

Multi-Funktions-Generator MFG 9001 Teil 3

Der dritte und abschließende Teil dieses Artikels beschreibt detailliert den Nachbau und die Inbetriebnahme des neuen MFG 9001.

Allgemeines

Die gesamte Schaltungstechnik des MFG 9001 ist auf zwei doppelseitigen Leiterplatten untergebracht, der 337 x 178 mm messenden Grundplatine und der 337 x 81 mm großen Frontplatine. Gemessen am Funktionsumfang des Gerätes hält sich der Bestückungsaufwand aufgrund der durch die Prozessortechnik minimierten Schaltungstechnik in Grenzen. Beide Leiterplatten sind sowohl mit SMD- als auch mit konventionellen Bauelementen zu bestükken. Die beiden Platinen werden einzeln bestückt und nach ihrer Fertigstellung zunächst mechanisch durch Verschrauben und dann elektrisch durch Verlöten von Leiterbahnpaaren miteinander verbunden. Der Aufbau geht in gewohnter Weise anhand des Bestückungsplanes, der Platinenfotos sowie der Stückliste vor sich.

Achtung! Aufgrund der im Gerät frei geführten lebensgefährlichen Netzspannung dürfen Aufbau und Inbetriebnahme ausschließlich von Fachkräften durchgeführt werden, die aufgrund ihrer Ausbildung dazu befugt sind. Die einschlägigen Sicherheits- und VDE-Bestimmungen sind unbedingt zu beachten. Es empfiehlt sich die Verwendung eines Lötkolbens mit bleistiftspitzer Spitze, auf sauberes Löten ist gerade bei den SMD-Bauteilen unbedingt zu achten.

Frontplatine

Wir beginnen mit dem Aufbau der Frontplatine, die zunächst mit den SMD-Bauteilen zu bestücken ist. Die Widerstände, der Kondensator C 222 und die Dioden werden wie folgt beschrieben montiert:

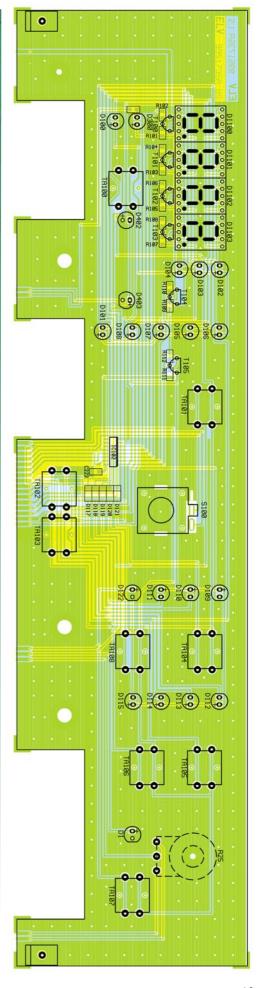
Zuerst muß das Pad leicht vorverzinnt werden. Anschließend wird das Bauteil mit einer Pinzette, bei den Dioden beachten Sie bitte die richtige Einbaulage, plaziert, festgehalten und zunächst nur auf einer Seite verlötet. Vor dem vollständigen Verlöten ist die korrekte Position zu überprüfen. In gleicher Weise wird auch IC 102 montiert, wobei die Markierungen von Pin 1 im Bestückungsdruck und am Bauteil übereinanderliegen müssen.

Nach Montage von IC 102 werden die LEDs im Abstand von 3 mm zur Platine eingebaut. Nach dem Verlöten sind die auf der Lötseite überstehenden Anschlußdrähte mit einem Seitenschneider direkt an der Lötstelle abzuschneiden, jedoch ohne diese dabei zu beschädigen. Nach Montage der Transistoren folgen die Taster und die 7-Segment-Anzeigen, wobei darauf zu achten ist, daß diese plan auf der Platine aufliegen. Vor dem Einbau des Potis R 25 sind die Anschlußdrähte in Achsrichtung abzuwinkeln. Im Anschluß daran wird das Poti eingesetzt, wobei die Anschlußdrähte auf die zugehörigen Lötflächen auszurichten

