
IISSSSUUEE 3300 ­­ FFEEBB 22001155

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hhttttpp::////wwwwww..tthheemmaaggppii..ccoommRRaassppbbeerrrryy PPii iiss aa ttrraaddeemmaarrkk ooff TThhee RRaassppbbeerrrryy PPii FFoouunnddaattiioonn..
TThhiiss mmaaggaazziinnee wwaass ccrreeaatteedd uussiinngg aa RRaassppbbeerrrryy PPii ccoommppuutteerr..

EElleeccttrroonniicc PPiinngg PPoonngg

PPWWMM MMoottoorr CCoonnttrrooll

CC++++ IInnhheerriittaannccee

IInnttrroodduucciinngg CC##

RRaassppbbeerrrryy PPii 22

MMaazzee BBuuiillddeerr

WWeeaavveedd IIooTT

AAiirr HHoocckkeeyy

EEnnrriicchhiinngg

MMaarriinnee

EElleeccttrroonniiccss

GGeett pprriinntteedd ccooppiieess

aatt tthheemmaaggppii..ccoomm

http://www.themagpi.com
http://www.themagpi.com

Ash Stone - Chief Editor / Administration

Ian McAlpine - Layout / Testing / Proof Reading

W.H. Bell - Issue Editor / Administration / Layout

Bryan Butler - Page Design / Graphics

Matt Judge - Website

Nick Hitch - Administration

Colin Deady - Layout / Proof Reading

Aaron Shaw - Administration

Dougie Lawson - Testing

The MagPi Team

Paul Capenter - Testing

Mark Pearson - Layout

John Stap - Layout

Nick Liversidge - Layout / Proof Reading

Martin Wolstencroft - Proof Reading

David Bannon - Layout / Proof Reading

Shelton Caruthers - Proof Reading

Rita Smith - Proof Reading

Claire Price - Proof Reading

2

30

Welcome to Issue 30 of The MagPi and another bumper issue ful l of interesting articles and projects.

Before we describe the content of this Issue, let us tel l you about our new Kickstarter project to print

Volume 3 of The MagPi (Issues 20 to 29) plus a superb new binder. Many of you have asked us for

printed copies of The MagPi. Therefore, please check it out at:

https://www.kickstarter.com/projects/themagpi/the-magpi-magazine-for-raspberry-pi-volume-3

Did you miss our surprise? Over the Christmas period we released a special edition of The MagPi.. . a

massive 1 32 pages of articles from previous issues that we think are great for folks who are new to the

Raspberry Pi. You can download it for free from http://www.themagpi.com.

In this Issue, Olivier LeDiouris demonstrates how the Raspberry Pi can be used to enhance navigation

data, sampling sensors over a long voyage. João Matos explains how to produce an electronic tennis

game with the GPIO pins, LEDs and numeric LED displays. Phi l ip Munts discusses the basics of

control l ing a small hobby DC motor with his expansion board. Eric Ptak introduces a new P2P solution

that al lows a secure connection to Raspberry Pi projects that are not directly avai lable on a public

network connection. Final ly, Ian McAlpine rounds off the hardware section by presenting the new

Raspberry Pi 2.

Programming is part of any Raspberry Pi project. In this Issue, Mubarak Abdu-Aguye introduces the C#

programming language with an I2C project. Wil l iam Bell demonstrates how to use C++ inheritance and

interface classes. Wil l iam also discusses another Scratch arcade game, with a two player air hockey

simulation. Final ly, Martin Meier rounds off this Issue with a Python maze generator.

Chief Editor of The MagPi

3

4 ENRICHING NMEA
Using Java to enrich an NMEA stream

1 0
Build a hardware based "tennis" game with the Raspberry Pi

PING PONG

Pulse width modulation motor control
1 6 LPC1 1 1 4 I/O PROCESSOR

20
Access your Raspberry Pi over the internet
WEAVED IOT KIT

28
Starting C# with Mono

C#

RASPBERRY PI 222
Quad core processor and a gigabyte of RAM: it's a game changer!

Raspberry Pi for Dummies
25

BOOK REVIEW

48
Send us your feedback and article ideas
HAVE YOUR SAY

26
Mechelen Belgium, Belfast UK, Courthézon France, Washington USA, Bristol UK

THIS MONTH'S EVENTS GUIDE

34
Part 8: Inheritance and polymorphism

C++ CACHE

40
A two player air hockey game in Scratch

THE SCRATCH PATCH: BOUNCING SURFACES

44
Generating maze puzzles

THE PYTHON PIT: MAZE BUILDER

http://www.themagpi.com

Contents

http://www.themagpi.com

4

SKILL LEVEL : INTERMEDIATE

Olivier LeDiouris

Guest Writer

Enriching the NMEA stream
using Java

Background

Various commercial electronic instruments are

avai lable for boats to read, compute, and display

different data used for navigation. My idea was

to provide easy access to the data and allow

display of the data on several kinds of devices,

not just the expensive commercial displays sold

by the nautical equipment providers. I also

wanted to be able to add more data sources and

display the merged information.

Raspberry Pi setup inside the chart table

In the picture above, the Raspberry Pi is fitted

with a Slice of Pi break-out board to host the

battery monitoring device. Also visible is the

small breadboard with a BMP1 80 barometric

pressure and temperature sensor board.

The Raspberry Pi is the only device connected to

the boat's NMEA (National Marine Electronics

Association) Interface. I t is the first to be turned

on, and the last to be switched off. I 've been

running it continuously for weeks, without any

gl itch.

In this role the Raspberry Pi fulfi ls two primary

functions. Firstly it enriches the NMEA Stream

read from the NMEA Station, by calculating new

data values, and adding data read from the

connected sensors. Secondly it re-broadcasts

the enhanced data stream on its own network, so

it can be read and used simultaneously by a

variety of devices.

Optional ly the Raspberry Pi can also read its

own data stream and format a character console

display, this is discussed later.

The NMEA format

The electronic instruments avai lable on boats are

used to measure data l ike the boat speed,

position and heading, the wind speed and

direction, al l the kind of things required for

navigation. Some data are read from transducers

5

(boat speed through water, wind speed,

compass heading, etc.) , and some are computed

(true wind speed and direction, true heading,

etc.) . Those data are usual ly avai lable in the

NMEA format. The definition of the NMEA strings

is one of the oldest electronic standards. The

NMEA sentences strings are human readable,

that is it is a text format although it can be a bit

cryptic. Here is an example of what an NMEA

stream looks l ike:

$IIMWV,112,R,00.8,N,A*19
$IIMWV,109,T,00.7,N,A*1A
$IIMTA,31.5,C*02
$IIRMB,A,0.23,R,,HMB-3,,,,,001.20,184,,V,A*1F
$IIXDR,P,1.0156,B,0*71
$WIMDA,29.991,I,1.016,B,31.5,C,,,,,,,,,,,,,,*
3B
$IIRMC,062658,A,1111.464,S,14235.335,W,05.6,2
26,231110,10,E,A*0A
...

Extracting the data

The information we want can be extracted from

the NMEA data stream using a suitable parser,

which is a piece of software that turns text into a

programming language "structure". As an

example, let us take an RMC (Recommended

Minimum) NMEA sentence, the last complete

sentence shown above:

A JSON (JavaScript Object Notation) parser

could turn that string into a JSON object l ike this:

{
type: 'RMC',
active: true,
cog: 226,
sog: 5.6,
declination: 10.0,
date: 1290493618000,
pos: {

latitude: -11.191066,
longitude: -142.5889166

}
}

The JSON object can then be used in your

program. In the object above:

cog (Course Over Ground) 226º

sog (Speed Over Ground) 5.6 knots

dec (Decl ination) 1 0º E

date (Date mil l iseconds since 00:00:00 Jan 1 st

1 970) 1 29049361 8000 is 23-Nov-201 0 06:26:58

UTC.

pos (Position decimal degrees from deg/min)

(Latitude) 1 1 ºG 1 1 .464' South

(Longitude) 1 42ºG 35.335' West

Exclusive serial port access

Navigation stations usual ly del iver the NMEA

data through a serial interface, which is

compatible with many devices (l ike laptop

computers). The unfortunate thing about serial

ports is that they require exclusive access. That

means that when one program, on a laptop for

example, is reading the data sent by the NMEA

station, the data stream is not avai lable for any

other program unti l the serial connection is

released by the program that was using it.

This can be painful i f you want to use the data

simultaneously in different applications on

different platforms. For example displaying a

chart plotter (l ike OpenCPN) while presenting

readings in a browser-based graphical interface

and reading the GPS data from Airmail , to use a

propagation chart to aim for the most appropriate

SSB (Single Side Band radio land-station.

Introducing data from other sensors

In some cases, you could be interested in

monitoring data that are not managed by an

NMEA station (l ike battery voltage). You could

also be interested in monitoring data managed

by NMEA, but not by your NMEA station (l ike air

temperature, atmospheric pressure).

Injecting those data in the NMEA Stream you

read from your station would make them

available for al l programs reading the NMEA

stream and allow you to log them to monitor,

display, or replay them.

You might be interested in some computed data

6

that are not returned by your NMEA station (l ike

true wind speed and direction). These results

could be computed from the existing data, and

then injected into the broadcast stream.

Power consumption

A laptop can sound like an obvious solution for

your on-board computing needs, but the power

consumption of a laptop is not always negligible.

The NMEA stations usual ly draw a very small

amount of current, but a laptop power adaptor

can draw between 1 and 3 Amps, which is a lot

when you have limited energy avai lable, l ike on a

sai l boat for example. Using a Raspberry Pi as

the only device running at al l times, this can be

reduced to 0.1 3 and 0.1 9 Amps with short

increases when another device is switched on to

use and display the data.

The Java language

The computer you would use to read the NMEA

stream wil l probably sit close to the chart table,

but you might very well be interested in

visual izing the data it computes on deck, from

existing displays, or from some wireless devices,

l ike tablets or smart-phones.

Java provides a number of l ibraries that make it

an appropriate choice for this application. There

is a huge Java community and a lot of open

source material . Java is very scalable, so once it

runs, it runs the same on all systems (Windows,

Mac, Linux, etc.) . A jar fi le (Java ARchive) that

runs somewhere wil l run the same anywhere

Java runs, no re-compilation is required. Many

good IDEs (Integrated Development

Environment) are avai lable for free, and although

they are too demanding to run on the Raspberry

Pi it is possible to run a very good remote

debugging environment.

Al l the software I wrote to run on the Raspberry

Pi is written in Java and is Open Source.

Remember Java and JavaScript are total ly

different languages, and are used for different

tasks.

The Navigation Console
The Navigation Console is a program I wrote (in

Java) and I 've been using on board for several

years. When run on a laptop it can provide,

among other features, a graphical user interface

to the navigation data (as shown below).

I have recently enhanced it to run in headless

mode (i .e. without a graphical user interface), to

run on the Raspberry Pi. When headless, the role

of the Navigation Console is to read and

compute the data, optional ly save to a log, and

then re-broadcast them on one or more channels.

For such a re-broadcasting to happen, the

Raspberry Pi creates its own ad-hoc wireless

network. Other devices wil l join this network, and

wil l then have access to the re-broadcasted data.

Multiplexing the data

Multiplexing is a technique that takes data from

several sources and merges them into a single

channel. Here we read data from the NMEA

station (already NMEA formatted, obviously) ,

and the program puts them into a cache

(technical ly, i t is a Java dynamic structure cal led

a HashMap, l iving in a singleton). The other

software components, such as the different

servers (TCP, UDP, etc) read that cache as the

single point of truth. Computed data are also

read from the cache. As a matter of fact, al l

computed data (l ike True Wind Direction and

Speed, Current Speed and Direction,

Performance, etc.) are re-calculated every time a

new value is inserted into the cache by the

NMEA reader. The cache also uses a

Publish/Subscribe architecture that implements a

7

l istener pattern.

We wil l use those aspects to inject extra data in

the cache. For example, you can read the battery

voltage from some equipment, turn this value into

an NMEA Sentence, and inject it into the cache.

