[53UE 09 - DEC 20712

Visit our Kickstarter i he;] ®
http://kck.st/TvkdvG @ D
for printed MagPi! 4 = -

A Magazine for Raspberry Pi Users

Santa usin
e automatio

Winasiomg | | Thislss

Raspberry Pi * Skutter
* Nanpy

: * Pi Gauge
erry Christ

e Pibow

agPl |, cesiLpi

*C++
@ .| °*Ada

e
™

 MySQL
—R

‘\'r

12>

08

() OSO imp:/imw.r.liiallxagpi.cun\
BY NC SA
ihe/ Raspberry Pi is a trademark of The Raspberry Pi Foundation.
This magazine was created using a Raspberry Pi computer.

9 “772051“9990

SMagP

Welcome to the eighth edition of The Mag®Pi magazine,

It’s Christmas! In this issue we hope to entice you into some festive projects to try after gorging yourself
to the brim with Christmas pudding.

In this month’s edition, we introduce you to a simple home automation project allowing you to control
lights and appliances in your house using the power of the Pi! Just in time to catch Mr Claus! We get
your SKutter project in motion with Morphy's article on adding wheels to your base. Gordon teaches us
how to light up a Christmas tree, we have more on using the Pi to control an Arduino and Ben describes
how to control servos attached to the Pi using the internet! If this isn’t enough we have more of the old
favourites plus an introduction to SQL.

As always, we have some great prizes for you to win in our monthly competition. The MagPi would like
to say a big thanK you yet again to PC Supplies Ltd who this month has outdone themselves by offering
up for grabs a 512MB Raspberry Pi!

In addition to this we have some exciting news for you this month. As of December 1st, we at The
MagPi are so excited to be able to offer our readers the possibility of a printed version of all eight issues
of the magazine! ‘This is something which gets constantly requested of us from our readers. AUl eight
issues will be beautifully wrapped up in a limited edition MagPi binder maKing it a great gift to
yourself or any of your loved ones of any age. For more informati

e

2

2 Contents

04 SKUTTER RETURNS
Dig out the toolbox for the next thrilling installment, by Bodge N Hackitt

08 HOME AUTOMATION - SANTA TRAP
Control your home with a Raspberry Pi and catch Santa in the act! by Geoff Johnson

11 THIS MONTH'S COMPETITION
Win a 512MB Raspberry Pi Model B, from PC Supplies Ltd

12 CONTROL YOUR ARDUINO WITH PYTHON & RASPBERRY PI
The power of Raspberry Pi and the simplicity of Arduino using Nanpy, by Andrea Stagi

14 PI GAUGE
Control servos over the internet, by Ben Schaefer

17 BOOK PROMOTION - GETTING STARTED WITH PYTHON
Simon Monk's new book covering basic to full GPIO python examples

18 PIBOW INTERVIEW
An interview with the designers of the PiBow case, by Chris Stagg

20 CESIL POWERED CHRISTMAS TREE
Christmas from the 70s using the CESIL programming language, by Gordon Henderson

22 WELCOME TO THE C++ CACHE
Using basic variables and STL strings, by Alex Kerr

24 BEGINING ADA
The second installment in our Ada programming tutorial, by Luke A. Guest

26 DATABASE BOOTCAMP
Get your teeth into some Structured Query Language (SQL), by Richard Wenner

29 THIS MONTH'S EVENTS LIST
Raspberry Jams and other community events

30 THE PYTHON PIT
Creating multiple desktop widgets, by Colin Deady

32 FEEDBACK & DISCLAIMER

Adding a motorised base

A simple, switching “H bridge”

In the last article we looked at some physical

means of adding motors to a robot and

investigated adapting some motorised

glectronic toys as a potential source for robot
ases.

In this article | will begin to explain how you
can build your very own DC electronic motor
driver module and write a basic control
program for it.

We will start by re-examining the standard DC
motor that was covered in the previous article.

To make the motor run forwards we apply a
power source between the + and - terminals
on the motor and to make it run in reverse we
simply swap the power source terminals
around.

The motor driver module we are going to
create will need to be a circuit which is able to
do this swapping around of the power supply
terminals electronically. This can be
accomplished using an “H bridge" circuit.

Power Supply +
"/ [/
- TN «
= 2
4
AN AN
Ground

Part 2

This diagram shows a simplified version of
such a circuit. Closing switches 1 and 2
effectively connects the positive rail of the
power supply to the + terminal on the motor
and ground to the - terminal; causing the
motor to run forwards. Alternatively, closing
switches 3 and 4 connects the ground to the +
terminal and the positive rail to the - terminal;
causing the motor to run in reverse.

There is a potentially dangerous situation if
switches 1 and 4 or 3 and 2 are closed. This
would create a short circuit between Power
Supply + and Ground which can be very
problematic to say the least. Care must be
taken when controlling this circuit to ensure
that this situation can never happen.

In reality we can’t have four physical on / off
switches like this as we need to control the
circuit using the GPIO on the Raspberry Pi.

There are electronic solutions to this. One
possibility is the use of electromagnetic relays
to close these switches. However, the
Raspberry Pi is not able to deliver enough
power from the GPIO to directly activate such
a relay without having something in-between
such as a transistor. This leads us to the
second possible solution which is to simply
use some transistors as switches.

Transistors as switches

The transistor is arguably the most important
electronic invention ever created. lts
development is responsible for everything
from portable music players to the processor
used in the Raspberry Pi.

Collector
Base . L

Emitter

We will be looking at NPN type transistors.
This device has three terminals called base,
collector and emitter.

Connecting a power supply across the
collector and emitter allows the transistor to be
used as a switch. Without a connection to the
base, the internal resistance of the transistor
is extremely high and the switch is off.

If we apply a current to the transistor base
then the internal resistance will drop by a
corresponding amount and current will begin
to flow from the collector to the emitter.

The transistor is able to vary its internal
resistance very quickly, tens of thousands of
times per second. (It's this feature that allows
transistors to be used as amplifiers).

The amount that the current affects the
internal resistance of the transistor is defined
by a ratio known as the DC current gain and is
referred to as h..

In our case we want to supply a current to the
base that will cause the internal resistance be
near zero - just like a closed switch. This is
called “transistor saturation” and there is an
equation which tells us the current we need to
apply to the base to make this happen,

I = I. / hgg

where | is the collector current and I is the
base current. In order to find out what this
current is it's necessary to measure the
current that’s drawn by the motor. This means
an experiment is needed!

For this you will need your motorised base (in
my case it's the modified Big Trak), a power
supply (some batteries) and a multimeter.

If you don’t own a multimeter yet, they are an
essential tool for anyone who is involved in
electronics and allow you take a wide range of
measurements including voltage, current,
resistance, capacitance and h..

It is possible to obtain a good multimeter for
under ten pounds from a variety of retailers.
Maplin sell one for £7.99 (CODE: N20AX).

DC motors draw different currents under
different conditions. If a motor is free-wheeling
then the motor will draw a comparatively small
current.

Alternatively a stalled motor (a motor that is
prevented from turning) will draw an extremely
high current. The harder we make a motor
work, the more current it will draw. In our case
we want to measure the current the motors

draw when our robotic base is trundling along
the floor. One way to accurately obtain this
measurement is to make the base move on
the ground and measure the current that is
being drawn. Here is the method | used with
my Big Trak:

Connect the multimeter in series between the
battery/power supply and one of the motors in
the Big Trak.

2.5 Amps

Ohms e

' +

]
)_Ili

+ ' +
= = =
jal) Qv fa
=f (<%}
= @ =
[3=3 = (3=}
oo [aa]
L == L

The second motor must also be connected to
the power supply and active otherwise only
one motor will try to drive the whole Big Trak
which will result in an inaccurate
measurement. However, we only need to
measure the current drawn by one of these
two identical motors.

Add some weight to the Big Trak which
approximates the expected overall weight of
the finished robot. In the case of the Skutter
this includes adding the robot arm.

Complete the circuit between the batteries and
motor, including the multimeter in series as
shown. As the Big Trak rolls along the floor,
take a measurement of the current which is
being drawn. Under the expected load for the
Skutter using this method, one of the two Big
Trak motors should draw a current of 2.5
Amps.

CAUTION: When motor stalling was tested

the current drawn was approximately 20
Amps.

Continued over page...

