

 [image: Java in a Nutshell, 5th Edition]

 Java in a Nutshell, 5th Edition

David Flanagan

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Dedication

This book is dedicated to all
who teach peace and resist violence.

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596007737/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

This book is a desktop Java™ quick reference,
designed to sit faithfully by your keyboard while you program. Part I
of the book is a fast-paced,
“no-fluff” introduction to the Java
programming language and the core APIs of the Java platform. Part II
is a quick reference section that succinctly details most classes and
interfaces of those core APIs. The book covers Java 1.0, 1.1, 1.2,
1.3, 1.4, and 5.0.

Changes in the Fifth Edition

The fifth edition of this book covers Java 5.0. As its incremented
version number attests, this new version of Java has a lot of new
features. The three most significant new language features are
generic types, enumerated types, and annotations, which are covered
in a new chapter of their own. Experienced Java programmers who just
want to learn about these new features can jump straight to Chapter 4.
Other new language features of Java 5.0 are:
	The for/in
 statement for easily iterating
through arrays and collections (this statement is sometimes called
“foreach”).

	

 Autoboxing and autounboxing
conversions to automatically convert back and forth between primitive
values and their corresponding wrapper objects (such as
int values and Integer objects)
as needed.

	

 Varargs methods to define and invoke methods
that accept an arbitrary number of arguments.

	
 Covariant
returns to allow a subclass to override a superclass method and
narrow the return type of the method.

	The import static
 declaration to import the
static members of a type into the namespace.

Although each of these features is new in Java 5.0, none of them is
large enough to merit a chapter of its own. Coverage of these
features is integrated into Chapter 2.
In addition to these language changes, Java 5.0 also includes changes to the
Java platform. Important enhancements include the following:
	The java.util

 collections classes have been converted
to be generic types, providing support for typesafe collections. This
is covered in Chapter 4.

	The java.util

 package
also includes the new Formatter class. This class
enables C-style formatted text output with printf(
)

 and format()
methods. Examples are included in Chapter 5.
The java.util.Formatter entry in the quick
reference includes a detailed table of formatting options.

	The new package
java.util.concurrent

 includes important
utilities for threadsafe concurrent programming. Chapter 5 provides examples.

	
 java.lang
 has three new subpackages:

	
 java.lang.annotation

	
 java.lang.instrument

	
 java.lang.management

	These packages support Java 5.0

 annotations and the instrumentation,
management, and monitoring of a running Java interpreter. Although
their position in the java.lang hierarchy marks
these packages as very important, they are not commonly used.
Annotation examples are provided in Chapter 4,
and a simple instrumentation and management example is found in Chapter 5.

	
 New packages have been added to the
javax.xml

hierarchy.
javax.xml.validation
 supports document validation with
schemas. javax.xml.xpath supports the
XPath query language.
And javax.xml.namespace provides simple support
for XML
namespaces.
Validation and XPath examples are in Chapter 5.

In a mostly futile attempt to make room for this new material,
I’ve had to make some cuts. I’ve
removed coverage of the packages java.beans,
java.beans.beancontext,
java.security.acl, and
org.ietf.jgss from the quick reference.
JavaBeans
standards have not caught on in core Java APIs and now appear to be
relevant only for Swing and related graphical APIs. As such, they are
no longer relevant in this book. The
java.security.acl package has been deprecated
since Java 1.2 and I’ve taken this opportunity to
remove it. And the org.ietf.jgss package is of
interest to only a very narrow subset of readers.
Along with removing coverage of java.beans from
the quick reference section, I’ve also cut the
chapter on JavaBeans from Part I of this book. The material on
JavaBeans naming conventions from that chapter remains useful,
however, and has been moved into Chapter 7.

Contents of This Book

The first eight chapters of this book document the Java language, the
Java platform, and the Java development tools that are supplied with
Sun’s Java Development Kit (JDK). The first five
chapters are essential; the next three cover topics of interest to
some, but not all, Java programmers.
	
 Chapter 1: Introduction

	This chapter is an overview of the Java language and the Java
platform that explains the important features and benefits of Java.
It concludes with an example Java program and walks the new Java
programmer through it line by line.

	
 Chapter 2: Java Syntax from the Ground Up

	This chapter explains the details of the Java programming language,
including some of the Java 5.0 language changes. It is a long and
detailed chapter that does not assume substantial programming
experience. Experienced Java programmers can use it as a language
reference. Programmers with substantial experience with languages
such as C and C++ should be able to pick up Java syntax quickly by
reading this chapter; beginning programmers with only a modest amount
of experience should be able to learn Java programming by studying
this chapter carefully.

	
 Chapter 3: Object-Oriented Programming in Java

	This chapter describes how the basic Java syntax documented in Chapter 2 is used to write object-oriented programs
in Java. The chapter assumes no prior experience with OO programming.
It can be used as a tutorial by new programmers or as a reference by
experienced Java programmers.

	
 Chapter 4: Java 5.0 Language Features

	This chapter documents the three biggest new features of Java 5.0:
generic types, enumerated types, and annotations. If you read
previous editions of this book, you might want to skip directly to
this chapter.

	
 Chapter 5: The Java Platform

	This chapter is an overview of the essential Java APIs covered in
this book. It contains numerous short examples that demonstrate how
to perform common tasks with the classes and interfaces that comprise
the Java platform. Programmers who are new to Java (and especially
those who learn best by example) should find this a valuable chapter.

	
 Chapter 6: Java Security

	This chapter explains the Java security architecture that allows
untrusted code to run in a secure environment from which it cannot do
any malicious damage to the host system. It is important for all Java
programmers to have at least a passing familiarity with Java security
mechanisms.

	
 Chapter 7: Programming and Documentation Conventions

	This chapter documents important and widely adopted Java programming
conventions, including JavaBeans naming conventions. It also explains
how you can make your Java code self-documenting by including
specially formatted documentation comments.

	
 Chapter 8: Java Development Tools

	Sun’s JDK includes a number of useful Java
development tools, most notably the Java interpreter and the Java
compiler. This chapter documents those tools.

These first eight chapters teach you the Java language and get you up
and running with the Java APIs. Part II of the book is a succinct but
detailed API reference formatted for optimum ease of use. Please be
sure to readSection II.1 in Part II; it explains how
to get the most out of the quick reference section. Also, please note
that the quick reference chapters are followed by one final chapter
called “Class, Method, and Field
Index.” This special index allows you to look up the
name of a type and find the package in which it is defined or to look
up the name of a method or field and find the type in which it it is
defined.

Related Books

 O’Reilly publishes an
entire series of books on Java programming, including several
companion books to this one. The companion books are:
	
 Java Examples in a Nutshell

	This book contains hundreds of complete, working examples
illustrating many common Java programming tasks using the core,
enterprise, and desktop APIs. Java Examples in a
Nutshell is like Chapter 4 of this
book, but greatly expanded in breadth and depth, and with all the
code snippets fully fleshed out into working examples. This is a
particularly valuable book for readers who learn well by
experimenting with existing code.

	
 Java Enterprise in a Nutshell

	This book is a succinct tutorial for the Java
“Enterprise” APIs such as JDBC,
RMI, JNDI, and CORBA. It also cover enterprise tools such as
Hibernate, Struts, Ant, JUnit, and XDoclet.

	
 J2ME in a Nutshell

	This book is a tutorial and quick reference for the graphics,
networking, and database APIs of the Java 2 Micro Edition (J2ME)
platform.

You can find a complete list of Java books from
O’Reilly at
http://java.oreilly.com/. Books that focus on
the core Java APIs, as this one does, include:
	
 Learning Java, by Pat Niemeyer and Jonathan Knudsen

	This book is a comprehensive tutorial introduction to Java, with an
emphasis on client-side Java programming.

	Java Swing, by Marc Loy, Robert Eckstein, Dave Wood, James Elliott, and Brian Cole

	This book provides excellent coverage of the Swing APIs and is a
must-read for GUI developers.

	
 Java Threads, by Scott Oaks and Henry Wong

	Java makes multithreaded programming easy, but doing it right can
still be tricky. This book explains everything you need to know.

	
 Java I/O, by Elliotte Rusty Harold

	Java’s stream-based input/output architecture is a
thing of beauty. This book covers it in the detail it deserves.

	
 Java Network Programming, by Elliotte Rusty Harold

	This book documents the Java networking APIs in detail.

	
 Java Security, by Scott Oaks

	This book explains the Java access-control mechanisms in detail and
also documents the authentication mechanisms of digital signatures
and message digests.

	
 Java Cryptography, by Jonathan Knudsen

	This book provides thorough coverage of the Java Cryptography
Extension, the javax.crypto.* packages, and
cryptography in Java.

Examples Online

 The examples in this book are available
online and can be downloaded from the home page for the book at
http://www.oreilly.com/catalog/javanut5. You may
also want to visit this site for any important notes or errata that
have been published there.

Conventions Used in This Book

We use the following formatting conventions in this book:
	
 Italic

	Used for emphasis and to signify the first use of a term. Italic is
also used for commands, email addresses, web sites, FTP sites, and
file and directory names.

	
 Bold

	Occasionally used to refer to particular keys on a computer keyboard
or to portions of a user interface, such as the Back button or the Options menu.

	
 Constant Width

	Used for all Java code as well as for anything that you would type
literally when programming, including keywords, data types,
constants, method names, variables, class names, and interface names.

	
 Constant Width Italic

	Used for the names of function arguments and generally as a
placeholder to indicate an item that should be replaced with an
actual value in your program. Sometimes used to refer to a conceptual
section or line of code as in statement.

	
 Franklin Gothic Book Condensed

	Used for the Java class synopses in the quick reference section. This
very narrow font allows us to fit a lot of information on the page
without a lot of distracting line breaks. This font is also used for
code entities in the descriptions in the quick reference section.

	
 Franklin Gothic Demi Condensed

	Used for highlighting class, method, field, property, and constructor
names in the quick reference section, which makes it easier to scan
the class synopses.

	
 Franklin Gothic Book Condensed Italic

	Used for method parameter names and comments in the quick reference
section.

Request for Comments

Please address comments and questions concerning this book to the
publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international or local)
	(707) 829-1014 (fax)

There is a web page for this book, which lists errata, examples, and
any additional information. You can access this page at:
	
 http://www.oreilly.com/catalog/javanut5

To ask technical questions or comment on this book, send email to:
	
 bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and
the O’Reilly Network, see the
O’Reilly web site at:
	
 http://www.oreilly.com

How the Quick Reference Is Generated

 For the curious reader, this
section explains a bit about how the quick reference material in
Java in a Nutshell and related books is created.
As Java has evolved, so has my system for generating Java quick
reference material. The current system is part of a larger commercial
documentation browser system I’m developing (visit
http://www.davidflanagan.com/Jude
for more information about it). The program works in two
passes: the first pass collects and organizes the API information,
and the second pass outputs that information in the form of quick
reference chapters.
The first pass begins by reading the class files for all of the
classes and interfaces to be documented. Almost all of the API
information in the quick reference is available in these class files.
The notable exception is the names of method arguments, which are not
stored in class files. These argument names are obtained by parsing
the Java source file for each class and interface. Where source files
are not available, I obtain method argument names by parsing the API
documentation generated by javadoc. The parsers
I use to extract API information from the source files and
javadoc files are created using the Antlr parser
generator developed by Terence Parr. (See http://www.antlr.org for details on this very
powerful programming tool.)
Once the API information has been obtained by reading class files,
source files, and javadoc files, the program
spends some time sorting and cross-referencing everything. Then it
stores all the API information into a single large data file.
The second pass reads API information from that data file and outputs
quick reference chapters using a custom XML doctype. Once
I’ve generated the XML output, I hand it off to the
production team at O’Reilly. In the past, these XML
documents were converted to troff and formatted with GNU
groff using a highly customized macro package.
In this edition, the chapters were converted from XML to Framemaker
instead, using in-house production tools.

[image: image with no caption]

When you see a Safari®-enabled icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.
Safari offers a solution that’s better than e-Books.
It’s a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate,
current information. Try it free at http://safari.oreilly.com.

Acknowledgments

Many people helped in the creation of this book, and I am grateful to
them all. I am indebted to the many, many readers of the first four
editions who wrote in with comments, suggestions, bug reports, and
praise. Their many small contributions are scattered throughout the
book. Also, my apologies to those who made many good suggestions that
could not be incorporated into this edition.
Deb Cameron was the editor for the fifth edition. Deb edited not only
the material that was new in this edition but also made the time to
carefully read over the old material, giving it a much-needed
updating. Deb was patient when my work on this book veered off in an
unexpected direction and provided steady guidance to help get me back
on track. The fourth edition was edited by Bob Eckstein, a careful
editor with a great sense of humor. Paula Ferguson, a friend and
colleague, was the editor of the first three editions of this book.
Her careful reading and practical suggestions made the book stronger,
clearer, and more useful.
As usual, I’ve had a crack team of technical
reviewers for this edition of the book. Gilad Bracha of Sun reviewed
the material on generic types. Josh Bloch, a former Sun employee who
is now at Google, reviewed the material on enumerated types and
annotations. Josh was also a reviewer for the third and fourth
editions of the book, and his helpful input has been an invaluable
resource for me. Josh’s book Effective
Java Programming Guide (Addison Wesley) is highly
recommended. Neal Gafter, who, like Josh, left Sun for Google,
answered many questions about annotations and generics. David Biesack
of SAS, Changshin Lee of the Korean company Tmax Soft, and Tim
Peierls were colleagues of mine on the JSR-201 expert group that was
responsible for a number of language changes in Java 5.0. They
reviewed the generics and enumerated type material. Joseph Bowbeer,
Brian Goetz, and Bill Pugh were members of the JSR-166 or JSR-133
expert groups and helped me to understand threading and concurrency
issues behind the java.util.concurrency package.
Iris Garcia of Sun answered my questions about the new
java.util.Formatter class that she authored. My
sincere thanks go to each of these engineers. Any mistakes that
remain in the book are, of course, my own.
The fourth edition was also reviewed by a number of engineers from
Sun and elsewhere. Josh Bloch reviewed material on assertions and the
Preferences API. Bob Eckstein reviewed XML material. Graham Hamilton
reviewed the Logging API material. Ron Hitchens reviewed the New I/O
material. Jonathan Knudsen (who is also an O’Reilly
author) reviewed the JSSE and Certification Path material. Charlie
Lai reviewed the JAAS material. Ram Marti reviewed the JGSS material.
Philip Milne, a former Sun employee, now at Dresdner Kleinwort
Wasserstein, reviewed the material on the JavaBeans persistence
mechanism. Mark Reinhold reviewed the java.nio
material. Mark deserves special thanks for having been a reviewer for
the second, third, and fourth editions of this book. Andreas Sterbenz
and Brad Wetmore reviewed the JSSE material.
The third edition also benefited greatly from the contributions of
reviewers who are intimately familiar with the Java platform. Joshua
Bloch, one of the primary authors of the Java collections framework,
reviewed my descriptions of the collections classes and interfaces.
Josh was also helpful in discussing the Timer and
TimerTask classes of Java 1.3 with me. Mark
Reinhold, creator of the java.lang.ref package,
explained the package to me and reviewed my documentation of it.
Scott Oaks reviewed my descriptions of the Java security and
cryptography classes and interfaces. The documentation of the
javax.crypto package and its subpackages was also
reviewed by Jon Eaves. Finally, Chapter 1 was
improved by the comments of reviewers who were
not already familiar with the Java platform:
Christina Byrne reviewed it from the standpoint of a novice
programmer, and Judita Byrne of Virginia Power offered her comments
as a professional COBOL programmer.
For the second edition, John Zukowski reviewed my Java 1.1 AWT quick
reference material, and George Reese reviewed most of the remaining
new material. The second edition was also blessed with a
“dream team” of technical reviewers
from Sun. John Rose, the author of the Java inner class
specification, reviewed the chapter on inner classes. Mark Reinhold,
author of the new character stream classes in
java.io, reviewed my documentation of these
classes. Nakul Saraiya, the designer of the Java Reflection API,
reviewed my documentation of the java.lang.reflect
package.
Mike Loukides provided high-level direction and guidance for the
first edition of the book. Eric Raymond and Troy Downing reviewed
that first edition—they helped spot my errors and omissions and
offered good advice on making the book more useful to Java
programmers.
The O’Reilly production team has done its usual fine
work of creating a book out of the electronic files I submit. My
thanks to them all.
As always, my thanks and love to Christie.
David Flanagan
http://www.davidflanagan.com

March 2005

Part I. Introducing Java

Part I is an introduction to the Java language and the Java platform.
These chapters provide enough information for you to get started
using Java right away.
	
 Chapter 1

	
 Chapter 2

	
 Chapter 3

	
 Chapter 4

	
 Chapter 5

	
 Chapter 6

	
 Chapter 7

	
 Chapter 8

Chapter 1. Introduction

Welcome to Java. This chapter begins by explaining what Java is and
describing some of the features that distinguish it from other
programming languages. Next, it outlines the structure of this book,
with special emphasis on what is new in Java 5.0. Finally, as a quick
tutorial introduction to the language, it walks you through a simple
Java program you can type, compile, and run.

What Is Java?

 In discussing Java, it is important to
distinguish between the Java programming language, the Java Virtual
Machine, and the Java platform. The Java programming language is the
language in which Java applications, applets, servlets, and
components are written. When a Java program is compiled, it is
converted to byte codes that are the portable machine language of a
CPU architecture known as the Java Virtual Machine (also called the
Java VM or JVM). The JVM can be implemented directly in hardware, but
it is usually implemented in the form of a software program that
interprets and executes byte codes.

 The
Java platform is distinct from both the Java language and Java VM.
The Java platform is the predefined set of Java classes that exist on
every Java installation; these classes are available for use by all
Java programs. The Java platform is also sometimes referred to as the
Java runtime environment or the core Java APIs (application
programming interfaces). The Java platform can be extended with
optional packages (formerly called standard extensions). These APIs
exist in some Java installations but are not guaranteed to exist in
all installations.
The Java Programming Language

 The Java programming language is a
state-of-the-art, object-oriented language that has a syntax similar
to that of C. The language designers strove to make the Java language
powerful, but, at the same time, they tried to avoid the overly
complex features that have bogged down other object-oriented
languages like C++. By keeping the language simple, the designers
also made it easier for programmers to write robust, bug-free code.
As a result of its elegant design and next-generation features, the
Java language has proved popular with programmers, who typically find
it a pleasure to work with Java after struggling with more difficult,
less powerful languages.
Java 5.0, the latest version of the Java language,[1] includes a number of new language features, most notably
generic types, which increase both the complexity and the power of
the language. Most experienced Java programmers have welcomed the new
features, despite the added complexity they bring.

The Java Virtual Machine

 The
Java Virtual Machine, or Java interpreter, is the crucial piece of
every Java installation. By design, Java programs are portable, but
they are only portable to platforms to which a Java interpreter has
been ported. Sun ships VM implementations for its own Solaris
operating system and for Microsoft Windows and Linux platforms. Many
other vendors, including Apple and various commercial Unix vendors,
provide Java interpreters for their platforms. The Java VM is not
only for desktop systems, however. It has been ported to set-top
boxes and handheld devices that run Windows CE and PalmOS.

 Although interpreters are not typically
considered high-performance systems, Java VM performance has improved
dramatically since the first versions of the language. The latest
releases of Java run remarkably fast. Of particular note is a VM
technology called just-in-time (JIT) compilation
whereby Java byte codes are converted on the fly into native platform
machine language, boosting execution speed for code that is run
repeatedly.

The Java Platform

 The Java platform is just as important
as the Java programming language and the Java Virtual Machine. All
programs written in the Java language rely on the set of predefined
classes[2] that comprise the Java platform. Java
classes are organized into related groups known as
packages. The Java platform defines packages for
functionality such as input/output, networking, graphics,
user-interface creation, security, and much more.

 It is important to understand what is
meant by the term platform. To a computer programmer, a platform is
defined by the APIs he can rely on when writing programs. These APIs
are usually defined by the operating system of the target computer.
Thus, a programmer writing a program to run under Microsoft Windows
must use a different set of APIs than a programmer writing the same
program for a Unix-based system. In this respect, Windows and Unix
are distinct platforms.
Java is not an operating system. Nevertheless, the Java platform
provides APIs with a comparable breadth and depth to those defined by
an operating system. With the Java platform, you can write
applications in Java without sacrificing the advanced features
available to programmers writing native applications targeted at a
particular underlying operating system. An application written on the
Java platform runs on any operating system that supports the Java
platform. This means you do not have to create distinct Windows,
Macintosh, and Unix versions of your programs, for example. A single
Java program runs on all these operating systems, which explains why
“Write once, run anywhere” is
Sun’s motto for Java.
The Java platform is not an operating system, but for programmers, it
is an alternative development target and a very popular one at that.
The Java platform reduces programmers’ reliance on
the underlying operating system, and, by allowing programs to run on
top of any operating system, it increases end users’
freedom to choose an operating system.

Versions of Java

 As
of this writing, there have been six major versions of Java. They
are:
	Java 1.0
	This was the first public version of Java. It contained 212 classes
organized in 8 packages. It was simple and elegant but is now
completely outdated.

	Java 1.1
	This release of Java more than doubled the size of the Java platform
to 504 classes in 23 packages. It introduced nested types (or
“inner classes”), an important
change to the Java language itself, and included significant
performance improvements in the Java VM. This version is outdated.

	Java 1.2
	This was a very significant release of Java; it tripled the size of
the Java platform to 1,520 classes in 59 packages. Important
additions included the Collections API for working with sets, lists,
and maps of objects and the Swing API for creating graphical user
interfaces. Because of the many new features included in the 1.2
release, the platform was rebranded as “the Java 2
Platform.” The term “Java
2” was simply a trademark, however, and not an
actual version number for the release.

	Java 1.3
	This was primarily a maintenance release, focused on bug fixes,
stability, and performance improvements (including the
high-performance “HotSpot” virtual
machine). Additions to the platform included the Java Naming and
Directory Interface (JNDI) and the Java Sound APIs, which were
previously available as extensions to the platform. The most
interesting classes in this release were probably
java.util.Timer and
java.lang.reflect.Proxy. In total, Java 1.3
contains 1,842 classes in 76 packages.

	Java 1.4
	This was another big release, adding important new functionality and
increasing the size of the platform by 62% to 2,991 classes and
interfaces in 135 packages. New features included a high-performance,
low-level I/O API; support for pattern matching with regular
expressions; a logging API; a user preferences API; new Collections
classes; an XML-based persistence mechanism for JavaBeans; support
for XML parsing using both the DOM and SAX APIs; user authentication
with the Java Authentication and Authorization Service (JAAS) API;
support for secure network connections using the SSL protocol;
support for cryptography; a new API for reading and writing image
files; an API for network printing; a handful of new GUI components
in the Swing API; and a simplified drag-and-drop architecture for
Swing. In addition to these platform changes, the 1.4 release
introduced an assert statement to the Java
language.

	Java 5.0
	The most recent release of Java introduces a number of changes to the
core language itself including generic types, enumerated types,
annotations, varargs methods, autoboxing, and a new
for/in statement. Because of the major language
changes, the version number was incremented. This release would
logically be known as “Java 2.0” if
Sun had not already used the term “Java
2” for marketing Java 1.2.
In addition to the language changes, Java 5.0 includes a number of
additions to the Java platform as well. This release includes 3562
classes and interfaces in 166 packages. Notable additions include
utilities for concurrent programming, a remote management framework,
and classes for the remote management and instrumentation of the Java
VM itself.
See the Preface for a list of changes in this edition of the book,
including pointers to coverage of the new language and platform
features.

 To write programs in Java, you
must obtain the Java Development Kit (JDK). Sun releases a new
version of the JDK for each new version of Java.
Don’t confuse the JDK with the Java Runtime
Environment (JRE). The JRE contains everything you need to run Java
programs, but it does not contain the tools you need to develop Java
programs (primarily the compiler).

 In addition to the Standard Edition of
Java used by most Java developers and documented in this book, Sun
has also released the Java 2 Platform, Enterprise Edition (or J2EE)
for enterprise developers and the Java 2 Platform, Micro Edition
(J2ME) for consumer electronic systems, such as handheld PDAs and
cellular telephones. See Java Enterprise in a
Nutshell and Java Micro Edition in a
Nutshell (both by O’Reilly) for more
information on these other editions.

[1] Java 5.0 represents a significant change in version numbering
for Sun. The previous version of Java is Java 1.4 so you may
sometimes hear Java 5.0 informally referred to as Java 1.5.

[2] A class is a module of
Java code that defines a data structure and a set of methods (also
called procedures, functions, or subroutines) that operate on that
data.

Key Benefits of Java

Why use Java at all? Is it worth learning a new language and a new
platform? This section explores some of the key benefits of Java.
Write Once, Run Anywhere

 Sun identifies
“Write once, run
anywhere” as the core value proposition of the Java
platform. Translated from business jargon, this means that the most
important promise of Java technology is that you have to write your
application only once—for the Java platform—and then
you’ll be able to run it
anywhere.
Anywhere, that is, that supports the Java platform. Fortunately, Java
support is becoming ubiquitous. It is integrated into practically all
major operating systems. It is built into the popular web browsers,
which places it on virtually every Internet-connected PC in the
world. It is even being built into consumer electronic devices such
as television set-top boxes, PDAs, and cell phones.

Security

 Another key benefit
of Java is its security features. Both the language and the platform
were designed from the ground up with security in mind. The Java
platform allows users to download untrusted code over a network and
run it in a secure environment in which it cannot do any harm:
untrusted code cannot infect the host system with a virus, cannot
read or write files from the hard drive, and so forth. This
capability alone makes the Java platform unique.

 Java
1.2 took the security model a step further. It made security levels
and restrictions highly configurable and extended them beyond
applets. As of Java 1.2, any Java code, whether it is an applet, a
servlet, a JavaBeans component, or a complete Java application, can
be run with restricted permissions that prevent it from doing harm to
the host system.

 The
security features of the Java language and platform have been
subjected to intense scrutiny by security experts around the world.
In the earlier days of Java, security-related bugs, some of them
potentially serious, were found and promptly fixed. Because of the
strong security promises Java makes, it is big news when a new
security bug is found. No other mainstream platform can make security
guarantees nearly as strong as those Java makes. No one can say that
Java security holes will not be found in the future, but if
Java’s security is not yet perfect, it has been
proven strong enough for practical day-to-day use and is certainly
better than any of the alternatives.

Network-Centric Programming

 Sun’s corporate
motto has always been “The network is the
computer.” The designers of the Java platform
believed in the importance of networking and designed the Java
platform to be network-centric. From a programmer’s
point of view, Java makes it easy to work with resources across a
network and to create network-based applications using client/server
or multitier architectures.

Dynamic, Extensible Programs

 Java is both dynamic and
extensible. Java code is organized in modular object-oriented units
called classes. Classes are stored in separate
files and are loaded into the Java interpreter only when needed. This
means that an application can decide as it is running what classes it
needs and can load them when it needs them. It also means that a
program can dynamically extend itself by loading the classes it needs
to expand its functionality.
The network-centric design of the Java platform means that a Java
application can dynamically extend itself by loading new classes over
a network. An application that takes advantage of these features
ceases to be a monolithic block of code. Instead, it becomes an
interacting collection of independent software components. Thus, Java
enables a powerful new metaphor of application design and
development.

Internationalization

 The
Java language and the Java platform were designed from the start with
the rest of the world in mind. When it was created, Java was the only
commonly used programming language that had internationalization
features at its core rather than tacked on as an afterthought. While
most programming languages use 8-bit characters that represent only
the alphabets of English and Western European languages, Java uses
16-bit Unicode characters that represent the phonetic alphabets and
ideographic character sets of the entire world.
Java’s internationalization features are not
restricted to just low-level character representation, however. The
features permeate the Java platform, making it easier to write
internationalized programs with Java than it is with any other
environment.

Performance

 As described earlier, Java programs are
compiled to a portable intermediate form known as byte codes, rather
than to native machine-language instructions. The Java Virtual
Machine runs a Java program by interpreting these portable byte-code
instructions. This architecture means that Java programs are faster
than programs or scripts written in purely interpreted languages, but
Java programs are typically slower than C and C++ programs compiled
to native machine language. Keep in mind, however, that although Java
programs are compiled to byte code, not all of the Java platform is
implemented with interpreted byte codes. For efficiency,
computationally intensive portions of the Java platform—such as
the string-manipulation methods—are implemented using native
machine code.

 Although early releases of Java suffered
from performance problems, the speed of the Java VM has improved
dramatically with each new release. The VM has been highly tuned and
optimized in many significant ways. Furthermore, most current
implementations include a just-in-time (JIT) compiler, which converts
Java byte codes to native machine instructions on the fly. Using
sophisticated JIT compilers, Java programs can execute at speeds
comparable to the speeds of native C and C++ applications.
Java is a portable, interpreted language; Java programs run almost as
fast as native, nonportable C and C++ programs. Performance used to
be an issue that made some programmers avoid using Java. With the
improvements made in Java 1.2, 1.3, 1.4, and 5.0, performance issues
should no longer keep anyone away.

Programmer Efficiency and Time-to-Market

 The final, and perhaps most important,
reason to use Java is that programmers like it. Java is an elegant
language combined with a powerful and (usually) well-designed set of
APIs. Programmers enjoy programming in Java and are often amazed at
how quickly they can get results with it. Because Java is a simple
and elegant language with a well-designed, intuitive set of APIs,
programmers write better code with fewer bugs than for other
platforms, thus reducing development time.

An Example Program

 Example 1-1 shows a Java program to compute
factorials.[3] Note that the numbers at the beginning of each line are
not part of the program; they are there for ease of reference when we
dissect the program line-by-line.
Example 1-1. Factorial.java: a program to compute factorials
 1 /**
 2 * This program computes the factorial of a number
 3 */
 4 public class Factorial { // Define a class
 5 public static void main(String[] args) { // The program starts here
 6 int input = Integer.parseInt(args[0]); // Get the user's input
 7 double result = factorial(input); // Compute the factorial
 8 System.out.println(result); // Print out the result
 9 } // The main() method ends here
10
11 public static double factorial(int x) { // This method computes x!
12 if (x < 0) // Check for bad input
13 return 0.0; // If bad, return 0
14 double fact = 1.0; // Begin with an initial value
15 while(x > 1) { // Loop until x equals 1
16 fact = fact * x; // Multiply by x each time
17 x = x - 1; // And then decrement x
18 } // Jump back to start of loop
19 return fact; // Return the result
20 } // factorial() ends here
21 } // The class ends here

Compiling and Running the Program

 Before
 we look at how the program works, we
must first discuss how to run it. In order to compile and run the
program, you need a Java development kit (JDK) of some sort. Sun
Microsystems created the Java language and ships a free JDK for its
Solaris operating system and also for Linux and Microsoft Windows
platforms.[4]
At the time of this writing, the current version of
Sun’s JDK is available for download from
http://java.sun.com. Be sure to get the JDK and
not the Java Runtime Environment. The JRE enables you to run existing
Java programs, but not to write and compile your own.
The Sun JDK is not the only Java programming environment you can use.
gcj, for example, is a Java compiler released
under the GNU general public license. A number of companies sell Java
IDEs (integrated development environments), and high-quality
open-source IDEs are also available. This book assumes that you are
using Sun’s JDK and its accompanying command-line
tools. If you are using a product from some other vendor, be sure to
read that vendor’s documentation to learn how to
compile and run a simple program, like that shown in Example 1-1.

 Once you have a Java programming
environment installed, the first step towards running our program is
to type it in. Using your favorite text editor, enter the program as
it is shown in Example 1-1.[5] Omit the line numbers, which are just for reference. Note
that Java is a case-sensitive language, so you must type lowercase
letters in lowercase and uppercase letters in uppercase.
You’ll notice that many of the lines of this program
end with semicolons. It is a common mistake to forget these
characters, but the program won’t work without them,
so be careful! You can omit everything from // to
the end of a line: those are comments that are
there for your benefit and are ignored by Java.

 When writing Java programs, you should use
a text editor that saves files in plain-text format, not a word
processor that supports fonts and formatting and saves files in a
proprietary format. My favorite text editor on Unix systems is
Emacs. If you use a Windows system, you might
use Notepad or WordPad, if
you don’t have a more specialized
programmer’s editor (versions of GNU Emacs, for
example, are available for Windows). If you are using an IDE, it
should include an appropriate text editor; read the documentation
that came with the product. When you are done entering the program,
save it in a file named Factorial.java. This is
important; the program will not work if you save it by any other
name.

 After
writing a program like this one, the next step is to compile it. With
Sun’s JDK, the Java compiler is known as
javac. javac is a
command-line tool, so you can only use it from a terminal window,
such as an MS-DOS window on a Windows system or an
xterm window on a Unix system. Compile the
program by typing the following command:
C:\> javac Factorial.java

If this command prints any error messages, you probably got something
wrong when you typed in the program. If it does not print any error
messages, however, the compilation has succeeded, and
javac creates a file called
Factorial.class. This is the compiled version of
the program.

 Once you have compiled a Java program,
you must still run it. Java programs are not compiled into native
machine language, so they cannot be executed directly by the system.
Instead, they are run by another program known as the Java
interpreter. In Sun’s JDK, the interpreter is a
command-line program named, appropriately enough,
java. To run the factorial program, type:
C:\> java Factorial 4

 java is the command to run the Java interpreter,
Factorial is the name of the Java program we
want the interpreter to run, and 4 is the input
data—the number we want the interpreter to compute the
factorial of. The program prints a single line of output, telling us
that the factorial of 4 is 24:
C:\> java Factorial 4
24.0
Congratulations! You’ve just written, compiled, and
run your first Java program. Try running it again to compute the
factorials of some other numbers.

Analyzing the Program

Now that you have run the factorial program, let’s
analyze it line by line to see what makes a Java program tick.
Comments

 The first three lines of the program
are a comment. Java ignores them, but they tell a human programmer
what the program does. A comment begins with the characters
/* and ends with the characters
*/. Any amount of text, including multiple lines
of text, may appear between these characters. Java also supports
another type of comment, which you can see in lines 4 through 21. If
the characters // appear in a Java program, Java
ignores those characters and any other text that appears between
those characters and the end of the line.

Defining a class

 Line 4 is
the first line of Java code. It says that we are defining a class
named Factorial. This explains why the program had
to be stored in a file named Factorial.java.
That filename indicates that the file contains Java source code for a
class named Factorial. The word
public is a modifier; it says
that the class is publicly available and that anyone may use it. The
open curly-brace character ({) marks the beginning
of the body of the class, which extends all the way to line 21, where
we find the matching close curly-brace character
(}). The program contains a number of pairs of
curly braces; the lines are indented to show the nesting within these
braces.

 A class is the fundamental unit of program
structure in Java, so it is not surprising that the first line of our
program declares a class. All Java programs are classes, although
some programs use many classes instead of just one. Java is an
object-oriented programming language, and classes are a fundamental
part of the object-oriented paradigm. Each class defines a unique
kind of object. Example 1-1 is not really an
object-oriented program, however, so I’m not going
to go into detail about classes and objects here. That is the topic
of Chapter 3. For now, all you need to
understand is that a class defines a set of interacting
members. Those members may be fields, methods,
or other classes. The Factorial class contains two
members, both of which are methods. They are described in upcoming
sections.

Defining a method

 Line 5 begins the definition of a
method of our Factorial
class. A method is a named chunk of Java code. A Java program can
call, or invoke, a method to execute the code in
it. If you have programmed in other languages, you have probably seen
methods before, but they may have been called functions, procedures,
or subroutines. The interesting thing about methods is that they have
parameters and return
values. When you call a method, you pass it some data you
want it to operate on, and it returns a result to you. A method is
like an algebraic function:
y = f(x)
Here, the mathematical function f performs some
computation on the value represented by x and
returns a value, which we represent by y.

 To return to line 5, the
public and static keywords are
modifiers. public means the method is publicly
accessible; anyone can use it. The meaning of the
static modifier is not important here; it is
explained in Chapter 3. The
void keyword specifies the return value of the
method. In this case, it specifies that this method does not have a
return value.

 The
word main is the name of the method.
main is a special name.[6] When you run the Java interpreter,
it reads in the class you specify, then looks for a method named
main().[7] When the interpreter finds this method, it
starts running the program at that method. When the
main() method finishes, the program is done, and
the Java interpreter exits. In other words, the
main() method is the main entry point into a Java
program. It is not actually sufficient for a method to be named
main(), however. The method must be declared
public
 static
 void exactly as shown in line 5. In fact, the only
part of line 5 you can change is the word args,
which you can replace with any word you want. You’ll
be using this line in all of your Java programs, so go ahead and
commit it to memory now!

 Following the name of the
main() method is a list of method parameters in
parentheses. This main() method has only a single
parameter. String[] specifies the type of the
parameter, which is an array of strings (i.e., a numbered list of
strings of text). args specifies the name of the
parameter. In the algebraic equation f(x),
x is simply a way of referring to an unknown
value. args serves the same purpose for the
main() method. As we’ll see, the
name args is used in the body of the method to
refer to the unknown value that is passed to the method.
As I’ve just explained, the
main() method is a special one that is called by
the Java interpreter when it starts running a Java class (program).
When you invoke the Java interpreter like this:
C:\> java Factorial 4

the string “4” is passed to the
main() method as the value of the parameter named
args. More precisely, an array of strings
containing only one entry, 4, is passed to
main(). If we invoke the program like this:
C:\> java Factorial 4 3 2 1

then an array of four strings, 4,
3, 2, and 1,
is passed to the main() method as the value of
the parameter named args. Our program looks only
at the first string in the array, so the other strings are ignored.

 Finally, the last thing on line 5
is an open curly brace. This marks the beginning of the body of the
main() method, which continues until the matching
close curly brace on line 9. Methods are composed of
statements, which the Java interpreter executes
in sequential order. In this case, lines 6, 7, and 8 are three
statements that compose the body of the main()
method. Each statement ends with a semicolon to separate it from the
next. This is an important part of Java syntax; beginning programmers
often forget the semicolons.

Declaring a variable and parsing input

 The first statement of the
main() method, line 6, declares a variable and
assigns a value to it. In any programming language, a
variable is simply a symbolic name for a value.
We’ve already seen that, in this program, the name
args refers to the parameter value passed to the
main() method. Method parameters are one type of
variable. It is also possible for methods to declare additional
“local” variables. Methods can use
local variables to store and reference the intermediate values they
use while performing their computations.

 This is exactly what we are doing on
line 6. That line begins with the words int input,
which declare a variable named input and specify
that the variable has the type int; that is, it is
an integer. Java can work with several different types of values,
including integers, real or floating-point numbers, characters (e.g.,
letters and digits), and strings of text. Java is a
strongly typed
 language, which means that all
variables must have a type specified and can refer only to values of
that type. Our input variable always refers to an
integer, so it cannot refer to a floating-point number or a string.
Method parameters are also typed. Recall that the
args parameter had a type of String[
].

 Continuing with line 6, the variable
declaration int input is followed by the
= character. This is the assignment operator in
Java; it sets the value of a variable. When reading Java code,
don’t read = as
“equals,” but instead read it as
“is assigned the value.” As
we’ll see in Chapter 2, there
is a different operator for
“equals.”

 The value assigned to our
input variable is
Integer.parseInt(args[0]). This is a method
invocation. This first statement of the main()
method invokes another method whose name is
Integer.parseInt(). As you might guess, this
method “parses” an integer; that
is, it converts a string representation of an integer, such as
4, to the integer itself. The
Integer.parseInt() method is not part of the Java
language, but it is a core part of the Java API or Application
Programming Interface. Every Java program can use the powerful set of
classes and methods defined by this core API. The second half of this
book is a quick reference that documents that core API.

 When you call a method, you pass
values (called arguments) that are assigned to
the corresponding parameters defined by the method, and the method
returns a value. The argument passed to
Integer.parseInt() is args[0].
Recall that args is the name of the parameter for
main(); it specifies an array (or list) of
strings. The elements of an array are numbered sequentially, and the
first one is always numbered 0. We care about only
the first string in the args array, so we use the
expression args[0] to refer to that string. When
we invoke the program as shown earlier, line 6 takes the first string
specified after the name of the class, 4, and
passes it to the method named Integer.parseInt().
This method converts the string to the corresponding integer and
returns the integer as its return value. Finally, this returned
integer is assigned to the variable named input.

Computing the result

 The statement
on line 7 is a lot like the statement on line 6. It declares a
variable and assigns a value to it. The value assigned to the
variable is computed by invoking a method. The variable is named
result, and it has a type of
double. double means a
double-precision floating-point number. The variable is assigned a
value that is computed by the factorial() method.
The factorial() method, however, is not part of
the standard Java API. Instead, it is defined as part of our program
by lines 11 through 19. The argument passed to factorial(
) is the value referred to by the input
variable that was computed on line 6. We’ll consider
the body of the factorial() method shortly, but
you can surmise from its name that this method takes an input value,
computes the factorial of that value, and returns the result.

Displaying output

 Line 8 simply calls a method named
System.out.println(). This commonly used method
is part of the core Java API; it causes the Java interpreter to print
out a value. In this case, the value that it prints is the value
referred to by the variable named result. This is
the result of our factorial computation. If the
input variable holds the value
4, the result variable holds
the value 24, and this line prints out that value.
The System.out.println() method does not have a
return value. There is no variable declaration or
= assignment operator in this statement since
there is no value to assign to anything. Another way to say this is
that, like the main() method of line 5,
System.out.println() is declared
void.

The end of a method

 Line
9 contains only a single character, }. This marks
the end of the method. When the Java interpreter gets here, it is
through executing the main() method, so it stops
running. The end of the main() method is also the
end of the variable scope for the
input and result variables
declared within main() and for the
args parameter of main().
These variable and parameter names have meaning only within the
main() method and cannot be used elsewhere in the
program unless other parts of the program declare different variables
or parameters that happen to have the same name.

Blank lines

 Line
10 is a blank line. You can insert blank lines and spaces anywhere in
a program, and you should use them liberally to make the program
readable. A blank line appears here to separate the main(
) method from the factorial() method
that begins on line 11. You’ll notice that the
program also uses whitespace to indent the various lines of code.
This kind of indentation is optional; it emphasizes the structure of
the program and greatly enhances the readability of the code.

Another method

Line 11 begins the definition of the factorial()
method that was used by the main() method.
Compare this line to line 5 to note its similarities and differences.
The factorial() method has the same
public and static modifiers. It
takes a single integer parameter, which we call x.
Unlike the main() method, which had no return
value (void), factorial()
returns a value of type double. The open curly
brace marks the beginning of the method body, which continues past
the nested braces on lines 15 and 18 to line 20, where the matching
close curly brace is found. The body of the factorial(
) method, like the body of the main()
method, is composed of statements, which are found on lines 12
through 19.

Checking for valid input

 In
the main() method, we saw variable declarations,
assignments, and method invocations. The statement on line 12 is
different. It is an if statement, which executes
another statement conditionally. We saw earlier that the Java
interpreter executes the three statements of the
main() method one after another. It always
executes them in exactly that way, in exactly that order. An
if statement is a flow-control statement; it can
affect the way the interpreter runs a program.

 The
if keyword is followed by a parenthesized
expression and a statement. The Java interpreter first evaluates the
expression. If it is true, the interpreter
executes the statement. If the expression is
false, however, the interpreter skips the
statement and goes to the next one. The condition for the
if statement on line 12 is x <
0. It checks whether the value passed to the
factorial() method is less than zero. If it is,
this expression is true, and the statement on line
13 is executed. Line 12 does not end with a semicolon because the
statement on line 13 is part of the if statement.
Semicolons are required only at the end of a statement.

 Line 13 is a
return statement. It says that the return value of
the factorial() method is 0.0.
return is also a flow-control statement. When the
Java interpreter sees a return, it stops executing
the current method and returns the specified value immediately. A
return statement can stand alone, but in this
case, the return statement is part of the
if statement on line 12. The indentation of line
13 helps emphasize this fact. (Java ignores this indentation, but it
is very helpful for humans who read Java code!) Line 13 is executed
only if the expression on line 12 is true.
Before we move on, we should pull back a bit and talk about why lines
12 and 13 are necessary in the first place. It is an error to try to
compute a factorial for a negative number, so these lines make sure
that the input value x is valid. If it is not
valid, they cause factorial() to return a
consistent invalid result, 0.0.

An important variable

 Line 14 is another variable declaration; it
declares a variable named fact of type
double and assigns it an initial value of
1.0. This variable holds the value of the
factorial as we compute it in the statements that follow. In Java,
variables can be declared anywhere; they are not restricted to the
beginning of a method or block of code.

Looping and computing the factorial

 Line 15 introduces another
type of statement:
the while loop. Like an if
statement, a while statement consists of a
parenthesized expression and a statement. When the Java interpreter
sees a while statement, it evaluates the
associated expression. If that expression is true,
the interpreter executes the statement. The interpreter repeats this
process, evaluating the expression and executing the statement if the
expression is true, until the expression evaluates
to false. The expression on line 15 is x
> 1, so the while statement loops
while the parameter x holds a
value that is greater than 1. Another way to say this is that the
loop continues until
 x holds
a value less than or equal to 1. We can assume from this expression
that if the loop is ever going to terminate, the value of
x must somehow be modified by the statement that
the loop executes.

 The major difference between the
if statement on lines 12-13 and the
while loop on lines 15-18 is that the statement
associated with the while loop is a
compound statement. A compound statement is zero
or more statements grouped between curly braces. The
while keyword on line 15 is followed by an
expression in parentheses and then by an open curly brace. This means
that the body of the loop consists of all statements between that
opening brace and the closing brace on line 18. Earlier in the
chapter, I said that all Java statements end with semicolons. This
rule does not apply to compound statements, however, as you can see
by the lack of a semicolon at the end of line 18. The statements
inside the compound statement (lines 16 and 17) do end with
semicolons, of course.

 The body of the
while loop consists of the statements on line 16
and 17. Line 16 multiplies the value of fact by
the value of x and stores the result back into
fact. Line 17 is similar. It subtracts 1 from the
value of x and stores the result back into
x. The * character on line 16
is important: it is the
 multiplication
operator. And, as you can probably guess, the
- on line 17 is the
 subtraction operator. An operator
is a key part of Java syntax: it performs a computation on one or two
operands to produce a new value. Operands and
operators combine to form
expressions
 ,
such as fact * x or x - 1.
We’ve seen other operators in the program. Line 15,
for example, uses the greater-than operator
(>) in the expression x >
1, which compares the value of the variable
x to 1. The value of this expression is a boolean
truth value—either true or
false, depending on the result of the comparison.

 To understand this
while loop, it is helpful to think like the Java
interpreter. Suppose we are trying to compute the factorial of 4.
Before the loop starts, fact is
1.0, and x is
4. After the body of the loop has been executed
once—after the first
iteration—fact is
4.0, and x is
3. After the second iteration,
fact is 12.0, and
x is 2. After the third
iteration, fact is 24.0, and
x is 1. When the interpreter
tests the loop condition after the third iteration, it finds that
x > 1 is no longer true, so it stops running
the loop, and the program resumes at line 19.

Returning the result

 Line 19 is another
return statement, like the one we saw on line 13.
This one does not return a constant value like
0.0, but instead returns the value of the
fact variable. If the value of
x passed into the factorial()
function is 4, then, as we saw earlier, the value
of fact is 24.0, so this is the
value returned. Recall that the factorial() method
was invoked on line 7 of the program. When this
return statement is executed, control returns to
line 7, where the return value is assigned to the variable named
result.

Exceptions

 If
you’ve made it all the way through the line-by-line
analysis of Example 1-1, you are well on your way to
understanding the basics of the Java language.[8] It is a simple but nontrivial program that illustrates
many of the features of Java. There is one more important feature of
Java programming I want to introduce, but it is one that does not
appear in the program listing itself.
Recall that the
program computes the factorial of the number you specify on the
command line. What happens if you run the program without specifying
a number?
C:\> java Factorial
java.lang.ArrayIndexOutOfBoundsException: 0
 at Factorial.main(Factorial.java:6)
C:\>
And what happens if you specify a value that is not a number?
C:\> java Factorial ten
java.lang.NumberFormatException: ten
 at java.lang.Integer.parseInt(Integer.java)
 at java.lang.Integer.parseInt(Integer.java)
 at Factorial.main(Factorial.java:6)
C:\>

 In both
cases, an error occurs or, in Java terminology, an
exception is thrown. When an exception is
thrown, the Java interpreter prints a message that explains what type
of exception it was and where it occurred (both exceptions above
occurred on line 6). In the first case, the exception is thrown
because there are no strings in the args list,
meaning we asked for a nonexistent string with
args[0]. In the second case, the exception is
thrown because Integer.parseInt() cannot convert
the string “ten” to a number.
We’ll see more about exceptions in Chapter 2 and learn how to handle them gracefully as
they occur.

[3] The factorial of an integer is the
product of the number and all positive integers less than the number.
So, for example, the factorial of 4, which is also written 4!, is 4
times 3 times 2 times 1, or 24. By definition, 0! is 1.

[4] Other companies, such as Apple, have
licensed and ported the JDK to their operating systems. In
Apple’s case, this arrangement leads to a delay in
the latest JDK being available on that platform.

[5] I
recommend that you type this example in by hand, to get a feel for
the language. If you really
don’t want to, however, you can download this, and
all examples in the book, from
http://www.oreilly.com/catalog/javanut5/.

[6] All Java
programs that are run directly by the Java interpreter must have a
main() method. Programs of this sort are often
called applications. It is possible to write
programs that are not run directly by the interpreter, but are
dynamically loaded into some other already running Java program.
Examples are applets, which are programs run by
a web browser, and servlets, which are programs
run by a web server. Applets are discussed in Java
Foundation Classes in a Nutshell
(O’Reilly) while servlets are discussed in
Java Enterprise in a Nutshell
(O’Reilly). In this book, we consider only
applications.

[7] By convention, when this
book refers to a method, it follows the name of the method by a pair
of parentheses. As you’ll see, parentheses are an
important part of method syntax, and they serve here to keep method
names distinct from the names of classes, fields, variables, and so
on.

[8]

 If you didn’t
understand all the details of this factorial program,
don’t worry. We’ll cover the
details of the Java language a lot more thoroughly in subsequent
chapters. However, if you feel like you didn’t
understand any of the line-by-line analysis, you may also find that
the upcoming chapters are over your head. In that case, you should
probably go elsewhere to learn the basics of the Java language and
return to this book to solidify your understanding, and, of course,
to use as a reference. One resource you may find useful in learning
the language is Sun’s online Java tutorial,
available at
http://java.sun.com/docs/books/tutorial.

Chapter 2. Java Syntax from the Ground Up

This chapter is a terse but comprehensive introduction to Java
syntax. It is written primarily for readers who are new to the
language but have at least some previous programming experience.
Determined novices with no prior programming experience may also find
it useful. If you already know Java, you should find it a useful
language reference. The chapter includes comparisons of Java to C and
C++ for the benefit of programmers coming from those languages.
This chapter documents the syntax of Java programs by starting at the
very lowest level of Java syntax and building from there, covering
increasingly higher orders of structure. It covers:
	The characters used to write Java programs and the encoding of those
characters.

	Literal values, identifiers, and other tokens that comprise a Java
program.

	The data types that Java can manipulate.

	The operators used in Java to group individual tokens into larger
expressions.

	Statements, which group expressions and other statements to form
logical chunks of Java code.

	Methods (also called functions, procedures, or subroutines), which
are named collections of Java statements that can be invoked by other
Java code.

	Classes, which are collections of methods and fields. Classes are the
central program element in Java and form the basis for
object-oriented programming. Chapter 3 is
devoted entirely to a discussion of classes and
objects.

	Packages, which are collections of related
classes.

	Java programs, which consist of one or more interacting classes that
may be drawn from one or more packages.

The syntax of most programming languages is complex, and Java is no
exception. In general, it is not possible to document all elements of
a language without referring to other elements that have not yet been
discussed. For example, it is not really possible to explain in a
meaningful way the operators and statements supported by Java without
referring to objects. But it is also not possible to document objects
thoroughly without referring to the operators and statements of the
language. The process of learning Java, or any language, is therefore
an iterative one. If you are new to Java (or a Java-style programming
language), you may find that you benefit greatly from working through
this chapter and the next twice, so that you can
grasp the interrelated concepts.

Java Programs from the Top Down

Before we begin our bottom-up exploration of Java syntax,
let’s take a moment for a top-down overview of a
Java
program. Java programs consist of one or more files, or
compilation units
 , of Java source code. Near the end of the
chapter, we describe the structure of a Java file and explain how to
compile and run a Java program. Each compilation unit begins with an
optional package
 declaration followed by zero or
more import
 declarations. These declarations
specify the namespace within which the compilation unit will define
names, and the namespaces from which the compilation unit imports
names. We’ll see package and
import again in Section 2.10 later in this chapter.
The optional package and import
declarations are followed by zero or more
reference type definitions.
These are typically class or
interface definitions, but in Java 5.0 and later,
they can also be enum definitions or annotation
definitions. The general features of reference types are covered
later in this chapter, and detailed coverage of the various kinds of
reference types is in Chapters Chapter 3 and
Chapter 4.
Type definitions include members such as fields, methods, and
constructors. Methods are
the most important type member. Methods are blocks of Java code
comprised of
statements
 .
Most statements include
expressions
 ,
which are built using
operators

and values known as primitive data
types
 . Finally, the
keywords used to
write statements, the punctuation characters that
represent operators, and the literals values that appear in a program
are all
tokens
 ,
which are described next. As the name of this section implies, this
chapter moves from describing the smallest units, tokens, to
progressively larger units. Since the concepts build upon one
another, we recommend reading this chapter sequentially.

Lexical Structure

 This section explains the
lexical structure of a Java program. It
starts with a discussion of the Unicode character set in which Java
programs are written . It then covers the tokens that comprise a Java
program, explaining comments, identifiers, reserved words, literals,
and so on.
The Unicode Character Set

 Java programs are written using
Unicode.
You can use Unicode characters anywhere in a Java program, including
comments and identifiers such as variable names. Unlike the 7-bit
ASCII character set, which is useful only for English, and the 8-bit
ISO Latin-1 character set, which is
useful only for major Western European languages, the Unicode
character set can represent virtually every written language in
common use on the planet. 16-bit Unicode characters are typically
written to files using an encoding known as
UTF-8, which converts the 16-bit
characters into a stream of bytes. The format is designed so that
plain ASCII text (and the 7-bit characters of Latin-1) are valid
UTF-8 byte streams. Thus, you can simply write plain ASCII programs,
and they will work as valid Unicode.

 If you do not use a Unicode-enabled
text editor, or if you do not want to force other programmers who
view or edit your code to use a Unicode-enabled editor, you can embed
Unicode characters into your Java programs using the special Unicode
escape sequence \u
 xxxx,
in other words, a backslash and a lowercase u, followed by four
hexadecimal characters. For example, \u0020 is the
space character, and \u03c0 is the character .
Unicode 3.1 and above, used in Java 5.0 and later, includes
"supplementary
characters” that require 21 bits to represent.
16-bit encodings of Unicode characters represent these supplementary
characters using a surrogate
pair
 , which is a sequence of two 16-bit
characters taken from a special reserved range of the 16-bit encoding
space. If you ever need to include one of these (rarely used)
supplementary characters in Java source code, use two
\u sequences to represent the surrogate pair.
(Details of surrogate pair encoding are beyond the scope of this
book, however.)

Case-Sensitivity and Whitespace

Java is a

 case-sensitive language. Its
keywords are written in lowercase and must
always be used that way. That is, While and
WHILE are not the same as the
while keyword. Similarly, if you declare a
variable named i in your program, you may not
refer to it as I.
Java ignores spaces, tabs, newlines, and other whitespace, except
when it appears within quoted characters and string literals.
Programmers typically use whitespace to format and

 indent their code for easy
readability, and you will see common indentation conventions in the
code examples of this book.

Comments

 Comments
 are
natural-language text intended for human readers of a program. They
are ignored by the Java compiler. Java supports three types of
comments. The first type is a single-line comment, which begins with
the characters // and continues until the end of
the current line. For example:
int i = 0; // Initialize the loop variable

 The second kind of comment is a
multiline comment. It begins with the characters
/* and continues, over any number of lines, until
the characters */. Any text between the
/* and the */ is ignored by the
Java compiler. Although this style of comment is typically used for
multiline comments, it can also be used for single-line comments.
This type of comment cannot be nested (i.e., one /*
*/ comment cannot appear within another). When writing
multiline comments, programmers often use extra *
characters to make the comments stand out. Here is a typical
multiline comment:
/*
 * First, establish a connection to the server.
 * If the connection attempt fails, quit right away.
 */

 The third type of comment is a
special case of the second. If a comment begins with
/**, it is regarded as a special doc
comment. Like regular multiline comments, doc comments end
with */ and cannot be nested. When you write a
Java class you expect other programmers to use, use doc comments to
embed documentation about the class and each of its methods directly
into the source code. A program named javadoc
extracts these comments and processes them to create online
documentation for your class. A doc comment can contain HTML tags and
can use additional syntax understood by javadoc.
For example:
/**
 * Upload a file to a web server.
 *
 * @param file The file to upload.
 * @return <tt>true</tt> on success,
 * <tt>false</tt> on failure.
 * @author David Flanagan
 */
See Chapter 7 for more information on the doc
comment syntax and Chapter 8 for more
information on the javadoc program.
Comments may appear between any tokens of a Java program, but may not
appear within a token. In particular, comments may not appear within
double-quoted string literals. A comment within a string literal
simply becomes a literal part of that string.

Reserved Words

 The following words are reserved in Java:
they are part of the syntax of the language and may not be used to
name variables, classes, and so forth.
abstract const final int public throw
assert continue finally interface return throws
boolean default float long short transient
break do for native static true
byte double goto new strictfp try
case else if null super void
catch enum implements package switch volatile
char extends import private synchronized while
class false instanceof protected this
We’ll meet each of these reserved words again later
in this book. Some of them are the names of primitive types and
others are the names of Java statements, both of which are discussed
later in this chapter. Still others are used to define classes and
their members (see Chapter 3).
Note that const and goto are
reserved but aren’t actually used in the language.
strictfp was added in Java 1.2,
assert was added in Java 1.4, and
enum was added in Java 5.0.

Identifiers

 An identifier
is simply a
name given to some part of a Java program, such as a class, a method
within a class, or a variable declared within a method. Identifiers
may be of any length and may contain letters and digits drawn from
the entire Unicode character set. An identifier may not begin with a
digit, however, because the compiler would then think it was a
numeric literal rather than an identifier.
In general, identifiers may not contain
punctuation characters. Exceptions include
the ASCII underscore (_) and dollar sign
($) as well as other Unicode currency symbols such
as £ and ¥. Currency symbols are intended for
use in automatically generated source code, such as code produced by
parser generators. By avoiding the use of currency symbols in your
own identifiers you don’t have to worry about
collisions with automatically generated identifiers. Formally, the
characters allowed at the beginning of and within an identifier are
defined by the methods isJavaIdentifierStart(
)

 and
isJavaIdentifierPart() of the class
java.lang.Character.
The following are examples of legal identifiers:
i x1 theCurrentTime the_current_time

Literals

 Literals
are values that appear directly in Java source code. They include
integer and floating-point numbers, characters within single quotes,
strings of characters within double quotes, and the reserved words
true, false and
null. For example, the following are all literals:
1 1.0 '1' "one" true false null
The syntax for expressing numeric, character, and string literals is
detailed in Section 2.3 later in
this chapter.

Punctuation

Java also uses
a number of

 punctuation characters as
tokens. The Java Language Specification divides these characters
(somewhat arbitrarily) into two categories,

 separators and operators. Separators are:
() { } []

< > : ;

, . @
Operators are:
+ - * / % & | ^ << >> >>>
+= -= *= /= %= &= |= ^= <<= >>= >>>=
= = = != < <= > >=
! ~ && || ++ -- ? :
We’ll see separators throughout the book, and will
cover each operator individually in Section 2.4 later in this
chapter.

Primitive Data Types

 Java
supports eight basic data types known as primitive types
as secribed in Table 2-1. The
primitive
types include a boolean type, a character type, four integer types,
and two floating-point types. The four integer types and the two
floating-point types differ in the number of bits that represent them
and therefore in the range of numbers they can represent. The next
section summarizes these primitive data types. In addition to these
primitive types, Java supports nonprimitive data types such as
classes, interfaces, and arrays. These composite types are known as
reference
types, which are introduced in Section 2.9 later in this chapter.
Table 2-1. Java primitive data types
	
 Type

 	
 Contains

 	
 Default

 	
 Size

 	
 Range

	

 boolean

 	

 true or false

 	

 false

 	
 1 bit

 	
 NA

	

 char

 	
 Unicode character

 	

 \u0000

 	
 16 bits

 	

 \u0000 to \uFFFF

	

 byte

 	
 Signed integer

 	
 0

 	
 8 bits

 	
 -128 to 127

	

 short

 	
 Signed integer

 	
 0

 	
 16 bits

 	
 -32768 to 32767

	

 int

 	
 Signed integer

 	
 0

 	
 32 bits

 	
 -2147483648 to 2147483647

	

 long

 	
 Signed integer

 	
 0

 	
 64 bits

 	
 -9223372036854775808 to 9223372036854775807

	

 float

 	
 IEEE 754 floating point

 	
 0.0

 	
 32 bits

 	
 1.4E-45 to 3.4028235E+38

	

 double

 	
 IEEE 754 floating point

 	
 0.0

 	
 64 bits

 	
 4.9E-324 to 1.7976931348623157E+308

The boolean Type

 The boolean
type represents truth values. This type has only two possible values,
representing the two boolean states: on or off, yes or no, true or
false. Java reserves the words true and
false to represent these two boolean values.