There is not a specific NMEA sentence for

battery data, so I defined my own BAT (battery)

sentence. Any component that has subscribed to

the manageEvent event in its l istener wil l be

notified of the injection of the NMEA sentence.

The same process can be fol lowed for any other

data source. I used a BMP1 80 PCB (from

Adafruit) to get the air temperature and the

atmospheric pressure. (Note that unl ike the

battery voltage, those data do have an NMEA

equivalent, but are not avai lable on the NMEA

station I have on board). They are read from the

sensors, turned into the appropriate NMEA

string, and injected in the cache. See in the

picture below the data prefixed with BAT

(custom NMEA chain for battery), MTA (Air

Temperature), MMB (Barometric Pressure). The

Character Console featured below is reading the

data from the cache that they are injected into.

Re-broadcasting

Many navigation programs provide the possibi l i ty

to read the NMEA streams from channels other

than the serial connection. Those other protocols

are usual ly TCP (Transfer Control Protocol) or

UDP (User Defined Protocol) . Also avai lable for

the same purpose: HTTP (Hyper Text Transfer

Protocol) , RMI (Remote Method Invocation),

WebSocket.

The Raspberry Pi re-broadcast the merged data

stream on one or more other channels. Al l the

channels can be consumed simultaneously by

several cl ients, so the data broadcast by the

Raspberry Pi is simultaneously avai lable to al l

interested devices.

The Navigation Console provides TCP, UDP,

HTTP, and RMI servers. Those servers are very

tiny, and do not overload the Raspberry Pi. The

HTML5 WebSocket protocol is also avai lable,

through node.js and a user-exit.

The Character Console

The Character Console on a 7" screen

This provides access to the data computed by

the Raspberry Pi and can be customized by the

user. The goal here is to have an access to those

data, without having to turn on a laptop. The only

thing to switch on and off is the screen. The

Character Console process is also running on the

Raspberry Pi, but is separate to the Navigation

Console process that is reading and re-

broadcasting the data.

Other devices

The laptop can use TCP to receive data from the

Raspberry Pi and present it simultaneously in my

Graphical Console, and the popular open source

package OpenCPN (Open Chart Plotter

Navigator) .

TCP and UDP are both l ight protocols, designed

for computer-to-computer communication. They

are both based on a socket mechanism. Once a

8

socket is establ ished between two computers (a

cl ient, and a server), then the logic of the dialog

wil l be implemented by the programs running on

both cl ient(s) and server, which they have to

agree on (to understand each other) . In our case,

this is extremely simple, once a cl ient is

connected, the server is sending it al l the valid

NMEA strings it reads.

HTTP

HTTP has always been HTML's best friend.

HTML is a markup language (widely used to

design web pages), HTTP is a transport protocol

that can convey HTML streams. HTTP is based

on TCP, but is has been designed to be a

request-response protocol. For the server to do

something, a cl ient has to ask first. As long as

you have a browser on the device you want to

use, then HTTP would be an obvious choice. To

refresh the data, we would use AJAX, in order to

avoid a refresh to be performed by the cl ient.

HTML5 provides elaborated graphic capabi l i ties

that wil l give us the possibi l i ty to come up with a

nice graphical user interface. JavaScript is used

to handle user interactions.

The HTML5 console displayed in a browser

The HTML5 console can be viewed on any

device with a browser such as a laptop, tablet or

smart-phone.

WebSocket

The WebSocket protocol has been introduced

with the release of HTML5. I t is also based on

TCP. One of the drawbacks of HTTP is that it is

a request-response (a.k.a. push-pul l) protocol.

You have to make a request to get a response.

For example, if you want to get a fl ight status

from some airl ine website, the first time you

reach the page, it gives you the expected arrival

time of the fl ight. Every time you want to see if

this estimated time has changed, you must

refresh your page. In other words, request it

again.

The WebSocket protocol precisely addresses

(among others) this kind of issue. Once the cl ient

(i .e. your browser) is connected to the server,

data wil l be pushed (by the server, to the cl ient)

as needed, without requiring the cl ient to refresh

its page. This clearly divides the traffic by two.

The browser you use must be WebSocket aware

though. As of now (201 5), some browsers (l ike

Internet Explorer 9) sti l l do not support it.

In the Navigation Console, the WebSocket

interface is implemented as a user-exit. I t

requires a WebSocket server to be avai lable and

we can run this on the Raspberry Pi. Node.js is

the one we use, with its WebSocket module.

In short, this is what happens:

1) An HTTP/WebSocket server is started on the

Raspberry Pi

2) A user-exit (l istening to the cache) is pinging

the WebSocket server everytime some data is

inserted

3) A web page (WebSocket cl ient) wi l l reach the

WebSocket server to display real-time data,

pushed by the server, from as many cl ients as

needed

The WebSocket console looks exactly l ike the

HTML5 one featured above. But it takes about

half the resources and the data are refreshed

regularly by the server.

Summary of the architecture

This shows all the possible components with the

Raspberry Pi at the heart. The Raspberry Pi

rebroadcasts the data using TCP and both

HTTP and WebSocket (for browser-based

cl ients) . Data can also be logged on the

Raspberry Pi 's SD card. The laptop uses TCP to

9

consume the data, and can run simultaneously

several programs using the NMEA data. Tablets

and smart-phones can also be added into the

wireless network, and by using HTTP or

WebSocket they can also display the HTML5

Console.

Notice in the diagram, the central place taken by

the Raspberry Pi. I t is acting as the main hub of

al l the system. I t is the only one reading the

NMEA data out of the NMEA station. In addition,

it manages its own sensors to read extra data (in

this case: battery voltage, atmospheric pressure

and air temperature). Al l the data gathered by the

Raspberry Pi are re-broadcasted onto several

channels, depending on the devices connected

on the Raspberry Pi 's own ad-hoc wireless

network.

Those devices can join or leave the network at

their leisure, without disturbing the others. The

only piece remaining active wil l be the Raspberry

Pi, maintaining al l the infrastructure, and al l this

for between 0.1 3 and 0.1 9 Amps.

I t is interesting though, to notice that this

architecture is the exact same one that was used

during the recent 34th America's Cup by those

fantastic multi-mi l l ion dol lar boats. Well , now you

can get to the data, you can analyse them and

the next America's Cup is al l yours.

Resources and Useful Links

This article is based on my project description which can be found at:
http://www.lediouris.net/RaspberryPI/_Articles/readme.html

For simplicity most of this software is avai lable as a pre-bui lt Raspberry Pi archive :
https://code.google.com/p/weatherwizard/wiki/NewDowloadPage

Unpack the .tar.gz archive fi le tar with xavf then run ../all-scripts/olivsoft for the main menu.
Of course you wil l need a suitable Java Runtime environment, this is provided in recent releases of

Raspbian, you may need to instal l i t for other platforms. This page also has l inks for Windows and Linux

instal l packages, and a User Manual for the Navigation Console.

To create a bui ld environment for this projects (and some of my others) see the instructions at:
https://code.google.com/p/oliv-soft-project-builder/

You wil l need a Java Development Kit (JKD), minimum version 7, and a bui ld system like Ant or Gradle.

The Java code for the Navigation Console is described at:
https://code.google.com/p/fullnmeaconsole/

Instructions are given to download the source using an SVN (Subversion) cl ient.

OpenCPN - Open Source Chartplotter and GPS Navigation Software can be found here:
http://opencpn.org/ocpn/

Some of the Java code uses Pi4J a project to l ink Java with the Raspberry Pi I /O:
http://pi4j.com/

http://www.lediouris.net/RaspberryPI/_Articles/readme.html
https://code.google.com/p/weatherwizard/wiki/NewDowloadPage
https://code.google.com/p/oliv-soft-project-builder/
https://code.google.com/p/fullnmeaconsole/
http://opencpn.org/ocpn/
http://pi4j.com/index.html

1 0

SKILL LEVEL : BEGINNER

João Matos

Guest Writer

PING PONG
Hardware reaction testing game

Build a hardware based "tennis"

game and test your reactions

Introduction

I was approximately 1 0 years old when I received
my first TV game console. I t was a gift from a
long time friend of my parents who lived in
France. At that time there was nothing l ike this
game in Portugal.

The main game was a simple tennis match,
which was composed of two small vertical bars
on each side of the screen and a square as a
ball . I t was the leading edge of technology - al l in
black and white! I loved it and played it for years.

I remembered those times and decided to bui ld a
hardware based Ping Pong look-al ike project
using my new Raspberry Pi B+. I also wanted to
see the reaction of my kids (Tiago age 1 3 and
Sara age 1 1) who are used to playing with
modern games consoles.

I was pleased to see how excited they were while
I was bui lding it and also to play with it. I hope
you wil l have some fun with it too.

Rules of the game

A point is won when the other player does not
press the button in time to return the “bal l”
(represented by a lit LED) to the opposite side, or
if the other player presses their button too soon.

The player who wins the point starts the next
serve.

A game is won after 9 points are scored. A match
should consist of any odd number of games
(usual ly five or seven).

For the first serve the starting player is randomly
selected. The time between LED jumps is
random to make it more difficult to predict. The
buzzer wil l sound every time a point is won.

Before you start

This project requires the use of a Raspberry Pi
A+/B+ as it uses some of the new GPIO pins. I t
is assumed you are already using a Raspbian
distribution.

The software for this project was written using
Python, an easy to learn programming language.

I f you want to learn more about Python
programming, check out http://www.python.org
and also the book "Welcome to Python for You
and Me" at http://pymbook.readthedocs.org/en/
latest/.

When you are learning Python it is usual ly better
to type in the code yourself and a ful l l isting is
provided, starting on page 1 3. This helps you to
understand what is going on and how the

http://www.python.org
http://pymbook.readthedocs.org/en/latest/

1 1

program works. However you can also download
the Python code, plus the breadboard design
shown below, from http://fritzing.org/projects/
ping-pong-with-raspberry-pi .

Parts needed

1 x Raspberry Pi A+/B+
1 x buzzer (I used a 8-1 5V 85dB Mag)
2x 7-segment red display 1 3mm, red, common
cathode
2x 4-pin push button (3.5mm)
6x red LED 5mm
1 x 220R resistor for the buzzer
9x 1 k resistors for the LEDs, push-buttons and
displays
1 x breadboard (aka Protoboard)

You also need several coloured jumper cables
(male-female and male-male)

Hardware

The easiest way to assemble the circuit is to
fol low the picture below with the breadboard
design.

The Raspberry Pi has 2 different voltages in its
GPIO (General Purpose Input Output) pins - 5V
and 3.3V (or 3V3). Al l pins only work with 3V3,
except the 5V and Ground (GND) pins.

NOTE: You should be careful to never connect a
5V pin to a 3V3 pin, nor should you connect a
3V3 or 5V pin to a GND pin.

Because of that, I l ike to fol low some safe rules
when bui lding circuits for my Raspberry Pi:

1) Use coloured cables to ease identification (red
for 5V, orange for 3V3 and black for GND)

2) Assemble everything before connecting the
Raspberry Pi

3) After completing al l the assembly work, double
check everything before powering the Raspberry
Pi.

I t may sound basic and boring, but it wi l l save
time searching for malfunctions and it may save
your Raspberry Pi from getting damaged. Of
course, the great thing about the Raspberry Pi is
that if i t should get damaged, it does not cost
much to get another!

I l ike to have a coloured printout of the GPIO
pinout near my Raspberry Pi to make it easy to
assemble and double check everything. You can
find one at http://www.raspberrypi-spy.co.uk/
201 4/07/raspberry-pi-b-gpio-header-detai ls-and-
pinout/.

http://fritzing.org/projects/ping-pong-with-raspberry-pi
http://www.raspberrypi-spy.co.uk/2014/07/raspberry-pi-b-gpio-header-details-and-pinout/

1 2

Circuit description

In the fol lowing description a high signal means
3V3 and a low signal means 0V (GND).

The 1 k resistors are there to l imit the electrical
current and to protect the Raspberry Pi GPIO
pins. The red LEDs are l it by activating a high
signal on their anode/positive side (this is the
longer leg). The LEDs are connected to GND.
When either push-button is pressed it sends a
high signal to the anode of the LED.

