

Introducing HTML5 Game
Development

Jesse Freeman

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Introducing HTML5 Game Development
by Jesse Freeman

Copyright © 2012 Game Cook, Inc.. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Development Editor: Kristin L. Kelly
Production Editor: Kristen Borg

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-02-10 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449315177 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Introducing HTML5 Game Development, the image of a gemmous dragonet, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31517-7

[LSI]

1328899809

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449315177

I would like to dedicate this book to Ed Love, who
was my teacher, mentor, and good friend when I
went to Florida State University. He was a very

important person in my life and his sudden passing
indirectly motivated me to explore computer art,

which snowballed into what I do today.

Table of Contents

Preface . ix

1. Introduction To Impact . 1
Why Use Impact? 1
Setting Up a Local Environment 2
Install WebStorm/PHPStorm 2
Install Apache/PHP/MySQL 3
Other Hosting Options 3
Setting Up a New Impact Project 4
Modules 6
How Classes Work 7
Core Classes 8
How Inner Classes Work 10
Level Editor 11

2. Working With Sprites . 13
Sprites and Sprite Sheets 13
Scripting in Photoshop 14
Working with Sprites in Photoshop 16
Optimizing Sprites 17

3. Introduction To Game Design . 19
What is Game Design? 19
Sample Game Design Document 21

Gameplay 21
Exploring a Map 21
Combat 22
Completing a Map 22
Death 22
Main Character 22
Monsters 22

v

Bosses 23
Equipment 23
Inventory 23
Equipping Items 24
Weapons and Armor 24
Leveling Up 25
Winning the Game 25

Coming Up With Ideas 25
Books to Read 26

4. Building A Game . 27
Creating Our First Level 28
Saving/Loading Maps in Weltmeister 31
CollisionMaps 32
The Main Class 33
Customizing the Main Class 35
Key Binding 35
Creating the Player Class 36

Using Your Sprite Sheet 37
Adding Simple Physics 38
Defining Animation Sequences 38

Creating a Monster Class 41
Collision Detection 44
type Property 45
checkAgainst Property 45
collides Property 45
Health 47
Weapons 48
Firing the Weapon 49
Add Multiple Weapons 50
Killing Entities 54
Respawning the Player 55
Create Death Animations 57
Adding Grenade Explosions 61
Customizing the Camera 62
Loading New Levels 64

5. Working With Text . 69
Creating Font Sprite Sheets 69
Adding Text to Your Game 70

6. Working With Sound . 73
Adding Sounds 73

vi | Table of Contents

Adding Music 74
Mobile Browser Sound Compatibility Issues 75

7. Creating Game Screens and HUDs . 77
Extending Impact’s Game Class 77
Creating a Start Screen 78
Player Stats Screen 80
Creating the Game Over Screen 84
Adding In-Game HUD 86
Game Rewards 87
In-Game Analytics 88

8. Debugging Your Game . 93
Impact’s Debugger 93
Publishing Your Game 96
Baking Your Game 96
Mobile Web Support 97
Compiling for Native iOS 98

9. Wrapping Up . 103
References and Links 104

Table of Contents | vii

Preface

About This Book
This relatively short book attempts to cover a very large topic. While this book is con-
sidered an introduction to building HTML5 games with Impact, a JavaScript game
framework, it is also intended to be a companion guide to help you get started making,
and more importantly, finishing your games. I have created a high-level overview of
what I consider to be the most important parts of making a game with Impact, along
with what you should keep in mind or research further in order to become a better
game developer. This book will take you step-by-step through the process of creating
a 2D side-scrolling game with Impact, and how to publish it to the web and even pack-
age it up as a native iOS app.

I have also worked very hard to condense all this material as much as possible. That
being said, when topics are larger than the scope of this book, I do my best to point
you in the right direction so you can find more information. Making games is hard work
and requires not only technical skills, but also a lot of planning and commitment to
completing the project. While following this book may not guarantee a hit game, it will
most certainly prepare you to complete the game you start, which any game developer
will tell you is probably the hardest part.

Who This Book Is For
Introducing HTML5 Game Development is a book targeting all levels of game develop-
ers. Having prior programing knowledge (especially being familiar with JavaScript)
doesn’t hurt, but it’s not necessarily a requirement. In this book, we will cover how
Impact works and build the basic foundation of a game with it. We will also cover a
little bit about game design and how to publish your Impact games to the Web, desktop,
and mobile. For mobile deployment, we will look at how to publish your game as a
native app on iOS devices.

ix

Who This Book Is Not For
This book is not for developers who are looking to build fully cross-browser and mobile
games with JavaScript. While HTML5 has come a long way in the past few years, we
are still far away from widespread adoption of the underlying technologies Impact relies
on, such as Canvas, sound, and advanced user input. That doesn’t mean it isn’t possible
to make a cross-platform game with Impact but before we move on, I just want to set
your expectations correctly. Impact requires modern browsers and even on mobile
devices with browsers that support HTML5, you will still run into audio issues that
may affect the ability of your game to run correctly for everyone.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This Book’s Example Files
You can download the example files for this book from this location:

http://examples.oreilly.com/0636920022633/

In the example files, you will find all the files necessary for the book. In addition to the
game source code, you will also find the source code for the iOS version of the final
game. Since Impact’s source code cannot be distributed with this book’s examples, you
will have to supply your own copy of Impact to make these examples work. Make sure
you read the included ReadMe.txt file for information on what is included with the
download and how to correctly set it up.

x | Preface

http://examples.oreilly.com/0636920022633/

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Introducing HTML5 Game Development
by Jesse Freeman (O’Reilly). Copyright 2012 Game Cook, Inc., 978-1-4493-1517-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

How To Use This Book
Development rarely happens in a vacuum. In today’s world, email, Twitter, blog posts,
coworkers, friends, and colleagues all play a vital role in helping you solve development
problems. Consider this book yet another resource at your disposal to help you solve
the development problems you will encounter. The content is arranged in such a way
that solutions should be easy to find and easy to understand. However, this book does
have a big advantage: it is available anytime of the day or night.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Preface | xi

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920022633.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
First and foremost, I would like to thank my wife and son for all their support while I
was making this book. I’d also like to thank my parents and family for all their help
and support over the years. I also have a lot of respect for all the thought leaders in the
development community who continue to inspire me, such as Keith Peters, John Lind-
quist, Jesse Warden, Chuck Freedman, Sean McCracken, Michael Labriola, Nate Beck,
Troy Gilbert, Joel Hooks, Brendan Lee, Scott Penberthy, Seb Lee-Delisle, Rich Shupe,
and especially Jobe Makar who taught me how to make Flash games years ago.

Thank you as well to Mary Treseler and Rich Tretola from O’Reilly Media, Inc., for
providing me with this opportunity and to Dominic Szablewski for his feedback on this
book and for creating such a great game framework. I also couldn’t have done this book
without the help from my amazing tech editors: Riche Shupe, Gareth Parker and
Richard Davey.

Finally I wanted to give a special thanks to Dan Wolfe for creating the splash screen
art for Resident Raver, as well as for his artistic help on my other games. And I can’t
forget my good friend Frank Pirozzi for inspiring me to create Resident Raver and shoot
a video of it back in college.

xii | Preface

http://shop.oreilly.com/product/0636920022633.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction To Impact

Impact is a JavaScript game framework created by Dominic Szablewski. Impact takes
advantage of the modern browser’s Canvas element in order to create high-performance
2D games on the Web and even mobile. One of the biggest advantages of using Impact
is that it is easy to pick up, comes with very good code examples, has an active com-
munity, and has a very robust level editor called Weltmeister. The only barrier of entry
is the licensing fee for the software, since it is not open source. After purchasing a
license, you do get the full source code, the Weltmeister level editor, and free current
major version updates (1.x). While there are other open source and free JavaScript game
frameworks out there, Impact has an extra level of polish I haven’t seen with anything
else so far.

Why Use Impact?
Perhaps one of the most appealing factors of buying Impact is the inclusion of a sample
Objective-C project that allows you to compile your Web game into a native iOS app.
This enables your game to take advantage of OpenGL for graphics and OpenAL for
sound instead of the Canvas and Audio elements in the mobile Safari browser. This
solution gives your game almost native-like performance on iOS, and it can be packaged
up and sold in the Apple Store just like a native app.

Here are some links to help you learn more about Impact and examples of it in action:

Site: http://impactjs.com
Forum: http://impactjs.com/forums
Demos: http://impactjs.com/forums/games
Purchase: http://impactjs.com/buy-impact

1

http://impactjs.com
http://impactjs.com/forums
http://impactjs.com/forums/games
http://impactjs.com/buy-impact

Tools you will need:

PHP
For saving levels created with Weltmeister.

Apache
For locally hosting and testing your game.

IDEs
Impact has no IDE dependencies; you can create your games with any simple text
editor. I prefer to use WebStorm or PHPStorm since these IDEs, which are made
by JetBrains, offer code hinting, project management, refactoring, and debugging.

Browsers
Impact works very well on WebKit browsers, especially Chrome, but any modern
browser with support for Canvas and the Audio tag should also work.

Setting Up a Local Environment
Before getting started, we are going to have to set up a simple Web development envi-
ronment in order to take full advantage of Impact and its level editor. Plus, by setting
up a local development environment, we can simulate what it will be like to host the
game in a production environment. Let’s take a look at configuring Apache, the IDE,
and Impact itself.

Install WebStorm/PHPStorm
While you can use any basic text editor, I prefer to use an IDE that offers a more robust
set of features such as code hinting, refactoring, project management, version control
integration, and a debugger. JetBrains has two IDEs that both handle JavaScript/
HTML5 development. If you only plan on doing JavaScript development, I would sug-
gest using WebStorm. If you need to do HTML5 and PHP development (which comes
in handy since Impact’s level editor uses PHP) you should look at PHPStorm.

Installing these applications is straightforward. Here are URLs for each IDE:

WebStorm
http://www.jetbrains.com/webstorm

PHPStorm
http://www.jetbrains.com/phpstorm

Each IDE has a 30-day trial and after the trial costs $99 for a license. There are a lot of
resources out there on how to use each IDE, so I am not going to cover it here.

2 | Chapter 1: Introduction To Impact

http://www.jetbrains.com/webstorm
http://www.jetbrains.com/phpstorm

Install Apache/PHP/MySQL
There are many guides for installing Apache and PHP on your operating system of
choice. Here are some simple one-click solutions to help get you up and running as
quickly as possible:

Mac
For Mac, you should use an all-in-one solution such as MAMP (http://www.mamp
.info/en/index.html). This is a free one-click solution for getting Apache, PHP, and
MySQL set up on your Mac. Likewise, you can also use the built-in version of PHP
that comes with OS X, but you will need to do some manual configuration of
Apache to get it working. Simply do a search for “Enabling PHP in Mac OS X” in
order to find instructions.

PC
Just like on Mac, there are some excellent one-click solutions for setting up Apache,
PHP, and MySQL. I have used XAMP (http://www.apachefriends.org/en/xampp
.html) in the past, and have had excellent success with it.

Other Hosting Options
If you prefer not to work on a LAMP (Linux, Apache, MySQL, PHP) stack you can
check out the following projects that allow you to run Impact on different hosting
environments:

Node.js
Conner Petzold made a Node.js module that allows Impact to run on a Node HTTP
server. His Node-Impact module is on GitHub at https://github.com/cpetzold/node
-impact.

.NET
You can run Impact on IIS and .NET thanks to Mike Hamilton’s ImpactJS-
IIS-.NET-API project, which you can find at http://code.google.com/p/impactjs-iis
-backend.

Ruby
Chris Darroch put together a Sinatra backend for Impact. Just remove the .php
extensions for the API calls in your lib/weltmeister/config.js and fire up
impact.rb, which you can find at https://github.com/chrisdarroch/impactrb.

Python
Joe Esposito has a GitHub project that implements a backend server in Python for
Impact to let you develop multiple games at once. You can check out the project
at https://github.com/joeyespo/py-impactjs.

Other Hosting Options | 3

http://www.mamp.info/en/index.html
http://www.mamp.info/en/index.html
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
https://github.com/cpetzold/node-impact
https://github.com/cpetzold/node-impact
http://code.google.com/p/impactjs-iis-backend
http://code.google.com/p/impactjs-iis-backend
https://github.com/chrisdarroch/impactrb
https://github.com/joeyespo/py-impactjs

Setting Up a New Impact Project
Impact is a self-contained project. Each game you create will require you to copy the
default Impact project folder (which you get once you buy a license) into a new location
on your server and start from scratch. Impact is set up so you can easily do all your
work from your local host.

To get started, copy the Impact project into your local host. You should see the fol-
lowing files (Figure 1-1).

Figure 1-1. Impact project files.

As you can see, I have renamed my impact folder residentraver, which is the name of
the game we are going to create in this book. Here is a quick breakdown of everything
in the folder:

index.html
This is the main .html file that runs your game.

lib
This is the core code for Impact and where you will store your own game-specific
JS files. This also contains the source code for Weltmeister.

media
This is the assets directory, and where all game art and sound files will go.

tools
This directory contains .php scripts to minify your game’s JS files and make it
harder for people to have access to the game’s source code. This is part of the license
and is important so you don’t accidentally distribute the source code.

weltmeister.html
This is the level editor’s .html file.

You should now have everything you need to run your first game. If you open your
browser and navigate to http://localhost/residentraver1 you should see the following
page (Figure 1-2).

1. Based on how Apache is set up on your computer, you may have a different URL for your localhost. If
you are using MAMP, it may be http://localhost:8888, or with XAMP it is http://localhost. Refer to your
Apache documentation for the correct URL.

4 | Chapter 1: Introduction To Impact

http://localhost/residentraver

Figure 1-2. This is what you will see when you run an Impact game for the first time.

Before moving on, I just wanted to take a quick moment to look at the index.html file
and how it is set up. Open it up in your editor and you should see the following HTML
code:

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Impact Game</title>
5 <style type="text/css">
6 html,body {
7 background-color: #000;
8 color: #fff;
9 font-family: helvetica, arial, sans-serif;
10 margin: 0;
11 padding: 0;
12 font-size: 12pt;
13 }
14

Setting Up a New Impact Project | 5

15 #canvas {
16 position: absolute;
17 left: 0;
18 right: 0;
19 top: 0;
20 bottom: 0;
21 margin: auto;
22 border: 1px solid #555;
23 }
24 </style>
25
26 <script type="text/javascript" src="lib/impact/impact.js"></script>
27 <script type="text/javascript" src="lib/game/main.js"></script>
28 </head>
29 <body>
30 <canvas id="canvas"></canvas>
31 </body>
32 </html>

Outside of the style tag, you may notice there isn’t a lot of code actually embedded in
the page. We have two script tags that load in the impact.js framework and our
main.js JavaScript file. Finally the only tag in body is the Canvas element.

The Canvas element is part of the HTML5 spec and is what actually
allows Impact to run in the browsers. Think of the canvas as an image
that we can draw bitmap data into. Impact takes care of all the under-
lying code we would have had to write in order to display game graphics
to the screen. You can learn more about how the Canvas tag works at
http://www.whatwg.org/specs/web-apps/current-work/multipage/the
-canvas-element.html#the-canvas-element. It’s also important to note
that the Canvas element only works in modern browsers such as
Chrome 13+, Safari 3.2+, Firefox 6+ and IE 9+. For a full list of browsers
that support the Canvas element, go to http://caniuse.com/#search=can
vas.

You can also add your own HTML code around the Canvas element and design this
page to look like any other HTML file. Just keep in mind that we use the canvas id in
our game in order to tell impact where to render our game’s graphics to, so don’t change
it unless you update your game’s initialization logic.

Now we are ready to learn more about the Impact framework.

Modules
Impact’s source code is organized into modules. Since JavaScript itself does not have
an include() function that can load other JavaScript source files into an object, Impact
has its own system. A module typically looks like this:

6 | Chapter 1: Introduction To Impact

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#the-canvas-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#the-canvas-element
http://caniuse.com/#search=canvas
http://caniuse.com/#search=canvas

1 ig.module(
2 'game.my-file'
3)
4 .requires(
5 'impact.game',
6 'impact.image',
7 'game.other-file'
8)
9 .defines(function(){
10 // code for this module
11 });

The first block defines the module name 'game.my-file', which directly corresponds to
the file name. Modules and their dependencies typically reside in the lib/ folder of your
Impact project directory, and subdirectories are included in a path to these files using
object-model dot syntax. Therefore, the my-file.js file sits in the lib/game/my-file.js.

The second block defines any additional files that will be loaded at runtime. Since
JavaScript itself does not have an established way to load other JavaScript source files
into an object, Impact has its own system. The modules listed in the .requires()
method will be loaded from the lib/impact/game.js, lib/impact/image.js, and lib/
game/other-file.js project directory, respectively. These required files will be loaded
before the module’s body and before the last block of the above module example is
executed.

The last step the module takes is to execute the function passed to the .defines()
method. This linear process allows you to control when code is loaded and run. It’s
important to follow Impact’s file naming and location structure since it will try to au-
tomatically load these resources for you during the pre-load phase. Next, we’ll talk a
little more about classes in Impact and how they work.

How Classes Work
In JavaScript, there is no real notion of a traditional class structure like you have in
other OOP languages. In JavaScript, everything is an Object. While this allows Java-
Script to be incredibly flexible, it also makes it difficult to structure your code in a
reusable way. To solve this issue, Impact has a pseudo-class object, which is the basis
of every class we will create in our game.

Impact’s class object is based on John Resig’s simple JavaScript inheri-
tance code (http://ejohn.org/blog/simple-javascript-inheritance), but it is
extended with deep copying of properties and static instantiation.

Here is an example of how we can create a new person class by building off of Impact’s
core Class object:

How Classes Work | 7

http://ejohn.org/blog/simple-javascript-inheritance

1 // Create a new class "Person"
2 var Person = ig.Class.extend({
3 name: '',
4 init: function(name) {
5 this.name = name;
6 }
7 });
8
9 // Instantiate an object of the first class
10 var e = new Person('John Doe');
11 e.name; // => John Doe

You may have noticed that we actually extend the functionality of the ig.Class object
via the .extend() method.

In traditionally class based languages, the extends keyword allows us to
copy over the existing functionality of another class. This is what will
allow us to infuse additional functionality into all of our game classes
without having to actually duplicate code all over the place.