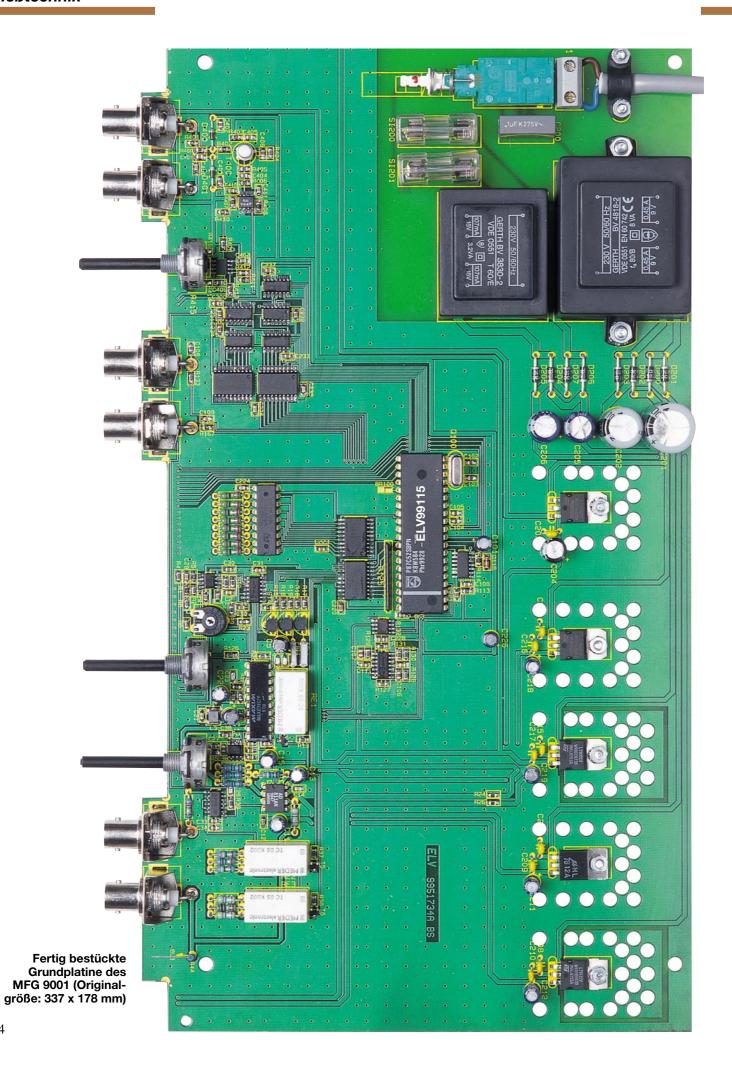
sind. Jetzt folgt das Anziehen der Mutter und das Verlöten.

