

HTML5: Up and Running

HTML5: Up and Running

Mark Pilgrim

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

HTML5: Up and Running
by Mark Pilgrim

Copyright © 2010 Mark Pilgrim. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Adam Zaremba
Copyeditor: Rachel Head
Proofreader: Emily Quill

Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
August 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. HTML5: Up and Running, the image of an alpine chamois, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80602-6

[M]

1285358114

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . ix

1. How Did We Get Here? . 1
Diving In 1
MIME Types 1
A Long Digression into How Standards Are Made 2
An Unbroken Line 7
A Timeline of HTML Development from 1997 to 2004 9
Everything You Know About XHTML Is Wrong 10
A Competing Vision 11
What Working Group? 12
Back to the W3C 13
Postscript 14
Further Reading 14

2. Detecting HTML5 Features . 15
Diving In 15
Detection Techniques 15
Modernizr: An HTML5 Detection Library 16
Canvas 16
Canvas Text 17
Video 18
Video Formats 19
Local Storage 21
Web Workers 23
Offline Web Applications 23
Geolocation 24
Input Types 25
Placeholder Text 27
Form Autofocus 27
Microdata 28

v

Further Reading 29

3. What Does It All Mean? . 31
Diving In 31
The Doctype 31
The Root Element 33
The <head> Element 34

Character Encoding 35
Friends and (Link) Relations 36

New Semantic Elements in HTML5 41
A Long Digression into How Browsers Handle Unknown Elements 42
Headers 45
Articles 47
Dates and Times 49
Navigation 51
Footers 52
Further Reading 54

4. Let’s Call It a Draw(ing Surface) . 57
Diving In 57
Simple Shapes 58
Canvas Coordinates 60
Paths 61
Text 63
Gradients 67
Images 70
What About IE? 73
A Complete Example 75
Further Reading 79

5. Video on the Web . 81
Diving In 81
Video Containers 81
Video Codecs 83

H.264 84
Theora 84
VP8 85

Audio Codecs 85
MPEG-1 Audio Layer 3 86
Advanced Audio Coding 87
Vorbis 87

What Works on the Web 88
Licensing Issues with H.264 Video 90

vi | Table of Contents

Encoding Ogg Video with Firefogg 91
Batch Encoding Ogg Video with ffmpeg2theora 98
Encoding H.264 Video with HandBrake 100
Batch Encoding H.264 Video with HandBrake 107
Encoding WebM Video with ffmpeg 108
At Last, the Markup 110

MIME Types Rear Their Ugly Head 113
What About IE? 114
A Complete Example 114
Further Reading 115

6. You Are Here (And So Is Everybody Else) . 117
Diving In 117
The Geolocation API 117
Show Me the Code 118
Handling Errors 120
Choices! I Demand Choices! 121
What About IE? 123
geo.js to the Rescue 123
A Complete Example 125
Further Reading 126

7. The Past, Present, and Future of Local Storage for Web Applications 127
Diving In 127
A Brief History of Local Storage Hacks Before HTML5 128
Introducing HTML5 Storage 129
Using HTML5 Storage 130

Tracking Changes to the HTML5 Storage Area 131
Limitations in Current Browsers 132

HTML5 Storage in Action 132
Beyond Named Key/Value Pairs: Competing Visions 134
Further Reading 135

8. Let’s Take This Offline . 137
Diving In 137
The Cache Manifest 138

Network Sections 139
Fallback Sections 140

The Flow of Events 141
The Fine Art of Debugging, a.k.a. “Kill Me! Kill Me Now!” 142
Let’s Build One! 145
Further Reading 146

Table of Contents | vii

9. A Form of Madness . 147
Diving In 147
Placeholder Text 147
Autofocus Fields 148
Email Addresses 150
Web Addresses 151
Numbers As Spinboxes 153
Numbers As Sliders 155
Date Pickers 156
Search Boxes 158
Color Pickers 160
And One More Thing... 160
Further Reading 161

10. “Distributed,” “Extensibility,” and Other Fancy Words . 163
Diving In 163
What Is Microdata? 164
The Microdata Data Model 165
Marking Up People 168

Introducing Google Rich Snippets 174
Marking Up Organizations 176
Marking Up Events 180

The Return of Google Rich Snippets 184
Marking Up Reviews 185
Further Reading 189

Appendix: The All-in-One Almost-Alphabetical Guide to Detecting Everything 191

Index . 201

viii | Table of Contents

Preface

Diving In
What is HTML5? HTML5 is the next generation of HTML, superseding HTML 4.01,
XHTML 1.0, and XHTML 1.1. HTML5 provides new features that are necessary for
modern web applications. It also standardizes many features of the web platform that
web developers have been using for years, but that have never been vetted or docu-
mented by a standards committee. (Would it surprise you to learn that the Window object
has never been formally documented? In addition to the new features, HTML5 is the
first attempt to formally document many of the “de facto” standards that web browsers
have supported for years.)

Like its predecessors, HTML5 is designed to be cross-platform. You don’t need to be
running Windows or Mac OS X or Linux or Multics or any particular operating system
in order to take advantage of HTML5. The only thing you do need is a modern web
browser. There are modern web browsers available for free for all major operating
systems. You may already have a web browser that supports certain HTML5 features.
The latest versions of Apple Safari, Google Chrome, Mozilla Firefox, and Opera all
support many HTML5 features. (You’ll find more detailed browser compatibility tables
throughout this book.) The mobile web browsers that come preinstalled on iPhones,
iPads, and Android phones all have excellent support for HTML5. Even Microsoft has
announced that the upcoming Version 9 of Internet Explorer will support some
HTML5 functionality.

This book will focus on eight topics:

• New semantic elements like <header>, <footer>, and <section> (Chapter 3)

• Canvas, a two-dimensional drawing surface that you can program with JavaScript
(Chapter 4)

• Video that you can embed on your web pages without resorting to third-party plug-
ins (Chapter 5)

• Geolocation, whereby visitors can choose to share their physical locations with
your web application (Chapter 6)

• Persistent local storage without resorting to third-party plug-ins (Chapter 7)

ix

• Offline web applications that work even after network access is interrupted
(Chapter 8)

• Improvements to HTML web forms (Chapter 9)

• Microdata that lets you create your own vocabularies beyond HTML5 and extend
your web pages with custom semantics (Chapter 10)

HTML5 is designed, as much as possible, to be backward compatible with existing web
browsers. New features build on existing features and allow you to provide fallback
content for older browsers. If you need even greater control, you can detect support
for individual HTML5 features (Chapter 2) using a few lines of JavaScript. Don’t rely
on fragile browser sniffing to decide which browsers support HTML5! Instead, test for
the features you need using HTML5 itself.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

x | Preface

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “HTML5: Up and Running by Mark Pilgrim.
Copyright 2010 O’Reilly Media, Inc., 978-0-596-80602-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

A Note on the Editions of This Book
This book is derived from its HTML5 source, found at http://diveintohtml5.org/ and
maintained by the author. The ebook and Safari Books Online editions include all the
original hyperlinking, while the print edition includes only a subset of the hyperlinks,
set as URLs in parentheses. If you are reading the print edition, please refer to one of
the other editions—or the original source—for a richer linking experience. Because the
author maintains http://diveintohtml5.org/ in HTML5, the site includes live examples
of the code described in this book, many of which had to be modified for publication.
Please visit http://diveintohtml5.org/ to see these examples, but be aware that their ren-
dering may vary across browsers.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

Preface | xi

mailto:permissions@oreilly.com
http://diveintohtml5.org/
http://oreilly.com/catalog/9780596806033/
http://my.safaribooksonline.com/9781449392154
http://diveintohtml5.org/
http://diveintohtml5.org/

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596806026/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

xii | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/9780596806026/
mailto:bookquestions@oreilly.com
http://www.oreilly.com

CHAPTER 1

How Did We Get Here?

Diving In
Recently, I stumbled across a quote from a Mozilla developer about the tension inherent
in creating standards:

Implementations and specifications have to do a delicate dance together. You don’t want
implementations to happen before the specification is finished, because people start de-
pending on the details of implementations and that constrains the specification. How-
ever, you also don’t want the specification to be finished before there are implementations
and author experience with those implementations, because you need the feedback.
There is unavoidable tension here, but we just have to muddle on through.

Keep this quote in the back of your mind, and let me explain how HTML5 came to be.

MIME Types
This book is about HTML5, not previous versions of HTML, and not any version of
XHTML. But to understand the history of HTML5 and the motivations behind it, you
need to understand a few technical details first. Specifically, MIME types.

Every time your web browser requests a page, the web server sends a number of headers
before it sends the actual page markup. These headers are normally invisible, although
there are a number of web development tools that will make them visible if you’re
interested. The headers are important, because they tell your browser how to interpret
the page markup that follows. The most important header is called Content-Type, and
it looks like this:

Content-Type: text/html

text/html is called the “content type” or “MIME type” of the page. This header is the
only thing that determines what a particular resource truly is, and therefore how it
should be rendered. Images have their own MIME types (image/jpeg for JPEG images,
image/png for PNG images, and so on). JavaScript files have their own MIME type. CSS

1

http://lists.w3.org/Archives/Public/public-html/2010Jan/0107.html
http://lists.w3.org/Archives/Public/public-html/2010Jan/0107.html

stylesheets have their own MIME type. Everything has its own MIME type. The Web
runs on MIME types.

Of course, reality is more complicated than that. Very early web servers (I’m talking
web servers from 1993) didn’t send the Content-Type header, because it didn’t exist yet.
(It wasn’t invented until 1994.) For compatibility reasons that date all the way back to
1993, some popular web browsers will ignore the Content-Type header under certain
circumstances. (This is called “content sniffing.”) But as a general rule of thumb, ev-
erything you’ve ever looked at on the Web—HTML pages, images, scripts, videos,
PDFs, anything with a URL—has been served to you with a specific MIME type in the
Content-Type header.

Tuck that under your hat. We’ll come back to it.

A Long Digression into How Standards Are Made
Why do we have an element? I don’t suppose that’s a question you ask yourself
very often. Obviously someone must have created it. These things don’t just appear out
of nowhere. Every element, every attribute, every feature of HTML that you’ve ever
used—someone created them, decided how they should work, and wrote it all down.
These people are not gods, nor are they flawless. They’re just people. Smart people, to
be sure. But just people.

One of the great things about standards that are developed “out in the open” is that
you can go back in time and answer these kinds of questions. Discussions occur on
mailing lists, which are usually archived and publicly searchable. So, I decided to do a
bit of “email archaeology” to try to answer the element question. I had to go back
to before there was an organization called the World Wide Web Consortium (W3C).
I went back to the earliest days of the Web, when you could count the number of web
servers on the fingers of both hands, and maybe a couple of toes.

On February 25, 1993, Marc Andreessen wrote:*

I’d like to propose a new, optional HTML tag:

IMG

Required argument is SRC="url".

This names a bitmap or pixmap file for the browser to attempt to pull over the network
and interpret as an image, to be embedded in the text at the point of the tag’s occurrence.

An example is:

(There is no closing tag; this is just a standalone tag.)

* http://1997.webhistory.org/www.lists/www-talk.1993q1/0182.html. The thread described over the next
several pages can be followed by clicking the “Next message” and “Previous message” links.

2 | Chapter 1: How Did We Get Here?

http://1997.webhistory.org/www.lists/www-talk.1993q1/0182.html

This tag can be embedded in an anchor like anything else; when that happens, it becomes
an icon that’s sensitive to activation just like a regular text anchor.

Browsers should be afforded flexibility as to which image formats they support. Xbm
and Xpm are good ones to support, for example. If a browser cannot interpret a given
format, it can do whatever it wants instead (X Mosaic will pop up a default bitmap as a
placeholder).

This is required functionality for X Mosaic; we have this working, and we’ll at least be
using it internally. I’m certainly open to suggestions as to how this should be handled
within HTML; if you have a better idea than what I’m presenting now, please let me
know. I know this is hazy with regard to image format, but I don’t see an alternative than
to just say “let the browser do what it can” and wait for the perfect solution to come
along (MIME, someday, maybe).

This quote requires some explanation. Xbm and Xpm were popular graphics formats
on Unix systems.

“Mosaic” was one of the earliest web browsers. (“X Mosaic” was the version that ran
on Unix systems.) When he wrote this message in early 1993, Marc had not yet founded
the company that made him famous, Mosaic Communications Corporation, nor had
he started work on that company’s flagship product, “Mosaic Netscape.” (You may
know them better by their later names, “Netscape Corporation” and “Netscape
Navigator.”)

“MIME, someday, maybe” is a reference to content negotiation, a feature of HTTP
where a client (like a web browser) tells the server (like a web server) what types of
resources it supports (like image/jpeg) so the server can return something in the client’s
preferred format. “The Original HTTP as defined in 1991” (the only version that was
implemented in February 1993) did not have a way for clients to tell servers what kinds
of images they supported, thus the design dilemma that Marc faced.

A few hours later, Tony Johnson replied:

I have something very similar in Midas 2.0 (in use here at SLAC, and due for public release
any week now), except that all the names are different, and it has an extra argument
NAME="name". It has almost exactly the same functionality as your proposed IMG tag. e.g.,

<ICON name="NoEntry" href="http://note/foo/bar/NoEntry.xbm">

The idea of the name parameter was to allow the browser to have a set of “built in”
images. If the name matches a “built in” image it would use that instead of having to go
out and fetch the image. The name could also act as a hint for “line mode” browsers as
to what kind of a symbol to put in place of the image.

I don’t much care about the parameter or tag names, but it would be sensible if we used
the same things. I don’t much care for abbreviations, i.e., why not IMAGE= and SOURCE=. I
somewhat prefer ICON since it implies that the IMAGE should be smallish, but maybe
ICON is an overloaded word?

Midas was another early web browser, a contemporary of X Mosaic. It was cross-
platform; it ran on both Unix and VMS. “SLAC” refers to the Stanford Linear
Accelerator Center, now the SLAC National Accelerator Laboratory, which hosted the

A Long Digression into How Standards Are Made | 3

http://en.wikipedia.org/wiki/X_BitMap
http://en.wikipedia.org/wiki/X_PixMap
http://en.wikipedia.org/wiki/Marc_Andreessen
http://en.wikipedia.org/wiki/Mosaic_Communications_Corporation
http://en.wikipedia.org/wiki/Content_negotiation
http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://1997.webhistory.org/www.lists/www-talk.1993q1/0183.html
http://en.wikipedia.org/wiki/MidasWWW
http://en.wikipedia.org/wiki/Stanford_Linear_Accelerator
http://en.wikipedia.org/wiki/Stanford_Linear_Accelerator

first web server in the United States (in fact, the first web server outside Europe). When
Tony wrote this message, SLAC was an old-timer on the WWW, having hosted five
pages on its web server for a whopping 441 days.

Tony continued:

While we are on the subject of new tags, I have another, somewhat similar tag, which I
would like to support in Midas 2.0. In principle it is:

<INCLUDE HREF="...">

The intention here would be that the second document is to be included into the first
document at the place where the tag occurred. In principle the referenced document
could be anything, but the main purpose was to allow images (in this case arbitrary sized)
to be embedded into documents. Again the intention would be that when HTTP2 comes
along the format of the included document would be up for separate negotiation.

“HTTP2” is a reference to Basic HTTP as defined in 1992. At this point, in early 1993,
it was still largely unimplemented. The draft known as “HTTP2” evolved and was
eventually standardized as “HTTP 1.0”. HTTP 1.0 did include request headers for
content negotiation, a.k.a. “MIME, someday, maybe.”

Tony went on:

An alternative I was considering was:

See photo

I don’t much like adding more functionality to the <A> tag, but the idea here is to maintain
compatibility with browsers that can not honour the INCLUDE parameter. The intention
is that browsers which do understand INCLUDE, replace the anchor text (in this case “See
photo”) with the included document (picture), while older or dumber browsers ignore
the INCLUDE tag completely.

This proposal was never implemented, although the idea of providing text if an image
is missing is an important accessibility technique that was missing from Marc’s initial
 proposal. Many years later, this feature was bolted on as the
attribute, which Netscape promptly broke by erroneously treating it as a tooltip.

A few hours after Tony posted his message, Tim Berners-Lee responded:

I had imagined that figures would be represented as

Figure

where the relationship values mean

EMBED Embed this here when presenting it
PRESENT Present this whenever the source document is presented

Note that you can have various combinations of these, and if the browser doesn’t support
either one, it doesn’t break.

[I] see that using this as a method for selectable icons means nesting anchors. Hmmm.
But I hadn’t wanted a special tag.

4 | Chapter 1: How Did We Get Here?

http://www.slac.stanford.edu/history/earlyweb/history.shtml
http://www.slac.stanford.edu/history/earlyweb/wizards.shtml#Tony%20Johnson
http://www.slac.stanford.edu/history/earlyweb/firstpages.shtml
http://www.slac.stanford.edu/history/earlyweb/firstpages.shtml
http://www.w3.org/Protocols/HTTP/HTTP2.html
http://www.w3.org/Protocols/HTTP/1.0/spec.html
http://www.w3.org/Protocols/HTTP/HTRQ_Headers.html#z3
http://www.w3.org/Protocols/HTTP/HTRQ_Headers.html#z3
http://diveintoaccessibility.org/day_23_providing_text_equivalents_for_images.html
http://www.w3.org/TR/html4/struct/objects.html#h-13.8
http://www.w3.org/TR/html4/struct/objects.html#h-13.8
http://www.cs.tut.fi/~jkorpela/html/alt.html#tooltip
http://1997.webhistory.org/www.lists/www-talk.1993q1/0186.html

This proposal was never implemented, but the rel attribute is still around (see “Friends
and (Link) Relations” on page 36).

Jim Davis added:

It would be nice if there was a way to specify the content type, e.g.

But I am completely willing to live with the requirement that I specify the content type
by file extension.

This proposal was never implemented, but Netscape did later add support for arbitrary
embedding of media objects with the <embed> element.

Jay C. Weber asked:

While images are at the top of my list of desired medium types in a WWW browser, I
don’t think we should add idiosyncratic hooks for media one at a time. Whatever hap-
pened to the enthusiasm for using the MIME typing mechanism?

Marc Andreessen replied:

This isn’t a substitute for the upcoming use of MIME as a standard document mecha-
nism; this provides a necessary and simple implementation of functionality that’s needed
independently from MIME.

Jay C. Weber responded:

Let’s temporarily forget about MIME, if it clouds the issue. My objection was to the
discussion of “how are we going to support embedded images” rather than “how are we
going to support embedded objections in various media.”

Otherwise, next week someone is going to suggest “let’s put in a new tag <AUD
SRC="file://foobar.com/foo/bar/blargh.snd">” for audio.

There shouldn’t be much cost in going with something that generalizes.

With the benefit of hindsight, it appears that Jay’s concerns were well founded. It took
a little more than a week, but HTML5 did finally add new <video> and <audio> elements.

Responding to Jay’s original message, Dave Raggett said:

True indeed! I want to consider a whole range of possible image/line art types, along with
the possibility of format negotiation. Tim’s note on supporting clickable areas within
images is also important.

Later in 1993, Dave proposed HTML+ as an evolution of the HTML standard. The
proposal was never implemented, and it was superseded by HTML 2.0. HTML 2.0 was
a “retro-spec,” which means it formalized features already in common use: “This
specification brings together, clarifies, and formalizes a set of features that roughly
corresponds to the capabilities of HTML in common use prior to June 1994.”

A Long Digression into How Standards Are Made | 5

http://1997.webhistory.org/www.lists/www-talk.1993q1/0188.html
http://1997.webhistory.org/www.lists/www-talk.1993q1/0192.html
http://1997.webhistory.org/www.lists/www-talk.1993q1/0194.html
http://1997.webhistory.org/www.lists/www-talk.1993q1/0198.html
http://bit.ly/a3kpiq
http://bit.ly/cZxI7K
http://1997.webhistory.org/www.lists/www-talk.1993q1/0204.html
http://www.w3.org/People/Raggett/
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_1.html
http://www.w3.org/MarkUp/html-spec/html-spec_toc.html
http://www.w3.org/MarkUp/html-spec/html-spec_1.html#SEC1.1
http://www.w3.org/MarkUp/html-spec/html-spec_1.html#SEC1.1

Dave later wrote HTML 3.0, based on his earlier HTML+ draft. Outside of the W3C’s
own reference implementation, Arena, HTML 3.0 was never implemented. It was su-
perseded by HTML 3.2, which was also a “retro-spec”: “HTML 3.2 adds widely
deployed features such as tables, applets and text flow around images, while providing
full backward compatibility with the existing standard HTML 2.0.”

Dave later coauthored HTML 4.0, developed HTML Tidy, and went on to help with
XHTML, XForms, MathML, and other modern W3C specifications.

Getting back to 1993, Marc replied to Dave:

Actually, maybe we should think about a general-purpose procedural graphics language
within which we can embed arbitrary hyperlinks attached to icons, images, or text, or
anything. Has anyone else seen Intermedia’s capabilities with regard to this?

Intermedia was a hypertext project from Brown University. It was developed from 1985
to 1991 and ran on A/UX, a Unix-like operating system for early Macintosh computers.

The idea of a “general-purpose procedural graphics language” did eventually catch on.
Modern browsers support both SVG (declarative markup with embedded scripting)
and <canvas> (a procedural direct-mode graphics API), although the latter started as a
proprietary extension before being “retro-specced” by the WHAT Working Group.

Bill Janssen replied:

Other systems to look at which have this (fairly valuable) notion are Andrew and Slate.
Andrew is built with _insets_, each of which has some interesting type, such as text,
bitmap, drawing, animation, message, spreadsheet, etc. The notion of arbitrary recursive
embedding is present, so that an inset of any kind can be embedded in any other kind
which supports embedding. For example, an inset can be embedded at any point in the
text of the text widget, or in any rectangular area in the drawing widget, or in any cell of
the spreadsheet.

“Andrew” is a reference to the Andrew User Interface System, although at that time it
was simply known as the Andrew Project.

Meanwhile, Thomas Fine had a different idea:

Here’s my opinion. The best way to do images in WWW is by using MIME. I’m sure
postscript is already a supported subtype in MIME, and it deals very nicely with mixing
text and graphics.

But it isn’t clickable, you say? Yes, you’re right. I suspect there is already an answer to
this in display postscript. Even if there isn’t the addition to standard postscript is trivial.
Define an anchor command which specifies the URL and uses the current path as a closed
region for the button. Since postscript deals so well with paths, this makes arbitrary
button shapes trivial.

Display PostScript was an onscreen rendering technology codeveloped by Adobe and
NeXT.

This proposal was never implemented, but the idea that the best way to fix HTML is
to replace it with something else altogether still pops up from time to time.

6 | Chapter 1: How Did We Get Here?

http://www.w3.org/MarkUp/html3/CoverPage.html
http://www.w3.org/Arena/
http://www.w3.org/MarkUp/Wilbur/
http://www.w3.org/TR/REC-html32.html#intro
http://www.w3.org/TR/REC-html32.html#intro
http://www.w3.org/TR/html4
http://tidy.sourceforge.net
http://1997.webhistory.org/www.lists/www-talk.1993q1/0209.html
http://en.wikipedia.org/wiki/Intermedia_(hypertext)
http://en.wikipedia.org/wiki/A/UX
http://www.w3.org/Graphics/SVG/
http://bit.ly/9YBbJc
http://ln.hixie.ch/?start=1089635050&count=1
http://ln.hixie.ch/?start=1089635050&count=1
http://www.whatwg.org
http://1997.webhistory.org/www.lists/www-talk.1993q1/0217.html
http://www-2.cs.cmu.edu/~AUIS/
http://en.wikipedia.org/wiki/Andrew_Project
http://1997.webhistory.org/www.lists/www-talk.1993q1/0215.html
http://en.wikipedia.org/wiki/Display_PostScript
http://dbaron.org/log/20090707-ex-html

On March 2, 1993, Tim Berners-Lee commented:

HTTP2 allows a document to contain any type which the user has said he can handle,
not just registered MIME types. So one can experiment. Yes I think there is a case for
postscript with hypertext. I don’t know whether display postscript has enough. I know
Adobe are trying to establish their own postscript-based “PDF” which will have links,
and be readable by their proprietary brand of viewers.

I thought that a generic overlaying language for anchors (HyTime based?) would allow
the hypertext and the graphics/video standards to evolve separately, which would help
both.

Let the IMG tag be INCLUDE and let it refer to an arbitrary document type. Or EMBED if
INCLUDE sounds like a cpp include which people will expect to provide SGML source code
to be parsed inline—not what was intended.

HyTime was an early, SGML-based hypertext document system. It loomed large in
many early discussions of HTML, and later XML.

Tim’s proposal for an <INCLUDE> tag was never implemented, although you can see
echoes of it in <object>, <embed>, and the <iframe> element.

Finally, on March 12, 1993, Marc Andreessen revisited the thread:

Back to the inlined image thread again—I’m getting close to releasing Mosaic v0.10,
which will support inlined GIF and XBM images/bitmaps, as mentioned previously. [...]

We’re not prepared to support INCLUDE/EMBED at this point. [...] So we’re probably going
to go with (not ICON, since not all inlined images can be meaningfully
called icons). For the time being, inlined images won’t be explicitly content-type’d; down
the road, we plan to support that (along with the general adaptation of MIME). Actually,
the image reading routines we’re currently using figure out the image format on the fly,
so the filename extension won’t even be significant.

An Unbroken Line
I am extraordinarily fascinated with all aspects of this almost 17-year-old conversation
that led to the creation of an HTML element that has been used on virtually every web
page ever published. Consider this:

• HTTP still exists. It successfully evolved from 0.9 into 1.0 and later 1.1, and still
it evolves.

• HTML still exists. That rudimentary data format (it didn’t even support inline
images!) successfully evolved into 2.0, 3.2, and 4.0. HTML is an unbroken line. A
twisted, knotted, snarled line, to be sure—there were plenty of “dead branches”
in the evolutionary tree, places where standards-minded people got ahead of them-
selves (and ahead of authors and implementors)—but still, here we are in 2010,
and web pages from 1990 still render in modern browsers. I just loaded one up in
the browser of my state-of-the-art Android mobile phone, and I didn’t even get
prompted to “please wait while importing legacy format...”

An Unbroken Line | 7

http://1997.webhistory.org/www.lists/www-talk.1993q1/0221.html
http://www.hytime.org
http://1997.webhistory.org/www.lists/www-talk.1993q1/0257.html
http://www.ietf.org/dyn/wg/charter/httpbis-charter.html
http://www.ietf.org/dyn/wg/charter/httpbis-charter.html
http://www.w3.org/People/Berners-Lee/FAQ.html#Examples

• HTML has always been a conversation between browser makers, authors, stand-
ards wonks, and other people who just showed up and liked to talk about angle
brackets. Most of the successful versions of HTML have been “retro-specs,” catch-
ing up to the world while simultaneously trying to nudge it in the right direction.
Anyone who tells you that HTML should be kept “pure” (presumably by ignoring
browser makers, or ignoring authors, or both) is simply misinformed. HTML has
never been pure, and all attempts to purify it have been spectacular failures,
matched only by the attempts to replace it.

• None of the browsers in use in 1993 still exist in any recognizable form. Netscape
Navigator was abandoned in 1998 and rewritten from scratch to create the Mozilla
Suite, which was then forked to create Firefox. Internet Explorer had its humble
“beginnings” in “Microsoft Plus! for Windows 95,” where it was bundled with
some desktop themes and a pinball game; but of course, that browser can be traced
back further too.

• Some of the operating systems from 1993 still exist, but none of them are relevant
to the modern Web. Most people today who “experience” the Web do so on a PC
running Windows 2000 or later, a Mac running Mac OS X, a PC running some
flavor of Linux, or a handheld device like an iPhone. In 1993, Windows was at
Version 3.1 (and competing with OS/2), Macs were running System 7, and Linux
was distributed via Usenet. (Want to have some fun? Find a graybeard and whisper
“Trumpet Winsock” or “MacPPP.”)

• Some of the same people are still around and still involved in what we now simply
call “web standards.” That’s after almost 20 years. And some were involved in
predecessors of HTML, going back into the 1980s and before.

• Speaking of predecessors.... With the eventual popularity of HTML and the Web,
it is easy to forget the contemporary formats and systems that informed their de-
sign. Before you read this chapter, had you ever heard of Andrew? Intermedia?
HyTime? And HyTime was not some rinky-dink academic research project; it was
an ISO standard approved for military use. It was Big Business. And you can read
about it yourself at http://www.sgmlsource.com/history/hthist.htm.

But none of this answers the original question: why do we have an element? Why
not an <icon> element? Or an <include> element? Why not a hyperlink with an
include attribute, or some combination of rel values? Why an element? Quite
simply, because Marc Andreessen shipped one, and shipping code wins.

That’s not to say that all shipping code wins; after all, Andrew and Intermedia and
HyTime shipped code too. Code is necessary but not sufficient for success. And I cer-
tainly don’t mean to say that shipping code before a standard will produce the best
solution. Marc’s element didn’t mandate a common graphics format; it didn’t
define how text flowed around it; it didn’t support text alternatives or fallback content
for older browsers. And 17 years later, we’re still struggling with content sniffing, and
it’s still a source of crazy security vulnerabilities. You can trace that through the Great

8 | Chapter 1: How Did We Get Here?

http://en.wikipedia.org/wiki/History_of_Mozilla_Application_Suite#Open_sourcing_of_Communicator
http://en.wikipedia.org/wiki/History_of_Mozilla_Application_Suite#Rewriting_from_scratch
http://en.wikipedia.org/wiki/History_of_Mozilla_Firefox
http://en.wikipedia.org/wiki/Spyglass_Mosaic
http://en.wikipedia.org/wiki/Spyglass_Mosaic
http://xml.coverpages.org/hytime.html
http://xml.coverpages.org/hytime.html
http://www.sgmlsource.com/history/hthist.htm
http://tools.ietf.org/html/draft-abarth-mime-sniff
http://code.google.com/p/doctype/wiki/ArticleContentSniffing
http://en.wikipedia.org/wiki/Browser_wars

Browser Wars, all the way back to February 25, 1993, when Marc Andreessen off-
handedly remarked, “MIME, someday, maybe,” and then shipped his code anyway.

A Timeline of HTML Development from 1997 to 2004
In December 1997, the World Wide Web Consortium (W3C) published HTML 4.0
and promptly shut down the HTML Working Group. Less than two months later, a
separate W3C Working Group published XML 1.0. A mere three months after that,
the W3C held a workshop called “Shaping the Future of HTML” to answer the ques-
tion, “Has W3C given up on HTML?” This was the answer:

In discussions, it was agreed that further extending HTML 4.0 would be difficult, as
would converting 4.0 to be an XML application. The proposed way to break free of these
restrictions is to make a fresh start with the next generation of HTML based upon a suite
of XML tag-sets.

The W3C rechartered the HTML Working Group to create this “suite of XML tag-
sets.” The members’ first step, in December 1998, was to draft an interim specification
that simply reformulated HTML in XML without adding any new elements or attrib-
utes. This specification later became known as “XHTML 1.0”. It defined a new MIME
type for XHTML documents, application/xhtml+xml. However, to ease the migration
of existing HTML 4 pages, it also included Appendix C, which “summarizes design
guidelines for authors who wish their XHTML documents to render on existing HTML
user agents.” Appendix C said you were allowed to author so-called “XHTML” pages
but still serve them with the text/html MIME type.

The next target was web forms. In August 1999, the same HTML Working Group
published a first draft of XHTML Extended Forms. Its members set the expectations
in the very first sentences of this draft document:

After careful consideration, the HTML Working Group has decided that the goals for
the next generation of forms are incompatible with preserving backward compatibility
with browsers designed for earlier versions of HTML. It is our objective to provide a clean
new forms model (“XHTML Extended Forms”) based on a set of well-defined require-
ments. The requirements described in this document are based on experience with a very
broad spectrum of form applications.

A few months later, “XHTML Extended Forms” was renamed “XForms” and moved
to its own Working Group. That group worked in parallel with the HTML Working
Group and finally published the first edition of XForms 1.0 in October 2003.

Meanwhile, with the transition to XML complete, the members of the HTML Working
Group set their sights on creating “the next generation of HTML.” In May 2001, they
published the first edition of XHTML 1.1, which added only a few minor features on
top of XHTML 1.0 but eliminated the “Appendix C” loophole. Starting with
Version 1.1, all XHTML documents were to be served with a MIME type of
application/xhtml+xml.

A Timeline of HTML Development from 1997 to 2004 | 9

http://en.wikipedia.org/wiki/Browser_wars
http://www.w3.org/TR/REC-html40-971218/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/MarkUp/future/
http://www.w3.org/TR/1998/WD-html-in-xml-19981205/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/#guidelines
http://www.w3.org/TR/1999/WD-xhtml-forms-req-19990830
http://www.w3.org/TR/1999/WD-xhtml-forms-req-19990830#intro
http://www.w3.org/MarkUp/Forms/2000/Charter.html
http://www.w3.org/MarkUp/Forms/2000/Charter.html
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/changes.html#a_changes

Everything You Know About XHTML Is Wrong
Why are MIME types important? Why do I keep coming back to them? Three words:
draconian error handling. Browsers have always been “forgiving” with HTML. If you
create an HTML page but forget to give it a <title>, browsers will display the page
anyway, even though the <title> element has always been required in every version of
HTML. Certain tags are not allowed within other tags, but if you create a page that
puts them inside anyway, browsers will just deal with it (somehow) and move on with-
out displaying an error message.

As you might expect, the fact that “broken” HTML markup still worked in web brows-
ers led authors to create broken HTML pages. A lot of broken pages. By some estimates,
over 99 percent of HTML pages on the Web today have at least one error in them. But
because these errors don’t cause browsers to display visible error messages, nobody
ever fixes them.

The W3C saw this as a fundamental problem with the Web, and set out to correct it.
XML, published in 1997, broke from the tradition of forgiving clients and mandated
that all programs that consumed XML must treat so-called “well-formedness” errors
as fatal. This concept of failing on the first error became known as “draconian error
handling,” after the Greek leader Draco, who instituted the death penalty for relatively
minor infractions of his laws. When the W3C reformulated HTML as an XML vo-
cabulary, the people in charge mandated that all documents served with the new
application/xhtml+xml MIME type would be subject to draconian error handling. If
there was even a single error in your XHTML page, web browsers would have no choice
but to stop processing and display an error message to the end user.

This idea was not universally popular. With an estimated error rate of 99 percent on
existing pages, the ever-present possibility of displaying errors to the end user, and the
dearth of new features in XHTML 1.0 and 1.1 to justify the cost, web authors basically
ignored application/xhtml+xml. But that doesn’t mean they ignored XHTML alto-
gether. Oh, most definitely not. Appendix C of the XHTML 1.0 specification gave the
web authors of the world a loophole: “Use something that looks kind of like XHTML
syntax, but keep serving it with the text/html MIME type.” And that’s exactly what
thousands of web developers did: they “upgraded” to XHTML syntax but kept serving
it with a text/html MIME type.

Even today, while many web pages claim to be XHTML—they start with the XHTML
doctype on the first line, use lowercase tag names, use quotes around attribute values,
and add a trailing slash after empty elements like
 and <hr />—only a tiny fraction
of these pages are served with the application/xhtml+xml MIME type that would trigger
XML’s draconian error handling. Any page served with a MIME type of text/html,
regardless of its doctype, syntax, or coding style, will be parsed using a “forgiving”
HTML parser, silently ignoring any markup errors and never alerting end users (or
anyone else), even if the page is technically broken.

10 | Chapter 1: How Did We Get Here?

http://esw.w3.org/topic/HTML/DraconianErrorHandling
http://en.wikipedia.org/wiki/Draco_(lawgiver)

XHTML 1.0 included this loophole, but XHTML 1.1 closed it, and the never-finalized
XHTML 2.0 continued the tradition of requiring draconian error handling. And that’s
why there are billions of pages that claim to be XHTML 1.0, and only a handful that
claim to be XHTML 1.1 (or XHTML 2.0). So, are you really using XHTML? Check
your MIME type. (Actually, if you don’t know what MIME type you’re using, I can
pretty much guarantee that you’re still using text/html.) Unless you’re serving your
pages with a MIME type of application/xhtml+xml, your so-called “XHTML” is XML
in name only.

A Competing Vision
In June 2004, the W3C held the Workshop on Web Applications and Compound
Documents. Present at this workshop were representatives of several browser vendors,
web development companies, and other W3C members. A group of interested parties,
including the Mozilla Foundation and Opera Software, gave a presentation on their
competing visions of the future of the Web: an evolution of the existing HTML 4
standard to include new features for modern web application developers:

The following seven principles represent what we believe to be the most critical require-
ments for this work:

Backward compatibility, clear migration path
Web application technologies should be based on technologies authors are familiar
with, including HTML, CSS, DOM, and JavaScript.

Basic Web application features should be implementable using behaviors, scripting,
and style sheets in IE6 today so that authors have a clear migration path. Any sol-
ution that cannot be used with the current high-market-share user agent without
the need for binary plug-ins is highly unlikely to be successful.

Well-defined error handling
Error handling in Web applications must be defined to a level of detail where User
Agents (UAs) do not have to invent their own error handling mechanisms or reverse
engineer other User Agents’.

Users should not be exposed to authoring errors
Specifications must specify exact error recovery behaviour for each possible error
scenario. Error handling should for the most part be defined in terms of graceful
error recovery (as in CSS), rather than obvious and catastrophic failure (as in XML).

Practical use
Every feature that goes into the Web Applications specifications must be justified
by a practical use case. The reverse is not necessarily true: every use case does not
necessarily warrant a new feature.

Use cases should preferably be based on real sites where the authors previously used
a poor solution to work around the limitation.

Scripting is here to stay
But should be avoided where more convenient declarative markup can be used.
Scripting should be device and presentation neutral unless scoped in a device-
specific way (e.g., unless included in XBL).

A Competing Vision | 11

http://www.w3.org/2004/04/webapps-cdf-ws/
http://www.w3.org/2004/04/webapps-cdf-ws/
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html

Device-specific profiling should be avoided
Authors should be able to depend on the same features being implemented in desk-
top and mobile versions of the same UA.

Open process
The Web has benefited from being developed in an open environment. Web
Applications will be core to the Web, and its development should also take place in
the open. Mailing lists, archives and draft specifications should continuously be
visible to the public.

In a straw poll, the workshop participants were asked, “Should the W3C develop de-
clarative extensions to HTML and CSS and imperative extensions to DOM, to address
medium level Web Application requirements, as opposed to sophisticated, fully-
fledged OS-level APIs?” The vote was 11 to 8 against. In their summary of the work-
shop, the W3C’s members wrote, “At present, W3C does not intend to put any re-
sources into the third straw-poll topic: extensions to HTML and CSS for Web Appli-
cations, other than technologies being developed under the charter of current W3C
Working Groups.”

Faced with this decision, the people who had proposed evolving HTML and HTML
forms had only two choices: give up, or continue their work outside of the W3C. They
chose the latter, registered the whatwg.org domain, and in June 2004, the WHAT
Working Group was born.

What Working Group?
What the heck is the WHAT Working Group? I’ll let it explain for itself:

The Web Hypertext Applications Technology Working Group is a loose, unofficial, and
open collaboration of Web browser manufacturers and interested parties. The group
aims to develop specifications based on HTML and related technologies to ease the de-
ployment of interoperable Web Applications, with the intention of submitting the results
to a standards organisation. This submission would then form the basis of work on for-
mally extending HTML in the standards track.

The creation of this forum follows from several months of work by private e-mail on
specifications for such technologies. The main focus up to this point has been extending
HTML4 Forms to support features requested by authors, without breaking backward
compatibility with existing content. This group was created to ensure that future devel-
opment of these specifications will be completely open, through a publicly-archived,
open mailing list.

The key phrase here is “without breaking backward compatibility.” XHTML (minus
the Appendix C loophole) is not backward compatible with HTML. It requires an
entirely new MIME type, and it mandates draconian error handling for all content
served with that MIME type. XForms is not backward compatible with HTML forms,
because it can only be used in documents that are served with the new XHTML MIME
type, which means that XForms also mandates draconian error handling. All roads lead
to MIME.

12 | Chapter 1: How Did We Get Here?

http://www.w3.org/2004/04/webapps-cdf-ws/summary
http://www.w3.org/2004/04/webapps-cdf-ws/summary
http://www.whatwg.org
http://www.whatwg.org/news/start
http://www.whatwg.org/news/start
http://www.whatwg.org/news/start

Instead of scrapping over a decade’s worth of investment in HTML and making 99
percent of existing web pages unusable, the WHAT Working Group decided to take a
different approach: documenting the “forgiving” error handling algorithms that brows-
ers actually used. Web browsers have always been forgiving of HTML errors, but no-
body had ever bothered to write down exactly how they did it. NCSA Mosaic had its
own algorithms for dealing with broken pages, and Netscape tried to match them. Then
Internet Explorer tried to match Netscape. Then Opera and Firefox tried to match
Internet Explorer. Then Safari tried to match Firefox. And so on, right up to the present
day. Along the way, developers burned thousands and thousands of hours trying to
make their products compatible with those of their competitors.

If that sounds like an insane amount of work, that’s because it is. Or rather, it was. It
took several years, but (modulo a few obscure edge cases) the WHAT Working Group
successfully documented how to parse HTML in a way that is compatible with existing
web content. Nowhere in the final algorithm is there a step that mandates that the
HTML consumer should stop processing and display an error message to the end user.

While all that reverse-engineering was going on, the WHAT Working Group was qui-
etly working on a few other things, too. One of them was a specification, initially dub-
bed Web Forms 2.0, that added new types of controls to HTML forms. (You’ll learn
more about web forms in Chapter 9.) Another was a draft specification called “Web
Applications 1.0” that included major new features, like a direct-mode drawing canvas
(see Chapter 4) and native support for audio and video without plug-ins (see Chapter 5).

Back to the W3C
For several years, the W3C and the WHAT Working Group largely ignored each other.
While the WHAT Working Group focused on web forms and new HTML features, the
W3C HTML Working Group was busy with Version 2.0 of XHTML. But by October
2006, it was clear that the WHAT Working Group had picked up serious momentum,
while XHTML 2 was still languishing in draft form, unimplemented by any major
browser. In October 2006, Tim Berners-Lee, the founder of the W3C itself, announced
that the W3C would work together with the WHAT Working Group to evolve HTML:

Some things are clearer with hindsight of several years. It is necessary to evolve HTML
incrementally. The attempt to get the world to switch to XML, including quotes around
attribute values and slashes in empty tags and namespaces all at once didn’t work. The
large HTML-generating public did not move, largely because the browsers didn’t com-
plain. Some large communities did shift and are enjoying the fruits of well-formed sys-
tems, but not all. It is important to maintain HTML incrementally, as well as continuing
a transition to a well-formed world, and developing more power in that world.

The plan is to charter a completely new HTML group. Unlike the previous one, this one
will be chartered to do incremental improvements to HTML, and also in parallel
XHTML. It will have a different chair and staff contact. It will work on HTML and
XHTML together. We have strong support for this group, from many people we have
talked to, including browser makers.

Back to the W3C | 13

http://bit.ly/cteVcn
http://bit.ly/c21wRC
http://dig.csail.mit.edu/breadcrumbs/node/166
http://dig.csail.mit.edu/breadcrumbs/node/166

There will also be work on forms. This is a complex area, as existing HTML forms and
XForms are both form languages. HTML forms are ubiquitously deployed, and there are
many implementations and users of XForms. Meanwhile, the Webforms submission has
suggested sensible extensions to HTML forms. The plan is, informed by Webforms, to
extend HTML forms.

One of the first things the newly rechartered W3C HTML Working Group decided was
to rename “Web Applications 1.0” to “HTML5.” And here we are, diving into HTML5.

Postscript
In October 2009, the W3C shut down the XHTML 2 Working Group and issued this
statement to explain the decision:

When W3C announced the HTML and XHTML 2 Working Groups in March 2007, we
indicated that we would continue to monitor the market for XHTML 2. W3C recognizes
the importance of a clear signal to the community about the future of HTML.

While we recognize the value of the XHTML 2 Working Group’s contributions over the
years, after discussion with the participants, W3C management has decided to allow the
Working Group’s charter to expire at the end of 2009 and not to renew it.

The ones that win are the ones that ship.

Further Reading
• “The History of the Web”, an old draft by Ian Hickson

• “HTML/History”, by Michael Smith, Henri Sivonen, and others

• “A Brief History of HTML”, by Scott Reynen

14 | Chapter 1: How Did We Get Here?

http://www.w3.org/News/2009#item119
http://www.w3.org/2009/06/xhtml-faq.html
http://www.w3.org/2009/06/xhtml-faq.html
http://hixie.ch/commentary/web/history
http://esw.w3.org/topic/HTML/history
http://www.atendesigngroup.com/blog/brief-history-of-html

CHAPTER 2

Detecting HTML5 Features

Diving In
You may well ask, “How can I start using HTML5 if older browsers don’t support it?”
But the question itself is misleading. HTML5 is not one big thing; it is a collection of
individual features. So, you can’t detect “HTML5 support,” because that doesn’t make
any sense. But you can detect support for individual features, like canvas, video, or
geolocation.

Detection Techniques
When your browser renders a web page, it constructs a Document Object Model
(DOM), a collection of objects that represent the HTML elements on the page. Every
element—every <p>, every <div>, every —is represented in the DOM by a dif-
ferent object. (There are also global objects, like window and document, that aren’t tied
to specific elements.)

All DOM objects share a set of common properties, but some objects have more than
others. In browsers that support HTML5 features, certain objects will have unique
properties. A quick peek at the DOM will tell you which features are supported.

There are four basic techniques for detecting whether a browser supports a particular
feature. From simplest to most complex:

1. Check if a certain property exists on a global object (such as window or navigator).

For an example of testing for geolocation support, see “Geolocation”
on page 24.

2. Create an element, then check if a certain property exists on that element.

For an example of testing for canvas support, see “Canvas” on page 16.

3. Create an element, check if a certain method exists on that element, then call the
method and check the value it returns.

15

For an example of testing which video formats are supported, see “Video For-
mats” on page 19.

4. Create an element, set a property to a certain value, then check if the property has
retained its value.

For an example of testing which <input> types are supported, see “Input
Types” on page 25.