In addition to extending off of ig.Class, you can actually extend off of any custom class
you create. Again, in order to extend another class you simply use the .extend() func-
tionality. Here we are going to extend off of our person class to create a new zombie
class:

1 // Create another class by extending the "Person" class
2 var Zombie = Person.extend({
3 init: function(name) {
4 this.parent('Zombie: ' + name);
5 }
6 });
7
8 // Instantiate an object of the second class
9 var p = new Zombie('John Doe');
10 p.name; // => Zombie: John Doe

All classes that are created with .extend() will also have an .extend() method that can
be used for further subclassing. When working inside of extended classes, you can
use .this and .parent for scope. You will see later on how splitting up core logic into
individual classes will help expostulate functionality and make our game code easier
to maintain while we develop it.

Core Classes
Impact is made up of several core classes that revolve around the game framework and
all the necessary systems such as rendering, maps, sounds, and more. All the classes
are in the ig namespace, which is set up by the core class. Here is a list of the main
classes used in Impact along with a short description of what they do:

8 | Chapter 1: Introduction To Impact

ig Core
The ig object provides the module definition and loading capabilities as well as
some utility functions.

Animation
An ig.Animation object takes care of animating an entity or BackgroundMap tiles.
Frames from an AnimationSheet—an image with all animation frames—are drawn
as specified by the animation’s frameTime and sequence.

AnimationSheet
ig.AnimationSheet is a thin wrapper around an ig.Image object. It specifies the
width and height properties for each animation frame in the sheet. It is used by the
ig.Animation class.

BackgroundMap
An ig.BackgroundMap draws tiles from a Tileset, as indicated by its 2D data array.

CollisionMap
An ig.Collision takes a 2D TileMap and allows tracing against it for collisions.

Entity
Interactive objects in the game world are typically subclassed from this base entity
class. It provides animation, drawing, and basic physics. Subclassing your entities
from ig.Entity ensures that it can be added to the game world, react to the Colli-
sionMap along with other entities, and be added to a level within Weltmeister.

Font
An ig.Font object loads a specially formatted font image and allows you to draw
text with it.

Game
ig.Game is the main hub for your game. It hosts all currently active entities, Back-
groundMaps, and a CollisionMap. You can subclass your own game class from
ig.Game.

Image
ig.Image is a wrapper around image resources (.png, .gif, .jpeg). It takes care of
loading and scaling the source image. You can draw the whole image by call-
ing .draw() or just one tile of it by calling .drawTile().

Input
ig.Input handles all keyboard and mouse input.

Loader
ig.Loader is the default pre-loader for all images and sounds that the game needs.
By default, it displays a white progress bar on a black background.

Map
ig.Map is the base class for ig.BackgroundMap and ig.CollisionMap. It only provides
basic access to the tiles in the map data.

Core Classes | 9

Music
ig.Music offers the ability to play a list of background music in order or randomly.

Sound
An instance of ig.Sound represents a sound file to be used as background music or
game sound.

SoundManager
The SoundManager takes care of loading sounds and providing them for
ig.Music and ig.Sound instances. An instance of the SoundManager is automati-
cally created at ig.soundManager by the ig.main() function.

System
ig.System takes care of starting and stopping the run loop and calls the .run()
method on the current game object. It also does the housekeeping for ig.Input and
provides some utility methods.

Timer
The ig.Timer has two distinct modes of operation. You can either get the difference
by calling .delta() between the current time and the timer’s target time (as set by
the constructor or .set()) or just get the current tick—the time since the last call
to .tick().

You can learn more about each of these classes and their methods on Impact’s website
under the documentation section at http://impactjs.com/documentation.

How Inner Classes Work
In traditional class-based languages, you usually have the option to put a class inside
of another class’s package structure. These are called inner classes. Impact has its own
version of this, which allows us to add more than one class to a single module file.

Creating an inner class is similar to making a normal class, with the exception that you
will be adding it to the end of the main class’s module. These inner classes also support
inheritance as well. Here is a quick example of two classes in the same module:

1 ig.module(
2 game.entities.myclass'
3)
4 .requires(
5 'impact.entity'
6)
7 .defines(function(){
8 EntityMyClass = ig.Entity.extend({
9 //Properties and methods go here
10 });
11
12 EntityMyInnerClass = ig.Entity.extend({
13 //Properties and methods go here
14 });
15 });

10 | Chapter 1: Introduction To Impact

http://impactjs.com/documentation

This technique is incredibly helpful when it comes to keeping your code organized, as
you will see later in the book.

Level Editor
One of the best features of Impact is its level editor called Weltmeister. It is located in
the libs/weltmeister folder inside the Impact project. We will go through using this
editor in the next chapter, but I wanted to take some time to highlight its features and
how to use it.

You can pull up the level editor anytime by navigating to the root of your project’s
domain and loading the weltmeister.html file. You will be presented with this screen:

Figure 1-3. This is the screen you will see after loading Weltmeister for the first time. Select a layer
to see the grid numbers.

When you load the editor for the first time, you are presented with an empty
untitled.js map file. Along the top are your main controls such as Save, Save As, New,
and Load. Reload Images allows you to make visual tweaks to your map without having
to do a hard refresh. Finally, on the far right, you will see a large arrow that shows/
hides the layers, and below that are your map’s layers. By default, there is an entities
layer, which is where your player, monster, and other in-game elements will go. You
can add new layers at any time by pressing the plus sign on the right of the Layers label.

Layers simply allow you to draw level tiles onto the stage just as you
would use a stamp tool in a painting program. If your game’s level is
incredibly detailed, you may want to break out parts of the level’s tiles
into a background, middle ground, and foreground layers as well as
creating other layers for collision detection and additional details. Any-
thing that moves in the game will go into the entities layer.

Before we can start making levels for our game, we need to create some graphics. Let’s
take a look at the asset pipeline, and more importantly, how to create graphics for
Impact projects.

Level Editor | 11

CHAPTER 2

Working With Sprites

Traditionally in gaming, the asset pipeline refers to the visual workflow you create for
your project. This could be as simple as copying files over by hand into your game’s
media folder or writing more complex automation scripts to generate the art for you.
For Impact games, all the in-game graphics are going to be sprites.

Sprites and Sprite Sheets
Sprites are the primary way we display and animate artwork in Impact games. A sprite
is a single bitmap image that is drawn to the display—in this case the HTML5 Canvas
element. To help organize them better, related sprites are grouped together into a single
image called a sprite sheet.

Figure 2-1. An example of a sprite sheet from the game we are going to build.

Figure 2-1 shows a sprite sheet that contains all the visual states used for movement of
the main character. Sprite sheets are usually set up using dimensions and coordinates
that are easily divided. In this example, the sprite sheet is 160×16 pixels, and each sprite
is 16×16 pixels. This allows us to simply divide the sprite sheet by 16 and automatically
figure out that there are 10 sprites. Generally, when using sprite sheets for animation,
we would tell the game engine which sprite is part of each animation set. Here is an
example of how that will work in Impact:

this.addAnim('idle', 1, [0]);
this.addAnim('run', 0.07, [0,1,2,3,4,5]);
this.addAnim('jump', 1, [9]);
this.addAnim('fall', 0.4, [6,7]);

As you can see in this example, sprite 0 is our idle animation while 0-5 represents our
run animations. We will explore setting up sprite animations a little later on when we
begin setting up our game.

13

It’s important to note that JavaScript’s Arrays are zero-based, so our first
sprite is always going to be 0, with each sprite increasing in value from
there.

Sprite sheets are also good for non-animated graphics such as tiles for a level.

Figure 2-2. Sprites that make up a level are called Tilesets.

So, instead of registering animations manually, we can tell the game engine which tiles
represent walls, decorations, or any other art you would need for your level’s design.

Figure 2-3. An image from Impact’s level editor showing how these tiles are used in the game.

Now that we have a basic understanding of sprite sheets, let’s look at how to actually
create them for our games.

When it comes to creating sprites for pixel-based games, there are sev-
eral great image editors available for you to use. In this book we cover
Photoshop but you should also check out GrafX2 (http://code.google
.com/p/grafx2/) and GIMP (http://www.gimp.org/), which are free.

Scripting in Photoshop
Photoshop has several ways to build automation scripts, but for now we are just going
to focus on using JavaScript. Basically, we will write a script that loops through the
layers of the PSD, aligns each of the sprites in a row, and allows us to output a single
file. One of the most important parts of generating graphics for games is picking the
correct file format, color palette, and optimization settings by hand for each sprite sheet.

14 | Chapter 2: Working With Sprites

http://code.google.com/p/grafx2/
http://code.google.com/p/grafx2/
http://www.gimp.org/

Figure 2-4. Our game’s main character with each sprite animation on its own layer.

Photoshop scripts are simple text files saved as .js files. Usually, these scripts should
be placed in the Presets/Scripts directory of your Photoshop installation folder. For
simplicity, you can just manually run them by going into File→Scripts→Browse. In your
script editor of choice, create a file called LayersToSprite.js and save it to your com-
puter somewhere that is easy to find. Add the following code to your script:

1 // Arrange layers into a sprite sheet.
2 if (documents.length > 0)
3 {
4 docRef = activeDocument;
5 var activeLayer = docRef.activeLayer;
6
7 numLayers = docRef.artLayers.length;
8 var cols = docRef.width;
9
10 var spriteX = docRef.width;
11
12 // put things in order
13 app.preferences.rulerUnits = Units.PIXELS;
14
15 // resize the canvas
16 newX = numLayers * spriteX;
17
18 docRef.resizeCanvas(newX, docRef.height, AnchorPosition.TOPLEFT);
19
20 // move the layers around
21 for (i=0; i < numLayers; i++)
22 {
23 docRef.artLayers[i].visible = 1;
24 var movX = spriteX*i;
25 docRef.artLayers[i].translate(movX, 0);
26 }
27 }

Scripting in Photoshop | 15

Now that we have our script ready, let’s open the player.psd, which is included in the
books resources in the psds directory, in Photoshop and run the script to test that it
works. When the script is done running, you will end up with something like Figure 2-5.

Figure 2-5. Our player sprite sheet, which was generated by the Photoshop script.

In our game we actually use a PSD of our player with different types of
weapons. You can find this additional file, along with the sprites for our
zombie, in the psds directory if you also want to test the sprite sheet
creation script on those files too. I have already gone ahead and created
the final sprite sheets for the player and zombie in the media directory
we will use for our game.

Congratulations, you have just created one of the most important tools for speeding
up your sprite creation. Imagine how long it would take to do all of this by hand or,
even worse, when changes happen—you would have to manually recreate all of these
sheets each time. Scripting in Photoshop can get very complex, and it’s good to read
up on what you can actually do with it. While scripting in Photoshop may not be the
most glamorous way to spend your time, I am sure you can agree that removing the
repetitive nature of asset preparation is well worth the time investment.

If you are interested in learning more about Photoshop scripting, make sure to check
out the following resource from Adobe:

http://www.adobe.com/devnet/photoshop/scripting.html

Working with Sprites in Photoshop
When it comes to working with sprites and tiles in Photoshop, it is important to set up
your grid and guides to help get a better sense of the dimensions of each tile, especially
when there is a lot of transparent space around the sprite. You can easily do this by
going into Photoshop’s Preferences menu and selecting Guides, Grid, & Slices... (Fig-
ure 2-6).

From here, you can set the guide size to match your sprite tile size. For our game, all
the sprites are 16×16 or 8×8 pixels. By setting the subdivisions to 2, we will be able to
see grids that work with our character sprites and level tiles as well (Figure 2-7).

16 | Chapter 2: Working With Sprites

http://www.adobe.com/devnet/photoshop/scripting.html

Figure 2-7. How to navigate the Photoshop Preferences menu to set your grid and guides.

Once you set this up, just turn on grid view from View→Show→Grid. You can also set
auto-snapping to the grid, which may help align sprites more easily.

Figure 2-8. Now you should be able to see the grid around your sprite.

Optimizing Sprites
Now that we have our script for generating sprite sheets, we should talk about opti-
mizing them. Impact is really good at working with 8-bit and pixelated artwork. That
doesn’t mean that you have to use this style for your own games but, if you do, there
are a lot of great optimization tricks you can use in order to cut down on the file size

Figure 2-6. The menu where you will set the guide size to match your sprite tile size.

Optimizing Sprites | 17

of your assets. It’s important to keep in mind that every single image of your game is
loaded at run time, so you will want to make sure the file sizes are as small as possible.

In order to do this, we can use a great feature of Photoshop called Save for Web &
Devices.

Figure 2-9. The Save for Web & Devices window, where you will make sure that your file sizes are
as small as possible.

As you can see, the output window offers you several ways to preview the file size of
different file compression types. I tend to use GIF or PNG-8 for simple artwork with
no complex transparency. I use PNG-24 only when I have to. Remember, every KB
counts.

18 | Chapter 2: Working With Sprites

CHAPTER 3

Introduction To Game Design

Before we jump in and start building our game, I want to cover the basics of game design.

What is Game Design?
When we talk about game design, we are not referring to the visual style of the game,
but the actual gameplay mechanics themselves. Game design in its own right is an art
form, and probably one of the most challenging parts of making any game. This is where
you take an idea and not only transform it into a physical game that others can play,
but also make sure the game is fun and well-balanced. The first step to designing a game
usually starts with a game design document (GDD).

GDDs come in many shapes and sizes. Some people scribble them down in notebooks
as drawings or use index cards. More traditionally, this is a multi-page text document
containing the general concept of a game and its core mechanics that attempts to answer
some basic questions about how the actual game works. At the very least, it should give
the reader a clear idea of how the game will work and feel.

The GDD is critical for people getting started with making games because, without the
experience of multiple games under your belt, it is easy to create something so complex
and time-consuming that you will never be able to finish it. The GDD helps keep you
on track and is an anchor to the core values of your original idea. This doesn’t mean
that it is set in stone, but thinking through as much of the interaction as possible before
writing any code will go a long way toward helping you complete your game.

19

There are many books on the subject, and I will list some recommended reading at the
end of the chapter. For now, here are a few key points I think are helpful to have in
your GDD:

Start your document with a high concept
This is a term that is borrowed from the film industry and usually represents a
“what if” scenario. When drafting a GDD, I tend to use a high concept to outline
what the game is and its scenario, as well as outline any games that may already
exist to draw inspiration from. Likewise, you can do a traditional high concept
such as “What if we take Mario, but make him into a worm with a gun?” Asking
these kinds of questions has been the inspirational fodder for many games for the
past 30 years.

Try to add illustrations, sketches, and even more polished concept art to your document
It always helps to see what things will look like in your game. Games are very visual
by nature; most people get bored out of their minds reading a 15-page or more
design document with no indication of the artistic style you are envisioning for the
game. Even worse, you leave that interpretation up to the reader’s own imagina-
tion, so when they start seeing the first round of art concepts, it may be totally
different from the impression they got from your doc. Designing a game is a very
creative process, and you should have fun with it by sketching out as much as you
can ahead of time.

Have a clear outline of the game’s mechanics, how things work, and how they will interact
with each other

Go into as much detail as possible around actions such as how combat works,
leveling up, stats, rewards, etc.

Clearly illustrate how objects in your game are built
Include things like what properties a game actor may have such as life, weapon
values, and more. This will be incredibly helpful when you go into development
as a point of reference.

Don’t worry about putting in too much
It’s always better to start big and scale down as needed. The last thing you want
to do is limit your imagination or creativity. Plus, you never know if the ideas you
cut out for version one of your game could be reused in a follow-up game.

Finally, one of the most important things to do with your GDD is share it with as many
people as possible. I know this goes against what you may feel is right, especially if you
are afraid that people will steal your idea and take it for themselves. Obviously, I
wouldn’t share these ideas publicly on a website or social network (unless you are
comfortable doing that), but find a core group of friends to bounce ideas off of. I use
Google Docs to write my GDDs and share them with all my friends. It’s a great col-
laborative platform because everyone can leave notes in your document and offer an
outside insight if your game ideas need more work.

20 | Chapter 3: Introduction To Game Design

Sample Game Design Document
When it comes to personal projects, I start by outlining the core mechanics of a game
or my general idea of what I would like to build, then start to add more and more detail
as I work out how everything should operate. I have included one of my own GDDs
for an RPG I have been working on called Tile Crusader. I have edited this down from
my original document, as it was more than 20 pages long. Since RPGs are probably one
of the most complex types of games to make, I find that having an organized and de-
tailed GDD is essential for helping keep track of all the game systems you will end up
having to build. Let’s take a look at the scaled down version of Tile Crusader’s GDD.

Figure 3-1. This graphics shows off the player and other monsters in the game, and is useful for helping
set the tone of the GDD for first time readers.

Tile Crusader is a crowd-sourced, coffee break, rogue-like game that gives anyone the
ability to pick up and play a random crusade in just a couple of minutes. The goal of
Tile Crusader is to be a very casual RPG that is perfect to play in between boring tasks
at work, while waiting for water to boil, or when you have some down-time. There is
little time investment since there is no need to worry about spending hours building
up a character. Tile Crusader is designed to be a quick and fun RPG experience!

Gameplay
Tile Crusader is a simple turn-based dungeon crawler. Each game revolves around
completing a specific goal like kill all monsters, kill a boss, find an artifact, or simply
escape. Tile Crusader is highly streamlined with simplified gameplay to offer the fastest
experience possible. Monsters don’t move in the game, so the player can choose when
to engage in combat. Also, since other users create the maps, there are endless possi-
bilities for new crusades to explore.

Exploring a Map
As the player explores the map, tiles are revealed to show monsters and treasure chests.
The player uses the arrow keys to navigate the map. The player can interact with any
object by colliding with it. When the player hits a treasure chest, it opens to reveal a
pile of gold, a potion, a trap, or nothing. When the player collides with a monster,
combat commences. Once the objective of a map is completed, the player can return
to the exit and leave the level. Each tile the player reveals will be recoded, and at the
end of a level, a bonus will be rewarded.

Sample Game Design Document | 21

Combat
Tile Crusader is based on a point combat system. Combatants have an attack value and
defense value. If the attack value is higher than the defending value, the difference is
subtracted from the defending character’s life. The attack and defend values are range-
based, so there is some random chance the final value will be lower than the base attack
value or a total miss. The player can leave combat at any time by walking away. Some
monsters, such as bosses, will regenerate their health once you leave combat and as
they go off-screen.

Completing a Map
When the player completes a map, they get to keep everything they find. If they die,
they lose all their money and potions. Once the player completes a map, they are taken
to an upgrade screen and, once the upgrades are completed, they can move onto the
next random map.

Death
When a player dies, they restart the level and their stats/inventory is reset. Each death
is recorded on a tombstone for that level. In addition to starting over, their character
stats keep track of how many times the player has died in the game. This stat is not
reset when a new game or character is created.

