
MMeerrrryy CChhrriissttmmaass
FFrroomm TThhee MMaaggPPii

IISSSSUUEE 0088 ­­ DDEECC 22001122

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hh tt tt pp :: // // ww ww ww .. tt hh ee mm aa gg pp ii .. cc oo mm

Raspberry Pi is a trademark of The Raspberry Pi Foundation.
This magazine was created using a Raspberry Pi computer.

TThhiiss IIssssuuee......

•• SSkkuutttteerr
•• NNaannppyy
•• PPii GGaauuggee
•• PPiibbooww
•• CCEESSIILL PPii
•• CC++++
•• AAddaa
•• MMyySSQQLL
•• PPyytthhoonn PPiitt

CCaattcchh SSaannttaa uussiinngg
hhoommee aauuttoommaattiioonn

Win a 512MB
Raspberry Pi

Visit our Kickstarter
http://kck.st/TvkdvG
for printed MagPi!

Welcome to the eighth edition of The MagPi magazine,

It’s Christmas! In this issue we hope to entice you into some festive projects to try after gorging yourself
to the brim with Christmas pudding.

In this month’s edition, we introduce you to a simple home automation project allowing you to control
lights and appliances in your house using the power of the Pi! Just in time to catch Mr Claus! We get
your Skutter project in motion with Morphy’s article on adding wheels to your base. Gordon teaches us
how to light up a Christmas tree, we have more on using the Pi to control an Arduino and Ben describes
how to control servos attached to the Pi using the internet! If this isn’t enough we have more of the old
favourites plus an introduction to SQL.

As always, we have some great prizes for you to win in our monthly competition. The MagPi would like
to say a big thank you yet again to PC Supplies Ltd who this month has outdone themselves by offering
up for grabs a 512MB Raspberry Pi!

In addition to this we have some exciting news for you this month. As of December 1st, we at The
MagPi are so excited to be able to offer our readers the possibility of a printed version of all eight issues
of the magazine! This is something which gets constantly requested of us from our readers. All eight
issues will be beautifully wrapped up in a limited edition MagPi binder making it a great gift to
yourself or any of your loved ones of any age. For more information on this please visit
http://www.kickstarter.com/projects/themagpi/the­magpi­magazine­from­virtual­to­reality.

On behalf of the whole team, thank you again for all your support. We hope you have a fantastic
Christmas and we will see you in the New Year (1st of February).

Ash Stone,
Chief Editor of The MagPi

MagPi team
Ash Stone - Chief Editor /Administrator

Chris 'tzj' Stagg - Writer /Photographer /Page Designs

Colin Deady - Writer /Page Designs

Jason 'Jaseman' Davies - Website /Page Designs

Matt '0the0judge0' - Website /Administrator

Tim 'Meltwater' Cox - Writer /Page Designs /Admin

Aaron Shaw - Page Designs /Graphics

Ian McAlpine - Page Designs /Graphics

Lix - Page Designs /Graphics

Sam Marshall - Page Designs /Graphics

W. H. Bell - Page Designs

Guest writers
Bodge N Hackitt - Writer

Geoff Johnson - Writer

Andrea Stagi - Writer

Ben Schaefer - Writer

Gordon Henderson - Writer

Alex Kerr - Writer

Luke Guest - Writer

Richard Wenner - Writer

2

04 SKUTTER RETURNS

Dig out the toolbox for the next thri l l ing instal lment, by Bodge N Hackitt

08 HOME AUTOMATION - SANTA TRAP

Control your home with a Raspberry Pi and catch Santa in the act! by Geoff Johnson

1 1 THIS MONTH'S COMPETITION

Win a 51 2MB Raspberry Pi Model B, from PC Supplies Ltd

1 2 CONTROL YOUR ARDUINO WITH PYTHON & RASPBERRY PI

The power of Raspberry Pi and the simplicity of Arduino using Nanpy, by Andrea Stagi

1 4 PI GAUGE

Control servos over the internet, by Ben Schaefer

1 7 BOOK PROMOTION - GETTING STARTED WITH PYTHON

Simon Monk's new book covering basic to ful l GPIO python examples

1 8 PIBOW INTERVIEW

An interview with the designers of the PiBow case, by Chris Stagg

20 CESIL POWERED CHRISTMAS TREE

Christmas from the 70s using the CESIL programming language, by Gordon Henderson

22 WELCOME TO THE C++ CACHE

Using basic variables and STL strings, by Alex Kerr

24 BEGINING ADA

The second instal lment in our Ada programming tutorial , by Luke A. Guest

26 DATABASE BOOTCAMP

Get your teeth into some Structured Query Language (SQL), by Richard Wenner

29 THIS MONTH'S EVENTS LIST

Raspberry Jams and other community events

30 THE PYTHON PIT

Creating multiple desktop widgets, by Colin Deady

32 FEEDBACK & DISCLAIMER

Contents

3

A simple, switching “H bridge”

In the last article we looked at some physical
means of adding motors to a robot and
investigated adapting some motorised
electronic toys as a potential source for robot
bases.

In this article I wi l l begin to explain how you
can bui ld your very own DC electronic motor
driver module and write a basic control
program for it.

We wil l start by re-examining the standard DC
motor that was covered in the previous article.

To make the motor run forwards we apply a
power source between the + and – terminals
on the motor and to make it run in reverse we
simply swap the power source terminals
around.

The motor driver module we are going to
create wil l need to be a circuit which is able to
do this swapping around of the power supply
terminals electronical ly. This can be
accomplished using an “H bridge" circuit.

This diagram shows a simplified version of
such a circuit. Closing switches 1 and 2
effectively connects the positive rai l of the
power supply to the + terminal on the motor
and ground to the – terminal; causing the
motor to run forwards. Alternatively, closing
switches 3 and 4 connects the ground to the +
terminal and the positive rai l to the – terminal;
causing the motor to run in reverse.

There is a potential ly dangerous situation if
switches 1 and 4 or 3 and 2 are closed. This
would create a short circuit between Power
Supply + and Ground which can be very
problematic to say the least. Care must be
taken when control l ing this circuit to ensure
that this situation can never happen.

In real ity we can’t have four physical on / off
switches l ike this as we need to control the
circuit using the GPIO on the Raspberry Pi.

There are electronic solutions to this. One
possibi l i ty is the use of electromagnetic relays
to close these switches. However, the
Raspberry Pi is not able to del iver enough
power from the GPIO to directly activate such
a relay without having something in-between
such as a transistor. This leads us to the
second possible solution which is to simply
use some transistors as switches.

Transistors as switches

The transistor is arguably the most important
electronic invention ever created. I ts
development is responsible for everything
from portable music players to the processor
used in the Raspberry Pi.

DIFFICULTY: ADVANCED Part 2

Adding a motorised base

4

We wil l be looking at NPN type transistors.
This device has three terminals cal led base,
col lector and emitter.

Connecting a power supply across the
col lector and emitter al lows the transistor to be
used as a switch. Without a connection to the
base, the internal resistance of the transistor
is extremely high and the switch is off.

I f we apply a current to the transistor base
then the internal resistance wil l drop by a
corresponding amount and current wil l begin
to flow from the col lector to the emitter.

The transistor is able to vary its internal
resistance very quickly, tens of thousands of
times per second. (I t’s this feature that al lows
transistors to be used as amplifiers) .

The amount that the current affects the
internal resistance of the transistor is defined
by a ratio known as the DC current gain and is
referred to as hFE.

In our case we want to supply a current to the
base that wil l cause the internal resistance be
near zero – just l ike a closed switch. This is
cal led “transistor saturation” and there is an
equation which tel ls us the current we need to
apply to the base to make this happen,

IB = IC / hFE

where I C is the col lector current and I B is the
base current. In order to find out what this
current is it’s necessary to measure the
current that’s drawn by the motor. This means
an experiment is needed!

For this you wil l need your motorised base (in
my case it’s the modified Big Trak), a power
supply (some batteries) and a multimeter.

I f you don’t own a multimeter yet, they are an
essential tool for anyone who is involved in
electronics and allow you take a wide range of
measurements including voltage, current,
resistance, capacitance and hFE.

I t is possible to obtain a good multimeter for
under ten pounds from a variety of retai lers.
Maplin sel l one for £7.99 (CODE: N20AX).

DC motors draw different currents under
different conditions. I f a motor is free-wheeling
then the motor wil l draw a comparatively small
current.

Alternatively a stal led motor (a motor that is
prevented from turning) wil l draw an extremely
high current. The harder we make a motor
work, the more current it wi l l draw. In our case
we want to measure the current the motors

draw when our robotic base is trundl ing along
the floor. One way to accurately obtain this
measurement is to make the base move on
the ground and measure the current that is
being drawn. Here is the method I used with
my Big Trak:

Connect the multimeter in series between the
battery/power supply and one of the motors in
the Big Trak.