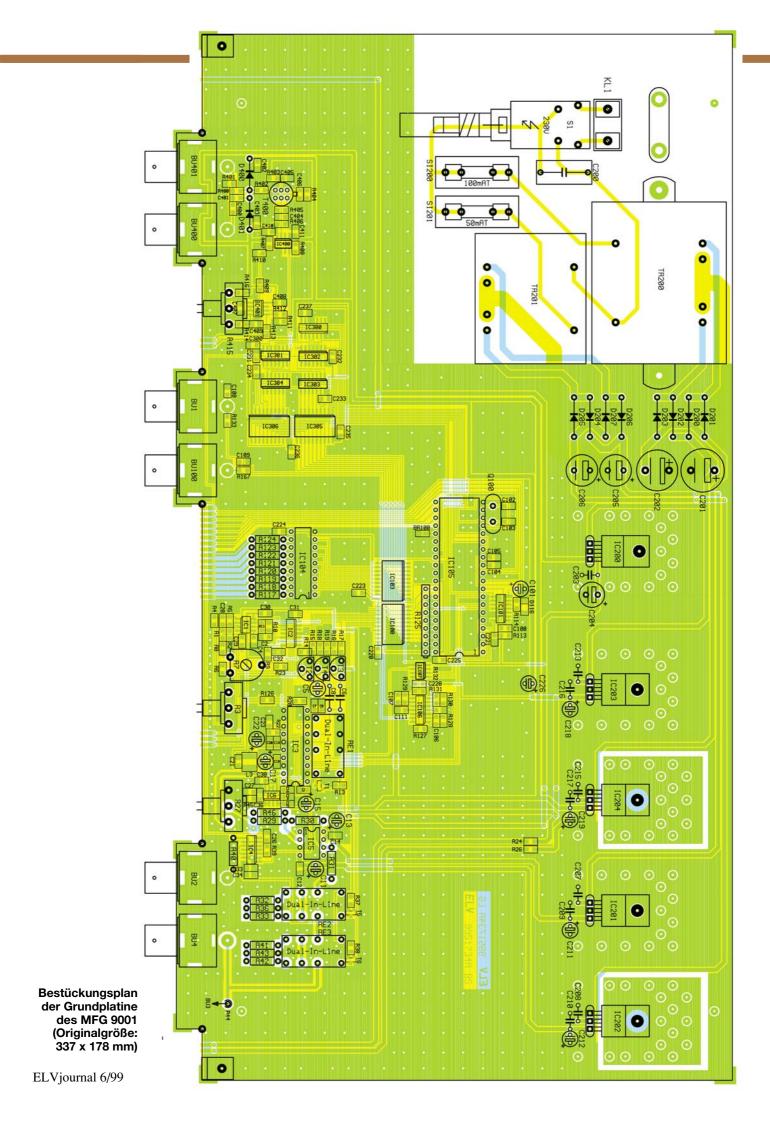
Damit der Inkrementalgeber S 100 plan auf der Platine aufliegen kann, sind in der Platine entsprechende Fräsungen vorhanden. Der Inkrementalgeber ist so weit wie möglich in die Fräsungen der Platine zu drücken und unter Zugabe von ausreichend Lötzinn zu verlöten. Die beiden Montagewinkel sind an der linken und der rechten Seite der Platine nach unten weisend zu befestigen, indem je eine M3x6mm-Schraube mit aufgesetzter Fächerscheibe von der Bestückungsseite durch die entsprechende Bohrung geschoben und im Gewinde des Winkels verschraubt wird. Nach Aufsetzen der Tastkappen auf die Taster ist die Frontplatine fertiggestellt.

Grundplatine


Die Grundplatine wird ebenfalls zuerst mit SMD-Bauteilen bestückt, wobei man, wie bereits zuvor erläutert, vorgeht. Nach dem Einbau der Widerstände, Kondensatoren, Transistoren, der Spule L 3 und der Diode D 116 werden die SMD-ICs eingebaut. Dabei ist besondere Vorsicht geboten, auf sauberes Löten und die richtige Einbaulage ist unbedingt zu achten.

Nach Fertigstellung der SMD-Bestükkung folgt die Montage der konventionellen Bauelemente. Nachdem alle Widerstände (außer R 44), Dioden, Kondensato-


ren, Transistoren, der Trimmer R 7, die Elkos (Polung beachten!), der Quarz und das Widerstandsarray montiert sind, folgt der Einbau der bedrahteten ICs, wobei ebenfalls die Einbaulage zu beachten ist.