Main Character
When you create a new character, you can choose a class. Each class has skills and base
starting stats. This is based on a point system, so each character is only allocated 20
points to be distributed in each property. Here is a list of classes:

Class Max Life Attack Defense Potions Inventory

Knight 9 3 2 2 4

Mage 5 2 4 5 4

Thief 7 2 1 2 8

Monsters
There are nine types of monsters in the game. As the player finds monsters on the map,
they will see an attack and defense value in order to gauge how difficult it will be to
defeat them. Once a monster is defeated, it will be removed from the map and the player
will gain a point to their kill score. If the map allows monsters to drop treasure, they
may leave behind something from the treasure pool. It’s also important to note that
monsters do not move.

22 | Chapter 3: Introduction To Game Design

Sprite Monster Type Name Sprite Monster Type Name

Monster 1 Ork Monster 6 Mummy

Monster 2 Ogre Monster 7 Skeleton

Monster 3 Goblin Monster 8 Imp

Monster 4 Wolfman Monster 9 Gargoyle

Monster 5 Vampire

Bosses
In game modes where the player has to defeat a boss, they must find them and kill them
before they can leave the level. Bosses are always more powerful than the character, so
make sure you are prepared to fight to the death in order to leave. There can be more
than one boss per level.

Equipment
The player and monsters have equipment. Equipment consists of weapons, armor,
helmets, and shields. Each piece of equipment modifies the character it is equipped to.
Equipment has the following properties:

Property Description

Name Name of the item.

Type Used to classify item: weapon, armor, helmet, shield, etc.

Modify Name of the property to modify.

Inventory
The player has 12 possible inventory slots, two equippable slots (weapon and armor),
and one dedicated slot for potions. Each player class has its own limitations on how
much it can carry. When an item is equipped, it goes into the equippable slot. The
player can only equip one weapon at a time and several types of armor. Armor is stacked
into the armor slot so the player is allowed one piece of armor, a helmet, and a shield.

Figure 3-2. Tile Crusader HUD showing off player stats and inventory.

Sample Game Design Document | 23

Equipping Items
When an item is equipped, it is placed in the player’s weapon or armor slot. The modi-
fier value for the item is displayed underneath it. Armor is stacked in the armor slot to
show helmets, shield, and armor in one area.

Weapons and Armor
Each weapon and piece of armor in the game has four properties:

Property Description

Name Name of the weapon.

Base Value Base value of the weapon; this modifies the attack property.

Graphic This is the sprite ID to use for the weapon’s graphic.

Type This defines what slot an item is equipped to: weapon, armor, shield, helmet, etc.

This is a list of all the weapons in the game:

Sprite Name Base Value Sprite Name Base Value

Club 1 Hammer 4

Dagger 2 Axe 5

Mace 3 Sword 6

This is a list of all the shields in the game:

Sprite Name Base Value Sprite Name Base Value

Round Shield 2 Oval Shield 5

Warrior Shield 3 Long Shield 7

This is a list of all the helmets in the game:

Sprite Name Base Value Sprite Name Base Value

Bucket Helmet 2 Full Helmet 5

Roman Helmet 3 Fuller Helmet 7

This is a list of all the armor in the game:

Sprite Name Base Value Sprite Name Base Value

Light Chainmail 1 Chest Armor 5

Chainmail 2 Full Armor 7

24 | Chapter 3: Introduction To Game Design

Leveling Up
The player is automatically leveled up when a crusade is completed. Not only do they
increase a level, they also have the option to update one of the five main character
properties: life, attack, health, potions, or inventory.

Winning the Game
There is no true way to win the game outside of staying alive. When the character dies,
the player’s game is over. Other than that, the goal is to stay alive for as long as you
can across as many crusades as possible. When the player completes their mission, the
crusade is over. The player gets to keep all of the items they found from the level, and
collect a reward based on how well they did.

Coming Up With Ideas
Sometimes the hardest part of creating a game is just coming up with an idea. Or, maybe
you have a lot of ideas and need to be able to focus on one of them. There are a few
techniques I use to inspire me in my own games that help teach me important game
mechanics we sometimes take for granted after playing games for a long time:

Keep a game journal
This doesn’t have to be a traditional sketchbook (although that helps), but just
something around where you can write down your game ideas. As I mentioned
earlier, I use Google Docs to write all my game ideas when I have them. This way,
I can come back to them when I have free time and flesh them out. Some game
developers create elaborate sketches to work out their ideas, while others simply
use sticky notes. There is no right or wrong way to go about this as long as you
find a good system for jotting down your ideas.

Recreate a classic game
I love old arcade, Nintendo, and Sega games. I am really stuck in that 8-bit retro
world and always look back to the games I played as a child to find inspiration.
One of the first games I ever built in Flash 4 was Duck Hunt. Recently, I built a
clone of Frogger. After building Frogger, I re-skinned it and put my own spin on
it. Don’t underestimate the importance of simply trying to recreate an existing
game that works well, then modifying it with your own take or changing the game
system to create a new game. If you look back through the history of video games,
you will see a natural evolution of one game picking up or modifying another
game’s mechanics. Just make sure you give credit where credit is due and don’t
blatantly go out and steal another person or company’s game.

Coming Up With Ideas | 25

Do a daily code warmup
A big part of my development routine is doing 30-minute code warmups. This is
actually a technique I picked up when I was a fine artist and my mentor used to
make me do 30 minutes of sketching before I started painting. Doing a small ex-
periment or trying to solve a development problem can really get your brain going
and help you be way more creative when you finally sit down to code your own
game.

Experiment
Finally, this should go without saying, experiment as much as possible. This goes
hand in hand with the daily code warmup. I like to pick game systems or interesting
gameplay concepts, then try to reproduce them or make them better. Take a simple
turn-based combat system or an inventory system, for example, and just try to code
one from scratch. As you build out more of these experiments and game system
studies, you can quickly begin to put them together to help you prototype out game
ideas even quicker.

Books to Read
There are a lot of really good books on game development, so I thought I would high-
light the three most important ones I feel are must-reads for any aspiring game devel-
oper:

“A Theory of Fun for Game Design” by Raph Koster
This is a great book that attempts to answer the question “What is fun?” and more
importantly “What is a game?” It’s an easy read with absolutely no code and all
theory.

"Level Up!: The Guide to Great Video Game Design” by Scott Rogers
If you are interested in understanding the technical side of game design as in how
to build a game design document, pitching games, and more practice than theory
then this is the book to read. Again, this book doesn’t have any code in it, but the
lessons you will learn will help make you a much better game designer.

"Rules of Play: Game Design Fundamentals” by Katie Salen and Eric Zimmerman
If you ever took a course on game design, then this would be your required reading.
The book approaches the question of game design from a very academic point of
view. The book is long, detailed, and full of homework-type examples to practice
your skills. This book is for the serious game designer looking to not only master
the art of game design but to be able to speak about it on a higher level.

26 | Chapter 3: Introduction To Game Design

CHAPTER 4

Building A Game

In the following chapter, we are going to build a game called Resident Raver, in which
the player controls an unnamed hero who is trying to escape a college dorm overrun
by raver zombies. The hero has several weapons at his disposal to help him escape,
while also navigating platform-based obstacles. I have gone ahead and created all the
assets you will need for the final game.

Before moving onto the next section, make sure you copy over the contents of
the media folder that is included in the book’s example files folder. This will
contain all the assets you will need for the rest of the book. In it you will find sprites,
map tiles, and sounds.

Figure 4-1. The media folder that contains the assets you will need to continue building your game.

27

It’s okay to replace the default media directory with the one we will be using for this
book.

Creating Our First Level
Now that we have learned about creating graphics for our game, we can start building
our first level. Let’s open up Weltmeister and create a simple level. When you open up
Weltmeister for the first time, you will see that an untitled.js file has been created for
you, but that the level is empty. Before we can even start creating our level, we will need
to add our map tile sprite sheet. Create a new layer and call it main. This is where we
will start drawing our level. You can create this new layer by clicking the plus icon on
the top right of the screen next to the Layers label.

Figure 4-2. This is what you will see after creating your new layer.

When a new layer is created, its bounding box will be displayed showing the borders
of the layer. You can’t draw tiles outside of this box. This is based on the layer’s di-
mensions, which are configured as part of the layer’s properties. Here is a summary of
what each property represents:

Name
This is the name of the layer. It can be anything you want.

Tileset
This is the path to the Tileset image file you want to use for this layer. Clicking on
this property will bring up a list of directories in your project file.

28 | Chapter 4: Building A Game

Tilesize
This represents the size of each tile in your sprite sheet. By default, it is set to 8.

Dimensions
This represents how large the layer is. By default, it is set to 30×30 tiles. Since tiles
are set to 8 pixels by default, this layer is 240×160 pixels.

Distance
This is the distance from the camera, similar to Z index in HTML. This is useful
for background layers you want to scroll at a different speed than the foreground
layers to create a parallax scrolling effect.

Is Collision Layer
This toggle allows you to use the layer for collision detection, which we will cover
later on.

Pre-Render In Game
This will pre-render your map, which can help increase the performance of your
game, especially on mobile devices, but you will not be able to have animated tiles.

Repeat
This is also a background layer property that allows you to repeat your layer when
it scrolls by in the background. Think of this more as a texture that is repeated
inside of the layer.

Now we are ready to make our first level. Let’s click on the Tileset field and select our
map tiles. After clicking on the Tileset input field, you should see the root directory of
your project from a drop-down menu, as seen in Figure 4-3. Select media, and there
you can select dorm-tiles.png. You will also need to set the Tilesize to 16. Make sure
to apply the changes so your selections are saved.

Figure 4-3. Use the drop-down menu to select the media directory where our tile sprites are.

Creating Our First Level | 29

Now, click inside the map editor and press the space bar to bring up the tile painter
(Figure 4-4).

Figure 4-4. All the tiles you can paint your level with.

The tile painter is very easy to use. While your tile set is visible, simply select the tile
you want to use by clicking it with your mouse. The tile set will disappear and you will
now be able to place your selected tile by clicking anywhere in the layer. You can also
click and drag to create many tiles of the same artwork. When you want to change tiles,
press the space bar again, select a new tile, and resume clicking to place the new tiles.

Notice the yellow box at the beginning of your sprite sheet that looks empty? Selecting
this allows you to erase tiles you have already painted. Weltmeister automatically cre-
ates the empty tile for you so you don’t need to add it to your sprite sheet. Let’s draw
the foundation of our level, shown in Figure 4-5.

Figure 4-5. Our game’s first level.

When you start creating your own level, feel free to experiment with the
tiles and add some variety to your textures. You don’t have to follow
this example 100%, but I wanted to create something that was quick to
make and had two different ground heights to it. It’s also important to
note that I never start my maps at exactly 0,0, in case I need more space
at the top of the lefthand side later on.

30 | Chapter 4: Building A Game

I know this level doesn’t look very exciting yet but, don’t worry, we will get into more
complex level creation later on.

Saving/Loading Maps in Weltmeister
Save your map by hitting Save at the top of the editor. You will notice that, by default,
Weltmeister wants to put levels in the lib/game/levels/ directory. This is very impor-
tant, because this is where Impact will automatically look for your game’s levels. Later
on, we will be able to simply tell Impact to load your level by name instead of having
to pass it the full directory path.

Figure 4-6. Levels are automatically saved inside the game’s levels directory.

Let’s name our level dorm1.js. Note that we have to add the .js file extension to our
level. The level file is actually a JSON file. The editor will give you an error if you forget
to add the correct extension.

It’s important to note that you will need to have PHP set up in order to
save. The editor itself is built with JavaScript, but the save API uses PHP.
This should be handled automatically if you’re using the recommended
MAMP or XAMP applications discussed in Chapter 1.

You can also easily load any level you have created by selecting Load from the top menu.

Figure 4-7. It is easy to load any level you have already created.

Saving/Loading Maps in Weltmeister | 31

You will see a list of all the maps you have created. By default, Weltmeister automati-
cally attempts to load the last level you were working in.

CollisionMaps
Now that we have our level’s tiles in place we need to set up a collision layer. This tells
Impact what tiles are passable and impassable to the game’s entities. To set this up, we
need to create a new layer called collision and set the Tilesize to 16. Now, you can
select Is Collision Layer from the layer options, and a default set of collision tiles will
automatically be loaded for you. Once you have the collision layer in place, let’s start
painting.

Figure 4-8. These are the default sprites for the collision tiles.

As seen in Figure 4-8, there are a lot of different collision tiles for us to choose from.
Most of these tiles help support collisions with slopes. We are going to focus on the
first solid tile, which is the pink square in the upper-left corner. Let’s paint on top of
our main level’s walls.

Figure 4-9. Our level with the collision tiles in place.

32 | Chapter 4: Building A Game

Usually, I put the collision layer underneath the main layer. You can reorder layers at
any time by simply dragging them around. Now, when we create our player and mon-
sters, Impact will make sure they don’t fall through the floor.

It looks like we are finally ready to start building our game!

The Main Class
When setting up a new Impact project from the template project, you will see a
main.js file in your game directory. The main class is the entry point to your application
and will contain some of the core logic, such as binding keyboard events and logic for
making the camera follow the player. Most importantly, the main file also defines and
loads any required files or global functions in your game. Here is the default main.js
class you will start with:

1 ig.module(
2 'game.main'
3)
4 .requires(
5 'impact.game',
6 'impact.font'
7)
8 .defines(function(){
9
10 MyGame = ig.Game.extend({
11
12 // Load a font
13 font: new ig.Font('media/04b03.font.png'),
14
15
16 init: function() {
17 // Initialize your game here; bind keys etc.
18 },
19
20 update: function() {
21 // Update all entities and backgroundMaps
22 this.parent();
23
24 // Add your own, additional update code here
25 },
26
27 draw: function() {
28 // Draw all entities and backgroundMaps
29 this.parent();
30
31
32 // Add your own drawing code here
33 var x = ig.system.width/2,
34 y = ig.system.height/2;
35
36 this.font.draw('It Works!', x, y, ig.Font.ALIGN.CENTER);
37 }

The Main Class | 33

38 });
39
40
41 });
42
43
44 // Start the Game with 60fps, a resolution of 320×240, scaled
45 // up by a factor of 2
46 ig.main('#canvas', MyGame, 60, 320, 240, 2);
47
48 });
49

Let’s take a moment to go through some of the high-level code.

ig.module(
 'game.main'
)

The above code represents the namespace of your game. As you can see, this also defines
the name of your main class.

.requires(
 'impact.game',
 'impact.font'
)

The first block of code above defines the class name and, as a result, file name of the
module. The second block specifies which classes are needed by the game. Our main
class will inherit from the Game class, and the Font class will be used to instantiate a
font we’ll use for onscreen text display. These classes will automatically load when your
game is run for the first time.

Next, everything in the .defines(function(){ ... }) block of code is your game logic.
As you can see, Game is extended as described, and the Font class is used to populate
a property called font with the font class and its font sprite sheet:

.defines(function(){

 MyGame = ig.Game.extend({

 // Load a font
 font: new ig.Font('media/04b03.font.png'),

Then, we define some scaffolding code for init(), update(), and draw(). The draw()
method is the only one with executable code in it. The default class needs to re-render
the font on each draw call, so this default code simply gets the x,y position of where
the text field should go, so the engine knows where to draw the font graphic.

34 | Chapter 4: Building A Game

Before moving on, there is one more thing that is important to highlight from the last
few lines of the main.js file:

 // Start the Game with 60fps, a resolution of 320×240, scaled
 // up by a factor of 2
 ig.main('#canvas', MyGame, 60, 320, 240, 2);
});

This is the code that initializes your game. As you can see, we pass the ID of the Canvas
element to our game’s constructor, a name for our game instance, and the frame rate
and size into the ig.main constructor. The last value of 2 represents the scale of your
game. This will upscale all of your game’s graphics by 2.

Customizing the Main Class
To get started, let’s delete the font code from the draw method, but make sure you
leave this.parent(). We can also now delete the font variable from the beginning of
the class.

Now with the “It Works!” text removed, the first thing we want our game to do when
it starts is load the level we just created. Change the .requires(...) block to load the
level:

.requires(
 'impact.game',
 'game.levels.dorm1'
)

Unfortunately, if you refresh your game, nothing is going to display. We will need to
tell the game to load our level. Add the following code to your init() method:

init: function() {
 this.loadLevel(LevelDorm1);
},

Now, refresh your game.

Key Binding
Impact has an easy-to-use input class, ideal for capturing keyboard input, which can
be found in the ig.input namespace. To capture keyboard events, we will need to bind
the key press event to the desired key in the input class. Let’s put the following code at
the beginning of the init() function in main.js, just above our load level code:

// Bind keys
ig.input.bind(ig.KEY.LEFT_ARROW, 'left');
ig.input.bind(ig.KEY.RIGHT_ARROW, 'right');
ig.input.bind(ig.KEY.X, 'jump');
ig.input.bind(ig.KEY.C, 'shoot');

Key Binding | 35

For our game, we are going to track the left and right arrows along with the X and C
keys. This is the first step in setting up controls for your game. In a little while, we’ll
set up code to react to the left, right, jump and shoot commands those keys will trigger.

There is a list of constants that contains all the keys Impact can use in the ig.KEY class.
To use them, simply apply a custom label to a key so that when we poll for input during
game play, we will be able to react to the desired event when each key is pressed.

Creating the Player Class
The player will be the first entity we build for our game. Entities are anything that exist
in the level that are not part of the map. Monsters, bullets, doors, triggers, etc., are all
considered entities. Our player class will extend the core entity.js class so it can inherit
some basic behavior to get us started. Let’s begin by creating a new player.js file in
the lib/game/entities directory.

Now, add the following code to our file:

1 ig.module(
2 'game.entities.player'
3)
4 .requires(
5 'impact.entity'
6)
7 .defines(function(){
8 EntityPlayer = ig.Entity.extend({
9
10 });
11 });

Figure 4-10. The level loaded when the game is refreshed.

36 | Chapter 4: Building A Game

This is the basic structure for creating entities in Impact. As discussed previously, we
define the module name and reference any required classes, then define the class itself,
extending ig.Entity. At this point, however, nothing will happen if you refresh your
game. We still need to set up the player and add it to the level. To do that, let’s add
some properties to this class.

Using Your Sprite Sheet
Start by setting up an animation sheet. Add the following to the EntityPlayer code
block:

EntityPlayer = ig.Entity.extend({
 animSheet: new ig.AnimationSheet('media/player.png', 16, 16),
});

This tells our player that it will use player.png in the media folder and that its tiles are
16×16. We are also going to need to define some values for the size and offset of the
player. We’ll add the following underneath where we set up our animation sheet:

size: {x: 8, y:14},
offset: {x: 4, y: 2},
flip: false,

The size property represents the actual size of the player. The offset property describes
any change in the player size needed to make collisions more accurate. In this case,
we’re offsetting the bounding box used for collisions by 4 pixels on the left and right,
and 2 pixels on top and bottom. By making the collision area smaller than the sprite,
we can better account for the transparent space around the graphic. Finally, we don’t
flip the player, so it remains oriented in its original direction.