Modernizr: An HTML5 Detection Library
Modernizr is an open source, MIT-licensed JavaScript library that detects support for
many HTML5 and CSS3 features. At the time of writing, the latest version is 1.1. You
should always use the latest version. To do so, include the following <script> element
at the top of your page:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Dive into HTML5</title>
 <script src="modernizr.min.js"></script>
</head>
<body>
 ...
</body>
</html>

Modernizr runs automatically. There is no modernizr_init() function to call. When it
runs, it creates a global object called Modernizr that contains a set of Boolean properties
for each feature it can detect. For example, if your browser supports the canvas API
(see Chapter 4), the Modernizr.canvas property will be true. If your browser does not
support the canvas API, the Modernizr.canvas property will be false:

if (Modernizr.canvas) {
 // let's draw some shapes!
} else {
 // no native canvas support available :(
}

Canvas
HTML5 defines the <canvas> element as “a resolution-dependent bitmap canvas which
can be used for rendering graphs, game graphics, or other visual images on the fly.” A
canvas is a rectangle in your page within which you can use JavaScript to draw anything
you want. HTML5 defines a set of functions (“the canvas API”) for drawing shapes,
defining paths, creating gradients, and applying transformations.

Checking for canvas API support uses detection technique #2 (see “Detection Tech-
niques” on page 15). If your browser supports the canvas API, the DOM object it creates

16 | Chapter 2: Detecting HTML5 Features

http://www.modernizr.com
http://bit.ly/9JHzOf

to represent a <canvas> element will have a getContext() method (see “Simple
Shapes” on page 58). If your browser doesn’t support the canvas API, the DOM object
it creates for a <canvas> element will have only the set of common properties, not any-
thing canvas-specific. You can check for canvas support using this function:

function supports_canvas() {
 return !!document.createElement('canvas').getContext;
}

This function starts by creating a dummy <canvas> element:

return !!document.createElement('canvas').getContext;

This element is never attached to your page, so no one will ever see it. It’s just floating
in memory, going nowhere and doing nothing, like a canoe on a lazy river.

As soon as you create the dummy <canvas> element, you test for the presence of a
getContext() method. This method will only exist if your browser supports the canvas
API:

return !!document.createElement('canvas').getContext;

Finally, you use the double-negative trick to force the result to a Boolean value (true
or false):

return !!document.createElement('canvas').getContext;

This function will detect support for most of the canvas API, including shapes (see
“Simple Shapes” on page 58), paths (see “Paths” on page 61), gradients (see “Gra-
dients” on page 67), and patterns. It will not detect the third-party explorercanvas
library (see “What About IE?” on page 73) that implements the canvas API in
Microsoft Internet Explorer.

Instead of writing this function yourself, you can use Modernizr (introduced in the
preceding section) to detect support for the canvas API:

if (Modernizr.canvas) {
 // let's draw some shapes!
} else {
 // no native canvas support available :(
}

There is a separate test for the canvas text API, which I will demonstrate next.

Canvas Text
Even if your browser supports the canvas API, it might not support the canvas text API.
The canvas API grew over time, and the text functions were added late in the game.
Some browsers shipped with canvas support before the text API was complete.

Checking for canvas text API support again uses detection technique #2 (see “Detection
Techniques” on page 15). If your browser supports the canvas API, the DOM object it
creates to represent a <canvas> element will have the getContext() method (see “Simple

Canvas Text | 17

Shapes” on page 58). If your browser doesn’t support the canvas API, the DOM object
it creates for a <canvas> element will have only the set of common properties, not any-
thing canvas-specific. You can check for canvas text support using this function:

function supports_canvas_text() {
 if (!supports_canvas()) { return false; }
 var dummy_canvas = document.createElement('canvas');
 var context = dummy_canvas.getContext('2d');
 return typeof context.fillText == 'function';
}

The function starts by checking for canvas support, using the supports_canvas() func-
tion introduced in the previous section:

if (!supports_canvas()) { return false; }

If your browser doesn’t support the canvas API, it certainly won’t support the canvas
text API!

Next, you create a dummy <canvas> element and get its drawing context. This is guar-
anteed to work, because the supports_canvas() function already checked that the
getContext() method exists on all canvas objects:

var dummy_canvas = document.createElement('canvas');
var context = dummy_canvas.getContext('2d');

Finally, you check whether the drawing context has a fillText() function. If it does,
the canvas text API is available:

return typeof context.fillText == 'function';

Instead of writing this function yourself, you can use Modernizr (see “Modernizr: An
HTML5 Detection Library” on page 16) to detect support for the canvas text API:

if (Modernizr.canvastext) {
 // let's draw some text!
} else {
 // no native canvas text support available :(
}

Video
HTML5 defines a new element called <video> for embedding video in your web pages.
Embedding video used to be impossible without third-party plug-ins such as Apple
QuickTime or Adobe Flash.

18 | Chapter 2: Detecting HTML5 Features

The <video> element is designed to be usable without any detection scripts. You can
specify multiple video files, and browsers that support HTML5 video will choose one
based on what video formats they support.*

Browsers that don’t support HTML5 video will ignore the <video> element completely,
but you can use this to your advantage and tell them to play video through a third-party
plug-in instead. Kroc Camen has designed a solution called Video for Everybody! that
uses HTML5 video where available, but falls back to QuickTime or Flash in older
browsers. This solution uses no JavaScript whatsoever, and it works in virtually every
browser, including mobile browsers.

If you want to do more with video than plop it on your page and play it, you’ll need to
use JavaScript. Checking for video support uses detection technique #2 (see “Detection
Techniques” on page 15). If your browser supports HTML5 video, the DOM object it
creates to represent a <video> element will have a canPlayType() method. If your
browser doesn’t support HTML5 video, the DOM object it creates for a <video> ele-
ment will have only the set of properties common to all elements. You can check for
video support using this function:

function supports_video() {
 return !!document.createElement('video').canPlayType;
}

Instead of writing this function yourself, you can use Modernizr (see “Modernizr: An
HTML5 Detection Library” on page 16) to detect support for HTML5 video:

if (Modernizr.video) {
 // let's play some video!
} else {
 // no native video support available :(
 // maybe check for QuickTime or Flash instead
}

There is a separate test for detecting which video formats your browser can play, which
I will demonstrate next.

Video Formats
Video formats are like written languages. An English newspaper may convey the same
information as a Spanish newspaper, but if you can only read English, only one of them
will be useful to you! To play a video, your browser needs to understand the “language”
in which the video was written.

* See “A gentle introduction to video encoding, part 1: container formats” and “part 2: lossy video codecs” to
learn about different video formats.

Video Formats | 19

http://camendesign.com/code/video_for_everybody
http://diveintomark.org/archives/2008/12/18/give-part-1-container-formats
http://diveintomark.org/archives/2008/12/19/give-part-2-lossy-video-codecs

The “language” of a video is called a “codec”—this is the algorithm used to encode the
video into a stream of bits. There are dozens of codecs in use all over the world. Which
one should you use? The unfortunate reality of HTML5 video is that browsers can’t
agree on a single codec. However, they seem to have narrowed it down to two. One
codec costs money (because of patent licensing), but it works in Safari and on the
iPhone. (This one also works in Adobe Flash, if you use a solution like Video for
Everybody!.) The other codec is free and works in open source browsers like
Chromium and Mozilla Firefox.

Checking for video format support uses detection technique #3 (see “Detection Tech-
niques” on page 15). If your browser supports HTML5 video, the DOM object it creates
to represent a <video> element will have a canPlayType() method. This method will tell
you whether the browser supports a particular video format.

This function checks for the patent-encumbered format supported by Macs and
iPhones:

function supports_h264_baseline_video() {
 if (!supports_video()) { return false; }
 var v = document.createElement("video");
 return v.canPlayType('video/mp4; codecs="avc1.42E01E, mp4a.40.2"');
}

The function starts by checking for HTML5 video support, using the
supports_video() function from the previous section:

if (!supports_video()) { return false; }

If your browser doesn’t support HTML5 video, it certainly won’t support any video
formats!

Next, the function creates a dummy <video> element (but doesn’t attach it to the page,
so it won’t be visible) and calls the canPlayType() method. This method is guaranteed
to be there, because the supports_video() function just checked for it:

var v = document.createElement("video");
return v.canPlayType('video/mp4; codecs="avc1.42E01E, mp4a.40.2"');

A “video format” is really a combination of several different things. In technical terms,
you’re asking the browser whether it can play H.264 Baseline video and AAC LC audio
in an MPEG-4 container.†

The canPlayType() function doesn’t return true or false. In recognition of how com-
plex video formats are, the function returns a string:

"probably"
If the browser is fairly confident it can play this format

† I’ll explain what all that means in Chapter 5. You might also be interested in reading “A gentle introduction
to video encoding”.

20 | Chapter 2: Detecting HTML5 Features

http://www.apple.com/safari/
http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody
http://code.google.com/chromium/
http://www.getfirefox.com
http://diveintomark.org/tag/give
http://diveintomark.org/tag/give

"maybe"
If the browser thinks it might be able to play this format

"" (an empty string)
If the browser is certain it can’t play this format

This second function checks for the open video format supported by Mozilla Firefox
and other open source browsers. The process is exactly the same; the only difference
is the string you pass in to the canPlayType() function. In technical terms, you’re asking
the browser whether it can play Theora video and Vorbis audio in an Ogg container:

function supports_ogg_theora_video() {
 if (!supports_video()) { return false; }
 var v = document.createElement("video");
 return v.canPlayType('video/ogg; codecs="theora, vorbis"');
}

Finally, WebM is a newly open-sourced (and non-patent-encumbered) video codec that
will be included in the next version of major browsers, including Chrome, Firefox, and
Opera. You can use the same technique to detect support for open WebM video:

function supports_webm_video() {
 if (!supports_video()) { return false; }
 var v = document.createElement("video");
 return v.canPlayType('video/webm; codecs="vp8, vorbis"');
}

Instead of writing this function yourself, you can use Modernizr to detect support for
several different HTML5 video formats (note that Modernizr does not yet have support
for detecting support for the open WebM video format):

if (Modernizr.video) {
 // let's play some video! but what kind?
 if (Modernizr.video.ogg) {
 // try Ogg Theora + Vorbis in an Ogg container
 } else if (Modernizr.video.h264){
 // try H.264 video + AAC audio in an MP4 container
 }
}

Local Storage
HTML5 Storage provides a way for websites to store information on your computer
and retrieve it later. The concept is similar to cookies, but it’s designed for larger quan-
tities of information. Cookies are limited in size, and your browser sends them back to
the web server every time it requests a new page (which takes extra time and precious
bandwidth). HTML5 Storage stays on your computer, and websites can access it with
JavaScript after the page is loaded.

Local Storage | 21

http://www.webmproject.org
http://nightly.mozilla.org/webm/
http://labs.opera.com/news/2010/05/19/
http://diveintohtml5.org/detect.html#modernizr
http://dev.w3.org/html5/webstorage/

Ask Professor Markup
Q: Is local storage really part of HTML5? Why is it in a separate specification?

A: The short answer is yes, local storage is part of HTML5. The slightly longer answer
is that local storage used to be part of the main HTML5 specification, but it was split
out into a separate specification because some people in the HTML5 Working Group
complained that HTML5 was too big. If that sounds like slicing a pie into more pieces
to reduce the total number of calories...well, welcome to the wacky world of standards.

Checking for HTML5 Storage support uses detection technique #1 (see “Detection
Techniques” on page 15). If your browser supports HTML5 Storage, there will be a
localStorage property on the global window object. If your browser doesn’t support
HTML5 Storage, the localStorage property will be undefined. You can check for local
storage support using this function:

function supports_local_storage() {
 return ('localStorage' in window) && window['localStorage'] !== null;
}

Instead of writing this function yourself, you can use Modernizr (see “Modernizr: An
HTML5 Detection Library” on page 16) to detect support for HTML5 local storage:

if (Modernizr.localstorage) {
 // window.localStorage is available!
} else {
 // no native support for local storage :(
 // maybe try Gears or another third-party solution
}

Note that JavaScript is case-sensitive. The Modernizr attribute is called localstorage
(all lowercase), but the DOM property is called window.localStorage (mixed case).

Ask Professor Markup
Q: How secure is my HTML5 Storage database? Can anyone read it?

A: Anyone who has physical access to your computer can probably look at (or even
change) your HTML5 Storage database. Within your browser, any website can read
and modify its own values, but sites can’t access values stored by other sites. This is
called a same-origin restriction.

22 | Chapter 2: Detecting HTML5 Features

http://bit.ly/9YyPpj

Web Workers
Web workers provide a standard way for browsers to run JavaScript in the background.
With web workers, you can spawn multiple “threads” that all run at the same time,
more or less. (Think of how your computer can run multiple applications at the same
time, and you’re most of the way there.) These “background threads” can do complex
mathematical calculations, make network requests, or access local storage while the
main web page responds to the user scrolling, clicking, or typing.

Checking for web workers uses detection technique #1 (see “Detection Techni-
ques” on page 15). If your browser supports the Web Worker API, there will be a
Worker property on the global window object. If your browser doesn’t support the Web
Worker API, the Worker property will be undefined. This function checks for web
worker support:

function supports_web_workers() {
 return !!window.Worker;
}

Instead of writing this function yourself, you can use Modernizr (see “Modernizr: An
HTML5 Detection Library” on page 16) to detect support for web workers:

if (Modernizr.webworkers) {
 // window.Worker is available!
} else {
 // no native support for web workers :(
 // maybe try Gears or another third-party solution
}

Note that JavaScript is case-sensitive. The Modernizr attribute is called webworkers (all
lowercase), but the DOM object is called window.Worker (with a capital “W” in
“Worker”).

Offline Web Applications
Reading static web pages offline is easy: connect to the Internet, load a web page,
disconnect from the Internet, drive to a secluded cabin, and read the web page at your
leisure. (To save time, you may wish to skip the step about the cabin.) But what about
using web applications like Gmail or Google Docs when you’re offline? Thanks to
HTML5, anyone (not just Google!) can build a web application that works offline.

Offline web applications start out as online web applications. The first time you visit
an offline-enabled website, the web server tells your browser which files it needs in
order to work offline. These files can be anything—HTML, JavaScript, images, even
videos (see “Video” on page 18). Once your browser downloads all the necessary files,
you can revisit the website even if you’re not connected to the Internet. Your browser
will notice that you’re offline and use the files it has already downloaded. When you
get back online, any changes you’ve made can be uploaded to the remote web server.

Offline Web Applications | 23

http://bit.ly/9jheof
http://mail.google.com
http://docs.google.com
http://bit.ly/d8ZgzX

Checking for offline support uses detection technique #1 (see “Detection Techni-
ques” on page 15). If your browser supports offline web applications, there will be an
applicationCache property on the global window object. If your browser doesn’t support
offline web applications, the applicationCache property will be undefined. You can
check for offline support with the following function:

function supports_offline() {
 return !!window.applicationCache;
}

Instead of writing this function yourself, you can use Modernizr (see “Modernizr: An
HTML5 Detection Library” on page 16) to detect support for offline web applications:

if (Modernizr.applicationcache) {
 // window.applicationCache is available!
} else {
 // no native support for offline :(
 // maybe try Gears or another third-party solution
}

Note that JavaScript is case-sensitive. The Modernizr attribute is called applicationc
ache (all lowercase), but the DOM object is called window.applicationCache (mixed
case).

Geolocation
Geolocation is the art of figuring out where you are in the world and (optionally) sharing
that information with people you trust. There are many ways to figure out where you
are—your IP address, your wireless network connection, which cell tower your phone
is talking to, or dedicated GPS hardware that receives latitude and longitude informa-
tion from satellites in the sky.

Ask Professor Markup
Q: Is geolocation part of HTML5? Why are you talking about it?

A: Geolocation support is being added to browsers right now, along with support for
new HTML5 features. Strictly speaking, geolocation is being standardized by the Ge-
olocation Working Group, which is separate from the HTML5 Working Group. But
I’m going to talk about geolocation in this book anyway, because it’s part of the evo-
lution of the Web that’s happening now.

Checking for geolocation support uses detection technique #1 (see “Detection Tech-
niques” on page 15). If your browser supports the geolocation API, there will be a
geolocation property on the global navigator object. If your browser doesn’t support
the geolocation API, the geolocation property will be undefined. Here’s how to check
for geolocation support:

24 | Chapter 2: Detecting HTML5 Features

http://www.w3.org/2008/geolocation/
http://www.w3.org/2008/geolocation/

function supports_geolocation() {
 return !!navigator.geolocation;
}

Instead of writing this function yourself, you can use Modernizr (see “Modernizr: An
HTML5 Detection Library” on page 16) to detect support for the geolocation API:

if (Modernizr.geolocation) {
 // let's find out where you are!
} else {
 // no native geolocation support available :(
 // maybe try Gears or another third-party solution
}

If your browser does not support the geolocation API natively, there is still hope.
Gears is an open source browser plug-in from Google that works on Windows, Mac,
Linux, Windows Mobile, and Android. It provides a number of features for older
browsers that do not support all the fancy new stuff we’ve discussed in this chapter.
One of the features that Gears provides is a geolocation API. It’s not the same as the
navigator.geolocation API, but it serves the same purpose.

There are also device-specific geolocation APIs on several mobile phone platforms,
including BlackBerry, Nokia, Palm, and OMTP BONDI.

Chapter 6 will go into excruciating detail about how to use all of these different APIs.

Input Types
You know all about web forms, right? Make a <form>, add a few <input type="text">
elements and maybe an <input type="password">, and finish it off with an <input
type="submit"> button.

You don’t know the half of it. HTML5 defines over a dozen new input types that you
can use in your forms:

<input type="search">
See http://bit.ly/9mQt5C for search boxes

<input type="number">
See http://bit.ly/aPZHjD for spinboxes

<input type="range">
See http://bit.ly/dmLiRr for sliders

<input type="color">
See http://bit.ly/bwRcMO for color pickers

<input type="tel">
See http://bit.ly/amkWLq for telephone numbers

<input type="url">
See http://bit.ly/cjKb3a for web addresses

Input Types | 25

http://tools.google.com/gears/
http://www.tonybunce.com/2008/05/08/Blackberry-Browser-Amp-GPS.aspx
http://www.forum.nokia.com/infocenter/index.jsp?topic=/Web_Developers_Library/GUID-4DDE31C7-EC0D-4EEC-BC3A-A0B0351154F8.html
http://developer.palm.com/index.php?option=com_content&view=article&id=1673#GPS-getCurrentPosition
http://bondi.omtp.org/1.0/apis/geolocation.html
http://bit.ly/9mQt5C
http://bit.ly/aPZHjD
http://bit.ly/dmLiRr
http://bit.ly/bwRcMO
http://bit.ly/amkWLq
http://bit.ly/cjKb3a

<input type="email">
See http://bit.ly/aaDrgS for email addresses

<input type="date">
See http://bit.ly/c8hL58 for calendar date pickers

<input type="month">
See http://bit.ly/cDgHRI for months

<input type="week">
See http://bit.ly/bR3r58 for weeks

<input type="time">
See http://bit.ly/bfMCMn for timestamps

<input type="datetime">
See http://bit.ly/c46zVW for precise, absolute date/timestamps

<input type="datetime-local">
See http://bit.ly/aziNkE for local dates and times

Checking for HTML5 input types uses detection technique #4 (see “Detection Tech-
niques” on page 15). First, you create a dummy <input> element in memory:

var i = document.createElement("input");

The default input type for all <input> elements is "text". This will prove to be vitally
important.

Next, set the type attribute on the dummy <input> element to the input type you want
to detect:

i.setAttribute("type", "color");

If your browser supports that particular input type, the type property will retain the
value you set. If your browser doesn’t support that particular input type, it will ignore
the value you set and the type property will still be "text":

return i.type !== "text";

Instead of writing 13 separate functions yourself, you can use Modernizr (see “Mod-
ernizr: An HTML5 Detection Library” on page 16) to detect support for all the new
input types defined in HTML5. Modernizr reuses a single <input> element to efficiently
detect support for all 13 input types. Then it builds a hash called Modernizr.input
types, which contains 13 keys (the HTML5 type attributes) and 13 Boolean values
(true if supported, false if not):

if (!Modernizr.inputtypes.date) {
 // no native support for <input type="date"> :(
 // maybe build one yourself with
 // Dojo
 // or jQueryUI
}

26 | Chapter 2: Detecting HTML5 Features

http://bit.ly/aaDrgS
http://bit.ly/c8hL58
http://bit.ly/cDgHRI
http://bit.ly/bR3r58
http://bit.ly/bfMCMn
http://bit.ly/c46zVW
http://bit.ly/aziNkE
http://docs.dojocampus.org/dojox/widget/Calendar
http://jqueryui.com/demos/datepicker/

Placeholder Text
Besides new input types, HTML5 includes several small tweaks to existing forms. One
improvement is the ability to set placeholder text in an input field. Placeholder text is
displayed inside the input field as long as the field is empty and not focused. As soon
as you click on (or tab to) the input field, the placeholder text disappears. “Placeholder
Text” on page 147 has screenshots if you’re having trouble visualizing it.

Checking for placeholder support uses detection technique #2 (see “Detection Tech-
niques” on page 15). If your browser supports placeholder text in input fields, the DOM
object it creates to represent an <input> element will have a placeholder property (even
if you don’t include a placeholder attribute in your HTML). If your browser doesn’t
support placeholder text, the DOM object it creates for an <input> element will not
have a placeholder property. Here’s how to check for placeholder support:

function supports_input_placeholder() {
 var i = document.createElement('input');
 return 'placeholder' in i;
}

Instead of writing this function yourself, you can use Modernizr (see “Modernizr: An
HTML5 Detection Library” on page 16) to detect support for placeholder text:

if (Modernizr.input.placeholder) {
 // your placeholder text should already be visible!
} else {
 // no placeholder support :(
 // fall back to a scripted solution
}

Form Autofocus
Many websites use JavaScript to focus the first input field of a web form automatically.
For example, the home page of Google.com will autofocus the input box so you can
type your search keywords without having to position the cursor in the search box.
While this is convenient for most people, it can be annoying for power users or people
with special needs. If you press the space bar expecting to scroll the page, the page will
not scroll because the focus is already in a form input field. (Instead, you’ll type a space
in the field.) If you focus a different input field while the page is still loading, the site’s
autofocus script may “helpfully” move the focus back to the original input field upon
completion, disrupting your flow and causing you to type in the wrong place.

Because the autofocusing is done with JavaScript, it can be tricky to handle all of these
edge cases, and there is little recourse for people who don’t want a web page to “steal”
the focus.

Form Autofocus | 27

http://bit.ly/byDXwh

To solve this problem, HTML5 introduces an autofocus attribute on all web form
controls. The autofocus attribute does exactly what it says on the tin: it moves the focus
to a particular input field. But because it’s just markup instead of a script, the behavior
will be consistent across all websites. Also, browser vendors (or extension authors) can
offer users a way to disable the autofocusing behavior.

Checking for autofocus support uses detection technique #2 (see “Detection Techni-
ques” on page 15). If your browser supports autofocusing web form controls, the DOM
object it creates to represent an <input> element will have an autofocus property (even
if you don’t include the autofocus attribute in your HTML). If your browser doesn’t
support autofocusing web form controls, the DOM object it creates for an <input>
element will not have an autofocus property. You can detect autofocus support with
this function:

function supports_input_autofocus() {
 var i = document.createElement('input');
 return 'autofocus' in i;
}

Instead of writing this function yourself, you can use Modernizr (see “Modernizr: An
HTML5 Detection Library” on page 16) to detect support for autofocused form fields:

if (Modernizr.input.autofocus) {
 // autofocus works!
} else {
 // no autofocus support :(
 // fall back to a scripted solution
}

Microdata
Microdata is a standardized way to provide additional semantics in your web pages.
For example, you can use microdata to declare that a photograph is available under a
specific Creative Commons license. As you’ll see in Chapter 10, you can also use mi-
crodata to mark up an “About Me” page. Browsers, browser extensions, and search
engines can convert your HTML5 microdata markup into a vCard, a standard format
for sharing contact information. You can also define your own microdata vocabularies.

The HTML5 microdata standard includes both HTML markup (primarily for search
engines) and a set of DOM functions (primarily for browsers). There’s no harm in
including microdata markup in your web pages; it’s nothing more than a few well-
placed attributes, and search engines that don’t understand the microdata attributes
will just ignore them. But if you need to access or manipulate microdata through the
DOM, you’ll need to check whether the browser supports the microdata DOM API.

28 | Chapter 2: Detecting HTML5 Features

http://bit.ly/bqAw0J
http://bit.ly/bqAw0J
http://bit.ly/ckt9Rj
http://en.wikipedia.org/wiki/VCard

Checking for HTML5 microdata API support uses detection technique #1 (see “De-
tection Techniques” on page 15). If your browser supports the HTML5 microdata API,
there will be a getItems() function on the global document object. If your browser
doesn’t support microdata, the getItems() function will be undefined. You can check
for support as follows:

function supports_microdata_api() {
 return !!document.getItems;
}

Modernizr does not yet support checking for the microdata API, so you’ll need to use
a function like this one.

Further Reading
Specifications and standards:

• The <canvas> element

• The <video> element

• <input> types

• The <input placeholder> attribute

• The <input autofocus> attribute

• HTML5 Storage

• Web workers

• Offline web applications

• The geolocation API

JavaScript libraries:

• Modernizr, an HTML5 detection library

• geo.js, a geolocation API wrapper

Other articles and tutorials:

• Video for Everybody!

• “A gentle introduction to video encoding”

• “Video type parameters”

• The Appendix of this book

Further Reading | 29

http://bit.ly/9JHzOf
http://bit.ly/a3kpiq
http://bit.ly/akweH4
http://bit.ly/caGl8N
http://bit.ly/db1Fj4
http://dev.w3.org/html5/webstorage/
http://bit.ly/9jheof
http://bit.ly/d8ZgzX
http://www.w3.org/TR/geolocation-API/
http://www.modernizr.com/
http://code.google.com/p/geo-location-javascript/
http://camendesign.com/code/video_for_everybody
http://diveintomark.org/tag/give
http://wiki.whatwg.org/wiki/Video_type_parameters

CHAPTER 3

What Does It All Mean?

Diving In
This chapter will take an HTML page that has absolutely nothing wrong with it, and
improve it. Parts of it will become shorter. Parts will become longer. All of it will become
more semantic. It’ll be awesome.

Here is the page in question: http://diveintohtml5.org/examples/blog-original.html.
Learn it. Live it. Love it. Open it in a new tab and don’t come back until you’ve hit
“View Source” at least once.

The Doctype
From the top:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

This is called the doctype. There’s a long history—and a black art—behind the doctype.
During the development of Internet Explorer 5 for Mac, Microsoft found itself with a
surprising problem. The upcoming version of its browser had improved its standards
support so much, older pages no longer rendered properly. Or rather, they rendered
properly (according to specifications), but people expected them to render improp-
erly. The pages themselves had been authored based on the quirks of the dominant
browsers of the day, primarily Netscape 4 and Internet Explorer 4. IE5/Mac was so
advanced, it actually broke the Web.

Microsoft came up with a novel solution. Before rendering a page, IE5/Mac looked at
the “doctype,” which is typically the first line of the HTML source (even before the
<html> element). Older pages (that relied on the rendering quirks of older browsers)
generally didn’t have a doctype at all. IE5/Mac rendered these pages like older browsers
did. In order to “activate” the new standards support, web page authors had to opt in
by supplying the right doctype before the <html> element.

31

http://diveintohtml5.org/examples/blog-original.html

This idea spread like wildfire, and soon all major browsers had two modes: “quirks
mode” and “standards mode.” Of course, this being the Web, things quickly got out
of hand. When Mozilla tried to ship Version 1.1 of its browser, it discovered that there
were pages being rendered in standards mode that were actually relying on one specific
quirk. Mozilla had just fixed its rendering engine to eliminate this quirk, and thousands
of pages broke all at once. Thus was created—and I am not making this up—“almost
standards mode”.

In his seminal work, “Activating Browser Modes with Doctype”, Henri Sivonen sum-
marizes the different modes:

Quirks Mode
In the Quirks mode, browsers violate contemporary Web format specifications in
order to avoid “breaking” pages authored according to practices that were preva-
lent in the late 1990s.

Standards Mode
In the Standards mode, browsers try to give conforming documents the specifica-
tion-wise correct treatment to the extent implemented in a particular browser.
HTML5 calls this mode the “no quirks mode.”

Almost Standards Mode
Firefox, Safari, Chrome, Opera (since 7.5) and IE8 also have a mode known as the
“Almost Standards mode,” which implements the vertical sizing of table cells tra-
ditionally and not rigorously according to the CSS2 specification. HTML5 calls
this mode the “limited quirks mode.”

You should read the rest of Henri’s article, because I’m simplifying im-
mensely here. Even in IE5/Mac, there were a few older doctypes that
didn’t count as far as opting into standards support. Over time, the list
of quirks grew, and so did the list of doctypes that triggered quirks mode.
The last time I tried to count, there were 5 doctypes that triggered almost
standards mode, and 73 that triggered quirks mode. But I probably
missed some, and I’m not even going to talk about the stuff that Internet
Explorer 8 does to switch between its four—four!—different rendering
modes. There’s a flowchart at http://hsivonen.iki.fi/doctype/ie8-mode
.png. Kill it. Kill it with fire.

Now then. Where were we? Ah yes, the doctype:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

This happens to be one of the 15 doctypes that trigger standards mode in all modern
browsers. There is nothing wrong with it. If you like it, you can keep it. Or you can
change it to the HTML5 doctype, which is shorter and sweeter and also triggers stand-
ards mode in all modern browsers.

32 | Chapter 3: What Does It All Mean?

https://developer.mozilla.org/en/Gecko's_%22Almost_Standards%22_Mode
https://developer.mozilla.org/en/Gecko's_%22Almost_Standards%22_Mode
http://hsivonen.iki.fi/doctype/
http://hsivonen.iki.fi/doctype/ie8-mode.png
http://hsivonen.iki.fi/doctype/ie8-mode.png

This is the HTML5 doctype:

<!DOCTYPE html>

That’s it. Just 15 characters. It’s so easy, you can type it by hand and not screw it up.

Professor Markup Says
Your doctype needs to be on the first line of your HTML file. If there’s anything else
before it—even a single blank line—certain browsers will treat your page as if it has no
doctype at all. Without a doctype, the browser will render your page in quirks mode.
This can be a very difficult error to catch. Extra whitespace usually doesn’t matter in
HTML, so my eyes tend to just skip over it, but in this case it’s very important!

The Root Element
An HTML page is a series of nested elements. The entire structure of the page is like a
tree. Some elements are “siblings,” like two branches that extend from the same tree
trunk. Some elements can be “children” of other elements, like a smaller branch that
extends from a larger branch. (It works the other way too; an element that contains
other elements is called the “parent” node of its immediate child elements, and the
“ancestor” of its grandchildren.) Elements that have no children are called “leaf” nodes.
The outermost element, which is the ancestor of all other elements on the page, is called
the “root element.” The root element of an HTML page is always <html>.

In our example page, the root element looks like this:

<html xmlns="http://www.w3.org/1999/xhtml"
 lang="en"
 xml:lang="en">

There is nothing wrong with this markup. Again, if you like it, you can keep it. It is
valid HTML5. But parts of it are no longer necessary in HTML5, so you can save a few
bytes by removing them.

The first thing to discuss is the xmlns attribute. This is a vestige of XHTML 1.0. It says
that elements in this page are in the XHTML namespace, http://www.w3.org/1999/
xhtml. But elements in HTML5 are always in this namespace, so you no longer need to
declare it explicitly. Your HTML5 page will work exactly the same in all modern
browsers, whether this attribute is present or not.

Dropping the xmlns attribute leaves us with this root element:

<html lang="en" xml:lang="en">

The Root Element | 33

http://diveintohtml5.org/examples/blog-original.html
http://www.w3.org/TR/xhtml1/
http://bit.ly/dp1JrE

The two attributes here, lang and xml:lang, both define the language of this HTML
page. en stands for “English.”* Why two attributes for the same thing? Again, this is a
vestige of XHTML. Only the lang attribute has any effect in HTML5. You can keep the
xml:lang attribute if you like, but if you do, you need to ensure that it contains the same
value as the lang attribute:

To ease migration to and from XHTML, authors may specify an attribute in no name-
space with no prefix and with the literal localname “xml:lang” on HTML elements in
HTML documents, but such attributes must only be specified if a lang attribute in no
namespace is also specified, and both attributes must have the same value when com-
pared in an ASCII case-insensitive manner. The attribute in no namespace with no prefix
and with the literal localname “xml:lang” has no effect on language processing.

Are you ready to drop it? It’s OK, just let it go. Going, going...gone! That leaves us with
this root element:

<html lang="en">

And that’s all I have to say about that.

The <head> Element
The first child of the root element is usually the <head> element. The <head> element
contains metadata—information about the page, rather than the body of the page itself.
(The body of the page is, unsurprisingly, contained in the <body> element.) The
<head> element itself is rather boring, and it hasn’t changed in any interesting way in
HTML5. The good stuff is what’s inside the <head> element. And for that, we turn once
again to our example page:

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>My Weblog</title>
 <link rel="stylesheet" type="text/css" href="style-original.css" />
 <link rel="alternate" type="application/atom+xml"
 title="My Weblog feed"
 href="/feed/" />
 <link rel="search" type="application/opensearchdescription+xml"
 title="My Weblog search"
 href="opensearch.xml" />
 <link rel="shortcut icon" href="/favicon.ico" />
</head>

First up: the <meta> element.

* Not writing in English? Find your language code at http://www.w3.org/International/questions/qa-choosing
-language-tags.

34 | Chapter 3: What Does It All Mean?

http://bit.ly/92Iz6o
http://bit.ly/92Iz6o
http://diveintohtml5.org/examples/blog-original.html
http://www.w3.org/International/questions/qa-choosing-language-tags
http://www.w3.org/International/questions/qa-choosing-language-tags

Character Encoding
When you think of “text,” you probably think of “characters and symbols I see on my
computer screen.” But computers don’t deal in characters and symbols; they deal in
bits and bytes. Every piece of text you’ve ever seen on a computer screen is actually
stored in a particular character encoding. There are many different character encodings,
some optimized for particular languages like Russian or Chinese or English, and others
that can be used for multiple languages. Very roughly speaking, the character encoding
provides a mapping between the stuff you see on your screen and the stuff your com-
puter actually stores in memory and on disk.

In reality, it’s more complicated than that. Many characters are common to multiple
encodings, but each encoding may use a different sequence of bytes to actually store
those characters in memory or on disk. So, you can think of the character encoding as
a kind of decryption key for the text. Whenever someone gives you a sequence of bytes
and claims it’s “text,” you need to know what character encoding he used so you can
decode the bytes into characters and display them (or process them, or whatever).

So, how does your browser actually determine the character encoding of the stream of
bytes that a web server sends? I’m glad you asked. If you’re familiar with HTTP headers,
you may have seen a header like this:

Content-Type: text/html; charset="utf-8"

Briefly, this says that the web server thinks it’s sending you an HTML document, and
that it thinks the document uses the UTF-8 character encoding. Unfortunately, in the
whole magnificent soup of the World Wide Web, very few authors actually have control
over their HTTP servers. Think Blogger: the content is provided by individuals, but the
servers are run by Google. So HTML 4 provided a way to specify the character encoding
in the HTML document itself. You’ve probably seen this too:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

Briefly, this says that the web author thinks she has authored an HTML document
using the UTF-8 character encoding.

Both of these techniques still work in HTML5. The HTTP header is the preferred
method, and it overrides the <meta> tag if present. But not everyone can set HTTP
headers, so the <meta> tag is still around. In fact, it got a little easier in HTML5. Now
it looks like this:

<meta charset="utf-8" />

The <head> Element | 35

http://www.blogger.com

This works in all browsers. How did this shortened syntax come about? Here is the
best explanation I could find:

The rationale for the <meta charset=""> attribute combination is that UAs already im-
plement it, because people tend to leave things unquoted, like:

<META HTTP-EQUIV=Content-Type CONTENT=text/html; charset=ISO-8859-1>

There are even a few <meta charset> test cases, if you don’t believe that browsers already
do this.

Ask Professor Markup
Q: I never use funny characters. Do I still need to declare my character encoding?

A: Yes! You should always specify a character encoding on every HTML page you serve.
Not specifying an encoding can lead to security vulnerabilities.

To sum up: character encoding is complicated, and it has not been made any easier by
several decades of poorly written software used by copy-and-paste–educated authors.
You should always specify a character encoding on every HTML document, or bad
things will happen. You can do it with the HTTP Content-Type header, the <meta http-
equiv> declaration, or the shorter <meta charset> declaration, but please do it. The
Web thanks you.

Friends and (Link) Relations
Regular links (<a href>) simply point to another page. Link relations are a way to
explain why you’re pointing to another page. They finish the sentence “I’m pointing
to this other page because...”

• ...it’s a stylesheet containing CSS rules that your browser should apply to this
document.

• ...it’s a feed that contains the same content as this page, but in a standard sub-
scribable format.

• ...it’s a translation of this page into another language.

• ...it’s the same content as this page, but in PDF format.

• ...it’s the next chapter of an online book of which this page is also a part.

And so on. HTML5 breaks link relations into two categories:

Two categories of links can be created using the link element. Links to external re-
sources are links to resources that are to be used to augment the current document, and
hyperlink links are links to other documents. [...]

The exact behavior for links to external resources depends on the exact relationship, as
defined for the relevant link type.

36 | Chapter 3: What Does It All Mean?

http://lists.w3.org/Archives/Public/public-html/2007Jul/0550.html
http://lists.w3.org/Archives/Public/public-html/2007Jul/0550.html
http://simon.html5.org/test/html/parsing/encoding
http://code.google.com/p/doctype/wiki/ArticleUtf7
http://bit.ly/d2cbiR

Of the examples I just gave, only the first (rel="stylesheet") is a link to an external
resource. The rest are hyperlinks to other documents. You may wish to follow those
links, or you may not, but they’re not required in order to view the current page.

Most often, link relations are seen on <link> elements within the <head> of a page. Some
link relations can also be used on <a> elements, but this is uncommon even when al-
lowed. HTML5 also allows some relations on <area> elements, but this is even less
common. (HTML 4 did not allow a rel attribute on <area> elements.) See the full chart
of link relations to check where you can use specific rel values.

Ask Professor Markup
Q: Can I make up my own link relations?

A: There seems to be an infinite supply of ideas for new link relations. In an attempt to
prevent people from just making stuff up, the WHAT Working Group maintains a
registry of proposed rel values and defines the process for getting them accepted.

rel = stylesheet

Let’s look at the first link relation in our example page:

<link rel="stylesheet" href="style-original.css" type="text/css" />

This is the most frequently used link relation in the world (literally). <link rel="style
sheet"> is for pointing to CSS rules that are stored in a separate file. One small
optimization you can make in HTML5 is to drop the type attribute. There’s only one
stylesheet language for the Web, CSS, so that’s the default value for the type attribute:

<link rel="stylesheet" href="style-original.css" />

This works in all browsers. (I suppose someone could invent a new stylesheet language
someday, but if that happens, you can just add the type attribute back.)

rel = alternate

Continuing with our example page:

<link rel="alternate"
 type="application/atom+xml"
 title="My Weblog feed"
 href="/feed/" />

This link relation is also quite common. <link rel="alternate">, combined with either
the RSS or Atom media type in the type attribute, enables something called “feed au-
todiscovery.” It allows syndicated feed readers like Google Reader to discover that a
site has a news feed of the latest articles. Most browsers also support feed autodiscovery
by displaying a special icon next to the URL. (Unlike with rel="stylesheet", the type
attribute matters here. Don’t drop it!)

The <head> Element | 37

http://bit.ly/a3nsqi
http://bit.ly/a3nsqi
http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html#//apple_ref/doc/uid/TP40002051-CH3-SW4
http://wiki.whatwg.org/wiki/RelExtensions
http://wiki.whatwg.org/wiki/RelExtensions
http://bit.ly/da3pse
http://diveintohtml5.org/examples/blog-original.html
http://diveintohtml5.org/examples/blog-original.html
http://www.google.com/reader/

The rel="alternate" link relation has always been a strange hybrid of use cases, even
in HTML 4. In HTML5, its definition has been clarified and extended to more accu-
rately describe existing web content. As you just saw, using rel="alternate" in con-
junction with type=application/atom+xml indicates an Atom feed for the current page.
But you can also use rel="alternate" in conjunction with other type attributes to in-
dicate the same content in another format, like PDF.

HTML5 also puts to rest a long-standing confusion about how to link to translations
of documents. HTML 4 says to use the lang attribute in conjunction with rel="alter
nate" to specify the language of the linked document, but this is incorrect. The HTML
4 Errata lists four outright errors in the HTML 4 spec (along with several editorial nits);
one of these outright errors is how to specify the language of a document linked with
rel="alternate". (The correct way, described in the HTML 4 Errata document and
now in HTML5, is to use the hreflang attribute.) Unfortunately, these errata were never
reintegrated into the HTML 4 spec, because no one in the W3C HTML Working Group
was working on HTML anymore.

Other link relations in HTML5

rel="archives"
(http://bit.ly/clzlyG) “indicates that the referenced document describes a collection
of records, documents, or other materials of historical interest. A blog’s index page
could link to an index of the blog’s past posts with rel="archives".”

rel="author"
is used to link to information about the author of the page. This can be a mailto:
address, though it doesn’t have to be. It could simply link to a contact form or
“about the author” page.

rel="external"
(http://bit.ly/dBVO09) “indicates that the link is leading to a document that is not
part of the site that the current document forms a part of.” I believe it was first
popularized by WordPress, which uses it on links left by commenters.

rel="start", rel="prev", and rel="next"
(http://www.w3.org/TR/html401/types.html#type-links) to define relations be-
tween pages that are part of a series (like chapters of a book, or even posts on a
blog). The only one that was ever used correctly was rel="next". People used
rel="previous" instead of rel="prev"; they used rel="begin" and rel="first" in-
stead of rel="start"; they used rel="end" instead of rel="last". Oh, and—all by
themselves—they made up rel="up" to point to a “parent” page.

HTML5 includes rel="first", which was the most common variation of the dif-
ferent ways to say “first page in a series.” (rel="start" is a nonconforming syno-
nym, provided for backward compatibility.) It also includes rel="prev" and
rel="next", just like HTML 4 (and supports rel="previous", for backward com-

38 | Chapter 3: What Does It All Mean?

http://www.w3.org/TR/html401/types.html#type-links
http://www.w3.org/TR/html401/types.html#type-links
http://www.w3.org/MarkUp/html4-updates/errata
http://www.w3.org/MarkUp/html4-updates/errata
http://bit.ly/clzlyG
http://bit.ly/dBVO09
http://www.wordpress.org/
http://www.w3.org/TR/html401/types.html#type-links

patibility), as well as rel="last" (the last in a series, mirroring rel="first") and
rel="up".

The best way to think of rel="up" is to look at your breadcrumb navigation (or at
least imagine it). Your home page is probably the first page in your breadcrumbs,
and the current page is at the tail end. rel="up" points to the next-to-last page in
the breadcrumbs.

rel="icon"
(http://bit.ly/diAJUP) is the second most popular link relation, after rel="style
sheet". It is usually found together with shortcut, like so:

<link rel="shortcut icon" href="/favicon.ico">

All major browsers support this usage to associate a small icon with the page.
Usually it’s displayed in the browser’s location bar next to the URL, or in the
browser tab, or both.

Also new in HTML5: the sizes attribute can be used in conjunction with the
icon relationship to indicate the size of the referenced icon.

rel="license"
(http://bit.ly/9n9Xfv) was invented by the microformats community. It “indicates
that the referenced document provides the copyright license terms under which
the current document is provided.”

rel="nofollow"
(http://bit.ly/cGjSPi) “indicates that the link is not endorsed by the original author
or publisher of the page, or that the link to the referenced document was included
primarily because of a commercial relationship between people affiliated with the
two pages.” It was invented by Google and standardized within the microformats
community. The thinking was that if “nofollow” links did not pass on PageRank,
spammers would give up trying to post spam comments on blogs. That didn’t
happen, but rel="nofollow" persists. Many popular blogging systems default to
adding rel="nofollow" to links added by commenters.

rel="noreferrer"
(http://bit.ly/cQMSJg) “indicates that no referrer information is to be leaked when
following the link.” No shipping browser currently supports this, but support was
recently added to WebKit nightlies, so it will eventually show up in Safari, Google
Chrome, and other WebKit-based browsers. You can find a rel="noreferrer" test
case at http://wearehugh.com/public/2009/04/rel-noreferrer.html.

rel="pingback"
(http://bit.ly/cIAGXB) specifies the address of a “pingback” server. As explained
in the Pingback specification, “The pingback system is a way for a blog to be au-
tomatically notified when other websites link to it. [...] It enables reverse linking
—a way of going back up a chain of links rather than merely drilling down.” Blog-
ging systems, notably WordPress, implement the pingback mechanism to notify
authors that you have linked to them when creating a new blog post.

The <head> Element | 39

http://bit.ly/diAJUP
http://code.google.com/webstats/2005-12/linkrels.html
http://bit.ly/diAJUP
http://bit.ly/9n9Xfv
http://microformats.org/wiki/rel-license
http://bit.ly/cGjSPi
http://googleblog.blogspot.com/2005/01/preventing-comment-spam.html
http://microformats.org/wiki/rel-nofollow
http://microformats.org/wiki/rel-nofollow
http://bit.ly/cQMSJg
http://webkit.org/blog/907/webkit-nightlies-support-html5-noreferrer-link-relation/
http://webkit.org/blog/907/webkit-nightlies-support-html5-noreferrer-link-relation/
http://wearehugh.com/public/2009/04/rel-noreferrer.html
http://bit.ly/cIAGXB
http://hixie.ch/specs/pingback/pingback-1.0

rel="prefetch"
(http://bit.ly/9o0nMS) “indicates that preemptively fetching and caching the speci-
fied resource is likely to be beneficial, as it is highly likely that the user will require
this resource.” Search engines sometimes add <link rel="prefetch" href="<empha
sis>URL OF TOP SEARCH RESULT</emphasis>"> to the search results page if they feel
that the top result is wildly more popular than any other. For example: using Fire-
fox, search Google for CNN, view the page source, and search for the keyword
prefetch. Mozilla Firefox is the only current browser that supports rel="prefetch".

rel="search"
(http://bit.ly/aApkaP) “indicates that the referenced document provides an inter-
face specifically for searching the document and its related resources.” Specifically,
if you want rel="search" to do anything useful, it should point to an Open-
Search document that describes how a browser could construct a URL to search
the current site for a given keyword. OpenSearch (and rel="search" links that point
to OpenSearch description documents) has been supported in Microsoft Internet
Explorer since Version 7 and in Mozilla Firefox since Version 2.

rel="sidebar"
(http://bit.ly/azTA9D) “indicates that the referenced document, if retrieved, is in-
tended to be shown in a secondary browsing context (if possible), instead of in the
current browsing context.” What does that mean? In Opera and Mozilla Firefox,
it means “when I click this link, prompt the user to create a bookmark that, when
selected from the Bookmarks menu, opens the linked document in a browser side-
bar.” (Opera actually calls it the “panel” instead of the “sidebar.”) Internet Ex-
plorer, Safari, and Chrome ignore rel="sidebar" and just treat it as a regular link.
You can find a rel="sidebar" test case at http://wearehugh.com/public/2009/04/rel
-sidebar.html.

rel="tag"
(http://bit.ly/9bYlfa) “indicates that the tag that the referenced document repre-
sents applies to the current document.” Marking up “tags” (category keywords)
with the rel attribute was invented by Technorati to help in the categorization of
blog posts. Early blogs and tutorials thus referred to them as “Technorati tags.”
(You read that right: a commercial company convinced the entire world to add
metadata that made the company’s job easier. Nice work if you can get it!) The
syntax was later standardized within the microformats community, where it was
simply called rel="tag". Most blogging systems that allow associating categories,
keywords, or tags with individual posts will mark them up with rel="tag" links.
Browsers do not do anything special with them; they’re really designed for search
engines to use as a signal of what the page is about.