The buzzer is very simple. Just apply a high
signal to its positive pin (it should be marked)
and it wi l l sound unti l the signal is dropped. I f the
buzzer does not sound or sounds very weak, try
removing the 220R resistor.

The 7-segment displays I selected for this project
have individual anode/positive pins but a
common cathode/negative/GND pin. Think of
them as having 7 different LEDs (plus one for the
decimal point, which is not used in this project) . I f
the displays are too dim replace the 1 k resistor
beside the left display with a 220R resistor.

[Ed: Experienced readers may choose to use a
BCD - 7-segment decoder to reduce the wiring.]

Software

I f you are typing in the Python code you can do
so from the command line with,

nano ~/ping-pongv1. py

or if you are using the GUI then you can use the
Python IDLE editor.

The program is l isted on the next page. After
various functions are defined, the main part of
the program starts with the try block. Here the
pin numbering system is defined and any
warnings about the previous state of the pins is
disabled. Then it defines which pins are used for
input and output and sets al l output pins with a
low signal (0V).

The second block sets the variable cur_pos to
keep track of the current position of the “bal l”
and randomly defines the starting player. In

doing so it also defines the game direction (right
or left) , which is used later to test for the first/last
position. You can probably guess what the
show_scores() function does!

In the next block, the while loop is the inner core
of the program. This loop repeats itself unti l one
of the players reaches the maximum score of 9
points. First it turns the “bal l” LED on and waits
for a period of time to al low the players to press
their button. Then it turns the LED off and checks
if the “bal l” is in the final position on either side.

I f the "bal l" is not in the final position, it checks if
either player pressed their button early. I f either
button is pressed that player loses and a function
cal led end_service() is cal led to sound the
buzzer and update the displays. I f no button is
pressed then it increases the “bal l” position.

The next block starts with the else clause, from
the first if statement after the while loop. This
indicates that the "bal l" is in the first or last
position. I t checks if the player pressed the
button on time or not. I f they did it changes the
"bal l" direction, but if they did not then the score
is increased for the other player and the position
and direction are updated for the new game. As
before, the end_service() function is cal led to
sound the buzzer and update the displays.

The out_sequence() function is cal led when a
player reaches the maximum score. I t is an LED
special effect to show the end of the game.

The last command is GPIO. cleanup() which is
used to restore al l the pins to their pre-game
state, as good practice.

The main part is enclosed in a try-except-
finally block to make sure the
GPIO. cleanup() function is cal led, even if there
is an error or the user interrupts the program.

The start of the l isting is where l ibraries of
functions are imported, global constants (al l
caps) and variables are created and functions
are defined. To understand the DISPLAY_1,
DISPLAY_2 and DIGITS_MASKS constants
please refer to the 7-segment display
documentation and to https://en.wikipedia.org/
wiki/Seven-segment_display.

https://en.wikipedia.org/wiki/Seven-segment_display

1 3

Due to space restrictions I cannot explain the
entire source code, but hopeful ly you wil l take
this as a chal lenge to learn and understand what
the code is doing.

Play the game

Once the hardware is bui lt and checked and the
code has been entered, to play the game enter
the fol lowing on the command line:

sudo python ~/ping-pongv1. py

Python source code

#! /usr/bin/env python

-*- coding: utf-8 -*-

"""Ping-pong.

This is a ping-pong look-alike but the maximum

score is 9 instead of 11 due to the use of a

7-segment display.

For the first service, the starting player is

randomly selected. The time between LED jumps

is random to make it more difficult to

predict. The buzzer will sound every time a

point is won. """

import random

import time

import RPi. GPIO as GPIO

Constants use BOARD pin numbering system

BUTTON_1 = 7

BUTTON_2 = 40

IN = [BUTTON_1, BUTTON_2] # input pins

LEDS = [11, 13, 15, 18, 22, 29]

FIRST = 0 # first position

LAST = len(LEDS) - 1 # last position

BUZZER = 16

pins are ordered by letter according to

the 7-segment display documentation

DISPLAY_1 = [21, 19, 12, 10, 8, 23, 24]

DISPLAY_2 = [36, 35, 33, 32, 31, 37, 38]

OUT = LEDS + [BUZZER] + DISPLAY_1 + DISPLAY_2

output pins

masks are ordered by letter according

to the 7 segment display documentation

DIGITS_MASKS = {0: [1, 1, 1, 1, 1, 1, 0] ,

1: [0, 1, 1, 0, 0, 0, 0] ,

2: [1, 1, 0, 1, 1, 0, 1] ,

3: [1, 1, 1, 1, 0, 0, 1] ,

4: [0, 1, 1, 0, 0, 1, 1] ,

5: [1, 0, 1, 1, 0, 1, 1] ,

6: [1, 0, 1, 1, 1, 1, 1] ,

7: [1, 1, 1, 0, 0, 0, 0] ,

8: [1, 1, 1, 1, 1, 1, 1] ,

9: [1, 1, 1, 0, 0, 1, 1] }

LED direction

RIGHT = 1

LEFT = -1

MAX_SCORE = 9

global score vars

player_1 = 0

player_2 = 0

def set_in_pins(pins):

"""Setup input pins. """

for pin in pins:

GPIO. setup(pin, GPIO. IN, GPIO. PUD_DOWN) #

activates pull down resistor

def set_out_pins(pins):

"""Setup output pins. """

for pin in pins:

GPIO. setup(pin, GPIO. OUT)

def pin_low(pin):

"""Put low 0V signal on pin. """

GPIO. output(pin, GPIO. LOW)

def all_low(pins_lst):

"""Put low 0V on all pins in list. """

for pin in pins_lst:

pin_low(pin)

def show_digit(digit=0, display=DISPLAY_1):

"""Show digit in specififed display. """

enumerate returns pos and value from mask

for pos, value in enumerate(DIGITS_MASKS

[digit]):

GPIO. output(display[pos] , value)

def show_scores():

"""Shows players scores. """

show_digit(player_1, DISPLAY_1) # show

player 1 score on 1st display

show_digit(player_2, DISPLAY_2) # show

player 2 score on 2nd display

def pin_high(pin):

"""Activates high 3V3 signal on pin. """

GPIO. output(pin, GPIO. HIGH)

def led_on(pos):

"""Switch LED on and pauses. """

1 4

pin_high(LEDS[pos])

if pos in [FIRST, LAST] : # first or last LED

pause = 0. 3 # time for button response

else:

pause = random. choice([0. 5, 1, 1. 5, 2]) #

random delay

time. sleep(pause)

def led_off(pos):

"""Switch LED off. """

pin_low(LEDS[pos])

def is_on(pin):

"""True if pin has a high signal. """

return GPIO. input(pin) == GPIO. HIGH

def buzzer(pin, pause=1):

"""Activates buzzer. """

pin_high(pin)

time. sleep(pause)

pin_low(pin)

def end_service():

"""Buzzes and updates scores. """

buzzer(BUZZER)

show_scores()

time. sleep(2)

def out_sequence(pause=1):

"""Shows LED sequence from inside out. """

nr_leds = len(LEDS)

for pos in range(nr_leds / 2, 0, -1): #

reverse order

activate pair

pin_high(LEDS[pos - 1])

pin_high(LEDS[-pos + nr_leds])

time. sleep(pause)

deactivate pair

pin_low(LEDS[pos - 1])

pin_low(LEDS[-pos + nr_leds])

time. sleep(pause)

try:

GPIO. setmode(GPIO. BOARD) # BOARD numbering

GPIO. setwarnings(False)

set_in_pins(IN) # setup input pins

set_out_pins(OUT) # setup output pins

all_low(OUT) # clear all output pins

cur_pos = random. choice([FIRST, LAST]) #

define first LED to be lit

if cur_pos == FIRST:

direction = RIGHT

else:

direction = LEFT

show_scores()

while player_1 < MAX_SCORE and player_2 <

MAX_SCORE:

light LED (ball) and pause for a time to

allow the players to press the button

led_on(cur_pos)

led_off(cur_pos)

if ((direction == RIGHT and cur_pos <

LAST) or # not in last position

(direction == LEFT and cur_pos >

FIRST)): # not in first position

if is_on(BUTTON_1): # if button 1 was

pressed player 1 loses

player_2 += 1

cur_pos = LAST

direction = LEFT

end_service()

elif is_on(BUTTON_2): # if button 2 was

pressed player 2 loses

player_1 += 1

cur_pos = FIRST

direction = RIGHT

end_service()

else:

cur_pos += direction # update pos.

else: # it is the first or last position

if ((cur_pos == LAST and

is_on(BUTTON_2)) or

(cur_pos == FIRST and

is_on(BUTTON_1))):

direction *= -1 # change direction

cur_pos += direction

else: # didn' t push button on time

if cur_pos == FIRST: # player 1 loses

player_2 += 1

cur_pos = LAST

direction = LEFT

else: # player 2 loses

player_1 += 1

cur_pos = FIRST

direction = RIGHT

end_service()

out_sequence()

except KeyboardInterrupt as error:

pass

finally: # always executed

GPIO. cleanup() # restore to pre-game state

http://www.dexterindustries.com

1 6

SKILL LEVEL : ADVANCED

Philip Munts

Guest Writer

MOTOR CONTROL
Using an ARM Cortex-M0 microcontrol ler

Pulse width modulation
motor control

Introduction

Electric motors are pervasive in our industrial

civi l ization. Motors can open and close our

doors, make our elevators go up and down, chi l l

our refrigerators, and make our toys go. They

are among the more interesting devices one can

control from a computer l ike the Raspberry Pi,

whether for a robot, a vehicle, or even a piece of

art.

The Raspberry Pi LPC1 1 1 4 I/O Processor

Expansion Board was first introduced in Issue 1 4

of the MagPi. I t has since been discussed in

Issues 1 7 and 22 of the MagPi. The LPC1 1 1 4

expansion board has three terminals that can be

configured as PWM (Pulse Width Modulation)

outputs, suitable for control l ing DC (Direct

Current) motors. PWM is a technique for

control l ing the amount of energy delivered to a

load (motor or other device) by switching its

power supply on and off very rapidly.

The percentage of time that the power supply is

switched on is cal led the duty cycle. I f the power

supply is switched on most of the time (high duty

cycle), maximum energy wil l be del ivered to the

load. I f the switch is off most of the time (low

duty cycle), minimum energy wil l be del ivered to

the load. Figure 1 shows osci l loscope traces of

PWM signals that correspond to low (yel low) and

high (blue) duty cycles.

Figure 1 - Pulse width modulation signals

The LPC1 1 1 4 timer subsystem can be

configured to drive up to three PWM outputs,

without software control beyond setup and duty

cycle adjustment. This article describes how to

control both DC motors and remote control servo

motors with the LPC1 1 1 4 PWM outputs.

1 7

DC motors

DC (Direct Current) motors always have power

supply voltage and speed ratings. At the

specified power supply voltage, a motor wil l spin

at the rated speed (assuming no load, a

mechanical load wil l slow down the motor) . I f the

power supply voltage is less than the rated

voltage, a DC motor wil l spin at a slower speed.

Therefore, the speed of a DC motor can be

control led by adjusting the voltage supplied to

the motor. Every motor has a low voltage l imit,

below which it wi l l not spin rel iably. Rotation

speeds that are below the speed corresponding

to the low voltage l imit can be accessed by using

a gear train.

Due to mechanical (inertia) and electrical effects

(inductance), a DC motor's speed depends on its

average power supply voltage. Therefore, it is

possible to use a PWM signal to switch a motor's

power supply on and off to control i ts speed. A

low PWM duty cycle wil l result in a low average

voltage and a slow speed. A high PWM duty

cycle wil l result in a high average voltage and a

high speed.

The LPC1 1 1 4 PWM outputs are incapable of

del ivering enough energy to control anything but

the tiniest DC motors. Therefore, to use small or

medium sized motors it is necessary to connect

some sort of power switch or driver between the

LPC1 1 1 4 PWM output and the DC motor. Many

different DC motor driver chips and modules are

avai lable, capable of driving anything from small

hobby motors to large industrial motors.

