
IISSSSUUEE 2222 -- AAPPRR 22001144

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hhttttpp::////wwwwww..tthheemmaaggppii..ccoommRRaassppbbeerrrryy PPii iiss aa ttrraaddeemmaarrkk ooff TThhee RRaassppbbeerrrryy PPii FFoouunnddaattiioonn..
TThhiiss mmaaggaazziinnee wwaass ccrreeaatteedd uussiinngg aa RRaassppbbeerrrryy PPii ccoommppuutteerr..

WWyylliiooddrriinn

NNiigghhtt LLiigghhtt

LLaaiikkaa EExxpplloorreerr

AAuuttoommaattiicc GGaarraaggee

LLEEGGOO®® IInntteerrffaacciinngg

DDaattaabbaassee BBoooottccaammpp

SSccrraattcchh II//OO EExxppaannssiioonn
Three

chances to win

a Gertboard

mount & 32GB

SD card

114400%%
MMoorree
SSoollaarr

EEnneerrggyy

GGeett pprriinntteedd ccooppiieess

aatt tthheemmaaggppii..ccoomm

Ash Stone - Chief Editor / Administration

Les Pounder - Issue Editor

W.H. Bell - Layout / Administration

Bryan Butler - Page Design / Graphics

Ian McAlpine - Layout / Proof Reading

Matt Judge - Website / Administration

Aaron Shaw - Layout

Nick Hitch - Admin

The MagPi Team

Colin Deady - Layout / Testing / Proof Reading

Age-Jan (John) Stap - Layout

Sai Yamanoor - Testing

Claire Price - Layout

Shelton Caruthers - Proof Reading

Nigel Curtis - Proof Reading

Paul Carpenter - Testing

James Nelson - Proof Reading

2

22

Welcome to Issue 22 of The MagPi magazine.

We kick off this month’s issue with an article on solar tracking. Nathan and Nicholas introduce their
amazing project, the ‘Reflective Solar Tracker’ , a solar cel l with the brains of a Raspberry Pi, capable of
chasing the sun to improve energy capture by up to 1 40%!

Andy Baker returns fol lowing his successful quad-copter series and this time he is featuring his
intel l igent night l ight. Andy describes bui lding this project to reassure his son at night and banish those
‘under-bed monsters’ . I t's a great mix of both the PiBow case and PiGlow add on-board.

Fol lowing its recent success on Kickstarter we examine the Laika Explorer, a digital Input/Output board
for the Raspberry Pi with the genius additions of USB and expansion ports.

We welcome back Richard Wenner for his second article for The MagPi, where he continues his tutorial
on using SQL by explaining how to insert and view stored data. Another welcome return is Phi l ip Munts
where he describes how to interface the Raspberry Pi to LEGO® Power Function motors. We also have
more upcoming Raspberry Pi events from around the world and more book reviews to sink your teeth
into.

To finish up, we go out with a bang with three great articles. There is a home automation tutorial on
control l ing your garage door over the internet, we show you how to remotely program your Raspberry Pi
using the superb Wyliodrin platform and final ly we show you how to control Input/Output devices using
Scratch. What more Raspberry Pi themed goodness could you possibly want?

To fol low our progress you can l ike us on Facebook
at http://www.facebook.com/MagPiMagazine to
keep up to date and give us more of your valued
feedback.

Chief Editor of The MagPi

http://www.facebook.com/MagPiMagazine

3

4 ASTRONOMICAL TRACKING
Reflective solar tracking control system

8
Keeping night-time monsters away with PiGlow

NIGHTLIGHT

Part 1 : Introducing Laika Explorer and digital output electronics
1 4 LAIKA™

24
Control l ing your garage door over the internet with the Raspberry Pi
HOME AUTOMATION

30
Part 2: Inserting and viewing stored data
DATABASE BOOTCAMP

33
THIS MONTH'S EVENTS GUIDE
Torbay UK, CERN Switzerland, Québec Canada, Wakefield UK, Beachwood USA

34 WYLIODRIN
Programming the Raspberry Pi from a web browser using a visual language

MUNTS I/O EXPANSION BOARD
Part 3: LEGO® interfacing with an ARM Cortex-M0 microcontrol ler

1 8

40
Adding I/O devices to RpiScratchIO
I /O EXPANSION WITH PYTHON AND SCRATCH

48
Have your say about The MagPi
FEEDBACK

Raspberry Pi User Guide Second Edition and Learning Python with Raspberry Pi
BOOK REVIEWS47

46
Win a bundle of Raspberry Pi accessories from PC Supplies Ltd
COMPETITION

http://www.themagpi.com

ContentsContentsContents

http://www.themagpi.com

4

SKILL LEVEL : INTERMEDIATE

Nathan D. Williams &
Nicholas P. Truncale

Guest Writers

ASTRONOMICAL
Advanced motor control

Reflective solar tracking
control system

Mechanical tracking systems are avai lable to

reposition a variety of devices including radio

telescopes, antennae, and even television

satel l i te dishes. These systems are large and

often unaffordable for the small project

developer. We are team members of a

col laboration including two universities and a

non-profit sustainable energy entity whose goal

is to develop and commercial ise a new solar

energy col lection device.

This article wil l describe the new patent pending

device cal led the Reflective Solar Tracker (RST)

and wil l showcase the control systems function.

The control systems' main hardware component

is the Raspberry Pi, whose primary algorithm

uses astronomical data to reposition the RST

and col lect voltage data for power and energy

calculations.

The Reflective Solar Tracker

This device uti l ises both reflected sunl ight via

Mylar panels and a rotating base platform to

increase the energy density impinging on

commercial ly avai lable solar panels. The extra

sunl ight from reflection saturates the individual

crystal l ine solar cel ls whi le the rotating base

ensures the saturation takes place for a longer

portion of the day compared to conventional

stationary instal lations. The repositioning on the

base platform is accomplished using a gear and

worm screw turned by a low power DC motor

control led by the Raspberry Pi. The fol lowing

describes the components for control l ing a bi-

directional DC motor, col lecting voltage and

current data from a solar panel instal lation, and

the algorithm using astronomical data to

guarantee the RST is always sun facing.

5

Hardware description

The hardware architecture for the Raspberry Pi

control system functions with the use of products

from http://www.adafruit.com specifical ly the

DS1 307 Real Time Clock, ADS1 1 1 5 1 6-Bit

ADC, L293D H-Bridge IC, IR home-position

sensor and a 5200mAh power bank. The real-

time clock is used to ensure the program

executes dai ly at the proper time in case of

power fai lure. To minimise the chance of fai lure,

the Raspberry Pi is powered by a power bank,

which is simultaneously being charged by a 5V

1 A power adapter. The motor is directly

control led by an H-Bridge that is interfaced with

the Raspberry Pi GPIO pins. In addition to the H-

Bridge for motor control, an IR home-position

sensor is used to ensure the motor is returned to

the proper location at the end of every cycle. The

hardware architecture also includes an analog-

to-digital converter that al lows us to col lect the

solar panel output voltage data throughout the

day. We also col lect the voltage across a 1 Ω

power resistor giving us the current. The

connections of al l of these components can be

viewed in the provided block circuit diagram.

Tracking and data collecting
algorithm

The primary algorithm, executed by a dai ly cron

job, retrieves a local sun azimuth table

containing the Sun's position in degrees relative

to the eastern direction for the instal lation's

geographic location in the current month. The

hardware al lows the motor to turn the base

platform in both the clockwise (CW) and counter

clockwise (CCW) directions. Beginning at

6.00am, the algorithm calculates the starting

direction in reference to East and moves the

base platform CW or CCW to this position.

Throughout the rest of the day, the motor is

turned on for a specific interval every half hour

and moves the base platform CW, in the

direction of the sun's trajectory, to the next sun

facing position. The fol lowing snippets of code,

which uti l ise the NumPy library, include the

http://www.adafruit.com

6

readDayData() function that calculates the

specific time durations from the imported sun

azimuth tables. The durations are stored in the

motor_time[] array.

Once the algorithm reaches the end of the

imported fi le, the RST rotates CCW back to the

home position so it is facing east the next day.

For our data logging function, we used some of

the code from the Adafruit ADS1 x1 5 class

combined with the Python threading class. The

method itself is written as a thread that is kicked

off in the main method. Once executed, the

thread wil l open a new text fi le titled with the

current date. Inside the fi le, the thread wil l log

and timestamp data from inputs A1 and A2 every

1 0 seconds (0.1 Hz) unti l the dai ly tracking

function ends and the thread stops.

import time, subprocess, threading, datetime, logging

import RPi. GPIO as GPIO

import numpy as np

from Adafruit_ADS1x15 import ADS1x15

GPIO setup would go here

#Returns the 3 letter month abbreviation of current month

def getMonth():

temp = subprocess. Popen(["date"] , stdout=subprocess. PIPE)

date_string = temp. communicate()[0]

t1, month, t2= date_string. split(' ' , 2)

return month

month_str = getMonth()

filepath = ' /home/pi/RST/Months/' + month_str + ' . txt'

rawData = np. loadtxt(filepath, dtype=(str, float), usecols=(0, 2))

motor_const = 0. 462 # Units of deg/sec based upon speed of motor

angle_deg = np. zeros((len(rawData), 1), dtype=(float))

motor_dir = np. zeros((len(rawData), 1), dtype=(int))

motor_time = np. zeros((len(rawData), 1), dtype=(int))

def readDayData():

z = 0

while(z < len(rawData)):

loop_time[z, 0] = int(convTimeSec(rawData[z, 0]))

if(z == 0):

if(float(rawData[z, 1]) <= 90):

angle_deg[z, 0] = 90 - float(rawData[z, 1])

motor_dir[z, 0] = -1

motor_time[z, 0] = angle_deg[z, 0] /motor_const

else:

angle_deg[z, 0] = float(rawData[z, 1]) - 90

motor_dir[z, 0] = 1

motor_time[z, 0] = angle_deg[z, 0] /motor_const

else:

angle_deg[z, 0] = float(rawData[z, 1]) - float(rawData[z-1, 1])

motor_dir[z, 0] = 1

motor_time[z, 0] = angle_deg[z, 0] /motor_const

z += 1

7

Reflective solar tracking in the field

Using the col lected voltage and current data from

the solar panels, we multiply the values together

to get the power output of the panels. Integrating

these power values in ki lowatts over the total

amount of hours of sunl ight, gives you the total

energy output in ki lowatt-hours (kWh) of your

instal lation.

Our initial study compared the RST energy

output versus a conventional stationary non-

reflective instal lation. The plot on the right shows

the power and energy comparison on a perfectly

sunny day.

