr ess=(t ype:

Connector/J uses a load-balanced connection internally for management of the master connections, which
means that Repl i cat i onConnect i on, when configured to use multiple masters, exposes the same
options to balance load across master hosts as described in Section 8.1, “Configuring Load Balancing with
Connector/J".

Users may specify the property al | owivast er DownConnect i ons=t r ue to allow Connect i on objects
to be created even though no master hosts are reachable. Such Connect i on objects report they are
read-only, and i sMast er Connecti on() returns false for them. The Connect i on tests for available
master hosts when Connect i on. set ReadOnl y(f al se) is called, throwing an SQLException if it cannot
establish a connection to a master, or switching to a master connection if the host is available.

Live Reconfiguration of Replication Topography

Since Connector/J 5.1.28, live management of replication host (single or multi-master) topographies is
also supported. This enables users to promote slaves for Java applications without requiring an application
restart.

The replication hosts are most effectively managed in the context of a replication connection group. A
ReplicationConnectionGroup class represents a logical grouping of connections which can be managed
together. There may be one or more such replication connection groups in a given Java class loader (there
can be an application with two different JDBC resources needing to be managed independently). This key
class exposes host management methods for replication connections, and Repl i cat i onConnect i on
objects register themselves with the appropriate Repl i cati onConnect i onG oup if a value for the new
replicati onConnecti onG oup property is specified. The Repl i cati onConnect i onG oup object
tracks these connections until they are closed, and it is used to manipulate the hosts associated with these
connections.

Some important methods related to host management include:
e get Mast er Host s() : Returns a collection of strings representing the hosts configured as masters
» get Sl aveHost s() : Returns a collection of strings representing the hosts configured as slaves

» addSl aveHost (String host): Adds new host to pool of possible slave hosts for selection at start of
new read-only workload

e pronot eSl aveToMast er (Stri ng host): Removes the host from the pool of potential slaves for
future read-only processes (existing read-only process is allowed to continue to completion) and adds
the host to the pool of potential master hosts

69

http://code.google.com/p/mysql-lbpool/
http://code.google.com/p/mysql-lbpool/

ReplicationConnectionGroupManager

e renoveS| aveHost (String host, bool ean cl oseGentl y): Removes the host (host name match
must be exact) from the list of configured slaves; if cl oseGent | y is false, existing connections which
have this host as currently active will be closed hardly (application should expect exceptions)

* renoveMast er Host (String host, bool ean cl oseGently): Same asrenoveS| aveHost (),
but removes the host from the list of configured masters

Some useful management metrics include:

e get Connecti onCount Wt hHost AsSl ave(String host) : Returns the number of
ReplicationConnection objects that have the given host configured as a possible slave

» get Connecti onCount Wt hHost AsMast er (String host) : Returns the number of
ReplicationConnection objects that have the given host configured as a possible master

e get Nunber O Sl avesAdded() : Returns the number of times a slave host has been dynamically added
to the group pool

* get Nunber O S| avesRenoved() : Returns the number of times a slave host has been dynamically
removed from the group pool

e get Nunber O Sl avePr onot i ons() : Returns the number of times a slave host has been promoted to
a master

» get Tot al Connecti onCount () : Returns the number of ReplicationConnection objects which have
been registered with this group

e get Acti veConnecti onCount () : Returns the number of ReplicationConnection objects currently
being managed by this group

ReplicationConnectionGroupManager

com nysql . j dbc. Repl i cati onConnecti onG oupManager provides access to the replication
connection groups, together with some utility methods.

e get ConnectionG oup(String groupNane): Returns the Repl i cati onConnecti onG oup object
matching the groupName provided

The other methods in Repl i cat i onConnecti onG oupManager mirror those of

Repl i cati onConnecti onG oup, except that the first argument is a String group name. These methods
will operate on all matching ReplicationConnectionGroups, which are helpful for removing a server from
service and have it decommissioned across all possible Repl i cat i onConnecti onG oups.

These methods might be useful for in-JVM management of replication hosts if an application triggers
topography changes. For managing host configurations from outside the JVM, JMX can be used.

Using JMX for Managing Replication Hosts

When Connector/J is started with r epl i cat i onEnabl eJMX=t r ue, a IMX MBean will be
registered, allowing manipulation of replication hosts by a JMX client. The MBean interface is
defined in com nysql . j dbc. j nx. Repl i cati onG oupManager MBean, and leverages the
Repl i cati onConnecti onG oupManager static methods:

publ i c abstract void addSl aveHost (String groupFilter, String host) throws SQLException;
public abstract void renpveS| aveHost (String groupFilter, String host) throws SQ.Excepti on;
publ i c abstract void pronoteS|l aveToMaster(String groupFilter, String host) throws SQLException;

70

Using JMX for Managing Replication Hosts

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

OO0 00000 0O0

abstract
abstract
abstract
abstract
abstract
abstract
abstract
abstract
abstract

voi d renpveMast er Host (String groupFilter, String host) throws SQLExcepti on;
String get Mast er Host sLi st (String group);

String get Sl aveHost sList(String group);

String get Regi st eredConnecti onG oups();

int getActiveMasterHost Count (String group);

int getActiveSl aveHost Count (String group);

int getSlavePronotionCount (String group);

| ong get Tot al Logi cal Connecti onCount (String group);

| ong get Acti velLogi cal Connecti onCount (String group);

71

72

Chapter 9 Using the Connector/J Interceptor Classes

An interceptor is a software design pattern that provides a transparent way to extend or modify some
aspect of a program, similar to a user exit. No recompiling is required. With Connector/J, the interceptors
are enabled and disabled by updating the connection string to refer to different sets of interceptor classes
that you instantiate.

The connection properties that control the interceptors are explained in Section 5.1, “Driver/Datasource
Class Names, URL Syntax and Configuration Properties for Connector/J”:

connectionLi fecycl el nt er cept or s, where you specify the fully qualified names of classes that
implement the com nysql . j dbc. Connecti onLi f ecycl el nt er cept or interface. In these kinds of
interceptor classes, you might log events such as rollbacks, measure the time between transaction start
and end, or count events such as calls to set Aut oCommi t ().

exceptionl nt er cept or s, where you specify the fully qualified names of classes that implement the
com nysql . j dbc. Excepti onl nt er cept or interface. In these kinds of interceptor classes, you
might add extra diagnostic information to exceptions that can have multiple causes or indicate a problem
with server settings. Because except i onl nt er cept or s classes are only called when handling a
SQLExcept i on thrown from Connector/J code, they can be used even in production deployments
without substantial performance overhead.

stat ement | nt er cept or s, where you specify the fully qualified names of classes that implement the
com nysql . j dbc. St at enent | nt er cept or V2 interface. In these kinds of interceptor classes, you
might change or augment the processing done by certain kinds of statements, such as automatically
checking for queried data in a nencached server, rewriting slow queries, logging information about
statement execution, or route requests to remote servers.

73

74

Chapter 10 Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at http://
tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time this
document was written.

First, install the . | ar file that comes with Connector/J in $CATALI NA HOVE/ common/ | i b so that it is
available to all applications installed in the container.

Next, configure the JNDI DataSource by adding a declaration resource to $CATALI NA HOVE/ conf /
server. xm in the context that defines your web application:

<Context>

<Resour ce nanme="j dbc/ MySQ.DB"
aut h="Cont ai ner"
type="j avax. sql . Dat aSour ce"/ >

<Resour cePar ans nane="j dbc/ MySQLDB" >
<par anet er >
<nane>f act or y</ nane>
<val ue>or g. apache. conmons. dbcp. Basi cDat aSour ceFact or y</ val ue>
</ par anet er >

<par anet er >
<nanme>nmaxAct i ve</ nane>
<val ue>10</ val ue>

</ par anet er >

<par anet er >
<nanme>max| dl e</ nane>
<val ue>5</val ue>

</ par anet er >

<par anet er >
<nane>val i dat i onQuer y</ name>
<val ue>SELECT 1</val ue>

</ par anet er >

<par anet er >
<nane>t est OnBor r ow</ nane>
<val ue>t rue</ val ue>

</ par anet er >

<par anet er >
<nane>t est Wi | el dl e</ nane>
<val ue>t rue</ val ue>

</ par anet er >

<par anet er >
<nanme>t i neBet weenEvi cti onRunsM | | i s</ nane>
<val ue>10000</ val ue>

</ par anet er >

<par anet er >
<nanme>m nEvi ct abl el dl eTi nreM | | i s</ nane>
<val ue>60000</ val ue>

</ par anet er >

<par anet er >
<nanme>user nane</ nane>

75

http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html

<val ue>soneuser </ val ue>
</ par anet er >

<par anet er >
<nanme>passwor d</ nane>
<val ue>sonepass</ val ue>
</ par anet er >

<par anet er >

<nane>dri ver Cl assNanme</ name>

<val ue>com nysgql . j dbc. Dri ver </ val ue>
</ par anet er >

<par anet er >

<nane>ur | </ name>

<val ue>j dbc: nysql : / /| ocal host : 3306/t est </ val ue>
</ par anet er >

</ Resour cePar ans>
</ Cont ext >

Note that Connector/J 5.1.3 introduced a facility whereby, rather than use a val i dat i onQuery value of
SELECT 1, itis possible to use val i dati onQuery with a value setto/* ping */. This sends a ping to
the server which then returns a fake result set. This is a lighter weight solution. It also has the advantage
that if using Repl i cat i onConnect i on or LoadBal ancedConnect i on type connections, the ping will
be sent across all active connections. The following XML snippet illustrates how to select this option:

<par anet er >
<nane>val i dat i onQuer y</ name>
<val ue>/* ping */</val ue>

</ par anet er >

Note that/* pi ng */ has to be specified exactly.

In general, follow the installation instructions that come with your version of Tomcat, as the way you
configure datasources in Tomcat changes from time to time, and if you use the wrong syntax in your XML
file, you will most likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot |oad JDBC driver class '"null ' SQL
state: null

Note that the auto-loading of drivers having the META- | NF/ servi ce/ j ava. sql . Dri ver class in

JDBC 4.0 causes an improper undeployment of the Connector/J driver in Tomcat on Windows. Namely,
the Connector/J jar remains locked. This is an initialization problem that is not related to the driver. The
possible workarounds, if viable, are as follows: use "ant i Resour ceLocki ng=t r ue" as a Tomcat Context
attribute, or remove the META- | NF/ directory.