Figure 4-11. Our player class goes in the entities directory.

Creating the Player Class | 37

Adding Simple Physics
Next let’s set up some physics properties, such as velocity, friction, rate of acceleration
in the ground and air, and jump strength.

maxVel: {x: 100, y: 150},
friction: {x: 600, y: 0},
accelGround: 400,
accelAir: 200,
jump: 200,

These properties define how our player can move in the environment. Impact handles
all of the physics calculations for us. Once we get the player up and running, you should
feel free to tweak these values to see how they affect your game.

Defining Animation Sequences
With the player’s core values out of the way, we can look into setting up animation
sequences. Create an init() method underneath where we defined the properties in
the player class and add the following code to it:

init: function(x, y, settings) {
 this.parent(x, y, settings);
 this.addAnim('idle', 1, [0]);
 this.addAnim('run', 0.07, [0,1,2,3,4,5]);
 this.addAnim('jump', 1, [9]);
 this.addAnim('fall', 0.4, [6,7]);
},

This function passes the x,y and settings values up to the parent’s init() method.
This is very important, since entities need to know their starting x,y positions and any
settings assigned to them when being created in the level. You can also pass in additional
values through the level editor, which get attached to the settings object during the
construction of the entities.

As discussed earlier, it’s easy to set up animations. Use the entity class’s addAnim()
method and pass it an ID (or name) for the animation, along with the duration and an
array for the frames from the sprite sheet. Before we move on, let’s make sure your
player class looks like this:

1 ig.module(
2 'game.entities.player'
3)
4 .requires(
5 'impact.entity'
6)
7 .defines(function(){
8 EntityPlayer = ig.Entity.extend({
9 animSheet: new ig.AnimationSheet('media/player.png', 16, 16),
10 size: {x: 8, y:14},
11 offset: {x: 4, y: 2},
12 flip: false,

38 | Chapter 4: Building A Game

13 maxVel: {x: 100, y: 150},
14 friction: {x: 600, y: 0},
15 accelGround: 400,
16 accelAir: 200,
17 jump: 200,
18 init: function(x, y, settings) {
19 this.parent(x, y, settings);
20 // Add the animations
21 this.addAnim('idle', 1, [0]);
22 this.addAnim('run', 0.07, [0,1,2,3,4,5]);
23 this.addAnim('jump', 1, [9]);
24 this.addAnim('fall', 0.4, [6,7]);
25 }
26 });
27 });

At this point, we are ready to switch back over to Weltmeister and add our player.
When you load the editor back up, you should see our dorm1.js level. If it’s not there,
simply load it up manually. When you load the level, the entities layer should auto-
matically be highlighted. This layer works just like the other layers we created, so move
over to the Canvas area and press the space bar to see the list of entities you can add
to the level. Right now, you should see the player from the drop-down menu.

Figure 4-12. Select the player from the pop-up entity menu.

Select the player and add him to the level. You can place him anywhere for now; I put
mine on the far left of the level. Also, make sure you hit Save once you are happy with
your player’s start position.

Figure 4-13. A preview of the player in the level editor.

It’s also important to note that as of version 1.19 of Impact, you no longer need to add
each entity to your game’s requires block; it is now automatically handled for you when
the level is loaded. Now you are ready to test out your game. Go to your browser and
hit refresh.

Creating the Player Class | 39

Figure 4-14. The player is now in our game’s level.

You should now see your player in the game, but you will not be able to move him.
Let’s fix that. Go back into the player.js class and add the following update() function:

update: function() {
 // move left or right
 var accel = this.standing ? this.accelGround : this.accelAir;
 if(ig.input.state('left')) {
 this.accel.x = -accel;
 this.flip = true;
 }else if(ig.input.state('right')) {
 this.accel.x = accel;
 this.flip = false;
 }else{
 this.accel.x = 0;
 }
 // jump
 if(this.standing && ig.input.pressed('jump')) {
 this.vel.y = -this.jump;
 }
 // move!
 this.parent();
},

As you continue adding code to your game, always make sure there is a
comma to separate new functions, or you may get an error when you
try to preview your code.

Now, you are ready to refresh the game and test out moving the player. As you can see,
we can move our player, but he doesn’t animate or fall off ledges. We are going to need
to set the gravity of the game. We can do this in main.js. Add the following property
to that class:

40 | Chapter 4: Building A Game

MyGame = ig.Game.extend({
 gravity: 300,
 init: function() {

Now, if you go back to your game, you will be able to jump and fall off ledges. When
you test it out, though, you will not have a clean-looking fall animation. Let’s add in
some additional code to keep track of the player’s velocity in order to show the correct
animation such as jump, fall, idle, and run. This should go below our jump code in the
player.js class:

// set the current animation, based on the player's speed
if(this.vel.y < 0) {
 this.currentAnim = this.anims.jump;
}else if(this.vel.y > 0) {
 this.currentAnim = this.anims.fall;
}else if(this.vel.x != 0) {
 this.currentAnim = this.anims.run;
}else{
 this.currentAnim = this.anims.idle;
}

Now, we should be able to jump and run with corresponding animation, but there is
one thing missing. We need a way to tell the player to flip his animation based on the
direction he is running. We can do this by adding the following code just before the
this.parent() call in the player.js update function:

this.currentAnim.flip.x = this.flip;

Now we have a fully functional player. Let’s give it one more test and make sure ev-
erything works. At this point, our level is kind of boring—so let’s add a few monsters
to the game.

Creating a Monster Class
Creating a monster is similar to creating a player. In fact, we are going to use the
same basic class code but change its name and namespace. Create a new file called
zombie.js in the entities folder.

Now, copy the following code into the monster class:

1 ig.module(
2 'game.entities.zombie'
3)
4 .requires(
5 'impact.entity'
6)
7 .defines(function(){
8 EntityZombie = ig.Entity.extend({
9
10 });
11 });

Creating a Monster Class | 41

As you can see, we simply changed the entity name and class name, but everything else
is the same as the code we used to start the player class. Now we are ready to add our
monster’s animation and set its initial properties:

animSheet: new ig.AnimationSheet('media/zombie.png', 16, 16),
size: {x: 8, y:14},
offset: {x: 4, y: 2},
maxVel: {x: 100, y: 100},
flip: false,

Now we need to set up the animations just like we did for the player. This is a simple
monster, so there are only a few sprites representing its animation. Let’s create a new
init() method with the following code:

init: function(x, y, settings) {
 this.parent(x, y, settings);
 this.addAnim('walk', .07, [0,1,2,3,4,5]);
},

With our default animation in place, we can start adding instances of the monster to
test the level. Let’s switch over to Weltmeister, select the entities layer, and then add a
monster by clicking into the layer and pressing the space bar, just as we did when adding
the player. You can then click on the map to add the monster where you want it.

Figure 4-15. Select Zombie from the drop-down entity list.

Feel free to add a few of them, as shown in Figure 4-16.

Figure 4-16. I’ve added two zombies to the level.

42 | Chapter 4: Building A Game

Once you have done this, refresh the game in your browser and you should see your
new monsters. We haven’t added any movement logic yet, so they don’t do much right
now. Let’s add some basic code to make them walk back and forth, but be smart enough
not to fall off ledges. We’ll need to create an update function that will handle the basic
movement logic or AI (Artificial Intelligence) for our monster:

update: function() {
 // near an edge? return!
 if(!ig.game.collisionMap.getTile(
 this.pos.x + (this.flip ? +4 : this.size.x −4),
 this.pos.y + this.size.y+1
)
) {
 this.flip = !this.flip;
 }
 var xdir = this.flip ? −1 : 1;
 this.vel.x = this.speed * xdir;
 this.currentAnim.flip.x = this.flip;
 this.parent();
},

This function tests to see if the monster hits anything in the collision map. If it does,
we toggle the value of the class flip property. After testing, the direction and velocity
are updated before this.parent() is called. We will also need to define the monster’s
friction and speed. You can add that toward the top of the class just under where we
define the flip property:

friction: {x: 150, y: 0},
speed: 14,

Refresh the game to take a look at it in action. You will see the monster instances moving
around, and when they hit the edge of a ledge, they flip and go the other way.

Figure 4-17. We want to make sure our zombies flip direction once they hit a wall or the end of a
platform.

We just need to add a few more lines of code to clean this up. Add the following block
of code to the end of your defines() function:

handleMovementTrace: function(res) {
 this.parent(res);

Creating a Monster Class | 43

 // collision with a wall? return!
 if(res.collision.x) {
 this.flip = !this.flip;
 }
},

This helps make sure that if a monster runs into a wall, that it also turns around.
Collisions with walls and the collision map are handled through the handleMovement
Trace function. Now we have covered all our bases and made sure our zombies will not
fall off ledges or platforms, but we still have one issue. There is no collision detection
between the monster and the player.

Figure 4-18. The player simply passes through zombies without collision detection.

Before we get into adding more code to the monster, we need to talk a little bit about
entity-based collision detection in Impact.

So far, we’ve handled simple interactions with walls and platforms manually. However,
Impact has built-in collision detection that we can use for interaction between our
entities. That is, we can focus on setting up collision relationships instead of creating
all that collision code from scratch. Let’s look a little closer at how we can use Impact
to do this work for us.

Collision Detection
Since Impact has built-in collision detection, we can focus on setting up collision rela-
tionships instead of creating all the necessary code from scratch. Impact’s collision
detection is based on bounding boxes. A bounding box is an imaginary rectangle
around a sprite. If a sprite is 16×16 pixels, the box around it would be the same size.
During a bounding box collision text, two entity’s boxes are overlapping. This kind of
collision detection is incredibly fast and covers a good portion of the use cases you will
probably need.

It is important to note that one of the issues with bounding box collision
is that it doesn’t take into account any transparent space around your
sprite. This is why we had to tweak the size and offset values of our
entities to help make our collision look as clean as possible.

Let’s take a look at how we can add collision detection to entities in our game.

44 | Chapter 4: Building A Game

type Property
The .type property allows us to group entities when doing collision detection. For
example, you might assign all friendly entities to one group, and all enemy entities to
another group. This way, you can set up your file so neither group will collide with
their own types, but friendlies will collide with enemies, and vice versa. There are
three .types in Impact that you can reference using their constant values:

ig.Entity.TYPE.NONE
ig.Entity.TYPE.A
ig.Entity.TYPE.B

By default, all entities are set to NONE. The other two groups are left open for your own
needs. So, for instance, you can set all friendly entities to TYPE.A and hostile entities
will check for collisions with TYPE.A only.

checkAgainst Property
The .checkAgainst property tells an entity which type property to check for when it
collides with another entity. An entity can check for four types during the collision:

ig.Entity.TYPE.NONE
ig.Entity.TYPE.A
ig.Entity.TYPE.B
ig.Entity.TYPE.BOTH

The default value is always set to NONE. When two entities overlap, the .checkAgainst
property of one entity is compared with the .type property of the other. If there is a
match, the first entity’s check() method is called, and the latter object with which it
collided is sent to the method as a parameter. You can customize the check() method
to respond to such a collision

This example, which we’ll discuss in greater detail in a moment, shows damage applied
after such a collision:

check: function(other) {
 other.receiveDamage(10, this);
}

collides Property
The final part of collision detection we need to learn about is the .collides property.
This property determines how the entity collides with other entities. It’s important to
note that this is independent of the collision map. This is strictly an entity-to-entity
collision event. There are several types of collision property values:

ig.Entity.COLLIDES.NEVER
ig.Entity.COLLIDES.LITE
ig.Entity.COLLIDES.PASSIVE

collides Property | 45

ig.Entity.COLLIDES.ACTIVE
ig.Entity.COLLIDES.FIXED

By default, the collides property is set to NEVER, which ignores all collisions. FIXED is
used for objects such as walls and platforms that won’t move as a result of a collision.
It’s important to note that entities with a FIXED collides property may still move, just
not when colliding with another entity. Elevators and moving platforms are good ex-
amples of this situation.

The remaining three collides values determine which entities move after a collision.
If two ACTIVE entities collide, they will both move apart. The same is true when
ACTIVE and PASSIVE entities collide, but the PASSIVE collides value exists so that entities
of similar types can overlap without causing a resulting movement. So, when a
PASSIVE entity collides with another PASSIVE entity, neither is moved by the collision.

Finally, where FIXED describes a “strong” entity that never moves away from a collision,
LITE is used to specify a “weak” entity—one which always moves away from a collision.

Now that we have covered the collision properties entities have, let’s start setting up
our own player and monster to have collision detection. Open up the player.js class
and add the following properties:

type: ig.Entity.TYPE.A,
checkAgainst: ig.Entity.TYPE.NONE,
collides: ig.Entity.COLLIDES.PASSIVE,

Here, we are setting up all three collision properties for the player. We assign the player
to TYPE.A, which will represent our friendly group. Next, we’ll set .checkAgainst to
NONE. In our example, we’ll let the monster handle the collisions and, as shown in the
previous section, apply damage to the player. Finally, we’ll set .collides to PASSIVE.
This will prevent overlaps with another PASSIVE entity moving either entity as a result
of the collision.

Now it’s time to set up our monster. Open up the zombie.js class and add the following:

type: ig.Entity.TYPE.B,
checkAgainst: ig.Entity.TYPE.A,
collides: ig.Entity.COLLIDES.PASSIVE,

We are setting our monster to the enemy group, which is TYPE.B. Since the player
belongs to group TYPE.A, we will check against that group for collisions. And finally,
we also set the enemy .collides property to PASSIVE. This will allow us to react when
a collision is detected with the player, but because both entity .collides properties are
set to PASSIVE, Impact won’t automatically move either of the players due to the
collision.

If you tested your game now, it would appear that no collisions occur. This is because
we set the collides property for all entities to PASSIVE, and Impact won’t adjust the
position of either entity after a collision. We need to add some more code in the monster
class to handle the collision when it is detected. Add the following method to the
zombie.js class:

46 | Chapter 4: Building A Game

check: function(other) {
 other.receiveDamage(10, this);
}

You may recall during the discussion of the .checkAgainst property that this code ap-
plies damage to the entity the monster collides with. Remember that the colliding entity
is passed to the function as an argument (other). This code executes Impact’s built-in
receiveDamage() method in the player entity, and passes a value of 10, as well as a
reference to the monster, to the player. The end result is that the player will lose all his
health (10 points, by default).

Now, if you test the game, when the player hits a monster, he should be immediately
killed. Visually, the player just disappears, since we haven’t created a death animation.

Figure 4-19. The player is removed from the screen once the zombie kills him.

Next, we will discuss health.

Health
Each entity has a health property. By default, this is set to 10. This value is incredibly
useful if you are taking advantage of the built-in receiveDamage() method to subtract
an entity’s health. To change an entity’s initial health, you can simply set this value in
your class’s properties like so:

health: 20,

If we applied this to our player now, there would be no apparent change. Multiple
collisions occur when passive entities overlap, because Impact doesn’t automatically
resolve their positions and push the weaker entity away. In the next section, we’ll in-
troduce weapons, and later you can tweak this value in the monster class to get a better
result. For now we can just leave it as is.

Health | 47

Weapons
Right now, our player is defenseless. As soon as he hits a monster, he dies, and there
is no way for the player to kill a monster. Well, that is about to change. One way to
add a weapon is to create a new entity class. Weltmeister will then offer it as an option
when placing entities on the map—convenient if you want to place weapons the player
can pick up during the game. However, if your player will have access to the weapon
throughout the game, you can keep Weltmeister’s menu options simple by creating an
inner class within the player.js file.

Let’s find the player class’s closing blocks around line 59. Between the two closing
block tags is where we will put our inner class:

EntityBullet = ig.Entity.extend({

});

Now you should have your bullet entity just before the end of the player.js class as
shown in Figure 4-20.

Figure 4-20. Add the EntityBullet class just before the end of the player module.

Now we are ready to customize our player’s weapon.

As you can see, our EntityBullet is just like any other entity you have created. It extends
ig.Entity, which means it has all the same inherited properties and methods as our
player and monster. Basically, we are going to spawn a new bullet every time the player
presses the fire button and, based on which way the player is facing, the bullet entity
will move in that direction. When the bullet hits a wall or monster, it will remove itself
and, in the case of a monster, apply damage. Let’s start by adding a few properties to
our bullet:

size: {x: 5, y: 3},
animSheet: new ig.AnimationSheet('media/bullet.png', 5, 3),
maxVel: {x: 200, y: 0},

This will set up our bullet’s size, graphic, and maximum velocity. It’s important to note
that our bullets don’t have y velocity since they only move horizontally. Also, we need
to make sure our bullet can move faster than the player. We don’t want to fire our gun
and run into or beyond our bullet as it flies through the air. Next, we will need to set
up some collision information for the bullet:

48 | Chapter 4: Building A Game

type: ig.Entity.TYPE.NONE,
checkAgainst: ig.Entity.TYPE.B,
collides: ig.Entity.COLLIDES.PASSIVE,

As you can see, we are going to have our bullet test for TYPE.B entities, and its collides
property is set to passive so it doesn’t displace entities it collides with. Now we can add
our init() method:

init: function(x, y, settings) {
 this.parent(x + (settings.flip ? −4 : 8) , y+8, settings);
 this.vel.x = this.accel.x = (settings.flip ? -this.maxVel.x : this.maxVel.x);
 this.addAnim('idle', 0.2, [0]);
},

Here we are taking the flip value that will be passed into the EntityBullet via the op-
tional settings object and applying an offset to the x,y values we pass to the parent
method. This ensures that the bullet starts in the correct position and appears to be
fired from the gun. Next, we set the velocity and acceleration x value to our maximum
velocity x value. If the player is facing left, make this negative. This forces the bullet to
fire at its maximum speed instead of slowly accelerating toward its maximum velocity.

Now we need to test for our collisions. Let’s start by reacting any time the bullet hits
something in the collision layer:

handleMovementTrace: function(res) {
 this.parent(res);
 if(res.collision.x || res.collision.y){
 this.kill();
 }
},

The handleMovementTrace() gets called while an entity is moving. This method is asso-
ciated with the collision map, so we can detect when an entity hits a wall. We check
the res object parameter if a collision happens on the x or y values.

check: function(other) {
 other.receiveDamage(3, this);
 this.kill();
}

All we need to do now is add some code to our player in order to fire the bullets.