5

6

Choosing the right transistor

Using the right transistor can make a massive
difference to the design of your circuit. Often
several factors need to be considered
simultaneously. First, we need an idea of the
minimum gain we need to provide. For this we
will use the saturation equation given before.
However, it is common to allow for 5 times the
hee value to provide an operating margin (if
you look closely at transistor data sheets this
value can vary widely due to how hard it is
driven). Here, | is the current we need for our
motor at 2.5A and |g is the current we can
supply to switch the transistor (RPi GPIO pin
can supply up to 15mA per pin, with a 51TmA
maximum across the GPIO in total).

hegminy > 5 X (Ic/1p)
=5 x (2.5/0.015) = 833
(typical transistor gains are nearer 100...)

The next consideration is that the transistor
will need to handle 2.5A through the collector
and emitter. Therefore, Iog..,, needs to be
high enough (and a Vggiay ?ngh enough for
your motor supply. FinaWy, the voltage drop
Viegsay 1S @lso important, since not only does
this détermine how much of the supply voltage
makes it through to the motor, but the amount
of power wasted (as heat... too hot=melted) by
the transistor (this is given by Power = |, x

VCE(sat))'

The alarmingly high gain value can be solved
by using more than one transistor in series, so
the GPIO signal is amplified in stages. One
way to do this is to use a special arrangement
called a Darlington Pair; these are often
available wrapped up in a single package. In
fact TIP120, TIP121 and TIP122 are
designed for such applications, offering hg.
values around 1000, I .., of 5 Amps and in'a
suitable form to attach a large heatsink if
required.

However, another option is to make use of
extra transistors to perform the switching of
the H-Bridge and also provide isolation from
the motor supply voltages (anything above
3.3V on the GPIO is bad news). The gain
from these transistors can be used to reduce
the required gain of the H-Bridge transistors;
with some careful selection it may be possible
to drive the motor without the Darlington Pairs
(see http://goo.gl/ggHrq). This leads to the
final consideration: whatever transistors you
design for you’ll need to source them or
equivalent ones, hence why I've settled on the
TIP devices. The trade-off is that the Vg,
can range from 0.7V - 4V, dropping a Farge
chunk of the supply voltage, depending on the
ratio of I and |..

[GPIO_FWD >=—{ |

Transistor motor driver circuit

Below is a "Weiss" H-Bridge circuit. You will
see that our simple switch design is a little
more complex than we thought, but each part
of the circuit performs an important job.

Motor Supply +V

TIP127 .TIP127

at % o3
D1 D3
A A
R3 ﬁ e | MOTOR | o R%
»7@—« y

Qs —
Y 1

g

TIP122 'TIP122

= y “—‘DZ D4’—‘ S -
E g
q \—GD

RPi GND

[GPIO_RWD >

Motor Supply GND
/

There are four diodes (D1-D4) which are
orientated in the opposite direction to the flow
of current. This is because a DC motor can
also generate an electric current when it turns
faster than we are driving it. This is referred to
as “fly-back current” and it can be high
enough to damage the transistors. Having
these reverse biased diodes allows any "fly-
back" current to escape safely. If you have
looked at the datasheets for the TIP devices
you will notice that they already include the
diodes internally, so you won't need to add
extra ones (but it is important to remember if
using other devices).

Also, you may note that the top transistors are
slightly different to the bottom ones (the
arrows point inwards). These are PNP type
devices rather than NPN, which allows the
driving voltage of the motor to be greater than
the GPIO voltage. The PNP "twins" of the
NPN devices mentioned are TIP125, TIP126
and TIP127. They function the same, except
importantly they are active LOW, so the GPIO
has to be turned OFF to switch the transistor
ON.

You will notice that two extra transistors are
used to switch on and off the TIP transistors.
This allows the motor supply to be greater
than the GPIO voltage without putting that
voltage on the GPIO pin (with bad results for
the Raspberry Pi). A nice side-effect is that
not only does this make controlling the PNP

devices easy, but both the top and bottom
"switches" can now be controlled with one
GPIO pin for each direction.

Selection of this transistor is a little easier than
the previous ones since the bulk of the work
will be done by the TIP devices. A low cost
general purpose transistor is suitable - the
BC108 or 2N2222 should be fine.

An important aspect of this circuit is the
common ground of the Raspberry Pi and the
motor power supply. This allows the two
separate power supplies to be tied to the
same 0V allowing them to work in the same
circuit (although we still have to take care to
keep the motor supply +V away from the
GPIO).

Resistor values

When you start to calculate the numbers, you
will notice we have a lot of headroom, so we
may as well aim for the ideal of only using a
5th of the gain. This means that the transistor
is not only saturated, but not being pushed too
hard (even if the motor voltage is raised or
lowered, or more current is driven up to 5A).
We will use a 9V motor supply for the
calculations.

BasicGPIOHBridgeControl.py :
#! /usr/bin/python

& import time
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)

05=7; Q6=11 # Set GPIO Pins

'- #IF Q5 ON THEN Q6 must be OFF
ELSE transistor short circuit !

' #Set Starting State

GPIO.setup(Q5, GPIO.OUT); GPIO.setup(Q6, GPIO.OUT)
GPIO.output(Q5, False); GPIO.output(Q6,
print "Drive motor forwards for 3 seconds"

GPIO.output(Q5, True)
time.sleep(3)

print "Stop motor"

GPIO.output(Q5, False)

B print "Drive motor in reverse for 3 seconds"

GPIO.output(Q6, True)
time.sleep(3)

print "Stop motor"
GPIO.output(Q5, False);

GPIO.cleanup()

Q1, Q2 assume gain of 200 (1/5 of heg i),
I,=1 /(hFE(mln)/S)
2.5A/200=12.5mA
(Vmotor_Q]'VCB_szBE) /IB

= (9 —1.4 —1.4) / 0.0125 = 496 ohm
(470 ohms gives 13 mA, gain 190)

R3

Q5 assume gain of 6 (1/5 of He i),

I, = 0.0125/6 = 2mA

R1 (Vepro- QSVBE_QZVBE)/I

(3.3 — 0.7 - 1.4) / 0.002 = 600 ohm
(680 ohms gives 1.76 mA, gain 7.5)

So we can use 680 ohms for R1 & R2 and 470
ohms for R3 & R4.

Control

With the extra control transistors it is easy to
control the motor, turn on Q5 for forward and
turn on Q6 to reverse. It should be obvious
that you do not want to try forward and reverse
at the same time!

You can check your program by connecting
the GPIO pins to LEDs instead of the H-Bridge
to confirm you will obtain the correct outputs.

Note: Pages 6/7 of this article have been updated to replace

the original circuit. Other improved motor control solutions will
be explored in later issues.

Article by Bodge N Hackitt

Updated by Meltwater

False)

GPIO.output(Q6, False)

NOTE: This program would need another set of 2 GPIO pins to control a second H bridge if the

robot is using two motors.

Automate your home with a Raspberry Pi... and catch Santa

in the act!

This article covers an easy to build, cheap
and above all, safe way to control mains
powered devices with a Raspberry Pi. Nothing
in this project involves going anywhere near
any dangerous voltages. Soldering is limited
to just a few joints and source code can be
downloaded for the software part.

The Story

| bought some inexpensive remote controlled
power sockets from http://www.amazon.co.uk
(search Status remote control socket). [Ed: |
saw something very similar for $20 in Home
Depot]. | tried them out with a few random
appliances, stuck them in the cupboard and
forgot about them... but the Raspberry Pi
inspired me to do something useful with them.

| decided to use the Raspberry Pi to replace
the remote control and because it is
programmable we can extend the capability.
How about turning Christmas tree lights on
and off at set times, using your smartphone to

turn on the kettle just as you arrive home or
flashing the bedside light when Santa walks
on a pressure sensitive mat in front of the
chimney on Christmas Eve!

Decoding the Remote Codes

The first step was to identify the signalling
used by the sockets so | could try to mimic it
using the Raspberry Pi. The communication
between the remote and the sockets is radio
based, allowing control without line of sight.
This allows sockets in various rooms to be
controlled from one location.

There’s a sticker on the back of the sockets
saying 433.92MHz, so | searched eBay for
“433MHz receiver” to find a suitable receiver.
This found me a transmitter and receiver for
Arduino projects for only £1.60 ($1.99)
including postage and packing from China!

433MHZ

| had to solder a 7" (17cm) antenna wire onto
the receiver and transmitter. The antenna
length represents a 1/4 wavelength of
433.92MHz. For this calculation you can use
an online calculator such as
http://www.csgnetwork.com/freqwavelengthcalc.html.

To read the code from the remote control |
connected the receiver module to a computer
microphone socket. | used a separate 5V
power supply, but there’s a 5V output on the

Raspberry Pi GPIO that would serve the
purpose. The output from the receiver module
is 5V digital, which isn’t suitable to be
connected straight into a computer audio
socket. Therefore, | connected the output of
the module via a 1M Ohm resistor to the
microphone socket of my laptop. | assembled
the circuit on breadboard, but you could use
the other end of the floppy disk drive cable
connector | mention in the Hardware section.