76

Chapter 11 Using Connector/J with JBoss

These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server,
copy the . j ar file that comes with Connector/J to the | i b directory for your server configuration (which
is usually called def aul t). Then, in the same configuration directory, in the subdirectory named deploy,
create a datasource configuration file that ends with - ds. xi , which tells JBoss to deploy this file as a
JDBC Datasource. The file should have the following contents:

<dat asour ces>
<l ocal -t x- dat asour ce>

<j ndi - name>MySQLDB</ j ndi - name>

<connecti on-url >j dbc: mysql : // | ocal host : 3306/ dbnane</ connecti on-url >
<driver-cl ass>com nysql . jdbc. Driver</driver-class>

<user - nane>user </ user - nanme>

<passwor d>pass</ passwor d>

<m n- pool - si ze>5</ m n- pool - si ze>
<max- pool - si ze>20</ max- pool - si ze>
<i dl e-ti meout - m nut es>5</idl e-ti meout - m nut es>

<exception-sorter-cl ass- name>

com nysql . jdbc.integration.jboss. Ext endedMysql Excepti onSort er
</ excepti on-sorter-cl ass-name>
<val i d- connect i on- checker - cl ass- name>

com nysql . jdbc.integration.jboss. Mysqgl Val i dConnect i onChecker
</val i d- connecti on- checker - cl ass- name>

</l ocal -t x- dat asour ce>
</ dat asour ces>

77

78

Chapter 12 Using Connector/J with Spring

Table of Contents

12.1 USING JADCTEIMPI G € .ottt ettt e et e e e b eeena e 80
12.2 TranSaCtioONal JDBEC ACCESS ...ccuuuiiiiiitieeeiii ettt e ettt e et et e e et et e e et at e et e et r e et e st reeeeata s e eeentnaeaees 82
12.3 Connection Pooling WIth SPIiNGociiiiiiii e e 83

The Spring Framework is a Java-based application framework designed for assisting in application design
by providing a way to configure components. The technique used by Spring is a well known design pattern
called Dependency Injection (see Inversion of Control Containers and the Dependency Injection pattern).
This article will focus on Java-oriented access to MySQL databases with Spring 2.0. For those wondering,
there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented
programming (AOP). This is one of the main benefits and the foundation for Spring's resource and
transaction management. Spring also provides utilities for integrating resource management with JDBC
and Hibernate.

For the examples in this section the MySQL world sample database will be used. The first task is to set up
a MySQL data source through Spring. Components within Spring use the “bean” terminology. For example,
to configure a connection to a MySQL server supporting the world sample database, you might use:

<util:map id="dbProps">
<entry key="db.driver" val ue="com nysql.jdbc.Driver"/>
<entry key="db.jdbcurl" val ue="jdbc: nysql://Iocal host/world"/>
<entry key="db. username" val ue="myuser"/>
<entry key="db. password" val ue="nypass"/>
</util: map>

In the above example, we are assigning values to properties that will be used in the configuration. For the
datasource configuration:

<bean i d="dat aSour ce"
cl ass="org. spri ngfranmewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nane="driverd assNane" val ue="${db.driver}"/>
<property nane="url" val ue="${db.jdbcurl}"/>
<property nanme="user nane" val ue="${db. usernane}"/>
<property nane="password" val ue="${db. password}"/>
</ bean>

The placeholders are used to provide values for properties of this bean. This means that you can specify
all the properties of the configuration in one place instead of entering the values for each property on
each bean. We do, however, need one more bean to pull this all together. The last bean is responsible for
actually replacing the placeholders with the property values.

<bean
cl ass="org. spri ngframewor k. beans. fact ory. confi g. Propert yPl acehol der Confi gurer">

79

http://www.martinfowler.com/articles/injection.html

Using JdbcTenpl at e

<property name="properties" ref="dbProps"/>
</ bean>

Now that we have our MySQL data source configured and ready to go, we write some Java code to access
it. The example below will retrieve three random cities and their corresponding country using the data
source we configured with Spring.

/Il Create a new application context. this processes the Spring config
Appl i cati onContext ctx =
new C assPat hXm Appl i cati onCont ext (" exlappCont ext.xm ") ;
/'l Retrieve the data source fromthe application context
Dat aSource ds = (DataSource) ctx.getBean("dataSource");
/'l Open a database connection using Spring' s DataSourceUtils
Connection ¢ = DataSourceUtils. get Connecti on(ds);
try {
/] retrieve a list of three randomcities
Prepar edSt at enent ps = c. prepareSt at enent (
"select City.Nane as 'CGity', Country.Nanme as 'Country' " +
"fromCity inner join Country on City. CountryCode = Country.Code " +
“order by rand() limt 3");
Resul t Set rs = ps. executeQuery();
while(rs.next()) {
String city = rs.getString("Gty");
String country = rs.getString("Country");
Systemout.printf("The city % is in %%", city, country);

}
} catch (SQLException ex) {
/1 something has failed and we print a stack trace to anal yse the error
ex. print StackTrace();
/'l ignore failure closing connection
try { c.close(); } catch (SQ.Exception e) { }
} finally {
/'l properly rel ease our connection
Dat aSour celUti | s. rel easeConnecti on(c, ds);

}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using
DataSourceUtils instead of the DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages
this resource in a way similar to a container managed data source in a J2EE application server. When a
connection is opened, it can be subsequently accessed in other parts of the code if it is synchronized with
a transaction. This makes it possible to treat different parts of your application as transactional instead of
passing around a database connection.

12.1 Using JdbcTenpl at e

Spring makes extensive use of the Template method design pattern (see Template Method

Pattern). Our immediate focus will be on the JdbcTenpl at e and related classes, specifically

NanmedPar anmet er Jdbc Tenpl at e. The template classes handle obtaining and releasing a connection for
data access when one is needed.

The next example shows how to use NanedPar anet er Jdbc Tenpl at e inside of a DAO (Data Access
Object) class to retrieve a random city given a country code.

public class Ex2JdbcDao {
/**
* Data source reference which will be provided by Spring.
&

80

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern

Using JdbcTenpl at e

private DataSource dataSource;

/**

* Qur query to find a randomcity given a country code. Notice

* the ":country" paraneter toward the end. This is called a

* named paraneter.

*/

private String queryString = "select Name fromCity " +
"where CountryCode = :country order by rand() limt 1";

/**
* Retrieve a randomcity using Spring JDBC access cl asses.
*/
public String get RandonCit yByCountryCode(String cntryCode) {
/Il A tenplate that permts using queries with named paraneters
NamedPar anet er JdbcTenpl ate tenpl ate =
new NamedPar anet er JdbcTenpl at e(dat aSour ce) ;
/1l Ajava.util.Map is used to provide values for the paraneters
Map paranms = new HashMap();
par ans. put ("country", cntryCode);
/'l We query for an Object and specify what class we are expecting
return (String)tenplate.queryForObj ect (queryString, parans, String.class);
}

| **

* A JavaBean setter-style method to allow Spring to inject the data source.
* @ar am dat aSour ce
*/
publ i c voi d set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. dat aSour ce = dat aSour ce;
}

}

The focus in the above code is on the get RandonCi t yByCount r yCode() method. We pass a country
code and use the NanedPar anet er JdbcTenpl at e to query for a city. The country code is placed in a
Map with the key "country", which is the parameter is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean i d="dao" cl ass="code. Ex2JdbcDao" >
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

At this point, we can just grab a reference to the DAO from Spring and call
get RandonCi t yByCount r yCode() .

/] Create the application context

Appl i cationContext ctx =

new C assPat hXm Appl i cati onCont ext (" ex2appCont ext.xm ") ;
/] Cbtain a reference to our DAO

Ex2JdbcDao dao = (Ex2JdbcDao) ctx. get Bean("dao");

String countryCode = "USA";

// Find a few randomcities in the US
for(int i =0; i < 4; ++i)
Systemout.printf("A randomcity in % is %%", countryCode,
dao. get RandonCi t yByCount r yCode(count r yCode)) ;

This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional
JDBC classes including Connect i on and Pr epar edSt at enent .

81

Transactional JDBC Access

12.2 Transactional JDBC Access

You might be wondering how we can add transactions into our code if we do not deal directly with

the JDBC classes. Spring provides a transaction management package that not only replaces JDBC
transaction management, but also enables declarative transaction management (configuration instead of
code).

To use transactional database access, we will need to change the storage engine of the tables in the world
database. The downloaded script explicitly creates MyISAM tables which do not support transactional
semantics. The InnoDB storage engine does support transactions and this is what we will be using. We
can change the storage engine with the following statements.

ALTER TABLE City ENG NE=I nnoDB;
ALTER TABLE Country ENG NE=I nnoDB;
ALTER TABLE Count ryLanguage ENG NE=I nnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations. What
this means is that we can create a Java interface and only use the operations on this interface without any
internal knowledge of what the actual implementation is. We will let Spring manage the implementation and
with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
Integer createCity(String name, String countryCode,
String district, Integer popul ation);

}

This interface contains one method that will create a new city record in the database and return the id of
the new record. Next you need to create an implementation of this interface.

public class Ex3Daol npl inplements Ex3Dao {
prot ect ed Dat aSource dataSource;
protected Sql Updat e updat eQuery;
protected Sql Function idQuery;

public Integer createCity(String name, String countryCode,
String district, Integer popul ation) {
updat eQuery. updat e(new Obj ect[] { nane, countryCode,
district, population });
return getlLastld();
}

protected Integer getlLastld() {
return i dQuery.run();
}

}

You can see that we only operate on abstract query objects here and do not deal directly with the JDBC
API. Also, this is the complete implementation. All of our transaction management will be dealt with in the
configuration. To get the configuration started, we need to create the DAO.

<bean i d="dao" cl ass="code. Ex3Daol npl ">
<property nanme="dat aSource" ref="dataSource"/>
<property name="updateQuery">...</property>
<property name="idQuery">...</property>

</ bean>

82

Connection Pooling with Spring

Now you need to set up the transaction configuration. The first thing you must do is create transaction
manager to manage the data source and a specification of what transaction properties are required for the
dao methods.

<bean i d="transacti onManager"
cl ass="org. spri ngframewor k. j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

<t x: advi ce id="txAdvi ce" transaction-nmanager="transacti onManager ">
<tx:attributes>

</[tx:attributes>
</t x: advi ce>

The preceding code creates a transaction manager that handles transactions for the data source provided
to it. The t xAdvi ce uses this transaction manager and the attributes specify to create a transaction for all
methods. Finally you need to apply this advice with an AOP pointcut.

<aop: confi g>
<aop: poi nt cut i d="daoMet hods"
expr essi on="executi on(* code. Ex3Dao.*(..))"/>
<aop: advi sor advi ce-ref ="t xAdvi ce" pointcut-ref="daoMet hods"/ >
</ aop: confi g>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To
make use of this, you only have to retrieve the dao from the application context and call a method on the
dao instance.

Ex3Dao dao
Integer id

(Ex3Dao) ctx. get Bean("dao");
dao. createCity(nanme, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it is all
configured with Spring. This is a very powerful notion and regarded as one of the most beneficial features
of Spring.

12.3 Connection Pooling with Spring

In many situations, such as web applications, there will be a large number of small database transactions.
When this is the case, it usually makes sense to create a pool of database connections available for web
requests as needed. Although MySQL does not spawn an extra process when a connection is made,
there is still a small amount of overhead to create and set up the connection. Pooling of connections also
alleviates problems such as collecting large amounts of sockets in the TI ME_WAI T state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source
configuration in the application context. There are a number of configurations that we can use. The
first example is based on the Jakarta Commons DBCP library. The example below replaces the source
configuration that was based on Dr i ver Manager Dat aSour ce with DBCP's BasicDataSource.

<bean i d="dat aSour ce" destroy-nethod="cl ose"

83

http://jakarta.apache.org/commons/dbcp/

Connection Pooling with Spring

cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" >
<property nanme="driverCl assNane" val ue="${db. driver}"/>
<property name="url" val ue="${db.jdbcurl}"/>
<property nanme="usernane" val ue="${db. usernane}"/>
<property nanme="password" val ue="${db. password}"/>
<property name="initial Size" val ue="3"/>
</ bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections

to the database instead of creating a new connection every time one is requested. We have also set a
parameter here called i ni ti al Si ze. This tells DBCP that we want three connections in the pool when it
is created.