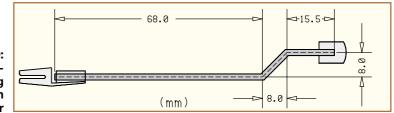

Beim Einbau der 5 BNC-Buchsen ist darauf zu achten, daß diese plan auf der Platinenoberseite aufliegen und der Winkel zur Platinenvorderkante genau 90° beträgt. Nach dem Verlöten müssen die auf der Lötseite überstehenden Drahtabschnitte und Blechüberstände mit einem Seitenschneider entfernt werden. Es folgt das Einsetzen und Verlöten der Sicherungshalter, des Netzschalters, der Schraubklemmleiste, der Relais, des X-Kondensators C 200 und des Trafos TR 201. Bei der Montage der restlichen Bauteile sollte folgendes beachtet werden:

- Der Widerstand R 44 stellt die Verbindung zur Chinch-Buchse BU 3 her und wird daher stehend in der Bohrung verlötet. Der verbleibende Anschlußdraht wird auf eine Länge von 10 mm gekürzt.
- Die Anschlüsse der Festspannungsregler IC 1 bis IC 5 sind vor dem Verlöten um 90° nach hinten abzuwinkeln. Nach dem Einsetzen in die Platine folgt das Befestigen mit je einer M3x6mm Schraube, Fächerscheibe und M3-Mutter. Anschließend werden die ICs verlötet.
- Der Transformator TR 200 muß vor dem Verlöten mit den beiden M4x5mm-Schrauben, M4-Fächerscheiben und den M4-Muttern befestigt werden.
- Die Sicherungen werden eingesetzt und mit den Abdeckkappen gegen Berührung gesichert.
- Bei der Montage des Netzkabels ist folgendes zu beachten: Der Knickschutz wird in die Geräterückwand eingeschraubt, das Netzkabel ist durchzuführen. Die beiden Adern werden in die Schraubklemmleiste gesteckt und durch Anziehen der Schrauben befestigt. Die beiden M3x14mm-Schrauben sind von unten durch die Platine zu schieben, die Halteschelle für das Netzkabel und je eine M3-Fächerscheibe wer-

Fertig bestückte Frontplatine des MFG 9001 mit zugehörigem Bestückungsplan (Originalgröße: 337 x 81 mm)

