Get printed copies
at themagpi.com .-~

A Magazine for Raspberry Pi Users

ElectroniciPing Bong
2V oton Controel
S\Croinhentance

[htretlcing G
VRESphe P2

L WIEZeNE uilder:
\P2eavediiol
AT IOCHEY

Enriching
Marine
Electronlcs

BY NC SA
97772051"999008 The L 3
= L 1 3 %
Raspberry,Pi is a trademal The Raspbery Pi Foundation. a 1 .ﬁl B o . H
This magazine was create%lﬁaspberry Pilcomputer. - e : http.//www.themagpl.com
% : e w—)

http://www.themagpi.com
http://www.themagpi.com

Welcome to Issue 30 of The MagPi and another bumper issue full of interesting articles and projects.
Before we describe the content of this Issue, let us tell you about our new Kickstarter project to print
Volume 3 of The MagPi (Issues 20 to 29) plus a superb new binder. Many of you have asked us for
printed copies of The MagPi. Therefore, please check it out at:
https://www.kickstarter.com/projects/themagpi/the-magpi-magazine-for-raspberry-pi-volume-3

Did you miss our surprise? Over the Christmas period we released a special edition of The MagPi... a
massive 132 pages of articles from previous issues that we think are great for folks who are new to the
Raspberry Pi. You can download it for free from http://www.themagpi.com.

In this Issue, Olivier LeDiouris demonstrates how the Raspberry Pi can be used to enhance navigation
data, sampling sensors over a long voyage. Jodo Matos explains how to produce an electronic tennis
game with the GPIO pins, LEDs and numeric LED displays. Philip Munts discusses the basics of
controlling a small hobby DC motor with his expansion board. Eric Ptak introduces a new P2P solution
that allows a secure connection to Raspberry Pi projects that are not directly available on a public
network connection. Finally, lan McAlpine rounds off the hardware section by presenting the new
Raspberry Pi 2.

Programming is part of any Raspberry Pi project. In this Issue, Mubarak Abdu-Aguye introduces the C#
programming language with an 12C project. William Bell demonstrates how to use C++ inheritance and
interface classes. William also discusses another Scratch arcade game, with a two player air hockey
simulation. Finally, Martin Meier rounds off this Issue with a Python maze generator.

POt

Chief Editor of The MagPi

The MagPi Team

Ash Stone - Chief Editor / Administration Paul Capenter - Testing

lan McAlpine - Layout / Testing / Proof Reading Mark Pearson - Layout

W.H. Bell - Issue Editor / Administration / Layout John Stap - Layout

Bryan Butler - Page Design / Graphics Nick Liversidge - Layout / Proof Reading

Matt Judge - Website Martin Wolstencroft - Proof Reading

Nick Hitch - Administration David Bannon - Layout / Proof Reading

Colin Deady - Layout / Proof Reading Shelton Caruthers - Proof Reading

Aaron Shaw - Administration Rita Smith - Proof Reading

eDougie Lawson - Testing Claire Price - Proof Reading

I
Contents

ENRICHING NMEA
Using Java to enrich an NMEA stream

PING PONG
Build a hardware based "tennis" game with the Raspberry Pi

LPC1114 1/0 PROCESSOR
Pulse width modulation motor control

WEAVED IOT KIT
Access your Raspberry Pi over the internet

RASPBERRY PI 2
Quad core processor and a gigabyte of RAM: it's a game changer!

BOOK REVIEW
Raspberry Pi for Dummies

THIS MONTH'S EVENTS GUIDE
Mechelen Belgium, Belfast UK, Courthézon France, Washington USA, Bristol UK

C#
Starting C# with Mono

C++ CACHE
Part 8: Inheritance and polymorphism

THE SCRATCH PATCH: BOUNCING SURFACES
A two player air hockey game in Scratch

THE PYTHON PIT: MAZE BUILDER
Generating maze puzzles

HAVE YOUR SAY
Send us your feedback and article ideas

30.88'N 122 28.85'N
20814 23:13:23 UTC
2814 15:83:27 Solar

26a7s
HDG 369 t THD 116t

MR 187 THS 4.88 kt
il TR 187

h

k
k
t
5
it

aT 814w BA
3‘%2 .23 nn L0

http://www.themagpi.com

http://www.themagpi.com

4 Kts, COG227"
~ cSP0.75Kts, CDR:293"

Background

Various commercial electronic instruments are
available for boats to read, compute, and display
different data used for navigation. My idea was
to provide easy access to the data and allow
display of the data on several kinds of devices,
not just the expensive commercial displays sold
by the nautical equipment providers. | also

wanted to be able to add more data sources and
display the merged information.

Raspberry Pi setup inside the chart table
In the picture above, the Raspberry Pi is fitted

with a Slice of Pi break-out board to host the
battery monitoring device. Also visible is the

Enriching the NMEA stream
using Java

SKILL LEVEL : INTERMEDIATE

Olivier LeDiouris

Guest Writer

small breadboard with a BMP180 barometric
pressure and temperature sensor board.

The Raspberry Pi is the only device connected to
the boat's NMEA (National Marine Electronics
Association) Interface. It is the first to be turned
on, and the last to be switched off. I've been
running it continuously for weeks, without any
glitch.

In this role the Raspberry Pi fulfils two primary
functions. Firstly it enriches the NMEA Stream
read from the NMEA Station, by calculating new
data values, and adding data read from the
connected sensors. Secondly it re-broadcasts
the enhanced data stream on its own network, so
it can be read and used simultaneously by a
variety of devices.

Optionally the Raspberry Pi can also read its
own data stream and format a character console
display, this is discussed later.

The NMEA format

The electronic instruments available on boats are
used to measure data like the boat speed,
position and heading, the wind speed and
direction, all the kind of things required for
navigation. Some data are read from transducers

(boat speed through water, wind speed,
compass heading, etc.), and some are computed
(true wind speed and direction, true heading,
etc.). Those data are usually available in the
NMEA format. The definition of the NMEA strings
is one of the oldest electronic standards. The
NMEA sentences strings are human readable,
that is it is a text format although it can be a bit
cryptic. Here is an example of what an NMEA
stream looks like:

$TIMWV,112,R,00.8,N,A*19
$TIMWV,109,T,00.7,N,A*1A

$TIMTA,31.5,C*02

$IIRMB,A,0.23,R, ,HMB-3,,,,,001.20,184, ,V,A*1F
$IIXDR,P,1.0156,B,0*71
$WIMDA,29.991,1,1.016,B,31.5,C, ;5050555 ss0s*
3B
$IIRMC,062658,A,1111.464,S,14235.335,W,05.6,2
26,231110,10,E,A*QA

Extracting the data

The information we want can be extracted from
the NMEA data stream using a suitable parser,
which is a piece of software that turns text into a
programming language "structure". As an
example, let us take an RMC (Recommended
Minimum) NMEA sentence, the last complete
sentence shown above:

A JSON (JavaScript Object Notation) parser
could turn that string into a JSON object like this:

{
type: 'RMC',
active: true,
cog: 226,
sog: 5.6,
declination: 10.0,
date: 1290493618000,
pos: {
latitude: -11.191066,
longitude: -142.5889166
ks
}

The JSON object can then be used in your
program. In the object above:

cog (Course Over Ground) 226°
sog (Speed Over Ground) 5.6 knots
dec (Declination) 10° E
date (Date milliseconds since 00:00:00 Jan 1st
1970) 1290493618000 is 23-Nov-2010 06:26:58
UTC.
pos (Position decimal degrees from deg/min)
(Latitude) 11211.464' South
(Longitude) 142°35.335' West

Exclusive serial port access

Navigation stations usually deliver the NMEA
data through a serial interface, which is
compatible with many devices (like laptop
computers). The unfortunate thing about serial
ports is that they require exclusive access. That
means that when one program, on a laptop for
example, is reading the data sent by the NMEA
station, the data stream is not available for any
other program until the serial connection is
released by the program that was using it.

This can be painful if you want to use the data
simultaneously in different applications on
different platforms. For example displaying a
chart plotter (like OpenCPN) while presenting
readings in a browser-based graphical interface
and reading the GPS data from Airmail, to use a
propagation chart to aim for the most appropriate
SSB (Single Side Band radio land-station.

Introducing data from other sensors

In some cases, you could be interested in
monitoring data that are not managed by an
NMEA station (like battery voltage). You could
also be interested in monitoring data managed
by NMEA, but not by your NMEA station (like air
temperature, atmospheric pressure).

Injecting those data in the NMEA Stream you
read from your station would make them
available for all programs reading the NMEA
stream and allow you to log them to monitor,
display, or replay them.

You might be interested in some computed data

that are not returned by your NMEA station (like
true wind speed and direction). These results
could be computed from the existing data, and
then injected into the broadcast stream.

Power consumption

A laptop can sound like an obvious solution for
your on-board computing needs, but the power
consumption of a laptop is not always negligible.
The NMEA stations usually draw a very small
amount of current, but a laptop power adaptor
can draw between 1 and 3 Amps, which is a lot
when you have limited energy available, like on a
sail boat for example. Using a Raspberry Pi as
the only device running at all times, this can be
reduced to 0.13 and 0.19 Amps with short
increases when another device is switched on to
use and display the data.

The Java language

The computer you would use to read the NMEA
stream will probably sit close to the chart table,
but you might very well be interested in
visualizing the data it computes on deck, from
existing displays, or from some wireless devices,
like tablets or smart-phones.

Java provides a number of libraries that make it
an appropriate choice for this application. There
is a huge Java community and a lot of open
source material. Java is very scalable, so once it
runs, it runs the same on all systems (Windows,
Mac, Linux, etc.). A jar file (Java ARchive) that
runs somewhere will run the same anywhere
Java runs, no re-compilation is required. Many
good IDEs (Integrated Development
Environment) are available for free, and although
they are too demanding to run on the Raspberry
Pi it is possible to run a very good remote
debugging environment.

All the software | wrote to run on the Raspberry
Pi is written in Java and is Open Source.
Remember Java and JavaScript are totally
different languages, and are used for different
tasks.

The Navigation Console

The Navigation Console is a program | wrote (in
Java) and I've been using on board for several
years. When run on a laptop it can provide,
among other features, a graphical user interface
to the navigation data (as shown below).

| have recently enhanced it to run in headless
mode (i.e. without a graphical user interface), to
run on the Raspberry Pi. When headless, the role
of the Navigation Console is to read and
compute the data, optionally save to a log, and
then re-broadcast them on one or more channels.
For such a re-broadcasting to happen, the
Raspberry Pi creates its own ad-hoc wireless
network. Other devices will join this network, and
will then have access to the re-broadcasted data.

Multiplexing the data

Multiplexing is a technique that takes data from
several sources and merges them into a single
channel. Here we read data from the NMEA
station (already NMEA formatted, obviously),
and the program puts them into a cache
(technically, it is a Java dynamic structure called
a HashMap, living in a singleton). The other
software components, such as the different
servers (TCP, UDP, etc) read that cache as the
single point of truth. Computed data are also
read from the cache. As a matter of fact, all
computed data (like True Wind Direction and
Speed, Current Speed and Direction,
Performance, etc.) are re-calculated every time a
new value is inserted into the cache by the
NMEA reader. The cache also uses a
Publish/Subscribe architecture that implements a

listener pattern.

We will use those aspects to inject extra data in
the cache. For example, you can read the battery
voltage from some equipment, turn this value into
an NMEA Sentence, and inject it into the cache.
There is not a specific NMEA sentence for
battery data, so | defined my own BAT (battery)
sentence. Any component that has subscribed to
the manageEvent event in its listener will be
notified of the injection of the NMEA sentence.

The same process can be followed for any other
data source. | used a BMP180 PCB (from
Adafruit) to get the air temperature and the
atmospheric pressure. (Note that unlike the
battery voltage, those data do have an NMEA
equivalent, but are not available on the NMEA
station | have on board). They are read from the
sensors, turned into the appropriate NMEA
string, and injected in the cache. See in the
picture below the data prefixed with BAT
(custom NMEA chain for battery), MTA (Air
Temperature), MMB (Barometric Pressure). The
Character Console featured below is reading the
data from the cache that they are injected into.

Re-broadcasting

Many navigation programs provide the possibility
to read the NMEA streams from channels other
than the serial connection. Those other protocols
are usually TCP (Transfer Control Protocol) or
UDP (User Defined Protocol). Also available for
the same purpose: HTTP (Hyper Text Transfer
Protocol), RMI (Remote Method Invocation),
WebSocket.