40 | Chapter 3: What Does It All Mean?

http://bit.ly/9o0nMS
http://www.google.com/search?q=cnn
http://bit.ly/aApkaP
http://www.opensearch.org
http://www.opensearch.org
http://bit.ly/azTA9D
http://wearehugh.com/public/2009/04/rel-sidebar.html
http://wearehugh.com/public/2009/04/rel-sidebar.html
http://bit.ly/9bYlfa
http://www.powazek.com/2005/07/000532.html
http://microformats.org/wiki/rel-tag

New Semantic Elements in HTML5
HTML5 is not just about making existing markup shorter (although it does a fair
amount of that). It also defines a number of new semantic elements. The following
elements are defined by the HTML5 specification:

<section> The section element represents a generic section of a document or application. A section, in this context, is
a thematic grouping of content, typically with a heading. Examples of sections would be chapters, the various
tabbed pages in a tabbed dialog box, or the numbered sections of a thesis. A website’s home page could be
split into different sections for the introduction, news items, and contact information.

<nav> The nav element represents a section of a page that links to other pages or to parts within the page: a section
with navigation links. Not all groups of links on a page need to be in a nav element—only sections that consist
of major navigation blocks are appropriate for the nav element. In particular, it is common for footers to have
a short list of links to various pages of a site, such as the terms of service, home page, and copyright page. The
footer element alone is sufficient for such cases, without a nav element.

<article> The article element represents a self-contained composition in a document, page, application, or site that
is intended to be independently distributable or reusable, e.g., in syndication. This could be a forum post, a
magazine or newspaper article, a blog entry, a user-submitted comment, an interactive widget or gadget, or
any other independent item of content.

<aside> The aside element represents a section of a page that consists of content that is tangentially related to the
content around the aside element, and that could be considered separate from that content. Such sections
are often represented as sidebars in printed typography. The element can be used for typographical effects like
pull quotes or sidebars, for advertising, for groups of nav elements, and for other content that is considered
separate from the main content of the page.

<hgroup> The hgroup element represents the heading of a section. The element is used to group a set of h1–h6 elements
when the heading has multiple levels, such as subheadings, alternative titles, or taglines.

<header> The header element represents a group of introductory or navigational aids. A header element is usually
intended to contain the section’s heading (an h1–h6 element or an hgroup element), but this is not required.
The header element can also be used to wrap a section’s table of contents, a search form, or any relevant logos.

<footer> The footer element represents a footer for its nearest ancestor sectioning content or sectioning root element.
A footer typically contains information about its section such as who wrote it, links to related documents,
copyright data, and the like. Footers don’t necessarily have to appear at the end of a section, though they usually
do. When the footer element contains entire sections, they represent appendixes, indexes, long colophons,
verbose license agreements, and other such content.

<time> The time element represents either a time on a 24-hour clock or a precise date in the proleptic Gregorian
calendar, optionally with a time and a timezone offset.

<mark> The mark element represents a run of text in one document marked or highlighted for reference purposes.

I know you’re anxious to start using these new elements, or you wouldn’t be reading
this chapter. But first we need to take a little detour.

New Semantic Elements in HTML5 | 41

http://bit.ly/9kO0A7
http://bit.ly/9DBHno
http://bit.ly/d1sU2M
http://bit.ly/9S1P6i
http://bit.ly/cTlx9g
http://bit.ly/awqNpX
http://bit.ly/cs3dfj
http://bit.ly/ci77rI
http://bit.ly/a7gIiZ

A Long Digression into How Browsers Handle
Unknown Elements
Every browser has a master list of HTML elements that it supports. For example,
Mozilla Firefox’s list is stored in nsElementTable.cpp. Elements not in this list are
treated as “unknown elements.” There are two fundamental questions regarding un-
known elements:

How should the element be styled?
By default, <p> has spacing on the top and bottom, <blockquote> is indented with
a left margin, and <h1> is displayed in a larger font.

What should the element’s DOM look like?
Mozilla’s nsElementTable.cpp includes information about what kinds of other el-
ements each element can contain. If you include markup like <p><p>, the second
paragraph element implicitly closes the first one, so the elements end up as siblings,
not parent and child. But if you write <p>, the span does not close the para-
graph, because Firefox knows that <p> is a block element that can contain the inline
element . So the ends up as a child of the <p> in the DOM.

Different browsers answer these questions in different ways. (Shocking, I know.) Of
the major browsers, Microsoft Internet Explorer’s answer to both questions is the most
problematic.

The first question should be relatively simple to answer: don’t give any special styling
to unknown elements. Just let them inherit whatever CSS properties are in effect wher-
ever they appear on the page, and let the page author specify all styling with CSS.
Unfortunately, Internet Explorer (prior to Version 9) does not allow styling on un-
known elements. For example, if you had this markup:

<style type="text/css">
 article { display: block; border: 1px solid red }
</style>
...
<article>
<h1>Welcome to Initech</h1>
<p>This is your first day.</p>
</article>

Internet Explorer (up to and including IE 8) will not put a red border around the article.
As I write this, Internet Explorer 9 is still in beta, but Microsoft has stated (and devel-
opers have verified) that Internet Explorer 9 will not have this problem.

The second problem is the DOM that browsers create when they encounter unknown
elements. Again, the most problematic browser is Internet Explorer. If IE doesn’t ex-
plicitly recognize the element name, it will insert the element into the DOM as an empty
node with no children. All the elements that you would expect to be direct children of
the unknown element will actually be inserted as siblings instead.

42 | Chapter 3: What Does It All Mean?

http://mxr.mozilla.org/seamonkey/source/parser/htmlparser/src/nsElementTable.cpp
http://blogs.msdn.com/ie/archive/2009/11/18/an-early-look-at-ie9-for-developers.aspx

Here is some ASCII art to showcase the difference. This is the DOM that HTML5
dictates:

article
|
+--h1 (child of article)
| |
| +--text node "Welcome to Initech"
|
+--p (child of article, sibling of h1)
 |
 +--text node "This is your "
 |
 +--span
 | |
 | +--text node "first day"
 |
 +--text node "."

But this is the DOM that Internet Explorer actually creates:

article (no children)
h1 (sibling of article)
|
+--text node "Welcome to Initech"
p (sibling of h1)
|
+--text node "This is your "
|
+--span
| |
| +--text node "first day"
|
+--text node "."

There is a wondrous workaround for this problem. If you create a dummy <article>
element with JavaScript before you use it in your page, Internet Explorer will magically
recognize the <article> element and let you style it with CSS. There is no need to ever
insert the dummy element into the DOM. Simply creating the element once (per page)
is enough to teach IE to style the element it doesn’t recognize. For example:

<html>
<head>
<style>
 article { display: block; border: 1px solid red }
</style>
<script>document.createElement("article");</script>
</head>
<body>
<article>
<h1>Welcome to Initech</h1>
<p>This is your first day.</p>
</article>
</body>
</html>

A Long Digression into How Browsers Handle Unknown Elements | 43

http://xopus.com/devblog/2008/style-unknown-elements.html
http://xopus.com/devblog/2008/style-unknown-elements.html

This works in all versions of Internet Explorer, all the way back to IE 6! We can extend
this technique to create dummy copies of all the new HTML5 elements at once—again,
they’re never inserted into the DOM, so you’ll never see these dummy elements—and
then just start using them without having to worry too much about non-HTML5-
capable browsers.

Remy Sharp has done just that, with his aptly named “HTML5 enabling script”. The
script has gone through several revisions, but this is the basic idea:

<!--[if lt IE 9]>
<script>
 var e = ("abbr,article,aside,audio,canvas,datalist,details," +
 "figure,footer,header,hgroup,mark,menu,meter,nav,output," +
 "progress,section,time,video").split(',');
 for (var i = 0; i < e.length; i++) {
 document.createElement(e[i]);
 }
</script>
<![endif]-->

The <!--[if lt IE 9]> and <![endif]--> bits are conditional comments. Internet
Explorer interprets them like an if statement: “if the current browser is a version of
Internet Explorer less than Version 9, then execute this block.” Every other browser
will treat the entire block as an HTML comment. The net result is that Internet Explorer
(up to and including Version 8) will execute this script, but other browsers will ignore
it altogether. This makes your page load faster in browsers that don’t need this hack.

The JavaScript code itself is relatively straightforward. The variable e ends up as an
array of strings like "abbr", "article", "aside", and so on. Then we loop through this
array and create each of the named elements by calling document.createElement(). But
since we ignore the return value, the elements are never inserted into the DOM. Still,
this is enough to get Internet Explorer to treat these elements the way we want them
to be treated when we actually use them later in the page.

That “later” bit is important. This script needs to be at the top of your page—preferably
in your <head> element—not at the bottom. That way, Internet Explorer will execute
the script before it parses your tags and attributes. If you put this script at the bottom
of your page, it will be too late. Internet Explorer will have already misinterpreted your
markup and constructed the wrong DOM, and it won’t go back and adjust it just
because of this script.

Remy Sharp has “minified” this script and hosted it on Google Project Hosting. (In case
you were wondering, the script itself is open source and MIT-licensed, so you can use
it in any project.) If you like, you can even “hotlink” the script by pointing directly to
the hosted version, like this:

<head>
 <meta charset="utf-8" />
 <title>My Weblog</title>
 <!--[if lt IE 9]>
 <script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>

44 | Chapter 3: What Does It All Mean?

http://remysharp.com/2009/01/07/html5-enabling-script
http://msdn.microsoft.com/en-us/library/ms537512(VS.85).aspx
http://code.google.com/p/html5shiv/

 <![endif]-->
</head>

Now we’re ready to start using the new semantic elements in HTML5.

Headers
Let’s go back to our example page. Specifically, let’s look at the headers:

<div id="header">
 <h1>My Weblog</h1>
 <p class="tagline">A lot of effort went into making this effortless.</p>
</div>

...

<div class="entry">
 <h2>Travel day</h2>
</div>

...

<div class="entry">
 <h2>I'm going to Prague!</h2>
</div>

There is nothing wrong with this markup. If you like it, you can keep it. It is valid
HTML5. But HTML5 provides some additional semantic elements for headers and
sections.

First off, let’s get rid of that <div id="header">. This is a very common pattern, but it
doesn’t mean anything. The div element has no defined semantics, and the id attribute
has no defined semantics. (User agents are not allowed to infer any meaning from the
value of the id attribute.) You could change this to <div id="shazbot"> and it would
have the same semantic value, i.e., nothing.

HTML5 defines a <header> element for this purpose. The HTML5 specification has a
number of real-world examples of using the <header> element. Here is what it would
look like on our example page:

<header>
 <h1>My Weblog</h1>
 <p class="tagline">A lot of effort went into making this effortless.</p>
 ...
</header>

That’s good. It tells anyone who wants to know that this is a header. But what about
that tagline? Another common pattern, which up until now had no standard markup.
It’s a difficult thing to mark up. A tagline is like a subheading, but it’s “attached” to
the primary heading. That is, it’s a subheading that doesn’t create its own section.

Headers | 45

http://diveintohtml5.org/examples/blog-original.html
http://bit.ly/awqNpX
http://bit.ly/awqNpX
http://diveintohtml5.org/examples/blog-original.html

Header elements like <h1> and <h2> give your page structure. Taken together, they create
an outline that you can use to visualize (or navigate) your page. Screenreaders use
document outlines to help blind users navigate through your page. There are online
tools and browser extensions that can help you visualize your document’s outline.

In HTML 4, <h1>–<h6> elements were the only way to create a document outline. The
outline on the example page looks like this:

My Weblog (h1)
|
+--Travel day (h2)
|
+--I'm going to Prague! (h2)

That’s fine, but it means that there’s no way to mark up the tagline “A lot of effort went
into making this effortless.” If we tried to mark it up as an <h2>, it would add a phantom
node to the document outline:

My Weblog (h1)
|
+--A lot of effort went into making this effortless. (h2)
|
+--Travel day (h2)
|
+--I'm going to Prague! (h2)

But that’s not the structure of the document. The tagline does not represent a section;
it’s just a subheading.

Perhaps we could mark up the tagline as an <h2> and mark up each article title as an
<h3>? No, that’s even worse:

My Weblog (h1)
|
+--A lot of effort went into making this effortless. (h2)
 |
 +--Travel day (h3)
 |
 +--I'm going to Prague! (h3)

Now we still have a phantom node in our document outline, but it has “stolen” the
children that rightfully belong to the root node. And herein lies the problem: HTML 4
does not provide a way to mark up a subheading without adding it to the document
outline. No matter how we try to shift things around, “A lot of effort went into making
this effortless” is going to end up in that graph. And that’s why we ended up with
semantically meaningless markup like <p class="tagline">.

HTML5 provides a solution for this: the <hgroup> element. The <hgroup> element acts
as a wrapper for two or more related heading elements. What does “related” mean? It
means that, taken together, they create a single node in the document outline.

Given this markup:

46 | Chapter 3: What Does It All Mean?

http://gsnedders.html5.org/outliner/
http://gsnedders.html5.org/outliner/
http://chrispederick.com/work/web-developer/

<header>
 <hgroup>
 <h1>My Weblog</h1>
 <h2>A lot of effort went into making this effortless.</h2>
 </hgroup>
 ...
</header>

...

<div class="entry">
 <h2>Travel day</h2>
</div>

...

<div class="entry">
 <h2>I'm going to Prague!</h2>
</div>

This is the document outline that is created:

My Weblog (h1 of its hgroup)
|
+--Travel day (h2)
|
+--I'm going to Prague! (h2)

You can test your own pages in the HTML5 Outliner to ensure that you’re using the
heading elements properly.

Articles
Continuing with our example page, let’s see what we can do about this markup:

<div class="entry">
 <p class="post-date">October 22, 2009</p>
 <h2>
 <a href="#"
 rel="bookmark"
 title="link to this post">
 Travel day

 </h2>
 ...
</div>

Again, this is valid HTML5. But HTML5 provides a more specific element for the
common case of marking up an article on a page—the aptly named <article> element:

<article>
 <p class="post-date">October 22, 2009</p>
 <h2>
 <a href="#"
 rel="bookmark"

Articles | 47

http://gsnedders.html5.org/outliner/
http://diveintohtml5.org/examples/blog-original.html

 title="link to this post">
 Travel day

 </h2>
 ...
</article>

Ah, but it’s not quite that simple. There is one more change you should make. I’ll show
it to you first, then explain it:

<article>
 <header>
 <p class="post-date">October 22, 2009</p>
 <h1>
 <a href="#"
 rel="bookmark"
 title="link to this post">
 Travel day

 </h1>
 </header>
 ...
</article>

Did you catch that? I changed the <h2> element to an <h1>, and wrapped it inside a
<header> element. You’ve already seen the <header> element in action. Its purpose is to
wrap all the elements that form the article’s header (in this case, the article’s publication
date and title). But...but...but...shouldn’t you only have one <h1> per document? Won’t
this screw up the document outline? No, but to understand why not, we need to back
up a step.

In HTML 4, the only way to create a document outline was with the <h1>–<h6> elements.
If you only wanted one root node in your outline, you had to limit yourself to one
<h1> in your markup. But the HTML5 specification defines an algorithm for generating
a document outline that incorporates the new semantic elements in HTML5. The
HTML5 algorithm says that an <article> element creates a new section, that is, a new
node in the document outline. And in HTML5, each section can have its own <h1>
element.

This is a drastic change from HTML 4, and here’s why it’s a good thing. Many web
pages are really generated by templates. A bit of content is taken from one source and
inserted into the page up here; a bit of content is taken from another source and inserted
into the page down there. Many tutorials are structured the same way. “Here’s some
HTML markup. Just copy it and paste it into your page.” That’s fine for small bits of
content, but what if the markup you’re pasting is an entire section? In that case, the
tutorial will read something like this: “Here’s some HTML markup. Just copy it, paste
it into a text editor, and fix the heading tags so they match the nesting level of the
corresponding heading tags in the page you’re pasting it into.”

Let me put it another way. HTML 4 has no generic heading element. It has six strictly
numbered heading elements, <h1>–<h6>, which must be nested in exactly that order.

48 | Chapter 3: What Does It All Mean?

http://bit.ly/dvOltR
http://bit.ly/dvOltR

That kind of sucks, especially if your page is “assembled” instead of “authored.” And
this is the problem that HTML5 solves with the new sectioning elements and the new
rules for the existing heading elements. If you’re using the new sectioning elements, I
can give you this markup:

<article>
 <header>
 <h1>A syndicated post</h1>
 </header>
 <p>Lorem ipsum blah blah...</p>
</article>

and you can copy it and paste it anywhere in your page without modification. The fact
that it contains an <h1> element is not a problem, because the entire thing is contained
within an <article>. The <article> element defines a self-contained node in the docu-
ment outline, the <h1> element provides the title for that outline node, and all the other
sectioning elements on the page will remain at whatever nesting level they were at
before.

Professor Markup Says
As with all things on the Web, reality is a little more complicated than I’m letting on.
The new “explicit” sectioning elements (like <h1> wrapped in <article>) may interact
in unexpected ways with the old “implicit” sectioning elements (<h1>–<h6> by them-
selves). Your life will be simpler if you use one or the other, but not both. If you must
use both on the same page, be sure to check the result in the HTML5 Outliner and
verify that your document outline makes sense.

Dates and Times
This is exciting, right? I mean, it’s not “skiing down Mount Everest naked while reciting
the Star Spangled Banner backward” exciting, but it’s pretty exciting as far as semantic
markup goes. Let’s continue with our example page. The next line I want to highlight
is this one:

<div class="entry">
 <p class="post-date">October 22, 2009</p>
 <h2>Travel day</h2>
</div>

Same old story, right? A common pattern—designating the publication date of an
article—that has no semantic markup to back it up, so authors resort to generic markup
with custom class attributes. Again, this is valid HTML5. You’re not required to change
it. But HTML5 does provide a specific solution for this case—the <time> element:

<time datetime="2009-10-22" pubdate>October 22, 2009</time>

There are three parts to a <time> element:

Dates and Times | 49

http://gsnedders.html5.org/outliner/
http://diveintohtml5.org/examples/blog-original.html

• A machine-readable timestamp

• Human-readable text content

• An optional pubdate flag

In this example, the datetime attribute only specifies a date, not a time. The format is
a four-digit year, two-digit month, and two-digit day, separated by dashes:

<time datetime="2009-10-22" pubdate>October 22, 2009</time>

If you want to include a time too, add the letter T after the date, then the time in 24-
hour format, then a timezone offset:

<time datetime="2009-10-22T13:59:47-04:00" pubdate>
 October 22, 2009 1:59pm EDT
</time>

The date/time format is pretty flexible. The HTML5 specification contains a number
of examples of valid date/time strings.

Notice I changed the text content—the stuff between <time> and </time>—to match
the machine-readable timestamp. This is not actually required. The text content can
be anything you like, as long as you provide a machine-readable date/timestamp in the
datetime attribute. So this is valid HTML5:

<time datetime="2009-10-22">last Thursday</time>

And this is also valid HTML5:

<time datetime="2009-10-22"></time>

The final piece of the puzzle here is the pubdate attribute. It’s a Boolean attribute, so
just add it if you need it, like this:

<time datetime="2009-10-22" pubdate>October 22, 2009</time>

If you dislike “naked” attributes, this is also equivalent:

<time datetime="2009-10-22" pubdate="pubdate">October 22, 2009</time>

What does the pubdate attribute mean? It means one of two things. If the <time> element
is in an <article> element, it means that this timestamp is the publication date of the
article. If the <time> element is not in an <article> element, it means that this timestamp
is the publication date of the entire document.

Here’s the entire article, reformulated to take full advantage of HTML5:

<article>
 <header>
 <time datetime="2009-10-22" pubdate>
 October 22, 2009
 </time>
 <h1>
 <a href="#"
 rel="bookmark"
 title="link to this post">
 Travel day

50 | Chapter 3: What Does It All Mean?

http://bit.ly/9gvDjn
http://bit.ly/9gvDjn

 </h1>
 </header>
 <p>Lorem ipsum dolor sit amet...</p>
</article>

Navigation
One of the most important parts of any website is the navigation bar. CNN.com has
“tabs” along the top of each page that link to the different news sections—“Tech,”
“Health,” “Sports,” etc. Google search results pages have a similar strip at the top of
the page enabling you to try your search in different Google services—“Images,”
“Video,” “Maps,” etc. And our example page has a navigation bar in the header that
includes links to different sections of our hypothetical site—“home,” “blog,” “gallery,”
and “about.”

This is how the navigation bar was originally marked up:

<div id="nav">

 home
 blog
 gallery
 about

</div>

Again, this is valid HTML5. But while it’s marked up as a list of four items, there is
nothing about the list that tells you that it’s part of the site navigation. Visually, you
could guess that by the fact that it’s part of the page header, and by reading the text of
the links. But semantically, there is nothing to distinguish this list of links from any
other.

Who cares about the semantics of site navigation? For one, people with disabilities.
Why is that? Consider this scenario: your motion is limited, and using a mouse is
difficult or impossible. To compensate, you might use a browser add-on that allows
you to jump to (or jump past) major navigation links. Or consider this: your sight is
limited, and you use a dedicated program called a “screenreader” that uses text-to-
speech to speak and summarize web pages. Once you get past the page title, the next
important pieces of information about a page are the major navigation links. If you
want to navigate quickly, you’ll tell your screenreader to jump to the navigation bar
and start reading. If you want to browse quickly, you might tell your screenreader to
jump over the navigation bar and start reading the main content. Either way, being able
to determine navigation links programmatically is important.

So, while there’s nothing wrong with using <div id="nav"> to mark up your site navi-
gation, there’s nothing particularly right about it either. It’s suboptimal in ways that
affect real people. HTML5 provides a semantic way to mark up navigation sections—
the <nav> element:

Navigation | 51

http://diveintohtml5.org/examples/blog-original.html
http://diveintoaccessibility.org

<nav>

 home
 blog
 gallery
 about

</nav>

Ask Professor Markup
Q: Are skip links compatible with the <nav> element? Do I still need skip links in HTML5?

A: Skip links allow readers to skip over navigation sections. They are helpful for disabled
users who use third-party software to read a web page aloud and navigate it without a
mouse. Learn how and why to provide skip links at http://www.webaim.org/techniques/
skipnav.

Once screenreaders are updated to recognize the <nav> element, skip links will become
obsolete, since the screenreader software will be able to automatically offer to skip over
a navigation section marked up with the <nav> element. However, it will be a while
before all the disabled users on the Web upgrade to HTML5-savvy screenreader soft-
ware, so you should continue to provide your own skip links to jump over <nav>
sections.

Footers
At long last, we have arrived at the end of our example page. The last thing I want to
talk about is the last thing on the page: the footer. The footer was originally marked
up like this:

<div id="footer">
 <p>§</p>
 <p>© 2001–9 Mark Pilgrim</p>
</div>

This is valid HTML5. If you like it, you can keep it. But HTML5 provides a more specific
element for this—the <footer> element:

<footer>
 <p>§</p>
 <p>© 2001–9 Mark Pilgrim</p>
</footer>

What’s appropriate to put in a <footer> element? Probably whatever you’re putting in
a <div id="footer"> now. OK, that’s a circular answer. But really, that’s it. The HTML5
specification says: “A footer typically contains information about its section such as
who wrote it, links to related documents, copyright data, and the like.” That’s what’s
in this example page’s footer: a short copyright statement and a link to an about-the-
author page. Looking around at some popular sites, I see lots of footer potential:

52 | Chapter 3: What Does It All Mean?

http://www.webaim.org/techniques/skipnav/
http://www.webaim.org/techniques/skipnav
http://www.webaim.org/techniques/skipnav
http://diveintohtml5.org/examples/blog-original.html

• CNN has a footer that contains a copyright statement, links to translations, and
links to terms of service, privacy, “about us,” “contact us,” and “help” pages. All
totally appropriate <footer> material.

• Google has a famously sparse home page, but at the bottom of it are links to “Ad-
vertising Programs,” “Business Solutions,” and “About Google”; a copyright state-
ment; and a link to Google’s privacy policy. All of that could be wrapped in a
<footer>.

• My weblog has a footer with links to my other sites, plus a copyright statement.
Definitely appropriate for a <footer> element. (Note that the links themselves
should not be wrapped in a <nav> element, because they are not site navigation
links; they are just a collection of links to my other projects on other sites.)

Fat footers are all the rage these days. Take a look at the footer on the W3C site. It
contains three columns, labeled “Navigation,” “Contact W3C,” and “W3C Updates.”
The markup looks like this, more or less:

<div id="w3c_footer">
 <div class="w3c_footer-nav">
 <h3>Navigation</h3>

 Home
 Standards
 Participate
 Membership
 About W3C

 </div>
 <div class="w3c_footer-nav">
 <h3>Contact W3C</h3>

 Contact
 Help and FAQ
 Donate
 Site Map

 </div>
 <div class="w3c_footer-nav">
 <h3>W3C Updates</h3>

 Twitter
 Identi.ca

 </div>
 <p class="copyright">Copyright © 2009 W3C</p>
</div>

To convert this to semantic HTML5, I would make the following changes:

• Convert the outer <div id="w3c_footer"> to a <footer> element.

• Convert the first two instances of <div class="w3c_footer-nav"> to <nav> elements,
and the third instance to a <section> element.

Footers | 53

http://www.cnn.com
http://www.google.com
http://diveintomark.org
http://ui-patterns.com/pattern/FatFooter
http://www.w3.org

• Convert the <h3> headers to <h1>, since each will now be inside a sectioning ele-
ment. The <nav> element creates a section in the document outline, just like the
<article> element (see “Articles” on page 47).

The final markup might look something like this:

<footer>
 <nav>
 <h1>Navigation</h1>

 Home
 Standards
 Participate
 Membership
 About W3C

 </nav>
 <nav>
 <h1>Contact W3C</h1>

 Contact
 Help and FAQ
 Donate
 Site Map

 </nav>
 <section>
 <h1>W3C Updates</h1>

 Twitter
 Identi.ca

 </section>
 <p class="copyright">Copyright © 2009 W3C</p>
</footer>

Further Reading
Example pages used throughout this chapter:

• Original (HTML 4)

• Modified (HTML5)

On character encoding:

• “The Absolute Minimum Every Software Developer Absolutely, Positively Must
Know About Unicode and Character Sets (No Excuses!)”, by Joel Spolsky

• “On the Goodness of Unicode”, “On Character Strings”, and “Characters vs.
Bytes”, by Tim Bray

On enabling new HTML5 in Internet Explorer:

54 | Chapter 3: What Does It All Mean?

http://diveintohtml5.org/examples/blog-original.html
http://diveintohtml5.org/examples/blog-html5.html
http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://www.tbray.org/ongoing/When/200x/2003/04/06/Unicode
http://www.tbray.org/ongoing/When/200x/2003/04/13/Strings
http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF
http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF

• “How to style unknown elements in IE”, by Sjoerd Visscher

• HTML5 shiv, by John Resig

• HTML5 enabling script, by Remy Sharp

On standards modes and doctype sniffing:

• “Activating Browser Modes with Doctype”, by Henri Sivonen. This is the only
article you should read on the subject. There are many other articles, but they are
either out of date, incomplete, or wrong.

HTML5-aware validator:

• Validator.nu (X)HTML5 Validator

Further Reading | 55

http://xopus.com/devblog/2008/style-unknown-elements.html
http://ejohn.org/blog/html5-shiv/
http://remysharp.com/2009/01/07/html5-enabling-script/
http://hsivonen.iki.fi/doctype/
http://html5.validator.nu

CHAPTER 4

Let’s Call It a Draw(ing Surface)

Diving In
HTML5 defines the <canvas> element as “a resolution-dependent bitmap canvas which
can be used for rendering graphs, game graphics, or other visual images on the fly.” A
canvas is a rectangle on your page in which you can use JavaScript to draw anything
you want. The following table shows which browsers offer basic canvas support at the
time of this writing:

IEa Firefox Safari Chrome Opera iPhone Android

7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+
a Internet Explorer support requires the third-party explorercanvas library.

So what does a canvas look like? Nothing, really. A <canvas> element has no content
and no border of its own. The markup looks like this:

<canvas width="300" height="225"></canvas>

Figure 4-1 shows the canvas with a dotted border so we can see what we’re dealing with.

You can have several <canvas> elements on the same page. Each canvas will show up
in the DOM, and each canvas maintains its own state. If you give each canvas an id
attribute, you can access them just like you would any other element.

Let’s expand that markup to include an id attribute:

<canvas id="a" width="300" height="225"></canvas>

Now we can easily find that <canvas> element in the DOM:

var a_canvas = document.getElementById("a");

57

http://bit.ly/9JHzOf
http://code.google.com/p/explorercanvas/

Figure 4-1. Canvas with border

Simple Shapes
IEa Firefox Safari Chrome Opera iPhone Android

7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+
a Internet Explorer support requires the third-party explorercanvas library.

Every canvas starts out blank. That’s boring! Let’s draw something. You can use the
onclick handler to call a function that draws a rectangle (see http://diveintohtml5.org/
canvas.html for an interactive example):

function draw_b() {
 var b_canvas = document.getElementById("b");
 var b_context = b_canvas.getContext("2d");
 b_context.fillRect(50, 25, 150, 100);
}

The first line of the function is nothing special; it just finds the <canvas> element in the
DOM. The second line is where it gets more interesting. Every canvas has a drawing
context, which is where all the fun stuff happens. Once you’ve found a <canvas> element
in the DOM (by using document.getElementById() or any other method you like), you
can call its getContext() method. You must pass the string "2d" to the getContext()
method:

function draw_b() {
 var b_canvas = document.getElementById("b");
 var b_context = b_canvas.getContext("2d");
 b_context.fillRect(50, 25, 150, 100);
}

58 | Chapter 4: Let’s Call It a Draw(ing Surface)

http://code.google.com/p/explorercanvas/
http://diveintohtml5.org/canvas.html
http://diveintohtml5.org/canvas.html

Ask Professor Markup
Q: Is there a 3D canvas?

A: Not yet. Individual vendors have experimented with their own three-dimensional
canvas APIs, but none has been standardized. The HTML5 specification notes, “A
future version of this specification will probably define a 3d context.”

So, you have a <canvas> element, and you have its drawing context. The drawing con-
text is where all the drawing methods and properties are defined. There’s a whole group
of properties and methods devoted to drawing rectangles:

• The fillStyle property can be a CSS color, a pattern, or a gradient. (More on
gradients shortly.) The default fillStyle is solid black, but you can set it to what-
ever you like. Each drawing context remembers its own properties as long as the
page is open, unless you do something to reset it.

• fillRect(x, y, width, height) draws a rectangle filled with the current fill style.

• The strokeStyle property is like fillStyle—it can be a CSS color, a pattern, or a
gradient.

• strokeRect(x, y, width, height) draws a rectangle with the current stroke style.
strokeRect doesn’t fill in the middle; it just draws the edges.

• clearRect(x, y, width, height) clears the pixels in the specified rectangle.

Ask Professor Markup
Q: Can I “reset” a canvas?

A: Yes. Setting the width or height of a <canvas> element will erase its contents and
reset all the properties of its drawing context to their default values. You don’t even
need to change the width; you can simply set it to its current value, like this:

var b_canvas = document.getElementById("b");
b_canvas.width = b_canvas.width;

Getting back to that code in the previous example:

var b_canvas = document.getElementById("b");
var b_context = b_canvas.getContext("2d");
b_context.fillRect(50, 25, 150, 100);

Calling the fillRect() method draws the rectangle and fills it with the current fill style,
which is black until you change it. The rectangle is bounded by its upper-left corner
(50, 25), its width (150), and its height (100). To get a better picture of how that works,
let’s look at the canvas coordinate system.

Simple Shapes | 59

Canvas Coordinates
The canvas is a two-dimensional grid. The coordinate (0, 0) is at the upper-left corner
of the canvas. Along the x-axis, values increase toward the right edge of the canvas.
Along the y-axis, values increase toward the bottom edge of the canvas.

The coordinate diagram in Figure 4-2 was drawn with a <canvas> element. It comprises:

• A set of off-white vertical lines

• A set of off-white horizontal lines

• Two black horizontal lines

• Two small black diagonal lines that form an arrow

• Two black vertical lines

• Two small black diagonal lines that form another arrow

• The letter “x”

• The letter “y”

• The text “(0, 0)” near the upper-left corner

• The text “(500, 375)” near the lower-right corner

• A dot in the upper-left corner, and another in the lower-right corner

Figure 4-2. Canvas coordinates diagram

60 | Chapter 4: Let’s Call It a Draw(ing Surface)

In the following sections, we’ll explore how to create the effect shown in this figure.
First, we need to define the <canvas> element itself. The <canvas> element defines the
width and height of the rectangle, and the id so we can find it later:

<canvas id="c" width="500" height="375"></canvas>

Then we need a script to find the <canvas> element in the DOM and get its drawing
context:

var c_canvas = document.getElementById("c");
var context = c_canvas.getContext("2d");

Now we can start drawing lines.

Paths
IEa Firefox Safari Chrome Opera iPhone Android

7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+
a Internet Explorer support requires the third-party explorercanvas library.

Imagine you’re drawing a picture in ink. You don’t want to just dive in and start draw-
ing, because you might make a mistake. Instead, you sketch the lines and curves with
a pencil, and once you’re happy with it, you trace over your sketch in ink.

Each canvas has a path. Defining the path is like drawing with a pencil. You can draw
whatever you like, but it won’t be part of the finished product until you pick up the
quill and trace over your path in ink.

To draw straight lines in pencil, you use the following two methods:

• moveTo(x, y) moves the pencil to the specified starting point.

• lineTo(x, y) draws a line to the specified ending point.

The more you call moveTo() and lineTo(), the bigger the path gets. These are “pencil”
methods—you can call them as often as you like, but you won’t see anything on the
canvas until you call one of the “ink” methods.

Let’s begin by drawing the off-white grid:

for (var x = 0.5; x < 500; x += 10) {
 context.moveTo(x, 0);
 context.lineTo(x, 375);
}

for (var y = 0.5; y < 375; y += 10) {
 context.moveTo(0, y);
 context.lineTo(500, y);
}

Paths | 61

http://code.google.com/p/explorercanvas/

Those were all “pencil” methods. Nothing has actually been drawn on the canvas yet.
We need an “ink” method to make it permanent:

context.strokeStyle = "#eee";
context.stroke();

stroke() is one of the “ink” methods. It takes the complex path you defined with
all those moveTo() and lineTo() calls, and actually draws it on the canvas. The
strokeStyle controls the color of the lines. Figure 4-3 shows the result.

Figure 4-3. A grid drawn on a canvas

Ask Professor Markup
Q: Why did you start x and y at 0.5? Why not 0?

A: Imagine each pixel as a large square. The whole-number coordinates (0, 1, 2...) are
the edges of the squares. If you draw a one-unit-wide line between whole-number
coordinates, it will overlap opposite sides of the pixel square, and the resulting line will
be drawn two pixels wide. To draw a line that is only one pixel wide, you need to shift
the coordinates by 0.5 perpendicular to the line’s direction.

62 | Chapter 4: Let’s Call It a Draw(ing Surface)

Now let’s draw the horizontal arrow. All the lines and curves on a path are drawn in
the same color (or gradient—yes, we’ll get to those soon). We want to draw the arrow
in a different color ink—black instead of off-white—so we need to start a new path:

context.beginPath();
context.moveTo(0, 40);
context.lineTo(240, 40);
context.moveTo(260, 40);
context.lineTo(500, 40);
context.moveTo(495, 35);
context.lineTo(500, 40);
context.lineTo(495, 45);

The vertical arrow looks much the same. Since the vertical arrow is the same color as
the horizontal arrow, we do not need to start another new path. The two arrows will
be part of the same path:

context.moveTo(60, 0);
context.lineTo(60, 153);
context.moveTo(60, 173);
context.lineTo(60, 375);
context.moveTo(65, 370);
context.lineTo(60, 375);
context.lineTo(55, 370);

I said these arrows were going to be black, but the strokeStyle is still off-white. (The
fillStyle and strokeStyle don’t get reset when you start a new path.) That’s OK,
because we’ve just run a series of “pencil” methods. But before we draw it for real, in
“ink,” we need to set the strokeStyle to black. Otherwise, these two arrows will be off-
white, and we’ll hardly be able to see them! The following lines change the color to
black and draw the lines on the canvas:

context.strokeStyle = "#000";
context.stroke();

Figure 4-4 shows the result.

Text
IEa Firefoxb Safari Chrome Opera iPhone Android

7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+
a Internet Explorer support requires the third-party explorercanvas library.
b Mozilla Firefox 3.0 support requires a compatibility shim.

In addition to drawing lines on a canvas, you can also draw text on a canvas. Unlike
text on the surrounding web page, there is no box model. That means none of the
familiar CSS layout techniques are available: no floats, no margins, no padding, no
word wrapping. (Maybe you think that’s a good thing!) You can set a few font attrib-
utes, then you pick a point on the canvas and draw your text there.

Text | 63

http://code.google.com/p/explorercanvas/

Figure 4-4. Unlabeled axes drawn on a canvas

The following font attributes are available on the drawing context (see “Simple
Shapes” on page 58):

• font can be anything you would put in a CSS font rule. That includes font style,
font variant, font weight, font size, line height, and font family.

• textAlign controls text alignment. It is similar (but not identical) to a CSS
text-align rule. Possible values are start, end, left, right, and center.

• textBaseline controls where the text is drawn relative to the starting point. Possible
values are top, hanging, middle, alphabetic, ideographic, and bottom.

textBaseline is tricky, because text is tricky. (Well, English text isn’t tricky, but you
can draw any Unicode character you like on a canvas, and Unicode is tricky.) The
HTML5 specification explains the different text baselines:*

The top of the em square is roughly at the top of the glyphs in a font, the hanging baseline
is where some glyphs like आ are anchored, the middle is half-way between the top of the
em square and the bottom of the em square, the alphabetic baseline is where characters
like Á, ÿ, f, and Ω are anchored, the ideographic baseline is where glyphs like 私 and
達 are anchored, and the bottom of the em square is roughly at the bottom of the glyphs
in a font. The top and bottom of the bounding box can be far from these baselines, due
to glyphs extending far outside the em square (see Figure 4-5).

* http://bit.ly/aHCdDO

64 | Chapter 4: Let’s Call It a Draw(ing Surface)

http://bit.ly/aHCdDO

For simple alphabets like English, you can safely stick with top, middle, or bottom for
the textBaseline property.

Let’s draw some text! Text drawn inside the canvas inherits the font size and style of
the <canvas> element itself, but you can override this by setting the font property on
the drawing context:

context.font = "bold 12px sans-serif";
context.fillText("x", 248, 43);
context.fillText("y", 58, 165);

The fillText() method draws the actual text:

context.font = "bold 12px sans-serif";
context.fillText("x", 248, 43);
context.fillText("y", 58, 165);

Ask Professor Markup
Q: Can I use relative font sizes to draw text on a canvas?

A: Yes. Like every other HTML element on your page, the <canvas> element itself has
a computed font size based on your page’s CSS rules. If you set the context.font prop-
erty to a relative font size like 1.5em or 150%, your browser multiplies this by the com-
puted font size of the <canvas> element itself.

For the text in the upper-left corner, say we want the top of the text to be at y=5. But
we’re lazy—we don’t want to measure the height of the text and calculate the baseline.
Instead, we can set textBaseline to top and pass in the upper-left coordinate of the
text’s bounding box:

context.textBaseline = "top";
context.fillText("(0 , 0)", 8, 5);

Figure 4-5. Text baselines

Text | 65

Now for the text in the lower-right corner. Let’s say we want the bottom-right corner
of the text to be at coordinates (492,370)—just a few pixels away from the bottom-
right corner of the canvas—but again, we don’t want to measure the width or height
of the text. We can set textAlign to right and textBaseline to bottom, then call
fillText() with the bottom-right coordinates of the text’s bounding box:

context.textAlign = "right";
context.textBaseline = "bottom";
context.fillText("(500 , 375)", 492, 370);

Figure 4-6 shows the result.

Figure 4-6. Labeled axes on a canvas

Oops! We forgot the dots in the corners. We’ll see how to draw circles a little later; for
now we’ll cheat a little and draw them as rectangles (see “Simple Shapes” on page 58):

context.fillRect(0, 0, 3, 3);
context.fillRect(497, 372, 3, 3);

And that’s all she wrote! Figure 4-7 shows the final product.

66 | Chapter 4: Let’s Call It a Draw(ing Surface)

Figure 4-7. A canvas coordinates diagram on a canvas

Gradients
 IEa Firefox Safari Chrome Opera iPhone Android

Linear gradients 7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+

Radial gradients · 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+
a Internet Explorer support requires the third-party explorercanvas library.

Earlier in this chapter, you learned how to draw a rectangle filled with a solid color (see
“Simple Shapes” on page 58), then a line stroked with a solid color (see
“Paths” on page 61). But shapes and lines aren’t limited to solid colors. You can do all
kinds of magic with gradients. Figure 4-8 shows an example.

The markup looks the same as any other canvas:

<canvas id="d" width="300" height="225"></canvas>

First, we need to find the <canvas> element and its drawing context:

var d_canvas = document.getElementById("d");
var context = d_canvas.getContext("2d");

Gradients | 67

http://code.google.com/p/explorercanvas/

Figure 4-8. A left-to-right linear gradient

Once we have the drawing context, we can start to define a gradient. A gradient is a
smooth transition between two or more colors. The canvas drawing context supports
two types of gradients:

• createLinearGradient(x0, y0, x1, y1) paints along a line from (x0, y0) to
(x1, y1).

• createRadialGradient(x0, y0, r0, x1, y1, r1) paints along a cone between two
circles. The first three parameters represent the starting circle, with origin (x0,
y0) and radius r0. The last three parameters represent the ending circle, with origin
(x1, y1) and radius r1.

Let’s make a linear gradient. Gradients can be any size, but we’ll make this gradient
300 pixels wide, like the canvas:

var my_gradient = context.createLinearGradient(0, 0, 300, 0);

Because the y values (the second and fourth parameters) are both 0, this gradient will
shade evenly from left to right.

Once we have a gradient object, we can define the gradient’s colors. A gradient has two
or more color stops. Color stops can be anywhere along the gradient. To add a color
stop, you need to specify its position along the gradient. Gradient positions can be
anywhere between 0 and 1.

Let’s define a gradient that shades from black to white:

my_gradient.addColorStop(0, "black");
my_gradient.addColorStop(1, "white");

Defining a gradient doesn’t draw anything on the canvas. It’s just an object tucked away
in memory somewhere. To draw a gradient, you set your fillStyle to the gradient and
draw a shape, like a rectangle or a line:

context.fillStyle = my_gradient;
context.fillRect(0, 0, 300, 225);

68 | Chapter 4: Let’s Call It a Draw(ing Surface)

Figure 4-9 shows the result.

Figure 4-9. A left-to-right linear gradient

Suppose you want a gradient that shades from top to bottom. When you create the
gradient object, keep the x values (the first and third parameters) constant, and make
the y values (the second and fourth parameters) range from 0 to the height of the canvas:

var my_gradient = context.createLinearGradient(0, 0, 0, 225);
my_gradient.addColorStop(0, "black");
my_gradient.addColorStop(1, "white");
context.fillStyle = my_gradient;
context.fillRect(0, 0, 300, 225);

Figure 4-10 shows the result.

Figure 4-10. A top-to-bottom linear gradient

Gradients | 69

You can also create gradients along a diagonal. For example:

var my_gradient = context.createLinearGradient(0, 0, 300, 225);
my_gradient.addColorStop(0, "black");
my_gradient.addColorStop(1, "white");
context.fillStyle = my_gradient;
context.fillRect(0, 0, 300, 225);

Figure 4-11 shows the result.

Figure 4-11. A diagonal linear gradient

Images
IEa Firefox Safari Chrome Opera iPhone Android

7.0+ 3.0+ 3.0+ 3.0+ 10.0+ 1.0+ 1.0+
a Internet Explorer support requires the third-party explorercanvas library.

Figure 4-12 shows an image of a cat displayed with the element.

Figure 4-12. Cat with an element

Figure 4-13 shows the same cat, drawn on a canvas.

70 | Chapter 4: Let’s Call It a Draw(ing Surface)

http://code.google.com/p/explorercanvas/

Figure 4-13. Cat with a <canvas> element

The canvas drawing context defines several methods for drawing an image on a canvas:

• drawImage(image, dx, dy) takes an image and draws it on the canvas. The given
coordinates (dx, dy) will be the upper-left corner of the image. Coordinates (0,
0) would draw the image at the upper-left corner of the canvas.

• drawImage(image, dx, dy, dw, dh) takes an image, scales it to a width of dw and a
height of dh, and draws it on the canvas at coordinates (dx, dy).

• drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh) takes an image, clips it to the
rectangle (sx, sy, sw, sh), scales it to dimensions (dw, dh), and draws it on the
canvas at coordinates (dx, dy).

The HTML5 specification explains the drawImage() parameters:

The source rectangle is the rectangle [within the source image] whose corners are the
four points (sx, sy), (sx+sw, sy), (sx+sw, sy+sh), (sx, sy+sh).

The destination rectangle is the rectangle [within the canvas] whose corners are the four
points (dx, dy), (dx+dw, dy), (dx+dw, dy+dh), (dx, dy+dh).

Figure 4-14 gives a visual representation of these parameters.

To draw an image on a canvas, you need an image. The image can be an existing
 element, or you can create an Image object with JavaScript. Either way, you need
to ensure that the image is fully loaded before you can draw it on the canvas.