The second motor must also be connected to
the power supply and active otherwise only
one motor wil l try to drive the whole Big Trak
which wil l result in an inaccurate
measurement. However, we only need to
measure the current drawn by one of these
two identical motors.

Add some weight to the Big Trak which
approximates the expected overal l weight of
the finished robot. In the case of the Skutter
this includes adding the robot arm.

Complete the circuit between the batteries and
motor, including the multimeter in series as
shown. As the Big Trak rol ls along the floor,
take a measurement of the current which is
being drawn. Under the expected load for the
Skutter using this method, one of the two Big
Trak motors should draw a current of 2.5
Amps.

CAUTION: When motor stal l ing was tested
the current drawn was approximately 20
Amps.

Continuedover page...

5

Choosing the right transistor

Using the right transistor can make a massive
difference to the design of your circuit. Often
several factors need to be considered
simultaneously. First, we need an idea of the
minimum gain we need to provide. For this we
wil l use the saturation equation given before.
However, it is common to al low for 5 times the
hFE value to provide an operating margin (if
you look closely at transistor data sheets this
value can vary widely due to how hard it is
driven). Here, I C is the current we need for our
motor at 2.5A and I B is the current we can
supply to switch the transistor (RPi GPIO pin
can supply up to 1 5mA per pin, with a 51 mA
maximum across the GPIO in total) .

hFE(min) > 5 x (IC/IB)

= 5 x (2.5/0.015) = 833

(typical transistor gains are nearer 1 00…)

The next consideration is that the transistor
wil l need to handle 2.5A through the col lector
and emitter. Therefore, I CE(max) needs to be
high enough (and a VCE(max) high enough for
your motor supply. Final ly, the voltage drop
VCE(sat) is also important, since not only does
this determine how much of the supply voltage
makes it through to the motor, but the amount
of power wasted (as heat.. . too hot=melted) by
the transistor (this is given by Power = I C x
VCE(sat)) .

The alarmingly high gain value can be solved
by using more than one transistor in series, so
the GPIO signal is amplified in stages. One
way to do this is to use a special arrangement
cal led a Darl ington Pair; these are often
avai lable wrapped up in a single package. In
fact TIP1 20, TIP1 21 and TIP1 22 are
designed for such applications, offering hFE
values around 1 000, I C(max) of 5 Amps and in a
suitable form to attach a large heatsink if
required.

However, another option is to make use of
extra transistors to perform the switching of
the H-Bridge and also provide isolation from
the motor supply voltages (anything above
3.3V on the GPIO is bad news). The gain
from these transistors can be used to reduce
the required gain of the H-Bridge transistors;
with some careful selection it may be possible
to drive the motor without the Darl ington Pairs
(see http://goo.gl/ggHrq). This leads to the
final consideration: whatever transistors you
design for you’ l l need to source them or
equivalent ones, hence why I ’ve settled on the
TIP devices. The trade-off is that the VBE(sat)
can range from 0.7V – 4V, dropping a large
chunk of the supply voltage, depending on the
ratio of I B and I C.

Transistor motor driver circuit

Below is a "Weiss" H-Bridge circuit. You wil l
see that our simple switch design is a l ittle
more complex than we thought, but each part
of the circuit performs an important job.

There are four diodes (D1 -D4) which are
orientated in the opposite direction to the flow
of current. This is because a DC motor can
also generate an electric current when it turns
faster than we are driving it. This is referred to
as “fly-back current” and it can be high
enough to damage the transistors. Having
these reverse biased diodes al lows any "fly-
back" current to escape safely. I f you have
looked at the datasheets for the TIP devices
you wil l notice that they already include the
diodes internal ly, so you won't need to add
extra ones (but it is important to remember if
using other devices).

Also, you may note that the top transistors are
sl ightly different to the bottom ones (the
arrows point inwards). These are PNP type
devices rather than NPN, which al lows the
driving voltage of the motor to be greater than
the GPIO voltage. The PNP "twins" of the
NPN devices mentioned are TIP1 25, TIP1 26
and TIP1 27. They function the same, except
importantly they are active LOW, so the GPIO
has to be turned OFF to switch the transistor
ON.

You wil l notice that two extra transistors are
used to switch on and off the TIP transistors.
This al lows the motor supply to be greater
than the GPIO voltage without putting that
voltage on the GPIO pin (with bad results for
the Raspberry Pi) . A nice side-effect is that
not only does this make control l ing the PNP

6

devices easy, but both the top and bottom
"switches" can now be control led with one
GPIO pin for each direction.

Selection of this transistor is a l ittle easier than
the previous ones since the bulk of the work
wil l be done by the TIP devices. A low cost
general purpose transistor is suitable - the
BC1 08 or 2N2222 should be fine.

An important aspect of this circuit is the
common ground of the Raspberry Pi and the
motor power supply. This al lows the two
separate power supplies to be tied to the
same 0V allowing them to work in the same
circuit (although we sti l l have to take care to
keep the motor supply +V away from the
GPIO).

Resistor values

When you start to calculate the numbers, you
wil l notice we have a lot of headroom, so we
may as well aim for the ideal of only using a
5th of the gain. This means that the transistor
is not only saturated, but not being pushed too
hard (even if the motor voltage is raised or
lowered, or more current is driven up to 5A).
We wil l use a 9V motor supply for the
calculations.

Q1 , Q2 assume gain of 200 (1 /5 of hFE(min)) ,
IB = IC/(hFE(min)/5)

= 2.5A/200=12.5mA

R3 = (Vmotor­Q1VCB­Q2VBE)/IB
= (9 – 1.4 – 1.4) / 0.0125 = 496 ohm

(470 ohms gives 1 3 mA, gain 1 90)

Q5 assume gain of 6 (1 /5 of HFE(min)) ,
IB = 0.0125/6 = 2mA

R1 = (VGPIO­Q5VBE­Q2VBE)/IB
= (3.3 – 0.7 ­ 1.4) / 0.002 = 600 ohm

(680 ohms gives 1 .76 mA, gain 7.5)

So we can use 680 ohms for R1 & R2 and 470
ohms for R3 & R4.

Control

With the extra control transistors it is easy to
control the motor, turn on Q5 for forward and
turn on Q6 to reverse. I t should be obvious
that you do not want to try forward and reverse
at the same time!

You can check your program by connecting
the GPIO pins to LEDs instead of the H-Bridge
to confirm you wil l obtain the correct outputs.

Note: Pages 6/7 of this article have been updated to replace

the original circuit. Other improved motor control solutions wil l

be explored in later issues.

Article byBodge NHackitt
Updated by MeltwaterBasicGPIOHBridgeControl.py :

#! /usr/bin/python

import time

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BOARD)

Q5=7; Q6=11 # Set GPIO Pins

#­­­­­­­­­­­­­­­­­­­­­­­­­­­­IMPORTANT ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

#IF Q5 ON THEN Q6 must be OFF

ELSE transistor short circuit !

#­­

#Set Starting State

GPIO.setup(Q5, GPIO.OUT); GPIO.setup(Q6, GPIO.OUT)

GPIO.output(Q5, False); GPIO.output(Q6, False)

print "Drive motor forwards for 3 seconds"

GPIO.output(Q5, True)

time.sleep(3)

print "Stop motor"

GPIO.output(Q5, False)

print "Drive motor in reverse for 3 seconds"

GPIO.output(Q6, True)

time.sleep(3)

print "Stop motor"

GPIO.output(Q5, False); GPIO.output(Q6, False)

GPIO.cleanup()

NOTE: This program would need another set of 2 GPIO pins to control a second H bridge if the
robot is using two motors.

7

This article covers an easy to bui ld, cheap
and above all , safe way to control mains
powered devices with a Raspberry Pi. Nothing
in this project involves going anywhere near
any dangerous voltages. Soldering is l imited
to just a few joints and source code can be
downloaded for the software part.

The Story

I bought some inexpensive remote control led
power sockets from http://www.amazon.co.uk
(search Status remote control socket) . [Ed: I
saw something very similar for $20 in Home
Depot]. I tried them out with a few random
appliances, stuck them in the cupboard and
forgot about them... but the Raspberry Pi
inspired me to do something useful with them.

I decided to use the Raspberry Pi to replace
the remote control and because it is
programmable we can extend the capabil i ty.
How about turning Christmas tree l ights on
and off at set times, using your smartphone to

turn on the kettle just as you arrive home or
flashing the bedside l ight when Santa walks
on a pressure sensitive mat in front of the
chimney on Christmas Eve!

Decoding the Remote Codes

The first step was to identify the signal l ing
used by the sockets so I could try to mimic it
using the Raspberry Pi. The communication
between the remote and the sockets is radio
based, al lowing control without l ine of sight.
This al lows sockets in various rooms to be
control led from one location.

There’s a sticker on the back of the sockets
saying 433.92MHz, so I searched eBay for
“433MHz receiver” to find a suitable receiver.
This found me a transmitter and receiver for
Arduino projects for only £1 .60 ($1 .99)
including postage and packing from China!