 C and C++ programmers should note
that Java is quite strict about its boolean type:
boolean values can never be converted to or from
other data types. In particular, a boolean is not
an integral type, and integer values cannot be used in place of a
boolean. In other words, you cannot take shortcuts
such as the following in Java:
if (o) {
 while(i) {
 }
}
Instead, Java forces you to write cleaner code by explicitly stating
the comparisons you want:
if (o != null) {
 while(i != 0) {
 }
}

The char Type

 The char type
represents Unicode characters. It surprises many experienced
programmers to learn that Java char values are 16
bits long, but in practice this fact is totally transparent. To
include a character literal in a Java program, simply place it
between single quotes
(apostrophes):
char c = 'A';
You can, of course, use any Unicode character as a character literal,
and you can use the \u Unicode escape sequence. In
addition, Java supports a number of other escape sequences that make
it easy both to represent commonly used nonprinting ASCII characters
such as newline and to escape certain
punctuation
characters that have special meaning in Java. For example:
char tab = '\t', apostrophe = '\'', nul = '\000', aleph='\u05D0';

 Table 2-2 lists the
 escape characters that can be used in
char literals. These characters can also be used
in string literals, which are covered in the next section.
Table 2-2. Java escape characters
	
 Escape sequence

 	
 Character value

	

 \b

 	
 Backspace

	

 \t

 	
 Horizontal tab

	

 \n

 	
 Newline

	

 \f

 	
 Form feed

	

 \r

 	
 Carriage return

	

 \"

 	
 Double quote

	

 \'

 	
 Single quote

	

 \\

 	
 Backslash

	

 \
 xxx

 	
 The Latin-1 character with the encoding
xxx, where xxx
is an octal (base 8) number between 000 and 377. The forms
\
 x and
\
 xx are also legal, as
in '\0', but are not recommended because they can
cause difficulties in string constants where the escape sequence is
followed by a regular digit.

	

 \u
 xxxx

 	
 The Unicode character with encoding
xxxx, where
xxxx is four hexadecimal digits. Unicode
escapes can appear anywhere in a Java program, not only in character
and string literals.

 char values can be converted to and from the
various integral types. Unlike byte,
short, int, and
long, however, char is an
unsigned type. The
 Character class
defines a number of useful static methods for
working with characters, including isDigit(
)

 ,
isJavaLetter(), isLowerCase(
), and toUpperCase().
The Java language and its char type were designed
with
Unicode
in mind. The Unicode standard is evolving, however, and each new
version of Java adopts the latest version of Unicode. Java 1.4 used
Unicode 3.0 and Java 5.0 adopts Unicode 4.0. This is significant
because Unicode 3.1 was the first release to include characters whose
encodings, or
codepoints
 ,
do not fit in 16 bits. These supplementary characters,
which are mostly infrequently used
 Han (Chinese) ideographs, occupy 21
bits and cannot be represented in a single char
value. Instead, you must use an int value to hold
the codepoint of a supplementary character, or you must encode it
into a so-called "surrogate
pair” of two char values. Unless
you commonly write programs that use Asian languages, you are
unlikely to encounter any supplementary characters. If you do
anticipate having to process characters that do not fit into a
char, Java 5.0 has added methods to the
Character, String, and related
classes for working with text using int
codepoints.

Strings

 In addition to the
char type, Java also has a data type for working
with strings of text (usually simply called
strings). The String type is
a class, however, and is not one of the primitive types of the
language. Because strings are so commonly used, though, Java does
have a syntax for including string values literally in a program. A
String literal consists of arbitrary text within
double quotes. For example:
"Hello, world"
"'This' is a string!"
String literals can contain any of the escape sequences that can appear as
char literals (see Table 2-2).
Use the \" sequence to include a double-quote
within a String literal. Since
String is a reference type, string literals are
described in more detail in Section 2.7.4 later in this chapter. Chapter 5 demonstrates some of the ways you can work
with String objects in Java.

Integer Types

 The integer types in Java are

 byte,

 short,

 int, and

 long. As shown in Table 2-1, these four types differ only in the number of
bits and, therefore, in the range of numbers each type can represent.
All integral types represent signed numbers; there is no
unsigned keyword as there is in
C and C++.
Literals for each of these types are written exactly as you would
expect: as a string of decimal digits, optionally preceded by a minus
sign.[1] Here are some legal integer
literals:

0
1
123
-42000
Integer literals can also be expressed in
hexadecimal or octal notation. A literal that begins
with 0x or 0X is taken as a
hexadecimal number, using the letters A to
F (or a to
f) as the additional digits required for base-16
numbers. Integer literals beginning with a leading
0 are taken to be octal (base-8) numbers and
cannot include the digits 8 or 9. Java does not allow integer
literals to be expressed in binary (base-2) notation. Legal
hexadecimal and octal literals include:
0xff // Decimal 255, expressed in hexadecimal
0377 // The same number, expressed in octal (base 8)
0xCAFEBABE // A magic number used to identify Java class files
Integer literals are 32-bit int values
unless they end with the character L or
l, in which case they are
 64-bit
long values:
1234 // An int value
1234L // A long value
0xffL // Another long value
Integer arithmetic in Java is
modular, which means that it never produces an overflow or an
underflow when you exceed the range of a given integer type. Instead,
numbers just wrap around. For example:
byte b1 = 127, b2 = 1; // Largest byte is 127
byte sum = (byte)(b1 + b2); // Sum wraps to -128, which is the smallest byte
Neither the Java compiler nor the Java interpreter warns you in any
way when this occurs. When doing integer arithmetic, you simply must
ensure that the type you are using has a sufficient range for the
purposes you intend. Integer
 division by zero and modulo by zero are
illegal and cause an ArithmeticException to be
thrown.

 Each
integer type has a corresponding wrapper class:
Byte,
 Short,
Integer, and Long. Each of
these classes defines
MIN_VALUE

 and MAX_VALUE
constants that describe the range of the type. The classes also
define useful static methods, such as Byte.parseByte(
) and Integer.parseInt(), for
converting
 strings to integer values.

Floating-Point Types

 Real numbers in Java are represented by
the float
 and

 double data types. As
shown in Table 2-1, float is a
32-bit, single-precision floating-point value, and
double is a 64-bit, double-precision
floating-point value. Both types adhere to the
IEEE 754-1985 standard, which specifies
both the format of the numbers and the behavior of arithmetic for the
numbers.
Floating-point values can be included literally in a Java program as
an optional string of digits, followed by a decimal point and another
string of digits. Here are some examples:
123.45
0.0
.01
Floating-point literals can also use
 exponential, or scientific, notation,
in which a number is followed by the letter e or
E (for exponent) and another number. This second
number represents the power of ten by which the first number is
multiplied. For example:
1.2345E02 // 1.2345
 102, or 123.45
1e-6 // 1
 10-6, or 0.000001
6.02e23 // Avogadro's Number: 6.02
 1023

Floating-point literals are double values by
default. To include a float value literally in a
program, follow the number with f or
F:
double d = 6.02E23;
float f = 6.02e23f;
Floating-point literals cannot be expressed in hexadecimal or octal
notation.
Most real numbers, by their very nature, cannot be represented
exactly in any finite number of bits. Thus, it is important to
remember that float and double
values are only approximations of the numbers they are meant to
represent. A float is a 32-bit approximation,
which results in at least 6 significant decimal digits, and a
double is a 64-bit approximation, which results in
at least 15 significant digits. In practice, these data types are
suitable for most real-number computations.
In addition to representing ordinary numbers, the
float and double types can also
represent four special values:

 positive and negative

 infinity, zero, and NaN. The infinity
values result when a floating-point computation produces a value that
overflows the representable range of a float or
double. When a floating-point computation
underflows the representable range of a float or a
double, a zero value results. The Java
floating-point types make a distinction between

 positive zero
and negative zero, depending on the direction from which the
underflow occurred. In practice, positive and negative zero behave
pretty much the same. Finally, the last special floating-point value
is NaN, which stands for
"not-a-number.”
The NaN value results when an illegal floating-point operation, such
as 0.0/0.0, is performed. Here are examples of statements that result
in these special values:
double inf = 1.0/0.0; // Infinity
double neginf = -1.0/0.0; // -Infinity
double negzero = -1.0/inf; // Negative zero
double NaN = 0.0/0.0; // Not-a-Number
Because the Java floating-point types can handle overflow to infinity
and underflow to zero and have a special NaN value, floating-point
arithmetic never throws exceptions, even when performing illegal
operations, like dividing zero by zero or taking the square root of a
negative number.

 The
float and double primitive
types have corresponding classes, named
Float

 and Double. Each of
these classes defines the following useful constants:
MIN_VALUE

 , MAX_VALUE,
NEGATIVE_INFINITY,
POSITIVE_INFINITY, and NaN.
The infinite floating-point values behave as you would expect. Adding
or subtracting any finite value to or from infinity, for example,
yields infinity.

 Negative zero behaves almost identically
to positive zero, and, in fact, the = = equality
operator reports that negative zero is equal to positive zero. One
way to distinguish negative zero from positive, or regular, zero is
to divide by it. 1.0/0.0 yields positive infinity, but 1.0 divided by
negative zero yields negative infinity. Finally, since NaN is
not-a-number, the = = operator says that it is not
equal to any other number, including itself! To check whether a
float or double value is NaN,
you must use the Float.isNaN(
)

 and
Double.isNaN() methods.

Primitive Type Conversions

 Java allows conversions between integer
values and floating-point values. In addition, because every
character corresponds to a number in the Unicode encoding,
char values can be converted to and from the
integer and floating-point types. In fact, boolean
is the only primitive type that cannot be converted to or from
another primitive type in Java.

 There
are two basic types of conversions. A widening
conversion occurs when a value of one type is converted to
a wider type—one that has a larger range of legal values. Java
performs widening conversions automatically when, for example, you
assign an int literal to a
double variable or a char
literal to an int variable.
Narrowing conversions are another matter, however. A

 narrowing
conversion occurs when a value is converted to a type that
is not wider than it is. Narrowing conversions are not always safe:
it is reasonable to convert the integer value 13 to a
byte, for example, but it is not reasonable to
convert 13000 to a byte since
byte can hold only numbers between -128 and 127.
Because you can lose data in a narrowing conversion, the Java
compiler complains when you attempt any narrowing conversion, even if
the value being converted would in fact fit in the narrower range of
the specified type:
int i = 13;
byte b = i; // The compiler does not allow this
The one exception to this rule is that you can assign an integer
literal (an int value) to a
byte or short variable if the
literal falls within the range of the variable.

 If you need to perform
a narrowing conversion and are confident you can do so without losing
data or precision, you can force Java to perform the conversion using
a language construct known as a cast. Perform a
cast by placing the name of the desired type in parentheses before
the value to be converted. For example:
int i = 13;
byte b = (byte) i; // Force the int to be converted to a byte
i = (int) 13.456; // Force this double literal to the int 13
Casts of primitive types are most often used to convert

 floating-point values to integers.
When you do this, the fractional part
of the floating-point value is simply truncated (i.e., the
floating-point value is rounded towards zero, not towards the nearest
integer). The methods Math.round(),
Math.floor(), and Math.ceil()
perform other types of rounding.
The char type acts like an integer type in most
ways, so a char value can be used anywhere an
int or long value is required.
Recall, however, that the char type is
unsigned, so it behaves differently than the
short type, even though both are 16 bits wide:
short s = (short) 0xffff; // These bits represent the number -1
char c = '\uffff'; // The same bits, representing a Unicode character
int i1 = s; // Converting the short to an int yields -1
int i2 = c; // Converting the char to an int yields 65535

 Table 2-3

 shows
which primitive types can be converted to which other types and how
the conversion is performed. The letter N in the table means that the
conversion cannot be performed. The letter Y means that the
conversion is a widening conversion and is therefore performed
automatically and implicitly by Java. The letter C means that the
conversion is a narrowing conversion and requires an explicit cast.
Finally, the notation Y* means that the conversion is an automatic
widening conversion, but that some of the least significant digits of
the value may be lost in the conversion. This can happen when
converting an int or long to a
float or double. The
floating-point types have a larger range than the integer types, so
any int or long can be
represented by a float or
double. However, the floating-point types are
approximations of numbers and cannot always hold as many significant
digits as the integer types.
Table 2-3. Java primitive type conversions
	
 Convert

 	
 Convert to:

	
 from:

 	

 boolean

 	

 byte

 	

 short

 	

 char

 	

 int

 	

 long

 	

 float

 	

 double

	

 boolean

 	
 -

 	
 N

 	
 N

 	
 N

 	
 N

 	
 N

 	
 N

 	
 N

	

 byte

 	
 N

 	
 -

 	
 Y

 	
 C

 	
 Y

 	
 Y

 	
 Y

 	
 Y

	

 short

 	
 N

 	
 C

 	
 -

 	
 C

 	
 Y

 	
 Y

 	
 Y

 	
 Y

	

 char

 	
 N

 	
 C

 	
 C

 	
 -

 	
 Y

 	
 Y

 	
 Y

 	
 Y

	

 int

 	
 N

 	
 C

 	
 C

 	
 C

 	
 -

 	
 Y

 	
 Y*

 	
 Y

	

 long

 	
 N

 	
 C

 	
 C

 	
 C

 	
 C

 	
 -

 	
 Y*

 	
 Y*

	

 float

 	
 N

 	
 C

 	
 C

 	
 C

 	
 C

 	
 C

 	
 -

 	
 Y

	

 double

 	
 N

 	
 C

 	
 C

 	
 C

 	
 C

 	
 C

 	
 C

 	
 -

[1] Technically, the minus sign is an operator that operates on
the literal, but is not part of the literal itself. Also, all integer
literals are 32-bit int values unless followed by the letter L, in
which case they are 64-bit long values. There is no special syntax
for byte and short literals, but int literals are usually converted
to these shorter types as needed. For example, in the following
code

Expressions and Operators

So far in this chapter, we’ve learned about the
primitive types that Java programs can manipulate and seen how to
include primitive values as

 literals
in a Java program. We’ve also used

 variables
as symbolic names that represent, or hold, values. These literals and
variables are the
tokens out of which Java programs
are built.

 An expression
is the next higher level of structure in a Java program. The Java
interpreter evaluates an expression to compute
its value. The very simplest expressions are called

 primary
expressions and consist of literals and variables. So, for
example, the following are all expressions:
1.7 // A floating-point literal
true // A boolean literal
sum // A variable
When the Java interpreter evaluates a literal expression, the
resulting value is the literal itself. When the interpreter evaluates
a variable expression, the resulting value is the value stored in the
variable.
Primary expressions are not very interesting. More complex
expressions are made by using operators to
combine primary expressions. For example, the following expression
uses the assignment operator to combine two primary
expressions—a variable and a floating-point literal—into
an assignment expression:
sum = 1.7
But operators are used not only with primary expressions; they can
also be used with expressions at any level of complexity. The
following are all legal expressions:
sum = 1 + 2 + 3*1.2 + (4 + 8)/3.0
sum/Math.sqrt(3.0 * 1.234)
(int)(sum + 33)
Operator Summary

 The kinds of expressions you can write
in a programming language depend entirely on the set of operators
available to you. Table 2-4 summarizes the
operators available in Java. The P and A columns of the table specify
the precedence and associativity of each group of related operators,
respectively. These concepts—and the operators
themselves—are explained in
more detail in the following
sections.
Table 2-4. Java operators
	
 P

 	
 A

 	
 Operator

 	
 Operand type(s)

 	
 Operation performed

	
 15

 	
 L

 	
 .

 	
 object, member

 	
 object member access

	
	
	

 []

 	
 array, int

 	
 array element access

	
	
	

 (
 args
)

 	
 method, arglist

 	

 method invocation

	
	
	

 ++

 , --

 	
 variable

 	

 post-increment,
decrement

	
 14

 	
 R

 	

 ++, --

 	
 variable

 	

 pre-increment,
decrement

	
	
	

 +

 , -

 	
 number

 	

 unary plus,
unary minus

	
	
	

 ~

 	
 integer

 	
 bitwise complement

	
	
	

 !

 	
 boolean

 	

 boolean NOT

	
 13

 	
 R

 	

 new

 	
 class, arglist

 	
 object creation

	
	
	

 (
 type
)

 	
 type, any

 	

 cast (type conversion)

	
 12

 	
 L

 	

 *

 ,
/, %

 	
 number, number

 	
 multiplication, division, remainder

	
 11

 	
 L

 	

 +

 , -

 	
 number, number

 	
 addition, subtraction

	
	
	

 +

 	
 string, any

 	
 string concatenation

	
 10

 	
 L

 	

 <<

 	
 integer, integer

 	
 left shift

	
	
	

 >>

 	
 integer, integer

 	
 right shift with sign extension

	
	
	

 >>>

 	
 integer, integer

 	
 right shift with zero extension

	
 9

 	
 L

 	

 <

 , <=

 	
 number, number

 	
 less than, less than or equal

	
	
	

 >

 , >=

 	
 number, number

 	
 greater than, greater than or equal

	
	
	

 instanceof

 	
 reference, type

 	
 type comparison

	
 8

 	
 L

 	

 = =

 	
 primitive, primitive

 	
 equal (have identical values)

	
	
	

 !=

 	
 primitive, primitive

 	
 not equal (have different values)

	
	
	

 = =

 	
 reference, reference

 	
 equal (refer to same object)

	
	
	

 !=

 	
 reference, reference

 	
 not equal (refer to different objects)

	
 7

 	
 L

 	

 &

 	
 integer, integer

 	
 bitwise AND

	
	
	

 &

 	
 boolean, boolean

 	
 boolean AND

	
 6

 	
 L

 	

 ^

 	
 integer, integer

 	
 bitwise XOR

	
	
	

 ^

 	
 boolean, boolean

 	
 boolean XOR

	
 5

 	
 L

 	

 |

 	
 integer, integer

 	
 bitwise OR

	
	
	

 |

 	
 boolean, boolean

 	
 boolean OR

	
 4

 	
 L

 	

 &&

 	
 boolean, boolean

 	
 conditional AND

	
 3

 	
 L

 	

 ||

 	
 boolean, boolean

 	
 conditional OR

	
 2

 	
 R

 	

 ?:

 	
 boolean, any

 	
 conditional (ternary) operator

	
 1

 	
 R

 	

 =

 	
 variable, any

 	
 assignment

	
	
	

 *=

 , /=,
%=,

 	
 variable, any

 	
 assignment with operation

	
	
	

 +=

 , -=,
<<=
 ,

 	
	

	
	
	

 >>=

 ,
>>>=

 ,

 	
	

	
	
	

 &=
 ,
^=

 ,

 |=

 	
	

Precedence

 The P column of Table 2-4
specifies the precedence of each operator.
Precedence specifies the order in which operations are performed.
Consider this expression:
a + b * c
The multiplication operator has higher precedence than the addition
operator, so a is added to the product of
b and c. Operator precedence
can be thought of as a measure of how tightly operators bind to their
operands. The higher the number, the more tightly they bind.

 Default operator
precedence can be
overridden through the use of parentheses that explicitly specify the
order of operations. The previous expression can be rewritten as
follows to specify that the addition should be performed before the
multiplication:
(a + b) * c
The default operator precedence in Java was chosen for compatibility
with C; the designers of C chose this precedence so that most
expressions can be written naturally without parentheses. There are
only a few common Java idioms for which parentheses are required.
Examples include:
// Class cast combined with member access
((Integer) o).intValue();

// Assignment combined with comparison
while((line = in.readLine()) != null) { ... }

// Bitwise operators combined with comparison
if ((flags & (PUBLIC | PROTECTED)) != 0) { ... }

Associativity

 When
an expression involves several operators that have the same
precedence, the operator associativity governs the order in which the
operations are performed. Most operators are left-to-right
associative, which means that the operations are performed from left
to right. The
 assignment and unary operators,
however, have right-to-left associativity. The A column of Table 2-4
specifies the associativity of each operator or group of operators.
The value L means left to right, and
R means right to left.

 The additive operators are all left-to-right
associative, so the expression a+b-c is evaluated
from left to right: (a+b)-c. Unary operators and
assignment operators are evaluated from right to left. Consider this
complex expression:
a = b += c = -~d
This is evaluated as follows:
a = (b += (c = -(~d)))

 As with operator precedence, operator
associativity establishes a default order of evaluation for an
expression. This default order can be overridden through the use of
parentheses. However, the default operator associativity in Java has
been chosen to yield a natural expression syntax, and you rarely need
to alter it.

Operand number and type

 The fourth column of Table 2-4 specifies the number and type of the operands
expected by each operator. Some operators operate on only one
operand; these are called unary operators. For example, the

 unary minus operator changes the sign of
a single number:
-n // The unary minus operator
Most operators, however, are binary operators that operate on two
operand values. The - operator actually comes in
both forms:

a - b // The subtraction operator is a binary operator

 Java also defines one ternary operator,
often called the conditional operator. It is like an
if statement inside an expression. Its three
operands are separated by a question mark and a
colon; the second and
third operands must be convertible to the same type:
x > y ? x : y // Ternary expression; evaluates to the larger of x and y
In addition to expecting a certain number of operands, each operator
also expects particular types of
operands. Column four of the table lists the operand types. Some of
the codes used in that column require further explanation:
	number
	

 An integer, floating-point
value, or character (i.e., any primitive type except
boolean). In Java 5.0 and later, autounboxing (see
Section 2.9.7 later in this chapter)
means that the wrapper classes (such as Character,
Integer, and Double) for these
types can be be used in this context as well.

	integer
	

 A byte,
short, int,
long, or char value
(long values are not allowed for the array access
operator []). With autounboxing,
Byte, Short,
Integer, Long, and
Character values are also allowed.

	reference
	

 An object or array.

	variable
	
 A variable or anything else, such as
an array element, to which a value can be assigned

Return type

 Just as every operator expects its
operands to be of specific types, each operator produces a value of a
specific type. The

 arithmetic, increment and decrement,
bitwise, and shift operators return a double if at
least one of the operands is a double. They return
a float if at least one of the operands is a
float. They return a long if at
least one of the operands is a long. Otherwise,
they return an int, even if both operands are
byte, short, or
char types that are narrower than
int.

 The
 comparison, equality, and
boolean operators always return
boolean values. Each
assignment operator returns whatever
value it assigned, which is of a type compatible with the variable on
the left side of the expression. The
 conditional operator returns the value of
its second or third argument (which must both be of the same type).

Side effects

 Every operator computes a value based
on one or more operand values. Some operators, however, have
side effects in addition to their basic
evaluation. If an expression contains side effects, evaluating it
changes the state of a Java program in such a way that evaluating the
expression again may yield a different result. For example, the
++ increment operator has the side effect of
incrementing a variable. The expression ++a
increments the variable a and returns the newly
incremented value. If this expression is evaluated again, the value
will be different. The various assignment operators also have side
effects. For example, the expression a*=2 can also
be written as a=a*2. The value of the expression
is the value of a multiplied by 2, but the
expression also has the side effect of storing that value back into
a. The
 method invocation operator (
) has side effects if the invoked method has side effects.
Some methods, such as Math.sqrt(), simply compute
and return a value without side effects of any kind. Typically,
however, methods do have side effects. Finally, the
new operator has the profound side effect of
creating a new object.

Order of evaluation

 When the Java interpreter
evaluates an expression, it performs the various operations in an
order specified by the parentheses in the expression, the
precedence of the operators,
and the associativity of the operators. Before any
operation is performed, however, the interpreter first evaluates the

 operands of the operator. (The
exceptions are the &&,
||, and ?: operators, which do
not always evaluate all their operands.) The interpreter always
evaluates operands in order from left to right. This matters if any
of the operands are expressions that contain side effects. Consider this code, for
example:
int a = 2;
int v = ++a + ++a * ++a;
Although the multiplication is performed before the addition, the
operands of the + operator are evaluated first.
Thus, the expression evaluates to 3+4*5, or 23.

Arithmetic Operators

 Since
most programs operate primarily on numbers, the most commonly used
operators are often those that perform arithmetic operations. The
arithmetic operators can be used with integers, floating-point
numbers, and even characters (i.e., they can be used with any
primitive type other than boolean). If either of
the operands is a floating-point number, floating-point arithmetic is
used; otherwise, integer arithmetic is used. This matters because
integer arithmetic and floating-point arithmetic differ in the way
division is performed and in the way underflows and overflows are
handled, for example. The arithmetic operators are:
	
 Addition (+)
	

 The + operator adds two
numbers. As we’ll see shortly, the
+ operator can also be used to concatenate
strings. If either operand of + is a string, the
other one is converted to a string as well. Be sure to use
parentheses when you want to combine addition with concatenation. For
example:

System.out.println("Total: " + 3 + 4); // Prints "Total: 34", not 7!
	
 Subtraction (-)
	

 When the - operator
is used as a binary operator, it subtracts its second operand from
its first. For example, 7-3 evaluates to 4. The -
operator can also perform unary negation.

	
 Multiplication (*)
	

 The * operator
multiplies its two operands. For example, 7*3 evaluates to 21.

	
 Division (/)
	

 The
/ operator divides its first operand by its
second. If both operands are integers, the result is an integer, and
any remainder is lost. If either operand is a floating-point value,
however, the result is a floating-point value. When dividing two
integers,

 division
by zero throws an ArithmeticException. For
floating-point calculations, however, division by zero simply yields
an infinite result or NaN:

7/3 // Evaluates to 2
7/3.0f // Evaluates to 2.333333f
7/0 // Throws an ArithmeticException
7/0.0 // Evaluates to positive infinity
0.0/0.0 // Evaluates to NaN
	
 Modulo (%)
	

 The %
operator computes the first operand modulo the second operand (i.e.,
it returns the remainder when the first operand is divided by the
second operand an integral number of times). For example, 7%3 is 1.
The sign of the result is the same as the sign of the first operand.
While the modulo operator is typically used with integer operands, it
also works for floating-point values. For example, 4.3%2.1 evaluates
to 0.1. When operating with integers, trying to compute a value
modulo zero causes an ArithmeticException. When
working with floating-point values, anything modulo 0.0 evaluates to
NaN, as does infinity modulo anything.

	
 Unary minus (-)
	

 When
the - operator is used as a unary
operator—that is, before a single operand—it performs
unary negation. In other words, it converts a positive value to an
equivalently negative value, and vice versa.

String Concatenation Operator

 In
addition to adding numbers, the
+ operator (and the related +=
operator) also concatenates, or joins, strings. If either of the
operands to + is a string, the operator converts
the other operand to a string. For example:
System.out.println("Quotient: " + 7/3.0f); // Prints "Quotient: 2.3333333"
As a result, you must be careful to put any addition expressions in
parentheses when combining them with string concatenation. If you do
not, the addition operator is interpreted as a concatenation
operator.

 The Java interpreter has built-in
string conversions for all primitive types. An object is converted to
a string by invoking its toString() method. Some
classes define custom toString() methods so that
objects of that class can easily be
converted to strings in this way. An array is converted to a string
by invoking the built-in toString() method,
which, unfortunately, does not return a useful string representation
of the array contents.

Increment and Decrement Operators

 The ++ operator
increments its single operand, which must be a variable, an element
of an array, or a field of an object, by one. The behavior of this
operator depends on its position relative to the operand. When used
before the operand, where it is known as the

 pre-increment
operator, it increments the operand and evaluates to the incremented
value of that operand. When used after the operand, where it is known
as the
post-increment
 operator, it increments its operand,
but evaluates to the value of that operand before it was incremented.
For example, the following code sets both i and
j to 2:
i = 1;
j = ++i;
But these lines set i to 2 and
j to 1:
i = 1;
j = i++;

 Similarly, the
--

 operator decrements its single numeric
operand, which must be a variable, an element of an array, or a field
of an object, by one. Like the ++ operator, the
behavior of -- depends on its position relative to
the operand. When used before the operand, it decrements the operand
and returns the decremented value. When used after the operand, it
decrements the operand, but returns the
undecremented value.
The expressions x++ and x-- are
equivalent to x=x+1 and x=x-1,
respectively, except that when using the increment and decrement
operators, x is only evaluated once. If
x is itself an expression with side effects, this
makes a big difference. For example, these two expressions are not
equivalent:
a[i++]++; // Increments an element of an array
a[i++] = a[i++] + 1; // Adds one to an array element and stores it in another
These operators, in both prefix and postfix forms, are most commonly
used to increment or decrement the counter that controls a
loop.

Comparison Operators

 The comparison operators consist of
the equality operators that test values for equality or inequality
and the relational operators used with ordered types (numbers and
characters) to test for greater than and less than relationships.
Both types of operators yield a boolean result, so
they are typically used with if statements and
while and for loops to make
branching and looping decisions. For example:
if (o != null) ...; // The not equals operator
while(i < a.length) ...; // The less than operator
Java provides the following equality operators:
	
 Equals (= =)
	
 The = = operator
evaluates to true if its two operands are equal
and false otherwise. With primitive operands, it tests whether the
operand values themselves are identical. For operands of
reference types, however, it tests
whether the operands refer to the same object or array. In other
words, it does not test the equality of two distinct objects or
arrays. In particular, note that you cannot test two distinct strings
for equality with this operator.

 If = = is used to
compare two numeric or character operands that are not of the same
type, the narrower operand is converted to the type of the wider
operand before the comparison is done. For example, when comparing a
short to a float, the
short is first converted to a
float before the comparison is performed. For
floating-point numbers, the special negative zero value tests equal
to the regular, positive zero value. Also, the special NaN
(not-a-number) value is not equal to any other number, including
itself. To test whether a floating-point value is NaN, use the
Float.isNan() or Double.isNan(
) method.

	
 Not equals (!=)
	

 The !=
operator is exactly the opposite of the = =
operator. It evaluates to true if its two
primitive operands have different values or if its two reference
operands refer to different objects or arrays. Otherwise, it
evaluates to false.

 The relational operators can be used
with numbers and characters, but not with boolean
values, objects, or arrays because those types are not ordered. Java
provides the following relational operators:
	
 Less than (<)

	Evaluates to true if the first operand is less
than the second.

	
 Less than or equal (<=)
	

 Evaluates to
true if the first operand is less than or equal to
the second.

	
 Greater than (>)
	

 Evaluates to
true if the first operand is greater than the
second.

	
 Greater than or equal (>=)
	

 Evaluates to
true if the first operand is greater than or equal
to the second.

Boolean Operators

 As
we’ve just seen, the comparison operators compare
their operands and yield a boolean result, which
is often used in branching and looping statements. In order to make
branching and looping decisions based on conditions more interesting
than a single comparison, you can use the boolean (or logical)
operators to combine multiple comparison expressions into a single,
more complex expression. The boolean operators require their operands
to be boolean values and they evaluate to
boolean values. The operators are:
	
 Conditional AND (&&)
	

 This operator performs a boolean AND
operation on its operands. It evaluates to true if
and only if both its operands are true. If either
or both operands are false, it evaluates to
false. For example:

if (x < 10 && y > 3) ... // If both comparisons are true
This operator (and all the boolean operators except the unary
! operator) have a lower
precedence than the
comparison operators. Thus, it is perfectly legal to write a line of
code like the one above. However, some programmers prefer to use
parentheses to make the order of evaluation explicit:
if ((x < 10) && (y > 3)) ...
You should use whichever style you find easier to
read.

This operator is called a conditional AND because it conditionally
evaluates its second operand. If the first operand evaluates to
false, the value of the expression is
false, regardless of the value of the second
operand. Therefore, to increase efficiency, the Java interpreter
takes a shortcut and skips the second operand. Since the second
operand is not guaranteed to be evaluated, you must use caution when
using this operator with expressions that have side effects. On the
other hand, the conditional nature of this operator allows us to
write Java expressions such as the following:
if (data != null && i < data.length && data[i] != -1)
 ...
The second and third comparisons in this expression would cause
errors if the first or second comparisons evaluated to
false. Fortunately, we don’t have
to worry about this because of the conditional behavior of the
&& operator.
	
 Conditional OR (||)
	

 This operator performs a boolean OR
operation on its two boolean operands. It
evaluates to true if either or both of its
operands are true. If both operands are
false, it evaluates to false.
Like the && operator,
|| does not always evaluate its second operand. If
the first operand evaluates to true, the value of
the expression is true, regardless of the value of
the second operand. Thus, the operator simply skips the second
operand in that case.

	
 Boolean NOT (!)
	

 This unary operator changes the
boolean value of its operand. If applied to a
true value, it evaluates to
false, and if applied to a
false value, it evaluates to
true. It is useful in expressions like these:
if (!found) ... // found is a boolean variable declared somewhere
while (!c.isEmpty()) ... // The isEmpty() method returns a boolean value
Because ! is a unary operator, it has a high
precedence and often must be used with
parentheses:

if (!(x > y && y > z))

	
 Boolean AND (&)
	

 When used with boolean
operands, the & operator behaves like the
&& operator, except that it always
evaluates both operands, regardless of the value of the first
operand. This operator is almost always used as a bitwise operator
with integer operands, however, and many Java programmers would not
even recognize its use with boolean operands as
legal Java code.

	
 Boolean OR (|)
	

 This operator performs a boolean OR
operation on its two boolean operands. It is like
the || operator, except that it always evaluates
both operands, even if the first one is true. The
| operator is almost always used as a bitwise
operator on integer operands; its use with boolean
operands is very rare.

	
 Boolean XOR (^)
	

 When used with
boolean operands, this operator computes the
Exclusive OR (XOR) of its operands. It evaluates to
true if exactly one of the two operands is
true. In other words, it evaluates to
false if both operands are
false or if both operands are
true. Unlike the && and
|| operators, this one must always evaluate both
operands. The ^ operator is much more commonly
used as a bitwise operator on integer operands. With
boolean operands, this operator is equivalent to
the != operator.

Bitwise and Shift Operators

 The bitwise and shift operators are
low-level operators that manipulate the individual bits that make up
an integer value. The bitwise operators are most commonly used for
testing and setting individual flag bits in a value. In order to
understand their behavior, you must understand binary (base-2)
numbers and the twos-complement format used to represent
negative integers. You cannot use
these operators with floating-point, boolean,
array, or object operands. When used with boolean
operands, the &, |, and
^ operators perform a different operation, as
described in the previous section.
If either of the arguments to a bitwise operator is a
long, the result is a long.
Otherwise, the result is an int. If the left
operand of a shift operator is a long, the result
is a long; otherwise, the result is an
int
 . The operators are:

	
 Bitwise complement (~)
	

 The unary ~
operator is known as the bitwise complement, or bitwise NOT,
operator. It inverts each bit of its single operand, converting ones
to zeros and zeros to ones. For example:

byte b = ~12; // ~00001100 = => 11110011 or -13 decimal
flags = flags & ~f; // Clear flag f in a set of flags
	
 Bitwise AND (&)
	
 This operator combines
its two integer operands by performing a boolean AND operation on
their individual bits. The result has a bit set only if the
corresponding bit is set in both operands. For example:

10 & 7 // 00001010 & 00000111 = => 00000010 or 2
if ((flags & f) != 0) // Test whether flag f is set
When used with boolean operands,
& is the infrequently used boolean AND
operator described earlier.
	
 Bitwise OR (|)
	

 This operator combines its two
integer operands by performing a boolean OR operation on their
individual bits. The result has a bit set if the corresponding bit is
set in either or both of the operands. It has a zero bit only where
both corresponding operand bits are zero. For example:

10 | 7 // 00001010 | 00000111 = => 00001111 or 15
flags = flags | f; // Set flag f
When used with boolean operands,
| is the infrequently used boolean OR operator
described earlier.
	
 Bitwise XOR (^)
	

 This operator combines
its two integer operands by performing a boolean XOR (Exclusive OR)
operation on their individual bits. The result has a bit set if the
corresponding bits in the two operands are different. If the
corresponding operand bits are both ones or both zeros, the result
bit is a zero. For example:

10 ^ 7 // 00001010 ^ 00000111 = => 00001101 or 13
When used with boolean operands,
^ is the infrequently used boolean XOR operator.
	
 Left shift (<<)
	

 The <<
operator shifts the bits of the left operand left by the number of
places specified by the right operand. High-order bits of the left
operand are lost, and zero bits are shifted in from the right.
Shifting an integer left by n places is
equivalent to multiplying that number by
2n. For example:

10 << 1 // 00001010 << 1 = 00010100 = 20 = 10*2
7 << 3 // 00000111 << 3 = 00111000 = 56 = 7*8
-1 << 2 // 0xFFFFFFFF << 2 = 0xFFFFFFFC = -4 = -1*4
If the left operand is a long, the right operand
should be between 0 and 63. Otherwise, the left operand is taken to
be an int, and the right operand should be between
and 31.
	
 Signed right shift (>>)
	

 The
>> operator shifts the bits of the left
operand to the right by the number of places specified by the right
operand. The low-order bits of the left operand are shifted away and
are lost. The high-order bits shifted in are the same as the original
high-order bit of the left operand. In other words, if the left
operand is positive, zeros are shifted into the high-order bits. If
the left operand is negative, ones are shifted in instead. This
technique is known as sign extension; it is used
to preserve the sign of the left operand. For example:

10 >> 1 // 00001010 >> 1 = 00000101 = 5 = 10/2
27 >> 3 // 00011011 >> 3 = 00000011 = 3 = 27/8
-50 >> 2 // 11001110 >> 2 = 11110011 = -13 != -50/4
If the left operand is positive and the right operand is
n, the >>
operator is the same as integer division by
2n.
	
 Unsigned right shift (>>>)
	

 This operator is like the
>> operator, except that it always shifts
zeros into the high-order bits of the result, regardless of the sign
of the left-hand operand. This technique is called zero
extension; it is appropriate when the left operand is
being treated as an unsigned value (despite the fact that Java
integer types are all signed). These are examples:

0xff >>> 4 // 11111111 >>> 4 = 00001111 = 15 = 255/16
-50 >>> 2 // 0xFFFFFFCE >>> 2 = 0x3FFFFFF3 = 1073741811

Assignment Operators

 The assignment operators store, or
assign, a value into some kind of variable. The left operand must
evaluate to an appropriate local variable, array element, or object
field. The right side can be any value of a type compatible with the
variable. An assignment expression evaluates to the value that is
assigned to the variable. More importantly, however, the expression
has the side effect of actually performing the assignment. Unlike all
other binary operators, the assignment operators are
right-associative, which means that the assignments in
a=b=c are performed right-to-left, as follows:
a=(b=c).

 The basic assignment operator is
=. Do not confuse it with the equality operator,
= =. In order to keep these two operators
distinct, I recommend that you read = as
“is assigned the value.”

 In addition to this simple assignment
operator, Java also defines 11 other operators that
combine assignment with the 5
arithmetic operators and the 6 bitwise and shift operators. For
example, the +=
 operator reads the value of the left
variable, adds the value of the right operand to it, stores the sum
back into the left variable as a side effect, and returns the sum as
the value of the expression. Thus, the expression
x+=2 is almost the same as
x=x+2. The difference between these two
expressions is that when you use the += operator,
the left operand is evaluated only once. This makes a difference when
that operand has a side effect. Consider the following two
expressions, which are not equivalent:
a[i++] += 2;
a[i++] = a[i++] + 2;
The general form of these combination assignment operators is:
var op= value
This is equivalent (unless there are side effects in
var) to:
var = var op value
The available operators are:

+= -= *= /= %= // Arithmetic operators plus assignment

&= |= ^= // Bitwise operators plus assignment

<<= >>= >>>= // Shift operators plus assignment
The most commonly used operators are += and
-=, although &= and
|= can also be useful when working with
boolean flags. For example:
i += 2; // Increment a loop counter by 2
c -= 5; // Decrement a counter by 5
flags |= f; // Set a flag f in an integer set of flags
flags &= ~f; // Clear a flag f in an integer set of flags

The Conditional Operator

 The
conditional operator ?: is a somewhat obscure
ternary (three-operand) operator inherited from C. It allows you to
embed a conditional within an expression. You can think of it as the
operator version of the if/else statement. The
first and second operands of the conditional operator are separated
by a question mark (?) while the second and third
operands are separated by a colon (:).
The first operand must evaluate to a
boolean value. The second and third operands can
be of any type, but they must be convertible to the same type.
The conditional operator starts by evaluating its first operand. If
it is true, the operator evaluates its second
operand and uses that as the value of the expression. On the other
hand, if the first operand is false, the
conditional operator evaluates and returns its third operand. The
conditional operator never evaluates both its second and third
operand, so be careful when using expressions with side effects with
this operator. Examples of this operator are:
int max = (x > y) ? x : y;
String name = (name != null) ? name : "unknown";
Note that the ?: operator has lower
precedence than all other operators
except the assignment operators, so parentheses are not usually
necessary around the operands of this operator. Many programmers find
conditional expressions easier to read if the first operand is placed
within parentheses, however. This is especially
true because the conditional if statement always
has its conditional expression written within parentheses.

The instanceof Operator

 The
instanceof operator requires an object or array
value as its left operand and the name of a reference type as its
right operand. It evaluates to true if the object
or array is an instance of the specified type;
it returns false otherwise. If the left operand is
null, instanceof always
evaluates to false. If an
instanceof expression evaluates to
true, it means that you can safely cast and assign
the left operand to a variable of the type of the right operand.

 The
instanceof operator can be used only with
reference types and
objects, not primitive types and values. Examples of
instanceof are:
"string" instanceof String // True: all strings are instances of String
"" instanceof Object // True: strings are also instances of Object
null instanceof String // False: null is never an instance of anything

Object o = new int[] {1,2,3};
o instanceof int[] // True: the array value is an int array
o instanceof byte[] // False: the array value is not a byte array
o instanceof Object // True: all arrays are instances of Object

// Use instanceof to make sure that it is safe to cast an object
if (object instanceof Point) {
 Point p = (Point) object;
}

Special Operators

 Java has five language constructs
that are sometimes considered operators and sometimes considered
simply part of the basic language syntax. These
“operators” were included in Table 2-4 in order to show their precedence relative to
the other true operators. The use of these language constructs is
detailed elsewhere in this book but is described briefly here so that
you can recognize them in code examples.
	
 Object member access (.)
	

 An object is a
collection of data and methods that operate on that data; the data
fields and methods of an object are called its members. The dot
(.) operator accesses these members. If
o is an expression that evaluates to an object
reference, and f is the name of a field of the
object, o.f evaluates to the value contained in
that field. If m is the name of a method,
o.m refers to that method and allows it to be
invoked using the () operator shown later.

	
 Array element access ([])
	

 An
array is a numbered list of values. Each element
of an array can be referred to by its number, or
index. The [] operator
allows you to refer to the individual elements of an array. If
a is an array, and i is an
expression that evaluates to an int,
a[i] refers to one of the elements of
a. Unlike other operators that work with integer
values, this operator restricts array index values to be of type
int or narrower.

	
 Method invocation (())
	

 A method is a
named collection of Java code that can be run, or
invoked, by following the name of the method
with zero or more comma-separated expressions contained within
parentheses. The values of these expressions are the
arguments to the method. The method processes
the arguments and optionally returns a value that becomes the value
of the method invocation expression. If o.m is a
method that expects no arguments, the method can be invoked with
o.m(). If the method expects three arguments, for
example, it can be invoked with an expression such as
o.m(x,y,z). Before the Java interpreter invokes a
method, it evaluates each of the arguments to be passed to the
method. These expressions are guaranteed to be evaluated in order
from left to right (which matters if any of the arguments have side
effects).

	
 Object creation (new)
	

 In Java, objects (and
arrays) are created with the new operator, which
is followed by the type of the object to be created and a
parenthesized list of arguments to be passed to the object
constructor. A constructor is a special method
that initializes a newly created object, so the object creation
syntax is similar to the Java method invocation syntax. For example:

new ArrayList();
new Point(1,2)
	
 Type conversion or casting (())
	

 As we’ve already
seen, parentheses can also be used as an operator to perform
narrowing type conversions, or casts. The first operand of this
operator is the type to be converted to; it is placed between the
parentheses. The second operand is the value to be converted; it
follows the parentheses. For example:

(byte) 28 // An integer literal cast to a byte type
(int) (x + 3.14f) // A floating-point sum value cast to an integer value
(String)h.get(k) // A generic object cast to a more specific string type

Statements

 A
statement is a single command executed by the
Java interpreter. By default, the Java interpreter runs one statement
after another, in the order they are written. Many of the statements
defined by Java, however, are flow-control statements, such as
conditionals and loops, that alter this default order of execution in
well-defined ways. Table 2-5 summarizes the
statements defined by
Java.

Table 2-5. Java statements
	
 Statement

 	
 Purpose

 	
 Syntax

	

 expression

 	
 side effects

 	

 var
 =
 expr
 ;
 expr
 ++;
 method
 ();
 new
 Type
 (
);

	

 compound

 	
 group statements

 	

 {
 statements
 }

	

 empty

 	
 do nothing

 	

 ;

	

 labeled

 	
 name a statement

 	

 label :
statement

	

 variable

 	
 declare a variable

 	

 [final]
 type
 name
 [=
 value
]
 [, name
 [=
 value
]]
...;

	

 if

 	
 conditional

 	

 if (
 expr
)
 statement
 [
else
 statement
]

	

 switch

 	
 conditional

 	

 switch (
 expr
) {
 [case
 expr :
statements
] ...
[default: statements
]
 }

	

 while

 	
 loop

 	

 while (
 expr
)
 statement

	

 do

 	
 loop

 	

 do
 statement
 while (
 expr
);

	

 for

 	
 simplified loop

 	

 for (
 init
 ;
 test
 ;
 increment
)
 statement

	

 for/in

 	
 collection iteration

 	

 for (
 variable
: iterable
)
 statement

 Java 5.0 and later; also called
“foreach”

	

 break

 	
 exit block

 	

 break [
 label
] ;

	

 continue

 	
 restart loop

 	

 continue [
 label
] ;

	

 return

 	
 end method

 	

 return [
 expr
] ;

	

 synchronized

 	
 critical section

 	

 synchronized (
 expr
) {
 statements
 }

	

 throw

 	
 throw exception

 	

 throw
 expr
 ;

	

 try

 	
 handle exception

 	

 try {
 statements
 }
 [catch (
 type
 name
) {
 statements
 }] ... [finally {
 statements
 }]

	

 assert

 	
 verify invariant

 	

 assert
 invariant
 [: error
]
;

 Java 1.4 and later.

Expression Statements

 As we saw earlier in the chapter, certain
types of Java expressions have side effects. In other words, they do
not simply evaluate to some value; they also change the program state
in some way. Any expression with side effects can be used as a
statement simply by following it with a semicolon. The legal types of
expression statements are assignments, increments and decrements,
method calls, and object creation. For example:
a = 1; // Assignment
x *= 2; // Assignment with operation
i++; // Post-increment
--c; // Pre-decrement
System.out.println("statement"); // Method invocation

Compound Statements

 A
compound statement is any number and kind of
statements grouped together within curly braces. You can use a
compound statement anywhere a statement is required by Java syntax:
for(int i = 0; i < 10; i++) {
 a[i]++; // Body of this loop is a compound statement.
 b[i]--; // It consists of two expression statements
} // within curly braces.

The Empty Statement

 An empty statement
in Java is written as a single semicolon. The empty statement
doesn’t do anything, but the syntax is occasionally
useful. For example, you can use it to indicate an empty loop body in
a for loop:
for(int i = 0; i < 10; a[i++]++) // Increment array elements
 /* empty */; // Loop body is empty statement

Labeled Statements

 A labeled
statement is simply a statement that has been given a name
by prepending an identifier and a colon to it. Labels are used by the
break and continue statements.
For example:
rowLoop: for(int r = 0; r < rows.length; r++) { // A labeled loop
 colLoop: for(int c = 0; c < columns.length; c++) { // Another one
 break rowLoop; // Use a label
 }
}

Local Variable Declaration Statements

 A local
variable, often simply called a variable, is a symbolic
name for a location to store a value that is defined within a method
or compound statement. All variables must be declared before they can
be used; this is done with a variable declaration statement. Because
Java is a strongly typed language, a variable declaration specifies
the type of the variable, and only values of that type can be stored
in the variable.

 In its simplest form, a variable
declaration specifies a variable’s type and name:
int counter;
String s;

 A variable declaration can also
include an initializer: an expression that
specifies an initial value for the variable. For example:
int i = 0;
String s = readLine();
int[] data = {x+1, x+2, x+3}; // Array initializers are documented later
The Java compiler does not allow you to use a local variable that has
not been initialized, so it is usually convenient to combine variable
declaration and initialization into a single statement. The
initializer expression need not be a literal value or a constant
expression that can be evaluated by the compiler; it can be an
arbitrarily complex expression whose value is computed when the
program is run.

 A single variable
declaration statement can declare and initialize more than one
variable, but all variables must be of the same type. Variable names
and optional initializers are separated from each other with commas:
int i, j, k;
float x = 1.0, y = 1.0;
String question = "Really Quit?", response;

 In
Java 1.1 and later, variable declaration statements can begin with
the final keyword. This modifier specifies that
once an initial value is specified for the variable, that value is
never allowed to change:
final String greeting = getLocalLanguageGreeting();
C programmers should note that Java variable declaration statements
can appear anywhere in Java code; they are not restricted to the
beginning of a method or block of code. Local variable declarations
can also be integrated with the initialize
portion of a for loop, as we’ll
discuss shortly.

 Local variables can be used only within the
method or block of code in which they are defined. This is called
their scope or lexical
scope:
void method() { // A method definition
 int i = 0; // Declare variable i
 while (i < 10) { // i is in scope here
 int j = 0; // Declare j; the scope of j begins here
 i++; // i is in scope here; increment it
 } // j is no longer in scope; can't use it anymore
 System.out.println(i); // i is still in scope here
} // The scope of i ends here

The if/else Statement

 The if statement
is the fundamental control statement that allows Java to make
decisions or, more precisely, to execute statements conditionally.
The if statement has an associated expression and
statement. If the expression evaluates to true,
the interpreter executes the statement. If the expression evaluates
to false the interpreter skips the statement. In
Java 5.0, the expression may be of the wrapper type
Boolean instead of the primitive type
boolean. In this case, the wrapper object is
automatically unboxed.
Here is an example if statement:
if (username == null) // If username is null,
 username = "John Doe"; // use a default value
Although they look extraneous, the parentheses around the expression
are a required part of the syntax for the if
statement.
As I already mentioned, a block of statements enclosed in curly
braces is itself a statement, so we can also write
if statements that look like this:

if ((address == null) || (address.equals(""))) {
 address = "[undefined]";
 System.out.println("WARNING: no address specified.");
}

 An if statement
can include an optional else keyword that is
followed by a second statement. In this form of the statement, the
expression is evaluated, and, if it is true, the
first statement is executed. Otherwise, the second statement is
executed. For example:
if (username != null)
 System.out.println("Hello " + username);
else {
 username = askQuestion("What is your name?");
 System.out.println("Hello " + username + ". Welcome!");
}
When you use nested if/else statements, some
caution is required to ensure that the else clause
goes with the appropriate if statement. Consider
the following lines:

if (i == j)
 if (j == k)
 System.out.println("i equals k");
else
 System.out.println("i doesn't equal j"); // WRONG!!

 In this example, the inner
if statement forms the single statement allowed by
the syntax of the outer if statement.
Unfortunately, it is not clear (except from the hint given by the
indentation) which if the else
goes with. And in this example, the indentation hint is wrong. The
rule is that an else clause like this is
associated with the nearest if statement. Properly
indented, this code looks like this:
if (i == j)
 if (j == k)
 System.out.println("i equals k");
 else
 System.out.println("i doesn't equal j"); // WRONG!!

 This is legal code, but
it is clearly not what the programmer had in mind. When working with
nested if statements, you should use curly braces
to make your code easier to read. Here is a better way to write the
code:
if (i == j) {
 if (j == k)
 System.out.println("i equals k");
}
else {
 System.out.println("i doesn't equal j");
}
The else if clause

 The if/else
statement is useful for testing a condition and choosing between two
statements or blocks of code to execute. But what about when you need
to choose between several blocks of code? This is typically done with
an else
 if clause, which is not
really new syntax, but a common idiomatic usage of the standard
if/else statement. It looks like this:
if (n == 1) {
 // Execute code block #1
}
else if (n == 2) {
 // Execute code block #2
}
else if (n == 3) {
 // Execute code block #3
}
else {
 // If all else fails, execute block #4
}
There is nothing special about this code. It is just a series of
if statements, where each if is
part of the else clause of the previous statement.
Using the else
 if idiom is
preferable to, and more legible than, writing these statements out in
their fully nested form:
if (n = = 1) {
 // Execute code block #1
}
else {
 if (n = = 2) {
 // Execute code block #2
 }
 else {
 if (n = = 3) {
 // Execute code block #3
 }
 else {
 // If all else fails, execute block #4
 }
 }
}

The switch Statement

 An if statement
causes a branch in the flow of a program’s
execution. You can use multiple if statements, as
shown in the previous section, to perform a multiway branch. This is
not always the best solution, however, especially when all of the
branches depend on the value of a single variable. In this case, it
is inefficient to repeatedly check the value of the same variable in
multiple if statements.
A better solution is to use a switch statement,
which is inherited from the C programming language. Although the
syntax of this statement is not nearly as elegant as other parts of
Java, the brute practicality of the construct makes it worthwhile. If
you are not familiar with the switch statement
itself, you may at least be familiar with the basic concept, under
the name
 computed goto or jump table.

 A
switch statement starts with an expression whose
type is an int, short,
char, or byte. In Java 5.0
Integer, Short,
Character and Byte wrapper
types are allowed, as are enumerated types. (Enums are new in Java
5.0; see Chapter 4 for details on enumerated
types and their use in switch statements.) This
expression is followed by a block of code in curly braces that
contains various entry points that correspond to possible values for
the expression. For example, the following switch
statement is equivalent to the repeated if and
else/if statements shown in the previous section:
switch(n) {
 case 1: // Start here if n = = 1
 // Execute code block #1
 break; // Stop here
 case 2: // Start here if n = = 2
 // Execute code block #2
 break; // Stop here
 case 3: // Start here if n = = 3
 // Execute code block #3
 break; // Stop here
 default: // If all else fails...
 // Execute code block #4
 break; // Stop here
}

 As
you can see from the example, the various entry points into a
switch statement are labeled either with the
keyword case, followed by an integer value and a
colon, or with the special default keyword,
followed by a colon. When a switch statement
executes, the interpreter computes the value of the expression in
parentheses and then looks for a case label that
matches that value. If it finds one, the interpreter starts executing
the block of code at the first statement following the
case label. If it does not find a
case label with a matching value, the interpreter
starts execution at the first statement following a special-case
default: label. Or, if there is no
default: label, the interpreter skips the body of
the switch statement altogether.

 Note the use of the
break keyword at the end of each
case in the previous code. The
break statement is described later in this
chapter, but, in this case, it causes the interpreter to exit the
body of the switch statement. The
case clauses in a switch
statement specify only the starting point of the desired code. The
individual cases are not independent blocks of code, and they do not
have any implicit ending point. Therefore, you must explicitly
specify the end of each case with a break or
related statement. In the absence of break
statements, a switch statement begins executing
code at the first statement after the matching
case label and continues executing statements
until it reaches the end of the block. On rare occasions, it is
useful to write code like this that falls through from one
case label to the next, but 99% of the time you
should be careful to end every case and
default section with a statement that causes the
switch statement to stop executing. Normally you
use a break statement, but
return

 and throw also
work.
A switch statement can have more than one
case clause labeling the same statement. Consider
the switch statement in the following method:
boolean parseYesOrNoResponse(char response) {
 switch(response) {
 case 'y':
 case 'Y': return true;
 case 'n':
 case 'N': return false;
 default: throw new IllegalArgumentException("Response must be Y or N");
 }
}

 The
switch

 statement and its case
labels have some important restrictions. First, the expression
associated with a switch statement must have a
byte, char,
short, or int value. The
floating-point and boolean types are not
supported, and neither is long, even though
long is an integer type. Second, the value
associated with each case label must be a constant
value or a constant expression the compiler can evaluate. A
case label cannot contain a runtime expression
involving variables or method calls, for example. Third, the
case label values must be within the range of the
data type used for the switch expression. And
finally, it is obviously not legal to have two or more
case labels with the same value or more than one
default label.

The while Statement

 Just as the
if statement is the basic control statement that
allows Java to make decisions, the while statement
is the basic statement that allows Java to perform repetitive
actions. It has the following syntax:
while (expression)
 statement

 The while statement
works by first evaluating the expression,
which must result in a boolean (or, in Java 5.0, a
Boolean) value. If the value is
false, the interpreter skips the
statement associated with the loop and
moves to the next statement in the program. If it is
true, however, the
statement that forms the body of the loop
is executed, and the expression is
reevaluated. Again, if the value of
expression is false,
the interpreter moves on to the next statement in the program;
otherwise it executes the statement again.
This cycle continues while the expression
remains true (i.e., until it evaluates to
false), at which point the
while statement ends, and the interpreter moves on
to the next statement. You can create an

 infinite loop
with the syntax while(true).
Here is an example while loop that prints the
numbers 0 to 9:
int count = 0;
while (count < 10) {
 System.out.println(count);
 count++;
}

 As you can see, the
variable count starts off at 0 in this example and
is incremented each time the body of the loop runs. Once the loop has
executed 10 times, the expression becomes false
(i.e., count is no longer less than 10), the
while statement finishes, and the Java interpreter
can move to the next statement in the program. Most loops have a
counter variable like count. The variable names
i, j, and k
are commonly used as loop counters, although you should use more
descriptive names if it makes your code easier to understand.

The do Statement

 A do loop is much
like a while loop, except that the loop expression
is tested at the bottom of the loop rather than at the top. This
means that the body of the loop is always executed at least once. The
syntax is:
do
 statement
while (expression) ;
Notice a couple of differences between the do loop
and the more ordinary while loop. First, the
do loop requires both the do
keyword to mark the beginning of the loop and the
while keyword to mark the end and introduce the
loop condition. Also, unlike the while loop, the
do loop is terminated with a semicolon. This is because the
do loop ends with the loop condition rather than
simply ending with a curly brace that marks the end of the loop body.
The following do loop prints the same output as
the while loop just discussed:
int count = 0;
do {
 System.out.println(count);
 count++;
} while(count < 10);
The do loop is much less commonly used than its
while cousin because, in practice, it is unusual
to encounter a situation where you are sure you always want a loop to
execute at least once.

The for Statement

 The
for statement provides a looping construct that is
often more convenient than the while and
do loops. The for statement
takes advantage of a common looping pattern. Most loops have a
counter, or state variable of some kind, that is initialized before
the loop starts, tested to determine whether to execute the loop
body, and then incremented or updated somehow at the end of the loop
body before the test expression is evaluated again. The
initialization,
test, and update steps are the three
crucial manipulations of a loop variable, and the
for statement makes these three steps an explicit
part of the loop syntax:
for(initialize ; test ; update)
 statement

This for loop is basically equivalent to the
following while loop:[2]

 initialize;
while(test) {
 statement;
 update;
}
Placing the initialize,
test, and
update
 expressions at the top of a
for loop makes it especially easy to understand
what the loop is doing, and it prevents mistakes such as forgetting
to initialize or update the loop variable. The interpreter discards
the values of the initialize and
update expressions, so in order to be
useful, these expressions must have side effects.
initialize is typically an assignment
expression while update is usually an
increment, decrement, or some other assignment.
The following for loop prints the numbers 0 to 9,
just as the previous while and
do loops have done:
int count;
for(count = 0 ; count < 10 ; count++)
 System.out.println(count);
Notice how this syntax places all the important information about the
loop variable on a single line, making it very clear how the loop
executes. Placing the update expression in the for
statement itself also simplifies the body of the loop to a single
statement; we don’t even need to use curly braces to
produce a statement block.
The for loop supports some additional syntax that
makes it even more convenient to use. Because many loops use their
loop variables only within the loop, the for loop
allows the initialize expression to be a
full variable declaration, so that the variable is scoped to the body
of the loop and is not visible outside of it. For example:
for(int count = 0 ; count < 10 ; count++)
 System.out.println(count);
Furthermore, the for loop syntax does not restrict
you to writing loops that use only a single variable. Both the
initialize and
update expressions of a
for loop can use a comma to separate multiple
initializations and update expressions. For example:
for(int i = 0, j = 10 ; i < 10 ; i++, j--)
 sum += i * j;
Even though all the examples so far have counted numbers,
for loops are not restricted to loops that count
numbers. For example, you might use a for loop to
iterate through the elements of a linked list:
for(Node n = listHead; n != null; n = n.nextNode())
 process(n);
The initialize,
test, and
update expressions of a
for loop are all optional; only the semicolons
that separate the expressions are required. If the
test expression is omitted, it is assumed
to be true. Thus, you can write an infinite loop
as for(;;).