We recently sent two RSTs to two locations in

Uganda where one wil l be used to power an

electric water pump at a rural parish school and

the other to St. Joseph's Secondary School as a

science experiment where the students wil l

col lect data with the Raspberry Pi as a project

and send us the fi les for our study. We also gave

a keynote presentation at the 201 3 Energy Path

conference about the RST and the Raspberry Pi

control system. Anyone with questions regarding

the control system or project may contact us via

email at nathan.wi l l iams2@scranton.edu and

nicholas.truncale@scranton.edu.

#Returns RST to home position

def returnHome():

if(GPIO. input(homeSensor) == 0):

logging. info(timestamp() + ' : Returning to home position. ')

GPIO. output(hbEnable, 1)

GPIO. output(motorLED, 1)

GPIO. output(motorCCW, 1)

print "Returning home. "

. . .

class DataLoggingThread(threading. Thread):

def __init__(self, threadID, stop_data_log, delay):

super(DataLoggingThread, self). __init__(self)

self. threadID = threadID

self. delay = delay

def run(self):

ADS1015 = 0x00

adc = ADS1x15(ic=ADS1015)

logging. info(timestamp() + ' : Running data logging thread. ')

while not stop_data_log. isSet():

file = open(' /home/pi/RST/Data/' + today + ' . txt' , ' a')

voltage = adc. readADCSingleEnded(1, 4096, 250) / 1000

file. write(timestamp() + ' \t' + str(voltage))

current = adc. readADCSingleEnded(2, 4096, 250)/ 1000

file. write(' \t' + str(current) + ' \n')

file. close()

time. sleep(self. delay)

logging. info(timestamp() + ' : Exiting data logging thread. ')

8

SKILL LEVEL : INTERMEDIATE

Andy Baker

Guest Writer

NIGHTLIGHT
Keeping night-time monsters away

PiBow + PiGlow night light

A few weeks ago I bought a PiGlow on a whim from

Pimoroni, but did nothing with it unti l a few days ago

when my son woke up early in the darkness, having

had a nasty dream. That made me wonder whether I

could make an intel l igent night-l ight for him, that’s

dim when all ’s well , but l ights the room in a soothing

glow if he wakes disturbed?

Previously another project I ’d started was a home

alarm system; it reached proof of concept stage but

then stal led. I t used a Passive Infrared (PIR) motion

detector: the perfect detector for under-bed monsters

that go bump in the night.

So, down to business: NightLight is powered from a

Blackberry wall-wart charger. When the power is

switched on, NightLight starts as part of the boot

sequence and the LEDs twinkle. When it detects

motion the style of LED lighting changes to a random

choice of four, lasting for five seconds after motion is

no longer detected. My chosen styles of flashing

perhaps aren’t real ly suitable for a night l ight for kids,

but they provide good examples with which you or

your kids can tinker and make your own.

I ’ve used one of my trimmed model A’s plus a custom

PiBow to house the night l ight, but that’s not essential

– a model A or B, with the PiGlow are al l that’s

needed – case selection is up to you.

The PIR motion detector is avai lable from Farnel l /

element1 4 at http://uk.farnel l .com/jsp/search/product

detai l . jsp?SKU=1 37371 0.

Attaching it was a bit tricky for me – the PiGlow

makes all the GPIO pins inaccessible using a normal

IDC connector. The solution depends on your

soldering ski l ls. I attached wires to the PIR detector –

red (VDD) to pin 1 on the left; grey (OUTPUT) to pin

2 in the center, and black (GND) to pin 3 on the right

(see the top image on the next page).

I fed those wires beneath the Raspberry Pi through

the holes of the removed AV socket; depending on

what case you have, you may be able to find easier

holes to use. The red wire is soldered to GPIO pin 1 ,

the black wire is soldered to GPIO pin 6 and the grey

wire is soldered to GPIO pin 1 8 (see the bottom

image on the next page).

http://uk.farnell.com/jsp/search/productdetail.jsp?SKU=1373710

9

The movement detector could be replaced by a

simple switch if you wish – simply connect one end of

the switch to GPIO pin 1 (+3V3) and the other to

GPIO pin 1 8 (GPIO input) . Each press of the switch

would trigger a new pattern exactly as though the

motion had been detected.

The code was a little more complicated than I ’d

anticipated; the eighteen PiGlow LEDs each have

their own number for use by the code, but the

numbers do not correspond to any of their colours or

positions on the PiGlow board. I ended up writing

some mapping code allowing much simpler code to

select LED position / colours. That also then al lowed

the LED pattern code to be cleanly separated and

simplified from the rest of the code allowing the

various LED patterns to be extended / customized by

you and your kids.

The code is described below and is also avai lable on

GitHub as:

https://github.com/PiStuffing/NiteLite

from __future__ import division

import signal

import time

from smbus import SMBus

import RPi. GPIO as GPIO

import random

import math

command register addresses for the SN3218 IC

used in PiGlow

CMD_ENABLE_OUTPUT = 0x00

CMD_ENABLE_LEDS = 0x13

CMD_SET_PWM_VALUES = 0x01

CMD_UPDATE = 0x16

class PiGlow:

i2c_addr = 0x54 # fixed i2c address of SN3218

IC

bus = None

def __init__(self, i2c_bus=1):

self. bus = SMBus(i2c_bus)

first we tell the SN3218 to enable output

(turn on)

self. write_i2c(CMD_ENABLE_OUTPUT, 0x01)

then we ask it to enable each bank of LEDs

(0-5, 6-11, and 12-17)

self. write_i2c(CMD_ENABLE_LEDS, [0xFF, 0xFF,

0xFF])

def update_leds(self, values):

self. write_i2c(CMD_SET_PWM_VALUES, values)

self. write_i2c(CMD_UPDATE, 0xFF)

def write_i2c(self, reg_addr, value):

if a single value is provided then wrap it in

a list so we can treat

if not isinstance(value, list):

value = [value] ;

write the data to the SN3218

self. bus. write_i2c_block_data(self. i2c_addr,

reg_addr, value)

LED_ARM_TOP = 0

LED_ARM_LEFT = 1

LED_ARM_RIGHT = 2

LED_COLOUR_RED = 0

LED_COLOUR_ORANGE = 1

https://github.com/PiStuffing/NiteLite

1 0

LED_COLOUR_YELLOW = 2

LED_COLOUR_GREEN = 3

LED_COLOUR_BLUE = 4

LED_COLOUR_WHITE = 5

LED_PATTERN_TWINKLE = 0

LED_PATTERN_GLOW = 1

LED_PATTERN_SWELL = 2

LED_PATTERN_DROPLET = 3

LED_PATTERN_SNAKE = 4

Set up the LED spiral arm / colour mappings:

led_map = []

for arm in range(0, 3):

led_map. append([])

for colour in range(0, 6):

led_map[arm] . append(0)

led_map[LED_ARM_TOP] [LED_COLOUR_RED] = 6

led_map[LED_ARM_TOP] [LED_COLOUR_ORANGE] = 7

led_map[LED_ARM_TOP] [LED_COLOUR_YELLOW] = 8

led_map[LED_ARM_TOP] [LED_COLOUR_GREEN] = 5

led_map[LED_ARM_TOP] [LED_COLOUR_BLUE] = 4

led_map[LED_ARM_TOP] [LED_COLOUR_WHITE] = 9

led_map[LED_ARM_LEFT] [LED_COLOUR_RED] = 0

led_map[LED_ARM_LEFT] [LED_COLOUR_ORANGE] = 1

led_map[LED_ARM_LEFT] [LED_COLOUR_YELLOW] = 2

led_map[LED_ARM_LEFT] [LED_COLOUR_GREEN] = 3

led_map[LED_ARM_LEFT] [LED_COLOUR_BLUE] = 14

led_map[LED_ARM_LEFT] [LED_COLOUR_WHITE] = 12

led_map[LED_ARM_RIGHT] [LED_COLOUR_RED] = 17

led_map[LED_ARM_RIGHT] [LED_COLOUR_ORANGE] = 16

led_map[LED_ARM_RIGHT] [LED_COLOUR_YELLOW] = 15

led_map[LED_ARM_RIGHT] [LED_COLOUR_GREEN] = 13

led_map[LED_ARM_RIGHT] [LED_COLOUR_BLUE] = 11

led_map[LED_ARM_RIGHT][LED_COLOUR_WHITE] = 1 0

Set up the LED number array:

leds = []

for led in range(0, 18):

leds. append(0)

 Set up the LED brightness array:

levels = [0, 1, 2, 4, 8, 16, 32, 64, 128]

Set up the shutdown handler:

def ShutdownHandler(signal, frame):

global keep_looping

keep_looping = False

Set up the PIR movement detection cal lback:

def PIRCallback(channel):

global motion_detected_time

global led_pattern

global leds

if led_pattern == LED_PATTERN_TWINKLE:

led_pattern = random. randint(1, 4)

motion_detected_time = time. time()

Set up the PIR movement detection:

GPIO_PIR = 18

GPIO. setmode(GPIO. BOARD)

GPIO. setup(GPIO_PIR, GPIO. IN, GPIO. PUD_DOWN)

GPIO. add_event_detect(GPIO_PIR, GPIO. RISING,

PIRCallback, 0)

Final steps of setup:

signal. signal(signal. SIGINT, ShutdownHandler)

piglow = PiGlow(1)

keep_looping = True

motion_detected_time = time. time() - 5. 1

while keep_looping:

Drop back to the default LED pattern:

if time. time() - motion_detected_time >= 5. 0:

led_pattern = LED_PATTERN_TWINKLE

twinkle_count = 0

TWINKLE: 0: Random LED lit with random, decaying

brightness:

if led_pattern == LED_PATTERN_TWINKLE:

dim all lit LEDs by one step in the levels

list

first find the index into the brightness list

This relies on the fact that values in the

levels

list are all 2^n

for led in range(0, 18):

mant, level = math. frexp(leds[led])

if mant == 0. 0:

level = 0

if level > 0

leds[led] = levels[level - 1]

1 1

Add a random LED every 10 cycles with random

brightness

if twinkle_count == 0:

leds[random. randint(0, 17)] =

levels[random. randint(0, 8)]

twinkle_count = (twinkle_count + 1) % 10

piglow. update_leds(leds)

time. sleep(0. 1)

GLOW: 1 ; Al l LEDs glow at a low level :

elif led_pattern == LED_PATTERN_GLOW:

for led in range(0, 18):

leds[led] = levels[4]

piglow. update_leds(leds)

SWELL: 2; Al l LEDs brightness swell ing up and

down:

elif led_pattern == LED_PATTERN_SWELL:

for level in range(0, 8):

for led in range(0, 18):

leds[led] = levels[level]

piglow. update_leds(leds)

time. sleep(0. 1)

for level in range(8, 0, -1)

for led in range(0, 18):

leds[led] = levels[level]

piglow. update_leds(leds)

time. sleep(0. 1)