First test your motor with power connected at

maximum speed (maximum voltage for the

motor) and measure the current that the motor

draws using a digital volt meter. In addition to

the current associated with the maximum rotation

speed, measure the current the motor draws

when it is prevented from moving. This is the

stal l current. The current ratings of the motor

determine the type of drive circuit that should be

used with the motor.

The ULN2003 is a simple and inexpensive driver

that can be used with small DC hobby motors.

The ULN2003 is an integrated circuit with 7 low

side switches, implying that each switch wil l sink

current to ground when you turn it on. With a low

side switch, the low side of the load is connected

to the switch and the high side of the load is

connected to a positive supply voltage such as

+5V or +1 2V.

The ULN2003 is rated for voltages of up to 50V

and a current of 500mA for any one output. To

drive more than one load, the total current for al l

of the outputs should also be limited to 500 mA.

For larger motor currents, more complex driver

solutions are required. The ULN2003 and its

sl ightly larger companion device the ULN2803

(with 8 switches) can be used to drive al l sorts of

real world loads, including motors, LED's, relays,

solenoids, etc..

There is also another companion device, the

UDN2981 , that is nearly pin compatible with the

ULN2803 but contains 8 high side switches.

With a high side switch, the high side of the load

is connected to the switch and the low side of the

load is connected to ground. The UDN2981 is

not as common and is more expensive than

either the ULN2003 or the ULN2803.

A circuit diagram suitable for driving a small DC

hobby motor using the ULN2003 is given in

Figure 2, whereas Figure 3 shows the complete

test system used for this article. Note that this

arrangement can only spin the motor in one

direction. To spin a motor in either direction, it is

necessary to use a more complicated driver

circuit cal led an H-Bridge. An H-Bridge circuit

has 4 switches, two-low side and two-high side,

which al lows it to del iver either polarity voltage to

the motor.

1 8

Figure 2 - ULN2003 and small DC motor

Figure 3 - Small DC motor test stand

Programming interface

Complete documentation of the LPC1 1 1 4 I/O

expansion board and the associated application

programming interface (API) is given in the user

guide:

http://munts.com/rpi-lpc1 1 1 4/doc/UserGuide.pdf

The C programming API includes several

functions that can be used to control a DC motor

with a LPC1 1 1 4 PWM output:

spiagent_open(SERVERNAME,&error);
spiagent_pwm_set_frequency(100,&error);
spiagent_pwm_configure(LPC1114_PWM4,&error);
spiagent_pwm_put(pin,50.0F,&error);

where the frequency parameter ranges from 50

to 50000 Hz, the duty cycle parameter ranges

from 0.0 to 1 00.0 (percent) , with 0.0 selecting

minimum power to the motor and 1 00.0 selecting

maximum power. Small hobby motors tend to

function better with a low PWM frequency.

Larger industrial motors may work with higher

PWM frequencies.

Servo motors

Servo motors have been used for many years in

radio control led model airplanes, cars, and

boats. Each unit has three wired connected to it,

a voltage supply (4.8V to 6V for small servos,

1 2V or more for large servos), control signal, and

ground. The servo unit contains an electric

motor, gears, and a control circuit. Two example

small servo motors are shown in Figure 4.

Figure 4 - Small servo motors

The servo motor control signal is a form of pulse

duration modulation. The servo motor expects a

continuous train of control pulses that are 1 .0 to

2.0 mil l iseconds long repeated 50 times a

second. The duration of the control pulse sets

the position of the servo motor.

http://munts.com/rpi-lpc1114/doc/UserGuide.pdf

1 9

A control pulse width of 1 .0 mil l iseconds sets the

servo to one end of its rotation, 1 .5 mil l iseconds

sets the servo to the midpoint/zero/neutral

position and 2.0 mil l iseconds sets the servo to

other end of its rotation. I f we constrain the PWM

frequency to 50 Hz and the pulse width from 1 .0

to 2.0 mil l iseconds (5 to 1 0% duty cycle), we can

use the LPC1 1 1 4 PWM outputs to control servo

motors as well .

Small servo motors typical ly have a 90 degree

rotation, but some are geared for 1 80 degree or

360 degree rotation. There are also l inear servos

avai lable, with up to 300 mm stroke and 80 kg

thrust, and continuous rotation servos that rotate

at a speed and direction proportional to the

duration of the control pulse.

Since servo motors expect a 3V to 5V control

signal, they are very easy to drive directly from

the LPC1 1 1 4 I/O Processor Expansion Board.

Just connect +5V, ground, and one of GPIO1 ,

GPIO2, or GPIO3 to the servo. The fol lowing C

code fragment i l lustrates how to control a servo

motor with an LPC1 1 1 4 PWM output:

spiagent_open(SERVERNAME,&error);
spiagent_pwm_set_frequency(50,&error);
spiagent_pwm_configure(LPC1114_PWM4,&error);
spiagent_servo_set_position(pin,0.0F,&error);

where position parameter ranges from -1 .0 to

+1 .0, with 0.0 selecting the midpoint or neutral

position. The servo l ibrary functions l imit the

PWM frequency to 50 Hz and the pulse width to

1 .0 to 2.0 mil l iseconds, as required by typical RC

servos. Further detai ls are given in the LPC1 1 1 4

I/O expansion board user guide:

http://munts.com/rpi-lpc1 1 1 4/doc/UserGuide.pdf

Grounding

For anything larger than a small hobby motor,

make sure that the power and ground

connections for the driver chip or module are

directly connected to the system power supply.

Do not use the power and ground terminals on

the expansion board. Otherwise, electric current

for the motor wil l flow through the expansion

board and Raspberry Pi. Neither of these were

designed to carry much electric current.

Attention !

1) I t is important to MEASURE the motor current

when running at ful l speed and when the motor is

STALLED (which is forcibly stopped while trying

to turn at ful l speed).

2) The circuit shown in this article wil l work for

ONE motor up to a maximum current of 500 mA,

where this includes surges.

Links

LPC1 1 1 4 I/O Processor Expansion Board documentation and purchase information:

http://munts.com/rpi-lpc1 1 1 4

Wikipedia on Pulse Width Modulation: http://en.wikipedia.org/wiki/Pulse-width_modulation

ULN2003 data sheet: http://www.ti .com/l it/ds/symlink/uln2003a.pdf

Servo City, a source for rotary and l inear servos: https://www.servocity.com

http://munts.com/rpi-lpc1114
http://en.wikipedia.org/wiki/Pulse-width_mod
http://www.ti.com/lit/ds/symlink/uln2003a.pdf
 https://www.servocity.com

http://munts.com/rpi-lpc1114/doc/UserGuide.pdf

20

SKILL LEVEL : BEGINNER

Eric PTAK

Guest Writer

INTERNET OF THINGS
Secure P2P access

Raspberry Pi access over the Internet,

say goodbye to port forwarding

Ever since I released WebIOPi in 2012, in Issue
9 of The MagPi, I have received many messages
from users asking about accessing the
Raspberry Pi over the Internet.

The problem is that typically a Raspberry Pi is
connected to the Internet with a home router that
shares a single public IP with devices. The
router performs network address translation and
often includes a firewall. This protects your
Raspberry Pi from the Internet, but prevents you
from accessing it from a friend’s house.

It is possible to get around this problem by
configuring port forwarding in your router.
However, this depends on configuring the router

correctly. Every router is different and it is
impossible to provide a set of unique instructions
that will suit everyone. Once you have correctly
configured port forwarding, you will realise that
your public IP can also change. Therefore, you
will need a dynamic DNS solution to be able to
connect. Each step required is possible, but it
can take a lot of time that could be better spent
on another project.

I recently discovered the Internet of Things (IoT)
Kit from Weaved Inc., a start up in the Silicon
Valley. Weaved Inc. provides a free, secure,
easy-to-use and efficient way to access your
Raspberry Pi from anywhere on the Internet.
Just install the Weaved IoT Kit to access your

21

Raspberry Pi via the Weaved web portal or
mobile application.

1. Ensure that the service (WebIOPi, Apache,
SSH…) you want to access is running on your
Raspberry Pi.

2. Create an account for free on
https://developer.weaved.com/

3. Download the Weaved IoT Kit installer on your
Pi using a terminal window or SSH connection:

wget https://github.com/weaved/installer/raw/
master/binaries/weaved-nixinstaller_1.2.x.bin

Where “1.2.x” is the latest version of the installer
software on the Weaved website.

4. Make the installer executable:

chmod +x weaved-nixinstaller_1.2.x.bin

5. Run the installer:

sudo ./weaved-nixinstaller_1.2.x.bin

6. Log into the installer using the account you
created at step 2.

7. Choose the service you want to access, it can
be either Apache, SSH, WebIOPi or a custom
service.

8. Enter an alias to identify your device and
service; the installer will register your device,
which can take a while.

9. Connect to your device via

https://developer.weaved.com/ or download the
Weaved free iOS application. That’s it; you’re
done; no complex configuration.

The mobile application is a convenient way to
access the WebIOPi GUI on your Raspberry Pi
from a mobile device in a single tap.

With the Weaved IoT Kit on your Raspberry Pi,
you won’t have to take care about network
configuration or your public IP anymore. If your
public IP changes, or your router restarts, then
the Weaved service will automatically detect the
change, and update the connection to your
Raspberry Pi.

You can even move your Raspberry Pi to another
location, on another network, and you will still be
able to access it with no change.

Weaved IoT Kit also allows you to send Push
Notifications from the Raspberry Pi to your
mobile phone. Therefore, you could be notified
upon an event happening on your Raspberry Pi.

http://code.google.com/p/webiopi/
http://developer.weaved.com

https://developer.weaved.com
https://developer.weaved.com/
http://code.google.com/p/webiopi/

http://developer.weaved.com

22

Ian McAlpine

MagPi Writer

RASPBERRY PI 2
Quad core processor and 1 GB RAM

Introducing the "game
changing" Raspberry Pi 2

New hardware

When the Raspberry Pi Foundation announced the

new Raspberry Pi 2, it came as a surprise to many

folks. But real ly it should not have been a surprise.

The Raspberry Pi is now 3 years old and in the l ife

cycle of a technology product it was long overdue an

update. Indeed, when the Model B+ was launched in

August 201 4 many were disappointed that increases

in processor performance or RAM size did not

happen then.

Replacing the BCM2835 (and its 700MHz single core

ARM1 1 CPU) with the BCM2836 (and its 900MHz

quad-core ARM Cortex-A7 CPU), plus doubling the

RAM to 1 GB, is a MAJOR performance update.

These have been widely documented so I wil l not go

into the detai ls here, but you no longer have to make

excuses for the Raspberry Pi’s (lack of)

performance, just because it only costs US$35.

Backwards compatibility

The Raspberry Pi Foundation has always tried very

hard to retain as much hardware and software

backwards compatibi l i ty as possible between

revisions. The update between Revision 1 and

Revision 2 of the Model B saw some GPIO

differences which required software updates. The

update between the Model B and Model B+ was

much more significant and from a software

perspective it was 1 00% backwards compatible. But

the many hardware changes to the layout of the

components meant that some accessories no longer

fitted and almost every case was rendered useless.

However, the update between the Model B+ and the

Raspberry Pi 2 is 1 00% backwards compatible, both

with hardware and software. With hindsight it is now

clear that the hardware updates introduced with the

Model B+ paved the way for the Raspberry Pi 2.

Ubuntu and Windows 1 0

There were some genuine surprises during the

Raspberry Pi 2 launch announcement. First, with its

ARM v7 processor, more operating systems become

avai lable such as Ubuntu. But later in 201 5 there wil l

also be Windows 1 0 for the Raspberry Pi! . This wil l

be made avai lable to the maker community for FREE

through Microsoft’s Windows Developer Program for

IoT (Internet of Things). You can sign up for this at

http://dev.windows.com/en-us/featured/raspberry

pi2support.