Another way to configure connection pooling is to configure a data source in our J2EE application server.
Using JBoss as an example, you can set up the MySQL connection pool by creating a file called nysql -
 ocal -ds. xm and placing it in the server/default/deploy directory in JBoss. Once we have this setup, we
can use JNDI to look it up. With Spring, this lookup is very simple. The data source configuration looks like
this.

<j ee:jndi - | ookup i d="dataSource" jndi-nanme="java: MySQ._DS"/ >

84

Chapter 13 Using Connector/J with GlassFish

Table of Contents

13.1 A Simple JSP Application with Glassfish, Connector/J and MySQLccooviiiiiiiiiiiiieri e, 86
13.2 A Simple Servlet with Glassfish, Connector/J and MySQLcccoviiiiiiiiiiiiiine e 88

This section explains how to use MySQL Connector/J with Glassfish ™ Server Open Source Edition 3.0.1.
Glassfish can be downloaded from the Glassfish website.

Once Glassfish is installed you will need to make sure it can access MySQL Connector/J. To do this copy
the MySQL Connector/J JAR file to the directory GLASSFI SH | NSTALL/ gl assfi sh/|i b. For example,
copy nysql -connector-java-5.1.12-bin.jar toC \glassfishv3\glassfish\lib.Restartthe
Glassfish Application Server.

You are now ready to create JDBC Connection Pools and JDBC Resources.
Creating a Connection Pool

1. Inthe Glassfish Administration Console, using the navigation tree navigate to Resources, JDBC,
Connection Pools.

2. Inthe JDBC Connection Pools frame click New. You will enter a two step wizard.

3. Inthe Name field under General Settings enter the name for the connection pool, for example enter
MySQLConnPool .

4. Inthe Resource Type field, select j avax. sql . Dat aSour ce from the drop-down listbox.

5. Inthe Database Vendor field, select My SQL from the drop-down listbox. Click Next to go to the next
page of the wizard.

6. You can accept the default settings for General Settings, Pool Settings and Transactions for this
example. Scroll down to Additional Properties.

7. In Additional Properties you will need to ensure the following properties are set:
« ServerName - The server to connect to. For local testing this will be | ocal host .
e User - The user name with which to connect to MySQL.
e Password - The corresponding password for the user.
- DatabaseName - The database to connect to, for example the sample MySQL database Wor | d.

8. Click Finish to exit the wizard. You will be taken to the JDBC Connection Pools page where all current
connection pools, including the one you just created, will be displayed.

9. Inthe JDBC Connection Pools frame click on the connection pool you just created. Here, you
can review and edit information about the connection pool. Because Connector/J does not support
optimized validation queries, go to the Advanced tab, and under Connection Validation, configure the
following settings:

« Connection Validation - select Required.

85

https://glassfish.dev.java.net/public/downloadsindex.html#top

A Simple JSP Application with Glassfish, Connector/J and MySQL

« Validation Method - select table from the drop-down menu.
e Table Name - enter DUAL.

10. To test your connection pool click the Ping button at the top of the frame. A message will be displayed
confirming correct operation or otherwise. If an error message is received recheck the previous steps,
and ensure that MySQL Connector/J has been correctly copied into the previously specified location.

Now that you have created a connection pool you will also need to create a JDBC Resource (data source)
for use by your application.

Creating a JDBC Resource

Your Java application will usually reference a data source object to establish a connection with the
database. This needs to be created first using the following procedure.

» Using the navigation tree in the Glassfish Administration Console, navigate to Resources, JDBC, JDBC
Resources. A list of resources will be displayed in the JDBC Resources frame.

e Click New. The New JDBC Resource frame will be displayed.

« In the JNDI Name field, enter the JNDI name that will be used to access this resource, for example enter
j dbc/ MySQLDat aSour ce.

» Inthe Pool Name field, select a connection pool you want this resource to use from the drop-down
listbox.

» Optionally, you can enter a description into the Description field.
» Additional properties can be added if required.

» Click OK to create the new JDBC resource. The JDBC Resources frame will list all available JDBC
Resources.

13.1 A Simple JSP Application with Glassfish, Connector/J and
MySQL

This section shows how to deploy a simple JSP application on Glassfish, that connects to a MySQL
database.

This example assumes you have already set up a suitable Connection Pool and JDBC Resource, as
explained in the preceding sections. It is also assumed you have a sample database installed, such as
wor | d.

The main application code, i ndex. j sp is presented here:

<%@ page i nport="java.sql.*, javax.sql.*, java.io.*, javax.nam ng.*" %
<ht m >
<head><title>Hello world from JSP</titl| e></head>
<body>
<%
I'nitial Context ctx;
Dat aSour ce ds;
Connecti on conn;
St atenent stnt;
Resul t Set rs;

86

A Simple JSP Application with Glassfish, Connector/J and MySQL

try {
ctx = new Initial Context();

ds = (DataSource) ctx.|ookup("java:conp/env/jdbc/ MySQ.Dat aSour ce");

//ds = (DataSource) ctx.|ookup("jdbc/My/SQ.DataSource");
conn = ds. get Connection();

stnt = conn.createStatenent();

rs = stnt.executeQuery("SELECT * FROM Country");

while(rs.next()) {
%
<h3>Nane: <% rs.getString("Nane") %</h3>
<h3>Popul ation: <% rs.getString("Popul ation") %</h3>
<%
}
}
catch (SQLException se) {
%
<% se. get Message() %
<%
}
catch (Nam ngException ne) {
%
<% ne. get Message() %
<%
}
%
</ body>
</htm >

In addition two XML files are required: web. xmi , and sun- web. xnl . There may be other files present,
such as classes and images. These files are organized into the directory structure as follows:

i ndex. j sp
VEB- | NF
I
- web. xni
- sun-web. xm

The code for web. xnl is:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<web- app version="2.4" xm ns="http://java.sun.com xm / ns/j 2ee"
<di spl ay- nanme>Hel | oWebApp</ di spl ay- name>
<di stri but abl e/ >
<resource-ref>
<res-ref - nane>j dbc/ MySQLDat aSour ce</ r es- r ef - name>
<res-type>j avax. sql . Dat aSour ce</res-t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
<res-shari ng- scope>Shar eabl e</res- shari ng- scope>
</ resource-ref>
</ web- app>

The code for sun- web. xnl is:

<?xm version="1.0" encodi ng="UTF- 8" ?>

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena.

<! DOCTYPE sun-web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Application Server 8.1 Servlet 2.4//EN' "http:

<sun- web- app>
<cont ext - r oot >Hel | oWebApp</ cont ext - r oot >
<resource-ref>

87

A Simple Servlet with Glassfish, Connector/J and MySQL

<res-ref - nane>j dbc/ MySQLDat aSour ce</ r es- r ef - name>
<j ndi - name>j dbc/ MySQ.Dat aSour ce</ j ndi - name>
</ resource-ref>
</ sun- web- app>

These XML files illustrate a very important aspect of running JDBC applications on Glassfish. On Glassfish
it is important to map the string specified for a JDBC resource to its INDI name, as set up in the Glassfish
administration console. In this example, the JNDI name for the JDBC resource, as specified in the
Glassfish Administration console when creating the JDBC Resource, was | dbc/ My SQLDat aSour ce.

This must be mapped to the name given in the application. In this example the name specified in the
application, j dbc/ MySQLDat aSour ce, and the JNDI name, happen to be the same, but this does not
necessarily have to be the case. Note that the XML element <res-ref-name> is used to specify the name as
used in the application source code, and this is mapped to the JNDI name specified using the <jndi-name>
element, in the file sun- web. xnl . The resource also has to be created in the web. xm file, although the
mapping of the resource to a JNDI name takes place in the sun-web. xm file.

If you do not have this mapping set up correctly in the XML files you will not be able to lookup the data
source using a JNDI lookup string such as:
ds = (DataSource) ctx.|ookup("java: conp/env/jdbc/ MySQ.Dat aSour ce");

You will still be able to access the data source directly using:

ds = (DataSource) ctx.| ookup("jdbc/ MySQ.Dat aSource");
With the source files in place, in the correct directory structure, you are ready to deploy the application:

1. Inthe navigation tree, navigate to Applications - the Applications frame will be displayed. Click
Deploy.

2. You can now deploy an application packaged into a single WAR file from a remote client, or you can
choose a packaged file or directory that is locally accessible to the server. If you are simply testing an
application locally you can simply point Glassfish at the directory that contains your application, without
needing to package the application into a WAR file.

3. Now select the application type from the Type drop-down listbox, which in this example is \\eb
appl i cation.

4. Click OK.

Now, when you navigate to the Applications frame, you will have the option to Launch, Redeploy, or
Restart your application. You can test your application by clicking Launch. The application will connection
to the MySQL database and display the Name and Population of countries in the Count r y table.

13.2 A Simple Servlet with Glassfish, Connector/J and MySQL

This section describes a simple servlet that can be used in the Glassfish environment to access a MySQL
database. As with the previous section, this example assumes the sample database wor | d is installed.

The project is set up with the following directory structure:

i ndex. ht m
VAEB- | NF
[
- web. xm
- sun-web. xm

88

A Simple Servlet with Glassfish, Connector/J and MySQL

- cl asses
I
- Hel |l oWbServl et.java
- Hel | owbServl et . cl ass

The code for the servlet, located in Hel | oWWebSer vl et . j ava, is as follows:

import javax.servlet.http.*;
import javax.servlet.*;
inmport java.io.*;

import java.sql.*;

i mport javax.sql.*;

i mport javax.nam ng.*;

public class Hel | owbServl et extends HttpServlet {

Initial Context ctx = null;
Dat aSource ds = nul | ;
Connection conn = null;
PreparedSt atenent ps = nul |l ;
ResultSet rs = null;

String sgql = "SELECT Nane, Popul ati on FROM Country WHERE Name=?";

public void init () throws ServletException {
try {
ctx = new Initial Context();
ds = (DataSource) ctx.|ookup("java: conp/env/jdbc/ MySQLDat aSour ce") ;
conn = ds. get Connection();
ps = conn. prepar eSt at ement (sql) ;

catch (SQLException se) {
System out . printl n(" SQLExcepti on: "+se.get Message());

catch (Nam ngException ne) {
System out . pri ntl n(" Nam ngException: "+ne.get Message());
}
}

public void destroy () {
try {

if (rs !=null)
rs.close();

if (ps !'= null)
ps. cl ose();

if (conn !'= null)
conn. cl ose();

if (ctx !'= null)
ctx.close();

}
catch (SQLException se) {
System out . printl n(" SQLException: "+se.get Message());

}
catch (Nam ngException ne) {
System out . pri ntl n(" Nam ngException: "+ne.get Message());
}
}

public void doPost (HttpServl et Request req, HttpServl et Response resp){
try {
String country_nane = req.getParaneter("country_nane");
resp. set Cont ent Type("text/htm ");
PrintWiter witer = resp.getWiter();
witer.println("<htm ><body>");
witer.println("<p>Country: "+country_nanme+"</p>");