Audacity (http://audacity.sourceforge.com) is
excellent freeware for examining signals like
this. Once | was satisfied that the recording
level was about right, | started recording and
pressed one of the buttons on the remote.
Having stopped the recording | was able to
zoom in on the area where the signal from the
remote was. The signal repeated over and
over until the remote button was released. The
narrow pulses seemed to be about 0.25ms in
duration with the wide pulses 3 times as long.

2.315 2}20 2@25

connected GPIO 7 of the Raspberry Pi to the
data pin and the GND of the transmitter to the
GND of the Raspberry Pi GPIO connector.
The 3.3V signals are enough to drive the
transmitter, though | only found this out by
trying it.

Because Linux is a multi tasking OS and
something else could use the CPU at just the
wrong time, my program repeatedly sends the
bit sequence 10 times with the expectation
that at least one will be transmitted correcily.

When | ran my software on the Raspberry Pi
for the first time, | captured the signal with
Audacity. | could see that the waveform shape
was correct, but upside down. Needless to
say, the socket didn’t do anything. | flipped all
the bits in my output stream and re-ran the test
code. This time the socket switched on! This
just left me with the other buttons to
transcribe.

2.330 2.335 Z%dﬂ l%45

HWW

g aan
L L HUU UU i UUJL

From the waveform | created this binary string.
Each bit represents 0.25ms with 1 = high
pulse and 0 = low pulse. To aid readability
each pulse has been separated with a dash.

11111-000-1-000-1-000-1-000-1-000-1-000-
1-000-1-000-1-0-111-000-1-0-111-000-1-
000-1-0-111-000-1-000-1-0-111-0-111-0-
111-0-111-0-111-000-1-000-1-000-1-0-
111111

This is make or break time for the project. If
you have come this far and cannot find a
repeating pattern, that appears when you
press the remote control button, your sockets
may not be using the simple AM signalling that
this project relies on.

Sending a Signal

To be able to do anything with the captured
data, | connected the transmitter to the
Raspberry Pi. The transmitter is intended to
stay connected to the Raspberry Pi, so it’s
powered from the +5V pin of the GPIO. |

Hardware

The connector for the GPIO and the cable |
used is from an old PC floppy disk drive cable.
These have a wider cable and plug than the
Raspberry Pi GPIO connector, but you can fit
the plug onto the GPIO pins with part of the
plug going off the end. Of course, this won't
work if your Raspberry Pi is in a case.

Only 3 wires are required from the GPIO; +5V,
GND and GPIO 7 (CE1), the pin | use to
control the transmitter.

On the other end of my ribbon cable is a very
small piece of stripboard. Soldered to this
board is a connector for the transmitter, made
by cutting down an IC socket.

Continued over page...

Software

As the GPIO code in the example | followed

from http://www.elinux.org/Rpi_Low-level_

peripherals directly accessed memory it
needed to be run by the root user. To make
my life easy | developed and tested it while
logged in as root. All commands given here
assume you will be doing the same.

Everything is done from the command line so,
unless your system is set to jump straight to
the graphical front end, just stay at the
command line.

To create a directory in which to keep the
source code and the executable file while
under development, type the following:

$ mkdir gpio
$ cd gpio

My source code can be downloaded from
http://www.hoagieshouse.com. Just follow the
links and save the file in the directory you just
created. It takes 2 parameters, the channel
and on or off. You’'ll need to edit the code to
replace my remote control codes with your
own. To edit the code type:

$ nano switch.cpp

Be carefull to retain the quote marks around
the codes in the source. When you have
changed the codes, quit by pressing <cTRL>-
<x>, answer v to the question about saving the
file and accept the filename switch.cpp. To
build the executable file, type:

$ g++ -o switch switch.cpp
Test it with your sockets by typing:
$./switch 1 on

If it works you will probably want to be able to
run it as any user. Type the following
commands to do this:

$ chmod +s switch
$ mv switch /usr/bin/

To schedule the sockets to come on and off at
certain times, you can use something called
cron jobs. Just type:

$ crontab —e

You will be able to edit a file that controls
scheduled jobs. The format is described in the
file, but to try something out add these lines to
the bottom of the file:

0 * * * * gwitch 1 on
10 * * * * gwitch 1 off

This will turn socket one on for the first ten
minutes of every hour.

So far, this is not very user friendly. A web
based interface would be a lot nicer. My web
interface allows the 4 channels to be switched
on and off, but I've not gone as far as to add
any scheduling to it. First, install mini-httpd to
act as the web server. To do this type:

$ apt-get install mini-httpd

You can download the files for the web
interface from http://www.hoagieshouse.com.
In the zip file is the config file for mini-httpd
and the var/www directory, which is where |
put web page and cgi programs. These
shouldn’t need any modification, but will need
to be copied to the correct locations. The
HTML file uses a primitive AJAX request to
run the CGl script with the channel and on/off
parameters. The CGI script just pulls the
parameters from the query and calls the
switch program with them.

Conclusion

Now that you have the software foundation to
remotely control multiple mains devices with
your Raspberry Pi, | leave it as an exercise for
you to imagine what other triggers you could
connect to the GPIO to turn on and off
devices. Oh, if you do catch Santa please tell
him | would like the printed MagPi Christmas
Pack from http://www.kickstarter.com/

projects/themagpi/the-magpi-magazine-from-
virtual-to-reality.

Article by Geoff Johnson

"Naly] — PGsueeuea

The M'agPi and PC Supplies Limited are very proud to announce a very
special prize for the winner of this month's competition.

This month's prize is a new 512MB
Raspberry Pi Model B plus a 1A 5V power
supply and a PCSL Raspberry Pi case!

Both the 2nd and 3rd prize winners will \
each receive a PCSL Raspberry Pi case. \
For a chance to take part in this month's \“:///

competition visit: W
http://www.pcsishop.com/info/magpi N :

Closing date is 20th December 2012.
Winners will be notified in the next issue of
the magazine and by email. Good luck!

Last Month's Winners!

The 5 winners of the PCSL Raspberry Colour Case are Dave Heneghan (Chorley, UK),
Dean Hutchison (Glasgow, UK), Dave Carney (Hartlepool, UK), Nigel Laudat
(Liverpool, UK) and Peter Locastro (Derby, UK).

Congratulations. PCSL will be emailing you soon with details of how to claim all of those
fantastic goodies!

Control your Arduino board
with Raspberry Pi and Python

The power of Raspberry Pi and the simplicity of Arduino
using Python and a simple library: Nanpy.

Introduction

An Arduino board can communicate with the
Raspberry Pi via a serial over USB
connection. This creates a virtual serial
interface, which it uses like a normal interface,
reading and writing to the serial device file. To
begin, attach your Arduino board and type:

Sdmesg | tail

[..]Jusb 1-1.2: Manufacturer: Arduinol..]
[..]cdc_acm 1-1.2:1.0: ttyACMO: USB ACM
device[..]

My Arduino Uno board device is /dev/ttyACMO
and its driver is cdc_acm. Old arduino boards
with a FTDI USB-Serial chip are accessed via
/dev/ttyUSB*:

$ls -1 /dev/ttyACM*
crw-rw---T 1 root dialout 166, 0 Nov 5
00:09 /dev/ttyACMO

Ok, now you should add your user to the
'dialout’ group to give the required read/write
access, then logout and login again for this to
take effect:

$sudo usermod -a -G dialout YOURUSERNAME

This is important because Nanpy works using
this device file. Nanpy is an open source
project relased under the MIT license, and is
composed of a server part (flashed to your
Arduino which waits for commands on a
serial) and a pure Python library. This library
allows you to communicate with your Arduino
connected via USB using classes and
methods really similar to those in the Arduino
framework. Behind the scenes when you
create/delete an object or call methods with
Python, Nanpy communicates via USB and
asks the server part to create/delete the
corresponding object. It also calls methods in

12

Arduino for you: you can instantiate how many
objects you want without worrying about
deallocation and it's also possible to use in a
multithreading context. Nanpy aims to make
developers' lives easier; giving them a simple,
clear and fast instrument to create prototypes
and scripts interacting with Arduino, saving a
lot of time. To install Nanpy read the
README file. You need to install Arduino on
your laptop or your Raspberry Pi in order to
build the firmware:

$sudo apt-get install arduino

Nanpy is actually under heavy development
and it's only been tested on the Uno board.
You can get Nanpy from the Pypi page
(http://pypi.python.org/pypi/nanpy) or Github
(https://github.com/nanpy).

