
IISSSSUUEE 2255 -- JJUULL 22001144

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hhttttpp::////wwwwww..tthheemmaaggppii..ccoommRRaassppbbeerrrryy PPii iiss aa ttrraaddeemmaarrkk ooff TThhee RRaassppbbeerrrryy PPii FFoouunnddaattiioonn..
TThhiiss mmaaggaazziinnee wwaass ccrreeaatteedd uussiinngg aa RRaassppbbeerrrryy PPii ccoommppuutteerr..

CCuussttoomm AAuuttooppiilloott

PPiiBBoott RRoobboottiiccss

WWiiFFii SSnniiffffiinngg

TTiimmee LLaappssee

MMoouusseeAAiirr

FFiisshh DDiisshh

BBiittSSccooppee

BBAASSIICC

JJAAVVAA

EEnniiggmmaa
CCiipphheerr

GGeett pprriinntteedd ccooppiieess

aatt tthheemmaaggppii..ccoomm

http://www.themagpi.com
http://www.themagpi.com

Ash Stone - Chief Editor / Administration / Layout

Les Pounder - Issue Editor / Testing / Proof Reading

W.H. Bell - Layout / Administration

Bryan Butler - Page Design / Graphics

Ian McAlpine - Layout

Matt Judge - Website / Administration

Aaron Shaw - Administration / Proof Reading

Nick Hitch - Administration / Layout

The MagPi Team

Colin Deady - Layout / Proof Reading

Dougie Lawson - Testing

Tim Cox - Proof Reading

Paul Carpenter - Testing

Nick Liversidge - Layout / Proof Reading

Claire Price - Proof Reading

Chris 'tzj' Stagg - Testing

Rita Smith - Proof Reading

2

25

Welcome to issue 25,

This month's MagPi contains a wealth of different material . There is a review of Raspberry Pi powered

autopi lot technology, the first of a mini-series from the PiBot robotics team, data acquisition with

BitScope and more automation projects. We are also very pleased to host a review of the FishDish

electronics board, written by our youngest guest author so far.

With standard peripherals such as the Raspberry Pi camera, a lot of interesting projects can be

implemented. For example, time lapse photography is introduced this month. The Raspberry Pi,

instal led with Linux, provides many network diagnostic tools. Fol lowing last month's WiFi sniffing

article, some more networking tips and tricks are discussed.

The MagPi is devoted to providing programming articles without the need for additional hardware. This

month, Java classes are introduced and we are please to provide the first in a series of articles on the

BASIC programming language. Completing this month's programming content, a ful l Python version of

the Pocket Enigma Cipher machine is given. The Pocket version uses wheels, simi lar to the original

Enigma machine shown on the cover.

I f you have a Raspberry Pi, i t would be great to hear how you have used it. We are looking for feedback

or contributions, from young authors to seasoned professionals.

Chief Editor of The MagPi

3

4 AUTOPILOT
How the Navio project came about

6
Part 1 : Learn the fundamentals of robotics

PIBOT

A review of the Fish Dish circuit board
1 2 FISH DISH

1 4
A control panel for cat entertainment
MOUSEAIR

20
An osci l loscope add-on board for the Raspberry Pi
BITSCOPE

28
Raspberry Spy Part 2: network IP addressing

PACKET SNIFFING

THIS MONTH'S EVENTS GUIDE
Mountain View CA, Pontypridd UK, New York NY, Preston UK, Peterborough UK

23

38
Simulating the Pocket Enigma Cipher Machine in Python
PY ENIGMA

Use Python to create timelapse images
24 TIMELAPSE

32
A beginners guide to Java. Part 3: an introduction to classes

FRESHLY ROASTED

48
Send us your feedback and article ideas
HAVE YOUR SAY

45
Part 1 : Back to BASIC with the Raspberry Pi
FUZE BASIC

http://www.themagpi.com

ContentsContentsContents

Cover photo courtesy of Bletchley Park, ©shaunarmstrong/mubsta.com

http://www.themagpi.com

4

SKILL LEVEL : ADVANCED

Igor Vereninov

Guest Writer

AUTOPILOT FOR RASPBERRY PI

The Navio autopilot shield

There is no need to explain al l of the features of

the Raspberry Pi and how it is making embedded

development easier. When working with the

Raspberry Pi platform, we did however find that

autopi lot applications are some what l imited and

thus we establ ished the Navio project to

overcome this.

Prior to using the Raspberry Pi, a lot of time was

invested in bui lding a commercial UAV autopi lot

based on the STM32 microcontrol ler, the same

microcontrol ler that is used in most autopi lots.

When development of the core software was

completed our focus became integration of new

payloads, i .e. a new means of communication

and new sensors. We found this process very

complicated, having to write drivers for each new

piece of electronics, even though we knew that

they already existed. Development and

debugging tools were bulky and kept us tied to

the workplace. I t was from these issues that the

idea of a Linux autopi lot first crossed our minds.

At first Navio started as a hobby project at

weekends. With progression of the project and

increasing group confidence we decided to quit

our jobs to work on the Linux autopi lot ful l time.

We started investigating the options avai lable to

create an open and powerful Linux autopi lot

platform, deducing the Raspberry Pi as the

obvious choice. We received great support from

the community, finding a lot of readi ly avai lable

code and tutorials combining al l of the power and

flexibi l i ty of Linux. When we first sent data over a

3G network we just couldn't bel ieve how easy it

was, compared to our previous setup. I t was just

l ike on a desktop PC. Simply instal l the drivers

and you are ready to go!

Autopi lot is much more than just a processor

running an OS. I t needs a way to determine its

state, its place on Earth, and be able to control

actuators. I t takes many sensors and servos to

fly a plane or multicopter. We needed a 9DOF

inertial measurement unit for orientation, GPS for

position, barometric pressure sensor for alti tude

and multiple control outputs. We thus returned to

the drawing board, well technical ly not to a

drawing board, but to CAD software, and

designed the Navio. In the process an ADC was

added for voltage and current monitoring, an

RGB LED to show statuses and connectors were

made compatible with existing hardware.

Navio sits on top of the Raspberry Pi GPIO

header and is fixed with a standoff and bolt. I t

met our specification of being very compact,

making it possible to fit in tight spaces inside

small drones, whi lst packing everything needed

5

for a ful l featured autopi lot. For our own plane we

have chosen to remove some of the sockets on

Raspberry Pi to save weight and reduce size.

When we first presented the idea to the

community, the feedback was great. A

Raspberry Pi autopi lot actual ly sounds sweet. I t

was quickly drawn to our attention that the

autopi lot has to be strict real-time, and it is not

something you expect from Linux straight out of

the box. We started experimenting. From the

team's previous experience with low latency

audio processing on Linux, we knew that it can

work real-time if tuned the right way.

With a real-time kernel and proper task priority

settings we have outperformed what we had on

STM32. We are able to run inertial measurement

unit code at 3000 times per second, including

reading data from sensors, computing rol l , pitch

and yaw angles and outputting them through Wi-

Fi to console. Even when running alongside

computational heavy processes l ike compil ing,

the performance was stable. This assured us

that there is no need to overcomplicate the setup

with a secondary processor for sensor reading.

In our opinion, the Raspberry Pi with Navio is not

a commercial autopi lot product, but something

that lets you evaluate your ideas and test new

algorithms. The key factor was the abi l i ty to run

multiple applications with autopi lot in paral lel .

The other feature of Raspberry Pi is the ease of

development; just open your favourite code

editor, compile the fi le and run the application.

With hardware and OS complete we moved to

the autopi lot code itself. At first we trial led code

to check if the sensors and peripherals were

working as expected. When we got Navio to

control servos it was time to try it on something

real. We took an RC car off the shelf, instal led

Navio on top and added webcam and Wi-Fi.

After several hours of coding we were able to

control i t from a laptop keyboard and to get l ive

video streaming on screen! Immediately we took

a tour around the house, feel ing l ike secret

service ROV operators. We revealed some

corners that have not been vacuumed for years,

and even found the place where second socks

go.

We then identified that we needed software to

actual ly fly a plane, but we did not want to

reinvent the wheel. From our previous

experience it was clear that there is no quick way

to write an autopi lot. I t takes a lot of testing and

working on the detai ls to actual ly make a rel iable

system. We all know how many open source

autopi lots are out there, it was just a question of

picking the right one.

We were fol lowing the ArduPilot project from the

very beginning, and when we found out that the

team is working on a Linux port, we decided that

we should make it run on our platform. Mostly

this requires small changes to the hardware

specific parts, something we are actively

working on. The test platform is already

assembled, and we are sure that we are going to

take fl ight soon!

Navio: http://www.emlid.com

ArduPilot: http://ardupi lot.com

http://www.emlid.com
http://ardupilot.com

6

SKILL LEVEL : BEGINNER

Harry Gee

Guest Writer

PIBOT
Give your Raspberry Pi robot powers

Learn the fundamentals of

robotics - Part 1

Introduction

The robot revolution is coming. Robots are no longer

just machines from science fiction. From self-driving

cars, to flying drones, robots are on the march. Over

the next few years robots are going to be seen all

over the place and wil l be increasingly used in

agriculture, manufacture, medicine and education, as

well as in our own homes. The amazing thing is that

now almost anyone can become a roboticist and if

you have a Raspberry Pi you are already half way

there.

In the first part of this two part article, I wi l l give you

an introduction to the exciting new world of robotics

and wil l detai l al l the things you need to consider

when embarking on bui lding your own robot. As an

example we wil l cover the bui lding of the simplest

robot possible for the Raspberry Pi. Next time, in part

2 of the article, I wi l l cover more advanced robots and

show how you can bui ld and then program these

robots to do some real ly interesting things.

Before we get into the what and how-to of any

robotics, the first question may be why would you

want to bui ld a robot with a Raspberry Pi in the first

place? Also, what kind of things wil l a Raspberry Pi

robot be able to do?

I first got interested in Raspberry Pi robots when I

real ised how good they can be for learning about

technology and also the teaching of technology to

others. The great thing about robots is that they are

physical and immersive. Instead of providing output

to pixels on a screen, a robot is in your personal

space and its movements, l ights and sounds go way

beyond the l imits of a screen. With the Raspberry Pi

and some low cost hardware, not only can you make

a robot move, you can make a robot that can speak,

dance and a whole lot more besides! Why wouldn't

you want to turn a Raspberry Pi into a robot?

What makes the Raspberry Pi so good for robotics

(as well as so many other projects) is its special

GPIO port (General Purpose Input Output) . This

al lows the Raspberry Pi to connect to al l kinds of

electronics and hardware. The fundamental

requirements for the most interesting robots are the

abi l i ty to both sense and interact with their

environment, and it is the GPIO port of the Raspberry

Pi that makes this possible.

Before going into further detai ls for bui lding a simple

robot, let's first consider some robot fundamentals.

What makes a robot robotic?

Wikipedia defines a robot as "a machine which can

be electronically programmed to carry out a variety of

physical tasks or actions". In addition to this

7

requirement to perform physical actions, a proper

robot should also have an autonomous abi l i ty.

Autonomy allows a robot to act independently in the

world and this makes them different from things l ike

radio control led vehicles that are not able to function

by themselves. The Raspberry Pi 's processing abi l i ty

(both CPU and GPU), along with its GPIO port, gives

it lots of potential for developing autonomous

behaviour. As a simple example let's take a look at

the classic l ine fol lowing robot.

A l ine fol lowing robot has the abi l i ty to move forward,

change direction and detect a l ine on the ground. This

is a classic example of autonomous behaviour. No

matter where the l ine leads, the robot is programmed

to fol low the l ine without the need for any external

control .

For our simple robot we are going to add an infrared

(IR) sensor that detects a change in reflectivity. The

reflectivity of the ground changes when the robot

moves off the l ine. When this happens it changes

direction to get back on the l ine.

While autonomous behavior can be very useful in a

robot it can also be a lot of fun to control i t directly.

Some of the most interesting applications happen

when a robot combines the two. Imagine a flying

robot that can fly around at your command but can

also be programmed never to crash into walls and

other obstacles.