DROPLET 3; Same colour sweeping up and down all

the arms together at fixed brightness:

elif led_pattern == LED_PATTERN_DROPLET:

for colour in range(0, 5):

for arm in range(0, 3):

leds[led_map[arm] [colour]] = 0x80

piglow. update_leds(leds)

for arm in range(0, 3):

leds[led_map[arm] [colour]] = 0x00

time. sleep(0. 1)

for colour in range(5, 0, -1):

for arm in range(0, 3):

leds[led_map[arm] [colour]] = 0x80

piglow. update_leds(leds)

for arm in range(0, 3):

leds[led_map[arm] [colour]] = 0x00

time. sleep(0. 1)

SNAKE: 4; Light each arm sequential ly, with LED

brightness brighter at center:  

elif led_pattern == LED_PATTERN_SNAKE:

for arm in range(0, 3):

for colour in range (0, 5):

leds[led_map[arm] [colour]] = levels[colour +

1]

piglow. update_leds(leds)

time. sleep(0. 1)

for colour in range (5, 0, -1):

leds[led_map[arm] [colour]] = levels[colour +

1]

piglow. update_leds(leds)

time. sleep(0. 1)

for colour in range(0, 6):

leds[led_map[arm] [colour]] = 0x00

set all the LEDs to "off" when Ctrl+C is

pressed before exiting

for led in range(0, 18):

leds[led] = 0x0

piglow. update_leds(leds)

For use as a night l ight, the last step is to run the

code as part of the Raspberry Pi boot sequence so

that it runs as soon as it’s turned on at the wall . This

consists of a bash script. This script needs instal l ing

by saving it in /etc/init. d and typing:

cd /etc/init. d

sudo chmod 755 nitelited. sh

sudo update-rc. d nitelited. sh defaults

In addition to boot-time startup, you can also

manually start and stop the night l ight by typing:

sudo /etc/init. d/nitelited. sh start | stop

Final ly, there’s a video of it in operation on my site:

http://blog.pistuffing.co.uk/?p=1 748. I t didn’t take

long to make this fun l ittle project. I t is relatively easy

to tinker with and exploring the different l ight patterns

and how they work is a great way to learn Python.

http://blog.pistuffing.co.uk/?p=1748

http://www.abelectronics.co.uk
http://www.abelectronics.co.uk/magpi/

http://shop.pimoroni.com

1 4

SKILL LEVEL : BEGINNER

Andy Bakin

Guest Writer

Introducing Laika Explorer and

digital output electronics - Part 1

Introduction

The Laika Explorer is an I/O (Input/Output)

device for your Raspberry Pi. I t has seven digital

outputs, four digital inputs, two analogue inputs

and a dual 1 .3Amp motor driver with PWM

speed control. The PCB has four on-board

switches and seven LEDs and can be control led

with Scratch, Python or C.

Figure 1 .0 - The Laika Explorer V1 .20

Okay, so another I/O device for the Raspberry

Pi, albeit a very pretty one. Well , yes and no. The

Laika system has two tricks up its sleeve: USB

and an expansion port. Let us start with the USB.

This simply means that it connects to your

Raspberry Pi (or Linux computing device) using

a USB cable and so frees up the GPIO port for

any other devices you may already own.

Secondly, the expansion port means that the

core functional ity can be expanded which is why

Laika is a system - the Explorer is the first

instalment of this system. Future plug-in modules

wil l include high-current motor drives, I /O

expansion, GPS, Bluetooth, Wi-fi , battery

chargers, power supplies and many more. There

is room for up to 32 modules, al l of which can be

control led through the single USB connection.

After a successful Kickstarter campaign which

reached its goal back in August 201 3, the Laika

Explorer has been put through production and is

avai lable now for £34.99 (~US$47), or as an

Inventor's Kit for £74.99 (~US$1 02), plus

postage. This project is more than a PCB design

though. I ts goal is to embell ish the hardware with

tutorials, guides, lesson plans, schemes of work

and example applications. There is much to do

but you can see the current state of this work on

the project's website at: http://www.project-

laika.com.

http://www.project-laika.com
http://www.project-laika.com

1 5

Start exploring

The idea behind Laika is to promote users

getting hands-on with the hardware and

electronics. This can be daunting at first with no

background knowledge, but I am going to show

you how easy this can be. I f any of the terms in

the opening paragraph confused you then don't

worry: after fol lowing these tutorials you wil l have

a good enough understanding of the technology

to start thinking about designing your own

wonderful projects.

Inputs and outputs

Hold this thought in your head: al l a computer is,

in very simple terms, is a device that takes a set

of inputs, does something with them, and outputs

something useful. What the computer does is

control led by a set of instructions – a computer

program. Now think of Laika as a way of

providing an easier way for you to interface your

computer program to those inputs and outputs,

or to put it another way, to interface to the real

world. You are the most important part in this

system because it is you who writes the

instructions to control the I/O - to control the

world!

Let's get digital

Digital means that data is represented in discrete

values and for computers this is usual ly just two

values. You may recognise this as binary

(systems do exist with more than two states:

trinary for example has three states) and you

may think of these two states as 'on' and 'off',

'high' and 'low' or 'one' and 'zero': al l are correct

but remember that ones and zeros is how data is

stored. For example, 'on' could be a state

represented by a '1 ' as you might think, but could

equal ly be represented by '0' i f the hardware

turns 'on' when it receives a '0'.

So when you are control l ing the digital outputs

you have two choices: 1 or 0. On the Explorer

there are seven digital outputs. You might think

of these outputs as being able to drive high and

low, that is, when you turn off an output it goes to

0V and when you turn on an output it goes to

some higher voltage. The former is true, but in

the case of the Explorer, the latter is not.

Figure 2.0 - Digital outputs on the Explorer

The reason for this is that we want to able to do

something useful with our outputs and this

usual ly means consuming a certain amount of

current. Say for instance, you want to drive a

relay which may take 50mA, then a typical

microcontrol ler output is not capable of this and

trying to accomplish it wi l l l ikely damage the

device. That's why you need to heed all the

warnings about protecting the GPIO port on your

Raspberry Pi from over-current. Most add-on

GPIO modules promote the fact that they use

buffering to prevent this damage.

To give us the extra power capabil i ty, a buffer is

also used: you can see it in the picture above

label led as IC3. This device gives us over

1 00mA per channel which is plenty to drive most

relays and even motors. There is a drawback:

each digital output is only able to sink current.

That means that when it is turned on, the output

goes to 0V (a nice example of an 'on' being a

'low', not 'high') . This means that your device,

LED, relay or motor, wi l l always have positive +

connected, and the negative is what is switched.

See Figure 3.0 below.

Figure 3.0 - Transistor switch

1 6

The symbol with an arrow is a transistor and you

can think of it as a switch, switching the 0V (or

ground/GND) to the load. The small circle is

effectively the output pin which makes you see

that it is not possible to drive the output high: only

0V and open/disconnected. I t is possible to

design circuitry to drive high as well as low but

these come with cost implications.

Now that you have a better understanding of this

port it is time to do something useful with it.

Scratch to digital outputs

Each output pin is label led D0 to D6. These are

the seven digital outputs and you can control

these individual ly or by writing a single byte to

update the whole port in one go. Each output pin

has associated with it an on-board LED which

means that you can test your output control

without any other hardware.

In Scratch you can control the digital output port

using binary, integer or hexadecimal. We wil l use

binary as that is the raw form and is the right

place to start if you are learning about

computing.

To set the digital outputs in binary do the

fol lowing:

Click on ‘Variable’ in the top left corner of

Scratch.

Select ‘Make a variable’ .

Make the variable name lk_exp_dout_bin

(this must be an exact match).

You should now see that Scratch has

automatical ly produced the fol lowing commands:

Figure 4.0 – Setting up the digital output variable

in Scratch

Move the ‘set’ command into the script area and

set the ‘to’ value to ‘00001 1 1 ’ .

Figure 5.0 – Writing to the digital outputs in

Scratch

Click the Green flag and voi là, the LEDs indicate

the binary value.

Figure 6.0 - LED's

Here is an example of Laika control l ing a 7-

segment display with the digital outputs. See

http://www.project-laika.com for a tutorial .

Figure 7.0 – 7-segment control

You may have noticed in Figure 2.0 that the

digital output pins are accompanied by another

pin label led as 'Vin'. This stands for Voltage In

and is connected to the input power of the

Explorer board. So if you are using a 5V power

adaptor to power your Explorer then Vin wil l also

http://www.project-laika.com

1 7

be 5V. The Explorer is specified to operate

between 4.6V and 1 0.8V, so you need to bear

this in mind when connecting your load to the

output pins.

EMF

No not the 1 990's band with a hit song

Unbelievable, but rather Electromotive Force –

much more interesting I am sure you'l l agree.

You don't need to ful ly understand EMF, unless

you have a physics exam coming up, but you

should be aware of it. Remember this: pass an

electric current through a piece of wire and you'l l

produce a magnetic field around it. When you

remove the power that magnetic field col lapses

and causes some portion of energy to return to

the source- this is known as back-EMF or

counter-EMF, and can damage sensitive

electronic components.

I f al l you are driving is LEDs then you can forget

about back-EMF as there aren't enough coi ls of

wire to produce enough energy to cause any

damage- it is sti l l there but is negl igible. I f, on the

other hand, you are driving a motor or a relay

which are effectively inductors made from coi ls of

fine wire, then there wil l be a significant amount

of back-EMF. So the amount of back-EMF is

affected by the length of wire used? Yes! That is

why you should always keep any wires carrying

significant power as short as possible. Don't

bundle al l wires together, try not to coi l them up

too much as this may cause cross-talk where

one wire induces interference on another and

keep your signal wires away from your power

wires and electrical ly noisy devices l ike motors.

This is a very deep subject but as long as you

have consideration you should be fine.

To protect the Explorer outputs from damage by

back-EMF, each output is protected by a diode

which al lows the nasty EMF current to be

dissipated through the diode and away from our

del icate transistors. To take advantage of this

feature you need to connect al l loads that are

control led by the digital output pins to the Vin pin

as this completes the circuit. You may never

consider using anything other than Vin as your

power source for the digital outputs, but you

could run some LEDs from another power source

if you wanted. You could run a motor or inductor

too but you would have to provide your own

diode protection in this case. Figure 8.0 shows

an example of how this diode is wired.

Figure 8.0 - Wiring the diode

Next time

In this article we have covered the digital outputs

which means you can now drive relays, motors,

LEDs, solenoids or whatever can be driven

within the parameters. Next time we wil l look at

the inputs, both analogue and digital . This leads

us to creating a closed-loop system where the

output is automatical ly control led by values

sensed on the inputs, thus opening up all sorts of

possibi l i ties.