Firing the Weapon
Since inner classes are just like any other class we would create in Impact, we can simply
use the ig.game built-in spawnEntity() method to create a new instance of the bullet
when the player presses the fire key. Our player and monster are created during the
level parsing process, so we have not had to manually instantiate an entity yet. The
spawnEntity() function helps ensure that when we create a new entity, it gets added to
Impact’s render list. Open up your player.js class and put the following code under
the jump logic in the update method:

Firing the Weapon | 49

// shoot
if(ig.input.pressed('shoot')) {
 ig.game.spawnEntity(EntityBullet, this.pos.x, this.pos.y, {flip:this.flip});
}

As you can see, we are going to look for the shoot event, which we bound to the C key
in our main class. This should be very straightforward—we tell ig.game that we are
going to spawn a new entity. The spawnEntity() method needs a reference to the class
we want to create and its starting x,y position, along with any additional settings we
want to pass to the new entity. Notice here that we create a generic object with a
property called flip with the player’s flip value. This is what tells the bullet which
direction it should be fired.

At this point, we can test that our gun works by refreshing the game in the browser and
hitting C. So, now you should be able to fire your weapon and kill the monsters.

Figure 4-21. You should see bullets being fired when you press the C key.

At this point, the monsters will die after a few shots. If you change the monsters’ life
property to something lower, it will take less shots to kill them. This is because on every
collision the bullet detects with an enemy, it calls receivedDamage() and passes in 3 as
the value. Likewise, you can make the bullets stronger by changing the amount of
damage they apply.

Right now, our gun is kind of boring. Let’s add another weapon to the mix and see
what happens.

Add Multiple Weapons
So, we built a basic gun that fires bullets, but what about adding something a little more
exciting? How about a grenade that bounces and explodes when it hits stuff? We can
easily add in new types of weapons just like we did with our bullet. Let’s set up the
beginning of our grenade class after our EntityBullet. Add the following inner class to
your player.js module:

EntityGrenade = ig.Entity.extend({

});

50 | Chapter 4: Building A Game

Just like with our bullet, we are ready to customize the grenade’s properties. We will
need to give it a graphic and set the size and offset:

size: {x: 4, y: 4},
offset: {x: 2, y: 2},
animSheet: new ig.AnimationSheet('media/grenade.png', 8, 8),

Now let’s set up our collision detection:

type: ig.Entity.TYPE.NONE,
checkAgainst: ig.Entity.TYPE.BOTH,
collides: ig.Entity.COLLIDES.PASSIVE,

Pay special attention to the fact that we are setting checkAgainst to TYPE.BOTH. What
this means is that our grenade can collide with our zombie and our player. You’ll see
how this works when we are ready to test our grenade later on. However, in order for
our grenade to move and bounce, we will need to add a few additional properties. Add
the following to your grenade class:

maxVel: {x: 200, y: 200},
bounciness: 0.6,
bounceCounter: 0,

Here, we are setting our grenade’s maximum velocity. Also, we are going to keep track
of how many times it will bounce before blowing up, as well as its bounciness value.
You can tweak these values once we enable the player to actually fire the grenade, so
you can test what effect the bounciness value will have.

Let’s override the init() method with the following code:

init: function(x, y, settings) {
 this.parent(x + (settings.flip ? −4 : 7), y, settings);
 this.vel.x = (settings.flip ? -this.maxVel.x : this.maxVel.x);
 this.vel.y = -(50 + (Math.random()*100));
 this.addAnim('idle', 0.2, [0,1]);
},

Here, we are going to determine the beginning x velocity based on a flip parameter that
will be passed in via the settings object. Just like with our bullet, when the player fires
the grenade we will set the player’s own flip value into a property of the settings object
so that we know what direction to fire the grenade. It’s also incredibly important that
we get the start x,y position offset correct. Since the grenade can collide with the player,
we wouldn’t want it to fire the weapon and instantly blow up.

Next, we offset the y velocity by negative 50 plus a random number that ranges from
0 to 100, which will help add an arc to the grenade when it gets fired. The randomness
makes sure that the player throws the grenade slightly differently each time. This, along
with the fact that the grenade can also kill the player, will help balance the fact that this
is a more powerful weapon. After that, we just set the idle animation to display sprites
0 and 1, which will loop through images of the grenade rotating as it flies through the
air.

Add Multiple Weapons | 51

We are getting very close to testing out our grenade, but before we do, we’ll have to
override the handleMovementTrace() method and write some logic to handle collisions,
track the number of bounces, and remove the grenade from the display if it bounces
too many times:

handleMovementTrace: function(res) {
 this.parent(res);
 if(res.collision.x || res.collision.y) {
 // only bounce 3 times
 this.bounceCounter++;
 if(this.bounceCounter > 3) {
 this.kill();
 }
 }
},

This works exactly like our bullet, except that when a collision is detected, we increment
the .bounceCounter by 1. If the .bounceCounter is greater than 3, we kill the grenade. We
will talk more about the entity’s kill() method later.

Now that we can handle tracking bounces, let’s add logic when the grenade collides
with an enemy. Like we did before in the EntityBullet class, we are going to override
the check function, which gets called when a .checkAgainst group has been detected.
Add the following function to your grenade class:

check: function(other) {
 other.receiveDamage(10, this);
 this.kill();
}

Finally, we have increased the damage of the grenade so that it kills anything in a single
hit. Now, all we need to do in order to have the player toggle between weapons is bind
a new key to toggle between the weapons and then have the player swap between the
correct one. Let’s add the following bind logic into our main.js init() function:

ig.input.bind(ig.KEY.TAB, 'switch');

Now, if we go back into our player class, we will need a way to keep track of the current
weapon. Add the following property to the beginning of our EntityPlayer class in the
player.js file:

weapon: 0,
totalWeapons: 2,

From there, we can add a simple test to see when the player presses the weapon toggle
button, so we can toggle the weapon property. Add the following code below where we
test if the shoot button was pressed in the PlayerEntity update() method:

if(ig.input.pressed('switch')) {
 this.weapon ++;
 if(this.weapon >= this.totalWeapons)
 this.weapon = 0;
 switch(this.weapon){

52 | Chapter 4: Building A Game

 case(0):
 this.activeWeapon = "EntityBullet";
 break;
 case(1):
 this.activeWeapon = "EntityGrenade";
 break;
 }
}

Now, when we go to spawn our weapon instance, we can simply check to see which
weapon is set in the weapon property and spawn the correct instance.

We will also need to add a new property called this.activeWeapon to the top of our class:

activeWeapon: "EntityBullet",

Notice how we have to set the value to a string instead of a reference to the class itself?
This will be evaluated correctly when the player class gets created. If we don’t make
the default value a string, it will break the player class when it tries to load.

The last thing we need to do is update our shoot code in the player class with the
following:

if(ig.input.pressed('shoot')) {
 ig.game.spawnEntity(this.activeWeapon, this.pos.x, this.pos.y, {flip:this.flip});
}

This simply spawns a new instance of any class you have set as the this.active
Weapon value. Now you are ready to test out your new grenade and switch between the
two weapons.

Figure 4-22. The player can now throw grenades.

You may have noticed that the player still looks like he has a gun in his hand and that
there really aren’t any visual changes when you switch weapons. We can quickly fix
this by modifying how we set up our player’s animations in the init() method. Go
ahead and delete the four lines of code where we set up the idle, run, jump, and fall
animations. Then add the following in its place:

this.setupAnimation(this.weapon);

Add Multiple Weapons | 53

Now we will create a new method called setupAnimation(), which takes our current
weapon ID as an offset. Here is the code to add below the init() method:

setupAnimation: function(offset){
 offset = offset * 10;
 this.addAnim('idle', 1, [0+offset]);
 this.addAnim('run', .07, [0+offset,1+offset,2+offset,3+offset,4+offset,5+offset]);
 this.addAnim('jump', 1, [9+offset]);
 this.addAnim('fall', 0.4, [6+offset,7+offset]);
},

This is just like our original animation setup, except we now take the weapon ID (which
becomes an offset), multiply it by the total number of player frames with a weapon,
and add it to each animation. Let’s look at the player sprite sheet so you can see what’s
going on.

Figure 4-23. The player sprites with a gun and without one.

As you can see, we have 10 sprites holding a gun and 10 sprites without the gun. By
offsetting the animation by 10 frames, we can easily switch between the different sets
of sprites. This is a common trick, and one we will use later on when we add death
animations. For now, we just need to add one last line of code to help update the player
graphics when we switch weapons. Add a call to this.setupAnimation() at the end of
where we test for the weapon switch key press:

switch(this.weapon){
 case(0):
 this.activeWeapon = "EntityBullet";
 break;
 case(1):
 this.activeWeapon = "EntityGrenade";
 break;
}
this.setupAnimation(this.weapon);

Now when you test and hit the Tab key, you should see the player’s animation change
based on the weapon he is using (Figure 4-24).

From here, you should be able to add even more weapons to your game by simply using
the above pattern and building upon it.

Killing Entities
You may have noticed while we set up our weapons that we called a built-in method
called kill(). While reducing an entity’s life will destroy it and automatically call
kill() for you, there are times when you may need to do this manually—like when the

54 | Chapter 4: Building A Game

grenade collides with an enemy or it bounces too much. This method actually com-
pletely removes the entity from the render list, so it is a helpful way to permanently
remove entities from the game. If you do not call kill() on anything you need to remove
from the game, things will start to slow down considerably, so make sure you take
advantage of the kill() method.

Respawning the Player
Since the player dies as soon as he collides with an enemy, we should add some logic
to respawn the player. The easiest way to do this is to save out the start position of the
player when he gets created so we can restore him to the same position when he dies.
Let’s add the following property to our PlayerEntity class:

startPosition: null,

Then, we can store the initial position of the player by adding the following to the
init() method above the call to this.parent():

this.startPosition = {x:x,y:y};

What this does is save a generic object with the x,y position that gets passed into the
constructor of our player class. Now, we just need to override the kill() method to this:

kill: function(){
 this.parent();
 ig.game.spawnEntity(EntityPlayer, this.startPosition.x, this.startPosition.y);
}

So, what will happen is that when kill() gets called after the player collides with a
monster, we call this.parent(), which will properly remove the player instance from
the game. Then, we immediately spawn a new player at the saved startPosition. Right
now, it is a little jarring, but you could easily add a delay and then respawn after dis-
playing some message to the user.

Figure 4-24. Now you can see the player’s sprite update when switching between weapons.

Respawning the Player | 55

Another really cool trick about this approach is that since we saved the initial x,y po-
sition of the player in the startPosition property, we could easily update this value if
the player walks through a checkpoint. This means that we don’t need any complex
logic to continually respawn the player throughout the level. All the logic is contained
inside the player instance itself.

One thing you should pay special attention to is when a monster is on top of the respawn
position. Since we don’t reset the level, there is a chance that we could lock up the game
if the monster kills the player as soon as he respawns, as shown in Figure 4-25.

Figure 4-25. Right now, a monster on our respawn position will lock up the game.

The same thing can happen if there are a lot of grenades bouncing around where the
player respawns. Usually, games offer some sort of invincibility mode when the player
restarts. Here is a quick example of how to do that. Start by adding the following two
properties to our EntityPlayer class:

invincible: true,
invincibleDelay: 2,
invincibleTimer:null,

This will allow us to tell if the player is invincible, and also for how long. Next, we will
need to add the following method to handle toggling the invincibility:

makeInvincible: function(){
 this.invincible = true;
 this.invincibleTimer.reset();
},

This will allow us to call makeInvincible() on the player at any time, and we can reset
the invincibleTimer as well as toggle the invincible flag. Now we are going to have to
override our receiveDamage() and draw() methods:

receiveDamage: function(amount, from){
 if(this.invincible)
 return;
 this.parent(amount, from);
},
draw: function(){
 if(this.invincible)
 this.currentAnim.alpha = this.invincibleTimer.delta()/this.invincibleDelay * 1 ;
 this.parent();
}

56 | Chapter 4: Building A Game

In the receiveDamage() method, we are using a guard clause to test if invincibility has
been toggled and, if so, we just exit the method and don’t apply any damage. In the
draw method, we also test for invincibility and, if it is activated, we are going to set the
alpha value of the sprite to reflect how much longer they are invincible. We start at 0
and they will slowly fade into the game. Alpha in Impact is a value between 0 and 1.
We can easily find a percentage of that value by dividing the invincibleTimer’s delta
by the invincibleDelay. By multiplying it by 1, the total value of alpha, we get a per-
centage that we can use to make the player fade in.

Before we can test this, we need to do two more things. First, we need to add the
following to our init() method:

this.invincibleTimer = new ig.Timer();
this.makeInvincible();

Next, we need to add the following code to our update() method just before our call
to this.parent():

if(this.invincibleTimer.delta() > this.invincibleDelay) {
 this.invincible = false;
 this.currentAnim.alpha = 1;
}

This basically tests to see if our timer is greater than the delay we defined. Once that
happens, we disable invincibility by setting invincible to false and forcing the alpha to
be 1. If you refresh, you should now see the player fade in when he is created and after
you respawn.

Figure 4-26. When a new player is spawned, he is temporarily invincible.

This should fix the issue we had before (when the player respawns on top of a monster
or grenade) so that we don’t lock up the game. Also, because of the way this was set
up, you can now call makeInvincible() at any time if you wanted to give the player a
power-up or show that the player has taken damage without actually respawning him.

Create Death Animations
One of the easiest ways to show a death animation is to create a small particle explosion
where the player is killed. Not only does this cut down on the amount of animations
you have to create but you can also use the same technique to show damage taken by
a projectile weapon. In order to do this, we will need to create two new entities, one

Create Death Animations | 57

for the explosion and the other for the actual particles. Let’s add the following inner
class to our player.js module:

EntityDeathExplosion = ig.Entity.extend({
 lifetime: 1,
 callBack: null,
 particles: 25,
 init: function(x, y, settings) {
 this.parent(x, y, settings);
 for(var i = 0; i < this.particles; i++)
 ig.game.spawnEntity(EntityDeathExplosionParticle, x, y, {colorOffset:
settings.colorOffset ? settings.colorOffset : 0});
 this.idleTimer = new ig.Timer();
 },
 update: function() {
 if(this.idleTimer.delta() > this.lifetime) {
 this.kill();
 if(this.callBack)
 this.callBack();
 return;
 }
 }
});

This is a very simple class. It handles spawning particle entities, which we will create
next, and also has a timer, which we use to call a callback() method that is supplied
by the setting property. Pay special attention to this.idleTimer and the new
ig.Timer(). We use these to keep track of how much time has elapsed since its instan-
tiation, just like we did when we added invincibility to the player.

There is also something else going on here. You may have noticed that when we spawn
our EntityDeathExplosionParticle, we are passing in a color offset value. If you take a
look at the blood sprite, you will see that we have colored sprites for the player in red
and for the zombie in green.

Figure 4-27. This sprite contains the player and zombie blood particles.

This is a neat trick and one that is used in a lot of sprite sheet-based games. Our blood
particles are going to be 2×2 pixels in size. That means we have eight sprites for each
color. When we set up our particle, we will apply the color offset to the graphic we
display. So if the player is hit, we will add 0 to the offset, which will generate a random
red color. For zombies we will add 1 to the offset, which will multiply by the base
number of possible sprites and move the randomly selected sprite into the green zone.

58 | Chapter 4: Building A Game

Let’s take a look at our particle class to see this in action. Create a new inner class with
the following code:

EntityDeathExplosionParticle = ig.Entity.extend({
 size: {x: 2, y: 2},
 maxVel: {x: 160, y: 200},
 lifetime: 2,
 fadetime: 1,
 bounciness: 0,
 vel: {x: 100, y: 30},
 friction: {x:100, y: 0},
 collides: ig.Entity.COLLIDES.LITE,
 colorOffset: 0,
 totalColors: 7,
 animSheet: new ig.AnimationSheet('media/blood.png', 2, 2),
 init: function(x, y, settings) {
 this.parent(x, y, settings);
 var frameID = Math.round(Math.random()*this.totalColors) + (this.colorOffset
* (this.totalColors+1));
 this.addAnim('idle', 0.2, [frameID]);
 this.vel.x = (Math.random() * 2 - 1) * this.vel.x;
 this.vel.y = (Math.random() * 2 - 1) * this.vel.y;
 this.idleTimer = new ig.Timer();
 },
 update: function() {
 if(this.idleTimer.delta() > this.lifetime) {
 this.kill();
 return;
 }
 this.currentAnim.alpha = this.idleTimer.delta().map(
 this.lifetime - this.fadetime, this.lifetime,
 1, 0
);
 this.parent();
 }
});

As you can see, the particle has a few properties such as its maximum velocity, how
long before it fades away, bounciness, and initial velocity. Most of this should look very
familiar from what we did with our grenade class. As you can see in the init() method,
we assign a random value to the particle’s vel.x and vel.y values, which sends each
one off in different directions. Since this is blood and we don’t want it bouncing around
like the grenade, the bounciness property is set to 0. We take advantage of this.
currentAnim.alpha value, which assigns a new alpha value after each update, and even-
tually the particle disappears. Once it fades away, we call kill() to remove it from the
display.

Now that we have our particle emitter and our particle, we can extend the player’s
kill() method to spawn our EntityDeathExplosion where the player was killed and
watch it spawn random particles as if the player exploded. Here is the modified
EntityPlayer kill() method:

Create Death Animations | 59

kill: function(){
 this.parent();
 var x = this.startPosition.x;
 var y = this.startPosition.y;
 ig.game.spawnEntity(EntityDeathExplosion, this.pos.x, this.pos.y,
{callBack:function(){ig.game.spawnEntity(EntityPlayer, x, y)}});
}

Since we are passing a function into the settings object, we will need to re-scope the
start position of the player. If you refresh your browser and run the player into the
monster, you will now see him explode into tiny pieces that bounce and fade away.

Figure 4-28. The player now explodes into pieces.

As I mentioned before, this is also a great effect for us to show when an entity has been
hit. Let’s override the zombie.js receiveDamage() method with the following:

receiveDamage: function(value){
 this.parent(value);
 if(this.health > 0)
 ig.game.spawnEntity(EntityDeathExplosion, this.pos.x, this.pos.y, {particles:
2, colorOffset: 1});
},

We can actually use the same death explosion class in our zombie entity, even though
it is an inner class of player. This is a neat little hack thanks to the fact that JS’s scope
is global and, when any entity gets defined in Impact, it is available throughout the
game engine. So, in the EntityZombie class, we simply spawn a new death explosion
just like we did in the player class, but pass in a smaller number of particles to be
emitted. We also pass in the colorOffset so that we can display green blood instead of
red. Now when a bullet hits the zombie, little particles will shoot off of it. Also, don’t
forget to use the same death animation technique we used on the player by overriding
the zombie.js kill() method with the following:

kill: function(){
 this.parent();
 ig.game.spawnEntity(EntityDeathExplosion, this.pos.x, this.pos.y, {colorOffset:
1});
}

60 | Chapter 4: Building A Game

And there you go; you have just created a nice-looking dynamic death animation for
your player and monster. We can also apply the same technique to our grenades and
make their explosions more visually appealing, so let’s take a look.