The avai labi l i ty of Windows 1 0 on the Raspberry Pi 2

is a game changer, both for the Raspberry Pi

Foundation and for Microsoft. Rightly or wrongly, any

computer running Linux is deemed too difficult to use

and certainly not for the masses. But if that computer

runs Windows then suddenly everything is different.

Suddenly you have access to something famil iar,

something that does not require new training… and if

that computer only costs US$35 then it becomes a

http://dev.windows.com/en-us/featured/raspberrypi2support

23

complete no-brainer. Remember the now defunct

US$1 00 one laptop per chi ld initiative? With its

access to Windows and its developer eco-system,

the Raspberry Pi 2 could now make that a true real ity.

There has been some speculation about just how

capable Windows 1 0 wil l be on the Raspberry Pi 2.

There are several Windows 1 0 IoT derivatives

including "Mobile" for phones, low-end tablets, etc.

and "Athens" for resource constrained devices. I have

a US$99 tablet with an Intel Atom quad core CPU

and 1 GB RAM. It runs the FULL version of Windows

8.1 very well .

Steve Teixeira from Microsoft has commented that

they are running "real" Windows 1 0 on the Raspberry

Pi 2, but as it is optimised for the Raspberry Pi 2 it

does not include the ful l Windows experience. Time

wil l reveal what that actual ly means but,

given the positive experience I have

with my cheap tablet, I have no

doubt that Windows 1 0 on

the Raspberry Pi 2 wil l

be equally as

good. I t wi l l

certainly be

interesting to

explore Visual Studio

and program the GPIO using

Windows development tools.

How much?

The second big surprise for me is the price. Hands up

who would have bought a Raspberry Pi 2 if i t had

cost US$45? The Raspberry Pi Foundation is

predicting sales in 201 5 of 3 mil l ion Raspberry Pis.

IMHO that is a pessimistic figure (especial ly as the

initial batch of 1 50,000 sold out in 24 hours) and

could have been easi ly achieved even if the price was

US$45. That would have provided US$30m (US$1 0

x 3m) extra funds for the Raspberry Pi Foundation to

use for good causes.

I was disappointed that the choice of the Raspberry

Pi 2 name breaks the homage to the BBC

Microcomputer. With the Compute Module, plus the

US$20 Model A+ and US$35 Model B+, the

Foundation could have easi ly introduced a US$45

Raspberry Pi Master. Each of these has a very clear

use case - Compute Module for industrial and

embedded applications, Model A+ for portable and

disconnected applications, Model B+ for everything

which does not require a GUI and the Raspberry Pi

Master for education and home computing.

But the Foundation did not do either of these things.

Instead they priced the Raspberry Pi 2 at US$35 thus

instantly cannibal ising sales of the Model B+. (I f you

want a cheap Model B+ now is the time to buy!) I t is a

brave decision and both the Raspberry Pi Foundation

and Broadcom must be applauded for offering such

an amazing update while sti l l keeping the price at an

incredible US$35.

Real world performance

I use my Raspberry Pi almost every day when

producing The MagPi. Today I had the opportunity to

spend some time with the Raspberry Pi 2 and I can

report that the performance improvement is even

better than I expected. I can have Scribus,

GIMP and LibreOffice al l running

at the same time,

whi le generating

PDFs, and the

performance

remains great.

No more watching

the CPU usage

monitor on the desktop

panel, waiting for it to drop

below 1 00%!

But the most pleasing improvement is

the usabi l i ty of Epiphany. Using a web

browser on the Raspberry Pi is something you used

to do only if there was no other option.. . but not any

more. With the Raspberry Pi 2, browsing the web

using Epiphany is now a pleasure!

Conclusion

The Raspberry Pi 2 is a genuinely usable computer

for everyday use. No more excuses. History wil l

record that the Arduino and the Raspberry Pi were

instrumental in creating a new generation of

innovators, but it wi l l also record that the Raspberry

Pi 2 final ly made computers a commodity item -

accessible to everyone, everywhere.

Huge thanks to Cana Kit (http://www.canakit.com)

for getting a Raspberry Pi 2 to me in Pacific Canada

in an impossibly short period of time.

http://www.canakit.com

HacDC's Raspberry Jam

When: Saturday February 28 201 5, 1 .00pm to 5.00pm (EST)
Where: 1 525 Newton St NW, Washington, USA

Come to learn and share: several Raspberry Pi computers wil l be networked together and avai lable for
those attending to explore. http://www.meetup.com/hac-dc/events/21 9990940

Northern Ireland Raspberry Jam 9

When: Saturday 1 4th February 201 5, 1 .00pm to 5.00pm
Where: Farset Labs, Linfield Industrial Estate, Belfast, BT1 2 5GH, UK

The Raspberry Jam sessions are both for complete beginners and those looking for more complicated

chal langes. https://www.eventbrite.co.uk/e/1 467641 0539

Bristol Digimakers

When: Saturday 28th February 201 5, 1 0.00am to 5.00pm

Where: @Bristol, Anchor Road, Bristol, BS1 5DB, UK

A series of technology events aimed at chi ldren (7+), teachers and parents. A great opportunity to learn

about electronics and computing. http://www.eventbrite.com/e/1 5201 494078

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area, providing

you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Mechelen Raspberry Jam

Wanneer: Donderdag 1 2 februari 201 5
Waar: Kanunnik De Deckerstraat 20A, Mechelen, België

Na het enthousiasme van de vorige editie kon een tweede Raspberry Jam niet uitbl i jven. De activiteiten

vereisen géén Raspberry Pi ervaring. http://raspberryjam.be/tweede-raspberry-jam-op-201 5-02-1 2

Rhône Valley Raspberry Jam

Quand: Dimanche 22 février 201 5 de 1 0:00 à 1 7:00 (Heure : France)
Où: Foyer Laique, 1 3 Avenue Jean Jaurès, 84350 Courthézon, France

Journée de découverte et d'échange autour du Raspberry Pi et d'autres technologies numérique.

http://www.eventbrite.fr/e/1 5438067676

24

http://www.meetup.com/hac-dc/events/219990940/
http://raspberryjam.be/tweede-raspberry-jam-op-2015-02-12
http://www.eventbrite.fr/e/15438067676
http://www.eventbrite.com/e/15201494078
https://www.eventbrite.co.uk/e/14676410539

25

Raspberry Pi For Dummies (2nd Edition)
Sean McManus and Mike Cook

Wiley

We first reviewed

Raspberry Pi For

Dummies back in

Issue 1 3 of The

MagPi. Eighteen

months later and the

book has been

updated with a

second edition. A lot

has happened in the

Raspberry Pi world

during this time and

this edition describes many of those changes.

Raspberry Pi For Dummies (2nd Edition)

comprises of six parts. Part 1 describes getting

started with the Raspberry Pi including an

introduction, downloading an operating system

and a description of how to connect everything

together. I t is simi lar content that you wil l find in

almost every Raspberry Pi book.

Part 2 is where things get much more interesting

with an explanation of getting started with Linux.

There is a chapter that explains the Desktop

Environment fol lowed by a chapter on using the

Linux command line. This is particularly useful

with a description of many of the common shel l

commands plus how to keep your system up-to-

date. There is even a good description of the

Linux directory structure and what each contains.

With Part 3 the book explores common uses of

the Raspberry Pi for both work and play. There is

a detai led chapter about LibreOffice - a word

processor, spreadsheet and presentation

software suite that is compatible with Microsoft

Office - fol lowed by a chapter on editing photos

using GIMP, a very powerful image manipulation

program. Part 3 concludes with a chapter on

audio and video. This includes setting your

Raspberry Pi up as a media centre, probably one

of the most popular uses for the Raspberry Pi.

Part 4 describes programming the Raspberry Pi

and unsurprisingly it is the largest part in the

book. First there is an introduction to Scratch

fol lowed by programming an arcade game using

Scratch. Next up is a good introduction to Python

fol lowed by creating a game using Python and

Pygame. Part 4 concludes with chapters on

programming Minecraft and Sonic Pi.

One of the big appeals of the Raspberry Pi is the

ease that it can be interfaced to physical devices.

Many books gloss over this aspect but not

Raspberry Pi For Dummies. Part 5 is the second

largest part in the book and it starts with how to

understand circuits and soldering before

spending the next three chapters describing the

GPIO plus a wide variety of hardware projects.

Dummies books always conclude with The Part

of Tens and this book is no exception. There is a

chapter that highl ights ten great programs for the

Raspberry Pi plus a chapter that describes ten

projects for you to try.

At 436 pages the second edition is 24 pages

longer than the original but the changes are

much more than the modest page increase

suggests. For example, a large chapter on

bui lding a website has been removed and

replaced with two new chapters - Programming

Minecraft with Python and Making Music with

Sonic Pi. Additional ly there is an additional

Appendix that describes how to use RISC OS

plus there is an onl ine bonus chapter about

Mathematica. Of course every chapter has been

updated appropriately with recent information,

such as the use of NOOBS and the latest

Raspberry Pi hardware.

Raspberry Pi For Dummies (2nd Edition) is a

thorough and excel lent book for those who want

to maximise their use of the Raspberry Pi.

The MagPi readers are able to receive a 25% discount. To claim, purchase from
www.dummies.com and enter the promo code VBJ92 when prompted.

Please note: this discount is only val id from the 1 st February to the 31 st July 201 5 on the book listed here.

http://www.wiley.com
http://www.dummies.com

26

SKILL LEVEL : ADVANCED

Mubarak
Abdu-Aguye
Guest Writer

Getting started with Mono and
I2C devices

Introduction

The first version of the C# programming

language was released in January 2002,

alongside the Microsoft dotNet framework. This

framework which was intended to provide a

secure runtime environment in a similar manner

as Java and its associated virtual machine. The

C# programming language is simi lar to Java,

where the syntax of both languages were

inspired by C and C++.

Although the initial releases of the dotNet

framework ran exclusively on Microsoft Windows

operating systems, the dotNet framework

specification was released in 2000, which

al lowed anyone to implement it on any other

operating system. Fast forward a few years

later, and Novell came up with the Mono project,

which was aimed at providing a dotNet-

compatible runtime environment for Linux

(initial ly) and MacOS.

Today, Mono is maintained by Xamarin Ltd and

supported on Android, iOS and Xamarin. The

current version of the Mono framework avai lable

in the Debian Wheezy Linux repositories is 3.2.8,

which supports up to dotNet framework version

4.5.

Installing Mono

To be able to run C# (and essential ly, any

application written in a dotNet language such as

VB.NET, F#.NET, etc) on the Raspberry Pi, the

Mono runtime environment has to be instal led.

For the most basic purposes, it is possible to just

instal l the base mono-runtime package.

However, for the majority of development

activities, it is necessary to instal l the complete

package. Starting from the latest ful ly updated

Raspbian Linux distribution, type:

sudo apt-get install -y mono-complete

This wil l instal l a bundle of development tools

and several dotNet l ibraries. The instal lation wil l

take several minutes to finish. Once it has

finished, the version of Mono instal led can be

verified by typing

mono --version

This should return something similar to:

Mono JIT compiler version 3.2.8 (Debian
3.2.8+dfsg-4+rpi1)
Copyright (C) 2002-2014 Novell, Inc, Xamarin
Inc and Contributors. www.mono-project.com
TLS: __thread
SIGSEGV: normal

27

Notifications: epoll
Architecture: armel,vfp+hard
Disabled: none
Misc: softdebug
LLVM: supported, not enabled.
GC: sgen

Enabling I2C communication

The Linux module that handles I2C

communication on the Raspberry is disabled by

default in Raspbian Linux. To enable the I2C

module, type:

sudo raspi-config

Then select the Advanced Options and then I2C.

Select Yes, Ok, Yes, Ok, Finish and No. This
wil l remove the i2c-bcm2708 kernel module

from the blackl ist and load it.

To provide some diagnostic information on the

I2C bus, type:

sudo apt-get install -y i2c-tools

Then enable the i2c-dev kernel module, by:
sudo nano /etc/modules

and add then adding

i2c-dev

to the end of the fi le. Save the fi le, shutdown the

Raspberry Pi and disconnect it from its power

source.