Let's see Nanpy in action and try to turn on a
LED placed in the 13th pin of the Arduino:

from nanpy import Arduino
Arduino.pinMode (13, Arduino.OUTPUT)
Arduino.digitalWrite(13, Arduino.HIGH)

Arduino provides all of the main functions,
delay, analog/digital write and read. No setup
or loop functions, just objects and method
calls. In fact, Nanpy supports all of the main
Arduino methods - LCD, Tone, Stepper and
other libraries. Now let's see how to use our
16x2 text-based LCD on pins 6, 7, 8, 9, 10
and 11, in order to write a better Hello World
script:

from nanpy import Lcd
led = Led([7, 8, 9, 10, 11, 12]1,[1l6, 2])
lcd.printString("Hello World!")

Just a word of warning: Raspberry Pi may
not provide enough power to drive your
Arduino, so you might need to connect
Arduino to an external power source.

The external world

Now | want to show you how to make Arduino
communicate with the external world using the
Raspberry Pi. To understand it we will build a
modern clock, able to measure external
temperature, with an alarm initialised via
bluetooth (using an Android device in this
case) and date and time updated via a NTP
server...

You can find the project with instructions, an
Android app and required components here:
https://github.com/nanpy/eggsamples/tree/ma
ster/synclock. To show how Nanpy works in a
multithreading context, this program creates a
thread for every functionality, writing it all on
the same LCD. In this article | show only the
inner part of every "while True" cycle present
in each "run" method, so | recommend you
follow along with the source code. Let's start
with the main thread, TimeThread, that reads
the time from our ntp server every one second
and stores it in a global variable, milltime:

response = ntplib.NTPClient().request(
'europe.pool.ntp.org’,
version=3)

milltime = int(response.tx time)

To show date and time on the LCD, create a
second thread, ShowTimeThread:

self.servo = Servo(1l2)

dt = datetime.fromtimestamp(milltime)
lcd.printString(dt.strftime('%Y/%m/%d"),
0, 0)
lcd.printString(dt.strftime('%H:8M"),
0, 1)
self.servo.write(90 + (30 * self.c))
self.c *= -1

Every second we get the milltime global

variable, trasform it to a readable format and
then print the date and time onto the LCD. As
you can see, printString can be called
specifying the position (column, row) you wish
the string to appear on the LCD. Then we
move the servo motor like a pendulum every
second. We can update the temperature in
another thread. Reading the value of our
temperature sensor from the analog pin 0 and
printing it on the LCD, near the time, every 60
seconds:

temp = ((Arduino.analogRead(0) / 1024.0)
* 5.0 — 0.5) * 100

lcd.printString("- %0.1£\xDFC" % temp,
6, 1)

Ok, now let's see how to communicate with an
Android phone that can set the alarm clock via
bluetooth. | paired my device with the
Raspberry Pi before start, follow this guide to
do that: http://wiki.debian.org/BluetoothUser.
Remember to install python-bluez too. We will
use AlarmClock, a thread-safe class, to save
on disk and get from it the alarm clock value
(look at the code). Then we can start our
bluetooth communication in another thread,
AlarmClockThread:

...Bluetooth init and connection...
cli_sock, cli_info = srv_sock.accept()
cli_sock.send("%d:%d:%d", ck.getAlarm())
try:
while True:
data = cli_sock.recv(3)
if len(data) == 0: break
ck.setAlarm(ord(data[0]),
ord(dataf[l]),
ord(dataf[2]))
except IOError:
pass

Our Raspberry Pi acts as a server, waiting for
a bluetooth connection: once this happens, it
sends the alarm clock to our device and waits
for a new value to store. In the TimeThread we
compare the actual time with the alarm value:
if they match we can start another thread,
PlayAlarmThread, playing a C note for 250ms,
five times, using a Tone object through a
speaker controlled via the 4th digital pin. It's
time to wake up!

Start thinking about your own project with
Nanpy, for example trying to bring your old RC
car back to life: youtu.be/N14PDfVMdgM

Article by Andrea Stagi

13

PiGauge

DIFFICULITY: Easy-Medium

This fun project shows how to control servo motors over
the internet using a Raspberry Pi.

Your Chart Here Noise Level in the Room

Summary

Controlling hardware that is hooked up to the
Pi is really fun. Controlling hardware from
across town or another state that is hooked up
to the Pi is awesome.

We are controlling five servos; each servo
controls a needle on a chart that can show any
data we choose through printable, modular
backgrounds. We used PHP to create a
webpage that is served up by the Pi. The PHP
makes system calls through the command line
that calls a Python script. In turn, the Python
script controls the movement of the servos
over an I2C bus; it also returns the positions of
the servos by reading values out of a register
that lives on the servo driver. The 16-channel
servo driver is from Adafruit
(http://www.adafruit.com/products/815); it
comes with a nice library that takes care of
low level operations. You need their tutorial for
initial set up and library downloads. We have
provided all our code and templates along with
a help file in a Git repository. This project can
be scaled to control up to 16 servos.

We wused the newest Debian Wheezy
distribution to develop the code on a Type B
Rev1 Raspberry Pi. A Rev2 board can be
used with some modifications to the library.

12C 16Ch.

5x Servos Servo
Controller

RaspberryPi

Web-Server =t 12C Bus

14

Ben's Love/Hate
Relationship with Vi
Indifferent

Deirdre’s Quince
Cobbler Rating

Project Mood Gauge

Bill of Materials

Here is a list of parts you will need to complete
this project:

Bill of Materials
ltem Qty |Notes
Servo Motor 5 180" Rotation
4-6V Power Supply |1 ~100mA per servo
1
1

16Ch. Servo Driver 12C
[Mounting Fixture We made this in house

Adafruit servo driver datasheet:
http://www.adafruit.com/datasheets/PCA9685.pdf

Hooking Up Hardware

For safety, shutdown your Pi and remove
power before making any connections.

$ sudo shutdown -h now

First, connect to the servos. Most servos come
with mating connectors pre-installed. Plug the
connector into the servo driver, but make sure
the colors match the silkscreen. We used Ch.
1-5

Black = Ground
Red = V+
Yellow = Signal

The Pi cannot source enough current to power
the servos. Thus, you need an external power
supply. We used a wall wart (AC adapter)
from an old +5VDC cell phone charger that we
had on hand. Use the terminal block on the
servo driver to make the V+ and GND
connections.

Lastly, connect the Pi to the servo controller.
This requires four connections from the GPIO
header on the Pi to the header on the servo
driver: 3.3V, GND, SDA

and SCL. +3.3V
Pin1 Pin2 [—
SDA
Pin3 Pin4 [—
SCL GND
Pin5 &5 Pin6
Header
=1 Pin7 26Pin Pin10 [—
Double check ALL your
connections BEFORE | pino Pint2 |
applylng power =1 Pin11 Pin14 |—

Caution: The Vcc and V+ pins are adjacent to
each other on the servo driver, don't mix them
up like we did or you will have a stale Pi!

Plug in your wall wart
and power up your Pi.

If you connected
everything correctly
you will not see or
smell any magic
smoke.

Download Software and Tools

Although not mandatory, it is a good idea to
keep your Pi up to date; start with:

$ sudo apt-get update && sudo apt-get upgrade
Save the files in your home directory:

$ sudo apt-get install git
$ git clone https://github.com/Thebanjodude/PiGauge

Comment out all of the lines in this file:

$ sudo nano /etc/modprobe.d/raspi-blacklist.conf

Sponsored by National Technical Systems
Albuquerque Engineering Services
http://www.nts.com/locations/albuquerque

Add the I12C device to the kernel. Restart your
Pi then add yourself to the I2C group:

$ sudo modprobe i2c-dev
$ sudo usermod -aG i2c yourusername

Install Apache and PHP

$ sudo apt-get install apache2 php5 libapache2-mod-
phps

To find the IP of your Pi (i.e. 192.168.1.10):

$ ip addr
inet: ip.of.your.pi

Go to http://ip.of.your.pi and you should see
the "It Works!" page.

Link the PiGauge Project to www root:

$ cd /var/www
$ sudo In -s /nome/pi/PiGauge

Add apache to the 12C group to allow it to
access the I12C bus. Then restart apache:

$ sudo adduser www-data i2c
$ sudo /etc/init.d/apache?2 restart

From your home directory:

$ sudo cp ./Adafruit-Raspberry-Pi-Python-
Code/Adafruit PWM_Servo_Driver/Adafruit_I12C.py
/usr/local/lib/python2.7/site-packages/

$ sudo cp ./Adafruit-Raspberry-Pi-Python-

Code/Adafruit PWM_Servo_Driver/Adafruit PWM_Ser
vo_Driver.py /usr/local/lib/python2.7/site-packages/

You should be ready to go, head over to
http://ip.of.your.pi/PiGauge/ and try it out!