Adding Grenade Explosions
Now that we have seen how to add death animations to our player and zombie, let’s
look at how to make our grenades explode. Let’s add the following particle to our
player.js module:

EntityGrenadeParticle = ig.Entity.extend({
 size: {x: 1, y: 1},
 maxVel: {x: 160, y: 200},
 lifetime: 1,
 fadetime: 1,
 bounciness: 0.3,
 vel: {x: 40, y: 50},
 friction: {x:20, y: 20},
 checkAgainst: ig.Entity.TYPE.B,
 collides: ig.Entity.COLLIDES.LITE,
 animSheet: new ig.AnimationSheet('media/explosion.png', 1, 1),
 init: function(x, y, settings) {
 this.parent(x, y, settings);
 this.vel.x = (Math.random() * 4 - 1) * this.vel.x;
 this.vel.y = (Math.random() * 10 - 1) * this.vel.y;
 this.idleTimer = new ig.Timer();
 var frameID = Math.round(Math.random()*7);
 this.addAnim('idle', 0.2, [frameID]);
 },
 update: function() {
 if(this.idleTimer.delta() > this.lifetime) {
 this.kill();
 return;
 }
 this.currentAnim.alpha = this.idleTimer.delta().map(
 this.lifetime - this.fadetime, this.lifetime,
 1, 0
);
 this.parent();
 }
});

At this point, everything should look very familiar. We probably could have even ex-
tended our EntityDeathExplosionParticle but, to keep things simple, I just copied over
the code and changed a few properties. Now we just need to spawn a few particles once
the grenade explodes. Override the EntityGrenade kill() method with this code:

kill: function(){
 for(var i = 0; i < 20; i++)
 ig.game.spawnEntity(EntityGrenadeParticle, this.pos.x, this.pos.y);
 this.parent();
}

Adding Grenade Explosions | 61

Refresh the game and fire a grenade. You should see a nice little particle explosion when
it collides with anything or bounces too many times.

Figure 4-29. The grenade now explodes.

Customizing the Camera
Right now, our level is really boring. Impact was designed for side-scrolling games, so
let’s go back into our map editor and extend out the level so the player has some room
to run around. Create an opening in the far right wall and add another room to the
map. Make sure that you increase the size of the main layer and the collision layer as
well.

Figure 4-30. The level after expanding it.

Once you have extended the level, save and try to play it. You may notice something
isn’t quite right (Figure 4-31).

Did you see that the game’s camera is not following the player? We will need to set this
up manually in the main.js class. Open it up and we will override the update function
with the following code:

62 | Chapter 4: Building A Game

update: function() {
 // screen follows the player
 var player = this.getEntitiesByType(EntityPlayer)[0];
 if(player) {
 this.screen.x = player.pos.x - ig.system.width/2;
 this.screen.y = player.pos.y - ig.system.height/2;
 }
 // Update all entities and BackgroundMaps
 this.parent();
},

The way that this code works is that we take advantage of a method of the game class
called getEntitiesByType(). This is a very important API when it comes to finding
instances of entities in your game. Because we know that there is only a single instance
of our player, we can explicitly look for it. There are better ways of getting a reference
to the player, but for now we will just use this technique to keep things simple.

After we see if the player exists, we can get the screen resolution and player position to
center the screen’s x,y values. By setting the screen.x and screen.y values, the renderer
will automatically adjust the camera to that position. You can also do a lot of cool tricks
with this, like easing the camera movement or limiting it so it doesn’t scroll offscreen.

Now, refresh the game and you should see that the camera now follows our player as
it moves through the level.

So, now that we have added the ability to move our camera around the level, it’s time
to allow the player to exit this level.

Figure 4-31. As you move through the level, the camera doesn’t follow the player.

Customizing the Camera | 63

Loading New Levels
It looks like we are ready to load our next level. Loading levels in Impact is incredibly
easy; we actually did it as one of the first steps in setting up this game. In this section,
I will talk about building something we call a trigger, which is an invisible area of the
map that executes an activity when the player enters it. In this case, we will be building
a level exit.

Let’s start by creating a new entity file called levelexit.js and add the following code
to it:

12 ig.module(
13 'game.entities.levelexit'
14)
15 .requires(
16 'impact.entity'
17)
18 .defines(function(){
19 EntityLevelexit = ig.Entity.extend({
20
21 });
22 });

Since our exit doesn’t have any graphics, we still need something to display in Welt-
meister. Let’s add the following properties to our class:

Figure 4-32. The camera following the player through the level.

64 | Chapter 4: Building A Game

_wmDrawBox: true,
_wmBoxColor: 'rgba(0, 0, 255, 0.7)',
size: {x: 8, y: 8},

These two properties with the _wm prefix tell Weltmeister how to render the object in
the edit view, even though it doesn’t have an actual graphic in the game. So, Weltmeister
will draw an 8×8 pixel blue box.

Now, we need a way to store the name of the next level we should load when the player
collides with the level exit entity. Add the following property, which will be automat-
ically set during our entity’s construction by the settings parameter we will pass in from
the level data:

level: null,

Next, we just need to add some collision code. Let’s have our level exit check against
any TYPE.A entities by adding the following property to the top of your class:

checkAgainst: ig.Entity.TYPE.A,

Now, we will override update() and remove its call to this.parent() so we are not
spending render cycles trying to draw an entity with no graphics. This is a great tech-
nique for any kind of triggers you may build for your map that aren’t required to be
updated visually on every frame:

update: function(){},

Finally, we will also override the check() method to handle the collision:

check: function(other) {
 if(other instanceof EntityPlayer){
 if(this.level) {
 var levelName = this.level.replace(/^(Level)?(\w)(\w*)/, function(m,
l, a, b) {
 return a.toUpperCase() + b;
 });
 ig.game.loadLevelDeferred(ig.global['Level'+levelName]);
 }
 }
}

As you can see, we simply test that the instance of other (which is passed into the
method during a collision) is an instance of the player’s class. This helps avoid any
other entity of TYPE.A you may have accidentally triggered in the level exit.

The last part of the code simply does a regex cleanup of the exit’s level property to
make sure it is capitalized correctly before calling ig.game.loadLevelDeferred(). This
method is very important. You may remember that in our main class, it simply called
loadLevel(). Well, loadLevelDeferred() waits until the main game’s update loop is
completed before loading the level. This will help avoid any sudden redraw errors that
may happen when trying to exit in the middle of the render loop.

Once we have our new EntityLevelexit, we can open up Weltmeister and create a small
exit to place our entity in.

Loading New Levels | 65

Figure 4-33. Now we can see where we placed the level exit in the editor.

When you add the level exit, you will need to tell it what level to load. Click on it and
go to the layer area just under where it says Entity Settings. You should see all the
properties of your entity instance. For the Key, put level and in Value, put dorm2.

Figure 4-34. Setting up a level property on the LevelExit entity.

It is very important that you hit Enter/Return after adding a value to an entity’s Key,
or it will not be saved. You will know it has been saved when you see the new Key/
Value listed under the entity’s name and its x,y values, which are set up by default. You
can modify any Key by clicking on it.

Figure 4-35. Modifying entity properties in the level editor.

Now that our entity is configured, we need to create a new level. Name your level
dorm2 and design it as shown in Figure 4-36.

66 | Chapter 4: Building A Game

Figure 4-36. The second level of our game.

As you build out your new level you may notice that the player graphic is missing in
the editor. This happens because now our player is set to invincible when he is created,
so he is invisible. If this is an issue, you can add the following two properties to your
player.js class:

_wmDrawBox: true,
_wmBoxColor: 'rgba(255, 0, 0, 0.7)',

This will render out a red box for the player when in the editor, just like we did with
our level edit.

Figure 4-37. We use a red box to display the invisible player in the level editor.

The last thing you need to do is add the level and the level exit to the main.js
requires block:

'game.levels.dorm2,

Once you have done this, refresh your game and you should be able to exit the level
and go into the second level.

You may notice that the transition is a little jarring. There are a few things you can do
to make sure that doesn’t happen, such as matching the level exit and spawn points
up, or building a quick transition before exiting the level. Usually, games have an end-
of-level summary screen that gets displayed, so that when the next level loads up the
player doesn’t notice the transition as much. We’ll talk more about this later in the
book.

Loading New Levels | 67

CHAPTER 5

Working With Text

It is relatively easy to work with text in Impact. If you remember back to our default
main class, we had removed an instance of font class from the game—but in this section,
we are going to talk about adding it back in and how to customize text at runtime.

Creating Font Sprite Sheets
Since Impact renders all the graphics to the page’s Canvas tag, we will not be able to
use system fonts. Instead, Impact uses a special sprite sheet for each font. Figure 5-1 is
an example of the default font 04b03.font.png, which comes with the template project.

Figure 5-1. Impact’s default font sprite sheet.

As you can see, all the font’s characters are laid out horizontally with one pixel line
under each character, which defines the width of that character. Figure 5-2 is a close-
up of a few characters from the sprite sheet.

Figure 5-2. Notice the black lines under each character.

All fonts you want to use in Impact must be set up in a similar way. Luckily, there is
an online tool to help generate new font sprite sheets, which you can test at http://
impactjs.com/font-tool/.

69

http://impactjs.com/font-tool/
http://impactjs.com/font-tool/

Figure 5-3. Impact’s online font sprite sheet generation tool.

This tool allows you to select one of your system fonts and tweak its style, size, and
thickness then generate a new font sprite sheet. Just click Generate when you are ready
and download the new font sprite sheet. Once you have your new font, simply put it
in your game’s media folder, and you should be ready to use it. Make sure you add
the .font.png extension to the generated image so that Impact knows it is dealing with
a bitmap font.

Adding Text to Your Game
Now that we have seen how to create new fonts for our game, let’s take a look at putting
some text in our game. We are going to show a simple message at the bottom of the
screen that tells the player what the controls are when they enter our level. Once the
player moves, we will remove the instructions. Open up main.js and add the following
property just below where we define our game’s gravity:

instructText: new ig.Font('media/04b03.font.png'),

We will also need to import the font class, so add the following to our requires code
block:

'impact.font'

Finally, we are going to have to render this text on each frame, so add the following
under the call to this.parent() in the draw() method:

draw: function() {
 // Draw all entities and backgroundMaps
 this.parent();
 var x = ig.system.width/2,
 y = ig.system.height - 10;
 this.instructText.draw(
 'Left/Right Moves, X Jumps, C Fires & Tab Switches Weapons.',
 x, y, ig.Font.ALIGN.CENTER);
}

As you can see, we first calculate the x,y position to render the text. We can use
ig.system to find out the game’s width and height, so we can center the text and display
it on the bottom of the screen. There are three supported font alignments:

ig.Font.ALIGN.LEFT
ig.Font.ALIGN.RIGHT
ig.Font.ALIGN.CENTER

70 | Chapter 5: Working With Text

Next, we tell the font to render by calling draw and passing in the text it should display
and its position, as well as how to align the text. It should look like Figure 5-4.

Figure 5-4. The player will see the game’s controls when it’s loaded up for the first time.

Now we want to make this text disappear once the player starts moving. To do this,
we need to wrap the code we just placed in a conditional like this:

if(this.instructText){
 var x = ig.system.width/2,
 y = ig.system.height - 10;
 this.instructText.draw(
 'Left/Right Moves, X Jumps, C Fires & Tab Switches Weapons.',
 x, y, ig.Font.ALIGN.CENTER);
}

This will test to make sure an instance of the instructionText font exists before trying
to render it. Now we can add some simple logic to remove the instructions as soon as
the player moves. Add the following code just below where we test if the player instance
exits if(player) in the main.js update() method:

if(player) {
 this.screen.x = player.pos.x - ig.system.width/2;
 this.screen.y = player.pos.y - ig.system.height/2;
 if(player.accel.x > 0 && this.instructText)
 this.instructText = null;
}

This code tests to see if the player’s acceleration increases, which happens when the
player moves. Once the player is moving and if the font instance exists, we set it to
null. After the other update we made in the draw method, which tests if the font

Adding Text to Your Game | 71

instance exists, we basically tell the draw loop to ignore rendering the font, and it
disappears.

While this is an incredibly crude example of how to show instructions when we start
a level, it is a good basis for how you can add additional text or even messages during
your game. Keep in mind that working with bitmap fonts is very limiting. If you want
to have different colors, you will need to generate new font sprite sheets with those
colors. Another great way to display text in your game is to use JavaScript to write to
a div that sits above your game. While you will be limited to web fonts unless you
embed a font in your HTML wrapper page, this approach allows you to create more
complex-looking messages with HTML and JavaScript.

72 | Chapter 5: Working With Text

CHAPTER 6

Working With Sound

Impact also supports sound as well as background music for your game. In this chapter,
we will learn how to add sound effects, background music, and learn a little more about
browser compatibility issues.

Adding Sounds
In order to add sound to our game, we are going to have to use the ig.Sound class.
Impact supports two file formats: Ogg Vorbis and MP3. The ig.SoundManager class can
automatically detect which file to load based on the browser. Here are some examples
of how to set up an ig.Sound instance:

var sound = new ig.Sound('media/sounds/jump.ogg');
var sound = new ig.Sound('media/sounds/jump.mp3');
var sound = new ig.Sound('media/sounds/jump.*');

The last example is a wild card that lets the ig.SoundManager automatically load the
correct file for us. Our sound files, just like images, should live inside the media direc-
tory. I also keep them in a subdirectory called sounds, so they stay organized. Let’s add
some sound effects to our player. Open the player.js class and set up the following
properties at the top of our player class:

jumpSFX: new ig.Sound('media/sounds/jump.*'),
shootSFX: new ig.Sound('media/sounds/shoot.*'),
deathSFX: new ig.Sound('media/sounds/death.*'),

Now we need to play the sound for each of these actions. Add the following line to the
code where our player jumps:

if(this.standing && ig.input.pressed('jump')){
 this.vel.y = -this.jump;
 this.jumpSFX.play();
}

73

Next, we want to add a sound effect to our shoot animation. Locate the code where
we fire our weapon and add the following line:

if(ig.input.pressed('shoot')) {
 ig.game.spawnEntity(this.activeWeapon, this.pos.x, this.pos.y, {flip:this.flip});
 this.shootSFX.play();
}

When you build out your full game, you may want to have different sound effects for
each weapon, but for this section we are going to keep things simple. Now we need our
death sound. Locate where we overrode kill() and add the following line of code:

kill: function(){
 this.deathSFX.play();
 this.parent();

The last thing we need to do, if you haven’t done it already, is import the ig.Sound class
in the requires block of the player.js class.

.requires(
 'impact.entity',
 'impact.sound'
)

We should be ready to test out our sound effects now. Open up the browser and refresh
the game. There should now be sound, and Impact handles all the messy sound logic
for you. It couldn’t be any easier than this! Now let’s look at adding some background
music to our game.

Adding Music
Our game is a little boring without some background music. Luckily, Impact supports
looping background music right out of the box. All we need to do is tell the music class
what files to load and set the volume then call play(). Let’s go back into our main.js
class and add the following at the beginning of the init() method:

ig.music.add('media/sounds/theme.*');
ig.music.volume = 0.5;
ig.music.play();

Unlike playing sound effects, we will talk directly to the music class. We can add tracks
to the music class, which will help us switch between different background music as
we move through our game. Since we are only setting up one track, it will automatically
get selected when you call play(). You can add more tracks via the add() method and
select a track by calling ig.music.track() and passing in the ID of the track you want
to play.

That is all there is to playing background music in your game. Before we move on, we
should talk a little bit about browser compatibility and set expectations for when
sounds will work and when it’s best not to play them.

74 | Chapter 6: Working With Sound

Mobile Browser Sound Compatibility Issues
HTML5 audio is still in the early stages of being implemented across each browser. As
you have seen, we still need to supply two different audio formats, and there is a good
chance that a browser may not even support audio at all. This happens more on mobile
than desktop browsers, but it’s still a good thing to keep in mind when setting up your
audio.

To play it safe, you may just want to totally disable sound on mobile. You can do this
with the following code in your main game module right before where we start our
game:

if(ig.ua.mobile) {
 // Disable sound for all mobile devices
 ig.Sound.enabled = false;
}

// Start the game
ig.main(...)

By setting ig.Sound.enabled to false, no sound files will be loaded or played back. If
you don’t disable sounds on mobile browsers that don’t support audio correctly, your
game may try to load and crash, or hang in the pre-loader screen. Also, setting sound
to false is incredibly helpful when you are testing your game over and over again.

Mobile Browser Sound Compatibility Issues | 75

CHAPTER 7

Creating Game Screens and HUDs

Every game needs screens. These are usually displayed at the beginning and end of the
game, along with additional screens like credits and settings. In this section, we are
going to go over creating three simple screens for our game, and I’ll show you how to
connect them all.

Extending Impact’s Game Class
When it comes to creating game screens, there are several approaches you can take.
Use HTML to display elements on top of your game and never build any of the game
screens inside of Impact; or you could easily use divs and control them via jQuery and
even directly with JavaScript; or you can make your screen from custom-built levels
with entities as graphics in them and use some kind of level-loading manager to switch
between them. The advantages would be having one game class and being able to use
the level editor to create your screens. The downside would be that any custom code
you have to run your level in the game class would also run while in a game screen.

The approach I find works the best is to simply create new ig.Game classes and switch
between them. This allows you to create encapsulated custom logic to handle each
different game screen while maintaining code separation, as well as being able to build
upon your own base game screen class. We briefly touched on Impact’s Game class early
on in the book, but didn’t talk about how it really works under the hood or how you
can use it to create different screens in your game.

The ig.Game class represents the active view of your game. Right now our game class
shows our level, player, and monsters, but could just as easily display a start screen or
anything else. When our main.js class extends it, we supply some logic to run our game,
but as you will see in the next section, we can also extend the ig.Game class to handle
all of our in-game screens.

77

Perhaps the most important thing to keep in mind when working with the Game class is
that you can display a new one by calling ig.system.setGame() and passing it a reference
to the Game class you want to use. This allows us to quickly switch between game screens
at any time. As our first example, let’s take a look at how to set up a simple start screen.