I had to solder a 7" (1 7cm) antenna wire onto
the receiver and transmitter. The antenna
length represents a 1 /4 wavelength of
433.92MHz. For this calculation you can use
an onl ine calculator such as
http://www.csgnetwork.com/freqwavelengthcalc.html.

To read the code from the remote control I
connected the receiver module to a computer
microphone socket. I used a separate 5V
power supply, but there’s a 5V output on the

Automate your home with a RaspberryPi... and catch Santa

in the act!

8

Raspberry Pi GPIO that would serve the
purpose. The output from the receiver module
is 5V digital , which isn’t suitable to be
connected straight into a computer audio
socket. Therefore, I connected the output of
the module via a 1 M Ohm resistor to the
microphone socket of my laptop. I assembled
the circuit on breadboard, but you could use
the other end of the floppy disk drive cable
connector I mention in the Hardware section.

Audacity (http://audacity.sourceforge.com) is
excel lent freeware for examining signals l ike
this. Once I was satisfied that the recording
level was about right, I started recording and
pressed one of the buttons on the remote.
Having stopped the recording I was able to
zoom in on the area where the signal from the
remote was. The signal repeated over and
over unti l the remote button was released. The
narrow pulses seemed to be about 0.25ms in
duration with the wide pulses 3 times as long.

From the waveform I created this binary string.
Each bit represents 0.25ms with 1 = high
pulse and 0 = low pulse. To aid readabi l i ty
each pulse has been separated with a dash.

11111­000­1­000­1­000­1­000­1­000­1­000­

1­000­1­000­1­0­111­000­1­0­111­000­1­

000­1­0­111­000­1­000­1­0­111­0­111­0­

111­0­111­0­111­000­1­000­1­000­1­0­

111111

This is make or break time for the project. I f
you have come this far and cannot find a
repeating pattern, that appears when you
press the remote control button, your sockets
may not be using the simple AM signal l ing that
this project rel ies on.

Sending a Signal

To be able to do anything with the captured
data, I connected the transmitter to the
Raspberry Pi. The transmitter is intended to
stay connected to the Raspberry Pi, so it’s
powered from the +5V pin of the GPIO. I

connected GPIO 7 of the Raspberry Pi to the
data pin and the GND of the transmitter to the
GND of the Raspberry Pi GPIO connector.
The 3.3V signals are enough to drive the
transmitter, though I only found this out by
trying it.

Because Linux is a multi tasking OS and
something else could use the CPU at just the
wrong time, my program repeatedly sends the
bit sequence 1 0 times with the expectation
that at least one wil l be transmitted correctly.

When I ran my software on the Raspberry Pi
for the first time, I captured the signal with
Audacity. I could see that the waveform shape
was correct, but upside down. Needless to
say, the socket didn’t do anything. I fl ipped all
the bits in my output stream and re-ran the test
code. This time the socket switched on! This
just left me with the other buttons to
transcribe.

Hardware

The connector for the GPIO and the cable I
used is from an old PC floppy disk drive cable.
These have a wider cable and plug than the
Raspberry Pi GPIO connector, but you can fit
the plug onto the GPIO pins with part of the
plug going off the end. Of course, this won’t
work if your Raspberry Pi is in a case.

Only 3 wires are required from the GPIO; +5V,
GND and GPIO 7 (CE1), the pin I use to
control the transmitter.

On the other end of my ribbon cable is a very
small piece of stripboard. Soldered to this
board is a connector for the transmitter, made
by cutting down an IC socket.

Continuedover page...

9

Software

As the GPIO code in the example I fol lowed
from http://www.el inux.org/Rpi_Low-level_
peripherals directly accessed memory it
needed to be run by the root user. To make
my life easy I developed and tested it whi le
logged in as root. Al l commands given here
assume you wil l be doing the same.

Everything is done from the command line so,
unless your system is set to jump straight to
the graphical front end, just stay at the
command line.

To create a directory in which to keep the
source code and the executable fi le whi le
under development, type the fol lowing:

$ mkdir gpio

$ cd gpio

My source code can be downloaded from
http://www.hoagieshouse.com. Just fol low the
l inks and save the fi le in the directory you just
created. I t takes 2 parameters, the channel
and on or off. You’ l l need to edit the code to
replace my remote control codes with your
own. To edit the code type:

$ nano switch.cpp

Be careful l to retain the quote marks around
the codes in the source. When you have
changed the codes, quit by pressing <CTRL>­

<X>, answer Y to the question about saving the
fi le and accept the fi lename switch.cpp. To
bui ld the executable fi le, type:

$ g++ ­o switch switch.cpp

Test it with your sockets by typing:

$./switch 1 on

I f i t works you wil l probably want to be able to
run it as any user. Type the fol lowing
commands to do this:

$ chmod +s switch

$ mv switch /usr/bin/

To schedule the sockets to come on and off at
certain times, you can use something cal led
cron jobs. Just type:

$ crontab –e

You wil l be able to edit a fi le that controls
scheduled jobs. The format is described in the
fi le, but to try something out add these l ines to
the bottom of the fi le:

0 * * * * switch 1 on

10 * * * * switch 1 off

This wil l turn socket one on for the first ten
minutes of every hour.

So far, this is not very user friendly. A web
based interface would be a lot nicer. My web
interface al lows the 4 channels to be switched
on and off, but I ’ve not gone as far as to add
any schedul ing to it. First, instal l mini-httpd to
act as the web server. To do this type:

$ apt­get install mini­httpd

You can download the fi les for the web
interface from http://www.hoagieshouse.com.
In the zip fi le is the config fi le for mini-httpd
and the var/www directory, which is where I
put web page and cgi programs. These
shouldn’t need any modification, but wil l need
to be copied to the correct locations. The
HTML fi le uses a primitive AJAX request to
run the CGI script with the channel and on/off
parameters. The CGI script just pul ls the
parameters from the query and calls the
switch program with them.

Conclusion

Now that you have the software foundation to
remotely control multiple mains devices with
your Raspberry Pi, I leave it as an exercise for
you to imagine what other triggers you could
connect to the GPIO to turn on and off
devices. Oh, if you do catch Santa please tel l
him I would l ike the printed MagPi Christmas
Pack from http://www.kickstarter.com/
projects/themagpi/the-magpi-magazine-from-
virtual-to-real ity.

Maplin Parts List (Nov 201 2)
VY48C - 433MHz TX/RX £9.99
M1 M - 1 M Ohm resistor £0.29
DG41 U - Floppy disk cable £3.99

Article byGeoffJohnson

10

To see the large range of PCSL brand Raspberry Pi accessories visit

http://www.pcslshop.com

Last Month's Winners!
The 5 winners of the PCSL Raspberry Colour Case are Dave Heneghan (Chorley, UK),

Dean Hutchison (Glasgow, UK), Dave Carney (Hartlepool, UK), Nigel Laudat

(Liverpool, UK) and Peter Locastro (Derby, UK).

Congratulations. PCSL wil l be email ing you soon with detai ls of how to claim all of those

fantastic goodies!

This month's prize is a new 51 2M B

Raspberry Pi M odel B plus a 1 A 5V power

supply and a PCSL Raspberry Pi case!

Both the 2nd and 3rd prize winners wil l

each receive a PCSL Raspberry Pi case.

For a chance to take part in this month's

competition visit:

http://www.pcslshop.com/info/magpi

Closing date is 20th December 201 2.

Winners wil l be notified in the next issue of

the magazine and by email . Good luck!

The M agPi and PC Supplies Limited are very proud to announce a very
special prize for the winner of this month's competition.

DECEMBER COMPETITION

11

Introduction

An Arduino board can communicate with the
Raspberry Pi via a serial over USB
connection. This creates a virtual serial
interface, which it uses l ike a normal interface,
reading and writing to the serial device fi le. To
begin, attach your Arduino board and type:

$dmesg | tail

[..]usb 1­1.2: Manufacturer: Arduino[..]

[..]cdc_acm 1­1.2:1.0: ttyACM0: USB ACM

device[..]