Reading Servo Positions

In this code snippet we are adding two
unsigned bytes from the I1°2C bus to get the
position of a servo.

Continued over page...
15

16

def print_position(chart_num):
chart_pos = (chip.readU8(8 + chart_num * 4)
+(chip.readU8(9 + chart_num * 4) << 8))
print chart_pos

From Table 3 in the PCA9685 datasheet you
can see that positions are stored in every 4th
and 5th register starting at register 12 and 13.
To get the position of the servo you'll need to
add the contents of the two registers together.
However, adding them as is will get the wrong
answer! Why? Two 8-bit registers are "glued"
together to make a 16-bit register. This is
called concatenation. This means that the first
register contains bits 0-7 and the second
contains 8-15. To properly add them together
you'll need to shift all the bits in the second
register to the left by 8-bits (<<8). Then you'll
be able to add them together for a 16-bit
number. The cool thing about registers is that
the electronics don't care what is in them. It is
completely up to you, the programmer, to
interpret what is inside them.

Moving Servos

The whole project revolves around moving
servo motors. The following lines of code are
arguably the most critical. We defined a
function called move_servos(). This function
takes two arguments: which chart number you
want to move and where you want to move it.
pwm.setPWM() comes from the Adafruit
library.

def move_servos(chart_num, chart_pos):
pwm.setPWM(chart_num,0,chart_pos)
time.sleep(0.1)

chart_pos is a number between 170 and 608,
but will vary a little from servo to servo. These
numbers relate to a pulse width time (look up
servo control if you are interested). To make

Sponsored by National Technical Systems EI e
Albuquerque Engineering Services
http://www.nts.com/locations/albuquerque

the software more intuitive we have scaled the
numbers from 0-100 using a transfer function,
then we took it one step further. Since servos
are not exactly linear, we took some data
points, named servo_data, and coded a linear
regression (a fancy word for line of best fit) to
make up for the non-linearities of the servos.
The linear regression function returns the
variables xfer m and xfer_b that are used
below.

def transfer(chart_percent):
return int(xfer_m * chart_percent + xfer_b)

def inverse_transfer(chart_pos):
return int(round((chart_pos - xfer_b) / xfer_m))

Software Testing

We are big believers in the Agile software
development methodology and incremental
progress. We didn't deploy the use of scrums
or tracking in this little project but we did
make some lightweight unit tests; they are
available in the repository if you find yourself
curious.

Acknowledgements

Special thanks to Scott Ehlers for patiently
teaching me some new UNIX and PHP skills
and to Tanda Headrick for building the
mechanical display. A very special thanks to
National Technical Systems (NTS) for
sponsoring the project by giving us a bit of
playtime to build a project status display.
Follow the NTS links for more information on
what we do when we aren’t playing with a
Raspberry Pi.

Article by Ben Schaefer

_.I-.- e u..: Al .

Programming the Raspberry Pi:
Gretting Started with Python

In a new book from www.raspberrypibook.com,
Simon Monk covers basic Python to in depth GPIO usage.

Having bought a Raspberry Pi, chances are
that you will be interested in learning how to
program your new gadget. The book
"Programming the Raspberry Pi: Getting
Started with Python"” by Simon Monk,
guides the reader through the process of
learning Python with the Raspberry Pi.

TAB
&7
N

grogramming
the Raspberry Pi’

Getting Started
with Python

Simon Monk

The book is accessible to newcomers to
programming and leads the reader through
the basics of Python, before moving on to
more complex topics such as using the Tkinter
and Pygame libraries as well as programming
for the GPIO connector.

The approach is very much hands-on.
Programming concepts are developed in
example programs, which build from a simple
start in the same way as you would when
writing a program from scratch.

Score: 2

\ 3 #

.

Three chapters of the book are devoted
exclusively to programming and using the
GPIO connector. Various techniques, tools
and prototyping products are surveyed and
explained including Gertboard, PiFace, Pi
Cobbler and the RaspiRobotBoard.

Two of the hardware chapters are step-by-
step instructions for building and programming
hardware projects using the GPIO connector.
The first project is a simple 7-segment LED
display that shows the Raspberry Pi's system
time. The second is a roving robot that uses
the low cost Magician Chassis rover kit, along
with the RaspiRobotBoard interface board.

All the source code from the book is available
as a download from the book's website.

The book is available from most major book
sellers from the end of November 2012 and
further details can be found at the book's
website (www.raspberrypibook.com).

17

pibow Interviews

The Pibow guys give us an insight into the inner workings of their factory, how the

Pibow has affected them, what plans they have instore for us and even tips on

starting your own buisness.

Meeting the pibow guys was an
interesting experience for me and as they
were pretty close to me | thought it was
logical to go visit them as well as doing
an interview, and I'm glad | did!

Q: To what do you attribute the success of the
Pibow and how has it affected you?

"Pibow was just so different to other cases
which meant it really stood out. Obviously
being featured on the RaspberryPi.org
homepage was a massive coup for us and
drove alot of the initial interest in Pibow. From
that we just had to make sure we shipped as
fast as we could. It was great sending out big
batches of units; the next day there would
always be loads of excited and happy tweets
from people who's Pibow had just arrived."

An example laser cut part

Q: Is there anything you would have done
differently ?

"If we'd known how successful it would be
we'd have bought the extira laser cutters
sooner which would have made things alot
easier and quicker. They are expensive
though so we always wanted to be sure we'd
need them in the longer term."

18

Q: What are your plans for the future; will
there be any variation on the colours like a
special edition 'PiWasp' (black and yellow) or
‘Americana style' (red, white and blue), would
there be cases with wheels?

"Right now we are focused on Picade
(http://www.kickstarter.com/projects/pimoroni/
picade-the-arcade-cabinet-kit-for-your-
raspberry-p) which we revealed two weeks
ago via Kickstarter. There are some Pibow
things coming in the very near future too -
including new colours!"

[O.K., so the cases with wheels suggestion
was a little far-fetched but with how these
guys are progressing, who knows!]

Jon and Paul from Pimoroni

Pibow Ninja

Pibow Toxic

Pibows waiting to be shipped

Q: Finally, what advice would you give to
budding entrepreneurs from your experience?

"Know your stuff. The internet is full of
quality infomation if you hunt for it. Then just
go for it and accept as much help as friends
and family will offer :-)

We've worked really really hard over the
past four months to ship out all the Pibows
people have ordered. We've run the lasers for
around 16 hours a day, everyday, including all
weekends during that time. We were prepared
to put our lives on hold to ensure we could
deliver as quickly as possible.

Friends and family have been amazing and
offered help at the workshop and also
provided some financial support to get us up

and running. We can't thank them all enough
for what they have done to help."

They look like some great cases. Hopefully,
we will see the Picade kit in mass production

soon too.

Article by Chris Stagg

DID YOU

Paul from Pimoroni is responsible for
designing the Raspberry Pi logo!

The Pibow case is made from acrylic.

Pimoroni now have 3 laser cutters called
Bert, Ernie and Cookie Monster! [Ed: It
can't be long before Oscar, Big Bird and
The Count appear.]

20

Learn how to create a 70s Christmas tree with
CESIL and a Raspberry Pi.

CESIL - Standing for Computer Education in
Schools Instructional Language was designed
in the 1970s as an attempt to introduce young
people in schools into the world of computer
programming. Without computers in schools,
pupils wrote programs on paper and sent
them into their local computer centre. The
results would come back in the post a week
later!

CESIL is a very simplified assembly language
with a very limited application base, however it
is easy to learn and write simple programs. On
its own CESIL is not terribly exciting, so I've
written an interpreter for it in BASIC and
added on a Christmas tree with programmable
fairy lights! The tree has 4 rows of 8 lamps.
Think of it as a grid 8 wide and 4 high.

A CESIL program is essentially three columns
of text. The first column (which can be blank)
is the label - it's a placeholder in the program
which you can "jump" to from other parts of the
program. The middle column is the operator -
that's the instruction to execute. The final
column is the operand - this is data for the
instruction to use. This data may be the name
of a label (if it's a jump instruction), it may be a
number or it may refer to a named memory
store or variable.

My extensions to the CESIL machine have
included two more registers (three in total) to
hold the row and column locations of the
lamps and a colour instruction to set the lamp
colour as well as a subroutine facility. The
program can be up to 256 lines and contain up
to 256 variables.