In the meantime please see the website for more

information:

http://www.project-laika.com - main site

http://www.project-laika.com/about-laika

- introduction to the Laika platform

http://www.project-laika.com/tutorials-index

- a l ist of various tutorials offered for Laika

http://www.project-laika.com/Tutorials/laika-

instal lation - instal lation instructions

Part 1 : Introducing Laika Explorer and digital output

electronics

Part 2: Analogue and digital inputs

Part 3: Motor driving with PWM

Part 4: Applications- bringing it al l together

http://www.project-laika.com
http://www.project-laika.com/tutorials-index
http://www.project-laika.com/Tutorials/laika-installation
http://www.project-laika.com/about-laika

1 8

SKILL LEVEL : ADVANCED

Philip Munts

Guest Writer

LEGO® INTERFACING
Using an ARM Cortex-M0 microcontrol ler

LEGO® Power Functions
remote control

Introduction

In The MagPi Issue #1 7, I introduced how to use

the LPC1 1 1 4 analogue inputs for sensing the

position of an analogue joystick. In this article I

wi l l show how to control the LEGO® Power

Functions motor with the LPC1 1 1 4 I/O

Processor and how to apply the joystick for

control l ing a LEGO® RPV (Remotely Pi loted

Vehicle) .

LEGO® Power Functions remote
control

LEGO® Power Functions is a system of motors

and sensors for the LEGO® system. They can

be used with either the traditional LEGO®

blocks, or with the newer Technics mechanical

components. The motors and sensors can be

purchased separately or as part of a set, such as

the LEGO® City train set #7938.

The Remote Control IR Receiver #8884 decodes

infrared remote control messages in a special

coding and sets the speed or position of up to

two motors. The receiver is designed to work

with the Remote Control #8879. We wil l be

synthesising the infrared messages with

firmware in the LPC1 1 1 4 I/O Processor to

control the IR receiver from the Raspberry Pi

instead.

Figure 1 – Some LEGO® Power Functions

components left to right: Motors, IR Receiver and

Battery Box.

Infrared protocol

The IR receiver expects a fairly complex

protocol. Fortunately LEGO® has published the

protocol specification, which can be downloaded

from the web page for the #8884 IR receiver. I

have added a service to the LPC1 1 1 4 SPI Agent

Firmware that encodes messages for the IR

receiver.

1 9

Setting up to generate LEGO® Power Functions

RC messages is easy. First, configure one of the

LPC1 1 1 4 GPIO pins as an output, with the

SPIAGENT_CMD_CONFIGURE_GPIO_OUTPUT

service. Be sure to initial ize the output state to

OFF by setting the data field to zero.

Next, generate a message with the

SPIAGENT_CMD_PUT_LEGORC

service. The data field must be loaded with

parameters encoded as fol lows:

Bits 0-7 Speed: 0-7

Bits 8-15 Direction: 0=Reverse 1=Forward

Bits 16-23 Motor: 0=All stop, 1=Motor A,

2=Motor B

Bits 24-31 Channel: 1-4

See the LPC1 1 1 4 I/O Processor Expansion

Board User Guide (http://munts.com/rpi-

lpc1 1 1 4/doc/UserGuide.pdf) for more

information about the SPI Agent Firmware API

(Application Programming Interface). The

avai lable services are described in detai l there.

Infrared emitter circuit

To transmit commands to the IR receiver, you

wil l need to drive an infrared LED (more properly:

infrared emitter) from one of the LPC1 1 1 4 GPIO

pins. The GPIO pins can only supply 4 mA of

current, which is too l ittle to drive an infrared

emitter efficiently. Infrared emitters can

commonly be driven at 1 00 mA or more. In order

to boost the output current we wil l use the

ULN2003A, a current driver IC that has been

around for many years but is sti l l highly useful for

this purpose.

The ULN2003A contains 7 amplifiers, or current

boosters, each of which can sink 500 mA

continuously, or even more for short pulses.

Since the ULN2003A is a current sink (pul l to

ground) device, the cathode (minus) pin of the

infrared emitter is connected to the ULN2003A

output through a current l imiting resistor, and the

anode (plus) pin is connected to +5V. (Do not

attempt to connect the infrared emitter to +3.3V;

the voltage regulator on the Raspberry Pi cannot

supply enough current.) See Figure 2 for the

infrared emitter circuit.

Figure 2 – Infrared emitter connection

A wide variety of infrared emitters are avai lable,

at either 850 or 940 nm wavelengths. Both

wavelengths seem to work with the #8884 IR

Receiver, but I infer from the colour of the fi l ter

that it may be optimized for 940 nm. Figure 3

shows a couple of emitters I tried.

Figure 3 – Infrared Emitters – Top: SFH4545,

Bottom: SFH4233

The SFH4545 (Digi-Key part number 475-291 9-

ND) is a 940 nm emitter rated at 1 00 mA current

(pulse), and is representative of what you wil l

find at Radio Shack or other hobbyist sources.

This class of device should have a 33Ω current

l imiting resistor.

http://munts.com/rpi-lpc1114/doc/UserGuide.pdf

20

The SFH4233 (Digi-Key part number 475-291 0-

1 -ND) is a very high power 940 nm emitter rated

at 1 A current (pulse). This device should have a

3.3Ω current l imiting resistor.

Warning: The combination of the

ULN2003A, SFH4233 and 3.3Ω resistor are

capable of generating serious heat if the

GPIO pin is left in the ON state. They are

capable of melting a solderless breadboard!

(Examine the top of Figure 5 closely for an

example!)

Python3 test program

Once the hardware is put together, you can test

your setup with the Python3 test program

test_legorc. py. I t accepts an optional host

name parameter and then 4 numbers (channel,

motor, direction and speed). I f the motor,

direction and speed are al l zero, a panic stop is

issued (both motors are stopped immediately) .

Showprogram usage

. /test_legorc. py

Raspberry Pi LPC1114 I/O Processor Expansion

Board LEGO Power Functions RC Test

Usage: . /test_legorc. py [hostname] <channel: 1-

4> <motor: 0-2> <forward: 0-1> <speed: 0-7>

Channel 1, motor 1, forward, speed 1

. /test_legorc. py localhost 1 1 1 1

Panic Stop

. /test_legorc. py localhost 1 0 0 0

Python3 remotely piloted vehicle

For experimentation my son and I constructed a

skid steer remote vehicle and wrote a Python

program to control i t using the analogue joystick.

A skid steer vehicle has independent motors

driving wheels or tracks on either side of the

vehicle. Steering is accomplished by driving

each side at a different speed and/or direction,

as shown in Figure 4.

Figure 4 – Python3 remotely pi loted vehicle

The Python3 RPV program

test_legorc_rpv. py uses the analog joystick

setup from the previous instal lment in The MagPi

#1 7. The ULN2003A and the SFH4233 infrared

emitter have been added to the breadboard, as

i l lustrated in Figure 5.

Unl ike test_legorc. py, which cal ls C functions

in libspiagent. so, test_legorc_rpv. py

uses XML-RPC. This simplifies the Python code

somewhat.

Implementing skid steering in software from a

single joystick proved tricky. A certain amount of

heuristics (fudge factors) were required.

Useable range for the IR remote control system

wil l vary depending upon the ambient

environment and the placement of the infrared

1 9

emitter. In my office, with a low white cei l ing and

using the high power SFH4233, range and

coverage are very good as the IR reflects well off

the cei l ing. At the Helsingborg Raspberry Jam,

in an office bui lding foyer with very high cei l ings

that were dul l gray, range was only a few meters

with reflected signal. In such circumstances,

placing the emitter for l ine of sight

communications instead of relying on reflections

would help.

Links

LPC1 1 1 4 I/O Processor Expansion Board

support info, including how to buy one:

http://munts.com/rpi-lpc1 1 1 4

LEGO® Power Functions home:

http://powerfunctions.lego.com

ULN2003 datasheet:

http://www.ti .com/l it/ds/symlink/uln2003a.pdf‎

Paral lax 2-axis joystick information:

http://learn.paral lax.com/KickStart/27800

Figure 5 – Joystick and IR Emitter Hookup

LEGO® is a trademark of the LEGO Group of companies

which does not sponsor, authorize or endorse this site

The MagPi print edition
Experience hundreds of pages of Raspberry Pi hardware projects, software tutorials, reviews of the

latest expansion boards and interviews with the makers and creators involved.

Original ly funded through Kickstarter, The MagPi printed bundles of Volumes 1 and 2 bring al l the

information of this peer-reviewed magazine within arm's reach.

Volume 1 : Issues 1 -8

Volume 2: Issues 9-1 9

Avai lable worldwide fom these resel lers:

swag.raspberrypi.org

www.modmypi.com

www.pi-supply.com

thepihut.com

www.adafruit.com (USA)

www.buyraspberrypi.com.au (Austral ia)

The MagPi is also avai lable on special offer to schools for a l imited time only:

www.themagpi.com/education

http://munts.com/rpi-lpc1114
http://powerfunctions.lego.com
http://www.ti.com/lit/ds/symlink/uln2003a.pdf?
http://learn.parallax.com/KickStart/27800
http://swag.raspberrypi.org
http://www.modmypi.com
http://www.pi-supply.com
http://thepihut.com
http://www.adafruit.com
http://www.buyraspberrypi.com.au
http://www.themagpi.com/education

http://www.shop.cyntech.co.uk

http://www.panavise.com

24

SKILL LEVEL : BEGINNER

Lewis Callaway

Guest Writer

WEB TO HARDWARE
Interfacing with a relay

Garage door automation with

WebIOPi

Introduction

Have you ever opened your garage door, but

then forgot to shut it later? In this article I wi l l

show you how to open and close your garage

door over the internet, using a Raspberry Pi, a

relay and WebIOPi. There is even a webcam

attached to the Raspberry Pi, such that you can

visual ly confirm that the door is real ly closed.

Before you start

These instructions assume that sshd is running

on Raspbian. For older images, you can enable

sshd using:

sudo raspi-config

and then enable SSH via Advanced Options .

Parts needed

You wil l need the fol lowing parts:

• Raspberry Pi Model B

• 1 2V relay

• Adafruit Small-Size Perma-Proto breadboard

• female jumper wires

• regular hookup wire

• 1 N4001 diode

• webcam that does not require a powered hub

The tools needed are a soldering iron,

screwdriver, wire strippers and wire cutters.

[Ed: Check the specification of your garage door

and choose a relay that is appropriate for the

voltage and current. It may be necessary to use

a transistor/FETdriverwith the relay.]

Installing WebIOPi

The framework we are going to use to control the

relay is WebIOPi. [Ed: WebIOPi was first

introduced in issues 9 and 10 ofThe MagPi.] To

instal l this package, from the command line

enter:

wget http: //webiopi. googlecode. com/files/WebIO

Pi-0. 6. 0. tar. gz

tar xvzf WebIOPi-0. 6. 0. tar. gz

cd WebIOPi-0. 6. 0

sudo . /setup. sh

Then configure WebIOPi to start when the

Raspberry Pi boots, and then reboot:

cd

sudo update-rc. d webiopi defaults

sudo reboot

Wait for a minute after rebooting the Raspberry

Pi. Then open a web browser and enter the IP

25

address of the Raspberry Pi fol lowed by the port

number of WebIOPi which is 8000, e.g.

http://1 92.1 68.2.1 5:8000.