If you’re using an existing element, you can safely draw it on the canvas during
the window.onload event:

<canvas id="e" width="177" height="113"></canvas>
<script>
window.onload = function() {
 var canvas = document.getElementById("e");
 var context = canvas.getContext("2d");
 var cat = document.getElementById("cat");
 context.drawImage(cat, 0, 0);
};
</script>

Images | 71

http://bit.ly/9WTZAp

Figure 4-14. How drawImage() maps an image to a canvas

If you’re creating the image object entirely in JavaScript, you can safely draw the image
on the canvas during the Image.onload event:

<canvas id="e" width="177" height="113"></canvas>
<script>
 var canvas = document.getElementById("e");
 var context = canvas.getContext("2d");
 var cat = new Image();
 cat.src = "images/cat.png";
 cat.onload = function() {
 context.drawImage(cat, 0, 0);
 };
</script>

The optional third and fourth parameters to the drawImage() method control image
scaling. Figure 4-15 shows the same image of a cat, scaled to half its width and height
and drawn repeatedly at different coordinates within a single canvas:

Here is the script that produces the “multicat” effect:

cat.onload = function() {
 for (var x = 0, y = 0;
 x < 500 && y < 375;
 x += 50, y += 37) {
 context.drawImage(cat, x, y, 88, 56);

72 | Chapter 4: Let’s Call It a Draw(ing Surface)

 }
};

All this effort raises a legitimate question: why would you want to draw an image on a
canvas in the first place? What does the extra complexity buy you over an element
and some CSS rules? Even the “multicat” effect could be replicated with 10 overlapping
 elements.

The simple answer is that you’d do this for the same reason you might want to draw
text on a canvas (see “Text” on page 63). Our canvas coordinates diagram (see “Canvas
Coordinates” on page 60) included text, lines, and shapes; the text-on-a-canvas element
was just one part of a larger work. A more complex diagram could easily use
drawImage() to include icons, sprites, or other graphics.

Figure 4-15. Multicat!

What About IE?
Microsoft Internet Explorer (up to and including Version 8, the current version at the
time of writing) does not support the canvas API. However, Internet Explorer does
support a Microsoft proprietary technology called VML, which can do many of the
same things as the <canvas> element. And thus, excanvas.js was born.

What About IE? | 73

ExplorerCanvas—excanvas.js—is an open source, Apache-licensed JavaScript library
that implements the canvas API in Internet Explorer. To use it, include the following
<script> element at the top of your page:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Dive Into HTML 5</title>
 <!--[if IE]>
 <script src="excanvas.js"></script>
 <![endif]-->
</head>
<body>
 ...
</body>
</html>

The <!--[if IE]> and <![endif]--> bits are conditional comments. Internet Explorer
interprets them like an if statement: “if the current browser is any version of Internet
Explorer, then execute this block.” Every other browser will treat the entire block as
an HTML comment. The net result is that Internet Explorer will download the excan-
vas.js script and execute it, but other browsers will ignore the script altogether (not
download it, not execute it, not anything). This makes your page load faster in browsers
that implement the canvas API natively.

Once you’ve included the excanvas.js script in the <head> of your page, you don’t need
to do anything else to accommodate Internet Explorer. You can just add <canvas> ele-
ments to your markup, or create them dynamically with JavaScript. Follow the in-
structions in this chapter to get the drawing context of a <canvas> element, and you can
draw shapes, text, and patterns.

Well...not quite. There are a few limitations:

• Gradients (see “Gradients” on page 67) can only be linear. Radial gradients are not
supported.

• Patterns must be repeating in both directions.

• Clipping regions are not supported.

• Nonuniform scaling does not correctly scale strokes.

• It’s slow. This should not come as a raging shock to anyone, since Internet Ex-
plorer’s JavaScript parser is slower than other browsers’ to begin with. When you
start drawing complex shapes via a JavaScript library that translates commands to
a completely different technology, things are going to get bogged down. You won’t
notice the performance degradation in simple examples like drawing a few lines
and transforming an image, but you’ll see it right away once you start doing canvas-
based animation and other crazy stuff.

74 | Chapter 4: Let’s Call It a Draw(ing Surface)

http://code.google.com/p/explorercanvas/
http://msdn.microsoft.com/en-us/library/ms537512(VS.85).aspx
https://developer.mozilla.org/En/Canvas_tutorial/Applying_styles_and_colors#A_createRadialGradient_example
http://bit.ly/aQoEF0
http://bit.ly/bnmoVK

There is one more caveat about using excanvas.js, and it’s a problem that I ran into
while creating the examples in this chapter. ExplorerCanvas initializes its own faux-
canvas interface automatically whenever you include the excanvas.js script in your
HTML page. But that doesn’t mean that Internet Explorer is ready to use it immediately.
In certain situations, you can run into a race condition where the faux-canvas interface
is almost, but not quite, ready to use. The primary symptom of this state is that Internet
Explorer will complain that “object doesn’t support this property or method” whenever
you try to do anything with a <canvas> element, such as get its drawing context.

The easiest solution to this is to defer all of your canvas-related manipulation until after
the onload event fires. This may take a while—if your page has a lot of images or videos,
they will delay the onload event—but it will give ExplorerCanvas time to work its magic.

A Complete Example
Halma is a centuries-old board game. Many variations exist. In this example, I’ve cre-
ated a solitaire version of Halma with nine pieces on a 9 × 9 board. In the beginning of
the game, the pieces form a 3 × 3 square in the bottom-left corner of the board. The
object of the game is to move all the pieces so they form a 3 × 3 square in the upper-
right corner of the board, in the least possible number of moves.

There are two types of legal moves in Halma:

• Take a piece and move it to any adjacent empty square. An “empty” square is one
that does not currently have a piece in it. An “adjacent” square is immediately
north, south, east, west, northwest, northeast, southwest, or southeast of the
piece’s current position. (The board does not wrap around from one side to the
other. If a piece is in the leftmost column, it cannot move west, northwest, or
southwest. If a piece is in the bottommost row, it cannot move south, southeast,
or southwest.)

• Take a piece and hop over an adjacent piece, and possibly repeat. That is, if you
hop over an adjacent piece, then hop over another piece adjacent to your new
position, that counts as a single move. In fact, any number of hops still counts as
a single move. (Since the goal is to minimize the total number of moves, doing well
in Halma involves constructing, and then using, long chains of staggered pieces so
that other pieces can hop over them in long sequences.)

Figure 4-16 is a screenshot of the game itself; you can also play it online if you want to
poke at it with your browser’s developer tools.

So how does it work? I’m so glad you asked. I won’t show all the code here (you can
see it at http://diveintohtml5.org/examples/halma.js). I’ll skip over most of the gameplay
code itself, but I want to highlight a few parts of the code that deal with actually drawing
on the canvas and responding to mouse clicks on the <canvas> element.

A Complete Example | 75

http://diveintohtml5.org/examples/canvas-halma.html
http://diveintohtml5.org/examples/halma.js

Figure 4-16. Starting position of a Halma game

During page load, we initialize the game by setting the dimensions of the <canvas> itself
and storing a reference to its drawing context:

gCanvasElement.width = kPixelWidth;
gCanvasElement.height = kPixelHeight;
gDrawingContext = gCanvasElement.getContext("2d");

Then we do something you haven’t seen yet—we add an event listener to the
<canvas> element to listen for click events:

gCanvasElement.addEventListener("click", halmaOnClick, false);

The halmaOnClick() function gets called when the user clicks anywhere within the can-
vas. Its argument is a MouseEvent object that contains information about where the user
clicked:

function halmaOnClick(e) {
 var cell = getCursorPosition(e);

 // the rest of this is just gameplay logic
 for (var i = 0; i < gNumPieces; i++) {

76 | Chapter 4: Let’s Call It a Draw(ing Surface)

 if ((gPieces[i].row == cell.row) &&
 (gPieces[i].column == cell.column)) {
 clickOnPiece(i);
 return;
 }
 }
 clickOnEmptyCell(cell);
}

The next step is to take the MouseEvent object and calculate which square on the Halma
board just got clicked. The Halma board takes up the entire canvas, so every click is
somewhere on the board. We just need to figure out where. This is tricky, because
mouse events are implemented differently in just about every browser:

function getCursorPosition(e) {
 var x;
 var y;
 if (e.pageX || e.pageY) {
 x = e.pageX;
 y = e.pageY;
 }
 else {
 x = e.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 y = e.clientY + document.body.scrollTop +
 document.documentElement.scrollTop;
 }

At this point, we have x and y coordinates that are relative to the document (that is, the
entire HTML page). But we want coordinates relative to the canvas. We can get them
as follows:

x -= gCanvasElement.offsetLeft;
y -= gCanvasElement.offsetTop;

Now we have x and y coordinates that are relative to the canvas (see “Canvas Coordi-
nates” on page 60). That is, if x is 0 and y is 0 at this point, we know that the user just
clicked the top-left pixel of the canvas.

From here, we can calculate which Halma square the user clicked, and then act
accordingly:

 var cell = new Cell(Math.floor(y/kPieceWidth),
 Math.floor(x/kPieceHeight));
 return cell;
}

Whew! Mouse events are tough. But you can use the same logic (in fact, this exact code)
in all of your own canvas-based applications. Remember: mouse click→document-
relative coordinates→canvas-relative coordinates→application-specific code.

OK, let’s look at the main drawing routine. Because the graphics are so simple, I’ve
chosen to clear and redraw the board in its entirety every time anything changes within
the game. This is not strictly necessary. The canvas drawing context will retain whatever

A Complete Example | 77

you have previously drawn on it, even if the user scrolls the canvas out of view or
changes to another tab and then comes back later. If you’re developing a canvas-based
application with more complicated graphics (such as an arcade game), you can optimize
performance by tracking which regions of the canvas are “dirty” and redrawing just the
dirty regions. But that is outside the scope of this book. Here’s the board-clearing code:

gDrawingContext.clearRect(0, 0, kPixelWidth, kPixelHeight);

The board-drawing routine should look familiar. It’s very similar to how we drew the
canvas coordinates diagram (see “Canvas Coordinates” on page 60):

gDrawingContext.beginPath();

/* vertical lines */
for (var x = 0; x <= kPixelWidth; x += kPieceWidth) {
 gDrawingContext.moveTo(0.5 + x, 0);
 gDrawingContext.lineTo(0.5 + x, kPixelHeight);
}

/* horizontal lines */
for (var y = 0; y <= kPixelHeight; y += kPieceHeight) {
 gDrawingContext.moveTo(0, 0.5 + y);
 gDrawingContext.lineTo(kPixelWidth, 0.5 + y);
}

/* draw it! */
gDrawingContext.strokeStyle = "#ccc";
gDrawingContext.stroke();

The real fun begins when we go to draw each of the individual pieces. A piece is a circle,
something we haven’t drawn before. Furthermore, if the user selects a piece in antici-
pation of moving it, we want to draw that piece as a filled-in circle. Here, the argument
p represents a piece, which has row and column properties that denote the piece’s current
location on the board. We use some in-game constants to translate (column, row) into
canvas-relative (x, y) coordinates, then draw a circle, then (if the piece is selected) fill
in the circle with a solid color:

function drawPiece(p, selected) {
 var column = p.column;
 var row = p.row;
 var x = (column * kPieceWidth) + (kPieceWidth/2);
 var y = (row * kPieceHeight) + (kPieceHeight/2);
 var radius = (kPieceWidth/2) - (kPieceWidth/10);

That’s the end of the game-specific logic. Now we have (x, y) coordinates, relative to
the canvas, for the center of the circle we want to draw. There is no circle() method
in the canvas API, but there is an arc() method. And really, what is a circle but an arc
that goes all the way around? Do you remember your basic geometry? The arc() method
takes a center point (x, y), a radius, a start and end angle (in radians), and a direction
flag (false for clockwise, true for counterclockwise). We can use the Math module that’s
built into JavaScript to calculate radians:

78 | Chapter 4: Let’s Call It a Draw(ing Surface)

gDrawingContext.beginPath();
gDrawingContext.arc(x, y, radius, 0, Math.PI * 2, false);
gDrawingContext.closePath();

But wait! Nothing has been drawn yet. Like moveTo() and lineTo(), the arc() method
is a “pencil” method (see “Paths” on page 61). To actually draw the circle, we need to
set the strokeStyle and call stroke() to trace it in “ink”:

gDrawingContext.strokeStyle = "#000";
gDrawingContext.stroke();

What if the piece is selected? We can reuse the same path we created to draw the outline
of the piece to fill in the circle with a solid color:

if (selected) {
 gDrawingContext.fillStyle = "#000";
 gDrawingContext.fill();
}

And that’s...well, that’s pretty much it. The rest of the program is game-specific logic—
distinguishing between valid and invalid moves, keeping track of the number of moves,
detecting whether the game is over. With nine circles, a few straight lines, and an
onclick handler, we’ve created an entire game in <canvas>. Huzzah!

Further Reading
• Canvas tutorial on the Mozilla Developer Center

• “HTML5 canvas—the basics”, by Mihai Sucan

• Canvas Demos: demos, tools, and tutorials for the HTML <canvas> element

• “The canvas element” in the HTML5 draft standard

Further Reading | 79

https://developer.mozilla.org/en/Canvas_tutorial
http://dev.opera.com/articles/view/html-5-canvas-the-basics/
http://www.canvasdemos.com
http://bit.ly/9JHzOf

CHAPTER 5

Video on the Web

Diving In
Anyone who has visited YouTube.com in the past four years knows that you can embed
video in a web page. But prior to HTML5, there was no standards-based way to do this.
Virtually all the video you’ve ever watched “on the Web” has been funneled through
a third-party plug-in—maybe QuickTime, maybe RealPlayer, maybe Flash. (YouTube
uses Flash.) These plug-ins integrate with your browser well enough that you may not
even be aware that you’re using them—until you try to watch a video on a platform
that doesn’t support that plug-in, that is.

HTML5 defines a standard way to embed video in a web page, using a <video> element.
Support for the <video> element is still evolving, which is a polite way of saying it doesn’t
work yet (at least, it doesn’t work everywhere). But don’t despair! There are alternatives
and fallbacks and options galore. Table 5-1 shows which browsers support the
<video> element at the time of writing.

Table 5-1. <video> element support

IE9 IE8 IE7 Firefox
3.5

Firefox
3.0

Safari 4 Safari 3 Chrome Opera

✓ · · ✓ · ✓ ✓ ✓ ✓

Support for the <video> element itself is really only a small part of the story. Before we
can talk about HTML5 video, you first need to understand a little about video itself.
(If you know about video already, you can skip ahead to “What Works on the
Web” on page 88.)

Video Containers
You may think of video files as “AVI files” or “MP4 files.” In reality, “AVI” and “MP4”
are just container formats. Just as a ZIP file can contain any sort of file within it, video

81

container formats only define how to store things within them, not what kind of data
is stored. (It’s a little more complicated than that, because not all video streams are
compatible with all container formats, but never mind that for now.)

A video file usually contains multiple tracks: a video track (without audio), plus one
or more audio tracks (without video). Tracks are usually interrelated. An audio track
contains markers within it to help synchronize the audio with the video. Individual
tracks can have metadata, such as the aspect ratio of a video track or the language of
an audio track. Containers can also have metadata, such as the title of the video itself,
cover art for the video, episode numbers (for television shows), and so on.

There are lots of video container formats. Some of the most popular include:

MPEG-4
Usually with an .mp4 or .m4v extension. The MPEG-4 container is based on
Apple’s older QuickTime container (.mov). Movie trailers on Apple’s website still
use the older QuickTime container, but movies that you rent from iTunes are de-
livered in an MPEG-4 container.

Flash Video
Usually with an .flv extension. Flash Video is, unsurprisingly, used by Adobe Flash.
Prior to Flash 9.0.60.184 (a.k.a. Flash Player 9 Update 3), this was the only con-
tainer format that Flash supported. More recent versions of Flash also support the
MPEG-4 container.

Ogg
Usually with an .ogv extension. Ogg is an open standard that is open source–
friendly and is unencumbered by any known patents. Firefox 3.5, Chrome 4, and
Opera 10.5 offer native support, without platform-specific plug-ins, for the Ogg
container format, Ogg video (called “Theora”), and Ogg audio (called “Vorbis”).
On the desktop, Ogg is supported out-of-the-box by all major Linux distributions,
and you can use it on Mac and Windows by installing the QuickTime compo-
nents or DirectShow filters, respectively. It is also playable with the excellent
VLC on all platforms.

WebM
With a .webm extension. WebM is a new container format that is technically very
similar to another format called Matroska. WebM was announced at Google I/O
2010. It is designed to be used exclusively with the VP8 video codec and the Vorbis
audio codec. (More on these in a minute.) It will be supported natively, without
platform-specific plug-ins, in the next versions of Chromium, Google Chrome,
Mozilla Firefox, and Opera. Adobe has also announced that the next version of
Flash will support WebM video.

Audio Video Interleave
Usually with an .avi extension. The AVI container format was invented by Micro-
soft in a simpler time, when the fact that computers could play video at all was
considered pretty amazing. It does not officially support many of the features of

82 | Chapter 5: Video on the Web

http://en.wikipedia.org/wiki/MPEG-4_Part_14
http://www.chiariglione.org/mpeg/technologies/mp04-ff/index.htm
http://www.chiariglione.org/mpeg/technologies/mp04-ff/index.htm
http://www.apple.com/trailers/
http://en.wikipedia.org/wiki/Flash_Video
http://en.wikipedia.org/wiki/Ogg
http://www.xiph.org/quicktime/
http://www.xiph.org/quicktime/
http://www.xiph.org/dshow/
http://www.videolan.org/vlc/
http://www.webmproject.org
http://en.wikipedia.org/wiki/Matroska
http://en.wikipedia.org/wiki/AVI

more recent container formats. It does not officially support any sort of video
metadata. It does not even officially support most of the modern video and audio
codecs in use today. Over time, various companies have tried to extend it in gen-
erally incompatible ways to support this or that, and it is still the default container
format for popular encoders such as MEncoder.

Video Codecs
When you talk about “watching a video,” you’re probably talking about a combination
of one video stream and one audio stream. But you don’t have two different files; you
just have “the video.” Maybe it’s an AVI file, or an MP4 file. As described in the pre-
ceding section, these are just container formats, like a ZIP file that contains multiple
kinds of files within it. The container format defines how to store the video and audio
streams in a single file.

When you “watch a video,” your video player is doing several things at once:

• Interpreting the container format to find out which video and audio tracks are
available, and how they are stored within the file so that it can find the data it needs
to decode next

• Decoding the video stream and displaying a series of images on the screen

• Decoding the audio stream and sending the sound to your speakers

A video codec is an algorithm by which a video stream is encoded. That is, it specifies
how to do #2 above. (The word “codec” is a portmanteau, a combination of the words
“coder” and “decoder.”) Your video player decodes the video stream according to the
video codec, then displays a series of images, or “frames,” on the screen. Most modern
video codecs use all sorts of tricks to minimize the amount of information required to
display one frame after the next. For example, instead of storing each individual frame
(like screenshots), they only store the differences between frames. Most videos don’t
actually change all that much from one frame to the next, so this allows for high com-
pression rates, which results in smaller file sizes.

There are lossy and lossless video codecs. Lossless video is much too big to be useful
on the Web, so I’ll concentrate on lossy codecs. With a lossy video codec, information
is irretrievably lost during encoding. Like copying an audio cassette tape, every time
you encode you’re losing information about the source video and degrading the quality.
Instead of the “hiss” of an audio cassette, a re-re-re-encoded video may look blocky,
especially during scenes with a lot of motion. (Actually, this can happen even if you
encode straight from the original source if you choose a poor video codec or pass it the
wrong set of parameters.) On the bright side, lossy video codecs can offer amazing
compression rates, and many offer ways to “cheat” and smooth over that blockiness
during playback to make the loss less noticeable to the human eye.

Video Codecs | 83

http://www.mplayerhq.hu/DOCS/HTML/en/encoding-guide.html
http://en.wikipedia.org/wiki/Portmanteau

There are tons of video codecs. The three most relevant codecs are H.264, Theora, and
VP8.

H.264
H.264 is also known as “MPEG-4 part 10,” a.k.a. “MPEG-4 AVC,” a.k.a. “MPEG-4
Advanced Video Coding.” H.264 was developed by the MPEG group and standardized
in 2003. It aims to provide a single codec for low-bandwidth, low-CPU devices (cell
phones); high-bandwidth, high-CPU devices (modern desktop computers); and every-
thing in between. To accomplish this, the H.264 standard is split into “profiles”, each
defining a set of optional features that trade complexity for file size. Higher profiles use
more optional features, offer better visual quality at smaller file sizes, take longer to
encode, and require more CPU power to decode in real time.

To give you a rough idea of the range of profiles, Apple’s iPhone supports the Baseline
profile, the AppleTV set-top box supports the Baseline and Main profiles, and Adobe
Flash on a desktop PC supports the Baseline, Main, and High profiles. YouTube (owned
by Google, my employer) now uses H.264 to encode high-definition videos playable
through Adobe Flash; YouTube also provides H.264-encoded video to mobile devices,
including Apple’s iPhone and phones running Google’s Android mobile operating
system. Also, H.264 is one of the video codecs mandated by the Blu-ray specification;
Blu-ray discs that use it generally use the High profile.

Most nonPC devices that play H.264 video (including iPhones and standalone Blu-ray
players) actually do the decoding on a dedicated chip, since their main CPUs are no-
where near powerful enough to decode the video in real time. Many desktop graphics
cards also support decoding H.264 in hardware. There are a number of competing
H.264 encoders, including the open source x264 library. The H.264 standard is patent-
encumbered; licensing is brokered through the MPEG LA group. H.264 video can be
embedded in most popular container formats (see “Video Containers” on page 81),
including MP4 (used primarily by Apple’s iTunes Store) and MKV (used primarily by
noncommercial video enthusiasts).

Theora
Theora evolved from the VP3 codec and has subsequently been developed by the
Xiph.org Foundation. Theora is a royalty-free codec and is not encumbered by any known
patents other than the original VP3 patents, which have been licensed royalty-free.
Although the standard has been “frozen” since 2004, the Theora project (which in-
cludes an open source reference encoder and decoder) only released Version 1.0 in
November 2008 and Version 1.1 in September 2009.

Theora video can be embedded in any container format, although it is most often seen
in an Ogg container. All major Linux distributions support Theora out of the box, and
Mozilla Firefox 3.5 includes native support for Theora video in an Ogg container. By

84 | Chapter 5: Video on the Web

http://samples.mplayerhq.hu/V-codecs/
http://en.wikipedia.org/wiki/H.264
http://en.wikipedia.org/wiki/Moving_Picture_Experts_Group
http://en.wikipedia.org/wiki/H.264#Profiles
http://www.apple.com/iphone/specs.html
http://www.apple.com/iphone/specs.html
http://www.apple.com/appletv/specs.html
http://www.kaourantin.net/2007/08/what-just-happened-to-video-on-web_20.html
http://www.kaourantin.net/2007/08/what-just-happened-to-video-on-web_20.html
http://blog.wired.com/business/2008/12/youtube-adds-hd.html
http://code.google.com/android/
http://code.google.com/android/
http://compression.ru/video/codec_comparison/mpeg-4_avc_h264_2007_en.html
http://compression.ru/video/codec_comparison/mpeg-4_avc_h264_2007_en.html
http://www.videolan.org/developers/x264.html
http://www.mpegla.com
http://www.apple.com/itunes/whatson/movies.html
http://en.wikipedia.org/wiki/Theora
http://en.wikipedia.org/wiki/Theora#History
http://xiph.org
http://lists.xiph.org/pipermail/theora-dev/2008-November/003736.html
http://lists.xiph.org/pipermail/theora-dev/2008-November/003736.html
http://lists.xiph.org/pipermail/theora-dev/2009-September/003985.html
https://developer.mozilla.org/En/Using_audio_and_video_in_Firefox

“native,” I mean “available on all platforms without platform-specific plug-ins.” You
can also play Theora video on Windows or on Mac OS X after installing Xiph.org’s
open source decoder software.

VP8
VP8 is another video codec from On2, the same company that originally developed
VP3 (later Theora). Technically, it is similar in quality to H.264 Baseline, with lots of
potential for future improvements.

In 2010, Google acquired On2 and published the video codec specification and a sam-
ple encoder and decoder as open source. As part of this, Google also “opened” all the
patents that On2 had filed on VP8 by licensing them royalty-free. (This is the best you
can hope for with patents—you can’t actually “release” them or nullify them once
they’ve been issued. To make them open source–friendly, you license them royalty-
free, and then anyone can use the technologies the patents cover without paying any-
thing or negotiating patent licenses.) As of May 19, 2010, VP8 is a royalty-free, modern
codec and is not encumbered by any known patents, other than the patents that On2
(now Google) has already licensed royalty-free.

Audio Codecs
Unless you’re going to stick to films made before 1927 or so, you’re going to want an
audio track in your video. Like video codecs, audio codecs are encoding algorithms, in
this case used for audio streams. As with video codecs, there are lossy and lossless audio
codecs. And like lossless video, lossless audio is really too big to put on the Web, so
I’ll concentrate on lossy audio codecs.

Actually, we can narrow the focus even further, because there are different categories
of lossy audio codecs. Audio is used in many places where video is not (telephony, for
example), and there is an entire category of audio codecs optimized for encoding
speech. You wouldn’t rip a music CD with these codecs, because the result would sound
like a four-year-old singing into a speakerphone. But you would use them in an
Asterisk PBX, because bandwidth is precious, and these codecs can compress human
speech into a fraction of the size of general-purpose codecs. However, due to lack of
support in both native browsers and third-party plug-ins, speech-optimized audio co-
decs never really took off on the Web. So I’ll concentrate on general-purpose lossy audio
codecs.

As I mentioned in “Video Codecs” on page 83, when you “watch a video,” your com-
puter is doing several things at once:

1. Interpreting the container format

2. Decoding the video stream

3. Decoding the audio stream and sending the sound to your speakers

Audio Codecs | 85

http://www.xiph.org/dshow/
http://xiph.org/quicktime/
http://en.wikipedia.org/wiki/VP8
http://x264dev.multimedia.cx/?p=377
http://lists.wikimedia.org/pipermail/wikitech-l/2010-May/047795.html
http://lists.wikimedia.org/pipermail/wikitech-l/2010-May/047795.html
http://www.filmsite.org/jazz.html
http://www.voip-info.org/wiki-Codecs
http://www.voip-info.org/wiki-Codecs
http://www.asterisk.org

The audio codec specifies how to do #3—decoding the audio stream and turning it into
digital waveforms that your speakers then turn into sound. As with video codecs, there
are all sorts of tricks to minimize the amount of information stored in the audio stream.
And since we’re talking about lossy audio codecs, information is being lost during the
recording→encoding→decoding→listening lifecycle. Different audio codecs throw away
different things, but they all have the same purpose: to trick your ears into not noticing
the parts that are missing.

One concept that audio has that video does not is channels. We’re sending sound to
your speakers, right? Well, how many speakers do you have? If you’re sitting at your
computer, you may only have two: one on the left and one on the right. My desktop
has three: left, right, and one more on the floor. So-called “surround sound” systems
can have six or more speakers, strategically placed around the room. Each speaker is
fed a particular channel of the original recording. The theory is that you can sit in the
middle of the six speakers, literally surrounded by six separate channels of sound, and
your brain synthesizes them and makes you feel like you’re in the middle of the action.
Does it work? A multi-billion-dollar industry seems to think so.

Most general-purpose audio codecs can handle two channels of sound. During record-
ing, the sound is split into left and right channels; during encoding, both channels are
stored in the same audio stream; and during decoding, both channels are decoded and
each is sent to the appropriate speaker. Some audio codecs can handle more than two
channels, and they keep track of which channel is which so your player can send the
right sound to the right speaker.

There are lots of audio codecs. Did I say there were lots of video codecs? Forget that.
There are gobs and gobs of audio codecs, but on the Web, there are really only three
you need to know about: MP3, AAC, and Vorbis.

MPEG-1 Audio Layer 3
MPEG-1 Audio Layer 3 is colloquially known as “MP3.” If you haven’t heard of MP3s,
I don’t know what to do with you. Walmart sells portable music players and calls them
“MP3 players.” Walmart. Anyway...

MP3s can contain up to two channels of sound. They can be encoded at different
bitrates: 64 kbps, 128 kbps, 192 kbps, and a variety of others, from 32 to 320. Higher
bitrates mean larger file sizes and better-quality audio, although the ratio of audio
quality to bitrate is not linear. (128 kbps sounds more than twice as good as 64 kbps,
but 256 kbps doesn’t sound twice as good as 128 kbps.) Furthermore, the MP3 format
(standardized in 1991) allows for variable bitrate encoding, which means that some
parts of the encoded stream are compressed more than others. For example, silence
between notes can be encoded at a very low bitrate, then the bitrate can spike up a
moment later when multiple instruments start playing a complex chord. MP3s can also
be encoded with a constant bitrate, which, unsurprisingly, is called constant bitrate
encoding.

86 | Chapter 5: Video on the Web

http://en.wikipedia.org/wiki/Surround_sound
http://wiki.multimedia.cx/index.php?title=Category:Audio_Codecs
http://en.wikipedia.org/wiki/MPEG-1_Audio_Layer_3
http://www.walmart.com/catalog/catalog.gsp?cat=96469

The MP3 standard doesn’t define exactly how to encode MP3s (although it does define
exactly how to decode them); different encoders use different psychoacoustic models
that produce wildly different results, but are all decodable by the same players. The
open source LAME project is the best free encoder, and arguably the best encoder,
period, for all but the lowest bitrates.

The MP3 format is patent-encumbered, which explains why Linux can’t play MP3 files
out of the box. Pretty much every portable music player supports standalone MP3 files,
and MP3 audio streams can be embedded in any video container. Adobe Flash can play
both standalone MP3 files and MP3 audio streams within an MP4 video container.

Advanced Audio Coding
Advanced Audio Coding is affectionately known as “AAC.” Standardized in 1997, it
lurched into prominence when Apple chose it as the default format for the iTunes Store.
Originally, all AAC files “bought” from the iTunes Store were encrypted with Apple’s
proprietary DRM scheme, called FairPlay. Many songs in the iTunes Store are now
available as unprotected AAC files, which Apple calls “iTunes Plus” because it sounds
so much better than calling everything else “iTunes Minus.” The AAC format is patent-
encumbered; licensing rates are available online.

AAC was designed to provide better sound quality than MP3 at the same bitrate, and
it can encode audio at any bitrate. (MP3 is limited to a fixed number of bitrates, with
an upper bound of 320 kbps.) AAC can encode up to 48 channels of sound, although
in practice no one does that. The AAC format also differs from MP3 in defining multiple
profiles, in much the same way as H.264, and for the same reasons. The “low-
complexity” profile is designed to be playable in real time on devices with limited CPU
power, while higher profiles offer better sound quality at the same bitrate, at the expense
of slower encoding and decoding.

All current Apple products, including iPods, AppleTV, and QuickTime, support certain
profiles of AAC in standalone audio files and in audio streams in an MP4 video con-
tainer. Adobe Flash supports all profiles of AAC in MP4, as do the open source MPlayer
and VLC video players. For encoding, the FAAC library is the open source option;
support for it is a compile-time option in mencoder and ffmpeg.

Vorbis
Vorbis is often called “Ogg Vorbis,” although this is technically incorrect—“Ogg” is
just a container format (see “Video Containers” on page 81), and Vorbis audio streams
can be embedded in other containers. Vorbis is not encumbered by any known patents
and is therefore supported out of the box by all major Linux distributions and by port-
able devices running the open source Rockbox firmware. Mozilla Firefox 3.5 supports
Vorbis audio files in an Ogg container, or Ogg videos with a Vorbis audio track. An-
droid mobile phones can also play standalone Vorbis audio files. Vorbis audio streams

Audio Codecs | 87

http://lame.sourceforge.net
http://diveintomark.org/archives/2008/12/18/give-part-1-container-formats
http://en.wikipedia.org/wiki/Advanced_Audio_Coding
http://en.wikipedia.org/wiki/FairPlay
http://www.vialicensing.com/Licensing/AAC_fees.cfm
http://diveintomark.org/archives/2008/12/19/give-part-2-lossy-video-codecs#h264
http://en.wikipedia.org/wiki/Vorbis
http://www.rockbox.org
http://code.google.com/android/
http://code.google.com/android/

are usually embedded in an Ogg or WebM container, but they can also be embedded
in an MP4 or MKV container, or, with some hacking, in AVI. Vorbis supports an ar-
bitrary number of sound channels.

There are open source Vorbis encoders and decoders, including the OggConvert
encoder, the ffmpeg decoder, the aoTuV encoder, and the libvorbis decoder. There are
also QuickTime components for Mac OS X and DirectShow filters for Windows.

What Works on the Web
If your eyes haven’t glazed over yet, you’re doing better than most. As you can tell,
video (and audio) is a complicated subject—and this was the abridged version! I’m sure
you’re wondering how all of this relates to HTML5. Well, HTML5 includes a
<video> element for embedding video into a web page. There are no restrictions on the
video codec, audio codec, or container format you can use for your video. One
<video> element can link to multiple video files, and the browser will choose the first
video file it can actually play. It is up to you to know which browsers support which
containers and codecs.

As of this writing, this is the landscape of HTML5 video:

• Mozilla Firefox (3.5 and later) supports Theora video and Vorbis audio in an
Ogg container.

• Opera (10.5 and later) supports Theora video and Vorbis audio in an Ogg
container.

• Google Chrome (3.0 and later) supports Theora video and Vorbis audio in an Ogg
container. It also supports H.264 video (all profiles) and AAC audio (all profiles)
in an MP4 container.

• As of this writing (June 9, 2010), the “dev channel” of Google Chrome, nightly
builds of Chromium, nightly builds of Mozilla Firefox, and experimental builds of
Opera all support VP8 video and Vorbis audio in a WebM container. (Visit webm-
project.org for more up-to-date information and download links for WebM-
compatible browsers.)

• Safari on Macs and Windows PCs (3.0 and later) will support anything that Quick-
Time supports. In theory, you could require your users to install third-party Quick-
Time plug-ins. In practice, very few users are going to do that. So you’re left with
the formats that QuickTime supports “out of the box.” This is a long list, but it
does not include Theora video, Vorbis audio, or the Ogg container. However,
QuickTime does support H.264 video (Main profile) and AAC audio in an MP4
container.

• Mobile devices like Apple’s iPhone and Google Android phones support H.264
video (Baseline profile) and AAC audio (low-complexity profile) in an MP4
container.

88 | Chapter 5: Video on the Web

http://samples.mplayerhq.hu/MPEG-4/vorbis-in-mp4/
http://samples.mplayerhq.hu/MPEG-4/vorbis-in-mp4/
http://en.wikipedia.org/wiki/Matroska
http://www.alexander-noe.com/video/amg/
http://oggconvert.tristanb.net
http://oggconvert.tristanb.net
http://www.ffmpeg.org
http://www.geocities.jp/aoyoume/aotuv/
http://downloads.xiph.org/releases/vorbis/
http://www.xiph.org/quicktime/
http://www.xiph.org/dshow/
http://www.chromium.org/getting-involved/dev-channel
http://build.chromium.org/buildbot/snapshots/
http://build.chromium.org/buildbot/snapshots/
http://nightly.mozilla.org/
http://labs.opera.com/news/2010/05/19/
http://labs.opera.com/news/2010/05/19/
http://www.webmproject.org/users/
http://www.webmproject.org/users/

• Adobe Flash (9.0.60.184 and later) supports H.264 video (all profiles) and AAC
audio (all profiles) in an MP4 container.

• Internet Explorer 9 will support some as-yet-unspecified profiles of H.264 video
and AAC audio in an MP4 container.

• Internet Explorer 8 has no HTML5 video support at all, but virtually all Internet
Explorer users will have the Adobe Flash plug-in. Later in this chapter, I’ll show
you how you can use HTML5 video but gracefully fall back to Flash.

Table 5-2 provides the above information in an easier-to-digest form.

Table 5-2. Video codec support in shipping browsers

Codecs/Container IE Firefox Safari Chrome Opera iPhone Android

Theora+Vorbis+Ogg · 3.5+ · 5.0+ 10.5+ · ·

H.264+AAC+MP4 · · 3.0+ 5.0+ · 3.0+ 2.0+

WebM · · · · · · ·

A year from now, the landscape will look significantly different: WebM will be imple-
mented in multiple browsers, those browsers will ship nonexperimental WebM-
enabled versions, and users will upgrade to those new versions. The anticipated codec
support is shown in Table 5-3.

Table 5-3. Video codec support in upcoming browsers

Codecs/Container IE Firefox Safari Chrome Opera iPhone Android

Theora+Vorbis+Ogg · 3.5+ · 5.0+ 10.5+ · ·

H.264+AAC+MP4 · · 3.0+ 5.0+ · 3.0+ 2.0+

WebM 9.0+a 4.0+ · 6.0+ 11.0+ · b

a Internet Explorer 9 will only support WebM “when the user has installed a VP8 codec”, which implies that Microsoft will not be shipping
the codec itself.

b Google has committed to supporting WebM “in a future release” of Android, but there’s no firm timeline yet.

And now for the knockout punch....

Professor Markup Says
There is no single combination of containers and codecs that works in all HTML5
browsers.

This is not likely to change in the near future.

To make your video watchable across all of these devices and platforms, you’re going
to need to encode your video more than once.

For maximum compatibility, here’s what your video workflow will look like:

What Works on the Web | 89

http://windowsteamblog.com/windows/b/bloggingwindows/archive/2010/05/19/another-follow-up-on-html5-video-in-ie9.aspx

1. Make one version that uses Theora video and Vorbis audio in an Ogg container.

2. Make another version that uses WebM (VP8 + Vorbis).

3. Make another version that uses H.264 Baseline video and AAC low-complexity
audio in an MP4 container.

4. Link to all three video files from a single <video> element, and fall back to a Flash-
based video player.

Licensing Issues with H.264 Video
Before we continue, I need to point out that there is a cost to encoding your videos
twice. That is, in addition to the obvious cost—that you have to encode your videos
twice, which takes more computers and more time than just doing it once—there’s
another very real cost associated with H.264 video: licensing fees.

Remember when I first explained H.264 video (see “H.264” on page 84), and I men-
tioned that the video codec was patent-encumbered and licensing was brokered by the
MPEG LA consortium? That turns out to be kind of important. To understand why it’s
important, I direct you to the H.264 Licensing Labyrinth:*

MPEG LA splits the H.264 license portfolio into two sublicenses: one for manufacturers
of encoders or decoders and the other for distributors of content. [...]

The sublicense on the distribution side gets further split out to four key subcategories,
two of which (subscription and title-by-title purchase or paid use) are tied to whether
the end user pays directly for video services, and two of which (“free” television and
Internet broadcast) are tied to remuneration from sources other than the end viewer. [...]

The licensing fee for “free” television is based on one of two royalty options. The first is
a one-time payment of $2,500 per AVC transmission encoder, which covers one AVC
encoder “used by or on behalf of a Licensee in transmitting AVC video to the End User,”
who will decode and view it. If you’re wondering whether this is a double charge, the
answer is yes: A license fee has already been charged to the encoder manufacturer, and
the broadcaster will in turn pay one of the two royalty options.

The second licensing fee is an annual broadcast fee. [...] [T]he annual broadcast fee is
broken down by viewership sizes:

• $2,500 per calendar year per broadcast markets of 100,000–499,999 television
households

• $5,000 per calendar year per broadcast market of 500,000–999,999 television
households

• $10,000 per calendar year per broadcast market of 1,000,000 or more television
households

* http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-H.264-Licensing-Labyrinth-65403
.aspx.

90 | Chapter 5: Video on the Web

http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-H.264-Licensing-Labyrinth-65403.aspx
http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-H.264-Licensing-Labyrinth-65403.aspx

[...] With all the issues around “free” television, why should someone involved in non-
broadcast delivery care? As I mentioned before, the participation fees apply to any
delivery of content. After defining that “free” television meant more than just [over-the-
air], MPEG LA went on to define participation fees for Internet broadcasting as “AVC
video that is delivered via the Worldwide Internet to an end user for which the end user
does not pay remuneration for the right to receive or view.” In other words, any public
broadcast, whether it is [over-the-air], cable, satellite, or the Internet, is subject to par-
ticipation fees. [...]

The fees are potentially somewhat steeper for Internet broadcasts, perhaps assuming that
Internet delivery will grow much faster than OTA or “free” television via cable or satellite.
Adding the “free television” broadcast-market fee together with an additional fee, MPEG
LA grants a reprieve of sorts during the first license term, which ends on Dec. 31, 2010,
and notes that “after the first term the royalty shall be no more than the economic equiv-
alent of royalties payable during the same time for free television.”

That last part—about the fee structure for Internet broadcasts—has already been
amended. The MPEG LA recently announced that free Internet streaming would be
extended through December 31, 2015. And after that...who knows?

Encoding Ogg Video with Firefogg
(In this section, I’m going to use “Ogg video” as a shorthand for “Theora video and
Vorbis audio in an Ogg container.” This is the combination of codecs+container that
works natively in Mozilla Firefox and Google Chrome.)

Firefogg is an open source, GPL-licensed Firefox extension for encoding Ogg video. To
use it, you’ll need to install Mozilla Firefox 3.5 or later, then visit the Firefogg
website, shown in Figure 5-1.

Click “Install Firefogg.” Firefox will prompt whether you really want to allow the site
to install an extension. Click “Allow” to continue (Figure 5-2).

Firefox will present the standard software installation window. Click “Install Now” to
continue (Figure 5-3).

Click “Restart Firefox” to complete the installation (Figure 5-4).

Once Firefox has restarted, the Firefogg website will confirm that Firefogg was suc-
cessfully installed (Figure 5-5).

Click “Make Ogg Video” to start the encoding process (Figure 5-6), then click “Select
file” to select your source video (Figure 5-7).

Encoding Ogg Video with Firefogg | 91

http://www.mpegla.com/Lists/MPEG%20LA%20News%20List/Attachments/226/n-10-02-02.pdf
http://www.getfirefox.com/
http://firefogg.org
http://firefogg.org

Figure 5-1. Firefogg home page

Figure 5-2. Allow Firefogg to install

92 | Chapter 5: Video on the Web

Figure 5-3. Install Firefogg

Figure 5-4. Restart Firefox

Encoding Ogg Video with Firefogg | 93

Figure 5-5. Installation successful

Figure 5-6. Let’s make some video!

94 | Chapter 5: Video on the Web

Figure 5-7. Select your video file

The main Firefogg interface has six “tabs” (shown in Figure 5-8):

Presets
The default preset is “web video,” which is fine for our purposes.

Encoding range
Encoding video can take a long time. When you’re first getting started, you may
want to encode just part of your video (say, the first 30 seconds) until you find a
combination of settings you like.

Basic quality and resolution control
This is where most of the important options are.

Metadata
I won’t cover it here, but you can add metadata like title and author to your encoded
video. You’ve probably added metadata to your music collection with iTunes or
some other music manager. This is the same idea.

Advanced video encoding controls
Don’t mess with these unless you know what you’re doing. (Firefogg offers inter-
active help on most of these options. Click the “i” symbol next to each option to
learn more about it.)

Advanced audio encoding controls
Again, don’t mess with these unless you know what you’re doing.

Encoding Ogg Video with Firefogg | 95

Figure 5-8. Let’s encode a video

We’re only going to look at the “Basic quality and resolution control” tab (Fig-
ure 5-9), which contains all the important options:

Video Quality
This is measured on a scale of 0 (lowest quality) to 10 (highest quality). Higher
numbers mean bigger file sizes, so you’ll need to experiment to determine the best
size/quality ratio for your needs.

Audio Quality
This is measured on a scale of –1 (lowest quality) to 10 (highest quality). Higher
numbers mean bigger file sizes, just like with the video quality setting.

Video Codec
This should always be “theora.”

Audio Codec
This should always be “vorbis.”

Video Width and Video Height
These default to the actual width and height of your source video. If you want to
resize the video during encoding, you can change the width or height here. Firefogg
will automatically adjust the other dimension to maintain the original proportions,
so your video won’t end up smooshed or stretched.

In Figure 5-10, I resize the video to half its original width. Notice how Firefogg auto-
matically adjusts the height to match.

96 | Chapter 5: Video on the Web

Figure 5-9. Basic quality and resolution control

Figure 5-10. Adjust video width and height

Encoding Ogg Video with Firefogg | 97

Once you’ve fiddled with all the knobs, click “Save Ogg” to start the actual encoding
process (Figure 5-11). Firefogg will prompt you for a filename for the encoded video.

Figure 5-11. Start the encoding process by clicking “Save Ogg”

Firefogg will show a nice progress bar as it encodes your video (Figure 5-12). All you
need to do is wait (and wait, and wait)!

Batch Encoding Ogg Video with ffmpeg2theora
(As in the previous section, in this section I’m going to use “Ogg video” as a shorthand
for “Theora video and Vorbis audio in an Ogg container.” This is the combination of
codecs+container that works natively in Mozilla Firefox and Google Chrome.)

There are a number of offline encoders for Ogg video. If you’re looking at batch en-
coding a lot of video files and you want to automate the process, you should definitely
check out ffmpeg2theora.

ffmpeg2theora is an open source, GPL-licensed application for encoding Ogg video.
Prebuilt binaries are available for Mac OS X, Windows, and modern Linux distribu-
tions. It can take virtually any video file as input, including the DV video produced by
many consumer-level camcorders.

To use ffmpeg2theora, you need to call it from the command line. (On Windows, go
to Start Menu→Programs→Accessories→Command Prompt. On Mac OS X, open
Applications→Utilities→Terminal.)

98 | Chapter 5: Video on the Web

http://v2v.cc/~j/ffmpeg2theora/
http://v2v.cc/~j/ffmpeg2theora/download.html
http://v2v.cc/~j/ffmpeg2theora/download.html

Figure 5-12. Encoding in progress

ffmpeg2theora can take a large number of command-line flags. (Type ffmpeg2theora --
help to read about them all.) I’ll focus on just three of them:

• --video-quality Q, where Q is a number from 0–10.

• --audio-quality Q, where Q is a number from –2–10.

• --max_size=WxH, where W and H are the maximum width and height you want for
the video. (The x in between is really just the letter “x”.) ffmpeg2theora will resize
the video proportionally to fit within these dimensions, so the encoded video might
be smaller than W×H. For example, encoding a 720 × 480 pixel video with --max_size
320x240 will produce a video that is 320 pixels wide and 213 pixels high.