Stückliste: Multi-Funktions-Generator MFG 9001		
Widerstände:	100nF/SMD C2-C4, C12, C14,	1N4001 D200-D207
1ΩR43	C16, C18, C20, C21, C24,	DX400 D400, D401
10ΩR36	C27-C33, C36-C38	LED, 3mm, grün D1, D100-D115,
22Ω R40	C100, C107, C110, C111,	D122, D300, D402, D403
22Ω/SMD R403, R406	C220-C225, C228, C231-C237,	DJ700A, grünDI100-DI103
39Ω R32, R33	C400,C407-C411	. 0
47ΩR31, R41, R42	100nF/ker	Sonstiges:
47Ω/SMD R402, R404, R405	C213, C215-C217	Quarz, 16MHz
100Ω	100nF/250V~MP3/X2	SMD-Induktivität, 10µHL3
150ΩR28, R29	330nF	BNC-Einbaubuchse, printBU1,
220ΩR46	470nF/SMD	BU2, BU4, BU100, BU400, BU401
220Ω/SMDR413	2,2μF/63V	Cinch-Einbaubuchse,
390ΩR30	10μF/25V	Lötanschluß
470Ω/SMD R22, R39	33μF/16V	Inkrementalgeber
560Ω	100μF/16VC11, C13, C211, C212,	Mini-Drucktaster,
560Ω/SMD	C218, C219, C226 220µF/16VC204	B3F-4050 TA100-TA108 Minatur-Relais, 5V.
R106, R108, R110, R112,	220µF/50V	2 x um
R100, R108, R110, R112, R167, R410, R411	1000μF/40V	Netzschraubklemme, 2polig KL1
$2,2k\Omega/SMD$	4700μF/16V	Trafo, 2 x 9V/0,45A TR200
R107, R109, R111	1700μ1/10 γ	Trafo, 2 x 15V/107mA TR201
3,9kΩ/SMD R24, R26, R409	Halbleiter:	Sicherung, 100mA, träge SI200
4,7kΩ/SMD	TL072/SMD IC1, IC6	Sicherung, 50mA, träge SI201
$6.8k\Omega/SMD$	CD4066/SMD IC2	Schadow-Netzschalter
$10k\Omega/SMD$	MAX038	1 Adapterstück
R38, R127-R133,	74HC132/SMD	1 Verlängerungsachse, 120 mm
R168, R169	AD811 IC5	1 Druckknopf, ø 7,2mm
56kΩ/SMD/1%R1, R5	74HC574/SMD IC100, IC103	2 Platinensicherungshalter (2 Hälften)
100kΩ/SMD R9, R10, R400	CD4093/SMD IC101	2 Sicherungsabdeckhauben
150kΩ/SMDR408	74LS145/SMD IC102	9 Tastknöpfe, grau, 10 x ø 7,4mm
180kΩ/SMDR11	ULN2803 IC104	4 Drehknöpfe mit 4mm Innen-
220kΩ/SMD R45, R113, R114	ELV99115 IC105	durchmesser, 12mm, grau
330 k Ω /SMDR407	TL074/SMD IC106	1 Drehknopf, 29mm, grau
470kΩ/SMDR412	LTC1658/SMD IC107	4 Knopfkappen, 12mm, grau
1MΩ/SMDR401	7805 IC200, IC203	1 Knopfkappen, 29mm, grau
Array, 8 x 4,7kΩR125	7812 IC201	4 Pfeilscheiben, 12mm, grau
PT10, liegend, 250ΩR7	7912 IC202	1 Pfeilscheibe, 29mm, grau
Poti, 4mm, 100ΩR27	7905 IC204	5 Gewindestifte mit Spitze, M3 x 4mm
Poti, 4mm, $10k\Omega$	74F74/SMD IC300	1 Zugentlastungsbügel
Vandanastavan.	74F00/SMD IC301	9 Zylinderkopfschrauben, M3 x 6mm
Kondensatoren:	74F32/SMDIC302	2 Zylinderkopfschrauben, M3 x 14mm
6,8pF/SMD	74F393/SMD IC303, IC304	2 Zylinderkopfschrauben, M4 x 8mm 9 Muttern, M3
33pF/SMD	74HC245/SMD IC305, IC306 LT1016/SMD IC400	2 Muttern, M4
220pF/SMD	LM358/SMD	11 Fächerscheiben, M3
1nF/SMD C300, C402, C403, C406	BC848 T1, T5, T6	2 Fächerscheiben, M4
3,3nF C8, C34	BF324 T2-T4	1 Netzkabel, 2adrig, grau
3,3nF/SMDC19	BC327 T100-T105	1 Netzkabeldurchführung mit
4,7nF/SMD	U440	Knickschutz, grau
10nF/SMD C401, C404, C405	LL4148 D116-D121	2 Metallwinkel
1 - County 1 - 1 - 2 M2 M 44 - 1 - 2	liken den meinen den ab ini en I eisenbebe	

den aufgesetzt und mit M3-Muttern gesichert.

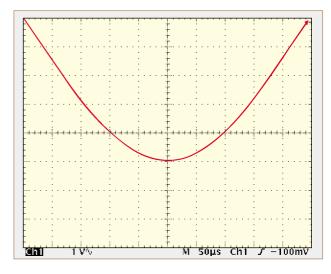

Endmontage

Nachdem beide Platinen so weit fertiggestellt sind, erfolgt das Verbinden. Dazu werden die bereits an der Frontplatine montierten Montagewinkel von oben so auf der Grundplatine plaziert, daß die Bohrungen der Winkel und die Bohrungen der Platine übereinanderliegen. Durch die Bohrungen wird je eine M3x6mm-Schraube gesteckt und auf der Lötseite mit einer M3-Fächerscheibe und M3-Mutter gesichert. Jetzt erfolgt die elektrische Verbindung durch Ver-

löten der zueinandergehörigen Leiterbahnpaare und der Masseverbindungen unter Zugabe von ausreichend Lötzinn.