When connecting to the Raspberry Pi using the

web browser, a login screen wil l appear.

The default login is:

User Name: webiopi

Password: raspberry

The next screen shows a virtual representation of

the Raspberry Pi 's GPIO pins. The relay can be

connected between a ground pin and a GPIO

pin. To activate the relay, cl ick on the

corresponding button to set it as an OUTput

instead of an INput. Now when the GPIO pin is

selected, it wi l l send a voltage to the relay

connected to it.

Configuration

To make the interface cleaner, WebIOPi can be

configured to offer one button instead of many

small ones.

Create folders to store the fi les:

mkdir -p garage/html

mkdir garage/python

The next step is to create a python fi le that helps

the HTML fi le control the garage door opener.

nano garage/python/script. py

Now copy the code below into the new fi le.

import webiopi

GPIO = webiopi. GPIO

Garage = 17 # GPIO pin using BCM numbering

setup function is automatically called at

WebIOPi startup

def setup():

set the GPIO used by the light to output

GPIO. setFunction(Garage, GPIO. OUT)

loop function, repeatedly called by WebIOPi

def loop():

gives CPU some time before looping again

webiopi. sleep(1)

Then press CRTL-X and then Y to save the fi le.

WebIOPi wil l access this python script using an

HTML page that contains the single button. Use

nano to create a new HTML fi le,

nano garage/html/index. html

Then copy the HTML from the next page of this

article into the fi le and save it.

26

To use the Python script and new HTML fi le,

modify the WebIOPi configuration fi le:

sudo nano /etc/webiopi/config

Find the [SCRIPTS] section and add the

fol lowing l ine:

garage = /home/pi/garage/python/script. py

Then find the [HTTP] l ine and add the fol lowing

l ine:

doc-root = /home/pi/garage/html

Lastly, find the [REST] l ine and add the fol lowing

l ines:

gpio-export = 17

gpio-post-value = true

gpio-post-function = false

Then save the fi le and reboot the Raspberry Pi:

<! DOCTYPE html PUBLIC "-//W3C//DTD HTML 4. 01 Transitional//EN">
<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Garage Control</title>
<script type="text/javascript" src="/webiopi. js"></script>
<script type="text/javascript">

webiopi(). ready(function() {
// Create a "Light" labeled button for GPIO 17
var button = webiopi(). createGPIOButton(17, "Garage");

// Append button to HTML element with ID="controls" using jQuery
$("#controls"). append(button);

// Refresh GPIO buttons
// pass true to refresh repeatedly of false to refresh once
webiopi(). refreshGPIO(true);

});
</script>
<style type="text/css">

button {
display: block;
margin: 5px 5px 5px 5px;
width: 1280px;
height: 720px;
font-size: 100pt;
font-weight: bold;
color: white;

}

#gpio17. LOW {
background-color: Black;

}
#gpio17. HIGH {

background-color: Yellow;
}

</style>
</head>
<body>

<div id="controls" align="center"></div>
</body>
</html>

27

sudo reboot

Motion setup

The motion package can be used with a

webcam, to check the garage door's status.

While this article uses a USB webcam, the

Raspberry Pi camera can also be used. There

are specific instructions for using the motion

package with the Raspberry Pi camera at:

http://rbnrpi.wordpress.com/project-l ist/setting-

up-wireless-motion-detect-cam/

To use UVC camera support, make sure the

latest stable firmware is instal led by updating the

Raspbian instal lation:

sudo apt-get update; sudo apt-get upgrade -y

Then instal l the motion package:

sudo apt-get install motion

Next, open the configuration fi le in nano:

sudo nano /etc/motion/motion. conf

Change daemon off, to daemon on . This wil l

cause motion to run as a daemon process that

runs in the background. The default resolution of

320x240 is a reasonable choice. Change

webcam_localhost on to off. This al lows the

camera feed to be viewed from another device,

instead of just from the Raspberry Pi. Now save

the fi le.

To simply the setup, motion can be configured to

start when the Raspberry Pi boots by editing:

sudo nano /etc/default/motion

In this fi le change,

start_motion_daemon = no

to:

start_motion_daemon = yes

Then save the fi le and reboot the Raspberry Pi:

sudo reboot

Now that motion has been configured, plug in a

Debian Wheezy compatible webcam. The

webcam should then stream video to your

Raspberry Pi 's IP Address fol lowed by : 8081.

Hardware

The hardware in this project consists of a relay

that al lows the Raspberry Pi to switch a garage

door opener on or off. To hookup the relay to the

garage door opener, a Perma-Proto PCB was

used. The relay was soldered directly to the

Perma-Proto PCB, together with al l the wires. To

prevent an electrical short the bottom of the PCB

was covered with electrical tape after the

components were soldered on. A 1 N4001 diode

was placed across the relay coi l pins, to avoid

damaging the Raspberry Pi GPIO pin. This is

not optional . I f the diode is not used, it wi l l

eventual ly destroy the Raspberry Pi!

Use the datasheet for your relay to determine the

pinout. There is an example below of how a relay

can be connected. In the example, the Raspberry

Pi connects to the coi l with a diode in between

the control (red wire) and ground (black wire)

pins. The garage door is connected to the

normally open pin and relay switch pin (two grey

wires).

http://rbnrpi.wordpress.com/project-list/setting-up-wireless-motion-detect-cam/

28

The coi l on the relay should be connected to

Ground and GPIO 1 7 on the Raspberry Pi using

the female jumper wires.

Soldering the Board

1 . Cut and strip the two female jumper wires in

half.

2. Solder the relay to the Perma-Proto board.

3. Next, solder the black female jumper wire to

the coi l on the relay and the red jumper wire to

the coi l on the relay. Then trim the excess wire

from the bottom of the board.

4. To prevent the Raspberry Pi from being

damaged, a 1 N4001 diode is needed between

the ground and control pins on the relay. The

si lver band on the diode needs to be connected

to the control wire. Do not connect it to the

ground.

5. Solder the wires that wil l connect to the garage

door to the normally open pin and ground on the

relay. Again, trim the excess wire after soldering.

6. Lastly, cover the bottom of the board with

electrical tape.

Once this is done, the PCB can be connected to

the garage door opener.

Garage door opener connection

Be very careful when dealing with higher voltage

circuits, such as a garage door opener. Before

making any connections, make sure that the

electrical power to the garage door is turned off.

Then use a screwdriver to connect the wires

from the relay to the garage door opener. I f in

doubt, consult the garage door opener manual,

to check which wires to use.

There is a video of the system working at:

https://www.youtube.com/watch?v=3glWNjPUQ

pI

Information on accessing the Raspberry Pi

outside the private local area network is given at:

http://www.wikihow.com/Set-Up-Port-

Forwarding-on-a-Router

 http://www.wikihow.com/Set-Up-Port-Forwarding-on-a-Router
https://www.youtube.com/watch?v=3glWNjPUQpI

www.milocreek.com
http://www.pimodules.com/

30

SKILL LEVEL : BEGINNER

Richard Wenner

Guest Writer

Database Bootcamp 2
Teach yourself MySQL

Inserting and viewing
stored data

In the article entitled DATABASE BOOTCAMP,

way back in issue 8, on pages 26 to 28, I

introduced you to (what I think) is the language

most suitable for learning on computers and one

rarely offered, the Stuctured Query Language or

SQL.

I showed you how to instal l MySQL, unti l now

the most popular database avai lable and how to

view databases, how to view data, how to

create a database and how to create a table.

I promised you that the next time we would be

looking at inserting data into a pre-populated

table and how to sort and search by using

logical expressions. I suggest that you read this

previous article once more in order to refresh

your memory.

In this issue I 'l l introduce you to this essential

next step. In the earl ier article we created a

table named birdtable and than used the

command DESCRIBE birdtable to reveal the

description of this table:

I ' l l explain this table in conjunction with the next

command, to shows you how to insert data:

INSERT INTO

birdtable (first_name,town,dob,birds)

values ("Fred","Epping",19571225,3);

Query OK, 1 row affected (2.53 sec)

So let's now examine the INSERT INTO

command that can be entered on a single l ine

but it has been laid out here for more clarity. I t

should be clear to see if you execute a SELECT

that the table cal led birdtable now has a row (or

record) containing:

Fred in first_name

Epping in town

1 9571 225 in dob (date of birth)

ie 25th December 1 957 and

3 goes into birds

Note the way data is entered. Text is

surrounded by quotation marks, the date is

entered in the yyyymmdd format although you

could change this but for the moment we wil l

use this format. The numbers (integers) are

entered directly as numbers. Each value is

separated by a comma. Also note that we put a

semicolon (;) at the end of the command. This is

what the table was programmed to accept in the

31

CREATE TABLE command in issue 8.

Comparing the SQL command to the l ist of data

entered to the table of columns may leave you

confused: what is the "id" column for and why is it

not populated? I 'm glad you asked!

Suffice it to say that we created a column "id"

that wil l automatical ly increment each time a new

entry is added to the table. This wil l result in the

first row in the table having an id=1 , the second

row id=2, the third row id=3, and so on.

The column "id" is not something that we need to

worry about after we create the table, as it is al l

automatical ly calculated within MySQL.

Try adding a few more l ines of data of your own.

Top-tip: i t is quicker to press the up arrow key in

order to recal l and edit the previous l ine and

press enter again. This saves typing the whole

l ine, particularly as the rest of the command

remains unchanged.

Also note that MySQL confirms each entry with a

l ine about the number of rows affected.

Confirm your table contains the values you have

added by entering:

SELECT * FROM birdtable;

Two useful database functions are sorting and

searching . Let us try some examples.

Viewing the data in a sorted order by entering:

SELECT * FROM birdtable

ORDER BY first_name;

To see everything sorted by first_name:

SELECT * FROM birdtable

ORDER BY birds DESC;

To see the same list but this time by the

descending number of birds.

Viewing the data - searching

In the SELECT FROM command we used the

Asterisk (*) as a wild card meaning al l records or

a substitute for zero or more characters in a

record. There are two other wild cards that we

can use: the percent (%) symbol and the

underscore (_). Where you can only use the

asterisk as a wildcard (or truncation) in a ful l text

search, the % (match zero or more characters)

and _ (match exactly one character) are only

applicable in LIKE-queries.

The LIKE keyword tel ls MySQL that the named

column must match the given pattern. In a

database with a long text string for instance, we

could write:

SELECT text_string FROM database_name

WHERE text_string LIKE "%Raspberry Pi%";

We wil l touch on the LIKE command a little bit

later.

We wil l try these wildcards in the database by

entering:

SELECT * FROM birdtable

WHERE (first_name = "Fred");

To see everything where the name is Fred.