Anatomy of a Raspberry Pi robot

Let us go through al l the things you need to bui ld your

own robot using a Raspberry Pi. I wi l l detai l a minimal

possible Raspberry Pi robot step by step. These

basic steps are:

• Remote access to the Raspberry Pi

• Powering a Raspberry Pi without cables

• Bui lding a robot chassis

• Making the robot move

• Adding sensors

The first hurdle to turning a Raspberry Pi into a robot

is to untether it from all wires and cables.

Remote access
Most people wil l be famil iar with interfacing a

Raspberry Pi to a monitor/TV, keyboard and mouse,

but this is just not going to work for a robot. The best

thing for connecting remotely is a wireless dongle

connected to the Raspberry Pi USB port. I won't go

into al l the detai ls for doing this here. Instead, visit

http://pihw.wordpress.com/guides/guide-to-remote-

connections/.

Another interesting thing to note is that you can either

connect wirelessly across an existing network or you

could turn your Raspberry Pi into a wireless hotspot

and connect to it via its own network. See Issue 1 1 of

The MagPi, page 1 0 (http://www.themagpi.com/issue

/issue1 1 /article/turn-your-raspberry-pi-into-a-wireless

-access-point) for detai ls.

Rather than using the Raspbian Desktop on the

robot, a terminal interface is more suitable. When

communicating across the wireless network, a

remote SSH terminal session is the best way to send

commands. Detai ls are in the previously mentioned

guide to remote connections.

Portable robot power
The next essential for the robot is to get the

Raspberry Pi running on portable electrical power.

The simplist way to do this is to use a backup USB

mobile phone charger. Personal ly I opted for a basic

4 x AA battery pack with a 5V voltage regulator. I f you

are using a Model B then a 8 x AA battery pack may

be preferable to get longer running time.

Building a robot chassis
While it is possible to use some kind of existing

chassis to bui ld your robot, i t can also be fun to make

your own. Even some stiff cardboard can be used for

this. The photo overleaf shows a basic design.

http://pihw.wordpress.com/guides/guide-to-remote-connections/
http://www.themagpi.com/issue/issue11/article/turn-your-raspberry-pi-into-a-wireless-access-point

8

Making the robotmove
Now that you have successful ly untethered your

Raspberry Pi and can connect to it remotely, we can

give it some robot powers - motion! The simplest and

probably cheapest way to give your robot motion is by

connecting two continuous rotation servos.

Normally servos are designed to turn just 90 or 1 80

degrees though modified versions exist that provide

continuous rotation to be able to drive wheels.

Adafruit show how to modify a low cost servo for

continuous rotation (http://learn.adafruit.com/

modifying-servos-for-continuous-rotation). I f you want

to be real ly inventive you can also make your own

wheels. In the photo above, two large bottle tops are

being used for wheels.

With two wheels to drive the robot a third wheel is

usual ly required for support. I t is positioned in the

middle towards the back of the chassis. Bal l bearing

castors or furniture wheels can work well but to keep

things real ly simple a smooth sl iding support can be

made using a papercl ip.

Now that the robot has wheels the next important

step is to connect the servos to the GPIO port. As a

hack I made up a simple circuit. This connects the

data pins of the servos and the IR sensor to the GPIO

and also connects the positive and negative power

pins of the servo to a 5V voltage regulator. The circuit

is shown on the right.

Making your robot sensational
To keep things simple we wil l only add an IR sensor

to our robot. The way this works is that it has one

LED that is an IR emitter and one that is an IR

receiver. The receiver measures the l ight reflected

from the ground and the amount received wil l depend

of the reflectivity of the surface. A line that has a

different reflectivity to the ground around it can be

measured by the sensor so it knows whether it is on

or off the l ine.

A suitable sensor can be obtained from

http://www.banggood.com (search for LM393 IR).

Coding autonomous behaviour

Now that we have the hardware of the robot sorted, it

is time for the code. The Python script shown on the

next page is al l that is required to add both remote

control and autonomous l ine-fol lowing behaviour to

our robot. A detai led explanation of the code is

avai lable at http://www.pibot.org/tiddlybot/code.

Beyond the basics

Next month we wil l look at some more capable robots

with features l ike speech, voice recognition and

environment mapping. We wil l also discuss adding

more hardware via an Arduino interface.

http://learn.adafruit.com/modifying-servos-for-continuous-rotation
http://learn.adafruit.com/modifying-servos-for-continuous-rotation
http://www.banggood.com
http://www.pibot.org/tiddlybot/code

9

In this first part I hope you've become more famil iar

with the basics of bui lding a robot and hope you

agree that bui lding robots with the Raspberry Pi is

affordable and fun.

To help make it easier for Raspberry Pi users to get

into bui lding robots I have now developed the

"TiddlyBot". This brings the ideas described in this

article to an easier "bui ld-your-own" robot kit. For

"TiddlyBot" I have also added some exciting software

as well as things l ike l ine drawing capabil i ties. To find

out more and to support the "TiddlyBot" project,

please see our Kickstarter (http://kck.st/1 pOgU1 J)

unti l 26 July 201 4.

With the Raspberry Pi anyone can now be a roboticist

and I hope this helps people to both learn and have

fun!

import RPi. GPIO as GPIO
from RPIO import PWM
import time
import curses
import sys

left_motor = 14
right_motor = 15
line_sensor = 18

GPIO. setmode(GPIO. BCM)
GPIO. setup(line_sensor, GPIO. IN)

servo = PWM. Servo()

def display_input(stdscr, kboutput):
stdscr. clear()
stdscr. addstr(kboutput)
stdscr. refresh()
stdscr. move(0, 0)

def turn_movement_servos(left_speed,
right_speed):

servo. set_servo(left_motor, 1520 + (-1 *
left_speed))

servo. set_servo(right_motor, 1520 + (1 *
right_speed))

def check_on_line():
if GPIO. input(line_sensor) == GPIO. LOW:

on_line = True
else:

on_line = False
return on_line

def kb_input(stdscr):
k = 0
in_line_follow = False
try:

stdscr. nodelay(1)
while True:

c = stdscr. getch()

Remote control button actions
if (c ! = -1) and (in_line_follow is

False):
if (c == 261) and (c ! = k): # right

k = c
turn_movement_servos(0, 80)
display_input(stdscr, "Right")

elif (c == 260) and (c ! = k): # left
k = c
turn_movement_servos(80, 0)
display_input(stdscr, "Left")

elif (c == 259) and (c ! = k): # up
k = c
turn_movement_servos(100, 100)
display_input(stdscr, "Forwards")

elif (c == 258) and (c ! = k): # down
k = c
turn_movement_servos(-100, -100)
display_input(stdscr, "Backwards")

elif (c == 10) and (c ! = k): # enter
k = c
turn_movement_servos(0, 0)
display_input(stdscr, "Stopped")

elif (c == 113) and (c ! = k): # quit
display_input(stdscr, "QUITING! ")
time. sleep(0. 5)
RPIO. cleanup()
sys. exit()

elif (c == 32) and (c ! = k): # space
k = c
in_line_follow = True
line_following()
display_input(stdscr, "Follow Line")

else:
if k ! = c:

d = "ASCII "+ str(c) +" not valid! "
display_input(stdscr, d)

Line following button actions
elif c == 32:

in_line_follow = False
stop() # stop wheels turning
display_input(stdscr, "Stopped")

elif c == 113:
display_input(stdscr, "QUITING! ")
time. sleep(0. 5)
RPIO. cleanup()
sys. exit()

else:
if in_line_follow:

line_following()
display_input(stdscr, "Follow Line")

except curses. error:
curses. wrapper(kb_input)

def line_following():
if check_on_line():

turn_movement_servos(100, 40)
else:

turn_movement_servos(40, 100)
time. sleep(0. 1)

Start program
curses. wrapper(kb_input)

http://kck.st/1pOgU1J

http://kck.st/1pOgU1J

http://www.panavise.com

1 2

SKILL LEVEL : BEGINNER

Andrew Suttle

Guest Writer

FISH DISH
Review

A Review of the Fish Dish

The Fish Dish (http://www.pi-supply.com/product/fish-dish-

raspberry-pi-led-buzzer-board) is a l ittle circuit board, which

is simple to bui ld by yourself and ideal for chi ldren learning

about the GPIO. Chi ldren please ask an adult to help with

the soldering – I accidental ly melted part of the connector,

but it sti l l works fine!

The circuit board has three LEDs, one buzzer and a switch.

There is a Python program available from the internet, but

for chi ldren, Scratch is better. I only had normal Scratch on

my Raspberry Pi, but it wi l l not use the GPIO pins. I

downloaded ScratchGPIO, as introduced in issue 9 and

1 0 of the MagPi and documented at

http://cymplecy.wordpress.com/scratchgpio/scratch-

raspberrypi-gpio/ . This put a new Scratch on my desktop.

I could not copy the pin numbers from the Python program

as they are different in Scratch GPIO and the al lon

command only turned on two LEDs and not the buzzer. I

tried al l the pins and worked out that if you turn them on

then the al lon command works. I made a simple program

that turned al l on and then al l off when the button was

pushed. I also ran a scratch program and the Python

program at the same time, which was interesting as you can

see what happens when two programs think they are

control l ing the same thing.

Fish bits to make a Fish Dish

Fish Dish with Pi and side order of LED

http://cymplecy.wordpress.com/scratchgpio/scratch-raspberrypi-gpio/
http://www.pi-supply.com/product/fish-dish-raspberry-pi-led-buzzer-board/
http://www.pi-supply.com/product/fish-dish-raspberry-pi-led-buzzer-board/
http://www.pi-supply.com/product/fish-dish-raspberry-pi-led-buzzer-board
http://www.pi-supply.com/product/fish-dish-raspberry-pi-led-buzzer-board

1 3

The right arrow code [1] adjusts the brightness of the

red LED I connected to pin 1 3. I t gets brighter then dimmer

and then turns off. I t wi l l work for any LED and even for the

buzzer, which can be very annoying if you do it for a long time.

Just change the power13 to power7 for Green, power15 for

Yellow and power21 for Red. The buzzer is on pin 24.

When green flag clicked [2] is a program that checks

when the button is pressed on the Fish Dish. The button is on

pin 26. I t turns al l the LEDs plus the Buzzer on when the

button is pressed.

I used the up arrow key [5] to turn everything off and the

space key [3] to turn the LEDs on and off. I also added a tricky

code [4] to pin13off to confuse my brother.

There are also some left over pins to add extra LEDs and I

later added a red LED and 1 k resistor on pin 1 3. The extra

LED I put on pin 1 3 turns off when the button is pressed so I

knew it worked.

I f you add on a circuit to the pins that have the LEDs on then

the LEDs tel l you if your program works, so if your circuit does

not work you can find the problem. I used a 1 k resistor for my

external circuit and perhaps the resistors on the Fish Dish

could be 1 k as well .

The Berrycl ip https://www.modmypi.com/berry-cl ip-raspberry-

pi-add-on-board?fi l ter_name=berrycl ip is nearly the same as

the Fish Dish, but you cannot add extra LEDs. However, it is

£3 cheaper and it comes with more LEDs. I recommend the

Fish Dish for chi ldren aged 6+, who are learning about

Scratch GPIO, but it should cost less.

[1]

[2]

[3]

[4]

[5]

https://www.modmypi.com/berry-clip-raspberry-pi-add-on-board?filter_name=berryclip
https://www.modmypi.com/berry-clip-raspberry-pi-add-on-board?filter_name=berryclip

1 4

SKILL LEVEL : INTERMEDIATE

John Shovic

Guest Writer

MouseAir
A Control Panel for Cat Entertainment

Building a Control Panel

Introduction

I have always enjoyed bui lding control panels for

my projects. I used to laboriously bui ld physical

control panels with switches, meters and l ights.

Lots of l ights. MouseAir is a complex project. 4

Servo Motors, 3 Sensors, 4 relays, 2 DC motors,

one mother-of-al l solenoids, one camera and one

obnoxious cat, al l working in sequence. Al l this to

launch toy mice across the room.

I l ike to be able to change parameters, change

modes and cause actions (such as entertaining a

cat) , whether sitting near the MouseAir launcher or

across the world.

In this project at SwitchDoc Labs, I am using

RasPiConnect (www.milocreek.com) to control

MouseAir. RasPiConnect al lows me to bui ld

multiple pages of controls, with graphs, webpages,

pictures, streaming video (with a l ittle more work!)

and lots of l ights and buttons on an iPad or iPhone

without having to bui ld and submit an app to the

App Store. You bui ld the controls on the phone or

tablet and then modify a server on the Raspberry Pi

to talk to the control panel. This is the second

project for which I am using RasPiConnect. The

first is Project Curacao, descripted in early issues

of The MagPi.