The Raspberry Pi re-broadcast the merged data
stream on one or more other channels. All the
channels can be consumed simultaneously by
several clients, so the data broadcast by the
Raspberry Pi is simultaneously available to all
interested devices.

The Navigation Console provides TCP, UDP,
HTTP, and RMI servers. Those servers are very
tiny, and do not overload the Raspberry Pi. The

HTML5 WebSocket protocol is also available,
through node.js and a user-exit.

The Character Console

POS 37 39.88'N 122 28.85'N
GDT 29 Oct 2814 23:13:23 UTC
SLT 29 Oct 2814 15:83:27 Solar
STIDdAd6h2a?s

BSP @.8@ kt HDG 369 t THD

4,88 kt A 187 TuS 488k
ggg 265 t S0G 8.60 Kt Tin 1
MTR 28.
E‘lﬂ:] lslg g CCS @.88 kt ;g;
7 1.4 BAT 1498V
?(?E @.23 nm LOG 8200

The Character Console on a 7" screen

This provides access to the data computed by
the Raspberry Pi and can be customized by the
user. The goal here is to have an access to those
data, without having to turn on a laptop. The only
thing to switch on and off is the screen. The
Character Console process is also running on the
Raspberry Pi, but is separate to the Navigation
Console process that is reading and re-
broadcasting the data.

Other devices

The laptop can use TCP to receive data from the
Raspberry Pi and present it simultaneously in my
Graphical Console, and the popular open source

package Chart Plotter

Navigator).

OpenCPN (Open

TCP and UDP are both light protocols, designed
for computer-to-computer communication. They
are both based on a socket mechanism. Once a

socket is established between two computers (a
client, and a server), then the logic of the dialog
will be implemented by the programs running on
both client(s) and server, which they have to
agree on (to understand each other). In our case,
this is extremely simple, once a client is
connected, the server is sending it all the valid
NMEA strings it reads.

HTTP

HTTP has always been HTML's best friend.
HTML is a markup language (widely used to
design web pages), HTTP is a transport protocol
that can convey HTML streams. HTTP is based
on TCP, but is has been designed to be a
request-response protocol. For the server to do
something, a client has to ask first. As long as
you have a browser on the device you want to
use, then HTTP would be an obvious choice. To
refresh the data, we would use AJAX, in order to
avoid a refresh to be performed by the client.
HTMLS provides elaborated graphic capabilities
that will give us the possibility to come up with a
nice graphical user interface. JavaScript is used
to handle user interactions.

g
Displays | | Overview | | Map | [TW Evolution || Calibration Prms

The HTMLS5 console displayed in a browser

The HTMLS5 console can be viewed on any
device with a browser such as a laptop, tablet or
smart-phone.

WebSocket

The WebSocket protocol has been introduced
with the release of HTMLS. It is also based on
TCP. One of the drawbacks of HTTP is that it is
a request-response (a.k.a. push-pull) protocol.
You have to make a request to get a response.
For example, if you want to get a flight status

from some airline website, the first time you
reach the page, it gives you the expected arrival
time of the flight. Every time you want to see if
this estimated time has changed, you must
refresh your page. In other words, request it
again.

The WebSocket protocol precisely addresses
(among others) this kind of issue. Once the client
(i.e. your browser) is connected to the server,
data will be pushed (by the server, to the client)
as needed, without requiring the client to refresh
its page. This clearly divides the traffic by two.
The browser you use must be WebSocket aware
though. As of now (2015), some browsers (like
Internet Explorer 9) still do not support it.

In the Navigation Console, the WebSocket
interface is implemented as a user-exit. It
requires a WebSocket server to be available and
we can run this on the Raspberry Pi. Node.js is
the one we use, with its WebSocket module.

In short, this is what happens:

1) An HTTP/WebSocket server is started on the
Raspberry Pi

2) A user-exit (listening to the cache) is pinging
the WebSocket server everytime some data is
inserted

3) A web page (WebSocket client) will reach the
WebSocket server to display real-time data,
pushed by the server, from as many clients as
needed

The WebSocket console looks exactly like the
HTML5 one featured above. But it takes about
half the resources and the data are refreshed
regularly by the server.

Summary of the architecture

This shows all the possible components with the
Raspberry Pi at the heart. The Raspberry Pi
rebroadcasts the data using TCP and both
HTTP and WebSocket (for browser-based
clients). Data can also be logged on the
Raspberry Pi's SD card. The laptop uses TCP to

consume the data, and can run simultaneously
several programs using the NMEA data. Tablets
and smart-phones can also be added into the
wireless network, and by using HTTP or
WebSocket they can also display the HTML5
Console.

Tablet

Laptop

Smart-phone

Character Console HTTP or

Cr=
A \:w— I WebSocket
TCP &
HTTP or

TCP WebSocket

NMEA
Interface

ﬂ
' Serial Port,
Idev/ttyUSBO

R, L8
Raspberry Pl

Notice in the diagram, the central place taken by

the Raspberry Pi. It is acting as the main hub of
all the system. It is the only one reading the
NMEA data out of the NMEA station. In addition,
it manages its own sensors to read extra data (in
this case: battery voltage, atmospheric pressure
and air temperature). All the data gathered by the
Raspberry Pi are re-broadcasted onto several
channels, depending on the devices connected
on the Raspberry Pi's own ad-hoc wireless
network.

Those devices can join or leave the network at
their leisure, without disturbing the others. The
only piece remaining active will be the Raspberry
Pi, maintaining all the infrastructure, and all this
for between 0.13 and 0.19 Amps.

It is interesting though, to notice that this
architecture is the exact same one that was used
during the recent 34th America's Cup by those
fantastic multi-million dollar boats. Well, now you
can get to the data, you can analyse them and
the next America's Cup is all yours.

Resources and Useful Links

This article is based on my project description which can be found at:
http://www.lediouris.net/RaspberryPI/_Articles/readme.html

For simplicity most of this software is available as a pre-built Raspberry Pi archive :
https://code.google.com/p/weatherwizard/wiki/NewDowloadPage

Unpack the .tar.gz archive file tar with xavf thenrun ../all-scripts/olivsoft for the main menu.
Of course you will need a suitable Java Runtime environment, this is provided in recent releases of
Raspbian, you may need to install it for other platforms. This page also has links for Windows and Linux
install packages, and a User Manual for the Navigation Console.

To create a build environment for this projects (and some of my others) see the instructions at:
https://code.google.com/p/oliv-soft-project-builder/

You will need a Java Development Kit (JKD), minimum version 7, and a build system like Ant or Gradle.

The Java code for the Navigation Console is described at:

https://code.google.com/p/fullnmeaconsole/

Instructions are given to download the source using an SVN (Subversion) client.

OpenCPN - Open Source Chartplotter and GPS Navigation Software can be found here:

http://opencpn.org/ocpn/

Some of the Java code uses Pi4J a project to link Java with the Raspberry Pi 1/O:

http://pi4j.com/

http://www.lediouris.net/RaspberryPI/_Articles/readme.html
https://code.google.com/p/weatherwizard/wiki/NewDowloadPage
https://code.google.com/p/oliv-soft-project-builder/
https://code.google.com/p/fullnmeaconsole/
http://opencpn.org/ocpn/
http://pi4j.com/index.html

SKILL LEVEL : BEGINNER

Introduction

| was approximately 10 years old when | received
my first TV game console. It was a gift from a
long time friend of my parents who lived in
France. At that time there was nothing like this
game in Portugal.

The main game was a simple tennis maich,
which was composed of two small vertical bars
on each side of the screen and a square as a
ball. It was the leading edge of technology - all in
black and white! | loved it and played it for years.

| remembered those times and decided to build a
hardware based Ping Pong look-alike project
using my new Raspberry Pi B+. | also wanted to
see the reaction of my kids (Tiago age 13 and
Sara age 11) who are used to playing with
modern games consoles.

| was pleased to see how excited they were while
| was building it and also to play with it. | hope
you will have some fun with it too.

Rules of the game

A point is won when the other player does not
press the button in time to return the “ball”
(represented by a lit LED) to the opposite side, or
if the other player presses their button too soon.

Build a hardware based "tennis"
game and test your reactions

Joao Matos

Guest Writer

The player who wins the point starts the next
serve.

A game is won after 9 points are scored. A match
should consist of any odd number of games
(usually five or seven).

For the first serve the starting player is randomly
selected. The time between LED jumps is
random to make it more difficult to predict. The
buzzer will sound every time a point is won.

Before you start

This project requires the use of a Raspberry Pi
A+/B+ as it uses some of the new GPIO pins. It
is assumed you are already using a Raspbian
distribution.

The software for this project was written using
Python, an easy to learn programming language.

If you want to learn more about Python
programming, check out http://www.python.org
and also the book "Welcome to Python for You
and Me" at http://pymbook.readthedocs.org/en/
latest/.

When you are learning Python it is usually better
to type in the code yourself and a full listing is
provided, starting on page 13. This helps you to
understand what is going on and how the

o)

http://www.python.org
http://pymbook.readthedocs.org/en/latest/

program works. However you can also download
the Python code, plus the breadboard design
shown below, from http:/fritzing.org/projects/
ping-pong-with-raspberry-pi.

Parts needed

1x Raspberry Pi A+/B+

1x buzzer (I used a 8-15V 85dB Mag)

2x 7-segment red display 13mm, red, common
cathode

2X 4-pin push button (3.5mm)

6x red LED S5mm

1x 220R resistor for the buzzer

9x 1k resistors for the LEDs, push-buttons and
displays

1x breadboard (aka Protoboard)

You also need several coloured jumper cables
(male-female and male-male)

Hardware

The easiest way to assemble the circuit is to
follow the picture below with the breadboard
design.

The Raspberry Pi has 2 different voltages in its
GPIO (General Purpose Input Output) pins - 5V
and 3.3V (or 3V3). All pins only work with 3V3,
except the 5V and Ground (GND) pins.

s

= =

NOTE: You should be careful to never connect a
5V pin to a 3V3 pin, nor should you connect a
3V3 or 5V pin to a GND pin.

Because of that, | like to follow some safe rules
when building circuits for my Raspberry Pi:

1) Use coloured cables to ease identification (red
for 5V, orange for 3V3 and black for GND)

2) Assemble everything before connecting the
Raspberry Pi

3) After completing all the assembly work, double
check everything before powering the Raspberry
Pi.

It may sound basic and boring, but it will save
time searching for malfunctions and it may save
your Raspberry Pi from getting damaged. Of
course, the great thing about the Raspberry Pi is
that if it should get damaged, it does not cost
much to get another!

| like to have a coloured printout of the GPIO
pinout near my Raspberry Pi to make it easy to
assemble and double check everything. You can
find one at http://www.raspberrypi-spy.co.uk/
2014/07/raspberry-pi-b-gpio-header-details-and-
pinout/.

1x Raspberry Pi B+/A+

1x buzzer (mine is a 8-15V 85dB Mag)

2x 7 segment display 13mm, red, common cathode
2x push-button 4 pins 3.5mm

6xred LED5mm

1x 220 Ohms resistor (buzzer)

9x 1k Ohms resistor (LEDs, push-buttons and
displays)

Coloured cables (male-female and male-male)

TLOZ el

s w{pfl o
-.:---
- S =

== micls ol

LA +8 IBRow

http://fritzing.org/projects/ping-pong-with-raspberry-pi
http://www.raspberrypi-spy.co.uk/2014/07/raspberry-pi-b-gpio-header-details-and-pinout/

Circuit description

In the following description a high signal means
3V3 and a low signal means 0V (GND).

The 1k resistors are there to limit the electrical
current and to protect the Raspberry Pi GPIO
pins. The red LEDs are lit by activating a high
signal on their anode/positive side (this is the
longer leg). The LEDs are connected to GND.
When either push-button is pressed it sends a
high signal to the anode of the LED.

The buzzer is very simple. Just apply a high
signal to its positive pin (it should be marked)
and it will sound until the signal is dropped. If the
buzzer does not sound or sounds very weak, try
removing the 220R resistor.

The 7-segment displays | selected for this project
have individual anode/positive pins but a
common cathode/negative/GND pin. Think of
them as having 7 different LEDs (plus one for the
decimal point, which is not used in this project). If
the displays are too dim replace the 1k resistor
beside the left display with a 220R resistor.

[Ed: Experienced readers may choose to use a
BCD - 7-segment decoder to reduce the wiring.]