89

A Simple Servlet with Glassfish, Connector/J and MySQL

ps.setString(1l, country_nane);
rs = ps. executeQuery();
if (!'rs.next()){
witer.println("<p>Country does not exist!</p>");
}
el se {
rs.beforeFirst();
while(rs.next()) {
witer.println("<p>Nane: "+rs.getString("Name")+"</p>");
witer.println("<p>Popul ation: "+rs.getString("Popul ation")+"</p>");
}

}
writer.println("</body></htm >");
witer.close();

}
catch (Exception e) {
e.printStackTrace();

}
}

public void doGet(HttpServl et Request req, HttpServl et Response resp){

try {
resp. set Cont ent Type("text/htm ");

PrintWiter witer = resp.getWiter();
writer.println("<htnm ><body>");
witer.println("<p>Hello from servlet doCet()</p>");
writer.println("</body></htm >");

witer.close();

catch (Exception e) {
e.printStackTrace();

}
}
}

In the preceding code a basic doGet () method is implemented, but is not used in the example. The
code to establish the connection with the database is as shown in the previous example, Section 13.1, “A
Simple JSP Application with Glassfish, Connector/J and MySQL”, and is most conveniently located in the
servleti ni t () method. The corresponding freeing of resources is located in the destroy method. The
main functionality of the servlet is located in the doPost () method. If the user enters nto the input form a
country name that can be located in the database, the population of the country is returned. The code is
invoked using a POST action associated with the input form. The form is defined in the file i ndex. ht ni :

<htm >
<head><titl e>Hel | oWwebServl et</titl e></head>

<body>
<h1l>Hel | oWebSer vl et </ h1>

<p>Pl ease enter country nane: </ p>

<form acti on="Hel | oWebSer vl et" nethod="POST">
<i nput type="text" name="country_name" |ength="50" />
<input type="submit" val ue="Submt" />

</form

</ body>
</htm >

The XML files web. xm and sun-web. xnl are as for the example in the preceding section, Section 13.1,
“A Simple JSP Application with Glassfish, Connector/J and MySQL”, no additional changes are required.

90

A Simple Servlet with Glassfish, Connector/J and MySQL

Whe compiling the Java source code, you will need to specify the path to the file j avaee. j ar. On
Windows, this can be done as follows:

shel | > javac -classpath c:\glassfishv3\glassfish\lib\javaee.jar Hell oWwbServl et.java

Once the code is correctly located within its directory structure, and compiled, the application can be
deployed in Glassfish. This is done in exactly the same way as described in the preceding section,
Section 13.1, “A Simple JSP Application with Glassfish, Connector/J and MySQL".

Once deployed the application can be launched from within the Glassfish Administration Console. Enter a
country name such as “England”, and the application will return “Country does not exist!”. Enter “France”,
and the application will return a population of 59225700.

91

92

Chapter 14 Using Connector/J with MySQL Fabric

MySQL Fabric is a system for managing a farm of MySQL servers (and other components). Fabric
provides an extensible and easy to use system for managing a MySQL deployment for sharding and high-
availability.

MySQL Fabric is currently available in pre-production releases only and is not fit for production. For more
information on MySQL Fabric, see MySQL Fabric. For instructions on how to use Connector/J with MySQL
Fabric, see Using Connector/J with MySQL Fabric.

93

http://dev.mysql.com/doc/mysql-utilities/1.4/en/fabric.html
http://dev.mysql.com/doc/mysql-utilities/1.4/en/connector-j-fabric.html

94

Chapter 15 Troubleshooting Connector/J Applications

This section explains the symptoms and resolutions for the most commonly encountered issues with
applications using MySQL Connector/J.

Questions

e 15.1: [96] When I try to connect to the database with MySQL Connector/J, | get the following
exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0O

What is going on? | can connect just fine with the MySQL command-line client.
» 15.2: [96] My application throws an SQLException '‘No Suitable Driver'. Why is this happening?

» 15.3: [97] I'm trying to use MySQL Connector/J in an applet or application and | get an exception
similar to:

SQLException: Cannot connect to MySQL server on host: 3306.
Is there a MySQL server running on the machi ne/ port you
are trying to connect to?

(java. security. AccessControl Excepti on)
SQ.State: 08S01
VendorError: 0

» 15.4: [97] | have a servlet/application that works fine for a day, and then stops working overnight

» 15.5: [99] I'm trying to use JDBC 2.0 updatable result sets, and | get an exception saying my result
set is not updatable.

e 15.6: [100] I cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

» 15.7: [100] I am trying to connect to my MySQL server within my application, but | get the following
error and stack trace:

j ava. net . Socket Excepti on
MESSAGE: Sof tware caused connection abort: recv failed

STACKTRACE:

j ava. net . Socket Excepti on: Software caused connection abort: recv failed

at java. net. Socket | nput St ream socket ReadO(Nati ve Met hod)

at java. net. Socket | nput St ream r ead(Unknown Sour ce)

at com mysql . j dbc. Mysql I O readFul | y(Mysql | O j ava: 1392)

at com mysql . j dbc. Mysql | O readPacket (Mysql | O j ava: 1414)

at com mysql . j dbc. Mysql | O doHandshake(Mysql | O j ava: 625)

at com mysql . j dbc. Connecti on. cr eat eNewl Q(Connecti on. j ava: 1926)

at com mysql . j dbc. Connecti on. <i ni t >(Connecti on. j ava: 452)

at com mysql . j dbc. NonRegi st eri ngDri ver. connect (NonRegi st eri ngDriver.java: 411)

« 15.8: [100] My application is deployed through JBoss and | am using transactions to handle the
statements on the MySQL database. Under heavy loads, | am getting an error and stack trace, but these
only occur after a fixed period of heavy activity.

95

e 15.9: [100] When using gcj , aj ava. i 0. Char Conver si onExcept i on exception is raised when
working with certain character sequences.

« 15.10: [100] Updating a table that contains a primary key that is either FLOAT or compound primary
key that uses FLOAT fails to update the table and raises an exception.

e 15.11: [101] You get an ER NET_PACKET TOO LARGE exception, even though the binary blob size
you want to insert using JDBC is safely below the nax_al | owed packet size.

» 15.12: [101] What should you do if you receive error messages similar to the following:
“Communications link failure — Last packet sent to the server was X ms ago”?

» 15.13: [102] Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure, instead of throwing an Exception, even though | use the aut oReconnect
connection string option?

e 15.14: [103] How can | use 3-byte UTF8 with Connector/J?
« 15.15: [103] How can | use 4-byte UTF8, ut f 8nb4 with Connector/J?

e 15.16: [103] Using useSer ver PrepSt nt s=f al se and certain character encodings can lead to
corruption when inserting BLOBs. How can this be avoided?

Questions and Answers

15.1: When I try to connect to the database with MySQL Connector/J, | get the following exception:

SQ.Exception: Server configuration denies access to data source
SQLSt ate: 08001
VendorError: 0

What is going on? | can connect just fine with the MySQL command-line client.

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix
Domain Sockets. Therefore, when MySQL Connector/J connects to MySQL, the security manager in
MySQL server will use its grant tables to determine whether the connection is permitted.

You must add the necessary security credentials to the MySQL server for this to happen, using the GRANT
statement to your MySQL Server. See GRANT Syntax, for more information.

Note

Testing your connectivity with the mysgl command-line client will not work unless
you add the "host" flag, and use something other than | ocal host for the host. The
nysgl command-line client will use Unix domain sockets if you use the special host
name | ocal host . If you are testing connectivity to | ocal host, use 127. 0. 0. 1
as the host name instead.

Warning

Changing privileges and permissions improperly in MySQL can potentially cause
your server installation to not have optimal security properties.

15.2: My application throws an SQLException '‘No Suitable Driver'. Why is this happening?
There are three possible causes for this error:
» The Connector/J driver is not in your CLASSPATH, see Chapter 3, Connector/J Installation.

» The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

96

http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.6/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.6/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.6/en/error-messages-server.html#error_er_net_packet_too_large
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.6/en/grant.html
http://dev.mysql.com/doc/refman/5.6/en/grant.html

« When using DriverManager, the j dbc. dri ver s system property has not been populated with the
location of the Connector/J driver.

15.3: I'm trying to use MySQL Connector/J in an applet or application and | get an exception similar
to:

SQLExcepti on: Cannot connect to MySQL server on host: 3306.
Is there a MySQ. server runni ng on the nachi ne/ port you
are trying to connect to?

(java. security. AccessControl Excepti on)
SQLSt ate: 08S01
Vendor Error: 0O

Either you're running an Applet, your MySQL server has been installed with the "skip-networking™" option
set, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served

the .class files for the applet. This means that MySQL must run on the same machine (or you must have
some sort of port re-direction) for this to work. This also means that you will not be able to test applets from
your local file system, you must always deploy them to a web server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix
domain sockets. TCP/IP communication with MySQL might be affected if MySQL was started with the
"skip-networking" flag, or if it is firewalled.

If MySQL has been started with the "skip-networking" option set (the Debian Linux package of MySQL
server does this for example), you need to comment it out in the file / et ¢/ mysql / ny. cnf or/etc/

ny. cnf . Of course your ny. cnf file might also exist in the dat a directory of your MySQL server, or
anywhere else (depending on how MySQL was compiled for your system). Binaries created by us always
lookin/etc/ nmy.cnf and dat adi r/ nmy. cnf . If your MySQL server has been firewalled, you will need to
have the firewall configured to allow TCP/IP connections from the host where your Java code is running to
the MySQL server on the port that MySQL is listening to (by default, 3306).

15.4: | have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that
handles stale connections or use the aut oReconnect parameter (see Section 5.1, “Driver/Datasource
Class Names, URL Syntax and Configuration Properties for Connector/J").

Also, catch SQLExcept i ons in your application and deal with them, rather than propagating them all

the way until your application exits. This is just good programming practice. MySQL Connector/J will set
the SQLSt at e (see j ava. sqgl . SQLExcept i on. get SQLSt at e() in your APl docs) to 08S01 when it
encounters network-connectivity issues during the processing of a query. Attempt to reconnect to MySQL
at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 15.1 Connector/J: Example of transaction with retry logic

publ i c voi d doBusi nessOp() throws SQLException {
Connection conn = null;
Statenent stnt = null;
ResultSet rs = null;

/1

/1 How many tinmes do you want to retry the transaction
/1 (or at least _getting_ a connection)?

/1

97

int retryCount = 5;
bool ean transacti onConpl eted = fal se;

do {
try {
conn = get Connection(); // assume getting this froma
/'l javax.sql . DataSource, or the
/'l java.sql.Driver Manager

conn. set Aut oCommi t (f al se) ;

I/

/]l Okay, at this point, the '"retry-ability' of the

/] transaction really depends on your application |ogic,
/'l whether or not you're using autocommit (in this case
/1 not), and whether you're using transactional storage
/'l engi nes

I/

/'l For this exanple, we'll assune that it's _not_ safe
/Il to retry the entire transaction, so we set retry

/'l count to O at this point

I/

/1 1f you were using exclusively transaction-safe tables,
/1 or your application could recover froma connecti on goi ng
/'l bad in the mddle of an operation, then you woul d not
/] touch 'retryCount' here, and just let the | oop repeat
[/l until retryCount ==

I/

retryCount = O;

stnt = conn.createStatenent();
String query = "SELECT foo FROM bar ORDER BY baz";
rs = stnt.executeQuery(query);

while (rs.next()) {

}
rs.close();
rs = null;

stnt.cl ose();
stnt = null;

conn.comit();
conn. cl ose();
conn = null;

transacti onConpl eted = true;
} catch (SQLException sqgl Ex) {

/1

/'l The two SQL states that are 'retry-able' are 08S01

/1 for a communications error, and 40001 for deadl ock.