My Arduino Uno board device is /dev/ttyACM0
and its driver is cdc_acm. Old arduino boards
with a FTDI USB-Serial chip are accessed via
/dev/ttyUSB*:

$ls ­l /dev/ttyACM*

crw­rw­­­T 1 root dialout 166, 0 Nov 5

00:09 /dev/ttyACM0

Ok, now you should add your user to the
'dialout' group to give the required read/write
access, then logout and login again for this to
take effect:

$sudo usermod ­a ­G dialout YOURUSERNAME

This is important because Nanpy works using
this device fi le. Nanpy is an open source
project relased under the MIT license, and is
composed of a server part (flashed to your
Arduino which waits for commands on a
serial) and a pure Python l ibrary. This l ibrary
al lows you to communicate with your Arduino
connected via USB using classes and
methods real ly simi lar to those in the Arduino
framework. Behind the scenes when you
create/delete an object or cal l methods with
Python, Nanpy communicates via USB and
asks the server part to create/delete the
corresponding object. I t also cal ls methods in

Arduino for you: you can instantiate how many
objects you want without worrying about
deal location and it's also possible to use in a
multithreading context. Nanpy aims to make
developers' l ives easier; giving them a simple,
clear and fast instrument to create prototypes
and scripts interacting with Arduino, saving a
lot of time. To instal l Nanpy read the
README fi le. You need to instal l Arduino on
your laptop or your Raspberry Pi in order to
bui ld the firmware:

$sudo apt­get install arduino

Nanpy is actual ly under heavy development
and it's only been tested on the Uno board.
You can get Nanpy from the Pypi page
(http://pypi.python.org/pypi/nanpy) or Github
(https://github.com/nanpy).
Let's see Nanpy in action and try to turn on a
LED placed in the 1 3th pin of the Arduino:

from nanpy import Arduino

Arduino.pinMode(13, Arduino.OUTPUT)

Arduino.digitalWrite(13, Arduino.HIGH)

Arduino provides al l of the main functions,
delay, analog/digital write and read. No setup
or loop functions, just objects and method
calls. In fact, Nanpy supports al l of the main
Arduino methods - LCD, Tone, Stepper and
other l ibraries. Now let's see how to use our
1 6x2 text-based LCD on pins 6, 7, 8, 9, 1 0
and 1 1 , in order to write a better Hello World
script:

from nanpy import Lcd

lcd = Lcd([7, 8, 9, 10, 11, 12],[16, 2])

lcd.printString("Hello World!")

Just a word of warning : Raspberry Pi may
not provide enough power to drive your
Arduino, so you might need to connect
Arduino to an external power source.

Control your Arduino board
with Raspberry Pi and Python

The power of Raspberry Pi and the simplicity of Arduino

using Python and a simple library: Nanpy.

12

The external world

Now I want to show you how to make Arduino
communicate with the external world using the
Raspberry Pi. To understand it we wil l bui ld a
modern clock, able to measure external
temperature, with an alarm initial ised via
bluetooth (using an Android device in this
case) and date and time updated via a NTP
server.. .

You can find the project with instructions, an
Android app and required components here:
https://github.com/nanpy/eggsamples/tree/ma
ster/synclock. To show how Nanpy works in a
multithreading context, this program creates a
thread for every functional ity, writing it al l on
the same LCD. In this article I show only the
inner part of every "whi le True" cycle present
in each "run" method, so I recommend you
fol low along with the source code. Let's start
with the main thread, TimeThread, that reads
the time from our ntp server every one second
and stores it in a global variable, mil l time:

response = ntplib.NTPClient().request(

'europe.pool.ntp.org',

version=3)

milltime = int(response.tx_time)

To show date and time on the LCD, create a
second thread, ShowTimeThread:
...

self.servo = Servo(12)

...

dt = datetime.fromtimestamp(milltime)

lcd.printString(dt.strftime('%Y/%m/%d'),

0, 0)

lcd.printString(dt.strftime('%H:%M'),

0, 1)

self.servo.write(90 + (30 * self.c))

self.c *= ­1

Every second we get the mil l time global

variable, trasform it to a readable format and
then print the date and time onto the LCD. As
you can see, printString can be called
specifying the position (column, row) you wish
the string to appear on the LCD. Then we
move the servo motor l ike a pendulum every
second. We can update the temperature in
another thread. Reading the value of our
temperature sensor from the analog pin 0 and
printing it on the LCD, near the time, every 60
seconds:

temp = ((Arduino.analogRead(0) / 1024.0)

* 5.0 ­ 0.5) * 100

lcd.printString("­ %0.1f\xDFC" % temp,

6, 1)

Ok, now let's see how to communicate with an
Android phone that can set the alarm clock via
bluetooth. I paired my device with the
Raspberry Pi before start, fol low this guide to
do that: http://wiki .debian.org/BluetoothUser.
Remember to instal l python-bluez too. We wil l
use AlarmClock, a thread-safe class, to save
on disk and get from it the alarm clock value
(look at the code). Then we can start our
bluetooth communication in another thread,
AlarmClockThread:

...Bluetooth init and connection...

cli_sock, cli_info = srv_sock.accept()

cli_sock.send("%d:%d:%d", ck.getAlarm())

try:

while True:

data = cli_sock.recv(3)

if len(data) == 0: break

ck.setAlarm(ord(data[0]),

ord(data[1]),

ord(data[2]))

except IOError:

pass

Our Raspberry Pi acts as a server, waiting for
a bluetooth connection: once this happens, it
sends the alarm clock to our device and waits
for a new value to store. In the TimeThread we
compare the actual time with the alarm value:
if they match we can start another thread,
PlayAlarmThread, playing a C note for 250ms,
five times, using a Tone object through a
speaker control led via the 4th digital pin. I t's
time to wake up!

Start thinking about your own project with
Nanpy, for example trying to bring your old RC
car back to l ife: youtu.be/NI4PDfVMdgM

Article byAndrea Stagi

13

Summary

Control l ing hardware that is hooked up to the
Pi is real ly fun. Control l ing hardware from
across town or another state that is hooked up
to the Pi is awesome.

We are control l ing five servos; each servo
controls a needle on a chart that can show any
data we choose through printable, modular
backgrounds. We used PHP to create a
webpage that is served up by the Pi. The PHP
makes system calls through the command line
that cal ls a Python script. In turn, the Python
script controls the movement of the servos
over an I2C bus; it also returns the positions of
the servos by reading values out of a register
that l ives on the servo driver. The 1 6-channel
servo driver is from Adafruit
(http://www.adafruit.com/products/81 5); i t
comes with a nice l ibrary that takes care of
low level operations. You need their tutorial for
initial set up and library downloads. We have
provided al l our code and templates along with
a help fi le in a Git repository. This project can
be scaled to control up to 1 6 servos.

We used the newest Debian Wheezy
distribution to develop the code on a Type B
Rev1 Raspberry Pi. A Rev2 board can be
used with some modifications to the l ibrary.

Bill of Materials

Here is a l ist of parts you wil l need to complete
this project:

Adafruit servo driver datasheet:
http://www.adafruit.com/datasheets/PCA9685.pdf

Hooking Up Hardware

For safety, shutdown your Pi and remove
power before making any connections.

$ sudo shutdown -h now

First, connect to the servos. Most servos come
with mating connectors pre-instal led. Plug the
connector into the servo driver, but make sure
the colors match the si lkscreen. We used Ch.
1 -5

Black = Ground
Red = V+
Yellow = Signal

The Pi cannot source enough current to power
the servos. Thus, you need an external power
supply. We used a wall wart (AC adapter)
from an old +5VDC cell phone charger that we
had on hand. Use the terminal block on the
servo driver to make the V+ and GND
connections.

PiGauge

This fun project shows how to control servo motors over

the internet using a RaspberryPi.

DIFFICULITY: Easy-Medium

14

Lastly, connect the Pi to the servo control ler.
This requires four connections from the GPIO
header on the Pi to the header on the servo
driver: 3.3V, GND, SDA
and SCL.

Double check ALL your
connections BEFORE
applying power.

Caution: The Vcc and V+ pins are adjacent to
each other on the servo driver, don't mix them
up like we did or you wil l have a stale Pi!

Plug in your wall wart
and power up your Pi.

I f you connected
everything correctly
you wil l not see or
smell any magic
smoke.

Download Software and Tools

Although not mandatory, it is a good idea to
keep your Pi up to date; start with:

$ sudo apt-get update && sudo apt-get upgrade

Save the fi les in your home directory:

$ sudo apt-get instal l git
$ git clone https://github.com/Thebanjodude/PiGauge

Comment out al l of the l ines in this fi le:

$ sudo nano /etc/modprobe.d/raspi-blackl ist.conf

Add the I2C device to the kernel. Restart your
Pi then add yourself to the I2C group:

$ sudo modprobe i2c-dev
$ sudo usermod -aG i2c yourusername

Install Apache and PHP

$ sudo apt-get instal l apache2 php5 libapache2-mod-
php5

To find the IP of your Pi (i .e. 1 92.1 68.1 .1 0):
$ ip addr
inet: ip.of.your.pi

Go to http://ip.of.your.pi and you should see
the "I t Works! " page.

Link the PiGauge Project to www root:

$ cd /var/www
$ sudo ln -s /home/pi/PiGauge

Add apache to the I2C group to al low it to
access the I2C bus. Then restart apache:

$ sudo adduser www-data i2c
$ sudo /etc/init.d/apache2 restart

From your home directory:

$ sudo cp ./Adafruit-Raspberry-Pi-Python-
Code/Adafruit_PWM_Servo_Driver/Adafruit_I2C.py
/usr/local/l ib/python2.7/site-packages/

$ sudo cp ./Adafruit-Raspberry-Pi-Python-
Code/Adafruit_PWM_Servo_Driver/Adafruit_PWM_Ser
vo_Driver.py /usr/local/l ib/python2.7/site-packages/

You should be ready to go, head over to
http://ip.of.your.pi/PiGauge/ and try it out!