Software

If you are typing in the Python code you can do
so from the command line with,

nano ~/ping-pongvl.py

or if you are using the GUI then you can use the
Python IDLE editor.

The program is listed on the next page. After
various functions are defined, the main part of
the program starts with the try block. Here the
pin numbering system is defined and any
warnings about the previous state of the pins is
disabled. Then it defines which pins are used for
input and output and sets all output pins with a
low signal (OV).

The second block sets the variable cur_pos to
keep track of the current position of the “ball”
and randomly defines the starting player. In

doing so it also defines the game direction (right
or left), which is used later to test for the first/last
position. You can probably guess what the
show_scores() function does!

In the next block, the while loop is the inner core
of the program. This loop repeats itself until one
of the players reaches the maximum score of 9
points. First it turns the “ball” LED on and waits
for a period of time to allow the players to press
their button. Then it turns the LED off and checks
if the “ball” is in the final position on either side.

If the "ball" is not in the final position, it checks if
either player pressed their button early. If either
button is pressed that player loses and a function
called end_service() is called to sound the
buzzer and update the displays. If no button is
pressed then it increases the “ball” position.

The next block starts with the else clause, from
the first if statement after the while loop. This
indicates that the "ball" is in the first or last
position. It checks if the player pressed the
button on time or not. If they did it changes the
"ball" direction, but if they did not then the score
is increased for the other player and the position
and direction are updated for the new game. As
before, the end_service() function is called to
sound the buzzer and update the displays.

The out_sequence() function is called when a
player reaches the maximum score. It is an LED
special effect to show the end of the game.

The last command is GPIO.cleanup() which is
used to restore all the pins to their pre-game
state, as good practice.

The main part is enclosed in a try-except-
finally block to make sure the
GPIO.cleanup() function is called, even if there
is an error or the user interrupts the program.

The start of the listing is where libraries of
functions are imported, global constants (all
caps) and variables are created and functions
are defined. To understand the DISPLAY_1,
DISPLAY_2 and DIGITS_MASKS -constants
please refer to the 7-segment display
documentation and to https://en.wikipedia.org/
wiki/Seven-segment_display.

Gz

https://en.wikipedia.org/wiki/Seven-segment_display

Due to space restrictions | cannot explain the
entire source code, but hopefully you will take
this as a challenge to learn and understand what
the code is doing.

Play the game

Once the hardware is built and checked and the
code has been entered, to play the game enter
the following on the command line:

sudo python ~/ping-pongvl.py
Python source code

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""Ping-pong.

This is a ping-pong look-alike but the maximum
score is 9 instead of 11 due to the use of a
7-segment display.

For the first service, the starting player is
randomly selected. The time between LED jumps
is random to make it more difficult to
predict. The buzzer will sound every time a
point is won."""

import random
import time
import RPi.GPIO as GPIO

Constants use BOARD pin numbering system
BUTTON_1 = 7

BUTTON_2 = 40

IN = [BUTTON_1, BUTTON_2] # input pins

LEDS = [11, 13, 15, 18, 22, 29]
FIRST = @ # first position
LAST = 1len(CLEDS) - 1 # last position

BUZZER = 16

pins are ordered by letter according to
the 7-segment display documentation
DISPLAY_1 = [21, 19, 12, 10, 8, 23, 24]
DISPLAY_2 = [36, 35, 33, 32, 31, 37, 38]

OUT = LEDS + [BUZZER] + DISPLAY_1 + DISPLAY_2
output pins

masks are ordered by letter according
to the 7 segment display documentation

DIGITS_MASKS = {@: [1, 1, 1, 1, 1, 1, o],

1: I:@) 1, 1) 0, 0) 0’ 0]’
2: [1) 1, ®) 1, 1) 0’ 1]’
Sk [1) 1, 1) 1, 0) 0’ 1]’
A I:@) 1, 1) 0, 0) 1’ 1]’
5: [1) 0, 1) 1, 0) 1’ 1]’
6: [1) 0, 1) 1, 1) 1’ 1]’
7 [1) 1, 1) 0, 0) 0’ 0]’
8:[1,1,1,1,1,1,1],
Ok [1) 1, 1) 0, 0) 1’ 1]}
LED direction

RIGHT = 1

LEFT = -1

MAX_SCORE = 9

global score vars
player_1 = 0

player_2 = 0

def set_in_pins(pins):
"""Setup input pins.
for pin in pins:
GPIO.setup(pin, GPIO.IN, GPIO.PUD_DOWN) #
activates pull down resistor

def set_out_pins(pins):

"""Setup output pins.
for pin in pins:

GPIO.setup(pin, GPIO0.OUT)

def pin_low(pin):
"""Put low @V signal on pin.
GPIO.output(pin, GPIO.LOW)

def all_low(pins_lst):
"""Put low @V on all pins in list.
for pin in pins_lst:
pin_low(pin)

def show_digit(digit=0, display=DISPLAY_1):
"""Show digit in specififed display."""
enumerate returns pos and value from mask
for pos, value in enumerate(DIGITS_MASKS
[digit]):
GPIO.output(display[pos], value)

def show_scores():
"""Shows players scores.
show_digit(player_1, DISPLAY_1) # show
player 1 score on 1st display
show_digit(player_2, DISPLAY_2) # show
player 2 score on 2nd display

def pin_high(pin):
"""Activates high 3V3 signal on pin.
GPIO.output(pin, GPIO.HIGH)

def led_on(pos):
"""Switch LED on and pauses.

pin_high(LEDS[pos])
if pos in [FIRST, LAST]: # first or last LED
pause = 0.3 # time for button response
else:
pause = random.choice([@.5, 1, 1.5, 2]) #
random delay
time.sleep(pause)

def led_off(pos):
"""Switch LED off."""
pin_low(LEDS[pos])

def is_on(pin):
"""True if pin has a high signal."""
return GPIO.input(pin) == GPIO.HIGH

def buzzer(pin, pause=1):
"""Activates buzzer."""
pin_high(pin)
time.sleep(pause)
pin_low(pin)

def end_service():
"""Buzzes and updates scores.
buzzer(BUZZER)
show_scores()
time.sleep(2)

def out_sequence(pause=1):
"""Shows LED sequence from inside out.
nr_leds = len(LEDS)
for pos in range(nr_leds / 2, 0, -1): #
reverse order
activate pair
pin_high(LEDS[pos - 1])
pin_high(LEDS[-pos + nr_leds])

time.sleep(pause)

deactivate pair

pin_low(LEDS[pos - 1])

pin_low(LEDS[-pos + nr_leds])
time.sleep(pause)

try:
GPIO.setmode(GPIO.BOARD) # BOARD numbering
GPIO.setwarnings(False)

set_in_pins(IN) # setup input pins
set_out_pins(OUT) # setup output pins

all_low(OUT) # clear all output pins

cur_pos = random.choice([FIRST, LAST]) #
define first LED to be 1lit

if cur_pos == FIRST:
direction = RIGHT
else:
direction = LEFT

show_scores()

while player_1 < MAX_SCORE and player_2 <
MAX_SCORE :
light LED (ball) and pause for a time to
allow the players to press the button
led_on(cur_pos)

led_off(cur_pos)

if ((direction == RIGHT and cur_pos <
LAST) or # not in last position
(direction == LEFT and cur_pos >
FIRST)): # not in first position

if is_on(BUTTON_1): # if button 1 was
pressed player 1 loses
player_2 += 1
cur_pos = LAST
direction = LEFT
end_service()
elif is_on(BUTTON_2): # if button 2 was
pressed player 2 loses
player_1 += 1
cur_pos = FIRST
direction = RIGHT
end_service()
else:
cur_pos += direction # update pos.

else: # it is the first or last position

if (Ccur_pos == LAST and
is_on(BUTTON_2)) or
(cur_pos == FIRST and
is_on(BUTTON_1))):

direction *= -1 # change direction
cur_pos += direction

else: # didn't push button on time

if cur_pos == FIRST: # player 1 loses
player_2 += 1
cur_pos = LAST
direction = LEFT
else: # player 2 loses
player_1 += 1
cur_pos = FIRST
direction = RIGHT
end_service()

out_sequence()

except KeyboardInterrupt as error:

pass

finally: # always executed

GPIO.cleanup() # restore to pre-game state

Connect Hundreds of
Sensors to your
Raspberry Pi

BrickPi

Turn your Raspberry Pi
into a LEGO® Robot

Arduberry

Unite the Raspberry Pi
and Arduino

GoPiGo i

Turn Your Raspberry Pi
into a Robot

dexterindustries.com

MagPi Readers! Use the code “MagPi14”
for a 10% discount in our store.

http://www.dexterindustries.com

motor control

SKILL LEVEL : ADVANCED

Introduction

Electric motors are pervasive in our industrial
civilization. Motors can open and close our
doors, make our elevators go up and down, chill
our refrigerators, and make our toys go. They
are among the more interesting devices one can
control from a computer like the Raspberry Pi,
whether for a robot, a vehicle, or even a piece of
art.

The Raspberry Pi LPC1114 1/O Processor
Expansion Board was first introduced in Issue 14
of the MagPi. It has since been discussed in
Issues 17 and 22 of the MagPi. The LPC1114
expansion board has three terminals that can be
configured as PWM (Pulse Width Modulation)
outputs, suitable for controling DC (Direct
Current) motors. PWM is a technique for
controlling the amount of energy delivered to a
load (motor or other device) by switching its
power supply on and off very rapidly.

The percentage of time that the power supply is
switched on is called the duty cycle. If the power
supply is switched on most of the time (high duty
cycle), maximum energy will be delivered to the
load. If the switch is off most of the time (low

Pulse width modulation

MOTOR CONTROL

Using an ARM Cortex-MO microcontroller

Philip Munts

Guest Writer

duty cycle), minimum energy will be delivered to
the load. Figure 1 shows oscilloscope traces of
PWM signals that correspond to low (yellow) and
high (blue) duty cycles.

Tek gl Trig*d t4 Pos; 1.600ms
. _ +

2k

CH2 1.004 k1 5.00rms

13-Mow-14 18:33

Figure 1 - Pulse width modulation signals

The LPC1114 timer subsystem can be
configured to drive up to three PWM outputs,
without software control beyond setup and duty
cycle adjustment. This article describes how to
control both DC motors and remote control servo
motors with the LPC1114 PWM outputs.

Ge)

DC motors

DC (Direct Current) motors always have power
supply voltage and speed ratings. At the
specified power supply voltage, a motor will spin
at the rated speed (assuming no load, a
mechanical load will slow down the motor). If the
power supply voltage is less than the rated
voltage, a DC motor will spin at a slower speed.
Therefore, the speed of a DC motor can be
controlled by adjusting the voltage supplied to
the motor. Every motor has a low voltage limit,
below which it will not spin reliably. Rotation
speeds that are below the speed corresponding
to the low voltage limit can be accessed by using
a gear train.

Due to mechanical (inertia) and electrical effects
(inductance), a DC motor's speed depends on its
average power supply voltage. Therefore, it is
possible to use a PWM signal to switch a motor's
power supply on and off to control its speed. A
low PWM duty cycle will result in a low average
voltage and a slow speed. A high PWM duty
cycle will result in a high average voltage and a
high speed.

The LPC1114 PWM outputs are incapable of
delivering enough energy to control anything but
the tiniest DC motors. Therefore, to use small or
medium sized motors it is necessary to connect
some sort of power switch or driver between the
LPC1114 PWM output and the DC motor. Many
different DC motor driver chips and modules are
available, capable of driving anything from small
hobby motors to large industrial motors.

First test your motor with power connected at
maximum speed (maximum voltage for the
motor) and measure the current that the motor
draws using a digital volt meter. In addition to
the current associated with the maximum rotation
speed, measure the current the motor draws
when it is prevented from moving. This is the
stall current. The current ratings of the motor

determine the type of drive circuit that should be
used with the motor.

The ULN20083 is a simple and inexpensive driver
that can be used with small DC hobby motors.
The ULN2003 is an integrated circuit with 7 low
side switches, implying that each switch will sink
current to ground when you turn it on. With a low
side switch, the low side of the load is connected
to the switch and the high side of the load is
connected to a positive supply voltage such as
+5V or +12V.

The ULN2003 is rated for voltages of up to 50V
and a current of 500mA for any one output. To
drive more than one load, the total current for all
of the outputs should also be limited to 500 mA.
For larger motor currents, more complex driver
solutions are required. The ULN2003 and its
slightly larger companion device the ULN2803
(with 8 switches) can be used to drive all sorts of
real world loads, including motors, LED's, relays,
solenoids, etc..