/1

/Il Only retry if the error was due to a stal e connecti on,
/1 comuni cati ons probl em or deadl ock

/1

String sqgl State = sqgl Ex. get SQLState();

if ("08S01".equal s(sqgl State) || "40001".equal s(sqgl State)) {
retryCount -= 1,
} else {

retryCount = O;

98

}
} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException sql Ex) {
/1 You'd probably want to log this...

}
}
if (stnmt !'=null) {
try {
stnt.cl ose();
} catch (SQLException sqgl Ex) {
/1 You'd probably want to log this as well...
}
}
if (conn !'=null) {
try {
/1
I/l 1f we got here, and conn is not null, the
/'l transaction should be rolled back, as not
/1 all work has been done
try {
conn. rol | back();
} finally {
conn. cl ose();
}
} catch (SQLException sql Ex) {
/1
/1 1f we got an exception here, sonething
/] pretty serious is going on, so we better
/] pass it up the stack, rather than just
/Il logging it...
t hrow sqgl Ex;
}
}

} while (!transacti onConpl eted && (retryCount > 0));

Note

Use of the aut oReconnect option is not recommended because there is no safe
method of reconnecting to the MySQL server without risking some corruption of

the connection state or database state information. Instead, use a connection

pool, which will enable your application to connect to the MySQL server using an
available connection from the pool. The aut oReconnect facility is deprecated, and
may be removed in a future release.

15.5: I'm trying to use JDBC 2.0 updatable result sets, and | get an exception saying my result set
is not updatable.

Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that have
come from queries on tables that have at least one primary key, the query must select every primary key
column, and the query can only span one table (that is, no joins). This is outlined in the JDBC specification.

Note that this issue only occurs when using updatable result sets, and is caused because Connector/J is
unable to guarantee that it can identify the correct rows within the result set to be updated without having
a unigque reference to each row. There is no requirement to have a unique field on a table if you are using

99

http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_primary_key

UPDATE or DELETE statements on a table where you can individually specify the criteria to be matched
using a VHERE clause.

15.6: | cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

Make sure that the ski p- net wor ki ng option has not been enabled on your server. Connector/J must be
able to communicate with your server over TCP/IP; named sockets are not supported. Also ensure that you
are not filtering connections through a firewall or other network security system. For more information, see
Can't connect to [local] MySQ. server.

15.7: lam trying to connect to my MySQL server within my application, but | get the following error
and stack trace:

j ava. net . Socket Excepti on
MESSAGE: Software caused connection abort: recv failed

STACKTRACE:

j ava. net . Socket Excepti on: Software caused connection abort: recv failed

at java. net. Socket | nput St r eam socket ReadO(Nati ve Met hod)

at java. net. Socket | nput St ream r ead(Unknown Sour ce)

at com nysql . j dbc. Mysql | O readFul | y(Mysqgl | O. j ava: 1392)

at com nysql . j dbc. Mysql | O readPacket (Mysql | O. j ava: 1414)

at com nysql . j dbc. Mysql | O doHandshake(Mysqgl | O. j ava: 625)

at com nysql . j dbc. Connecti on. cr eat eNew Q(Connect i on. j ava: 1926)

at com nysql . j dbc. Connecti on. <i ni t >(Connecti on. j ava: 452)

at com nysql . j dbc. NonRegi st eri ngDri ver. connect (NonRegi steri ngDriver.java: 411)

The error probably indicates that you are using a older version of the Connector/J JDBC driver (2.0.14 or
3.0.x) and you are trying to connect to a MySQL server with version 4.1x or newer. The older drivers are
not compatible with 4.1 or newer of MySQL as they do not support the newer authentication mechanisms.

It is likely that the older version of the Connector/J driver exists within your application directory or your
CLASSPATH includes the older Connector/J package.

15.8: My application is deployed through JBoss and | am using transactions to handle the
statements on the MySQL database. Under heavy loads, | am getting an error and stack trace, but
these only occur after a fixed period of heavy activity.

This is a JBoss, not Connector/J, issue and is connected to the use of transactions. Under heavy loads the
time taken for transactions to complete can increase, and the error is caused because you have exceeded
the predefined timeout.

You can increase the timeout value by setting the Tr ansact i onTi neout attribute to the

Transacti onManager Ser vi ce within the / conf / j boss-servi ce. xnl file (pre-4.0.3) or / depl oy/
jta-service. xnm for JBoss 4.0.3 or later. See TransactionTimeout within the JBoss wiki for more
information.

15.9: When using gcj,aj ava. i 0. Char Conver si onExcepti on exception is raised when working
with certain character sequences.

This is a known issue with gcj which raises an exception when it reaches an unknown character or one
it cannot convert. Add useJvntChar set Convert er s=t r ue to your connection string to force character
conversion outside of the gcj libraries, or try a different JDK.

15.10: Updating a table that contains a primary key that is either FLOAT or compound primary key
that uses FLOAT fails to update the table and raises an exception.

100

http://dev.mysql.com/doc/refman/5.6/en/update.html
http://dev.mysql.com/doc/refman/5.6/en/delete.html
http://dev.mysql.com/doc/refman/5.6/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.6/en/can-not-connect-to-server.html
http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.6/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.6/en/floating-point-types.html

Connector/J adds conditions to the VHERE clause during an UPDATE to check the old values of the primary
key. If there is no match, then Connector/J considers this a failure condition and raises an exception.

The problem is that rounding differences between supplied values and the values stored in the database
may mean that the values never match, and hence the update fails. The issue will affect all queries, not
just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point
column in your primary key, use DOUBLE or DECI MAL types in place of FLOAT.

15.11: You get an ER_ NET_PACKET TOO LARCGE exception, even though the binary blob size you
want to insert using JDBC is safely below the max_al | owed packet size.

This is because the hexEscapeBl ock() method in
com nysql . j dbc. Prepar edSt at enent . st r eaniToByt es() may almost double the size of your data.

15.12: What should you do if you receive error messages similar to the following:
“Communications link failure — Last packet sent to the server was X ms ago”?

Generally speaking, this error suggests that the network connection has been closed. There can be several
root causes:

» Firewalls or routers may clamp down on idle connections (the MySQL client/server protocol does not
ping).

e The MySQL Server may be closing idle connections that exceed the wai t _ti neout or
i nteractive_tineout threshold.

To help troubleshoot these issues, the following tips can be used. If a recent (5.1.13+) version of
Connector/J is used, you will see an improved level of information compared to earlier versions. Older
versions simply display the last time a packet was sent to the server, which is frequently 0 ms ago. This
is of limited use, as it may be that a packet was just sent, while a packet from the server has not been
received for several hours. Knowing the period of time since Connector/J last received a packet from the
server is useful information, so if this is not displayed in your exception message, it is recommended that
you update Connector/J.

Further, if the time a packet was last sent/received exceeds the wai t _ti nmeout or
i nteractive_tinmeout threshold, this is noted in the exception message.

Although network connections can be volatile, the following can be helpful in avoiding problems:

» Ensure connections are valid when used from the connection pool. Use a query that starts with / * pi ng
*| to execute a lightweight ping instead of full query. Note, the syntax of the ping needs to be exactly as
specified here.

» Minimize the duration a connection object is left idle while other application logic is executed.

» Explicitly validate the connection before using it if the connection has been left idle for an extended
period of time.

* Ensurethatwai t _tinmeout andinteractive_tinmeout are set sufficiently high.
» Ensure thatt cpKeepal i ve is enabled.

» Ensure that any configurable firewall or router timeout settings allow for the maximum expected
connection idle time.

101

http://dev.mysql.com/doc/refman/5.6/en/update.html
http://dev.mysql.com/doc/refman/5.6/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.6/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.6/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.6/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.6/en/error-messages-server.html#error_er_net_packet_too_large
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_allowed_packet

Note

Do not expect to be able to reuse a connection without problems, if it has being
lying idle for a period. If a connection is to be reused after being idle for any length
of time, ensure that you explicitly test it before reusing it.

15.13: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure, instead of throwing an Exception, even though | use the aut oReconnect
connection string option?

There are several reasons for this. The first is transactional integrity. The MySQL Reference Manual states
that “there is no safe method of reconnecting to the MySQL server without risking some corruption of the
connection state or database state information”. Consider the following series of statements for example:

conn. creat eSt at enent () . execut e(

"UPDATE checki ng_account SET bal ance = bal ance - 1000. 00 WHERE customer="Snmith'");
conn. creat eSt at enent () . execut e(

"UPDATE savi ngs_account SET bal ance = bal ance + 1000. 00 WHERE custoner='Smith'");
conn. commi t();

Consider the case where the connection to the server fails after the UPDATE to checki ng_account .

If no exception is thrown, and the application never learns about the problem, it will continue executing.
However, the server did not commit the first transaction in this case, so that will get rolled back. But
execution continues with the next transaction, and increases the savi ngs_account balance by 1000.
The application did not receive an exception, so it continued regardless, eventually committing the second
transaction, as the commit only applies to the changes made in the new connection. Rather than a transfer
taking place, a deposit was made in this example.

Note that running with aut ocommi t enabled does not solve this problem. When Connector/J encounters
a communication problem, there is no means to determine whether the server processed the currently
executing statement or not. The following theoretical states are equally possible:

» The server never received the statement, and therefore no related processing occurred on the server.
» The server received the statement, executed it in full, but the response was not received by the client.

If you are running with aut ocommi t enabled, it is not possible to guarantee the state of data on the server
when a communication exception is encountered. The statement may have reached the server, or it may
not. All you know is that communication failed at some point, before the client received confirmation (or
data) from the server. This does not only affect aut ocommi t statements though. If the communication
problem occurred during Connect i on. conmi t (), the question arises of whether the transaction was
committed on the server before the communication failed, or whether the server received the commit
request at all.

The second reason for the generation of exceptions is that transaction-scoped contextual data may be
vulnerable, for example:

» Temporary tables.
+ User-defined variables.
» Server-side prepared statements.

These items are lost when a connection fails, and if the connection silently reconnects without generating
an exception, this could be detrimental to the correct execution of your application.

102

In summary, communication errors generate conditions that may well be unsafe for Connector/J to simply
ignore by silently reconnecting. It is necessary for the application to be notified. It is then for the application
developer to decide how to proceed in the event of connection errors and failures.

15.14: How can | use 3-byte UTF8 with Connector/J?

To use 3-byte UTF8 with Connector/J set char act er Encodi ng=ut f 8 and set useUni code=t r ue in the
connection string.

15.15: How can | use 4-byte UTF8, ut f 8nb4 with Connector/J?