Connecting the BMP1 80

The BMP1 80 barometric pressure, temperature

and altitude sensor can be purchased from

Sparkfun at https://www.sparkfun.com/products/

1 1 824 The sensor was connected to the

Raspberry Pi using a breadboard and four male-

to-male jumper wires, as shown at the top of this

page. Pay attention to the power connections, to

avoid damage to the sensor and the Raspberry

Pi.

Then turn the Raspberry Pi on again and type:

sudo i2cdetect –y 1

This wil l run the i2cdetect program, which wil l
show us all devices on the I2C bus. The –y part is

to override a yes/no prompt by providing a

default ‘yes’ answer, and 1 specifies the I2C bus

to be scanned. The I2C bus number depends on

the model of the Raspberry Pi, where more

information can be found at:

http://el inux.org/RPi_Low-level_peripherals

Typing the i2detect command should produce

which reports that a device with address 0x77
has been detected. This device is the BMP1 80

sensor, where the address is hardcoded at the

Bosch factory.

Using I2C with C#

The I2C bus can be accessed from C# by

instal l ing Rpi.I2C.Net.dl l written by Max Shmelev.

To get this package type:

git clone https://github.com/mshmelev/RPi.I2C.Net
.git

The package contains classes and a supporting

shared l ibrary cal led l ibnativei2c.so. To use

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- 77

http://www.adafruit.com/product/1603
http://elinux.org/RPi_Low-level_peripherals
http://www.adafruit.com/product/1603

28

Rpi.I2C.Net.dl l on Raspbian, the supporting

l ibrary should be compiled by typing:

cd RPi.I2C.Net/Lib/LibNativeI2C/src
make

Now set the LD_LIBRARY_PATH, to include the

directory that contains the l ibrary.

export LD_LIBRARY_PATH=$HOME/RPi.I2C.Net/Lib/LibNat
iveI2C

Now the Rpi.I2C.Net.dl l l ibrary can be bui lt:

cd ~/Rpi.I2C.Net/RPi.I2C.Net
xbuild RPi.I2C.Net.csproj

where the first command assumes the package

was cloned into the users home directory. When

the package bui lds it wi l l produce a warning, but

wil l compile correctly.

When mono runs it looks for .dl l l ibraries in the

present working directory and within theMONO_PATH directory l ist. Once the package

has been bui lt the Rpi.I2C.Net.dll fi le

should be in the bin/Debug directory ofRPi.I2C.Net.
The libnativei2c.so andRPi.I2C.Net.dll fi les should be made

avai lable to mono, either by editing ~/.bashrc
and appending:

i2c_net="$HOME/RPi.I2C.Net/RPi.I2C.Net/bin/Debug"
if [[-z $MONO_PATH]]; then

export MONO_PATH="$i2c_net"
elif [[$MONO_PATH != *"$i2c_net"*]]; then

export MONO_PATH=$MONO_PATH:"$i2c_net"
fi
unset i2c_net
natlib=$HOME/RPi.I2C.Net/Lib/LibNativeI2C
if [[-z $LD_LIBRARY_PATH]]; then

export LD_LIBRARY_PATH="$natlib"
elif [[$LD_LIBRARY_PATH != *"$natlib"*]]; then

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:"$natlib"
fi
unset natlib

or by copying libnativei2c.so andRPi.I2C.Net.dll into the present working

directory where the mono program is being run.

Test program

To check the I2C library and the circuit, download

the test program and run it:

wget http://www.themagpi.com/resources/CSharp/Pi_I2
CTest.exe
mono Pi_I2CTest.exe

The program wil l take sixty readings, print

“Done” and then close. The output from the

program should be something l ike this:

This program wil l only work correctly if the

BMP1 80 sensor is connected to the first I2C bus.

Hello World

Programs can be developed on the Raspberry Pi

or on Microsoft Windows using the Visual Studio.

Some information on development with Visual

Studio is given a at:

https://erictummers.wordpress.com/201 2/01 /25/t

arget-mono-from-visual-studio/

To bui ld on the Raspberry Pi, use a text editor

such as nano or emacs and create a fi le cal ledHelloWorld.cs that contains:
using System;
public class HelloWorld {

public static void Main() {
Console.WriteLine("Hello World!");

}
}

Then compile and run this example, by typing:

mcs HelloWorld.cs
mono HelloWorld.exe

Temperature: 27.9 Pressure: 938.918264411984
Temperature: 27.9 Pressure: 938.933390108141
Temperature: 27.9 Pressure: 939.001455765812
Temperature: 27.9 Pressure: 938.948515806314

https://erictummers.wordpress.com/2012/01/25/target-mono-from-visual-studio/

29

Building the test program

Download and unpack the program fi les by

typing:

wget http://www.themagpi.com/resources/CSharp/Pi_I2C
Test.zip
unzip Pi_I2CTest.zip

Similar to the I2C communication l ibrary, this

package was developed using Microsoft Visual

Studio. The C# program fi les can be found in thePi_I2CTest/Pi_I2CTest/Pi_I2CTest
directory. The example program can be bui lt and

run by typing:

cd Pi_I2CTest/Pi_I2CTest/Pi_I2CTest
xbuild Pi_I2CTest.csproj
mono bin/Debug/Pi_I2CTest.exe

The I2C readout program

The Pi_I2CTest program source code can be

found in Program.cs. This program contains

commands to connect to the I2C bus, take data

and decode the values.

After the I2C kernel modules have been setup as

described earl ier in this article, the I2C buses wil l

be visible as Linux devices /dev/i2c-0 and/dev/i2c-1. A connection to the second I2C

bus can be made by using

I2CBus.Open("/dev/i2c-1");

The method returns an I2CBus reference to the

chosen bus. This I2CBus class is part of theRpi.I2C.Net namespace. Therefore a using

directive is needed. Thus, the code in theMain() method is:
using System;
//other using directives
using RPi.I2C.Net;

//namespace and class declaration
static I2CBus bus;

static void Main(string[] args) {
bus = I2CBus.Open("/dev/i2c-1");

Using the I2CBus reference, it is possible to read

from and write to any devices on the bus. In the

code snippet below, the reference is declared

with class scope such that it is accessible to

other methods in the program.

The BMP1 80 sensor contains a number of

registers, each containing configuration or

measurement data. Configuration of the sensor

can be performed by writing the appropriate bit

combinations to the appropriate registers.

Similarly, temperature and pressure

measurements can be made by writing certain

bits to certain registers, waiting for specified

periods of time and then reading the contents of

registers designated to contain the results of the

measurements.

To explore basic read-write functional ity, the

program reads the chip ID register of the sensor.

This is specified on the datasheet for the

BMP1 80 as being at 0xD0. A correctly

functioning BMP1 80 sensor should contain the

value 0x55 in that register. Therefore, to ensure

that there is in fact a BMP1 80 sensor connected

to the Raspberry Pi the program:

1) Reads the value in register 0xD0

2) Compares the value read to 0x55

To read a value from any BMP1 80 register, the

address of the desired register should be written

to the BMP1 80 and then a single byte is read

back from the sensor. The single byte thus read

is the value in the register specified in the

preceding write operation. Thus, to complete

step 1) above, the program:

i) Writes the value 0xD0 to the BMP1 80 (which

selects that register for the next operation)

i i) Reads a single byte back from the BMP1 80

To perform (i) , the value is written with theWriteByte() method of the I2CBus class.

This method takes two arguments: the first is the

device address (integer) and the second is the

byte to be written (byte). The device address for

the BMP1 80 is 0x77 and the byte to be written is

0xD0:

30

bus.WriteByte(0x77, 0xD0);

To perform (i i) , the ReadBytes() method of the
I2CBus class is used. This method takes two

arguments: the device address (integer) and the

number of bytes to read (integer) . Unl ike theWriteByte() method, this method returns a

byte array (byte[]) containing the bytes read

from the device in the order that they were read.

In this case, only one byte is being read:

byte[] results = bus.ReadBytes(0x77, 1);

Assuming that al l goes well , the results array

should contain a single value that should be

0x55. This can be confirmed by using an if

statement, comparing results[0] with 0x55. I fresults[0] is indeed 0x55, then a BMP1 80

sensor is present and functional. I f i t is not, then

perhaps there might be a wiring issue or the

sensor is not working correctly.

The complete code for the detection routine is

contained in the Detect() method in theProgram.cs fi le.
Reading the temperature

The BMP1 80 has certain cal ibration constants,

which are required to calculate the temperature

and pressure read from the sensor. These

constants are designated as AC1 to AC6, B1 ,

B2, and MB to MD. They are al l sixteen-bit

values, stored in register pairs starting from

address 0xAA to 0xBE. Therefore, AC1 ’s MSB

and LSB are stored in 0xAA and 0xAB

respectively and so on.

For simplicity, only AC1 shal l be considered. To

read it, a single byte should be read from

addresses 0xAA and 0xAB. Next, the first byte

should be shifted by 8 positions to the left, such

that it becomes the MSB. Then the resultant

value should be OR’ed with the second byte.

This corresponds to:

bus.WriteByte(0x77, 0xAA); // select the MSB of AC1

// read one byte from 0xAA
byte[] result = bus.ReadBytes(0x77, 1);

// select the LSB of AC1
bus.WriteByte(0x77, 0xAB);

// read one byte from 0xAB
byte[] result2 = bus.ReadBytes(0x77, 1);

// shift the MSB, store it in a 16bit variable
short finalValue = (short)(result[0] << 8);

// OR the MSB with the LSB
finalValue |= (short)result2[0];
// Variable finalValue now contains the calibration
// constant AC1

A similar process is required for the other

cal ibration constants. Therefore, the functional ity

was written as a method calledReadSignedWord(). Note that constants AC4
to AC6 are unsigned, therefore another function

is needed to read them. For this reason, another

method called ReadUnsignedWord() was

implemented, within which the variable holding

the final result is declared as ushort (unsigned

short) as opposed to short (which is a signed

type). Final ly, a method called InitParams()
was implemented, which reads and stores al l of

the calibration constants by using theReadSignedWord() andReadUnsignedWord() methods. The reader

is strongly encouraged to read the

implementation of these three methods to gain a

clearer understanding.

To read the temperature from the sensor, the

value 0x2E is written to register address 0xF4 to

begin the measurement process. After a delay of

4.5 mil l iseconds, the result can be read from

registers 0xF6 (MSB) and 0xF7 (LSB). The

value read from the sensor is unsigned and is

converted to a temperature value using the

formula given on the data sheet, avai lable from

Sparkfun:

X1 = (UT-AC6) x AC5/21 5

X2 = MC x 21 1 /(X1 +MD)

B5 = X1 + X2

T = (B5 + 8)/24

where UT is the raw value read from the sensor.

To write multiple bytes at a time, the I2CBus

31

instance provides a WriteBytes() method.

This method differs from the WriteByte()
method in that the second parameter is not a

single byte but a byte array (byte[]) , containing
the bytes to be written. This corresponds to:

// 0xF4 (address), 0x2E (data)
byte[] bytes = new byte[] { 0xF4, 0x2E };
bus.WriteBytes(0x77, bytes); // address, then data
System.Threading.Thread.Sleep(7); // delay

// Read raw value from source file
long ut = ReadUnsignedWord(0xF6, 0xF7);

// Convert ut to a temperature value
long x1 = (long)((ut - AC6) * AC5/Math.Pow(2, 15));
long x2 = (long)(MC * Math.Pow(2, 11) / (x1 + MD));
long b5 = x1 + x2;
long temp = (long)((b5 + 8) / Math.Pow(2, 4));

temp = temp * 0.1; // convert to degC

The code above is used in theReadTemperature() method. Try reading the
datasheet and comparing it with the code for

reading the pressure.

Conclusion

The Rpi.I2C.Net l ibrary provides a well-

designed, low-level interface to the I2C bus. This

makes it possible to write drivers for particular

I2C devices with maximal flexibi l i ty. A basic

BMP1 80 driver is implemented in theBMP180.cs fi le.
Note also that error checking/exception handling

code has been omitted both above and in the

driver code. In practice, al l cal ls to the I2CBus

methods should be wrapped in try-catch blocks.