Thus, here is how you could encode a video with the same settings as we used in the
previous section (“Encoding Ogg Video with Firefogg” on page 91):

you@localhost$ ffmpeg2theora --videoquality 5
 --audioquality 1
 --max_size 320x240
 pr6.dv

The encoded video will be saved in the same directory as the original video, with
an .ogv extension added. You can specify a different location and/or filename by passing
an --output=/path/to/encoded/video command-line flag to ffmpeg2theora.

Batch Encoding Ogg Video with ffmpeg2theora | 99

Encoding H.264 Video with HandBrake
(In this section, I’m going to use “H.264 video” as a shorthand for “H.264 Baseline
profile video and AAC low-complexity profile audio in an MPEG-4 container.” This is
the combination of codecs+container that works natively in Safari, in Adobe Flash, on
the iPhone, and on Google Android devices.)

Licensing issues aside (see “Licensing Issues with H.264 Video” on page 90), the easiest
way to encode H.264 video is using HandBrake. HandBrake is an open source, GPL-
licensed application for encoding H.264 video. (It used to do other video formats too,
but in the latest version the developers have dropped support for most other formats
and focused all their efforts on H.264 video.) Prebuilt binaries are available for Win-
dows, Mac OS X, and modern Linux distributions.

HandBrake comes in two flavors: graphical and command line. I’ll walk you through
the graphical interface first, then we’ll see how my recommended settings translate into
the command-line version.

After you open the HandBrake application, the first thing to do is select your source
video (Figure 5-13). Click “Source” and choose “Video File” from the drop-down menu
to select a file. HandBrake can take virtually any video file as input, including DV video
produced by many consumer-level camcorders.

Figure 5-13. Select your source video

100 | Chapter 5: Video on the Web

http://handbrake.fr
http://handbrake.fr/downloads.php
http://handbrake.fr/downloads.php

HandBrake will complain that you haven’t set a default directory to save your encoded
videos (Figure 5-14). You can safely ignore this warning, or you can open the options
window (under the “Tools” menu) and set a default output directory.

Figure 5-14. Ignore this warning

On the righthand side is a list of presets. Selecting the “iPhone & iPod Touch” preset,
as in Figure 5-15, will set most of the options you need.

One important option that is off by default is the “Web optimized” option. Selecting
this option, as shown in Figure 5-16, reorders some of the metadata within the encoded
video so you can watch the start of the video while the rest is downloading in the
background. I highly recommend always checking this option. It does not affect the
quality or file size of the encoded video, so there’s really no reason not to.

In the “Picture” tab, you can set the maximum width and height of the encoded video
(Figure 5-17). You should also select the “Keep Aspect Ratio” option to ensure that
HandBrake doesn’t smoosh or stretch your video while resizing it.

Encoding H.264 Video with HandBrake | 101

Figure 5-15. Select the iPhone preset

Figure 5-16. Always optimize for Web

102 | Chapter 5: Video on the Web

Figure 5-17. Set width and height

In the “Video” tab, shown in Figure 5-18, you can set several important options:

Video Codec
Make sure this is “H.264 (x264)”.

2-Pass Encoding
If this is checked, HandBrake will run the video encoder twice. The first time, it
just analyzes the video, looking for things like color composition, motion, and
scene breaks. The second time, it actually encodes the video using the information
it learned during the first pass. As you might expect, this takes about twice as long
as single-pass encoding, but it results in better video without increasing file size. I
always enable two-pass encoding for H.264 video. Unless you’re building the next
YouTube and encoding videos 24 hours a day, you should probably use two-pass
encoding too.

Turbo First Pass
When you’ve enabled two-pass encoding, you can get a little bit of time back by
enabling this option. It reduces the amount of work done in the first pass (analyzing
the video), while only slightly degrading quality. I usually enable this option, but
if quality is of the utmost importance to you, you should leave it disabled.

Quality
There are several different ways to specify the “quality” of your encoded video.
You can set a target file size, and HandBrake will do its best to ensure that your
encoded video is not larger than that. You can set an average “bitrate,” which is

Encoding H.264 Video with HandBrake | 103

quite literally the number of bits required to store one second’s worth of encoded
video. (It’s called an “average” bitrate because some seconds will require more bits
than others.) Or you can specify a constant quality, on a scale of 0 to 100 percent.
Higher numbers will result in better quality but larger files. There is no single right
answer for what quality setting you should use.

Ask Professor Markup
Q: Can I use two-pass encoding on Ogg video too?

A: Yes, but due to fundamental differences in how the encoder works, you probably
don’t need to. Two-pass H.264 encoding almost always results in higher-quality video.
Two-pass Ogg encoding of Ogg video is only useful if you’re trying to get your encoded
video to be a specific file size. (Maybe that is something you’re interested in, but it’s
not what these examples show, and it’s probably not worth the extra time for encoding
web video.) For best Ogg video quality, use the video quality settings, and don’t worry
about two-pass encoding.

Figure 5-18. Video quality options

104 | Chapter 5: Video on the Web

http://en.flossmanuals.net/TheoraCookbook/FFMPEG2Theora
http://en.flossmanuals.net/TheoraCookbook/FFMPEG2Theora
http://hacks.mozilla.org/2009/09/theora-1-1-released/
http://hacks.mozilla.org/2009/09/theora-1-1-released/

In this example, I’ve chosen an average bitrate of 600 kbps, which is quite high for a
320×240 encoded video. I’ve also enabled two-pass encoding with a “turbo” first pass.

In the “Audio” tab, shown in Figure 5-19, you probably don’t need to change anything.
If your source video has multiple audio tracks, you might need to select which one you
want in the encoded video. If your video is mostly a person talking (as opposed to music
or general ambient sounds), you can probably reduce the audio bitrate to 96 kbps or
so. Other than that, the defaults you inherited from the “iPhone” preset should be fine.

Figure 5-19. Audio quality options

Next, click the “Browse” button and choose a directory and filename to save your
encoded video (Figure 5-20).

Finally, click “Start” to start encoding (Figure 5-21).

HandBrake will display some progress statistics while it encodes your video (Fig-
ure 5-22).

Encoding H.264 Video with HandBrake | 105

Figure 5-20. Set destination filename

Figure 5-21. Let’s make some video!

106 | Chapter 5: Video on the Web

Figure 5-22. Patience, grasshopper

Batch Encoding H.264 Video with HandBrake
(As in the previous section, in this section I’m going to use “H.264 video” as a shorthand
for “H.264 Baseline profile video and AAC low-complexity profile audio in an MPEG-4
container.” This is the combination of codecs+container that works natively in Safari,
in Adobe Flash, on the iPhone, and on Google Android devices.)

As I mentioned in the preceding section, HandBrake also comes in a command-line
edition. As with the graphical edition, you should download a recent snapshot from
http://handbrake.fr/downloads2.php.

Like ffmpeg2theora (see “Batch Encoding Ogg Video with ffmpeg2the-
ora” on page 98), the command-line edition of HandBrake offers a dizzying array of
options. (Type HandBrakeCLI --help in a Terminal window or at a command prompt
to read about them.) I’ll focus on just a few:

• --preset "X", where "X" is the name of a HandBrake preset (it’s important to put
the name in quotes). The preset you want for H.264 web video is called “iPhone
& iPod Touch”.

• --width W, where W is the width of your encoded video. HandBrake will automat-
ically adjust the height to maintain the original video’s proportions.

• --vb Q, where Q is the average bitrate (measured in kilobits per second).

• --two-pass, which enables two-pass encoding.

• --turbo, which enables a turbo first pass during two-pass encoding.

• --input F, where F is the filename of your source video.

• --output E, where E is the destination filename for your encoded video.

Here is an example of calling HandBrake on the command line, with command-line
flags that match the settings we chose with the graphical version of HandBrake:

you@localhost$ HandBrakeCLI --preset "iPhone & iPod Touch"
 --width 320
 --vb 600
 --two-pass
 --turbo
 --input pr6.dv
 --output pr6.mp4

Batch Encoding H.264 Video with HandBrake | 107

http://handbrake.fr/downloads2.php

From top to bottom, this command runs HandBrake with the “iPhone & iPod Touch”
preset, resizes the video to 320 × 240, sets the average bitrate to 600 kbps, enables two-
pass encoding with a turbo first pass, reads the file pr6.dv, and encodes it as pr6.mp4.
Whew!

Encoding WebM Video with ffmpeg
I’m writing this on May 20, 2010. The WebM format was literally released yesterday.
As such, there is not a lot of choice for encoding tools, and very few end-to-end guides
are available. This will all get easier as tools are written (or updated) to provide one-
click support for WebM. Until then, here are the tools you will need:

• libvp8, and a special version of ffmpeg with additional patches (to connect it with
libvp8) that are not yet part of the official ffmpeg repository:

— Instructions for Linux, which I have personally tested on Ubuntu “Lucid” 10.04.

— Instructions for Windows, which I have not personally tested.

• The latest version of mkclean.

Ready? OK. On the command line, run ffmpeg with no parameters and verify that it
was compiled with VP8 support:

you@localhost$ ffmpeg
FFmpeg version SVN-r23197, Copyright (c) 2000-2010 the FFmpeg developers
 built on May 19 2010 22:32:20 with gcc 4.4.3
 configuration: --enable-gpl --enable-version3 --enable-nonfree --enable-postproc
 --enable-pthreads --enable-libfaac --enable-libfaad --enable-libmp3lame
 --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libtheora
 --enable-libx264 --enable-libxvid --enable-x11grab --enable-libvpx-vp8

If you don’t see the magic words --enable-libvpx-vp8, you don’t have the right version
of ffmpeg. (If you swear you just compiled it properly, check to see if you have two
versions installed. That’s fine, they won’t conflict with each other—you’ll just need to
use the full path of the VP8-enabled version of ffmpeg.)

I’m going to show you how to do a two-pass encode (see “Encoding H.264 Video with
HandBrake” on page 100). The first pass just scans through the input video file
(-i pr6.dv) and writes out some statistics to a logfile (which will be autonamed
pr6.dv-0.log). You specify the video codec with the -vcodec parameter:

you@localhost$ ffmpeg -pass 1 -passlogfile pr6.dv -threads 16 -token_partitions 4
 -altref 1 -lag 16 -keyint_min 0 -g 250 -mb_static_threshold 0
 -skip_threshold 0 -qmin 1 -qmax 51 -i pr6.dv -vcodec libvpx_vp8 -an
 -f rawvideo -y NUL

108 | Chapter 5: Video on the Web

http://lardbucket.org/blog/archives/2010/05/19/vp8-webm-and-ffmpeg/
http://www.ioncannon.net/meta/1128/compiling-webm-ffmpeg-windows/
http://www.matroska.org/downloads/mkclean.html

Most of the ffmpeg command line has nothing to do with VP8 or WebM. libvp8 does
support a number of VP8-specific options that you can pass to ffmpeg, but I don’t yet
know how any of them work. Once I find a good explanation of these options, I’ll
provide a link on this book’s website.

For the second pass, ffmpeg will read the statistics it wrote during the first pass and
actually do the encoding of the video and the audio. It will write out an MKV file, which
we will convert to a WebM file later. (Eventually ffmpeg will be able to write WebM
files directly, but that functionality is currently broken in a subtle and pernicious way.)
Here’s the command line for the second pass:

you@localhost$ ffmpeg -pass 2 -passlogfile pr6.dv -threads 16 -token_partitions 4
 -altref 1 -lag 16 -keyint_min 0 -g 250 -mb_static_threshold 0
 -skip_threshold 0 -qmin 1 -qmax 51 -i pr6.dv -vcodec libvpx_vp8
 -b 614400 -s 320x240 -aspect 4:3 -acodec vorbis -y pr6.mkv

There are five important parameters here:

-vcodec libvpx_vp8
Specifies that we’re encoding with the VP8 video codec. WebM always uses VP8
video.

-b 614400
Specifies the bitrate. Unlike other formats, libvp8 expects the bitrate in actual bits,
not kilobits. If you want a 600-kbps video, multiply 600 by 1024 to get 614400.

-s 320x240
Specifies the target size, width by height.

-aspect 4:3
Specifies the aspect ratio of the video. Standard-definition video is usually 4:3, but
most high-definition video is 16:9 or 16:10. In my testing, I found that I had to
specify this explicitly on the command line, instead of relying on ffmpeg to auto-
detect it.

-acodec vorbis
Specifies that we’re encoding with the Vorbis audio codec. WebM always uses
Vorbis audio.

Now we have an MKV file with VP8 video and Vorbis audio. That’s really close to what
we want. The container format of WebM is technically very similar to MKV. In fact,
it’s a proper subset. We only need to twiddle a few bits to create our final WebM video
file, using the mkclean utility I mentioned earlier:

you@localhost$ mkclean --doctype 4 pr6.mkv pr6.webm

And that’s all she wrote!

Encoding WebM Video with ffmpeg | 109

http://www.matroska.org/downloads/mkclean.html

At Last, the Markup
I’m pretty sure this was supposed to be an HTML book. So where’s the markup?

HTML5 gives you two ways to include video on your web page. Both of them involve
the <video> element. If you only have one video file, you can simply link to it in a src
attribute. This is remarkably similar to including an image with an tag.

<video src="pr6.webm"></video>

Technically, that’s all you need. But just like in an tag, you should always include
width and height attributes in your <video> tags. The width and height attributes can
be the same as the maximum width and height you specified during the encoding
process:

<video src="pr6.webm" width="320" height="240"></video>

Don’t worry if one dimension of the video is a little smaller than that. Your browser
will center the video inside the box defined by the <video> tag. It won’t ever be
smooshed or stretched out of proportion.

By default, the <video> element will not expose any sort of player controls. You can
create your own controls with plain old HTML, CSS, and JavaScript. The <video> el-
ement has methods like play() and pause() and a read/write property called current
Time. There are also read/write volume and muted properties. So you really have every-
thing you need to build your own interface.

If you don’t want to build your own interface, you can tell the browser to display a
built-in set of controls. To do this, just include the controls attribute in your <video>
tag:

<video src="pr6.webm" width="320" height="240" controls></video>

There are two other optional attributes I want to mention before we go any further:
preload and autoplay. Don’t shoot the messenger; let me explain why these are useful.
The preload attribute tells the browser that you would like it to start downloading the
video file as soon as the page loads. This makes sense if the entire point of the page is
to view the video. On the other hand, if it’s just supplementary material that only a few
visitors will watch, you can set preload to none to tell the browser to minimize network
traffic.

Here’s an example of a video that will start downloading (but not playing) as soon as
the page loads:

<video src="pr6.webm" width="320" height="240" preload></video>

And here’s an example of a video that will not start downloading as soon as the page
loads:

<video src="pr6.webm" width="320" height="240" preload="none"></video>

110 | Chapter 5: Video on the Web

http://bit.ly/cuajok
http://bit.ly/a0qba5
http://bit.ly/a0qba5
http://bit.ly/aw0bfh
http://bit.ly/ck1839

The autoplay attribute does exactly what it sounds like: it tells the browser that you
would like it to start downloading the video file as soon as the page loads, and that you
would like it to start playing the video automatically as soon as possible. Some people
love this; some people hate it. But let me explain why it’s important to have an attribute
like this in HTML5. Some people are going to want their videos to play automatically,
even if it annoys their visitors. If HTML5 didn’t define a standard way to autoplay
videos, people would resort to JavaScript hacks to do it anyway, for example, by calling
the video’s play() method during the window’s load event. This would be much harder
for visitors to counteract. On the other hand, it’s a simple matter to add an extension
to your browser (or write one, if necessary) that allows you to say “ignore the
autoplay attribute, I don’t ever want videos to play automatically.”

Here’s an example of a video that will start downloading and playing as soon as possible
after the page loads:

<video src="pr6.webm" width="320" height="240" autoplay></video>

And here is a Greasemonkey script that you can install in your local copy of Firefox
that prevents HTML5 video from playing automatically. It uses the autoplay DOM
attribute defined by HTML5, which is the JavaScript equivalent of the autoplay attrib-
ute in your HTML markup:

// ==UserScript==
// @name Disable video autoplay
// @namespace http://diveintomark.org/projects/greasemonkey/
// @description Ensures that HTML5 video elements do not autoplay
// @include *
// ==/UserScript==

var arVideos = document.getElementsByTagName('video');
for (var i = arVideos.length - 1; i >= 0; i--) {
 var elmVideo = arVideos[i];
 elmVideo.autoplay = false;
}

But wait a second. If you’ve been following along through this whole chapter, you know
that you don’t have just one video file; you have three. One is an .ogv file that you
created with Firefogg (see “Encoding Ogg Video with Firefogg” on page 91) or
ffmpeg2theora (see “Batch Encoding Ogg Video with ffmpeg2theora” on page 98). The
second is an .mp4 file that you created with HandBrake (see “Encoding H.264 Video
with HandBrake” on page 100). The third is a .webm file that you created with
ffmpeg (see “Encoding WebM Video with ffmpeg” on page 108). HTML5 provides a
way to link to all three of them: the <source> element. Each <video> element can contain
as many <source> elements as you need. Your browser will go down the list of video
sources, in order, and play the first one it’s able to play.

That raises another question: how does the browser know which video it can play? In
the worst-case scenario, it loads each of the videos and tries to play them. That’s a big

At Last, the Markup | 111

http://www.greasespot.net

waste of bandwidth, though. You’ll save a lot of network traffic if you tell the browser
up front about each video. You do this with the type attribute on the <source> element.

Here’s the whole thing:

<video width="320" height="240" controls>
 <source src="pr6.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
 <source src="pr6.webm" type='video/webm; codecs="vp8, vorbis"'>
 <source src="pr6.ogv" type='video/ogg; codecs="theora, vorbis"'>
</video>

Let’s break that down. The <video> element specifies the width and height for the video,
but it doesn’t actually link to a video file. Inside the <video> element are two
<source> elements. Each <source> element links to a single video file (with the src
attribute) and gives information about the video format (in the type attribute).

The type attribute looks complicated—hell, it is complicated. It contains three pieces
of information: the container format (see “Video Containers” on page 81), the video
codec (see “Video Codecs” on page 83), and the audio codec (see “Audio Co-
decs” on page 85). Let’s start from the bottom. For the .ogv video file, the container
format is Ogg, represented here as video/ogg. (Technically speaking, that’s the MIME
type for Ogg video files.) The video codec is Theora, and the audio codec is Vorbis.
That’s simple enough, except the format of the attribute value is a little screwy. The
codecs value itself has to include quotation marks, which means you’ll need to use a
different kind of quotation mark to surround the entire type value:

<source src="pr6.ogv" type='video/ogg; codecs="theora, vorbis"'>

The <source> element for the WebM file is much the same, but with a different MIME
type (video/webm instead of video/ogg) and a different video codec (vp8 instead of
theora) listed within the codecs parameter:

<source src="pr6.webm" type='video/webm; codecs="vp8, vorbis"'>

The <source> element for the H.264 file is even more complicated. Remember when I
said that both H.264 video (see “H.264” on page 84) and AAC audio (see “Advanced
Audio Coding” on page 87) can come in different “profiles”? We encoded with the
H.264 Baseline profile and the AAC low-complexity profile, then wrapped it all in an
MPEG-4 container. All of that information is included in the type attribute:

<source src="pr6.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>

The benefit of going to all this trouble is that the browser will be able to check the
type attribute first to see if it can play a particular video file. If a browser decides it can’t
play a particular video, it won’t download the file. Not even part of the file. You’ll save
on bandwidth, and your visitors will see the video they came for, faster.

If you follow the instructions in this chapter for encoding your videos, you can just
copy the type attribute values from this example. Otherwise, you’ll need to work out
the type parameters for yourself.

112 | Chapter 5: Video on the Web

Professor Markup Says
At the time of writing (May 20, 2010), the iPad has a bug that prevents it from noticing
anything but the first video source listed. Sadly, this means you will need to list your
MP4 file first, followed by the free video formats. Sigh.

MIME Types Rear Their Ugly Head
There are so many pieces to the video puzzle, I hesitate to even bring this up. But it’s
important, because a misconfigured web server can lead to endless frustration as you
try to debug why your videos play on your local computer but fail to play when you
deploy them to your production site. If you run into this problem, the root cause is
probably MIME types.

I mentioned MIME types in Chapter 1 (see “MIME Types” on page 1), but you probably
glazed over that and didn’t appreciate the significance. So here it is in all-caps.

Professor Markup Shouts
VIDEO FILES MUST BE SERVED WITH THE PROPER MIME TYPE!

What’s the proper MIME type? You’ve already seen it; it’s part of the value of the
type attribute of a <source> element. But setting the type attribute in your HTML
markup is not sufficient. You also need to ensure that your web server includes the
proper MIME type in the Content-Type HTTP header.

If you’re using the Apache web server or some derivative of Apache, you can use Add
Type directives in your site-wide httpd.conf or in an .htaccess file in the directory where
you store your video files. (If you use some other web server, consult your server’s
documentation on how to set the Content-Type HTTP header for specific file types.)
The AddType directives you’ll need to include are:

AddType video/ogg .ogv
AddType video/mp4 .mp4
AddType video/webm .webm

The first line is for videos in an Ogg container. The second line is for videos in an
MPEG-4 container. The third is for WebM. Set these once, and forget them. If you
don’t, your videos will fail to play in some browsers, even if you include the MIME type
in the type attribute in your HTML markup.

For even more gory details about configuring your web server, I direct your attention
to an excellent Mozilla Developer Center article, “Configuring servers for Ogg me-
dia”. (The advice in that article applies to MP4 and WebM video, too.)

At Last, the Markup | 113

http://httpd.apache.org/docs/2.0/mod/mod_mime.html#addtype
http://httpd.apache.org/docs/2.0/mod/mod_mime.html#addtype
https://developer.mozilla.org/en/Configuring_servers_for_Ogg_media
https://developer.mozilla.org/en/Configuring_servers_for_Ogg_media

What About IE?
As I write this, Microsoft has released a “developer preview” of Internet Explorer 9. It
does not yet support the HTML5 <video> element, but Microsoft has publicly prom-
ised that the final version of IE 9 will support H.264 video and AAC audio in an MPEG-4
container, just like Safari on desktop Macs and Mobile Safari on iOS.

But what about older versions of Internet Explorer? Like, you know, all shipping ver-
sions up to and including IE 8? Most people who use Internet Explorer also have the
Adobe Flash plug-in installed. Modern versions of Adobe Flash (starting with
9.0.60.184) support H.264 video and AAC audio in an MPEG-4 container. Once you’ve
encoded your H.264 video for Safari (see “Encoding H.264 Video with Hand-
Brake” on page 100), you can play it in a Flash-based video player if you detect that
your visitor doesn’t have an HTML5-capable browser.

FlowPlayer is an open source, GPL-licensed, Flash-based video player. (Commercial
licenses are also available; see http://flowplayer.org/download/.) FlowPlayer doesn’t
know anything about the <video> element. It won’t magically transform a <video> tag
into a Flash object. But HTML5 is well designed to handle this, because you can nest
an <object> element within a <video> element. Browsers that don’t support HTML5
video will ignore the <video> element and simply render the nested <object> instead,
which will invoke the Flash plug-in and play the movie through FlowPlayer. Browsers
that support HTML5 video will find a video source they can play and play it, and ignore
the nested <object> element altogether.

That last bit is the key to the whole puzzle: HTML5 specifies that all elements (other
than <source> elements) that are children of a <video> element must be ignored alto-
gether. That allows you to use HTML5 video in newer browsers and fall back to Flash
gracefully in older browsers, without requiring any fancy JavaScript hacks. You can
read more about this technique at the Video for Everybody! site.

A Complete Example
Let’s look at an example that uses these techniques. I’ve extended the Video for Ev-
erybody! code to include a WebM-formatted video. Using these commands, I encoded
the same source video into three formats:

Theora/Vorbis/Ogg
you@localhost$ ffmpeg2theora --videobitrate 200 --max_size 320x240 --output pr6.ogv
 pr6.dv

H.264/AAC/MP4
you@localhost$ HandBrakeCLI --preset "iPhone & iPod Touch" --vb 200 --width 320
 --two-pass --turbo --optimize --input pr6.dv --output pr6.mp4

VP8/Vorbis/WebM
you@localhost$ ffmpeg -pass 1 -passlogfile pr6.dv -threads 16 -token_partitions 4
 -altref 1 -lag 16 -keyint_min 0 -g 250 -mb_static_threshold 0

114 | Chapter 5: Video on the Web

http://blogs.msdn.com/ie/archive/2010/03/16/html5-hardware-accelerated-first-ie9-platform-preview-available-for-developers.aspx
http://blogs.msdn.com/ie/archive/2010/03/16/html5-hardware-accelerated-first-ie9-platform-preview-available-for-developers.aspx
http://flowplayer.org
http://flowplayer.org/download/
http://camendesign.com/code/video_for_everybody

 -skip_threshold 0 -qmin 1 -qmax 51 -i pr6.dv -vcodec libvpx_vp8
 -an -f rawvideo -y NULffmpeg --videobitrate 200
you@localhost$ ffmpeg -pass 2 -passlogfile pr6.dv -threads 16 -token_partitions 4
 -altref 1 -lag 16 -keyint_min 0 -g 250 -mb_static_threshold 0
 -skip_threshold 0 -qmin 1 -qmax 51 -i pr6.dv -vcodec libvpx_vp8
 -b 204800 -s 320x240 -aspect 4:3 -acodec vorbis -ac 2 -y pr6.mkv
you@localhost$ mkclean --doctype 4 pr6.mkv pr6.webm

The final markup uses a <video> element for HTML5 video, with a nested <object>
element for Flash fallback:

<video id="movie" width="320" height="240" preload controls>
 <source src="pr6.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' />
 <source src="pr6.webm" type='video/webm; codecs="vp8, vorbis"' />
 <source src="pr6.ogv" type='video/ogg; codecs="theora, vorbis"' />
 <object width="320" height="240" type="application/x-shockwave-flash"
 data="flowplayer-3.2.1.swf">
 <param name="movie" value="flowplayer-3.2.1.swf" />
 <param name="allowfullscreen" value="true" />
 <param name="flashvars" value='config={
 "clip": {"url": "http://wearehugh.com/dih5/good/bbb_480p.mp4",
 "autoPlay":false, "autoBuffering":true}}' />
 <p>Download video as MP4,
 WebM, or
 Ogg.</p>
 </object>
</video>

With the combination of HTML5 and Flash, you should be able to watch this video in
almost any browser and device.

Further Reading
• “The <video> element” in the HTML5 specification

• Video for Everybody!

• “A gentle introduction to video encoding”

• “Theora 1.1 is released—what you need to know”, by Christopher Blizzard

• “Configuring servers for Ogg media”

• “Encoding with the x264 codec”

• “Video type parameters”

• Zencoder Video JS, custom controls for HTML5 video

• “Everything you need to know about HTML5 audio and video”, by Simon Pieters

Further Reading | 115

http://bit.ly/a3kpiq
http://camendesign.com/code/video_for_everybody
http://diveintomark.org/tag/give
http://hacks.mozilla.org/2009/09/theora-1-1-released/
https://developer.mozilla.org/en/Configuring_servers_for_Ogg_media
http://www.mplayerhq.hu/DOCS/HTML/en/menc-feat-x264.html
http://wiki.whatwg.org/wiki/Video_type_parameters
http://videojs.com
http://dev.opera.com/articles/view/everything-you-need-to-know-about-html5-video-and-audio/

CHAPTER 6

You Are Here (And So Is Everybody Else)

Diving In
Geolocation is the art of figuring out where you are in the world and (optionally) sharing
that information with people you trust. There are many ways to figure out where you
are—your IP address, your wireless network connection, which cell tower your phone
is talking to, or dedicated GPS hardware that receives latitude and longitude informa-
tion from satellites in the sky.

Ask Professor Markup
Q: Geolocation sounds scary. Can I turn it off?

A: Privacy is an obvious concern when you’re talking about sharing your physical lo-
cation with a remote web server. The geolocation API explicitly states: “User Agents
must not send location information to websites without the express permission of the
user.” In other words, if you don’t want to share your location, you don’t have to.

The Geolocation API
The geolocation API lets you share your location with trusted websites. The latitude
and longitude are available to JavaScript on the page, which in turn can send that
information back to the remote web server and do fancy location-aware things like
finding local businesses or showing your location on a map.

As you can see from Table 6-1, the geolocation API is supported in several major
browsers on desktops and mobile devices. Additionally, some older browsers and de-
vices can be supported by wrapper libraries, as we’ll see later in this chapter.

117

http://www.w3.org/TR/geolocation-API/#security
http://www.w3.org/TR/geolocation-API/

Table 6-1. Geolocation API support

IE Firefox Safari Chrome Opera iPhone Android

· 3.5+ 5.0+ 5.0+ · 3.0+ 2.0+

Along with support for the standard geolocation API, there are a plethora of device-
specific APIs on other mobile platforms. I’ll cover all that later in this chapter.

Show Me the Code
The geolocation API centers around a new property on the global navigator object:
navigator.geolocation.

The simplest use of the geolocation API looks like this:

function get_location() {
 navigator.geolocation.getCurrentPosition(show_map);
}

There’s no detection, no error handling, and no options. Your web application should
probably include at least the first two of those. To detect support for the geolocation
API (see “Geolocation” on page 24), you can use Modernizr:

function get_location() {
 if (Modernizr.geolocation) {
 navigator.geolocation.getCurrentPosition(show_map);
 } else {
 // no native support; maybe try Gears?
 }
}

What you do without geolocation support is up to you. I’ll explain the Gears fallback
option in a minute, but first I want to talk about what happens during that call to
getCurrentPosition(). As I mentioned at the start of this chapter, geolocation support
is opt-in. That means your browser will never force you to reveal your current physical
location to a remote server. The user experience differs from browser to browser. In
Mozilla Firefox, calling the getCurrentPosition() function of the geolocation API will
cause the browser to pop up an “infobar” at the top of the browser window. The infobar
looks like Figure 6-1.

Figure 6-1. Geolocation infobar

118 | Chapter 6: You Are Here (And So Is Everybody Else)

http://www.modernizr.com

There’s a lot going on here. As the end user, you:

• Are told that a website wants to know your location

• Are told which website wants to know your location

• Can click through to Mozilla’s “Location-Aware Browsing” help page, which ex-
plains what the heck is going on

• Can choose to share your location

• Can choose not to share your location

• Can tell your browser to remember your choice (share or don’t share) so you never
see this infobar again on this website

Furthermore, this infobar is:

• Nonmodal, so it won’t prevent you from switching to another browser window or
tab

• Tab-specific, so it will disappear if you switch to another browser window or tab
and reappear when you switch back to the original tab

• Unconditional, so there is no way for a website to bypass it

• Blocking, so there is no chance that the website can determine your location while
it’s waiting for your answer

You just saw the JavaScript code that causes this infobar to appear. It’s a single function
call that takes a callback function (which I called show_map()). The call to getCurrent
Position() will return immediately, but that doesn’t mean that you have access to the
user’s location. The first time you are guaranteed to have location information is in the
callback function. The callback function looks like this:

function show_map(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 // let's show a map or do something interesting!
}

The callback function will be called with a single parameter, an object with two prop-
erties: coords and timestamp. The timestamp is just that, the date and time when the
location was calculated. (Since this is all happening asynchronously, you can’t really
know when that will happen in advance. It might take some time for the user to read
the infobar and agree to share her location, devices with dedicated GPS hardware may
take some more time to connect to a GPS satellite, and so on.) The coords object has
properties like latitude and longitude that represent exactly what they sound like: the
user’s physical location in the world. The position object’s properties are listed in
Table 6-2.

Show Me the Code | 119

http://www.mozilla.com/en-US/firefox/geolocation/

Table 6-2. Properties of the position object

Property Type Notes

coords.latitude double Decimal degrees

coords.longitude double Decimal degrees

coords.altitude double or null Meters above the reference ellipsoid

coords.accuracy double Meters

coords.altitudeAccuracy double or null Meters

coords.heading double or null Degrees clockwise from true north

coords.speed double or null Meters/second

timestamp DOMTimeStamp Like a Date() object

Only three of the properties are guaranteed to be there (coords.latitude,
coords.longitude, and coords.accuracy). The rest might come back as null, depending
on the capabilities of your device and the backend positioning server with which it
communicates. The heading and speed properties are calculated based on the user’s
previous position, if possible.

Handling Errors
Geolocation is complicated. So many things can go wrong. I’ve mentioned the “user
consent” angle already. If your web application wants the user’s location but the user
doesn’t want to give it to you, you’re screwed. The user always wins. But what does
that look like in code? It looks like the second argument to the getCurrentPosition()
function—an error handling callback function:

navigator.geolocation.getCurrentPosition(
 show_map, handle_error)

If anything goes wrong, your error callback function will be called with a
PositionError object. It has the properties listed in Table 6-3.

Table 6-3. Properties of the PositionError object

Property Type Notes

code short An enumerated value

message DOMString Not intended for end users

The code property will be one of the following:

• PERMISSION_DENIED (1) if the user clicks the “Don’t Share” button or otherwise de-
nies you access to his location.

• POSITION_UNAVAILABLE (2) if the network is down or the positioning satellites can’t
be contacted.

120 | Chapter 6: You Are Here (And So Is Everybody Else)

http://en.wikipedia.org/wiki/Reference_ellipsoid
http://en.wikipedia.org/wiki/True_north

• TIMEOUT (3) if the network is up but it takes too long to calculate the user’s position.
How long is “too long”? I’ll show you how to define that in the next section.

• UNKNOWN_ERROR (0) if anything else goes wrong.

For example:

function handle_error(err) {
 if (err.code == 1) {
 // user said no!
 }
}

Ask Professor Markup
Q: Does the geolocation API work on the International Space Station, on the moon, or
on other planets?

A: The geolocation specification states: “The geographic coordinate reference system
used by the attributes in this interface is the World Geodetic System (2d) [WGS84].
No other reference system is supported.” The International Space Station is orbiting
Earth, so astronauts on the station can describe their location by latitude, longitude,
and altitude. However, the World Geodetic System is Earth-centric, so it can’t be used
to describe locations on the moon or on other planets.

Choices! I Demand Choices!
Some popular mobile devices—like the iPhone and Android phones—support two
methods of figuring out where you are. The first method triangulates your position
based on your relative proximity to different cellular towers operated by your phone
carrier. This method is fast and doesn’t require any dedicated GPS hardware, but it
only gives you a rough idea of where you are. Depending on how many cell towers are
in your area, this “rough idea” could be accurate to as little as one city block or as much
as a kilometer in every direction.

The second method actually uses dedicated GPS hardware on your device to talk to
dedicated GPS positioning satellites that are orbiting the Earth. GPS can usually pin-
point your location to within a few meters. The downside is that the dedicated GPS
chip on your device draws a lot of power, so phones and other general-purpose mobile
devices usually turn off the chip until it’s needed. That means there will be a startup
delay while the chip initializes its connection with the GPS satellites in the sky. If you’ve
ever used Google Maps on an iPhone or other smartphone, you’ve seen both methods
in action. First you see a large circle that approximates your position (finding the nearest
cell tower), then a smaller circle (triangulating with other cell towers), then a single dot
with an exaction position (given by GPS satellites).

The reason I mention this is that, depending on your web application, you may not
need high accuracy. For example, if you’re looking for nearby movie listings, a “low-

Choices! I Demand Choices! | 121

http://www.w3.org/TR/geolocation-API/#coordinates_interface
http://twitter.com/Astro_TJ

accuracy” location is probably good enough. There aren’t that many movie theaters
around, even in dense cities, and you’ll probably be listing several of them anyway. On
the other hand, if you’re giving turn-by-turn directions in real time, you really do need
to know exactly where the user is so you can say “turn right in 20 meters” or whatever.

The getCurrentPosition() function takes an optional third argument, a PositionOp
tions object. There are three properties you can set in a PositionOptions object (see
Table 6-4). All the properties are optional; you can set any, all, or none of them.

Table 6-4. PositionOptions object properties

Property Type Default Notes

enableHighAccuracy boolean false true might be slower

timeout long (no default) In milliseconds

maximumAge long 0 In milliseconds

The enableHighAccuracy property is exactly what it sounds like. If it’s set to true, and
the device can support it, and the user consents to sharing her exact location, the device
will try to provide it. Both iPhones and Android phones have separate permissions
for low- and high-accuracy positioning, so it is possible that calling getCurrentPosi
tion() with enableHighAccuracy:true will fail, but calling it with enableHighAccur
acy:false will succeed.

The timeout property specifies the number of milliseconds your web application is
willing to wait for a position. This timer doesn’t start counting down until after the
user gives permission to even try to calculate her position. You’re not timing the user;
you’re timing the network.

The maximumAge property allows the device to answer immediately with a cached posi-
tion. For example, let’s say you call getCurrentPosition() for the very first time, the
user consents, and your success callback function is called with a position that was
calculated at exactly 10:00 AM. Then suppose that exactly one minute later, at 10:01
AM, you call getCurrentPosition() again with a maximumAge property of 75000:

navigator.geolocation.getCurrentPosition(
 success_callback, error_callback, {maximumAge: 75000});

What you’re saying is that you don’t necessarily need the user’s current location. You
would be satisfied with knowing where he was 75 seconds (75000 milliseconds) ago.
In this case, the device knows where the user was 60 seconds (60000 milliseconds) ago,
because it calculated the location the first time you called getCurrentPosition(). Since
this is within the specified window, the device doesn’t bother to recalculate the user’s
current location. It just returns exactly the same information it returned the first time:
the same latitude and longitude, accuracy, and timestamp (10:00 AM).

Before you ask for the user’s location, you should think about just how much accuracy
you need and set enableHighAccuracy accordingly. If you will need to find the user’s

122 | Chapter 6: You Are Here (And So Is Everybody Else)

http://www.w3.org/TR/geolocation-API/#position-options
http://www.w3.org/TR/geolocation-API/#position-options

location more than once, you should think about how old the information can be
and still be useful, and set maximumAge accordingly. If you need to find the user’s location
continuously, getCurrentPosition() is not for you. You need to upgrade to
watchPosition().

The watchPosition() function has the same structure as getCurrentPosition(). It takes
two callback functions—a required one for success and an optional one for error
conditions—and it can also take an optional PositionOptions object that has all the
same properties you just learned about. The difference is that your callback function
will be called every time the user’s location changes. There is no need to actively poll the
position. The device will determine the optimal polling interval, and it will call your
callback function whenever it determines that the user’s position has changed. You can
use this to update a visible marker on a map, provide instructions on where to go next,
or whatever you like. It’s entirely up to you.

The watchPosition() function itself returns a number. You should probably store this
number somewhere. If you ever want to stop watching the user’s location changes, you
can call the clearWatch() method and pass it this number, and the device will
stop calling your callback function. If you’ve ever used the setInterval() and
clearInterval() functions in JavaScript, this works the same way.

What About IE?
Internet Explorer does not support the W3C geolocation API that I’ve just described
(see “The Geolocation API” on page 117). But don’t despair! Gears is an open source
browser plug-in from Google that works on Windows, Mac, Linux, Windows Mobile,
and Android platforms. It provides a number of features for older browsers, including
a geolocation API. It’s not quite the same as the W3C geolocation API, but it serves the
same purpose.

While we’re on the subject of legacy platforms, I should point out that there are a
number of device-specific geolocation APIs on mobile phone platforms. BlackBerry,
Nokia, Palm, and OMTP BONDI all provide their own geolocation APIs. Of course,
they all work differently from Gears, which in turn works differently from the W3C
geolocation API. Wheeeeee!

geo.js to the Rescue
geo.js is an open source, MIT-licensed JavaScript library that smooths over the differ-
ences between the W3C geolocation API, the Gears API, and the various APIs provided
by mobile platforms. To use it, you’ll need to add two <script> elements at the bottom
of your page. (Technically, you could put them anywhere, but putting scripts in your
<head> will make your page load more slowly. So don’t do that!)

geo.js to the Rescue | 123

http://tools.google.com/gears/
http://www.tonybunce.com/2008/05/08/Blackberry-Browser-Amp-GPS.aspx
http://www.forum.nokia.com/infocenter/index.jsp?topic=/Web_Developers_Library/GUID-4DDE31C7-EC0D-4EEC-BC3A-A0B0351154F8.html
http://developer.palm.com/index.php?option=com_content&view=article&id=1673#GPS-getCurrentPosition
http://bondi.omtp.org/1.0/apis/geolocation.html
http://code.google.com/p/geo-location-javascript/

The first script is gears_init.js, which initializes Gears if it’s installed. The second script
is geo.js. You can include them in your page using code like this:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Dive Into HTML 5</title>
</head>
<body>
 ...
 <script src="gears_init.js"></script>
 <script src="geo.js"></script>
</body>
</html>

Now you’re ready to use whichever geolocation API is installed:

if (geo_position_js.init()) {
 geo_position_js.getCurrentPosition(geo_success, geo_error);
}

Let’s take that one step at a time. First, you need to explicitly call an init() function.
The init() function returns true if a supported geolocation API is available:

if (geo_position_js.init()) {

Calling the init() function does not actually find the user’s location; it just verifies that
finding the location is possible. To actually find the user’s location, you need to call
the getCurrentPosition() function:

geo_position_js.getCurrentPosition(geo_success, geo_error);

The getCurrentPosition() function will trigger the browser to ask for permission to
find and share the user’s location. If geolocation is being provided by Gears, this will
pop up a dialog asking if the user trusts the website to use Gears. If the browser natively
supports the geolocation API, the dialog will look different. For example, Firefox 3.5
will display an infobar at the top of the page asking whether the user wants to share
her location with your website.

The getCurrentPosition() function takes two callback functions as arguments. If the
getCurrentPosition() function was successful in finding the location—that is, if the
user gave permission and the geolocation API actually worked its magic—it will call
the function passed in as the first argument. In this example, the success callback func-
tion is called geo_success:

geo_position_js.getCurrentPosition(geo_success, geo_error);

The success callback function takes a single argument, which contains the position
information:

function geo_success(p) {
 alert("Found you at latitude " + p.coords.latitude +
 ", longitude " + p.coords.longitude);
}

124 | Chapter 6: You Are Here (And So Is Everybody Else)

http://code.google.com/apis/gears/gears_init.js
http://geo-location-javascript.googlecode.com/svn/trunk/js/geo.js

If the getCurrentPosition() function could not find the user’s location—either because
he declined to give permission or because the geolocation API failed for some reason—
it will call the function passed in as the second argument. In this example, the failure
callback function is called geo_error:

geo_position_js.getCurrentPosition(geo_success, geo_error);

The failure callback function takes no arguments:

function geo_error() {
 alert("Could not find you!");
}

geo.js does not currently support the watchPosition() function. If you need continuous
location information, you’ll need to actively poll getCurrentPosition() yourself.

A Complete Example
Let’s work through an example of using geo.js to attempt to get the user’s location and
display a map of the immediate surroundings.

When the page loads, it will need to call geo_position_js.init() to determine whether
geolocation is available through any of the interfaces that geo.js supports. If so, you can
set up a link the user can click to look up her location. Clicking that link calls the
lookup_location() function, shown here:

function lookup_location() {
 geo_position_js.getCurrentPosition(show_map, show_map_error);
}

If the user gives consent to track her location, and the backend service was actually able
to determine that location, geo.js calls the first callback function, show_map(), with a
single argument, loc. The loc object has a coords property that contains latitude, lon-
gitude, and accuracy information. (This example doesn’t use the accuracy informa-
tion.) The rest of the show_map() function uses the Google Maps API to set up an
embedded map:

function show_map(loc) {
 $("#geo-wrapper").css({'width':'320px','height':'350px'});
 var map = new GMap2(document.getElementById("geo-wrapper"));
 var center = new GLatLng(loc.coords.latitude, loc.coords.longitude);
 map.setCenter(center, 14);
 map.addControl(new GSmallMapControl());
 map.addControl(new GMapTypeControl());
 map.addOverlay(new GMarker(center, {draggable: false, title: "You are here (more or
 less)"}));
}

If geo.js is unable to determine the location, it calls the second callback function,
show_map_error():

A Complete Example | 125

function show_map_error() {
 $("#live-geolocation").html('Unable to determine your location.');
}

Further Reading
• W3C geolocation API

• Gears

• BlackBerry geolocation API

• Nokia geolocation API

• Palm geolocation API

• OMTP BONDI geolocation API

• geo.js, the geolocation API wrapper script

126 | Chapter 6: You Are Here (And So Is Everybody Else)

http://www.w3.org/TR/geolocation-API/
http://tools.google.com/gears/
http://www.tonybunce.com/2008/05/08/Blackberry-Browser-Amp-GPS.aspx
http://www.forum.nokia.com/infocenter/index.jsp?topic=/Web_Developers_Library/GUID-4DDE31C7-EC0D-4EEC-BC3A-A0B0351154F8.html
http://developer.palm.com/index.php?option=com_content&view=article&id=1673#GPS-getCurrentPosition
http://bondi.omtp.org/1.0/apis/geolocation.html
http://code.google.com/p/geo-location-javascript/

CHAPTER 7

The Past, Present, and Future of Local
Storage for Web Applications

Diving In
Persistent local storage is one of the areas where native client applications have tradi-
tionally held an advantage over web applications. For native applications, the operating
system typically provides an abstraction layer for storing and retrieving application-
specific data like preferences or runtime state. These values may be stored in the reg-
istry, INI files, XML files, or some other place, according to platform convention. If
your native client application needs local storage beyond key/value pairs, you can em-
bed your own database, invent your own file format, or implement any number of other
solutions.

Historically, web applications have had none of these luxuries. Cookies were invented
early in the Web’s history, and indeed they can be used for persistent local storage of
small amounts of data. But they have several potentially dealbreaking downsides:

• Cookies are included with every HTTP request, thereby slowing down your web
application by needlessly transmitting the same data over and over.

• Cookies are included with every HTTP request, thereby sending data unencrypted
over the Internet (unless your entire web application is served over SSL).

• Cookies are limited to about 4 KB of data—enough to slow down your application
(see above), but not enough to be terribly useful.

What we really want is:

• A lot of storage space...

• on the client...

• that persists beyond a page refresh...

• and isn’t transmitted to the server.

127

There have been a number of attempts to achieve this, all ultimately unsatisfactory in
different ways.

A Brief History of Local Storage Hacks Before HTML5
In the beginning, there was only Internet Explorer. Or at least, that’s what Microsoft
wanted the world to think. To that end, during the first of the Great Browser Wars,
Microsoft invented a great many things and included them in its browser-to-end-all-
browser-wars, Internet Explorer. One of these things was called DHTML Behaviors,
and one of these behaviors was called userData.

userData allows web pages to store up to 64 KB of data per domain, in a hierarchical
XML-based structure. (Trusted domains, such as intranet sites, can store 10 times that
amount. And hey, 640 KB ought to be enough for anybody!) IE does not present any
form of permissions dialog, and there is no allowance for increasing the amount of
storage available.