The best way to explain it may be to look at an
actual program. This program reads in a
number from the keyboard and prints a

multiplication table:

mtable:
Multiplication table generator
line
print "Multiplication table generator"
line
print "What table"
in
store table
load 1
store index # Index times

loop: load index
out
print " TIMES "
load table
out
print " ="

mul index # Table was in accumulator
out

line

load index # Add 1 to the index

add 1

store index

sub 11 # Subtract 11 counting 1 to 10
jineg 1loop # If <0 then jump to loop
halt

Blank lines are allowed and comments start
with the # symbol. Most of this should be self-
explanatory, but with just one accumulator,
everything has to be transferred to and from
memory - the "store table" instruction stores
the accumulator in a variable called "table".

The standard CESIL instructions are:

LoAD - Transfer the number into the
accumulator

STORE - Transfer the accumulator into a
named variable

gump - Jump to the given label

JINEG - Jump if the accumulator is negative
J1zeRO - Jump if the accumulator is zero
apD - Add a value to the accumulator

suB - Subtract from the accumulator

muL - Multiply the accumulator with the value
p1v - Divide the accumulator with the value
HALT - End program

1N - Read a number from the keyboard

out - Outputs the accumulator as a number
PRINT - Prints a literal string (in "quotes")
LINE - Prints a new line

Extensions:

Jsr - Jump to subroutine
RET - Return from subroutine (to the line
after the last JSR instruction)

Christmas Tree extensions:

TREE - Build a new Christmas Tree

row - Transfer the accumulator into the Row
register

cor - Transfer the accumulator into the
Column register

coLoUR - Set the lamp indicated by the Row
and column registers to colour value in the
accumulator

waIT - Delays for the given number of centi-
seconds (100ths)

Note that you need to execute a WAIT
instruction to actually reflect the colour
changes in the lights. That means that you can
set a lot of lights at once, then when you
execute a WAIT (even a WAIT 0) instruction,
all the lights will change at the same time.

There are 16 standard colours:

0: Off, 1: Navy, 2: Green, 3: Teal,

4: Maroon, 5: Purple, 6: Olive, 7: Silver,
8: Grey, 9: Blue, 10: Lime, 11: Aqua,
12: Red, 13: Pink, 14: Yellow, 15: White

Our Christmas tree has 4 rows of 8 lamps; row
0 is at the bottom and column 0 is the left hand
side.

The following program fragment will fill the
bottom row with red lamps:

Example program to light the bottom

row with RED lights
tree # Make a tree!
load O
row # Row 0 - Bottom
load 7 # Count 7 to zero
loop:
store col-count
col
load 12 # Red
colour
load col-count
sub 1
jineg done # Jump If Negative
jump loop
done: wait 1 # Update the lights
halt

First download the RTB BASIC interpreter
from
https://projects.drogon.net/return-to-basic/

Then you can install the CESIL interpreter and
demos using:

cd

git clone git://git.drogon.net/cesil
cd cesil

rtb

load cesil

run

What | would like to see is people sharing
examples, so please post them on forums,
email them to me (projects@drogon.net) and
what I'll do in January is have a look at the
ones l've found and send a free Raspberry
Ladder board to the one | think is the most
original or clever...

Article by Gordon Henderson

21

1 = | ———
— .’ii | +sw1tchon() |
) | -

| +closeGrip)]
———— = | g ea
- readrlashaDcl) X T k& 3 e d ‘ ' -
% A o e Ny

Last time we looked at the very beginning of C++ and
writing our first few programs. Today we'll carry on, as well
as showing you how to run your programs and some more
variable types.

Compiling and Running Programs

Once you've written your program (you may use any text editor, such as nano or Geany), save it as
a .cpp file, then open a new terminal window and type the following:

g++ [name].cpp -o [program_name]

Replace [nhame] with the name of the file and [program_name] with what you'd like the actual
program to be called.

If you get an error saying no such file or directory, you will have to use the cd command to find the
directory you saved the .cpp file to, and then run the command again. If you get an error saying g++
is not found (this shouldn't be the case on newer images), type sudo apt-get 1install
build-essential toinstall g++.

When compilation has finished (it might take a while for bigger programs), simply type:

./[program_name]

With [program-name] being the same as the one you used to compile. The program should then
run, and when it is done you will be returned to the terminal as with any other command line
program.

More Variable Types

Last time we looked at the int variable type, which lets us store whole numbers. Of course, we
may need to store more than this, so there are different basic variable types. They are as follows:

Name What it stores Example
int An integer — a whole 42
number.
float A decimal number correctto |3.141592
6 decimal places.
double A decimal number correctto |3.1415926535
10 decimal places.
char A single character. c
string A string of text. Hello, how are you?
bool True or false. True

To make a variable, simply type the kind you want followed by the name you want to give i,

22

followed by a semicolon. Have a look at the code below:

#include <string>
#include <iostream>
using namespace std;

int main()

{
// Make some number variables:
int wholeNumber = 5;
float decimalNumber = 5.5;

/* Make some letter variables:

** Notice how we use single quotes
** for characters, and double quotes
** for strings. */

string greeting = "Hello there";
char punctuation = '!"';

// Make a boolean variable:
bool isTrue = false;

// Print our variables added together:

cout << wholeNumber + decimalNumber << endl;
cout << greeting + punctuation << endl;

cout << 1sTrue << endl;

return 0;

}

Notice what happens when we add the different kinds of variables. The number ones work as
expected; 5 + 5.5 equals 10.5 and that's what we get out. When we add letter ones, the letters get
added together. So we have our string, “Hello there”, and we add the exclamation mark, so we end
up with “Hello there!”. This is why data types are important. If we had saved the numbers as
strings, it would have joined 5.5 to the end of 5, and we'd end up with “55.5”. It is also a good idea
to give variables sensible names. Variable names can have letters, numbers and underscores, but
cannot begin with a number. There are also certain keywords you cannot use as they are reserved
for the language.

Also notice we get 0 instead of “false” for 1sTrue. A boolean is basically a 0 for false or a 1 for
true, just like binary, so that's how the program outputs it. Last time we used cin to let the user
input a value and store that as a variable. Try doing that with the code above. We can also use the
= sign to change what's stored inside a variable at any time (that's why they're called variables).
The value of one variable can be assigned to another variable, for example:

int 1
int j

4;
1;

However this cannot be used to assign a value to a string:

int 1 = 4;
string s = 1i;

Since the string class has no member function to allow this assignment. The assignment of a
number to a string can be achieved with a stringstream, which will be discussed in later tutorials.

Article by Alex Kerr
23

Baby steps in a... B IG

WORLD

Introduction

Following on from issue 6, we will continue to
cover the basics of the Ada language.

Numeric types (continued)

Integer types can have negative numbers, such
as -10, -55, etc. Natural types can only accept
values starting from 0 (so no negative numbers)
and positive types can only accept values
starting from 1 (no negative values and no zero
either).

All of these types can be used together in
mathematical expressions. However, you must
make sure you do not go outside of the range of
the type you assign to, otherwise an error will
occur.

1 with Ada.Text IO;

2 use Ada.Text I0;

3

4 procedure Decisions is

5 Is Defective : Boolean := False;
6 begin

7 if Is Defective = True then

8 Put Line ("Defective");

9 else

10 Put Line ("Not defective");
11 end if;

12 end Decisions;

Listing 1: decisions.adb

Line 5: We define a Boolean variable, Is_Defective,
and set it to be False.

Line 7: We test to see if Is_Defective = True. The =
means whatever is on the left equals or is the same
as whatever is on the right. The part between the if
and the then is called an expression. We could also
just have put if Is_Defective then to mean the
same thing.

False then and if not

Also, if Is_Defective =

For example, if you define two variables X :
Natural := 1; and Y : Integer := 2; and then
subtract Y from X and then assign back into X
again (e.g. X := X -Y), this will cause an error as
the result is -1 which is outside the range
allowed for Natural types.

Boolean types

Boolean types have two values; either True or
False. There is nothing else you can assign to a
variable of Boolean type.

Simple decisions
All languages have the idea of boolean values as

all conditions in programming rely on the idea of
something being true or false.

Is_Defective then mean the same thing.

Line 8: Anything between the then and the else
keywords is run when the condition is true.

Line 10: Anything between the else and the end if
keywords is run when the condition is false.

Line 11: All if statements should end with end if;
even if there is no else part.

Type in the code in Listing 1 to see how we can
make decisions in Ada using a Boolean type.

Literals

We have already seen some literals, even
though you don't know what they are. A literal is
any piece of data in source code such as the
number 125 or the string “Hello, from Ada” in
Listing 1 in Part 1; these are numeric and string
literals, respectively.

Also in Ada there are character literals, such as
'C'. A string is made up from characters so we
can add characters to strings using the &
operator, like we did in Listing 2 in Part 1. For
example “Hello “ & 'G' is the same as “Hello G”.
You can create variables of type Character just
as we did previously with Integer, Natural and
Positive.