To use 4-byte UTF8 with Connector/J configure the MySQL server with

character_set server=utf8nb4. Connector/J will then use that setting as long as

char act er Encodi ng has not been set in the connection string. This is equivalent to autodetection of the
character set.

15.16: Using useSer ver PrepSt nt s=f al se and certain character encodings can lead to corruption
when inserting BLOBs. How can this be avoided?

When using certain character encodings, such as SJIS, CP932, and BIG5, it is possible that BLOB data
contains characters that can be interpreted as control characters, for example, backslash, \'. This can lead
to corrupted data when inserting BLOBS into the database. There are two things that need to be done to
avoid this:

1. Setthe connection string option useSer ver PrepStnt s totr ue.

2. Set SQL_MODE to NO_BACKSLASH_ESCAPES.

103

104

Chapter 16 Known Issues and Limitations

The following are some known issues and limitations for MySQL Connector/J:

» When Connector/J retrieves timestamps for a daylight saving time (DST) switch day using the
get Ti meSt anp() method on the result set, some of the returned values might be wrong. The errors
can be avoided by using the following connection options when connecting to a database:

useTi mezone=true
uselLegacyDat et i nreCode=f al se
server Ti mezone=UTC

105

106

Chapter 17 Connector/J Support

Table of Contents

17.1 Connector/J COMMUNILY SUPPOITeun ittt ettt et e e et e et e et e e e e e eaeeeenas 107
17.2 How to Report Connector/J Bugs or Problems ..., 107

17.1 Connector/J Community Support

Oracle provides assistance to the user community by means of its mailing lists. For Connector/J related
issues, you can get help from experienced users by using the MySQL and Java mailing list. Archives and
subscription information is available online at http://lists.mysqgl.com/java.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http://
lists.mysqgl.com/. See MySQL Mailing Lists.

Community support from experienced users is also available through the JDBC Forum. You may also
find help from other users in the other MySQL Forums, located at http://forums.mysgl.com. See MySQL
Community Support at the MySQL Forums.

17.2 How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysqgl.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you will
also be able to enter new reports.

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an email
message to <secal ert _us@r acl e. con>. Exception: Support customers should report all problems,
including security bugs, to Oracle Support at http://support.oracle.com/.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix the
bug in the next release.

This section will help you write your report correctly so that you do not waste your time doing things that
may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any
bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem and
assume that some details do not matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less
troublesome to write a couple more lines in your report than to wait longer for the answer if we must ask
you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or
MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including the JVM
version, and the platform type and version number that MySQL itself is installed on).

107

http://lists.mysql.com/java
http://lists.mysql.com/
http://lists.mysql.com/
http://dev.mysql.com/doc/refman/5.6/en/mailing-lists.html
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://dev.mysql.com/doc/refman/5.6/en/forums.html
http://dev.mysql.com/doc/refman/5.6/en/forums.html
http://bugs.mysql.com/
http://support.oracle.com/
http://bugs.mysql.com/

How to Report Connector/J Bugs or Problems

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested wasn't
implemented in that MySQL version, or that a bug described in a report has already been fixed in newer
MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version humber of the platform.

If at all possible, create a repeatable, standalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named

'‘com nysql . jdbc. util.BaseBugReport' To create atestcase for Connector/J using this class, create
your own class that inherits from com nysql . j dbc. uti | . BaseBugReport and override the methods
set Up(),tearDown() andrunTest ().

In the set Up() method, create code that creates your tables, and populates them with any data needed to
demonstrate the bug.

Inthe runTest () method, create code that demonstrates the bug using the tables and data you created
in the set Up method.

In the t ear Down() method, drop any tables you created in the set Up() method.

In any of the above three methods, use one of the variants of the get Connect i on() method to create a
JDBC connection to MySQL:

» get Connecti on() - Provides a connection to the JDBC URL specified in get Ur | () . If a connection
already exists, that connection is returned, otherwise a new connection is created.

» get NewConnection() - Use this if you need to get a new connection for your bug report (that is, there
is more than one connection involved).

» get Connection(String url) - Returns a connection using the given URL.

» get Connection(String url, Properties props) - Returns a connection using the given URL
and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test’, override the method get Ur | () as
well.

Use the assert True(bool ean expressi on) andassert True(String fail ureMessage,

bool ean expressi on) methods to create conditions that must be met in your testcase demonstrating
the behavior you are expecting (vs. the behavior you are observing, which is why you are most likely filing
a bug report).

Finally, create a mai n() method that creates a new instance of your testcase, and calls the r un method:

public static void main(String[] args) throws Exception {
new MyBugReport ().run();
}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysql.com/.

108

http://bugs.mysql.com/

Appendix A Licenses for Third-Party Components

Table of Contents

AL ANE-CONTID LICENSE ...ttt ettt ettt ettt ettt et e ab e e e et e e ennans
A.2 C3P0 IJDBC LIDrary LICENSE ... cuuiiiiieiiiee et e e e et e e e e e e et e e ennaaeens
A.3 GNU Lesser General Public License Version 2.1, February 1999coooiiiiiiiiiiiiiiieeeeee
A.4 jboss-commoN-jdDC-WIAPPET.JAr LICENSEccuuiitiieiieei et e e e e et e e e et e e eaeeeanaaas
ALS NANOXML LICEBNSE ...ttt ettt ettt et e et et ettt e e e et e e eenens
ALB TOXJAI LICBISE ... ittt ettt et e e e ettt et et e e et e e ea e e et e e e et e e aa e aanaae
A.7 Simple Logging Facade for Java (SLF4J) LICENSEoiiuiiiiiiiiiieee e

MySQL Connector/J

» Section A.1, “Ant-Contrib License”

» Section A.2, “c3p0 JDBC Library License”

» Section A.3, “GNU Lesser General Public License Version 2.1, February 1999”
» Section A.4, “jboss-common-jdbc-wrapper.jar License”

+ Section A.5, “NanoXML License”

» Section A.6, “rox.jar License”

» Section A.7, “Simple Logging Facade for Java (SLF4J) License”

A.1 Ant-Contrib License

The following software may be included in this product up to version 5.1.26: Ant-Contrib

Ant-Contrib
Copyright (c) 2001-2003 Ant-Contrib project. Al rights reserved.
Li censed under the Apache 1.1 License Agreement, a copy of which is reproduced bel ow.

The Apache Sof tware License, Version 1.1
Copyright (c) 2001-2003 Ant-Contrib project. Al rights reserved.

Redi stri bution and use in source and binary forms, with or w thout
nmodi fication, are permtted provided that the foll ow ng conditions
are net:

1. Redistributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in
the docunentation and/or other materials provided with the
di stribution.

3. The end-user docunentation included with the redistribution, if
any, must include the follow ng acknow egenent:
"Thi s product includes software devel oped by the
Ant - Contrib project (http://sourceforge.net/projects/ant-contrib)."
Alternately, this acknow egenent nmay appear in the software itself,
if and wherever such third-party acknow egenents normal |y appear.

109

c3p0 JDBC Library License

4. The nane Ant-Contrib must not be used to endorse or pronote
products derived fromthis software without prior witten
perm ssion. For witten perm ssion, please contact
ant -contri b-devel opers@i sts. sour cef or ge. net ..

5. Products derived fromthis software may not be called "Ant-Contrib"
nor may "Ant-Contrib" appear in their names wi thout prior witten
permi ssion of the Ant-Contrib project.

THI'S SOFTWARE | S PROVIDED ""AS |S'' AND ANY EXPRESSED OR | MPLI ED
WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TGO, THE | MPLI ED WARRANTI ES
COF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE ARE

DI SCLAI MED. I N NO EVENT SHALL THE ANT- CONTRI B PRQJECT OR I TS
CONTRI BUTCRS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,

SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT NOT
LIM TED TO PROCUREMENT CF SUBSTI TUTE GOODS OR SERVI CES; LGOSS OF
USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND
ON ANY THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRICT LI ABILITY,
OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG | N ANY WAY QUT
CF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED CF THE PGSSI Bl LI TY OF
SUCH DAMAGE.

A.2 c3p0 JDBC Library License

You are receiving a copy of c3p0- 0. 9. 1- pre6. j ar in both source and object code in the following /
src/lib/c3p0-0.9. 1-pre6.jar. The terms of the Oracle license do NOT apply to c3p0- 0. 9. 1-
pre6. | ar;itis licensed under the following license, separately from the Oracle programs you receive. If
you do not wish to install this library, you may remove the file / src/ | i b/ ¢3p0-0. 9. 1- pre6.j ar, but
the Oracle program might not operate properly or at all without the library.

This component is licensed under Section A.3, “GNU Lesser General Public License Version 2.1, February
1999".

A.3 GNU Lesser General Public License Version 2.1, February 1999

The followi ng applies to all products |icensed under the

G\U Lesser General Public License, Version 2.1: You may

not use the identified files except in conpliance with

the GNU Lesser General Public License, Version 2.1 (the
"License"). You may obtain a copy of the License at
http://ww. gnu. org/licenses/lgpl-2.1.htm. A copy of the
license is also reproduced bel ow. Unl ess required by
applicable |aw or agreed to in witing, software distributed
under the License is distributed on an "AS | S" BAS| S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express
or inplied. See the License for the specific |anguage governing
permi ssions and |imtations under the License.

GNU LESSER GENERAL PUBLI C LI CENSE
Version 2.1, February 1999

Copyright (C 1991, 1999 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permtted to copy and distribute verbatim copies
of this |license document, but changing it is not allowed.

[This is the first rel eased version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version nunber 2.1.]

Pr eanbl e

The |icenses for npbst software are designed to take away your

110

GNU Lesser General Public License Version 2.1, February 1999

freedomto share and change it. By contrast, the GNU General Public
Li censes are intended to guarantee your freedomto share and change
free software--to nmake sure the software is free for all its users

This license, the Lesser General Public License, applies to sone
speci al | y desi gnat ed software packages--typically libraries--of the
Free Software Foundation and ot her aut hors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particul ar case, based on the expl anations bel ow.

When we speak of free software, we are referring to freedom of use
not price. Qur Ceneral Public Licenses are designed to nake sure that
you have the freedomto distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pi eces of
it in new free prograns; and that you are informed that you can do
t hese t hi ngs

To protect your rights, we need to nake restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you nmodify it.

For exanple, if you distribute copies of the library, whether gratis
or for a fee, you nust give the recipients all the rights that we gave
you. You nust make sure that they, too, receive or can get the source
code. If you link other code with the library, you nust provide
conpl ete object files to the recipients, so that they can relink them
with the library after making changes to the library and reconpiling
it. And you nmust show themthese terns so they know their rights

We protect your rights with a two-step nethod: (1) we copyright the
library, and (2) we offer you this |license, which gives you | ega
permi ssion to copy, distribute and/or nodify the library.

To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
nmodi fi ed by sonmeone el se and passed on, the recipients should know
that what they have is not the original version, so that the origina
author's reputation will not be affected by problens that m ght be
i ntroduced by others

Finally, software patents pose a constant threat to the existence of
any free program W wish to nmake sure that a conpany cannot
effectively restrict the users of a free program by obtaining a
restrictive license froma patent holder. Therefore, we insist that
any patent |icense obtained for a version of the library nmust be
consistent with the full freedom of use specified in this |icense

Most GNU software, including some |libraries, is covered by the
ordinary GNU General Public License. This |license, the G\NU Lesser
General Public License, applies to certain designated libraries, and
is quite different fromthe ordinary General Public License. W use
this license for certain libraries in order to permt |inking those
libraries into non-free prograns.