In 2002, Adobe introduced a feature in Flash 6 that gained the unfortunate and mis-
leading name of “Flash cookies.” Within the Flash environment, the feature is properly
known as Local Shared Objects, or LSOs. Briefly, it allows Flash objects to store up to
100 KB of data per domain. In 2005 Brad Neuberg developed an early prototype of a
Flash-to-JavaScript bridge called the AJAX Massive Storage System, or AMASS,
but it was limited by some of Flash’s design quirks. By 2006, with the advent of
ExternalInterface in Flash 8, accessing LSOs from JavaScript became an order of mag-
nitude easier and faster. Brad rewrote AMASS and integrated it into the popular Dojo
Toolkit under the moniker dojox.storage. With this solution, each domain is given the
usual 100 KB of storage “for free.” Beyond that, it prompts the user for each order of
magnitude increase in data storage (1 MB, 10 MB, and so on).

Then, in 2007, Google launched Gears, an open source browser plug-in aimed at pro-
viding additional capabilities in browsers. (We’ve previously discussed Gears in the
context of providing a geolocation API in Internet Explorer (see “What About
IE?” on page 123). Gears provides an API to an embedded SQL database based on
SQLite. After obtaining permission from the user once, Gears can store unlimited
amounts of data per domain in SQL database tables.

In the meantime, Brad Neuberg and others continued to hack away on dojox.storage
to provide a unified interface to all these different plug-ins and APIs. By 2009,
dojox.storage could autodetect (and provide a unified interface on top of) Adobe Flash,
Gears, Adobe AIR, and an early prototype of HTML5 Storage that was only imple-
mented in older versions of Firefox.

As you survey these solutions, a pattern emerges: all of them are either specific to a
single browser, or reliant on a third-party plug-in. Despite heroic efforts to paper over
the differences (in dojox.storage), they all expose radically different interfaces, have
different storage limitations, and present different user experiences. So this is the

128 | Chapter 7: The Past, Present, and Future of Local Storage for Web Applications

http://en.wikipedia.org/wiki/Browser_wars#The_first_browser_war
http://msdn.microsoft.com/en-us/library/ms531078(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms531424(VS.85).aspx
http://en.wikiquote.org/wiki/Bill_Gates#Misattributed
http://kb2.adobe.com/cps/161/tn_16194.html
http://codinginparadise.org/weblog/2005/10/amass-ajax-massive-storage-system.html
http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/external/ExternalInterface.html
http://www.dojotoolkit.org
http://www.dojotoolkit.org
http://api.dojotoolkit.org/jsdoc/HEAD/dojox.storage.manager
http://gears.google.com
http://code.google.com/apis/gears/api_database.html
http://www.sqlite.org

problem that HTML5 set out to solve: to provide a standardized API, implemented
natively and consistently in multiple browsers, without having to rely on third-party
plug-ins.

Introducing HTML5 Storage
What I refer to as “HTML5 Storage” is actually a specification named Web Storage.
This was at one time part of the HTML5 specification proper, but was split out into its
own specification for uninteresting political reasons. Certain browser vendors also refer
to it as “Local Storage” or “DOM Storage.” The naming situation is made even more
complicated by some related, similarly named, emerging standards that I’ll discuss later
in this chapter.

So what is HTML5 Storage? Simply put, it’s a way for web pages to store named key/
value pairs locally, within the client web browser. Like the data stored in cookies, this
data persists even after you navigate away from the website, close your browser tab,
exit your browser, or what have you. But unlike with cookies, this data is never trans-
mitted to the remote web server (unless you go out of your way to send it manually).
And unlike all previous attempts at providing persistent local storage (described in the
preceding section), it is implemented natively in web browsers, so it is available even
when third-party browser plug-ins are not.

Which browsers? As Table 7-1 shows, HTML5 is supported by the latest versions of
pretty much all browsers...even Internet Explorer!

Table 7-1. HTML5 Storage support

IE Firefox Safari Chrome Opera iPhone Android

8.0+ 3.5+ 4.0+ 4.0+ 10.5+ 2.0+ 2.0+

From your JavaScript code, you’ll access HTML5 Storage through the localStorage
object on the global window object. Before you can use it, you should detect whether
the browser supports it (see “Local Storage” on page 21):

function supports_html5_storage() {
 return ('localStorage' in window) && window['localStorage'] !== null;
}

Or, instead of writing this function yourself, you can use Modernizr (see “Modernizr:
An HTML5 Detection Library” on page 16) to detect support for HTML5 Storage:

if (Modernizr.localstorage) {
 // window.localStorage is available!
} else {
 // no native support for HTML5 Storage :(
 // maybe try dojox.storage or a third-party solution
}

Introducing HTML5 Storage | 129

http://dev.w3.org/html5/webstorage/

Using HTML5 Storage
HTML5 Storage is based on named key/value pairs. You store data based on a named
key, and then you can retrieve that data with the same key:

interface Storage {
 getter any getItem(in DOMString key);
 setter creator void setItem(in DOMString key, in any data);
};

The named key is a string. The data can be any type supported by JavaScript, including
strings, Booleans, integers, or floats. However, the data is actually stored as a string. If
you are storing and retrieving anything other than strings, you will need to use functions
like parseInt() or parseFloat() to coerce your retrieved data into the expected Java-
Script datatype.

Calling setItem() with a named key that already exists will silently overwrite the pre-
vious value. Calling getItem() with a nonexistent key will return null rather than
throwing an exception.

Like other JavaScript objects, you can treat the localStorage object as an associative
array. Instead of using the getItem() and setItem() methods, you can simply use square
brackets. For example, this snippet of code:

var foo = localStorage.getItem("bar");
// ...
localStorage.setItem("bar", foo);

could be rewritten to use square-bracket syntax instead:

var foo = localStorage["bar"];
// ...
localStorage["bar"] = foo;

There are also methods for removing the value for a given named key and clearing the
entire storage area (that is, deleting all the keys and values at once):

interface Storage {
 deleter void removeItem(in DOMString key);
 void clear();
};

Calling removeItem() with a nonexistent key will do nothing.

Finally, there is a property to get the total number of values in the storage area, and to
iterate through all of the keys by index (to get the name of each key):

interface Storage {
 readonly attribute unsigned long length;
 getter DOMString key(in unsigned long index);
};

If you call key() with an index that is not between 0 and (length–1), the function will
return null.

130 | Chapter 7: The Past, Present, and Future of Local Storage for Web Applications

Tracking Changes to the HTML5 Storage Area
If you want to keep track programmatically of when the storage area changes, you can
trap the storage event. The storage event is fired on the window object whenever
setItem(), removeItem(), or clear() is called and actually changes something. For ex-
ample, if you set an item to its existing value or call clear() when there are no named
keys, the storage event will not fire because nothing actually changed in the storage
area.

The storage event is supported everywhere the localStorage object is supported,
which includes Internet Explorer 8. IE 8 does not support the W3C standard
addEventListener (although that will finally be added in IE 9). Therefore, to hook the
storage event, you’ll need to check which event mechanism the browser supports. (If
you’ve done this before with other events, you can skip to the end of this section.
Trapping the storage event works the same way as trapping any other event. If you
prefer to use jQuery or some other JavaScript library to register your event handlers,
you can do that with the storage event, too.) Here’s how:

if (window.addEventListener) {
 window.addEventListener("storage", handle_storage, false);
} else {
 window.attachEvent("onstorage", handle_storage);
};

The handle_storage() callback function will be called with a StorageEvent object, ex-
cept in Internet Explorer, where the event object is stored in window.event:

function handle_storage(e) {
 if (!e) { e = window.event; }
}

At this point, the variable e will be a StorageEvent object, which has the useful prop-
erties listed in Table 7-2.

Table 7-2. StorageEvent object properties

Property Type Description

key String The named key that was added, removed, or modified

oldValue Any The previous value (now overwritten), or null if a new item was added

newValue Any The new value, or null if an item was removed

urla String The page that called the method that triggered this change
a The url property was originally called uri. Some browsers shipped with that property before the specification changed. For maximum

compatibility, you should check whether the url property exists and, if not, check for the uri property instead.

The storage event is not cancelable. From within the handle_storage() callback func-
tion, there is no way to stop the change from occurring. It’s simply a way for the browser
to tell you, “Hey, this just happened. There’s nothing you can do about it now; I just
wanted to let you know.”

Using HTML5 Storage | 131

Limitations in Current Browsers
In talking about the history of local storage hacks using third-party plug-ins (see “A
Brief History of Local Storage Hacks Before HTML5” on page 128), I made a point of
mentioning the limitations of each technique, such as storage limits. However, I haven’t
mentioned anything about the limitations of the now-standardized HTML5 Storage.

By default, each origin gets 5 MB of storage space. This is surprisingly consistent across
browsers, although it is phrased as no more than a suggestion in the HTML5 Storage
specification. One thing to keep in mind is that you’re storing strings, not data in its
original format. If you’re storing a lot of integers or floats, the difference in represen-
tation can really add up: each digit in that float is being stored as a character, not in the
usual representation of a floating-point number.

If you exceed your storage quota, a QUOTA_EXCEEDED_ERR exception will be thrown. “No”
is the answer to the next obvious question, “Can I ask the user for more storage space?”
At the time of writing, no browser supports any mechanism for web developers to
request more storage space. Some browsers, such as Opera, allow the user to control
each site’s storage quota, but it is purely a user-initiated action, not something that you
as a web developer can build into your web application.

HTML5 Storage in Action
Let’s look at an example of HTML5 Storage in action. Think back to the Halma game
we constructed in Chapter 4 (see “A Complete Example” on page 75). There’s a small
problem with the game: if you close the browser window mid-game, you’ll lose your
progress. But with HTML5 Storage, we can save the progress locally, within the browser
itself. You can see a live demonstration at http://diveintohtml5.org/examples/localstor
age-halma.html. Make a few moves, close the browser tab, and then reopen it. If your
browser supports HTML5 Storage, the demonstration page should magically remem-
ber your exact position within the game, including the number of moves you’ve made,
the positions of each of the pieces on the board, and even whether a particular piece is
selected.

How does it work? Every time a change occurs within the game, we call this function:

function saveGameState() {
 if (!supportsLocalStorage()) { return false; }
 localStorage["halma.game.in.progress"] = gGameInProgress;
 for (var i = 0; i < kNumPieces; i++) {
 localStorage["halma.piece." + i + ".row"] = gPieces[i].row;
 localStorage["halma.piece." + i + ".column"] = gPieces[i].column;
 }
 localStorage["halma.selectedpiece"] = gSelectedPieceIndex;
 localStorage["halma.selectedpiecehasmoved"] gSelectedPieceHasMoved;
 localStorage["halma.movecount"] = gMoveCount;
 return true;
}

132 | Chapter 7: The Past, Present, and Future of Local Storage for Web Applications

http://bit.ly/a9NnSf
http://dev.opera.com/articles/view/web-storage/
http://diveintohtml5.org/examples/localstorage-halma.html
http://diveintohtml5.org/examples/localstorage-halma.html

As you can see, it uses the localStorage object to save whether there is a game in
progress (gGameInProgress, a Boolean). If so, it iterates through the pieces (gPieces, a
JavaScript Array) and saves the row and column number of each piece. Then it saves
some additional game state, including which piece is selected (gSelectedPieceIndex,
an integer), whether the piece is in the middle of a potentially long series of hops
(gSelectedPieceHasMoved, a Boolean), and the total number of moves made so far
(gMoveCount, an integer).

On page load, instead of automatically calling a newGame() function that would reset
these variables to hardcoded values, we call a resumeGame() function. Using HTML5
Storage, the resumeGame() function checks whether any state about a game in progress
is stored locally. If so, it restores those values using the localStorage object:

function resumeGame() {
 if (!supportsLocalStorage()) { return false; }
 gGameInProgress = (localStorage["halma.game.in.progress"] == "true");
 if (!gGameInProgress) { return false; }
 gPieces = new Array(kNumPieces);
 for (var i = 0; i < kNumPieces; i++) {
 var row = parseInt(localStorage["halma.piece." + i + ".row"]);
 var column = parseInt(localStorage["halma.piece." + i + ".column"]);
 gPieces[i] = new Cell(row, column);
 }
 gNumPieces = kNumPieces;
 gSelectedPieceIndex = parseInt(localStorage["halma.selectedpiece"]);
 gSelectedPieceHasMoved = localStorage["halma.selectedpiecehasmoved"] == "true";
 gMoveCount = parseInt(localStorage["halma.movecount"]);
 drawBoard();
 return true;
}

The most important part of this function is the caveat that I mentioned earlier in this
chapter, which I’ll repeat here: Data is stored as strings. If you are storing something
other than a string, you’ll need to coerce it yourself when you retrieve it. For example,
the flag for whether there is a game in progress (gGameInProgress) is a Boolean. In the
saveGameState() function, we just stored it and didn’t worry about the datatype:

localStorage["halma.game.in.progress"] = gGameInProgress;

But in the resumeGame() function, we need to treat the value we got from the local storage
area as a string and manually construct the proper Boolean value ourselves:

gGameInProgress = (localStorage["halma.game.in.progress"] == "true");

Similarly, the number of moves is stored in gMoveCount as an integer. In the
saveGameState() function, we just stored it:

localStorage["halma.movecount"] = gMoveCount;

But in the resumeGame() function, we need to coerce the value to an integer, using the
parseInt() function built into JavaScript:

gMoveCount = parseInt(localStorage["halma.movecount"]);

HTML5 Storage in Action | 133

Beyond Named Key/Value Pairs: Competing Visions
While the past is littered with hacks and workarounds (see “A Brief History of Local
Storage Hacks Before HTML5” on page 128), the present condition of HTML5 Storage
is surprisingly rosy. A new API has been standardized and implemented across all major
browsers, platforms, and devices. As a web developer, that’s just not something you
see every day, is it? But there is more to life than 5 MB of named key/value pairs, and
the future of persistent local storage is...how shall I put it? Well, there are a number of
competing visions.

One vision is an acronym that you probably know already: SQL. In 2007, Google
launched Gears, an open source cross-browser plug-in that included an embedded da-
tabase based on SQLite. This early prototype later influenced the creation of the Web
SQL Database specification. Web SQL Database (formerly known as “WebDB”) pro-
vides a thin wrapper around a SQL database, allowing you to do things like this from
JavaScript:

openDatabase('documents', '1.0', 'Local document storage', 5*1024*1024,
function (db) {
 db.changeVersion('', '1.0', function (t) {
 t.executeSql('CREATE TABLE docids (id, name)');
 }, error);
});

As you can see, most of the action resides in the string you pass to the executeSql()
method. This string can be any supported SQL statement, including SELECT, UPDATE,
INSERT, and DELETE. It’s just like backend database programming, except you’re doing
it from JavaScript! Oh joy!

Table 7-3 shows which browsers have implemented the Web SQL Database
specification.

Table 7-3. Web SQL Database support

IE Firefox Safari Chrome Opera iPhone Android

· · 4.0+ 4.0+ 10.5+ 3.0+ ·

Of course, if you’ve used more than one database product in your life, you are aware
that “SQL” is more of a marketing term than a hard-and-fast standard. (Some would
say the same of “HTML5,” but never mind that.) Sure, there is an actual SQL
specification—it’s called SQL-92—but there is no database server in the world that
conforms to that and only that specification. There’s Oracle’s SQL, Microsoft’s SQL,
MySQL’s SQL, PostgreSQL’s SQL, and SQLite’s SQL. And each of these products adds
new SQL features over time, so even saying “SQLite’s SQL” is not sufficient to pin
down exactly what you’re talking about—you need to say “the version of SQL that
shipped with SQLite Version X.Y.Z.”

134 | Chapter 7: The Past, Present, and Future of Local Storage for Web Applications

http://gears.google.com
http://www.sqlite.org
http://dev.w3.org/html5/webdatabase/
http://dev.w3.org/html5/webdatabase/
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

All of which brings us to the following disclaimer, currently residing at the top of the
Web SQL Database specification:

This specification has reached an impasse: all interested implementors have used the
same SQL backend (Sqlite), but we need multiple independent implementations to pro-
ceed along a standardisation path. Until another implementor is interested in imple-
menting this spec, the description of the SQL dialect has been left as simply a reference
to Sqlite, which isn’t acceptable for a standard.

It is against this backdrop that I will introduce you to another competing vision for
advanced, persistent, local storage for web applications: the Indexed Database API,
formerly known as “WebSimpleDB,” now affectionately known as “IndexedDB.”

The Indexed Database API exposes what’s called an object store. An object store shares
many concepts with a SQL database. There are “databases” with “records,” and each
record has a set number of “fields.” Each field has a specific datatype, which is defined
when the database is created. You can select a subset of records, then enumerate them
with a “cursor.” Changes to the object store are handled within “transactions.”

If you’ve done any SQL database programming, these terms probably sound familiar.
The primary difference is that the object store has no structured query language. You
don’t construct a statement like "SELECT * from USERS where ACTIVE = 'Y'". Instead,
you use methods provided by the object store to open a cursor on the database named
USERS, enumerate through the records, filter out records for inactive users, and use
accessor methods to get the values of each field in the remaining records. The early
walk-through of IndexedDB is a good tutorial on how IndexedDB works, giving side-
by-side comparisons of IndexedDB and Web SQL Database.

At the time of writing, IndexedDB hasn’t been implemented in any major browser. In
early June 2010, Mozilla said that it would “have some test builds in the next few
weeks”, but there is no word yet on whether it will even ship in Firefox 4. (By contrast,
Mozilla has stated that it will never implement Web SQL Database.) Google has stated
that it is considering IndexedDB support, and even Microsoft has said that IndexedDB
“is a great solution for the Web”.

So what can you, as a web developer, do with IndexedDB? At the moment, absolutely
nothing. A year from now? Maybe something. Check the “Further Reading” section
for links to some good tutorials to get you started.

Further Reading
HTML5 Storage:

• HTML5 Storage specification

• “Introduction to DOM Storage” on MSDN

• “Web Storage: easier, more powerful client-side data storage”, by Shwetank Dixit

Further Reading | 135

http://dev.w3.org/2006/webapi/IndexedDB/
http://hacks.mozilla.org/2010/06/comparing-indexeddb-and-webdatabase/
http://hacks.mozilla.org/2010/06/comparing-indexeddb-and-webdatabase/
http://blog.mozilla.com/about_mozilla/2010/06/08/firefox-sudosocial-indexeddb-privacy-bugzilla-jetpack-add-ons-qmo-design-challenge-and-more/#an
http://blog.mozilla.com/about_mozilla/2010/06/08/firefox-sudosocial-indexeddb-privacy-bugzilla-jetpack-add-ons-qmo-design-challenge-and-more/#an
http://hacks.mozilla.org/2010/06/beyond-html5-database-apis-and-the-road-to-indexeddb/
http://www.chromium.org/developers/design-documents/indexeddb
http://blogs.msdn.com/b/ie/archive/2010/03/09/working-with-the-html5-community.aspx
http://dev.w3.org/html5/webstorage/
http://msdn.microsoft.com/en-us/library/cc197062(VS.85).aspx
http://dev.opera.com/articles/view/web-storage/

• “Introduction to DOM Storage” on the Mozilla Developer Center. (Note: most of
this page is devoted to Firefox’s prototype implementation of a globalStorage ob-
ject, a nonstandard precursor to localStorage. Mozilla added support for the
standard localStorage interface in Firefox 3.5.)

• “Unlock local storage for mobile Web applications with HTML 5”, a tutorial on
IBM DeveloperWorks

Early work by Brad Neuberg et al. (pre-HTML5):

• “Internet Explorer Has Native Support for Persistence?!?!”, about the userData
object in IE

• Dojo Storage, part of a larger tutorial about the (now-defunct) Dojo Offline library

• dojox.storage.manager API reference

• dojox.storage Subversion repository

Web SQL Database:

• Web SQL Database specification

• “Introducing Web SQL Databases”, by Remy Sharp

• Web Database demonstration

• persistence.js, an “asynchronous JavaScript ORM” built on top of Web SQL Da-
tabase and Gears

IndexedDB:

• Indexed Database API specification

• “Beyond HTML5: Database APIs and the Road to IndexedDB”, by Arun Ranga-
nathan and Shawn Wilsher

• “Firefox 4: An early walk-through of IndexedDB”, by Arun Ranganathan

136 | Chapter 7: The Past, Present, and Future of Local Storage for Web Applications

https://developer.mozilla.org/en/dom/storage
http://www.ibm.com/developerworks/xml/library/x-html5mobile2/
http://codinginparadise.org/weblog/2005/08/ajax-internet-explorer-has-native.html
http://docs.google.com/View?docid=dhkhksk4_8gdp9gr#dojo_storage
http://api.dojotoolkit.org/jsdoc/HEAD/dojox.storage.manager
http://svn.dojotoolkit.org/src/dojox/trunk/storage/
http://dev.w3.org/html5/webdatabase/
http://html5doctor.com/introducing-web-sql-databases/
http://html5demos.com/database
http://zef.me/2774/persistence-js-an-asynchronous-javascript-orm-for-html5gears
http://dev.w3.org/2006/webapi/IndexedDB/
http://hacks.mozilla.org/2010/06/beyond-html5-database-apis-and-the-road-to-indexeddb/
http://hacks.mozilla.org/2010/06/comparing-indexeddb-and-webdatabase/

CHAPTER 8

Let’s Take This Offline

Diving In
What is an offline web application? At first glance, it sounds like a contradiction in
terms. Web pages are things you download and render. Downloading implies a network
connection. How can you download when you’re offline? Of course, you can’t. But you
can download when you’re online. And that’s how HTML5 offline applications work.

At its simplest, an offline web application is just a list of URLs pointing to HTML, CSS,
or JavaScript files, images, or any other kinds of resources that may be present. The
home page of the offline web application points to this list, called a manifest file, which
is just a text file located elsewhere on the web server. A web browser that implements
HTML5 offline applications will read the list of URLs from the manifest file, download
the resources, cache them locally, and automatically keep the local copies up to date
as they change. When you try to access the web application without a network con-
nection, your web browser will automatically switch over to the local copies instead.

From there, most of the work is up to you, as the web developer. There’s a flag in the
DOM that will tell you whether you’re online or offline, and there are events that fire
when your status changes (one minute you’re offline and the next minute you’re online,
or vice versa). But that’s pretty much it. If your application creates data or saves state,
it’s up to you to store that data locally (see Chapter 7) while you’re offline and syn-
chronize it with the remote server once you’re back online. In other words, HTML5
can take your web application offline, but what you do once you’re there is up to you.
Table 8-1 shows which browsers support offline web applications.

Table 8-1. Offline support

IE Firefox Safari Chrome Opera iPhone Android

· ✓ ✓ ✓ · ✓ ✓

137

The Cache Manifest
An offline web application revolves around a cache manifest file. As I’ve already men-
tioned, the manifest file is a list of all of the resources that your web application might
need to access while it’s disconnected from the network. In order to bootstrap the
process of downloading and caching these resources, you need to point to the manifest
file, using the manifest attribute on your <html> element:

<!DOCTYPE HTML>
<html manifest="/cache.manifest">
<body>
...
</body>
</html>

Your cache manifest file can be located anywhere on your web server, but it must be
served with the content type text/cache-manifest. If you are running an Apache-based
web server, you can probably just put an AddType directive in the .htaccess file at the
root of your web directory:

AddType text/cache-manifest .manifest

Then make sure that the name of your cache manifest file ends with .manifest. If you
use a different web server or a different configuration of Apache, consult your server’s
documentation on controlling the Content-Type header.

Ask Professor Markup
Q: My web application spans several pages. Do I need a manifest attribute in each page,
or can I just put it in the home page?

A: Every page of your web application needs a manifest attribute that points to the
cache manifest for the entire application.

OK, so every one of your HTML pages points to your cache manifest file, and your
cache manifest file is being served with the proper Content-Type header. But what goes
in the manifest file? This is where things get interesting.

The first line of every cache manifest file is this:

CACHE MANIFEST

After that, all manifest files are divided into three parts: the “explicit” section, the
“fallback” section, and the “online whitelist” section. Each section has a header, on its
own line. If the manifest file doesn’t have any section headers, all the listed resources
are implicitly in the “explicit” section. Try not to dwell on the terminology, lest your
head explode.

138 | Chapter 8: Let’s Take This Offline

http://httpd.apache.org/docs/2.2/mod/mod_mime.html#addtype

Here is a valid manifest file. It lists three resources—a CSS file, a JavaScript file, and a
JPEG image:

CACHE MANIFEST
/clock.css
/clock.js
/clock-face.jpg

This cache manifest file has no section headers, so all the listed resources are in the
“explicit” section by default. Resources in the “explicit” section will get downloaded
and cached locally and will be used in place of their online counterparts whenever you
are disconnected from the network. Thus, upon loading this cache manifest file, your
browser will download clock.css, clock.js, and clock-face.jpg from the root directory of
your web server. You can then unplug your network cable and refresh the page, and
all of those resources will be available offline.

Ask Professor Markup
Q: Do I need to list my HTML pages in my cache manifest?

A: Yes and no. If your entire web application is contained in a single page, just make
sure that page points to the cache manifest using the manifest attribute. When you
navigate to an HTML page with a manifest attribute, the page itself is assumed to be
part of the web application, so you don’t need to list it in the manifest file itself. How-
ever, if your web application spans multiple pages, you should list all of the HTML
pages in the manifest file; otherwise, the browser will not know that there are other
HTML pages that need to be downloaded and cached.

Network Sections
Here is a slightly more complicated example. Suppose you want your clock application
to track visitors, using a tracking.cgi script that is loaded dynamically from an attribute. Caching this resource would defeat the purpose of tracking, so this
resource should never be cached and never be available offline. Here is how you do that:

CACHE MANIFEST
NETWORK:
/tracking.cgi
CACHE:
/clock.css
/clock.js
/clock-face.jpg

This cache manifest file includes section headers. The line marked NETWORK: is the be-
ginning of the “online whitelist” section. Resources in this section are never cached and
are not available offline. (Attempting to load them while offline will result in an error.)
The line marked CACHE: is the beginning of the “explicit” section. The rest of the cache
manifest file is the same as the previous example. Each of the three resources listed will
be cached and available offline.

The Cache Manifest | 139

Fallback Sections
There is one more type of section in a cache manifest file: a fallback section. In a fallback
section, you can define substitutions for online resources that, for whatever reason,
can’t be cached or weren’t cached successfully. The HTML5 specification offers this
clever example of using a fallback section:

CACHE MANIFEST
FALLBACK:
/ /offline.html
NETWORK:
*

What does this do? First, consider a site that contains millions of pages, like Wikipe-
dia. You couldn’t possibly download the entire site, nor would you want to. But sup-
pose you could make part of it available offline. How would you decide which pages
to cache? How about this: every page you ever looked at on a hypothetical offline-
enabled Wikipedia would be downloaded and cached. That would include every en-
cyclopedia entry that you ever visited, every talk page (where you can have makeshift
discussions about a particular encyclopedia entry), and every edit page (where you can
actually make changes to that particular entry).

That’s what this cache manifest does. Suppose every HTML page on Wikipedia (entry,
talk page, edit page, history page) pointed to this cache manifest file. When you visit
any page that points to a cache manifest, your browser says, “Hey, this page is part of
an offline web application, is it one I know about?” If your browser hasn’t ever down-
loaded this particular cache manifest file, it will set up a new offline “appcache” (short
for “application cache”), download all the resources listed in the cache manifest, and
then add the current page to the appcache. If your browser does know about this cache
manifest, it will simply add the current page to the existing appcache. Either way, the
page you just visited ends up in the appcache. This is important. It means that you can
have an offline web application that “lazily” adds pages as you visit them. You don’t
need to list every single one of your HTML pages in your cache manifest.

Now look at the fallback section. The fallback section in this cache manifest contains
only one line. The first part of the line (before the space) is not a URL. It’s really a URL
pattern. The single character (/) will match any page on your site, not just the home
page. When you try to visit a page while you’re offline, your browser will look for it in
the appcache. If your browser finds the page in the appcache (because you visited it
while online, and the page was implicitly added to the appcache at that time), it will
display the cached copy of the page. If your browser doesn’t find the page in the appc-
ache, instead of displaying an error message, it will display the page /offline.html, as
specified in the second half of the line in the fallback section.

Finally, let’s examine the network section. The network section in this cache manifest
also has just a single line, which contains just a single character (*). This character has
special meaning in a network section. It’s called the “online whitelist wildcard flag.”
That’s a fancy way of saying that anything that isn’t in the appcache can still be

140 | Chapter 8: Let’s Take This Offline

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page

downloaded from the original web address, as long as you have an Internet connection.
This is important for an “open-ended” offline web application. Continuing with our
example, it means that while you’re browsing this hypothetical offline-enabled Wiki-
pedia online, your browser will fetch images and videos and other embedded resources
normally, even if they are in a different domain. (This is very common in large websites,
even if they aren’t part of an offline web application: HTML pages are generated and
served locally, while images and videos are served from a CDN on another domain.)
Without this wildcard flag, our hypothetical offline-enabled Wikipedia would behave
strangely when you were online—specifically, it wouldn’t load any externally hosted
images or videos!

Is this example complete? No. Wikipedia is more than just HTML files; it uses common
CSS, JavaScript, and images on each page. Each of these resources would need to be
listed explicitly in the CACHE: section of the manifest file in order for pages to display
and behave properly offline. But the point of the fallback section is that you can have
an “open-ended” offline web application that extends beyond the resources you’ve
listed explicitly in the manifest file.

The Flow of Events
So far, I’ve talked about offline web applications, the cache manifest, and the offline
application cache (“appcache”) in vague, semimagical terms. Things are downloaded,
browsers make decisions, and everything “Just Works.” You know better than that,
right? I mean, this is web development we’re talking about. Nothing ever “Just Works.”

First, let’s talk about the flow of events, specifically DOM events. When your browser
visits a page that points to a cache manifest, it fires off a series of events on the
window.applicationCache object, as I describe below. I know this looks complicated,
but trust me, this is the simplest version I could come up with that didn’t leave out
important information. Here’s the process:

1. As soon as it notices a manifest attribute on the <html> element, your browser fires
a checking event. (All the events listed here are fired on the window.applicationC
ache object.) The checking event is always fired, regardless of whether you have
previously visited this page or any other page that points to the same cache
manifest.

2. If your browser has never seen this cache manifest before:

• It will fire a downloading event, then start to download the resources listed in
the cache manifest.

• While it’s downloading, your browser will periodically fire progress events,
which contain information on how many files have been downloaded already
and how many files are still queued to be downloaded.

• After all resources listed in the cache manifest have been downloaded success-
fully, the browser fires one final event, cached. This is your signal that the offline

The Flow of Events | 141

http://en.wikipedia.org/wiki/Content_delivery_network

web application is fully cached and ready to be used offline. That’s it; you’re
done.

3. On the other hand, if you have previously visited this page or any other page that
points to the same cache manifest, your browser already knows about this cache
manifest and may already have some resources in the appcache. In fact, it may have
the entire working offline web application in the appcache. So now the question
is, has the cache manifest changed since the last time your browser checked it?

• If the answer is no, the cache manifest has not changed. In this case, your
browser will immediately fire a noupdate event. That’s it; you’re done.

• If the answer is yes, the cache manifest has changed. In this case, your browser
will fire a downloading event and start redownloading every single resource listed
in the cache manifest.

While it’s downloading, your browser will periodically fire progress events, which
contain information on how many files have been downloaded already and how
many files are still queued to be downloaded.

After all resources listed in the cache manifest have been redownloaded success-
fully, the browser will fire one final event, updateready. This is your signal that the
new version of your offline web application is fully cached and ready to be used
offline. The new version is not yet in use. To “hot-swap” to the new version without
forcing the user to reload the page, you can manually call the window.applicationC
ache.swapCache() function.

If, at any point in this process, something goes horribly wrong, your browser will fire
an error event and stop. Here is a hopelessly abbreviated list of things that could go
wrong:

• The cache manifest returned an HTTP 404 (Page Not Found) or 410 (Permanently
Gone) error.

• The cache manifest was found and hadn’t changed, but the HTML page that
pointed to the manifest failed to download properly.

• The cache manifest was found and had changed, but the browser failed to down-
load one of the resources listed in the cache manifest.

The Fine Art of Debugging, a.k.a. “Kill Me! Kill Me Now!”
I want to call out two important points here. The first is something you just read, but
probably didn’t really sink in, so here it is again: if even a single resource listed in your
cache manifest file fails to download properly, the entire process of caching your offline
web application will fail. Your browser will fire the error event, but there will be no
indication of what the actual problem was. This can make debugging offline web ap-
plications extremely frustrating.

142 | Chapter 8: Let’s Take This Offline

The second important point is something that is not, technically speaking, an error,
but it will look like a serious browser bug until you realize what’s going on. It has to
do with exactly how your browser checks whether a cache manifest file has changed.
This is a three-phase process. This is boring but important, so pay attention. Here’s the
procedure:

1. Via normal HTTP semantics, your browser will check whether the cache manifest
has expired. Just like with any other file being served over HTTP, your web server
will typically include metainformation about the file in the HTTP response headers.
Some of these HTTP headers (Expires and Cache-Control) tell your browser how
it is allowed to cache the file without ever asking the server whether it has changed.
This kind of caching has nothing to do with offline web applications. It happens
for pretty much every HTML page, stylesheet, script, image, or other resource on
the Web.

2. If the cache manifest has expired (according to its HTTP headers), your browser
will ask the server whether there is a new version and, if so, will download it. To
do this, your browser issues an HTTP request that includes the last-modified date
of the cache manifest file, which your web server included in the HTTP response
headers the last time your browser downloaded the file. If the web server deter-
mines that the manifest file hasn’t changed since that date, it will simply return a
304 (Not Modified) status code. Again, none of this is specific to offline web ap-
plications. It happens for virtually all resources on the Web.

3. If the web server thinks the manifest file has changed since that date, it will return
an HTTP 200 (OK) status code, followed by the contents of the new file along with
new Cache-Control headers and a new last-modified date. This ensures that steps
1 and 2 will work properly the next time. (HTTP is cool; web servers are always
planning for the future. If your web server absolutely must send you a file, it does
everything it can to ensure that it doesn’t need to send it twice for no reason.) Once
it’s downloaded the new cache manifest file, your browser will check the contents
against the copy it downloaded last time. If the contents of the cache manifest file
are the same as they were last time, your browser won’t redownload any of the
resources listed in the manifest.

Any one of these steps can trip you up while you’re developing and testing your offline
web application. For example, say you deploy one version of your cache manifest file,
then 10 minutes later, you realize you need to add another resource to it. No problem,
right? Just add another line and redeploy. Bzzt. Here’s what will happen: you reload
the page, your browser notices the manifest attribute, it fires the checking event, and
then...nothing. Your browser stubbornly insists that the cache manifest file has
not changed. Why? Because, by default, your web server is probably configured to
tell browsers to cache static files for a few hours (via HTTP semantics, using
Cache-Control headers). That means your browser will never get past step 1 of that
three-phase process. Sure, the web server knows that the file has changed, but your
browser never even gets around to asking the web server. Why? Because the last time

The Fine Art of Debugging, a.k.a. “Kill Me! Kill Me Now!” | 143

your browser downloaded the cache manifest, the web server told it to cache the re-
source for a few hours (via HTTP semantics, using Cache-Control headers). And now,
10 minutes later, that’s exactly what your browser is doing.

To be clear, this is not a bug, it’s a feature. Everything is working exactly the way it’s
supposed to. If web servers didn’t have a way to tell browsers (and intermediate proxies)
to cache things, the Web would collapse overnight. But that’s no comfort after you’ve
spent a few hours trying to figure out why your browser won’t notice your updated
cache manifest. (And even better, if you wait long enough, it will mysteriously start
working again! Because the HTTP cache expired! Just like it’s supposed to! Kill me!
Kill me now!)

So here’s one thing you should absolutely do: reconfigure your web server so that your
cache manifest file is not cacheable by HTTP semantics. If you’re running an Apache-
based web server, these two lines in your .htaccess file will do the trick:

ExpiresActive On
ExpiresDefault "access"

This will actually disable caching for every file in that directory and all subdirectories.
That’s probably not what you want in production, so you should either qualify this
with a <Files> directive so it affects only your cache manifest file, or create a subdir-
ectory that contains nothing but this .htaccess file and your cache manifest file. As usual,
configuration details vary by web server, so consult your server’s documentation for
how to control HTTP caching headers.

Disabling HTTP caching on the cache manifest file itself won’t solve all your problems,
though. You’ll still have times when you’ve changed one of the resources in the
appcache, but it’s still at the same URL on your web server. Here, step 2 of the three-
phase process will screw you. If your cache manifest file hasn’t changed, the browser
will never notice that one of the previously cached resources has changed. Consider
the following example:

CACHE MANIFEST
rev 42
clock.js
clock.css

If you change clock.css and redeploy it, you won’t see the changes, because the cache
manifest file itself hasn’t changed. Every time you make a change to one of the resources
in your offline web application, you’ll need to change the cache manifest file itself. This
can be as simple as changing a single character. The easiest way I’ve found to accomplish
this is to include a comment line with a revision number in the manifest file. Any time
you change one of the resources, change the revision number in the comment. The web
server will return the newly changed cache manifest file, your browser will notice that
the contents of the file have changed, and it will kick off the process to redownload all
the resources listed in the manifest:

CACHE MANIFEST
rev 43

144 | Chapter 8: Let’s Take This Offline

clock.js
clock.css

Let’s Build One!
Remember the Halma game that we introduced in Chapter 4 (see “A Complete Exam-
ple” on page 75) and later improved by saving state with persistent local storage (see
“HTML5 Storage in Action” on page 132)? Let’s take our Halma game offline.

To do that, we need a manifest that lists all the resources the game needs. Well, there’s
the main HTML page, a single JavaScript file that contains all the game code,
and...that’s it. There are no images, because all the drawing is done programmatically
via the canvas API (see Chapter 4), and all the necessary CSS styles are in a <style>
element at the top of the HTML page. So, this is our cache manifest:

CACHE MANIFEST
halma.html
../halma-localstorage.js

A word about paths. I’ve created an offline/ subdirectory in the examples/ directory,
and this cache manifest file lives inside the subdirectory. Because the HTML page will
need one minor addition to work offline (more on that in a minute), I’ve created a
separate copy of the HTML file, which also lives in the offline/ subdirectory. But because
there are no changes to the JavaScript code itself since we added local storage support
(see “HTML5 Storage in Action” on page 132), I’m literally reusing the same .js file,
which lives in the parent directory (examples/). Altogether, the files look like this:

/examples/localstorage-halma.html
/examples/halma-localstorage.js
/examples/offline/halma.manifest
/examples/offline/halma.html

In the cache manifest file (/examples/offline/halma.manifest), we want to reference two
files. First is the offline version of the HTML file (/examples/offline/halma.html), which
is listed in the manifest file without any path prefix because the two files are in the same
directory. Second is the JavaScript file, which lives in the parent directory (/examples/
halma-localstorage.js) and is listed in the manifest file using relative URL notation: ../
halma-localstorage.js. This is just like how you might use a relative URL in an
 attribute. As you’ll see in the next example, you can also use absolute paths
(that start at the root of the current domain) or even absolute URLs (that point to
resources in other domains).

Now, in the HTML file, we need to add the manifest attribute that points to the cache
manifest file:

<!DOCTYPE html>
<html lang="en" manifest="halma.manifest">

Let’s Build One! | 145

And that’s it! When an offline-capable browser first loads the offline-enabled HTML
page, it will download the linked cache manifest file and start downloading all the
referenced resources and storing them in the offline application cache. From then on,
the offline application algorithm will take over whenever you revisit the page. You can
play the game offline, and since it remembers its state locally, you can leave and come
back as often as you like.

Further Reading
Standards:

• Offline web applications in the HTML5 specification

Browser vendor documentation:

• “Offline resources in Firefox” on the Mozilla Developer Center

• “HTML5 Offline Application Cache”, part of the “Safari Client-Side Storage and
Offline Applications Programming Guide”

Tutorials and demos:

• “Gmail for Mobile HTML5 Series: Using Appcache to Launch Offline - part 1”, by
Andrew Grieve

• “Gmail for Mobile HTML5 Series: Using Appcache to Launch Offline - part 2”, by
Andrew Grieve

• “Gmail for Mobile HTML5 Series: Using Appcache to Launch Offline - part 3”, by
Andrew Grieve

• “Debugging HTML 5 Offline Application Cache”, by Jonathan Stark

• “An HTML5 offline image editor and uploader application”, by Paul Rouget

146 | Chapter 8: Let’s Take This Offline

http://diveintohtml5.org/examples/offline/halma.html
http://diveintohtml5.org/examples/offline/halma.html
http://bit.ly/cCkWZa
https://developer.mozilla.org/En/Offline_resources_in_Firefox
http://developer.apple.com/safari/library/documentation/iPhone/Conceptual/SafariJSDatabaseGuide/OfflineApplicationCache/OfflineApplicationCache.html
http://developer.apple.com/safari/library/documentation/iPhone/Conceptual/SafariJSDatabaseGuide/Introduction/Introduction.html
http://developer.apple.com/safari/library/documentation/iPhone/Conceptual/SafariJSDatabaseGuide/Introduction/Introduction.html
http://googlecode.blogspot.com/2009/04/gmail-for-mobile-html5-series-using.html
http://googlecode.blogspot.com/2009/05/gmail-for-mobile-html5-series-part-2.html
http://googlecode.blogspot.com/2009/05/gmail-for-mobile-html5-series-part-3.html
http://jonathanstark.com/blog/2009/09/27/debugging-html-5-offline-application-cache/
http://hacks.mozilla.org/2010/02/an-html5-offline-image-editor-and-uploader-application/

CHAPTER 9

A Form of Madness

Diving In
Everybody knows about web forms, right? Make a <form>, add a few <input
type="text"> elements and maybe an <input type="password">, finish it off with an
<input type="submit"> button, and you’re done.

You don’t know the half of it. HTML5 defines over a dozen new input types that you
can use in your forms. And when I say “use,” I mean you can use them right now—
without any shims, hacks, or workarounds. Now don’t get too excited; I don’t mean
to say that all of these exciting new features are actually supported in every browser.
Oh goodness no, I don’t mean that at all. In modern browsers, yes, your forms will kick
all kinds of ass. In legacy browsers, your forms will still work, but with less ass kicking.
Which is to say, all of these features degrade gracefully in every browser. Even IE 6.

Placeholder Text
The first improvement HTML5 brings to web forms is the ability to set placeholder text
in an input field. Placeholder text is displayed inside the input field as long as the field
is empty and not focused. As soon as you click on (or tab to) the input field, the
placeholder text disappears.

You’ve probably seen placeholder text before. For example, Mozilla Firefox 3.5 now
includes placeholder text in the location bar that reads “Search Bookmarks and His-
tory”, as shown in Figure 9-1.

Figure 9-1. Placeholder text in Firefox’s search box

147

http://bit.ly/byDXwh
http://bit.ly/byDXwh

When you click on (or tab to) the location bar, the placeholder text disappears
(Figure 9-2).

Figure 9-2. Placeholder text disappears on focus

Ironically, Firefox 3.5 does not support adding placeholder text to your own web forms.
C’est la vie. Browser support for placeholders is shown in Table 9-1.

Table 9-1. Placeholder support

IE Firefox Safari Chrome Opera iPhone Android

• 3.7+ 4.0+ 4.0+ • • •

Here’s how you can include placeholder text in your own web forms:

<form>
 <input name="q" placeholder="Search Bookmarks and History">
 <input type="submit" value="Search">
</form>

Browsers that don’t support the placeholder attribute will simply ignore it. No harm,
no foul.

Ask Professor Markup
Q: Can I use HTML markup in the placeholder attribute? I want to insert an image, or
maybe change the colors.

A: The placeholder attribute can only contain text, not HTML markup. However, there
are some vendor-specific CSS extensions that allow you to style the placeholder text in
some browsers.

Autofocus Fields
Many websites use JavaScript to focus the first input field of a web form automatically.
For example, the home page of Google.com will autofocus the input box so you can
type your search keywords without having to position the cursor in the search box.
While this is convenient for most people, it can be annoying for power users or people
with special needs. If you press the space bar expecting to scroll the page, the page will
not scroll because the focus is already in a form input field. Instead, you’ll type a space
in the field. If you focus a different input field while the page is still loading, the site’s
autofocus script may “helpfully” move the focus back to the original input field upon
completion, disrupting your flow and causing you to type in the wrong place.

148 | Chapter 9: A Form of Madness

http://trac.webkit.org/export/37527/trunk/LayoutTests/fast/forms/placeholder-pseudo-style.html
http://www.google.com

Because the autofocusing is done with JavaScript, it can be tricky to handle all of these
edge cases, and there is little recourse for people who don’t want a web page to “steal”
the focus.

To solve this problem, HTML5 introduces an autofocus attribute on all web form con-
trols. The autofocus attribute does exactly what it says on the tin: as soon as the page
loads, it moves the input focus to a particular input field. But because it’s just markup
instead of script, the behavior will be consistent across all websites. Also, browser ven-
dors (or extension authors) can offer users a way to disable the autofocusing behavior.
Table 9-2 shows which browsers support autofocus.

Table 9-2. Autofocus support

IE Firefox Safari Chrome Opera iPhone Android

• • 4.0+ 3.0+ 10.0+ ✓ ✓

Here’s how you can set a form field to autofocus:

<form>
 <input name="q" autofocus>
 <input type="submit" value="Search">
</form>

Browsers that don’t support the autofocus attribute will simply ignore it.

What’s that? You say you want your autofocus fields to work in all browsers, not just
these fancy-pants HTML5 browsers? You can keep your current autofocus script. Just
make two small changes:

1. Add the autofocus attribute to your HTML markup.

2. Detect whether the browser supports the autofocus attribute (see “Form Autofo-
cus” on page 27), and run your own autofocus script only if the browser doesn’t
support autofocus natively:

<form name="f">
 <input id="q" autofocus>
 <script>
 if (!("autofocus" in document.createElement("input"))) {
 document.getElementById("q").focus();
 }
 </script>
 <input type="submit" value="Go">
</form>
...

Go to http://diveintohtml5.org/examples/input-autofocus-with-fallback.html to see an
example of autofocus with fallback.

Autofocus Fields | 149

http://bit.ly/bqAw0J
http://bit.ly/bqAw0J
http://diveintohtml5.org/examples/input-autofocus-with-fallback.html

Professor Markup Says
Lots of web pages wait until window.onload fires to set the focus. But the
window.onload event doesn’t fire until after all your images have loaded. If your page
has a lot of images, such a naive script could potentially re-focus the field after the user
has started interacting with another part of your page. (This is why power users hate
autofocus scripts.) The preceding example places the autofocus script immediately after
the form field that it references, but your backend systems may not be that flexible. If
you can’t insert a script in the middle of your page, you should set the focus during a
custom event like jQuery’s $(document).ready() instead of window.onload.