The for/in Statement

The for/in

 statement is a powerful new loop
that was added to the language in Java 5.0. It iterates through the
elements of an array or collection or any object that implements
java.lang.Iterable (we’ll see
more about this new interface in a moment). On each iteration it
assigns an element of the array or Iterable object
to the loop variable you declare and then executes the loop body,
which typically uses the loop variable to operate on the element. No
loop counter or Iterator object is involved; the
for/in loop performs the iteration automatically,
and you need not concern yourself with correct initialization or
termination of the loop.
A for/in
 loop
is written as the keyword for followed by an open
parenthesis, a variable declaration (without initializer), a colon,
an expression, a close parenthesis, and finally the statement (or
block) that forms the body of the loop.
for(declaration : expression)
 statement

Despite its name, the for/in loop does not use the
keyword in. It is common to read the colon as
“in,” however. Because this
statement does not have a keyword of its own, it does not have an
unambiguous name. You may also see it called
"
 enhanced for” or
“foreach.”
For the while, do, and
for loops, we’ve shown an example
that prints ten numbers. The for/in loop can do
this too, but not on its own. for/in is not a
general-purpose loop like the others. It is a specialized loop that
executes its body once for each element in an
array or collection. So, in order to loop ten times (to print out ten
numbers), we need an array or other collection with ten elements.
Here’s code we can use:
// These are the numbers we want to print
int[] primes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
// This is the loop that prints them
for(int n : primes)
 System.out.println(n);
Here are some more things you should know about the syntax of the
for/in loop:
	As noted earlier, expression must be
either an array or an object that implements the
java.lang.Iterable
interface. This type must be known at
compile-time so that the compiler can generate appropriate looping
code. For example, you can’t use this loop with an
array or List that you have cast to an
Object.

	The type of the array or Iterable elements must be
assignment-compatible with the type of the
variable declared in the
declaration. If you use an
Iterable object that is not parameterized with an
element type, the variable must be declared as an
Object. (Parameterized types are also new in Java
5.0; they are covered in Chapter 4.)

	The
declaration
 usually consists of just a
type and a variable name, but it may include a
final
 modifier and any appropriate
annotations (see Chapter 4). Using
final prevents the loop variable from taking on
any value other than the array or collection element the loop assigns
it and serves to emphasize that the array or collection cannot be
altered through the loop variable.

	The loop variable of the for/in loop must be
declared as part of the loop, with both a type and a variable name.
You cannot use a variable declared outside the loop as you can with
the for loop.

The following class further illustrates the use of the
for/in

statement. It relies on parameterized types, which are covered in
Chapter 4, and you may want to return to this
section after reading that chapter.
import java.util.*;

public class ForInDemo {
 public static void main(String[] args) {
 // This is a collection we'll iterate over below.
 Set<String> wordset = new HashSet<String>();

 // We start with a basic loop over the elements of an array.
 // The body of the loop is executed once for each element of args[].
 // Each time through one element is assigned to the variable word.
 for(String word : args) {
 System.out.print(word + " ");
 wordset.add(word);
 }
 System.out.println();

 // Now iterate through the elements of the Set.
 for(String word : wordset) System.out.print(word + " ");
 }
}
Iterable and iterator

To understand how the for/in loop works with

 collections, we need to consider
two interfaces,
java.lang.Iterable

 , introduced in Java 5.0, and
java.util.Iterator, introduced in Java 1.2, but

 parameterized
with the rest of the Collections Framework in Java 5.0.[3] The APIs of both
interfaces are reproduced here for
convenience:

public interface Iterator<E> {
 boolean hasNext();
 E next();
 void remove();
}

 Iterator defines a way to iterate through the
elements of a collection or other data structure. It works like this:
while there are more elements in the collection (hasNext(
) returns true), call next(
) to obtain the next element of the collection. Ordered
collections, such as lists, typically have iterators that guarantee
that they’ll return elements in order. Unordered
collections like Set simply guarantee that
repeated calls to next() return all elements of
the set without omissions or duplications but do not specify an
ordering.
public interface Iterable<E> {
 java.util.Iterator<E> iterator();
}
The Iterable interface was introduced to make the
for/in loop work. A class implements this
interface in order to advertise that it is able to provide an
Iterator to anyone interested. (This can be useful
in its own right, even when you are not using the
for/in loop). If an object is
Iterable<E>, that means that that it has an
iterator()

method that returns an Iterator<E>, which
has a next() method that returns an object of
type E. If you implement
Iterable and provide an
Iterator for your own classes,
you’ll be able to iterate over those classes with
the for/in loop.
Remember that if you use the for/in loop with an
Iterable<E>, the loop variable must be of
type E or a superclass or interface. For example,
to iterate through the elements of a
List<String>, the variable must be declared
String or its superclass
Object, or one of its interfaces
CharSequence, Comparable, or
Serializable.
If you use for/in to iterate through the elements
of a raw List with no type parameter, the
Iterable and Iterator also have
no type parameter, and the type returned by the next(
) method of the raw Iterator is
Object. In this case, you have no choice but to
declare the loop variable to be an Object.

What for/in cannot do

 for/in

is a specialized loop that can simplify your code and reduce the
possibility of looping errors in many circumstances. It is not a
general replacement for the while,
for, or do loops, however,
because it hides the loop counter or Iterator from
you. This means that some algorithms simply cannot be expressed with
a for/in loop.
Suppose you want to print the elements of an array as a
comma-separated list. To do this, you need to print a comma after
every element of the array except the last, or equivalently, before
every element of the array except the first. With a traditional
for loop, the code might look like this:
for(int i = 0; i < words.length; i++) {
 if (i > 0) System.out.print(", ");
 System.out.print(words[i]);
}
This is a very straightforward task, but you simply cannot do it with
for/in. The problem is that the
for/in loop doesn’t give you a
loop counter or any other way to tell if you’re on
the first iteration, the last iteration, or somewhere in between.
Here are two other simple loops that can’t be
converted to use for/in, for the same basic
reason:
String[] args; // Initialized elsewhere
for(int i = 0; i < args.length; i++)
 System.out.println(i + ": " + args[i]);

// Map words to the position at which they occur.
List<String> words; // Initialized elsewhere
Map<String,Integer> map = new HashMap<String,Integer>();
for(int i = 0, n = words.size(); i < n; i++) map.put(words.get(i), i);
A similar issue exists when using for/in to
iterate through the elements of the collection. Just as a
for/in loop over an array has no way to obtain the
array index of the current element, a for/in loop
over a collection has no way to obtain the
Iterator object that is being used to itemize the
elements of the collection. This means, for example, that you cannot
use the remove() method of the iterator (or any
of the additional methods defined by
java.util.ListIterator) as you could if you used
the Iterator explicitly yourself.
Here are some other things you cannot do with
for/in:
	Iterate backwards through the elements of an array or
List.

	Use a single loop counter to access the same-numbered elements of two
distinct arrays.

	Iterate through the elements of a List using calls
to its get() method rather than calls to its
iterator.

The break Statement

 A
break statement causes the
Java interpreter to skip
immediately to the end of a containing statement. We have already
seen the break statement used with the
switch statement. The break
statement is most often written as simply the keyword
break followed by a semicolon:
break;
When used in this form, it causes the Java interpreter to immediately
exit the innermost containing while,
do, for, or
switch statement. For example:
for(int i = 0; i < data.length; i++) { // Loop through the data array.
 if (data[i] = = target) { // When we find what we're looking for,
 index = i; // remember where we found it
 break; // and stop looking!
 }
} // The Java interpreter goes here after executing break
The break statement can also be followed by the
name of a containing labeled statement. When used in this
form, break causes the Java interpreter to
immediately exit the named block, which can be any kind of statement,
not just a loop or switch. For example:
testfornull: if (data != null) { // If the array is defined,
 for(int row = 0; row < numrows; row++) { // loop through one dimension,
 for(int col = 0; col < numcols; col++) { // then loop through the other.
 if (data[row][col] = = null) // If the array is missing data,
 break testfornull; // treat the array as undefined.
 }
 }
} // Java interpreter goes here after executing break testfornull

The continue Statement

 While a break
statement exits a loop, a continue statement quits
the current iteration of a loop and starts the next one.
continue, in both its unlabeled and labeled forms,
can be used only within a while,
do, or for loop. When used
without a label, continue causes the innermost
loop to start a new iteration. When used with a label that is the
name of a containing loop, it causes the named loop to start a new
iteration. For example:
for(int i = 0; i < data.length; i++) { // Loop through data.
 if (data[i] = = -1) // If a data value is missing,
 continue; // skip to the next iteration.
 process(data[i]); // Process the data value.
}

 while,
do, and for loops differ
slightly in the way that continue starts a new
iteration:
	With a while loop, the Java interpreter simply
returns to the top of the loop, tests the loop condition again, and,
if it evaluates to true, executes the body of the
loop again.

	With a do loop, the interpreter jumps to the
bottom of the loop, where it tests the loop condition to decide
whether to perform another iteration of the loop.

	With a for loop, the interpreter jumps to the top
of the loop, where it first evaluates the
update expression and then evaluates the
test expression to decide whether to loop
again. As you can see, the behavior of a for loop
with a continue statement is different from the
behavior of the “basically
equivalent” while loop presented
earlier; update gets evaluated in the
for loop but not in the equivalent
while loop.

The return Statement

 A
return statement tells the Java interpreter to
stop executing the current method. If the method is declared to
return a value, the return statement is followed
by an expression. The value of the expression becomes the return
value of the method. For example, the following method computes and
returns the square of a number:
double square(double x) { // A method to compute x squared
 return x * x; // Compute and return a value
}

 Some
methods are declared void to indicate that they do
not return any value. The Java interpreter runs methods like this by
executing their statements one by one until it reaches the end of the
method. After executing the last statement, the interpreter returns
implicitly. Sometimes, however, a void method has
to return explicitly before reaching the last statement. In this
case, it can use the return statement by itself,
without any expression. For example, the following method prints, but
does not return, the square root of its argument. If the argument is
a negative number, it returns without printing anything:
void printSquareRoot(double x) { // A method to print square root of x
 if (x < 0) return; // If x is negative, return explicitly
 System.out.println(Math.sqrt(x)); // Print the square root of x
} // End of method: return implicitly

The synchronized Statement

 Java
makes it easy to write multithreaded programs (see Chapter 5 for examples). When working with multiple
threads, you must often take care to prevent multiple threads from
modifying an object simultaneously in a way that might corrupt the
object’s state. Sections of code that must not be
executed simultaneously are known as

 critical
sections. Java provides the
synchronized statement to protect these critical
sections. The syntax is:
synchronized (expression) {
 statements
}

 expression
is an expression that must evaluate to an object or an array. The
statements constitute the code of the
critical section and must be enclosed in curly braces. Before
executing the critical section, the Java interpreter first obtains an
exclusive lock on the object or array specified by
expression. It holds the lock until it is
finished running the critical section, then releases it. While a
thread holds the lock on an object, no other thread can obtain that
lock. Therefore, no other thread can execute this or any other
critical sections that require a lock on the same object. If a thread
cannot immediately obtain the lock required to execute a critical
section, it simply waits until the lock becomes available.
Note that you do not have to use the synchronized
statement unless your program creates multiple threads that share
data. If only one thread ever accesses a data structure, there is no
need to protect it with synchronized. When you do
have to use synchronized, it might be in code like
the following:
public static void SortIntArray(int[] a) {
 // Sort the array a. This is synchronized so that some other thread
 // cannot change elements of the array while we're sorting it (at
 // least not other threads that protect their changes to the array
 // with synchronized).
 synchronized (a) {
 // Do the array sort here
 }
}

 The
synchronized keyword is also available as a
modifier in Java and is more commonly used in this form than as a
statement. When applied to a method, the
synchronized keyword indicates that the entire
method is a critical section. For a synchronized
class method (a static method), Java obtains an exclusive lock on the
class before executing the method. For a
synchronized instance method, Java obtains an
exclusive lock on the class instance. (Class and instance methods are
discussed in Chapter 3.)

The throw Statement

 An exception is
a signal that indicates some sort of exceptional condition or error
has occurred. To throw an exception is to signal
an exceptional condition. To catch an exception
is to handle it—to take whatever actions are necessary to
recover from it.
In Java, the throw statement is used to throw an
exception:
throw expression ;
The expression must evaluate to an
exception object that describes the exception or error that has
occurred. We’ll talk more about types of exceptions
shortly; for now, all you need to know is that an exception is
represented by an object. Here is some example code that throws an
exception:
public static double factorial(int x) {
 if (x < 0)
 throw new IllegalArgumentException("x must be >= 0");
 double fact;
 for(fact=1.0; x > 1; fact *= x, x--)
 /* empty */ ; // Note use of the empty statement
 return fact;
}

 When the Java interpreter executes a
throw statement, it immediately stops normal
program execution and starts looking for an exception handler that
can catch, or handle, the exception. Exception handlers are written
with the try/catch/finally statement, which is
described in the next section. The Java interpreter first looks at
the enclosing block of code to see if it has an associated exception
handler. If so, it exits that block of code and starts running the
exception-handling code associated with the block. After running the
exception handler, the interpreter continues execution at the
statement immediately following the handler code.

 If the enclosing block of code does
not have an appropriate exception handler, the interpreter checks the
next higher enclosing block of code in the method. This continues
until a handler is found. If the method does not contain an exception
handler that can handle the exception thrown by the
throw statement, the interpreter stops running the
current method and returns to the caller. Now the interpreter starts
looking for an exception handler in the blocks of code of the calling
method. In this way, exceptions propagate up through the lexical
structure of Java methods, up the call stack of the Java interpreter.
If the exception is never caught, it propagates all the way up to the
main() method of the program. If it is not
handled in that method, the Java interpreter prints an error message,
prints a stack trace to indicate where the exception occurred, and
then exits.
Exception types

 An
exception in Java is an object. The type of this object is
java.lang.Throwable
 , or more commonly, some
subclass[4] of
Throwable that more specifically describes the
type of exception that occurred. Throwable has two
standard subclasses:
java.lang.Error
 and
java.lang.Exception
 . Exceptions that are
subclasses of Error
generally indicate unrecoverable problems: the virtual machine has
run out of memory, or a class file is corrupted and cannot be read,
for example. Exceptions of this sort can be caught and handled, but
it is rare to do so.
Exceptions that are subclasses of
Exception, on the other hand, indicate less severe
conditions. These exceptions can be reasonably caught and handled.
They include such exceptions as
java.io.EOFException
 ,
which signals the end of a file, and
java.lang.ArrayIndexOutOfBoundsException
 ,
which indicates that a program has tried to read past the end of an
array. In this book, I use the term
“exception” to refer to any
exception object, regardless of whether the type of that exception is
Exception or Error.

 Since
an exception is an object, it can contain data, and its class can
define methods that operate on that data. The
Throwable class and all its subclasses include a
String field that stores a human-readable
error message
that describes the exceptional condition. It’s set
when the exception object is created and can be read from the
exception with the
 getMessage() method. Most
exceptions contain only this single message, but a few add other
data. The java.io.InterruptedIOException, for
example, adds a field named bytesTransferred that
specifies how much input or output was completed before the
exceptional condition interrupted it.

The try/catch/finally Statement

 The
try/catch/finally

 statement is
Java’s exception-handling mechanism. The
try clause of this statement establishes a block
of code for exception handling. This try block is
followed by zero or more catch clauses, each of
which is a block of statements designed to handle a specific type of
exception. The catch clauses are followed by an
optional finally block that contains cleanup code
guaranteed to be executed regardless of what happens in the
try block. Both the catch and
finally clauses are optional, but every
try block must be accompanied by at least one or
the other. The try, catch, and
finally blocks all begin and end with curly
braces. These are a required part of the syntax and cannot be
omitted, even if the clause contains only a single statement.
The following code illustrates the syntax and purpose of the
try/catch/finally statement:
try {
 // Normally this code runs from the top of the block to the bottom
 // without problems. But it can sometimes throw an exception,
 // either directly with a throw statement or indirectly by calling
 // a method that throws an exception.
}
catch (SomeException e1) {
 // This block contains statements that handle an exception object
 // of type SomeException or a subclass of that type. Statements in
 // this block can refer to that exception object by the name e1.
}
catch (AnotherException e2) {
 // This block contains statements that handle an exception object
 // of type AnotherException or a subclass of that type. Statements
 // in this block can refer to that exception object by the name e2.
}
finally {
 // This block contains statements that are always executed
 // after we leave the try clause, regardless of whether we leave it:
 // 1) normally, after reaching the bottom of the block;
 // 2) because of a break, continue, or return statement;
 // 3) with an exception that is handled by a catch clause above; or
 // 4) with an uncaught exception that has not been handled.
 // If the try clause calls System.exit(), however, the interpreter
 // exits before the finally clause can be run.
}
try

 The
try clause simply establishes a block of code that
either has its exceptions handled or needs special cleanup code to be
run when it terminates for any reason. The try
clause by itself doesn’t do anything interesting; it
is the catch and finally
clauses that do the exception-handling and cleanup operations.

catch

 A
try block can be followed by zero or more
catch clauses that specify code to handle various
types of exceptions. Each catch clause is declared
with a single argument that specifies the type of exceptions the
clause can handle and also provides a name the clause can use to
refer to the exception object it is currently handling. The type and
name of an exception handled by a catch clause are
exactly like the type and name of an argument passed to a method,
except that for a catch clause, the argument type
must be Throwable or one of its subclasses.
When an exception is thrown, the Java interpreter looks for a
catch clause with an argument of the same type as
the exception object or a superclass of that type. The interpreter
invokes the first such catch clause it finds. The
code within a catch block should take whatever
action is necessary to cope with the exceptional condition. If the
exception is a java.io.FileNotFoundException
exception, for example, you might handle it by asking the user to
check his spelling and try again. It is not required to have a
catch clause for every possible exception; in some
cases the correct response is to allow the exception to propagate up
and be caught by the invoking method. In other cases, such as a
programming error signaled by
NullPointerException, the correct response is
probably not to catch the exception at all, but allow it to propagate
and have the Java interpreter exit with a stack trace and an error
message.

finally

 The
finally clause is generally used to clean up after
the code in the try clause (e.g., close files and
shut down network connections). What is useful about the
finally clause is that it is guaranteed to be
executed if any portion of the try block is
executed, regardless of how the code in the try
block completes. In fact, the only way a try
clause can exit without allowing the finally
clause to be executed is by invoking the System.exit(
)

 method,
which causes the Java interpreter to stop running.
In the normal case, control reaches the end of the
try block and then proceeds to the
finally block, which performs any necessary
cleanup. If control leaves the try block because
of a return, continue, or
break statement, the finally
block is executed before control transfers to its new destination.
If an exception occurs in the try block and there
is an associated catch block to handle the
exception, control transfers first to the catch
block and then to the finally block. If there is
no local catch block to handle the exception,
control transfers first to the finally block, and
then propagates up to the nearest containing catch
clause that can handle the exception.
If a finally block itself transfers control with a
return, continue,
break, or throw statement or by
calling a method that throws an exception, the pending control
transfer is abandoned, and this new transfer is processed. For
example, if a finally clause throws an exception,
that exception replaces any exception that was in the process of
being thrown. If a finally clause issues a
return statement, the method returns normally,
even if an exception has been thrown and has not yet been handled.

 try and finally can be used
together without exceptions or any catch clauses.
In this case, the finally block is simply cleanup
code that is guaranteed to be executed, regardless of any
break, continue, or
return statements within the
try clause.
In previous discussions of the for and
continue statements, we’ve seen
that a for loop cannot be naively translated into
a while loop because the
continue

statement behaves slightly differently when used in a
for loop than it does when used in a
while loop. The finally clause
gives us a way to write a while loop that handles
the continue statement in the same way that a
for loop does. Consider the following generalized
for loop:
for(initialize ; test ; update)
 statement

The following while loop behaves the same, even if
the statement block contains a
continue statement:
 initialize ;
while (test) {
 try { statement }
 finally { update ; }
}
Note, however, that placing the update statement within a
finally block causes this while
loop to respond to break statements differently
than the for loop does.

The assert Statement

 An
assert statement is used to document and verify
design assumptions in Java code. This statement was added in Java 1.4
and cannot be used with previous versions of the language. An
assertion consists of the
assert
 keyword
followed by a boolean
expression
that the programmer believes should always evaluate to
true. By default, assertions are not enabled, and
the assert statement does not actually do
anything. It is possible to enable assertions as a
debugging and
testing tool, however; when this is done,
the assert statement evaluates the expression. If
it is indeed true, assert does
nothing. On the other hand, if the expression evaluates to
false, the assertion fails, and the
assert statement throws a
java.lang.AssertionError
 .

 The
assert statement may include an optional second
expression, separated from the first by a colon. When assertions are enabled
and the first expression evaluates to false, the
value of the second expression is taken as an error code or error
message and is passed to the AssertionError()
constructor. The full syntax of the statement is:
assert assertion ;
or:
assert assertion : errorcode ;
It is important to remember that the
assertion
 must be a
boolean expression, which typically means that it contains a
comparison operator or invokes a boolean-valued method.

Compiling assertions

 Because the
assert statement was added in Java 1.4, and
because
assert

was not a reserved word prior to Java 1.4, the introduction of this
new statement can cause code that uses
“assert” as an identifier to break.
For this reason, the javac compiler does not
recognize the assert statement by default. To
compile Java code that uses the assert statement,
you must use the command-line argument -source
1.4. For example:
 javac -source 1.4 ClassWithAssertions.java

 In
Java 1.4, the javac compiler allows
“assert” to be used as an
identifier unless -source 1.4 is specified. If it
finds assert used as an identifier, it issues an
incompatibility warning to encourage you to modify your code.
In Java 5.0, the javac compiler recognizes the
assert statement (as well as all the new Java 5.0
syntax) by default, and no special compiler arguments are required to
compile code that contains assertions. If you have legacy code that
still uses assert as an identifier, it will no
longer compile by default in Java 5.0. If you can’t
fix it, you can compile it in Java 5.0 using the -source
1.3 option.

Enabling assertions

 assert
statements encode assumptions that should always be true. For
efficiency, it does not make sense to test assertions each time code
is executed. Thus, by default, assertions are disabled, and
assert statements have no effect. The assertion
code remains compiled in the class files, however, so it can always
be enabled for testing, diagnostic, and debugging purposes. You can
enable assertions, either across the board or selectively, with
command-line arguments to the Java interpreter. To enable
assertions in all
classes
except for system classes, use the -ea argument.
To enable assertions in system classes, use -esa.
To enable assertions within a specific class, use
-ea followed by a colon and the classname:
 java -ea:com.example.sorters.MergeSort com.example.sorters.Test

To enable assertions for all classes in a
package and in all of its subpackages, follow the
-ea argument with a colon, the package name, and
three dots:
 java -ea:com.example.sorters... com.example.sorters.Test

 You
can disable assertions in the same way, using the
-da argument. For example, to enable assertions
throughout a package and then disable them in a specific class or
subpackage, use:
 java -ea:com.example.sorters... -da:com.example.sorters.QuickSort
 java -ea:com.example.sorters... -da:com.example.sorters.plugins...
If you prefer verbose command-line arguments, you can use
-enableassertions and
-disableassertions instead of
-ea and -da and
-enablesystemassertions instead of
-esa.
Java 1.4 added to
java.lang.ClassLoader
 methods for enabling and disabling
the assertions for classes loaded through that
ClassLoader. If you use a custom class loader in
your program and want to turn on assertions, you may be interested in
these methods. See ClassLoader in the reference
section.

Using assertions

 Because
assertions are disabled by default and impose no performance penalty
on your code, you can use them liberally to document any assumptions
you make while programming. It may take some time to get used to
this, but as you do, you’ll find more and more uses
for the assert statement. Suppose, for example,
that you’re writing a method in such a way that you
know that the variable x is either 0 or 1. Without
assertions, you might code an if statement that
looks like this:
if (x = = 0) {
 ...
}
else { // x is 1
 ...
}
The comment in this code is an informal assertion indicating that you
believe that within the body of the else clause,
x will always equal 1.

 Now suppose your code is later modified in
such a way that x can take on a value other than 0
and 1. The comment and the assumption that go along with it are no
longer valid, and this may cause a bug that is not immediately
apparent or is difficult to localize. The solution in this situation
is to convert your comment into an assert
statement. The code becomes:
if (x = = 0) {
 ...
}
else {
 assert x = = 1 : x // x must be 0 or 1
 ...
}
Now, if x somehow ends up holding an unexpected
value, an AssertionError is thrown, which makes
the bug immediately apparent and easy to pinpoint. Furthermore, the
second expression (following the colon) in the
assert statement includes the unexpected value of
x as the “error
message” of the AssertionError.
This message is not intended to mean anything to an end user, but to
provide enough information so that you know not just that an
assertion failed but also what caused it to fail.

 A similar technique is useful with
switch statements. If you write a
switch statement without a
default clause, you make an assumption about the
set of possible values for the switch expression.
If you believe that no other value is possible, you can add an
assert statement to document and validate that
fact. For example:
switch(x) {
 case -1: return LESS;
 case 0: return EQUALS;
 case 1: return GREATER;
 default: assert false:x; // Throw AssertionError if x is not -1, 0, or 1.
}
Note that the form assert false; always fails. It
is a useful “dead-end” statement
when you believe that the statement can never be reached.

 Another
common use of the assert statement is to test
whether the arguments passed to a method all have values that are
legal for that method; this is also known as enforcing method
preconditions. For example:
private static Object[] subArray(Object[] a, int x, int y) {
 assert x <= y : "subArray: x > y"; // Precondition: x must be <= y
 // Now go on to create and return a subarray of a...
}
Note that this is a private method. The programmer has used an
assert statement to document a precondition of the
subArray() method and state that she believes
that all methods that invoke this private method do in fact honor
that precondition. She can state this because she has control over
all the methods that invoke subArray(). She can
verify her belief by enabling assertions while testing the code. But
once the code is tested, if assertions are left disabled, the method
does not suffer the overhead of testing its arguments each time it is
called. Note that the programmer did not use an
assert statement to test that argument
a is non-null and that the
x and y
arguments were legal indexes into that array. These implicit
preconditions are always tested by Java at runtime, and a failure
results in an unchecked NullPointerException or an
ArrayIndexOutOfBoundsException, so an assertion is
not required for them.
It is important to understand that the assert
statement is not suitable for enforcing preconditions on public
methods. A public method can be called from anywhere, and the
programmer cannot assert in advance that it will be invoked
correctly. To be robust, a public API must explicitly test its
arguments and enforce its preconditions each time it is called,
whether or not assertions are enabled.
A related use of the assert statement is to verify
a class invariant. Suppose you are creating a class that represents a
list of objects and allows objects to be inserted and deleted but
always maintains the list in sorted order. You believe that your
implementation is correct and that the insertion methods always leave
the list in sorted order, but you want to test this to be sure. You
might write a method that tests whether the list is actually sorted,
then use an assert statement to invoke the method
at the end of each method that modifies the list. For example:
public void insert(Object o) {
 ... // Do the insertion here
 assert isSorted(); // Assert the class invariant here
}

 When writing code that must be
threadsafe, you must obtain locks (using a
synchronized

 method or statement) when required.
One common use of the assert statement in this
situation is to verify that the current thread holds the lock it
requires:
assert Thread.holdsLock(data);
The Thread.holdsLock()

method was added in Java 1.4 primarily for use with the
assert statement.

 To use assertions effectively, you
must be aware of a couple of fine points. First, remember that your
programs will sometimes run with assertions enabled and sometimes
with assertions disabled. This means that you should be careful not
to write assertion expressions that contain side effects. If you do,
your code will run differently when assertions are enabled than it
will when they are disabled. There are a few exceptions to this rule,
of course. For example, if a method contains two
assert statements, the first can include a side
effect that affects only the second assertion. Another use of side
effects in assertions is the following idiom that determines whether
assertions are enabled (which is not something that your code should
ever really need to do):
boolean assertions = false; // Whether assertions are enabled
assert assertions = true; // This assert never fails but has a side effect
Note that the expression in the assert statement
is an assignment, not a comparison. The value of an assignment
expression is always the value assigned, so this expression always
evaluates to true, and the assertion never fails.
Because this assignment expression is part of an
assert statement, the
assertions variable is set to
true only if assertions are enabled.

 In addition to avoiding side effects in
your assertions, another rule for working with the
assert statement is that you should never try to
catch an AssertionError (unless you catch it at
the top level simply so that you can display the error in a more
user-friendly fashion). If an AssertionError is
thrown, it indicates that one of the programmer’s
assumptions has not held up. This means that the code is being used
outside of the parameters for which it was designed, and it cannot be
expected to work correctly. In short, there is no plausible way to
recover from an AssertionError, and you should not
attempt
to

catch it.

[2] As
you’ll see when we consider the
continue statement, this while
loop is not exactly equivalent to the for
loop.

[3] If you are not already familiar with parameterized types, you
may want to skip this section now and return to it after reading
Chapter 4.

[4] We haven’t talked about
subclasses yet; they are covered in detail in Chapter 3.

Methods

 A
method is a named sequence of Java statements
that can be invoked by other Java code. When a method is invoked, it
is passed zero or more values known as
arguments
 . The method performs some computations
and, optionally, returns a value. As described in Section 2.4 earlier in this chapter, a
method invocation is an expression that is evaluated by the Java
interpreter. Because method invocations can have side effects,
however, they can also be used as expression statements. This section
does not discuss method invocation, but instead describes how to
define methods.
Defining Methods

 You
already know how to define the body of a method; it is simply an
arbitrary sequence of statements enclosed within curly braces. What
is more interesting about a method is its
signature
 .[5] The signature specifies the following:
	The name of the method

	The number, order, type, and name of the parameters used by the method

	The type of the value returned by the method

	The checked exceptions that the method can throw (the signature may
also list unchecked exceptions, but these are not required)

	Various method modifiers that provide additional information about
the method

A method signature defines everything you need to know about a method
before calling it. It is the method
specification and defines the API for the
method. The reference section of this book is essentially a list of
method signatures for all publicly accessible methods of all publicly
accessible classes of the Java platform. In order to use the
reference section of this book, you need to know how to read a method
signature. And, in order to write Java programs, you need to know how
to define your own methods, each of which begins with a method
signature.
A method signature looks like this:
 modifiers
 type
 name (paramlist) [throws exceptions]
The signature (the method specification) is followed by the method
body (the method implementation), which is simply a sequence of Java
statements enclosed in curly braces. If the method is
abstract (see Chapter 3),
the implementation is omitted, and the method body is replaced with a
single semicolon.
In Java 5.0 and later, the signature
of a generic method
 may
also include type variable declarations. Generic methods and type
variables are discussed in Chapter 4.
Here are some example method definitions, which begin with the
signature and are followed by the method
body:

// This method is passed an array of strings and has no return value.
// All Java programs have a main entry point with this name and signature.
public static void main(String[] args) {
 if (args.length > 0) System.out.println("Hello " + args[0]);
 else System.out.println("Hello world");
}

// This method is passed two double arguments and returns a double.
static double distanceFromOrigin(double x, double y) {
 return Math.sqrt(x*x + y*y);
}

// This method is abstract which means it has no body.
// Note that it may throw exceptions when invoked.
protected abstract String readText(File f, String encoding)
 throws FileNotFoundException, UnsupportedEncodingException;

 modifiers
is zero or more special modifier keywords, separated from each other
by spaces. A method might be declared with the
public and static modifiers,
for example. The allowed modifiers and their meanings are described
in the next section.

 The

 type in a
method signature specifies the return type of the method. If the
method does not return a value, type must
be void. If a method is declared with a
non-void return type, it must include a
return statement that returns a value of (or
convertible to) the declared type.
A
constructor

is a special kind of method used to initialize newly created objects.
As we’ll see in Chapter 3,
constructors are defined just like methods, except that their
signatures do not include this type
specification.

 The
name of a method follows the specification
of its modifiers and type. Method names, like variable names, are
Java identifiers and, like all Java identifiers, may contain letters
in any language represented by the Unicode character set. It is
legal, and often quite useful, to define more than one method with
the same name, as long as each version of the method has a different
parameter list. Defining multiple methods with the same name is
called method
overloading

 .
The System.out.println() method
we’ve seen so much of is an overloaded method. One
method by this name prints a string and other methods by the same
name print the values of the various primitive types. The Java
compiler decides which method to call based on the type of the
argument passed to the method.

 When
you are defining a method, the name of the method is always followed
by the method’s parameter list, which must be
enclosed in parentheses. The parameter list defines zero or more
arguments that are passed to the method. The parameter
specifications, if there are any, each consist of a type and a name
and are separated from each other by commas (if there are multiple
parameters). When a method is invoked, the argument values it is
passed must match the number, type, and order of the parameters
specified in this method signature line. The values passed need not
have exactly the same type as specified in the signature, but they
must be convertible to those types without casting.
C and C++ programmers should note that
when a Java method expects no arguments, its parameter list is simply
(), not (void).
In Java 5.0 and later, it is possible to define and invoke methods
that accept a variable number of arguments, using a syntax known
colloquially as varargs. Varargs are covered in
detail later in this chapter.

 The final part of a method signature
is the throws clause, which is used to list the
checked exceptions that a method can throw.
Checked exceptions are a category of exception classes that must be
listed in the throws clauses of methods that can
throw them. If a method uses the throw statement
to throw a checked exception, or if it calls some other method that
throws a checked exception and does not catch or handle that
exception, the method must declare that it can throw that exception.
If a method can throw one or more checked exceptions, it specifies
this by placing the throws keyword after the
argument list and following it by the name of the exception class or
classes it can throw. If a method does not throw any exceptions, it
does not use the throws keyword. If a method
throws more than one type of exception, separate the names of the
exception classes from each other with commas. More on this in
a
bit.

Method Modifiers

The

 modifiers
of a method consist of zero or more modifier keywords such as
public, static, or
abstract. Here is a list of allowed modifiers and
their meanings. Note that in Java 5.0 and later,
annotations, such as
@Override, @Deprecated, and
@SuppressWarnings, are treated as modifiers and
may be mixed in with the modifier list. Anyone can define new
annotation types, so it is not possible to list all possible method
annotations. See Chapter 4 for more on
annotations.
	
 abstract

	An abstract
 method
is a specification without an implementation. The curly braces and
Java statements that would normally comprise the body of the method
are replaced with a single semicolon. A class that includes an
abstract method must itself be declared
abstract. Such a class is incomplete and cannot be
instantiated (see Chapter 3).

	
 final

	A final
 method
may not be overridden or hidden by a subclass, which makes it
amenable to compiler optimizations that are not possible for regular
methods. All private methods are implicitly
final, as are all methods of any class that is
declared final.

	
 native

	The native
 modifier specifies that the method
implementation is written in some
“native” language such as C and is
provided externally to the Java program. Like
abstract methods, native
methods have no body: the curly braces are replaced with a semicolon.
When Java was first released, native methods were
sometimes used for efficiency reasons. That is almost never necessary
today. Instead, native methods are used to interface Java code to
existing libraries written in C or C++. Native methods are implicitly
platform-dependent, and the procedure for linking the implementation
with the Java class that declares the method is dependent on the
implementation of the Java virtual machine. Native methods are not
covered in this book.

	
 public, protected, private

	These access modifiers specify whether and where a method can be used
outside of the class that defines it. These very important modifiers
are explained in Chapter 3.

	
 static

	A method declared static

 is a class
method associated with the class itself rather than with
an instance of the class. This is explained in detail in Chapter 3.

	
 strictfp

	A method declared
strictfp

must perform floating-point arithmetic using 32- or 64-bit floating
point formats strictly and may not take advantage of any extended
exponent bits available to the platform’s
floating-point hardware. The “fp”
in this awkwardly named, rarely used modifier stands for
“floating point.”

	
 synchronized

	The synchronized

 modifier makes a method threadsafe.
Before a thread can invoke a synchronized method,
it must obtain a
lock on the method’s
class (for static methods) or on the relevant
instance of the class (for non-static methods).
This prevents two threads from executing the method at the same time.
The synchronized modifier is an implementation
detail (because methods can make themselves threadsafe in other ways)
and is not formally part of the method specification or API. Good
documentation specifies explicitly whether a method is threadsafe;
you should not rely on the presence or absence of the
synchronized keyword when working with
multithreaded programs.

Declaring Checked Exceptions

 In
the
discussion of the
throw statement, we said that exceptions are
Throwable objects and that exceptions fall into
two main categories, specified by the Error and
Exception subclasses. In addition to making a
distinction between Error and
Exception classes, the Java exception-handling
scheme also distinguishes between checked and unchecked exceptions.
Any exception object that is an
Error
 is unchecked. Any exception object
that is an Exception is checked, unless it is a
subclass of
java.lang.RuntimeException

 , in which case it is
unchecked.
(RuntimeException is a subclass of
Exception.)
The distinction between checked and unchecked exceptions has to do
with the circumstances under which the exceptions are thrown.
Practically any method can throw an unchecked exception at
essentially any time. There is no way to predict an

 OutOfMemoryError,
for example, and any method that uses objects or arrays can throw a
NullPointerException

if it is passed an invalid null argument. Checked
exceptions, on the other hand, arise only in specific, well-defined
circumstances. If you try to read data from a file, for example, you
must at least consider the possibility that a

 FileNotFoundException
will be thrown if the specified file cannot be found.
Java has different rules for working with checked and unchecked
exceptions. If you write a method that throws a checked exception,
you must use a throws clause to declare the
exception in the method signature. The reason these types of
exceptions are called checked exceptions is that the Java compiler
checks to make sure you have declared them in method signatures and
produces a compilation error if you have not.
Even if you never throw an exception yourself, sometimes you must use
a throws clause to declare an exception. If your
method calls a method that can throw a checked exception, you must
either include exception-handling code to handle that exception or
use throws to declare that your method can also
throw that exception. For example, the following method reads the
first line of text from a named file. It uses methods that can throw
various types of java.io.IOException objects, so
it declares this fact with a throws clause:
public static String readFirstLine(String filename) throws IOException {
 BufferedReader in = new BufferedReader(new FileReader(filename));
 String firstline = in.readLine();
 in.close();
 return firstline;
}
How do you know if the method you are calling can throw a checked
exception? You can look at its method signature to find out. Or,
failing that, the Java compiler will tell you (by reporting a
compilation error) if you’ve called a method whose
exceptions you must handle or declare.

Variable-Length Argument Lists

In Java 5.0 and later, methods may be declared to accept, and may be
invoked with, variable numbers of arguments. Such methods are
commonly known as
varargs

 methods. The new
System.out.printf()

 method as well as the related
format() methods of
String

 and
java.util.Formatter use varargs. The similar, but
unrelated, format() method of
java.text.MessageFormat
 has been converted to use varargs as have
a number of important methods from the Reflection API of
java.lang.reflect.

A variable-length argument list is declared by following the type of
the last argument to the method with an
 ellipsis (...),
indicating that this last argument can be repeated zero or more
times. For example:
public static int max(int first, int... rest) {
 int max = first;
 for(int i: rest) {
 if (i > max) max = i;
 }
 return max;
}
This max() method is declared with two arguments.
The first is just a regular int value. The second,
however may be repeated zero or more times. All of the following are
legal invocations of max():
max(0)
max(1, 2)
max(16, 8, 4, 2, 1)

 As you can tell from the
for/in statement in the body of max(
), the second argument is treated as an array of
int values. Varargs methods are handled purely by
the compiler. To the Java interpreter, the max()
method is indistinguishable from this one:
public static int max(int first, int[] rest) { /* body omitted */ }
To convert a varargs signature to the
“real” signature, simply replace
... with []. Remember that
only one ellipsis can appear in a parameter list, and it may only
appear on the last parameter in the list.
Since varargs methods are compiled into methods that expect an array
of arguments, invocations of those methods are compiled to include
code that creates and initializes such an array. So the call
max(1,2,3) is compiled to this:
max(1, new int[] { 2, 3 })
If you already have method arguments stored in an array, it is
perfectly legal for you to pass them to the method that way, instead
of writing them out individually. You can treat any
... argument as if it were declared as an array.
The converse is not true, however: you can only use varargs method
invocation syntax when the method is actually declared as a varargs
method using an ellipsis.
Varargs methods interact particularly well with the new

 autoboxing feature of Java 5.0 (see
Section 2.9.7 later in this
chapter). A method that has an
Object... variable length argument
list can take arguments of any reference type because all objects and
arrays are subclasses of Object. Furthermore,
autoboxing allows you to invoke the method using primitive values as
well: the compiler boxes these up into wrapper objects as it builds
the Object[] that is the true argument to the
method. The printf() and format(
) methods mentioned at the beginning of this section are
all declared with an Object... parameter.
One quirk arises with methods with an
Object... parameter. It does not arise very
often in practice, but studying the quirk will solidify your
understanding of varargs. Recall that varargs methods can be invoked
with an argument of array type or any number of arguments of the
element type. When a method is declared with an
Object... argument, you can pass an
Object[] of arguments, or zero or more individual
Object arguments. But every Object[
] is also an Object. What do you do if
you want to pass an Object[] as the single object
argument to the method? Consider the following code that uses the
printf() method:
import static java.lang.System.out; // out now refers to System.out

// Here we invoke the varargs method with individual Object arguments.
// Note the use of autoboxing to convert primitives to wrapper objects
out.printf("%d %d %d\n", 1, 2, 3);

// This line does the same thing but passes the arguments in an array
// that has already been created:
Object[] args = new Object[] { 1, 2, 3 };
out.printf("%d %d %d\n", args);

// Now consider the following Object[], which we wish to pass
// as a single argument, not as an array of two arguments.
Object[] arg = new Object[] { "hello", "world" };
// These two lines do the same thing: print "hello". Not what we want.
out.printf("%s\n", "hello", "world");
out.printf("%s\n", arg);

// If we want arg to be treated as a single Object argument, we need to
// pass it as an the element of an array. Here's one way:
out.printf("%s\n", new Object[] { arg });

// An easier way is to convince the compiler to create the array itself.
// We use a cast to say that arg is a single Object argument, not an array:
out.printf("%s\n", (Object)arg);

Covariant Return Types

As part of the addition of

 generic
types, Java 5.0 now also supports covariant
returns. This means that an overriding method may narrow
the return type of the method it overrides.[6] The
following example makes this clearer:
class Point2D { int x, y; }
class Point3D extends Point2D { int z; }

class Event2D {
 public Point2D getLocation() { return new Point2D(); }
}

class Event3D extends Event2D {
 @Override public Point3D getLocation() { return new Point3D(); }
}
This code defines four classes: a two-dimensional point, a
three-dimensional point, and event objects that represent an event in
two-dimensional space and in three-dimensional space. Each event
class has a getLocation(
)

method. The Event2D method returns a
Point2D object. Event3D
subclasses Event2D and overrides
getLocation(). Its version of the method sensibly
returns a Point3D. Because every
Point3D object is also a
Point2D object, this is a perfectly reasonable
thing to do. It simply wasn’t allowed prior to Java
5.0.
In Java 1.4 and earlier, the return type of an
overriding method must be identical to
the type of the method it overrides. In order to compile under Java
1.4, the Event3D.getLocation() method would have
to be modified to have a return type of Point2D.
It could still return a Point3D object, of course,
but the caller would have to cast the return value from
Point2D to Point3D.
The @Override in the code example is an
annotation
 ,
covered in Chapter 4. This one is a
compile-time assertion that the method overrides something. The
compiler would have produced a compilation error if the assertion
failed.

[5] In the Java Language
Specification, the term “signature”
has a technical meaning that is slightly different than that used
here. This book uses a less formal definition of method
signature.

[6] Method
overriding is not the same as method overloading
discussed earlier in this section. Method overriding involves
subclassing and is covered in Chapter 3. If you
are not already familiar with these concepts, you should skip this
section for now and return to it later.

Classes and Objects Introduced

 Now
 that we
have introduced operators, expressions, statements, and methods, we
can finally talk about classes. A class is a
named collection of fields that hold data values and methods that
operate on those values. Classes are just one of five reference types
supported by Java, but they are the most important type. Classes are
thoroughly documented in a chapter of their own, Chapter 3. We introduce them here, however, because
they are the next higher level of syntax after methods, and because
the rest of this chapter requires a basic familiarity with the
concept of class and the basic syntax for defining a class,
instantiating it, and using the resulting
object.

 The most important thing about classes is
that they define new data types. For example, you might define a
class named Point to represent a data point in the
two-dimensional Cartesian coordinate system. This class would define
fields (each of type double) to hold the X and Y
coordinates of a point and methods to manipulate and operate on the
point. The Point class is a new data type.

 When discussing data types, it is
important to distinguish between the data type itself and the values
the data type represents. char is a data type: it
represents Unicode characters. But a char value
represents a single specific character. A class is a data type; a
class value is called an object. We use the name
class because each class defines a type (or kind, or species, or
class) of objects. The Point class is a data type
that represents X,Y points, while a Point object
represents a single specific X,Y point. As you might imagine, classes
and their objects are closely linked. In the sections that follow, we
will discuss both.
Defining a Class

 Here is a possible
definition of the Point class we have been
discussing:
/** Represents a Cartesian (x,y) point */
public class Point {
 public double x, y; // The coordinates of the point
 public Point(double x, double y) { // A constructor that
 this.x = x; this.y = y; // initializes the fields
 }

 public double distanceFromOrigin() { // A method that operates on
 return Math.sqrt(x*x + y*y); // the x and y fields
 }
}
This class definition is stored in a file named
Point.java and compiled to a file named
Point.class, where it is available for use by
Java programs and other classes. This class definition is provided
here for completeness and to provide context, but
don’t expect to understand all the details just yet;
most of Chapter 3 is devoted to the topic of
defining classes.
Keep in mind that you don’t have to define every
class you want to use in a Java program. The Java platform includes
thousands of predefined classes that are guaranteed to be available
on every computer that runs Java.

Creating an Object

 Now
that we have defined the Point class as a new data
type, we can use the following line to declare a variable that holds
a Point object:
Point p;

 Declaring a variable to hold a
Point object does not create the object itself,
however. To actually create an object, you must use the

 new operator. This
keyword is followed by the object’s class (i.e., its
type) and an optional argument list in parentheses. These arguments
are passed to the constructor method for the class, which initializes
internal fields in the new object:
// Create a Point object representing (2,-3.5).
// Declare a variable p and store a reference to the new Point object in it.
Point p = new Point(2.0, -3.5);

// Create some other objects as well
Date d = new Date(); // A Date object that represents the current time
Set words = new HashSet(); // A HashSet object to hold a set of objects

 The new keyword
is by far the most common way to create objects in Java. A few other
ways are also worth mentioning. First, a couple of classes are so
important that Java defines special literal syntax for creating
objects of those types (as we discuss later in this section). Second,
Java supports a dynamic loading mechanism that allows programs to
load classes and create instances of those classes dynamically. This
dynamic instantiation is done with the newInstance(
) methods of java.lang.Class and
java.lang.reflect.Constructor. Finally, objects
can also be created by deserializing them. In other words, an object
that has had its state saved, or serialized, usually to a file, can
be recreated using the java.io.ObjectInputStream
class.

Using an Object

 Now
that we’ve seen how to define classes and
instantiate them by creating objects, we need to look at the Java
syntax that allows us to use those objects. Recall that a class
defines a collection of fields and methods. Each object has its own
copies of those fields and has access to those methods. We use the
dot character (.)
to access the named fields and methods of an object. For example:
Point p = new Point(2, 3); // Create an object
double x = p.x; // Read a field of the object
p.y = p.x * p.x; // Set the value of a field
double d = p.distanceFromOrigin(); // Access a method of the object
This syntax is central to object-oriented programming in Java, so
you’ll see it a lot. Note, in particular, the
expression p.distanceFromOrigin(). This tells the
Java compiler to look up a method named distanceFromOrigin(
) defined by the class Point and use
that method to perform a computation on the fields of the object
p. We’ll cover the details of
this operation in Chapter 3.

Object Literals

 In
our discussion of primitive types, we saw that each primitive type
has a literal syntax for including values of the type literally into
the text of a program. Java also defines a literal syntax for a few
special reference types, as described next.
String literals

 The

 String class
represents text as a string of characters. Since programs usually
communicate with their users through the written word, the ability to
manipulate strings of text is quite important in any programming
language. In some languages, strings are a primitive type, on a par
with integers and characters. In Java, however, strings are objects;
the data type used to represent text is the String
class.

 Because strings are such a
fundamental data type, Java allows you to include text literally in
programs by placing it between double-quote (“)
characters. For example:
String name = "David";
System.out.println("Hello, " + name);
Don’t confuse the double-quote characters that
surround string literals with the single-quote (or apostrophe)
characters that surround

 char
literals. String literals can contain any of the escape sequences
char literals can (see Table 2-2). Escape sequences are particularly useful for
embedding double-quote characters within double-quoted string
literals. For example:
String story = "\t\"How can you stand it?\" he asked sarcastically.\n";

 String literals cannot contain
comments and may consist of only a single line. Java does not support
any kind of continuation-character syntax that allows two separate
lines to be treated as a single line. If you need to represent a long
string of text that does not fit on a single line, break it into
independent string literals and use the + operator
to concatenate the literals. For example:
String s = "This is a test of the // This is illegal; string literals
 emergency broadcast system"; // cannot be broken across lines.

String s = "This is a test of the " + // Do this instead
 "emergency broadcast system";
This concatenation of literals is done when your program is compiled,
not when it is run, so you do not need to worry about any kind of
performance penalty.

Type literals

 The

 second type that supports its own
special object literal syntax is the class named
Class. Instances of the Class
class represent a Java data type. To include a
Class object literally in a Java program, follow
the name of any data type with .class. For
example:
Class typeInt = int.class;
Class typeIntArray = int[].class;
Class typePoint = Point.class;

The null reference

 The null
 keyword
is a special literal value that is a reference to nothing, or an
absence of a reference. The null value is unique
because it is a member of every reference type. You can assign
null to variables of any reference type. For
example:

String s = null;
Point p = null;

Arrays

 An
array is a special kind of object that holds
zero or more primitive values or references. These values are held in
the elements
 of the array, which are unnamed variables
referred to by their position or index. The type
of an array is characterized by its element
type

 , and all elements of the array must
be of that type.
Array elements are numbered starting with zero, and valid
indexes
range from zero to the number of elements minus one. The array
element with index 1, for example, is the second
element in the array. The number of elements in an array is its
length. The length of an array is specified when
the array is created, and it never changes.
The element type of an array may be any valid Java type, including
array types. This means that Java supports arrays of arrays, which
provide a kind of multidimensional array capability. Java does not
support the matrix-style multidimensional arrays found in some
languages.
Array Types

 Array types
are reference types, just as classes are. Instances of arrays are
objects, just as the instances of a class are.[7]
Unlike classes, array types do not have to be defined. Simply place

 square brackets after the element type.
For example, the following code declares three variables of array
type:
byte b; // byte is a primitive type
byte[] arrayOfBytes; // byte[] is an array type: array of byte
byte[][] arrayOfArrayOfBytes; // byte[][] is another type: array of byte[]
String[] points; // String[] is an array of String objects
The length of an array is not part of the
array type. It is not possible, for example, to declare a method that
expects an array of exactly four int values, for
example. If a method parameter is of type int[],
a caller can pass an array with any number (including zero) of
elements.
Array types are not classes, but array instances are objects. This
means that arrays inherit the methods of
java.lang.Object. Arrays implement the
Cloneable

 interface and
override the clone() method to guarantee that an
array can always be cloned and that clone() never
throws a CloneNotSupportedException. Arrays also
implement
Serializable
 so that
any array can be serialized if its element type can be serialized.
Finally, all arrays have a public final int field
named length that specifies the number of elements
in the array.
Array type widening conversions

 Since arrays extend
Object and implement the
Cloneable and Serializable
interfaces, any array type can be widened to any of these three
types. But certain array types can also be widened to other array
types. If the element type of an array is a reference type
T, and T is assignable to a
type S, the array type T[] is
assignable to the array type S[]. Note that there
are no widening conversions of this sort for arrays of a given
primitive type. As examples, the following lines of code show legal
array widening conversions:
String[] arrayOfStrings; // Created elsewhere
int[][] arrayOfArraysOfInt; // Created elsewhere
// String is assignable to Object, so String[] is assignable to Object[]
Object[] oa = arrayOfStrings;
// String implements Comparable, so a String[] can be considered a Comparable[]
Comparable[] ca = arrayOfStrings;
// An int[] is an Object, so int[][] is assignable to Object[]
Object[] oa2 = arrayOfArraysOfInt;
// All arrays are cloneable, serializable Objects
Object o = arrayOfStrings;
Cloneable c = arrayOfArraysOfInt;
Serializable s = arrayOfArraysOfInt[0];
This ability to widen an array type to another array type means that
the compile-time type of an array is not always the same as its
runtime type. The compiler must usually insert runtime checks before
any operation that stores a reference value into an array element to
ensure that the runtime type of the value matches the runtime type of
the array element. If the runtime check fails, an
ArrayStoreException

is thrown.

C compatibility syntax

As we’ve seen, an array type is written simply by
placing brackets after the element type. For compatibility with

 C
and C++, however, Java supports an alternative syntax in variable
declarations: brackets may be placed after the name of the variable
instead of, or in addition to, the element type. This applies to
local variables, fields, and method parameters. For example:
// This line declares local variables of type int, int[] and int[][]
int justOne, arrayOfThem[], arrayOfArrays[][];

// These three lines declare fields of the same array type:
public String[][] aas1; // Preferred Java syntax
public String aas2[][]; // C syntax
public String[] aas3[]; // Confusing hybrid syntax

// This method signature includes two parameters with the same type
public static double dotProduct(double[] x, double y[]) { ... }
This compatibility syntax is uncommon, and its use is strongly
discouraged.

Creating and Initializing Arrays

 To create an array value in Java,
you use the new

keyword, just as you do to create an object. Array types
don’t have constructors, but you are required to
specify a length whenever you create an array.
Specify the desired size of your array as a nonnegative integer
between square brackets:
byte[] buffer = new byte[1024]; // Create a new array to hold 1024 bytes
String[] lines = new String[50]; // Create an array of 50 references to strings
When you create an array with this syntax, each of the array elements
is automatically initialized to the same default value that is used
for the fields of a class: false for
boolean elements, '\u0000' for
char elements, 0 for integer elements, 0.0 for
floating-point elements, and null for elements of
reference type.
Array creation expressions can also be used to create and initialize
a multidimensional rectangular array of arrays. This syntax is
somewhat more complicated and is explained later in this section.
Array initializers

 To
create an array and initialize its elements in a single expression,
omit the array length and follow the square brackets with a

 comma-separated list of expressions
within curly braces. The type of each expression must be assignable
to the element type of the array, of course. The length of the array
that is created is equal to the number of expressions. It is legal,
but not necessary, to include a trailing comma following the last
expression in the list. For example:
String[] greetings = new String[] { "Hello", "Hi", "Howdy" };
int[] smallPrimes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, };
Note that this syntax allows arrays to be created, initialized, and
used without ever being assigned to a variable. In a sense these
array creation expressions are anonymous array literals. Here are
examples:
// Call a method, passing an anonymous array literal that contains two strings
String response = askQuestion("Do you want to quit?",
 new String[] {"Yes", "No"});

// Call another method with an anonymous array (of anonymous objects)
double d = computeAreaOfTriangle(new Point[] { new Point(1,2),
 new Point(3,4),
 new Point(3,2) });
When an array initializer is part of a variable declaration, you may
omit the new keyword and element type and list the
desired array elements within curly braces:
String[] greetings = { "Hello", "Hi", "Howdy" };
int[] powersOfTwo = {1, 2, 4, 8, 16, 32, 64, 128};

 The Java Virtual Machine
architecture does not support any kind of efficient array
initialization. In other words, array literals are created and
initialized when the program is run, not when the program is
compiled. Consider the following array literal:
int[] perfectNumbers = {6, 28};
This is compiled into Java byte codes that are equivalent to:
int[] perfectNumbers = new int[2];
perfectNumbers[0] = 6;
perfectNumbers[1] = 28;
If you want to initialize a large array, you should think twice
before including the values literally in the program, since the Java
compiler has to emit lots of Java byte codes to initialize the array.
It may be more space-efficient to store your data in an external file
and read it into the program at runtime.
The fact that Java does all array initialization at runtime has an
important corollary, however. It means that the expressions in an
array initializer may be computed at runtime and need not be
compile-time constants. For example:
Point[] points = { circle1.getCenterPoint(), circle2.getCenterPoint() };

Using Arrays

Once an array has been created, you are ready to start using it. The
following sections explain basic access to the elements of an array
and cover common idioms of array usage such as iterating through the
elements of an array and copying an array or part of an array.
Accessing array elements

 The
elements of an array are variables. When an array element appears in
an expression, it evaluates to the value held in the element. And
when an array element appears on the left-hand side of an assignment
operator, a new value is stored into that element. Unlike a normal
variable, however, an array element has no name, only a number. Array
elements are accessed using a square bracket notation. If
a is an expression that evaluates to an array
reference, you index that array and refer to a specific element with
a[i], where i is an integer
literal or an expression that evaluates to an int.
For example:
String[] responses = new String[2]; // Create an array of two strings
responses[0] = "Yes"; // Set the first element of the array
responses[1] = "No"; // Set the second element of the array

// Now read these array elements
System.out.println(question + " (" + responses[0] + "/" +
 responses[1] + "): ");

// Both the array reference and the array index may be more complex expressions
double datum = data.getMatrix()[data.row()*data.numColumns() +
 data.column()];
The array index expression must be of type int, or
a type that can be widened to an int:
byte, short, or even
char. It is obviously not legal to index an array
with a boolean, float, or
double value. Remember that the
length field of an array is an
int and that arrays may not have more than
Integer.MAX_VALUE elements. Indexing an array with
an expression of type long generates a
compile-time error, even if the value of that expression at runtime
would be within the range of an int.

Array bounds

 Remember
that the first element of an array a is
a[0] , the second element is
a[1] and the last is
a[a.length-1]. If you are accustomed to a language
in which the arrays are 1-based, 0-based arrays take some getting
used to.
A common bug involving arrays is use of an
index that is too small (a
negative index) or too large (greater than or equal to the array
length). In languages like C or
C++, accessing elements before the beginning or after the end of an
array yields unpredictable behavior that can vary from invocation to
invocation and platform to platform. Such bugs may not always be
caught, and if a failure occurs, it may be at some later time. While
it is just as easy to write faulty array indexing code in Java, Java
guarantees predictable results by checking every array access at
runtime. If an array index is too small or too large, Java throws an
ArrayIndexOutOfBoundsException

immediately.

Iterating arrays

 It
is common to write loops that iterate through each of the elements of
an array in order to perform some operation on it. This is typically
done with a for
 loop. The following code, for example,
computes the sum of an array of integers:
int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19 };
int sumOfPrimes = 0;
for(int i = 0; i < primes.length; i++)
 sumOfPrimes += primes[i];
The structure of this for loop is idiomatic, and
you’ll see it frequently.
In Java 5.0 and later, arrays can also be iterated with the
for/in
 loop. The summing code could be
rewritten succinctly as follows:
for(int p : primes) sumOfPrimes += p;

Copying arrays

All
array
types implement the
Cloneable

 interface, and any array can be copied by
invoking its clone() method. Note that a cast is
required to convert the return value to the appropriate array type,
but that the clone() method of arrays is
guaranteed not to throw
CloneNotSupportedException
 :
int[] data = { 1, 2, 3 };
int[] copy = (int[]) data.clone();
The clone() method makes a shallow copy. If the
element type of the array is a reference type, only the references
are copied, not the referenced objects themselves. Because the copy
is shallow, any array can be cloned, even if the element type is not
itself Cloneable.
Sometimes you simply want to copy elements from one existing array to
another existing array. The System.arraycopy(
)

method is designed to do this efficiently, and you can assume that
Java VM implementations performs this method using high-speed block
copy operations on the underlying hardware.

 arraycopy() is a straightforward function that is
difficult to use only because it has five arguments to remember.
First pass the source array from which elements are to be copied.
Second, pass the index of the start element in that array. Pass the
destination array and the destination index as the third and fourth
arguments. Finally, as the fifth argument, specify the number of
elements to be copied.

 arraycopy() works correctly even for overlapping
copies within the same array. For example, if you’ve
“deleted” the element at index
0 from array a and want to
shift the elements between indexes 1 and
n down one so that they occupy indexes
0 through n-1 you could do
this:
System.arraycopy(a, 1, a, 0, n);

Array utilities

The
java.util.Arrays
 class contains a number of static
utility methods for working with arrays. Most of these methods are
heavily overloaded, with versions for arrays of each primitive type
and another version for arrays of objects. The sort(
)

 and
binarySearch() methods are particularly useful
for sorting and
searching
arrays. The equals()
 method
allows you to compare the content of two arrays. The
Arrays.toString()
 method is
useful when you want to convert array content to a string, such as
for debugging or logging output.
As of Java 5.0, the Arrays class includes
deepEquals()

 , deepHashCode(),
and deepToString() methods that work correctly
for multidimensional arrays.

Multidimensional Arrays

 As we’ve seen, an array
type is written as the element type followed by a pair of square
brackets. An array of
char is char[], and an array
of arrays of char is char[][
]. When the elements of an array are themselves arrays, we
say that the array is multidimensional. In order
to work with multidimensional arrays, you need to understand a few
additional details.

 Imagine that you want to
use a multidimensional array to represent a multiplication table:
int[][] products; // A multiplication table
Each of the pairs of square brackets represents one dimension, so
this is a two-dimensional array. To access a single
int element of this two-dimensional array, you
must specify two index values, one for each dimension. Assuming that
this array was actually initialized as a multiplication table, the
int value stored at any given element would be the
product of the two indexes. That is,
products[2][4] would be 8, and
products[3][7] would be 21.
To create a new multidimensional array, use the
new keyword and specify the size of both
dimensions of the array. For example:
int[][] products = new int[10][10];
In some languages, an array like this would be created as a single
block of 100 int values. Java does not work this
way. This line of code does three things:
	Declares a variable named products to hold an
array of arrays of int.