There is also another companion device, the
UDN2981, that is nearly pin compatible with the
ULN2803 but contains 8 high side switches.
With a high side switch, the high side of the load
is connected to the switch and the low side of the
load is connected to ground. The UDN2981 is
not as common and is more expensive than
either the ULN2003 or the ULN2803.

A circuit diagram suitable for driving a small DC
hobby motor using the ULN2003 is given in
Figure 2, whereas Figure 3 shows the complete
test system used for this article. Note that this
arrangement can only spin the motor in one
direction. To spin a motor in either direction, it is
necessary to use a more complicated driver
circuit called an H-Bridge. An H-Bridge circuit
has 4 switches, two-low side and two-high side,
which allows it to deliver either polarity voltage to
the motor.

L)

+5V

Motor
ULN2003

GPIO1 . 1/48 1c [16
21|28 2c |15

3 a8 3G | 14

_4 |48 ac |18

_5 |58 5c | 12

_6 |68 6c | 11

7|78 7G [10

GND 8 e com [9

Figure 3 - Small DC motor test stand
Programming interface

Complete documentation of the LPC1114 1/O
expansion board and the associated application
programming interface (API) is given in the user
guide:

http://munts.com/rpi-lpc1114/doc/UserGuide.pdf

The C programming APl includes several
functions that can be used to control a DC motor

with a LPC1114 PWM output:

spiagent_open(SERVERNAME ,&error);
spiagent_pwm_set_frequency(100,&error);
spiagent_pwm_configure(LPC1114_PWM4 ,&error);
spiagent_pwm_put(pin,50.0F,&error);

where the frequency parameter ranges from 50
to 50000 Hz, the duty cycle parameter ranges
from 0.0 to 100.0 (percent), with 0.0 selecting
minimum power to the motor and 100.0 selecting
maximum power. Small hobby motors tend to
function better with a low PWM frequency.
Larger industrial motors may work with higher
PWM frequencies.

Servo motors

Servo motors have been used for many years in
radio controlled model airplanes, cars, and
boats. Each unit has three wired connected to it,
a voltage supply (4.8V to 6V for small servos,
12V or more for large servos), control signal, and
ground. The servo unit contains an electric
motor, gears, and a control circuit. Two example
small servo motors are shown in Figure 4.

Figure 4 - Small servo motors

The servo motor control signal is a form of pulse
duration modulation. The servo motor expects a
continuous train of control pulses that are 1.0 to
2.0 milliseconds long repeated 50 times a
second. The duration of the control pulse sets
the position of the servo motor.

Gs)

http://munts.com/rpi-lpc1114/doc/UserGuide.pdf

A control pulse width of 1.0 milliseconds sets the
servo to one end of its rotation, 1.5 milliseconds
sets the servo to the midpoint/zero/neutral
position and 2.0 milliseconds sets the servo to
other end of its rotation. If we constrain the PWM
frequency to 50 Hz and the pulse width from 1.0
to 2.0 milliseconds (5 to 10% duty cycle), we can
use the LPC1114 PWM outputs to control servo
motors as well.

Small servo motors typically have a 90 degree
rotation, but some are geared for 180 degree or
360 degree rotation. There are also linear servos
available, with up to 300 mm stroke and 80 kg
thrust, and continuous rotation servos that rotate
at a speed and direction proportional to the
duration of the control pulse.

Since servo motors expect a 3V to 5V control
signal, they are very easy to drive directly from
the LPC1114 1/O Processor Expansion Board.
Just connect +5V, ground, and one of GPIO1,
GPIO2, or GPIOS3 to the servo. The following C
code fragment illustrates how to control a servo
motor with an LPC1114 PWM output:

spiagent_open(SERVERNAME ,&error);
spiagent_pwm_set_frequency(50,&error);
spiagent_pwm_configure(LPC1114_PWM4,&error);
spiagent_servo_set_position(pin,@.0F,&error);

where position parameter ranges from -1.0 to
+1.0, with 0.0 selecting the midpoint or neutral
position. The servo library functions limit the
PWM frequency to 50 Hz and the pulse width to
1.0 to 2.0 milliseconds, as required by typical RC
servos. Further details are given in the LPC1114
l/O expansion board user guide:
http://munts.com/rpi-lpc1114/doc/UserGuide.pdf

Links

Grounding

For anything larger than a small hobby motor,
make sure that the power and ground
connections for the driver chip or module are
directly connected to the system power supply.
Do not use the power and ground terminals on
the expansion board. Otherwise, electric current
for the motor will flow through the expansion
board and Raspberry Pi. Neither of these were
designed to carry much electric current.

Attention !

1) It is important to MEASURE the motor current
when running at full speed and when the motor is
STALLED (which is forcibly stopped while trying

to turn at full speed).

2) The circuit shown in this article will work for
ONE motor up to a maximum current of 500 mA,
where this includes surges.

LPC1114 1/0 Processor Expansion Board documentation and purchase information:

http://munts.com/rpi-lpc1114

Wikipedia on Pulse Width Modulation: http://en.wikipedia.org/wiki/Pulse-width_modulation
ULN2003 data sheet: http://www.ti.com/lit/ds/symlink/uln2003a.pdf
Servo City, a source for rotary and linear servos: https://www.servocity.com

)

http://munts.com/rpi-lpc1114
http://en.wikipedia.org/wiki/Pulse-width_mod
http://www.ti.com/lit/ds/symlink/uln2003a.pdf
 https://www.servocity.com

http://munts.com/rpi-lpc1114/doc/UserGuide.pdf

SKILL LEVEL : BEGINNER

Ever since | released WebIOPi in 2012, in Issue
9 of The MagPi, | have received many messages
from users asking about accessing the
Raspberry Pi over the Internet.

The problem is that typically a Raspberry Pi is
connected to the Internet with a home router that
shares a single public IP with devices. The
router performs network address translation and
often includes a firewall. This protects your
Raspberry Pi from the Internet, but prevents you
from accessing it from a friend’s house.

It is possible to get around this problem by
configuring port forwarding in your router.
However, this depends on configuring the router

Raspberry Pi access over the Internet,
say goodbye to port forwarding

INTERNET OF THINGS

Secure P2P access

Eric PTAK

Guest Writer

correctly. Every router is different and it is
impossible to provide a set of unique instructions
that will suit everyone. Once you have correctly
configured port forwarding, you will realise that
your public IP can also change. Therefore, you
will need a dynamic DNS solution to be able to
connect. Each step required is possible, but it
can take a lot of time that could be better spent
on another project.

| recently discovered the Internet of Things (loT)
Kit from Weaved Inc., a start up in the Silicon
Valley. Weaved Inc. provides a free, secure,
easy-to-use and efficient way to access your
Raspberry Pi from anywhere on the Internet.
Just install the Weaved loT Kit to access your

* Push Notifications “ —

¢ Device Authentication - ER——

* Secure P2P Connections

* Remote Control Over the Internet

* Mobile Apps

* Developers Portal .Sénsor
@

Raspberry Pi via the Weaved web portal or
mobile application.

1. Ensure that the service (WeblOPi, Apache,
SSH...) you want to access is running on your
Raspberry Pi.

2. Create an account for free on
https://developer.weaved.com/

3. Download the Weaved loT Kit installer on your
Pi using a terminal window or SSH connection:

wget https://github.com/weaved/installer/raw/
master/binaries/weaved-nixinstaller_1.2.x.bin

Where “1.2.x” is the latest version of the installer
software on the Weaved website.

4. Make the installer executable:

chmod +x weaved-nixinstaller_1.2.x.bin

5. Run the installer:

sudo ./weaved-nixinstaller_1.2.x.bin

6. Log into the installer using the account you
created at step 2.

7. Choose the service you want to access, it can
be either Apache, SSH, WebIOPi or a custom
service.

8. Enter an alias to identify your device and
service; the installer will register your device,
which can take a while.

9. Connect to your device via

https://developer.weaved.com/ or download the
Weaved free iOS application. That’s it; you're
done; no complex configuration.

The mobile application is a convenient way to
access the WeblOPi GUI on your Raspberry Pi
from a mobile device in a single tap.

OOOOO Orange F & 22:32 46 % M)

http://127.0.0.1:34623/app/gpio-he... P2P

< PiTest

33V |:] n 5.0V
12C SDA |:| n 5.0V
12C SCL D n GROUND
m cno4n UART TX
GROUND n m UART RX
GPIO l7nmcl’]0 18
m GPIO 21 mm GROUND
m GPIO 22 mmcmo 23
33V |:| m GPIO 24
ALTO| e IODmGROUND
GPIO 9 m YL IOUT
el crion mm GPIO 8 ou
GROUND E D GPIO 7 ALTO

=

[
1o

With the Weaved loT Kit on your Raspberry Pi,
you won’t have to take care about network
configuration or your public IP anymore. If your
public IP changes, or your router restarts, then
the Weaved service will automatically detect the
change, and update the connection to your
Raspberry Pi.

You can even move your Raspberry Pi to another
location, on another network, and you will still be
able to access it with no change.

Weaved loT Kit also allows you to send Push
Notifications from the Raspberry Pi to your
mobile phone. Therefore, you could be notified
upon an event happening on your Raspberry Pi.

http://code.google.com/p/webiopi/
http://developer.weaved.com

L))

https://developer.weaved.com
https://developer.weaved.com/
http://code.google.com/p/webiopi/

http://developer.weaved.com

T T T T T ———
i

RASPBERRY Pl 2
Quad core processor and 1GB RAM

. W Y “—

P T

Raspberry Pi 2 Model B V1.1
= (%) Rospberry Pi 2014

New hardware

When the Raspberry Pi Foundation announced the
new Raspberry Pi 2, it came as a surprise to many
folks. But really it should not have been a surprise.
The Raspberry Pi is now 3 years old and in the life
cycle of a technology product it was long overdue an
update. Indeed, when the Model B+ was launched in
August 2014 many were disappointed that increases
in processor performance or RAM size did not
happen then.

Replacing the BCM2835 (and its 700MHz single core
ARM11 CPU) with the BCM2836 (and its 900MHz
quad-core ARM Cortex-A7 CPU), plus doubling the
RAM to 1GB, is a MAJOR performance update.
These have been widely documented so | will not go
into the details here, but you no longer have to make
excuses for the Raspberry Pi's (lack of)
performance, just because it only costs US$35.

Backwards compatibility

The Raspberry Pi Foundation has always tried very
hard to retain as much hardware and software
backwards compatibility as possible between
revisions. The update between Revision 1 and
Revision 2 of the Model B saw some GPIO
differences which required software updates. The
update between the Model B and Model B+ was
much more significant and from a software

Introducing the "game
changing’ Raspberry Pi 2

=

i
‘H.

lan McAlpine

MagPi Writer

perspective it was 100% backwards compatible. But
the many hardware changes to the layout of the
components meant that some accessories no longer
fitted and almost every case was rendered useless.
However, the update between the Model B+ and the
Raspberry Pi 2 is 100% backwards compatible, both
with hardware and software. With hindsight it is now
clear that the hardware updates introduced with the
Model B+ paved the way for the Raspberry Pi 2.

Ubuntu and Windows 10

There were some genuine surprises during the
Raspberry Pi 2 launch announcement. First, with its
ARM v7 processor, more operating systems become
available such as Ubuntu. But later in 2015 there will
also be Windows 10 for the Raspberry Pil. This will
be made available to the maker community for FREE
through Microsoft’'s Windows Developer Program for
loT (Internet of Things). You can sign up for this at
http://dev.windows.com/en-us/featured/raspberry
pi2support.

The availability of Windows 10 on the Raspberry Pi 2
is a game changer, both for the Raspberry Pi
Foundation and for Microsoft. Rightly or wrongly, any
computer running Linux is deemed too difficult to use
and certainly not for the masses. But if that computer
runs Windows then suddenly everything is different.
Suddenly you have access to something familiar,
something that does not require new training... and if
that computer only costs US$35 then it becomes a

2

http://dev.windows.com/en-us/featured/raspberrypi2support

complete no-brainer. Remember the now defunct
US$100 one laptop per child initiative? With its
access to Windows and its developer eco-system,
the Raspberry Pi 2 could now make that a true reality.

There has been some speculation about just how
capable Windows 10 will be on the Raspberry Pi 2.
There are several Windows 10 IoT derivatives
including "Mobile" for phones, low-end tablets, etc.
and "Athens" for resource constrained devices. | have
a US$99 tablet with an Intel Atom quad core CPU
and 1GB RAM. It runs the FULL version of Windows
8.1 very well.