Final ly, the Dispose() method should be called
on the I2CBus instance once it is no longer

required. This explicitly ensures that other

programs can access it after your program exits.

Happy hacking!

openelectrons.com

http://www.rasp.is/hY6PCd

initialstate.com/magpi

34

SKILL LEVEL : ADVANCED

W. H. Bell

MagPi Writer

8 - Inheritance and polymorphism

Object-orientated languages such as Java, Python and C++ all al low inheritance structures. The idea of

inheritance is that several classes may have a basic set of member functions or data members that are common

between them. Rather than implement these members functions or data members several times, they can

instead be implemented in a base class. The other classes then inherit from the base class, to include the

member functions or data members.

Inheritance structures can include a large number of classes. As the number of classes involved becomes larger,

the compilation time wil l increase and the effects of changing the base class design wil l be more dramatic.

Therefore, inheritance should be used careful ly, where the base class design should be as robust as possible.

Unl ike Java, C++ allows a derived class to inherit from several base classes. However, this feature should be

used sparingly, to avoid software from becoming too complicated for other developers to understand.

The syntax and usage of C++ classes is discussed in Issues 23, 24 and 27 of The MagPi. This article bui lds on

concepts introduced in these previous articles. This tutorial assumes that g++ and make have been instal led.

Using the latest Raspbian image, these can be instal led by typing:

sudo apt-get install -y g++ make

Three layer inheritance

Open a text editor such as nano or emacs and create a fi le cal led Bag.h. Then add the C++ code on the top of

the next page and save the fi le. This is the base class declaration and implementation. Since the functional ity of

the member functions is very simplistic, i t has been implemented within the header fi le. The class contains one

data member that holds the volume of the bag. There is a constructor that has a default value. This implies that

the constructor can be used with a value or without a value. The two member functions return and set the data

member value. The data member is declared as private. This implies that it wi l l not be directly accessible in the

derived class. To allow direct access to the data member in the derived class, the data member should be

declared as protected or public.

35

Now that a class has been written, another class can inherit from it. Create another fi le cal led ColouredBag.h and

add the C++ code given below.

The ColouredBag class is a simple container class that inherits from the Bag class. This implies that it has one

data member within the class declaration and one data member by inheritance. The ColouredBag constructor

cal ls the Bag constructor and sets the value of the data member. There are two accessor functions in the

ColouredBag class and two more that are inherited from the Bag class.

#ifndef BAG_H

#define BAG_H

class Bag {

public:

Bag(double volume=0): // Constructor, with default value

m_volume(volume) { // Set the value of the private data member m_volume

}

double volume(void){ // Return the volume of this bag object

return m_volume;

}

void setVolume(double volume){ // Set the volume of this bag object

m_volume = volume;

}

private:

double m_volume; // A data member to store the volume

};

#endif

#ifndef COLOUREDBAG_H

#define COLOUREDBAG_H

// Include the base class.

#include "Bag. h"

class ColouredBag: public Bag { // ColouredBag inherits from Bag

public:

ColouredBag(char c=' 0'): // Set the bag colour

Bag(), // Set the volume of the bag to zero

m_bagColour(c){ // Set the bag colour

}

char colour(void) { // Return the bag colour

return m_bagColour;

}

void setColour(char c) { // Set the bag colour

m_bagColour = c;

}

private:

char m_bagColour; // Variable to store a colour character

};

#endif

36

Inheritance structures can include several layers of classes. To demonstrate this, create another fi le cal led

BeanBag.h that contains the C++ code given below:

The BeanBag class inherits from the ColouredBag class, which in turn inherits from the Bag class. This implies

that the BeanBag class includes functions and data members that are present in both base classes. Now create

another fi le cal led main.cpp and add the C++ code given below. Then compile the main.cpp fi le using g++ or a

#ifndef BEANBAG_H

#define BEANBAG_H

// Include the base class

#include "ColouredBag. h"

class BeanBag: public ColouredBag { // BeanBag inherits from ColouredBag

public:

BeanBag(char colour=' 0' , int beans=0): // Constructor with default values

ColouredBag(colour), // Set the value of the colour, by calling the constructor

m_beans(beans) { // Set the number of beans

}

int beans(void){ // Return the number of beans

return m_beans;

}

void setBeans(int beans){ // Set the number of beans

m_beans = beans;

}

private:

int m_beans; // The number of beans in the bag

};

#endif

#include <iostream>

#include "Bag. h"

#include "ColouredBag. h"

#include "BeanBag. h"

using namespace std;

int main() {

Bag bag(30. 0); // Create an Bag object

ColouredBag colouredBag; // Create a ColouredBag object

colouredBag. setVolume(40. 0); // Set the volume of the coloured bag object

colouredBag. setColour(' r'); // Set the colour character of the coloured bag

BeanBag beanBag(' b'); // Create a BeanBag object

beanBag. setVolume(50. 0); // Set the volume of the BeanBag object

beanBag. setBeans(100); // Set the number of beans in the BeanBag object

cout << "Volume of bag = " << bag. volume() << endl << endl; // Print the volume

cout << "Volume of colouredBag = " << colouredBag. volume() << endl; // Print the volume

cout << "Colour of colouredBag = " << colouredBag. colour() << endl << endl; // Print the colour

cout << "Volume of BeanBag = " << beanBag. volume() << endl; // Print the volume

cout << "Colour of BeanBag = " << beanBag. colour() << endl; // Print the colour

cout << "Beans in BeanBag = " << beanBag. beans() << endl; // Print the number of beans

return 0;

}

37

Makefi le as demonstrated in the previous C++ articles. Then run the program to print the values on the screen.

Polymorphism and interfaces

Polymorphism can be used to define interface classes. An interface class is an abstract base class that contains

purely virtual functions and a virtual destructor. Purely virtual functions are not implemented within the

declaration of the base class. Therefore, when a derived class inherits from the interface class it has to

implement the purely virtual functions otherwise it wi l l not compile. Having defined an interface class, an

interface pointer can be used to access many different implementations of the interface. This implies that large

sections of a program can rely on the presence of the member functions defined in the interface class, without

needing to know which implementation of the interface is actual ly being used. To demonstrate this principle,

create a fi le cal led IVectorTransform.h and add the C++ code given below:

This interface class contains two purely virtual member functions, to transform a two-dimensional vector and

return the transform as a string. The TwoVector class is given in Issue 27 of The MagPi, where both the

TwoVector.h and TwoVector.cpp fi les are needed. Next, create a fi le cal led MatrixTransform.h that contains:

#ifndef IVECTORTRANSFORM_H

#define IVECTORTRANSFORM_H

#include "TwoVector. h"

#include <string>

// A transform interface: a purely abstract base class.

class IVectorTransform {

public:

virtual ~IVectorTransform(){}; // The destructor should be implemented in the interface

virtual TwoVector transform(const TwoVector &) = 0; // Purely virtual

virtual std: : string str() = 0; // Purely virtual

};

#endif

#ifndef MATRIXTRANSFORM_H

#define MATRIXTRANSFORM_H

#include "IVectorTransform. h"

// A matrix transformation, inheriting from the IVectorTransform interface

class MatrixTransform: public IVectorTransform {

public:

MatrixTransform(double norm=1. 0): // With default normalisation

m_normalisation(norm){ // setting the normalisation of the matrix

m_matrix[0] [0] = 0. ; m_matrix[1] [0] = 1. ; // The first two matrix elements

m_matrix[0] [1] = -1. ; m_matrix[1] [1] = 0. ; // the remaining two matrix elements

}

virtual ~MatrixTransform(){}; // A virtual destructor

virtual TwoVector transform(const TwoVector &); // A virtual transform function

virtual std: : string str(); // A virtual str function to return a string form of the transform

private:

double m_normalisation; // The normalisation of this matrix transformation

double m_matrix[2] [2] ; // The matrix that will be multiplied with the 2d vector

};

#endif

38

The MatrixTransform class includes the declaration of the transform and str member functions without the =0.

This implies that these functions are virtual, but not purely virtual. Therefore, they are implemented for this class.

The class also contains a constructor to set the matrix normalisation and initial ise the values used for each of the

matrix elements. Create another fi le cal led MatrixTransform.cpp and add:

The transform function performs matrix multipl ication between the two-dimensional vector and the 2x2 matrix.

The results from this multipl ication are then used to create a new TwoVector instance, which is returned by the

function. The str function uses a string stream instance to return a string representation of the matrix and its

normalisation. To complete the example program, create another fi le cal led main.cpp and append:

Then, simi lar to the article in Issue 27, use a Makefi le to compile the .cpp fi les together to make an executable.

When the program is run it wi l l print the values of the two-dimensional vector components before and after the

matrix transformation. Notice that the pointer type used to refer to the MatrixTransform object is an

IVectorTransform pointer. While the pointer type is the base class, the derived class member functions are

cal led. I f the base class member functions were not virtual, then the base class member functions would have

been called instead.

#include "MatrixTransform. h"

#include <sstream>

#include <iomanip>

TwoVector MatrixTransform: : transform(const TwoVector &twoVector){

double x = twoVector. x(); // Get the x-component of the 2d vector

double y = twoVector. y(); // Get the y-component of the 2d vector

double new_x = m_normalisation * (x*m_matrix[0] [0] + y*m_matrix[0] [1]); // matrix mult.

double new_y = m_normalisation * (x*m_matrix[1] [0] + y*m_matrix[1] [1]); // matrix mult.

return TwoVector(new_x, new_y);

}

std: : string MatrixTransform: : str(){

std: : stringstream ss; // Create a string stream instance

ss << std: : setw(4) << m_normalisation << " x "; // Print the normalisation and matrix

ss << " | " << std: : setw(3) << m_matrix[0] [0] << ", " << std: : setw(3) << m_matrix[0] [1]

<< " | " << std: : endl;

ss << " | " << std: : setw(3) << m_matrix[1] [0] << ", " << std: : setw(3) << m_matrix[1] [1]

<< " | " << std: : endl;

return ss. str(); // Return the string value from the string stream instance

}

#include "TwoVector. h"

#include "MatrixTransform. h"

#include <iostream>

#include <cmath>

// A program to demonstrate how to use an interface class

int main() {

TwoVector vec1(3. , 4.); // A 2d vector (x=3, y=4)

IVectorTransform *t = new MatrixTransform(1); // Create a new transform on the heap

TwoVector vec2 = t->transform(vec1); // Transform the vector, to produce a new vector

std: : cout << t->str() << std: : endl; // Print the string form of the transform

std: : cout << "vec1=" << vec1 << ", vec2=" << vec2 << std: : endl; // Print the vectors

delete t; // Delete the matrix transform pointer

return 0;

}

http://www.wyliodrin.com

40

SKILL LEVEL : BEGINNER

W. H. Bell

MagPi Writer

BOUNCING SURFACES
Two player arcade game

Air hockey arcade game

Many games require sprites to bounce on a

surface. While Scratch provides a block that

causes a sprite to bounce on the edge of the

screen, games often require interactions with

other edges. In this month's article, a simple air

hockey arcade game is introduced. There are

two paddles and two sets of controls, one for

each player. I f the puck touches the sides of the

table or one of the paddles, it wi l l bounce off the

surface. The first player to get to seven goals

wins the game.

Bouncing

When a sprite bounces off a surface, the surface behaves as a mirror fl ipping the velocity. The

surface can have a perfect bounce where no energy is lost, or a non-perfect bounce where energy

is lost as a function of the velocity of the bouncing sprite at the point of impact with the surface.

The game in this article includes a perfect bounce, since it is the simplest option the implement.

Bouncing in scratch can be implemented by checking if a sprite touches a specific colour. This

implies that games can be constructed without using the position of the bouncing sprite on the

screen. When a sprite moves more than one unit of distance at a time the touching color
sensor can fire twice before the sprite leaves the coloured area. This implies that a simple if

statement might cause the velocity to mirror twice and the sprite to fai l to bounce correctly.