Email Addresses
For over a decade, web forms comprised just a few kinds of fields—the most common
are listed in Table 9-3.

Table 9-3. Input types in HTML 4

Field type HTML code Notes

Checkbox <input type="checkbox"> Can be toggled on or off

Radio button <input type="radio"> Can be grouped with other inputs

Password field <input type="password"> Echoes dots instead of characters as the user types

Drop-down list <select><option>...

File picker <input type="file"> Pops up an “open file” dialog

Submit button <input type="submit">

Plain text <input type="text"> The type attribute can be omitted

All of these input types still work in HTML5. If you’re “upgrading to HTML5” (perhaps
by changing your doctype; see “The Doctype” on page 31), you don’t need to make a
single change to your web forms. Hooray for backward compatibility!

However, HTML5 defines several new field types, and for reasons that will become
clear in a moment, there is no reason not to start using them.

The first of these new input types is for email addresses. It looks like this:

<form>
 <input type="email">
 <input type="submit" value="Go">
</form>

I was about to write a sentence that started with “In browsers that don’t support
type="email"...,” but I stopped myself. Why? Because I’m not sure what it would mean
to say that a browser doesn’t support type="email". All browsers “support”
type="email". They may not do anything special with it (you’ll see a few examples of

150 | Chapter 9: A Form of Madness

http://docs.jquery.com/Tutorials:Introducing_$(document).ready()
http://bit.ly/98L4pI

special treatment in a moment), but browsers that don’t recognize type="email" will
treat it as type="text" and render it as a plain text field.

I cannot emphasize enough how important this is. The Web has millions of forms that
ask you to enter an email address, and all of them use <input type="text">. You see a
text box, you type your email address in the text box, and that’s that. Then along comes
HTML5, which defines type="email". Do browsers freak out? No. Every single browser
on Earth treats an unknown type attribute as type="text"—even IE 6. So you can “up-
grade” your web forms to use type="email" right now.

What would it mean to say that a browser does support type="email"? Well, it can mean
any number of things. The HTML5 specification doesn’t mandate any particular user
interface for the new input types. Opera styles the form field with a small email icon.
Other HTML5 browsers, like Safari and Chrome, simply render it as a text box—
exactly like type="text"—so your users will never know the difference (unless they
view the page source).

And then there’s the iPhone.

The iPhone does not have a physical keyboard. All “typing” is done by tapping on an
onscreen keyboard that pops up at appropriate times, like when you focus a form field
in a web page. Apple did something very clever in the iPhone’s web browser: it recog-
nizes several of the new HTML5 input types, and dynamically changes the onscreen
keyboard to optimize for that kind of input.

For example, email addresses are text, right? Sure, but they’re a special kind of text.
That is, virtually all email addresses contain the @ sign and at least one period (.), but
they’re unlikely to contain any spaces. So when an iPhone user focuses on an <input
type="email"> element, she gets an onscreen keyboard that contains a smaller-than-
usual space bar, plus dedicated keys for the @ and . characters, as shown in Figure 9-3.

To sum up: there’s no downside to converting all your email address form fields to
type="email" immediately. Virtually no one will even notice, except iPhone users, who
probably won’t notice either. But the ones who do notice will smile quietly and thank
you for making their web experience just a little easier.

Web Addresses
Web addresses—known to many as URLs, and to a few pedants as URIs—are another
type of specialized text. The syntax of a web address is constrained by the relevant
Internet standards. If someone asks you to enter a web address into a form, he’ll be
expecting something like http://www.google.com, not “125 Farwood Road.” Forward
slashes and periods are common, but spaces are forbidden. And every web address has
a domain suffix like “.com” or “.org”.

Behold...(drum roll please)...<input type="url">. On the iPhone, it looks like
Figure 9-4.

Web Addresses | 151

http://www.douglasadams.com/dna/pedants.html

Figure 9-3. Keyboard optimized for entering an email address

Figure 9-4. Keyboard optimized for entering a URL

152 | Chapter 9: A Form of Madness

Just as it does for email address fields, the iPhone provides a special virtual keyboard
that’s optimized for web addresses. The space bar has been completely replaced with
three virtual keys: a period, a forward slash, and a “.com” button. You can long-press
the “.com” button to choose other common suffixes, like “.org” or “.net”.

Browsers that don’t support HTML5 will treat type="url" exactly like type="text", so
there’s no downside to using it for all your web address–inputting needs.

Numbers As Spinboxes
Next up: numbers. Asking for a number is, in many ways, trickier than asking for an
email or web address. First of all, numbers are more complicated than you might think.
Quick: pick a number. –1? No, I meant a number between 1 and 10. 7½? No, no, not
a fraction, silly. π? Now you’re just being irrational.

My point is, you don’t often ask for “just a number.” It’s more likely that you’ll ask for
a number in a particular range, and you may only want certain kinds of numbers within
that range—maybe whole numbers but not fractions or decimals, or something more
esoteric like numbers divisible by 10. HTML5 has you covered. Let’s look at an
example:

<input type="number"
 min="0"
 max="10"
 step="2"
 value="6">

Let’s take that one attribute at a time (you can follow along with a live example if you
like):

• type="number" means that this is a number field.

• min="0" specifies the minimum acceptable value for this field.

• max="10" is the maximum acceptable value.

• step="2", combined with the min value, defines the acceptable numbers in the
range: 0, 2, 4, and so on, up to the max value.

• value="6" is the default value. This should look familiar. It’s the same attribute
name you’ve always used to specify values for form fields. (I mention it here to
drive home the point that HTML5 builds on previous versions of HTML. You don’t
need to relearn how to do stuff you’re already doing.)

That’s the markup side of a number field. Keep in mind that all of those attributes are
optional. If you have a minimum but no maximum, you can specify a min attribute but
no max attribute. The default step value is 1, and you can omit the step attribute unless
you need a different step value. If there’s no default value, the value attribute can be
an empty string or even omitted altogether.

Numbers As Spinboxes | 153

http://diveintohtml5.org/examples/input-type-number-min-max-step.html

But HTML5 doesn’t stop there. For the same low, low price of free, you get these handy
JavaScript methods as well:

input.stepUp(n)
Increases the field’s value by n

input.stepDown(n)
Decreases the field’s value by n

input.valueAsNumber
Returns the current value as a floating-point number (the input.value property is
always a string)

Having trouble visualizing it? Well, the exact interface of a number control is up to
your browser, and different browser vendors have implemented support in different
ways. On the iPhone, where input is difficult to begin with, the browser once again
optimizes the virtual keyboard for numeric input as shown in Figure 9-5.

Figure 9-5. Keyboard optimized for entering a number

In the desktop version of Opera, the same type="number" field is rendered as a “spinbox”
control, with little up and down arrows that you can click to change the value
(Figure 9-6).

154 | Chapter 9: A Form of Madness

Figure 9-6. A spinbox

Opera respects the min, max, and step attributes, so you’ll always end up with an ac-
ceptable numeric value. If you bump up the value to the maximum, the up arrow in
the spinbox is grayed out (Figure 9-7).

Figure 9-7. A spinbox at its maximum value

As with all the other input types I’ve discussed in this chapter, browsers that don’t
support type="number" will treat it as type="text". The default value will show up in
the field (since it’s stored in the value attribute), but the other attributes, like min and
max, will be ignored. You’re free to implement them yourself, or you can reuse one of
the many JavaScript frameworks that have already implemented spinbox controls. Just
check for the native HTML5 support (see “Input Types” on page 25) first, like this:

if (!Modernizr.inputtypes.number) {
 // no native support for type="number" fields
 // maybe try Dojo or some other JavaScript framework
}

Numbers As Sliders
Spinboxes, discussed in the preceding section, are not the only way to represent nu-
meric input. You’ve probably also seen “slider” controls that look like Figure 9-8.

Figure 9-8. A slider

Numbers As Sliders | 155

You can now have slider controls in your web forms, too. The markup looks eerily
similar to that for spinbox controls:

<input type="range"
 min="0"
 max="10"
 step="2"
 value="6">

The available attributes are the same as those for type="number"—min, max, step,
value—and they mean the same thing. The only difference is the user interface. Instead
of a field for typing, browsers are expected to render type="range" as a slider control.
At the time of writing, the latest versions of Safari, Chrome, and Opera all do this.
(Sadly, the iPhone renders it as a simple text box. It doesn’t even optimize its onscreen
keyboard for numeric input.) All other browsers simply treat the field as type="text",
so there’s no reason you can’t start using type="range" immediately.

Date Pickers
HTML 4 did not include a date picker control. Various JavaScript frameworks have
picked up the slack—for example, Dojo, jQuery UI, YUI, and Closure Library—but of
course each of these solutions requires “buying into” the framework on which the date
picker is built.

HTML5 finally defines a way to include a native date picker control without having
to script it yourself. In fact, it defines six: date, month, week, time, date + time, and
date + time – timezone.

So far, as Table 9-4 illustrates, support is...sparse.

Table 9-4. Date picker support

Input type Opera Every other browser

type="date" 9.0+ •

type="month" 9.0+ •

type="week" 9.0+ •

type="time" 9.0+ •

type="datetime" 9.0+ •

type="datetime-local" 9.0+ •

Figure 9-9 shows how Opera renders an <input type="date">.

If you need a time to go with that date, Opera also supports <input type="date
time">, as shown in Figure 9-10.

If you only need a month and year (perhaps a credit card expiration date), Opera can
render an <input type="month">, as shown in Figure 9-11.

156 | Chapter 9: A Form of Madness

http://docs.dojocampus.org/dijit/form/DateTextBox
http://docs.jquery.com/UI/Datepicker
http://developer.yahoo.com/yui/calendar/
http://closure-library.googlecode.com/svn/docs/class_goog_ui_DatePicker.html
http://diveintohtml5.org/examples/input-type-date.html
http://diveintohtml5.org/examples/input-type-datetime.html
http://diveintohtml5.org/examples/input-type-datetime.html
http://diveintohtml5.org/examples/input-type-month.html

Less common, but also available, is the ability to pick a specific week of a year with
<input type="week">; see Figure 9-12.

Last but not least, you can pick a time with <input type="time">, as shown in
Figure 9-13.

Figure 9-9. A date picker

Figure 9-10. A date/time picker

Figure 9-11. A month picker

Date Pickers | 157

http://diveintohtml5.org/examples/input-type-week.html
http://diveintohtml5.org/examples/input-type-time.html

It’s likely that other browsers will eventually support these input types. In the mean-
time, just like type="email" (see “Email Addresses” on page 150) and the other input
types, these form fields will be rendered as plain text boxes in browsers that don’t
recognize type="date" and the other variants. If you like, you can simply use
<input type="date"> and friends, make Opera users happy, and wait for other browsers
to catch up. Alternatively, you can use <input type="date">, detect whether the browser
has native support for date pickers (see “Input Types” on page 25), and fall back to a
scripted solution of your choice:

<form>
 <input type="date">
</form>
...
<script>
 var i = document.createElement("input");
 i.setAttribute("type", "date");
 if (i.type == "text") {
 // No native date picker support :(
 // Use Dojo/jQueryUI/YUI/Closure/some other solution to create one,
 // then dynamically replace that <input> element.
 }
</script>

Search Boxes
OK, this one is subtle. Well, the idea is simple enough, but the implementations may
require some explanation. Here goes....

Figure 9-12. A week picker

Figure 9-13. A time picker

158 | Chapter 9: A Form of Madness

Search. Not just Google Search or Yahoo! Search. (Well, those too.) Think of any search
box, on any page, on any site. Amazon has a search box. Newegg has a search box.
Most blogs have a search box. How are they marked up? <input type="text">, just like
every other text box on the Web. With HTML5, we can fix that:

<form>
 <input name="q" type="search">
 <input type="submit" value="Find">
</form>

In some browsers, you won’t notice any difference from a regular text box. But if you’re
using Safari on Mac OS X, it will look like Figure 9-14.

Figure 9-14. A search box

Can you spot the difference? The input box has rounded corners! I know, I know, you
can hardly contain your excitement. But wait, there’s more! When you actually start
typing in the type="search" box, Safari inserts a small “x” button on the right side of
the box. Clicking the “x” clears the contents of the field. (Google Chrome, which shares
much technology with Safari under the hood, also exhibits this behavior.) Both of these
small tweaks are done to match the look and feel of native search boxes in iTunes and
other Mac OS X client applications (Figure 9-15).

Figure 9-15. A focused search box

The Apple website uses <input type="search"> for its site-search box, to help give the
site a “Mac-like” feel. But there’s nothing Mac-specific about it. It’s just markup, so
each browser on each platform can choose to render the search box according to plat-
form-specific conventions. As with all the other new input types, browsers that don’t
recognize type="search" will treat it like type="text", so there is absolutely no reason
not to start using type="search" for all your search boxes today.

Search Boxes | 159

http://www.apple.com/

Professor Markup Says
Well, there is one reason you might not want to use <input type="search">. Safari will
not apply the usual CSS styles to search fields. (And by “usual styles,” I mean basic
things like border, background color, background image, padding, etc.) But you do get
rounded corners!

Color Pickers
HTML5 also defines <input type="color">, which lets you pick a color and returns
that color’s hexadecimal representation. No browser supports it yet, which is a shame,
because I’ve always loved the Mac OS color picker. Maybe someday.

And One More Thing...
In this chapter, I’ve talked about new input types and new features like autofocus form
fields, but I haven’t mentioned what is perhaps the most exciting part of HTML5 forms:
automatic input validation. Consider the common problem of entering an email ad-
dress into a web form. You probably have some client-side validation in JavaScript,
followed by server-side validation in PHP or Python or some other server-side scripting
language. There are two big problems with validating email addresses in JavaScript:

• A surprising number of your visitors (probably around 10 percent) won’t have
JavaScript enabled.

• You’ll get it wrong.

Seriously, you’ll get it wrong. Determining whether a random string of characters is a
valid email address is unbelievably complicated. The harder you look, the more com-
plicated it gets. Did I mention it’s really, really complicated? Wouldn’t it be easier to
offload the entire headache to your browser?

The screenshot in Figure 9-16 is from Opera 10, although the functionality has been
present since Opera 9. The only markup involved is setting the type attribute to
"email" (see “Email Addresses” on page 150). When an Opera user tries to submit a
form with an <input type="email"> field, Opera automatically offers RFC-compliant
email validation, even if scripting is disabled.

Figure 9-16. Opera validates type=“email”

160 | Chapter 9: A Form of Madness

http://bit.ly/9HkeNn
http://earthlingsoft.net/ssp/blog/2006/04/colour_me_picked
http://www.regular-expressions.info/email.html
http://www.ex-parrot.com/pdw/Mail-RFC822-Address.html
http://www.ex-parrot.com/pdw/Mail-RFC822-Address.html
http://haacked.com/archive/2007/08/21/i-knew-how-to-validate-an-email-address-until-i.aspx

Opera also offers validation of web addresses entered into <input type="url"> fields
and numbers in <input type="number"> fields. The validation of numbers even takes
into account the min and max attributes, so Opera will not let users submit the form if
they enter a number that is too large (Figure 9-17).

Unfortunately, no other browser supports automatic HTML5 form validation yet, so
you’re going to be stuck with script-based fallbacks for a little while.

Further Reading
Specifications and standards:

• <input> types

• The <input placeholder> attribute

• The <input autofocus> attribute

JavaScript libraries:

• Modernizr, an HTML5 detection library

Figure 9-17. Opera validates type=”number”

Further Reading | 161

http://bit.ly/akweH4
http://bit.ly/caGl8N
http://bit.ly/db1Fj4
http://www.modernizr.com

CHAPTER 10

“Distributed,” “Extensibility,” and
Other Fancy Words

Diving In
There are over 100 elements in HTML5. Some are purely semantic (see Chapter 3), and
others are just containers for scripted APIs (see Chapter 4). Throughout the history of
HTML (see Chapter 1), standards wonks have argued about which elements should be
included in the language. Should HTML include a <figure> element? A <person> ele-
ment? How about a <rant> element? Decisions are made, specs are written, authors
author, implementors implement, and the Web lurches ever forward.

Of course, HTML can’t please everyone. No standard can. Some ideas don’t make the
cut. For example, there is no <person> element in HTML5. (There’s no <rant> element
either, damn it!) There’s nothing stopping you from including a <person> element in a
web page, but it won’t validate, it won’t work consistently across browsers (see “A
Long Digression into How Browsers Handle Unknown Elements” on page 42), and it
might conflict with future HTML specs if it’s added later.

So if making up your own elements isn’t the answer, what’s a semantically inclined
web author to do? There have been attempts to extend previous versions of HTML.
The most popular method is with microformats, which use the class and rel attributes
in HTML 4. Another option is RDFa, which was originally designed to be used in
XHTML (see “Postscript” on page 14) but is now being ported to HTML as well.

Both microformats and RDFa have their strengths and weaknesses. They take radically
different approaches toward the same goal: extending web pages with additional se-
mantics that are not part of the core HTML language. I don’t intend to turn this chapter
into a format flamewar. (That would definitely require a <rant> element!) Instead, I
want to focus on a third option that is part of, and tightly integrated into, HTML5 itself:
microdata.

163

http://simon.html5.org/html5-elements
http://html5.validator.nu
http://microformats.org
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdfa-in-html/

What Is Microdata?
Each word in the following sentence is important, so pay attention.

Professor Markup Says
Microdata annotates the DOM with scoped name/value pairs from custom
vocabularies.

Now what does that mean? Let’s start from the end and work backward. Microdata
centers around custom vocabularies. Think of “the set of all HTML5 elements” as one
vocabulary. This vocabulary includes elements to represent a section or an article (see
“New Semantic Elements in HTML5” on page 41), but it doesn’t include elements to
represent a person or an event. If you want to represent a person on a web page, you’ll
need to define your own vocabulary. Microdata lets you do this. Anyone can define a
microdata vocabulary and start embedding custom properties in his own web pages.

The next thing to know about microdata is that it works with name/value pairs. Every
microdata vocabulary defines a set of named properties. For example, a Person vo-
cabulary could define properties like name and photo. To include a specific microdata
property on your web page, you provide the property name in a specific place. De-
pending on where you declare the property name, microdata has rules about how to
extract the property value. (More on this in the next section.)

Along with named properties, microdata relies heavily on the concept of “scoping.”
The simplest way to think of microdata scoping is to think about the natural
parent-child relationship of elements in the DOM. The <html> element (see “The Root
Element” on page 33) usually contains two children, <head> (see “The <head> Ele-
ment” on page 34) and <body>. The <body> element usually contains multiple children,
each of which may have child elements of its own. For example, your page might include
an <h1> element within an <hgroup> element within a <header> element (see “Head-
ers” on page 45) within the <body> element. Similarly, a data table might contain <td>
elements within <tr> elements within a <table> element (within the <body>). Microdata
reuses the hierarchical structure of the DOM itself to provide a way to say “all the
properties within this element are taken from this vocabulary.” This allows you to use
several microdata vocabularies on the same page. You can even nest microdata vocab-
ularies within other vocabularies, all by reusing the natural structure of the DOM. (I’ll
show multiple examples of nested vocabularies throughout this chapter.)

I’ve already touched on the DOM, but let me elaborate on that. Microdata is about
applying additional semantics to data that’s already visible on your web page. Microdata
is not designed to be a standalone data format. It’s a complement to HTML. As you’ll
see in the next section, microdata works best when you’re already using HTML cor-
rectly, but the HTML vocabulary isn’t quite expressive enough. Microdata is great for
fine-tuning the semantics of data that’s already in the DOM. If the data you’re

164 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

semantifying isn’t in the DOM, you should step back and reevaluate whether microdata
is the right solution.

Does Professor Markup’s statement make more sense now? I hope so. Let’s see how
this works in action.

The Microdata Data Model
Defining your own microdata vocabulary is easy. First you need a namespace, which
is just a URL. The namespace URL can point to a working web page, although that’s
not strictly required. Let’s say I want to create a microdata vocabulary that describes a
person. If I own the data-vocabulary.org domain, I’ll use the URL http://data-vocabu-
lary.org/Person as the namespace for my microdata vocabulary. That’s an easy way to
create a globally unique identifier: pick a URL on a domain that you control.

In this vocabulary, I need to define some named properties. Let’s start with three basic
properties:

• name (the user’s full name)

• photo (a link to a picture of the user)

• url (a link to a site associated with the user, like a blog or a Google profile)

Two of these properties are URLs, and the other is plain text. Each of them lends itself
to a natural form of markup, even before you start thinking about microdata or vo-
cabularies. Imagine that you have a profile page or an “about” page. Your name is
probably marked up as a heading, like an <h1> element. Your photo is probably an
 element, since you want people to see it. And any URLs associated with your
profile are probably already marked up as hyperlinks, because you want people to be
able to click them. For the sake of discussion, let’s say your entire profile is also wrapped
in a <section> element to separate it from the rest of the page content. Thus:

<section>
 <h1>Mark Pilgrim</h1>
 <p></p>
 <p>weblog</p>
</section>

Microdata’s data model is name/value pairs. A microdata property name (like name or
photo or url in this example) is always declared on an HTML element. The corre-
sponding property value is then taken from the element’s DOM. For most HTML el-
ements, the property value is simply the text content of the element. However, there
are a handful of exceptions, as Table 10-1 illustrates.

The Microdata Data Model | 165

Table 10-1. Where do microdata property values come from?

Element Value

<meta> content attribute

<audio>

<embed>

<iframe>

<source>

<video>

src attribute

<a>

<area>

<link>

href attribute

<object> data attribute

<time> datetime attribute

All other elements Text content

“Adding microdata” to your page is a matter of adding a few attributes to the HTML
elements you already have. The first thing you always do is declare which microdata
vocabulary you’re using, by adding an itemtype attribute. The second thing you always
do is declare the scope of the vocabulary, using an itemscope attribute. In this example,
all the data we want to semantify is in a <section> element, so we’ll declare the
itemtype and itemscope attributes on the <section> element:

<section itemscope itemtype="http://data-vocabulary.org/Person">

Your name is the first bit of data within the <section> element. It’s wrapped in an
<h1> element. The <h1> element doesn’t require any special processing, so it falls under
the “all other elements” rule in Table 10-1, where the microdata property value is simply
the text content of an element (this would work equally well if your name was wrapped
in a <p>, <div>, or element):

<h1 itemprop="name">Mark Pilgrim</h1>

In English, this says: “Here is the name property of the http://data-vocabulary.org/
Person vocabulary. The value of the property is Mark Pilgrim.”

Next up is the photo property. This is supposed to be a URL. According to Ta-
ble 10-1, the “value” of an element is its src attribute. Hey look, the URL of your
profile photo is already in an attribute! All you need to do is declare that the
 element is the photo property:

<p><img itemprop="photo"
 src="http://www.example.com/photo.jpg"
 alt="[me smiling]"></p>

166 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

In English, this says: “Here is the photo property of the http://data-vocabulary.org/
Person vocabulary. The value of the property is http://www.example.com/photo.jpg.”

Finally, the url property is also a URL. According to Table 10-1, the “value” of an
<a> element is its href attribute. And once again, this fits perfectly with your existing
markup. All you need to do is say that your existing <a> element is the url property:

dive into mark

In English, this says: “Here is the url property of the http://data-vocabulary.org/
Person vocabulary. The value of the property is http://diveintomark.org/.”

Of course, if your markup looks a little different, that’s not a problem. You can add
microdata properties and values to any HTML markup, even really gnarly 20th
century era, tables-for-layout, oh-God-why-did-I-agree-to-maintain-this markup.
While I don’t recommend this kind of markup, it is still very common, and you can
still add microdata to it:

<TABLE>
 <TR><TD>Name<TD>Mark Pilgrim
 <TR><TD>Link<TD>
 http://diveintomark.org/
</TABLE>

To mark up the name property, just add an itemprop attribute on the table cell that
contains the name. Table cells have no special rules in the microdata property value
table, so they get the default value, where the microdata property is the text content:

<TR><TD>Name<TD itemprop="name">Mark Pilgrim

Adding the url property looks trickier. This markup doesn’t use the <a> element prop-
erly. Instead of putting the link target in the href attribute, it has nothing useful in the
href attribute and it uses JavaScript in the onclick attribute to call a function (not
shown) that extracts the URL and navigates to it. For extra “oh crap, please stop doing
that” bonus points, let’s pretend that the function also opens the link in a tiny pop-up
window with no scroll bars. Wasn’t the Internet fun last century?

Anyway, you can still convert this into a microdata property; you just need to be a little
creative. Using the <a> element directly is out of the question. The link target isn’t in
the href attribute, and there’s no way to override the rule that says “in an <a> element,
look for the microdata property value in the href attribute.” But you can add a wrapper
element around the entire mess, and use that to add the url microdata property:

<TABLE itemscope itemtype="http://data-vocabulary.org/Person">
 <TR><TD>Name<TD>Mark Pilgrim
 <TR><TD>Link<TD>

 http://diveintomark.org/

</TABLE>

The Microdata Data Model | 167

Because the element has no special processing, it uses the default rule, “the
microdata property is the text content.” “Text content” doesn’t mean “all the markup
inside this element” (like you would get with, say, the innerHTML DOM property). It
means “just the text, ma’am.” In this case, http://diveintomark.org/ is the text content
of the <a> element inside the element.

To sum up: you can add microdata properties to any markup. You’ll find it easier to
add microdata if you’re using HTML correctly than if your HTML markup sucks, but
it can always be done.

Marking Up People
The starter examples in the previous section weren’t completely made up. There really
is a microdata vocabulary for marking up information about people, and it really is that
easy. Let’s take a closer look.

The easiest way to integrate microdata into a personal website is on your “about” page.
You do have an “about” page, don’t you? If not, you can follow along as I extend this
sample “about” page with additional semantics. The final result is here: http://divein
tohtml5.org/examples/person-plus-microdata.html.

Let’s look at the raw markup first, before any microdata properties have been added:

<section>
 <img width="204" height="250"
 src="http://diveintohtml5.org/examples/2000_05_mark.jpg"
 alt="[Mark Pilgrim, circa 2000]">

 <h1>Contact Information</h1>
 <dl>
 <dt>Name</dt>
 <dd>Mark Pilgrim</dd>

 <dt>Position</dt>
 <dd>Developer advocate for Google, Inc.</dd>

 <dt>Mailing address</dt>
 <dd>
 100 Main Street

 Anytown, PA 19999

 USA
 </dd>
 </dl>
 <h1>My Digital Footprints</h1>

 weblog
 Google profile
 Reddit.com profile
 Twitter

</section>

168 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

http://diveintohtml5.org/examples/person.html
http://diveintohtml5.org/examples/person.html
http://diveintohtml5.org/examples/person-plus-microdata.html
http://diveintohtml5.org/examples/person-plus-microdata.html

The first thing you always need to do is declare the vocabulary you’re using and the
scope of the properties you want to add. You do this by adding the itemtype and
itemscope attributes on the outermost element that contains the other elements that
contain the actual data. In this case, that’s a <section> element:

<section itemscope itemtype="http://data-vocabulary.org/Person">

You can follow along online with the changes made throughout this
section. Before: http://diveintohtml5.org/examples/person.html; after:
http://diveintohtml5.org/examples/person-plus-microdata.html.

Now you can start defining microdata properties from the http://data-vocabu
lary.org/Person vocabulary. But what are those properties? As it happens, you can see
the list of properties by navigating to http://data-vocabulary.org/Person. The microdata
specification does not require this, but I’d say it’s certainly a “best practice.” After all,
if you want developers to actually use your microdata vocabulary, you need to docu-
ment it. And where better to put your documentation than the vocabulary URL itself?
Table 10-2 lists the properties of the Person vocabulary.

Table 10-2. Person vocabulary

Property Description

name Name

nickname Nickname

photo An image link

title The person’s title (for example, “Financial Manager”)

role The person’s role (for example, “Accountant”)

url Link to a web page, such as the person’s home page

affiliation The name of an organization with which the person is associated (for example, an employer)

friend Identifies a social relationship between the person described and another person

contact Identifies a social relationship between the person described and another person

acquaintance Identifies a social relationship between the person described and another person

address The location of the person (can have the subproperties street-address, locality, region,
postal-code, and country-name)

The first thing in this sample “about” page is a picture of me. Naturally, it’s marked
up with an element. To declare that this element is my profile picture, all
we need to do is add itemprop="photo" to it:

<img itemprop="photo" width="204" height="250"
 src="http://diveintohtml5.org/examples/2000_05_mark.jpg"
 alt="[Mark Pilgrim, circa 2000]">

Marking Up People | 169

http://diveintohtml5.org/examples/person.html
http://diveintohtml5.org/examples/person-plus-microdata.html
http://data-vocabulary.org/Person

Where’s the microdata property value? It’s already there, in the src attribute. If you
recall from Table 10-1, the “value” of an element is its src attribute. Every
 element has a src attribute—otherwise it would just be a broken image—and the
src is always a URL. See? If you’re using HTML correctly, microdata is easy.

Furthermore, this element isn’t alone on the page. It’s a child element of the
<section> element, the one we just declared with the itemscope attribute. Microdata
reuses the parent-child relationships of elements on the page to define the scoping of
microdata properties. In plain English, we’re saying: “This <section> element repre-
sents a person. Any microdata properties you might find on the children of
the <section> element are properties of that person.” If it helps, you can think of the
<section> element as the subject of a sentence. The itemprop attribute represents the
verb of the sentence—something like “is pictured at”—and the microdata property
value represents the object of the sentence:

This person [explicit, from <section itemscope itemtype="...">]

is pictured at [explicit, from]

http://diveintohtml5.org/examples/2000_05_mark.jpg [implicit, from
attribute]

The subject only needs to be defined once, by putting itemscope and itemtype
attributes on the outermost <section> element. The verb is defined by putting the
itemprop="photo" attribute on the element. The object of the sentence doesn’t
need any special markup at all, because Table 10-1 says that the property value of an
 element is its src attribute.

Moving on to the next bit of markup, we see an <h1> header and the beginnings of a
<dl> list. Neither the <h1> nor the <dl> needs to be marked up with microdata. Not
every piece of HTML needs to be a microdata property. Microdata is about the prop-
erties themselves, not the markup or headers surrounding the properties. This <h1>
isn’t a property; it’s just a header. Similarly, the <dt> that says “Name” is just a label,
not a property:

<h1>Contact Information</h1>
 <dl>
 <dt>Name</dt>
 <dd>Mark Pilgrim</dd>

So where is the real information? It’s in the <dd> element, so that’s where we need to
put the itemprop attribute. Which property is it? It’s the name property. Where is the
property value? It’s the text within the <dd> element. Does that need to be marked up?
Table 10-1 says no, <dd> elements have no special processing, so the property value is
just the text within the element:

<dd itemprop="name">Mark Pilgrim</dd>

What did we just say, in English? “This person’s name is Mark Pilgrim.” Well OK then.
Onward.

170 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

The next two properties are a little tricky. This is the markup, pre-microdata:

<dt>Position</dt>
<dd>Developer advocate for Google, Inc.</dd>

If you look at the definition of the Person vocabulary, the text “Developer advocate for
Google, Inc.” actually encompasses two properties: title (“Developer advocate”) and
affiliation (“Google, Inc.”). How can you express that in microdata? The short answer
is, you can’t. Microdata doesn’t have a way to break up runs of text into separate
properties. You can’t say “the first 18 characters of this text are one microdata property,
and the last 12 characters of this text are another microdata property.”

But all is not lost. Imagine that you wanted to style the text “Developer advocate” in a
different font from the text “Google, Inc.” CSS can’t do that either. So what would you
do? You would first need to wrap the different bits of text in dummy elements, like
, then apply different CSS rules to each element.

This technique is also useful for microdata. There are two distinct pieces of information
here: a title and an affiliation. If you wrap each piece in a dummy element,
you can declare that each is a separate microdata property:

<dt>Position</dt>
<dd>Developer advocate for
 Google, Inc.</dd>

Ta-da! In English, this says: “This person’s title is ‘Developer advocate.’ This person is
employed by Google, Inc.” Two sentences, two microdata properties. A little more
markup, but a worthwhile tradeoff.

The same technique is useful for marking up street addresses. The Person vocabulary
defines an address property, which itself is a microdata item. That means the address
has its own vocabulary (http://data-vocabulary.org/Address) and defines its own prop-
erties: street-address, locality, region, postal-code, and country-name.

If you’re a programmer, you are probably familiar with dot notation to define objects
and their properties. Think of the relationship like this:

• Person

• Person.address

• Person.address.street-address

• Person.address.locality

• Person.address.region

• Person.address.postal-code

• Person.address.country-name

In this example, the entire street address is contained in a single <dd> element. (Once
again, the <dt> element is just a label, so it plays no role in adding semantics with

Marking Up People | 171

microdata.) Notating the address property is easy. Just add an itemprop attribute on
the <dd> element:

<dt>Mailing address</dt>
<dd itemprop="address">

But remember, the address property is itself a microdata item. That means we need to
add the itemscope and itemtype attributes too:

<dt>Mailing address</dt>
<dd itemprop="address" itemscope
 itemtype="http://data-vocabulary.org/Address">

We’ve seen all of this before, but only for top-level items. A <section> element defines
itemtype and itemscope, and all the elements within the <section> element that define
microdata properties are “scoped” within that specific vocabulary. But this is the first
time we’ve seen nested scopes—defining a new itemtype and itemscope (on the <dd>
element) within an existing one (on the <section> element). This nested scope works
exactly like the HTML DOM. The <dd> element has a certain number of child elements,
all of which are scoped to the vocabulary defined on the <dd> element. Once the <dd>
element is closed with a corresponding </dd> tag, the scope reverts to the vocabulary
defined by the parent element (<section>, in this case).

The properties of the Address vocabulary suffer the same problem we encountered with
the title and affiliation properties. There’s just one long run of text, but we want to
break it up into several separate microdata properties. The solution is the same. We
wrap each distinct piece of information in a dummy element, then declare mi-
crodata properties on each element:

 <dd itemprop="address" itemscope
 itemtype="http://data-vocabulary.org/Address">
 100 Main Street

 Anytown,
 PA
 19999
 USA
 </dd>
</dl>

In English: “This person has a mailing address. The street address part of the mailing
address is ‘100 Main Street.’ The locality part is ‘Anytown.’ The region is ‘PA.’ The
postal code is ‘19999.’ The country name is ‘USA.’” Easy peasy.

Ask Professor Markup
Q: Is this mailing address format U.S.-specific?

A: No. The properties of the Address vocabulary are generic enough that they can
describe most mailing addresses in the world. Not all addresses will have values for
every property, but that’s OK. Some addresses might require fitting more than one
“line” into a single property, but that’s OK too. For example, if your mailing address

172 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

has a street address and a suite number, they would both go into the street-address
subproperty:

<p itemprop="address" itemscope
 itemtype="http://data-vocabulary.org/Address">

 100 Main Street
 Suite 415

 ...
</p>

There’s one more thing on this sample “about” page: a list of URLs. The Person vo-
cabulary has a property for this, called url. A url property can be anything, really.
(Well, it has to be a URL, but you probably guessed that.) What I mean is that the
definition of the url property is very loose. The property can be any sort of URL that
you want to associate with a Person: a blog, a photo gallery, or a profile on another site
like Facebook or Twitter.

The other important thing to note here is that a single Person can have multiple url
properties. Technically, any property can appear more than once, but until now, we
haven’t taken advantage of that. For example, you could have two photo properties,
each pointing to a different image URL. Here, I want to list four different URLs: my
weblog, my Google profile page, my user profile on Reddit, and my Twitter account.
In HTML, that’s a list of links: four <a> elements, each in its own element. In
microdata, each <a> element gets an itemprop="url" attribute:

<h1>My Digital Footprints</h1>

 <a href="http://diveintomark.org/"
 itemprop="url">weblog
 <a href="http://www.google.com/profiles/pilgrim"
 itemprop="url">Google profile
 <a href="http://www.reddit.com/user/MarkPilgrim"
 itemprop="url">Reddit.com profile
 <a href="http://www.twitter.com/diveintomark"
 itemprop="url">Twitter

According to Table 10-1, <a> elements have special processing. The microdata property
value is the href attribute, not the child text content. The text of each link is actually
ignored by a microdata processor. Thus, in English, this says: “This person has a URL
at http://diveintomark.org/. This person has another URL at http://www.google.com/
profiles/pilgrim. This person has another URL at http://www.reddit.com/user/MarkPil-
grim. This person has another URL at http://www.twitter.com/diveintomark.”

Marking Up People | 173

Introducing Google Rich Snippets
I want to step back for just a moment and ask, “Why are we doing this?” Are we adding
semantics just for the sake of adding semantics? Don’t get me wrong; I enjoy fiddling
with angle brackets as much as the next webhead. But why microdata? Why bother?

There are two major classes of applications that consume HTML and, by extension,
HTML5 microdata:

• Web browsers

• Search engines

For browsers, HTML5 defines a set of DOM APIs for extracting microdata items,
properties, and property values from a web page. As I write this, no browser supports
this API. Not a single one. So that’s...kind of a dead end, at least until browsers catch
up and implement the client-side APIs.

The other major consumer of HTML is search engines. What could a search engine do
with microdata properties about a person? Imagine this: instead of simply displaying
the page title and an excerpt of text, the search engine could integrate some of that
structured information and display it. Full name, job title, employer, address, maybe
even a little thumbnail of a profile photo. Would that catch your attention? It would
catch mine.

Google supports microdata as part of its Rich Snippets program. When Google’s
web crawler parses your page and finds microdata properties that conform to the
http://data-vocabulary.org/Person vocabulary, it parses out those properties and
stores them alongside the rest of the page data. Google even provides a handy tool that
shows how Google “sees” your microdata properties. Testing it against our sample
microdata-enabled “about” page yields this output:

Item
 Type: http://data-vocabulary.org/person
 photo = http://diveintohtml5.org/examples/2000_05_mark.jpg
 name = Mark Pilgrim
 title = Developer advocate
 affiliation = Google, Inc.
 address = Item(1)
 url = http://diveintomark.org/
 url = http://www.google.com/profiles/pilgrim
 url = http://www.reddit.com/user/MarkPilgrim
 url = http://www.twitter.com/diveintomark

Item 1
 Type: http://data-vocabulary.org/address
 street-address = 100 Main Street
 locality = Anytown
 region = PA
 postal-code = 19999
 country-name = USA

174 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

http://bit.ly/dBGnqr
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=99170
http://www.google.com/webmasters/tools/richsnippets
http://www.google.com/webmasters/tools/richsnippets
http://diveintohtml5.org/examples/person-plus-microdata.html
http://diveintohtml5.org/examples/person-plus-microdata.html

It’s all there: the photo property from the attribute, all four URLs from the
list of <a href> attributes, and even the address object (listed as “Item 1”) and all five
of its subproperties.

And how does Google use all of this information? That depends. There are no hard-
and-fast rules about how microdata properties should be displayed, which ones should
be displayed, or whether they should be displayed at all. If someone searches for “Mark
Pilgrim,” and Google determines that this “about” page should rank in the results,
and Google decides that the microdata properties it originally found on that page are
worth displaying, the search result listing might look something like Figure 10-1.

Figure 10-1. Sample search result for a microdata-enhanced Person listing

The first line, “About Mark Pilgrim,” is actually the title of the page, given in the
<title> element. That’s not terribly exciting; Google does that for every page. But the
second line is full of information taken directly from the microdata annotations we
added to the page. “Anytown PA” was part of the mailing address, marked up with the
http://data-vocabulary.org/Address vocabulary. “Developer advocate” and “Google,
Inc.” were two properties from the http://data-vocabulary.org/Person vocabulary
(title and affiliation, respectively).

This is really quite amazing. You don’t need to be a large corporation making special
deals with search engine vendors to customize your search result listings. Just take 10
minutes and add a couple of HTML attributes to annotate the data you were already
publishing anyway.

Ask Professor Markup
Q: I did everything you said, but my Google search result listing doesn’t look any different.
What gives?

A: “Google does not guarantee that markup on any given page or site will be used in
search results” (http://www.google.com/support/webmasters/bin/answer.py?
hl=en&answer=99170). But even if Google decides not to use your microdata annota-
tions, another search engine might. Like the rest of HTML5, microdata is an open
standard that anyone can implement. It’s your job to provide as much data as possible.
Let the rest of the world decide what to do with it. They might surprise you!

Marking Up People | 175

http://www.google.com/support/webmas ters/bin/answer.py?hl=en&answer=99170
http://www.google.com/support/webmas ters/bin/answer.py?hl=en&answer=99170

Marking Up Organizations
Microdata isn’t limited to a single vocabulary. “About” pages are nice, but you probably
only have one of them. Still hungry for more? Let’s learn how to mark up organizations
and businesses.

I’ve created a sample page of business listings. Let’s look at the original HTML markup,
without microdata:

<article>
 <h1>Google, Inc.</h1>
 <p>
 1600 Amphitheatre Parkway

 Mountain View, CA 94043

 USA
 </p>
 <p>650-253-0000</p>
 <p>Google.com</p>
</article>

You can follow along online with the changes made throughout this
section. Before: http://diveintohtml5.org/examples/organization.html;
after: http://diveintohtml5.org/examples/organization-plus-microdata
.html.

Short and sweet. All the information about the organization is contained within the
<article> element, so let’s start there:

<article itemscope itemtype="http://data-vocabulary.org/Organization">

As with marking up people, you need to set the itemscope and itemtype attributes on
the outermost element. In this case, the outermost element is an <article> element.
The itemtype attribute declares the microdata vocabulary you’re using (in this case,
http://data-vocabulary.org/Organization), and the itemscope attribute declares that all
of the properties you set on child elements relate to this vocabulary.

So what’s in the Organization vocabulary? It’s very simple and straightforward. In fact,
some of it should already look familiar. Table 10-3 lists the relevant properties.

Table 10-3. Organization vocabulary

Property Description

name The name of the organization (for example, “Initech”).

url A link to the organization’s home page.

address The location of the organization. Can contain the subproperties street-address, locality, region,
postal-code, and country-name.

tel The telephone number of the organization.

geo The geographical coordinates of the location. Always contains two subproperties, latitude and longitude.

176 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

http://diveintohtml5.org/examples/organization.html
http://diveintohtml5.org/examples/organization.html
http://diveintohtml5.org/examples/organization-plus-microdata.html
http://diveintohtml5.org/examples/organization-plus-microdata.html

The first bit of markup within the outermost <article> element is an <h1>. This <h1>
element contains the name of a business, so we’ll put an itemprop="name" attribute
directly on it:

<h1 itemprop="name">Google, Inc.</h1>

According to Table 10-1, <h1> elements don’t need any special processing. The micro-
data property value is simply the text content of the <h1> element. In English, we just
said: “The name of the Organization is ‘Google, Inc.’”

Next up is a street address. Marking up the address of an Organization works
exactly the same way as marking up the address of a Person. First, add an
itemprop="address" attribute to the outermost element of the street address (in this
case, a <p> element). That states that this is the address property of the Organization.
But what about the properties of the address itself? We also need to define the item
type and itemscope attributes to say that this is an Address item that has its own
properties:

<p itemprop="address" itemscope
 itemtype="http://data-vocabulary.org/Address">

Finally, we need to wrap each distinct piece of information in a dummy element
so we can add the appropriate microdata property name (street-address, locality,
region, postal-code, and country-name) on each element:

<p itemprop="address" itemscope
 itemtype="http://data-vocabulary.org/Address">
 1600 Amphitheatre Parkway

 Mountain View,
 CA
 94043

 USA
</p>

In English, we just said: “This Organization has an address. The street address part is
‘1600 Amphitheatre Parkway’. The locality is ‘Mountain View’. The region part is ‘CA’.
The postal code is ‘94043’. The name of the country is ‘USA’.”

Next up: a telephone number for the Organization. Telephone numbers are notoriously
tricky, and the exact syntax is country-specific. (And if you want to call another country,
it’s even worse.) In this example, we have a United States telephone number, in a format
suitable for calling from elsewhere in the United States:

<p itemprop="tel">650-253-0000</p>

(Hey, in case you didn’t notice, the Address vocabulary went out of scope when its
<p> element was closed. Now we’re back to defining properties in the Organization
vocabulary.)

If you want to list several telephone numbers—maybe one for United States customers
and one for international customers—you can do that. Any microdata property can be

Marking Up Organizations | 177

repeated. Just make sure each telephone number is in its own HTML element, separate
from any label you may give it:

<p>
 US customers: 650-253-0000

 UK customers: 00 + 1* + 6502530000
</p>

According to Table 10-1, neither the <p> element nor the element has special
processing. The value of the microdata tel property is simply the text content. The
Organization microdata vocabulary makes no attempt to subdivide the different parts
of a telephone number. The entire tel property is just freeform text. If you want to put
the area code in parentheses, or use spaces instead of dashes to separate the numbers,
you can do that. If a microdata-consuming client wants to parse the telephone number,
that’s entirely up to it.

Next, we have another familiar property: url. Just like associating a URL with a Person
as described in the preceding section, you can associate a URL with an Organization.
This could be the company’s home page, a contact page, a product page, or anything
else. If it’s a URL about, from, or belonging to the Organization, mark it up with an
itemprop="url" attribute:

<p>Google.com</p>

According to Table 10-1, the <a> element has special processing. The microdata prop-
erty value is the value of the href attribute, not the link text. In English, this says: “This
organization is associated with the URL http://www.google.com/.” It doesn’t say
anything more specific about the association, and it doesn’t include the link text,
“Google.com.”

Finally, I want to talk about geolocation. No, not the W3C geolocation API (see Chap-
ter 6). I’m talking about how to mark up the physical location for an Organization using
microdata.

To date, all of our examples have focused on marking up visible data. That is, you have
an <h1> with a company name, so you add an itemprop attribute to the <h1> element to
declare that the (visible) header text is, in fact, the name of an Organization. Or you
have an element that points to a photo, so you add an itemprop attribute to the
 element to declare that the (visible) image is a photo of a Person.

In this example, geolocation information isn’t like that. There is no visible text that
gives the exact latitude and longitude (to four decimal places!) of the Organization. In
fact, the sample Organization page without microdata has no geolocation information
at all. It has a link to Google Maps, but even the URL of that link does not contain
latitude and longitude coordinates. (It contains similar information in a Google-specific
format.) Even if we had a link to a hypothetical online mapping service that did take
latitude and longitude coordinates as URL parameters, microdata has no way of sep-
arating out the different parts of a URL. You can’t declare that the first URL query

178 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

http://www.google.com/
http://diveintohtml5.org/examples/organization.html

parameter is the latitude, the second URL query parameter is the longitude, and the
rest of the query parameters are irrelevant.