Steve Teixeira from Microsoft has commented that
they are running "real" Windows 10 on the Raspberry
Pi 2, but as it is optimised for the Raspberry Pi 2 it
does not include the full Windows experience. Time
will reveal what that actually means but,
given the positive experience | have
with my cheap tablet, | have no
doubt that Windows 10 on
the Raspberry Pi 2 will
be equally as
good. It will
certainly be
interesting to
explore Visual Studio
and program the GPIO using
Windows development tools.

How much?

The second big surprise for me is the price. Hands up
who would have bought a Raspberry Pi 2 if it had
cost US$45? The Raspberry Pi Foundation is
predicting sales in 2015 of 3 million Raspberry Pis.
IMHO that is a pessimistic figure (especially as the
initial batch of 150,000 sold out in 24 hours) and
could have been easily achieved even if the price was
US$45. That would have provided US$30m (US$10
x 3m) extra funds for the Raspberry Pi Foundation to
use for good causes.

| was disappointed that the choice of the Raspberry
Pi 2 name breaks the homage to the BBC
Microcomputer. With the Compute Module, plus the
US$20 Model A+ and US$35 Model B+, the
Foundation could have easily introduced a US$45
Raspberry Pi Master. Each of these has a very clear
use case - Compute Module for industrial and
embedded applications, Model A+ for portable and

disconnected applications, Model B+ for everything
which does not require a GUI and the Raspberry Pi
Master for education and home computing.

But the Foundation did not do either of these things.
Instead they priced the Raspberry Pi 2 at US$35 thus
instantly cannibalising sales of the Model B+. (If you
want a cheap Model B+ now is the time to buy!) It is a
brave decision and both the Raspberry Pi Foundation
and Broadcom must be applauded for offering such
an amazing update while still keeping the price at an
incredible US$35.

Real world performance

| use my Raspberry Pi almost every day when
producing The MagPi. Today | had the opportunity to
spend some time with the Raspberry Pi 2 and | can
report that the performance improvement is even
better than | expected. | can have Scribus,
GIMP and LibreOffice all running
at the same time,
while generating
PDFs, and the
performance
remains great.
‘ No more watching

the CPU usage
monitor on the desktop
panel, waiting for it to drop
below 100%!

But the most pleasing improvement is
the usability of Epiphany. Using a web
browser on the Raspberry Pi is something you used
to do only if there was no other option... but not any
more. With the Raspberry Pi 2, browsing the web
using Epiphany is now a pleasure!

Conclusion

The Raspberry Pi 2 is a genuinely usable computer
for everyday use. No more excuses. History will
record that the Arduino and the Raspberry Pi were
instrumental in creating a new generation of
innovators, but it will also record that the Raspberry
Pi 2 finally made computers a commodity item -
accessible to everyone, everywhere.

Huge thanks to Cana Kit (http://www.canakit.com)
for getting a Raspberry Pi 2 to me in Pacific Canada
in an impossibly short period of time.

L)

http://www.canakit.com

Want to keep up to date with all things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to list Raspberry Jam events in your area, providing
you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Mechelen Raspberry Jam

Wanneer: Donderdag 12 februari 2015
Waar: Kanunnik De Deckerstraat 20A, Mechelen, Belgié

Na het enthousiasme van de vorige editie kon een tweede Raspberry Jam niet uitblijven. De activiteiten
vereisen géén Raspberry Pi ervaring. http://raspberryjam.be/tweede-raspberry-jam-op-2015-02-12

Northern Ireland Raspberry Jam 9

When: Saturday 14th February 2015, 1.00pm to 5.00pm
Where: Farset Labs, Linfield Industrial Estate, Belfast, BT12 5GH, UK

The Raspberry Jam sessions are both for complete beginners and those looking for more complicated
challanges. https://www.eventbrite.co.uk/e/14676410539

Rhone Valley Raspberry Jam

Quand: Dimanche 22 février 2015 de 10:00 a 17:00 (Heure : France)
Ou: Foyer Laique, 13 Avenue Jean Jaures, 84350 Courthézon, France

Journée de découverte et d'échange autour du Raspberry Pi et d'autres technologies numérique.
http://www.eventbrite.fr/e/15438067676

HacDC's Raspberry Jam

When: Saturday February 28 2015, 1.00pm to 5.00pm (EST)
Where: 1525 Newton St NW, Washington, USA

Come to learn and share: several Raspberry Pi computers will be networked together and available for
those attending to explore. http://www.meetup.com/hac-dc/events/219990940

Bristol Digimakers

When: Saturday 28th February 2015, 10.00am to 5.00pm
Where: @Bristol, Anchor Road, Bristol, BS1 5DB, UK

A series of technology events aimed at children (7+), teachers and parents. A great opportunity to learn

. about electronics and computing. http://www.eventbrite.com/e/15201494078

http://www.meetup.com/hac-dc/events/219990940/
http://raspberryjam.be/tweede-raspberry-jam-op-2015-02-12
http://www.eventbrite.fr/e/15438067676
http://www.eventbrite.com/e/15201494078
https://www.eventbrite.co.uk/e/14676410539

Raspberry Pi For Dummies (2nd Edition)
Sean McManus and Mike Cook

Wiley

L — g We first reviewed

| Raspberry Pi For
Dummies back in
Issue 13 of The
MagPi. Eighteen
months later and the
book has been

updated with a
second edition. A lot
has happened in the
Raspberry Pi world

Sean McManus
Mike Cook

during this time and
this edition describes many of those changes.

Raspberry Pi For Dummies (2nd Edition)
comprises of six parts. Part 1 describes getting
started with the Raspberry Pi including an
introduction, downloading an operating system
and a description of how to connect everything
together. It is similar content that you will find in
almost every Raspberry Pi book.

Part 2 is where things get much more interesting
with an explanation of getting started with Linux.
There is a chapter that explains the Desktop
Environment followed by a chapter on using the
Linux command line. This is particularly useful
with a description of many of the common shell
commands plus how to keep your system up-to-
date. There is even a good description of the
Linux directory structure and what each contains.

With Part 3 the book explores common uses of
the Raspberry Pi for both work and play. There is
a detailed chapter about LibreOffice - a word
processor, spreadsheet and presentation
software suite that is compatible with Microsoft
Office - followed by a chapter on editing photos
using GIMP, a very powerful image manipulation
program. Part 3 concludes with a chapter on
audio and video. This includes setting your

Raspberry Pi up as a media centre, probably one
of the most popular uses for the Raspberry Pi.

Part 4 describes programming the Raspberry Pi
and unsurprisingly it is the largest part in the
book. First there is an introduction to Scratch
followed by programming an arcade game using
Scratch. Next up is a good introduction to Python
followed by creating a game using Python and
Pygame. Part 4 concludes with chapters on
programming Minecraft and Sonic Pi.

One of the big appeals of the Raspberry Pi is the
ease that it can be interfaced to physical devices.
Many books gloss over this aspect but not
Raspberry Pi For Dummies. Part 5 is the second
largest part in the book and it starts with how to
understand circuits and soldering before
spending the next three chapters describing the
GPIO plus a wide variety of hardware projects.

Dummies books always conclude with The Part
of Tens and this book is no exception. There is a
chapter that highlights ten great programs for the
Raspberry Pi plus a chapter that describes ten
projects for you to try.

At 436 pages the second edition is 24 pages
longer than the original but the changes are
much more than the modest page increase
suggests. For example, a large chapter on
building a website has been removed and
replaced with two new chapters - Programming
Minecraft with Python and Making Music with
Sonic Pi. Additionally there is an additional
Appendix that describes how to use RISC OS
plus there is an online bonus chapter about
Mathematica. Of course every chapter has been
updated appropriately with recent information,
such as the use of NOOBS and the latest
Raspberry Pi hardware.

Raspberry Pi For Dummies (2nd Edition) is a
thorough and excellent book for those who want
to maximise their use of the Raspberry Pi.

The MagPi readers are able to receive a 25% discount. To claim, purchase from
www.dummies.com and enter the promo code VBJ92 when prompted.
Please note: this discount is only valid from the 1st February to the 31st July 2015 on the book listed here.

http://www.wiley.com
http://www.dummies.com

static ushort ReadUnsignedWord(int msbAddress, int IshAddress)

{

return raw;

Getting started with Mono and

12C devices

SKILL LEVEL : ADVANCED

Introduction

The first version of the C# programming
language was released in January 2002,
alongside the Microsoft dotNet framework. This
framework which was intended to provide a
secure runtime environment in a similar manner
as Java and its associated virtual machine. The
C# programming language is similar to Java,
where the syntax of both languages were
inspired by C and C++.

Although the initial releases of the dotNet
framework ran exclusively on Microsoft Windows
operating systems, the dotNet framework
specification was released in 2000, which
allowed anyone to implement it on any other
operating system. Fast forward a few years
later, and Novell came up with the Mono project,
which was aimed at providing a dotNet-
compatible runtime environment for Linux
(initially) and MacOS.

Today, Mono is maintained by Xamarin Ltd and
supported on Android, iOS and Xamarin. The
current version of the Mono framework available
in the Debian Wheezy Linux repositories is 3.2.8,
which supports up to dotNet framework version
4.5.

bus.WriteByte(devicelD, (byte)msbAddress); //read the MSB
byte[] bytes = bus.ReadBytes(devicelD, 1);
ushort raw = (ushort){((ushort)bytes[0] << 8);
bus.WriteByte(devicelD, (byte)lsbAddress); //re
bytes = bus.ReadBytes(devicelD, 1);
raw |= (ushort)bytes[0];

Mubarak
Abdu-Aguye
Guest Writer

Installing Mono

To be able to run C# (and essentially, any
application written in a dotNet language such as
VB.NET, F#.NET, etc) on the Raspberry Pi, the
Mono runtime environment has to be installed.
For the most basic purposes, it is possible to just
install the base mono-runtime package.
However, for the majority of development
activities, it is necessary to install the complete
package. Starting from the latest fully updated
Raspbian Linux distribution, type:

sudo apt-get install -y mono-complete

This will install a bundle of development tools
and several dotNet libraries. The installation will
take several minutes to finish. Once it has
finished, the version of Mono installed can be
verified by typing

mono --version

This should return something similar to:

Mono JIT compiler version 3.2.8 (Debian
3.2.8+dfsg-4+rpil)

Copyright (C) 2002-2014 Novell, Inc, Xamarin
Inc and Contributors. www.mono-project.com
TLS: __thread

SIGSEGV: normal

)

Notifications: epoll

Architecture: armel,vfp+hard
Disabled: none

Misc: softdebug

LLVM: supported, not enabled.
GC: sgen

Enabling I2C communication

The Linux module that handles I°C
communication on the Raspberry is disabled by
default in Raspbian Linux. To enable the I1°C
module, type:

sudo raspi-config

Then select the Advanced Options and then I2C.
Select Yes, Ok, Yes, Ok, Finish and No. This
will remove the 12c-bcm2708 kernel module
from the blacklist and load it.

To provide some diagnostic information on the
12C bus, type:

sudo apt-get install -y i2c-tools

Then enable the 12c-dev kernel module, by:

sudo nano /etc/modules

and add then adding
i2c-dev

to the end of the file. Save the file, shutdown the
Raspberry Pi and disconnect it from its power
source.

Connecting the BMP180

The BMP180 barometric pressure, temperature
and altitude sensor can be purchased from
Sparkfun at https://www.sparkfun.com/products/
11824 The sensor was connected to the
Raspberry Pi using a breadboard and four male-
to-male jumper wires, as shown at the top of this
page. Pay attention to the power connections, to
avoid damage to the sensor and the Raspberry
Pi.

PO
0

Raspberry Pi

Then turn the Raspberry Pi on again and type:

sudo i2cdetect -y 1

This will run the 12cdetect program, which will
show us all devices on the I12C bus. The -y part is
to override a yes/no prompt by providing a
default ‘yes’ answer, and 1 specifies the I°C bus
to be scanned. The I2C bus number depends on
the model of the Raspberry Pi, where more
information can be found at:
http://elinux.org/RPi_Low-level_peripherals

Typing the 12detect command should produce

0 1 2 3 45 6 7 8 9 ab c de f

00: e e
(02 —o oo co mo oo oo ce o ee o eo oo om oo o e
A B B e e e S e s S e e e e
() g S S
407 —= —m mm o mm o emmm em omem ol ol o o
g o= e mo e om oo = o e e e o e e

G O e

02 == o= —= == — == — 7

which reports that a device with address 0x77
has been detected. This device is the BMP180
sensor, where the address is hardcoded at the
Bosch factory.