	Creates a 10-element array to hold 10 arrays of
int.

	Creates 10 more arrays, each of which is a 10-element array of
int. It assigns each of these 10 new arrays to the
elements of the initial array. The default value of every
int element of each of these 10 new arrays is 0.

To put this another way, the previous single line of code is
equivalent to the following code:
int[][] products = new int[10][]; // An array to hold 10 int[] values
for(int i = 0; i < 10; i++) // Loop 10 times...
 products[i] = new int[10]; // ...and create 10 arrays

 The
new keyword performs this additional
initialization automatically for you. It works with arrays with more
than two dimensions as well:
float[][][] globalTemperatureData = new float[360][180][100];
When using new with multidimensional arrays, you
do not have to specify a size for all dimensions of the array, only
the leftmost dimension or dimensions. For example, the following two
lines are legal:
float[][][] globalTemperatureData = new float[360][][];
float[][][] globalTemperatureData = new float[360][180][];
The first line creates a single-dimensional array, where each element
of the array can hold a float[][]. The second
line creates a two-dimensional array, where each element of the array
is a float[]. If you specify a size for only some
of the dimensions of an array, however, those dimensions must be the
leftmost ones. The following lines are not legal:
float[][][] globalTemperatureData = new float[360][][100]; // Error!
float[][][] globalTemperatureData = new float[][180][100]; // Error!

 Like a one-dimensional array, a
multidimensional array can be initialized using an array initializer.
Simply use nested sets of curly braces to nest arrays within arrays.
For example, we can declare, create, and initialize a 55
multiplication table like this:
int[][] products = { {0, 0, 0, 0, 0},
 {0, 1, 2, 3, 4},
 {0, 2, 4, 6, 8},
 {0, 3, 6, 9, 12},
 {0, 4, 8, 12, 16} };
Or, if you want to use a multidimensional array without declaring a
variable, you can use the anonymous initializer syntax:
boolean response = bilingualQuestion(question, new String[][] {
 { "Yes", "No" },
 { "Oui", "Non" }});

 When you create a multidimensional array
using the new keyword, you always get a
rectangular
 array: one in which all the array values
for a given dimension have the same size. This is perfect for
rectangular data structures, such as matrices. However, because
multidimensional arrays are implemented as arrays of arrays in Java,
instead of as a single rectangular block of elements, you are in no
way constrained to use rectangular arrays. For example, since our
multiplication table is symmetrical diagonally from top left to
bottom right, we can represent the same information in a
nonrectangular array with fewer elements:
int[][] products = { {0},
 {0, 1},
 {0, 2, 4},
 {0, 3, 6, 9},
 {0, 4, 8, 12, 16} };

 When
working with multidimensional arrays, you’ll often
find yourself using nested loops to create or initialize them. For
example, you can create and initialize a large triangular
multiplication table as follows:
int[][] products = new int[12][]; // An array of 12 arrays of int.
for(int row = 0; row < 12; row++) { // For each element of that array,
 products[row] = new int[row+1]; // allocate an array of int.
 for(int col = 0; col < row+1; col++) // For each element of the int[],
 products[row][col] = row * col; // initialize it to the product.
}

[7] There
is a terminology difficulty when discussing arrays. Unlike with
classes and their instances, we use the term
“array” for both the array type and
the array instance. In practice, it is usually clear from context
whether a type or a value is being discussed.

Reference Types

 Now that
we’ve covered arrays and introduced classes and
objects, we can turn to a more general description of
reference types. Classes and arrays are two of
Java’s five kinds of reference types. Classes were
introduced earlier and are covered in complete detail, along with
interfaces, in Chapter 3.
Enumerated types and annotation types are reference types introduced
in Java 5.0 (see Chapter 4).
This section does not cover specific syntax for any particular
reference type, but instead explains the general behavior of
reference types and illustrates how they differ from
Java’s primitive types. In this section, the term
object refers to a value or instance of any
reference type, including arrays.
Reference vs. Primitive Types

Reference types and objects differ substantially from

 primitive types and their primitive
values:
	Eight primitive types are defined by the Java language. Reference
types are user-defined, so there is an unlimited number of them. For
example, a program might define a class named
Point and use objects of this newly defined type
to store and manipulate X,Y points in a Cartesian coordinate system.
The same program might use an array of characters—of type
char[]—to store text and might use an array
of Point objects—of type Point[
]—to store a sequence of points.

	Primitive types represent single values. Reference types are
aggregate types that hold zero or more primitive values or objects.
Our hypothetical Point class, for example, might
hold two double values to represent the X and Y
coordinates of the points. The char[] and
Point[] array types are obviously aggregate types
because they hold a sequence of primitive char
values or Point objects.

	Primitive types require between one and eight bytes of memory. When a
primitive value is stored in a variable or passed to a method, the
computer makes a copy of the bytes that hold the value. Objects, on
the other hand, may require substantially more memory. Memory to
store an object is dynamically allocated on the heap when the object
is created and this memory is automatically
“garbage-collected” when the object
is no longer needed. When an object is assigned to a variable or
passed to a method, the memory that represents the object is not
copied. Instead, only a reference to that memory is stored in the
variable or passed to the method.

This last difference between primitive and reference types explains
why reference types are so named. The sections that follow are
devoted to exploring the substantial differences between types that
are manipulated by value and types that are manipulated by reference.
Before moving on, however, it is worth briefly considering the nature
of references. A reference is simply some kind
of reference to an object. References are completely opaque in Java
and the representation of a reference is an implementation detail of
the Java interpreter. If you are a C
programmer, however, you can safely imagine a reference as a
pointer or a memory address. Remember,
though, that Java programs cannot manipulate references in any way.
Unlike pointers in C and C++, references cannot be converted to or
from integers, and they cannot be incremented or decremented. C and
C++ programmers should also note that Java does not support the
& address-of operator or the
*

 and -> dereference
operators. In Java, primitive types are always handled exclusively by
value, and objects are always handled exclusively by reference: the
. operator in Java is more like the
-> operator in C and C++ than it is like the
. operator of those languages.

Copying Objects

 The
following code manipulates a primitive int value:
int x = 42;
int y = x;
After these lines execute, the variable y contains
a copy of the value held in the variable x. Inside
the Java VM, there are two independent copies of the 32-bit integer
42.
Now think about what happens if we run the same basic code but use a
reference type instead of a primitive type:
Point p = new Point(1.0, 2.0);
Point q = p;
After this code runs, the variable q holds a copy
of the reference held in the variable p. There is
still only one copy of the Point object in the VM,
but there are now two copies of the reference to that object. This
has some important implications. Suppose the two previous lines of
code are followed by this code:
System.out.println(p.x); // Print out the X coordinate of p: 1.0
q.x = 13.0; // Now change the X coordinate of q
System.out.println(p.x); // Print out p.x again; this time it is 13.0
Since the variables p and q
hold references to the same object, either variable can be used to
make changes to the object, and those changes are visible through the
other variable as well.
This behavior is not specific to objects; the same thing happens with
arrays, as illustrated by the following code:
char[] greet = { 'h','e','l','l','o' }; // greet holds an array reference
char[] cuss = greet; // cuss holds the same reference
cuss[4] = '!'; // Use reference to change an element
System.out.println(greet); // Prints "hell!"
A similar difference in behavior between primitive types and
reference types occurs when arguments are passed to methods. Consider
the following method:
void changePrimitive(int x) {
 while(x > 0)
 System.out.println(x--);
}
When this method is invoked, the method is given a copy of the
argument used to invoke the method in the parameter
x. The code in the method uses
x as a loop counter and decrements it to zero.
Since x is a primitive type, the method has its
own private copy of this value, so this is a perfectly reasonable
thing to do.
On the other hand, consider what happens if we modify the method so
that the parameter is a reference type:
void changeReference(Point p) {
 while(p.x > 0)
 System.out.println(p.x--);
}
When this method is invoked, it is passed a private copy of a
reference to a Point object and can use this
reference to change the Point object. Consider the
following:
Point q = new Point(3.0, 4.5); // A point with an X coordinate of 3
changeReference(q); // Prints 3,2,1 and modifies the Point
System.out.println(q.x); // The X coordinate of q is now 0!
When the changeReference() method is invoked, it
is passed a copy of the reference held in variable
q. Now both the variable q and
the method parameter p hold references to the same
object. The method can use its reference to change the contents of
the object. Note, however, that it cannot change the contents of the
variable q. In other words, the method can change
the Point object beyond recognition, but it cannot
change the fact that the variable q refers to that
object.
The title of this section is “Copying
Objects,” but, so far, we’ve only
seen copies of references to objects, not copies of the objects and
arrays themselves. To make an actual copy of an object, you must use
the special clone() method (inherited by all
objects from
java.lang.Object):

Point p = new Point(1,2); // p refers to one object
Point q = (Point) p.clone(); // q refers to a copy of that object
q.y = 42; // Modify the copied object, but not the original

int[] data = {1,2,3,4,5}; // An array
int[] copy = (int[]) data.clone(); // A copy of the array
Note that a cast is necessary to coerce the return value of the
clone() method to the correct type. There are a
couple of points you should be aware of when using clone(
). First, not all objects can be cloned. Java only allows
an object to be cloned if the object’s class has
explicitly declared itself to be cloneable by implementing the
Cloneable interface. (We haven’t
discussed interfaces or how they are implemented yet; that is covered
in Chapter 3.) The definition of
Point that we showed earlier does not actually
implement this interface, so our Point type, as
implemented, is not cloneable. Note, however, that arrays are always
cloneable. If you call the clone() method for a
noncloneable object, it throws a
CloneNotSupportedException
 .
When you use the clone() method, you may want to
use it within a try block to catch this exception.
The
 second thing you need to understand
about clone() is that, by default, it creates a
shallow copy of an object. The copied object contains copies of all
the primitive values and references in the original object. In other
words, any references in the object are copied, not cloned;
clone() does not recursively make copies of the
objects referred to by those references. A class may need to override
this shallow copy behavior by defining its own version of the
clone() method that explicitly performs a deeper
copy where needed. To understand the shallow copy behavior of
clone(), consider cloning a two-dimensional array
of arrays:
int[][] data = {{1,2,3}, {4,5}}; // An array of 2 references
int[][] copy = (int[][]) data.clone(); // Copy the 2 refs to a new array
copy[0][0] = 99; // This changes data[0][0] too!
copy[1] = new int[] {7,8,9}; // This does not change data[1]
If you want to make a deep copy of this multidimensional array,
you have to copy each dimension explicitly:
int[][] data = {{1,2,3}, {4,5}}; // An array of 2 references
int[][] copy = new int[data.length][]; // A new array to hold copied arrays
for(int i = 0; i < data.length; i++)
 copy[i] = (int[]) data[i].clone();

Comparing Objects

 We’ve seen that
primitive types and reference types differ significantly in the way
they are assigned to variables, passed to methods, and copied. The
types also differ in the way they are compared for equality. When
used with primitive values, the
 equality operator (=
=) simply tests whether two values are identical (i.e.,
whether they have exactly the same bits). With reference types,
however, = = compares references, not actual
objects. In other words, = = tests whether two
references refer to the same object; it does not test whether two
objects have the same content. For example:
String letter = "o";
String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s = = t) System.out.println("equal"); // But they are not equal!

byte[] a = { 1, 2, 3 }; // An array.
byte[] b = (byte[]) a.clone(); // A copy with identical content.
if (a = = b) System.out.println("equal"); // But they are not equal!
When working with reference types, there are two kinds of equality:
equality of reference and equality of object. It is important to
distinguish between these two kinds of equality. One way to do this
is to use the word "identical” when talking
about equality of references and the word
“equal” when talking about two
distinct objects that have the same content. To test two nonidentical
objects for equality, pass one of them to the equals(
) method of the other:
String letter = "o";
String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s.equals(t)) // And the equals() method
 System.out.println("equal"); // tells us so.
All objects inherit an equals(
)
 method
(from Object), but the default implementation
simply uses = = to test for identity of
references, not equality of content. A class that wants to allow
objects to be compared for equality can define its own version of the
equals() method. Our Point
class does not do this, but the String class does,
as indicated in the code example. You can call the equals(
) method on an
array, but it is the same as using
the = = operator, because arrays always inherit
the default equals() method that compares
references rather than array content. You can compare arrays for
equality with the convenience method
java.util.Arrays.equals(
)
 .

Terminology: Pass by Value

 I’ve
said that Java handles objects “by
reference.” Don’t confuse this with
the phrase “pass by reference.”
"Pass by reference” is
a term used to describe the method-calling conventions of some
programming languages. In a pass-by-reference language,
values—even primitive values—are not passed directly to
methods. Instead, methods are always passed references to values.
Thus, if the method modifies its parameters, those modifications are
visible when the method returns, even for primitive types.
Java does not do this; it is a
“pass by value” language. However,
when a reference type is involved, the value that is passed is a
reference. But this is still not the same as pass-by-reference. If
Java were a pass-by-reference language, when a reference type is
passed to a method, it would be passed as a reference to the
reference.

Memory Allocation and Garbage Collection

 As we’ve already
noted, objects are composite values that can contain a number of
other values and may require a substantial amount of memory. When you
use the new keyword to create a new object or use
an object literal in your program, Java automatically creates the
object for you, allocating whatever amount of memory is necessary.
You don’t need to do anything to make this happen.
In addition, Java also automatically reclaims that memory for reuse
when it is no longer needed. It does this through a process called
garbage collection. An object is considered
garbage when no references to it are stored in any variables, the
fields of any objects, or the elements of any arrays. For example:
Point p = new Point(1,2); // Create an object
double d = p.distanceFromOrigin(); // Use it for something
p = new Point(2,3); // Create a new object
After the Java interpreter executes the third line, a reference to
the new Point object has replaced the reference to
the first one. No references to the first object remain, so it is
garbage. At some point, the garbage collector discovers this and
reclaims the memory used by the object.

 C programmers, who are used to
using malloc() and free() to
manage memory, and C++ programmers, who are used to explicitly
deleting their objects with delete, may find it a
little hard to relinquish control and trust the garbage collector.
Even though it seems like magic, it really works! There is a slight,
but usually negligible, performance penalty due to the use of garbage
collection. However, having garbage collection built into the
language dramatically reduces the occurrence of memory leaks and
related bugs and almost always improves programmer productivity.

Reference Type Conversions

 Objects
can be converted between different reference types. As with primitive
types, reference type conversions can be widening conversions (allowed
automatically by the compiler) or narrowing conversions that require a
cast (and possibly a runtime check). In order to understand reference
type conversions, you need to understand that reference types form a
hierarchy, usually called the class
hierarchy

 .
Every Java reference type extends some other
type, known as its
superclass
 .
A type inherits the fields and methods of its superclass and then
defines its own additional fields and methods. A special class named
Object
 serves as the root of the class
hierarchy in Java. All Java classes extend Object
directly or indirectly. The Object class defines a
number of special methods that are inherited (or overridden) by all
objects.
The predefined String class and the
Point class we discussed earlier in this chapter
both extend Object. Thus, we can say that all
String objects are also Object
objects. We can also say that all Point objects
are Object objects. The opposite is not true,
however. We cannot say that every Object is a
String because, as we’ve just
seen, some Object objects are
Point objects.
With this simple understanding of the class hierarchy, we can return
to the rules of reference type conversion:
	An object cannot be converted to an unrelated type. The Java compiler
does not allow you to convert a String to a
Point, for example, even if you use a cast
operator.

	An object can be converted to the type of its superclass or of any
ancestor class. This is a widening conversion, so no cast is
required. For example, a String value can be
assigned to a variable of type Object or passed to
a method where an Object parameter is expected.
Note that no conversion is actually performed; the object is simply
treated as if it were an instance of the superclass.

	An object can be converted to the type of a subclass, but this is a
narrowing conversion and requires a
cast. The Java compiler
provisionally allows this kind of conversion, but the Java
interpreter checks at runtime to make sure it is valid. Only cast an
object to the type of a subclass if you are sure, based on the logic
of your program, that the object is actually an instance of the
subclass. If it is not, the interpreter throws a
ClassCastException
 .
For example, if we assign a String object to a
variable of type Object, we can later cast the
value of that variable back to type String:

Object o = "string"; // Widening conversion from String to Object
// Later in the program...
String s = (String) o; // Narrowing conversion from Object to String

 Arrays are objects and follow some
conversion rules of their own. First, any array can be converted to
an
 Object value through a
widening conversion. A narrowing conversion with a cast can convert
such an object value back to an array. For example:
Object o = new int[] {1,2,3}; // Widening conversion from array to Object
// Later in the program...
int[] a = (int[]) o; // Narrowing conversion back to array type
In addition to converting an array to an object, an array can be
converted to another type of array if the “base
types” of the two arrays are reference types that
can themselves be converted. For example:
// Here is an array of strings.
String[] strings = new String[] { "hi", "there" };
// A widening conversion to CharSequence[] is allowed because String
// can be widened to CharSequence
CharSequence[] sequences = strings;
// The narrowing conversion back to String[] requires a cast.
strings = (String[]) sequences;
// This is an array of arrays of strings
String[][] s = new String[][] { strings };
// It cannot be converted to CharSequence[] because String[] cannot be
// converted to CharSequence: the number of dimensions don't match
sequences = s; // This line will not compile
// s can be converted to Object or Object[], however because all array types
// (including String[] and String[][]) can be converted to Object.
Object[] objects = s;
Note that these array conversion rules apply only to arrays of
objects and arrays of arrays. An array of
primitive type cannot be
converted to any other array type, even if the primitive base types
can be converted:
// Can't convert int[] to double[] even though int can be widened to double
double[] data = new int[] {1,2,3}; // This line causes a compilation error
// This line is legal, however, since int[] can be converted to Object
Object[] objects = new int[][] {{1,2},{3,4}};

Boxing and Unboxing Conversions

 Primitive
types and reference types behave
quite differently. It is sometimes useful to treat primitive values
as objects, and for this reason, the Java platform includes wrapper
classes for each of the primitive types. Boolean,
Byte, Short,
Character, Integer,
Long, Float, and
Double are immutable classes whose instances each
hold a single primitive value. These wrapper classes are usually used
when you want to store primitive values in
collections
such as java.util.List:

List numbers = new ArrayList(); // Create a List collection
numbers.add(new Integer(-1)); // Store a wrapped primitive
int i = ((Integer)numbers.get(0)).intValue(); // Extract the primitive value
Prior to Java 5.0, no conversions between primitive types and
reference types were allowed. This code explicitly calls the
Integer() constructor to wrap a primitive
int in an object and explicitly calls the
intValue() method to extract a primitive value
from the wrapper object.

 Java 5.0 introduces two new types
of conversions known as boxing and unboxing conversions. Boxing
conversions convert a primitive value to its corresponding wrapper
object and unboxing conversions do the opposite. You may explicitly
specify a boxing or unboxing conversion with a cast, but this is
unnecessary since these conversions are automatically performed when
you assign a value to a variable or pass a value to a method.
Furthermore, unboxing conversions are also automatic if you use a
wrapper object when a Java operator or statement expects a primitive
value. Because Java 5.0 performs boxing and unboxing automatically,
this new language feature is often known as
autoboxing
 .
Here are some examples of automatic boxing and
unboxing conversions:
Integer i = 0; // int literal 0 is boxed into an Integer object
Number n = 0.0f; // float literal is boxed into Float and widened to Number
Integer i = 1; // this is a boxing conversion
int j = i; // i is unboxed here
i++; // i is unboxed, incremented, and then boxed up again
Integer k = i+2; // i is unboxed and the sum is boxed up again
i = null;
j = i; // unboxing here throws a NullPointerException
Automatic boxing and unboxing conversions make it much simple to use
primitive values with collection classes. The list-of-numbers code
earlier in this section can be translated as follows in Java 5.0.
Note that the translation also uses generics, another new feature of
Java 5.0 that is covered in Chapter 4.
List<Integer> numbers = new ArrayList<Integer>(); // Create a List of Integer
numbers.add(-1); // Box int to Integer
int i = numbers.get(0); // Unbox Integer to int

Packages and the Java Namespace

A
package

is a

 named
collection of classes, interfaces, and other reference types.
Packages serve to group related classes and define a namespace for
the classes they contain.
The core classes of the Java platform are in packages whose names
begin with java. For example, the most fundamental
classes of the language are in the package
java.lang. Various utility classes are in
java.util. Classes for input and output are in
java.io, and classes for networking are in
java.net. Some of these packages contain
subpackages, such as java.lang.reflect and
java.util.regex. Extensions to the
Java platform that have been
standardized by Sun typically have package names that begin with
javax. Some of these extensions, such as
javax.swing and its myriad subpackages, were later
adopted into the core platform itself. Finally, the Java platform
also includes several "endorsed standards,”
which have packages named after the standards body that created them,
such as org.w3c and org.omg.

 Every class has both a
simple name, which is the name given to it in its definition, and a
fully qualified name, which includes the name of the package of which
it is a part. The String class, for example, is
part of the java.lang package, so its fully
qualified name is java.lang.String.
This section explains how to place your own classes and interfaces
into a package and how to choose a package name that
won’t conflict with anyone else’s
package name. Next, it explains how to selectively import type names
into the namespace so that you don’t have to type
the package name of every class or interface you use. Finally, the
section explains a feature that is new in Java 5.0: the ability to
import static members of types into the namespace so that you
don’t need to prefix these with a package name
or a class name.
Package Declaration

 To specify the package a class
is to be part of, you use a package declaration.
The package
 keyword,
if it appears, must be the first token of Java code (i.e., the first
thing other than comments and space) in the Java file. The keyword
should be followed by the name of the desired package and a
semicolon. Consider a Java file that begins with this directive:
package com.davidflanagan.examples;
All classes defined by this file are part of the package
com.davidflanagan.examples.

 If no package
directive appears in a Java file, all classes defined in that file
are part of an unnamed default package. In this case, the qualified
and unqualified names of a class are the same. The possibility of
naming conflicts means that you should use this default package only
for very simple code or early on in the development process of a
larger project.

Globally Unique Package Names

 One of the important functions of packages
is to partition the Java namespace and prevent name collisions
between classes. It is only their package names that keep the
java.util.List and
java.awt.List classes distinct, for example. In
order for this to work, however, package names must themselves be
distinct. As the developer of Java, Sun controls all package names
that begin with java

 ,
javax, and sun.

 For the rest of us, Sun
proposes a package-naming scheme, which, if followed correctly,
guarantees globally unique package names. The scheme is to use your
Internet domain name, with its elements reversed, as the prefix for
all your package names. My web site is at
http://davidflanagan.com, so all my Java
packages begin with com.davidflanagan. It is up to
me to decide how to partition the namespace below
com.davidflanagan, but since I own that domain
name, no other person or organization who is playing by the rules can
define a package with the same name as any of mine.
Note that these package-naming rules apply primarily to API
developers. If other programmers will be using classes that you
develop along with unknown other classes, it is important that your
package name be globally unique. On the other hand, if you are
developing a Java application and will not be releasing any of the
classes for reuse by others, you know the complete set of classes
that your application will be deployed with and do not have to worry
about unforeseen naming conflicts. In this case, you can choose a
package naming scheme for your own convenience rather than for global
uniqueness. One common approach is to use the application name as the
main package name (it may have subpackages beneath it).

Importing Types

 When referring to a class or interface
in your Java code, you must, by default, use the
fully qualified name of the type,
including the package name. If you’re writing code
to manipulate a file and need to use the File
class of the java.io package, you must type
java.io.File. This rule has three exceptions:
	Types from the package java.lang are so important
and so commonly used that they can always be referred to by their
simple
names.

	The code in a type p.T may refer to other types
defined in the package p by their simple names.

	Types that have been imported into the namespace
with an import declaration may be referred to by
their simple names.

The first two exceptions are known as
"automatic imports.” The
types from java.lang and the current package are
“imported” into the namespace so
that they can be used without their package name. Typing the package
name of commonly used types that are not in
java.lang or the current package quickly becomes
tedious, and so it is also possible to explicitly import types from
other packages into the namespace. This is done with the
import
 declaration.

 import declarations must appear at the start of a
Java file, immediately after the package
declaration, if there is one, and before any type definitions. You
may use any number of import declarations in a
file. An import declaration applies to all type
definitions in the file (but not to any import
declarations that follow it).
The import declaration has two forms. To import a
single type into the namespace, follow the import
keyword with the name of the type and a semicolon:
import java.io.File; // Now we can type File instead of java.io.File
This is known as the “single type
import” declaration.
The other form of import is the
"on-demand type import.”
In this form, you specify the name of a package followed the
characters
 .* to
indicate that any type from that package may be used without its
package name. Thus, if you want to use several other classes from the
java.io package in addition to the
File class, you can simply import the entire
package:
import java.io.*; // Now we can use simple names for all classes in java.io
This on-demand import syntax does not apply to
subpackages. If I import the java.util package, I
must still refer to the
java.util.zip.ZipInputStream class by its fully
qualified name.
Using an on-demand type import declaration is not the same as
explicitly writing out a single type import declaration for every
type in the package. It is more like an explicit single type import
for every type in the package that you actually
use in your code. This is the reason it’s
called “on demand”; types are
imported as you use them.
Naming conflicts and shadowing

 import

 declarations are invaluable to Java
programming. They do expose us to the possibility of
naming
conflicts, however. Consider the packages
java.util and java.awt. Both
contain types named List
 .
java.util.List is an important and commonly used
interface. The java.awt package contains a number
of important types that are commonly used in client-side
applications, but java.awt.List has been
superseded and is not one of these important types. It is illegal to
import both java.util.List and
java.awt.List in the same Java file. The following
single type import declarations produce a compilation error:
import java.util.List;
import java.awt.List;
Using on-demand type imports for the two
packages is legal:
import java.util.*; // For collections and other utilities.
import java.awt.*; // For fonts, colors, and graphics.
Difficulty arises, however, if you actually try to use the type
List. This type can be imported
“on demand” from either package,
and any attempt to use List as an unqualified type
name produces a compilation error. The workaround, in this case, is
to explicitly specify the package name you want.
Because java.util.List is much more commonly used
than java.awt.List, it is useful to combine the
two on-demand type import declarations with a single-type import
declaration that serves to disambiguate what we mean when we say
List:
import java.util.*; // For collections and other utilities.
import java.awt.*; // For fonts, colors, and graphics.
import java.util.List; // To disambiguate from java.awt.List
With these import declarations in place, we can
use List to mean the
java.util.List interface. If we actually need to
use the java.awt.List class, we can still do so as
long as we include its package name. There are no other naming
conflicts between java.util and
java.awt, and their types will be imported
“on demand” when we use them
without a package name.

Importing Static Members

 In Java 5.0 and later, you can import
the static members of types as well as types themselves using the
keywords import static. (Static members are
explained in Chapter 3. If you are not already
familiar with them, you may want to come back to this section later.)
Like type import declarations, these static import declarations come
in two forms: single static member import and on-demand static member
import. Suppose, for example, that you are writing a text-based
program that sends a lot of output to System.out.
In this case, you might use this single static member import to save
yourself typing:
import static java.lang.System.out;
With this import in place, you can then use out.print(
) instead of System.out.print(). Or
suppose you are writing a program that uses many of the the
trigonometric and other functions of the
Math
 class. In a program that is clearly
focused on numerical methods like this, having to repeatedly type the
class name “Math” does not add
clarity to your code; it just gets in the way. In this case, an
on-demand static member import may be appropriate:
import static java.lang.Math.*
With this import declaration, you are free to write concise
expressions like sqrt(abs(sin(x))) without having
to prefix the name of each static method with the class name
Math.
Another important use of import static
declarations is to import the names of
constants into your code.
This works particularly well with enumerated types (see Chapter 4). Suppose, for example that you want to use
the values of this enumerated type in code you are writing:
package climate.temperate;
enum Seasons { WINTER, SPRING, SUMMER, AUTUMN };
You could import the type
climate.temperate.Seasons and then prefix the
constants with the type name: Seasons.SPRING. For
more concise code, you could import the enumerated values themselves:
import static climate.temperate.Seasons.*;
Using static member import declarations for constants is generally a
better technique than implementing an interface that defines the
constants.
Static member imports and overloaded methods

A
static import declaration
imports a name, not any one specific member with
that name. Since Java allows method overloading and allows a type to
have fields and methods with the same name, a single static member
import declaration may actually import more than one member. Consider
this code:

import static java.util.Arrays.sort;
This declaration imports the name
“sort” into the namespace, not any
one of the 19 sort() methods defined by
java.util.Arrays. If you use the imported name
sort to invoke a method, the compiler will look at
the types of the method arguments to determine which method you mean.
It is even legal to import static methods with the same name from two
or more different types as long as the methods all have different
signatures. Here is one natural example:
import static java.util.Arrays.sort;
import static java.util.Collections.sort;
You might expect that this code would cause a syntax error. In fact,
it does not because the sort() methods defined by
the Collections class have different signatures
than all of the sort() methods defined by the
Arrays class. When you use the name
“sort” in your code, the compiler
looks at the types of the arguments to determine which of the 21
possible imported methods you mean.

Java File Structure

 This chapter has taken us from the
smallest to the largest elements of Java syntax, from individual
characters and tokens to operators, expressions, statements, and
methods, and on up to classes and packages. From a practical
standpoint, the unit of Java program structure you will be dealing
with most often is the Java file. A Java file is the smallest unit of
Java code that can be compiled by the Java compiler. A Java file
consists of:
	An optional package directive

	Zero or more import or import
static directives

	One or more type definitions

These elements can be interspersed with comments, of course, but they
must appear in this order. This is all there is to a Java file. All
Java statements (except the package and
import directives, which are not true statements)
must appear within methods, and all methods must appear within a type
definition.

 Java files have a couple of other
important restrictions. First, each file can contain at most one
class that is declared public. A
public class is one that is designed for use by
other classes in other packages. This restriction on public classes
only applies to top-level classes; a class can contain any number of
nested or inner classes that are declared public.
We’ll see more about the public
modifier and nested classes in Chapter 3.

 The
second restriction concerns the filename of a Java file. If a Java
file contains a public class, the name of the file
must be the same as the name of the class, with the extension
.java appended. Thus, if
Point is defined as a public
class, its source code must appear in a file named
Point.java. Regardless of whether your classes
are public or not, it is good programming practice
to define only one per file and to give the file the same name as the
class.

 When
a Java file is compiled, each of the classes it defines is compiled
into a separate class file that contains Java
byte codes to be interpreted by the Java Virtual Machine. A class
file has the same name as the class it defines, with the extension
.class appended. Thus, if the file
Point.java defines a class named
Point, a Java compiler compiles it to a file named
Point.class. On most systems, class files are
stored in directories that correspond to their package names. Thus,
the class com.davidflanagan.examples.Point is
defined by the class file
com/davidflanagan/examples/Point.class.

 The Java interpreter knows where the
class files for the standard system classes are located and can load
them as needed. When the interpreter runs a program that wants to use
a class named com.davidflanagan.examples.Point, it
knows that the code for that class is located in a directory named
com/davidflanagan/examples/ and, by default, it
“looks” in the current directory
for a subdirectory of that name. In order to tell the interpreter to
look in locations other than the current directory, you must use the
-classpath option when invoking the interpreter or
set the CLASSPATH environment variable. For
details, see the documentation for the Java interpreter,
java, in Chapter 8.

Defining and Running Java Programs

 A Java program consists of a set of
interacting class definitions. But not every Java class or Java file
defines a program. To create a program, you must define a class that
has a special method with the following signature:
public static void main(String[] args)
This main()
 method is the main entry point for your
program. It is where the Java interpreter starts running. This
method is passed an array of strings and returns no value. When
main() returns, the Java interpreter exits
(unless main() has created separate threads, in
which case the interpreter waits for all those threads to exit).
To run a Java program, you run the Java interpreter,
java
 , specifying the fully qualified name
of the class that contains the main() method.
Note that you specify the name of the class, not
the name of the class file that contains the class. Any additional
arguments you specify on the command line are passed to the
main() method as its String[]
parameter. You may also need to specify the
-classpath option (or -cp) to
tell the interpreter where to look for the classes needed by the
program. Consider the following command:
% java -classpath /usr/local/Jude com.davidflanagan.jude.Jude datafile.jude

 java is the command
to run the Java
interpreter. -classpath /usr/local/Jude tells
the interpreter where to look for .class files.
com.davidflanagan.jude.Jude is the name of the
program to run (i.e., the name of the class that defines the
main() method). Finally,
datafile.jude is a string that is passed to that
main() method as the single element of an array
of String objects.

 There is an easier way to run
programs. If a program and all its auxiliary classes (except those
that are part of the Java platform) have been properly bundled in a
Java archive (JAR) file, you can run the program simply by specifying
the name of the JAR file:
% java -jar /usr/local/Jude/jude.jar datafile.jude

Some operating systems make JAR files automatically executable. On
those systems, you can simply say:
 % /usr/local/Jude/jude.jar datafile.jude

See Chapter 8 for details.

Differences Between C and Java

 If you are a C or C++ programmer, you should
have found much of the syntax of Java—particularly at the level
of operators and statements—to be familiar. Because Java and C
are so similar in some ways, it is important for C and C++
programmers to understand where the similarities end. C and Java
differ in important ways, as summarized in the following list:
	No preprocessor
	Java does not include a preprocessor and does not define any
analogs of the #define,
#include, and #ifdef
directives. Constant definitions are replaced with
static
 final fields in Java.
(See the java.lang.Math.PI field for an example.)
Macro definitions are not available in Java, but advanced compiler
technology and inlining has made them less useful. Java does not
require an #include directive because Java has no
header files. Java class files contain both the class API and the
class implementation, and the compiler reads API information from
class files as necessary. Java lacks any form of conditional
compilation, but its cross-platform portability means that this
feature is rarely needed.

	No global variables
	
 Java defines a very clean
namespace.
Packages contain classes, classes contain fields and methods, and
methods contain local variables. But Java has no global variables,
and thus there is no possibility of namespace collisions among those
variables.

	Well-defined primitive type sizes
	All the primitive types in Java have well-defined
sizes. In C, the size of short,
int, and long types is
platform-dependent, which hampers portability.

	No pointers
	Java classes and arrays are reference types, and references to objects
and arrays are akin to pointers in C. Unlike C pointers, however,
references in Java are entirely opaque. There is no way to convert a
reference to a primitive type, and a reference cannot be incremented
or decremented. There is no address-of operator like
&, dereference operator like
* or ->, or
sizeof operator. Pointers are a notorious source
of bugs. Eliminating them simplifies the language and makes Java
programs more robust and secure.

	Garbage collection
	

 The Java Virtual Machine performs garbage
collection so that Java programmers do not have to explicitly manage
the memory used by all objects and arrays. This feature eliminates
another entire category of common bugs and all but eliminates memory
leaks from Java programs.

	No goto statement
	Java doesn’t support a
goto
 statement. Use of
goto except in certain well-defined circumstances
is regarded as poor programming practice. Java adds exception
handling and labeled break and
continue statements to the flow-control statements
offered by C. These are a good substitute for
goto.

	Variable declarations anywhere
	
 C requires local variable
declarations to be made at the beginning of a method or block, while
Java allows them anywhere in a method or block. Many programmers
prefer to keep all their variable declarations grouped together at
the top of a method, however.

	Forward references
	The Java
compiler is smarter than the C compiler in that it allows methods to
be invoked before they are defined. This eliminates the need to
declare functions in a header file before defining them in a program
file, as is done in C.

	Method overloading
	
 Java
programs can define multiple methods with the same name, as long as
the methods have different parameter lists.

	No struct and union types
	Java doesn’t support C
struct

 and union types. A
Java class can be thought of as an enhanced
struct, however.

	No bitfields
	Java doesn’t support the
(infrequently used) ability of C to specify the number of individual
bits occupied by fields of a struct.

	No typedef
	Java doesn’t support the
typedef
 keyword used in C to define aliases
for type names. Java’s lack of pointers makes its
type-naming scheme simpler and more consistent than
C’s, however, so many of the common uses of
typedef are not really necessary in Java.

	No method pointers
	
 C allows
you to store the address of a function in a variable and pass this
function pointer to other functions. You cannot do this with Java
methods, but you can often achieve similar results by passing an
object that implements a particular interface. Also, a Java method
can be represented and invoked through a
java.lang.reflect.Method object.

Chapter 3. Object-Oriented Programming in Java

 Now that we’ve
covered fundamental Java syntax, we are ready to begin
object-oriented programming in Java. All Java programs use objects,
and the type of an object is defined by its
class

 or interface.
Every Java program is defined as a class, and nontrivial programs
usually include a number of classes and interface definitions. This
chapter explains how to define new classes and interfaces and how to
do
 object-oriented programming with
them.[1]

This is a relatively long and detailed chapter, so we begin with an
overview and some definitions. A
class

is a collection of fields that hold values and methods that operate
on those values. Classes are the most fundamental structural element
of all Java programs. You cannot write Java code without defining a
class. All Java statements appear within methods, and all methods are
implemented within classes.
A class defines a new reference type, such as the
Point type defined in Chapter 2. An
object

is an instance of a class. The
Point class defines a type that is the set of all
possible two-dimensional points. A Point object is
a value of that type: it represents a single two-dimensional point.
Objects are usually created by
instantiating
 a class with the new
keyword and a constructor invocation, as shown here:
Point p = new Point(1.0, 2.0);
Constructors are covered in Section 3.3 later in this chapter.
A
 class definition consists of a
signature and a
body
 . The class signature defines the name of
the class and may also specify other important information. The body
of a class is a set of
members

enclosed in curly braces. The members of a class may include fields
and methods, constructors and initializers, and nested types.
Members can be static

 or nonstatic. A static member belongs
to the class itself while a nonstatic member is associated with the
instances of a class (see Section 3.2 later in this chapter).
The signature of a class may declare that the class
extends
 another class. The extended class is
known as the
superclass

and the extension is known as the
subclass
 .
A subclass

 inherits the
members of its superclass and may declare new members or
override

inherited methods with new implementations.
The signature of a class may also declare that the class
implements one or more interfaces. An
interface

is a reference type that defines method signatures but does not
include method bodies to implement the methods. A class that
implements an interface is required to provide bodies for the
interface’s methods. Instances of such a class are
also instances of the interface type that it implements.
The members of a class may have access
modifiers

 public

 ,
protected, or private, which
specify their visibility and accessibility to clients and to
subclasses. This allows classes to hide members that are not part of
their public API. When applied to fields, this ability to hide
members enables an object-oriented design technique known as
data
encapsulation

 .
Classes and interfaces are the most important of the five fundamental
reference types defined by Java. Arrays,
enumerated types (or “enums”) and
annotation types are the other three. Arrays are covered in Chapter 2. Enumerated types and annotation types were
introduced in Java 5.0 (see Chapter 4). Enums
are a specialized kind of class and annotation types are a
specialized kind of interface.

[1] If you do not have object-oriented (OO)
programming background, don’t worry; this chapter
does not assume any prior experience. If you do have experience with
OO programming, however, be careful. The term
“object-oriented” has different
meanings in different languages. Don’t assume that
Java works the same way as your favorite OO language. This is
particularly true for C++ programmers. Although Java and C++
borrow much syntax from C, the similarities between the two languages
do not go far beyond the level of syntax. Don’t let
your experience with C++ lull you into a false familiarity with
Java.

Class Definition Syntax

 At
its simplest level, a class definition consists of the
keyword
class followed by the name of the class and a set
of class members within curly braces. The class
keyword may be preceded by modifier keywords and annotations (see
Chapter 4). If the class extends another class,
the class name is followed by the extends keyword
and the name of the class being extended.
If the class
implements one or more interfaces then the class name or the
extends clause is followed by the
implements

keyword and a comma-separated list of interface names. For example:
public class Integer extends Number implements Serializable, Comparable {
 // class members go here
}
Generic class declarations include additional syntax that is covered
in Chapter 4.
Class declarations may include zero or more of the following

 modifiers:
	
 public

	A public
 class is visible to classes
defined outside of its package. See Section 3.6 later in this chapter.

	
 abstract

	
 An
abstract class is one whose implementation is
incomplete and cannot be instantiated. Any class with one or more
abstract methods must be declared
abstract.

	
 final

	The final
 modifier
specifies that the class may not be extended. Declaring a class
final may enable the Java VM to optimize its
methods.

	
 strictfp

	If a class is declared
strictfp
 , all its methods behave as if they
were declared strictfp. This rarely used modifier
is discussed in Section 2.6 in
Chapter 2.

A class cannot be both abstract and
final. By convention, if a class has more than one
modifier, they appear in the order shown.

Fields and Methods

 A
class can be viewed as a collection of data and code to operate on
that data. The data is stored in fields, and the code is organized
into methods. This section covers fields and methods, the two most
important kinds of class
members.
Fields and methods come in two distinct types: class members (also
known as static members) are associated with the
class itself, while instance

 members are
associated with individual instances of the class (i.e., with
objects). This gives us four kinds of members:
	Class
fields

	Class
methods

	Instance
fields

	Instance methods

 The simple class
definition for the class Circle, shown in Example 3-1, contains all four types of members.
Example 3-1. A simple class and its members
public class Circle {
 // A class field
 public static final double PI= 3.14159; // A useful constant

 // A class method: just compute a value based on the arguments
 public static double radiansToDegrees(double rads) {
 return rads * 180 / PI;
 }

 // An instance field
 public double r; // The radius of the circle

 // Two instance methods: they operate on the instance fields of an object
 public double area() { // Compute the area of the circle
 return PI * r * r;
 }
 public double circumference() { // Compute the circumference of the circle
 return 2 * PI * r;
 }
}

The following sections explain all four kinds of members. First,
however, we cover field declaration syntax. (Method declaration
syntax is covered in Section 2.6
later in this chapter.)
Field Declaration Syntax

 Field
declaration
syntax is much like the syntax for declaring local variables (see
Chapter 2) except that field definitions may
also include modifiers. The simplest field declaration consists of
the field type followed by the field name. The type may be preceded
by zero or more modifier keywords or annotations (see Chapter 4), and the name may be followed by an equals
sign and initializer expression that provides the initial value of
the field. If two or more fields share the same type and modifiers,
the type may be followed by a comma-separated list of field names and
initializers. Here are some valid field declarations:
int x = 1;
private String name;
public static final int DAYS_PER_WEEK = 7;
String[] daynames = new String[DAYS_PER_WEEK];
private int a = 17, b = 37, c = 53;
Field
modifiers
are comprised of zero or more of the following keywords:
	
 public

 , protected, private

	These access modifiers specify whether and where a field can be used
outside of the class that defines it. These important modifiers are
covered in Section 3.6 later in
this chapter. No more than one of these access modifiers may appear
in any field declaration.

	
 static

	If present, this modifier specifies that the field is associated with
the defining class itself rather than with each instance of the
class.

	
 final

	This modifier specifies that once the field has been initialized, its
value may never be changed. Fields that are both
static and final are
compile-time constants that the compiler can inline.
final fields can also be used to create classes
whose instances are immutable.

	
 transient

	This modifier specifies that a field is not part of the persistent
state of an object and that it need not be serialized along with the
rest of the object. Serialization is covered in Chapter 5.

	
 volatile

	Roughly speaking, a
volatile
 field is like a
synchronized method: safe for concurrent use by
two or more threads. More accurately, volatile
says that the value of a field must always be read from and flushed
to main memory, and that it may not be cached by a thread (in a
register or CPU cache).

Class Fields

 A class field is
associated with the class in which it is defined rather than with an
instance of the class. The following line declares a class field:
public static final double PI = 3.14159;
This line declares a field of type double named
PI and assigns it a value of 3.14159. As you can
see, a field declaration looks quite a bit like a local variable
declaration. The difference, of course, is that variables are defined
within methods while fields are members of classes.
The static

modifier says that the field is a class field. Class fields are
sometimes called static fields because of this
static modifier. The final
modifier says that the value of the field does not change. Since the
field PI represents a constant, we declare it
final so that it cannot be changed. It is a
convention in Java (and many other languages) that

 constants
are named with capital letters, which is why our field is named
PI, not pi. Defining constants
like this is a common use for class fields, meaning that the
static and
 final modifiers are
often used together. Not all class fields are constants, however. In
other words, a field can be declared static
without being declared final. Finally, the

 public modifier says
that anyone can use the field. This is a visibility modifier, and
we’ll discuss it and related modifiers in more
detail later in this chapter.
The key point to understand about a static field is that there is
only a single copy of it. This field is associated with the class
itself, not with instances of the class. If you look at the various
methods of the Circle class,
you’ll see that they use this field. From inside the
Circle class, the field can be referred to simply
as PI. Outside the class, however, both class and
field names are required to uniquely specify the field. Methods that
are not part of Circle access this field as
Circle.PI.

 A public class
field is essentially a global variable. The names of class fields are
qualified by the unique names of the classes that contain them,
however. Thus, Java does not suffer from the name collisions that can
affect other languages when different modules of code define global
variables with the same name.

Class Methods

 As with
class fields, class methods are declared with
the static

modifier:
public static double radiansToDegrees(double rads) { return rads * 180 / PI; }
This line declares a class method named
radiansToDegrees(). It has a single parameter of
type double and returns a
double value. The body of the method is quite
short; it performs a simple computation and returns the result.
Like class fields, class methods are associated with a class, rather
than with an object. When
invoking a class method from code that exists outside the class, you
must specify both the name of the class and the method. For example:
// How many degrees is 2.0 radians?
double d = Circle.radiansToDegrees(2.0);
If you want to invoke a class method from inside the class in which
it is defined, you don’t have to specify the class
name. However, it is often good style to specify the class name
anyway, to make it clear that a class method is being invoked.

 Note that the body of our
Circle.radiansToDegrees(
)
 method uses the class field
PI. A class method can use any class fields and
class methods of its own class (or of any other class). But it cannot
use any instance fields or instance methods because class methods are
not associated with an instance of the class. In other words,
although the radiansToDegrees() method is defined
in the Circle class, it does not use any
Circle objects. The instance fields and instance
methods of the class are associated with Circle
objects, not with the class itself. Since a class method is not
associated with an instance of its class, it cannot use any instance
methods or fields.
As we discussed earlier, a class field is essentially a global
variable. In a similar way, a class method is a
global method, or global function. Although
radiansToDegrees() does not operate on
Circle objects, it is defined within the
Circle class because it is a utility method that
is sometimes useful when working with circles. In many
nonobject-oriented programming languages, all methods, or functions,
are global. You can write complex Java programs using only class
methods. This is not object-oriented programming, however, and does
not take advantage of the power of the Java language. To do true
object-oriented programming, we need to add instance fields and
instance methods to our repertoire.

Instance Fields

 Any field declared without the
static modifier is an instance
field:
public double r; // The radius of the circle
Instance fields are associated with instances of the class, rather
than with the class itself. Thus, every Circle
object we create has its own copy of the double
field r. In our example, r
represents the radius of a circle. Thus, each
Circle object can have a radius independent of all
other Circle objects.
Inside a class definition, instance fields are referred to by name
alone. You can see an example of this if you look at the method body
of the circumference() instance method. In code
outside the class, the name of an instance method must be prefixed
with a reference to the object that contains it. For example, if the
variable c holds a reference to a
Circle object, we use the expression
c.r to refer to the radius of that circle:
Circle c = new Circle(); // Create a Circle object; store a reference in c
c.r = 2.0; // Assign a value to its instance field r
Circle d = new Circle(); // Create a different Circle object
d.r = c.r * 2; // Make this one twice as big
Instance fields are key to object-oriented programming. Instance
fields hold the

 state of an object; the values of those
fields make one object distinct from another.

Instance Methods

 Any method not declared with the

 static
keyword is an instance method. An instance
 method operates on an instance of a class (an
object) instead of operating on the class itself. It is with instance
methods that object-oriented programming starts to get interesting.
The Circle class defined in Example 3-1 contains two instance methods, area(
) and circumference(), that compute and
return the area and circumference of the circle represented by a
given Circle object.
To use an instance method from outside the class in which it is
defined, we must prefix it with a reference to the instance that is
to be operated on. For example:
Circle c = new Circle(); // Create a Circle object; store in variable c
c.r = 2.0; // Set an instance field of the object
double a = c.area(); // Invoke an instance method of the object
If you’re new to object-oriented programming, that
last line of code may look a little strange. We do not write:
a = area(c);
Instead, we write:
a = c.area();
This is why it is called object-oriented programming; the object is
the focus here, not the function call. This small syntactic
difference is perhaps the single most important feature of the
object-oriented paradigm.
The point here is that we don’t have to pass an
argument to c.area(). The object we are operating
on, c, is implicit in the syntax. Take a look at
Example 3-1 again. You’ll notice
the same thing in the signature of the area()
method: it doesn’t have a parameter. Now look at the
body of the area() method: it uses the instance
field r. Because the area()
method is part of the same class that defines this instance field,
the method can use the unqualified name r. It is
understood that this refers to the radius of whatever
Circle instance invokes the method.
Another important thing to notice about the bodies of the
area() and circumference()
methods is that they both use the class field PI.
We saw earlier that class methods can use only class fields and class
methods, not instance fields or methods. Instance methods are not
restricted in this way: they can use any member of a class, whether
it is declared static or not.
How instance methods work

Consider this line of code again:

a = c.area();
What’s going on here? How can a method that has no
parameters know what data to operate on? In fact, the area(
) method does have a parameter. All instance methods are
implemented with an implicit parameter not shown in the method
signature. The implicit argument is named this; it
holds a reference to the object through which the method is invoked.
In our example, that object is a Circle.

 The implicit this
parameter is not shown in method signatures because it is usually not
needed; whenever a Java method accesses the instance fields in its
class, it is implicit that it is accessing fields in the object
referred to by the this parameter. The same is
true when an instance method invokes another instance method in the
same class. I said earlier that to invoke an instance method you must
prepend a reference to the object to be operated on. When an instance
method is invoked within another instance method in the same class,
however, you don’t need to specify an object. In
this case, it is implicit that the method is being invoked on the
this object.
You can use the this keyword explicitly when you
want to make it clear that a method is accessing its own fields
and/or methods. For example, we can rewrite the
area() method to use this
explicitly to refer to instance fields:
public double area() { return Circle.PI * this.r * this.r; }
This code also uses the class name explicitly to refer to class field
PI. In a method this simple, it is not necessary
to be explicit. In more complicated cases, however, you may find that
it increases the clarity of your code to use an explicit
this where it is not strictly required.
In some cases, the this keyword
is required, however. For example, when a method
parameter or local variable in a method has the same name as one of
the fields of the class, you must use this to
refer to the field since the field name used alone refers to the
method parameter or local variable. For example, we can add the
following method to the Circle class:
public void setRadius(double r) {
 this.r = r; // Assign the argument (r) to the field (this.r)
 // Note that we cannot just say r = r
}
Finally, note that while instance methods can use the
this keyword, class methods cannot. This is
because class methods are not associated with objects.

Instance methods or class methods?

 Instance methods are one of
the key features of object-oriented programming. That
doesn’t mean, however, that you should shun class
methods. In many cases, it is perfectly reasonable to define class
methods. When working with the Circle class, for
example, you might find that you often want to compute the area of a
circle with a given radius but don’t want to bother
creating a Circle object to represent that circle.
In this case, a class method is more convenient:
public static double area(double r) { return PI * r * r; }
It is perfectly legal for a class to define more than one method with
the same name, as long as the methods have different parameters.
Since this version of the area() method is a class
method, it does not have an implicit this
parameter and must have a parameter that specifies the radius of the
circle. This parameter keeps it distinct from the instance method of
the same name.
As another example of the choice between instance methods and class
methods, consider defining a method named bigger(
) that examines two Circle objects and
returns whichever has the larger radius. We can write
bigger() as an instance method as follows:
// Compare the implicit "this" circle to the "that" circle passed
// explicitly as an argument and return the bigger one.
public Circle bigger(Circle that) {
 if (this.r > that.r) return this;
 else return that;
}
We can also implement bigger() as a class method
as follows:
// Compare circle a to circle b and return the one with the larger radius
public static Circle bigger(Circle a, Circle b) {
 if (a.r > b.r) return a;
 else return b;
}
Given two Circle objects, x and
y, we can use either the instance method or the
class method to determine which is bigger. The invocation syntax
differs significantly for the two methods, however:
Circle biggest = x.bigger(y); // Instance method: also y.bigger(x)
Circle biggest = Circle.bigger(x, y); // Static method
Both methods work well, and, from an object-oriented design
standpoint, neither of these methods is “more
correct” than the other. The instance method is more
formally object-oriented, but its invocation syntax suffers from a
kind of asymmetry. In a case like this, the choice between an
instance method and a class method is simply a design decision.
Depending on the circumstances, one or the other will likely be the
more natural choice.

Case Study: System.out.println()

Throughout this book, we’ve seen a method
named
System.out.println()

 used to display output to the terminal
window or console. We’ve never explained why this
method has such an long, awkward name or what those two periods are
doing in it. Now that you understand class and instance

 fields and class and instance methods, it is
easier to understand what is going on: System is a
class. It has a class field named out. The field
System.out refers to an object. The object
System.out has an instance method named
println(). If you want to explore this in more
detail, you can look up the java.lang.System class
in the reference section. The class synopsis there tells you that the
field out is of type
java.io.PrintStream, and you can look up that
class to find out about the println()
method.

Creating and Initializing Objects

 Now that we’ve
covered fields and methods, we move on to other important members of
a class.

 Constructors and initializers
are class
members whose job is to
initialize the
fields
of a class.
Take another look at how we’ve been creating
Circle objects:
Circle c = new Circle();
What are those parentheses doing there? They make it look like
we’re calling a method. In fact, that is exactly
what we’re doing. Every class in Java has at least
one
constructor
 ,
which is a method that has the same name as the class and whose
purpose is to perform any necessary initialization for a new object.
Since we didn’t explicitly define a constructor for
our Circle class in Example 3-1,
Java gave us a default constructor that takes no arguments and
performs no special initialization.

 Here’s how a constructor
works. The new operator creates a new, but
uninitialized, instance of the class. The constructor method is then
called, with the new object passed implicitly (a
this reference, as we saw earlier) as well as
whatever arguments that are specified between parentheses passed
explicitly. The constructor can use these arguments to do whatever
initialization is necessary.
Defining a Constructor

 There is some obvious
initialization we could do for our
circle objects, so let’s define a constructor. Example 3-2 shows a new definition for
Circle that contains a constructor that lets us
specify the radius of a new Circle object. The
constructor also uses the this reference to
distinguish between a method parameter and an instance field of the
same name.
Example 3-2. A constructor for the Circle class
public class Circle {
 public static final double PI = 3.14159; // A constant
 public double r; // An instance field that holds the radius of the circle

 // The constructor method: initialize the radius field
 public Circle(double r) { this.r = r; }

 // The instance methods: compute values based on the radius
 public double circumference() { return 2 * PI * r; }
 public double area() { return PI * r*r; }
}

When we relied on the default constructor supplied by the compiler,
we had to write code like this to initialize the radius explicitly:
Circle c = new Circle();
c.r = 0.25;
With this new constructor, the initialization becomes part of the
object creation step:
Circle c = new Circle(0.25);
Here are some important notes about
naming, declaring, and
writing constructors:

	The constructor name is always the same as the class name.

	Unlike all other methods, a constructor is declared without a return
type, not even void.

	The body of a constructor should initialize the
this object.

	A constructor may not return this or any other
value. A constructor may include a return
statement, but only one that does not include a return value.

Defining Multiple Constructors

 Sometimes
you want to initialize
an object in a number of different ways, depending on what is most
convenient in a particular circumstance. For example, we might want
to initialize the radius of a circle to a specified value or a
reasonable default value. Since our Circle class
has only a single instance field, we can’t
initialize it too many ways, of course. But in more complex classes,
it is often convenient to define a variety of constructors.
Here’s how we can define two constructors for
Circle:
public Circle() { r = 1.0; }
public Circle(double r) { this.r = r; }

 It is perfectly
legal to define multiple constructors for a class, as long as each
constructor has a different parameter list. The compiler determines
which constructor you wish to use based on the number and type of
arguments you supply. This is simply an example of method
overloading, as we discussed in Chapter 2.

Invoking One Constructor from Another

 A
specialized

 use of the this
keyword arises when a class has multiple constructors; it can be used
from a constructor to invoke one of the other constructors of the
same class. In other words, we can rewrite the two previous
Circle constructors as follows:
// This is the basic constructor: initialize the radius
public Circle(double r) { this.r = r; }
// This constructor uses this() to invoke the constructor above
public Circle() { this(1.0); }

 The this(
) syntax is a method invocation that calls one of the other
constructors of the class. The particular constructor that is invoked
is determined by the number and type of arguments, of course. This is
a useful technique when a number of constructors share a significant
amount of initialization code, as it avoids repetition of that code.
This would be a more impressive example, of course, if the
one-parameter version of the Circle() constructor
did more initialization than it does.
There is an important restriction on using this():
it can appear only as the first statement in a constructor. It may,
of course, be followed by any additional initialization a particular
version of the constructor needs to do. The reason for this
restriction involves the automatic invocation of superclass
constructor methods, which we’ll explore later in
this chapter.

Field Defaults and Initializers

 Not every field of a class requires
initialization. Unlike local variables, which have no default value
and cannot be used until explicitly initialized, the fields of a
class are automatically initialized to the default value
false, '\u0000',
0, 0.0, or
null
 , depending on their type. These
default values are guaranteed by Java and apply to both instance
fields and class fields.

 If the default field value is not
appropriate for your field, you can explicitly provide a different
initial value. For example:
public static final double PI = 3.14159;
public double r = 1.0;
Field declarations and local variable declarations have similar
syntax, but there is an important difference in how their initializer
expressions are handled. As described in Chapter 2, a local variable declaration is a
statement that appears within a Java method; the variable
initialization is performed when the statement is executed. Field
declarations, however, are not part of any method, so they cannot be
executed as statements are. Instead, the Java compiler generates
instance-field initialization code automatically and puts it in the
constructor or
constructors for the class. The initialization code is inserted into
a constructor in the order in which it appears in the source code,
which means that a field initializer can use the initial values of
any fields declared before it. Consider the following code excerpt,
which shows a constructor and two instance fields of a hypothetical
class:
public class TestClass {
 public int len = 10;
 public int[] table = new int[len];

 public TestClass() {
 for(int i = 0; i < len; i++) table[i] = i;
 }

 // The rest of the class is omitted...
}
In this case, the code generated for the constructor is actually
equivalent to the following:
public TestClass() {
 len = 10;
 table = new int[len];
 for(int i = 0; i < len; i++) table[i] = i;
}

 If a constructor begins with a
this() call to another constructor, the field
initialization code does not appear in the first constructor.
Instead, the initialization is handled in the constructor invoked by
the this() call.

 So, if
instance fields are initialized in constructor methods, where are
class fields initialized? These fields are associated with the class,
even if no instances of the class are ever created, so they need to
be initialized even before a constructor is called. To support this,
the Java compiler generates a class initialization method
automatically for every class. Class fields are initialized in the
body of this method, which is invoked exactly once before the class
is first used (often when the class is first loaded by the Java
VM.)[2] As with instance field initialization, class field
initialization expressions are inserted into the class initialization
method in the order in which they appear in the source code. This
means that the initialization expression for a class field can use
the class fields declared before it. The class initialization method
is an internal method that is hidden from Java programmers. In the
class file, it bears the name <clinit>.
Initializer blocks

 So far, we’ve
seen that objects can be initialized through the initialization
expressions for their fields and by arbitrary code in their
constructor methods. A class has a class initialization method, which
is like a constructor, but we cannot explicitly define the body of
this method as we can for a constructor. Java does allow us to write
arbitrary code for the initialization of class fields, however, with
a construct known as a static initializer. A
static initializer is simply the keyword static
followed by a block of code in curly braces. A static initializer can
appear in a class definition anywhere a field or method definition
can appear. For example, consider the following code that performs
some nontrivial initialization for two class fields:
// We can draw the outline of a circle using trigonometric functions
// Trigonometry is slow, though, so we precompute a bunch of values
public class TrigCircle {
 // Here are our static lookup tables and their own simple initializers
 private static final int NUMPTS = 500;
 private static double sines[] = new double[NUMPTS];
 private static double cosines[] = new double[NUMPTS];

 // Here's a static initializer that fills in the arrays
 static {
 double x = 0.0;
 double delta_x = (Circle.PI/2)/(NUMPTS-1);
 for(int i = 0, x = 0.0; i < NUMPTS; i++, x += delta_x) {
 sines[i] = Math.sin(x);
 cosines[i] = Math.cos(x);
 }
 }
 // The rest of the class is omitted...
}
A class can have any number of static initializers. The body of each
initializer block is incorporated into the class initialization
method, along with any static field initialization expressions. A
static initializer is like a class method in that it cannot use the
this keyword or any instance fields or instance
methods of the class.