Description of Mouse Air

The MouseAir system is bui lt around a Raspberry

Pi control l ing al l the devices necessary to launch

the toys, connected to the iPad via a WiFi

connection. We are using a Pi Camera on a pan /

ti l t structure to capture the cat events, examine the

launching mechanism for jams, motion detection

and even streaming video. I t uses a solenoid to

push a mouse between two rapidly spinning DC

motors. Note the hand bui lt 1 25KHz RFID antenna

on the right side in the picture overleaf. See an

early mouse launch at:

http://www.switchdoc.com/201 4/04/mouseair-

prototype-video

The motors are a bit of an overki l l . A properly

loaded mouse can be shot 1 0 meters!

http://www.milocreek.com
http://www.switchdoc.com/2014/04/mouseair-prototype-video

1 5

What Controls to Use

In designing a control panel using RasPiConnect,

the first thing you have to do is choose which

controls to use and where to place them on the

iPad Screen. This is al l done within the app on the

iPad or iPhone. RasPiConnect has a col lection of

about 20 controls to choose from, al l with special

options and behaviours from meters to buttons to

LEDs to constantly updated l ive graphs.

The first thing I did was decide what I wanted to

control: which sensors are used for triggering,

control l ing and viewing the Pi Camera, be able to

manually launch mice and manually control any

part of the six step procedure to launch the mouse.

Every control in RasPiConnect has an input and

response. The app sends an input to your

Raspberry Pi (or Arduino, or both!) and the

Raspberry Pi sends back a response.

PiCamera display
For the camera display, I have chosen a Remote

Picture Webview control. This control has a title

and the response from the Raspberry Pi is in the

form of an HTML page. I t is very flexible and you

can configure it for pictures or for streaming video

with a l ittle effort. Note the mouse peeking out.

Buttons for action
In RasPiConnect, there are two types of buttons:

Action and Feedback Action. You use Action

Buttons to do an action that does not require

feedback (however, there are ways to provide

feedback by refreshing other controls based on

an Action Button tap). For example, "Take

Picture".

FeedbackButtons forSelections
Feedback Buttons are used for cycl ing through a

set of options (such as "Off" and "On"). Tapping

a Feedback Button sends an input to the

Raspberry Pi (the current text in the button) and

the response text from the Raspberry Pi replaces

the button text. For example, tapping the

"Ultrasonic Off" button wil l send "Ultrasonic Off"

to the Raspberry Pi, turn the Ultrasonic sensor

off and return the text "Ultrasonic On" to set up

the button for the next tap. In Project Curacao,

some buttons had 8 different states!

Live graphs for real time reports
The live controls are a new feature in the lastest

version of RasPiConnect. They are a col lection of

controls that wil l periodical ly (interval set by the

user) ask the Raspberry Pi for any new information

and update the iPad screen. I decided to use a

Complex Line Graph Live control to give a

continuous display of what distance the ultrasonic

sensor is reading (is the cat walking by?)

1 6

Each time the iPad app asks for an update of the

graph, the Raspberry Pi returns a response of the

l ist of data points to be graphed and what text to

use for the x axis labels, I usual ly set this display

to update every second. Note that RasPiConnect

wil l only al low you to use this feature if you are

connected to WiFi on the iPad. We don't want to

run up the mobile data bi l l !

Configuring RasPiConnect on the
iPad

Each of the desired controls is placed on the iPad

in the Panel Setup tab within RasPiConnect.

Backgrounds

To finish off the control panel we add the MouseAir

logo and accent text boxes onto the screen. To do

this we bui ld a custom background in the page (we

used Grafio on an iPad to generate a JPG or PNG

fi le) and then select this background graphic for the

page.

Configuring RasPiConnectServer
Software on the Raspberry Pi

The MouseCommand.txt fi le is first written by the

RasPiConnectServer program and then read by

MouseAir. When the command is complete,

MouseAir writes "DONE" into the command fi le,

tel l ing RasPiConnectServer that it is finished and

ready for the next command. Note that the

RasPiConnect app keeps all commands in

a queue and wil l not send another

command unti l either a timeout occurs

(programmable) or it gets a response from

the Raspberry Pi.

The MouseAir Control Software

The MouseAir software operates in a loop,

periodical ly checking for a new command

from RasPiConnect, checking for triggers

from RFID, Pi Camera motion and

checking for an Ultrasonic trigger. The

MouseAir software is avai lable on

http://github.com/switchdoclabs.

On the MouseAir side, the software for

receiving commands from RasPiConnect

is contained in processcommand().
The design screen in RaspiConnect

The background image loaded into the app

def processCommand():

f =

open("/home/pi/MouseAir/state/MouseComman

d.txt", "r")

command = f.read() f.close()

if (command == "") or (command ==

"DONE"):

http://github.com/switchdoclabs

1 7

The RasPiConnectServer Software

RasPiConnectServer is a Python program

provided for connection from a Raspberry Pi to

the RasPiConnect app. Change the fi le Local.py

(in addition config.py) to connect to the MouseAir

software. MiloCreek provides ful l documentation

for Local.py and the rest of the server at

www.milocreek.com under the documentation

l ink. Each button is pretty simple to do.

There are some other setup items such as

setting URLs for your Raspberry Pi that are ful ly

explained in the manual.

Al l of the software that you need to write is

placed in Local.py. There is an example Local.py

fi le provided in the server download. To i l lustrate

how to write the interface, I wi l l fol low one entire

button through the process.

I wi l l use the Motors On button as an example.

This button controls the DC motors that shoot the

mouse up in the air. I t has two states, "On" and

"Off". This makes it a perfect candidate for a

Feedback Action Button.

When you add a control in RasPiConnect, you

can set the control code (usual ly a unique

identifier) for the button. By convention, each

Feedback Action Button starts with "FB". Our

motor control button a control code of "FB-1 6".

When you tap the button on RasPiConnect an

XML message (or optional ly a JSON or raw

mode message) is sent from the iPad to the

Raspberry Pi. The message is parsed by the

RasPiConnectServer software and the results

are presented to your customized code in the

Local.py fi le. You don't have to deal with any of

the parsing or handshaking, the l ibraries do all of

this for us. The button is then presented to

Local.py. We wrote one small routine to interface

to the MouseAir.py command fi le.

The next section is the "money code", that is, the

code where the functional ity of the button is

implemented.

Nothing to do

return False

Check for our commands

pclogging.log(pclogging.INFO, __name__,

"Command %s Received" % command)

print "Processing Command: ", command

if (command == "FIREMOUSE"):

fireMouse() completeCommand()

return True

if (command == "TAKEPICTURE"):

utils.threadTakePicture("Picture

Taken -RasPiConnect Command")

completeCommand()

return True

...

def completeCommand():

f =

open("/home/pi/MouseAir/state/MouseComman

d.txt", "w") f.write("DONE")

f.close()

defsendCommandToMouseAirAndWait(command):

object Type match

if (objectType ==

FEEDBACK_ACTION_BUTTON_UITYPE):

if (Config.debug()):

print "FEEDBACK_ACTION_BUTTON_UTYPE

of %s found" % objectServerID

FB-16 - turn motors on

if (objectServerID == "FB-16"):

#check for validate request

http://www.milocreek.com

1 8

We now send the command to MouseAir.

Note we have now "toggled" the button by sending

"Motors Off" back to the app to set up the button for

the next tap.

The default section is in case of a time out and the

button becomes blank. In that case, we want the

motors off.

FInal ly, the rest of the XML response is bui lt. By the

way, if you somehow screw up the XML,

RasPiConnect just rejects it. There is error

checking bui lt into the App as well as checksum on

each response.

Looking at the code, you can see the command

that is written to the MouseAir command fi le. The

software then waits for the "DONE" and then sends

the response (which is the text used for the button

on the iPad. I f you sent a "Motor On" command, the

response to be sent back would be "Motor Off" and

then the "Motor Off" would be displayed on the

button on the app.

That is the complete cycle. This design pattern is

used for al l of the controls.

Conclusion

How to setup a control panel for your project is

always a challenge. I l ike being able to control a

project local ly and across the Internet. MouseAir is

a complicated project with a number of different

things to adjust and to view. I found that

RasPiConnect was a very good match and

platform on which to bui ld. I am already planning to

use it on SwitchDoc Labs next project.

RasPiConnectServer is avai lable on

http://github.com/milocreek and the specific

MouseAir RasPiConnect fi le (Local.py) is avai lable

on http://github.com/switchdoclabs.

For more information about MouseAir see the

authors blog at www.switchdoc.com.

For more information about RasPiConnect see

www.milocreek.com

validate allows RasPiConnect to

verify this object is here

if (validate == "YES"):

outgoingXMLData +=

Validate.buildValidateResponse("YES")

outgoingXMLData +=

BuildResponse.buildFooter()

return outgoingXMLData

not validate request, so execute

responseData = "XXX"

if (objectName is None):

objectName = "XXX"

lowername = objectName.lower()

if (lowername == "motors on"):

print "set Motors On"

status =

sendCommandToMouseAirAndWait("MOTORSON")

responseData = "motors Off"

responseData =

responseData.title()

elif (lowername == "motors off"):

status =

sendCommandToMouseAirAndWait("MOTORSOFF")

responseData = "Motors On"

responseData =

responseData.title()

defaults to Motors off

else:

print "Motors Off"

status =

sendCommandToMouseAirAndWait("MOTORSOFF")

lowername = "Motors On"

responseData = lowername.title()

outgoingXMLData +=

BuildResponse.buildResponse(responseData)

outgoingXMLData +=

BuildResponse.buildFooter()

return outgoingXMLData

The completed final control panel for MouseAir

http://github.com/milocreek
http://github.com/switchdoclabs
http://www.switchdoc.com
http://www.milocreek.com

http://www.openelectrons.com
http://www.dawnrobotics.co.uk

20

SKILL LEVEL : BEGINNER

Karl-Ludwig

Guest Writer

OSCILLOSCOPE
Add-on board

Electronic Measurement?
BitScope & RasPi!

An osci l loscope is only for professionals and

rather expensive!? If you think this sentence is

true then read on.

The BitScope Micro from the Austral ian

manufacturer BitScope Designs is a small add-

on board especial ly adapted to the Raspberry Pi,

with which you can turn your Raspberry Pi into

an osci l loscope, logic analyser, spectrum

analyser and a waveform generator. In this

miniseries, I am going to show you how to setup

this dynamic duo and use its features to

understand how electronic circuits work and

debug them if they do not work.

First things first: what is an osci l loscope anyway?

An osci l loscope is an electronic measurement

device with which you can measure different

electrical parameters such as voltages,

frequencies, etc.. With a digital multimeter you

are able to measure an electrical voltage and see

a numerical representation of it in the display.

However, an osci l loscope presents a graphical

representation of the voltage over time. The

osci l loscope does this by plotting measurements

using a Cartesian co-ordinate system.

In this first part of the article we are going to

setup the hardware, instal l the software and take

our first graph.

Assuming you have your Raspberry Pi up and

running, make sure that your Raspbian

instal lation is up to date by typing:

sudo apt-get update

sudo apt-get upgrade -y

Next, instal l the BitScope software with the

fol lowing procedure:

1) Download the BitScope DSO 2.7 package

from the BitScope Download area from

http://bitscope.com/pi/ and save it into the

directory /home/pi on your Raspberry Pi.

2) When the download is complete, fire up your

fi le manager, navigate to /home/pi directory

and right cl ick on the downloaded package and

choose Open with from the context menu.

3) Select the custom command line tab, enter

sudo dpkg -i and cl ick OK.

http://bitscope.com/pi/

21

4) When the instal lation procedure has finished,

connect the BitScope Micros USB port to the

Raspberry Pi as shown in Fig. 1 . You wil l need a

powered USB hub to do so, because normally

both USB ports of the Raspberry Pi are in use for

the keyboard and the mouse.

Figure 1: Connecting the BitScope Micro to your

Raspberry Pi via USB

5) You should be able to start BitScope DSO

from the main menu now and see its splash

screen on your monitor. With your BitScope

Micro connected cl ick POWER on the right side

of the splash screen.