Using I°C with C#

The [2C bus can be accessed from C# by
installing Rpi.I2C.Net.dll written by Max Shmelev.
To get this package type:

git clone https://github.com/mshmelev/RPi.I12C_Net
.git

The package contains classes and a supporting
shared library called libnativei2c.so. To use

S (@)

http://www.adafruit.com/product/1603
http://elinux.org/RPi_Low-level_peripherals
http://www.adafruit.com/product/1603

Rpi.l2C.Net.dll on Raspbian, the supporting
library should be compiled by typing:

cd RPi.I2C.Net/Lib/LibNativel2C/src
make

Now set the LD _LIBRARY_PATH, to include the
directory that contains the library.

export LD_LIBRARY_PATH=$HOME/RPi .12C.Net/Lib/LibNat
ivel2C

Now the Rpi.I2C.Net.dll library can be built:

cd ~/Rpi.12C_Net/RPi.I12C._Net
Xbuild RPi.I12C_Net.csproj

where the first command assumes the package
was cloned into the users home directory. When
the package builds it will produce a warning, but
will compile correctly.

When mono runs it looks for .dll libraries in the
present working directory and within the
MONO_PATH directory list. Once the package
has been built the Rpi.12C_Net.dll file
should be in the bin/Debug directory of
RPi.12C.Net.

The libnativei2c.so and
RPi.I12C_.Net.dll files should be made
available to mono, either by editing ~/ .bashrc
and appending:

i2c_net="$HOME/RPi .12C.Net/RPi.12C.Net/bin/Debug"
it [[-z $MONO_PATH]]; then
export MONO_PATH="$i2c_net"
elif [[$MONO_PATH 1= *"$i2c_net*]]; then
export MONO_PATH=$MONO_PATH:""$i2c_net"
i
unset i2c_net
natlib=$HOME/RPi.12C.Net/Lib/LibNativel2C
if [[-z $LD_LIBRARY_PATH 11; then
export LD_LIBRARY_PATH="$natlib"
elif [[$LD_LIBRARY_PATH I= *"$natlib™*]]; then
export LD_LIBRARY_PATH=$LD_ LIBRARY_ PATH:"$natlib”
i
unset natlib

or by copying [libnativei2c.so and
RPi.12C_Net.dll into the present working
directory where the mono program is being run.

Test program

To check the I12C library and the circuit, download
the test program and run it:

wget http://www.themagpi -com/resources/CSharp/Pi_I12
CTest.exe
mono Pi_Il2CTest.exe

The program will take sixty readings, print
“‘Done” and then close. The output from the

Temperature: 27.9 Pressure: 938.918264411984
Temperature: 27.9 Pressure: 938.933390108141
Temperature: 27.9 Pressure: 939.001455765812
Temperature: 27.9 Pressure: 938.948515806314

program should be something like this:
This program will only work correctly if the
BMP180 sensor is connected to the first 12C bus.

Hello World

Programs can be developed on the Raspberry Pi
or on Microsoft Windows using the Visual Studio.
Some information on development with Visual
Studio is given a at:
https://erictummers.wordpress.com/2012/01/25/t
arget-mono-from-visual-studio/

To build on the Raspberry Pi, use a text editor
such as nano or emacs and create a file called
Hel loWorld.cs that contains:

using System;
public class HelloWorld {
public static void Main() {
Console._WriteLine(*"Hello World!');
¥
ks

Then compile and run this example, by typing:

mcs HelloWorld.cs
mono HelloWorld.exe

)

https://erictummers.wordpress.com/2012/01/25/target-mono-from-visual-studio/

Building the test program

Download and unpack the program files by
typing:

wget http://www.themagpi -com/resources/CSharp/Pi_I12C
Test.zip
unzip Pi_Il2CTest.zip

Similar to the 12C communication library, this
package was developed using Microsoft Visual
Studio. The C# program files can be found in the
Pi_12CTest/Pi_12CTest/Pi_I12CTest
directory. The example program can be built and
run by typing:

cd Pi_I2CTest/Pi_I12CTest/Pi_Il2CTest
Xbuild Pi_l12CTest.csproj
mono bin/Debug/Pi_12CTest.exe

The I2C readout program

The Pi_I2CTest program source code can be
found in Program.cs. This program contains
commands to connect to the I2C bus, take data
and decode the values.

After the 12C kernel modules have been setup as
described earlier in this article, the 12C buses will
be visible as Linux devices /dev/i12c-0 and
/dev/i2c-1. A connection to the second 12C
bus can be made by using

12CBus.Open(**/dev/i2c-1");

The method returns an 12CBus reference to the
chosen bus. This 12CBus class is part of the
Rpi.12C_Net namespace. Therefore a using
directive is needed. Thus, the code in the
Main() method is:

using System;
//other using directives
using RPi.I12C_Net;

//namespace and class declaration
static 12CBus bus;

static void Main(string[] args) {
bus = 12CBus.Open(**/dev/i2c-1");

Using the 12CBus reference, it is possible to read
from and write to any devices on the bus. In the
code snippet below, the reference is declared
with class scope such that it is accessible to
other methods in the program.

The BMP180 sensor contains a number of
registers, each containing configuration or
measurement data. Configuration of the sensor
can be performed by writing the appropriate bit
combinations to the appropriate registers.
Similarly, temperature and pressure
measurements can be made by writing certain
bits to certain registers, waiting for specified
periods of time and then reading the contents of
registers designated to contain the results of the
measurements.

To explore basic read-write functionality, the
program reads the chip ID register of the sensor.
This is specified on the datasheet for the
BMP180 as being at 0xDO. A correcily
functioning BMP180 sensor should contain the
value 0x55 in that register. Therefore, to ensure
that there is in fact a BMP180 sensor connected
to the Raspberry Pi the program:

1) Reads the value in register 0xDO
2) Compares the value read to 0x55

To read a value from any BMP180 register, the
address of the desired register should be written
to the BMP180 and then a single byte is read
back from the sensor. The single byte thus read
is the value in the register specified in the
preceding write operation. Thus, to complete
step 1) above, the program:

i) Writes the value 0xDO to the BMP180 (which
selects that register for the next operation)
ii) Reads a single byte back from the BMP180

To perform (i), the value is written with the
WriteByte() method of the 12CBus class.
This method takes two arguments: the first is the
device address (integer) and the second is the
byte to be written (byte). The device address for
the BMP180 is 0x77 and the byte to be written is
0xDO0:

T (29)

bus.WriteByte(0x77, 0xDO);

To perform (ii), the ReadBytes() method of the
I2CBus class is used. This method takes two
arguments: the device address (integer) and the
number of bytes to read (integer). Unlike the
WriteByte() method, this method returns a
byte array (byte[]) containing the bytes read
from the device in the order that they were read.
In this case, only one byte is being read:

byte[] results = bus.ReadBytes(0x77, 1);

Assuming that all goes well, the results array
should contain a single value that should be
0x55. This can be confirmed by using an if
statement, comparing resul ts[0] with 0x55. If
results[0] is indeed 0x55, then a BMP180
sensor is present and functional. If it is not, then
perhaps there might be a wiring issue or the
sensor is not working correctly.

The complete code for the detection routine is
contained in the Detect() method in the
Program.cs file.

Reading the temperature

The BMP180 has certain calibration constants,
which are required to calculate the temperature
and pressure read from the sensor. These
constants are designated as AC1 to AC6, Bf1,
B2, and MB to MD. They are all sixteen-bit
values, stored in register pairs starting from
address 0xAA to OxBE. Therefore, AC1’'s MSB
and LSB are stored in OxAA and OxAB
respectively and so on.

For simplicity, only AC1 shall be considered. To
read it, a single byte should be read from
addresses OxAA and 0xAB. Next, the first byte
should be shifted by 8 positions to the left, such
that it becomes the MSB. Then the resultant
value should be OR’ed with the second byte.
This corresponds to:

bus._WriteByte(0Ox77, OxAA); // select the MSB of AC1l

// read one byte from OxAA
byte[] result = bus.ReadBytes(0x77, 1);

// select the LSB of AC1
bus.WriteByte(0x77, OxAB);

// read one byte from OxAB
byte[] result2 = bus.ReadBytes(0x77, 1);

// shift the MSB, store it in a 16bit variable
short finalValue = (short)(result[0] << 8);

// OR the MSB with the LSB

finalValue |= (short)result2[0];

// Variable finalValue now contains the calibration
// constant AC1l

A similar process is required for the other
calibration constants. Therefore, the functionality
was written as a method called
ReadSignedWord(). Note that constants AC4
to AC6 are unsigned, therefore another function
is needed to read them. For this reason, another
method called ReadUnsignedWord() was
implemented, within which the variable holding
the final result is declared as ushort (unsigned
short) as opposed to short (which is a signed
type). Finally, a method called InitParams()
was implemented, which reads and stores all of
the calibration constants by using the
ReadSignedWord() and
ReadUnsignedWord() methods. The reader
is strongly encouraged to read the
implementation of these three methods to gain a
clearer understanding.

To read the temperature from the sensor, the
value Ox2E is written to register address 0xF4 to
begin the measurement process. After a delay of
4.5 milliseconds, the result can be read from
registers OxF6 (MSB) and OxF7 (LSB). The
value read from the sensor is unsigned and is
converted to a temperature value using the
formula given on the data sheet, available from
Sparkfun:

X1 = (UT-ACB) x AC5/215
X2 = MC x 2!/(X1+MD)
B5 = X1 + X2

T = (B5 + 8)/2

where UT is the raw value read from the sensor.
To write multiple bytes at a time, the 12CBus

@)

instance provides a WriteBytes() method.
This method differs from the WriteByte()
method in that the second parameter is not a
single byte but a byte array (byte[]), containing
the bytes to be written. This corresponds to:

// OxF4 (address), Ox2E (data)

byte[] bytes = new byte[] { OxF4, Ox2E };
bus.WriteBytes(0x77, bytes); // address, then data
System.Threading.Thread.Sleep(7); // delay

// Read raw value from source file
long ut = ReadUnsignedWord(OxF6, OxF7);

// Convert ut to a temperature value

long x1 = (long)((ut - AC6) * AC5/Math.Pow(2, 15));
(long)(MC * Math.Pow(2, 11) / (x1 + MD));
long b5 = x1 + x2;

long temp = (long)((b5 + 8) / Math.Pow(2, 4));

long x2

temp = temp * 0.1; // convert to degC

The code above is used in the
ReadTemperature() method. Try reading the
datasheet and comparing it with the code for
reading the pressure.

Conclusion

The Rpi.l2C.Net library provides a well-
designed, low-level interface to the I2C bus. This
makes it possible to write drivers for particular
[°C devices with maximal flexibility. A basic
BMP180 driver is implemented in the
BMP180.cs file.

Note also that error checking/exception handling
code has been omitted both above and in the
driver code. In practice, all calls to the 12CBus
methods should be wrapped in try-catch blocks.
Finally, the Dispose() method should be called
on the I[2CBus instance once it is no longer
required. This explicitly ensures that other
programs can access it after your program exits.

Happy hacking!

10 DOF Gyro
Compass
Accelerometer &

SmartUPS Hacker’s Kit:
Innovate power for your Pi!

Altimeter for RPi

PiConsole
Access RPi Console on
your Android or iPhone!

\\\\\

IServoController
6 Channel Servo Controller
for Raspberry Pi

“SUSmartUPS

Uninterruptible power supply
for Raspberry Pi

MagPi Special 10% off coupon: MAGPIQE4WE
How to use coupon:
http://www.openelectrons.com/pages/37

OpenElectrons.com

openelectrons.com

SHORT

CRUST plus

www.shortcrust.net

the perfect base for your Raspberry Pi ﬁ

Iyy Pi Supply

www.pi-supply.com

http://www.rasp.is/hY6PCd

Data Streaming & Visualization

See what happened.
Real-time data streaming from your Raspberry Pi with
'_“ just one line of code. It’s that easy.

Interactive data visualizations.
Visualize and mine your data in waveforms, stacked
line graphs, and statistics. Data logs streamed in less

than 1ms!