Creating a Start Screen
In order to create our start screen, we are going to need to extend the ig.Game class. We
can actually set up each of our game’s screens as inner classes in our main.js file just
like we did with other entities in our game. This also allows you to keep all your game
screens organized in one file. Add the following code to our main.js module right after
the end of our MyGame class but before the ig.main constructor:

Figure 7-1. You want to start your start screen inner class right before the ig.main constructor.

Here is the StartScreen class code:

StartScreen = ig.Game.extend({
 instructText: new ig.Font('media/04b03.font.png'),
 background: new ig.Image('media/screen-bg.png'),
 init: function() {
 ig.input.bind(ig.KEY.SPACE, 'start');
 },
 update: function() {
 if(ig.input.pressed ('start')){
 ig.system.setGame(MyGame)
 }
 this.parent();
 },
 draw: function() {
 this.parent();
 this.background.draw(0,0);
 var x = ig.system.width/2,
 y = ig.system.height - 10;
 this.instructText.draw('Press Spacebar To Start', x+40, y,
ig.Font.ALIGN.CENTER);
 }
});

78 | Chapter 7: Creating Game Screens and HUDs

This should look very familiar to you at this point. We simply extend the ig.Game class,
then override a few methods. In init(), we bind the space bar key to start so we can
listen for the moment the user is ready to play the game. Next, we override the update
method to handle the space bar being pressed. As soon as we detect that the space bar
has been pressed, we tell the ig.system class to load the MyGame class. Finally, in our
draw() method, we draw a background image to the display, then add some text on top
of it.

Before we can preview our start screen, we need to change the game init() code at the
bottom of our main.js class to the following:

ig.main('#canvas', StartScreen, 60, 320, 240, 2);

As you can see, we now load the StartScreen class by default. If you refresh your game,
you should see something like Figure 7-2.

Figure 7-2. Our game’s start screen.

If you hit the space bar, you should be taken into your game. Now whenever we want
to change the game screen we can simply call ig.system.setGame() and pass in the
reference of the game class we want to display.

Before we move on, we should add a few more graphics to our StartScreen class since
it looks really boring. Let’s add the following two images as properties at the top of the
StartScreen class:

Creating a Start Screen | 79

mainCharacter: new ig.Image('media/screen-main-character.png'),
title: new ig.Image('media/game-title.png'),

Next, we will need to draw these two images to the display. Put the following code
below where we call draw on our background image, and before our instructionText
draw call:

this.background.draw(0,0);
this.mainCharacter.draw(0,0);
this.title.draw(ig.system.width - this.title.width, 0);

Now if you refresh, you should see something like Figure 7-3.

Figure 7-3. We now have some graphics on our start screen background.

This looks a lot better! Since each image is now rendered on its own, you could do some
cool things like fade each one up or make them slide in. Simply play around with their
x,y position or alpha on the update() method to modify where and how they get drawn
to the display. Now let’s look at how we can add in a stats screen to display at the end
of a level.

Player Stats Screen
Next up, we are going to look at how we can keep track of player stats such as the time
it took to complete a level, total number of kills, and how many times the player died.

80 | Chapter 7: Creating Game Screens and HUDs

Instead of making this screen a separate game class, we are going to build it into our
MyGame class.

We are going to need to add impact.timer to the requires block of our MyGame class.
Add the following properties to the MyGame class:

statText: new ig.Font('media/04b03.font.png'),
showStats: false,
statMatte: new ig.Image('media/stat-matte.png'),
levelTimer: new ig.Timer(),
levelExit: null,
stats: {time: 0, kills: 0, deaths: 0},

The following properties will allow us to track the visibility of the stats display, an image
we can use to mask the screen, a font, a timer, and a stats object. Next, we are going
to need to override the loadLevel() method so we can start a timer to track how long
it takes the player to complete the level:

loadLevel: function(data) {
 this.parent(data);
 this.levelTimer.reset();
},

This basically resets the timer when the main game class has loaded a level. Now in
order to display our screen, we have to pause the update loop. The easiest way to do
this will be to wrap the call to this.parent() inside update() with a conditional. Here
is what the new this.parent() code should look like inside of update():

// Update all entities and BackgroundMaps
if(!this.showStats){
 this.parent();
}else{
 if(ig.input.state('continue')){
 this.showStats = false;
 this.levelExit.nextLevel();
 this.parent();
 }
}

Now we are testing to see if it’s time to show the stats screen. If it is not being displayed,
we call this.parent() and the game runs like normal. If the stats display is visible, we
delay the call to this.parent() and listen for an input state of continue. Basically, we
want the player to press the space bar to remove the stats screen and continue on. Let’s
set up the new key listener underneath where we bound all of our other gameplay keys
in the init() method:

ig.input.bind(ig.KEY.SPACE, 'continue');

Now we need to add in the logic to display our game stats. We can do this by adding
the following to our draw() method:

if(this.showStats){
 this.statMatte.draw(0,0);
 var x = ig.system.width/2;

Player Stats Screen | 81

 var y = ig.system.height/2 - 20;
 this. statText.draw('Level Complete', x, y, ig.Font.ALIGN.CENTER);
 this. statText.draw('Time: '+this.stats.time, x, y+30, ig.Font.ALIGN.CENTER);
 this. statText.draw('Kills: '+this.stats.kills, x, y+40, ig.Font.ALIGN.CENTER);
 this. statText.draw('Deaths: '+this.stats.deaths, x, y+50, ig.Font.ALIGN.CENTER);
 this. statText.draw('Press Spacebar to continue.', x, ig.system.height - 10,
ig.Font.ALIGN.CENTER);
}

Again, we are testing if we should be showing the stats. Once the stats have been toggled
to display, we render out all the elements that make up the screen, starting with the
background image, by calling this.statMatte.draw(0,0). Our stat matte is just a black
image set to 80% transparent. By using an image for the background overlay, you can
make this look any way you want. From there, we calculate the base x,y positions where
we want to start rendering our text. Next, we use statText to render text on top of the
stat matte. Notice how we reuse the same font reference each time? This is a good trick
to help you cut down on memory and limit the amount of fonts we need to keep track
of, since they are all the same style.

Before we can test our screen, we will need to set up a method to toggle our stat screen.
Add the following method to the MyGame class:

toggleStats: function(levelExit){
 this.showStats = true;
 this.stats.time = Math.round(this.levelTimer.delta());
 this.levelExit = levelExit;
}

Now we have everything we need to track our stats and display them when we complete
the level. Let’s modify our EntityLevelexit class’s check function to this:

check: function(other) {
 if (other instanceof EntityPlayer) {
 ig.game.toggleStats(this);
 }
},

From here, you can see that we still test whether the player has collided with the level
exit, so we directly call toggleStats on the ig.game class. Notice how we pass a reference
of the level exit to the toggleStats method? This allows the game class to call the
nextLevel() method on the EntityLevelexit instance, which we need to add right now:

nextLevel: function(){
 if (this.level) {
 var levelName = this.level.replace(/^(Level)?(\w)(\w*)/, function(m, l, a, b) {
 return a.toUpperCase() + b;
 });
 ig.game.loadLevelDeferred(ig.global['Level' + levelName]);
 }
}

82 | Chapter 7: Creating Game Screens and HUDs

Now you have everything you need to display level complete stats. Let’s give our game
a quick test and see what happens.

Figure 7-4. Our level complete screen with player stats.

As you can see, we now have the foundation for our stats screen, but we need to tell
our player class what stats to track. Since we already set up a simple object to track
stats in our game class, all we need to do is modify the ig.game.stats object to reflect
the new values. Let’s open up the player.js class and add some code to track the
number of deaths. Add the following line to the kill() method:

ig.game.stats.deaths ++;

This will increase the deaths value by 1 each time the player dies. Next, we want to
track each kill. Open our zombie.js class and add the following to its kill() method:

ig.game.stats.kills ++;

Now every time we kill a monster, we increase the kills value by 1. The last thing we
need to do is be able to reset our game stats when a new level is loaded. Open up the
main.js class and add the following to our loadLevel() method above the call to
this.parent():

this.stats = {time: 0, kills: 0, deaths: 0};

This will reset the stats object every time a new level is loaded. Reload the game and
see if your stats are working. You should see your final level stats updated to reflect the
time, kills, and deaths properly.

Player Stats Screen | 83

Figure 7-5. Now our stats display the correct number of zombie kills and player deaths.

Let’s look at how to handle our game over screen.

Creating the Game Over Screen
So far we are tracking how many times the player dies, but not the number of lives the
player has. We also don’t have a way to handle what happens when he runs out of those
lives. Before we create our Game Over screen, let’s add a new property to the MyGame
class in the main.js file:

lives: 3,

Now we are ready to show a Game Over screen. This is going to be similar to how we
set up our start screen. Let’s create a new inner class in our main.js file right below our
StartScreen, called GameOverScreen:

GameOverScreen = ig.Game.extend({
 instructText: new ig.Font('media/04b03.font.png'),
 background: new ig.Image('media/screen-bg.png'),
 gameOver: new ig.Image('media/game-over.png'),
 stats: {},
 init: function() {
 ig.input.bind(ig.KEY.SPACE, 'start');
 this.stats = ig.finalStats;
 },
 update: function() {
 if(ig.input.pressed('start')){
 ig.system.setGame(StartScreen)
 }
 this.parent();
 },
 draw: function() {
 this.parent();
 this.background.draw(0,0);
 var x = ig.system.width/2;
 var y = ig.system.height/2 - 20;
 this.gameOver.draw(x - (this.gameOver.width * .5), y - 30);
 var score = (this.stats.kills * 100) - (this.stats.deaths * 50);

84 | Chapter 7: Creating Game Screens and HUDs

 this.instructText.draw('Total Kills: '+this.stats.kills, x, y+30,
ig.Font.ALIGN.CENTER);
 this.instructText.draw('Total Deaths: '+this.stats.deaths, x, y+40,
ig.Font.ALIGN.CENTER);
 this.instructText.draw('Score: '+score, x, y+50, ig.Font.ALIGN.CENTER);
 this.instructText.draw('Press Spacebar To Continue.', x, ig.system.height -
10, ig.Font.ALIGN.CENTER);
 }
});

This is just like our StartGame class, except we are displaying a few different images and
also want to show the player’s final score and stats. Once the player hits the space bar,
it will go back to the start screen. Next, we will need to modify the player.js class to
call the GameOverScreen when the player runs out of lives. We are going to have to replace
the player’s kill() method in player.js with the following:

kill: function(){
 this.deathSFX.play();
 this.parent();
 ig.game.respawnPosition = this.startPosition;
 ig.game.spawnEntity(EntityDeathExplosion, this.pos.x, this.pos.y,
{callBack:this.onDeath});
},

We will also need to add the following new method to our EntityPlayer class
player.js module:

onDeath: function(){
 ig.game.stats.deaths ++;
 ig.game.lives --;
 if(ig.game.lives < 0){
 ig.game.gameOver();
 }else{
 ig.game.spawnEntity(EntityPlayer, ig.game.respawnPosition.x,
ig.game.respawnPosition.y);
 }
},

Now when the player’s kill() method is called, we simply spawn a new death explosion
and have it call onDeath() as its callback. The onDeath() method handles updating our
stats, subtracting from our lives value in the main game class, and determines if the
game is over or if we should respawn the player. You may also notice that we store the
player’s startPosition in the Game class, since our onDeath() method will lose scope of
the player’s instance when kill() was called. We could make this cleaner by allowing
our callback logic to accept a parameter object with values for the start position, but I
wanted to keep the code as simple as possible. The last thing we need to do is add the
gameOver() method. We just need to add this to the MyGame class:

gameOver: function(){
 ig.finalStats = ig.game.stats;
 ig.system.setGame(GameOverScreen);
}

Creating the Game Over Screen | 85

We are doing a neat little trick here, thanks to the fact that JavaScript is a dynamic
language. As you can see, we are going to take our game instance’s stats object and add
it to the ig class instance, which represents the root of our game’s scope. This allows
us to retrieve the last stats object from the game without having to pass it into the
GameOverScreen class. Unfortunately, Impact doesn’t allow us to pass values into new
game classes when we create them via the ig.system.setGame() method, so we have to
cheat. Now if you hit refresh and kill the player a few times you should see the screen
in Figure 7-6.

Figure 7-6. Our Game Over screen.

As you can see, everything works great and our GameOverScreen should be getting the
correct values to display the game stats and calculate the final score.

Adding In-Game HUD
The last thing we want to add into our game is going to be some kind of simple display
showing how many lives we have left. We are going to keep our game’s HUD (heads
up display) as simple as possible. Let’s go into our MyGame class and add the following
property:

lifeSprite: new ig.Image('media/life-sprite.png'),

86 | Chapter 7: Creating Game Screens and HUDs

Next, we’ll have to display these icons in our draw() method. Add the following to the
end of the MyGame draw() method:

this.statText.draw("Lives", 5,5);
for(var i=0; i < this.lives; i++)
 this.lifeSprite.draw(((this.lifeSprite.width + 2) * i)+5, 15);

It couldn’t get any easier than this. All we do here is create a new sprite for our life
graphic. Then we use the statText instance to render out a label above a row of lives
we render out in the for loop. By looping through the total number of lives that the
player has left over, we can quickly lay them out horizontally. This is a great trick;
simply multiply the sprite’s width plus any padding by i from the for loop. This will
stack the sprites horizontally and, by adding an additional 5px of padding to the value,
we offset everything so it lines up right under the label text.

Figure 7-7. The new HUD shows the player how many lives he has left.

Now when the player loses a life, the draw loop automatically updates the display with
the correct number of lives left. You can add all kinds of stats to this display—including
the score, kills, or even a mini-map—by building off of this technique and HUD render
block in our updated draw() method.

Game Rewards
Now that we have our screens in place, I want to outline a few reward systems that you
should keep in mind as you build out your own game. Over the years, games have
evolved from having simple high scores tables to complex unlocking reward systems.
In the casual gaming space, rewarding players for continuing to play the game is a must.
Let’s take a look at some simple reward systems you can implement in your game:

Game Rewards | 87

Level selection
Allowing users to pick the levels they want to play and unlocking new ones the
further they go in the game.

Steps to completion
While playing through a game, show the user how many steps are needed in order
to complete the level or game. Showing progress helps players set their own goals
and achieve them.

Scores
High scores are one of the most basic reward systems around and should be in
every game. Allowing the player to compete against others or even their own best
scores helps increase replay value.

Stats
Players love statistics about what they have done in the game. Showing totals of
how many monsters have been killed or how may times they died can also help
encourage the player to work on increasing the important stats that matter to them.

Badges
Giving the player reminders of their greatest achievements is an excellent way of
rewarding them, and allows them to have something to keep and collect as they
play the game.

Competition
Playing against other players is a great way to challenge players and offers up an
ever-changing difficulty level that in-game AI would never be able to match.

Ranking
Along with scores and stats should be some kind of ranking. Let the player know
how well they are doing and have that information shared among all the people
playing your game.

In-game currency
Allowing players to buy in-game items that can help them clear a level or customize
a character is not only a great reward for players, but may also be an excellent way
to make some additional money.

Adding any number of these systems in your game will help ensure players have a good
time as well as increase the re-playability of your game.

In-Game Analytics
The last thing I want to talk about when building out sections and stats for your game
is keeping track of in-game analytics. In-game analytics are probably one of the most
important things you can add as a developer, especially if you are testing out your game
with a new audience. The following will serve as a good example of the kinds of things
I am tracking and how I was able to adjust my development around people’s feedback,
as well as providing a good basis for real usage data that you can cross-reference.

88 | Chapter 7: Creating Game Screens and HUDs

The following figures come from a small game I launched in November 2010, and we
are looking at the most important stats collected up until February 2011. This is an
overview of my in-game usage. It’s important to note that every Pageview is the user
going to a new screen in the game. You should always be aware of the possible perfor-
mance impact adding analytics may have on your game, so I try to add them when there
is very little action going on in the game.

Figure 7-8. Google Analytics on my game from November 2010 to February 2011.

It’s important to note the spikes here. These spikes in usage directly correlate to updates
I have made to the game. Every update sees a huge uptake, then it quickly tapers off. I
have found that releasing an update on Sunday afternoon/night is the best time of the
week, and by Friday I would see a large drop in plays. Being able to release new content
or updates for your game on a consistent basis is critical for keeping your game up on
the charts and getting more users interested in sticking around long enough to continue
playing. This is even more important if you are doing an ad-based distribution model,
where needing to get lots of impressions is critical to making any kind of money.

Now, let’s look at a more granular breakdown of these stats.

Figure 7-9. A deeper look at my game’s stats.

In-Game Analytics | 89

As you can see, I was getting a large number of Pageviews with a really high number of
Unique Views, which is really what you are looking for. Below these figures are the top
pages or, in this case, activities being visited by users. Switching locations in the game
ended the turn, but what is interesting to see is that Ft. Lauderdale is always going to
come out on top; because that is where you start (plus your safe house/bank is there),
the player will tend to travel closer to that location. The StartActivity is also high be-
cause the game is relatively short, so you end up playing more games. There are actually
5 locations in the game, so we can easily see which locations are popular and which are
not. By using data like this, you can begin to determine parts of the game or locations
that people avoid and add in new game systems to entice people to visit (or just drop
those unpopular parts of the game).

The other thing that Google Analytics does very well is help track events. Games are
full of all kinds of events, so I try to track as much as possible. As you can see, there
are a large number of events going on during each game.

Figure 7-10. Google Analytics tracking events in the game.

Since the point of this game is to buy and sell items, we are going to see the majority
of events revolve around the BuySellHandler, which is called every time a transaction
is made. You can even see I track each one separately. Next up are random events that
happen when you end a turn and go to a new location. These are super-common. I
actually track which events show up, so I can tell if one event is just not working very
well or needs a programmatic fix to make it appear more often. Finally, I also track UI
events like when people click on buttons such as toggling between the buy and sell

90 | Chapter 7: Creating Game Screens and HUDs

mode. This allows me to know if users are taking advantage of the UI or finding alter-
native ways to interact with the game mechanics.

Here are some more details about events in the game. As you can see, I am tracking the
number of new games started, exits, and game overs so I can quickly pull up percentages
to see if the game is too difficult (based on a comparison of starts versus completed
games). If you don’t see a lot of completed game events, this is a good indicator that
your game isn’t engaging enough or it’s just too hard.

Figure 7-11. All in-game events. Notice the NewGame and GameOver events to track how many
people complete the game.

This is a really quick overview of how analytics work in your game. When used cor-
rectly, it can help you find parts of your game that work and can help you locate areas
that don’t. Also, one of the added bonuses of making an HTML5 game is being able to
work directly with Google Analytics’ JS API right out of the box. Find more information
on how to integrate Google Analytics into your JS game here: http://code.google.com/
apis/analytics.