Reading Servo Positions

In this code snippet we are adding two
unsigned bytes from the I2C bus to get the
position of a servo.

Sponsored by National Technical Systems

Albuquerque Engineering Services

http://www.nts.com/locations/albuquerque

Continuedover page...

15

Sponsored by National Technical Systems

Albuquerque Engineering Services

http://www.nts.com/locations/albuquerque

def print_position(chart_num):
chart_pos = (chip.readU8(8 + chart_num * 4)
+(chip.readU8(9 + chart_num * 4) << 8))
print chart_pos

From Table 3 in the PCA9685 datasheet you
can see that positions are stored in every 4th
and 5th register starting at register 1 2 and 1 3.
To get the position of the servo you'l l need to
add the contents of the two registers together.
However, adding them as is wil l get the wrong
answer! Why? Two 8-bit registers are "glued"
together to make a 1 6-bit register. This is
cal led concatenation. This means that the first
register contains bits 0-7 and the second
contains 8-1 5. To properly add them together
you'l l need to shift al l the bits in the second
register to the left by 8-bits (<<8). Then you'l l
be able to add them together for a 1 6-bit
number. The cool thing about registers is that
the electronics don't care what is in them. I t is
completely up to you, the programmer, to
interpret what is inside them.

Moving Servos

The whole project revolves around moving
servo motors. The fol lowing l ines of code are
arguably the most critical. We defined a
function cal led move_servos() . This function
takes two arguments: which chart number you
want to move and where you want to move it.
pwm.setPWM() comes from the Adafruit
l ibrary.

def move_servos(chart_num, chart_pos):
pwm.setPWM(chart_num,0,chart_pos)
time.sleep(0.1)

chart_pos is a number between 1 70 and 608,
but wil l vary a l ittle from servo to servo. These
numbers relate to a pulse width time (look up
servo control i f you are interested). To make

the software more intuitive we have scaled the
numbers from 0-1 00 using a transfer function,
then we took it one step further. Since servos
are not exactly l inear, we took some data
points, named servo_data, and coded a linear
regression (a fancy word for l ine of best fit) to
make up for the non-l inearities of the servos.
The l inear regression function returns the
variables xfer_m and xfer_b that are used
below.

def transfer(chart_percent) :
return int(xfer_m * chart_percent + xfer_b)

def inverse_transfer(chart_pos):
return int(round((chart_pos - xfer_b) / xfer_m))

Software Testing

We are big bel ievers in the Agi le software
development methodology and incremental
progress. We didn't deploy the use of scrums
or tracking in this l i ttle project but we did
make some lightweight unit tests; they are
avai lable in the repository if you find yourself
curious.

Acknowledgements

Special thanks to Scott Ehlers for patiently
teaching me some new UNIX and PHP ski l ls
and to Tanda Headrick for bui lding the
mechanical display. A very special thanks to
National Technical Systems (NTS) for
sponsoring the project by giving us a bit of
playtime to bui ld a project status display.
Fol low the NTS links for more information on
what we do when we aren’t playing with a
Raspberry Pi.

Article byBen Schaefer

16

PPrrooggrraammmmiinngg tthhee RRaassppbbeerrrryy PPii::
GGeettttiinngg SSttaarrtteedd wwiitthh PPyytthhoonn

In a newbook from www.raspberrypibook.com,

Simon Monkcovers basic Python to in depth GPIO usage.

Having bought a Raspberry Pi, chances are
that you wil l be interested in learning how to
program your new gadget. The book
"Programming the Raspberry Pi: Getting
Started with Python" by Simon Monk,
guides the reader through the process of
learning Python with the Raspberry Pi.

The book is accessible to newcomers to
programming and leads the reader through
the basics of Python, before moving on to
more complex topics such as using the Tkinter
and Pygame libraries as well as programming
for the GPIO connector.

The approach is very much hands-on.
Programming concepts are developed in
example programs, which bui ld from a simple
start in the same way as you would when
writing a program from scratch.

Three chapters of the book are devoted
exclusively to programming and using the
GPIO connector. Various techniques, tools
and prototyping products are surveyed and
explained including Gertboard, PiFace, Pi
Cobbler and the RaspiRobotBoard.

Two of the hardware chapters are step-by-
step instructions for bui lding and programming
hardware projects using the GPIO connector.
The first project is a simple 7-segment LED
display that shows the Raspberry Pi 's system
time. The second is a roving robot that uses
the low cost Magician Chassis rover kit, along
with the RaspiRobotBoard interface board.

Al l the source code from the book is avai lable
as a download from the book's website.

The book is avai lable from most major book
sel lers from the end of November 201 2 and
further detai ls can be found at the book's
website (www.raspberrypibook.com).

17

An example laser cut part

Jon and Paul from Pimoroni

The Pibowguys give us an insight into the innerworkings of their factory, how the

Pibow has affected them, what plans they have instore for us and even tips on

starting your own buisness.

pibow interview

Meeting the pibow guys was an
interesting experience for me and as they
were pretty close to me I thought it was
logical to go visit them as well as doing
an interview, and I'm glad I did!

Q: To what do you attribute the success of the
Pibow and how has it affected you?

"Pibow was just so different to other cases
which meant it real ly stood out. Obviously
being featured on the RaspberryPi.org
homepage was a massive coup for us and
drove alot of the initial interest in Pibow. From
that we just had to make sure we shipped as
fast as we could. I t was great sending out big
batches of units; the next day there would
always be loads of excited and happy tweets
from people who's Pibow had just arrived."

Q: Is there anything you would have done
differently?

"I f we'd known how successful i t would be
we'd have bought the extra laser cutters
sooner which would have made things alot
easier and quicker. They are expensive
though so we always wanted to be sure we'd
need them in the longer term."

Q: What are your plans for the future; will
there be any variation on the colours like a
special edition 'PiWasp' (black and yellow) or
'Americana style' (red, white and blue), would
there be cases with wheels?

"Right now we are focused on Picade
(http://www.kickstarter.com/projects/pimoroni/
picade-the-arcade-cabinet-kit-for-your-
raspberry-p) which we revealed two weeks
ago via Kickstarter. There are some Pibow
things coming in the very near future too -
including new colours! "

[O.K., so the cases with wheels suggestion
was a little far-fetched but with how these
guys are progressing, who knows!]

18

Q: Finally, what advice would you give to
budding entrepreneurs from your experience?

"Know your stuff. The internet is ful l of
qual ity infomation if you hunt for it. Then just
go for it and accept as much help as friends
and family wil l offer :-)

We've worked real ly real ly hard over the
past four months to ship out al l the Pibows
people have ordered. We've run the lasers for
around 1 6 hours a day, everyday, including al l
weekends during that time. We were prepared
to put our l ives on hold to ensure we could
del iver as quickly as possible.

Friends and family have been amazing and
offered help at the workshop and also
provided some financial support to get us up
and running. We can't thank them all enough
for what they have done to help."

They look l ike some great cases. Hopeful ly,
we wil l see the Picade kit in mass production
soon too.

Article byChris Stagg

Pibows waiting to be shipped

DID YOU

KNOW?
Paul from Pimoroni is responsible for

designing the Raspberry Pi logo!

The Pibow case is made from acryl ic.

Pimoroni now have 3 laser cutters cal led

Bert, Ernie and Cookie Monster! [Ed: It

can't be long before Oscar, Big Bird and

The Count appear.]

19

CESIL - Standing for Computer Education in
Schools Instructional Language was designed
in the 1 970s as an attempt to introduce young
people in schools into the world of computer
programming. Without computers in schools,
pupi ls wrote programs on paper and sent
them into their local computer centre. The
results would come back in the post a week
later!

CESIL is a very simplified assembly language
with a very l imited application base, however it
is easy to learn and write simple programs. On
its own CESIL is not terribly exciting, so I 've
written an interpreter for it in BASIC and
added on a Christmas tree with programmable
fairy l ights! The tree has 4 rows of 8 lamps.
Think of it as a grid 8 wide and 4 high.

A CESIL program is essential ly three columns
of text. The first column (which can be blank)
is the label - it's a placeholder in the program
which you can "jump" to from other parts of the
program. The middle column is the operator -
that's the instruction to execute. The final
column is the operand - this is data for the
instruction to use. This data may be the name
of a label (if i t's a jump instruction), i t may be a
number or it may refer to a named memory
store or variable.

My extensions to the CESIL machine have
included two more registers (three in total) to
hold the row and column locations of the
lamps and a colour instruction to set the lamp
colour as well as a subroutine faci l i ty. The
program can be up to 256 lines and contain up
to 256 variables.