For the Boolean type, as noted above, the
values of True and False are boolean literals.

More attributes

We have already come across the 'Image
attribute, but now we will talk about three more
attributes of integer types that are very useful.
Every integer type has a range of values it can
accept, this range is defined by the 'First and
'Last attributes. We can also get access to this

A BIT OF HISTORY

Back in the 1970s, the American Department of
Defence (DoD) decided they wanted a programming
language that could be used for all their projects. A
number of teams around the world submitted
proposals for a new language, each named after a
colour: Red, Green, Blue and Yellow. The Green
team, led by Jean Ichbiah from Cll Honeywell Bull in
France, won.

The first version of the Green language was passed
onto programming teams within the DoD, who were
told to use it for all subsequent projects.

The Green language was renamed Ada after Lord

Byron's daughter, Augusta Ada (Countess of
Lovelace), who worked alongside Charles Babbage

Many language entities provide attributes that can
provide

information to the programmer. You
access attributes using the apostrophe ('). In our
examples we have seen the 'Image (), 'First, 'Last
and 'Range attributes of the 3 Integer types.

range using the 'Range attribute - this really
returns 'First 'Last, where the two dots
(diaresis) say “this is a range of values”.

If you try to assign a value outside this range to
a variable of a type, it will cause an error and
your program will not run correctly.

Another use for 'First is to assign an initial value
to a variable. Looking at Listing 2, the initial
value to assign to a variable comes after the :=
symbol after the type name.

Exercises

1. Use the Integer'iImage attribute to print the
values returned by Integer'First and Integer'Last
attributes.

2. Repeat exercise 1 but for Positive and Natural
types.

3. Try replacing the initial values with the 'First
attribute.

and who is considered to be the world's first
computer programmer due to her work on his
Analytical Engine.

The first version of the Ada language came about in
1983, named Ada 83. The next version came along
in the 1990s, initially called Ada9X and later
renamed Ada95. The next version was Ada 2005
and another revision was released this year called
Ada 2012.

The GNAT compiler is still being worked on to
support the newer Ada 2012 features so
unfortunately some of these won't work if you try
them out. We can definitely use Ada95 and also
most of the Ada 2005 features for our programs.

I R |
% N R A | L/”
1

\ g
Syt
-

\
L4

DATABASE
BOOTCAMP

There seems to be a good deal of debate about the
language most suitable for learning on computers and one

rarely offered is SQL —

It is the international standard used to control
databases and | contend easier to learn than
most code. It is what is known as a ‘high level
language’ i.e. very close to a clipped form of
English. SQL covers a huge range of
applications worldwide - not least that of
manipulating intelligent websites!

Once you start to play you will understand the
rhythm, or the syntax, in speaking SQL to the
point where you could almost guess a
command.

Follow this sequence on your own Pi and |
explain how to get MySQL working and
produce a solid platform on which you can
develop your database skills - beyond the
scope of this article.

Installing MySQL

We are going to use an Open Source version
of SQL called ‘MySQL’ but this is not included
in the standard Raspbian distribution so needs
to be located, downloaded and installed onto
your Pi. Luckily, this complex process is
controlled by one command and is run in a text
screen or terminal window:-

pr@mpt > apt-get install mysqgl-server

Your Pi trundles off and begins the download.
There may be periods in this process where
nothing appears to happen but be patient.
Eventually you will be presented with a blue
screen and asked to set a password for
MySQL - twice for confirmation.

MySQL is a registered trademark of Oracle and/or its
affiliates. Logo used by permission.

26

‘Structured Query Language.’

Databases

A longer list
i

The very simplest
database is a list. A list
e becomes more useful the
Ionger it gets but probably then requires more
columns so you end up with a table.

A table has columns and rows - in database
speak these are called fields and records. A
large database can contain many tables - and
so it goes.

There are three basic functions in maintaining
any data in a table; add, delete and modify.

So in terms of the data we keep we can add a
new record, delete an old record or modify
the contents of an existing record - that is all!
(DML - Data Manipulation Language).

It terms of how we keep the data we can add,
delete and modify tables and add, delete
and modify fields - that is alll Master these
commands and we are well on our way to
controlling databases. (DDL - Data Definition
Language).

Once the data is in place it is useless unless
we DO something with it and this too can be
reduced to two basic functions sort and
search.

Data

We have managed to reduce elementary
databases down into a few functions but
before we proceed into MySQL we need to
take one final look at data itself.

If ever you have needed to complete a form,
paper based or on a web site, you would have
come across one where the requirements are
unclear or your response would not fit into the
space available. You can scribble notes on a
paper form or reduce the size of your
handwriting to fit but that’s not possible on
computers as they are more highly defined.
So it is with ‘data-types’. MySQL recognizes
only three types of data text, number and date.
To store the data efficiently it needs to allocate
the correct amount of computer storage space
too.

Entering MySQL

Enter Mi/SQL using the command

From here on you have left Raspbian
and now need to type SQL Structured Query
Language. Although SQL is an international
standard, local variations exist and MySQL is
a particularly polite version. You have to say
please at the end of every command

otherwise nothing happens.

The short cut for please is the semi-colon.
Remember - no ; no action.

Viewing the databases

To show the existing databases simply type:-

prOmpt > show databases;

Should you forget your manners enter the
please ; on a separate line. You will display

the four default databases. Before we start
changing things lets become confident in our
ability to look around, e.g:-

pr@mpt > show tables in

information_schema;

This displays the list of tables in the database
information_schema. The columns in a table
can be seen in three ways. All produce the
same result:-

prOmpt > show columns 1in
information_schema.views;
proOmpt > show fields in
information_schema.views;
prOmpt > describe
information_schema.views;

Note: The general format of the command
describes the table in the database separated
by a full stop i.e:-

proOmpt> show fields in
<databasename>.<tablename>

Work through and try these examples and test
your own options to gain the most from this
article. A typical output is:-

Here you can see the columns - called fields -

and other details that will be explained shortly.

Viewing the data

We can go further by selecting to see all the
data in any of the tables. The star * is known
as a ‘wild card’ and means ‘everything’ so to
select everything in a table enter:-

prOmpt > select * from

information_schema.views;

Continued over page...

27

This produces one extreme of output - i.e.
nothing, an ‘Empty set’. Notice also the timing
here - the Pi has taken four one hundredths of
a second to produce this output.

The other option is represented by:-

prodmpt > select * from
information_schema.CHARACTER_SETS;

This produces what appears to be a mess,
and it is, but it should look like this:

All the | + and - characters are actually border
lines in a crude table that looks like this:-

+ + + + + + +
|col_1 |col_2 | col_3 | col_ 4| col_5| col_6 |

+ + + + + + +
|data | data |data |data | data | data |
|data | data |data |data | data | data |

! ! ! ! 1
T - - T T T +

Creating a database

Now the hard bit. MySQL can become very
complex. Let’s create a database called magpi

type:-

pr@mpt > create database magpi;

Prove the database has been created:-

pr@mpt > show databases;

28

You now want to tell the system to use your
new magpi database so type:-

prdmpt > use magpi;

Creating a table

A database can contain many tables, as we
have seen. Tables only need to be set up
once but need to specify the data-type and
size of the data it is expected to hold.

A generic command looks like this:-

pr@mpt > create table <tablename>
(
<coll><coll_data-type>,
<col2><col2_data-type>,
<col3><col3_data-type>,

A more useful example:-

pr@mpt > create table birdtable
(
id int NOT NULL AUTO_INCREMENT,
first_name char(25),

town char(30) default “Cardiff?”,

dob date,

birds int,

record timestamp default now(),
primary key (id)

DK

Now you can use [ESdgislRNaNgeidelJk 3 (O

reveal the by now familiar description:-

oo o o o= o o +

| Field | Type | Null | Key | Default | Extra |

ommmm e it o +o---- ommmm oo ommmm e +
I id I int(11) I NO

| PRI | NULL | auto_increment |

| first_name | varchar(25) | YES | | NULL | |

| town | char(30) | YES | | Cardiff | |

| dob | date I YES | I NULL | |

| birds | int I YES | I NULL | |

| record | timestamp | NO | | CURRENT_TIMESTAMP | |
B i e niateittes +ommmo +o---- ittt b Hommmmmmmmm oo +

6 rows in set (0.01 sec)

Next time we will be looking at inserting data
into pre-populated tables and viewing the data
using sorting, searching and logical
expressions.

Article by Richard Wenner
This article is based on http://prOmpt.me
- a free video resource.