In-Game Analytics | 91

http://code.google.com/apis/analytics
http://code.google.com/apis/analytics

CHAPTER 8

Debugging Your Game

Impact’s Debugger
As our game comes together and we begin to add more entities, performance is going
to become a concern. Also, there may be things we need to see, such as the bounding
boxes of entities and how many entities are on the screen at any given time. Luckily for
us, there is a really great debugger built into Impact. In order to use it, we will need to
add the following class to the main.js requires block:

'impact.debug.debug'

Once you have added this, refresh the game in your browser and you should now see
the debug menu on the bottom of the screen.

Figure 8-1. Impact’s debugger will show up at the bottom of your game’s page.

As you can see, the debugger has some very helpful features. On the right-hand side,
you will see the number of milliseconds your code takes to execute on each frame,
followed by the frames per second, draws, and finally the number of entities. On the
left are options to explore the map layers, individual entities, and performance. Let’s
take a deeper look, starting with the map layers.

93

Figure 8-2. The Background Maps tab of the debugger shows us all of our map layers and a preview
of the entire map.

Here, you can see a preview of your entire map and what is currently being rendered
in the display. You can also turn off layers to help see what is going on or toggle some
of the other map options such as Pre Rendered and Show Chunks. Now, let’s look at
the Entities tab.

Figure 8-3. The Entities tab contains all the debug options to help you manage your entities in the level.

Here, we can see some additional information about each entity. The two important
ones are Show Collision Boxes and Show Velocities. Turn on Show Collision Boxes.

Figure 8-4. You will see a red outline around all entities after selecting Show Collision Boxes.

With Show Collision Boxes turned on, we can see each entity’s bounding box, which
is used to detect collisions. Remember how we changed the .size and .offset of our
player and monster? You can use this feature to visualize those properties. Next, we
will look at the Show Velocities checkbox.

94 | Chapter 8: Debugging Your Game

Figure 8-5. Toggle Show Velocities to see green lines that help visualize each entity’s velocity as it
moves.

Now, we can see the velocity projection for each entity including the player. This is
helpful to see how velocity is affecting moving objects in the game. Try firing a grenade
or jumping. Being able to see the velocity is incredibly helpful.

Figure 8-6. It’s interesting to check out the velocity of each particle from a grenade’s explosion.

The last feature of the debugger is the performance profiler. This is perhaps one of the
most important tools in the debugger since it helps you visualize how long the draw,
entity update, collision, and system lag take in milliseconds.

Figure 8-7. The profiler is a key tool to helping you visualize performance issues in your game.

The profiler lets us see a graph showing where the performance bottlenecks in your
game are while you play it.

Impact’s Debugger | 95

We have covered a lot in the building of your first game section. Right now, you should
have a solid foundation of what it takes to make a game with Impact. Next, we will
focus on how to publish your game.

Publishing Your Game
Once you have a finished game, you are going to want to publish it. Since we have been
running our game in a local host, we could upload it as is and it should work online
just fine. The one thing to keep in mind is that you don’t want people to see your source
code, and you don’t want to accidentally distribute Impact’s source. In order to package
up our app, we use a technique called baking.

Baking Your Game
Baking will combine all your game files into a single file, which helps shorten the
download time and compress the game.

You can run the bake script by doing the following:

Mac
Open up a terminal window, navigate to the tools/ directory, and write ./bake.sh.

Windows
For Windows, double-click the bake.bat file in the tools/ directory. You also have
to make sure that bake.bat can find php.exe on your system. You can either add
the installation path of PHP to your PATH environment variable, or edit
bake.bat to point directly to php.exe.

If you get an error message, make sure all the paths are correct. You can open bake.bat or
bake.sh with a text editor. The only two lines you should ever need to change are these:

SET GAME=lib/game/main.jsSET OUTPUT_FILE=game.min.js

The GAME variable should point to your game’s main.js file while the OUTPUT_FILE
determines where the baked script file will be written.

If the script finishes without errors, you can find game.min.js in your Impact directory.
You can now load this one .js file in your .html instead of the two files you had previ-
ously. Open up your index.html file and change the following lines:

<script type="text/javascript" src="lib/impact/impact.js"></script>
<script type="text/javascript" src="lib/game/main.js"></script>

to this:

<script type="text/javascript" src="game.min.js"></script>

96 | Chapter 8: Debugging Your Game

Once you have correctly baked your game, you are ready to upload the game.min.js
source file along with your media directory to your server. You should be able to upload
your entire game exactly as you have been hosting it locally while testing. It’s important
to remember that your game’s resources are being loaded through relative URLs, so in
order to keep your game from breaking, make sure you keep everything in the same
structure as you have it locally set up.

Mobile Web Support
While it is possible to also run Impact on mobile browsers, there are a lot of technical
challenges, especially on Android devices, that make it difficult to cover in this book.
Impact does come with some easy ways to test if your game is running on a mobile
device. You can test the ig.ua class for the device type the game is running in. Here is
a quick example for mobile:

if(ig.ua.mobile) {
 // Disable sound for all mobile devices
 ig.Sound.enabled = false;
}

As you can see, Impact will let us know if the game is being played on a mobile device.
It is also important to make sure that you set sound support to false, because most
mobile browsers, including Safari on iOS, cannot play more than one sound at a time.
Also, for browsers that don’t support sound at all, you want to make sure your game
doesn’t try to load them or it may crash.

You can also use the ig.ua class to test if the game is running on the iPhone 4. This is
important because of the iPhone’s retina display. In this case, you will want to increase
the game’s scale like so:

if(ig.ua.iPhone4) {
 // The iPhone 4 has more pixels - we'll scale the
 // game up by a factor of 4
 ig.main('#canvas', MyGame, 60, 160, 160, 4);
}
else if(ig.ua.mobile) {
 // All other mobile devices
 ig.main('#canvas', MyGame, 60, 160, 160, 2);
}
else {
 // Desktop browsers
 ig.main('#canvas', MyGame, 60, 240, 160, 2);
}

There is a lot to cover on running your game in mobile browsers, so read through
Impact’s documentation (http://impactjs.com/documentation/impact-on-mobile-plat
forms) for more details on handling iOS, adding mobile browser touch controls, and
issues to watch out for.

Mobile Web Support | 97

http://impactjs.com/documentation/impact-on-mobile-platforms
http://impactjs.com/documentation/impact-on-mobile-platforms

Compiling for Native iOS
You can also distribute your game as a native iOS app. Impact comes with an Xcode
project that you can use to compile a native iOS game. Everything you need to run the
project is located in Impact’s source in iOSImpact.zip. There is also a PDF with addi-
tional instructions. We’ll take a quick look at how to copy over your game into the
Xcode project and get it to compile.

In order to get this to work, you will need to register as a developer on Apple’s site,
which costs $100 annually. Once you are registered, you will need the latest version of
Xcode. (In this book I am using Version 4.2.1 and OS X 10.7 (Lion).) You can use an
older version of Xcode and OS X, but it is usually best to compile with the latest version
of Xcode. It’s also important to note that this is still an experimental feature, and at
any point, Apple could start denying games created like this.

Unzip the iOSImpact.zip file and launch Xcode. Once you are in Xcode, click on Open
Other... at the bottom of the welcome launcher.

Figure 8-8. Select Open Other from Xcode’s welcome screen launcher.

Simply navigate to where you unzipped your iOSImpact project and open it up. You
should see a screen similar to Figure 8-9.

While I am not going to be able to cover how Xcode works, I’ll show you how to quickly
get a build of the game up and running in the emulator. You’ll see the project structure
on the left. This contains all the Objective-C code needed to run Impact along with
where your project’s source code will go. Before we move your game over, let’s take a
quick look at getting this to run. Select a target device from the drop-down menu next
to the run and stop buttons on the upper-left corner. I selected iPhone 5.0 Simulator.

Once you have the default target device selected, you can hit Run to compile the project.
Xcode may show some issues in the output window, but none of them will keep the
project from compiling. Once it’s done building, you will see the default Impact game
launch in the emulator.

98 | Chapter 8: Debugging Your Game

Figure 8-11. The default Impact sample game running in the iPhone 5.0 Simulator.

Figure 8-9. Our iOSImpact project in Xcode.

Figure 8-10. I selected iPhone 5.0 Simulator to test out the game.

Compiling for Native iOS | 99

Now that we tested that Impact can compile, let’s look at how to move our own game
over to the Xcode project. If you go back to the project navigation window, you will
see a game folder at the top of the project. This is where the JS code from your Impact
game will be stored. If you open it up, everything should look familiar to you from
when we originally set up our game.

Figure 8-12. Our Impact game’s JavaScript code lives inside of the game directory in the iOSImpact
project.

At this point, you should be able to replace the contents of the game folder with your
own game, along with the media folder with your game graphics, and recompile the
project. To help you out, I have already created a special version of our game that is
ready for iOS. From the book’s source code folder, copy over the iOS ready game and
media directory into your iOSImpact project. Once you have done that, run the project
and you should see the game running in the emulator.

Figure 8-13. Our game running in the iOS emulator.

100 | Chapter 8: Debugging Your Game

I’ll highlight some of the changes I made to the source code to make it run on iOS.

First up, we need to include an iOS plugin in our game’s require block:

'plugins.ios.ios'

This plugin is part of the iOSImpact project and includes all the logic needed to bridge
the impact JS framework with Objective C.

I also had to change the resolution of our game to 240 × 160 and also scaled down some
of the screen artwork to match the new resolution better:

ig.main('#canvas', StartScreen, 60, 240, 160, 2);

Next, our game needs to display some virtual buttons since there is no keyboard on
iOS devices. There is a graphic for this already in our media folder. Simply create a new
button property in your game classes that need to display buttons:

buttons: new ig.Image('media/buttons.png'),

We can render them out in our draw method with the following code:

// Draw buttons
this.buttons.drawTile(0, 110, 0, 80, 48, false, false);
this.buttons.drawTile(ig.system.width-80, 110, 1, 80, 48, false, false);

This creates two sets of buttons: the movement controls on the left and the jump/fire
buttons on the right. Now, the last thing I had to do was set up touch controls. This is
very easy to do by testing whether we are running the game in iOS:

init: function() {
 // Bind keys
 if(ios) {
 // Add touch controls here
 }
 else {
 // Regular controls go here
 }
 // Rest of our init setup
},

Now we can switch over to touch controls when we run our game. Here is a quick
example of how to bind to a touch area:

ig.input.bindTouchArea(0, 224, 80, 96, 'left');
ig.input.bindTouchArea(80, 224, 80, 96, 'right');
ig.input.bindTouchArea(320, 224, 80, 96, 'shoot');
ig.input.bindTouchArea(400, 224, 80, 96, 'jump');

As you can see, a touch area is simply a rectangle that fires off an event to the
ig.input class when it detects that it is being pressed. Touch areas don’t have any
graphics associated with them, so we simply render the control images in the same
location as our touch areas.

Compiling for Native iOS | 101

The final modification we needed to make was to the type of sound files we load in our
iOS version of the game. By adding the following, we tell Impact to load iOS compat-
ible .caf audio files:

if(ios) {
 ig.Sound.use = [ig.Sound.FORMAT.CAF];
}

This goes right about our game constructor in the main.js module, just like we added
the conditional to turn of sound in mobile browsers. In order to create .caf files, I simply
exported the .mp3 sounds as .aff and changed the extension name to .caf.

So, this covers the basics of getting your game to run on iOS in Xcode. I also cleaned
up the code a little and changed the text so it made more sense on the mobile devices
instead of asking users to hit the space bar or keyboard keys. Make sure you check out
the documentation that comes with the Impact iOS project to learn more about the
process and review the iOS source code to see all of the modifications to our game’s
source code.

102 | Chapter 8: Debugging Your Game

CHAPTER 9

Wrapping Up

I have covered a lot of information in this book and, if you are new to this process, it
may take you some trial and error to get a feel for the best approach to building your
own HTML5 games. I thought I would sum up a few of the things I have learned while
making my own games:

• Have a clear plan on what platforms you intend to target. Try to understand the
limitations of each such as performance issues on different browsers, especially
around sound on mobile. Knowing the limitations can help you make informed
decisions and architect better code.

• Start small and work your way up. You have to remember that even though Impact
is able to run on almost all modern browsers, some of them may give you more
issues than others. By starting simple and growing your game feature by feature,
you can help alleviate some performance issues before it is too late. Also, don’t
expect to take an existing Impact game and have it run perfectly on a mobile device.
You should test every step of the way.

• Finally, make sure to keep your project organized, especially when it comes to
games that run on multiple platforms. Your mobile app will have icons, loading
screens, embedded/loaded assets, and more. Try to keep these in folders that allow
you to quickly find and modify on a platform-by-platform basis. This will help you
in the long run when it comes to maintaining your project, especially if you need
to do updates only on a specific platform at a time.

While there is no silver bullet for making a successful HTML5 game, hopefully this
book has summed up all the core things you should think about when starting to make
your own games with Impact. Luckily, Impact game development isn’t very different
from other 2D platforms such as Flash, so there is an incredible wealth of knowledge
out there to help you take your code to the next level. Things such as AI, pathfinding,
multiplayer networking, and more are simply a quick search or book away. Just don’t
get discouraged if your first game isn’t an overnight hit; every game you make is a
learning process. Eventually, you will stumble over something special and possibly
create the next hit HTML5 game.

103

References and Links
While I tried to cover as much as I could in this book, there are a lot of great resources,
links, and code samples out there to help you create your first Impact game. Here are
a few worth checking out:

Simple button (https://gist.github.com/1395616)
Looking to add simple buttons to your Impact game? Check out this code to help
you.

A* path finding (https://gist.github.com/994534)
A* path finding is incredibly helpful in top-down games when you need enemies
or even the player to be able to move to a specific location on the map. This code
will give you an idea of how to implement it in Impact.

Impact tutorial site (http://www.pointofimpactjs.com)
This is a great resource for other Impact-related tutorials and code examples.

AppMobi (http://www.appmobi.com/?q=HTML5-game-dev-engine)
AppMobi is a cloud-based mobile application development environment. They
actually have a special bundle that comes with a license of Impact, which allows
you to compile your game with a hardware-accelerated Canvas similar to how the
iOS Impact project works. Also, make sure you check out their documentation at
http://www.appmobi.com/amdocs/lib/Tutorial-DirectCanvasWithImpactJS.pdf?r=
7039.

Lawnchair (http://westcoastlogic.com/lawnchair/)
This is a simple JSON data storage system to help you save game data locally to
the player’s browser.

Scoreoid (http://www.scoreoid.net/)
Scoreoid is a multi-platform scoreboard API and more. If you are looking to add
leader boards, stats, and even store game data in the cloud, make sure you check
it out!

Bio Lab Entity Pack
This set of source code comes with your license of Impact, and is an additional
download. There are a lot of really good reference classes in here, so make sure you
check it out when you set up your next game.

HTML5 Game Devs site (http://www.html5gamedevs.com)
This is a great resource for staying up-to-date with the latest news and releases in
the HTML5 game development world.

104 | Chapter 9: Wrapping Up

https://gist.github.com/1395616
https://gist.github.com/994534
http://www.pointofimpactjs.com
http://www.appmobi.com/?q=HTML5-game-dev-engine
http://www.appmobi.com/amdocs/lib/Tutorial-DirectCanvasWithImpactJS.pdf?r=7039
http://www.appmobi.com/amdocs/lib/Tutorial-DirectCanvasWithImpactJS.pdf?r=7039
http://westcoastlogic.com/lawnchair/
http://www.scoreoid.net/
http://www.html5gamedevs.com

About the Author
For more than 13 years, Jesse Freeman has been on the cutting edge of interactive
development with a focus on the Web and mobile platforms. As an expert in his field,
Jesse has worked for VW, Tommy Hilfiger, Heavy, MLB, the New York Jets, HBO,
and many more. Jesse was a traditional artist for most of his life until making the tran-
sition into interactive art, and he has never looked back.

Jesse is a Technical Architect/Technology Evangelist at Roundarch and is an active
leader in New York’s developer community. He is also active in the online community
as a writer for several development sites including Adobe Developer Connection,
O’Reilly Media, Inc., and Activetuts+. He can be found on Twitter at @jessefreeman.
Jesse also speaks at conferences and does workshops, which you can find schedules for
on his website at http://jessefreeman.com.

http://jessefreeman.com

	Table of Contents
	Preface
	About This Book
	Who This Book Is For
	Who This Book Is Not For
	Conventions Used in This Book
	This Book’s Example Files
	Using Code Examples
	How To Use This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction To Impact
	Why Use Impact?
	Setting Up a Local Environment
	Install WebStorm/PHPStorm
	Install Apache/PHP/MySQL
	Other Hosting Options
	Setting Up a New Impact Project
	Modules
	How Classes Work
	Core Classes
	How Inner Classes Work
	Level Editor

	Chapter 2. Working With Sprites
	Sprites and Sprite Sheets
	Scripting in Photoshop
	Working with Sprites in Photoshop
	Optimizing Sprites

	Chapter 3. Introduction To Game Design
	What is Game Design?
	Sample Game Design Document
	Gameplay
	Exploring a Map
	Combat
	Completing a Map
	Death
	Main Character
	Monsters
	Bosses
	Equipment
	Inventory
	Equipping Items
	Weapons and Armor
	Leveling Up
	Winning the Game

	Coming Up With Ideas
	Books to Read

	Chapter 4. Building A Game
	Creating Our First Level
	Saving/Loading Maps in Weltmeister
	CollisionMaps
	The Main Class
	Customizing the Main Class
	Key Binding
	Creating the Player Class
	Using Your Sprite Sheet
	Adding Simple Physics
	Defining Animation Sequences

	Creating a Monster Class
	Collision Detection
	type Property
	checkAgainst Property
	collides Property
	Health
	Weapons
	Firing the Weapon
	Add Multiple Weapons
	Killing Entities
	Respawning the Player
	Create Death Animations
	Adding Grenade Explosions
	Customizing the Camera
	Loading New Levels

	Chapter 5. Working With Text
	Creating Font Sprite Sheets
	Adding Text to Your Game

	Chapter 6. Working With Sound
	Adding Sounds
	Adding Music
	Mobile Browser Sound Compatibility Issues

	Chapter 7. Creating Game Screens and HUDs
	Extending Impact’s Game Class
	Creating a Start Screen
	Player Stats Screen
	Creating the Game Over Screen
	Adding In-Game HUD
	Game Rewards
	In-Game Analytics

	Chapter 8. Debugging Your Game
	Impact’s Debugger
	Publishing Your Game
	Baking Your Game
	Mobile Web Support
	Compiling for Native iOS

	Chapter 9. Wrapping Up
	References and Links