The best way to explain it may be to look at an
actual program. This program reads in a
number from the keyboard and prints a

multipl ication table:

mtable:

Multiplication table generator

line

print "Multiplication table generator"

line

print "What table"

in

store table

load 1

store index # Index times

loop: load index

out

print " TIMES "

load table

out

print " = "

mul index # Table was in accumulator

out

line

load index # Add 1 to the index

add 1

store index

sub 11 # Subtract 11 counting 1 to 10

jineg loop # If <0 then jump to loop

halt

Blank l ines are al lowed and comments start
with the # symbol. Most of this should be self-
explanatory, but with just one accumulator,
everything has to be transferred to and from
memory - the "store table" instruction stores
the accumulator in a variable cal led "table".

The standard CESIL instructions are:

LOAD - Transfer the number into the
accumulator

STORE - Transfer the accumulator into a
named variable

JUMP - Jump to the given label

CCEESSIILL PPii

Learn how to create a 70s Christmas tree with

CESIL and a RaspberryPi.

20

JINEG - Jump if the accumulator is negative
JIZERO - Jump if the accumulator is zero
ADD - Add a value to the accumulator
SUB - Subtract from the accumulator
MUL - Multiply the accumulator with the value
DIV - Divide the accumulator with the value
HALT - End program
IN - Read a number from the keyboard
OUT - Outputs the accumulator as a number
PRINT - Prints a l iteral string (in "quotes")
LINE - Prints a new line

Extensions:

JSR - Jump to subroutine
RET - Return from subroutine (to the l ine

after the last JSR instruction)

Christmas Tree extensions:

TREE - Bui ld a new Christmas Tree
ROW - Transfer the accumulator into the Row

register
COL - Transfer the accumulator into the

Column register
COLOUR - Set the lamp indicated by the Row

and column registers to colour value in the
accumulator

WAIT - Delays for the given number of centi-
seconds (1 00ths)

Note that you need to execute a WAIT
instruction to actual ly reflect the colour
changes in the l ights. That means that you can
set a lot of l ights at once, then when you
execute a WAIT (even a WAIT 0) instruction,
al l the l ights wil l change at the same time.

There are 1 6 standard colours:

0: Off, 1 : Navy, 2: Green, 3: Teal,
4: Maroon, 5: Purple, 6: Olive, 7: Si lver,
8: Grey, 9: Blue, 1 0: Lime, 1 1 : Aqua,
1 2: Red, 1 3: Pink, 1 4: Yel low, 1 5: White

Our Christmas tree has 4 rows of 8 lamps; row
0 is at the bottom and column 0 is the left hand
side.

The fol lowing program fragment wil l fi l l the
bottom row with red lamps:

Example program to light the bottom

row with RED lights

tree # Make a tree!

load 0

row # Row 0 ­ Bottom

load 7 # Count 7 to zero

loop:

store col­count

col

load 12 # Red

colour

load col­count

sub 1

jineg done # Jump If Negative

jump loop

done: wait 1 # Update the lights

halt

First download the RTB BASIC interpreter
from
https://projects.drogon.net/return-to-basic/

Then you can instal l the CESIL interpreter and
demos using:

cd

git clone git://git.drogon.net/cesil

cd cesil

rtb

load cesil

run

What I would l ike to see is people sharing
examples, so please post them on forums,
email them to me (projects@drogon.net) and
what I 'l l do in January is have a look at the
ones I 've found and send a free Raspberry
Ladder board to the one I think is the most
original or clever.. .

Article byGordon Henderson

21

Compiling and Running Programs

Once you've written your program (you may use any text editor, such as nano or Geany), save it as
a .cpp fi le, then open a new terminal window and type the fol lowing:

g++ [name].cpp -o [program_name]
Replace [name] with the name of the fi le and [program_name] with what you'd l ike the actual
program to be called.

I f you get an error saying no such fi le or directory, you wil l have to use the cd command to find the
directory you saved the .cpp fi le to, and then run the command again. I f you get an error saying g++
is not found (this shouldn't be the case on newer images), type sudo apt-get installbuild-essential to instal l g++.

When compilation has finished (it might take a while for bigger programs), simply type:

./[program_name]
With [program-name] being the same as the one you used to compile. The program should then
run, and when it is done you wil l be returned to the terminal as with any other command line
program.

More Variable Types

Last time we looked at the int variable type, which lets us store whole numbers. Of course, we
may need to store more than this, so there are different basic variable types. They are as fol lows:

To make a variable, simply type the kind you want fol lowed by the name you want to give it,

Last time we looked at the very beginning of C++ and

writing our first few programs. Todaywe'll carry on, as well

as showing you how to run your programs and some more

variable types.

22

fol lowed by a semicolon. Have a look at the code below:

#include <string>#include <iostream>using namespace std;
int main(){ // Make some number variables:int wholeNumber = 5;float decimalNumber = 5.5;

/* Make some letter variables:** Notice how we use single quotes** for characters, and double quotes** for strings. */string greeting = "Hello there";char punctuation = '!';// Make a boolean variable:bool isTrue = false;
// Print our variables added together:cout << wholeNumber + decimalNumber << endl;cout << greeting + punctuation << endl;cout << isTrue << endl;
return 0;}

Notice what happens when we add the different kinds of variables. The number ones work as
expected; 5 + 5.5 equals 1 0.5 and that's what we get out. When we add letter ones, the letters get
added together. So we have our string, “Hel lo there”, and we add the exclamation mark, so we end
up with “Hello there! ”. This is why data types are important. I f we had saved the numbers as
strings, it would have joined 5.5 to the end of 5, and we'd end up with “55.5”. I t is also a good idea
to give variables sensible names. Variable names can have letters, numbers and underscores, but
cannot begin with a number. There are also certain keywords you cannot use as they are reserved
for the language.

Also notice we get 0 instead of “false” for isTrue. A boolean is basical ly a 0 for false or a 1 for
true, just l ike binary, so that's how the program outputs it. Last time we used cin to let the user
input a value and store that as a variable. Try doing that with the code above. We can also use the
= sign to change what's stored inside a variable at any time (that's why they're cal led variables).
The value of one variable can be assigned to another variable, for example:

int i = 4;int j = i;
However this cannot be used to assign a value to a string:

int i = 4;string s = i;
Since the string class has no member function to al low this assignment. The assignment of a
number to a string can be achieved with a stringstream, which wil l be discussed in later tutorials.

Article byAlexKerr

23

24

BIG WORLD
Baby steps in a.. .

Ada, a language for everyone

By Luke A. Guest

Introduction

Fol lowing on from issue 6, we wi l l continue to

cover the basics of the Ada language.

Numeric types (continued)

I nteger types can have negative numbers, such

as -1 0, -55, etc. Natural types can only accept

values starting from 0 (so no negative numbers)

and posi tive types can only accept values

starting from 1 (no negative values and no zero

ei ther) .

Al l of these types can be used together in

mathematical expressions. However, you must

make sure you do not go outside of the range of

the type you assign to, otherwise an error wi l l

occur.

For example, i f you define two variables X :

Natural := 1 ; and Y : Integer := 2; and then

subtract Y from X and then assign back into X

again (e.g. X := X – Y) , th is wi l l cause an error as

the resul t is -1 which is outside the range

al lowed for Natural types.

Boolean types

Boolean types have two values; ei ther True or

False. There is nothing else you can assign to a

variable of Boolean type.

Simple decisions

Al l languages have the idea of boolean values as

al l condi tions in programming rely on the idea of

something being true or false.

with Ada.Text_IO;
use Ada.Text_IO;

procedure Decisions is
Is_Defective : Boolean := False;

begin
if Is_Defective = True then

Put_Line ("Defective");
else

Put_Line ("Not defective");
end if;

end Decisions;

1
2
3
4
5
6
7
8
9
10
11
12

Listing 1: decisions.adb

Line 5: We define a Boolean variable, Is_Defective,

and set i t to be False.

Line 7: We test to see i f Is_Defective = True. The =

means whatever is on the left equals or is the same

as whatever is on the right. The part between the i f

and the then is cal led an expression. We could also

just have put if Is_Defective then to mean the

same thing.

Also, if Is_Defective = False then and if not

Is_Defective then mean the same thing.

Line 8: Anything between the then and the else

keywords is run when the condi tion is true.

Line 10: Anything between the else and the end if

keywords is run when the condi tion is false.

Line 11: Al l i f statements should end with end i f;

even i f there is no else part.

25

Type in the code in Listing 1 to see how we can

make decisions in Ada using a Boolean type.

Literals

We have already seen some l i terals, even

though you don't know what they are. A l i teral is

any piece of data in source code such as the

number 1 25 or the string “Hel lo, from Ada” in

Listing 1 in Part 1 ; these are numeric and string

l i terals, respectively.

Also in Ada there are character l i terals, such as

'C'. A string is made up from characters so we

can add characters to strings using the &

operator, l ike we did in Listing 2 in Part 1 . For

example “Hel lo “ & 'G' is the same as “Hel lo G”.

You can create variables of type Character just

as we did previously wi th Integer, Natural and

Posi tive.