 In Java 1.1 and later, classes are
also allowed to have instance initializers. An instance initializer
is like a static initializer, except that it initializes an object,
not a class. A class can have any number of instance initializers,
and they can appear anywhere a field or method definition can appear.
The body of each instance initializer is inserted at the beginning of
every constructor for the class, along with any field initialization
expressions. An instance initializer looks just like a static
initializer, except that it doesn’t use the
static keyword. In other words, an instance
initializer is just a block of arbitrary Java code that appears
within curly braces.
Instance initializers can initialize arrays or other fields that
require complex initialization. They are sometimes useful because
they locate the initialization code right next to the field, instead
of separating into a constructor method. For example:
private static final int NUMPTS = 100;
private int[] data = new int[NUMPTS];
{ for(int i = 0; i < NUMPTS; i++) data[i] = i; }
In practice, however, this use of instance initializers is fairly
rare. Instance initializers were introduced in Java 1.1 to support
anonymous inner classes, which are not allowed to define
constructors. (Anonymous inner classes are covered in Section 3.10 later in this chapter.)

[2] It is actually possible to write a class
initializer for a class C that calls a method of another class that
creates an instance of C. In this contrived recursive case, an
instance of C is created before the class C is fully initialized.
This situation is not common in everyday practice, however.

Destroying and Finalizing Objects

 Now that we’ve seen
how new objects are created and initialized in Java, we need to study
the other end of the object life cycle and examine how objects are
finalized and destroyed. Finalization is the
opposite of initialization.

 In Java,
the memory occupied by an object is automatically reclaimed when the
object is no longer needed. This is done through a process known as
garbage collection. Garbage collection is a
technique that has been around for years in languages such as Lisp.
It takes some getting used to for programmers accustomed to such
languages as C
and C++, in which you must call the free()
function or the delete operator to reclaim memory.
The fact that you don’t need to remember to destroy
every object you create is one of the features that makes Java a
pleasant language to work with. It is also one of the features that
makes programs written in Java less prone to bugs than those written
in languages that don’t support automatic garbage
collection.
Garbage Collection

 The
Java interpreter knows exactly what
objects and arrays it has allocated. It can also figure out which
local variables refer to which objects and arrays and which objects
and arrays refer to which other objects and arrays. Thus, the
interpreter is able to determine when an allocated object is no
longer referred to by any other active object or variable. When the
interpreter finds such an object, it knows it can safely reclaim the
object’s memory and does so. The garbage collector
can also detect and destroy cycles of objects that refer to each
other, but are not referenced by any other active objects. Any such
cycles are also reclaimed.
Different VM implementations handle garbage collection in different
ways. It is reasonable, however, to imagine the garbage collector
running as a low-priority background thread, so it does most of its
work when nothing else is going on, such as during idle time while
waiting for user input. The only time the garbage collector must run
while something high-priority is going on (i.e., the only time it
actually slows down the system) is when available memory has become
dangerously low. This doesn’t happen very often
because the low-priority thread cleans things up in the background.

Memory Leaks in Java

 The fact
that Java supports garbage collection dramatically reduces the
incidence of a class of bugs known as memory
leaks. A memory leak occurs when memory is allocated and
never reclaimed. At first glance, it might seem that garbage
collection prevents all memory leaks because it reclaims all unused
objects. A memory leak can still occur in Java, however, if a valid
(but unused) reference to an unused object is left hanging around.
For example, when a method runs for a long time (or forever), the
local variables in that method can retain object references much
longer than they are actually required. The following code
illustrates:
public static void main(String args[]) {
 int big_array[] = new int[100000];

 // Do some computations with big_array and get a result.
 int result = compute(big_array);

 // We no longer need big_array. It will get garbage collected when there
 // are no more references to it. Since big_array is a local variable,
 // it refers to the array until this method returns. But this method
 // doesn't return. So we've got to explicitly get rid of the reference
 // ourselves, so the garbage collector knows it can reclaim the array.
 big_array = null;

 // Loop forever, handling the user's input
 for(;;) handle_input(result);
}

 Memory leaks can also occur when you use
a hash table or similar data structure to associate one object with
another. Even when neither object is required anymore, the
association remains in the hash table, preventing the objects from
being reclaimed until the hash table itself is reclaimed. If the hash
table has a substantially longer lifetime than the objects it holds,
this can cause memory leaks.
The key to avoiding memory leaks is to set object references to
null when they are no longer needed if the object
that contains those references is going to continue to exist. One
common source of leaks is in data structures in which an
Object array is used to represent a collection of
objects. It is common to use a separate size field
to keep track of which elements of the array are currently valid.
When removing an object from the collection, it is not sufficient to
simply decrement this size field: you must also
set the appropriate array element to null so that
the obsolete object reference does not live on.

Object Finalization

 A
finalizer in Java is
the opposite of a constructor. While a constructor method performs
initialization for an object, a finalizer method can be used to
perform cleanup or “finalization”
for the object. Garbage collection automatically frees up the memory
resources used by objects, but objects can hold other kinds of
resources, such as open files and
network
connections. The garbage collector cannot free these resources for
you, so you may occasionally want to write a finalizer method for any
object that needs to perform such tasks as closing files, terminating
network connections,
 deleting
temporary files, and so on. This is particularly true for classes
that use native methods: these classes may need a
native finalizer to release native resources
(including memory) that are not under the control of the Java garbage
collector.

 A finalizer is an instance method that
takes no arguments and returns no value. There can be only one
finalizer per class, and it must be named

 finalize().[3] A finalizer can throw any kind of
exception or error, but when a
finalizer is automatically invoked by the garbage collector, any
exception or error it throws is ignored and serves only to cause the
finalizer method to return. Finalizer methods are typically declared
protected
 (which we have not discussed yet) but
can also be declared public. An example finalizer
looks like this:
protected void finalize() throws Throwable {
 // Invoke the finalizer of our superclass
 // We haven't discussed superclasses or this syntax yet
 super.finalize();

 // Delete a temporary file we were using
 // If the file doesn't exist or tempfile is null, this can throw
 // an exception, but that exception is ignored.
 tempfile.delete();
}
Here are some important points about finalizers:
	If an object has a finalizer, the finalizer method is invoked
sometime after the object becomes unused (or unreachable), but before
the garbage collector reclaims the object.

	Java makes no guarantees about when garbage collection will occur or
in what order objects will be collected. Therefore, Java can make no
guarantees about when (or even whether) a finalizer will be invoked,
in what order finalizers will be invoked, or what thread will execute
finalizers.

	The Java interpreter can exit without garbage collecting all
outstanding objects, so some finalizers may never be invoked. In this
case, resources such as network connections are closed and reclaimed
by the operating system. Note, however, that if a finalizer that
deletes a file does not run, that file will not be deleted by the
operating system.

	To ensure that certain actions are taken before the VM exits, Java
1.1 provided the Runtime method
runFinalizersOnExit(). Unfortunately, however,
this method can cause deadlock and is inherently unsafe; it was
deprecated in 1.2. In Java 1.3 and later, the
Runtime method
addShutdownHook()

can safely execute arbitrary code before the Java interpreter exits.

	
 After a finalizer is invoked, objects
are not freed right away. This is because a finalizer method can
resurrect an object by storing the this pointer
somewhere so that the object once again has references. Thus, after
finalize() is called, the garbage collector must
once again determine that the object is unreferenced before it can
garbage-collect it. However, even if an object is resurrected, the
finalizer method is never invoked more than once. Resurrecting an
object is never a useful thing to do—just a strange quirk of
object finalization.

	The finalize() method is an instance method, and
finalizers act on instances. There is no equivalent mechanism for
finalizing a class.

In practice, it is quite rare for an application-level class to
require a finalize() method. Finalizer methods
are more useful, however, when writing Java classes that interface to
native platform code with native methods. In this
case, the native implementation can allocate memory or other
resources that are not under the control of the Java garbage
collector and need to be reclaimed explicitly by a
native
 finalize() method.
Furthermore, because of the uncertainty about when and whether a
finalizer runs, it is best to avoid dependence on finalizers. For
example, a class that includes a reference to a network socket should
define a public close() method, which calls the
close() method of the socket. This way, when the
user of your class is done with it, she can call close(
) and be sure that the network connection is closed. You
might, however, define a finalize() method as
backup in case the user of your class forgets to call close(
) and allows an unclosed instance to be garbage-collected.

[3] C++ programmers should note that although Java constructor
methods are named like C++ constructors, Java finalization methods
are not named like C++ destructor methods. As we will see, they do
not behave quite like C++ destructor methods either.

Subclasses and Inheritance

 The Circle
 defined earlier is a simple class
that distinguishes circle objects only by their radii. Suppose,
instead, that we want to represent circles that have both a size and
a position. For example, a circle of radius 1.0 centered at point 0,0
in the Cartesian plane is different from the circle of radius 1.0
centered at point 1,2. To do this, we need a new class, which
we’ll call PlaneCircle.
We’d like to add the ability to represent the
position of a circle without losing any of the existing functionality
of the Circle class. This is done by defining
PlaneCircle as a subclass of
Circle so that PlaneCircle
inherits the fields and methods of its superclass,
Circle. The ability to add functionality to a
class by subclassing, or extending, is central to the object-oriented
programming paradigm.
Extending a Class

 Example 3-3
 shows how we can implement
PlaneCircle as a subclass of the
Circle class.
Example 3-3. Extending the Circle class
public class PlaneCircle extends Circle {
 // We automatically inherit the fields and methods of Circle,
 // so we only have to put the new stuff here.
 // New instance fields that store the center point of the circle
 public double cx, cy;

 // A new constructor method to initialize the new fields
 // It uses a special syntax to invoke the Circle() constructor
 public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass, Circle()
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
 }

 // The area() and circumference() methods are inherited from Circle
 // A new instance method that checks whether a point is inside the circle
 // Note that it uses the inherited instance field r
 public boolean isInside(double x, double y) {
 double dx = x - cx, dy = y - cy; // Distance from center
 double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
 return (distance < r); // Returns true or false
 }
}

 Note the use of the
keyword extends in the first line of Example 3-3. This keyword tells Java that
PlaneCircle extends, or subclasses,
Circle, meaning that it inherits the fields and
methods of that class.[4] The definition of the
isInside() method shows field inheritance; this
method uses the field r (defined by the
Circle class) as if it were defined right in
PlaneCircle itself. PlaneCircle
also inherits the methods of Circle. Thus, if we
have a PlaneCircle object referenced by variable
pc, we can say:
double ratio = pc.circumference() / pc.area();
This works just as if the area() and
circumference() methods were defined in
PlaneCircle itself.

 Another feature of subclassing is that
every PlaneCircle object is also a perfectly legal
Circle object. If pc refers to
a PlaneCircle object, we can assign it to a
Circle variable and forget all about its extra
positioning capabilities:
PlaneCircle pc = new PlaneCircle(1.0, 0.0, 0.0); // Unit circle at the origin
Circle c = pc; // Assigned to a Circle variable without casting
This assignment of a PlaneCircle object to a
Circle variable can be done without a cast. As we
discussed in Section 2.9.6 in
Chapter 2 a widening conversion like this is always legal. The value
held in the Circle variable c
is still a valid PlaneCircle object, but the
compiler cannot know this for sure, so it doesn’t
allow us to do the opposite (narrowing) conversion without a cast:
// Narrowing conversions require a cast (and a runtime check by the VM)
PlaneCircle pc2 = (PlaneCircle) c;
boolean origininside = ((PlaneCircle) c).isInside(0.0, 0.0);
Final classes

 When
a class is declared with the final modifier, it
means that it cannot be extended or subclassed.
java.lang.String is an example of a
final class. Declaring a class
final prevents unwanted extensions to the class:
if you invoke a method on a String object, you
know that the method is the one defined by the
String class itself, even if the
String is passed to you from some unknown outside
source. Because String is final, no one can create
a subclass of it and change the meaning or behavior of its methods.
Declaring a class final also allows the compiler
to make certain optimizations when invoking the methods of a class.
We’ll explore this when we talk about method
overriding later in this chapter.

Superclasses, Object, and the Class Hierarchy

 In our example,
PlaneCircle is a subclass from
Circle. We can also say that
Circle is the superclass of
PlaneCircle. The superclass of a class is
specified in its extends clause:
public class PlaneCircle extends Circle { ... }

 Every class you define has a superclass.
If you do not specify the superclass with an
extends clause, the superclass is the class
java.lang.Object. Object is a
special class for a couple of reasons:
	It is the only class in Java that does not have a superclass.

	All Java classes inherit the methods of Object.

 Because
every class has a superclass, classes in Java form a class hierarchy,
which can be represented as a tree with Object at
its root. Figure 3-1 shows a partial class
hierarchy diagram that includes our Circle and
PlaneCircle classes, as well as some of the
standard classes from the Java API.
[image: A class hierarchy diagram]

Figure 3-1. A class hierarchy diagram

Subclass Constructors

 Look
again at the
PlaneCircle() constructor method of Example 3-3:
public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass, Circle()
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
}

 This
constructor explicitly initializes the cx and
cy fields newly defined by
PlaneCircle, but it relies on the superclass
Circle() constructor to initialize the inherited
fields of the class. To invoke the superclass constructor, our
constructor calls
super()
 . super is a

 reserved
word in Java. One of its uses is to invoke the constructor method of
a superclass from within the constructor method of a subclass. This
use is analogous to the use of this() to invoke
one constructor method of a class from within another constructor
method of the same class. Invoking a constructor using
super() is subject to the same restrictions as is
using this() :
	
 super() can be used in this way only within a
constructor method.

	The call to the superclass constructor must appear as the first
statement within the constructor method, even before local variable
declarations.

The arguments passed to super() must match the
parameters of the superclass constructor. If the superclass defines
more than one constructor, super() can be used to
invoke any one of them, depending on the arguments passed.

Constructor Chaining and the Default Constructor

 Java
guarantees that the constructor
method of a class is called whenever an instance of that class is
created. It also guarantees that the constructor is called whenever
an instance of any subclass is created. In order to guarantee this
second point, Java must ensure that every constructor method calls
its superclass constructor method. Thus, if the first statement in a
constructor does not explicitly invoke another constructor with
this()

 or super(), Java
implicitly inserts the call super(), that is, it
calls the superclass constructor with no arguments. If the superclass
does not have a constructor that takes no arguments, this implicit
invocation causes a compilation error.
Consider what happens when we create a new instance of the
PlaneCircle class. First, the
PlaneCircle constructor is invoked. This
constructor explicitly calls super(r) to invoke a
Circle constructor, and that
Circle() constructor implicitly calls
super() to invoke the constructor of its
superclass, Object. The body of the
Object constructor runs first. When it returns,
the body of the Circle() constructor runs.
Finally, when the call to super(r) returns, the
remaining statements of the PlaneCircle()
constructor are executed.
What all this means is that constructor calls are chained; any time
an object is created, a sequence of constructor methods is invoked,
from subclass to superclass on up to Object at the
root of the class hierarchy. Because a superclass constructor is
always invoked as the first statement of its subclass constructor,
the body of the Object constructor always runs
first, followed by the constructor of its subclass and on down the
class hierarchy to the class that is being instantiated. There is an
important implication here; when a constructor is invoked, it can
count on the fields of its superclass to be initialized.
The default constructor

 There is
one missing piece in the previous description of constructor
chaining. If a constructor does not invoke a superclass constructor,
Java does so implicitly. But what if a class is declared without a
constructor? In this case, Java implicitly adds a constructor to the
class. This default constructor does nothing but invoke the
superclass constructor. For example, if we don’t
declare a constructor for the PlaneCircle class,
Java implicitly inserts this constructor:
public PlaneCircle() { super(); }
If the superclass, Circle,
doesn’t declare a no-argument constructor, the
super() call in this automatically inserted
default constructor for PlaneCircle() causes a
compilation error. In general, if a class does not define a
no-argument constructor, all its subclasses must define constructors
that explicitly invoke the superclass constructor with the necessary
arguments.

 If
a class does not declare any constructors, it is given a no-argument
constructor by default. Classes declared public
are given public constructors. All other classes
are given a default constructor that is declared without any
visibility modifier: such a constructor has default visibility. (The
notion of visibility is explained later in this chapter.) If you are
creating a public class that should not be
publicly instantiated, you should declare at least one
non-public constructor to prevent the insertion of
a default public constructor. Classes that should
never be instantiated (such as java.lang.Math or
java.lang.System) should define a

 private
constructor. Such a constructor can never be invoked from outside of
the class, but it prevents the automatic insertion of the default
constructor.

Finalizer chaining?

 You
might assume that since Java chains constructor methods, it also
automatically chains the finalizer methods for an object. In other
words, you might assume that the finalizer method of a class
automatically invokes the finalizer of its superclass, and so on. In
fact, Java does not do this. When you write a
finalize() method, you must explicitly invoke the
superclass finalizer. (You should do this even if you know that the
superclass does not have a finalizer because a future implementation
of the superclass might add a finalizer.)
As we saw in our example finalizer earlier in the chapter, you can
invoke a superclass method with a special syntax that uses the
super keyword:
// Invoke the finalizer of our superclass
super.finalize();
We’ll discuss this syntax in more detail when we
consider method overriding. In practice, the need for finalizer
methods, and thus finalizer chaining, rarely arises.

Hiding Superclass Fields

 For the sake of example, imagine that our
PlaneCircle class needs to know the distance
between the center of the circle and the origin (0,0). We can add
another instance field to hold this value:
public double r;
Adding the following line to the constructor computes the value of
the field:
this.r = Math.sqrt(cx*cx + cy*cy); // Pythagorean theorem
But wait; this new field r has the same name as
the radius field r in the
Circle superclass. When this happens, we say that
the field r of PlaneCircle
 hides the field r of
Circle. (This is a contrived example, of course:
the new field should really be called
distanceFromOrigin. Although you should attempt to
avoid it, subclass fields do sometimes hide fields of their
superclass.)
With this new definition of PlaneCircle, the
expressions r and this.r both
refer to the field of PlaneCircle. How, then, can
we refer to the field r of
Circle that holds the radius of the circle? A
special syntax for this uses the
super

keyword:
r // Refers to the PlaneCircle field
this.r // Refers to the PlaneCircle field
super.r // Refers to the Circle field

 Another way to refer to a
hidden field is to cast this (or any instance of
the class) to the appropriate superclass and then access the field:
((Circle) this).r // Refers to field r of the Circle class
This casting technique is particularly useful when you need to refer
to a hidden field defined in a class that is not the immediate
superclass. Suppose, for example, that classes A,
B, and C all define a field
named x and that C is a
subclass of B, which is a subclass of
A. Then, in the methods of class
C, you can refer to these different fields as
follows:
x // Field x in class C
this.x // Field x in class C
super.x // Field x in class B
((B)this).x // Field x in class B
((A)this).x // Field x in class A
super.super.x // Illegal; does not refer to x in class A
You cannot refer to a hidden field x in the
superclass of a superclass with super.super.x.
This is not legal syntax.
Similarly, if you have an instance c of class
C, you can refer to the three fields named
x like this:
c.x // Field x of class C
((B)c).x // Field x of class B
((A)c).x // Field x of class A

 So far, we’ve been
discussing instance fields. Class fields can also be hidden. You can
use the same super syntax to refer to the hidden
value of the field, but this is never necessary since you can always
refer to a class field by prepending the name of the desired class.
Suppose that the implementer of PlaneCircle
decides that the Circle.PI field does not express
to enough decimal places. She can define her own class field
PI:
public static final double PI = 3.14159265358979323846;
Now, code in PlaneCircle can use this more
accurate value with the expressions PI or
PlaneCircle.PI. It can also refer to the old, less
accurate value with the expressions super.PI and
Circle.PI. Note, however, that the area(
) and circumference() methods inherited
by PlaneCircle are defined in the
Circle class, so they use the value
Circle.PI, even though that value is hidden now by
PlaneCircle.PI.

Overriding Superclass Methods

 When a class defines an instance method using
the same name, return type, and parameters as a method in its
superclass, that method overrides the method of
the superclass. When the method is invoked for an object of the
class, it is the new definition of the method that is called, not the
superclass’s old definition. In Java 5.0 and later,
the return type of the overriding
method may be a subclass of return type of the overridden method
instead of being exactly the same type. This is known as a
covariant return
 and is described in Section 2.6.5 in Chapter 2.
Method overriding is an important and useful technique in
object-oriented programming. PlaneCircle does not
override either of the methods defined by Circle,
but suppose we define another subclass of Circle,
named Ellipse.[5] In this case,
it is important for Ellipse to override the
area() and circumference()
methods of Circle since the formulas used to
compute the area and circumference of a circle do not work for
ellipses.

 The upcoming discussion of method
overriding considers only instance methods. Class methods behave
quite differently, and there isn’t much to say. Like
fields, class methods can be hidden by a subclass but not overridden.
As noted earlier in this chapter, it is good programming style to
always prefix a class method invocation with the name of the class in
which it is defined. If you consider the class name part of the class
method name, the two methods have different names, so nothing is
actually hidden at all. It is, however, illegal for a class method to
hide an instance method.

 Before we go any further with the
discussion of method overriding, you should understand the difference
between method overriding and method overloading. As we discussed in
Chapter 2, method overloading refers to the
practice of defining multiple methods (in the same class) that have
the same name but different parameter lists. This is very different
from method overriding, so don’t get them confused.
Overriding is not hiding

 Although Java treats the fields and methods
of a class analogously in many ways, method overriding is not like
field hiding at all. You can refer to hidden fields simply by casting
an object to an instance of the appropriate superclass, but you
cannot invoke overridden instance methods with this technique. The
following code illustrates this crucial difference:
class A { // Define a class named A
 int i = 1; // An instance field
 int f() { return i; } // An instance method
 static char g() { return 'A'; } // A class method
}

class B extends A { // Define a subclass of A
 int i = 2; // Hides field i in class A
 int f() { return -i; } // Overrides instance method f in class A
 static char g() { return 'B'; } // Hides class method g() in class A
}

public class OverrideTest {
 public static void main(String args[]) {
 B b = new B(); // Creates a new object of type B
 System.out.println(b.i); // Refers to B.i; prints 2
 System.out.println(b.f()); // Refers to B.f(); prints -2
 System.out.println(b.g()); // Refers to B.g(); prints B
 System.out.println(B.g()); // This is a better way to invoke B.g()

 A a = (A) b; // Casts b to an instance of class A
 System.out.println(a.i); // Now refers to A.i; prints 1
 System.out.println(a.f()); // Still refers to B.f(); prints -2
 System.out.println(a.g()); // Refers to A.g(); prints A
 System.out.println(A.g()); // This is a better way to invoke A.g()
 }
}
While this difference between method overriding and field hiding may
seem surprising at first, a little thought makes the purpose clear.
Suppose we are manipulating a bunch of Circle and
Ellipse objects. To keep track of the circles and
ellipses, we store them in an array of type
Circle[]. (We can do this because
Ellipse is a subclass of
Circle, so all Ellipse objects
are legal Circle objects.) When we loop through
the elements of this array, we don’t have to know or
care whether the element is actually a Circle or
an Ellipse. What we do care about very much,
however, is that the correct value is computed when we invoke the
area() method of any element of the array. In
other words, we don’t want to use the formula for
the area of a circle when the object is actually an ellipse! Seen in
this context, it is not surprising at all that method overriding is
handled differently by Java than is field hiding.

Dynamic method lookup

 If we have a Circle[
] array that holds Circle and
Ellipse objects, how does the compiler know
whether to call the area() method of the
Circle class or the Ellipse
class for any given item in the array? In fact, the compiler does not
know this because it cannot know it. The compiler knows that it does
not know, however, and produces code that uses
dynamic method lookup at runtime. When
the interpreter runs the code, it looks up the appropriate
area() method to call for each of the objects in
the array. That is, when the interpreter interprets the expression
o.area(), it checks the actual type of the object
referred to by the variable o and then finds the
area() method that is appropriate for that type.
It does not simply use the area() method that is
statically associated with the type of the variable
o. This process of dynamic method lookup is
sometimes also called virtual method
invocation.[6]

Final methods and static method lookup

 Virtual method
invocation is fast, but method invocation is faster when no dynamic
lookup is necessary at runtime. Fortunately, Java does not always
need to use dynamic method lookup. In particular, if a method is
declared with the
 final modifier, it
means that the method definition is the final one; it cannot be
overridden by any subclasses. If a method cannot be overridden, the
compiler knows that there is only one version of the method, and
dynamic method lookup is not necessary.[7] In addition, all
methods of a final class are themselves implicitly
final and cannot be overridden. As we’ll discuss
later in this chapter,
 private methods are not
inherited by subclasses and, therefore, cannot be overridden (i.e.,
all private methods are implicitly
final). Finally, class methods behave like fields
(i.e., they can be hidden by subclasses but not overridden). Taken
together, this means that all methods of a class that is declared
final, as well as all methods that are
final, private, or
static, are invoked without dynamic method lookup.
These methods are also candidates for inlining at runtime by a
just-in-time compiler (JIT) or similar optimization tool.

Invoking an overridden method

 We’ve
seen the important differences between method overriding and field
hiding. Nevertheless, the Java syntax for invoking an overridden
method is quite similar to the syntax for accessing a hidden field:
both use the
 super keyword. The
following code illustrates:
class A {
 int i = 1; // An instance field hidden by subclass B
 int f() { return i; } // An instance method overridden by subclass B
}

class B extends A {
 int i; // This field hides i in A
 int f() { // This method overrides f() in A
 i = super.i + 1; // It can retrieve A.i like this
 return super.f() + i; // It can invoke A.f() like this
 }
}

 Recall that when you use
super to refer to a hidden field, it is the same
as casting this to the superclass type and
accessing the field through that. Using super to
invoke an overridden method, however, is not the same as casting
this. In other words, in the previous code, the
expression super.f() is not the same as
((A)this).f().
When the interpreter invokes an instance method with this
super syntax, a modified form of dynamic method
lookup is performed. The first step, as in regular dynamic method
lookup, is to determine the actual class of the object through which
the method is invoked. Normally, the dynamic search for an
appropriate method definition would begin with this class. When a
method is invoked with the super syntax, however,
the search begins at the superclass of the class. If the superclass
implements the method directly, that version of the method is
invoked. If the superclass inherits the method, the inherited version
of the method is invoked.

 Note that
the super keyword invokes the most immediately
overridden version of a method. Suppose class A
has a subclass B that has a subclass
C and that all three classes define the same
method f(). The method C.f()
can invoke the method B.f(), which it overrides
directly, with super.f(). But there is no way for
C.f() to invoke A.f()
directly: super.super.f() is not legal Java
syntax. Of course, if C.f() invokes B.f(
), it is reasonable to suppose that B.f(
) might also invoke A.f(). This kind of
chaining is relatively common when working with overridden methods:
it is a way of augmenting the behavior of a method without replacing
the method entirely. We saw this technique in the the example
finalize() method shown earlier in the chapter:
that method invoked super.finalize() to run its
superclass finalization method.

 Don’t confuse the use
of super to invoke an overridden method with the
super() method call used in constructor methods to
invoke a superclass constructor. Although they both use the same
keyword, these are two entirely different syntaxes. In particular,
you can use super to invoke an overridden method
anywhere in the overriding class while you can use
super() only to invoke a superclass constructor as
the very first statement of a constructor.
It is also important to remember that super can be
used only to invoke an overridden method from within the class that
overrides it. Given an Ellipse object
e, there is no way for a program that uses an
object (with or without the super syntax) to
invoke the area() method defined by the Circle class on this object.

[4] C++ programmers should note
that extends is the Java equivalent of
: in C++; both are used to indicate the superclass
of a class.

[5] Mathematical
purists may argue that since all circles are ellipses,
Ellipse should be the superclass and
Circle the subclass. A pragmatic engineer might
counter that circles can be represented with fewer instance fields,
so Circle objects should not be burdened by
inheriting unnecessary fields from Ellipse. In any
case, this is a useful example here.

[6]

 C++ programmers should note that dynamic
method lookup is what C++ does for virtual
functions. An important difference between Java and C++ is that Java
does not have a virtual keyword. In Java, methods
are virtual by default.

[7] In this
sense, the final modifier is the opposite of the
virtual modifier in C++. All
non-final methods in Java are
virtual.

Data Hiding and Encapsulation

 We started this chapter by
describing a class as a collection of data and methods. One of the
important object-oriented techniques we haven’t
discussed so far is hiding the data within the class and making it
available only through the methods. This technique is known as
encapsulation because it seals the data (and
internal methods) safely inside the
“capsule” of the class, where it
can be accessed only by trusted users (i.e., the methods of the
class).
Why would you want to do this? The most important reason is to hide
the internal implementation details of your class. If you prevent
programmers from relying on those details, you can safely modify the
implementation without worrying that you will break existing code
that uses the class.
Another reason for encapsulation is to protect your class against
accidental or willful stupidity. A class often contains a number of
interdependent fields that must be in a consistent state. If you
allow a programmer (including yourself) to manipulate those fields
directly, he may change one field without changing important related
fields, leaving the class in an inconsistent state. If instead he has
to call a method to change the field, that method can be sure to do
everything necessary to keep the state consistent. Similarly, if a
class defines certain methods for internal use only, hiding these
methods prevents users of the class from calling them.

 Here’s
another way to think about encapsulation: when all the data for a
class is hidden, the

 methods define the only
possible operations that can be performed on objects of that class.
Once you have carefully tested and debugged your methods, you can be
confident that the class will work as expected. On the other hand, if
all the fields of the class can be directly manipulated, the number
of possibilities you have to test becomes unmanageable.
Other reasons to hide fields and methods of a class include:
	Internal fields and methods that are visible outside the class just
clutter up the API. Keeping visible fields to a minimum keeps your
class tidy and therefore easier to use and understand.

	If a field or method is visible to the users of your class, you have
to document it. Save yourself time and effort by hiding it instead.

Access Control

 All

 the

 fields and methods of a class can always
be used within the body of the class itself. Java defines access
control rules that restrict members of a class from being used
outside the class. In a number of examples in this chapter,
you’ve seen the public modifier
used in field and method declarations. This
public

 keyword, along with
protected and private, are

 access
 control
 modifiers ; they
specify the access rules for the field or
method.

Access to packages

 A
package is always accessible to code defined within the package.
Whether it is accessible to code from other packages depends on the
way the package is deployed on the host system. When the class files
that comprise a package are stored in a directory, for example, a
user must have read access to the directory and the files within it
in order to have access to the package. Package access is not part of
the Java language itself. Access control is usually done at the level
of classes and members of classes instead.

Access to classes

 By
default, top-level classes are accessible within the package in which
they are defined. However, if a top-level class is declared
public, it is accessible everywhere (or everywhere
that the package itself is accessible). The reason that
we’ve restricted these statements to top-level
classes is that, as we’ll see later in this chapter,
classes can also be defined as members of other classes. Because
these inner classes are members of a class, they obey the member
access-control rules.

Access to members

 The
members of a class are always accessible within the
body of the class. By default, members
are also accessible throughout the package in which the class is
defined. This implies that classes placed in the same package should
trust each other with their internal implementation details. This
default level of access is often called
 package access. It
is only one of four possible levels of access. The other three levels
of access are defined by the public,
protected, and private
modifiers. Here is some example code that uses these modifiers:
public class Laundromat { // People can use this class.
 private Laundry[] dirty; // They cannot use this internal field,
 public void wash() { ... } // but they can use these public methods
 public void dry() { ... } // to manipulate the internal field.
 protected int temperature; // A subclass might want to tweak this field
}
These access rules apply to members of a class:
	If a member of a class is declared with the public
modifier, it means that the member is accessible anywhere the
containing class is accessible. This is the least restrictive type of
access control.

	If a member of a class is declared private, the
member is never accessible, except within the class itself. This is
the most restrictive type of access control.

	If a member of a class is declared protected, it
is accessible to all classes within the package (the same as the
default package accessibility) and also accessible within the body of
any subclass of the class, regardless of the package in which that
subclass is defined. This is more restrictive than
public access, but less restrictive than package
access.

	If a member of a class is not declared with any of these modifiers,
it has the default package access: it is accessible to code within
all classes that are defined in the same package but inaccessible
outside of the package.

 protected access requires a little more
elaboration. Suppose class A declares a
protected field x and is
extended by a class B, which is defined in a
different package (this last point is important). Class
B inherits the protected field
x, and its code can access that field in the
current instance of B or in any other instances of
B that the code can refer to. This does not mean,
however, that the code of class B can start
reading the protected fields of arbitrary instances of
A! If an object is an instance of
A but is not an instance of B,
its fields are obviously not inherited by B, and
the code of class B cannot read them.

Access control and inheritance

 The Java specification states that a
subclass inherits all the instance fields and instance methods of its
superclass accessible to it. If the subclass is defined in the same
package as the superclass, it inherits all

 non-private instance
fields and methods. If the subclass is defined in a different
package, however, it inherits all protected and
public instance fields and methods.
private fields and methods are never inherited;
neither are class fields or class methods. Finally, constructors are
not inherited; they are chained, as described earlier in this
chapter.
The statement that a subclass does not inherit the inaccessible
fields and methods of its superclass can be a confusing one. It would
seem to imply that when you create an instance of a subclass, no
memory is allocated for any private fields defined
by the superclass. This is not the intent of the statement, however.
Every instance of a subclass does, in fact, include a complete
instance of the superclass within it, including all inaccessible
fields and methods. It is simply a matter of terminology. Because the
inaccessible fields cannot be used in the subclass, we say they are
not inherited. Earlier in this section we said that the members of a
class are always accessible within the body of the class. If this
statement is to apply to all members of the class, including
inherited members, we must define “inherited
members” to include only those members that are
accessible. If you don’t care for this definition,
you can think of it this way instead:
	A class inherits all instance fields and
instance methods (but not constructors) of its superclass.

	The body of a class can always access all
the fields and methods it declares itself. It can also access the
accessible fields and members it inherits from
its superclass.

Member access summary

 Table 3-1 summarizes the member access
rules.

Table 3-1. Class member accessibility
	
	
 Member visibility

	
 Accessible to

 	
 Public

 	
 Protected

 	
 Package

 	
 Private

	
 Defining class

 	
 Yes

 	
 Yes

 	
 Yes

 	
 Yes

	
 Class in same package

 	
 Yes

 	
 Yes

 	
 Yes

 	
 No

	
 Subclass in different package

 	
 Yes

 	
 Yes

 	
 No

 	
 No

	
 Non-subclass different package

 	
 Yes

 	
 No

 	
 No

 	
 No

Here are some simple rules of thumb for using
visibility
modifiers:
	
 Use public only for
methods and constants that form part of the public API of the class.
Certain important or frequently used fields can also be
public, but it is common practice to make fields
non-public and encapsulate them with
public accessor methods.

	
 Use protected for
fields and methods that aren’t required by most
programmers using the class but that may be of interest to anyone
creating a subclass as part of a different package. Note that
protected members are technically part of the
exported API of a class. They should be documented and cannot be
changed without potentially breaking code that relies on them.

	
 Use the default package
visibility for fields and methods that are internal implementation
details but are used by cooperating classes in the same package. You
cannot take real advantage of package visibility unless you use the
package directive to group your cooperating
classes into a package.

	
 Use private for
fields and methods that are used only inside the class and should be
hidden everywhere else.

If you are not sure whether to use protected,
package, or private accessibility, it is better to
start with overly restrictive member access. You can always relax the
access restrictions in future versions of your class, if necessary.
Doing the reverse is not a good idea because increasing access
restrictions is not a backward-compatible change and can break code
that relies on access to those members.

Data Accessor Methods

In

 the Circle example,
we declared the circle radius to be a public
field. The Circle class is one in which it may
well be reasonable to keep that field publicly accessible; it is a
simple enough class, with no dependencies between its fields. On the
other hand, our current implementation of the class allows a
Circle object to have a negative radius, and
circles with negative radii should simply not exist. As long as the
radius is stored in a public field, however, any
programmer can set the field to any value she wants, no matter how
unreasonable. The only solution is to restrict the
programmer’s direct access to the field and define
public methods that provide indirect access to the
field. Providing public methods to read and write
a field is not the same as making the field itself
public. The crucial difference is that methods can
perform error checking.

 Example 3-4 shows how we might reimplement
Circle to prevent circles with negative radii.
This version of Circle declares the
r field to be protected and
defines accessor methods named getRadius() and
setRadius() to read and write the field value
while enforcing the restriction on negative radius values. Because
the r field is protected, it is
directly (and more efficiently) accessible to subclasses.
Example 3-4. The Circle class using data hiding and encapsulation
package shapes; // Specify a package for the class

public class Circle { // The class is still public
 // This is a generally useful constant, so we keep it public
 public static final double PI = 3.14159;

 protected double r; // Radius is hidden but visible to subclasses

 // A method to enforce the restriction on the radius
 // This is an implementation detail that may be of interest to subclasses
 protected void checkRadius(double radius) {
 if (radius < 0.0)
 throw new IllegalArgumentException("radius may not be negative.");
 }

 // The constructor method
 public Circle(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Public data accessor methods
 public double getRadius() { return r; }
 public void setRadius(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Methods to operate on the instance field
 public double area() { return PI * r * r; }
 public double circumference() { return 2 * PI * r; }
}

We have defined the Circle class within a package
named shapes. Since r is
protected, any other classes in the
shapes package have direct access to that field
and can set it however they like. The assumption here is that all
classes within the shapes package were written by
the same author or a closely cooperating group of authors and that
the classes all trust each other not to abuse their privileged level
of access to each other’s implementation details.
Finally, the code that enforces the restriction against negative
radius values is itself placed within a protected
method, checkRadius(). Although users of the
Circle class cannot call this method, subclasses
of the class can call it and even override it if they want to change
the restrictions on the radius.

 Note particularly the
getRadius() and setRadius()
methods of Example 3-4. It is a common convention in
Java that data accessor methods begin with the prefixes
"

 get” and
“set.” If the field being accessed
is of type boolean, however, the
get() method may be replaced with an equivalent
method that begins with “is.” For
example, the accessor method for a boolean field
named readable is typically called
isReadable() instead of
getReadable(). In the programming conventions of
the JavaBeans component model (covered in Chapter 7), a hidden field with one or more data
accessor methods whose names begin with
“get,”
“is,” or
“set” is called a
property
 .
An interesting way to study a complex class is to look at the set of
properties it defines. Properties are particularly common in the AWT
and Swing APIs, which are covered in Java Foundation Classes in
a Nutshell (O’Reilly).

Abstract Classes and Methods

In Example 3-4,

 we declared our
Circle class to be part of a package named
shapes. Suppose we plan to implement a number of
shape classes: Rectangle,
Square, Ellipse,
Triangle, and so on. We can give these shape
classes our two basic area() and
circumference() methods. Now, to make it easy to
work with an array of shapes, it would be helpful if all our shape
classes had a common superclass, Shape. If we
structure our class hierarchy this way, every shape object,
regardless of the actual type of shape it represents, can be assigned
to variables, fields, or array elements of type
Shape. We want the Shape class
to encapsulate whatever features all our shapes have in common (e.g.,
the area() and circumference()
methods). But our generic Shape class
doesn’t represent any real kind of shape, so it
cannot define useful implementations of the methods. Java handles
this situation with abstract methods.

 Java
lets us define a method without implementing it by declaring the
method with the abstract modifier. An
abstract method has no body; it simply has a
signature definition followed by a semicolon.[8]
Here are the rules about abstract methods and the
abstract classes that contain them:

	Any class with an abstract method is automatically
abstract itself and must be declared as such.

	An abstract class cannot be instantiated.

	A subclass of an abstract class can be
instantiated only if it overrides each of the
abstract methods of its superclass and provides an
implementation (i.e., a method body) for all of them. Such a class is
often called a
concrete
 subclass, to emphasize the fact that
it is not abstract.

	If a subclass of an abstract class does not
implement all the abstract methods it inherits,
that subclass is itself abstract and must be
declared as such.

	
 static, private, and
final methods cannot be
abstract since these types of methods cannot be
overridden by a subclass. Similarly, a final class
cannot contain any abstract methods.

	A class can be declared abstract even if it does
not actually have any abstract methods. Declaring
such a class abstract indicates that the
implementation is somehow incomplete and is meant to serve as a
superclass for one or more subclasses that complete the
implementation. Such a class cannot be instantiated.

 There is an important feature of the
rules of abstract methods. If we define the
Shape class to have abstract
 area() and circumference()
methods, any subclass of Shape is required to
provide implementations of these methods so that it can be
instantiated. In other words, every Shape object
is guaranteed to have implementations of these methods defined. Example 3-5 shows how this might work. It defines an
abstract
 Shape class and two
concrete subclasses of it.
Example 3-5. An abstract class and concrete subclasses
public abstract class Shape {
 public abstract double area(); // Abstract methods: note
 public abstract double circumference(); // semicolon instead of body.
}

class Circle extends Shape {
 public static final double PI = 3.14159265358979323846;
 protected double r; // Instance data
 public Circle(double r) { this.r = r; } // Constructor
 public double getRadius() { return r; } // Accessor
 public double area() { return PI*r*r; } // Implementations of
 public double circumference() { return 2*PI*r; } // abstract methods.
}

class Rectangle extends Shape {
 protected double w, h; // Instance data
 public Rectangle(double w, double h) { // Constructor
 this.w = w; this.h = h;
 }
 public double getWidth() { return w; } // Accessor method
 public double getHeight() { return h; } // Another accessor
 public double area() { return w*h; } // Implementations of
 public double circumference() { return 2*(w + h); } // abstract methods.
}

Each abstract method in Shape
has a semicolon right after its parentheses. They have no curly
braces, and no method body is defined. Using the classes defined in
Example 3-5, we can now write code such as:
Shape[] shapes = new Shape[3]; // Create an array to hold shapes
shapes[0] = new Circle(2.0); // Fill in the array
shapes[1] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangle(4.0, 2.0);

double total_area = 0;
for(int i = 0; i < shapes.length; i++)
 total_area += shapes[i].area(); // Compute the area of the shapes
Notice two important points here:
	Subclasses of Shape can be assigned to elements of
an array of Shape. No cast is necessary. This is
another example of a widening reference type conversion (discussed in
Chapter 2).

	

 You can invoke the
area() and circumference()
methods for any Shape object, even though the
Shape class does not define a body for these
methods. When you do this, the method to be invoked is found using
dynamic method lookup, so the area of a circle is computed using the
method defined by Circle, and the area of a
rectangle is computed using the method defined by
Rectangle.

[8] An

 abstract method in
Java is something like a pure virtual function in C++ (i.e., a
virtual function that is declared = 0). In C++, a
class that contains a pure virtual function is called an abstract
class and cannot be instantiated. The same is true of Java classes
that contain abstract methods.

Important Methods of java.lang.Object

As

 we’ve noted, all
classes extend, directly or indirectly,
java.lang.Object. This class defines several
important methods that you should consider overriding in every class
you write. Example 3-6 shows a class that overrides
these methods. The sections that follow the example document the
default implementation of each method and explain why you might want
to override it. You may also find it helpful to look up
Object in the reference section for an API
listing.
Some of the syntax in Example 3-6 may be unfamiliar
to you. The example uses two Java 5.0 features. First, it implements
a parameterized, or generic, version of the
Comparable interface. Second, the example uses the
@Override

annotation to emphasize (and have the compiler verify) that certain
methods override Object.
Parameterized types and annotations are covered in Chapter 4.
Example 3-6. A class that overrides important Object methods
// This class represents a circle with immutable position and radius.
public class Circle implements Comparable<Circle> {
 // These fields hold the coordinates of the center and the radius.
 // They are private for data encapsulation and final for immutability
 private final int x, y, r;

 // The basic constructor: initialize the fields to specified values
 public Circle(int x, int y, int r) {
 if (r < 0) throw new IllegalArgumentException("negative radius");
 this.x = x; this.y = y; this.r = r;
 }

 // This is a "copy constructor"--a useful alternative to clone()
 public Circle(Circle original) {
 x = original.x; // Just copy the fields from the original
 y = original.y;
 r = original.r;
 }

 // Public accessor methods for the private fields.
 // These are part of data encapsulation.
 public int getX() { return x; }
 public int getY() { return y; }
 public int getR() { return r; }

 // Return a string representation
 @Override public String toString() {
 return String.format("center=(%d,%d); radius=%d", x, y, r);
 }

 // Test for equality with another object
 @Override public boolean equals(Object o) {
 if (o == this) return true; // Identical references?
 if (!(o instanceof Circle)) return false; // Correct type and non-null?
 Circle that = (Circle) o; // Cast to our type
 if (this.x == that.x && this.y == that.y && this.r == that.r)
 return true; // If all fields match
 else
 return false; // If fields differ
 }

 // A hash code allows an object to be used in a hash table.
 // Equal objects must have equal hash codes. Unequal objects are allowed
 // to have equal hash codes as well, but we try to avoid that.
 // We must override this method since we also override equals().
 @Override public int hashCode() {
 int result = 17; // This hash code algorithm from the book
 result = 37*result + x; // _Effective Java_, by Joshua Bloch
 result = 37*result + y;
 result = 37*result + r;
 return result;
 }

 // This method is defined by the Comparable interface.
 // Compare this Circle to that Circle. Return a value < 0 if this < that.
 // Return 0 if this == that. Return a value > 0 if this > that.
 // Circles are ordered top to bottom, left to right, and then by radius
 public int compareTo(Circle that) {
 long result = (long)that.y-this.y; // Smaller circles have bigger y
 if (result==0) result = (long)this.x-that.x; // If same compare l-to-r
 if (result==0) result = (long)this.r-that.r; // If same compare radius

 // We have to use a long value for subtraction because the differences
 // between a large positive and large negative value could overflow
 // an int. But we can't return the long, so return its sign as an int.
 return Long.signum(result); // new in Java 5.0
 }
}

toString()

The purpose of the toString(
)

method is to return a textual representation of an object. The method
is invoked automatically on objects during string concatenation and
by methods such as System.out.println(). Giving
objects a textual representation can be quite helpful for debugging
or logging output, and a well-crafted toString()
method can even help with tasks such as report generation.
The version of toString() inherited from
Object returns a string that includes the name of
the class of the object as well as a hexadecimal representation of
the hashCode() value of the object (discussed
later in this chapter). This default implementation provides basic
type and identity information for an object but is not usually very
useful. The toString() method in Example 3-6 instead returns a human-readable string that
includes the value of each of the fields of the
Circle class.

equals()

 The
= =
 operator tests two references to see
if they refer to the same object. If you want to test whether two
distinct objects are equal to one another, you must use the
equals() method instead. Any class can define its
own notion of equality by overriding equals(). The
Object.equals() method simply uses the
== operator: this default method considers two
objects equal only if they are actually the very same object.
The equals() method in Example 3-6 considers two distinct
Circle objects to be equal if their fields are all
equal. Note that it first does a quick identity test with =
= as an optimization and then checks the type of the other
object with
instanceof
 : a Circle can be
equal only to another Circle, and it is not acceptable for an
equals() method to throw a
ClassCastException. Note that the
instanceof test also rules out
null arguments: instanceof
always evaluates to false if its left-hand operand
is null.

hashCode()

Whenever you override equals(), you must also
override hashCode()

 . This
method returns an integer for use by hash table data structures. It
is critical that two objects have the same hash code if they are
equal according to the equals() method. It is
important (for efficient operation of hash tables) but not required
that unequal objects have unequal hash codes, or at least that
unequal objects are unlikely to share a hash code. This second
criterion can lead to hashCode() methods that
involve mildly tricky arithmetic or bit-manipulation.
The Object.hashCode() method works with the
Object.equals() method and returns a hash code
based on object identity rather than object equality. (If you ever
need an identity-based hash code, you can access the functionality of
Object.hashCode() through the static method
System.identityHashCode().) When you override
equals(), you must always override
hashCode() to guarantee that equal objects have
equal hash codes. Since the equals() method in
Example 3-6 bases object equality on the values of
the three fields, the hashCode() method computes
its hash code based on these three fields as well. It is clear from
the code that if two Circle objects have the same
field values, they will have the same hash code.
Note that the hashCode() method in Example 3-6 does not simply add the three fields and
return their sum. Such an implementation would be legal but not
efficient because two circles with the same radius but whose X and Y
coordinates were reversed would then have the same hash code. The
repeated multiplication and addition steps “spread
out” the range of hash codes and dramatically reduce
the likelihood that two unequal Circle objects
have the same code. Effective Java Programming
Guide

 by Joshua Bloch (Addison Wesley)
includes a helpful recipe for constructing efficient
hashCode() methods like this one.

Comparable.compareTo()

 Example 3-6 includes a compareTo(
)

method. This method is defined by the
java.lang.Comparable interface rather than by
Object. (It actually uses the generics features of
Java 5.0 and implements a parameterized version of the interface:
Comparable<Circle>, but we can ignore that
fact until Chapter 4.) The purpose of
Comparable and its compareTo()
method is to allow instances of a class to be compared to each
other in the way that the <,
<=, > and
>= operators compare numbers. If a class
implements Comparable, we can say that one
instance is less than, greater than, or equal to another instance.
Instances of a Comparable class can be sorted.
Since compareTo() is defined by an interface, the
Object class does not provide any default
implementation. It is up to each individual class to determine
whether and how its instances should be ordered and to include a
compareTo() method that implements that ordering.
The ordering defined by Example 3-6 compares
Circle objects as if they were words on a page.
Circles are first ordered from top to bottom: circles with larger Y
coordinates are less than circles with smaller Y coordinates. If two
circles have the same Y coordinate, they are ordered from left to
right. A circle with a smaller X coordinate is less than a circle
with a larger X coordinate. Finally, if two circles have the same X
and Y coordinates, they are compared by radius. The circle with the
smaller radius is smaller. Notice that under this ordering, two
circles are equal only if all three of their fields are equal. This
means that the ordering defined by compareTo() is
consistent with the equality defined by equals().
This is very desirable (but not strictly required).
The compareTo() method returns an
int value that requires further explanation.
compareTo() should return a negative number if the
this object is less than the object passed to it.
It should return 0 if the two objects are equal. And
compareTo() should return a positive number if
this is greater than the method argument.

clone()

 Object defines a method named
clone()

 whose
purpose is to return an object with fields set identically to those
of the current object. This is an unusual method for two reasons.
First, it works only if the class implements
the
 java.lang.Cloneable interface.
Cloneable does not define any methods, so
implementing it is simply a matter of listing it in the
implements clause of the class signature. The
other unusual feature of clone() is that it is
declared protected

(see Section 3.6 earlier in this
chapter). This means that subclasses of Object can
call and override Object.clone(), but other code
cannot call it. Therefore, if you want your object to be cloneable,
you must implement Cloneable and override the
clone() method, making it
public.
The Circle class of Example 3-6
does not implement Cloneable; instead it provides
a copy constructor
 for making copies of
Circle objects:
Circle original = new Circle(1, 2, 3); // regular constructor
Circle copy = new Circle(original); // copy constructor
It can be difficult to implement clone()
correctly, and it is usually easier and safer to provide a copy
constructor. To make the Circle class cloneable,
you would add Cloneable to the
implements clause and add the following method to
the class body:
@Override public Object clone() {
 try { return super.clone(); }
 catch(CloneNotSupportedException e) { throw new AssertionError(e); }
}
See Effective Java Programming Guide by Joshua
Bloch for a detailed discussion of the ins and outs of
clone() and
Cloneable.

Interfaces

Like a class, an interface

defines a new reference type. Unlike classes, however, interfaces
provide no implementation for the types they define. As its name
implies, an interface specifies only an API: all of its methods are
abstract and have no bodies. It is not possible to
directly instantiate an interface and create a member of the
interface type. Instead, a class must implement
the interface to provide the necessary method bodies. Any instances
of that class are members of both the type defined by the class and
the type defined by the interface. Interfaces provide a limited but
very powerful
alternative
to multiple inheritance

 .[9] Classes in Java can inherit members from only a single
superclass, but they can implement any number of interfaces. Objects
that do not share the same class or superclass may still be members
of the same type by virtue of implementing the same interface.
Defining an Interface

 An
interface definition is much like a class definition in which all the
methods are abstract and the keyword class has
been replaced with interface. For example, the
following code shows the definition of an interface named
Centered. A Shape class, such
as those defined earlier in the chapter, might implement this
interface if it wants to allow the coordinates of its center to be
set and queried:
public interface Centered {
 void setCenter(double x, double y);
 double getCenterX();
 double getCenterY();
}
A number of restrictions apply to the members of an interface:
	

 An
interface contains no implementation whatsoever. All methods of an
interface are implicitly
abstract
 and
must have a semicolon in place of a method body. The
abstract modifier is allowed but, by convention,
is usually omitted. Since static methods may not be abstract, the
methods of an interface may not be declared
static
 .

	An interface defines a public API. All members of an
interface are implicitly public, and it is
conventional to omit the unnecessary public
modifier. It is an error to define a protected or
private method in an interface.

	An interface may not define any instance fields. Fields are an
implementation detail, and an interface is a pure specification
without any implementation. The only fields allowed in an interface
definition are constants that are
declared both static and final.

	An interface cannot be instantiated, so it does not define a
constructor.

	Interfaces may contain nested types. Any such types are implicitly
public and static. See Section 3.10 later in this chapter.

Extending interfaces

 Interfaces
may extend other interfaces, and, like a class definition, an
interface definition may include an extends
clause. When one interface extends another, it
inherits all the abstract methods
and constants of its superinterface and can define new abstract
methods and constants. Unlike classes, however, the extends clause of
an interface definition may include more than one superinterface. For
example, here are some interfaces that extend other interfaces:
public interface Positionable extends Centered {
 void setUpperRightCorner(double x, double y);
 double getUpperRightX();
 double getUpperRightY();
}
public interface Transformable extends Scalable, Translatable, Rotatable {}
public interface SuperShape extends Positionable, Transformable {}
An interface that extends more than one interface inherits all the
abstract methods and constants from each of those interfaces and can
define its own additional abstract methods and constants. A class
that implements such an interface must implement the abstract methods
defined directly by the interface, as well as all the abstract
methods inherited from all the superinterfaces.

Implementing an Interface

 Just as a class uses
extends to specify its superclass, it can use

 implements
to name one or more interfaces it supports.
implements is a Java keyword that can appear in a
class declaration following the extends clause.
implements should be followed by a comma-separated
list of interfaces that the class implements.
When a class declares an interface in its
implements clause, it is saying that it provides
an implementation (i.e., a body) for each method of that interface.
If a class implements an interface but does not provide an
implementation for every interface method, it inherits those
unimplemented abstract methods from the interface
and must itself be declared abstract. If a class
implements more than one interface, it must implement every method of
each interface it implements (or be declared
abstract).
The following code shows how we can define a
CenteredRectangle class that extends the
Rectangle class from earlier in the chapter and
implements our Centered interface.
public class CenteredRectangle extends Rectangle implements Centered {
 // New instance fields
 private double cx, cy;

 // A constructor
 public CenteredRectangle(double cx, double cy, double w, double h) {
 super(w, h);
 this.cx = cx;
 this.cy = cy;
 }

 // We inherit all the methods of Rectangle but must
 // provide implementations of all the Centered methods.
 public void setCenter(double x, double y) { cx = x; cy = y; }
 public double getCenterX() { return cx; }
 public double getCenterY() { return cy; }
}

 Suppose we implement
CenteredCircle and
CenteredSquare just as we have implemented this
CenteredRectangle class. Since each class extends
Shape, instances of the classes can be treated as
instances of the Shape class, as we saw earlier.
Since each class implements the Centered
interface, instances can also be treated as instances of that type.
The following code demonstrates how objects can be members of both a
class type and an interface type:
Shape[] shapes = new Shape[3]; // Create an array to hold shapes

// Create some centered shapes, and store them in the Shape[]
// No cast necessary: these are all widening conversions
shapes[0] = new CenteredCircle(1.0, 1.0, 1.0);
shapes[1] = new CenteredSquare(2.5, 2, 3);
shapes[2] = new CenteredRectangle(2.3, 4.5, 3, 4);

// Compute average area of the shapes and average distance from the origin
double totalArea = 0;
double totalDistance = 0;
for(int i = 0; i < shapes.length; i++) {
 totalArea += shapes[i].area(); // Compute the area of the shapes
 if (shapes[i] instanceof Centered) { // The shape is a Centered shape
 // Note the required cast from Shape to Centered (no cast would
 // be required to go from CenteredSquare to Centered, however).
 Centered c = (Centered) shapes[i]; // Assign it to a Centered variable
 double cx = c.getCenterX(); // Get coordinates of the center
 double cy = c.getCenterY(); // Compute distance from origin
 totalDistance += Math.sqrt(cx*cx + cy*cy);
 }
}
System.out.println("Average area: " + totalArea/shapes.length);
System.out.println("Average distance: " + totalDistance/shapes.length);
This example demonstrates that interfaces are data types in Java,
just like classes. When a class implements an interface, instances of
that class can be assigned to variables of the interface type.
Don’t interpret this example to imply that you must
assign a CenteredRectangle object to a
Centered variable before you can invoke the
setCenter() method or to a
Shape variable before you can invoke the
area() method.
CenteredRectangle defines setCenter(
) and inherits area() from its
Rectangle superclass, so you can always invoke
these methods.
Implementing multiple interfaces

 Suppose we want shape
objects that can be positioned in terms of not only their center
points but also their upper-right corners. And suppose we also want
shapes that can be scaled larger and smaller. Remember that although
a class can extend only a single superclass, it can implement any
number of interfaces. Assuming we have defined appropriate
UpperRightCornered and Scalable
interfaces, we can declare a class as follows:
public class SuperDuperSquare extends Shape
 implements Centered, UpperRightCornered, Scalable {
 // Class members omitted here
}
When a class implements more than one interface, it simply means that
it must provide implementations for all abstract methods in all its
interfaces.

Interfaces vs. Abstract Classes

 When defining an abstract type (e.g.,
Shape) that you expect to have many subtypes
(e.g., Circle, Rectangle,
Square), you are often faced with a choice between
interfaces and abstract classes. Since they have similar features, it
is not always clear which to use.
An interface is useful because any class can implement it, even if
that class extends some entirely unrelated superclass. But an
interface is a pure API specification and contains no implementation.
If an interface has numerous methods, it can become tedious to
implement the methods over and over, especially when much of the
implementation is duplicated by each implementing class.
An abstract class does not need to be entirely abstract; it can
contain a partial implementation that subclasses can take advantage
of. In some cases, numerous subclasses can rely on default method
implementations provided by an abstract class. But a class that
extends an abstract class cannot extend any other class, which can
cause design difficulties in some situations.

Another important difference between interfaces and abstract classes
has to do with compatibility. If you define an interface as part of a
public API and then later add a new method to the interface, you
break any classes that implemented the previous version of the
interface. If you use an abstract class, however, you can safely add
nonabstract methods to that class without requiring modifications to
existing classes that extend the abstract class.
In some situations, it is clear that an interface or an abstract
class is the right design choice. In other cases, a common design
pattern is to use both. Define the type as a totally abstract
interface, then create an abstract class that implements the
interface and provides useful default implementations that subclasses
can take advantage of. For example:
// Here is a basic interface. It represents a shape that fits inside
// of a rectangular bounding box. Any class that wants to serve as a
// RectangularShape can implement these methods from scratch.
public interface RectangularShape {
 void setSize(double width, double height);
 void setPosition(double x, double y);
 void translate(double dx, double dy);
 double area();
 boolean isInside();
}

// Here is a partial implementation of that interface. Many
// implementations may find this a useful starting point.
public abstract class AbstractRectangularShape implements RectangularShape {
 // The position and size of the shape
 protected double x, y, w, h;

 // Default implementations of some of the interface methods
 public void setSize(double width, double height) { w = width; h = height; }
 public void setPosition(double x, double y) { this.x = x; this.y = y; }
 public void translate (double dx, double dy) { x += dx; y += dy; }
}

Marker Interfaces

 Sometimes it
is useful to define an interface that is entirely empty. A class can
implement this interface simply by naming it in its
implements clause without having to implement any
methods. In this case, any instances of the class become valid
instances of the interface. Java code can check whether an object is
an instance of the interface using the
 instanceof operator,
so this technique is a useful way to provide additional information
about an object.
The java.io.Serializable
interface is a marker interface of this sort. A
class implements Serializable interface to tell
ObjectOutputStream that its instances may safely
be serialized.
java.util.RandomAccess
 is another example:
java.util.List implementations implement this
interface to advertise that they provide fast random access to the
elements of the list. ArrayList implements
RandomAccess, for example, while
LinkedList does not. Algorithms that care about
the performance of random-access operations can test for
RandomAccess like this:
// Before sorting the elements of a long arbitrary list, we may want to make
// sure that the list allows fast random access. If not, it may be quicker
// make a random-access copy of the list before sorting it.
// Note that this is not necessary when using java.util.Collections.sort().
List l = ...; // Some arbitrary list we're given
if (l.size() > 2 && !(l instanceof RandomAccess)) l = new ArrayList(l);
sortListInPlace(l);

Interfaces and Constants

 As noted
earlier, constants can appear in an
interface definition. Any class that implements an interface inherits
the constants it defines and can use them as if they were defined
directly in the class itself. Importantly, there is no need to prefix
the constants with the name of the interface or provide any kind of
implementation of the constants.
When a set of constants is used by more than one class, it is
tempting to define the constants once in an interface and then have
any classes that require the constants implement the interface. This
situation might arise, for example, when client and server classes
implement a network protocol whose details (such as the port number
to connect to and listen on) are captured in a set of symbolic
constants. As a concrete example, consider the
java.io.ObjectStreamConstants interface, which
defines constants for the object serialization protocol and is
implemented by both ObjectInputStream and
ObjectOutputStream.
The primary benefit of inheriting constant definitions from an
interface is that it saves typing: you don’t need to
specify the type that defines the constants. Despite its use with
ObjectStreamConstants, this is not a recommended
technique. The use of constants is an implementation detail that is
not appropriate to declare in the implements
clause of a class signature.
A better approach is to define constants in a class and use the
constants by typing the full class name and the constant name. In
Java 5.0 and later, you can save typing by importing the constants
from their defining class with the import static
declaration. See Section 2.10 in
Chapter 2 for details.