The MH!IFI What's On lillllll’-'

Want to keep up to date with all things Raspberry Pi in your area?
Then this new section of The MagPi is for you! We aim to list Raspberry Jam events in your area,
providing you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Bloominglabs Raspberry Pi Meetup

When: First Tuesday of Every Month @ 7:00pm
Where: Bloomington, Indiana, USA

Meetings are the first Tuesday of every month starting at 7:00pm until 9:00pm, everyone is
welcome. Further information is available at http://bloominglabs.org

Manchester Raspberry Jamboree

When: Saturday 9th March 2013 @ 10:00am
Where: Manchester Central Conference Venue, M2 3GX, UK

The meeting will run from 10:00am until 4:00pm and there are a limited number of places.
Tickets and further information are available at http://raspberryjamboree.eventbrite.com

Norwich Raspberry Pi User & DEV Group

When: Saturday 8th December 2012 @ 12:00pm
Where: House Cafe, 52 St. Benedicts Street, Norwich, UK

The meeting will run from 12:00pm until 5:00pm. Further information is available at
http://norwichrpi.org

CERN Tarte au Framboise

When: Saturday 19th January 2013 @ 9:30am
Where: CERN Microcosm, Geneva 1211, Switzerland

This event takes place at the world-famous CERN. Doors open at 9:30am and the meeting runs
until 4:30pm. Further information is available at http://cern-raspberrypi.eventbrite.fr

29

t h e Python can launch subprocesses that
function separately. Using this approach
it is possible to create any number of

p p g t h O n) desktop widgets.

We will create two widgets: a simple RSS

. news reader and an image downloader
p I for Astronomy Picture of the Day.

Run magpi_widgets.py. This will start the widgets widget image.py and widget rss.py. A single CTRL+C
in the terminal will send a kill command to each subprocess. This code requires some additional Python modules which
can be installed from the terminal:

apt-get install python-setuptools
easy install-2.7 pip

Pip install feedparser # parses RSS

pip install beautifulsoup4 # parses HTML

apt-get install python-imaging-tk # provides image manipulation
magpi_widgets.py :
Python Widgets using pygame and subprocess
By ColinD - 02 November 2012

import subprocess, os, signal, Tkinter, time

run the widget subprocesses - feel free to add more here!
pImg = subprocess.Popen(["python", "widget image.py"],stdin=subprocess.PIPE)
PRss = subprocess.Popen(["python", "widget rss.py"],stdin=subprocess.PIPE)

send the screen width to the sub processes

r = Tkinter.Tk()

width = r.winfo_screenwidth()

pImg.stdin.write(str(width)+"\n")

PRss.stdin.write(str(width)+"\n")

Run until subprocesses killed with a single CTRL-C
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
os.kill (pImg.pid, signal.SIGKILL)
os.kill (pRss.pid, signal.SIGKILL)

widget_image.py :
import urllib, Image, pygame, os, sys, time
from bs4 import BeautifulSoup

read stdin from parent process and calculate widget screen position
baseXPos = int(sys.stdin.readline()) - 200 - 10
OS.enViron[‘SDL_VIDEO_WINDOW_POS'] = str(baseXPos) + "," + str(30)

display a borderless window to contain the resized image
windowSurface = pygame.display.set mode((200,200), pygame.NOFRAME)

while True:
try:
soup = BeautifulSoup (
urllib.urlopen('http://apod.nasa.gov/apod/astropix.html'))
APOD has one img tag so we can use find instead of findAll
imgTag soup.find('img"')
imgUrl imgTag['src']

PYTHON VERSION: 2.7.3rc2
PYGAME VERSION: 1.9.2a0
0O.S.: Debian 7

30

imgName = os.path.basename (imgUrl)

if the image already exists then do not redownload

if not os.path.exists(imgName) :

urllib.urlretrieve("http://apod.nasa.gov/apod/"+imgUrl, imgName)

download, resize and save the image for the widget

imgOriginal = Image.open(imgName)

imgResized = imgOriginal.resize((200, 200),

imgResized.save (imgName)

imgLoad = pygame.image.load (imgName)
windowSurface.blit (imgLoad, (0,0))
pygame.display.update ()

Image.NEAREST)

if an exception occurs skip the download on this loop

except (IOError, TypeError, RuntimeError):

print "Error downloading, will try again later"

sleep for 8 hours as we do not want to spam the server!

time.sleep(28800)

widget_rss.py:
import pygame, os, sys, feedparser, time
pygame.init()

read stdin from parent process and calculate widget screen position

baseXPos = int(sys.stdin.readline()) - 300 - 10

os.environ|['SDL VIDEO WINDOW POS'] = str(baseXPos) + "," + str(430)

create the Pygame window and fill the background with colour blocks

screen = pygame.display.set mode((300,150))

pygame.draw.rect(screen,(807140,80),(0,0,300,50))
pygame.draw.rect (screen, (80,80,80), (0,50,300,50))

pygame.draw.rect (screen, (160,160,160), (0,100,300,50))

define the font to output the RSS text

font = pygame.font.SysFont('dejavuserif', 10, True)

while True:

myFeed = feedparser.parse('http://www.raspberrypi.org/feed')

set the window title to be the name of the blog
pygame.display.set_caption(myFeed['feed']['title']+" RSS")

get the articles from the RSS and output the text

for i in range(0, 3):

layerText = pygame.Surface(screen.get_size())

outputText = (myFeed['items'][i].title, myFeed['items'][i].updated,
myFeed['items'][i] .1link, myFeed['items'][i].description)
clear the surface each loop by filling with transparent pixels

layerText.set_colorkey((0,0,0))
layerText.£fil1((0,0,0))

ij=o0
for line in outputText:
j = layerText.get rect().y + j + 5

text = font.render(line.rstrip('\n'), O,

textpos = text.get rect()

textpos.x = layerText.get_rect().x + 5

textpos.y = textpos.y+j
layerText.blit (text, textpos)
screen.blit (layerText, (0, 50*i))
pygame.display.flip()
j=3+5
sleep for an hour, do not spam the server!
time.sleep(3600)

Ideas for improvement h
The widgets display will only refresh when checking for new content to t e

download, causing blank output if another window is dragged on top. Try
using Python's datetime to determine when to download new content

while separately updating the screen output every second.

(255,255,255))

pit

@ python’

31

| first proposed the idea of The
MagPi magazine back in March on
the Raspberry Pi forums after
reading numerous threads by
those new to programming who
wanted to learn but were unsure of
how to start or whether they had
enough experience to operate the
Raspberry Pi.

At the time, there was no
documentation how to use this
clever little computer and most
tutorials and projects were aimed
at those with some experience in
using Linux or with a background
in programming. | felt this might
put a lot of beginners off learning
how to program or prevent them
from realising the vast variety of
projects that would be possible
with limited effort with the Pi.

To target the more experienced
programmer, one thing | felt was
missing from the Raspberry Pi
community was a central hub,
aside from the forums, which
would allow those to explain in
detail to others how to replicate
their project, show case pictures
and videos and answer any
questions from the community on
the topic to help others in a similar
situation.

Coming from a medical
background with experience in
publishing papers in journals, | felt
that the best way the community
could share their experience was
to create a centralised place where
everyone could access and share

32

information. The media of an
online peer reviewed journal
seemed to tick all the boxes and
comply with the educational ethos
of the Raspberry Pi Foundation.

Over the last 8 months, both The
MagPi magazine and the team has
evolved. We are now a limited
company and work very closely
with the Raspberry Pi Foundation.

We encourage users to send their
projects and we upload them to
the draft of the issue. Readers get
an early glimpse of the next
magazine and they can provide
suggestions to correct or clarify
what is written and any tips or
tricks which may be of benefit.

“MagPI

editor@themagpi.com

We currently produce a 32 page
monthly magazine. Our content
covers articles on a variety of
Raspberry Pi related themes
including coding, robotics, home
automation, electronics and
practical techniques (to name a
few).

We are thankful for all the support
given to us by both the Raspberry
Pi Foundation and all our readers.
We have been overwhelmed by
how we have been positively
received, with constant feedback
to reflect this and some great
articles featuring the magazine,
including those by the Wall Street
Journal and the BBC’s Rory
Cellan-Jones!

We have grown in size as a team,
with editors and contributors from
all over the world, from all age
groups and all professions; from
educationalists to medicine,
technologists to students. To
reflect the global interest in The
MagPi magazine, it has been
translated to French and German
with Chinese and Spanish
translations also being worked on.

We're super excited by our plans
for The MagPi in 2013, including
our Kickstarter project allowing
readers the chance to get all eight
issues in a limited edition binder.
We hope you will continue to
support us in the New Year.

Ash Stone
Chief Editor of The MagPi