When a programis linked with a |ibrary, whether statically or using
a shared library, the combination of the two is legally speaking a
conbi ned work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire conmbination fits its criteria of freedom The Lesser Cenera
Public License pernmits nore lax criteria for |linking other code with
the library.

We call this license the "Lesser" General Public License because it
does Less to protect the user's freedomthan the ordi nary Genera

111

GNU Lesser General Public License Version 2.1, February 1999

Public License. It also provides other free software devel opers Less
of an advantage over conpeting non-free programs. These di sadvant ages
are the reason we use the ordinary General Public License for nmany
libraries. However, the Lesser |icense provides advantages in certain
speci al circunstances

For exanple, on rare occasions, there may be a special need to
encourage the wi dest possible use of a certain library, so that it
becones a de-facto standard. To achieve this, non-free prograns
must be allowed to use the library. A nore frequent case is that
a free library does the same job as wi dely used non-free libraries
In this case, there is little to gain by limting the free library
to free software only, so we use the Lesser Ceneral Public License

In other cases, permission to use a particular library in non-free
progranms enabl es a greater nunber of people to use a |arge body of
free software. For exanple, permi ssion to use the GNU C Library in
non-free progranms enabl es many nore people to use the whole GNU
operating system as well as its variant, the GNU Li nux operating
system

Al t hough the Lesser General Public License is Less protective of the
users' freedom it does ensure that the user of a programthat is
linked with the Library has the freedom and the wherewithal to run
that program using a nodified version of the Library.

The precise terns and conditions for copying, distribution and
nmodi fication follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived fromthe |library, whereas the latter nust
be conbined with the library in order to run

GNU LESSER GENERAL PUBLI C LI CENSE
TERVS AND CONDI TI ONS FOR COPYI NG, DI STRI BUTI ON AND MODI FI CATI ON

0. This License Agreenent applies to any software library or other
program whi ch contains a notice placed by the copyright hol der or
ot her authorized party saying it may be distributed under the terns of
this Lesser CGeneral Public License (also called "this License")
Each |icensee is addressed as "you"

A "library" nmeans a collection of software functions and/or data
prepared so as to be conveniently |linked with application prograns
(whi ch use sonme of those functions and data) to form executabl es

The "Library", below, refers to any such software library or work
whi ch has been distributed under these terns. A "work based on the
Li brary" means either the Library or any derivative work under
copyright law. that is to say, a work containing the Library or a
portion of it, either verbatimor w th nodifications and/or transl ated
straightforwardly into another |anguage. (Hereinafter, translation is
included without limtation in the term"nodification".)

"Source code" for a work nmeans the preferred formof the work for
maki ng nodi fications to it. For a library, conplete source code neans
all the source code for all nodules it contains, plus any associ at ed
interface definition files, plus the scripts used to contro
conpi lation and installation of the library.

Activities other than copying, distribution and nodification are not
covered by this License; they are outside its scope. The act of
running a programusing the Library is not restricted, and output from
such a programis covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
witing it). Wether that is true depends on what the Library does
and what the programthat uses the Library does

112

GNU Lesser General Public License Version 2.1, February 1999

1. You may copy and distribute verbatimcopies of the Library's
conpl ete source code as you receive it, in any nedium provided that
you conspi cuously and appropriately publish on each copy an
appropriate copyright notice and disclainer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Li brary.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee

2. You may nodify your copy or copies of the Library or any portion
of it, thus formng a work based on the Library, and copy and
di stribute such nodifications or work under the terms of Section 1
above, provided that you al so neet all of these conditions

a) The nodified work nust itself be a software library

b) You nust cause the files nodified to carry promi nent notices
stating that you changed the files and the date of any change

c) You nust cause the whole of the work to be licensed at no
charge to all third parties under the terns of this License

d) If afacility in the nodified Library refers to a function or a
table of data to be supplied by an application programthat uses
the facility, other than as an argunment passed when the facility

i s invoked, then you nust make a good faith effort to ensure that,
in the event an application does not supply such function or

table, the facility still operates, and perforns whatever part of
its purpose remains meani ngf ul

(For exanple, a function in a library to conpute square roots has
a purpose that is entirely well-defined i ndependent of the
application. Therefore, Subsection 2d requires that any

appl i cati on-supplied function or table used by this function nust

be optional: if the application does not supply it, the square
root function nust still conpute square roots.)
These requirements apply to the nodified work as a whole. |f

identifiable sections of that work are not derived fromthe Library,
and can be reasonably consi dered i ndependent and separate works in
thensel ves, then this License, and its ternms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole nust be on the terns of
thi s License, whose permi ssions for other |icensees extend to the
entire whole, and thus to each and every part regardl ess of who wote
it.

Thus, it is not the intent of this section to claimrights or contest
your rights to work witten entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or

col l ective works based on the Library.

In addition, nere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a vol une of
a storage or distribution medi um does not bring the other work under
the scope of this License

3. You may opt to apply the ternms of the ordinary GNU General Public
Li cense instead of this License to a given copy of the Library. To do
this, you nust alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify

113

GNU Lesser General Public License Version 2.1, February 1999

that version instead if you wish.) Do not make any other change in
these notices

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to al
subsequent copi es and derivative works made fromthat copy.

This option is useful when you wish to copy part of the code of
the Library into a programthat is not a |library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the ternms of Sections 1 and 2 above provi ded that you acconpany
it with the conpl ete correspondi ng machi ne-readabl e source code, which
nmust be distributed under the terms of Sections 1 and 2 above on a
medi um customarily used for software interchange

If distribution of object code is made by offering access to copy
from a designated place, then offering equival ent access to copy the
source code fromthe sane place satisfies the requirement to
distribute the source code, even though third parties are not
conpel l ed to copy the source along with the object code

5. A programthat contains no derivative of any portion of the
Li brary, but is designed to work with the Library by being conpiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License
Section 6 states ternms for distribution of such executabl es

When a "work that uses the Library" uses material froma header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked wi thout the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by |aw

If such an object file uses only nunerical parameters, data
structure | ayouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardl ess of whether it is legally a derivative
wor k. (Execut abl es containing this object code plus portions of the
Library will still fall under Section 6.)

O herwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terns of Section 6
Any execut abl es containing that work al so fall under Section 6
whet her or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may al so conbi ne or
link a "work that uses the Library" with the Library to produce a
wor k contai ning portions of the Library, and distribute that work
under terms of your choice, provided that the terns permt
nodi fication of the work for the customer's own use and reverse
engi neering for debuggi ng such nodifications

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You nust supply a copy of this License. |If the work
during execution displays copyright notices, you must include the
copyright notice for the Library anong them as well as a reference
directing the user to the copy of this License. Also, you nust do one

114

GNU Lesser General Public License Version 2.1, February 1999

of these things

a) Acconpany the work with the conpl ete correspondi ng
machi ne- r eadabl e source code for the Library including whatever
changes were used in the work (which nmust be distributed under
Sections 1 and 2 above); and, if the work is an executable |inked
with the Library, with the conpl ete machi ne-readabl e "work t hat
uses the Library", as object code and/or source code, so that the
user can nodify the Library and then relink to produce a nodified
execut abl e containing the nodified Library. (It is understood
that the user who changes the contents of definitions files in the
Li brary will not necessarily be able to reconpile the application
to use the nodified definitions.)

b) Use a suitable shared |ibrary mechani smfor linking with the

Li brary. A suitable mechanismis one that (1) uses at run time a
copy of the library already present on the user's conputer system
rather than copying library functions into the executable, and (2)
will operate properly with a nodified version of the library, if
the user installs one, as long as the nodified version is
interface-conpatible with the version that the work was nade with.

c) Acconpany the work with a witten offer, valid for at
|l east three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no nore
than the cost of performng this distribution

d) If distribution of the work is nade by offering access to copy
from a designated pl ace, offer equival ent access to copy the above
specified materials fromthe sanme pl ace

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required formof the "work that uses the
Li brary" must include any data and utility programs needed for
reproduci ng the executable fromit. However, as a special exception
the materials to be distributed need not include anything that is
normal ly distributed (in either source or binary form with the major
conponents (conpiler, kernel, and so on) of the operating system on
whi ch the executabl e runs, unless that conmponent itself acconpanies
t he execut abl e

It may happen that this requirenment contradicts the |icense
restrictions of other proprietary libraries that do not normally
acconpany the operating system Such a contradiction neans you cannot
use both them and the Library together in an executable that you
di stribute.

7. You may place library facilities that are a work based on the
Li brary side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a conbi ned
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherw se
pernmitted, and provi ded that you do these two things

a) Acconpany the conbined library with a copy of the sane work
based on the Library, unconmbined with any other |ibrary
facilities. This nust be distributed under the terns of the
Secti ons above

b) G ve promi nent notice with the conbined library of the fact
that part of it is a work based on the Library, and expl ai ning
where to find the acconpanyi ng unconbi ned form of the same work.

8. You may not copy, nodify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any

115

GNU Lesser General Public License Version 2.1, February 1999

attenpt otherw se to copy, nodify, sublicense, link with, or
distribute the Library is void, and will automatically term nate your
rights under this License. However, parties who have received copies
or rights, fromyou under this License will not have their |icenses
term nated so long as such parties remain in full conpliance

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you perm ssion to nodify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
nmodi fying or distributing the Library (or any work based on the
Li brary), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or nodifying
the Library or works based on it.