[9] C++ supports
multiple inheritance, but the ability of a class to have more than
one superclass adds a lot of complexity to the language.

Nested Types

 The classes,
interfaces, and enumerated types we have seen so far in this book
have all been defined as top-level classes. This means that they are
direct members of packages, defined independently of other types.
However, type definitions can also be nested within other type
definitions. These nested types, commonly known
as "
 inner classes,” are a
powerful and elegant feature of the Java language. A type can be
nested within another type in four ways:
	Static member types
	

 A static member type is
any type defined as a static member of another
type. A static method is called a class method,
so, by analogy, we could call this type of nested type a
“class type,” but this terminology
would obviously be confusing. A static member type behaves much like
an ordinary top-level type, but its name is part of the namespace,
rather than the package, of the containing type. Also, a static
member type can access the static members of the
class that contains it. Nested interfaces, enumerated types, and
annotation types are implicitly static, whether or not the
static keyword appears. Any type nested within an
interface or annotation is also implicitly static.
Static member types may be defined within top-level types or nested
to any depth within other static member types. A static member type
may not be defined within any other kind of nested type, however.

	Nonstatic member classes
	

 A
"nonstatic member
type” is simply a member type that is not declared
static. Since interfaces, enumerated types, and
annotations are always implicitly static, however, we usually use the
term “nonstatic member class”
instead. Nonstatic member classes may be defined within other classes
or enumerated types and are analogous to instance methods or fields.
An instance of a nonstatic member class is always associated with an
instance of the enclosing type, and the code of a nonstatic member
class has access to all the fields and methods (both
static and non-static) of its
enclosing type. Several features of Java syntax exist specifically to
work with the enclosing instance of a nonstatic member class.

	Local classes
	

 A
local class is a class defined within a block of Java code.
Interfaces, enumerated types, and annotation types may not be defined
locally. Like a local variable, a local class is visible only within
the block in which it is defined. Although local classes are not
member classes, they are still defined within an enclosing class, so
they share many of the features of member classes. Additionally,
however, a local class can access any final local
variables or parameters that are accessible in the scope of the block
that defines the class.

	Anonymous classes
	

 An
anonymous class is a kind of local class that has no name; it
combines the syntax for class definition with the syntax for object
instantiation. While a local class definition is a Java statement, an
anonymous class definition (and instantiation) is a Java expression,
so it can appear as part of a larger expression, such as method
invocation. Interfaces, enumerated types, and annotation types cannot
be defined anonymously.

Nested types have no universally adopted nomenclature. The term
“inner class” is commonly used.
Sometimes, however, inner class is used to refer to a nonstatic
member class, local class, or anonymous class, but not a static
member type. Although the terminology for describing nested types is
not always clear, the syntax for working with them is, and it is
usually clear from context which kind of nested type is being
discussed.
Now we’ll describe each of the four kinds of nested
types in greater detail. Each section describes the features of the
nested type, the restrictions on its use, and any special Java syntax
used with the type. These four sections are followed by an
implementation note that explains how nested types work under the
hood.
Static Member Types

 A static member
type is much like a regular top-level type. For
convenience, however, it is nested within the namespace of another
type. Example 3-7 shows a helper interface defined
as a static member of a containing class. The example also shows how
this interface is used both within the class that contains it and by
external classes. Note the use of its hierarchical name in the
external class.
Example 3-7. Defining and using a static member interface
// A class that implements a stack as a linked list
public class LinkedStack {
 // This static member interface defines how objects are linked
 // The static keyword is optional: all nested interfaces are static
 public static interface Linkable {
 public Linkable getNext();
 public void setNext(Linkable node);
 }

 // The head of the list is a Linkable object
 Linkable head;

 // Method bodies omitted
 public void push(Linkable node) { ... }
 public Object pop() { ... }
}

// This class implements the static member interface
class LinkableInteger implements LinkedStack.Linkable {
 // Here's the node's data and constructor
 int i;
 public LinkableInteger(int i) { this.i = i; }

 // Here are the data and methods required to implement the interface
 LinkedStack.Linkable next;
 public LinkedStack.Linkable getNext() { return next; }
 public void setNext(LinkedStack.Linkable node) { next = node; }
}

Features of static member types

 A static member type is defined as a
static member of a containing type. Any type
(class, interface, enumerated type, or annotation type) may be
defined as a static member of any other type. Interfaces, enumerated
types, and annotation types are implicitly static, whether or not the
static keyword appears in their definition.
A static member type is like the other static members of a class:
static fields and static methods. Like a class method, a static
member type is not associated with any instance of the containing
class (i.e., there is no this object). A static
member type does, however, have access to all the
static members (including any other static member
types) of its containing type. A static member type can use any other
static member without qualifying its name with the name of the
containing type.

 A static member type has
access to all static members of its containing type, including
private members. The reverse is true as well: the
methods of the containing type have access to all members of a static
member type, including the private members. A
static member type even has access to all the members of any other
static member types, including the private members
of those types.
Top-level types can be declared with or without the
public modifier, but they cannot use the
private and protected
modifiers. Static member types, however, are members and can use any
access control modifiers that other members of the containing type
can. These modifiers have the same meanings for static member types
as they do for other members of a type. In Example 3-7, the Linkable interface is
declared public, so it can be implemented by any
class that is interested in being stored on a
LinkedStack. Recall that all members of interfaces
(and annotation types) are implicitly public, so
static member types nested within interfaces or annotation types
cannot be protected or private.

Restrictions on static member types

 A
static member type cannot have the same name as any of its enclosing
classes. In addition, static member types can be defined only within
top-level types and other static member types. This is actually part
of a larger prohibition against static members of
any sort within member, local, and anonymous classes.

Syntax for static member types

 In code
outside the containing class, a static member type is named by
combining the name of the outer type with the name of the inner type
(e.g., LinkedStack.Linkable). You can use the
import directive to import a static member type:
import pkg.LinkedStack.Linkable; // Import a specific nested type
import pkg.LinkedStack.*; // Import all nested types of LinkedStack
In Java 5.0 and later, you can also use the import
static directive to import a static member type. See Section 2.10 in Chapter 2 for details on
import and import static. Note
that importing a nested type obscures the fact that that type is
closely associated with its containing type, and it is not commonly
done.

Nonstatic Member Classes

 A nonstatic member
class is a class that is declared as a
member of a containing class or
enumerated type without the static keyword. If a
static member type is analogous to a class field or class method, a
nonstatic member class is analogous to an instance field or instance
method. Example 3-8 shows how a member class can be
defined and used. This example extends the previous
LinkedStack example to allow enumeration of the
elements on the stack by defining an iterator()
method that returns an implementation of the
java.util.Iterator
interface. The implementation of this interface
is defined as a member class. The example uses Java 5.0 generic type
syntax in a couple of places, but this should not prevent you from
understanding it. (Generics are covered in Chapter 4.)
Example 3-8. An iterator implemented as a member class
import java.util.Iterator;

public class LinkedStack {
 // Our static member interface
 public interface Linkable {
 public Linkable getNext();
 public void setNext(Linkable node);
 }

 // The head of the list
 private Linkable head;

 // Method bodies omitted here
 public void push(Linkable node) { ... }
 public Linkable pop() { ... }

 // This method returns an Iterator object for this LinkedStack
 public Iterator<Linkable> iterator() { return new LinkedIterator(); }

 // Here is the implementation of the Iterator interface,
 // defined as a nonstatic member class.
 protected class LinkedIterator implements Iterator<Linkable> {
 Linkable current;
 // The constructor uses the private head field of the containing class
 public LinkedIterator() { current = head; }
 // The following 3 methods are defined by the Iterator interface
 public boolean hasNext() { return current != null; }
 public Linkable next() {
 if (current == null) throw new java.util.NoSuchElementException();
 Linkable value = current;
 current = current.getNext();
 return value;
 }
 public void remove() { throw new UnsupportedOperationException(); }
 }
}

Notice how the LinkedIterator class is nested
within the LinkedStack class. Since
LinkedIterator is a helper class used only within
LinkedStack, there is real elegance to having it
defined so close to where it is used by the containing class.
Features of member classes

 Like
instance fields and instance methods, every instance of a nonstatic
member class is associated with an instance of the class in which it
is defined. This means that the code of a member class has access to
all the instance fields and instance methods (as well as the
static members) of the containing class, including
any that are declared private.
This crucial feature is illustrated in Example 3-8.
Here is the LinkedStack.LinkedIterator()
constructor again:
public LinkedIterator() { current = head; }
This single line of code sets the current field of
the inner class to the value of the head field of
the containing class. The code works as shown, even though
head is declared as a private
field in the containing class.

 A nonstatic member class, like any member
of a class, can be assigned one of three
visibility levels:
public, protected, or
private. If none of these visibility modifiers is
specified, the default package visibility is used. In Example 3-8, the LinkedIterator class
is declared protected, so it is inaccessible to
code (in a different package) that uses the
LinkedStack class but is accessible to any class
that subclasses LinkedStack.

Restrictions on member classes

 Member classes have three important
restrictions:
	A nonstatic member class cannot have the same name as any containing
class or package. This is an important rule, one not shared by fields
and methods.

	Nonstatic member classes cannot contain any static
fields, methods, or types, except for constant fields declared both
static and final.
static members are top-level constructs not
associated with any particular object while every member class is
associated with an instance of its enclosing class. Defining a
static top-level member within a member class that
is not at the top level would cause confusion, so it is not allowed.

	

 Only classes may be defined as nonstatic
members. Interfaces, enumerated types, and annotation types are all
implicitly static, even if the static keyword is
omitted.

Syntax for member classes

 The
most important feature of a member class is that it can access the
instance fields and methods in its containing object. We saw this in
the LinkedStack.LinkedIterator() constructor of
Example 3-8:
public LinkedIterator() { current = head; }
In this example, head is a field of the
LinkedStack class, and we assign it to the
current field of the
LinkedIterator class. What if we want to make
these references explicit? We could try code like this:
public LinkedIterator() { this.current = this.head; }

 This code does not compile, however.
this.current is fine; it is an explicit reference
to the current field in the newly created
LinkedIterator object. It is the
this.head expression that causes the problem; it
refers to a field named head in the
LinkedIterator object. Since there is no such
field, the compiler generates an error. To solve this problem, Java
defines a special syntax for explicitly referring to the containing
instance of the this object. Thus, if we want to
be explicit in our constructor, we can use the following syntax:
public LinkedIterator() { this.current = LinkedStack.this.head; }
The general syntax is
classname
 .this, where
classname is the name of a containing
class. Note that member classes can themselves contain member
classes, nested to any depth. Since no member class can have the same
name as any containing class, however, the use of the enclosing class
name prepended to this is a perfectly general way
to refer to any containing instance. This syntax is needed only when
referring to a member of a containing class that is hidden by a
member of the same name in the member class.
Accessing superclass members of the containing class

 When a class shadows or overrides a
member of its superclass, you can use the keyword
super to refer to the hidden member. This
super syntax can be extended to work with member
classes as well. On the rare occasion when you need to refer to a
shadowed field f or an overridden method
m of a superclass of a containing class
C, use the following expressions:
C.super.f
C.super.m()

Specifying the containing instance

 As we’ve seen, every
instance of a member class is associated with an instance of its
containing class. Look again at our definition of the
iterator() method in Example 3-8:
public Iterator<Linkable> iterator() { return new LinkedIterator(); }

 When a member class
constructor is invoked like this, the new instance of the member
class is automatically associated with the this
object. This is what you would expect to happen and exactly what you
want to occur in most cases. Occasionally, however, you may want to
specify the containing instance explicitly when instantiating a
member class. You can do this by preceding the new
operator with a reference to the containing instance. Thus, the
iterator() method shown earlier is shorthand for
the following:
public Iterator<Linkable> iterator() { return this.new LinkedIterator(); }
Let’s pretend we didn’t define an
iterator() method for
LinkedStack. In this case, the code to obtain an
LinkedIterator object for a given
LinkedStack object might look like this:
LinkedStack stack = new LinkedStack(); // Create an empty stack
Iterator i = stack.new LinkedIterator(); // Create an Iterator for it
The containing instance implicitly specifies the containing class; it
is a syntax error to explicitly specify the containing class name:
Iterator i = stack.new LinkedStack.LinkedIterator(); // Syntax error
One other special piece of Java syntax specifies an enclosing
instance for a member class explicitly. Before we consider it,
however, let me point out that you should rarely, if ever, need to
use this syntax. It is one of the pathological cases that snuck into
the language along with all the elegant features of nested types.

 As strange as it may seem, it is
possible for a top-level class to extend a member class. This means
that the subclass does not have a containing instance, but its
superclass does. When the subclass constructor invokes the superclass
constructor, it must specify the containing instance. It does this by
prepending the containing instance and a period to the
super keyword. If we had not declared our
LinkedIterator class to be a
protected member of
LinkedStack, we could subclass it. Although it is
not clear why we would want to do so, we could write code like the
following:
// A top-level class that extends a member class
class SpecialIterator extends LinkedStack.LinkedIterator {
 // The constructor must explicitly specify a containing instance
 // when invoking the superclass constructor.
 public SpecialIterator(LinkedStack s) { s.super(); }
 // Rest of class omitted...
}

Scope versus inheritance

 We’ve
just noted that a top-level class can extend a member class. With the
introduction of nonstatic member classes, two separate hierarchies
must be considered for any class. The first is the
inheritance hierarchy, from superclass to
subclass, that defines the fields and methods a member class
inherits. The second is the containment
hierarchy, from containing class to contained class, that
defines a set of fields and methods that are in the scope of (and are
therefore accessible to) the member class.

 The two hierarchies are entirely
distinct from each other; it is important that you do not confuse
them. This should not be a problem if you refrain from creating
naming conflicts, where a field or method in a superclass has the
same name as a field or method in a containing class. If such a
naming conflict does arise, however, the inherited field or method
takes precedence over the field or method of the same name in the
containing class. This behavior is logical: when a class inherits a
field or method, that field or method effectively becomes part of
that class. Therefore, inherited fields and methods are in the scope
of the class that inherits them and take precedence over fields and
methods by the same name in enclosing scopes.
A good way to prevent confusion between the class hierarchy and the
containment hierarchy is to avoid deep containment hierarchies. If a
class is nested more than two levels deep, it is probably going to
cause more confusion than it is worth. Furthermore, if a class has a
deep class hierarchy (i.e., it has many ancestors), consider defining
it as a top-level class rather than as a
nonstatic member class.

Local Classes

 A local class is
declared locally within a block of Java code rather than as a member
of a class. Only classes may be defined locally: interfaces,
enumerated types and annotation types must be top-level or static
member types. Typically, a local class is defined within a method,
but it can also be defined within a static initializer or instance
initializer of a class. Because all blocks of Java code appear within
class definitions, all local classes are nested within containing
classes. For this reason, local classes share many of the features of
member classes. It is usually more appropriate, however, to think of
them as an entirely separate kind of nested type. A local class has
approximately the same relationship to a member class as a local
variable has to an instance variable of a class.

 The defining characteristic of a local
class is that it is local to a block of code. Like a local variable,
a local class is valid only within the scope defined by its enclosing
block. If a member class is used only within a single method of its
containing class, for example, there is usually no reason it cannot
be coded as a local class rather than a member class. Example 3-9 shows how we can modify the
iterator() method of the
LinkedStack class so it defines
LinkedIterator as a local class instead of a
member class. By doing this, we move the definition of the class even
closer to where it is used and hopefully improve the clarity of the
code even further. For brevity, Example 3-9 shows
only the iterator() method, not the entire
LinkedStack class that contains it.

Example 3-9. Defining and using a local class
// This method returns an Iterator object for this LinkedStack
public Iterator<Linkable> Iterator() {
 // Here's the definition of LinkedIterator as a local class
 class LinkedIterator implements Iterator<Linkable> {
 Linkable current;

 // The constructor uses the private head field of the containing class
 public LinkedIterator() { current = head; }
 // The following 3 methods are defined by the Iterator interface
 public boolean hasNext() { return current != null; }
 public Linkable next() {
 if (current == null) throw new java.util.NoSuchElementException();
 Linkable value = current;
 current = current.getNext();
 return value;
 }
 public void remove() { throw new UnsupportedOperationException(); }
 }

 // Create and return an instance of the class we just defined
 return new LinkedIterator();
}

Features of local classes

Local classes have the following interesting features:

	Like member classes, local classes are associated with a containing
instance and can access any members, including
private members, of the containing class.

	In addition to accessing fields defined by the containing class,
local classes can access any local variables, method parameters, or
exception parameters that are in the scope of the local method
definition and are declared final.

Restrictions on local classes

 Local classes are subject to the following
restrictions:
	The name of a local class is defined only within the block that
defines it; it can never be used outside that block. (Note however
that instances of a local class created within the scope of the class
can continue to exist outside of that scope. This situation is
described in more detail later in this section.)

	Local classes cannot be declared
public

 , protected,
private
 , or
static
 . These modifiers are for members of
classes; they are not allowed with local variable declarations or
local class declarations.

	Like member classes, and for the same reasons, local classes cannot
contain static fields, methods, or classes. The
only exception is for constants that are declared both
static and final.

	Interfaces,
 enumerated types, and annotation types
cannot be defined locally.

	A local class, like a member class, cannot have the same name as any
of its enclosing classes.

	As noted earlier, a local class can use the local variables, method
parameters, and even exception parameters that are in its scope but
only if those variables or parameters are declared
final. This is because the lifetime of an instance
of a local class can be much longer than the execution of the method
in which the class is defined. For this reason, a local class must
have a private internal copy of all local variables it uses (these
copies are automatically generated by the compiler). The only way to
ensure that the local variable and the private copy are always the
same is to insist that the local variable is
final.

Syntax for local classes

In Java 1.0,
 only
fields, methods, and classes could be declared
final. The addition of local classes in Java 1.1
required a liberalization in the use of the final
modifier. As of Java 1.1, final can be applied to
local variables, method parameters, and even the exception parameter
of a catch statement. The meaning of the
final modifier remains the same in these new uses:
once the local variable or parameter has been assigned a value, that
value cannot be changed.
Instances of local classes, like instances of nonstatic member
classes, have an enclosing instance that is implicitly passed to all
constructors of the local class. Local classes can use the same
this

syntax as nonstatic member classes to refer explicitly to members of
enclosing classes. Because local classes are never visible outside
the blocks that define them, however, there is never a need to use
the new and super syntax used
by member classes to specify the enclosing instance explicitly.

Scope of a local class

 In discussing nonstatic
member classes, we saw that a member class can access any members
inherited from superclasses and any members defined by its containing
classes. The same is true for local classes, but local classes can
also access final local variables and parameters.
The following code illustrates the many fields and variables that may
be accessible to a local class:
class A { protected char a = 'a'; }
class B { protected char b = 'b'; }

public class C extends A {
 private char c = 'c'; // Private fields visible to local class
 public static char d = 'd';
 public void createLocalObject(final char e)
 {
 final char f = 'f';
 int i = 0; // i not final; not usable by local class
 class Local extends B
 {
 char g = 'g';
 public void printVars()
 {
 // All of these fields and variables are accessible to this class
 System.out.println(g); // (this.g) g is a field of this class
 System.out.println(f); // f is a final local variable
 System.out.println(e); // e is a final local parameter
 System.out.println(d); // (C.this.d) d -- field of containing class
 System.out.println(c); // (C.this.c) c -- field of containing class
 System.out.println(b); // b is inherited by this class
 System.out.println(a); // a is inherited by the containing class
 }
 }
 Local l = new Local(); // Create an instance of the local class
 l.printVars(); // and call its printVars() method.
 }
}

Local variables, lexical scoping, and closures

 A local variable
is defined within a block of code that defines its scope. A local
variable ceases to exist outside of its scope. Java is a
lexically scoped language, which means that its
concept of scope has to do with the way the source code is written.
Any code within the curly braces that define the boundaries of a
block can use local variables defined in that block.[10]

Lexical scoping simply defines a segment of source code within which
a variable can be used. It is common, however, to think of a scope as
a temporal scope—to think of a local variable as existing from
the time the Java interpreter begins executing the block until the
time the interpreter exits the block. This is usually a reasonable
way to think about local variables and their scope.
The introduction of local classes confuses the picture, however,
because local classes can use local variables, and instances of a
local class can have a lifetime much longer than the time it takes
the interpreter to execute the block of code. In other words, if you
create an instance of a local class, the instance does not
automatically go away when the interpreter finishes executing the
block that defines the class, as shown in the following code:
public class Weird {
 // A static member interface used below
 public static interface IntHolder { public int getValue(); }

 public static void main(String[] args) {
 IntHolder[] holders = new IntHolder[10]; // An array to hold 10 objects
 for(int i = 0; i < 10; i++) { // Loop to fill the array up
 final int fi = i; // A final local variable
 class MyIntHolder implements IntHolder {// A local class
 public int getValue() { return fi; } // It uses the final variable
 }
 holders[i] = new MyIntHolder(); // Instantiate the local class
 }

 // The local class is now out of scope, so we can't use it. But we have
 // 10 valid instances of that class in our array. The local variable
 // fi is not in our scope here, but it is still in scope for the
 // getValue() method of each of those 10 objects. So call getValue()
 // for each object and print it out. This prints the digits 0 to 9.
 for(int i = 0; i < 10; i++) System.out.println(holders[i].getValue());
 }
}
The behavior of the previous program is pretty surprising. To make
sense of it, remember that the lexical scope of the methods of a
local class has nothing to do with when the interpreter enters and
exits the block of code that defines the local class.
Here’s another way to think about it: each instance
of a local class has an automatically created private copy of each of
the final local variables it uses, so, in effect, it has its own
private copy of the scope that existed when it was created.
The local class MyIntHolder is sometimes called a
closure. In general terms, a closure is an
object that saves the state of a scope and makes that scope available
later. Closures are useful in some styles of programming, and
different programming languages define and implement closures in
different ways. Java’s closures are relatively weak
(and some would argue that they are not truly closures) because they
retain the state of only final variables.

Anonymous Classes

 An anonymous
class
 is
a local class without a name. An anonymous class is defined and
instantiated in a single succinct expression using the
new operator. While a local class definition is a
statement in a block of Java code, an anonymous class definition is
an expression, which means that it can be included as part of a
larger expression, such as a method call. In practice, anonymous
classes are much more common than local classes. If you find yourself
defining a short local class and then instantiating it exactly once,
consider rewriting it using anonymous class syntax, which places the
definition and use of the class in exactly the same place.
Consider Example 3-10, which shows the
LinkedIterator
 class
implemented as an anonymous class within the iterator(
) method of the LinkedStack class.
Compare it with Example 3-9, which shows the same
class implemented as a local class. The generic syntax in this
example is covered in Chapter 4.

Example 3-10. An enumeration implemented with an anonymous class
public Iterator<Linkable> iterator() {
 // The anonymous class is defined as part of the return statement
 return new Iterator<Linkable>() {
 Linkable current;
 // Replace constructor with an instance initializer
 { current = head; }

 // The following 3 methods are defined by the Iterator interface
 public boolean hasNext() { return current != null; }
 public Linkable next() {
 if (current == null) throw new java.util.NoSuchElementException();
 Linkable value = current;
 current = current.getNext();
 return value;
 }
 public void remove() { throw new UnsupportedOperationException(); }
 }; // Note the required semicolon. It terminates the return statement
}

 One common use for an anonymous class
is to provide a simple implementation of an adapter class. An
adapter class is one that defines code that is
invoked by some other object. Take, for example, the
list() method of the
java.io.File class. This method lists the files in
a directory. Before it returns the list, though, it passes the name
of each file to a FilenameFilter object you must
supply. This FilenameFilter object accepts or
rejects each file. When you implement the
FilenameFilter interface, you are defining an
adapter class for use with the File.list() method.
Since the body of such a class is typically
quite short, it is easy to define an adapter class as an anonymous
class. Here’s how you can define a
FilenameFilter class to list only those files
whose names end with .java :
File f = new File("/src"); // The directory to list

// Now call the list() method with a single FilenameFilter argument
// Define and instantiate an anonymous implementation of FilenameFilter
// as part of the method invocation expression.
String[] filelist = f.list(new FilenameFilter() {
 public boolean accept(File f, String s) { return s.endsWith(".java"); }
}); // Don't forget the parenthesis and semicolon that end the method call!

 As you can see,
the syntax for defining an anonymous class and creating an instance
of that class uses the new keyword, followed by
the name of a class and a class body definition in curly braces. If
the name following the new keyword is the name of
a class, the anonymous class is a subclass of the named class. If the
name following new specifies an interface, as in
the two previous examples, the anonymous class implements that
interface and extends Object. The syntax does not
include any way to specify an extends clause, an
implements clause, or a name for the class.

 Because an anonymous class has no
name, it is not possible to define a constructor for it within the
class body. This is one of the basic restrictions on anonymous
classes. Any arguments you specify between the parentheses following
the superclass name in an anonymous class definition are implicitly
passed to the superclass constructor. Anonymous classes are commonly
used to subclass simple classes that do not take any constructor
arguments, so the parentheses in the anonymous class definition
syntax are often empty. In the previous examples, each anonymous
class implemented an interface and extended
Object. Since the Object()
constructor takes no arguments, the parentheses were empty in those
examples.
Features of anonymous classes

Anonymous classes allow you to define a one-shot class exactly where
it is needed. Anonymous classes have all the features of local
classes but use a more concise syntax that can reduce clutter in your
code.

Restrictions on anonymous classes

 Because an anonymous class is just
a type of local class, anonymous classes and local classes share the
same restrictions. An anonymous class cannot define any
static fields, methods, or classes, except for
static
 final constants.
Interfaces, enumerated types, and annotation types cannot be defined
anonymously. Also, like local classes, anonymous classes cannot be
public

 , private,
protected, or static.
Since an anonymous class has no name, it is not possible to define a
constructor for an anonymous class. If your class requires a
constructor, you must use a local class instead. However, you can
often use an instance initializer as a substitute for a constructor.

The syntax for defining an anonymous class combines definition with
instantiation. Using an anonymous class instead of a local class is
not appropriate if you need to create more than a single instance of
the class each time the containing block is executed.

Syntax for anonymous classes

 We’ve already
seen examples of the syntax for defining and instantiating an
anonymous class. We can express that syntax more formally as:
new class-name ([argument-list]) { class-body }
or:
new interface-name () { class-body }
Although they are not limited to use with anonymous classes, instance
initializers were introduced into the language for this purpose. As
described earlier in this chapter in Section 3.3.4, an instance initializer is
a block of initialization code contained within curly braces inside a
class definition. The contents of all instance initializers for a
class are automatically inserted into all constructors for the class,
including any automatically created default constructor. An anonymous
class cannot define a constructor, so it gets a default constructor.
By using an instance initializer, you can get around the fact that
you cannot define a constructor for an anonymous class.

When to use an anonymous class

 As we’ve discussed, an
anonymous class behaves just like a local class and is distinguished
from a local class merely in the syntax used to define and
instantiate it. In your own code, when you have to choose between
using an anonymous class and a local class, the decision often comes
down to a matter of style. You should use whichever syntax makes your
code clearer. In general, you should consider using an anonymous
class instead of a local class if:
	The class has a very short body.

	Only one instance of the class is needed.

	The class is used right after it is defined.

	The name of the class does not make your code any easier to
understand.

Anonymous class indentation and formatting

 The common indentation and
formatting conventions we are familiar with for block-structured
languages like Java and C begin to break down somewhat once we start
placing anonymous class definitions within arbitrary expressions.
Based on their experience with nested types, the engineers at Sun
recommend the following formatting rules:
	The opening curly brace should not be on a line by itself; instead,
it should follow the closing parenthesis of the
new
 operator. Similarly, the
new operator should, when possible, appear on the
same line as the assignment or other expression of which it is a
part.

	The body of the anonymous class should be indented relative to the
beginning of the line that contains the new
keyword.

	The closing curly brace of an anonymous class should not be on a line
by itself either; it should be followed by whatever tokens are
required by the rest of the expression. Often this is a semicolon or
a closing parenthesis followed by a semicolon. This extra punctuation
serves as a flag to the reader that this is not just an ordinary
block of code and makes it easier to understand anonymous classes in
a code

listing.

How Nested Types Work

 The preceding sections explained the
features and behavior of the four kinds of nested types. Strictly
speaking, that should be all you need to know about nested types. You
may find it easier to understand nested types if you understand how
they are implemented, however.
Nested types were added in Java 1.1. Despite the dramatic changes to
the Java language, the introduction of nested types did not change
the Java Virtual Machine or the Java class file format. As far as the
Java interpreter is concerned, there is no such thing as a nested
type: all classes are normal top-level classes. In order to make a
nested type behave as if it is actually defined inside another class,
the Java compiler ends up inserting hidden fields, methods, and
constructor arguments into the classes it generates. You may want to
use the javap disassembler to disassemble some
of the class files for nested types so you can see what tricks the
compiler has used to make the nested types work. (See Chapter 8 for information on
javap.)
Static member type implementation

 Recall our first
LinkedStack example (Example 3-7), which defined a static member interface
named Linkable. When you compile this
LinkedStack class, the compiler actually generates
two class files. The first one is
LinkedStack.class, as expected. The second class
file, however, is called
LinkedStack$Linkable.class. The
$ in this name is automatically inserted by the
Java compiler. This second class file contains the implementation of
the static member interface.
As we discussed earlier, a static member type can access all the
static members of its containing class. If a
static member type does this, the compiler automatically qualifies
the member access expression with the name of the containing class. A
static member type is even allowed to access the
private
 static fields of its
containing class. Since the static member type is compiled into an
ordinary top-level class, however, there is no way it can directly
access the private members of its container.
Therefore, if a static member type uses a private
member of its containing type (or vice versa), the compiler generates
synthetic non-private access methods and converts
the expressions that access the private members
into expressions that invoke these specially generated methods. These
methods are given the default package access, which is sufficient, as
the member class and its containing class are guaranteed to be in the
same package.

Nonstatic member class implementation

 A nonstatic member class is implemented
much like a static member type. It is compiled into a separate
top-level class file, and the compiler performs various code
manipulations to make interclass member access work correctly.
The most significant difference between a nonstatic member class and
a static member type is that each instance of a nonstatic member
class is associated with an instance of the enclosing class. The
compiler enforces this association by defining a synthetic field
named this$0 in each member class. This field is
used to hold a reference to the enclosing instance. Every nonstatic
member class constructor is given an extra parameter that initializes
this field. Every time a member class constructor is invoked, the
compiler automatically passes a reference to the enclosing class for
this extra parameter.
As we’ve seen, a nonstatic member class, like any
member of a class, can be declared public,
protected, or private, or given
the default package visibility. Member classes are compiled to class
files just like top-level classes, but top-level classes can have
only public or package access. Therefore, as far as the Java
interpreter is concerned, member classes can have only public or
package visibility. This means that a member class declared
protected is actually treated as a public class,
and a member class declared private actually has
package visibility. This does not mean you should never declare a
member class as protected or
private. Although the Java VM cannot enforce these
access control modifiers, the modifiers are stored in the class file
and conforming Java compilers do enforce them.

Local and anonymous class implementation

 A local class is able to
refer to fields and methods in its containing class for exactly the
same reason that a nonstatic member class can; it is passed a hidden
reference to the containing class in its constructor and saves that
reference away in a private synthetic field added
by the compiler. Also, like nonstatic member classes, local classes
can use private fields and methods of their
containing class because the compiler inserts any required accessor
methods.
What makes local classes different from member classes is that they
have the ability to refer to local variables in the scope that
defines them. The crucial restriction on this ability, however, is
that local classes can reference only local variables and parameters
that are declared final. The reason for this
restriction becomes apparent in the implementation. A local class can
use local variables because the compiler automatically gives the
class a private instance field to hold a copy of
each local variable the class uses. The compiler also adds hidden
parameters to each local class constructor to initialize these
automatically created private fields. A local
class does not actually access local variables but merely its own
private copies of them. The only way this can work correctly is if
the local variables are declared final so that
they are guaranteed not to change. With this guarantee, the local
class can be assured that its internal copies of the variables are
always in sync with the real local variables.

 Since anonymous classes have no names,
you may wonder what the class files that represent them are named.
This is an implementation detail, but Sun’s Java
compiler uses numbers to provide anonymous class names. If you
compile the example code shown in Example 3-10,
you’ll find that it produces a class file for the
anonymous class with a name like
LinkedStack$1.class.

[10] This section covers advanced material; first-time readers may
want to skip it for now and return to it later.

Modifier Summary

 As we’ve seen, classes,
interfaces, and their members can be declared with one or more
modifiers—keywords such as
public, static, and
final. Table 3-2 lists the Java
modifiers, explains what types of Java constructs they can modify,
and explains what they do. See also Section 3.1 and Section 3.2.1 earlier in this chapter, as
well as Section 2.6.2 in Chapter 2.
Table 3-2. Java modifiers
	
 Modifier

 	
 Used on

 	
 Meaning

	

 abstract

 	
 Class

 	

 The
class contains unimplemented methods and cannot be instantiated.

	
	
 Interface

 	

 All interfaces are
abstract. The modifier is optional in interface
declarations.

	

 abstract

 	
 Method

 	

 No
body is provided for the method; it is provided by a subclass. The
signature is followed by a semicolon. The enclosing class must also
be abstract.

	

 final

 	
 Class

 	
 The class cannot be subclassed.

	
	
 Method

 	
 The method cannot be overridden (and is not subject to dynamic method
lookup).

	
	
 Field

 	
 The field cannot have its value changed. static
final fields are compile-time constants.

	
	
 Variable

 	

 A local variable, method parameter,
or exception parameter cannot have its value changed. Useful with
local classes.

	

 native

 	
 Method

 	

 The
method is implemented in some platform-dependent way (often in C). No
body is provided; the signature is followed by a semicolon.

	
 None (package)

 	
 Class

 	

 A
non-public class is accessible only in its
package.

	
	
 Interface

 	
 A non-public interface is accessible only in its
package.

	
	
 Member

 	
 A member that is not private,
protected, or public has
package visibility and is accessible only within its package.

	

 private

 	
 Member

 	

 The member
is accessible only within the class that defines it.

	

 protected

 	
 Member

 	

 The
member is accessible only within the package in which it is defined
and within subclasses.

	

 public

 	
 Class

 	

 The class is
accessible anywhere its package is.

	
	
 Interface

 	
 The interface is accessible anywhere its package is.

	
	
 Member

 	
 The member is accessible anywhere its class is.

	

 strictfp

 	
 Class

 	
 All methods of the class are implicitly strictfp.

	

 strictfp

 	
 Method

 	

 All floating-point computation done
by the method must be performed in a way that strictly conforms to
the IEEE 754 standard. In particular, all values, including
intermediate results, must be expressed as IEEE
float or double values and
cannot take advantage of any extra precision or range offered by
native platform floating-point formats or hardware. This modifier is
rarely used.

	

 static

 	
 Class

 	

 An inner
class declared static is a top-level class, not
associated with a member of the containing class.

	
	
 Method

 	

 A
static method is a class method. It is not passed
an implicit this object reference. It can be
invoked through the class name.

	
	
 Field

 	
 A static
 field is a class field. There is only
one instance of the field, regardless of the number of class
instances created. It can be accessed through the class name.

	
	
 Initializer

 	

 The
initializer is run when the class is loaded rather than when an
instance is created.

	

 synchronized

 	
 Method

 	

 The
method makes nonatomic modifications to the class or instance, so
care must be taken to ensure that two threads cannot modify the class
or instance at the same time. For a static method,
a lock for the class is acquired before executing the method. For a
non-static method, a lock for the specific object
instance is acquired.

	

 transient

 	
 Field

 	

 The
field is not part of the persistent state of the object and should
not be serialized with the object. Used with object serialization;
see java.io.ObjectOutputStream.

	

 volatile

 	
 Field

 	

 The
field can be accessed by unsynchronized threads, so certain
optimizations must not be performed on it. This modifier can
sometimes be used as an alternative to
synchronized. This modifier is very rarely used.

C++ Features Not Found in Java

 This chapter indicates
similarities and differences between Java and C++ in footnotes. Java
shares enough concepts and features with C++ to make it an easy
language for C++ programmers to pick up. Several features of C++ have
no parallel in Java, however. In general, Java does not adopt those
features of C++ that make the language significantly more
complicated.

 C++
supports multiple inheritance of method implementations from more
than one superclass at a time. While this seems like a useful
feature, it actually introduces many complexities to the language.
The Java language designers chose to avoid the added complexity by
using interfaces instead. Thus, a class in Java can inherit method
implementations only from a single superclass, but it can inherit
method declarations from any number of interfaces.
C++ supports templates that allow you, for example, to implement a
Stack class and then instantiate it as
Stack<int> or
Stack<double> to produce two separate types:
a stack of integers and a stack of floating-point values. Java 5.0
introduces parameterized types or
“generics” that provide similar
functionality in a more robust fashion. Generics are covered in Chapter 4.

 C++
allows you to define operators that perform arbitrary operations on
instances of your classes. In effect, it allows you to extend the
syntax of the language. This is a nifty feature, called operator
overloading, that makes for elegant examples. In practice, however,
it tends to make code quite difficult to understand. After much
debate, the Java language designers decided to omit such operator
overloading from the language. Note, though, that the use of the
+ operator for string concatenation in Java is at
least reminiscent of operator overloading.
C++ allows you to define conversion functions for a class that
automatically invokes an appropriate constructor method when a value
is assigned to a variable of that class. This is simply a syntactic
shortcut (similar to overriding the assignment operator) and is not
included in Java.

 In C++, objects are manipulated by
value by default; you must use & to specify a
variable or function argument automatically manipulated by reference.
In Java, all objects are manipulated by reference, so there is no
need for the & syntax.

Chapter 4. Java 5.0 Language Features

 This chapter covers the three most
important new language features of Java 5.0.

 Generics add
type-safety and expressiveness to Java
programs by allowing types to be parameterized with other types. A
List that contains String
objects, for example, can be written as
List<String>
 . Using parameterized types makes Java code
clearer and allows us to remove most casts from our programs.

 Enumerated types, or
enums, are a new category of reference type,
like classes and interfaces. An enumerated type defines a finite
(“enumerated”) set of values, and,
importantly, provides type-safety: a variable of enumerated type can
hold only values of that enumerated type or null.
Here is a simple enumerated type definition:
public enum Seasons { WINTER, SPRING, SUMMER, AUTUMN }
The third Java 5.0 feature discussed in this chapter is program
annotations and
the annotation types that define them. An
annotation associates arbitrary data (or
metadata) with a program element such as a class, method, field, or
even a method parameter or local variable. The type of data held in
an annotation is defined by
its
 annotation type,
which, like enumerated types, is another new category of reference
type. The Java 5.0 platform includes three standard annotation types
used to provide additional information to the Java compiler.
Annotations will probably find their greatest use with code
generation tools in Java enterprise programming.
Java 5.0 also introduces a number of other important new language
features that don’t require a special chapter to
explain. Coverage of these changes is found in sections throughout
Chapter 2. They include:
	

 Autoboxing and unboxing
conversions

	The for/in
 looping statement, sometimes called
“foreach”

	Methods with
 variable-length argument lists, also known
as varargs methods

	The ability to narrow the return type of a method when overriding,
known as a "
 covariant return”

	The import static directive, which imports the
static members of a type into the namespace

Generic Types

Generic types and methods are the defining new feature of Java 5.0. A
generic type

 is
defined using one or more type
variables

and has one or more methods that use a type variable as a placeholder
for an argument or return type. For example, the type
java.util.List<E> is a generic type: a list
that holds elements of some type represented by the placeholder
E. This type has a method named
add(), declared to take an argument of type
E, and a method named get(),
declared to return a value of type E.
In order to use a generic type like this,
you specify actual types for the type variable (or variables),
producing a parameterized
type
 such as
List<String>.[1] The reason to specify this extra type information is that
the compiler can provide much stronger compile-time type checking for
you, increasing the type safety of your programs. This type checking
prevents you from adding a String[], for example,
to a List that is intended to hold only
String objects. Also, the additional type
information enables the compiler to do some casting for you. The
compiler knows that the get() method of a
List<String> (for example) returns a
String object: you are no longer required to cast
a return value of type Object to a
String.
The

 collections
classes of the java.util package have been made
generic in Java 5.0, and you will probably use them frequently in
your programs. Typesafe collections are the canonical use case for
generic types. Even if you never define generic types of your own and
never use generic types other than the collections classes in
java.util, the benefits of typesafe collections
are so significant that they justify the complexity of this major new
language feature.
We begin by exploring the basic use of generics in typesafe
collections, then delve into more complex details about the use of
generic types. Next we cover type parameter wildcards and bounded
wildcards. After describing how to use generic types, we explain how
to write your own generic types and generic methods. Our coverage of
generics concludes with a tour of important generic types in the core
Java API. It explores these types and their use in depth in order to
provide a deeper understanding of how generics work.
Typesafe Collections

The java.util

 package includes the Java
Collections Framework for working with sets and lists of objects and
mappings from key objects to value objects. Collections are covered
in Chapter 5. Here, we discuss the fact that in
Java 5.0 the collections classes use type parameters to identify the
type of the objects in the collection. This is not the case in Java
1.4 and earlier. Without generics, the use of collections requires
the programmer to remember the proper element type for each
collection. When you create a collection in Java 1.4, you know what
type of objects you intend to store in that collection, but the
compiler cannot know this. You must be careful to add elements of the
appropriate type. And when querying elements from a collection, you
must write explicit casts to convert them from
Object to their actual type. Consider the
following Java 1.4 code:
public static void main(String[] args) {
 // This list is intended to hold only strings.
 // The compiler doesn't know that so we have to remember ourselves.
 List wordlist = new ArrayList();

 // Oops! We added a String[] instead of a String.
 // The compiler doesn't know that this is an error.
 wordlist.add(args);

 // Since List can hold arbitrary objects, the get() method returns
 // Object. Since the list is intended to hold strings, we cast the
 // return value to String but get a ClassCastException because of
 // the error above.
 String word = (String)wordlist.get(0);
}
Generic types solve the type safety problem illustrated by this code.
List and the other collection classes in
java.util have been rewritten to be generic. As
mentioned above, List
 has been redefined in terms of a type
variable named E that represents the type of the
elements of the list. The add() method is
redefined to expect an argument of type E instead
of Object and get() has been
redefined to return E instead of
Object.
In Java 5.0, when we declare a List variable or
create an instance of an ArrayList, we specify the
actual type we want E to represent by placing the
actual type in angle brackets following the name of the generic type.
A List that holds strings is a
List<String>, for example. Note that this is
much like passing an argument to a method, except that we use types
rather than values and angle brackets instead of parentheses.
The elements of the java.util collection classes
must be objects; they cannot be used with primitive values. The
introduction of generics does not change this. Generics do not work
with primitives: we can’t declare a
Set<char>, or a
List<int> for example. Note, however, that
the autoboxing and autounboxing features of Java 5.0 make working
with a Set<Character> or a
List<Integer> just as easy as working
directly with char and int
values. (See Chapter 2 for details on
autoboxing and autounboxing).
In Java 5.0, the example above would be rewritten as follows:
public static void main(String[] args) {
 // This list can only hold String objects
 List<String> wordlist = new ArrayList<String>();

 // args is a String[], not String, so the compiler won't let us do this
 wordlist.add(args); // Compilation error!

 // We can do this, though.
 // Notice the use of the new for/in looping statement
 for(String arg : args) wordlist.add(arg);

 // No cast is required. List<String>.get() returns a String.
 String word = wordlist.get(0);
}
Note that this code isn’t much shorter than the
nongeneric example it replaces. The cast, which uses the word
String in parentheses, is replaced with the type
parameter, which places the word String in angle
brackets. The difference is that the type parameter has to be
declared only once, but the list can be used any number of times
without a cast. This would be more apparent in a longer example. But
even in cases where the generic syntax is more verbose than the
nongeneric syntax, it is still very much worth using generics because
the extra type information allows the compiler to perform much
stronger error checking on your code. Errors that would only be
apparent at runtime can now be detected at compile time. Furthermore,
the compilation error appears at the exact line where the type safety
violation occurs. Without generics, a
ClassCastException can be thrown far from the
actual source of the error.
Just as methods can have any number of arguments, classes can have
more than one type variable. The java.util.Map
interface is an example. A
Map is a mapping from key objects to value
objects. The Map interface declares one type
variable to represent the type of the keys and one variable to
represent the type of the values. As an example, suppose you want to
map from String objects to
Integer objects:
public static void main(String[] args) {
 // A map from strings to their position in the args[] array
 Map<String,Integer> map = new HashMap<String,Integer>();

 // Note that we use autoboxing to wrap i in an Integer object.
 for(int i=0; i < args.length; i++) map.put(args[i], i);

 // Find the array index of a word. Note no cast is required!
 Integer position = map.get("hello");

 // We can also rely on autounboxing to convert directly to an int,
 // but this throws a NullPointerException if the key does not exist
 // in the map
 int pos = map.get("world");
}
A parameterized type like List<String> is
itself a type and can be used as the value of a type parameter for
some other type. You might see code like this:
// Look at all those nested angle brackets!
Map<String, List<List<int[]>>> map = getWeirdMap();

// The compiler knows all the types and we can write expressions
// like this without casting. We might still get NullPointerException
// or ArrayIndexOutOfBounds at runtime, of course.
int value = map.get(key).get(0).get(0)[0];

// Here's how we break that expression down step by step.
List<List<int[]>> listOfLists = map.get(key);
List<int[]> listOfIntArrays = listOfLists.get(0);
int[] array = listOfIntArrays.get(0);
int element = array[0];
In the code above, the get() methods of
java.util.List<E> and
java.util.Map<K,V> return a list or map
element of type E and V
respectively. Note, however, that generic types can use their
variables in more sophisticated ways. Look up
List<E> in the reference section of this
book, and you’ll find that its iterator(
) method is declared to return an
Iterator<E>. That is, the method returns an
instance of a parameterized type whose actual type parameter is the
same as the actual type parameter of the list. To illustrate this
concretely, here is a way to obtain the first element of a
List<String> without calling
get(0).
List<String> words = // ...initialized elsewhere...
Iterator<String> iterator = words.iterator();
String firstword = iterator.next();

Understanding Generic Types

This section
delves deeper into the details of generic type usage, explaining the
following topics:
	The consequences of using generic types without
type parameters

	The parameterized type hierarchy

	A hole in the compile-time type safety of generic types and a patch
to ensure runtime type safety

	Why arrays of parameterized types are not typesafe

Raw types and unchecked warnings

Even

 though
 the Java collection classes have
been modified to take advantage of generics, you are not required to
specify type parameters to use them. A generic type used without type
parameters is known as a raw
type
 .
Existing pre-5.0 code continues to work: you simply write all the
casts that you’re already used to writing, and you
put up with some pestering from the compiler. Consider the following
code that stores objects of mixed types into a raw
List:
List l = new ArrayList();
l.add("hello");
l.add(new Integer(123));
Object o = l.get(0);
This code works fine in Java 1.4. If we compile it using Java 5.0,
however, javac compiles the code but prints this
complaint:
Note: Test.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
When we recompile with the -Xlint option as
suggested, we see these warnings:
Test.java:6: warning: [unchecked]
 unchecked call to add(E) as a member of the raw type java.util.List
 l.add("hello");
 ^
Test.java:7: warning: [unchecked]
 unchecked call to add(E) as a member of the raw type java.util.List
 l.add(new Integer(123));
 ^
The compiler warns us about the add() calls
because it cannot ensure that the values being added to the list have
the correct types. It is letting us know that because
we’ve used a raw type, it cannot verify that our
code is typesafe. Note that the call to get() is
okay because it is extracting an element that is already safely in
the list.
If you get unchecked warnings on files that do not use any of the new
Java 5.0 features, you can simply compile them with the
-source 1.4 flag, and the compiler
won’t complain. If you can’t do
that, you can ignore the warnings, suppress them with an
@SuppressWarnings("unchecked")

annotation (see Section 4.3 later
in this chapter) or upgrade your code to specify a type
parameter.[2] The following code, for example,
compiles with no warnings and still allows you to add objects of
mixed types to the list:
List<Object> l = new ArrayList<Object>();
l.add("hello");
l.add(123); // autoboxing
Object o = l.get(0);

The parameterized type hierarchy

 Parameterized types form a type
hierarchy, just as normal types do. The hierarchy is based on the
base type, however, and not on the type of the parameters. Here are
some experiments you can try:
ArrayList<Integer> l = new ArrayList<Integer>();
List<Integer> m = l; // okay
Collection<Integer> n = l; // okay
ArrayList<Number> o = l; // error
Collection<Object> p = (Collection<Object>)l; // error, even with cast
A List<Integer> is a
Collection<Integer>, but it is not a
List<Object>. This is nonintuitive, and it
is important to understand why generics work this way. Consider this
code:
List<Integer> li = new ArrayList<Integer>();
li.add(123);

// The line below will not compile. But for the purposes of this
// thought-experiment, assume that it does compile and see how much
// trouble we get ourselves into.
List<Object> lo = li;

// Now we can retrieve elements of the list as Object instead of Integer
Object number = lo.get(0);

// But what about this?
lo.add("hello world");

// If the line above is allowed then the line below throws ClassCastException
Integer i = li.get(1); // Can't cast a String to Integer!
This then is the reason that a List<Integer>
is not a List<Object>, even though all
elements of a List<Integer> are in fact
instances of Object. If the conversion to
List<Object> were allowed,
non-Integer objects could be added to the list.

Runtime type safety

As
 we’ve
seen, a
List<X> cannot be converted to a
List<Y>, even when X
 can be converted to Y. A
List<X> can be converted to a
List, however, so that you can pass it to a legacy
method that expects an argument of that type and has not been updated
for generics.
This ability to convert parameterized types to nonparameterized types
is essential for backward compatibility, but it does open up a hole
in the type safety system that generics offer:
// Here's a basic parameterized list.
List<Integer> li = new ArrayList<Integer>();

// It is legal to assign a parameterized type to a nonparameterized variable
List l = li;

// This line is a bug, but it compiles and runs.
// The Java 5.0 compiler will issue an unchecked warning about it.
// If it appeared as part of a legacy class compiled with Java 1.4, however,
// then we'd never even get the warning.
l.add("hello");

// This line compiles without warning but throws ClassCastException at runtime.
// Note that the failure can occur far away from the actual bug.
Integer i = li.get(0);

 Generics provide compile-time type
safety only. If you compile all your code with the Java 5.0 compiler
and do not get any unchecked warnings, these compile-time checks are
enough to ensure that your code is also typesafe at runtime. But if
you have unchecked warnings or are working with legacy code that
manipulates your collections as raw types, you may want to take
additional steps to ensure type safety at runtime. You can do this
with methods like
checkedList()

 and checkedMap()
of java.util.Collections. These methods enclose
your collection in a wrapper collection that performs runtime type
checks to ensure that only values of the correct type are added to
the collection. For example, we could prevent the type safety hole
shown above like this:
// Here's a basic parameterized list.
List<Integer> li = new ArrayList<Integer>();

// Wrap it for runtime type safety
List<Integer> cli = Collections.checkedList(li, Integer.class);

// Now widen the checked list to the raw type
List l = cli;

// This line compiles but fails at runtime with a ClassCastException.
// The exception occurs exactly where the bug is, rather than far away
l.add("hello");

Arrays of parameterized type

 Arrays require special
consideration when working with generic types. Recall that an array
of type S[] is also of type
T[], if T is a superclass (or
interface) of S. Because of this, the Java
interpreter must perform a runtime check every time you store an
object in an array to ensure that the runtime type of the object and
of the array are compatible. For example, the following code fails
this runtime check and throws an
ArrayStoreException:
String[] words = new String[10];
Object[] objs = words;
objs[0] = 1; // 1 autoboxed to an Integer, throws ArrayStoreException
Although the compile-time type of objs is
Object[], its runtime type is String[
], and it is not legal to store an
Integer in it.
When we work with generic types, the runtime check for array store
exceptions is no longer sufficient because a check performed at
runtime does not have access to the compile-time type parameter
information. Consider this (hypothetical) code:
List<String>[] wordlists = new ArrayList<String>[10];
ArrayList<Integer> ali = new ArrayList<Integer>();
ali.add(123);
Object[] objs = wordlists;
objs[0] = ali; // No ArrayStoreException
String s = wordlists[0].get(0); // ClassCastException!
If the code above were allowed, the runtime array store check would
succeed: without compile-time type parameters, the code simply stores
an ArrayList into an
ArrayList[] array, which is perfectly legal. Since
the compiler can’t prevent you from defeating type
safety in this way, it instead prevents you from creating any array
of parameterized type. The scenario above can never occur because the
compiler will refuse to compile the first line.
Note that this is not a blanket restriction on using arrays with
generics; it is just a restriction on creating arrays of
parameterized type. We’ll return to this issue when
we look at how to write generic methods.

Type Parameter Wildcards

Suppose

 we
want to write a method to
display the
elements of a List.[3] Before
List was a generic type, we’d
just write code like this:
public static void printList(PrintWriter out, List list) {
 for(int i=0, n=list.size(); i < n; i++) {
 if (i > 0) out.print(", ");
 out.print(list.get(i).toString());
 }
}
In Java 5.0, List is a generic type, and, if we
try to compile this method, we’ll get unchecked
warnings. In order to get rid of those warnings, you might be tempted
to modify the method as follows:
public static void printList(PrintWriter out, List<Object> list) {
 for(int i=0, n=list.size(); i < n; i++) {
 if (i > 0) out.print(", ");
 out.print(list.get(i).toString());
 }
}
This code compiles without warnings but isn’t very
useful because the only lists that can be passed to it are lists
explicitly declared of type List<Object>.
Remember that List<String> and
List<Integer> (for example) cannot be
widened or cast to List<Object>. What we
really want is a typesafe printList() method to
which we can pass any List, regardless of how it
has been parameterized. The solution is to use a wildcard as the type
parameter. The method would then be written like this:
public static void printList(PrintWriter out, List<?> list) {
 for(int i=0, n=list.size(); i < n; i++) {
 if (i > 0) out.print(", ");
 Object o = list.get(i);
 out.print(o.toString());
 }
}

 This version of the method compiles
without warnings and can be used the way we want it to be used. The
? wildcard represents an unknown type, and the
type List<?> is read as
“List of unknown.”
As a general rule, if a type is generic and you
don’t know or don’t care about the
value of the type variable, you should always use a
? wildcard instead of using a
raw type. Raw types
are allowed only for backward compatibility and should be used only
in legacy code. Note, however, that you cannot use a wildcard when
invoking a constructor. The following code is not legal:
List<?> l = new ArrayList<?>();
There is no sense in creating a List of unknown
type. If you are creating it, you should know what kind of elements
it will hold. You may later want to pass such a list to a method that
does not care about its element type, but you need to specify an
element type when you create it. If what you really want is a
List that can hold any type of object, do this:
List<Object> l = new ArrayList<Object>();
It should be clear from the printList() variants
above that a List<?> is not the same thing
as a List<Object> and that neither is the
same thing as a raw List. A
List<?> has two important properties that
result from the use of a wildcard. First, consider methods like
get() that are declared to return a value of the
same type as the type parameter. In this case, that type is unknown,
so these methods return an Object. Since all we
need to do with the object is invoke its
toString() method, this is fine for our needs.
Second, consider List methods such as
add() that are declared to accept an argument
whose type is specified by the type parameter. This is the more
surprising case: when the type parameter is unknown, the compiler
does not let you invoke any methods that have a parameter of the
unknown type because it cannot check that you are passing an
appropriate value. A List<?> is effectively
read-only since the compiler does not allow us to invoke methods like
add(), set(), and
addAll().
Bounded wildcards

Let’s continue now with a
slightly more complex variant of
our original example. Suppose that we want to write a
sumList() method to compute the sum of a list of
Number objects. As before, we could use a raw
List, but we would give up type safety and have to
deal with unchecked warnings from the compiler. Or we could use a
List<Number>, but then we
wouldn’t be able to call the method for a
List<Integer> or
List<Double>, types we are more likely to
use in practice. But if we use a wildcard, we don’t
actually get the type safety that we want because we have to trust
that our method will be called with a List whose
type parameter is actually Number or a subclass
and not, say, a String. Here’s
what such a method might look like:
public static double sumList(List<?> list) {
 double total = 0.0;
 for(Object o : list) {
 Number n = (Number) o; // A cast is required and may fail
 total += n.doubleValue();
 }
 return total;
}
To fix this method and make it truly typesafe, we need to use a
bounded wildcard

 that states that the type
parameter of the List is an unknown type that is
either Number or a subclass of
Number. The following code does just what we want:
public static double sumList(List<? extends Number> list) {
 double total = 0.0;
 for(Number n : list) total += n.doubleValue();
 return total;
}
The type List<? extends Number> could be
read as "List of unknown
descendant of Number.” It is
important to understand that, in this context,
Number is considered a descendant of itself.
Note that the cast is no longer required. We don’t
know the type of the elements of the list, but we know that they have
an “upper bound” of
Number so we can extract them from the list as
Number objects. The use of a
for/in loop obscures the process of extracting
elements from a list somewhat. The general rule is that when you use
a bounded wildcard with an upper bound, methods (like the
get() method of List) that
return a value of the type parameter use the upper bound. So if we
called list.get() instead of using a
for/in loop, we’d also get a
Number. The prohibition on calling methods like
list.add() that have arguments of the type
parameter type still stands: if the compiler allowed us to call those
methods we could add an Integer to a list that was
declared to hold only Short values, for example.
It is also possible to specify a lower-bounded wildcard using the
keyword super instead of
extends. This technique has a different impact on
what methods can be called. Lower-bounded wildcards are much less
commonly used than upper-bounded wildcards, and we discuss them later
in the chapter.

Writing Generic Types and Methods

Creating a simple
generic type is straightforward. First, declare your type variables
by enclosing a comma-separated list of their names within angle
brackets after the name of the class or interface. You can use those
type variables anywhere a type is required in any instance fields or
methods of the class. Remember, though, that type variables exist
only at compile time, so you can’t use a type
variable with the runtime operators instanceof and
new.
We begin this section with a simple generic type, which we will
subsequently refine. This code defines a Tree data
structure that uses the type variable V to
represent the type of the value held in each node of the tree:
import java.util.*;

/**
 * A tree is a data structure that holds values of type V.
 * Each tree has a single value of type V and can have any number of
 * branches, each of which is itself a Tree.
 */
public class Tree<V> {
 // The value of the tree is of type V.
 V value;

 // A Tree<V> can have branches, each of which is also a Tree<V>
 List<Tree<V>> branches = new ArrayList<Tree<V>>();

 // Here's the constructor. Note the use of the type variable V.
 public Tree(V value) { this.value = value; }

 // These are instance methods for manipulating the node value and branches.
 // Note the use of the type variable V in the arguments or return types.
 V getValue() { return value; }
 void setValue(V value) { this.value = value; }
 int getNumBranches() { return branches.size(); }
 Tree<V> getBranch(int n) { return branches.get(n); }
 void addBranch(Tree<V> branch) { branches.add(branch); }
}
As you’ve probably noticed, the
naming convention for type
variables is to use a single capital letter. The use of a single
letter distinguishes these variables from the names of actual types
since real-world types always have longer, more descriptive names.
The use of a capital letter is consistent with type naming
conventions and distinguishes type variables from local variables,
method parameters, and fields, which are sometimes written with a
single lowercase letter. Collection classes like those in
java.util often use the type variable
E for “Element
type.” When a type variable can represent absolutely
anything, T (for Type) and S
are used as the most generic type variable names possible (like using
i and j as loop variables).
Notice that the type variables declared by a generic type can be used
only by the instance fields and methods (and nested types) of the
type and not by static fields and methods. The reason, of course, is
that it is instances of generic types that are parameterized. Static
members are shared by all instances and parameterizations of the
class, so static members do not have type parameters associated with
them. Methods, including static methods, can declare and use their
own type parameters, however, and each invocation of such a method
can be parameterized differently. We’ll cover this
later in the chapter.
Type variable bounds

The type variable V in
the declaration above of the Tree<V> class
is unconstrained: Tree can be parameterized with
absolutely any type. Often we want to place some constraints on the
type that can be used: we might want to enforce that a type parameter
implements one or more interfaces, or that it is a subclass of a
specified class. This can be done by specifying a
bound
 for the type variable.
We’ve already seen upper bounds for wildcards, and
upper bounds can also be specified for type variables using a similar
syntax. The following code is the Tree example
rewritten to make Tree objects
Serializable and Comparable. In
order to do this, the example uses a type variable bound to ensure
that its value type is also Serializable and
Comparable. Note how the addition of the
Comparable bound on V enables
us to write the compareTo() method
Tree by guaranteeing the existence of a
compareTo() method on
V.[4]

import java.io.Serializable;
import java.util.*;

public class Tree<V extends Serializable & Comparable<V>>
 implements Serializable, Comparable<Tree<V>>
{
 V value;
 List<Tree<V>> branches = new ArrayList<Tree<V>>();

 public Tree(V value) { this.value = value; }

 // Instance methods
 V getValue() { return value; }
 void setValue(V value) { this.value = value; }
 int getNumBranches() { return branches.size(); }
 Tree<V> getBranch(int n) { return branches.get(n); }
 void addBranch(Tree<V> branch) { branches.add(branch); }

 // This method is a nonrecursive implementation of Comparable<Tree<V>>
 // It only compares the value of this node and ignores branches.
 public int compareTo(Tree<V> that) {
 if (this.value == null && that.value == null) return 0;
 if (this.value == null) return -1;
 if (that.value == null) return 1;
 return this.value.compareTo(that.value);
 }

 // javac -Xlint warns us if we omit this field in a Serializable class
 private static final long serialVersionUID = 833546143621133467L;
}
The bounds of a type variable are expressed by following the name of
the variable with the word extends and a list of
types (which may themselves be parameterized, as
Comparable is). Note that with more than one
bound, as in this case, the bound types are separated with an
ampersand rather than a comma. Commas are used to separate type
variables and would be ambiguous if used to separate type variable
bounds as well. A type variable can have any number of bounds,
including any number of interfaces and at most one class.