With BitScope DSO up and running and the

BitScope Micro add-on board connected, the

only thing left before we start exploring the

system is to famil iarise ourselves with the user

interface on the screen. Fig. 2 shows the main

screen.

In the main display (1) you wil l see the results of

the measurements in graphical form. This output

is dependent on which buttons you choose on

the right side (2). When measurements are taken

is very important if you are working with an

osci l loscope. Electronic engineers talk about

triggering. (3) is cal led the trigger window, which

we wil l leave at the default automatic mode for

the moment. We wil l change the trigger

behaviour with the trigger controls (4) at a later

time. For exact measurements, BitScope Micro

supports us with so cal led cursor measurements

(5). With the time base control (6), we are able to

zoom in and out of a graph and therefore see

more or less detai ls. The channel controls (7) let

us influence the input, i ts source, range, vertical

position and scaling. Last but not least the

capture control (8) defines the capture sample

rate, duration, frame rate and display modes.

First measurement

To check if your setup is ok and working,

connect one of the test leads, which are included

with the BitScope Micro, to the channel A pin

(marked CHA (yel low), see Fig. 3) :

Figure 3: Pin layout of the BitScope Micro

(photo courtesy by BitScope Designs)

Next change the time base (6) to 5msec/Div by

cl icking on the left arrow key unti l this value is

Figure 2: BitScope DSO software main screen

elements (photo courtesy by BitScope Designs)

22

displayed. 5msec/Division means that each

square of the grid on the main screen (1) on the

x-axis represents five mil l iseconds. Next look at

the channel controls for channel A (7) and select

1 V/Div. This means that each square of the grid

on the main screen (1) on the y-axis represents

one volt. Now press down the top of the grabber

cl ip, such that you can see the tiny metal grabber

coming out of the plastic on the opposite side

and touch it with your finger. Do not be afraid

nothing wil l happen, except if you let loose the

top, then it wi l l bite you. I f you look to the main

screen you wil l see a more or less perfect sine

wave like the one in Fig. 4:

Figure 4: Touching the test lead with your

fingertip

Where does this sine wave is come from? Take

your finger from the metal grabber and it wi l l

disappear. Put it on again and the sine wave wil l

reappear. No doubt, you are the source of the

mysterious sine wave. How? Mains electricity is

provided at each power outlet and has an

alternating current with a frequency of 50 Hz (in

Europe and 60 Hz in the USA). A wire that

carries an alternating current behaves as a radio

transmitter. Your body is receiving the signals

from the transmitting wire. When you touch the

metal grabber, the signal is transmitted to the

BitScope Micro osci l loscope and onto the

Raspberry Pi screen. Why am I so sure that the

sine wave displayed has a frequency of 50 Hz?

Well , look at Fig. 5:

Figure 5: Determining the frequency of a signal

We selected 5msec/Div, where one cycle of the

signal is 4 divisions long. 5msec*4 equals 20

msec (or 0.02 seconds. Since an osci l loscope

cannot measure frequencies directly, we have to

take the reciprocal of 0.02 seconds which is 50

Hz.

In this article we discussed what an osci l loscope

is al l about, set up the hardware and software,

and checked the whole setup by injecting a 50

Hz sine wave with our fingertip.

Join me next month, when we start to delve into

the fascinating field of electronic measurement

with a digital storage osci l loscope. Yes, that is

what our BitScope Micro is. For al l those

interested in actual ly turning their Raspberry Pi

into a digital storage osci l loscope with the

BitScope Micro add-on board, it is avai lable from

BitScope Designs in Austral ia

(http://www.bitscope.com). In Germany, it is

offered by BUTTE publishing company

(http://www.BUTTE-verlag.de). In the UK, you

can order the BitScope Micro at

http://shop.pimoroni.com and in Switzerland at

http://www.pi-shop.ch. A German translation of

this article is avai lable at

http://www.BUTTE-verlag.de/.

http://www.bitscope.com
http://www.BUTTE-verlag.de
http://shop.pimoroni.com
http://www.pi-shop.ch
http://www.BUTTE-verlag.de/

Preston Raspberry Jam

When: Monday 4th August 201 4, 7.00pm to 9.00pm
Where: Media Innovation Studio, 4th Floor, Media Factory, Kirkham Street, Preston, PR1 2HE, UK

Come and see what others have done. Learn something new.
http://www.eventbrite.co.uk/e/1 04961 95403

Raspberry Pi and DIY Gamer Bootcamp

When: Monday 21 st to Tuesday 22nd July 201 4, 09.30am to 3.30pm
Where: University of South Wales, Treforest Campus, Pontypridd, CF37 1 DL, UK

A two-day workshop for 1 1 to 1 9 year olds from http://www.technocamps.com.

http://www.eventbrite.co.uk/e/1 2001 71 6457

Peterborough Raspberry Jam

When: Saturday 9th August 201 4, 1 1 .00am to 5.00pm
Where: University Campus Peterborough, Park Crescent, Peterborough, PE1 4DZ, UK

The ful l day programme includes classroom activities on Scratch and Python, a maker area and lecture
talks. http://www.eventbrite.co.uk/e/1 1 727761 049

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area, providing

you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Raspberry Jam Silicon Valley

When: Saturday 1 9th July 201 4, 1 1 .30pm to 4.30pm PDT
Where: Computer History Museum, 1 401 N. Shorel ine Blvd., Mountain View, CA 94043, USA

Open to al l and free to attend whether you are new or experienced with the Raspberry Pi.

http://trival leycoderdojo.wordpress.com/201 4/04/1 7/raspberry-jam-si l icon-val ley

Intro to Raspberry Pi: Make a Cupcade

When: Wednesday 30th July 201 4, 6.00pm to 9.00pm EDT
Where: Makery Bodega Pop Up, 1 95 Avenue C, New York, NY 1 0009, USA

At this workshop attendees can learn to construct a Cupcade (http://www.adafruit.com/product/1 783)

micro arcade cabinet for the Raspberry Pi. http://www.eventbrite.com/e/1 2049459257

23

http://www.eventbrite.co.uk/e/11727761049
http://www.eventbrite.com/e/12049459257
http://trivalleycoderdojo.wordpress.com/2014/04/17/raspberry-jam-silicon-valley
http://www.eventbrite.co.uk/e/10496195403
http://www.eventbrite.co.uk/e/12001716457
http://www.technocamps.com
http://www.adafruit.com/product/1783

24

SKILL LEVEL : ADVANCED

Tom Denton

Guest Writer

RASPISTILL
Python time lapse & image processing

Create a time-lapse video with
the Raspberry Pi camera

On December 27th, 2013, a pair of Raspberry Pis

with Raspberry Pi cameras were placed in a cottage

in Ontario overlooking Georgian Bay. About four

months later, they were found to have performed

wonderfully, capturing over 40,000 photos at two

minute increments. Although the shoot was planned

for a few months, it was not expected to be as

successful as it was. When the cameras were setup,

the windows were quite frosted over. Therefore, the

expected outcome was to see the back of an icy

window. However, the windows stayed clear during

the entire winter. The photographs taken captured

ice forming and dissolving on the lake, deer passing

like ghosts, magnificent storms and amazing

sunrises. The images were compiled together to form

the resulting time-lapse video given at:

http://inventingsituations.net/winter-on-georgian-bay

In this article, there are some code snippets that can

be used to make a time-lapse video using Python and

command line tools. In particular, the raspistill

program is used to capture the images and the

Python Image Library (PIL) and mencoder are used

to create the final movie.

Setting up Raspberry Pi and camera

Follow http://www.raspberrypi.org/help/camera-

module-setup/ to connect a Raspberry Pi camera to a

Raspberry Pi. Then install the latest Raspbian image

and type:

sudo raspi-config

Select

expand the filesystem

enable camera

advanced option

memory split (minimum 128 for gpu)

enable boot to desktop/scratch

Console

finish

reboot

yes

This will enable the camera, use all of the SD card for

the Linux installation, turn off the boot to X and allow

the ARM processor to use the maximum amount of

memory. Next, make sure that Raspbian is up to

date and install the libraries and programs needed for

this project:

sudo apt-get update

sudo apt-get upgrade -y

sudo apt-get install -y python-imaging \

python-zmq python-matplotlib mencoder \

imagemagick

sudo reboot

http://inventingsituations.net/winter-on-georgian-bay
http://www.raspberrypi.org/help/camera-module-setup/

25

Taking photos with raspistill

The easiest way to use the Raspberry Pi camera is

via the raspistill command. It has a time-lapse

option, which many people have used to good effect.

For an extremely long time lapse, finer control over

the images taken proved to be better than the

automatic settings. As a result, a Python script was

written to take photographs at regular intervals.

Calculations were used to make sure that the images

were of consistent quality. Image quality consistency

was maintained by the manipulation of shutter speed,

ISO and post capture alteration.

The two options that control the brightness of an

image are the shutter speed and the ISO

(International Standards Organization) setting. The

shutter speed controls how long the camera collects

light to create an image, where a longer shutter speed

will create brighter images but will be more likely to

have motion blur if there is movement in the frame.

On the Raspberry Pi, the slowest shutter speed

available is about 2.5 seconds; longer speeds will

cause the camera to hang and not take pictures until

the Raspberry Pi is rebooted. To be safe, the

maximum shutter speed was set to two seconds.

Shutter speeds in raspistill are measured in

microseconds. Therefore, a shutter speed of

1000000 implies one second.

ISO setting controls the sensitivity of the sensor,

within a range of 100 (low sensitivity) to 800 (high

sensitivity). When the ISO setting is high, brighter

images are taken, but they will also tend to be much

more noisy.

The command raspistill can be used to take a

photograph with a set shutter speed and ISO setting.

The automatic settings should be avoided, apart from

AWB (auto white balancing):

raspistill -awb auto -n -t 10 -ss 1000000 \

-ISO 100 -o mypic. jpg

Python can be used to run raspistill by using a

subprocess call:

import subprocess

ss=1000000

iso=100

command=' raspistill -n -t 10 '

command+=' -ss ' +str(ss)

command+=' -ISO ' +str(iso)+' -o mypic. jpg'

subprocess. call(command , shell=True)

The goal for the project was to keep images at about

the same brightness over the course of a day. The

brightness of each image was measured. Then the

shutter speed and ISO setting were adjusted. Since

fast movements are not important for time lapse

pictures, the ISO was kept at 100 as much as

possible to ensure high quality images.

Calculating the average brightness

The Python Imaging Library (PIL) is great for

manipulating images in Python:

import Image

im=Image. open(' mypic. jpg')

pixels=(im. size[0] *im. size[1])

hist=im. convert(' L'). histogram()

br=float(sum([i*hist[i] for i in

range(256)]))/pixels

print br

This example opens an image and uses the image's

histogram to compute the average brightness of the

image. For a greyscale image, there are 256

possible pixel values. The histogram counts how

many pixels there are for each value. The average

brightness of the images is calculated by adding up

all of the pixel brightness values and dividing by the

number of pixels.

Adjusting the shutter speed

To retain the same image brightness, as the light

increases or decreases, either the shutter speed or

the ISO setting should be adjusted. The brightness

from the previous image can be used to adjust the

shutter speed:

delta=128-br

26

ss=ss*(1 + delta/128)

where 128 is the target brightness and ss is the

shutter speed in the previous Python example. To

reduce flicker in the time lapse video, the average

brightness from the last ten or twenty images was

used.

Since the camera used had an infrared filter and the

light level was low during the night, a brightness

threshold was used to avoid storing images in very

dark conditions.

Installing the scripts

To install the scripts, type:

git clone https: //github. com/sdenton4/pipic

cd pipic

chmod 755 timelapse. py

chmod 755 deflicker. py

The time lapse program can be run with the default

settings:

. /timelapse. py

or the available options can be listed:

. /timelapse. py -h

When the time lapse program runs, it writes the

pictures into the ~/pictures directory.

To start the time lapse program when the Raspberry

Pi boots type:

sudo nano /etc/crontab

and add

@reboot pi python /home/pi/timelapse. py

Then save the file and exit nano.

Making the movie File

After running the time lapse program for a long time,

the photographs should be assembled into a movie.