10. Each tine you redistribute the Library (or any work based on the
Li brary), the recipient automatically receives a license fromthe
original licensor to copy, distribute, link with or nodify the Library
subject to these terms and conditions. You may not inmpose any further
restrictions on the recipients' exercise of the rights granted herein
You are not responsible for enforcing conpliance by third parties with
this License

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limted to patent issues)
condi tions are inposed on you (whether by court order, agreenent or
ot herwi se) that contradict the conditions of this License, they do not
excuse you fromthe conditions of this License. |f you cannot
distribute so as to satisfy simultaneously your obligations under this
Li cense and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For exanple, if a patent
license would not permt royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely fromdistribution of the Library

If any portion of this section is held invalid or unenforceabl e under
any particul ar circunstance, the bal ance of the section is intended
to apply, and the section as a whole is intended to apply in other

ci rcumst ances

It is not the purpose of this section to induce you to infringe any
patents or other property right clains or to contest validity of any
such clains; this section has the sol e purpose of protecting the
integrity of the free software distribution systemwhich is

i mpl emented by public license practices. Mny peopl e have nmade
generous contributions to the wi de range of software distributed
through that systemin reliance on consistent application of that
system it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a |icensee cannot

i npose that choice

This section is intended to nake thoroughly clear what is believed to
be a consequence of the rest of this License

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License
may add an explicit geographical distribution limtation excluding
those countries, so that distribution is pernmitted only in or anpng
countries not thus excluded. |n such case, this License incorporates
the limtation as if witten in the body of this License

13. The Free Software Foundati on may publish revised and/or new
versions of the Lesser Ceneral Public License fromtine to tine
Such new versions will be simlar in spirit to the present version
but may differ in detail to address new probl enms or concerns

116

GNU Lesser General Public License Version 2.1, February 1999

Each version is given a distinguishing version nunber. |f the Library
speci fies a version nunber of this License which applies to it and
"any later version", you have the option of follow ng the terns and
conditions either of that version or of any l|later version published by
the Free Software Foundation. |If the Library does not specify a

|i cense version nunber, you may choose any version ever published by
the Free Software Foundation

14. |If you wish to incorporate parts of the Library into other free
progranms whose distribution conditions are inconpatible with these
wite to the author to ask for perm ssion. For software which is
copyrighted by the Free Software Foundation, wite to the Free
Sof t war e Foundati on; we sonetines make exceptions for this. Qur
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LI BRARY IS LI CENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LI BRARY, TO THE EXTENT PERM TTED BY APPLI CABLE LAW
EXCEPT WHEN OTHERW SE STATED I N WRI TI NG THE COPYRI GHT HOLDERS AND/ OR
OTHER PARTI ES PROVI DE THE LI BRARY "AS | S" W THOUT WARRANTY OF ANY
KI'ND, ElI THER EXPRESSED OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO, THE
I MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR
PURPCSE. THE ENTIRE RI SK AS TO THE QUALI TY AND PERFORVMANCE OF THE
LIBRARY IS WTH YOU. SHOULD THE LI BRARY PROVE DEFECTI VE, YOU ASSUME
THE COST OF ALL NECESSARY SERVI CI NG REPAI R OR CORRECTI ON

16. I N NO EVENT UNLESS REQUI RED BY APPLI CABLE LAW OR AGREED TO I N
VWRI TI NG WLL ANY COPYRI GHT HOLDER, OR ANY OTHER PARTY WHO MAY MODI FY
AND/ OR REDI STRI BUTE THE LI BRARY AS PERM TTED ABOVE, BE LI ABLE TO YQU
FOR DAVAGES, | NCLUDI NG ANY GENERAL, SPECI AL, | NCI DENTAL OR
CONSEQUENTI AL DAMAGES ARI SI NG OQUT OF THE USE OR I NABI LITY TO USE THE
LI BRARY (I NCLUDI NG BUT NOT LIM TED TO LOSS OF DATA OR DATA BEI NG
RENDERED | NACCURATE OR LOSSES SUSTAI NED BY YOU OR THI RD PARTIES OR A
FAI LURE OF THE LI BRARY TO OPERATE W TH ANY OTHER SOFTWARE), EVEN | F
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVI SED OF THE PGSSI Bl LI TY OF SUCH
DAMAGES,

END OF TERVS AND CONDI Tl ONS
How to Apply These Terns to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possi bl e use to the public, we recommend meking it free software that
everyone can redistribute and change. You can do so by permtting
redi stribution under these terns (or, alternatively, under the terns
of the ordinary General Public License)

To apply these terns, attach the follow ng notices to the library.
It is safest to attach themto the start of each source file to nost
ef fectively convey the exclusion of warranty; and each file shoul d
have at |east the "copyright" line and a pointer to where the ful
notice is found

<one line to give the library's name and a brief idea of what it does.>
Copyright (C <year> <nane of author>

This library is free software; you can redistribute it and/or
modi fy it under the terns of the GNU Lesser General Public

Li cense as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any |later version

This library is distributed in the hope that it will be useful
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of

117

jboss-common-jdbc-wrapper.jar License

MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the GNU
Lesser General Public License for nore details.

You shoul d have received a copy of the GNU Lesser General Public

Li cense along with this library; if not, wite to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA

Al so add i nformati on on how to contact you by el ectronic and paper mail .

You shoul d al so get your enployer (if you work as a programrer) or your
school, if any, to sign a "copyright disclainmer" for the library, if
necessary. Here is a sanple; alter the nanes:

Yoyodyne, Inc., hereby disclains all copyright interest in the
library "Frob' (a library for tweaking knobs) witten by Janes
Random Hacker .

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

A.4 jboss-common-jdbc-wrapper.jar License

You are receiving a copy of j boss- comrmon-j dbc- wr apper . j ar in both source and object code in the
following / src/1ib/jboss-common-j dbc-w apper . | ar. The terms of the Oracle license do NOT
apply to j boss- common- | dbc- wr apper . j ar; itis licensed under the following license, separately from
the Oracle programs you receive. If you do not wish to install this library, you may remove the file / src/
['ib/jboss-conmon-j dbc-w apper. j ar, but the Oracle program might not operate properly or at all
without the library.

This component is licensed under Section A.3, “GNU Lesser General Public License Version 2.1, February
1999".

A.5 NanoXML License

The following software may be included in this product:

NanoXML

Copyright (C) 2000-2002 Marc De Scheemmecker, All Rights Reserved.

This software is provided 'as-is', wthout any express or inplied warranty.
In no event will the authors be held liable for any danages arising fromthe
use of this software.

Perm ssion is granted to anyone to use this software for any purpose,
i ncl udi ng conmerci al applications, and to alter it and redistribute it
freely, subject to the followi ng restrictions:

1. The origin of this software nust not be mnisrepresented; you nust not
claimthat you wote the original software. If you use this software in
a product, an acknow edgnment in the product documentati on woul d be
appreci ated but is not required.

2. Altered source versions nust be plainly marked as such, and nust not be
m srepresented as being the original software.

3. This notice may not be renoved or altered fromany source distribution.

* %k ok ok ok Rk ok 3k ok ok R %k 3k 3k ok Ok % *

118

rox.jar License

A.6 rox.jar License

The following software may be included in this product:

rox.jar

Copyright (c) 2006, James G eenfield
Al rights reserved.

Redi stri bution and use in source and binary forms, with or w thout
nmodi fication, are permtted provided that the follow ng conditions are net:

* Redistributions of source code nust retain the above copyright notice, this
list of conditions and the follow ng disclainer.

* Redistributions in binary form nust reproduce the above copyright notice,
this list of conditions and the foll ow ng disclainmer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the <ORGANI ZATI ON> nor the names of its contributors
may be used to endorse or pronote products derived fromthis software
Wi t hout specific prior witten perm ssion.

TH' S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS "AS | S*

AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIM TED TO, THE | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE ARE

DI SCLAI MED. I N NO EVENT SHALL THE COPYRI GHT OMER OR CONTRI BUTORS BE LI ABLE

FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL

DAVAGES (| NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES;
LOSS OF USE, DATA, OR PRCFITS; OR BUSI NESS | NTERRUPTI ON) HOMEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER | N CONTRACT, STRICT LIABILITY, OR TORT

(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG | N ANY WAY QUT OF THE USE OF THI S
SOFTWARE, EVEN | F ADVI SED OF THE PGCSSI Bl LI TY OF SUCH DANMAGE.

A.7 Simple Logging Facade for Java (SLF4J) License

The following software may be included in this product:

Si npl e Loggi ng Facade for Java (SLF4J)

Copyright (c) 2004-2008 QOS.ch
Al rights reserved.

Perm ssion is hereby granted, free of charge,

to any person obtaining a copy of this software

and associ ated docunmentation files (the "Software"),
to deal in the Software w thout restriction, including
without limtation the rights to use, copy, nodify,
merge, publish, distribute, sublicense, and/or sell
copi es of the Software, and to pernmit persons to whom
the Software is furnished to do so, subject to the
foll owi ng conditions:

The above copyright notice and this perm ssion notice
shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE | S PROVIDED "AS | S", W THOUT WARRANTY

OF ANY KI ND, EXPRESS CR | MPLI ED, | NCLUDI NG BUT NOT

LIM TED TO THE WARRANTI ES OF MERCHANTABI LI TY, FI TNESS
FOR A PARTI CULAR PURPOSE AND NONI NFRI NGEMENT. | N NO
EVENT SHALL THE AUTHORS CR COPYRI GHT HOLDERS BE LI ABLE
FOR ANY CLAIM DAMAGES OR OTHER LI ABILITY, WHETHER I N
AN ACTI ON OF CONTRACT, TORT OR OTHERW SE, ARI SI NG FROM

119

Simple Logging Facade for Java (SLF4J) License

QUT OF OR | N CONNECTI ON W TH THE SOFTWARE OR THE USE
OR OTHER DEALINGS | N THE SOFTWARE.

120

	MySQL Connector/J Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Overview of MySQL Connector/J
	Chapter 2 Connector/J Versions
	2.1 Connector/J Release Notes and Change History
	2.2 Java Versions Supported

	Chapter 3 Connector/J Installation
	3.1 Installing Connector/J from a Binary Distribution
	3.2 Installing the Driver and Configuring the CLASSPATH
	3.3 Upgrading from an Older Version
	3.3.1 Upgrading to MySQL Connector/J 5.1.x
	3.3.2 JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer
	3.3.3 Upgrading from MySQL Connector/J 3.0 to 3.1

	3.4 Installing from the Development Source Tree

	Chapter 4 Connector/J Examples
	Chapter 5 Connector/J (JDBC) Reference
	5.1 Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
	5.1.1 Properties Files for the useConfigs Option

	5.2 JDBC API Implementation Notes
	5.3 Java, JDBC and MySQL Types
	5.4 Using Character Sets and Unicode
	5.5 Connecting Securely Using SSL
	5.6 Connecting Using PAM Authentication
	5.7 Using Master/Slave Replication with ReplicationConnection
	5.8 Mapping MySQL Error Numbers to JDBC SQLState Codes

	Chapter 6 JDBC Concepts
	6.1 Connecting to MySQL Using the JDBC DriverManager Interface
	6.2 Using JDBC Statement Objects to Execute SQL
	6.3 Using JDBC CallableStatements to Execute Stored Procedures
	6.4 Retrieving AUTO_INCREMENT Column Values through JDBC

	Chapter 7 Connection Pooling with Connector/J
	Chapter 8 Multi-Host Connections
	8.1 Configuring Load Balancing with Connector/J
	8.2 Configuring Failover with Connector/J
	8.3 Master/Slave Replication with ReplicationConnection

	Chapter 9 Using the Connector/J Interceptor Classes
	Chapter 10 Using Connector/J with Tomcat
	Chapter 11 Using Connector/J with JBoss
	Chapter 12 Using Connector/J with Spring
	12.1 Using JdbcTemplate
	12.2 Transactional JDBC Access
	12.3 Connection Pooling with Spring

	Chapter 13 Using Connector/J with GlassFish
	13.1 A Simple JSP Application with Glassfish, Connector/J and MySQL
	13.2 A Simple Servlet with Glassfish, Connector/J and MySQL

	Chapter 14 Using Connector/J with MySQL Fabric
	Chapter 15 Troubleshooting Connector/J Applications
	Chapter 16 Known Issues and Limitations
	Chapter 17 Connector/J Support
	17.1 Connector/J Community Support
	17.2 How to Report Connector/J Bugs or Problems

	Appendix A Licenses for Third-Party Components
	A.1 Ant-Contrib License
	A.2 c3p0 JDBC Library License
	A.3 GNU Lesser General Public License Version 2.1, February 1999
	A.4 jboss-common-jdbc-wrapper.jar License
	A.5 NanoXML License
	A.6 rox.jar License
	A.7 Simple Logging Facade for Java (SLF4J) License