Die 3 Potis R 3, R 27 und R 415 sind so zu montieren, daß sich die Achsen mittig in den Bohrungen der Frontplatine befinden. Dazu ist eine leicht erhöhte Montage erforderlich. Als nächstes wird die Achsverlängerung für den Netzschalter aus dem 120 mm langen 2mm-Draht gebogen. Abbildung 9 zeigt dazu die entsprechenden Abmessungen. Anschließend werden der Druckknopf und das Adapterstück aufgesetzt, bevor die Verlängerung durch die vorgesehene Bohrung in der Frontplatine eingesetzt wird.

Bild 9: Achsverlängerung für den Netzschalter


Technische Daten: MFG 9001 Ausgangs-Kenndaten Frequenzbereich: 0,1 Hz - 20 MHz, 5 Bereiche Ausgangssignale: Rechteck, Sinus, Dreieck, Impuls, Sägezahn, DC Ausgangsspannung: max. 10 Vss Amplitudenbereiche: 0 - 5 V, 0 - 500 mV, 0 - 50 mV, 0 - 5 mVDC-Offset: ± 5 V Ausgangswiderstand: 50 Ω , 600 Ω Klirrfaktor (Sinus): typ. 0,75 % Anstiegszeit (Rechteck):< 12 ns Amplitudenstabilität: 4 % im gesamten Bereich Tastverhältnis: 15 % - 85 % Sync.-Ausgang: TTL-Pegel, 50Ω Anstiegszeit (sync.):< 5 ns Wobbel-Teil Wobbel-Bereich: 1:1 - 100:1 Wobbel-Frequenz: 0,1 Hz - 20 Hz interner Generator: linear Wobbel-Eingang: ± 1,25 V ≜ 1:100 Eingangswiderstand: 10 k Ω Ausgangswiderstand: 1 k Ω Frequenzzähler (int./ext.) Anzeige: 4stellig, LED Bereich: DC - 100 MHz Torzeit: 100 ms Eingangswiderstand: 1 $M\Omega$ Eingangsspannung: max. 50 V, kurzzeitig 100 V Allgemeine Daten Spannungsversorgung: 230 V Leistungsaufnahme: 13 VA Abmessungen: 350 x 210 x 110 mm Gewicht: ca. 1,8 kg

An dieser Stelle sollten nochmals die korrekte Bestückung kontrolliert und eventuell vorhandene Lötzinnbrücken bzw. Lötzinnreste o. ä. entfernt werden.

Bevor man das Gerät erstmalig mit der Netzspannung verbindet, muß der Einbau in die untere Gehäusehalbschale erfolgen, die wie folgt beschrieben vorbereitet werden muß: Die M4x90mm-Schrauben sind von der Unterseite her durch die 4 Löcher zu stecken. Auf jede Schraube ist von oben eine 1,5mm-Polyamidscheibe zu schieben. Die Halbschale muß so positioniert werden, daß die Lüftungsgitter nach vorne zeigen.

An der Masse-Lötfahne der Cinch-Buchse wird ein 15 mm langer Silberdrahtabschnitt verlötet. Anschließend ist die Buchse in der entsprechenden Bohrung der Frontplatte zu befestigen, wobei der Silberdrahtabschnitt nach unten zeigen sollte. Jetzt wird die Frontplatte aufgeschoben und das so vorbereitete Chassis in die untere Halbschale gesetzt. Auf die 4 M4-Schrauben werden je ein 55mm-Abstandshalter, eine 2,5mm-Polyamidscheibe und ein 20mm-

Bild 10: Abgleich des Klirrfaktors

Abstandshalter gesetzt. Die Platine wird provisorisch durch Aufdrehen der M4-Muttern in der unte-

ren Gehäusehalbschale befestigt.

Nach dem Verlöten der Anschlüsse der Cinch-Buchse an R 44 und der vom Lötstoplack befreiten Stelle auf der Grundplatine ist der MFG 9001 für einen ersten Funktionstest bereit.