SELECT * FROM birdtable

WHERE (first_name LIKE "Fr%");

SELECT * FROM birdtable

WHERE (first_name LIKE "Fr_d");

To catch many options (if they existed): Frad

Frbd Frcd Frdd Fred Frfd Frzd etc. The

underscore l imits your search to just that

character whi le the percentage replaces any

number of characters.

SELECT * FROM birdtable

WHERE (first_name like "%r%");

All first names with an r in them.

32

SELECT * FROM birdtable

WHERE (birds >3);

All records with more than three birds wil l show.

Logical words in SQL commands

Two logical words that can be included in SQL

commands are AND and OR. AND means that

both conditions of a statement must be met and

OR insists that either one or the other condition

must be met.

Try commands l ike:

SELECT * FROM birdtable

WHERE (first_name like "%r%")

AND birds >3;

To find names with the letter r in them and birds

greater than 3.

OR means either condition needs to apply. Try

commands l ike:

SELECT * FROM birdtable

WHERE (first_name = "Fred") OR birds < 3;

To find Freds or entries with birds less than 3.

Al l this is nice but how about being more

selective in choosing our parameters?

In every example above we have printed out al l

of the fields for each selected record. We can be

more selective by typing:

SELECT town, dob from birdtable

WHERE (first_name like "%r%")

AND bird > 3 ORDER BY bird;

Notice here how the ORDER BY option can be

added to bui ld even smarter SQL commands

and to retrieve the data in the order we want.

Conclusion

There is a lot to be gained by testing these

commands on your Raspberry Pi. Working in text

mode as we have been doing in this article is a

rapid way of learning, testing, bui lding and

repairing databases as well as being a

fundamental computing ski l l .

MySQL has always had a rather steep learning

curve when you want to go from straight forward

to complex SQL queries, especial ly when they

involve joins.

We are dealing with databases and can not

afford to make mistakes. This adds to the

pressure and manipulating these databases

should therefore always be done on a copy,

away from the real thing unti l we feel secure in

doing what we want to do.

There are many good books on the market that

deal with SQL databases. One that comes to

mind is the excel lent work of Kevin Yank. Kevin

has published a number of books through the

SitePoint publisher. His l ine of approaching SQL

almost makes the experience a gradual stepping

up to the rank of intermediate SQL professional.

His book is: PHP & MySQL: Novice to Ninja 5th

edition (Bui ld Your Own Database Driven Web

Site Using PHP and MySQL).

http://www.amazon.co.uk/Kevin-

Yank/e/B0034Q3XD8/

The World Wide Web is also a good source of

MySQL teachings and many of these texts wil l

help you in your efforts to conquer the SQL

database.

For example, w3schools.com host a PHP and

MySQL Introduction:

http://www.w3schools.com/Php/php_mysql_intro

.asp

The MySQL Reference Manual contains a

tutorial and is avai lable at:

http://dev.mysql.com/doc/refman/5.5/en/tutorial .h

tml

A supporting video by the author is also avai lable

onl ine: http://pr0mpt.me

http://www.amazon.co.uk/Kevin-Yank/e/B0034Q3XD8/
http://www.w3schools.com/Php/php_mysql_intro.asp
http://dev.mysql.com/doc/refman/5.5/en/tutorial.html
http://pr0mpt.me

Wakefield Acorn & RISC OS Computer Show

When: Saturday 26th Apri l , 1 0.30am to 4.30pm
Where: The Cedar Court Hotel, Denby Dale Road, Calder Grove, Wakefield, West Yorkshire WF4 3QZ

The North’s Premier RISC OS Show. Now in its 1 9th year. A ful l day of theatre presentations and
exhibitors stands. http://www.wakefieldshow.org.uk/index.php

Raspberry Pi at CERN

When: Saturday 1 2th Apri l , 9.30am to 4.30pm (Central European Time: France)
Where: Route de Meyrin, 1 21 1 Geneva, Switzerland

Come and discover in the presence of experts. This workshop is intended for chi ldren (from 6yrs), their
parents, teachers and all interested members of the public. http://www.eventbrite.fr/e/391 4624748

Raspberry Pi: Kids' "Beta" Tech Camp

When: Sunday 27th Apri l , 2.00pm to 4.00pm (EDT)
Where: Funutation Tekademy LLC, 2371 5 Mercanti le Road, #21 5 Beachwood, OH 441 22

Working in teams of two, campers wil l use the Raspberry Pi to do computer animations, design games,
and make simple window applications. http://www.eventbrite.com/e/9981 423707

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area, providing

you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Torbay Raspberry Jam

When: Saturday 1 2th Apri l , from 1 .00pm

Where: Paignton Library and Information Centre, Great Western Road, Paignton, TQ4 5AG, UK

The second Torbay Raspberry Jam. Scratch, Python, Minecraft. http://dcglug.drogon.net/future-jams.

PyCon 201 4: Young Coders

When: Saturday 1 2th - Sunday 1 3th Apri l , 9.00am to 4.00pm (PDT)
Where: Palais des congrès de Montréal, 201 Viger Ave West, Montréal, Québec, Canada

A free tutorial exploring Python games programming using simple data types, comparisons and loops in
Pygame. http://www.eventbrite.com/e/1 0565294079

33

http://www.eventbrite.com/e/10565294079
http://www.eventbrite.fr/e/3914624748
http://dcglug.drogon.net/future-jams/
http://www.wakefieldshow.org.uk/index.php
http://www.eventbrite.com/e/9981423707

34

SKILL LEVEL : BEGINNER

Miruna Tataru
& Ioana Culic

Guest Writers

WYLIODRIN
Web-based programming

Programming the Raspberry Pi from a

web browser using a visual language

Imagine making your own radio or creating disco

l ights using a Raspberry Pi, which you control

from a web browser. Wyliodrin gives you this

possibi l i ty. You can write, modify and run

programs in real time, no matter where in the

world your Raspberry Pi is located.

We all face the inconvenience of bui lding our first

Raspberry Pi based devices - instal l ing software

and repeatedly plugging and unplugging the

Raspberry Pi from the device (e.g. a remote

control led car) and connecting it to a screen unti l

i t final ly does what it is supposed to do. SSH is

an option, but it requires firewall configuration for

remote access.

With Wyliodrin, you can instal l your Raspberry Pi

directly onto the device you want to bui ld and

program it from your web browser (we

recommend using Chrome, Firefox or Safari) .

This way, programming is possible regardless of

the Raspberry Pi 's location and without the need

to connect to it directly. The code is stored on the

Wyliodrin servers, so you are now able to use

any computer to do the programming.

Wyliodrin comes from the old Gall ic words

“wylio” and “drin”, which summarises what the

platform does: it monitors and handles the

treatment/control of the Raspberry Pi.

What languages can you use?

One of our goals with Wyliodrin is to bring

students closer to engineering; to bui lding things.

With the Raspberry Pi, bui lding electronic

gadgets has become much easier. One of the

major problems encountered in making the

embedded field more accessible is the popular C

programming language. Don’t get us wrong, C is

very good for projects on microcontrol lers. But

the Raspberry Pi can accomplish more

sophisticated tasks than a microcontrol ler. For

beginners, the C language is hard to access

onl ine resources as they need to know about

network sockets and low level programming.

We think there is a need for high level languages,

but with the power of C. With Wyliodrin, we have

integrated the C/C++ GPIO libraries into several

programming languages so that you are able to

program in the language that you know. The

avai lable languages include Pascal, C#,

Javascript, Python, Shel l , PHP, Perl and

Objective-C. This is very good for education as

teaching electronics in school becomes easier.

Students can use their favourite programming

language to bui ld things.

Starting a project from scratch can be difficult.

We always take examples and modify them in

35

order to learn. Wyliodrin al lows you to start a new

project using existing examples. This way you

can see it working and then start modifying.

How to setup and use Wyliodrin

Wyliodrin is currently avai lable for the Raspberry

Pi. I t provides an onl ine IDE, accessible from

http://www.wyliodrin.com. All you need to do is

sign up, download the Raspberry Pi software

from Wyliodrin, write it to an SD card and start

bui lding projects.

The Wyliodrin software on the SD card is the

latest Raspbian Linux with Wyliodrin’s server and

development l ibraries instal led. You can use the

image directly, or you can download the source

code and bui ld it on your own Linux distribution.

You can find it at https://github.com/Wyliodrin.

First, logon to the Wyliodrin website at

http://www.wyliodrin.com using either your

Facebook, GitHub or Google account .

You are presented with the Projects page, where

you can create a new project and add the board

you want to develop on (i .e. a Raspberry Pi) . But,

before doing that you should fol low the short

virtual tour and you can study the tutorials from

http://projects.wyl iodrin.com/wiki .

Cl ick on the “Add new board” button to add your

Raspberry Pi. You need to give it a name. Next,

you wil l be asked about the networking setup. In

order to use Wyliodrin you wil l need to connect

your Raspberry Pi to the internet so it can

connect to Wyliodrin’s servers. An Ethernet

connection is recommended. Plug in a network

cable and it should work. I f you have Wi-fi you

wil l need to attach a USB Wi-fi dongle to your

Raspberry Pi and fol low configuration steps on

the website. Wyliodrin wil l then display some

instructions on how to connect your Pi.

1 . You need a 4 GB SD card.

2. Download the Wyliodrin SD card image from

http://projects.wyl iodrin.com/images/raspberrypi.

3. Write the image to the SD card. For Windows,

you can use Win32DiskImager (http://source

forge.net/projects/win32diskimager). For an

Apple Mac computer you can use PiWriter

(http://sourceforge.net/projects/piwriter) . For

Linux you can use the dd command. For more

information please read our tutorial at

https://www.wyliodrin.com/wiki/boards_setup/ras

pberrypi.

4. Copy the JSON configuration fi le to your SD

card. This fi le is specific to your Raspberry Pi

and network. I t contains your Raspberry Pi

identification and network setup. You can

download it from your Wyliodrin account, from

the pul l-down menu for your Raspberry Pi.

http://www.wyliodrin.com
https://github.com/Wyliodrin
http://www.wyliodrin.com
http://projects.wyliodrin.com/wiki
http://projects.wyliodrin.com/images/raspberrypi
http://sourceforge.net/projects/win32diskimager
http://sourceforge.net/projects/win32diskimager
http://sourceforge.net/projects/piwriter
https://www.wyliodrin.com/wiki/boards_setup/raspberrypi

36

Copy the downloaded fi le to the root of the SD

card. Make sure the fi le is named

wyliodrin. json .

5. Power up your Raspberry Pi and wait for it to

appear onl ine on your Wyliodrin webpage.

Let's now make our first project using Wyliodrin.