This can be done very easily with mencoder:

mencoder "mf: //*. jpg" -mf fps=18: type=jpg \

-ovc lavc -lavcopts \

vcodec=mpeg4: mbd=2: trell: vbitrate=3000 \

-vf scale=512: 384 -oac copy -o movie. avi

This command uses all of the jpg files in the present

working directory and assembles them into a movie.

A sound track can be added to the movie, using an

existing audio file:

mencoder -ovc copy -audiofile MYMUSIC. mp3 \

-oac copy movie. avi -o movieWithMusic. avi

Post-processing

The movie can look a bit too grey. To create more

contrast, PIL's image manipulation capabilities can

be used. The greyscale histogram of a single image

can be plotted using Python and matplotlib:

import Image

from matplotlib import pyplot as plt

im=Image. open(' mypic. jpg')

hist=im. convert(' L'). histogram()

plt. plot(hist)

plt. savefig(' myhist. png')

The matplotlib package can also be used to plot

the histograms of many images at once:

import Image, glob

import numpy as np

from matplotlib import pyplot as plt

M=[]

for x in glob. glob(' *. jpg'):

im = Image. open(x)

M += [im. convert(' L'). histogram()]

plt. pcolormesh(np. array(M))

plt. savefig(' mymanyhist. png')

This example reads all of the .jpg files in the present

working directory. In the resulting image each

horizontal line of pixels is one image in the time lapse.

The brightness of a pixel indicates how many pixels in

the original image have a given intensity.

Some of the images captured were slightly grey. This

implies that there is not very much contrast, because

27

most of the pixel values are clustered in the middle of

the histogram. In these cases, there were no

completely black pixels and only a few completely

white pixels. The image at the bottom left of this page

illustrates is an example grey image.

To improve the balance, the image histogram can be

used histogram and stretched out to fill the whole

range (from 0 to 256). The first step is to find the

bounds a and b:

pixels=im. size[0] *im. size[1]

a=0

count=0

while count<0. 03*pixels:

count+=hist[a]

a+=1

b=255

count=0

while count<0. 05*pixels:

count+=hist[b]

b-=1

where a and b defined such that 97% of the pixels

are brighter than a and 97% are darker than b. Now

a and b can be used to stretch the histogram:

im3=Image. eval(im2, lambda x: (x-a)*255/(b-a))

where the eval function applies the function given

within the parentheses to each pixel in the image and

lambda is an easy way to make a simple function.

For example, the following code snippet prints 12.

f=lambda x: x*3

print f(4)

The histograms above are for the original (green) and

levelled image (blue). The histogram for the levelled

image is quite spread out. It is also very jagged,

because the stretching removes many possible pixel

values. Fortunately, this is not very visible in the

levelled image. In practice, the bounds `a` and `b`

were based on a rolling average from nearby

pictures, such that there were no dramatic changes.

The final levelled image is shown at the bottom right

of this page.

The techniques discussed in this section can be

found in the deflicker. py script. Type:

. /deflicker. py -h

for a list of available options. The script reads

images that are in the present working directory.

Before After

28

SKILL LEVEL : INTERMEDIATE

Richard Wenner

Guest Writer

PACKET SNIFFING
Educational guide to Wi-Fi networks

Raspberry Spy Part 2:

Understanding Wi-Fi

In the first part of this article we concentrated on

turning your Raspberry Pi into an effective

wireless sniffing tool by swapping the Ethernet

port for a Wi-Fi dongle. Here we concentrate on

understanding the basic structure of networks

and then introduce a powerful set of network

analyses faci l i ties.

Networking

The Internet is often pictured as a group of

multiply connected nodes al l transferring small

packets of information which may be instantly

rerouted in the event of one or more of the nodes

becoming congested or fai l ing completely. In

practice electronic fai lure is rare. The fai lure

considered in the network design of the internet

includes having any connection or node being

blow to smithereens. After al l , the Internet was

initial ly a mil i tary communications system - they

have a propensity to break things, or know folk

who do!

This image of the Internet is a l ittle l ike looking at

the motorway system. Large, wide, fast, high

capacity roads with few junctions (nodes) many

ki lometres apart. A motorway may pass metres

from your house but you have no direct access to

it. You may live in a cul-de-sac connected to a

road, that leads to a B road connected to an A

road that eventual ly connects to the motorway.

In this way you can see how the topology of the

Internet is not the multiply connected nodes but

looks more l ike a branch of a Christmas tree.

Either way the critical component of any

connection is location. Your location may be

given by your 'address'. Once a recognised

address is given the only other task needed to

make a connection is to plan a 'route'. To make

our investigations more incisive we need to

understand how the Internet deals with

addressing and routing problems.

IP Addresses

Real Internet addresses (known as IPv4

addresses) consist of 32 binary bits, for example:

01 1 00000001 01 01 00000000000000001

This provides up to 4.3 bi l l ion addresses. This

may sound large but the Internet began to run out

of addresses long ago!

To make addresses easier to read, humans

break the 32 bits into four 8-bit chunks - known

as 'bytes' and then convert them to decimal

values separated by dots thus:-

01 1 00000 001 01 01 0 00000000 00000001

1 92.1 68.0.1 dotted decimal notation

Subnetting

An Internet Service Provider (ISP) may have

29

been allocated a block of addresses in the range

from 1 80.1 81 .1 .0 to 1 80.1 81 .7.255.

The ISP has several large customers. Each

needs (say) up to 250 addresses for their

networks. To organise the addresses effectively

and efficiently the ISP could al locate addresses

thus:-

1 80.1 81 .1 .0 to 1 80.1 81 .1 .255 to site A

1 80.1 81 .2.0 to 1 80.1 81 .2.255 to site B

1 80.1 81 .3.0 to 1 80.1 81 .3.255 to site C

1 80.1 81 .4.0 to 1 80.1 81 .4.255 to site D

This division of addressing is cal led 'sub-netting'.

(Remember Internet means interconnection of

networks). For administration purposes let's

refer to each network by it's base address - a

network number.

One of the powerful aspects of the Internet is that

it devolves sub-netting and we wil l see a

practical example of this that effects you later in

the article.

Subnet Mask

A clever and convenient form that is used to

describe a complete range of addresses is the

'subnet mask'. The subnet mask is also a 32-bit

binary number but if you consider examples you

wil l discover that they have a pattern that look

l ike a bar chart with 1 's emerging from left side of

the bit pattern e.g.

1 00000000

1 000

1 00000000

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0000000000000000

1 1 1 1 1 1 00000000000000000000000000

The zeros on the right hand side of the mask

indicate which bits of an address may be

changed. Note for later that the mask can also

be described by the length of the 1 's in the chain

255.255.255.0 is /24 in CIDR.

Take the second example above where only the

lower three bits of an address may be changed

and combine the network 1 92.1 68.0.0. A bitwise

AND provides the network number:

01 1 00000 001 01 01 0 00000000 00000000

1 000

Perform a bitwise OR with the twos compliment

of the mask (a simple and fast digital calculation)

01 1 00000 001 01 01 0 00000000 00000000

00000000 00000000 00000000 000001 1 1

This reveals the highest address in the range i.e.

1 92.1 68.0.7. This is also known as the

'broadcast address' and every node on the sub-

network l istens to this address.

Applying al l of this to our ISP set-up above. The

ISP has a network number of 1 80.1 81 .0.0 and

subnet mask 255.255.248.0 The ISP then

devolves the four network numbers to site A, B C

and D with subnet masks 255.255.255.0

Gateway

One address in the remaining network range has

to be the 'gateway'. This is where ALL data, not

destined for the local network, is sent. I t's the

exit from the cul-de-sac metaphor used above.

The local network treats the rest of the world as

just one address.

DNS

The references here to binary values show how

low level our reference to the Internet is. I f we

need to access http://www.bbc.co.uk our

network has to resolve this named reference to

an IP address. This is achieved by DNS, the

Domain Name System. Our local network could

keep a complete directory of al l name/IP

references, which would be a massive

undertaking or we could defer to a special DNS

service. Entering the IP addresses of these

services in the fi le /etc/resolv.cof fi le simply

resolves this problem. This is the l ist of servers

that wil l be cal led upon to convert names to IP

addresses.

This completes the minimum requirement for any

Internet connected network but remember above

where it was stated that the Internet has amost

run out of addresses. This happened some time

before the explosion in home networking. The

30

solution to providing every house with its own

Internet connected network is NAT 'Network

Address Translation'.

NAT

Most home users wil l be connected to the

Internet via some kind of modem. This provides

Ethernet and/or Wi-Fi in the local area. From the

Internet side it has been provided with a single

IP network address (referred to as the WAN

'Wide Area Network Address') . NAT translates

this address and maps it to a special private

range of addresses al lowing many devices to be

connected inside the home. I t is typical to use a

mask of 255.255.255.0 providing 255 local

addresses. Local users are deceived into

bel ieving they have a ful l IP but this deceit is

provided by the modem.

To make connections even easier NAT is often

used in conjunction with DHCP. This is the

Dynamic Host Control Protocol. DHCP is used

when the Raspberry Pi is first switched on.

Raspberry Pis are manufactured by the bucket

load but every Raspberry Pi is not exactly the

same. Each has been individual ly programmed

with its own 'MAC address'. At switch on this

address is used to cal l out on any connected

network to appeal for local configuration detai ls.

DHCP, bui lt into the modem/router responds to

the appeal by providing the Raspberry Pi with an

individual IP address, detai ls of the local subnet

mask, the address of the local gateway and

final ly the address of any DNS server. With al l of

these values in place the Raspberry Pi can join

the global Internet community!

DHCP wil l loan each Raspberry Pi an IP address

that is re-leased periodical ly as Internet activity

continues. The router wil l maintain the IP

address for the Raspberry Pi even after a period

when the Raspberry Pi has been switched off.

Should a device be switched off for too long the

address can be given to another device. I f

instead the Raspberry Pi is permanently

configured with an IP address this is cal led

'static' addressing (as opposed to 'dynamic') .

Network Settings

We accessed and modified the key fi le in the

raspberry Pi during the first part of this article.

The contents should now make more sense.

By default the DHCP - dynamic setting wil l look

something l ike this:-

auto eth0

allow-hotplug eth0

iface eth0 inet dhcp

To force a static IP address into your Pi enter:-

auto eth0

iface eth0 inet static

address 192.0.3.14

netmask 255.255.255.0

gateway 192.0.3.254

Basic Command Line Utilities

These commands may be entered directly from

the command line:-

ifconfig
To check settings enter ifconfig .

The HWaddr is the individual MAC address

referred to above. Every MAC address is

unique

e.g.: ifconfig

ping
Ping is l ike a sonar pulse sent to detect

another IP address.

e.g.: ping 8.8.8.8
to ping Google's DNS

nslookup
nslookup tests any nameserver
e.g.: nslookup www.bbc.co.uk

tracert
traceroute l ists the routers used to

connect a destination

e.g.: tracert www.bbc.co.uk

Network Monitoring Applications

With our network knowledge in place we can

start to explore using simple tools.

31

Network Scanning

We need to instal l some further applications.

apt-get install nmap xsltproc elinks

Nmap may be used to careful ly scan individual

IP addresses or complete ranges of addresses.

However, large scans can be very time

consuming.

Perform a quick test first using:

sudo nmap -v -sL 192.168.1.1-16

to report on addresses 1 to 1 6 to check things

are working (substitute your own local adress).

Alternatively:

sudo nmap 192.168.0.0/24

where /24 is the CIDR mentioned nomenclature

mentioned above.

More complete scans with reporting may be

achieved with:

sudo nmap -sC -sS -sV -O -oX view.xml \

192.168.0.0/24

xsltproc view.xml -o view.html

elinks view.html

Network Sniffing

Having identified the nodes, we can now look at

the data going to and coming from them. This is

cal led 'sniffing'. First obtain the application:

sudo apt-get install ettercap-text-only

Once downloaded set both ec_uid and ec_gid
from 65534 to 0 in /etc/etter.conf. Next:

sudo ettercap -T -i eth0 -M arp:remote \

-V ascii -d //53

This command causes ettercap to log any

packets on port 53 of any address. (Replace

eth0 with wlan0 to tap the WiFi port) .