Rest easy, your data is secure.
Every data stream is secured by enterprise-grade
SSL encryption from the millisecond you stream it.
While many of our users share their data with friends
and coworkers, others choose to work privately.

a8

opecial Offer for Mag Pi Readers
initialstate.com/magpi

S[aLE

initialstate.com/magpi

.
+switchon()

8 - Inheritance and polymorphism

W. H. Bell

SKILL LEVEL : ADVANCED MagPi Writer

Object-orientated languages such as Java, Python and C++ all allow inheritance structures. The idea of
inheritance is that several classes may have a basic set of member functions or data members that are common
between them. Rather than implement these members functions or data members several times, they can
instead be implemented in a base class. The other classes then inherit from the base class, to include the
member functions or data members.

Inheritance structures can include a large number of classes. As the number of classes involved becomes larger,
the compilation time will increase and the effects of changing the base class design will be more dramatic.
Therefore, inheritance should be used carefully, where the base class design should be as robust as possible.
Unlike Java, C++ allows a derived class to inherit from several base classes. However, this feature should be
used sparingly, to avoid software from becoming too complicated for other developers to understand.

The syntax and usage of C++ classes is discussed in Issues 23, 24 and 27 of The MagPi. This article builds on
concepts introduced in these previous articles. This tutorial assumes that g++ and make have been installed.
Using the latest Raspbian image, these can be installed by typing:

sudo apt-get install -y g++ make

Three layer inheritance

Open a text editor such as nano or emacs and create a file called Bag.h. Then add the C++ code on the top of
the next page and save the file. This is the base class declaration and implementation. Since the functionality of
the member functions is very simplistic, it has been implemented within the header file. The class contains one
data member that holds the volume of the bag. There is a constructor that has a default value. This implies that
the constructor can be used with a value or without a value. The two member functions return and set the data
member value. The data member is declared as private. This implies that it will not be directly accessible in the
derived class. To allow direct access to the data member in the derived class, the data member should be
declared as protected or public.

Gy

#ifndef BAG_H

#define BAG_H

class Bag {

public:
Bag(double volume=0): // Constructor, with default value
m_volume(volume) { // Set the value of the private data member m_volume

}

double volume(void){ // Return the volume of this bag object
return m_volume;

}

void setVolume(double volume){ // Set the volume of this bag object
m_volume = volume;

}

private:
double m_volume; // A data member to store the volume

I
ftendif

Now that a class has been written, another class can inherit from it. Create another file called ColouredBag.h and
add the C++ code given below.

#ifndef COLOUREDBAG_H
#define COLOUREDBAG_H

// Include the base class.
#include "Bag.h"

class ColouredBag: public Bag { // ColouredBag inherits from Bag
public:

ColouredBag(char c='0'): // Set the bag colour

Bag(), // Set the volume of the bag to zero

m_bagColour(c){ // Set the bag colour

3

char colour(void) { // Return the bag colour
return m_bagColour;

}

void setColour(char c) { // Set the bag colour
m_bagColour = c;

}

private:
char m_bagColour; // Variable to store a colour character

3
#ftendif

The ColouredBag class is a simple container class that inherits from the Bag class. This implies that it has one
data member within the class declaration and one data member by inheritance. The ColouredBag constructor
calls the Bag constructor and sets the value of the data member. There are two accessor functions in the
ColouredBag class and two more that are inherited from the Bag class.

D)

Inheritance structures can include several layers of classes. To demonstrate this, create another file called
BeanBag.h that contains the C++ code given below:

#ifndef BEANBAG_H

#define BEANBAG_H

// Include the base class
#include "ColouredBag.h"

class BeanBag: public ColouredBag { // BeanBag inherits from ColouredBag
public:
BeanBag(char colour='Q", int beans=0): // Constructor with default values
ColouredBag(colour), // Set the value of the colour, by calling the constructor
m_beans(beans) { // Set the number of beans

}

int beans(void){ // Return the number of beans
return m_beans;

}

void setBeans(int beans){ // Set the number of beans
m_beans = beans;

}

private:

int m_beans; // The number of beans in the bag
s
#endif

The BeanBag class inherits from the ColouredBag class, which in turn inherits from the Bag class. This implies
that the BeanBag class includes functions and data members that are present in both base classes. Now create
another file called main.cpp and add the C++ code given below. Then compile the main.cpp file using g++ or a

#include <iostream>
#include "Bag.h"
#include "ColouredBag.h"
#include "BeanBag.h"
using namespace std;

int main(Q) {
Bag bag(30.0); // Create an Bag object
ColouredBag colouredBag; // Create a ColouredBag object
colouredBag.setVolume(40.0); // Set the volume of the coloured bag object
colouredBag.setColour('r'); // Set the colour character of the coloured bag
BeanBag beanBag('b'); // Create a BeanBag object
beanBag.setVolume(50.0); // Set the volume of the BeanBag object
beanBag.setBeans(100); // Set the number of beans in the BeanBag object
cout << "Volume of bag = " << bag.volume() << endl << endl; // Print the volume
cout << "Volume of colouredBag = " << colouredBag.volume() << endl; // Print the volume
cout << "Colour of colouredBag = " << colouredBag.colour() << endl << endl; // Print the colour
cout << "Volume of BeanBag = " << beanBag.volume() << endl; // Print the volume
cout << "Colour of BeanBag = " << beanBag.colour() << endl; // Print the colour
cout << "Beans in BeanBag = " << beanBag.beans() << endl; // Print the number of beans
return 0;

n

@)

Makefile as demonstrated in the previous C++ articles. Then run the program to print the values on the screen.
Polymorphism and interfaces

Polymorphism can be used to define interface classes. An interface class is an abstract base class that contains
purely virtual functions and a virtual destructor. Purely virtual functions are not implemented within the
declaration of the base class. Therefore, when a derived class inherits from the interface class it has to
implement the purely virtual functions otherwise it will not compile. Having defined an interface class, an
interface pointer can be used to access many different implementations of the interface. This implies that large
sections of a program can rely on the presence of the member functions defined in the interface class, without
needing to know which implementation of the interface is actually being used. To demonstrate this principle,
create a file called IVectorTransform.h and add the C++ code given below:

#ifndef IVECTORTRANSFORM_H
#define IVECTORTRANSFORM_H

#include "TwoVector.h"
#include <string>

// A transform interface: a purely abstract base class.
class IVectorTransform {
public:
virtual ~IVectorTransform(){}; // The destructor should be implemented in the interface
virtual TwoVector transform(const TwoVector &) = @; // Purely virtual
virtual std::string str() = 0; // Purely virtual

i

ftendif

This interface class contains two purely virtual member functions, to transform a two-dimensional vector and
return the transform as a string. The TwoVector class is given in Issue 27 of The MagPi, where both the
TwoVector.h and TwoVector.cpp files are needed. Next, create a file called MatrixTransform.h that contains:

#ifndef MATRIXTRANSFORM_H
#fdefine MATRIXTRANSFORM_H
#include "IVectorTransform.h"

// A matrix transformation, inheriting from the IVectorTransform interface
class MatrixTransform: public IVectorTransform {
public:

MatrixTransform(double norm=1.0): // With default normalisation
m_normalisation(norm){ // setting the normalisation of the matrix
m_matrix[@][0] = @.; m_matrix[1][@] = 1.; // The first two matrix elements
m_matrix[@][1] = -1.; m_matrix[1][1] = @.; // the remaining two matrix elements

3

virtual ~MatrixTransform(){}; // A virtual destructor

virtual TwoVector transform(const TwoVector &); // A virtual transform function

virtual std::string str(); // A virtual str function to return a string form of the transform

private:
double m_normalisation; // The normalisation of this matrix transformation
double m_matrix[2][2]; // The matrix that will be multiplied with the 2d vector
s
#endif

D)

The MatrixTransform class includes the declaration of the transform and str member functions without the =0.
This implies that these functions are virtual, but not purely virtual. Therefore, they are implemented for this class.
The class also contains a constructor to set the matrix normalisation and initialise the values used for each of the
matrix elements. Create another file called MatrixTransform.cpp and add:

#include "MatrixTransform.h"
#include <sstream>
#include <iomanip>

TwoVector MatrixTransform::transform(const TwoVector &twoVector){
double x = twoVector.x(); // Get the x-component of the 2d vector
double y = twoVector.y(); // Get the y-component of the 2d vector
double new_x = m_normalisation * (x*m_matrix[@][0@] + y*m_matrix[@][1]); // matrix mult.
double new_y = m_normalisation * (x*m_matrix[1][0@] + y*m_matrix[1][1]); // matrix mult.
return TwoVector(new_x,new_y);

}

std: :string MatrixTransform::str(){
std: :stringstream ss; // Create a string stream instance

ss << std::setw(4) << m_normalisation << " x "; // Print the normalisation and matrix

ss << "I " << std::setw(3) << m_matrix[@][0] << ", " << std::setw(3) << m_matrix[@][1]
<< " |" << std::endl;

ss << " | " << std::setw(3) << m_matrix[1][0] << ", " << std::setw(3) << m_matrix[1][1]
<< " " << std::endl;

return ss.str(); // Return the string value from the string stream instance

The transform function performs matrix multiplication between the two-dimensional vector and the 2x2 matrix.
The results from this multiplication are then used to create a new TwoVector instance, which is returned by the
function. The str function uses a string stream instance to return a string representation of the matrix and its
normalisation. To complete the example program, create another file called main.cpp and append:

#include "TwoVector.h"
#include "MatrixTransform.h"
#include <iostream>
#include <cmath>

// A program to demonstrate how to use an interface class

int main(Q) {
TwoVector vecl(3.,4.); // A 2d vector (x=3, y=4)
IVectorTransform *t = new MatrixTransform(l); // Create a new transform on the heap
TwoVector vec2 = t->transform(vecl); // Transform the vector, to produce a new vector
std::cout << t->str() << std::endl; // Print the string form of the transform
std::cout << "vecl=" << vecl << ", vec2=" << vec2 << std::endl; // Print the vectors
delete t; // Delete the matrix transform pointer
return 0;

}

Then, similar to the article in Issue 27, use a Makefile to compile the .cpp files together to make an executable.
When the program is run it will print the values of the two-dimensional vector components before and after the
matrix transformation. Notice that the pointer type used to refer to the MatrixTransform object is an
IVectorTransform pointer. While the pointer type is the base class, the derived class member functions are
called. If the base class member functions were not virtual, then the base class member functions would have
been called instead.

@)

Use a browser from

any device to program

and monitor Yyour
Raspbemy Pi

Just drag & drop blocks

to create vour applica-

tions, using Visual
Programming

Program and monitor Use our graphs to
your Pi from anywhere display Your sensors'
in the Internet data

WWW.Wyliodrin.com

ARDUINO

http://www.wyliodrin.com

BOUNCING SURFACES

Two player arcade game

Air hockey arcade game

W. H. Bell

MagPi Writer

SKILL LEVEL : BEGINNER

Many games require sprites to bounce on a
surface. While Scratch provides a block that
causes a sprite to bounce on the edge of the
screen, games often require interactions with
other edges. In this month's article, a simple air
hockey arcade game is introduced. There are
two paddles and two sets of controls, one for
each player. If the puck touches the sides of the
table or one of the paddles, it will bounce off the
surface. The first player to get to seven goals
wins the game.

|:-puck Player2 mﬂ] i:l

| puck Playerl “j

Bouncing

When a sprite bounces off a surface, the surface behaves as a mirror flipping the velocity. The
surface can have a perfect bounce where no energy is lost, or a non-perfect bounce where energy
is lost as a function of the velocity of the bouncing sprite at the point of impact with the surface.
The game in this article includes a perfect bounce, since it is the simplest option the implement.

Bouncing in scratch can be implemented by checking if a sprite touches a specific colour. This
implies that games can be constructed without using the position of the bouncing sprite on the
screen. When a sprite moves more than one unit of distance at a time the touching color
sensor can fire twice before the sprite leaves the coloured area. This implies that a simple if
statement might cause the velocity to mirror twice and the sprite to fail to bounce correctly.

fa)

The puck

The velocity of the puck is described by two components, vx
and vy. At the start of the game, they are set to random
values. The scores for each player are reset to zero and the
bounce_x and bounce_y variables are set to 0. The player
scores are variables that belong to the puck and the other
variables are global such that they can be modified by the
paddle sprite programs. The
starting position of the puck is
chosen and the main loop
begins.

s«éi
= E_t
set bo

ey The main loop continues until
? ‘or touching color 2 = i
= : = | either one of the players has
. seven points. Inside the main
loop there are two if-else
B touching color 2 3 statements that check the
change Flay=rl |by @) bounce_x and bounce_y
— variables. The purpose of
these tests is to prevent the
touching color from
J being true twice due
. to the sprite moving
more than one pixel
- atatime.