41

The puck

The velocity of the puck is described by two components, vx
and vy. At the start of the game, they are set to random

values. The scores for each player are reset to zero and thebounce_x and bounce_y variables are set to 0. The player

scores are variables that belong to the puck and the other

variables are global such that they can be modified by the

paddle sprite programs. The

starting position of the puck is

chosen and the main loop

begins.

The main loop continues unti l

either one of the players has

seven points. Inside the main

loop there are two if-else

statements that check thebounce_x and bounce_y
variables. The purpose of

these tests is to prevent thetouching color from

being true twice due

to the sprite moving

more than one pixel

at a time.

The puck only

bounces if i t is not already bouncing in the x or y

direction. The sides of the table and the sides of the

paddles were chosen to be the same colours,

whereas the colours of the goals were chosen to be

specific for each player. I f the puck touches a surface

then the associated velocity component is reflected.

For example, if i t bounces into the right-hand side, the

x component of the velocity is mirrored and the y

component of the velocity is unaffected.

After the two if-else statements, the velocity

components are used to move the puck to the next

position on the screen. When the main loop exits, the

program checks to see which player has won and

prints either one of the two winning messages.

42

The paddles

Two paddle sprites were created, one for

each player. To help the players recognise

which paddle is which, the bulk of the two

paddles are coloured differently. The first

player is assigned the cursor keys to move

the paddle around and the second player is

assigned w, s, a and d. When the green

flag is cl icked, the two paddles move to

their default positions along the x-axis.

In a normal game of air hockey, each

player is not al lowed to reach into the other

half of the table. Therefore, the paddles

are not al lowed to be moved to the other

side of the table. The paddles are also not

al lowed to be moved off the side of the

table. These restrictions are implemented

by adding an if statement to each of the

paddle control scripts.

When a moving object hits another object, the object it hits is given an impulse. For example,

when a ball is hit with a bat the ball is sent into the air. I f the bat is not moving, then the ball wi l l

just bounce off it. To simulate the effect of

an impulse, the velocity component of the

puck is incremented according to the

direction the paddle is moving when it is hit

by the puck.

Possible extensions

Try changing the speed and effect of the

impulse of the paddles. Try starting the

game without an initial puck velocity, where

the puck is in range of one of the two

players.

Bouncing can be used for several different

games. For example, a vehicle that drives

from the left to the right of the screen could

bounce over the surface of some terrain.

http://www.abelectronics.co.uk

44

SKILL LEVEL : BEGINNER

Martin Meier

Guest Writer

MAZE BUILDER
written in Python

Simply Amazing !

My education in programming truly began when I traded my hard-earned money for a copy of “The

Creative Atari”. Sure, I knew my way around the BASIC programming language, but so did most kids

back in the mid-eighties. Similar to most kids back then, I was far more interested in typing in the

games than I was in actual ly learning something. Lucki ly for me, this new tome was not just a col lection

of few BASIC programs. Instead, each programmer had been thoughtful enough to include a write up

with his contribution that not only explained the nuts and bolts of the code, but took us deep into the

development process. These articles were written in such a way that it stuck with me for the next thirty

years.

Maze Master

“Maze Master” was a fun l ittle offering by Fred Brunyate, which would give the player a new maze each

time it was run. Having a l imited supply of quarters had already prodded me to attempt to program my

own games. A program that generated a random maze with only one path from start to finish would give

me lot to work with. Even better, was that Fred’s explanation gave me everything I needed to adapt this

concept to an entertaining dungeon-crawler game. Years later, whi le learning C, I wrote a version of the

maze bui lder in C. Now learning Python, I repeated the process and produced another maze bui lder.

Clearly, Fred had provided me with a fun l ittle exercise to encourage me while learning new

programming languages. This article contains the Python version, such that that others may benefit.

The ideas Fred provided are pretty straight-forward. Start at any point within a two-dimensional array.

Mark the block you are standing in, so you cannot move back into it. Now look at the four squares

around you, and see which ones you can move into. Once you have made that l ist of potential moves,

pick one at random. Repeat that process unti l there is nowhere left for you to move. Once you have

boxed yourself into a dead end, simply choose a new position in the array that you have already been in

and continue moving. Choosing a location, in which you have already been, insures that al l the maze

branches are connected together. Repeat this process unti l al l the squares in the array have been

tagged.

45

In Python

Python is a great choice for this exercise. I f you look at the program listing, you can see that I have

divided it up into three main parts: build_maze, print_maze, and main. Starting with main, we can
see that the first thing that happens is that the program asks the user how big the maze should be. With

that information, the programme then initial ises the two-dimensional array of the requested size to al l

‘0’s.

The main loop in the programme first checks to see if there are any cel ls left in the array that have not

been moved into. I f there are sti l l some avai lable, it makes a list of possible moves (left, right, up, and

down) based on what is around the cel l i t is in. The program then makes a random choice based on the

l ist it has compiled. Now things begin to get a l ittle confusing. The same array that keeps tracks of

whether or not a cel l has been moved into, also keeps track of how the walls on each cel l are set up.

This program wil l only concern itself with the lower wall and the right wall of each cel l , with the upper

wall being handled by the cel l above and the left wall being defined by the cel l to the left. A value of 4

means that both the lower and the right-hand wall of a cel l are in place. A value of 1 , means that both

the lower wall and right-hand wall are absent. Values of 2 and 3 correspond to only the right-hand wall

or lower wall respectively. Based on which random direction the program has decided move in, it wi l l

update both the cel l i t is currently in and the cel l i t moves into.

The last part of the program is print_asci_maze. Al l this does is print out the completed maze,

based on the array it is fed. Back in my Atari days, I had sol id block graphics that made excel lent walls

and intersections. As I am sti l l feel ing out Python’s capabi l i ties, I have decided to just use the

characters +, -, and | for now.

Hopeful ly, you have enjoyed this exercise as much as I have. More importantly, I hope that any budding

programmers wil l come away with an understanding of the application of a simple concept that can be

applied to help you learn new languages. Keep on coding!

where S is the start and F is the finish. Every time the program is run, the maze is different!

Maze Builder. Inspired By
"The Creative Atari" 1983

What should the width be (2-10)?10
What should the depth be (2-10)?5
Your maze will be 10 by 5
Am building a 10 by 5 maze
+s+-+-+-+-+-+-+-+-+-+
| | | | |
+-+ +-+-+ +-+ + +-+ +
| | | | | |
+ + +-+-+-+ + + + +-+
| | | | | | |
+ + +-+-+-+ + + + + +
| | | | | | |
+-+ + +-+ + +-+-+ + +
| | | | |
+-+-+-+-+-+-+-+-+-+f+

Maze Builder. Inspired By
"The Creative Atari" 1983

What should the width be (2-10)?10
What should the depth be (2-10)?5
Your maze will be 10 by 5
Am building a 10 by 5 maze
+s+-+-+-+-+-+-+-+-+-+
| | | | |
+ +-+-+ +-+ +-+ + + +
| | | | | |
+-+-+-+ + +-+ + +-+ +
| | | | | |
+-+-+ +-+-+ +-+ +-+-+
| | | |
+ +-+-+ + +-+ +-+ + +
| | | | |
+-+-+-+-+-+-+-+-+-+f+

46

#!/usr/bin/env python
import random

def build_maze(maze):
deep = len(maze)
wide = len(maze[0])
print "Am building a",wide,"by",deep,"maze"

x = 0
y = 0
maze[y][x]= 4
total = wide*deep
blocks_tagged = 1

while (blocks_tagged < total):
options=[]
if (x > 0):

if (maze[y][x-1] == 0):
options.append("left")

if (x < wide-1):
if (maze[y][x+1] == 0):

options.append("right")
if (y > 0):

if (maze[y-1][x] == 0):
options.append("up")

if (y < deep-1):
if (maze[y+1][x] == 0):

options.append("down")

if (options):
choice_index = random.randrange(len(options))
choice = options[choice_index]
blocks_tagged +=1

if (choice == 'down'):
if (maze[y][x] == 3):

maze[y][x] =1
if (maze[y][x] == 4):

maze[y][x] =2
y = y + 1
maze[y][x] = 4

if (choice == 'up'):
y = y -1
maze[y][x]=2

if (choice == 'right'):
if (maze[y][x] == 4):

maze[y][x] = 3
if (maze[y][x] == 2):

maze[y][x] = 1
x = x+1
maze[y][x] = 4

if (choice == 'left'):
x = x -1
maze[y][x] = 3

else:
while(1):

y = random.randrange(deep)
x = random.randrange(wide)
if (maze[y][x] > 0):

break

def print_asci_maze(maze):
deep = len(maze)
wide = len(maze[0])
right_wall = (0,2,4)
bottom_wall = (0,3, 4)

47

print top border
row = "+s+"
for index in range (0,wide-1):

row +="-+"
print row

for index1 in range (0,deep):
print upper half of row
row = "|"
for index in range (0,wide):

if (maze[index1][index] in right_wall):
row += " |"

else:
row += " "

print row
print lower half of row
row = "+"
for index in range (0,wide):

if (index == wide-1) and (index1==deep-1):
row +="f+"

else:
if (maze[index1][index] in bottom_wall):

row +="-+"
else:

row += " +"
print row

The main function
def main():

print """\n\nMaze Builder. Inspired By
"The Creative Atari" 1983\n\n"""

width = 0
depth = 0
while (width < 2) or (width > 10):

width = int(raw_input("What should the width be (2-10)?"))
while (depth < 2) or (depth > 10):

depth = int(raw_input("What should the depth be (2-10)?"))
print "Your maze will be",width,"by",depth

set up a list of lists referenced as maze[row][column]
maze = [0 for index in range (0, depth)]
for index in range (0, depth):

maze[index] = [0]*width

build_maze(maze)
print_asci_maze(maze)

if __name__ == '__main__':
main()

A Challenge !

The author has deliberately kept this script simple, using text characters to draw his maze implies that the
code is very portable. However, MagPi readers are al l hackers at heart, our valued editor would love to see
what they can do with this code. Instead of poking things l ike "-+" into the variable, 'row', how about using
some of the very many unicode characters ?

As a hint, try firing up your python environment and typing "print unichr(0x2588)", don't l ike that "character" ?
Try 0x254b. Nearby numbers produce similar characters. There are a lot of alternatives scattered across the
unicode set.

We may be able to convince the Editor to publish the best versions so please send your effort into
articles@themagpi.com

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Have Your Say...
The MagPi is produced by the Raspberry Pi community, for the Raspberry Pi
community. Each month we aim to educate and entertain you with exciting projects for
every ski l l level. We are always looking for new ideas, opinions and feedback, to help us
continue to produce the kind of magazine you want to read.

Please send your feedback to editor@themagpi.com, or post to our Facebook page at
http://www.facebook.com/MagPiMagazine, or send a tweet to @TheMagP1 . Please
send your article ideas to articles@themagpi.com. We look forward to reading your
comments.

PPRRIINNTT EEDDIITTIIOONN AAVVAAIILLAABBLLEE
WWOORRLLDDWWIIDDEE

The MagPi is avai lable for FREE from http://www.themagpi.com, from The MagPi iOS
and Android apps and also from the Pi Store. However, because so many readers have
asked us to produce printed copies of the magazine, we are pleased to announce that
printed copies are now regularly avai lable for purchase at the fol lowing Raspberry Pi
retai lers.. .

Americas EMEA AsiaPac

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.themagpi.com
https://www.modmypi.com/the-magpi-magazine
http://www.pi-supply.com/product-category/books-and-magazines/the-magpi-magazine/
http://thepihut.com/collections/the-magpi-raspberry-pi-magazine
https://www.adafruit.com/index.php?main_page=adasearch&q=the+magpi
http://www.buyraspberrypi.com.au/shop/magpi-issue-16/
http://www.facebook.com/MagPiMagazine
mailto:articles@themagpi.com
http://swag.raspberrypi.org/products/magpi
mailto:editor@themagpi.com
http://twitter.com/TheMagP1