Ports are used to distinguish between network

services. Common ports include:-

20 ftp-data Fi le Transfer [Default Data]

21 ftp Fi le Transfer [Control]

22 ssh Secure shel l

23 telnet Telnet

25 smtp Simple Mail Transfer

37 time Network Time

53 domain Domain Name Server

80 www-http World Wide Web HTTP

443 https Secure http

Your screen could be flooded with detai ls of

naming activity on your network or empty. I f

nothing is seen try pinging an unknown name on

a remote machine to confirm the sniffer is

working. Press H for a menu or Q to quit the

application. Now try:

sudo ettercap -T -i eth0 -M arp:remote \

-V ascii -d /192.168.0.1-16/80

to log al l http traffic (port 80) on the first 1 6

addresses.

Conclusion

We have covered a good deal of ground in these

two articles achieving a least a working system

with example commands that may be used as

sol id introduction to further investigation. For

further aid visit the fol lowing:

Nmap Security Scanner:

http://nmap.org

Wireshark, a network procol analyser:

http://www.wireshark.org

Pr0mpt, a training program that introduces Open

Source and programming:

http://pr0mpt.me

The Ettercap Project:

http://ettercap.github.io/ettercap

Description of IPv4 addressing:

http://en.wikipedia.org/wiki/IPv4

IPv4 address exhaustion:

http://en.wikipedia.org/wiki/IPv4_address_exhau

stion

http://nmap.org
http://www.wireshark.org
http://pr0mpt.me
http://ettercap.github.io/ettercap
http://en.wikipedia.org/wiki/IPv4
http://en.wikipedia.org/wiki/IPv4_address_exhaustion

32

SKILL LEVEL : INTERMEDIATE

Vladimir Alarcón
& Nathaniel Monson

Guest Writers

FRESHLY ROASTED
A beginners guide to Java

3 - An introduction to classes

This is the 3rd article in the Java programming series. The two previous articles can be found in Issues 1 4 and 1 6 of The

MagPi. In this article, arrays, the basics of classes, objects and their methods are introduced. The article also covers the

Java Class Library, which provides thousands of useful functions.

Classes, objects and methods

Programs written in Java are not normally written as one very long class. Instead, programs are typical ly divide into functions

that are commonly referred to as "methods" of a class. Ideal ly, there should be a method for every task that a class

performs. A program usually has several classes, each one in turn has several methods (tasks). For example, a class could

be written that represents a car that has methods to move forward, turn left, and turn right:

public class Car {

public void forward(double metres) {

System.out.println("Forward " + metres);

// Add more instructions...

}

public void turnLeft(double degrees) {

System.out.println("Left " + degrees);

}

public void turnRight(double degrees) {

System.out.println("Right " + degrees);

}

}

The idea of defining a class with separate methods that have clearly defined purposes is that it is straightforward to

understand which method to use without reading the code within the method. I f someone else is developing another class

that cal ls the Car class methods, the other developer can understand the function of each method just from its name.

Bui lding programs with logical structure is a useful ski l l in any programming language, leading to fewer bugs and more

efficient programs.

33

A class method should include:

• its visibi l i ty: (public in this case means the other class can execute it) ; other visibi l i ties are private (cannot be used by

other classes), protected and package (discussed later in this article) .

• the return type, which might be any Java type or void which implies no return type.

• the name of the method, which should indicate what the method does.

• in between parentheses, a l ist of parameters that are necessary for the method to perform its task. For example,

"double metres" in the first method.

• Final ly, in between curly braces, the Java code that is executed and that performs the requested task.

Once a class has been written with one or more methods, the methods can be called by instantiating an object of the class

and then cal l ing its methods. Each class is a blueprint from which many objects can be created: there may be a single class

Car but a thousand car objects, where each of them is independent in memory. An object of the class Car can be created

by using the instruction new:

public class CarDriver {

public static void main(final String[] args) {

Car car1 = new Car();

car1.turnLeft(20.0);

car1.forward(5.0);

Car car2 = new Car();

car2.turnRight(45.0);

car2.forward(12.0);

}

}

This program includes a CarDriver class that creates two objects of the class Car and then cal ls the methods of the

objects. The new instruction creates an object, where the associated class constructor is given to the right of new. (Unl ike

C++, it is not necessary to delete the objects created with new since the Java garbage col lector automatical ly deletes them

when they go out of scope.) The syntax for cal l ing the method of an object is the object name, a dot and then the method

name with any parameters in parentheses:

car1.turnLeft(20.0);

Challenge #1 : Execute the program CarDriver. To do this put the CarDriver class in a fi le cal led CarDriver.java

and the Car class in a fi le cal led Car.java. Then compile both classes as shown in the first Java article. Then run the

program by typing: java CarDriver

Challenge #2: Add a third object of class Car cal led car3. Cal l i ts methods to move forward 1 0 meters, turn right 5 degrees

and final ly move forward 1 4 metres.

I t is possible to create a class that has methods that can be called directly, using the class name instead of an object. These

are cal led static methods and are explained later in this article. The Math class has several methods that are static.

For example, to get the absolute value of the number -1 2 :

Math.abs(-12)

where Math is the class name and abs is the method name.

34

Organising classes and methods

There are a lot of heated discussions on how to decide how many classes should be written for a given program and which

methods to write for each class. This is an advanced subject that may be skipped for now, but becomes more important

when long (a thousand lines or more) programs are written. This discipl ine is cal led "Object Oriented Design". Some

documentation on the most important principles of design, usual ly cal led "Design Patterns", can be found by searching the

Internet.

The Java class library

In addition to the Java language itself, every Java instal lation comes with a comprehensive col lection of classes that provide

additional functional ity. This col lection of classes is cal led the Java class l ibrary and contains classes for managing fi les,

network connections, processing images and sound, real time 3D, using the mouse and keyboard, using databases,

showing web pages, and many others. Documentation can be found at: http://docs.oracle.com/javase/7/docs/api Open a

browser and look at this page. Every class belongs to a "package". The l ist of packages is shown at the top left of the

browser window. Clicking on a package name causes al l the classes in it to be l isted in the box below. Clicking on a class

name wil l load the class detai ls into the main area on the right.

The Math class, that was used in the previous section, is located in the java.lang package. Using the upper left box,

scrol l down and find the java.lang package and then cl ick on this package. The box below wil l display many classes in

six separate sections: Interfaces, Classes, Enums, Exceptions, Errors and Annotation Types. Scrol l down through the

classes l isted and cl ick on the Math class. Now the main area wil l show a description of the Math class, with three optional

sections: Fields Summary, Constructor Summary (there are no constructors for the Math Class), and Methods Summary.

Read through the methods section.

Challenge #3: Find the methods: abs, sqrt, and pow. Cl ick on each one and see what each one does.

Challenge #4: Find the class java.io.FileReader that reads fi les and the class java.util.ArrayList.

Arrays

Arrays provide sequential storage for many variables or objects. A variable or object can be selected using the index of the

element concerned. To store the price of three paintings, simple variables could be used:

int price1 = 500;

int price2 = 390;

int price3 = 640;

However, if the number of individual variables that are related becomes large, then carrying them around quickly becomes

cumbersome. Instead of individual variables, an array can be used:

int prices[] = new int[3]; // create an array of type int with three elements

prices[0] = 500; // Assign 500 to the first element

prices[1] = 390; // Assign 390 to the second element

prices[2] = 640; // Assign 640 to the third element

which has the secondary benefit that the index can be used in a loop structure. Using this array declaration and the

assignment of the three values, the prices of paintings can be printed:

System.out.println("Price for #1 is"+ prices[0]);

http://docs.oracle.com/javase/7/docs/api

35

Once declared, the values of the array elements can be assigned anywhere within the program. For example, the price of

the 3rd painting can be increased:

prices[2] = 710;

The map generator

This program is composed of two classes: MapGenerator and Terrain. The MapGenerator class uses a Terrain

object to draw items. The Terrain class is given below:

import java.util.Random;

public class Terrain {

private Random r;

private char[][] tiles;

public Terrain(int mapNumber, int height, int width) {

this.r = new Random(mapNumber);

this.tiles = new char[height][width];

}

public void setArea(int fromH, int fromW, int toH, int toW, char symbol) {

for (int x = fromH; x < toH; x++) {

for (int y = fromW; y < toW; y++) {

this.tiles[x][y] = symbol;

}

}

}

public void setRandomAreas(int height, int width, char symbol, int howMany) {

for (int i = 0; i < howMany; i++) {

int x = this.r.nextInt(this.tiles.length - height + 1);

int y = this.r.nextInt(this.tiles[0].length - width + 1);

this.setArea(x, y, x + height, y + width, symbol);

}

}

public String show() {

StringBuilder sb = new StringBuilder();

for (int x = 0; x < this.tiles.length; x++) {

for (int y = 0; y < this.tiles[x].length; y++) {

sb.append(this.tiles[x][y]);

}

sb.append("\n");

}

return sb.toString();

}

}

The Terrain class stores a map (of letters), using a two dimensional character array. A Terrain object is initial ised as an

empty container, but can be modified using its methods. The contents of the character array can also be returned as a

string by cal l ing the show() method.

36

The MapGenerator class is given below:

public class MapGenerator {

public static void main(String[] args) {

if (args.length != 3) { // If less than three additional arguments are provided

System.out.println("I need three parameters: " + "map-number, height and width.");

return;

}

int mapNumber = new Integer(args[0]); // Create an integer version of the map number

int height = new Integer(args[1]); // Create an integer version of the map height

int width = new Integer(args[2]); // Create an integer version of the map width

Terrain land = new Terrain(mapNumber, height, width);

land.setArea(0, 0, height, width, '.'); // ground

land.setRandomAreas(1, 1, 't', 30); // trees

land.setRandomAreas(height / 4, width / 4, 'T', 3); // woods

land.setRandomAreas(1, 1, 'o', 20); // rocks

land.setRandomAreas(height / 4, width / 5, ' ', 3); // lakes

land.setRandomAreas(height / 6, width / 10, ' ', 12); // ponds

land.setRandomAreas(1, 1, '$', 1); // treasure

System.out.println(land.show());

}

}

The MapGenerator class creates a Terrain object, adds objects to it and final ly displays it. The map is initial ised with a

height and width. Then trees, water and treasure are added at random. Final ly, the show() method is used to print the map

on the screen.

Challenge #5: Compile the classes MapGenerator and Terrain. Then execute the MapGenerator program, providing

the map number, the length and the width, e.g.: java MapGenerator 6 15 38

The result of the 5th chal lenge should be:

......t

....TTT o.t.....t...t..t

..t.TTo

....TTTTTTTTTTT

.....oTTTTTTToTt......t.......

......TTTTTTTTT

.........ot.......o..........o ..t..

..o.....t.o..........t

...t.... ...t.......o. TTTT$..

..t....t................ T ...

.......... t......t... T ...

.o..t.....t.t..o....

.....t............

..t....t..o...

.......o........o..............

where the dots represent the land, the blanks represent water, the o characters represent rocks, T and t are trees and $ is

the hidden treasure.

Challenge #6: Execute the MapGenerator program with different values to see different maps. For example:

java MapGenerator 7 15 34

Try other maps too and see how the MapGenerator class works.

Congratulations! You have learned the basics of arrays, classes and methods!

http://www.abelectronics.co.uk
http://www.abelectronics.co.uk/magpi/

38

SKILL LEVEL : ADVANCED

Ian Neill

Guest Writer

BASIC ENCRYPTION
Simulating mechanical encryption

Pocket Enigma Cipher
Machine

The Pocket Enigma Cipher Machine is a superbly designed toy that demonstrates some of the principles of a real

Enigma Cipher Machine, as pictured on the cover of this issue. The Enigma Cipher Machine was used during

World War two by the German armed forces, to send secrete messages to submarines and solders. I obtained

my Pocket version from Bletchley Park [http://www.bletchleypark.org.uk/], but unfortunately it no longer appears

to be on sale. I t is made only of plastic and cardboard and is substantial ly simpler when compared with a real

Enigma cipher machine! On the other hand, if you enjoy encryption and ciphers you wil l get a kick out of the

Pocket Enigma. I t is not too difficult to understand either.

The Pocket Enigma Cipher Machine is not even close to an unbreakable cipher – it is a trivial cipher to break but

it is fun. Therefore, do not use it to encrypt sensitive information. A ful l review of the Pocket Enigma Machine,

including a detai led description and further reading, can be found at:

http://www.savory.de/pocket_enigma.htm

How does it work?