Wildcards in generic types

Earlier in the
 chapter we saw examples using
wildcards and bounded wildcards in methods that
manipulated parameterized types. They are also useful in generic
types. Our current design of the Tree class
requires the value object of every node to have exactly the same
type, V. Perhaps this is too strict, and we should
allow branches of a tree to have values that are a subtype of
V instead of requiring V
itself. This version of the Tree class (minus the
Comparable and Serializable
implementation) is more flexible:
public class Tree<V> {
 // These fields hold the value and the branches
 V value;
 List<Tree<? extends V>> branches = new ArrayList<Tree<? extends V>>();

 // Here's a constructor
 public Tree(V value) { this.value = value; }

 // These are instance methods for manipulating value and branches
 V getValue() { return value; }
 void setValue(V value) { this.value = value; }
 int getNumBranches() { return branches.size(); }
 Tree<? extends V> getBranch(int n) { return branches.get(n); }
 void addBranch(Tree<? extends V> branch) { branches.add(branch); }
}
The use of bounded wildcards for the branch type allow us to add a
Tree<Integer>, for example, as a branch of a
Tree<Number>:
Tree<Number> t = new Tree<Number>(0); // Note autoboxing
t.addBranch(new Tree<Integer>(1)); // int 1 autoboxed to Integer
If we query the branch with the getBranch()
method, the value type of the returned branch is unknown, and we must
use a wildcard to express this. The next two lines are legal, but the
third is not:
Tree<? extends Number> b = t.getBranch(0);
Tree<?> b2 = t.getBranch(0);
Tree<Number> b3 = t.getBranch(0); // compilation error
When we query a branch like this, we don’t know the
precise type of the value, but we do still have an upper bound on the
value type, so we can do this:
Tree<? extends Number> b = t.getBranch(0);
Number value = b.getValue();
What we cannot do, however, is set the value of the branch, or add a
new branch to that branch. As explained earlier in the chapter, the
existence of the upper bound does not change the fact that the value
type is unknown. The compiler does not have enough information to
allow us to safely pass a value to setValue() or a
new branch (which includes a value type) to
addBranch(). Both of these lines of code are
illegal:
b.setValue(3.0); // Illegal, value type is unknown
b.addBranch(new Tree<Double>(Math.PI));
This example has illustrated a typical trade-off in the design of a
generic type: using a bounded wildcard made the data structure more
flexible but reduced our ability to safely use some of its methods.
Whether or not this was a good design is probably a matter of
context. In general, generic types are more difficult to design well.
Fortunately, most of us will use the preexisting generic types in the
java.util package much more frequently than we
will have to create our own.

Generic methods

As
 noted
earlier, the type variables of a generic type can be used only in the
instance members of the type, not in the static members. Like instance methods,
however, static methods can use wildcards. And although static
methods cannot use the type variables of their containing class, they
can declare their own type variables. When a method declares its own
type variable, it is called a generic method.
Here is a static method that could be added to the
Tree class. It is not a generic method but uses a

 bounded wildcard much like the
sumList() method we saw earlier in the chapter:
/** Recursively compute the sum of the values of all nodes on the tree */
public static double sum(Tree<? extends Number> t) {
 double total = t.value.doubleValue();
 for(Tree<? extends Number> b : t.branches) total += sum(b);
 return total;
}
This method could also be rewritten as a generic method by declaring
a type variable to express the upper bound imposed by the wildcard:
public static <N extends Number> double sum(Tree<N> t) {
 N value = t.value;
 double total = value.doubleValue();
 for(Tree<? extends N> b : t.branches) total += sum(b);
 return total;
}
The generic version of sum() is no simpler than
the wildcard version and the declaration of the type variable does
not gain us anything. In a case like this, the wildcard solution is
typically preferred over the generic solution. Generic methods are
required where a single type variable is used to express a
relationship between two parameters or between a parameter and a
return value. The following method is an example:
// This method returns the largest of two trees, where tree size
// is computed by the sum() method. The type variable ensures that
// both trees have the same value type and that both can be passed to sum().
public static <N extends Number> Tree<N> max(Tree<N> t, Tree<N> u) {
 double ts = sum(t);
 double us = sum(u);
 if (ts > us) return t;
 else return u;
}
This method uses the type variable N to express
the constraint that both arguments and the return value have the same
type parameter and that that type parameter is
Number or a subclass.
It could be argued that constraining both arguments to have the same
value type is too restrictive and that we should be allowed to call
the max() method on a
Tree<Integer> and a
Tree<Double>. One way to express this is to
use two unrelated type variables to represent the two unrelated value
types. Note, however, that we cannot use either variable in the
return type of the method and must use a wildcard there:
public static <N extends Number, M extends Number>
 Tree<? extends Number> max(Tree<N> t, Tree<M> u) {...}
Since the two type variables N and
M have no relation to each other, and since each
is used in only a single place in the signature, they offer no
advantage over bounded wildcards. The method is better written this
way:
public static Tree<? extends Number> max(Tree<? extends Number> t,
 Tree<? extends Number> u) {...}
All the examples of generic methods shown here have been
static methods. This is not a requirement:
instance methods can declare their own type variables as well.

Invoking generic methods

When you use a

 generic type, you must specify the
actual
 type parameters to be substituted for
its type variables. The same is not generally true for generic
methods: the compiler can almost always figure out the correct
parameterization of a generic method based on the arguments you pass
to the method. Consider the max() method defined
above, for instance:
public static <N extends Number> Tree<N> max(Tree<N> t, Tree<N> u) {...}
You need not specify N when you invoke this method
because N is implicitly specified in the values of
the method arguments t and
u. In the following code, for example, the
compiler determines that N is
Integer:
Tree<Integer> x = new Tree<Integer>(1);
Tree<Integer> y = new Tree<Integer>(2);
Tree<Integer> z = Tree.max(x, y);
The process the compiler uses to determine the type parameters for a
generic method is called type
inference
 . Type inference is relatively
intuitive to understand, but the actual algorithm the compiler must
use is surprisingly complex and is well beyond the scope of this
book. Complete details are in Chapter 15 of The Java
Language Specification, Third Edition.
Let’s look at a slightly more complex version of
type inference. Consider this method:
public class Util {
 /** Set all elements of a to the value v; return a. */
 public static <T> T[] fill(T[] a, T v) {
 for(int i = 0; i < a.length; i++) a[i] = v;
 return a;
 }
}
Here are two invocations of the method:
Boolean[] booleans = Util.fill(new Boolean[100], Boolean.TRUE);
Object o = Util.fill(new Number[5], new Integer(42));
In the first invocation, the compiler can easily determine that
T is Boolean. In the second
invocation, the compiler determines that T is
Number.
In very rare circumstances you may need to explicitly specify the
type parameters for a generic method. This is sometimes necessary,
for example, when a generic method expects no arguments. Consider the
java.util.Collections.emptySet() method: it
returns a set with no elements, but unlike the
Collections.singleton() method (you can look
these up in the reference section), it takes no arguments that would
specify the type parameter for the returned set. You can specify the
type parameter explicitly by placing it in angle brackets
before the method name:
Set<String> empty = Collections.<String>emptySet();
Type parameters cannot be used with an unqualified method name: they
must follow a dot or come after the keyword new or
before the keyword this or
super used in a constructor.
It turns out that if you assign the return value of
Collections.emptySet() to a variable, as we did
above the type inference mechanism is able to infer the type
parameter based on the variable type. Although the explicit type
parameter specification in the code above can be a helpful
clarification, it is not necessary and the line could be rewritten
as:
Set<String> empty = Collections.emptySet();
An explicit type parameter is necessary when you use the return value
of the emptySet() method within a method
invocation expression. For example, suppose you want to call a method
named printWords() that expects a single argument
of type Set<String>. If you want to pass an
empty set to this method, you could use this code:
printWords(Collections.<String>emptySet());
In this case, the explicit specification of the type parameter
String is required.

Generic methods and arrays

 Earlier
in the chapter we saw that the compiler does not allow you to create
an array whose type is parameterized. This is not, however, a
restriction on all uses of arrays with generics. Consider the
Util.fill() method defined above, for example. Its
first argument and its return value are both of type
T[]. The body of the method does not have to
create an array whose element type is T, so the
method is perfectly legal.
If you write a method that uses varargs (see Section 2.6.4 in Chapter 2) and a type
variable, remember that invoking a varargs method performs an
implicit array creation. Consider this method:
/** Return the largest of the specified values or null if there are none */
public static <T extends Comparable<T>> T max(T... values) { ... }
You can invoke this method with parameters of type
Integer because the compiler can insert the
necessary array creation code for you when you call it. But you
cannot call the method if you’ve cast the same
arguments to be type Comparable<Integer>
because it is not legal to create an array of type
Comparable<Integer>[].

Parameterized exceptions

 Exceptions are thrown and caught at
runtime, and there is no way for the compiler to perform type
checking to ensure that an exception of unknown origin matches type
parameters specified in a catch clause. For this
reason, catch clauses may not include type
variables or wildcards. Since it is not possible to catch an
exception at runtime with compile-time type parameters intact, you
are not allowed to make any subclass of Throwable
generic. Parameterized exceptions are simply not allowed.
You can, however, use a type variable in the
throws clause of a method signature. Consider this
code, for example:
public interface Command<X extends Exception> {
 public void doit(String arg) throws X;
}
This interface represents a
“command”: a block of code with a
single string argument and no return value. The code may throw an
exception represented by the type parameter X.
Here is an example that uses a parameterization of this interface:
Command<IOException> save = new Command<IOException>() {
 public void doit(String filename) throws IOException {
 PrintWriter out = new PrintWriter(new FileWriter(filename));
 out.println("hello world");
 out.close();
 }
};

try { save.doit("/tmp/foo"); }
catch(IOException e) { System.out.println(e); }

Generics Case Study: Comparable and Enum

 The new generics features in Java 5.0 are
used in the Java 5.0 APIs, most notably in
java.util but also in
java.lang, java.lang.reflect,
and java.util.concurrent. These APIs were
carefully created or reviewed by the inventors of generic types, and
we can learn a lot about the good design of generic types and methods
through the study of these APIs.
The generic types of java.util are relatively
easy: for the most part they are collections classes, and type
variables are used to represent the element type of the collection.
Several important generic types in java.lang are
more difficult. They are not collections, and it is not immediately
apparent why they have been made generic. Studying these difficult
generic types gives us a deeper understanding of how generics work
and introduces some concepts that we have not yet covered in this
chapter. Specifically, we’ll examine the
Comparable interface and the
Enum class (the supertype of enumerated types,
described later in this chapter) and will learn about an important
but infrequently used feature of generics known as lower-bounded
wildcards.
In Java 5.0, the Comparable
 interface has been made generic, with
a type variable that specifies what a class is comparable to. Most
classes that implement Comparable implement it on
themselves. Consider Integer:
public final class Integer extends Number implements Comparable<Integer>
The raw Comparable interface is problematic from a
type-safety standpoint. It is possible to have two
Comparable objects that cannot be meaningfully
compared to each other. Prior to Java 5.0, the nongeneric
Comparable interface was useful but not fully
satisfactory. The generic version of this interface, however,
captures exactly the information we want: it tells us that a type is
comparable and tells us what we can compare it to.
Now consider subclasses of comparable classes.
Integer is final and cannot be
subclassed, so let’s look at
java.math.BigInteger instead:
public class BigInteger extends Number implements Comparable<BigInteger>
If we implement a BiggerInteger subclass of
BigInteger, it inherits the
Comparable interface from its superclass. But note
that it inherits Comparable<BigInteger> and
not Comparable<BiggerInteger>. This means
that BigInteger and
BiggerInteger objects are mutually comparable,
which is usually a good thing. BiggerInteger can
override the compareTo() method of its
superclass, but it is not allowed to implement a different
parameterization of Comparable. That is,
BiggerInteger cannot both extend
BigInteger and implement
Comparable<BiggerInteger>. (In general, a
class is not allowed to implement two different parameterizations of
the same interface: we cannot define a type that implements both
Comparable<Integer> and
Comparable<String>, for example.)
When you’re working with comparable objects (as you
do when writing sorting algorithms, for example), remember two
things. First, it is not sufficient to use
Comparable as a raw type: for type safety, you
must also specify what it is comparable to. Second, types are not
always comparable to themselves: sometimes they’re
comparable to one of their ancestors. To make this concrete, consider
the java.util.Collections.max() method:
public static <T extends Comparable<? super T>> T max(Collection<? extends T> c)
This is a long, complex generic method signature.
Let’s walk through it:
	The method has a type variable T with complicated
bounds that we’ll return to later.

	The method returns a value of type T.

	The name of the method is max().

	The method’s argument is a Collection. The element
type of the collection is specified with a bounded wildcard. We
don’t know the exact type of the
collection’s elements, but we know that they have an
upper bound of T. That is, we know that the
elements of the collection are type T or a
subclass of T. Any element of the collection could
therefore be used as the return value of the method.

That much is relatively straightforward. We’ve seen
upper-bounded wildcards elsewhere in this section. Now
let’s look again at the type variable declaration
used by the max() method:
<T extends Comparable<? super T>>
This says first that the type T must implement
Comparable. (Generics syntax uses the keyword
extends for all type variable bounds, whether
classes or interfaces.) This is expected since the purpose of the
method is to find the “maximum”
object in a collection. But look at the parameterization of the
Comparable interface. This is a wildcard, but it
is bounded with the keyword super instead of the
keyword extends. This is a lower-bounded wildcard.
? extends T is the familiar upper bound: it means
T or a subclass. ? super T is
less commonly used: it means T or a superclass.
To summarize, then, the type variable declaration states
"T is a type that is comparable
to itself or to some superclass of itself.” The
Collections.min() and
Collections.binarySearch() methods have similar
signatures.
For other examples of lower-bounded wildcards (that have nothing to
do with Comparable), consider the
addAll(), copy(), and
fill() methods of Collections.
Here is the signature for addAll():
public static <T> boolean addAll(Collection<? super T> c, T... a)
This is a varargs method that accepts any number of arguments of type
T and passes them as a T[]
named a. It adds all the elements of
a to the collection
c. The element type of the collection is
unknown but has a lower bound: the elements are all of type
T or a superclass of T.
Whatever the type is, we are assured that the elements of the array
are instances of that type, and so it is always legal to add those
array elements to the collection.
Recall from our earlier discussion of upper-bounded
wildcards that if you have a
collection whose element type is an upper-bounded wildcard, it is
effectively read-only. Consider List<? extends
Serializable>. We know that all elements are
Serializable, so methods like
get() return a value of type
Serializable. The compiler won’t
let us call methods like add() because the actual
element type of the list is unknown. You can’t add
arbitrary serializable objects to the list because their implementing
class may not be of the correct type.
Since
 upper-bounded wildcards result in
read-only collections, you might expect
lower-bounded wildcards to result in
write-only collections. This isn’t actually the
case, however. Suppose we have a List<? super
Integer>. The actual element type is unknown, but the
only possibilities are Integer or its ancestors
Number and Object. Whatever the
actual type is, it is safe to add Integer objects
(but not Number or Object
objects) to the list. And, whatever the actual element type is, all
elements of the list are instances of Object, so
List methods like get() return
Object in this case.
Finally, let’s turn our attention to the
java.lang.Enum
class. Enum serves as the
supertype of all enumerated types (described later). It implements
the Comparable interface but has a confusing
generic signature:
public class Enum<E extends Enum<E>> implements Comparable<E>, Serializable
At first glance, the declaration of the type variable
E appears circular. Take a closer look though:
what this signature really says is that Enum must
be parameterized by a type that is itself an Enum.
The reason for this seemingly circular type variable declaration
becomes apparent if we look at the implements
clause of the signature. As we’ve seen,
Comparable classes are usually defined to be
comparable to themselves. And subclasses of those classes are
comparable to their superclass instead. Enum, on
the other hand, implements the Comparable
interface not for itself but for a subclass E
of
itself!

[1] Throughout
this chapter, I’ve tried to consistently use the
term "
 generic type” to mean a
type that declares one or more type variables and the term
“parameterized type” to mean a
generic type that has had actual type arguments substituted for its
type varaiables. In common usage, however, the distinction is not a
sharp one and the terms are sometimes used interchangeably.

[2] At the time of this writing,
javac does not yet honor the
@SuppressWarnings annotation. It is expected to do
so in Java 5.1.

[3] The three
printList() methods shown in this section ignore
the fact that the List implementations classes in
java.util all provide working
toString() methods. Notice also that the methods
assume that the List implements
RandomAccess and provides very poor performance on
LinkedList instances.

[4] The bound shown here requires
that the value type V is comparable to itself, in
other words, that it implements the Comparable
interface directly. This rules out the use of types that inherit the
Comparable interface from a superclass.
We’ll consider the Comparable
interface in much more detail at the end of this section and present
an alternative there.

Enumerated Types

 In previous chapters,
we’ve seen the class keyword used
to define class types, and the interface keyword
used to define interface types. This section introduces the
enum keyword, which is used to define an
enumerated type (informally called an enum). Enumerated types are new
in Java 5.0, and the features described here cannot be used (although
they can be partially simulated) prior to that release.
We begin with the basics: how to define and use an enumerated type,
including common programming idioms involving enumerated types and
values. Next, we discuss the more advanced features of enums and show
how to simulate enums prior to Java 5.0.
Enumerated Types Basics

An enumerated type
 is a
reference type with a finite (usually small) set of possible values,
each of which is individually listed, or enumerated. Here is a simple
enumerated type defined in Java:
public enum DownloadStatus { CONNECTING, READING, DONE, ERROR }
Like class and interface, the
enum

 keyword defines a new reference type. The
single line of Java code above defines an enumerated type named
DownloadStatus. The body of this type is simply a
comma-separated list of the four values of the type. These values are
like static final fields (which is why their names
are capitalized), and you refer to them with names like
DownloadStatus.CONNECTING,
DownloadStatus.READING, and so on. A variable of
type DownloadStatus can be assigned one of these
four values or null but nothing else. The values
of an enumerated type are called enumerated
values

and are sometimes also referred to as enum
constants

 .
It is possible to define more complex enumerated types than the one
shown here, and we describe the complete enum
syntax later in this chapter. For now, however, you can define
simple, but very useful, enumerated types with this basic syntax.
Enumerated types are classes

 Prior to the introduction of enumerated
types in Java 5.0, the DownloadStatus values would
probably have been implemented as integer constants with lines like
the following in a class or interface:
public static final int CONNECTING = 1;
public static final int READING = 2;
public static final int DONE = 3;
public static final int ERROR = 4;
The use of integer constants has a number of shortcomings, the most
important of which is its lack of type safety. If a method expects a
download status constant value, for example, no error checking
prevents me from passing an illegal value. The compiler
can’t tell me that I’ve used the
constant UploadStatus.DONE when I should have used
DownloadStatus.DONE.
Fortunately, enumerated types in Java are not simple integer
constants. The type defined by an enum keyword is
actually a class and its enumerated values are instances of that
class. This provides type safety: if I try to pass a
DownloadStatus value to a method that expects an
UploadStatus, the compiler issues an error.
Enumerated types do not have a public constructor, so a program
cannot create a new undefined instance of the type. If a method
expects a DownloadStatus, it can be confident that
it will not be passed some unknown instance of the type.
If you are accustomed to writing code using integer constants instead
of true enumerated types, you have probably already made a list of
pragmatic advantages of integers over objects for enumerated values.
Hold your judgment, however: the sections that follow illustrate
common enumerated type programming idioms and demonstrate that
anything you can do with integer constants can be done elegantly,
efficiently, and more safely with enums. First,
however, we consider the basic features of all
enumerated types.

Features of enumerated types

The following list describes the basic facts about enumerated types.
These are the features of enums that you need to know to understand
and use them effectively:
	Enumerated types have no public
constructor. The only instances of an
enumerated type are those declared by the enum.

	Enums are not Cloneable, so copies of the existing
instances cannot be created.

	Enums implement java.io.Serializable so they can
be serialized, but the Java serialization mechanism handles them
specially to ensure that no new instances are ever created.

	
 Instances of an enumerated type are
immutable: each enum value retains its identity.
(We’ll see later in this chapter that you can add
your own fields and methods to an enumerated type, which means that
you can create enumerated values that have mutable portions. This is
not recommended, but does not affect the basic identity of each
value.)

	Instances of an enumerated type are stored in public static
final fields of the type itself. Because these fields are
final, they cannot be overwritten with
inappropriate values: you can’t assign the
DownloadStatus.ERROR value to the
DownloadStatus.DONE field, for example.

	By convention, the values of enumerated types are written using all
capital letters, just as other static final fields
are.

	Because there is a strictly limited set of distinct enumerated
values, it is always safe to compare enum values using the =
=
 operator instead of calling the
equals()

method.

	Enumerated types do have a working equals()
method, however. The method uses = = internally
and is final so that it cannot be overridden. This
working equals() method allows enumerated values
to be used as members of collections such as Set,
List, and Map.

	Enumerated types have a working
hashCode()
 method
consistent with their equals() method. Like
equals(), hashCode() is
final. It allows enumerated values to be used with
classes like java.util.HashMap.

	Enumerated types implement
java.lang.Comparable
 , and the
compareTo()
 method
orders enumerated values in the order in which they appear in the
enum declaration.

	Enumerated types include a working toString(
)
 method
that returns the name of the enumerated value. For example,
DownloadStatus.DONE.toString() returns the string
"DONE" by default. This method is not
final, and enum types can provide a custom
implementation if they choose.

	Enumerated types provide a static valueOf(
)
 method
that does the opposite of the default toString()
method. For example,
DownloadStatus.valueOf("DONE") would return
DownloadStatus.DONE.

	Enumerated types define a final instance method
named ordinal()

 that returns an integer for each enumerated
value. The ordinal of an enumerated value represents its position
(starting at zero) in the list of value names in the
enum declaration. You do not typically need to use
the ordinal() method, but it is used by a number
of enum-related facilities, as described later in the chapter.

	Each enumerated type defines a static method named values(
) that returns an array of enumerated values of that type.
This array contains the complete set of values, in the order they
were declared, and is useful for iterating through the complete set
of possible values. Because arrays are mutable, the values(
) method always returns a newly created and initialized
array.

	Enumerated types are subclasses of java.lang.Enum,

 which is new in Java 5.0.
(Enum is not itself an enumerated type.) You
cannot produce an enumerated type by manually extending the
Enum class, and it is a compilation error to
attempt this. The only way to define an enumerated type is with the
enum keyword.

	It is not possible to
 extend an enumerated type. Enumerated
types are effectively final, but the
final keyword is neither required nor permitted in
their declarations. Because enums are effectively
final, they may not be
abstract. (We’ll return to this
point later in the chapter.)

	Like classes, enumerated types may implement
interfaces.
(We’ll see how enumerated types may define methods
later in the chapter.)

Using Enumerated Types

The following sections illustrate common idioms for working with
enumerated types. They demonstrate the use of the
switch statement with enumerated types and
introduce the important new EnumSet and
EnumMap collections.
Enums and the switch statement

In Java 1.4 and earlier, the
switch

 statement works only with
int, short,
char, and byte values. Because
enumerated types have a finite set of values, they are ideally suited
for use with the switch statement, and this
statement has been extended in Java 5.0 to support the use of
enumerated types. If the compile-time type of the
switch expression is an enumerated type, the
case labels must all be unqualified names of
instances of that type. The following hypothetical code shows a
switch statement used with the
DownloadStatus enumerated type.
DownloadStatus status = imageLoader.getStatus();
switch(status) {
case CONNECTING:
 imageLoader.waitForConnection();
 imageLoader.startReading();
 break;
case READING:
 break;
case DONE:
 return imageLoader.getImage();
case ERROR:
 throw new IOException(imageLoader.getError());
}
Note that the case labels are just the constant name:
the syntax of the switch statement does not allow
the class name DownloadStatus to appear here. The
ability to omit the class name is very convenient since it would
otherwise appear in every single case. However the
requirement that the class name be omitted is
surprising since (in the absence of an import
static declaration) the class name is
required in every other context.
If the switch expression
(status in the code above) evaluates to
null
 , a
NullPointerException is thrown. It is not legal to
use null as the value of a case
label.
If you use the switch statement on an enumerated
type and do not include either a
default:
label or a case label for each enumerated value,
the compiler will most likely issue an -Xlint
warning letting you know that you have not written code to handle all
possible values of the enumerated type.[5] Even when you do write a
case for each enumerated value, you may still want
to include a default: clause; this covers the
possibility that a new value is added to the enumerated type after
your switch statement has been compiled. The
following default clause, for example, could be
added to the switch statement shown earlier:
default: throw new AssertionError("Unexpected enumerated value: " + status);

EnumMap

A
 common
programming technique when using integer constants instead of true
enumerated values is to use those constants as array indexes. For
example, if the DownloadStatus values are defined
as integers between 0 and 3, we can write code like this:
String[] statusLineMessages = new String[] {
 "Connecting...", // CONNECTING
 "Loading...", // READING
 "Done.", // DONE
 "Download Failed." // ERROR
};

int status = getStatus();
String message = statusLineMessages[status];
In the big picture, this technique creates a mapping from enumerated
integer constants to strings. We can’t use
Java’s enumerated values as array indexes, but we
can use them as keys in a java.util.Map. Because
this is a common thing to do, Java 5.0 defines a new
java.util.EnumMap class that is optimized for
exactly this case. EnumMap requires an enumerated
type as its key, and, relying on the fact the number of possible keys
is finite, it uses an array to hold the corresponding values. This
implementation means that EnumMap is more
efficient than HashMap. The
EnumMap equivalent of the code above is:
EnumMap<DownloadStatus,String> messages =
 new EnumMap<DownloadStatus,String>(DownloadStatus.class);
messages.put(DownloadStatus.CONNECTING, "Connecting...");
messages.put(DownloadStatus.READING, "Loading...");
messages.put(DownloadStatus.DONE, "Done.");
messages.put(DownloadStatus.ERROR, "Download Failed.");

DownloadStatus status = getStatus();
String message = messages.get(status);
Like other collection classes in Java 5.0, EnumMap
is a generic type that accepts type parameters.
The use of an EnumMap to associate a value with
each instance of an enumerated type is appropriate when
you’re working with an enum defined elsewhere. If
you defined the enum value yourself, you can create the necessary
associations as part of the enum definition
itself. We’ll see how to do this later in the
chapter.

EnumSet

Another
 common programming idiom when using
integer-based constants instead of an enumerated type is to define
all the constants as powers of two so that a set of those constants
can be compactly represented as bit-flags in an integer. Consider the
following flags that describe options that can apply to an
American-style espresso drink:
public static final int SHORT = 0x01; // 8 ounces
public static final int TALL = 0x02; // 12 ounces
public static final int GRANDE = 0x04; // 16 ounces
public static final int DOUBLE = 0x08; // 2 shots of espresso
public static final int SKINNY = 0x10; // made with nonfat milk
public static final int WITH_ROOM = 0x20; // leave room for cream
public static final int SPLIT_SHOT = 0x40; // half decaffeinated
public static final int DECAF = 0x80; // fully decaffeinated
These power-of-two constants can be combined with the bitwise OR
operator (|) to create a compact set of constants
that is easy to work with:
int drinkflags = DOUBLE | SHORT | WITH_ROOM;
The bitwise AND operator (&) can be used to
test for the presence or absence of bits:
boolean isBig = (drinkflags & (TALL | GRANDE)) != 0;
If we step back from the binary representation of these bit flags and
the boolean operators that manipulate them, we can see that integer
bit flags are simply compact sets of values. For reference types such
as Java’s enumerated values, we can use a
java.util.Set instead. Since this is an important
and common thing to do with enumerated values, Java 5.0 provides the
special-purpose java.util.EnumSet class. Like
EnumMap, EnumSet is optimized
for enumerated types. It requires that its members be values of the
same enumerated type and uses a compact and fast representation of
the set based on bit flags that correspond to the
ordinal()
 of
each enumerated value.
The espresso drink code above could be rewritten as follows using an
enum and EnumSet:
public enum DrinkFlags {
 SHORT, TALL, GRANDE, DOUBLE, SKINNY, WITH_ROOM, SPLIT_SHOT, DECAF
}

EnumSet<DrinkFlags> drinkflags =
 EnumSet.of(DrinkFlags.DOUBLE, DrinkFlags.SHORT, DrinkFlags.WITH_ROOM);

boolean isbig =
 drinkflags.contains(DrinkFlags.TALL) ||
 drinkflags.contains(DrinkFlags.GRANDE);
Note that the code above can be made as compact as the integer-based
code with a simple static import:

// Import all static DrinkFlag enum constants
import static com.davidflanagan.coffee.DrinkFlags.*;
See Section 2.10 in Chapter 2 for
details on the import static declaration.

 EnumSet
 defines a number of useful factory
methods for initializing sets of enumerated values. The
of()
 method
shown above is overloaded: several versions of the method take
different fixed numbers of arguments. A varargs (see Chapter 2) form that can accept any number of
arguments is also defined. Here are some other ways that you can use
of() and related EnumSet
factories:
// Make the following examples fit on the page better
import static com.davidflanagan.coffee.DrinkFlags.*;

// We can remove individual members or sets of members from a set.
// Start with a set that includes all enumerated values, then remove a subset:
EnumSet<DrinkFlags> fullCaffeine = EnumSet.allOf(DrinkFlags.class);
fullCaffeine.removeAll(EnumSet.of(DECAF, SPLIT_SHOT));

// Here's another technique to achieve the same result:
EnumSet<DrinkFlags> fullCaffeine =
 EnumSet.complementOf(EnumSet.of(DECAF,SPLIT_SHOT));

// Here's an empty set if you ever need one
// Note that since we don't specify a value, we must specify the element type
EnumSet<DrinkFlags> plainDrink = EnumSet.noneOf(DrinkFlags.class);

// You can also easily describe a contiguous subset of values:
EnumSet<DrinkFlags> drinkSizes = EnumSet.range(SHORT, GRANDE);

// EnumSet is Iterable, and its iterator returns values in ordinal() order,
// so it is easy to loop through the elements of an EnumSet.
for(DrinkFlag size : drinkSizes) System.out.println(size);
The example code shown here demonstrates the use and capabilities of
the EnumSet class. Note, however, that an
EnumSet<DrinkFlags> is not really an
appropriate representation for the description of an espresso drink.
An EnumSet<DrinkFlags> might be
overspecified, including both SHORT and
GRANDE, for example, or it might be underspecified
and include no drink size at all.
At the root, the problem is that the DrinkFlag
type is a naive translation of the integer bit flags we began this
section with. A better and more complete representation is captured
by the following interface, which requires one value from each of
five different enumerated types and a set of values from a sixth
enum. The enums are defined as nested types
within the interface itself (see Chapter 3).
This example highlights the type safety provided by enumerated types.
It is not possible (as it would be with integer constants) to specify
a drink strength where a drink size is required, for
example.

public interface Espresso {
 enum Drink { LATTE, MOCHA, AMERICANO, CAPPUCCINO, ESPRESSO }
 enum Size { SHORT, TALL, GRANDE }
 enum Strength { SINGLE, DOUBLE, TRIPLE, QUAD }
 enum Milk { SKINNY, ONE_PERCENT, TWO_PERCENT, WHOLE, SOY }
 enum Caffeine { REGULAR, SPLIT_SHOT, DECAF }
 enum Flags { WITH_ROOM, EXTRA_HOT, DRY }

 Drink getDrink();
 Size getSize();
 Strength getStrength();
 Milk getMilk();
 Caffeine getCaffeine();
 java.util.Set<Flags> getFlags();
}

Advanced Enum Syntax

The examples shown so far have all used
the simplest enum syntax in which the body of the
enum simply consists of a comma-separated list of value names. The
full enum syntax actually provides quite a bit
more power and flexibility:
	You can define your own

 fields, methods, and constructors for
the enumerated type.

	If you define one or more constructors, you can invoke a constructor
for each enumerated value by following the value name with
constructor arguments in parentheses.

	Although an enum may not extend
anything, it may implement one or more interfaces.

	Most esoterically, individual enumerated values can have their own
class bodies that override methods defined by the type.

Rather than formally specifying the syntax for each of these advanced
enum declarations, we’ll
demonstrate the syntax in the examples that follow.
The class body of an enumerated type

Consider
 the type Prefix,
defined below. It is an enum that includes a
regular class body following the list of enumerated values. It
defines two instance fields and accessor methods for those fields. It
defines a custom constructor that initializes the instance field.
Each named value of the enumerated type is followed by constructor
arguments in parentheses:
public enum Prefix {
 // These are the values of this enumerated type.
 // Each one is followed by constructor arguments in parentheses.
 // The values are separated from each other by commas, and the
 // list of values is terminated with a semicolon to separate it from
 // the class body that follows.
 MILLI("m", .001),
 CENTI("c", .01),
 DECI("d", .1),
 DECA("D", 10.0),
 HECTA("h", 100.0),
 KILO("k", 1000.0); // Note semicolon

 // This is the constructor invoked for each value above.
 Prefix(String abbrev, double multiplier) {
 this.abbrev = abbrev;
 this.multiplier = multiplier;
 }

 // These are the private fields set by the constructor
 private String abbrev;
 private double multiplier;

 // These are accessor methods for the fields. They are instance methods
 // of each value of the enumerated type.
 public String abbrev() { return abbrev; }
 public double multiplier() { return multiplier; }
}
Note that enum syntax requires a semicolon after
the last enumerated value if that value is followed by a class body.
This semicolon may be omitted in the simple case where there is no
class body. It is also worth noting that enum
syntax allows a comma following the last enumerated value. A trailing
comma looks somewhat odd but prevents syntax errors if in the future
you add new enumerated values or rearrange existing ones.

Implementing an interface

An

 enum
cannot be declared to extend a class or enumerated
type. It is perfectly legal, however, for an enumerated type to
implement one or more interfaces. Suppose, for
example, that you defined a new enumerated type
Unit with an abbrev() method
like Prefix has. In this case, you might define an
interface Abbrevable for any objects that have
abbreviations. Your code might look like this:
public interface Abbrevable {
 String abbrev();
}

public enum Prefix implements Abbrevable {
 // the body of this enum type remains the same as above.
}

Value-specific class bodies

In

 addition
to defining a class body for the enumerated type itself, you can also
provide a class body for individual enumerated values within the
type. We’ve seen above that we can add fields to an
enumerated type and use a constructor to initialize those fields.
This gives us value-specific data. The ability to define class bodies
for each enumerated value means that we can write methods for each
one: this gives us value-specific behavior.
Value-specific behavior is useful when defining an enumerated type
that represents an operator in an expression parser or an opcode in a
virtual machine of some sort. The Operator.ADD
constant might have a compute() method that
behaves differently than the Operator.SUBTRACT
constant, for example.
To define a class body for an individual enumerated value, simply
follow the value name and its constructor arguments with the class
body in curly braces. Individual values must still be separated from
each other with commas, and the last value in the list must be
separated from the type’s class body with a
semicolon: it can be easy to forget about this required punctuation
with the presence of curly braces for class and method bodies.
Each value-specific class body you write results in the creation of
an anonymous subclass of the enumerated
type and makes the enumerated value a singleton instance of that
anonymous subclass. (Enumerated types can not be extended, but they
are not strictly final in the sense that
final classes are since they can have these
anonymous subclasses.) Because these subclasses are anonymous, you
cannot refer to them in your code: the compile-time type of each
enumerated value is the enumerated type, not the anonymous subclass
specific to that value. Therefore, the only useful thing you can do
in value-specific class bodies is override methods defined by the
type itself. If you define a new public field or method, you will not
be able to refer to or invoke it. (It is perfectly legitimate, of
course, to define helper methods or fields that you invoke or use
from the overriding methods.)
A common pattern is to define default behavior in a method of the
type-specific class body. Then, each enumerated value that requires
behavior other than the default can override that method in its
value-specific class body. A very useful variant of this pattern is
to declare the method in the type-specific class body
abstract and to define a value-specific
implementation of the method for every enumerated value. If the
type-specific method is abstract, the compiler
forces you to implement that method for every enumerated value in the
type: it is not possible to accidentally omit an implementation. Note
that even though the type-specific class body contains an
abstract method, the enumerated type as a whole is
not abstract (and may not be declared
abstract) since each value-specific class body
implements the method.
The following code is an excerpt from a larger example that uses an
enumerated type to represent the opcodes of a simulated stack-based
CPU. The Opcode enumerated type defines an
abstract method perform(),
which is then implemented by the class body of each value of the
type. The type includes a constructor to illustrate the full syntax
for each enumerated value: name, constructor arguments, and class
body. enum syntax requires the enumerated values
and their class bodies to appear first. The code is easiest to
understand, however, if you skip past the values and read the
type-specific class body first:
// These are the opcodes that our stack machine can execute.
public enum Opcode {
 // Push the single operand onto the stack
 PUSH(1) {
 public void perform(StackMachine machine, int[] operands) {
 machine.push(operands[0]);
 }
 }, // Remember to separate enum values with commas

 // Add the top two values on the stack and push the result
 ADD(0) {
 public void perform(StackMachine machine, int[] operands) {
 machine.push(machine.pop() + machine.pop());
 }
 },

 /* Other opcode values have been omitted for brevity */

 // Branch if Equal to Zero
 BEZ(1) {
 public void perform(StackMachine machine, int[] operands) {
 if (machine.top() == 0) machine.setPC(operands[0]);
 }
 }; // Remember the required semicolon before the class body

 // This is the constructor for the type.
 Opcode(int numOperands) { this.numOperands = numOperands; }

 int numOperands; // how many integer operands does it expect?

 // Each opcode constant must implement this abstract method in a
 // value-specific class body to perform the operation it represents.
 public abstract void perform(StackMachine machine, int[] operands);
}
When to use value-specific class bodies

Value-specific class bodies are an extremely powerful language
feature when each enumerated value must perform a unique computation
of some sort. Keep in mind, however, that value-specific class bodies
are an advanced feature that is not commonly used and may be
confusing to less experienced programmers. Before you decide to use
this feature, be sure that it is necessary.
Before using value-specific class bodies, ensure that your design is
neither too simple nor too complex for the feature. First, check that
you do indeed require value-specific behavior and not simply
value-specific data. Value-specific data can be encoded in
constructor arguments as was shown in the Prefix
example earlier. It would be unnecessary and inappropriate to rewrite
that example to use value-specific versions of the abbrev(
) method, for example.
Next, think about whether an enumerated type is sufficient for your
needs. If your design requires value-specific methods with complex
implementations or requires more than a few methods for each value,
you may find it unwieldy to code everything within a single type.
Instead, consider defining your own custom type hierarchy using
traditional class and interface
declarations and whatever singleton instances are necessary.
If value-specific behavior is indeed required within the framework of
an enumerated type, value-specific class bodies are appropriate.
Whether value-specific bodies are truly elegant or simply confusing
is a matter of opinion, and some programmers prefer to avoid them
when possible. An alternative that appeals to some is to encode the
value-specific behavior in a type-specific method that uses a
switch statement to treat each value as a separate
case. The compute() method of
the following enum is an example. The simplicity
of this enumerated type makes a switch statement a
compelling alternative to value-specific class bodies:
public enum ArithmeticOperator {
 // The enumerated values
 ADD, SUBTRACT, MULTIPLY, DIVIDE;

 // Value-specific behavior using a switch statement
 public double compute(double x, double y) {
 switch(this) {
 case ADD: return x + y;
 case SUBTRACT: return x - y;
 case MULTIPLY: return x * y;
 case DIVIDE: return x / y;
 default: throw new AssertionError(this);
 }
 }

 // Test case for using this enum
 public static void main(String args[]) {
 double x = Double.parseDouble(args[0]);
 double y = Double.parseDouble(args[1]);
 for(ArithmeticOperator op : ArithmeticOperator.values())
 System.out.printf("%f %s %f = %f%n", x, op, y, op.compute(x,y));
 }
}
A shortcoming to the switch approach is that each
time you add a new enumerated value, you must remember to add a
corresponding case to the
switch statement. And if there is more than one
method that uses a switch statement,
you’ll have to maintain their
switch statements in parallel. Forgetting to
implement value-specific behavior using a switch
statement leads to a runtime AssertionError. With
a value-specific class body overriding an abstract
method in the type-specific class body, the same omission leads to a
compilation error and can be corrected sooner.
The performance of value-specific methods and
switch statements in a type-specific method are
quite similar. The overhead of virtual method invocation in one case
is balanced by the overhead of the switch
statement in the other. Value-specific class bodies result in the
generation of additional class files, each of which has overhead in
terms of storage space and loading time.

Restrictions on enum types

Java places a few restrictions on the code
that can appear in an enumerated type. You won’t
encounter these restrictions that often in practice, but you should
still be aware of them.
When you define an enumerated type, the compiler does a lot of work
behind the scenes: it creates a class that extends
java.lang.Enum and it generates the
values() and valueOf() methods
as well as the static fields that hold the enumerated values. If you
include a class body for the type, you should not include members
whose names conflict with the automatically generated members or with
the final methods inherited from
Enum.

 enum types may not be declared
final
 . Enumerated types are effectively final,
and the compiler does not allow you to extend an
enum. The class file generated for an
enum is not technically declared
final if the enum contains value-specific class
bodies, however.
Types in Java may not be both final and
abstract
 . Since enumerated types are effectively
final, they may not be declared
abstract. If the type-specific class body of an
enum declaration contains an
abstract method, the compiler requires that each
enum value have a value-specific class body that includes an
implementation of that abstract method. Considered
as a self-contained whole, the enumerated type defined this way is
not abstract.
The

 constructor, instance field
initializers, and instance initializer blocks of an enumerated type
are subject to a sweeping but obscure restriction: they may not use
the static fields of the type (including the enumerated values
themselves). The reason for this is that static initialization of
enumerated types (and of all types) proceeds from top to bottom. The
enumerated values are static fields that appear at the top of the
type and are initialized first. Since they are self-typed fields,
they invoke the constructor and any other instance initializer code
of the type. This means that the instance initialization code is
invoked before the static initialization of the class is complete.
Since the static fields have not been initialized yet, the compiler
does not allow them to be used. The only exception is static fields
whose values are compile-time constant expressions (such as integers
and strings) that the compiler resolves.
If you define a constructor for an enumerated type, it may not use
the super() keyword to invoke the superclass
constructor. This is because the compiler automatically inserts
hidden name and ordinal
arguments into any constructor you define. If you define more than
one constructor for the type, it is okay to use
this() to invoke one constructor from the other.
Remember that the class bodies of individual enumerated values (if
you define any) are anonymous, which means that they cannot have any
constructors at all.

The Typesafe Enum Pattern

For a
 deeper understanding of how the
enum keyword works, or to be able to simulate
enumerated types prior to Java 5.0, it is useful to understand the
Typesafe Enum Pattern. This pattern is described
definitively by Joshua Bloch[6] in his book
Effective Java Programming Language
Guide
 (Addison Wesley); we do not cover all
the nuances here.
If you want to use the enumerated type Prefix
(from earlier in the chapter) prior to Java 5.0, you could
approximate it with a class like the following one. Note, however,
that instances of this class won’t work with the
switch statement or with the
EnumSet and EnumMap classes.
Also, the code shown here does not include the
values()

 or
valueOf() methods that the compiler generates
automatically for true enum types. A class like
this does not have special
serialization support like an
enum type does, so if you make it
Serializable, you must provide a
readResolve() method to prevent deserialization
from creating multiple instances of the enumerated values.
public final class Prefix {
 // These are the self-typed constants
 public static final Prefix MILLI = new Prefix("m", .001);
 public static final Prefix CENTI = new Prefix("c", .01);
 public static final Prefix DECI = new Prefix("d", .1);
 public static final Prefix DECA = new Prefix("D", 10.0);
 public static final Prefix HECTA = new Prefix("h", 100.0);
 public static final Prefix KILO = new Prefix("k", 1000.0);

 // Keep the fields private so the instances are immutable
 private String name;
 private double multiplier;

 // The constructor is private so no instances can be created except
 // for the ones above.
 private Prefix(String name, double multiplier) {
 this.name = name;
 this.multiplier = multiplier;
 }

 // These accessor methods are public
 public String toString() { return name; }
 public double getMultiplier() { return multiplier; }
}

[5] At the time
of this writing, this warning is expected to appear in Java
5.1.

[6] Josh was cochair of
the the JSR 201 committee that developed many of the new language
features of Java 5.0. He is the creator of and the driving force
behind enumerated types.

Annotations

 Annotations
provide a way to associate arbitrary information or
metadata
 with program elements.
Syntactically, annotations are used
like modifiers and can be applied to the declarations of packages,
types, constructors, methods, fields, parameters, and local
variables. The information stored in an annotation takes the form of
name
 =
 value
pairs, whose type is specified by the annotation
type. The annotation type is a kind of interface that also
serves to provide access to the annotation through the Java
Reflection API.
Annotations can be used to associate any kind of information you want
with a program element. The only fundamental rule is that an
annotation cannot affect the way the program runs: the code must run
identically even if you add or remove annotations. Another way to say
this is that the
 Java interpreter ignores annotations
(although it does make
“runtime-visible” annotations
available for reflective access through the Java Reflection API).
Since the Java VM ignores annotations, an annotation type is not
useful unless accompanied by a tool that can do something with the
information stored in annotations of that type. In this chapter
we’ll cover standard annotation and meta-annotation
types like Override and Target.
The tool that accompanies these types is the Java compiler, which
must process them in certain ways (as we’ll describe
later in this section).
It is easy to imagine any number of other uses for
annotations.[7] A local variable might be annotated with a type named
NonNull, as an assertion that the variable would never have a
null value. An associated (hypothetical)
code-analysis tool could then parse the code and attempt to verify
the assertion. The JDK includes a tool named apt
(for Annotation Processing Tool) that provides a framework for
annotation processing tools: it scans source code for annotations and
invokes specially written annotation processor classes that you
provide. See Chapter 8 for more on
apt. Annotations will probably find their widest
use in enterprise programming where they may replace tools such as
XDoclet, which processes metadata embedded in
ad-hoc javadoc comments.
This section begins with an introduction to annotation-related
terminology. We then cover the standard annotation types introduced
in Java 5.0, annotations supported by javac that
you can use in your programs right away. Next, we describe the syntax
for writing arbitrary annotations and briefly cover the use of the
Java Reflection API for querying annotations at runtime. At this
point, we move on to more esoteric material on defining new
annotation types, a task that few programmers will ever need to do.
This final part of the chapter also discusses meta-annotations.
Annotation Concepts and Terminology

 The key concept to understand
about annotations is that an annotation simply associates information
or metadata with a program element. Annotations never
affect the way a Java program runs, but they may affect
things like compiler warnings or the behavior of auxiliary tools such
as documentation generators, stub generators, and so forth.
The following terms are used frequently when discussing annotations.
Of particular importance is the distinction between
annotation and annotation
type.
	annotation
	An annotation associates arbitrary information
or metadata with a Java program element. Annotations use new syntax
introduced in Java 5.0 and behave like modifiers such as
public or final. Each
annotation has a name and zero or more members. Each member has a
name and a value, and it is these
name
 =
 value
pairs that carry the annotation’s information.

	annotation type
	The name of an annotation as well as the names, types, and default
values of its members are defined by the annotation
type
 . An
annotation type is essentially a Java interface with some
restrictions on its members and some new syntax used in its
declaration. When you query an annotation using the Java Reflection
API, the returned value is an object that implements the annotation
type interface and allows individual annotation members to be
queried. Java 5.0 includes three standard annotation types in the
java.lang package. We’ll see
these annotations in Section 4.3.2
later in this chapter.

	annotation member
	The
members

of an annotation are declared in an annotation type as no-argument
methods. The method name and return type define the name and type of
the member. A special default syntax allows the
declaration of a default value for any annotation member. An
annotation appearing on a program element includes
name
 =
 value
pairs that define values for all annotation members that do not have
default values and may also include values that override the defaults
of other members.

	marker annotation
	An annotation type that defines no members is called a
marker annotation
 . An annotation of this type carries
information simply by its presence or absence.

	meta-annotation
	A
meta-annotation

is an annotation applied to the declaration of an annotation type.
Java 5.0 includes several standard meta-annotation types in the
java.lang.annotation package. They are used to
specify things like which program elements the annotation can be
applied to.

	target
	The target
 of an annotation is the program
element that is annotated. Annotations can be applied to packages,
types (classes, interfaces, enumerated types, and even annotation
types), type members (methods, constructors, fields, and enumerated
values), method parameters, and local variables (including loop
variables and catch parameters). The declaration
of an annotation type may include a
meta-annotation that restricts the allowable
targets for that type of annotation.

	retention
	The retention
 of an annotation specifies how
long the information contained in the annotation is retained. Some
annotations are discarded by the compiler and appear only in source
code. Others are compiled into the class file. Of those that are
compiled into the class file, some are ignored by the virtual
machine, and others are read by the virtual machine when the class
that contains them is loaded. The declaration of an annotation type
can use a meta-annotation to specify the
retention for annotations of that type. Annotations that are loaded
by the VM are runtime-visible and can be queried
by the reflective APIs of java.lang.reflect.

	metadata
	When discussing annotations, the term
metadata

commonly refers to the information carried by an annotation or to the
annotation itself. Because this term is used in many different ways
in computer programming literature, I have avoided using it in this
chapter.

Using Standard Annotations

Java 5.0 defines three standard annotation types in the
java.lang

package. The following sections describe these annotation types and
explain how to use them to annotate your code.
Override

 java.lang.Override

 is a
marker annotation type that can be used to annotate methods but no
other program element. An annotation of this type serves as an
assertion that the annotated method overrides a method of a
superclass. If you use this annotation on a method that does not
override a superclass method, the compiler issues a compilation error
to alert you to this fact.
This annotation is intended to address a common category of
programming errors that result when you attempt to override a
superclass method but get the method name or signature wrong. In this
case, you may have overloaded the method name but not actually
overridden the method, and your code never gets invoked.
To use this annotation type, simply include
@Override

in the modifiers of the desired method. By convention,
@Override comes before other modifiers. Also by
convention, there is no space between the @
character and the name Override, even though it is
technically allowed. Note that because the
java.lang package is always automatically
imported, you never need to include the package name to use this
annotation type. Here is an example in which the
@Override annotation is used on a method that
fails to correctly override the toString() method
of its superclass.
@Override
public String toSting() { // Oops. Note the misspelling here!
 // Simply put square brackets around our superclass's output
 return "[" + super.toString() + "]";
}
Without the annotation, the typo might go unnoticed and
we’d have a puzzling bug: why isn’t
the toString() method working correctly? But with
the annotation, the compiler gives us the answer: the
toString() method does not work as expected
because it is not actually overridden.
Note that the @Override annotation applies only to
methods that are intended to override a superclass method and not to
methods that are intended to implement a method defined in an
interface. The compiler already produces an error if you fail to
correctly implement an interface method.

Deprecated

 java.lang.Deprecated
 is a

 marker
annotation that is similar to the
@deprecated

javadoc tag. (See Chapter 7 for details on
writing Java documentation comments.) If you annotate a type or type
member with @Deprecated, it tells the compiler
that use of the annotated element is discouraged. If you use (or
extend or override) a deprecated type or member from code that is not
itself declared @Deprecated, the compiler issues a
warning.
Note that the @Deprecated annotation type does not
deprecate the @deprecated javadoc tag. The
@Deprecated annotation is intended for the Java
compiler. The javadoc tag, on the other hand, is intended for the
javadoc tool and serves as documentation: it may
include a description of why the program element has been deprecated
and what it has been superseded by or replaced with.
In Java 5.0, the compiler continues to look for
@deprecated javadoc tags and uses them to generate
warnings as it always has. This behavior may be phased out, however,
and you should begin to use the @Deprecated
annotation in addition to the @deprecated javadoc
tag.
Here is an example that uses both the annotation and the javadoc tag:
/**
 * The Sony Betamax video cassette format.
 * @deprecated No one has players for this format any more. Use VHS instead.
 */
@Deprecated public class Betamax { ... }

SuppressWarnings

The
@SuppressWarnings

annotation is used to selectively turn off compiler
warnings for classes,
methods, or field and variable initializers.[8] In
Java 5.0, Sun’s
javac

compiler has a powerful -Xlint option that causes
it to issue warnings about “lint”
in your program—code that is legal but is likely to represent a
programming error. These warnings include the
“unchecked warning” that appears
when you use a generic collection class without specifying a value
for its type parameters, for example, or the warning that appears if
a case in a switch statement
does not end with a break,
return, or throw and allows
control to “fall through” to the
next case.
Typically, when you see one of these lint warnings from the compiler,
you should investigate the code that caused it. If it truly
represents an error, you then correct it. If it simply represents
sloppy programming, you may be able to rewrite your code so that the
warning is no longer necessary. For example, if the warning tells you
that you have not covered all possible cases in a
switch statement on an enumerated type, you can
avoid the warning by adding a defensive default
case to the switch statement, even if you are sure
that it will never be invoked.
On the other hand, sometimes there is nothing you can do to avoid the
error. For example, if you use a generic collection class in code
that must interact with nongeneric legacy code, you cannot avoid an
unchecked warning. This is where @SuppressWarnings
comes in: add this annotation to the nearest relevant set of
modifiers (typically on method modifiers) to tell the compiler that
you’re aware of the issue and that it should stop
pestering you about it.
Unlike Override and Deprecated,
SuppressWarnings is not a marker annotation. It
has a single member named value whose type is
String[]. The value of this member is the names
of the warnings to be suppressed. The
SuppressWarnings annotation does not define what
warning names are allowed: this is an issue for compiler
implementors. For the javac compiler, the
warning names accepted by the -Xlint option are
also legal for the @SuppressWarnings annotation.
It is legal to specify any warning names you want: compilers ignore
(but may warn about) warning names they do not recognize.
So, to suppress warnings named unchecked and
fallthrough, you could use an annotation that
looks like the following. Annotation syntax follows the name of the
annotation type with a parenthesized, comma-separated list of
name
 =
 value
pairs. In this case, the SuppressWarnings
annotation type defines only a single member, so there is only a
single pair within parentheses. Since the member value is an array,
curly braces are used to delimit array elements:
@SuppressWarnings(value={"unchecked","fallthrough"})
public void lintTrap() { /* sloppy method body omitted */ }
We can abbreviate this annotation somewhat. When an annotation has a
single member and that member is named
“value”, you are allowed (and
encouraged) to omit the “value=” in
the annotation. So the annotation above should be rewritten as:
@SuppressWarnings({"unchecked","fallthrough"})
Hopefully you will not often have more than one unresolvable lint
warning in any particular method and will need to suppress only a
single named warning. In this case, another annotation abbreviation
is possible. When writing an array value that contains only a single
member, you are allowed to omit the curly braces. In this case we
might have an annotation like this:
@SuppressWarnings("unchecked")

Annotation Syntax

In the descriptions
of the standard annotation types, we’ve seen the
syntax for writing marker annotations and the syntax for writing
single-member annotations, including the shortcut allowed when the
single member is named “value” and
the shortcut allowed when an array-typed member has only a single
array element. This section describes the complete syntax for writing
annotations.
An annotation consists of the @ character followed
by the name of the annotation type (which may include a package name)
followed by a parenthesized, comma-separated list of
name
 =
 value
pairs for each of the members defined by the annotation type. Members
may appear in any order and may be omitted if the annotation type
defines a default value for that member. Each
value must be a literal or compile-time
constant, a nested annotation, or an array.
Near the end of this chapter, we define an annotation type named
Reviews that has a single member that is an array
of @Review annotations. The
Review annotation type has three members:
“reviewer” is a
String,
“comment” is an optional
String with a default value, and
“grade” is a value of the nested
enumerated type Review.Grade. Assuming that the
Reviews and Review types are
properly imported, an annotation using these types might look like
this (note the use of nested annotations, enumerated types, and
arrays in this annotation):
@Reviews({ // Single-value annotation, so "value=" is omitted here
 @Review(grade=Review.Grade.EXCELLENT,
 reviewer="df"),
 @Review(grade=Review.Grade.UNSATISFACTORY,
 reviewer="eg",
 comment="This method needs an @Override annotation")
})
Another important rule of annotation syntax is that no program
element may have more than one instance of the same annotation. It is
not legal, for example, to simply place multiple
@Review annotations on a class. This is why the
@Reviews annotation is defined to allow an array
of @Review annotations.
Annotation member types and values

The
values of

 annotation
members must be non-null compile-time constant
expressions that are assignment-compatible with the declared type of
the member. Allowed member types are the primitive types,
String, Class, enumerated
types, annotation types, and arrays of any of the above types (but
not an array of arrays). For example, the expressions
2*Math.PI and "hello"+"world"
are legal values for members of type double and
String, respectively.
Near the end of the chapter, we define an annotation type named
UncheckedExceptions whose sole member is an array
of classes that extend RuntimeException. An
annotation of this type might look like this:
@UncheckedExceptions({
 IllegalArgumentException.class, StringIndexOutOfBoundsException.class
})

Annotation targets

Annotations are

 most commonly placed on type
definitions (such as classes) and their members (such as methods and
fields). Annotations may also appear on packages, parameters, and
local variables. This section provides more information about these
less common annotation targets.
A package annotation appears before
the package declaration in a file named
package-info.java. This file should not contain
any type declarations
(“package-info” is not a legal Java
identifier, so it cannot contain any public type definitions).
Instead, it should contain an optional javadoc comment, zero or more
annotations, and a package declaration. For
example:
/**
 * This package holds my custom annotation types.
 */
@com.davidflanagan.annotations.Author("David Flanagan")
package com.davidflanagan.annotations;
When the package-info.java file is compiled, it
produces a class file named package-info.class
that contains a synthetic interface declaration. This interface has
no members, and its name, package-info, is not a
legal Java identifier, so it cannot be used in Java source code. It
exists simply as a placeholder for package annotations with class or
runtime retention.
Note that package annotations appear outside the scope of any
package or import declaration.
This means that package annotations should always include the package
name of the annotation type (unless the package is
java.lang).
Annotations on method parameters,

 catch
clause parameters, and local variables simply appear as part of the
modifier list for those program elements. The Java class file format
has no provision for storing annotations on local variables or catch
clause parameters, so those annotations always have source retention.
Method parameter annotations can be retained in the class file,
however, and may have class or runtime retention.
Finally, note that the syntax for enumerated type definitions does not allow
any modifiers to be specified for enumerated values. It does,
however, allow annotations on any of the values.

Annotations and defaults

 Annotations must include a value for every
member that does not have a default value defined by the annotation
type. Annotations may, of course, include values for other members as
well.
There is one important detail to understand about how default values
are handled. Default values are stored in the class file of the
annotation type and are not compiled into annotations themselves. If
you modify an annotation type so that the default value of one of its
members changes, that change affects all annotations of that type
that do not specify an explicit value for that member.
Already-compiled annotations are affected, even if they are never
recompiled after the change to the type.

Annotations and Reflection

 The
Reflection API of
java.lang.reflect
 has been extended in Java 5.0 to
support reading of runtime-visible annotations. (Remember that an
annotation is only visible at runtime if its annotation type is
specified to have runtime retention, that is, if the annotation is
both stored in the class file and read by the Java VM when the class
file is loaded.) This section briefly covers the new reflective
capabilities. For full details, look up the interface
java.lang.reflect.AnnotatedElement
 in the reference section.
AnnotatedElement represents a program element that
can be queried for annotations. It is implemented by
java.lang.Package,
java.lang.Class, and indirectly implemented by the
Method, Constructor, and
Field classes of
java.lang.reflect. Annotations on method
parameters can be queried with the getParameterAnnotations(
)
 method of the Method or
Constructor class.
The following code uses the isAnnotationPresent(
)
 method of
AnnotatedElement to determine whether a method is
unstable by checking for an @Unstable annotation.
It assumes that the Unstable annotation type,
which we’ll define later in the chapter, has runtime
retention. Note that this code uses class literals to specify both
the class to be checked and the annotation to check for:
import java.lang.reflect.*;

Class c = WhizzBangClass.class;
Method m = c.getMethod("whizzy", int.class, int.class);
boolean unstable = m.isAnnotationPresent(Unstable.class);

 isAnnotationPresent() is useful for
marker annotations. When working with
annotations that have members, though, we typically want to know the
value of those members. For this, we use the
getAnnotation()
 method. And here we see the beauty of the
Java annotation system: if the specified annotation exists, the
object returned by this method implements the annotation type
interface, and you can query the value of any member simply by
invoking the annotation type method that defines that member.
Consider the @Reviews annotation that appeared
earlier in the chapter, for example. If the annotation type was
declared with runtime retention, you could query it as follows:
AnnotatedElement target = WhizzBangClass.class; // the type to query
// Ask for the @Reviews annotation as an object that implements Reviews
Reviews annotation = target.getAnnotation(Reviews.class);
// Reviews has a single member named "value" that is an array of reviews
Review[] reviews = annotation.value();
// Loop through the reviews
for(Review r : reviews) {
 Review.Grade grade = r.grade();
 String reviewer = r.reviewer();
 String comment = r.comment();
 System.out.printf("%s assigned a grade of %s and comment '%s'%n",
 reviewer, grade, comment);
}
Note that these reflective methods correctly resolve default
annotation values for you. If an annotation does not include a value
for a member with a default value, the default value is looked up
within the annotation type itself.