Blinking LED

For the electronics setup you need the fol lowing

basic components:

• breadboard

• LED

• 220Ω resistor (or simi lar, e.g. 470Ω)

• 2x jumper wires

• Raspberry Pi

We have to wire the components, keeping in

mind that each GPIO pin on the Raspberry Pi

acts l ike a software programmed power source.

In Wyliodrin's tutorial "Raspberry Pi Pins Layout"

we can see how to connect the components to

the Raspberry Pi using WiringPi pin numbering.

The next step is to implement the project. Go to

the Projects page and cl ick on the “Create new

project” button. Give it a name, a description and

choose a programming language from Visual

Programming, Shel l script, C, C++, C#, Java,

Javascript, Objective-C, Pascal, Perl , PHP or

Python.

The "main" fi le was implicitly created together

with the project. There you can write the code in

the chosen programming language and then you

wil l run it on the board. For example, below we

have the code for making a LED blink using C++.

By choosing LED Blink - C++ when creating

the new project, you can use the sample code

provided by Wyliodrin. You only have to cl ick on

the "Run" button and choose your Raspberry Pi

in order to make the LED blink! Al l this time, the

Raspberry Pi had no connection to the computer

we wrote the program on.

For beginners who have not learnt a

programming language, they can use Visual

Programming. This lets you add blocks using

drag-and-drop and Wyliodrin wil l automatical ly

write the code. Visual Programming used by

Wyliodrin is based on Google Blockly, a

language like Scratch but for electronics.

Wyliodrin implemented pins, LEDs and button

blocks, to let you run several applications.

Below is the Visual Programming blocks needed

to make a LED blink using the Raspberry Pi, plus

the generated Python code.

37

Music and an LCD

Our next Wyliodrin project shows you how to

bui ld an internet radio complete with an LCD. We

wil l use the LCD to display a VU meter plus the

name of the song that is currently playing. For the

electronics setup you need the fol lowing

components:

• breadboard

• 1 6x2 LCD screen (other sizes can be used)

• 1 0kΩ potentiometer

• 1 4x jumper wires

• Raspberry Pi

The wiring diagram is shown below.

Wiring up the LCD can be done in two ways; we

wil l use the one that requires the least number of

wires. You have to connect power to the LCD.

Please be careful . The pin layout of the LCD may

vary from model to model, so take a look at its

data sheet. Our LCD is a 5V one with 1 6 columns

and 2 rows. I ts data sheet can be found at

http://robofun.ro/docs/RC1 602B-BIW-CSX.pdf

Connect the ground pin (VSS) to the ground of the

Raspberry Pi and the 5V pin (VDD) to the 5V pin

on the Raspberry Pi. The VO pin on the LCD is

used to set up the contrast, so connect it to the

wiper of the 1 0kΩ potentiometer. Also wire the

backlight pins (LED - and LED +) to the ground

pin and 5V pin on the Raspberry Pi.

You also need to connect the RS, E, DB4, DB5,

DB6 and DB7 pins to the Raspberry Pi. You can

connect them to any of the Raspberry Pi GPIO

data pins. The R/W pin is connected to ground

as we wil l only write data to the LCD.

Let’s make a new project and write the software.

Click on the "Create new project" button and

choose Music - Visual Programming , so that

you can drag and drop blocks and Wyliodrin wil l

write the Python code for you. This way you have

the music player set up. Once you have created

the project, cl ick it to edit i t.

As you can see above, you already have the

blocks for playing music from an online radio

station. The default station does not show the

title of the song, so please change it to another.

Cl ick on the block “Load audio stream from” and

enter another address. [Ed: See The MagPi

issue 21, page 24 for some examples, e.g.

http://pub6.sky.fm:80/sky_tophits.] Let’s test if i t

plays. Click on the "Run" button and don’t forget

to connect a speaker to your Raspberry Pi.

Now let’s modify the program so that it displays

the song title and then shows a VU meter. First,

you need to initial ise the LCD. Go to the LCD

blocks on the left toolbar and drag the "Init LCD"

block and place it between the "Play audio

stream" and "repeat" blocks. You wil l see you

need to set the LCD pin numbers. For our LCD,

the pins are RS = 0, E = 2, Data1 = 3, Data2 =

1 2, Data3 = 1 3 and Data4 = 1 4. They are the

same as in the wiring diagram. Another

parameter is the number of columns and rows.

Our LCD is 1 6 columns and 2 rows.

Let’s display the internet radio station

information. Inside the "repeat" block, after the

"delay" block, put a "Reset Position on LCD"

block. The LCD works l ike a normal screen: once

you write to it, i t moves the cursor ahead. As we

want to display the name at the beginning, you

need to add a "Reset Position on LCD" block.

http://robofun.ro/docs/RC1602B-BIW-CSX.pdf
http://pub6.sky.fm:80/sky_tophits

38

After this, place a "Print on LCD block". Inside

this block, replace the text block with the "Audio

stream Address Title" block, which is found in the

Multimedia blocks on the left toolbar. This block

receives a parameter with the variable of the

stream. By default, this is cal led audio. Change

it to music (the same variable used for the other

Multimedia blocks).

Cl ick the "Run" button and you should see the

station name or song title (depending on what the

station broadcasts) on the LCD. Some stations

do not provide this information so don’t worry if

nothing is written.

The VU meter is a measure of how loud the

music is. We want to display this in the form of *

(asterisks) on the LCD. For this, you need to use

the "Stream level" block from the Multimedia

blocks. First, set a variable cal led l to the value

returned by the "Stream level" block. To do this,

drag the "Set variable to" block from Variables

and place it after the "Print on LCD" block.

Create a new variable cal led l . Connect to this

block the "Stream level" block. Select the music

stream and set the scale to 10. The scaling wil l

tel l the block to return a value between 0 and 1 0.

Next we need to display the asterisks. Set the

LCD position to the beginning of the second row

Place the "Set LCD Position" block before the

"Set variable to" block and set the row to 2 . From

the Loops blocks add a "count with" block and

set its variable to i and make it count from 1 to

1 0 by 1 . This means that the content of this block

wil l be repeated for every value of i from 1 to 1 0.

Inside this block we display on the LCD either a *

or a space using the fol lowing rule. I f the variable

l (which stores the current level) is less than i ,

then we display a * otherwise we display a

space. For this we use a Logic block cal led "if".

Drag an "if" block inside the "count with" block.

The "if" block has a star on it. I f you cl ick it, a

small window wil l appear and we can set up the

block. We need to drag an "else" block inside the

"if" block. Once you have done this, you are

ready to write on the screen. Connect to the "if"

block the "less or equal" Logic block. The

condition we want is i <= l . We need to drag in

the i and l blocks from the Variables block.

The "if" block has two parts: "do" and "else". The

"do" part wi l l be executed if the condition is true

or the "else" part wi l l be executed if the condition

is false. In the "do" part, place a "Print on LCD"

block with the text * . On the "else" part, place a

"Print on LCD" block with a space.

Before you run the program, change the "delay"

block to 1 00 mil l iseconds for a faster update of

the VU meter. The final program is shown below.

Future perspectives

We are working on implementing graphics, which

wil l al low users to monitor their Raspberry Pi in

real-time. We also plan on introducing more

blocks for the Visual Programming language. We

would l ike to ask you to provide feedback. This is

very important for us. I f you would l ike new

features or think that we should do something

differently, please don't hesitate to contact us.

You can read more about the project at

http://www.wyliodrin.com, on the Wyliodrin

Facebook and Google+ pages and also on

Twitter @wyliodrin.

http://www.wyliodrin.com

http://www.kitronik.co.uk/laika
http://www.dexterindustries.com

40

SKILL LEVEL : ADVANCED

W. H. Bell

MagPi Writer

I/O EXPANSION
Introduction to API

Adding custom devices to
RpiScratchIO

Scratch is a very useful programming language that chi ldren and students can pick up quickly. However, one

feature lacking from the current version of Scratch is Input/Output (I /O) support. Thankful ly, Scratch supports

network messages that can be exchanged with local or remote devices. The RpiScratchIO package, which was

intoduced in Issue 20 of The MagPi, was written to provide a general protocol for I /O devices and minimise the

overhead of adding new devices to Scratch. This package uses the network broadcast message system in

Scratch, via the scratchpy Python l ibrary. The RpiScratchIO package implements a general protocol that can be

used to connect any I/O device to Scratch. Additional documentation for RpiScratchIO can be found at :

https://pypi.python.org/pypi/RpiScratchIO/

The purpose of this article is to demonstrate how to add a user defined I/O device to Scratch using RpiScratchIO.

Installing RpiScratchIO

This article requires RpiScratchIO version 0.1 .5 or greater. I f RpiScratchIO has not already been instal led, then

fol low the instructions in Issue 20 of The MagPi to instal l the package. I f RpiScratchIO is already present then

update the package by typing:

sudo pip install RpiScratchIO --upgrade

I/O devices in RpiScratchIO

An I/O device is anything that reads or writes data. This could be a LINUX command or an expansion board.

RpiScratchIO expects that an I/O device has a list of input and output channels associated with it. For simple

devices, this could imply one output channel only. The channels on the device do not have to be numbered

sequential ly, to al low for physical pin numbering or another non-sequential system. A channel can function as an

input or as an output device or both.

Each I/O device is described by a simple Python class that has to implement a constructor and can optional ly

implement config, read and write member functions. When config, read or write commands are sent from

Scratch, the RpiScratchIO package calls the config , read or write functions of the associated I/O device. I f

https://pypi.python.org/pypi/RpiScratchIO/

41

one of these functions has not been implemented and it is cal led by Scratch, then a warning message is printed

to warn the user that the function has not been implemented.

Setting the PYTHONPATH

For a user defined Python class to be included in RpiScratchIO, it should be saved in a fi le that is within a

directory that is in the PYTHONPATH . The PYTHONPATH is an environmental variable that can be set in the same

way as any other Bash environmental variable,

export PYTHONPATH=$HOME/user-devices

Rather than risk overwriting previous configuration or continuously appending to the PYTHONPATH , a l i ttle more

Bash can be used:

user_devices=$HOME"/user-devices"

if [[-z $PYTHONPATH]] ; then

export PYTHONPATH=$user_devices

elif [[$PYTHONPATH ! = *"$user_devices"*]] ; then

export PYTHONPATH="$PYTHONPATH: $user_devices"

fi

unset user_devices

Similar to the PATH variable, the format is that multiple directories are separated by colons. In this example, the

$HOME/user-devices directory is where the Python fi les that contain the user defined devices are stored.

This script could be added to the end of the ~/. bashrc fi le or sourced beforehand.