Befindet sich das Chassis auf eben beschriebene Weise in der unteren Gehäusehalbschale, ist die lebensgefährliche 230V-Netzspannung von oben her nicht berührbar, das Verbinden mit der 230V-Netzspannung kann erfolgen. Bei korrekter Funktion führt der MFG 9001 nach dem Einschalten zunächst einen Anzeigentest durch, bevor an den Ausgängen das den Einstellungen entsprechende Signal ansteht, dessen Frequenz vom Zähler angezeigt wird.

Nach erfolgreichem Test der Grundfunktionen erfolgt die Montage der Bedienknöpfe. Alle 4 aus der Frontplatte herausragenden Potiachsen sowie die Inkrementalgeberachse sind auf eine aus der Frontplatte herausragende Länge von 8 mm zu kürzen. Nachdem die Pfeilscheiben und die Kappen aufgesetzt und die Madenschrauben eingeschraubt wurden, erfolgt die Montage der Potiknöpfe entsprechend dem Frontplattenaufdruck. Bei der Montage des Knopfes "Amplitude" ist darauf zu achten, daß sich der Pfeil im Linksanschlag exakt auf der "0" befindet. Bevor der 29mm-Drehknopf auf dem Inkrementalgeber verschraubt wird, ist noch vorsichtig mit einem Seitenschneider der Pfeil der Pfeilscheibe zu entfernen.

Abgleich

Der einzige Abgleichpunkt befindet sich im Analogteil des Gerätes (R 7) und dient, wie bereits im zweiten Teil ausführlich erläutert, zur Minimierung des Klirrfaktors. Das Minimum des Klirrfaktors liegt laut Angabe des MAX038-Herstellers MAXIM bei 0,75 % und wird durch eine Gleichpannung im Bereich von ± 100 mV am Eingang DADJ eingestellt. Zum Ab-

gleich des Klirrfaktors sind folgende Einstellungen erforderlich:

Signalform: Sinus, Amplitude: 5 V, DC-Offset: Off, Frequenz: 1 kHz

An den 50Ω -BNC-Ausgang wird ein Oszilloskop angeschlossen, an dem folgende Einstellungen gewählt werden:

- X-Ablenkung: 50 μs/DIV
- Y-Ablenkung: 1 V/DIV bei 1:1 oder 0,1 V/DIV bei 10:1
- Kopplung: AC
- Nullinie mit Y-Position ganz nach oben schieben
- Triggerung: Normal, negative Flanke, DC-Kopplung
- Mit Triggerlevel und X-Position den linken Nulldurchgang in die linke obere Bildschirmecke schieben, siehe Abbildung 10.
- Frequenz evtl. so korrigieren, daß sich der rechte Nulldurchgang in der rechten oberen Bildschirmecke befindet, siehe Abbildung 10.
- Den Spitzenwert mit R 7 in die Bildschirmmitte bringen.

Damit ist der Klirrfaktor minimiert und der endgültige Zusammenbau kann erfolgen. Nach Abziehen des Netzsteckers werden die provisorisch aufgesetzten M4-Muttern von den Gehäuseschrauben entfernt. Die Rückwand muß in die vorgesehenen Schlitze im Gehäuseunterteil geschoben werden, der Knickschutz ist festzudrehen. Sodann wird die obere Halbschale (Lüftungsgitter hinten) aufgesetzt, die M4-Muttern sind einzusetzen. Das Anziehen der Montageschrauben geschieht von unten, indem das Gerät an der Stelle, an der die Schraube festgezogen werden soll, über die Tischkante hervorgezogen wird. Die jeweilige Schraube darf dabei nicht herausfallen. Nach dem Festziehen der 4 Schrauben sind die Fußmodule mit zuvor eingepreßten Gummifüßen sowie die Abdeckmodule einzusetzen. Damit ist der Nachbau des MFG 9001 abgeschlossen und der Funktionsgenerator für den Ein-ELV satz im Elektronik-Labor bereit.