For the Boolean type, as noted above, the

values of True and False are boolean l i terals.

More attributes

We have already come across the 'Image

attribute, but now we wi l l talk about three more

attributes of integer types that are very useful .

Every integer type has a range of values i t can

accept, th is range is defined by the 'Fi rst and

'Last attributes. We can also get access to this

Many language enti ties provide attributes that can

provide information to the programmer. You

access attributes using the apostrophe (') . I n our

examples we have seen the 'Image () , 'Fi rst, 'Last

and 'Range attributes of the 3 Integer types.

Cool features: Attributes

Back in the 1 970s, the American Department of

Defence (DoD) decided they wanted a programming

language that could be used for al l thei r projects. A

number of teams around the world submitted

proposals for a new language, each named after a

colour: Red, Green, Blue and Yel low. The Green

team, led by Jean Ichbiah from CI I Honeywel l Bul l in

France, won.

The fi rst version of the Green language was passed

onto programming teams within the DoD, who were

told to use i t for al l subsequent projects.

The Green language was renamed Ada after Lord

Byron's daughter, Augusta Ada (Countess of

Lovelace) , who worked alongside Charles Babbage

and who is considered to be the world's fi rst

computer programmer due to her work on his

Analytical Engine.

The fi rst version of the Ada language came about in

1 983, named Ada 83. The next version came along

in the 1 990s, in i tial ly cal led Ada9X and later

renamed Ada95. The next version was Ada 2005

and another revision was released this year cal led

Ada 201 2.

The GNAT compi ler is sti l l being worked on to

support the newer Ada 201 2 features so

unfortunately some of these won't work i f you try

them out. We can defin i tely use Ada95 and also

most of the Ada 2005 features for our programs.

A BIT OF HISTORY

range using the 'Range attribute - this real ly

returns 'Fi rst . . 'Last, where the two dots

(diaresis) say “this is a range of values” .

I f you try to assign a value outside this range to

a variable of a type, i t wi l l cause an error and

your program wi l l not run correctly.

Another use for 'Fi rst is to assign an ini tial value

to a variable. Looking at Listing 2, the ini tial

value to assign to a variable comes after the :=

symbol after the type name.

Exercises

1 . Use the Integer'Image attribute to print the

values returned by Integer'First and Integer'Last

attributes.

2. Repeat exercise 1 but for Positive and Natural

types.

3. Try replacing the initial values with the 'First

attribute.

I t is the international standard used to control

databases and I contend easier to learn than

most code. I t is what is known as a ‘high level

language’ i .e. very close to a cl ipped form of

Engl ish. SQL covers a huge range of

applications worldwide - not least that of

manipulating intel l igent websites!

Once you start to play you wil l understand the

rhythm, or the syntax, in speaking SQL to the

point where you could almost guess a

command.

Fol low this sequence on your own Pi and I

explain how to get MySQL working and

produce a solid platform on which you can

develop your database ski l ls – beyond the

scope of this article.

Installing MySQL

We are going to use an Open Source version
of SQL called ‘MySQL’ but this is not included
in the standard Raspbian distribution so needs
to be located, downloaded and instal led onto
your Pi. Lucki ly, this complex process is
control led by one command and is run in a text
screen or terminal window:-

pr0mpt > apt-get install mysql-server
Your Pi trundles off and begins the download.
There may be periods in this process where
nothing appears to happen but be patient.
Eventual ly you wil l be presented with a blue
screen and asked to set a password for
MySQL – twice for confirmation.

MySQL is a registered trademark of Oracle and/or its

affi l iates. Logo used by permission.

Databases

The very simplest
database is a l ist. A l ist
becomes more useful the

longer it gets but probably then requires more
columns so you end up with a table.

A table has columns and rows – in database
speak these are cal led fields and records. A
large database can contain many tables – and
so it goes.

There are three basic functions in maintaining
any data in a table; add, delete and modify.

So in terms of the data we keep we can add a
new record, delete an old record or modify
the contents of an existing record – that is al l !
(DML - Data Manipulation Language).

I t terms of how we keep the data we can add ,
delete and modify tables and add , delete
and modify fields – that is al l ! Master these
commands and we are well on our way to
control l ing databases. (DDL - Data Definition
Language).

Once the data is in place it is useless unless
we DO something with it and this too can be
reduced to two basic functions sort and
search .

DATABASE
BOOTCAMP

There seems to be a gooddeal ofdebate about the

language most suitable for learning on computers andone

rarely offered is SQL – ‘StructuredQueryLanguage.’

26

Data

We have managed to reduce elementary
databases down into a few functions but
before we proceed into MySQL we need to
take one final look at data itself.

I f ever you have needed to complete a form,
paper based or on a web site, you would have
come across one where the requirements are
unclear or your response would not fit into the
space avai lable. You can scribble notes on a
paper form or reduce the size of your
handwriting to fit but that’s not possible on
computers as they are more highly defined.
So it is with ‘data-types’ . MySQL recognizes
only three types of data text, number and date.
To store the data efficiently it needs to al locate
the correct amount of computer storage space
too.

Entering MySQL

Enter MySQL using the command mysql –u
root –p From here on you have left Raspbian
and now need to type SQL Structured Query
Language. Although SQL is an international
standard, local variations exist and MySQL is
a particularly pol ite version. You have to say
please at the end of every command
otherwise nothing happens.

The short cut for please is the semi-colon.
Remember - no ; no action .

Viewing the databases

To show the existing databases simply type:-

pr0mpt > show databases;
Should you forget your manners enter the
please ; on a separate l ine. You wil l display

the four default databases. Before we start
changing things lets become confident in our
abi l i ty to look around, e.g:-

pr0mpt > show tables in
information_schema;
This displays the l ist of tables in the database
information_schema. The columns in a table
can be seen in three ways. Al l produce the
same result:-

pr0mpt > show columns in
information_schema.views;
pr0mpt > show fields in
information_schema.views;
pr0mpt > describe
information_schema.views;
Note: The general format of the command
describes the table in the database separated
by a ful l stop i.e:-

pr0mpt> show fields in
<databasename>.<tablename>
Work through and try these examples and test
your own options to gain the most from this
article. A typical output is:-

Here you can see the columns – cal led fields –
and other detai ls that wil l be explained shortly.

Viewing the data

We can go further by selecting to see all the
data in any of the tables. The star * is known
as a ‘wild card’ and means ‘everything’ so to
select everything in a table enter:-

pr0mpt > select * from
information_schema.views;

Continuedover page...

27

This produces one extreme of output – i .e.
nothing, an ‘Empty set’ . Notice also the timing
here – the Pi has taken four one hundredths of
a second to produce this output.

The other option is represented by:-

pr0mpt > select * from
information_schema.CHARACTER_SETS;
This produces what appears to be a mess,
and it is, but it should look l ike this:

Al l the | + and – characters are actual ly border
l ines in a crude table that looks l ike this:-

+---------+---------+---------+----------+---------+----------+

| col_1 | col_2 | col_3 | col_4 | col_5 | col_6 |

+---------+---------+---------+----------+---------+----------+

| data | data | data | data | data | data |

| data | data | data | data | data | data |

+---------+---------+---------+----------+---------+----------+

Creating a database

Now the hard bit. MySQL can become very
complex. Let’s create a database called magpi
type:-

pr0mpt > create database magpi;
Prove the database has been created:-

pr0mpt > show databases;

You now want to tel l the system to use your
new magpi database so type:-

pr0mpt > use magpi;
Creating a table

A database can contain many tables, as we
have seen. Tables only need to be set up
once but need to specify the data-type and
size of the data it is expected to hold.
A generic command looks l ike this:-

pr0mpt > create table <tablename>
(
<col1><col1_data-type>,
<col2><col2_data-type>,
<col3><col3_data-type>,
………,
);
A more useful example:-

pr0mpt > create table birdtable
(
id int NOT NULL AUTO_INCREMENT,
first_name char(25),
town char(30) default “Cardiff”,
dob date,
birds int,
record timestamp default now(),
primary key (id)
);
Now you can use describe birdtable; to
reveal the by now famil iar description:-

+------------+-------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+-------------------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
first_name	varchar(25)	YES		NULL	
town	char(30)	YES		Cardiff	
dob	date	YES		NULL	
birds	int	YES		NULL	
record	timestamp	NO		CURRENT_TIMESTAMP	
+------------+-------------+------+-----+-------------------+----------------+
6 rows in set (0.01 sec)

Next time we wil l be looking at inserting data
into pre-populated tables and viewing the data
using sorting, searching and logical
expressions.

Article byRichardWenner

28

This article is based on http://pr0mpt.me
- a free video resource.