Adding an I/O device

Create a BasicDevice. py fi le in the $HOME/user-devices directory. Then append to this fi le,

This represents a device that has one input channel. Al l device classes must inherit from the GenericDevice

class in the RpiScratchIO package, either directly or via one of the other base classes. The constructor of the

class must contain the four default arguments, the device name, the pointer to the ScratchIO object and a list

of connections associated with the device. Other arguments can be passed to the constructor after the default

arguments. The other thing to note about this constructor is that the single input channel number is appended to

the self. inputChannels l ist. This l ist and the self. outputChannel l ist are defined in the

GenericDevice base class. Therefore the derived class should append to the l ists. To use the example

import RpiScratchIO

from RpiScratchIO. Devices import GenericDevice

class BasicDevice(GenericDevice):

def __init__(self, deviceName_, scratchIO_, connections_):

Call the base class constructor

super(BasicDevice, self). __init__(deviceName_, scratchIO_, connections_)

This device has a single input channel

self. inputChannels += [0]

Add other code here if needed. . .

42

BasicDevice class in RpiScratchIO, create a test. cfg configuration fi le that contains:

The user defined device class is imported, instantiated and associated with the name test . The default

arguments are automatical ly passed to the constructor of the BasicDevice class. Since the device connections

are not used in the example device class, any dummy value can be assigned to test. To use this class, create a

Scratch program that broadcasts config, read and write messages:

Then enable the remote sensor connections, by right

cl icking on the "sensor value" text at the bottom of the

"Sensing" tool palette. (When the current Raspbian

version of Scratch starts, remote sensor connections are

not enabled. To enable them, disable and then re-enable

them. Refer to the article in Issue 20 for more information.)

Now start RpiScratchIO, using the configuration fi le.

RpiScratchIO test. cfg

Then write a program to test the test sensor value and

send read, write and config commands. In this example,

the sensor value from the device wil l always be zero.

Call ing the read , write and config functions wil l cause

warning messages to be printed on the screen. These

warning messages are printed by the base class versions

of the config, read, and write functions. These functions

can be overridden be implementing functions with the

same input arguments as those given in GenericDevice .

Pinging a computer

The ping command was discussed in Issue 21 of The MagPi. ping can be used as an I/O device with one

input channel, where the input channel is a selected result from the ping command. The steps to create a

device class that uses a ping command are the same as for the previous example. First, create a fi le cal led

PingHost. py in the $HOME/user-devices directory,

import subprocess, string

import RpiScratchIO

from RpiScratchIO. Devices import GenericDevice

class Ping(GenericDevice):

def __init__(self, deviceName_, rpiScratchIO_, connections_):

Call the base class constructor

super(Ping, self). __init__(deviceName_, rpiScratchIO_, connections_)

[DeviceTypes]

test = from BasicDevice import BasicDevice; BasicDevice()

[DeviceConnections]

test = something

43

This device has a single input channel

self. inputChannels += [0]

The default host, in case no host is configured

self. hostname = "localhost"

#-----------------------------

def config(self, argList):

nargs = len(argList)

if nargs == 0:

print("WARNING: \"config\" in device %s expects at least one argument. " % self. deviceName)

return None

Set new host name to ping

self. hostname = argList[0]

#-----------------------------

def read(self, channelNumber):

Setup the ping command to run once

ping = subprocess. Popen(

["ping", "-c" , "1" , self. hostname] ,

stdout = subprocess. PIPE,

stderr = subprocess. PIPE

)

Set the default value to indicate something went wrong

avgRoundTrip = -999

Run the ping command

out, error = ping. communicate()

Parse the standard out and error

if string. find(error, ' unknown host') ! = -1: # LINUX specific

avgRoundTrip = -2

elif string. find(out, ' 100% packet loss') ! = -1: # LINUX specific

avgRoundTrip = -1

else:

for line in string. split(out, ' \n'):

This search string is Linux specific

if string. find(line, ' rtt min/avg/max/mdev') == -1:

continue

frags = string. split(line, ' = ')

if len(frags) ! = 2:

print "WARNING: badly formatted string"

continue

values = string. split(frags[1] , ' /')

if len(values) < 2:

print "WARNING: badly formatted values string"

continue

avgRoundTrip = float(values[2])

44

The next step is to create a configuration fi le to associate the class with Scratch. Then launch RpiScratchIO, to

read the new configuration fi le. Once RpiScratchIO is running, the ping sensor wil l be avai lable in Scratch.

In the configuration fi le, the connection passed to the Ping class

is the default computer to ping .

In the example Scratch program, a sprite with two costumes was

created, where one of these costumes was named ping and

the other was named idle . Then broadcast commands were

added to test each of the functions and the response of the Ping

device.

Try pressing the spacebar. I f the b key is pressed, then a

badhost name is used. This wil l produce a sensor error value

of -2 . In the case of this example program, the 192. 168. 2. 1

address was a router that was firewalled. This caused a sensor

error value of -1. In the case of the localhost , the round trip

time reported by ping is quite quick. Try swapping the IP

addresses for some other machine on the network.

When the ping command runs it waits unti l a reply is received or

it reaches the timeout value. This means that ping can be a bit

slow to respond, if i t takes a long time for the network packet to return. Rather than poll ing the output of the ping

command, the Ping device sends a trig message back to Scratch to indicate a new sensor value is avai lable.

This means that Scratch is idle unti l ping has finished.

Next time

The next tutorial wi l l include some examples of writing output results and interfacing with hardware devices. Unti l

then, try inheriting from the SpiDevice base class and connect to an SPI device. There is an example of how to

do this in the SpiDevices. py fi le in the RpiScratchIO package.

Send the value back to Scratch

self. updateSensor(channelNumber, avgRoundTrip)

Since there might be a significant delay, send Scratch a trigger message.

self. broadcastTrigger(channelNumber)

[DeviceTypes]

ping = from PingHost import Ping; Ping()

[DeviceConnections]

ping = localhost

http://www.ed-venture.biz

To see the large range of PCSL brand Raspberry Pi accessories visit

http://www.pcslshop.com

March's Winner!
The first prize winner of a Pi NoIR camera board, 32GB SD card, VESA mount case and a
gigabit network hub! Scott Lindsay (East Kilbride, Scotland)
The second prize winner of a Cyntech Geek case, GPIO breakout board, breakout cable set
and a 1 6GB SD card! Lee Murphy (Wakefield, England).

Congratulations. We wil l be email ing you soon with detai ls of how to claim your prizes!

This month there are THREE prizes!

Each of the three winners wil l receive a

Gerboard mount and a 32GB SDHC Memory

card. The prefect accessories for a serious

Raspberry Pi project.

For a chance to win this month's competition

visit http://www.pcslshop.com/info/magpi

Closing date is 20th Apri l 201 4.

Winners wil l be notified in the next issue.

Once again The MagPi and PC Supplies Limited are proud to announce yet
another chance to win some fantastic Raspberry Pi goodies!

APRIL COMPETITION

46

http://www.pcslshop.com/info/magpi
http://www.pcslshop.com

47

Learning Python with Raspberry Pi
Alex Bradbury and Ben Everard

Wiley

Python is one of the world's top programming

languages. In addition to being used by the l ikes

of Google, Spotify, YouTube and the BBC, it is

also the language of choice for the Raspberry Pi.

Co-authored by one of the lead software

developers for the Raspberry Pi Foundation,

Learning Python with Raspberry Pi is the must-

have companion to the Raspberry Pi User Guide

(above) and an indespensible resource for

anyone wishing to learn how to program on the

Raspberry Pi.

Assuming no prior programming experience

whatsoever, it covers al l of the bases for novice

programmers and first-time Python developers.

Fol lowing a brief introduction to programming

and coding in general and Python in particular,

authors Alex Bradbury and Ben Everard cut to

the chase with clear, step-by-step guidance on

configuring and getting started, using variable,

loops and functions, learning 3D graphics

programming, using PyGame, programming

Minecraft, and

using the

GPIO port.

Featuring

easy-to-fol low

hands-on

instruction and

packed with

working

examples and

useable source

code, Learning

Python with

Raspberry Pi

gets you up

and running with the knowledge and ski l ls you

need to write your own programs in Python.

Raspberry Pi User Guide (2nd Edition)
Eben Upton and Gareth Halfacree

Wiley

The Raspberry Pi has

been a success

beyond the dreams of

its creators. Their

goal, to encourage a

new generation of

computer

programmers who

understand how

computers work, is

well under way.

Raspberry Pi User Guide 2nd Edition is the

newest edition of the runaway bestsel ler written

by the Raspberry Pi 's co-creator, Eben Upton,

and tech writer Gareth Halfacree. I t contains

everything you need to know to get the

Raspberry Pi up and running, including how to

connect up a keyboard, mouse and other

peripherals, instal l ing software, basic

configuration and Linux system administration,

using the Raspberry Pi as a web server or media

centre, learning programming languages Scratch

and Python and, of course, how to use the GPIO

pins to interface with electronics projects.

Unl ike the previous edition, this book now

includes coverage of the Camera Board, the

introduction of the Pi Store, NOOBS and much

more. Raspberry Pi User Guide 2nd Edition is

the perfect companion for getting the most out of

the computing phenomenon that is the

Raspberry Pi.

MagPi readers are able to receive a 30% discount off the RRP. To claim, purchase
from www.wiley.com and enter the promo code VBH02 when prompted.

Please note: this discount is only val id from the 1 st Apri l to the 31 st May 201 4 on the two book titles l isted here.

http://www.wiley.com

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Feedback & Question Time
I just wanted to let you know
that I real ly enjoyed Martin
Hodgson’s Python port of
Strongholds of the Dwarven
Lords that was in the recent
issue of The MagPi. I plan
on sharing it with some of
my more advanced gifted
middle school students.
Please continue to include
Python programs like this in
your magazine. I t’s nice to
be able to do cool things
with the Raspberry Pi
without needing to purchase
hardware or having the
needed knowledge to make
it work. I hope to see more
of Martin’s submissions in
future issues!

Thanks!
Jason Kibbe

CAMS North & South Gifted
Support

Really enjoyed this issue -
thank you very much!

I particularly l iked the type-
in, oh the memories.. .
Anyway, as per normal, i t
did not work first time -
never had one that did way
back then either on my
Amstrad. I have enjoyed
fixing it.

Keep up the good work.
Kind regards,

Ian Neil l

After taking the plunge and
purchasing my very first
Raspberry Pi, I stumbled
upon your great magazine,
As a complete novice to the
world of the Raspberry Pi,
The MagPi magazine is an
excel lent resource. The
variety of articles, guides
and project ideas are an
inspiration; there is real ly
something for everyone!

Many thanks,
Caron Jones

Good day. I am Ober Choo
from Cytron Technologies,
Malaysia.

We are one of the
Raspberry Pi resel lers in
Malaysia. Personal ly I love
your magazine especial ly as
it is open!

Regards,
Ober Choo

Cytron Technologies

If you are interested in
writing for The MagPi,
would l ike to request an
article or would l ike to join
the team involved in the
production, please get in
touch by email ing the editor
at:

editor@themagpi.com

http://creativecommons.org/licenses/by-nc-sa/3.0/