Each plaintext character is replaced with another

character cal led the cipher text character. The cipher

text character is chosen according to the connection

between characters printed on the wheel, where there

are two wheels to choose from.

http://www.bletchleypark.org.uk/
http://www.savory.de/pocket_enigma.htm

39

In more detai l , the algorithm fol lows:

1 . Cipher wheel (1 or 2) is chosen.

2. The key character is chosen.

3. The start character is chosen.

4. The wheel is set to the key character and the start character is encoded.

5. The wheel is moved to the start character and the first message character is encoded.

6. The wheel is incremented by 1 position, and the next message character is encoded.

7. Repeat step 6 unti l the entire message is encoded.

8. The encoded message is arranged such that the encoded start character is separated from rest of the

encoded message, which is arranged in blocks of, typical ly, five characters.

For the message to be successful ly decoded by the recipient, they must already know the wheel number and key

character that was used to encrypt the message.

Now for the l imitations:

1 . Only upper case characters can be encoded.

2. No punctuation can be encoded, apart from ful l-stops which are traditional ly substituted with X.

With a bit of imagination the encoding algorithm can easi ly be modified. For example, more wheels could be

used, or the increment could be varied or even reversed.

Python Pocket Enigma Cipher Machine

Use a text editor such as nano or emacs to create a new Python fi le cal led Py-Enigma. py. Then add:

#! /usr/bin/python

VERSION = "v1. 0. 0"
BUILDDATE = "01/06/2014"

Global variables with starting values
selectedWheel = 1
pointerChar = ' D'
pointerInt = ord(pointerChar)-65
codeStartChar = ' J '
codeStartInt = ord(codeStartChar)-65
increment = 1
blocksize = 5

to the top of the fi le. In this article each piece of the program is numbered and should be appended to this fi le, to

create the final program. The ord() function returns the numerical value of an ASCII character. ord(' A')

returns 65, whereas ord(' B') returns 66 etc.. Lower case characters have different numerical values, but

since the cipher only has one set of characters, upper case characters are used throughout the program. The

selectedWheel variable is used to select which wheel is used, pointerChar is the initial wheel settings and

codeStartChar is the starting character. Integer values of these variables are also stored to simplify

manipulating the wheels within the functions that fol low. The increment is the amount that a wheel is turned

after each character is encrypted and blocksize is used to spl it the encrypted string into pieces that are

separated by spaces.

1. Analysis of the wheels

The wheels have no characters on them, just a lot of connections. One position has an arrow, or pointer, and is

Py-Enigma.py (1 /8)

40

taken as the starting position (actual ly position 0). Looking at the pictures on the first page of this article, i t is

clear that the connections simply connect from one position to another. These connections indicate how one

character should be substituted for another. The wheels can be summarised using two Python l ists:

Wheel definitions
wheel1 = [-1, 3, -5, 7, -3, 2, 3, -2, 4, -3, -7, 6, -4, 1, -1, 6, 3, -6, 2, -3, -2, -6, 2, 5, -2, 1]
wheel2 = [2, 2, -2, -2, -8, 3, 9, 5, -3, 1, -1, 2, -5, -2, 2, -9, -2, 8, 2, 2, -2, -2, 8, 1, -1, -8]

Add these two lists to the end of the Python fi le. Each l ist has 26 entries, since there are 26 characters around

the outside of the wheel. The number in each entry corresponds to the joining l ine on the wheel, where a negative

number implies moving to the left and a positive number implies moving to the right.

The Python version of the algorithm rel ies on the modulo (%) operator to stay within the A--Z character range.

First, the character should be converted to an integer. Then the offset should be applied, using the modulo

operator. For example, using ' A' and the first wheel:

intValue = ord(' A') - 65 # returns 0
intValue = intValue + wheel1[intValue] # returns -1
intValue = intValue % 26 # returns 25
charValue = chr(intValue + 65) # returns ' Z'

I f the number is bigger than the 26 character range, then the modulo operator causes the number to become less

than 26. This means that adding 1 to the value of ' Z' returns ' A' :

intValue = ord(' Z') - 65 # returns 25
intValue = intValue + wheel1[intValue] # returns 26
intValue = intValue % 26 # returns 0
charValue = chr(intValue + 65) # returns ' A'

In both of these examples, the chr() function is used to convert an integer value back into the associated ASCII

character. I t helped me to visual ise the modulo maths by imagining that it turned the alphabet into a circle.

2. Encrypting or decrypting a character

The Pocket Enigma algorithm states that the wheel should be moved 1 position clockwise after each message

character is encoded. This means that a repeated character in the message is not encrypted as the same

character. Append the code below to the end of the Python fi le.

Encrypt or decrypt a single character
def transformChar(character, selectedWheel, pointer):

character = character. upper() # Ensure that the character is Upper Case.
if(65 <= ord(character) <= 90): # Only characters A-Z can be encrypted or decrypted.

char_num = ord(character) - 65 # Convert ASCII to alphabetical position of the character.

Choose the offset for wheel one or two. Then use the pointer value.
if (selectedWheel == 1):

offset = wheel1[(char_num - pointer)%26] # Use mod with 26 to stay within circle
else:

offset = wheel2[(char_num - pointer)%26] # Use mod with 26 to stay within circle

Convert alphabetical position of the character back to ASCII
character = chr(65 + (char_num + offset)%26) # Convert position back to ASCII character

else:
character = ' ' # Ensure that nothing is returned if the character is not A-Z.

return character

Py-Enigma.py (2/8)

Py-Enigma.py (3/8)

41

This function takes an input character, the selected wheel number and the current pointer position. The pointer

represents the position of the wheel and is substracted from the integer value of the character before it is used to

find the offset. I f a character that is not within the A--Z range is passed into the function, then it is ignored and no

character is returned.

3. Encrypting a string

To encrypt a string, each character should be passed to the transformChar() function. Append the code

below to the Python fi le.

Encrypt a string
def encrypt(plaintext):

pointer = pointerInt # Set the wheel to the key character, using the global variable
cipher = ' '
Encrypt the Alpha Start character.
cipher += transformChar(codeStartChar, selectedWheel, pointer)
cipher += ' '
pointer = codeStartInt # Set the wheel to the Alpha Start character.
block = 0

Encrypt each letter in the plaintext string
for o_char in plaintext:

Substitute ' . ' with ' X'
if o_char == ' . ' :

o_char = ' X'

Encrypt this character
e_char = transformChar(o_char, selectedWheel, pointer)

Do something if the character was encrypted ok.
if len(e_char) > 0:

block += 1
if block > blocksize:

cipher += ' ' # Add a space after a block of blocksize characters.
block = 1 # Remembering the character that was blocksize+1.

cipher += e_char # Add the character to the result.
pointer = (pointer + increment)%26 # Turn the wheel, using mod 26 to return to zero

return cipher

The function takes a string and returns an encrypted string. The pointer starts from the initial value (key

character) set using the global variable pointerInt . Then the starting character is encrypted and appended to

the encrypted string. The pointer value is reset to the starting character and then each character in the string is

encrypted. To retain some punctuation, each ' . ' is replaced with ' X' . The encrypted output is also split into

fixed size blocks that are separated by spaces to help further disguise the words.

4. Decrypting a string

The connections on the wheels are bi-directional. Therefore, if a character is encoded as ' F' and the wheel is in

the same position, encoding ' F' wil l return the original character. Consequently, the same encryption routine

can be used to decrypt a string. Append the program at the top of the next page to the Python fi le. This function

takes an encrypted string and returns a decrypted string. Notice that punctuation and spaces are not recovered

during the encryption. Therefore, the person that receives the encrypted message wil l need to put those back in

by hand.

Py-Enigma.py (4/8)

42

Decrypt a string
def decrypt(cipher):

pointer = pointerInt # Set the wheel to the key character.

Extract and decrypt the Alpha Start character.
pointer = ord(transformChar(cipher[: 1] , selectedWheel, pointer))-65

plaintext = ' ' # Output string with no characters
Decrypt each letter in the cipher.
for e_char in cipher[1:] :

Decrypt this character
o_char = transformChar(e_char, selectedWheel, pointer)

Do something if the character was decrypted ok.
if len(o_char) > 0:

plaintext += o_char # Add the character to the result.
pointer = (pointer + increment)%26 # Turn the wheel, using mod 26 to return to zero

return plaintext

5. Welcome, menu & input functions

To call the encrypt and decrypt functions, a text menu provides a simple interface. Add the code given below to

the end of the Python fi le.

Welcome message
def welcome(message):

print(message)
print(" Version, %s, %s" % (VERSION, BUILDDATE))

Print the available menu options
def showMenu(min, max, quit):

print("\n" + 30 * ' -')
print(" P y - E N I G M A")
print(" M A I N - M E N U")
print(30 * ' -' + "\n")
for i in xrange(min, max+1):

if i == 1:
print(" 1. Set Wheel = %d" % selectedWheel)

elif i == 2:
print(" 2. Set Pointer = %s" % pointerChar)

elif i == 3:
print(" 3. Set Code Start = %s" % codeStartChar)

elif i == 4:
print(" 4. Set Increment = %d" % increment)

elif i == 5:
print(" 5. Set Block Size = %d" % blocksize)

elif i == 6:
print(" 6. Encrypt a Message")

elif i == 7:
print(" 7. Decrypt a Message")

elif i == 8:
print(" 8. Nothing Yet")

elif i == 9:
print(" 9. Nothing Yet")

else:
continue

print("\n %d. Exit program\n" % quit)
print(30 * ' -')

The first function is used to report the version and bui ld date, whereas second function prints out the menu

Py-Enigma.py (5/8)

Py-Enigma.py (6/8)

43

choices. To read values that correspond to the menu options three simple input functions are needed. Add the

functions below to the end of the Python fi le.

def getValue(request="Enter choice: "):
while 1:

inputValue = raw_input(request) # Print request and read the reply
if len(inputValue) == 0: # If the string has no length, report an error

print("Error: no value given")
continue

return inputValue # If the string has one or more characters, return the value

def getInteger(min, max, request, checkRange = True):
while 1:

inputValue = getValue(request) # Print request and read reply
try:

intValue = int(inputValue) # Try to convert the string to an integer
except ValueError:

print("Error: \"%s\" is not an integer" % inputValue) # If it is not an integer
continue

if (intValue < min or intValue > max) and checkRange: # Check the range if needed
print("Error: \"%d\" is outside range [%d--%d] " % (intValue, min, max))
continue

return intValue # Return the integer value.

def getCharacter(min, max, request):
while 1:

inputValue = getValue(request) # Print request and read the reply
if len(inputValue) ! = 1: # A character is a string of length 1

print("Error: \"%s\" is not a single character" % inputValue)
continue

charValue = inputValue. upper() # Convert the string to upper case
if ord(charValue) < ord(min) or ord(charValue) > ord(max): # Check the range

print("Error: \"%s\" is outside range [%s--%s] " % (charValue, min, max))
continue

return charValue # return the character value

These functions are used to read a value from the keyboard, read an integer value and read a character value,

respectively. The functions prevent a string without any characters from being accepted, check the type of the

input string and if i t is within the al lowed range of numbers or characters.

6. Finishing the program

To finish the program, a function is needed to cal l al l of the other pieces of the program. Add the main function at

the top of the next page to the end of the Python fi le. Then save the fi le and make it executable by typing:

chmod 755 Py-Enigma. py

Then run the program by typing:

. /Py-Enigma. py

The program wil l print the menu and allow changes to the settings to be made. I f the settings are updated, then

the menu is printed again with the new values. The input functions are used to make sure that the settings do not

go outside of their al lowed range. The menu can also be used to encrypt or decrypt strings, where the result is

printed on the screen. With the default settings of wheel 1, key character ' D' and start character ' J ' , the

message "Attack at dawn. " becomes "M UQXZI MGAZE DKS" . Decoding this returns

"ATTACKATDAWNX" .