Want to keep up to date with al l things Raspberry Pi in your area?
Then this new section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area,

providing you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Bloominglabs Raspberry Pi Meetup
When: First Tuesday of Every Month @ 7:00pm

Where: Bloomington, Indiana, USA

Meetings are the first Tuesday of every month starting at 7:00pm unti l 9:00pm, everyone is
welcome. Further information is avai lable at http://bloominglabs.org

Manchester Raspberry Jamboree
When: Saturday 9th March 201 3 @ 1 0:00am

Where: Manchester Central Conference Venue, M2 3GX, UK

The meeting wil l run from 1 0:00am unti l 4:00pm and there are a l imited number of places.
Tickets and further information are avai lable at http://raspberryjamboree.eventbrite.com

Norwich Raspberry Pi User & DEV Group
When: Saturday 8th December 201 2 @ 1 2:00pm
Where: House Cafe, 52 St. Benedicts Street, Norwich, UK

The meeting wil l run from 1 2:00pm unti l 5:00pm. Further information is avai lable at
http://norwichrpi.org

CERN Tarte au Framboise
When: Saturday 1 9th January 201 3 @ 9:30am
Where: CERN Microcosm, Geneva 1 21 1 , Switzerland

This event takes place at the world-famous CERN. Doors open at 9:30am and the meeting runs
unti l 4:30pm. Further information is avai lable at http://cern-raspberrypi.eventbrite.fr

29

Python can launch subprocesses that

function separately. Using this approach
it is possible to create any number of

desktop widgets.

We will create two widgets: a simple RSS

news reader and an image downloader
for Astronomy Picture of the Day.

magpi_widgets.py :
Python Widgets using pygame and subprocess

By ColinD ­ 02 November 2012

import subprocess, os, signal, Tkinter, time

run the widget subprocesses ­ feel free to add more here!

pImg = subprocess.Popen(["python","widget_image.py"],stdin=subprocess.PIPE)

pRss = subprocess.Popen(["python","widget_rss.py"],stdin=subprocess.PIPE)

send the screen width to the sub processes

r = Tkinter.Tk()

width = r.winfo_screenwidth()

pImg.stdin.write(str(width)+"\n")

pRss.stdin.write(str(width)+"\n")

Run until subprocesses killed with a single CTRL­C

try:

while True:

time.sleep(1)

except KeyboardInterrupt:

os.kill(pImg.pid, signal.SIGKILL)

os.kill(pRss.pid, signal.SIGKILL)

widget_image.py :
import urllib, Image, pygame, os, sys, time

from bs4 import BeautifulSoup

read stdin from parent process and calculate widget screen position

baseXPos = int(sys.stdin.readline()) ­ 200 ­ 10

os.environ['SDL_VIDEO_WINDOW_POS'] = str(baseXPos) + "," + str(30)

display a borderless window to contain the resized image

windowSurface = pygame.display.set_mode((200,200), pygame.NOFRAME)

while True:

try:

soup = BeautifulSoup(

urllib.urlopen('http://apod.nasa.gov/apod/astropix.html'))

APOD has one img tag so we can use find instead of findAll

imgTag = soup.find('img')

imgUrl = imgTag['src']

PYTHON VERSION: 2.7.3rc2

PYGAME VERSION: 1 .9.2a0

O.S.: Debian 7

Run magpi_widgets.py. This wil l start the widgets widget_image.py and widget_rss.py. A single CTRL+C

in the terminal wi l l send a ki l l command to each subprocess. This code requires some additional Python modules which

can be instal led from the terminal:

sudo apt­get install python­setuptools

sudo easy_install­2.7 pip

sudo pip install feedparser # parses RSS

sudo pip install beautifulsoup4 # parses HTML

sudo apt­get install python­imaging­tk # provides image manipulation

30

imgName = os.path.basename(imgUrl)

if the image already exists then do not redownload

if not os.path.exists(imgName):

urllib.urlretrieve("http://apod.nasa.gov/apod/"+imgUrl,imgName)

download, resize and save the image for the widget

imgOriginal = Image.open(imgName)

imgResized = imgOriginal.resize((200, 200), Image.NEAREST)

imgResized.save(imgName)

imgLoad = pygame.image.load(imgName)

windowSurface.blit(imgLoad, (0,0))

pygame.display.update()

if an exception occurs skip the download on this loop

except (IOError, TypeError, RuntimeError):

print "Error downloading, will try again later"

sleep for 8 hours as we do not want to spam the server!

time.sleep(28800)

widget_rss.py :
import pygame, os, sys, feedparser, time

pygame.init()

read stdin from parent process and calculate widget screen position

baseXPos = int(sys.stdin.readline()) ­ 300 ­ 10

os.environ['SDL_VIDEO_WINDOW_POS'] = str(baseXPos) + "," + str(430)

create the Pygame window and fill the background with colour blocks

screen = pygame.display.set_mode((300,150))

pygame.draw.rect(screen,(80,140,80),(0,0,300,50))

pygame.draw.rect(screen,(80,80,80),(0,50,300,50))

pygame.draw.rect(screen,(160,160,160),(0,100,300,50))

define the font to output the RSS text

font = pygame.font.SysFont('dejavuserif', 10, True)

while True:

myFeed = feedparser.parse('http://www.raspberrypi.org/feed')

set the window title to be the name of the blog

pygame.display.set_caption(myFeed['feed']['title']+" RSS")

get the articles from the RSS and output the text

for i in range(0, 3):

layerText = pygame.Surface(screen.get_size())

outputText = (myFeed['items'][i].title, myFeed['items'][i].updated,

myFeed['items'][i].link, myFeed['items'][i].description)

clear the surface each loop by filling with transparent pixels

layerText.set_colorkey((0,0,0))

layerText.fill((0,0,0))

j = 0

for line in outputText:

j = layerText.get_rect().y + j + 5

text = font.render(line.rstrip('\n'), 0, (255,255,255))

textpos = text.get_rect()

textpos.x = layerText.get_rect().x + 5

textpos.y = textpos.y+j

layerText.blit(text, textpos)

screen.blit(layerText, (0, 50*i))

pygame.display.flip()

j = j +5

sleep for an hour, do not spam the server!

time.sleep(3600)

Ideas for improvement
The widgets display wil l only refresh when checking for new content to
download, causing blank output if another window is dragged on top. Try
using Python's datetime to determine when to download new content
whi le separately updating the screen output every second.

31

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is

collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi

Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non

commercial purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or

responsibility for the content or opinions expressed in any of the articles included in this issue. All articles are checked and tested

before the release deadline is met but some faults may remain. The reader is responsible for all consequences, both to software and

hardware, following the implementation of any of the advice or code printed. The MagPi does not claim to own any copyright licenses

and all content of the articles are submitted with the responsibility lying with that of the article writer.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of

this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

The Year of The MagPi

editor@themagpi.com

I first proposed the idea of The

MagPi magazine back in March on

the Raspberry Pi forums after

reading numerous threads by

those new to programming who

wanted to learn but were unsure of

how to start or whether they had

enough experience to operate the

Raspberry Pi.

At the time, there was no

documentation how to use this

clever l i ttle computer and most

tutorials and projects were aimed

at those with some experience in

using Linux or with a background

in programming. I felt this might

put a lot of beginners off learning

how to program or prevent them

from realising the vast variety of

projects that would be possible

with l imited effort with the Pi.

To target the more experienced

programmer, one thing I felt was

missing from the Raspberry Pi

community was a central hub,

aside from the forums, which

would al low those to explain in

detai l to others how to repl icate

their project, show case pictures

and videos and answer any

questions from the community on

the topic to help others in a similar

situation.

Coming from a medical

background with experience in

publishing papers in journals, I felt

that the best way the community

could share their experience was

to create a central ised place where

everyone could access and share

information. The media of an

onl ine peer reviewed journal

seemed to tick al l the boxes and

comply with the educational ethos

of the Raspberry Pi Foundation.

Over the last 8 months, both The

MagPi magazine and the team has

evolved. We are now a limited

company and work very closely

with the Raspberry Pi Foundation.

We encourage users to send their

projects and we upload them to

the draft of the issue. Readers get

an early gl impse of the next

magazine and they can provide

suggestions to correct or clarify

what is written and any tips or

tricks which may be of benefit.

We currently produce a 32 page

monthly magazine. Our content

covers articles on a variety of

Raspberry Pi related themes

including coding, robotics, home

automation, electronics and

practical techniques (to name a

few).

We are thankful for al l the support

given to us by both the Raspberry

Pi Foundation and all our readers.

We have been overwhelmed by

how we have been positively

received, with constant feedback

to reflect this and some great

articles featuring the magazine,

including those by the Wall Street

Journal and the BBC’s Rory

Cellan-Jones!

We have grown in size as a team,

with editors and contributors from

all over the world, from all age

groups and all professions; from

educational ists to medicine,

technologists to students. To

reflect the global interest in The

MagPi magazine, it has been

translated to French and German

with Chinese and Spanish

translations also being worked on.

We're super excited by our plans

for The MagPi in 201 3, including

our Kickstarter project al lowing

readers the chance to get al l eight

issues in a l imited edition binder.

We hope you wil l continue to

support us in the New Year.

Ash Stone

Chief Editor of The MagPi

32