To handle edge cases like this, HTML5 provides a way to annotate invisible data. This
technique should only be used as a last resort. If there is a way to display or render the
data you care about, you should do so. Invisible data that only machines can read tends
to “go stale” very quickly. That is, it’s likely that someone will come along later and
update the visible text but forget to update the invisible data. This happens more often
than you think, and it will happen to you too.

Still, there are cases where invisible data is unavoidable. Perhaps your boss really wants
machine-readable geolocation information but doesn’t want to clutter up the interface
with pairs of incomprehensible six-digit numbers. Invisible data is the only option. The
only saving grace here is that you can put the invisible data immediately after the visible
text that it describes, which may help remind the person who comes along later and
updates the visible text that she needs to update the invisible data right after it.

In this example, we can create a dummy element within the same <article>
element as all the other Organization properties, then put the invisible geolocation data
inside the element:

 <span itemprop="geo" itemscope
 itemtype="http://data-vocabulary.org/Geo">
 <meta itemprop="latitude" content="37.4149" />
 <meta itemprop="longitude" content="-122.078" />

</article>

Geolocation information is defined in its own vocabulary, like the address of a Person
or Organization. Therefore, this element needs three attributes:

itemprop="geo"
Says that this element represents the geo property of the surrounding Organization.

itemtype="http://data-vocabulary.org/Geo"
Says which microdata vocabulary this element’s properties conform to.

itemscope
Says that this element is the enclosing element for a microdata item with its own
vocabulary (given in the itemtype attribute). All the properties within this element
are properties of the Geo vocabulary (http://data-vocabulary.org/Geo), not the
surrounding Organization vocabulary (http://data-vocabulary.org/Organiza
tion).

The next big question that this example answers is, “How do you annotate invisible
data?” You do this with the <meta> element. In previous versions of HTML, you could
only use the <meta> element within the <head> of your page (see “The <head> Ele-
ment” on page 34). In HTML5, you can use the <meta> element anywhere. And that’s
exactly what we’re doing here:

<meta itemprop="latitude" content="37.4149" />

Marking Up Organizations | 179

According to Table 10-1, the <meta> element has special processing. The microdata
property value is the content attribute. Since this attribute is never visibly displayed,
we have the perfect setup for unlimited quantities of invisible data. With great power
comes great responsibility. In this case, the responsibility is on you to ensure that this
invisible data stays in sync with the visible text around it.

There is no direct support for the Organization vocabulary in Google Rich Snippets,
so I don’t have any pretty sample search result listings to show you. But organizations
feature heavily in the next two case studies, events and reviews, and those are supported
by Google Rich Snippets.

Marking Up Events
Stuff happens. Some stuff happens at predetermined times. Wouldn’t it be nice if you
could tell search engines exactly when stuff was about to happen? There’s an angle
bracket for that.

Let’s start by looking at a sample schedule of my speaking engagements:

<article>
 <h1>Google Developer Day 2009</h1>
 <img width="300" height="200"
 src="http://diveintohtml5.org/examples/gdd-2009-prague-pilgrim.jpg"
 alt="[Mark Pilgrim at podium]">
 <p>
 Google Developer Days are a chance to learn about Google
 developer products from the engineers who built them. This
 one-day conference includes seminars and "office hours"
 on web technologies like Google Maps, OpenSocial, Android,
 AJAX APIs, Chrome, and Google Web Toolkit.
 </p>
 <p>
 <time datetime="2009-11-06T08:30+01:00">2009 November 6, 8:30</time>
 –
 <time datetime="2009-11-06T20:30+01:00">20:30</time>
 </p>
 <p>
 Congress Center

 5th května 65

 140 21 Praha 4

 Czech Republic
 </p>
 <p>
 GDD/Prague home page</p>
</article>

You can follow along online with the changes made throughout this
section. Before: http://diveintohtml5.org/examples/event.html; after:
http://diveintohtml5.org/examples/event-plus-microdata.html.

180 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

http://diveintohtml5.org/examples/event.html
http://diveintohtml5.org/examples/event.html
http://diveintohtml5.org/examples/event-plus-microdata.html

All the information about the event is contained within the <article> element, so that’s
where we need to put the itemtype and itemscope attributes:

<article itemscope itemtype="http://data-vocabulary.org/Event">

The URL for the Event vocabulary is http://data-vocabulary.org/Event, which also hap-
pens to contain a nice little chart describing the vocabulary’s properties. And what are
those properties? Table 10-4 lists them.

Table 10-4. Event vocabulary

Property Description

summary The name of the event.

url A link to the event details page.

location The location or venue of the event. Can optionally be represented by a nested Organization (see “Marking
Up Organizations” on page 176) or Address (see “Marking Up People” on page 171).

description A description of the event.

startDate The starting date and time of the event in ISO date format.

endDate The ending date and time of the event in ISO date format.

duration The duration of the event in ISO duration format.

eventType The category of the event (for example, “Concert” or “Lecture”). This is a freeform string, not an enumerated
attribute.

geo The geographical coordinates of the location. Always contains two subproperties, latitude and
longitude.

photo A link to a photo or image related to the event.

The Event’s name is in an <h1> element. According to Table 10-1, <h1> elements have
no special processing. The microdata property value is simply the text content of the
<h1> element. So, all we need to do is add the itemprop attribute to declare that this
<h1> element contains the name of the Event:

<h1 itemprop="summary">Google Developer Day 2009</h1>

In English, this says: “The name of this Event is ‘Google Developer Day 2009.’”

This event listing has a photo, which can be marked up with the photo property. As
you would expect, the photo is already marked up with an element. Like
the photo property in the Person vocabulary (see “The Microdata Data
Model” on page 166), the Event photo property is a URL. Since Table 10-1 says that
the property value of an element is its src attribute, the only thing we need to do
is add the itemprop attribute to the element:

<img itemprop="photo" width="300" height="200"
 src="http://diveintohtml5.org/examples/gdd-2009-prague-pilgrim.jpg"
 alt="[Mark Pilgrim at podium]">

Marking Up Events | 181

http://data-vocabulary.org/Event
http://www.iso.org/iso/date_and_time_format
http://www.iso.org/iso/date_and_time_format
http://en.wikipedia.org/wiki/ISO_8601#Durations

In English, this says: “The photo for this Event is at http://diveintohtml5.org/examples/
gdd-2009-prague-pilgrim.jpg.”

Next up is a longer description of the Event, which is just a paragraph of freeform text:

 <p itemprop="description">Google Developer Days are a chance to
learn about Google developer products from the engineers who built
them. This one-day conference includes seminars and "office
hours" on web technologies like Google Maps, OpenSocial,
Android, AJAX APIs, Chrome, and Google Web Toolkit.</p>

The next bit is something new. Events generally occur on specific dates and start and
end at specific times. In HTML5, dates and times should be marked up with the
<time> element (see “Dates and Times” on page 49), and we are already doing that here.
So the question becomes, how do we add microdata properties to these <time> ele-
ments? Looking back at Table 10-1, we see that the <time> element has special pro-
cessing. The value of a microdata property on a <time> element is the value of the
datetime attribute. And hey, the startDate and endDate properties of the Event vo-
cabulary take an ISO-style date, just like the datetime property of a <time> element.
Once again, the semantics of the core HTML vocabulary dovetail nicely with the se-
mantics of our custom microdata vocabulary. Marking up start and end dates with
microdata is as simple as:

1. Using HTML correctly in the first place (using <time> elements to mark up dates
and times)

2. Adding a single itemprop attribute:

<p>
 <time itemprop="startDate" datetime="2009-11-06T08:30+01:00">2009 November 6, 8:30</time>
 –
 <time itemprop="endDate" datetime="2009-11-06T20:30+01:00">20:30</time>
</p>

In English, this says: “This Event starts on November 6, 2009, at 8:30 in the morning,
and goes until November 6, 2009, at 20:30 (times local to Prague, GMT+1).”

Next up is the location property. The definition of the Event vocabulary says that this
can be either an Organization or an Address. In this case, the Event is being held at a
venue that specializes in conferences, the Congress Center in Prague. Marking it up as
an Organization allows us to include the name of the venue as well as its address.

First, let’s declare that the <p> element that contains the address is the location property
of the Event, and that this element is also its own microdata item that conforms to the
http://data-vocabulary.org/Organization vocabulary:

<p itemprop="location" itemscope
 itemtype="http://data-vocabulary.org/Organization">

Next, mark up the name of the Organization by wrapping the name in a dummy
 element and adding an itemprop attribute to the element:

Congress Center

182 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

http://diveintohtml5.org/examples/gdd-2009-prague-pilgrim.jpg
http://diveintohtml5.org/examples/gdd-2009-prague-pilgrim.jpg
http://data-vocabulary.org/Event

"name" is defining a property in the Organization vocabulary, not the Event vocabulary.
The <p> element defined the beginning of the scope of the Organization properties, and
that <p> element hasn’t yet been closed with a </p> tag. Any microdata properties we
define here are properties of the most recently scoped vocabulary. Nested vocabularies
are like a stack. We haven’t yet popped the stack, so we’re still talking about properties
of the Organization.

In fact, we’re going to add a third vocabulary onto the stack—an Address for the Or-
ganization for the Event:

<span itemprop="address" itemscope
 itemtype="http://data-vocabulary.org/Address">

Once again, we want to mark up every piece of the address as a separate microdata
property, so we need a slew of dummy elements to hang our itemprop attributes
onto (if I’m going too fast for you here, go back and read about marking up the address
of a Person (see “Marking Up People” on page 171) and marking up the address of an
Organization (see “Marking Up Organizations” on page 177)):

5th května 65

140 21
Praha 4

Czech Republic

There are no more properties of the Address, so we close the element that started
the Address scope and pop the stack:

There are also no more properties of the Organization, so we close the <p> element that
started the Organization scope and pop the stack again:

</p>

Now we’re back to defining properties on the Event. The next property is geo, to rep-
resent the physical location of the Event. This uses the same Geo vocabulary that we
used to mark up the physical location of an Organization in the previous section. We
need a element to act as the container; it gets the itemtype and itemscope at-
tributes. Within that element, we need two <meta> elements, one for the
latitude property and one for the longitude property:

 <meta itemprop="latitude" content="50.047893" />
 <meta itemprop="longitude" content="14.4491" />

Because we’ve closed the that contained the Geo properties, we’re back to de-
fining properties on the Event. The last property is the url property, which should look
familiar. Associating a URL with an Event works the same way as associating a URL
with a Person (see “Marking Up People” on page 173) and associating a URL with an
Organization (see “Marking Up Organizations” on page 178). If you’re using HTML

Marking Up Events | 183

http://en.wikipedia.org/wiki/Stack_(data_structure)

correctly (marking up hyperlinks with <a href>), declaring that the hyperlink is a mi-
crodata url property is simply a matter of adding the itemprop attribute:

 <p>
 <a itemprop="url"
 href="http://code.google.com/intl/cs/events/developerday/2009/home.html">
 GDD/Prague home page

 </p>
</article>

The sample event page also lists a second event, my speaking engagement at the ConFoo
conference in Montreal. For brevity, I’m not going to go through that markup line by
line. It’s essentially the same as the event in Prague: an Event item with nested Geo and
Address items. I just mention it in passing to reiterate that a single page can have mul-
tiple events, each marked up with microdata.

The Return of Google Rich Snippets
According to Google’s Rich Snippets Testing Tool, this is the information that Google’s
crawlers will glean from our sample event listing page:

Item
 Type: http://data-vocabulary.org/Event
 summary = Google Developer Day 2009
 eventType = conference
 photo = http://diveintohtml5.org/examples/gdd-2009-prague-pilgrim.jpg
 description = Google Developer Days are a chance to learn about Google developer
 products from the engineers who built them. This one-day
 conference includes seminars and office hours on web technologies
 like Goo...
 startDate = 2009-11-06T08:30+01:00
 endDate = 2009-11-06T20:30+01:00
 location = Item(__1)
 geo = Item(__3)
 url = http://code.google.com/intl/cs/events/developerday/2009/home.html

Item
 Id: __1
 Type: http://data-vocabulary.org/Organization
 name = Congress Center
 address = Item(__2)

Item
 Id: __2
 Type: http://data-vocabulary.org/Address
 street-address = 5th května 65
 postal-code = 140 21
 locality = Praha 4
 country-name = Czech Republic

Item
 Id: __3

184 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

http://diveintohtml5.org/examples/event.html
http://www.google.com/webmasters/tools/richsnippets?url=//diveintohtml5.org/examples/event-plus-microdata.html
http://diveintohtml5.org/examples/event-plus-microdata.html

 Type: http://data-vocabulary.org/Geo
 latitude = 50.047893
 longitude = 14.4491

As you can see, all the information we added in microdata is there. Properties that are
separate microdata items are given internal IDs (Item(__1), Item(__2), and so on), but
this is not part of the microdata specification. It’s just a convention that Google’s testing
tool uses to linearize the sample output and show you the grouping of nested items and
their properties.

So how might Google choose to represent this sample page in its search results? (Again,
I have to preface this with the disclaimer that this is just an example; Google may change
the format of its search results at any time, and there is no guarantee that Google will
even pay attention to your microdata markup.) It might look like Figure 10-2.

Figure 10-2. Sample search result for a microdata-enhanced Event listing

After the page title and autogenerated excerpt text, Google starts using the microdata
markup we added to the page to display a little table of events. Note the date format:
“Fri, Nov 6.” That is not a string that appeared anywhere in our HTML or microdata
markup. We used two fully qualified ISO-formatted strings, 2009-11-06T08:30+01:00
and 2009-11-06T20:30+01:00. Google took those two dates, figured out that they were
on the same day, and decided to display a single date in a more friendly format.

Now look at the physical addresses. Google chose to display just the venue name +
locality + country, not the exact street address. This is made possible by the fact that
we split up the address into five subproperties—name, street-address, region,
locality, and country-name—and marked up each part of the address as a different
microdata property. Google takes advantage of that to show an abbreviated address.
Other consumers of the same microdata markup might make different choices about
what to display or how to display it. There’s no right or wrong choice here. It’s up to
you to provide as much data as possible, as accurately as possible. It’s up to the rest of
the world to interpret it.

Marking Up Reviews
Here’s another example of making the Web (and possibly search result listings) better
through markup: business and product reviews.

Marking Up Reviews | 185

This is a short review I wrote of my favorite pizza place near my house. (This is a real
restaurant, by the way. If you’re ever in Apex, NC, I highly recommend it.) Let’s look
at the original markup:

<article>
 <h1>Anna's Pizzeria</h1>
 <p>★★★★☆ (4 stars out of 5)</p>
 <p>New York-style pizza right in historic downtown Apex</p>
 <p>
 Food is top-notch. Atmosphere is just right for a "neighborhood
 pizza joint." The restaurant itself is a bit cramped; if you're
 overweight, you may have difficulty getting in and out of your
 seat and navigating between other tables. Used to give free
 garlic knots when you sat down; now they give you plain bread
 and you have to pay for the good stuff. Overall, it's a winner.
 </p>
 <p>
 100 North Salem Street

 Apex, NC 27502

 USA
 </p>
 <p>— reviewed by Mark Pilgrim, last updated March 31, 2010</p>
</article>

You can follow along online with the changes made throughout this
section. Before: http://diveintohtml5.org/examples/review.html; after:
http://diveintohtml5.org/examples/review-plus-microdata.html.

This review is contained in an <article> element, so that’s where we’ll put the
itemtype and itemscope attributes. Here’s the namespace URL for this vocabulary:

<article itemscope itemtype="http://data-vocabulary.org/Review">

What are the available properties in the Review vocabulary? I’m glad you asked. They’re
listed in Table 10-5.

Table 10-5. Review vocabulary

Property Description

itemreviewed The name of the item being reviewed. Can be a product, service, business, etc.

rating A numerical quality rating for the item, on a scale from 1 to 5. Can also be a nested Rating using the
http://data-vocabulary.org/Rating vocabulary to use a nonstandard scale.

reviewer The name of the author who wrote the review.

dtreviewed The date that the item was reviewed in ISO date format.

summary A short summary of the review.

description The body of the review.

186 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

http://diveintohtml5.org/examples/review.html
http://diveintohtml5.org/examples/review.html
http://diveintohtml5.org/examples/review-plus-microdata.html
http://www.iso.org/iso/date_and_time_format

The first property is simple: itemreviewed is just text, and here it’s contained in an
<h1> element, so that’s where we should put the itemprop attribute:

<h1 itemprop="itemreviewed">Anna's Pizzeria</h1>

I’m going to skip over the actual rating and come back to that at the end.

The next two properties are also straightforward. The summary property is a short de-
scription of what you’re reviewing, and the description property is the body of the
review:

<p itemprop="summary">New York-style pizza right in historic downtown Apex</p>
<p itemprop="description">
 Food is top-notch. Atmosphere is just right for a "neighborhood
 pizza joint." The restaurant itself is a bit cramped; if you're
 overweight, you may have difficulty getting in and out of your
 seat and navigating between other tables. Used to give free
 garlic knots when you sat down; now they give you plain bread
 and you have to pay for the good stuff. Overall, it's a winner.
</p>

The location and geo properties aren’t anything we haven’t tackled before (refer back
to the previous sections on marking up the address of a Person, marking up the address
of an Organization, and marking up geolocation information):

<p itemprop="location" itemscope
 itemtype="http://data-vocabulary.org/Address">
 100 North Salem Street

 Apex,
 NC
 27502

 USA
</p>
<span itemprop="geo" itemscope
 itemtype="http://data-vocabulary.org/Geo">
 <meta itemprop="latitude" content="35.730796" />
 <meta itemprop="longitude" content="-78.851426" />

The final line presents a familiar problem: it contains two bits of information in one
element. The name of the reviewer is Mark Pilgrim, and the review date is March 31,
2010. How do we mark up these two distinct properties? As usual, we can wrap them
in their own elements (see “Marking Up People” on page 171) and put an itemprop
attribute on each element. In fact, the date in this example should have been marked
up with a <time> element in the first place, so that provides a natural hook on which
to hang our itemprop attribute. The reviewer name can just be wrapped in a dummy
 element:

 <p>
 Mark Pilgrim, last updated
 <time itemprop="dtreviewed" datetime="2010-03-31">
 March 31, 2010
 </time>

Marking Up Reviews | 187

 </p>
</article>

OK, let’s talk ratings. The trickiest part of marking up a review is the rating. By default,
ratings in the Review vocabulary are on a scale of 1–5, with 1 being “terrible” and 5
being “awesome.” If you want to use a different scale, you can definitely do that. But
let’s talk about the default scale first:

<p>★★★★☆ (4 stars out of 5)</p>

If you’re using the default 1–5 scale, the only property you need to mark up is the rating
itself (4, in this case). But what if you want to use a different scale? You can do that;
you just need to declare the limits of the scale you’re using. For example, if you wanted
to use a scale of 0–10, you would still declare the itemprop="rating" property, but
instead of giving the rating value directly, you would use a nested Rating with the
vocabulary of http://data-vocabulary.org/Rating to declare the worst and best values
in your custom scale and the actual rating value within that scale:

<p itemprop="rating" itemscope
 itemtype="http://data-vocabulary.org/Rating">
 ★★★★★★★★★☆
 (9 on a scale of
 0 to
 10)
</p>

In English, this says: “The product I’m reviewing has a rating value of 9 on a scale of
0–10.”

Did I mention that review microdata could affect search result listings? Oh yes, it can.
Here is the “raw data” that the Google Rich Snippets tool extracted from my microdata-
enhanced review:

Item
 Type: http://data-vocabulary.org/Review
 itemreviewed = Anna's Pizzeria
 rating = 4
 summary = New York-style pizza right in historic downtown Apex
 description = Food is top-notch. Atmosphere is just right ...
 address = Item(__1)
 geo = Item(__2)
 reviewer = Mark Pilgrim
 dtreviewed = 2010-03-31

Item
 Id: __1
 Type: http://data-vocabulary.org/Organization
 street-address = 100 North Salem Street
 locality = Apex
 region = NC
 postal-code = 27502
 country-name = USA

Item

188 | Chapter 10: “Distributed,” “Extensibility,” and Other Fancy Words

http://www.google.com/webmasters/tools/richsnippets?url=//diveintohtml5.org/examples/review-plus-microdata.html
http://www.google.com/webmasters/tools/richsnippets?url=//diveintohtml5.org/examples/review-plus-microdata.html

 Id: __2
 Type: http://data-vocabulary.org/Geo
 latitude = 35.730796
 longitude = -78.851426

Figure 10-3 (modulo the whims of Google, the phase of the moon, and so on and so
forth) shows what my review might look like in a search result listing.

Figure 10-3. Sample search result for a microdata-enhanced Review listing

Angle brackets don’t impress me much, but I have to admit, that’s pretty cool.

Further Reading
Microdata resources:

• Live microdata playground

• HTML5 microdata specification

Google Rich Snippets resources:

• “About rich snippets and structured data”

• “People”

• “Businesses and organizations”

• “Events”

• “Reviews”

• “Review ratings”

• Google Rich Snippets Testing Tool

• Google Rich Snippets Tips and Tricks

Further Reading | 189

http://foolip.org/microdatajs/live/
http://bit.ly/ckt9Rj
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=99170
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=146646
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=146861
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=164506
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=146645
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=172705
http://www.google.com/webmasters/tools/richsnippets
http://knol.google.com/k/google-rich-snippets-tips-and-tricks

APPENDIX

The All-in-One Almost-Alphabetical
Guide to Detecting Everything

Confused? Read Chapter 2 for a conceptual introduction. Want an all-in-one library
instead? Try Modernizr.

List of Elements

<audio> http://bit.ly/cZxI7K

return !!document.createElement('audio').canPlayType;

<audio> in MP3 format http://en.wikipedia.org/wiki/MP3

var a = document.createElement('audio');
return !!(a.canPlayType && a.canPlayType('audio/mpeg;').replace(/no/, ''));

<audio> in Vorbis format http://en.wikipedia.org/wiki/Vorbis

var a = document.createElement('audio');
return !!(a.canPlayType && a.canPlayType('audio/ogg;
 codecs="vorbis"').replace(/no/, ''));

191

http://www.modernizr.com
http://bit.ly/cZxI7K
http://en.wikipedia.org/wiki/MP3
http://en.wikipedia.org/wiki/Vorbis

<audio> in WAV format http://en.wikipedia.org/wiki/WAV

var a = document.createElement('audio');
return !!(a.canPlayType && a.canPlayType('audio/wav;
 codecs="1"').replace(/no/, ''));

<audio> in AAC format http://en.wikipedia.org/wiki/Advanced_Audio_Coding

var a = document.createElement('audio');
return !!(a.canPlayType && a.canPlayType('audio/mp4;
 codecs="mp4a.40.2"').replace(/no/, ''));

<canvas> See Chapter 4

return !!document.createElement('canvas').getContext;

<canvas> text API See “Text” on page 63

var c = document.createElement('canvas');
return c.getContext && typeof c.getContext('2d').fillText == 'function';

<command> http://bit.ly/aQt2Fn

return 'type' in document.createElement('command');

<datalist> http://bit.ly/9WVz5p

return 'options' in document.createElement('datalist');

<details> http://bit.ly/cO8mQy

return 'open' in document.createElement('details');

<device> http://bit.ly/aaBeUy

return 'type' in document.createElement('device');

192 | Appendix: The All-in-One Almost-Alphabetical Guide to Detecting Everything

http://en.wikipedia.org/wiki/WAV
http://en.wikipedia.org/wiki/Advanced_Audio_Coding
http://bit.ly/aQt2Fn
http://bit.ly/9WVz5p
http://bit.ly/cO8mQy
http://bit.ly/aaBeUy

<form> constraint validation http://bit.ly/cb9Wmj

return 'noValidate' in document.createElement('form');

<iframe sandbox> http://blog.whatwg.org/whats-next-in-html-episode-2-sandbox

return 'sandbox' in document.createElement('iframe');

<iframe srcdoc> http://blog.whatwg.org/whats-next-in-html-episode-2-sandbox

return 'srcdoc' in document.createElement('iframe');

<input autofocus> See “Autofocus Fields” on page 148

return 'autofocus' in document.createElement('input');

<input placeholder> See “Placeholder Text” on page 147

return 'placeholder' in document.createElement('input');

<input type="color"> http://bit.ly/9HkeNn

var i = document.createElement('input');
i.setAttribute('type', 'color');
return i.type !== 'text';

<input type="email"> See “Email Addresses” on page 150

var i = document.createElement('input');
i.setAttribute('type', 'email');
return i.type !== 'text';

<input type="number"> See “Numbers As Spinboxes” on page 153

var i = document.createElement('input');
i.setAttribute('type', 'number');
return i.type !== 'text';

List of Elements | 193

http://bit.ly/cb9Wmj
http://blog.whatwg.org/whats-next-in-html-episode-2-sandbox
http://blog.whatwg.org/whats-next-in-html-episode-2-sandbox
http://bit.ly/9HkeNn

<input type="range"> See “Numbers As Sliders” on page 155

var i = document.createElement('input');
i.setAttribute('type', 'range');
return i.type !== 'text';

<input type="search"> See “Search Boxes” on page 158

var i = document.createElement('input');
i.setAttribute('type', 'search');
return i.type !== 'text';

<input type="tel"> http://bit.ly/bZm0Q5

var i = document.createElement('input');
i.setAttribute('type', 'tel');
return i.type !== 'text';

<input type="url"> See “Web Addresses” on page 151

var i = document.createElement('input');
i.setAttribute('type', 'url');
return i.type !== 'text';

<input type="date"> See “Date Pickers” on page 156

var i = document.createElement('input');
i.setAttribute('type', 'date');
return i.type !== 'text';

<input type="time"> See “Date Pickers” on page 156

var i = document.createElement('input');
i.setAttribute('type', 'time');
return i.type !== 'text';

194 | Appendix: The All-in-One Almost-Alphabetical Guide to Detecting Everything

http://bit.ly/bZm0Q5

<input type="datetime"> See “Date Pickers” on page 156

var i = document.createElement('input');
i.setAttribute('type', 'datetime');
return i.type !== 'text';

<input type="datetime-local"> See “Date Pickers” on page 156

var i = document.createElement('input');
i.setAttribute('type', 'datetime-local);
return i.type !== 'text';

<input type="month"> See “Date Pickers” on page 156

var i = document.createElement('input');
i.setAttribute('type', 'month');
return i.type !== 'text';

<input type="week"> See “Date Pickers” on page 156

var i = document.createElement('input');
i.setAttribute('type', 'week');
return i.type !== 'text';

<meter> http://bit.ly/c0pX0l

return 'value' in document.createElement('meter');

<output> http://bit.ly/asJaqH

return 'value' in document.createElement('output');

<progress> http://bit.ly/bjDMy6

return 'value' in document.createElement('progress');

List of Elements | 195

http://bit.ly/c0pX0l
http://bit.ly/asJaqH
http://bit.ly/bjDMy6

<time> http://bit.ly/bI62jp

return 'valueAsDate' in document.createElement('time');

<video> See Chapter 5

return !!document.createElement('video').canPlayType;

<video> captions http://bit.ly/9mLiRr

return 'track' in document.createElement('track');

<video poster> http://bit.ly/b6RhzT

return 'poster' in document.createElement('video');

<video> in WebM format http://www.webmproject.org

var v = document.createElement('video');
return !!(v.canPlayType && v.canPlayType('video/webm; codecs="vp8,
 vorbis"').replace(/no/, ''));

<video> in H.264 format See “H.264” on page 84

var v = document.createElement('video');
return !!(v.canPlayType && v.canPlayType('video/mp4; codecs="avc1.42E01E,
 mp4a.40.2"').replace(/no/, ''));

<video> in Theora format See “Theora” on page 84

var v = document.createElement('video');
return !!(v.canPlayType && v.canPlayType('video/ogg; codecs="theora,
 vorbis"').replace(/no/, ''));

contentEditable http://bit.ly/aLivbS

return 'isContentEditable' in document.createElement('span');

196 | Appendix: The All-in-One Almost-Alphabetical Guide to Detecting Everything

http://bit.ly/bI62jp
http://bit.ly/9mLiRr
http://bit.ly/b6RhzT
http://www.webmproject.org
http://bit.ly/aLivbS

Cross-document messaging http://bit.ly/cUOqXd

return !!window.postMessage;

Drag and drop http://bit.ly/aN0RFQ

return 'draggable' in document.createElement('span');

File API http://dev.w3.org/2006/webapi/FileAPI/

return typeof FileReader != 'undefined';

Geolocation See Chapter 6

return !!navigator.geolocation;

History http://bit.ly/9JGAGB

return !!(window.history && window.history.pushState &&
window.history.popState);

Local storage http://dev.w3.org/html5/webstorage/

return ('localStorage' in window) && window['localStorage'] !== null;

Microdata http://bit.ly/dBGnqr

return !!document.getItems;

Offline web applications See Chapter 8

return !!window.applicationCache;

List of Elements | 197

http://bit.ly/cUOqXd
http://bit.ly/aN0RFQ
http://dev.w3.org/2006/webapi/FileAPI/
http://bit.ly/9JGAGB
http://dev.w3.org/html5/webstorage/
http://bit.ly/dBGnqr

Server-sent events http://dev.w3.org/html5/eventsource/

return typeof EventSource !== 'undefined';

Session storage http://dev.w3.org/html5/webstorage/

try {
 return ('sessionStorage' in window) && window['sessionStorage'] !== null;
} catch(e) {
 return false;
}

SVG http://www.w3.org/TR/SVG/

return !!(document.createElementNS && document.createElementNS
('http://www.w3.org/2000/svg', 'svg').createSVGRect);

SVG in text/html http://hacks.mozilla.org/2010/05/firefox-4-the-html5-parser-inline-svg-speed-and-more/

var e = document.createElement('div');
e.innerHTML = '<svg></svg>';
return !!(window.SVGSVGElement && e.firstChild instanceof window.SVGSVGElement);

WebSimpleDB http://dev.w3.org/2006/webapi/WebSimpleDB/

return !!window.indexedDB;

Web Sockets http://dev.w3.org/html5/websockets/

return !!window.WebSocket;

Web SQL Database http://dev.w3.org/html5/webdatabase/

return !!window.openDatabase;

198 | Appendix: The All-in-One Almost-Alphabetical Guide to Detecting Everything

http://dev.w3.org/html5/eventsource/
http://dev.w3.org/html5/webstorage/
http://www.w3.org/TR/SVG/
http://hacks.mozilla.org/2010/05/firefox-4-the-html5-parser-inline-svg-speed-and-more/
http://dev.w3.org/2006/webapi/WebSimpleDB/
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/webdatabase/

Web Workers http://bit.ly/9jheof

return !!window.Worker;

Undo http://bit.ly/bs6JFR

return typeof UndoManager !== 'undefined';

Further Reading
Specifications and standards:

• HTML5

• Geolocation

• Server-Sent Events

• WebSimpleDB

• Web Sockets

• Web SQL Database

• Web Storage

• Web Workers

JavaScript libraries:

• Modernizr, an HTML5 detection library

Further Reading | 199

http://bit.ly/9jheof
http://bit.ly/bs6JFR
http://bit.ly/bYiOQp
http://www.w3.org/TR/geolocation-API/
http://dev.w3.org/html5/eventsource/
http://dev.w3.org/2006/webapi/WebSimpleDB/
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/webdatabase/
http://dev.w3.org/html5/webstorage/
http://bit.ly/9jheof
http://www.modernizr.com

Index

A
AAC (Advanced Audio Coding), 87
Almost Standards mode, 32
alternate link relation, 37
APIs

canvas API, 16–18
canvas text API, 17
ExplorerCanvas, 74
geo.js, 123
geolocation API, 24, 117–120
Indexed Database API, 135
Web Worker, 23

applications
local storage, 127–136
offline web applications, 23, 137–146

archives, link relations, 38
article element, 41, 47
aside element, 41
audio codecs

about, 85–88
encoding Ogg Vorbis video, 91–99

Audio Video Interleave video container format,
82

authors, link relations, 38
autofocus, web forms, 27, 148
autoplay attribute, 110

B
backward compatibility

about, 11
XHTML, 12

batch encoding
H.264 video codec, 107
Ogg Vorbis video codec, 98

breadcrumbs, link relations, 39
browsers

audio video support, 88
autofocus support, 28, 149
canvas support, 16
canvas text support, 17
doctype and modes, 31
error handling, 13
geolocation support, 24
handling unknown elements, 42–45
headers, 1
HTML5 input types, 26
HTML5 support, 15
JavaScript, 23
local storage, 132
microdata support, 29
Microsoft Internet Explorer, 73, 114, 123
Midas, 3
Mosaic, 3
offline support, 24
placeholder support, 27
placeholder text support, 148
SQL database support, 134

C
cache manifest, offline web applications, 138–

141, 143
canPlayType() function, 20
canvas

about, 16–18
coordinates, 60
drawing text, 63–66
images, 70–73
paths, 61–63

canvas element, 57

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

201

canvas text API, 17
character encoding, 35
codecs

about, 20
audio, 85–88, 91–99
video, 83, 90, 100–109

color pickers, web forms, 160
conditional comments, 74
containers, video, 81
Content-Type header, 1
cookies, compared to HTML5 Storage, 21
coordinates, canvas, 60
custom vocabularies, microdata, 164

D
date pickers, web forms, 156
dates and times, 49
dd element, 170
debugging offline web applications, 142–144
detecting

autofocus support, 28
canvas support, 16
canvas text support, 17
geolocation support, 24
HTML5 input types, 26
HTML5 support, 15
microdata support, 29
offline support, 24
placeholder support, 27

doctype, 31
DOM (Document Object Model)

about, 15
detecting canvas support, 16
detecting canvas text support, 17
video, 19, 20

DOM events, 141
drawing, 57–79

canvas coordinates, 60
gradients, 67
Halma game example, 75–79
images, 70–73
paths, 61–63
shapes, 58
text, 63–66

E
elements

about, 163

article element, 41, 47
aside element, 41
canvas element, 16, 57
dd element, 170
footer element, 41, 52
handling unknown elements, 42–45
head element, 34–40
header element, 41
hgroup element, 41
img element, 2, 8, 70
link relations, 37
mark element, 41
nav element, 41
root element, 33
section element, 41
source element, 112
time element, 41
video element, 18–21

email addresses
validating in JavaScript, 160
web forms, 150

error handling
about, 11
browsers, 13
geolocation, 120

events
DOM events, 141
marking up, 180–185
storage events, 131

examples
geo.js, 125
Halma game, 75–79, 132, 145
Video for Everybody!, 114

ExplorerCanvas, 74
external link relations, 38

F
fallback section, cache manifest, 140
feed autodiscovery, 37
ffmpeg2theora, 98
fields

autofocus, 148
email addresses, 150

Firefogg, 91–98
Flash Video video container format, 82
FlowPlayer, 114
font sizes, 65
footer element, 41
footers, 52

202 | Index

formats, video, 19
forms (see web forms)

G
Gears plug-in, 128
geo.js, 123–125
geolocation, 117–126

about, 24
API, 117–120
error handling, 120
geo.js, 123–125
methods for calculating location, 121
using invisible data, 178
vocabulary, 179

getCurrentPosition() function, 118, 120, 122,
124

Google
On2, 85
Rich Snippets, 174, 184

GPS (Global Positioning System), 121
gradients, drawing, 67

H
H.264 video codec, 84, 90, 100–108
Halma game example, 75–79, 132, 145
HandBrake, H.264 video codec, 100–108
head element, 34–40
header element, 41
headers

about, 45–47
Content-Type, 1

hgroup element, 41
history

HTML, 7–11
HTML5, ix
local storage prior to HTML5, 128
standards development, 2–7
XHTML, 10
XML, 10

HTML
competing visions, 11
development history, 7–11
page structure, 33

HTML Working Group, 9
HTML5 Storage, 127–136

about, 21, 129
future of, 134
Halma game example, 132

history prior to HTML5, 128
using, 130–132

I
IE (Internet Explorer)

audio video support, 89
canvas and VML support, 73
geolocation, 123
styling unknown elements, 42
video support, 114

images, displaying, 70–73
img element, 2, 8, 70
Indexed Database API, 135
input types

about, 25
web forms, 147

iPhone, web forms, 151

J
JavaScript

autofocus, 27
running in background, 23

L
language, 34
libraries, Modernizr, 16
license link relation, 39
licensing, H.264 video codec, 90
link relations, 36–40
local storage (see HTML5 Storage)
LSOs (Local Shared Objects), 128

M
mailing address format, 172
mark element, 41
microdata

about, 28, 164
data mode, 165–168

Microsoft Internet Explorer
audio video support, 89
canvas and VML support, 73
geolocation, 123
styling unknown elements, 42
video support, 114

Midas browser, 3
MIME types

about, 1

Index | 203

importance of, 10
video, 113
XHTML, 9, 10

Modernizr, 16
Mosaic browser, 3
MP3 (MPEG-1 Audio Layer 3), 86
MPEG-4 video container format, 82

N
namespaces

microdata, 165
need for, 33

nav element, 41
navigation

about, 51
breadcrumbs, 39

network section, cache manifest, 139
nofollow link relation, 39
noreferrer link relation, 39
numbers, web forms, 153–156

O
objects, DOM, 15
offline web applications, 137–146

about, 23
cache manifest, 138–141
debugging, 142–144
flow of events, 141
Halma game example, 145

Ogg video container format, 82
Ogg Vorbis audio codec, 87, 91–99
organizations, marking up, 176–180

P
paths

about, 145
canvas, 61–63

people, marking up, 168–175
pingback link relation, 39
placeholder text

about, 27
web forms, 147

prefetch link relation, 40
preload attribute, 110
publication date, 49

Q
Quirks mode, 32

R
relative font sizes, 65
reviews, marking up, 185–189
Rich Snippets, 174, 184
root element, 33

S
scoping, microdata, 164
scripting, 11
search boxes, web forms, 158
search link relation, 40
section element, 41
shapes, drawing, 58
sidebar link relation, 40
sliders, numbers as, 155
source element, 112
spinboxes, numbers as, 153
SQL database support, 134
standards

HTML history, 7–9
implementations and specifications, 1
process of creating, 2–7

Standards mode, 32
storage (see HTML5 Storage)
StorageEvent objects, 131
stylesheet link relation, 37

T
tag link relation, 40
tag-sets, XML, 9
text

canvas text API, 17
character encoding, 35
drawing, 63–66
placeholder text, 27, 147

Theora video codec, 84
time element, 41
times and dates, 49
tracking changes in HTML5 storage area, 131
translations, linking, 38

U
URLs

microdata, 166
Person vocabulary, 173
web forms, 151

204 | Index

V
validating email addresses in JavaScript, 160
video, 81–115

about, 18–21
audio codecs, 85–88, 91–99
browser support, 88
containers, 81
markup, 110–113
Microsoft Internet Explorer, 114
video codecs, 83, 90, 100–109
Video for Everybody! example, 114

Vorbis audio codec, 87, 91–99
VP8 video codec, 85

W
W3C (World Wide Web Consortium)

HTML Working Group, 9
WHAT Working Group, 13
Workshop on Web Applications and

Compound Documents, 11
watchPosition() function, 123
web addresses, web forms, 151
web applications

local storage, 127–136
offline, 23, 137–146

web browsers (see browsers)
web forms, 147–161

autofocus, 27
autofocus fields, 148
color pickers, 160
date pickers, 156
email addresses, 150
history, 9
input types, 25
numbers, 153–156
placeholder text, 27, 147
search boxes, 158
web addresses, 151

Web workers, 23
WebM video format, 82, 89, 108
WHAT Working Group, and W3C, 13
working groups

about, 12
HTML Working Group, 9
W3C, 11, 13
WHAT Working Group, 13

Workshop on Web Applications and
Compound Documents, 11

World Wide Web Consortium (see W3C)

X
XForms, backward compatibility, 12
XHTML

about, 10
backward compatibility, 12
development history, 9

XML
development history, 10
tag-sets, 9

Index | 205

About the Author
Mark Pilgrim is a senior developer advocate at Google, Inc. He specializes in open
source and open standards. Mark is the author of several technical books, including
Dive Into Python (APress) and Dive Into Accessibility, a free online tutorial on web
accessibility. He lives in North Carolina with his wife, two boys, and a big slobbery dog.

Colophon
The animal on the cover of HTML5: Up and Running is an alpine chamois (Rupicapra
rupicapra), a goat- or antelope-like species that is native to the mountain ranges of
Europe, including the Carpathians, the Apennines, the Tatras, the Balkans, the Cau-
casus, and the Alps. Alpine chamois can also be found in New Zealand, having been
introduced there in 1907 by Austrian Emperor Franz Joseph I.

Alpine chamois live at relatively high altitudes, and have adapted to steep, rugged, and
rocky terrain. They grow to a size of about 75 centimeters tall and weigh between 20
and 30 kilograms (though individuals in New Zealand often weigh about 20 percent
less than their European brethren). Both males and females sport short horns that curve
backward near the tip and fur that is dark brown during the summer and light gray in
the winter. Many chamois also display a characteristically white face and rump, with
black stripes under the eyes and along the back.

Adult male chamois live mostly solitary lives, only congregating once a year to compete
for the attention of unmated females. Females, however, live in herds with their young.
All variety of chamois are popular game animals; their meat is considered tasty and
their leather is known to be exceptionally smooth and absorbent. Also, a tuft of hair
taken from the back of the neck of a chamois, called a gamsbart, is traditionally worn
as a hat decoration throughout the alpine countries. This practice may be slightly more
difficult in modern times, however, as some subspecies of chamois have gained pro-
tection from the European Union. In contrast, the New Zealand Department of Con-
servation encourages the hunting of alpine chamois, hoping to limit the animal’s impact
on native flora.

The cover image is from J. G. Wood’s Animate Creation. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Diving In
	Conventions Used in This Book
	Using Code Examples
	A Note on the Editions of This Book
	Safari® Books Online
	How to Contact Us

	Chapter 1. How Did We Get Here?
	Diving In
	MIME Types
	A Long Digression into How Standards Are Made
	An Unbroken Line
	A Timeline of HTML Development from 1997 to 2004
	Everything You Know About XHTML Is Wrong
	A Competing Vision
	What Working Group?
	Back to the W3C
	Postscript
	Further Reading

	Chapter 2. Detecting HTML5 Features
	Diving In
	Detection Techniques
	Modernizr: An HTML5 Detection Library
	Canvas
	Canvas Text
	Video
	Video Formats
	Local Storage
	Web Workers
	Offline Web Applications
	Geolocation
	Input Types
	Placeholder Text
	Form Autofocus
	Microdata
	Further Reading

	Chapter 3. What Does It All Mean?
	Diving In
	The Doctype
	The Root Element
	The <head> Element
	Character Encoding
	Friends and (Link) Relations
	rel = stylesheet
	rel = alternate
	Other link relations in HTML5

	New Semantic Elements in HTML5
	A Long Digression into How Browsers Handle Unknown Elements
	Headers
	Articles
	Dates and Times
	Navigation
	Footers
	Further Reading

	Chapter 4. Let’s Call It a Draw(ing Surface)
	Diving In
	Simple Shapes
	Canvas Coordinates
	Paths
	Text
	Gradients
	Images
	What About IE?
	A Complete Example
	Further Reading

	Chapter 5. Video on the Web
	Diving In
	Video Containers
	Video Codecs
	H.264
	Theora
	VP8

	Audio Codecs
	MPEG-1 Audio Layer 3
	Advanced Audio Coding
	Vorbis

	What Works on the Web
	Licensing Issues with H.264 Video
	Encoding Ogg Video with Firefogg
	Batch Encoding Ogg Video with ffmpeg2theora
	Encoding H.264 Video with HandBrake
	Batch Encoding H.264 Video with HandBrake
	Encoding WebM Video with ffmpeg
	At Last, the Markup
	MIME Types Rear Their Ugly Head

	What About IE?
	A Complete Example
	Further Reading

	Chapter 6. You Are Here (And So Is Everybody Else)
	Diving In
	The Geolocation API
	Show Me the Code
	Handling Errors
	Choices! I Demand Choices!
	What About IE?
	geo.js to the Rescue
	A Complete Example
	Further Reading

	Chapter 7. The Past, Present, and Future of Local Storage for Web
 Applications
	Diving In
	A Brief History of Local Storage Hacks Before HTML5
	Introducing HTML5 Storage
	Using HTML5 Storage
	Tracking Changes to the HTML5 Storage Area
	Limitations in Current Browsers

	HTML5 Storage in Action
	Beyond Named Key/Value Pairs: Competing Visions
	Further Reading

	Chapter 8. Let’s Take This Offline
	Diving In
	The Cache Manifest
	Network Sections
	Fallback Sections

	The Flow of Events
	The Fine Art of Debugging, a.k.a. “Kill Me! Kill Me Now!”
	Let’s Build One!
	Further Reading

	Chapter 9. A Form of Madness
	Diving In
	Placeholder Text
	Autofocus Fields
	Email Addresses
	Web Addresses
	Numbers As Spinboxes
	Numbers As Sliders
	Date Pickers
	Search Boxes
	Color Pickers
	And One More Thing...
	Further Reading

	Chapter 10. “Distributed,” “Extensibility,” and Other Fancy Words
	Diving In
	What Is Microdata?
	The Microdata Data Model
	Marking Up People
	Introducing Google Rich Snippets

	Marking Up Organizations
	Marking Up Events
	The Return of Google Rich Snippets

	Marking Up Reviews
	Further Reading

	Appendix. The All-in-One Almost-Alphabetical Guide to Detecting
 Everything
	List of Elements
	<audio>
	<audio> in MP3 format
	<audio> in Vorbis format
	<audio> in WAV format
	<audio> in AAC format
	<canvas>
	<canvas> text API
	<command>
	<datalist>
	<details>
	<device>
	<form> constraint validation
	<iframe sandbox>
	<iframe srcdoc>
	<input autofocus>
	<input placeholder>
	<input type="color">
	<input type="email">
	<input type="number">
	<input type="range">
	<input type="search">
	<input type="tel">
	<input type="url">
	<input type="date">
	<input type="time">
	<input type="datetime">
	<input type="datetime-local">
	<input type="month">
	<input type="week">
	<meter>
	<output>
	<progress>
	<time>
	<video>
	<video> captions
	<video poster>
	<video> in WebM format
	<video> in H.264 format
	<video> in Theora format
	contentEditable
	Cross-document messaging
	Drag and drop
	File API
	Geolocation
	History
	Local storage
	Microdata
	Offline web applications
	Server-sent events
	Session storage
	SVG
	SVG in text/html
	WebSimpleDB
	Web Sockets
	Web SQL Database
	Web Workers
	Undo

	Further Reading

	Index