Py-Enigma.py (7/8)

44

Main function
def main():

global selectedWheel, pointerChar, pointerInt, codeStartChar, codeStartInt, increment, blocksize
welcome("Py-Enigma - The Pocket Enigma Cipher Machine")
menuMin = 1
menuMax = 7
menuQuit = 0

while 1:
showMenu(menuMin, menuMax, menuQuit) # Show the menu

Get the user choice, without checking the range
userChoice = getInteger(0, 0, "Enter choice [%d--%d] : " % (menuMin, menuMax), False)

Take action as per selected menu-option.
if userChoice == menuQuit:

break # Leave the while loop
elif userChoice == 1:

selectedWheel = getInteger(1, 2, "Enter Coding Wheel [1 or 2] : ")
elif userChoice == 2:

pointerChar = getCharacter(' A' , ' Z' , "Enter Pointer Position [A to Z] : ")
pointerInt = ord(pointerChar)-65

elif userChoice == 3:
codeStartChar = getCharacter(' A' , ' Z' , "Enter Coding Start Position [A to Z] : ")
codeStartInt = ord(codeStartChar)-65

elif userChoice == 4:
increment = getInteger(-1, 1, "Enter Increment [-1, 0 or 1] : ")

elif userChoice == 5:
blocksize = getInteger(1, 10, "Enter Block Size [1 to 10] : ")

elif userChoice == 6:
plaintext = getValue("Enter Plaintext: ")
print("Encryption: %s => %s" % (plaintext, encrypt(plaintext)))

elif userChoice == 7:
cipher = getValue("Enter Cipher: ")
print("Plaintext: %s => %s" % (cipher, decrypt(cipher)))

else:
print("Error: \"%d\" is not a valid choice" % userChoice)

print("\nGoodbye. \n")

#Run the program if it is the primary module
if __name__ == ' __main__' :

main()

The main() function starts by declaring the global variables as global . This is necessary to prevent Python

from creating a local version of the same variable when a value is assigned. I t is not needed if the values are only

used. The welcome message is printed. Then in the while loop, the menu is printed. The users choice is read

and checked against each of the menu options. Depending on the menu option, the required action is taken.

The Py-Enigma. py program is a Python version 2 program that cannot be used with Python3 without

modification. The program was tested on the latest Raspbian image.

What next?

Well that depends... let me know what you think. Al l/any feedback is appreciated.

Py-Enigma.py (8/8)

45

SKILL LEVEL : BEGINNER

Jon Silvera

Guest Writer

FUZE BASIC
BASIC for the Raspberry Pi

Part 1 : Back to BASIC

Over the next few months The MagPi wil l publ ish a
new series on learning BASIC. To whet your appetite,
this month we wil l provide some background to the
language and explain why it is sti l l a great way to
learn how to program.

There's a lot of talk about programming at the
moment. The UK Government has done a fair bit to
get it back on the education curriculum to make sure
UK schools are teaching kids how to program from an
early start. In fact, from this September schools in
England must teach the fundamentals of computing in
early primary school, and text based programming
from key-stage 3 onwards (age 1 2).

While there may be some debate about how
programming is being introduced into the cirriculum,
what is important is that something is being done.

In the beginning...

Roughly 2 mil l ion years ago
computers l ike the Research
Machines 380Z were bulky
things with clunky keyboards,
terrible graphics and sound.
Actual ly, some of them didn't
have clunky keyboards. Instead
they had little rubber pads for

keys that felt l ike a cat's tongue!

These machines were l imited in so many ways. For
example, the Sinclair ZX Spectrum had just one
sound channel and the only noise it could make was

a beep. In fact, the command it had for this was
BEEP! BEEP 1, 0 would make a C tone (0) for one
second (1) . I t gets worse. While it was beeping it was
thought that it couldn't do anything else, so to make a
game with music playing was considered impossible.

The Commodore 64 had huge
great borders around the screen
which again was original ly
considered impossible to display
anything on. So early games were
displayed on the letterbox in the
middle of the screen.

The BBC Micro original ly had no hardware to display
character graphics (sprites) so it was original ly
considered impossible to program games in anything
other than text.

Then the wizards came. They
made the Spectrum sing and
dance; turned the BBC Micro
into an arcade machine with
almost perfect renditions of Pac

Man, Defender and Asteroids; and the Commodore
64 became a graphical and audio tour de force. I t
real ly was the strangest time and of course it was not
2 mil l ion years ago, but just
30 years ago.

I t al l started back in the mid
to late 1 970's with
companies l ike Atari and
Apple. Atari decided to turn

46

i ts console technology into something more
sophisticated. The Atari 400 and 800 computers
were ahead of their time in 1 979. High resolution
graphics, 8 KB of RAM, up to 256 colours and 4
channel sound. Apple launched the Apple I in 1 976
and then soon after the Apple I I . These were powerful
machines, but they were also very expensive.

Compare this to the
Sinclair ZX80 which
was released in the
UK, a year after the
Atari 400, by the
somewhat lesser
known Clive (later to

be Sir Clive) Sinclair. The Sinclair ZX80 had no
sound, no graphics, no colour and had just 1 KB
RAM.

However, it was cheap... less than £1 00 cheap... and
al l things considered it can be held partly responsible
for kick-starting the home computer industry in the
UK.

A brain by any other name

I t would be very unfair to credit any one company for
the advent of the home computing revolution. I t would
be more considerate to attribute this to those
responsible for designing and manufacturing the
CPUs and custom sil icon that were the bedrock of al l
the computers of the day. While many home
computers were released between 1 979 and 1 984,
there were only three commonly used CPUs (Central
Processing Unit) . The CPU is the brain of any
computer and, in general,
everything else within the
computer either is
control led by or feeds
information to the CPU.

The CPUs of the time were
the Zilog Z80, the MOS
6502 and the less common
Motorola 6800. Their hardware and software
designers are the people responsible for the digital
world we live in today.

While al l these machines were designed by different
companies with different specifications and
configurations, they al l had one major thing in
common. They were al l supplied with the
programming language BASIC. (Ok, not every single
one came with BASIC. The Jupiter Ace was supplied
with Forth!)

The earl iest computers were
general ly programmed in either
bare metal mode, known as
machine code, or in the sl ightly
more friendly Assembly
Language. Machine code is often
cited as being the most
complicated programming
language ever devised, but it is
actual ly one of the simplest and it
certainly has the smallest number
of instructions to learn. The
complexity comes from having to

know the hardware inside-out: how the memory is
structured, the input/output system, the video
capabil i ties, etc. We won't even go into interrupts,
storage or sound.

Next came a few languages designed to perform
specific tasks. COBOL, for example, was suited to
business applications whereas Fortran was suited to
mathematics and science.

Between the late 1 950's and the early 1 970's many
programming languages were developed. A number
of them have survived... or at least variations of them
have. C is possibly the best example as this is sti l l
one of the most commonly used languages today.

Welcome to BASIC

So what about BASIC then? BASIC (Beginner's All-
purpose Symbolic Instruction Code) was written to
simplify programming into a more understandable,
less mathematical ly rel iant language that could be
used to develop a wide variety of applications.

First launched 50 years ago, in 1 964, as Dartmouth
BASIC by John Kemeny and Thomas Kurtz, its
accessibi l i ty meant it went on to spawn many other
versions over the next 30+ years. See
http://www.dartmouth.edu/basicfifty for more info.

The first software product sold by Microsoft was a
version of BASIC co-written by Bil l Gates. I t went on
to ship with every IBM PC and many others for years
to come. A number of Microsoft BASIC products are
sti l l incredibly popular. Visual BASIC and VB.NET
are in common use today.

Back to the 1 980's

In their heyday, the popular
computers of the time -
Apple, Commodore, Tandy,
Sinclair, Atari and the Acorn

http://www.dartmouth.edu/basicfifty

47

BBC Micro - were al l supplied with BASIC bui lt in.
Switch on and you would soon see the "Ready  >_"
prompt or something similar. Type in something,
press the ENTER key and see what happened. At
first you would invariably get a "Syntax Error", but
you soon picked up the user guide and started
reading tutorials. The first thing to learn was,

10 PRINT "Hello world! "

20 GOTO 10

fol lowed quickly by how to load a game from a
cassette or, i f you were very lucky, a disk drive!

Then came the magazines with game and program
listings you could type in. Countless hours were spent
entering these l istings, often with very poor print
qual ity, only to be bombarded with error after error
when you came to run them.

The learning curve was steep, but fast, and before
you knew it you were experimenting with your own
programs and showing off to friends. I f you had it in
you, you would be applying for a programming job in
a fledgl ing game publisher or trying to set up you
own.

That an industry was born is not surprising, as over
50 mil l ion 8-bit home computers were sold global ly.
The exposure to programming grabbed the interest of
many.

What happened next however was a bit odd. At the
time, programming was seen as the next big thing
and so it was taught in schools, done at home or at a
friends place and so on. However, it reached a critical
mass fairly quickly. Programmers went on to develop
more powerful programming languages, gaming
systems took over, small publ ishing companies grew
into huge corporations and programming became
something of an el ite occupation. As the industry
settled down, programming al l but dropped off the
curriculum.

Back to BASIC

But 30 years later and now there is a huge wakeup
call by many that has prompted the UK Government
to real ise that we do not have enough programmers
avai lable in the UK to supply demand. But this time
around computers are "black boxes", with no easy
way to learn about physical computing. Instead the
entry point is a complex programming environment,
developed by programmers for programmers. So
where do we start?

At primary school chi ldren are being
introduced to visual programming
environments l ike Scratch that
simplify the programming
experience and do a great job of

introducing computational concepts. They do not
however offer the exposure to advanced
programming that inspired so many of today's
entrepreneurs the first time round.

In secondary school it looks
l ike Python, another language
derived from the early days, is
being positioned as the language to best prepare
students for the real world. However, BASIC is even
easier to learn and the concepts learned with BASIC
wil l provide a sol id foundation for learning other
languages.

BASIC for today and tomorrow

BASIC has continued to be developed over the years
to keep it up-to-date and comparable to many other
modern languages. Commands that were once
considered bad practice (e.g. GOTO and GOSUB)
along with l ine numbers are gone and replaced with
structured programming techniques.

The main attraction to
BASIC is its instant
accessibi l i ty: enter your
program, RUN it, get an
error, fix it and try again.

Thirty years ago those original computers ran BASIC
slowly - it was its Achi l les heel. You could just about
do anything with it apart from do it quickly. That was
why once you had mastered the basic principles you
quickly advanced on to more complicated, compiled
languages.

Today, BASIC runs on machines measured in
gigahertz, not megahertz, and with gigabytes of
RAM, not ki lobytes. I t is fast enough to program
sophisticated games, especial ly when compared to
the applications being published on today's mobile
devices and tablets.

So if you are interested in learning to program but
were wondering where to start, you wil l do yourself a
favour by fol lowing our BASIC tutorials with your
Raspberry Pi over the coming months.

http://www.fuze.co.uk

http://www.fuze.co.uk

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Have Your Say...
The MagPi is produced by the Raspberry Pi community, for the Raspberry Pi
community. Each month we aim to educate and entertain you with exciting projects for
every ski l l level. We are always looking for new ideas, opinions and feedback, to help us
continue to produce the kind of magazine you want to read.

Please send your feedback to enquiries@themagpi.co.uk, or post to our Facebook
page at http://www.facebook.com/MagPiMagazine, or send a tweet to @TheMagP1 .
Please send your article ideas to articles@themagpi.co.uk. We look forward to reading
your comments.

PPRRIINNTT EEDDIITTIIOONN AAVVAAIILLAABBLLEE
WWOORRLLDDWWIIDDEE

The MagPi is avai lable for FREE from http://www.themagpi.com, from The MagPi iOS
and Android apps and also from the Pi Store. However, because so many readers have
asked us to produce printed copies of the magazine, we are pleased to announce that
printed copies are now regularly avai lable for purchase at the fol lowing Raspberry Pi
retai lers.. .

Americas EMEA AsiaPac

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.themagpi.com
https://www.modmypi.com/the-magpi-magazine
http://www.pi-supply.com/product-category/books-and-magazines/the-magpi-magazine/
http://thepihut.com/collections/the-magpi-raspberry-pi-magazine
https://www.adafruit.com/index.php?main_page=adasearch&q=the+magpi
http://www.buyraspberrypi.com.au/shop/magpi-issue-16/
http://www.facebook.com/MagPiMagazine
mailto:articles@themagpi.co.uk
http://swag.raspberrypi.org/products/magpi
mailto:enquiries@themagpi.co.uk
http://twitter.com/TheMagP1