" touching color ? or touching color

7 and tuuc-hing color

rmt' touching color ? and touching color

The puck only
bounces if it is not already bouncing in the x or vy
direction. The sides of the table and the sides of the
paddles were chosen to be the same colours,
whereas the colours of the goals were chosen to be
specific for each player. If the puck touches a surface
2 o8 then the associated velocity component is reflected.
For example, if it bounces into the right-hand side, the
x component of the velocity is mirrored and the y
component of the velocity is unaffected.

i change x by [vx
-

j honae ¥ £y G After the two if-else statements, the velocity

o s components are used to move the puck to the next
ooy (ESENETIT for € secs position on the screen. When the main loop exits, the
i program checks to see which player has won and

| say QORI for € secs prints either one of the two winning messages.

The paddles

Two paddle sprites were created, one for
each player. To help the players recognise
which paddle is which, the bulk of the two
paddles are coloured differently. The first
player is assigned the cursor keys to move
the paddle around and the second player is
assigned w, s, a and d. When the green
flag is clicked, the two paddles move to
their default positions along the x-axis.

In a normal game of air hockey, each
player is not allowed to reach into the other
half of the table. Therefore, the paddles
are not allowed to be moved to the other
side of the table. The paddles are also not
: allowed to be moved off the side of the
- table. These restrictions are implemented
y by adding an if statement to each of the
paddle control scripts.

cﬁange = by

touching _F'_'JEl_| £

change = by

touching puck |2

‘change % |by

When a moving object hits another object, the object it hits is given an impulse. For example,
when a ball is hit with a bat the ball is sent into the air. If the bat is not moving, then the ball will
just bounce off it. To simulate the effect of
an impulse, the velocity component of the
puck is incremented according to the
direction the paddle is moving when it is hit
by the puck.

Possible extensions

change ¥ by

Try changing the speed and effect of the
impulse of the paddles. Try starting the
game without an initial puck velocity, where
the puck is in range of one of the two
players.

touching puck | ?

Bouncing can be used for several different
games. For example, a vehicle that drives
from the left to the right of the screen could
bounce over the surface of some terrain.

=xpand your P

Stackable Raspberry Pi expansion boards for the A+ and B+

Serial Pi Plus

RS232 serial communication board.
Control your Raspberry Pi over RS232
or connect to external serial
accessories.

Breakout Pi Plus

The Breakout Pi Plus is a useful
and versatile prototyping expansion
board for the Raspberry Pi A+ and B+.

ADC Pi Plus

8 channel analogue to digital converter.
[2C address selection allows you to add
up to 32 analogue channels to your
Raspberry Pi.

O Pi Plus

32 digital 5V inputs or outputs. I2C
address selection allows you to stack
up to 4 10O Pi Plus boards on your
Raspberry Pi.

RTC Pi Plus

Real-time clock with battery backup
and 5V I2C level converter for adding
external 5V I2C devices to your
Raspberry Pi.

1 Wire Pi Plus

1-Wire® to 12C host interface with ESD
protection diode and I2C address
selection.

We also stock a wide range of expansion boards
for the original Raspberry Pi models A and B.

Belectronics UK www.abelectronics.co.uk

http://www.abelectronics.co.uk

s et DER

self.n = n . .
self.fact = 0 written in Python

self.count = 0

def next(self): g+ 2k v e on P
if self.count > self.i A o N ; —
raise Stoplterat,
self.fact *= self.coun
if self.fact < 1:
self.fact = 1
self.count+=1
return self.fact i

Simply Amazing !

s
L —

Martin Meier

Guest Writer

SKILL LEVEL : BEGINNER

My education in programming truly began when | traded my hard-earned money for a copy of “The
Creative Atari”. Sure, | knew my way around the BASIC programming language, but so did most kids
back in the mid-eighties. Similar to most kids back then, | was far more interested in typing in the
games than | was in actually learning something. Luckily for me, this new tome was not just a collection
of few BASIC programs. Instead, each programmer had been thoughtful enough to include a write up
with his contribution that not only explained the nuts and bolts of the code, but took us deep into the
development process. These articles were written in such a way that it stuck with me for the next thirty
years.

Maze Master

“Maze Master” was a fun little offering by Fred Brunyate, which would give the player a new maze each
time it was run. Having a limited supply of quarters had already prodded me to attempt to program my
own games. A program that generated a random maze with only one path from start to finish would give
me lot to work with. Even better, was that Fred’s explanation gave me everything | needed to adapt this
concept to an entertaining dungeon-crawler game. Years later, while learning C, | wrote a version of the
maze builder in C. Now learning Python, | repeated the process and produced another maze builder.
Clearly, Fred had provided me with a fun little exercise to encourage me while learning new
programming languages. This article contains the Python version, such that that others may benefit.

The ideas Fred provided are pretty straight-forward. Start at any point within a two-dimensional array.
Mark the block you are standing in, so you cannot move back into it. Now look at the four squares
around you, and see which ones you can move into. Once you have made that list of potential moves,
pick one at random. Repeat that process until there is nowhere left for you to move. Once you have
boxed yourself into a dead end, simply choose a new position in the array that you have already been in
and continue moving. Choosing a location, in which you have already been, insures that all the maze
branches are connected together. Repeat this process until all the squares in the array have been
tagged.

(aa)

In Python

Python is a great choice for this exercise. If you look at the program listing, you can see that | have
divided it up into three main parts: build_maze, print_maze, and main. Starting with main, we can
see that the first thing that happens is that the program asks the user how big the maze should be. With
that information, the programme then initialises the two-dimensional array of the requested size to all
‘0’s.

The main loop in the programme first checks to see if there are any cells left in the array that have not
been moved into. If there are still some available, it makes a list of possible moves (left, right, up, and
down) based on what is around the cell it is in. The program then makes a random choice based on the
list it has compiled. Now things begin to get a little confusing. The same array that keeps tracks of
whether or not a cell has been moved into, also keeps track of how the walls on each cell are set up.
This program will only concern itself with the lower wall and the right wall of each cell, with the upper
wall being handled by the cell above and the left wall being defined by the cell to the left. A value of 4
means that both the lower and the right-hand wall of a cell are in place. A value of 1, means that both
the lower wall and right-hand wall are absent. Values of 2 and 3 correspond to only the right-hand wall
or lower wall respectively. Based on which random direction the program has decided move in, it will
update both the cell it is currently in and the cell it moves into.

The last part of the program is print_asci_maze. All this does is print out the completed maze,
based on the array it is fed. Back in my Atari days, | had solid block graphics that made excellent walls
and intersections. As | am still feeling out Python’s capabilities, | have decided to just use the
characters +, -, and | for now.

Hopefully, you have enjoyed this exercise as much as | have. More importantly, | hope that any budding
programmers will come away with an understanding of the application of a simple concept that can be
applied to help you learn new languages. Keep on coding!

Maze Builder. Inspired By Maze Builder. Inspired By

"The Creative Atari" 1983 "The Creative Atari" 1983
What should the width be (2-10)710 What should the width be (2-10)710
What should the depth be (2-10)75 What should the depth be (2-10)75
Your maze will be 10 by 5 Your maze will be 1@ by 5
Am building a 10 by 5 maze Am building a 10 by 5 maze
Ts+—T—+—+—T—+—T—+—+—T TST—+—+—T—+—+—+—T—+—T
T A A
TTTTTTIAT [T T T A
T + T—+—T—+ T + T T T T—+—+ T—+—+ T—+ +—+—T
T_+ T +-+ T +_+_T + T T +-+-+ T +-+ T_+ T T
+-t—t—t -+ + +-t—t—t—t—t—t-+-+-+f+

where S is the start and F is the finish. Every time the program is run, the maze is different!

)

#!/usr/bin/env python
import random

def build_maze(maze):
deep = len(maze)
wide = len(maze[@])
print "Am building a",wide,"by",deep, "maze"

X =0

y =20

mazely][x]= 4
total = wide*deep
blocks_tagged = 1

while (blocks_tagged < total):
options=[]
if (x > 0):
if (mazely][x-1] == 0):
options.append("left")
if (x < wide-1):
if (mazely][x+1] == 0):
options.append("right")
if (y > 0):
if (mazely-1][x] == 0):
options.append("up")
if (y < deep-1):
if (mazely+1][x] == 0):
options.append("down™)

if (options):
choice_index = random.randrange(len(options))
choice = options[choice_index]
blocks_tagged +=1

if (choice == 'down'):
if (mazely][x] == 3):
maze[y][x] =1
if (mazely]l[x] == 4):
mazel[y][x] =2
y=y+1
mazel[y]l[x] = 4
if (choice == "'
y=y-1
maze[y][x]=2

up'):

if (choice == 'right'):
if (mazely][x] == 4):
mazel[y][x] = 3

if (mazely]l[x] == 2):
mazel[y][x] = 1

X = x+1
mazel[y]l[x] = 4

if (choice == 'left'):
X =x -1
mazel[y][x] = 3

else:
while(1):

y = random.randrange(deep)
X = random.randrange(wide)
if (mazely]l[x] > 0):

break

def print_asci_maze(maze):
deep = len(maze)
wide = len(maze[@])
right_wall = (0,2,4)
bottom_wall = (0,3, 4)

print top border

row = "+s+"

for index in range (@,wide-1):
row +="-+"

print row

for index1l in range (0@,deep):
print upper half of row
row = "|"
for index in range (@,wide):
if (maze[index1][index] in right_wall):
row += " |"
else:
row +=
print row
print lower half of row
row = "+"
for index in range (@,wide):
if (index == wide-1) and (indexl==deep-1):
row +="f+"
else:
if (maze[index1][index] in bottom_wall):
row +="-+"
else:
row += " +"
print row

The main function

def main():
print """\n\nMaze Builder. Inspired By
"The Creative Atari" 1983\n\n"""
width = 0
depth = 0

while (width < 2) or (width > 10):

width = int(Craw_input("What should the width be (2-10)?"))
while (depth < 2) or (depth > 10):

depth = int(raw_input("What should the depth be (2-10)?7"))
print "Your maze will be",width,"by",depth

set up a list of lists referenced as maze[row][column]
maze = [@ for index in range (@, depth)]
for index in range (@, depth):

maze[index] = [@]*width

build_maze(maze)
print_asci_maze(maze)

if __name__ == '__main__":
main()

A Challenge !

The author has deliberately kept this script simple, using text characters to draw his maze implies that the
code is very portable. However, MagPi readers are all hackers at heart, our valued editor would love to see
what they can do with this code. Instead of poking things like "-+" into the variable, 'row', how about using
some of the very many unicode characters ?

As a hint, try firing up your python environment and typing "print unichr(0x2588)", don't like that "character" ?
Try 0x254b. Nearby numbers produce similar characters. There are a lot of alternatives scattered across the
unicode set.

We may be able to convince the Editor to publish the best versions so please send your effort into
articles@themagpi.com

The MagPi is available for FREE from http://www.themagpi.com, from The MagPi iOS
and Android apps and also from the Pi Store. However, because so many readers have
asked us to produce printed copies of the magazine, we are pleased to announce that
printed copies are now regularly available for purchase at the following Raspberry Pi
retailers...

Americas EMEA AsiaPac

AUTHENTIC

(MODMYPI)
%
<€
Pi Supply

o
a3
| Ry o<

Have Your Say...

The MagPi is produced by the Raspberry Pi community, for the Raspberry Pi
community. Each month we aim to educate and entertain you with exciting projects for
every skill level. We are always looking for new ideas, opinions and feedback, to help us
continue to produce the kind of magazine you want to read.

Please send your feedback to editor@themagpi.com, or post to our Facebook page at
http://www.facebook.com/MagPiMagazine, or send a tweet to @TheMagP1. Please
send your article ideas to articles@themagpi.com. We look forward to reading your
comments.

@o0ge

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.themagpi.com
https://www.modmypi.com/the-magpi-magazine
http://www.pi-supply.com/product-category/books-and-magazines/the-magpi-magazine/
http://thepihut.com/collections/the-magpi-raspberry-pi-magazine
https://www.adafruit.com/index.php?main_page=adasearch&q=the+magpi
http://www.buyraspberrypi.com.au/shop/magpi-issue-16/
http://www.facebook.com/MagPiMagazine
mailto:articles@themagpi.com
http://swag.raspberrypi.org/products/magpi
mailto:editor@themagpi.com
http://twitter.com/TheMagP1