Defining Annotation Types

An annotation
type is an interface, but it is not a normal one. An annotation type
differs from a normal interface in the following ways:
	An annotation type is defined with the keyword
@interface rather than with
interface. An
@interface
 declaration implicitly extends the
interface
java.lang.annotation.Annotation
 and may not have an explicit
extends clause of its own.

	The methods of an annotation type must be declared with no arguments
and may not throw exceptions. These methods define annotation
members: the method name becomes the member name, and the method
return type becomes the member type.

	The return value of annotation methods may be a primitive type, a
String, a Class, an enumerated
type, another annotation type, or a single-dimensional array of one
of those types.

	Any method of an annotation type may be followed by the keyword
default and a value compatible with the return
type of the method. This strange new syntax specifies the default
value of the annotation member that corresponds to the method. The
syntax for default values is the same as the syntax used to specify
member values when writing an annotation. null is
never a legal default value.

	Annotation types and their methods may not have

 type parameters—annotation types and
members cannot be made generic. The only valid use of generics in
annotation types is for methods whose return type is
Class. These methods may use a bounded wildcard to
specify a constraint on the returned class.

In other ways, annotation types declared with
@interface are just like regular interfaces. They
may include constant definitions and static member types such as
enumerated type definitions. Annotation types may also be implemented
or extended just as normal interfaces are. (The classes and
interfaces that result from doing this are not themselves annotation
types, however: annotation types can be created only with an
@interface declaration.)
We now define the annotation types used in our examples. These
examples illustrate the syntax of annotation type declarations and
demonstrate many of the differences between
@interface and interface. We
start with the simple marker annotation type
Unstable. Because we used this type earlier in the
chapter in a reflection example, its definition includes a
meta-annotation that gives it runtime retention and makes it
accessible to the reflection API. Meta-annotations are covered below.
package com.davidflanagan.annotations;
import java.lang.annotation.*;

/**
 * Specifies that the annotated element is unstable and its API is
 * subject to change.
 */
@Retention(RetentionPolicy.RUNTIME)
public @interface Unstable {}
The next annotation type defines a single member. By naming the
member value, we enable a syntactic shortcut for
anyone using the annotation:
/**
 * Specifies the author of a program element.
 */
public @interface Author {
 /** Return the name of the author */
 String value();
}
The next example is more complex. The Reviews
annotation type has a single member, but the type of the member is
complex: it is an array of Review annotations. The
Review annotation type has three members, one of
which has an enumerated type defined as a member of the
Review type itself, and another of which has a
default value. Because the Reviews annotation type
is used in a reflection example, we’ve given it
runtime retention with a
meta-annotation:
import java.lang.annotation.*;

/**
 * An annotation of this type specifies the results of one or more
 * code reviews for the annotated element
 */
@Retention(RetentionPolicy.RUNTIME)
public @interface Reviews {
 Review[] value();
}

/**
 * An annotation of this type represents a single code review of the
 * annotated element. Every review must specify the name of the reviewer
 * and the grade assigned to the code. Optionally, reviews may also include
 * a comment string.
 */
public @interface Review {
 // Nested enumerated type
 public static enum Grade { EXCELLENT, SATISFACTORY, UNSATISFACTORY };

 // These methods define the annotation members
 Grade grade(); // member named "grade" with type Grade
 String reviewer();
 String comment() default ""; // Note default value here.
}
Finally, suppose we wanted to annotate methods to list the unchecked
exceptions (but not errors) that they might throw. Our annotation
type would have a single member of array type. Each element of the
array would be the Class of an exception. In order
to enforce the requirement that only unchecked exceptions are used,
we use a bounded wildcard on Class:
public @interface UncheckedExceptions {
 Class<? extends RuntimeException>[] value();
}

Meta-Annotations

 Annotation
types can themselves be annotated. Java 5.0 defines four standard
meta-annotation types that provide information
about the use and meaning of other annotation types. These types and
their supporting classes are in the
java.lang.annotation package, and you can find
complete details in the quick-reference section of the book.
Target

The Target
 meta-annotation type specifies the
“targets” for an annotation type.
That is, it specifies which program elements may have annotations of
that type. If an annotation type does not have a
Target meta-annotation, it can be used with any of
the program elements described earlier. Some annotation types,
however, make sense only when applied to certain program elements.
Override is one example: it is only meaningful
when applied to a method. An @Target
meta-annotation applied to the declaration of the
Override type makes this explicit and allows the
compiler to reject an @Override when it appears in
an inappropriate context.
The Target meta-annotation type has a single
member named value. The type of this member is
java.lang.annotation.ElementType[].
ElementType is an enumerated type whose enumerated
values represent program elements that can be annotated.

Retention

We discussed annotation
retention
 earlier in the chapter. It specifies
whether an annotation is discarded by the compiler or retained in the
class file, and, if it is retained in the class file, whether it is
read by the VM when the class file is loaded. By default, annotations
are stored in the class file but not available for runtime reflective
access. The three possible retention values (source, class, and
runtime) are described by the enumerated type
java.lang.annotation.RetentionPolicy
 .
The Retention meta-annotation type has a single
member named value whose type is
RetentionPolicy.

Documented

 Documented
 is a meta-annotation type used to
specify that annotations of some other type should be considered part
of the public API of the annotated program element and should
therefore be documented by tools like javadoc.
Documented is a marker annotation: it has no
members.

Inherited

The @Inherited

 meta-annotation is a marker
annotation that specifies that the annotated type is an inherited
one. That is, if an annotation type @Inherited is
used to annotate a class, the annotation applies to subclasses of
that class as well.
Note that @Inherited annotation types are
inherited only by subclasses of an annotated class. Classes do not
inherit annotations from interfaces they implement, and methods do
not inherit annotations from methods they override.
The Reflection API enforces the
inheritance if the @Inherited annotation type is
also annotated
@Retention(RetentionPolicy.RUNTIME). If you use
java.lang.reflect to query a class for an
annotation of an @Inherited type, the reflection
code checks the specified class and each of its ancestors until an
annotation of the specified type is found or the top of the class
hierarchy is reached.

[7] We won’t have to
imagine these uses for long. At the time of this writing, JSR 250 is
making its way through the Java Community Process to define a
standard set of common annotations for J2SE and J2EE.

[8] The
javac compiler did not yet support the
@SuppressWarnings annotation when this chapter was
written. Full support is expected in Java 5.1.

Chapter 5. The Java Platform

Chapters

 Chapter 2, Chapter 3, and Chapter 4 documented the Java programming language. This
chapter switches gears and covers the Java platform—a vast
collection of predefined classes available to every Java program,
regardless of the underlying host system on which it is running. The
classes of the Java platform are collected into related groups, known
as packages. This chapter begins with an
overview of the packages of the Java platform that are documented in
this book. It then moves on to demonstrate, in the form of short
examples, the most useful classes in these packages. Most of the
examples are code snippets only, not full programs you can compile
and run. For fully fleshed-out, real-world examples, see
Java Examples in a Nutshell
(O’Reilly). That book expands greatly on this
chapter and is intended as a companion to this book.

Java Platform Overview

 Table 5-1 summarizes the key packages of

 the Java platform that are covered in this
book.
Table 5-1. Key packages of the Java platform
	
 Package

 	
 Description

	

 java.io

 	

 Classes and interfaces for input and
output. Although some of the classes in this package are for working
directly with files, most are for working with streams of bytes or
characters.

	

 java.lang

 	

 The core classes of the
language, such as String, Math,
System, Thread, and
Exception.

	

 java.lang.annotation

 	
 Annotation types and other supporting types for the Java 5.0
annotation feature. (See Chapter 4.)

	

 java.lang.instrument

 	
 Support classes for Java virtual machine instrumentation
agents, which are
allowed to modify the byte code of the program the JVM is running.
New in Java 5.0.

	

 java.lang.management

 	
 A framework for monitoring and managing a running Java virtual
machine. New in Java 5.0.

	

 java.lang.ref

 	

 Classes that define weak references
to objects. A weak reference is one that does not prevent the
referent object from being garbage-collected.

	

 java.lang.reflect

 	

 Classes and interfaces that allow Java
programs to reflect on themselves by examining the constructors,
methods, and fields of classes.

	

 java.math

 	

 A small package that contains
classes for arbitrary-precision integer and floating-point
arithmetic.

	

 java.net

 	

 Classes and interfaces for networking with
other systems.

	

 java.nio

 	
 Buffer classes for the
 New I/O API. Added in Java 1.4.

	

 java.nio.channels

 	

 Channel and selector interfaces and
classes for high-performance, nonblocking I/O.

	

 java.nio.charset

 	

 Character set
encoders and decoders for converting Unicode strings to and from
bytes.

	

 java.security

 	

 Classes and interfaces for access
control and authentication. This package and its subpackages support
cryptographic message digests and digital signatures.

	

 java.text

 	

 Classes
and interfaces for working with text in internationalized
applications.

	

 java.util

 	

 Various utility classes, including the
powerful collections framework for working with collections of
objects.

	

 java.util.concurrent

 	
 Thread pools and other utility classes for concurrent programming.
Subpackages support atomic variables and locks. New in Java
5.0.

	

 java.util.jar

 	

 Classes
for reading and writing JAR files.

	

 java.util.logging

 	

 A flexible logging facility. Added in
Java 1.4.

	

 java.util.prefs

 	

 An API to read and write user and system
preferences. Added in Java 1.4.

	

 java.util.regex

 	

 Text pattern matching using regular
expressions. Added in Java 1.4.

	

 java.util.zip

 	

 Classes for reading and writing ZIP files.

	

 javax.crypto

 	

 Classes
and interfaces for encryption and decryption of data.

	

 javax.net

 	

 Defines factory classes for
creating sockets and server sockets. Enables the creation of socket
types other than the default.

	

 javax.net.ssl

 	

 Classes for encrypted network
communication using the Secure Sockets Layer (SSL).

	

 javax.security.auth

 	

 The top-level package for the JAAS API
for authentication and authorization. Various subpackages hold most
of the actual classes. Added in Java 1.4.

	

 javax.xml.parsers

 	

 A high-level API for parsing XML
documents using pluggable DOM and SAX parsers.

	

 javax.xml.transform

 	

 A high-level API for transforming XML
documents using a pluggable XSLT transformation engine and for
converting XML documents between streams, DOM trees, and SAX events.
Subpackages provide support for DOM, SAX and stream transformations.
Added in Java 1.4.

 Table 5-1 does not
list all the packages in the Java platform, only the most important
of those documented in this book. Java also defines numerous packages
for graphics and graphical user interface programming and
for distributed, or enterprise, computing. The graphics and GUI
packages are java.awt and
javax.swing and their many subpackages. These
packages are documented in Java Foundation Classes in a
Nutshell and Java Swing, both from
O’Reilly. The enterprise packages of Java
include java.rmi, java.sql,
javax.jndi, org.omg.CORBA,
org.omg.CosNaming, and all of their subpackages.
These packages, as well as several standard extensions to the Java
platform, are documented in Java Enterprise in a
Nutshell (O’Reilly).

Text

 Most
programs manipulate text in one form or another, and the Java
platform defines a number of important classes and interfaces for
representing, formatting, and scanning text. The sections that follow
provide an overview.
The String Class

 Strings of
text are a fundamental and commonly used
data type. In Java, however, strings are not a primitive type, like
char, int, and
float. Instead, strings are represented by the
java.lang.String class, which defines many useful
methods for manipulating strings. String objects
are immutable: once a String
object has been created, there is no way to modify the string of text
it represents. Thus, each method that operates on a string typically
returns a new String object that holds the
modified string.

 This code shows some of the basic
operations you can perform on strings:
// Creating strings
String s = "Now"; // String objects have a special literal syntax
String t = s + " is the time."; // Concatenate strings with + operator
String t1 = s + " " + 23.4; // + converts other values to strings
t1 = String.valueOf('c'); // Get string corresponding to char value
t1 = String.valueOf(42); // Get string version of integer or any value
t1 = object.toString(); // Convert objects to strings with toString()

// String length
int len = t.length(); // Number of characters in the string: 16

// Substrings of a string
String sub = t.substring(4); // Returns char 4 to end: "is the time."
sub = t.substring(4, 6); // Returns chars 4 and 5: "is"
sub = t.substring(0, 3); // Returns chars 0 through 2: "Now"
sub = t.substring(x, y); // Returns chars between pos x and y-1
int numchars = sub.length(); // Length of substring is always (y-x)

// Extracting characters from a string
char c = t.charAt(2); // Get the 3rd character of t: w
char[] ca = t.toCharArray(); // Convert string to an array of characters
t.getChars(0, 3, ca, 1); // Put 1st 3 chars of t into ca[1]-ca[3]

// Case conversion
String caps = t.toUpperCase(); // Convert to uppercase
String lower = t.toLowerCase(); // Convert to lowercase

// Comparing strings
boolean b1 = t.equals("hello"); // Returns false: strings not equal
boolean b2 = t.equalsIgnoreCase(caps); // Case-insensitive compare: true
boolean b3 = t.startsWith("Now"); // Returns true
boolean b4 = t.endsWith("time."); // Returns true
int r1 = s.compareTo("Pow"); // Returns < 0: s comes before "Pow"
int r2 = s.compareTo("Now"); // Returns 0: strings are equal
int r3 = s.compareTo("Mow"); // Returns > 0: s comes after "Mow"
r1 = s.compareToIgnoreCase("pow"); // Returns < 0 (Java 1.2 and later)

// Searching for characters and substrings
int pos = t.indexOf('i'); // Position of first 'i': 4
pos = t.indexOf('i', pos+1); // Position of the next 'i': 12
pos = t.indexOf('i', pos+1); // No more 'i's in string, returns -1
pos = t.lastIndexOf('i'); // Position of last 'i' in string: 12
pos = t.lastIndexOf('i', pos-1); // Search backwards for 'i' from char 11

pos = t.indexOf("is"); // Search for substring: returns 4
pos = t.indexOf("is", pos+1); // Only appears once: returns -1
pos = t.lastIndexOf("the "); // Search backwards for a string
String noun = t.substring(pos+4); // Extract word following "the"

// Replace all instances of one character with another character
String exclaim = t.replace('.', '!'); // Works only with chars, not substrings

// Strip blank space off the beginning and end of a string
String noextraspaces = t.trim();

// Obtain unique instances of strings with intern()
String s1 = s.intern(); // Returns s1 equal to s
String s2 = "Now"; // String literals are automatically interned
boolean equals = (s1 == s2); // Now can test for equality with ==

The Character Class

 As you know, individual characters are
represented in Java by the primitive char type.
The Java platform also defines a Character class,
which contains useful class methods for checking the type of a
character and for converting the case of a character. For example:
char[] text; // An array of characters, initialized somewhere else
int p = 0; // Our current position in the array of characters
// Skip leading whitespace
while((p < text.length) && Character.isWhitespace(text[p])) p++;
// Capitalize the first word of text
while((p < text.length) && Character.isLetter(text[p])) {
 text[p] = Character.toUpperCase(text[p]);
 p++;
}

The StringBuffer Class

 Since String objects
are immutable, you cannot manipulate the characters of an
instantiated String. If you need to do this, use a
java.lang.StringBuffer or
java.lang.StringBuilder instead. These two classes
are identical except that StringBuffer has
synchronized methods.
StringBuilder was introduced in Java 5.0 and you
should use it in preference to StringBuffer unless
it might actually be manipulated by multiple threads. The following
code demonstrates the StringBuffer API but could
be easily changed to use StringBuilder:
// Create a string buffer from a string
StringBuffer b = new StringBuffer("Mow");

// Get and set individual characters of the StringBuffer
char c = b.charAt(0); // Returns 'M': just like String.charAt()
b.setCharAt(0, 'N'); // b holds "Now": can't do that with a String!

// Append to a StringBuffer
b.append(' '); // Append a character
b.append("is the time."); // Append a string
b.append(23); // Append an integer or any other value

// Insert Strings or other values into a StringBuffer
b.insert(6, "n't"); // b now holds: "Now isn't the time.23"

// Replace a range of characters with a string (Java 1.2 and later)
b.replace(4, 9, "is"); // Back to "Now is the time.23"

// Delete characters
b.delete(16, 18); // Delete a range: "Now is the time"
b.deleteCharAt(2); // Delete 2nd character: "No is the time"
b.setLength(5); // Truncate by setting the length: "No is"

// Other useful operations
b.reverse(); // Reverse characters: "si oN"
String s = b.toString(); // Convert back to an immutable string
s = b.substring(1,2); // Or take a substring: "i"
b.setLength(0); // Erase buffer; now it is ready for reuse

The CharSequence Interface

 As of Java 1.4, both
the String and the StringBuffer
classes implement the
java.lang.CharSequence
 interface, which is a standard
interface for querying the length of and extracting characters and
subsequences from a readable sequence of characters. This interface
is also implemented by the java.nio.CharBuffer
interface, which is part of the New I/O API that was introduced in
Java 1.4. CharSequence provides a way to perform
simple operations on strings of characters regardless of the
underlying implementation of those strings. For example:
/**
 * Return a prefix of the specified CharSequence that starts at the first
 * character of the sequence and extends up to (and includes) the first
 * occurrence of the character c in the sequence. Returns null if c is
 * not found. s may be a String, StringBuffer, or java.nio.CharBuffer.
 */
public static CharSequence prefix(CharSequence s, char c) {
 int numChars = s.length(); // How long is the sequence?
 for(int i = 0; i < numChars; i++) { // Loop through characters in sequence
 if (s.charAt(i) == c) // If we find c,
 return s.subSequence(0,i+1); // then return the prefix subsequence
 }
 return null; // Otherwise, return null
}

The Appendable Interface

 Appendable

is a Java 5.0
interface that represents an object that can have a
char or a CharSequence appended
to it.
Implementing
classes include StringBuffer,
StringBuilder,
java.nio.CharBuffer,
java.io.PrintStream, and
java.io.Writer and all of its character output
stream subclasses, including PrintWriter. Thus,
the Appendable interface represents the common
appendability of the text buffer classes and the text output stream
classes. As we’ll see below, a
Formatter object can send its output to any
Appendable object.

String Concatenation

The +

 operator concatenates two
String objects or one String
and one value of some other type, producing a new
String object. Be aware that each time a string
concatenation is performed and the result stored in a variable or
passed to a method, a new String object has been
created. In some circumstances, this can be inefficient and can
result in poor performance. It is especially important to be careful
when doing string concatenation within a loop. The following code is
inefficient, for example:
// Inefficient: don't do this
public String join(List<String> words) {
 String sentence = "";
 // Each iteration creates a new String object and discards an old one.
 for(String word: words) sentence += word;
 return sentence;
}
When you find yourself writing code like this, switch to a
StringBuffer or a StringBuilder
and use the append() method:
// This is the right way to do it
public String join(List<String> words) {
 StringBuilder sentence = new StringBuilder();
 for(String word: words) sentence.append(word);
 return sentence.toString();
}
There is no need to be paranoid about string concatenation, however.
Remember that string literals are concatenated by the compiler rather
than the Java interpreter. Also, when a single expression contains
multiple string concatenations, these are compiled efficiently using
a StringBuilder (or
StringBuffer prior to Java 5.0) and result in the
creation of only a single new String object.

String Comparison

 Since
strings are objects rather than primitive values, they cannot, in
general, be compared for equality with the =
=
 operator. ==
compares references and can determine if two expressions evaluate to
a reference to the same string. It cannot determine if two distinct
strings contain the same text. To do that, use the equals(
)
 method. In
Java 5.0 you can compare the content of a
string to any other
CharSequence

with the contentEquals() method.
Similarly, the <
 and
> relational operators do not work with
strings. To compare the order of strings, use the
compareTo() method, which is defined by the
Comparable<String> interface and is
illustrated in the sample code above. To compare strings without
taking the case of the letters into account, use
compareToIgnoreCase(
)

 .
Note that StringBuffer and
StringBuilder do not implement
Comparable and do not override the default
versions of equals() and
hashCode() that they inherit from
Object. This means that it is not possible to
compare the text held in two StringBuffer or
StringBuilder objects for equality or for order.
One important, but little understood method of the
String

 class is
intern(). When passed a string
s, it returns a string t that
is guaranteed to have the same content as s.
What’s important, though, is that for any given
string content, it always returns a reference to the same
String object. That is, if s
and t are two String objects
such that s.equals(t), then:
s.intern() == t.intern()
This means that the intern() method provides a
way of doing fast string comparisons using ==.
Importantly, string literals are always implicitly interned by the
Java VM, so if you plan to compare a string s
against a number of string literals, you may want to intern
s first and then do the comparison with =
=.

 The
compareTo()

 and equals()
methods of the String class allow you to compare
strings. compareTo() bases its comparison on the
character order defined by the Unicode encoding while
equals() defines string equality as strict
character-by-character equality. These are not always the right
methods to use, however. In some languages, the character ordering
imposed by the Unicode standard does not match the dictionary
ordering used when alphabetizing strings. In Spanish, for example,
the letters “ch” are considered a
single letter that comes after “c”
and before “d.” When comparing
human-readable strings in an internationalized application, you
should use the java.text.Collator class instead:

import java.text.*;

// Compare two strings; results depend on where the program is run
// Return values of Collator.compare() have same meanings as String.compareTo()
Collator c = Collator.getInstance(); // Get Collator for current locale
int result = c.compare("chica", "coche"); // Use it to compare two strings

Supplementary Characters

 Java 5.0 has adopted the
Unicode 4.0 standard, which, for the first time, has defined
codepoints that fall outside the 16-bit range of the
char type. When working with these
“supplementary characters” (which
are primarily Han ideographs), you must use int
values to represent the individual character. In
String objects, or for any other type that
represents text as a sequence of char values,
these supplementary characters are represented as a series of two
char values known as a surrogate
pair
 .
Although readers of the English edition of this book are unlikely to
ever encounter supplementary characters, you should be aware of them
if you are working on programs that might be localized for use in
China or another country that uses Han ideographs. To help you work
with supplementary characters, the Character,
String, StringBuffer, and
StringBuilder classes have been extended with new
methods that operate on int codepoints rather than
char values. The following code illustrates some
of these methods. You can find other, similar methods in the
reference section and read about them in the online javadoc
documentation.
int codepoint = 0x10001; // This codepoint doesn't fit in a char
// Get the UTF-16 surrogate pair of chars for the codepoint
char[] surrogatePair = Character.toChars(codepoint);
// Convert the chars to a string.
String s = new String(surrogatePair);

// Print string length in characters and codepoints
System.out.println(s.length());
System.out.println(s.codePointCount(0, s.length()-1));

// Print encoding of first character, then encoding of first codepoint.
System.out.println(Integer.toHexString(s.charAt(0)));
System.out.println(Integer.toHexString(s.codePointAt(0)));

// Here's how to safely loop through a string that may contain
// supplementary characters
String tricky = s + "Testing" + s + "!";
int i = 0, n = tricky.length();
while(i < n) {
 // Get the codepoint at the current position
 int cp = tricky.codePointAt(i);
 if (cp < '\uffff') System.out.println((char) cp);
 else System.out.println("\\u" + Integer.toHexString(cp));

 // Increment the string index by one codepoint (1 or 2 chars).
 i = tricky.offsetByCodePoints(i, 1);
}

Formatting Text with printf() and format()

 A common task when working with text output
is to combine values of various types into a single block of
human-readable text. One way to accomplish this relies on the
string-conversion power of Java’s string
concatenation operator. It results in code like this:
System.out.println(username + " logged in after " + numattempts +
 "attempts. Last login at: " + lastLoginDate);
Java 5.0 introduces an alternative that is familiar to C programmers:
a printf() method.
“printf” is short for
“print formatted” and it combines
the printing and formatting functions into one call. The
printf()
 method
has been added to the PrintWriter and
PrintStream output stream classes in

 Java 5.0.
It is a varargs method that expects one or more arguments. The first
argument is the “format string.” It
specifies the text to be printed and typically includes one or more
“format specifiers,” which are
escape sequences beginning with character %. The
remaining arguments to printf() are values to be
converted to strings and substituted into the format string in place
of the format specifiers. The format specifiers constrain the types
of the remaining arguments and specify exactly how they are converted
to strings. The string concatenation shown above can be rewritten as
follows in Java 5.0:
System.out.printf("%s logged in after %d attempts. Last login at: %tc%n",
 username, numattempts, lastLoginDate);
The format specifier %s simply substitutes a
string. %d expects the corresponding argument to
be an integer and displays it as such. %tc expects
a Date, Calendar, or number of
milliseconds and converts that value to text representation of the
full date and time. %n performs no conversion: it
simply outputs the platform-specific line terminator, just as the
println() method does.
The conversions performed by printf() are all
properly localized. Times and dates are displayed with
locale-appropriate punctuation, for example. And if you request that
a number be displayed with a thousands separator,
you’ll get locale-specific punctuation there, too (a
comma in England and a period in France, for example).
In addition to the basic printf() method,
PrintWriter and PrintStream
also define a synonymous method named
format()

 : it takes exactly the same arguments
and behaves in exactly the same way. The
String

 class also has a
format() method in Java 5.0. This static
String.format() method behaves like
PrintWriter.format() except that instead of
printing the formatted string to a stream, it simply returns it:
// Format a string, converting a double value to text using two decimal
// places and a thousands separator.
double balance = getBalance();
String msg = String.format("Account balance: $%,.2f", balance);
The
java.util.Formatter
 class is the general-purpose formatter
class behind the
printf()

 and format()
utility methods. It can format text to any
Appendable object or to a named file. The
following code uses a Formatter object to write a
file:
public static void writeFile(String filename, String[] lines)
 throws IOException
{
 Formatter out = new Formatter(filename); // format to a named file
 for(int i = 0; i < lines.length; i++) {
 // Write a line of the file
 out.format("%d: %s%n", i, lines[i]);
 // Check for exceptions
 IOException e = out.ioException();
 if (e != null) throw e;
 }
 out.close();
}
When you concatenate an object to a string, the object is converted
to a string by calling its toString() method. This
is what the Formatter class does by default as
well. Classes that want more precise control over their formatting
can implement the
java.util.Formattable
 interface in addition to implementing
toString().
We’ll see additional examples of formatting with
printf() when we cover the APIs for working with
numbers, dates, and times. See java.util.Formatter
for a complete list of available format specifiers and options.

Logging

 Simple terminal-based programs can
send their output and error messages to the console with
System.out.println() or System.out.print(
). Server programs that run unattended for long periods
need a different solution for output: the hardware they run on may
not have a display terminal attached, and, if it does, there is
unlikely to be anyone looking at it. Programs like this need
logging functionality in which output messages
are sent to a file for later analysis or through a network socket for
remote monitoring. Java 1.4 provides a logging API in the
java.util.logging package.
Typically, the application developer uses a

 Logger object
associated with the class or package of the application to generate
log messages at any of seven severity levels (see
java.util.logging.Level). These messages may
report errors and warnings or provide informational messages about
interesting events in the application’s life cycle.
They can include debugging information or even trace the execution of
important methods within the program.
The system administrator or end user of the application is
responsible for setting up a logging
configuration
file that specifies where log messages are directed (the console, a
file, a network socket, or a combination of these), how they are
formatted (as plain text or XML documents), and at what severity
threshold they are logged (log messages with a severity below the
specified threshold are discarded with very little overhead and
should not significantly impact the performance of the application).
The logging level severity threshold can be configured independently
so that Logger objects associated with different
classes or packages can be “tuned
in” or “tuned
out.” Because of this end-user configurability, you
should feel free to use logging output liberally in your program. In
normal operation, most log messages will be discarded efficiently and
automatically. During program development, or when diagnosing a
problem in a deployed application, however, the log messages can
prove very valuable.

 For
most applications, using the Logging API is quite simple. Obtain a
named Logger object whenever necessary by calling
the static Logger.getLogger() method, passing the
class or package name of the application as the logger name. Then,
use one of the many Logger instance methods to
generate log messages. The easiest methods to use have names that
correspond to severity levels, such as
severe()

 , warning(), and
info(). Here is some sample code:
import java.util.logging.*;

// Get a Logger object named after the current package
Logger logger = Logger.getLogger("com.davidflanagan.servers.pop");
logger.info("Starting server."); // Log an informational message
ServerSocket ss; // Do some stuff
try { ss = new ServerSocket(110); }
catch(Exception e) { // Log exceptions
 logger.log(Level.SEVERE, "Can't bind port 110", e); // Complex log message
 logger.warning("Exiting"); // Simple warning
 return;
}
logger.fine("got server socket"); // Fine-detail (low-severity) debug message

Pattern Matching with Regular Expressions

 In Java 1.4 and later, you can perform
textual pattern matching with regular expressions. Regular expression
support is provided by the Pattern and
Matcher
 classes of the
java.util.regex package, but the
String class defines a number of convenient
methods that allow you to use regular expressions even more simply.
Regular expressions use a fairly complex grammar to describe patterns
of characters. The Java implementation uses the same regex syntax as
the Perl 5 programming language. See the
java.util.regex.Pattern
 class in the reference section for a
summary of this syntax or consult a good Perl programming book for
further details. For a complete tutorial on Perl-style regular
expressions, see Mastering Regular Expressions
(O’Reilly).

 The
simplest String method that accepts a regular
expression argument is matches(); it returns
true if the string matches the pattern defined by
the specified regular expression:
// This string is a regular expression that describes the pattern of a typical
// sentence. In Perl-style regular expression syntax, it specifies
// a string that begins with a capital letter and ends with a period,
// a question mark, or an exclamation point.
String pattern = "^[A-Z].*[\\.?!]$";
String s = "Java is fun!";
s.matches(pattern); // The string matches the pattern, so this returns true.

 The matches() method
returns true only if the entire string is a match
for the specified pattern. Perl programmers should note that this
differs from Perl’s behavior, in which a match means
only that some portion of the string matches the pattern. To
determine if a string or any substring matches a pattern, simply
alter the regular expression to allow arbitrary characters before and
after the desired pattern. In the following code, the regular
expression characters .* match any number of
arbitrary characters:
s.matches(".*\\bJava\\b.*"); // True if s contains the word "Java" anywhere
 // The b specifies a word boundary

 If you are already familiar with
Perl’s regular expression syntax, you know that it
relies on the liberal use of backslashes to escape certain
characters. In Perl, regular expressions are language primitives and
their syntax is part of the language itself. In Java, however,
regular expressions are described using strings and are typically
embedded in programs using string literals. The syntax for Java
string literals also uses the backslash as an escape character, so to
include a single backslash in the regular expression, you must use
two backslashes. Thus, in Java programming, you will often see double
backslashes in regular expressions.

 In addition to matching, regular
expressions can be used for search-and-replace operations. The

 replaceFirst() and

 replaceAll()
methods search a string for the first substring or all substrings
that match a given pattern and replace the string or strings with the
specified replacement text, returning a new string that contains the
replacements. For example, you could use this code to ensure that the
word “Java” is correctly
capitalized in a string s:
s.replaceAll("(?i)\\bjava\\b",// Pattern: the word "java", case-insensitive
 "Java"); // The replacement string, correctly capitalized
The replacement string passed to replaceAll() and
replaceFirst() need not be a simple literal
string; it may also include references to text that matched
parenthesized subexpressions
within the pattern. These references take the form of a
dollar sign followed by the number
of the subexpression. (If you are not familiar with parenthesized
subexpressions within a regular expression, see
java.util.regex.Pattern in the reference section.)
For example, to search for words such as JavaBean, JavaScript,
JavaOS, and JavaVM (but not Java or Javanese) and to replace the Java
prefix with the letter J without altering the suffix, you could use
code such as:
s.replaceAll("\\bJava([A-Z]\\w+)", // The pattern
 "J$1"); // J followed by the suffix that matched the
 // subexpression in parentheses: [A-Z]\\w+

 The other
String method that uses regular expressions is
split(), which returns an array of the substrings
of a string, separated by delimiters that match the specified
pattern. To obtain an array of words in a string separated by any
number of spaces, tabs, or newlines, do this:
String sentence = "This is a\n\ttwo-line sentence";
String[] words = sentence.split("[\t\n\r]+");
An optional second argument specifies the maximum number of entries
in the returned array.

 The
matches(), replaceFirst(),
replaceAll(), and split()
methods are suitable for when you use a regular expression only once.
If you want to use a regular expression for multiple matches, you
should explicitly use the
Pattern
 and
Matcher
 classes of the
java.util.regex package. First, create a
Pattern object to represent your regular
expression with the static
Pattern.compile()
 method.
(Another reason to use the Pattern class
explicitly instead of the String convenience
methods is that Pattern.compile() allows you to
specify flags such as
Pattern.CASE_INSENSITIVE
 that globally alter the way
the pattern matching is done.) Note that the
compile() method can throw a
PatternSyntaxException

if you pass it an invalid regular expression string. (This exception
is also thrown by the various String convenience
methods.) The Pattern class defines
split() methods that are similar to the
String.split() methods. For all other matching,
however, you must create a Matcher object with the
matcher() method and specify the text to be
matched against:
import java.util.regex.*;

Pattern javaword = Pattern.compile("\\bJava(\\w*)", Pattern.CASE_INSENSITIVE);
Matcher m = javaword.matcher(sentence);
boolean match = m.matches(); // True if text matches pattern exactly
Once you have a Matcher object, you can compare
the string to the pattern in various ways. One of the more
sophisticated ways is to find all substrings that match the pattern:
String text = "Java is fun; JavaScript is funny.";
m.reset(text); // Start matching against a new string
// Loop to find all matches of the string and print details of each match
while(m.find()) {
 System.out.println("Found '" + m.group(0) + "' at position " + m.start(0));
 if (m.start(1) < m.end(1)) System.out.println("Suffix is " + m.group(1));
}
The Matcher
 class has been enhanced in several ways
in Java 5.0. The most important of
these is the ability to save the results of the most recent match in
a MatchResult object. The previous algorithm that
finds all matches in a string could be rewritten in Java 5.0 as
follows:
import java.util.regex.*;
import java.util.*;

public class FindAll {
 public static void main(String[] args) {
 Pattern pattern = Pattern.compile(args[0]);
 String text = args[1];

 List<MatchResult> results = findAll(pattern, text);
 for(MatchResult r : results) {
 System.out.printf("Found '%s' at (%d,%d)%n",
 r.group(), r.start(), r.end());
 }
 }

 public static List<MatchResult> findAll(Pattern pattern, CharSequence text)
 {
 List<MatchResult> results = new ArrayList<MatchResult>();
 Matcher m = pattern.matcher(text);
 while(m.find()) results.add(m.toMatchResult());
 return results;
 }
}

Tokenizing Text

 java.util.Scanner

 is a
general purpose text tokenizer, added in

 Java 5.0 to complement the
java.util.Formatter class described earlier in
this chapter. Scanner takes full advantage of Java
regular expressions and can take its input text from a string, file,
stream, or any object that implements the
java.lang.Readable

interface. Readable is also new in Java 5.0 and is
the opposite of the Appendable interface.
A Scanner can break its input text into tokens
separated by whitespace or any desired delimiter character or regular
expression. It implements the
Iterator<String> interface, which allows for
simple looping through the returned tokens.
Scanner also defines a variety of convenience
methods for parsing tokens as boolean, integer, or
floating-point values, with locale-sensitive number parsing. It has
skip()
 methods
for skipping input text that matches a specified pattern and also has
methods for searching ahead in the input text for text that matches a
specified pattern.
Here’s how you could use a
Scanner to break a String into
space-separated words:
public static List<String> getTokens(String line) {
 List<String> result = new ArrayList<String>();
 for(Scanner s = Scanner.create(line); s.hasNext();)
 result.add(s.next());
 return result;
}
Here’s how you might use a
Scanner to break a file into lines:
public static void printLines(File f) throws IOException {
 Scanner s = Scanner.create(f);
 // Use a regex to specify line terminators as the token delimiter
 s.useDelimiter("\r\n|\n|\r");
 while(s.hasNext()) System.out.println(s.next());
}
The following method uses Scanner to parse an
input line in the form x + y = z. It demonstrates
the ability of a Scanner to scan numbers. Note
that Scanner does not just parse Java-style
integer literals: it supports thousands separators and does so in a
locale-sensitive way—for example, it would parse the integer
1,234 for an American user and 1.234 for a French user. This code
also demonstrates the skip() method and shows that
a Scanner can scan text directly from an
InputStream.
public static boolean parseSum() {
 System.out.print("enter sum> "); // Prompt the user for input
 System.out.flush(); // Make sure prompt is visible immediately

 try {
 // Read and parse the user's input from the console
 Scanner s = Scanner.create(System.in);
 s.useDelimiter(""); // Don't require spaces between tokens
 int x = s.nextInt(); // Parse an integer
 s.skip("\\s*\\+\\s*"); // Skip optional space and literal +
 int y = s.nextInt(); // Parse another integer
 s.skip("\\s*=\\s*"); // Skip optional space and literal =
 int z = s.nextInt(); // Parse a third integer

 return x + y == z;
 }
 catch(InputMismatchException e) { // pattern does not match
 throw new IllegalArgumentException("syntax error");
 }
 catch(NoSuchElementException e) { // no more input available
 throw new IllegalArgumentException("syntax error");
 }
}

StringTokenizer

 A
number of other Java classes operate on strings and characters. One
notable class is java.util.StringTokenizer, which
you can use to break a string of text into its component words:
String s = "Now is the time";
java.util.StringTokenizer st = new java.util.StringTokenizer(s);
while(st.hasMoreTokens()) {
 System.out.println(st.nextToken());
}
You can even use this class to tokenize words that are delimited by
characters other than spaces:
String s = "a:b:c:d";
java.util.StringTokenizer st = new java.util.StringTokenizer(s, ":");

 java.io.StreamTokenizer is another tokenizing
class. It has a more complicated API and has more powerful features than
StringTokenizer.

Numbers and Math

 Java provides the
byte, short,
int, long,
float, and double
 primitive types for representing
numbers. The java.lang
package includes the corresponding
Byte, Short,
Integer, Long,
Float, and Double classes, each
of which is a subclass of Number. These classes
can be useful as object wrappers around their primitive types, and
they also define some useful constants:
// Integral range constants: Integer, Long, and Character also define these
Byte.MIN_VALUE // The smallest (most negative) byte value
Byte.MAX_VALUE // The largest byte value
Short.MIN_VALUE // The most negative short value
Short.MAX_VALUE // The largest short value

// Floating-point range constants: Double also defines these
Float.MIN_VALUE // Smallest (closest to zero) positive float value
Float.MAX_VALUE // Largest positive float value

// Other useful constants
Math.PI // 3.14159265358979323846
Math.E // 2.7182818284590452354
Mathematical Functions

 The

 Math class
defines a number of methods that provide trigonometric, logarithmic,
exponential, and rounding operations, among others. This class is
primarily useful with floating-point values. For the trigonometric
functions, angles are expressed in radians. The logarithm and
exponentiation functions are base e, not base
10. Here are some examples:
double d = Math.toRadians(27); // Convert 27 degrees to radians
d = Math.cos(d); // Take the cosine
d = Math.sqrt(d); // Take the square root
d = Math.log(d); // Take the natural logarithm
d = Math.exp(d); // Do the inverse: e to the power d
d = Math.pow(10, d); // Raise 10 to this power
d = Math.atan(d); // Compute the arc tangent
d = Math.toDegrees(d); // Convert back to degrees
double up = Math.ceil(d); // Round to ceiling
double down = Math.floor(d); // Round to floor
long nearest = Math.round(d); // Round to nearest
In
 Java 5.0, several new functions have been
added to the Math class, including the following:
double d = 27;
d = Math.cbrt(d); // cube root
d = Math.log10(d); // base-10 logarithm
d = Math.sinh(d); // hyperbolic sine. Also cosh() and tanh()
d = Math.hypot(3, 4); // Hypotenuse

Random Numbers

 The
Math class also defines a rudimentary method for
generating pseudo-random numbers, but the
java.util.Random
 class is more flexible. If you need
very random pseudo-random numbers, you can use
the java.security.SecureRandom
 class:

// A simple random number
double r = Math.random(); // Returns d such that: 0.0 <= d < 1.0

// Create a new Random object, seeding with the current time
java.util.Random generator = new java.util.Random(System.currentTimeMillis());
double d = generator.nextDouble(); // 0.0 <= d < 1.0
float f = generator.nextFloat(); // 0.0 <= f < 1.0
long l = generator.nextLong(); // Chosen from the entire range of long
int i = generator.nextInt(); // Chosen from the entire range of int
i = generator.nextInt(limit); // 0 <= i < limit (Java 1.2 and later)
boolean b = generator.nextBoolean(); // true or false (Java 1.2 and later)
d = generator.nextGaussian(); // Mean value: 0.0; std. deviation: 1.0
byte[] randomBytes = new byte[128];
generator.nextBytes(randomBytes); // Fill in array with random bytes

// For cryptographic strength random numbers, use the SecureRandom subclass
java.security.SecureRandom generator2 = new java.security.SecureRandom();
// Have the generator generate its own 16-byte seed; takes a *long* time
generator2.setSeed(generator2.generateSeed(16)); // Extra random 16-byte seed
// Then use SecureRandom like any other Random object
generator2.nextBytes(randomBytes); // Generate more random bytes

Big Numbers

 The
java.math package contains the
BigInteger and
 BigDecimal classes.
These classes allow you to work with arbitrary-size and
arbitrary-precision integers and floating-point values. For example:
import java.math.*;

// Compute the factorial of 1000
BigInteger total = BigInteger.valueOf(1);
for(int i = 2; i <= 1000; i++)
 total = total.multiply(BigInteger.valueOf(i));
System.out.println(total.toString());

 In Java 1.4,

 BigInteger has a method
to randomly generate large prime numbers, which is useful in many
cryptographic applications:
BigInteger prime =
 BigInteger.probablePrime(1024, // 1024 bits long
 generator2); // Source of randomness. From above.
The BigDecimal
 class has been overhauled in Java 5.0 and
is much more usable in this release. In addition to its utility for
representing very large or very precise floating point numbers, it is
also useful for financial calculations because it relies on a

 decimal representation
of fractions rather than a binary representation.
float and double values cannot
precisely represent a number as simple as 0.1, and this can cause
rounding errors that are often unacceptable when representing
monetary values. BigDecimal and its associated
MathContext

 and RoundingMode types
provide a solution. For example:
// Compute monthly interest payments on a loan
public static BigDecimal monthlyPayment(int amount, // amount of loan
 int years, // term in years
 double apr) // annual interest %
{
 // Convert the loan amount to a BigDecimal
 BigDecimal principal = new BigDecimal(amount);

 // Convert term of loan in years to number of monthly payments
 int payments=years*12;

 // Convert interest from annual percent to a monthly decimal
 BigDecimal interest = BigDecimal.valueOf(apr);
 interest = interest.divide(new BigDecimal(100)); // as fraction
 interest = interest.divide(new BigDecimal(12)); // monthly

 // The monthly payment computation
 BigDecimal x = interest.add(BigDecimal.ONE).pow(payments);
 BigDecimal y = principal.multiply(interest).multiply(x);
 BigDecimal monthly = y.divide(x.subtract(BigDecimal.ONE),
 MathContext.DECIMAL64); // note context

 // Convert to two decimal places
 monthly = monthly.setScale(2, RoundingMode.HALF_EVEN);

 return monthly;
}

Converting Numbers from and to Strings

 A Java program that operates on
numbers must get its input values from somewhere. Often, such a
program reads a textual representation of a number and must convert
it to a numeric representation. The various Number
subclasses define useful conversion methods:
String s = "-42";
byte b = Byte.parseByte(s); // s as a byte
short sh = Short.parseShort(s); // s as a short
int i = Integer.parseInt(s); // s as an int
long l = Long.parseLong(s); // s as a long
float f = Float.parseFloat(s); // s as a float (Java 1.2 and later)
f = Float.valueOf(s).floatValue(); // s as a float (prior to Java 1.2)
double d = Double.parseDouble(s); // s as a double (Java 1.2 and later)
d = Double.valueOf(s).doubleValue(); // s as a double (prior to Java 1.2)

// The integer conversion routines handle numbers in other bases
byte b = Byte.parseByte("1011", 2); // 1011 in binary is 11 in decimal
short sh = Short.parseShort("ff", 16); // ff in base 16 is 255 in decimal

// The valueOf() method can handle arbitrary bases between 2 and 36
int i = Integer.valueOf("egg", 17).intValue(); // Base 17!

// The decode() method handles octal, decimal, or hexadecimal, depending
// on the numeric prefix of the string
short sh = Short.decode("0377").byteValue(); // Leading 0 means base 8
int i = Integer.decode("0xff").shortValue(); // Leading 0x means base 16
long l = Long.decode("255").intValue(); // Other numbers mean base 10

// Integer class can convert numbers to strings
String decimal = Integer.toString(42);
String binary = Integer.toBinaryString(42);
String octal = Integer.toOctalString(42);
String hex = Integer.toHexString(42);
String base36 = Integer.toString(42, 36);

Formatting Numbers

 The
printf()

 and format()
methods of Java 5.0 described earlier in this chapter work well for
formatting numbers. The %d format specifier is for
formatting integers in decimal format:
// Format int, long and BigInteger to the string "1 10 100"
String s = String.format("%d %d %d", 1, 10L, BigInteger.TEN.pow(2));
// Add thousands separators
s = String.format("%,d", Integer.MAX_VALUE); // "2,147,483,647"
// Output value right-justified in a field 8 characters wide
s = String.format("%8d", 123); // " 123"
// Pad on the left with zeros to make 5 digits total
s = String.format("%05d", 123); // "00123"

 Floating-point numbers can be
formatted using %f, %e, or
%g format specifiers, which differ in whether and
when exponential notation is used:
double x = 1.234E9; // (1.234 billion)
// returns "1234000000.000000 1.234000e+09 1.234000e+09 1234.000000"
s = String.format("%f %e %g %g", x, x, x, x/1e6);
You’ll notice that the numbers above are all
formatted with six digits following the decimal point. This default
can be altered by specifying a precision in the
format string:
// display a BigDecimal with 2 significant digits
s = String.format("%.2f", new BigDecimal("1.234")); // "1.23"
Other flags can be applied to floating-point conversions as well. The
following code formats a column of numbers right-justified within a
field 10 characters wide. Each number has two digits following the
decimal place and includes thousands separators when necessary.
Negative values are formatted in parentheses, a common formatting
convention in accounting.
// A column of 4 numbers. %n is newline.
s = String.format("%(,10.2f%n%(,10.2f%n%(,10.2f%n%(,10.2f%n",
 BigDecimal.TEN, // 10.00
 BigDecimal.TEN.movePointRight(3), // 10,000.00
 BigDecimal.TEN.movePointLeft(3), // 0.01
 BigDecimal.TEN.negate()); // (10.00)
See java.util.Formatter in the reference section
for complete details on supported format specifiers and formatting
options.
Prior to Java 5.0, numbers can be formatted using the
java.text.NumberFormat
 class:
import java.text.*;

// Use NumberFormat to format and parse numbers for the current locale
NumberFormat nf = NumberFormat.getNumberInstance(); // Get a NumberFormat
System.out.println(nf.format(9876543.21)); // Format number for current locale
try {
 Number n = nf.parse("1.234.567,89"); // Parse strings according to locale
} catch (ParseException e) { /* Handle exception */ }

// Monetary values are sometimes formatted differently than other numbers
NumberFormat moneyFmt = NumberFormat.getCurrencyInstance();
System.out.println(moneyFmt.format(1234.56)); // Prints $1,234.56 in U.S.

Dates and Times

 Java allows
dates and times to be represented and
manipulated in three forms: as long values or as
java.util.Date or
java.util.Calendar

 objects.
Java 5.0 introduces the

 enumerated type
java.util.concurrent.TimeUnit. The values of this
type represent time granularities or units: seconds, milliseconds,
microseconds, and nanoseconds. They have useful convenience methods
but do not themselves represent a time value.
Milliseconds and Nanoseconds

 At the
lowest level, dates and times are
represented as a long

value that holds the positive or negative number of milliseconds
since midnight on January 1, 1970. This special date and time is
known as the

 epoch and is measured in Greenwich Mean
Time (GMT) or Universal Time (UTC). To query the current time in this
millisecond representation, use
System.currentTimeMillis()

long now = System.currentTimeMillis();
In Java 5.0 and later, you can use
System.nanoTime()

 to query time in
nanoseconds. This method returns a long number of
nanoseconds long. Unlike
currentTimeMillis(), the
nanoTime() does not return a time relative to any
defined epoch. nanoTime() is good for measuring
relative or elapsed time (as long as the elapsed time is not more
than 292 years) but is not suitable for absolute time:
long start = System.nanoTime();
doSomething();
long end = System.nanoTime();
long elapsedNanoSeconds = end - start;

The Date Class

 java.util.Date
 is an
object wrapper around a long that holds a number
of milliseconds since the epoch. Using a Date
object instead of a long allows simple conversion
to a nonlocalized string with the
toString
 method.
Date objects can be compared for equality with the
equals()
 method and
they can be compared for order with the
compareTo()

 method or the
before() and after() methods.
The no-argument version of the Date() constructor
creates a Date that represents the current time.
You can also pass a long number of milliseconds to
create a Date that represents some other time.
getTime()
 returns the millisecond representation of the
Date. Date is a mutable class,
so you can also pass a number of milliseconds to setTime(
)
 .

 Date has a number of methods for querying and
setting the year, month, day, hour, minute, and second. All of these
methods have been deprecated, however, in favor of the
Calendar class, described next.

The Calendar Class

The java.util.Calendar

class is a properly localized version of Date. It
is simply a wrapper around a long number of
milliseconds but can represent that instant in time according to the
calendar of the current locale (usually a Gregorian calendar) and the
time zone of the current locale. Furthermore, it has methods for
querying, setting, and doing arithmetic on the various fields of the
date and time.
The code below shows common uses of the Calendar
class. Note that the set(),
get(), and add() methods all
take an initial argument that specifies what field of the date or
time is being set, queried, or added to. Fields such as year, day of
month, day of week, hour, minute, and second are defined by integer
constants in the class. Other integer constants define values for the
months and weekdays of the Gregorian calendar. The month constant
UNDECIMBER represents a 13th month used in
lunar
calendars.
// Get a Calendar for current locale and time zone
Calendar cal = Calendar.getInstance();

// Figure out what day of the year today is
cal.setTimeInMillis(System.currentTimeMillis()); // Set to the current time
int dayOfYear = cal.get(Calendar.DAY_OF_YEAR); // What day of the year is it?

// What day of the week does the leap day in the year 2008 occur on?
cal.set(2008, Calendar.FEBRUARY, 29); // Set year, month, day fields
int dayOfWeek = cal.get(Calendar.DAY_OF_WEEK); // Query a different field

// What day of the month is the 3rd Thursday of May, 2005?
cal.set(Calendar.YEAR, 2005); // Set the year
cal.set(Calendar.MONTH, Calendar.MAY); // Set the month
cal.set(Calendar.DAY_OF_WEEK,Calendar.THURSDAY); // Set the day of week
cal.set(Calendar.DAY_OF_WEEK_IN_MONTH, 3); // Set the week
int dayOfMonth = cal.get(Calendar.DAY_OF_MONTH); // Query the day in month

// Get a Date object that represents three months from now
cal.setTimeInMillis(System.currentTimeMillis()); // Current time
cal.add(Calendar.MONTH, 3); // Add 3 months
Date expiration = cal.getTime(); // Retrieve result as a Date
long millis = cal.getTimeInMillis(); // or get it as a long

Formatting Dates and Times

 The
toString()
 method of
Date produces a textual representation of a date
and time but does no localization and allows no customization of
which fields (day, month and year or hours and minutes, for example)
are to be displayed. The toString() method should
be used only to produce a machine-readable timestamp, not a
human-readable string.
Like numbers, dates and times can be converted to strings using the
String.format(
)

 method and the related
java.util.Formatter

 class
of Java 5.0. Format strings for displaying dates and times are all
two-character sequences that begin with the letter t. The second
letter of each sequence specifies the field or set of fields of the
date or time to display. For example %tR displays
the hours and minutes fields using 24-hour time, and
%tD displays the month, day, and year fields
separated by slashes. String.format() can format
a date or time specified as a long, a
Date, or a Calendar:
// current hours and minutes
long now = System.currentTimeMillis();
String s = String.format("%tR", now); // "15:12"

// Current month/day/year
Date d = new Date(now);
s = String.format("%tD", d); // "07/13/04"

// Hours and minutes using 12-hour clock
Calendar c = Calendar.getInstance();
c.setTime(d);
s = String.format("%tl:%tM %tp", now, d, c); // "3:12 pm"

 Prior to Java 5.0 and its
Formatter class, you can format dates and times
using the java.text.DateFormat class, which
automatically handles locale-specific conventions for date and time
formatting. DateFormat even works correctly in
locales that use a calendar other than the common era (Gregorian)
calendar in use throughout much of the world:
import java.util.Date;
import java.text.*;

// Display today's date using a default format for the current locale
DateFormat defaultDate = DateFormat.getDateInstance();
System.out.println(defaultDate.format(new Date()));

// Display the current time using a short time format for the current locale
DateFormat shortTime = DateFormat.getTimeInstance(DateFormat.SHORT);
System.out.println(shortTime.format(new Date()));

// Display date and time using a long format for both
DateFormat longTimestamp =
 DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL);
System.out.println(longTimestamp.format(new Date()));

// Use SimpleDateFormat to define your own formatting template
// See java.text.SimpleDateFormat for the template syntax
DateFormat myformat = new SimpleDateFormat("yyyy.MM.dd");
System.out.println(myformat.format(new Date()));
try { // DateFormat can parse dates too
 Date leapday = myformat.parse("2000.02.29");
}
catch (ParseException e) { /* Handle parsing exception */ }

Arrays

 The
java.lang.System class defines an
arraycopy()

 method
that is useful for copying specified elements in one array to a
specified position in a second array. The second array must be the
same type as the first, and it can even be the same array:
char[] text = "Now is the time".toCharArray();
char[] copy = new char[100];
// Copy 10 characters from element 4 of text into copy, starting at copy[0]
System.arraycopy(text, 4, copy, 0, 10);

// Move some of the text to later elements, making room for insertions
System.arraycopy(copy, 3, copy, 6, 7);

 In Java 1.2 and later, the
java.util.Arrays class defines useful
array-manipulation methods, including methods for sorting and
searching arrays:
import java.util.Arrays;

int[] intarray = new int[] { 10, 5, 7, -3 }; // An array of integers
Arrays.sort(intarray); // Sort it in place
int pos = Arrays.binarySearch(intarray, 7); // Value 7 is found at index 2
pos = Arrays.binarySearch(intarray, 12); // Not found: negative return value

// Arrays of objects can be sorted and searched too
String[] strarray = new String[] { "now", "is", "the", "time" };
Arrays.sort(strarray); // sorted to: { "is", "now", "the", "time" }

// Arrays.equals() compares all elements of two arrays
String[] clone = (String[]) strarray.clone();
boolean b1 = Arrays.equals(strarray, clone); // Yes, they're equal

// Arrays.fill() initializes array elements
byte[] data = new byte[100]; // An empty array; elements set to 0
Arrays.fill(data, (byte) -1); // Set them all to -1
Arrays.fill(data, 5, 10, (byte) -2); // Set elements 5, 6, 7, 8, 9 to -2

 Arrays can be treated and manipulated as
objects in Java. Given an arbitrary object o, you
can use code such as the following to find out if the object is an
array and, if so, what type of array it is:
Class type = o.getClass();
if (type.isArray()) {
 Class elementType = type.getComponentType();
}

Collections

 The Java
Collections Framework is a set of
important utility classes and interfaces in the

 java.util package
for working with collections of objects. The Collections Framework
defines two fundamental types of collections. A
Collection is a group of objects while
a
 Map is a set of mappings, or associations, between
objects. A
Set is a type of Collection
with no duplicates, and a

 List
is a Collection in which the elements are ordered.
SortedSet

 and SortedMap are
specialized sets and maps that maintain their elements in a sorted
order.
Collection

 , Set,
List, Map,
SortedSet, and SortedMap are
all interfaces, but the java.util package also
defines various concrete implementations, such as lists based on
arrays and linked lists, and maps and sets based on hashtables or
binary trees. Other important interfaces are
Iterator

 and ListIterator,
which allow you to loop through the objects in a collection. The
Collections Framework was added in Java 1.2, but prior to that
release you can use Vector and
Hashtable, which are approximately the same as
ArrayList and HashMap.

 In Java 1.4, the Collections API
added the
RandomAccess
 marker interface, which is
implemented by List implementations that support
efficient random access (i.e., it is implemented by
ArrayList and Vector but not by
LinkedList). Java 1.4 also introduced
LinkedHashMap

 and LinkedHashSet,
which are

 hashtable-based
maps and sets that preserve the insertion order of elements. Finally,
IdentityHashMap is a hashtable-based
Map implementation that uses the
== operator to compare key objects rather than
using the equals() method to compare them.
The

 Collections
Framework has been overhauled in Java 5.0 to use generics (see Chapter 4). Java 5.0 also adds
EnumSet

 and EnumMap classes
that are specialized for working with enumerated values (see Chapter 4) and the
java.lang.Iterable
interface

used by the new for/in
 looping statement. Finally, Java
5.0 adds the
Queue

interface. Most of the interesting Queue
implementations are BlockingQueue implementations
in
java.util.concurrent

 .
The Collection Interface

 Collection<E>
 is a parameterized interface that
represents a generic group of objects of type E.
The group may or may not allow duplicate elements and may or may not
impose an ordering on the elements. Methods are defined for adding
and removing objects from the group, testing an object for membership
in the group, and iterating through all elements in the group.
Additional methods return the elements of the group as an array and
return the size of the collection.
The Java Collections Framework does not provide any implementations
of Collection, but this interface is still very
important because it defines the features common to all
Set

 , List, and
Queue implementations. The following code
illustrates the operations you can perform on
Collection objects:
// Create some collections to work with.
Collection<String> c = new HashSet<String>(); // An empty set
// We'll see these utility methods later
Collection<String> d = Arrays.asList("one", "two"); // immutable
Collection<String> e = Collections.singleton("three"); // immutable

// Add elements to a collection. These methods return true if the collection
// changes, which is useful with Sets that don't allow duplicates.
c.add("zero"); // Add a single element
c.addAll(d); // Add a collection of elements

// Copy a collection: most implementations have a copy constructor
Collection<String> copy = new ArrayList<String>(c);

// Remove elements from a collection.
// All but clear() return true if the collection changes.
c.remove("zero"); // Remove a single element
c.removeAll(e); // Remove a collection of elements
c.retainAll(d); // Remove all elements that are not in e
c.clear(); // Remove all elements from the collection

// Querying collection size
boolean b = c.isEmpty(); // Collection is now empty
int s = c.size(); // Collection size is now 0.

// Restore collection from the copy we made
c.addAll(copy);

// Test membership in the collection. Membership is based on the equals()
// method, not the == operator.
b = c.contains("zero"); // true
b = c.containsAll(d); // true

// Iterate through collection elements with a while loop.
// Some implementations (such as lists) guarantee an order of iteration
// Others make no guarantees.
Iterator<String> iterator = c.iterator();
while(iterator.hasNext()) System.out.println(iterator.next());

// Iteration with a for loop
for(Iterator<String> i = c.iterator(); i.hasNext();)
 System.out.println(i.next());

// Java 5.0 iteration using a for/in loop
for(String word : c) System.out.println(word);

// Most Collection implementations have a useful toString() method
System.out.println(c); // As an alternative to the iterations above

// Obtain an array of collection elements. If the iterator guarantees
// an order, this array has the same order. The array is a copy, not a
// reference to an internal data structure.
Object[] elements = c.toArray();

// If we want the elements in a String[], we must pass one in
String[] strings = c.toArray(new String[c.size()]);

// Or we can pass an empty String[] just to specify the type and
// the toArray() method will allocate an array for us
strings = c.toArray(new String[0]);
Remember that you can use any of the methods shown above with any
Set, List, or
Queue. These subinterfaces may impose membership
restrictions or ordering constraints on the elements of the
collection but still provide the same basic methods. Methods such as
add()

 , remove(),
clear(), and retainAll() that
alter the collection are optional, and read-only implementations may
throw UnsupportedOperationException.

 Collection, Map, and their
subinterfaces do not extend the
Cloneable

 or Serializable
interfaces. All of the

 collection and map
implementation classes provided in the Java Collections Framework,
however, do implement these interfaces.
Some collection implementations place restrictions on the elements
that they can contain. An implementation might prohibit
null
 as an
element, for example. And
EnumSet

restricts membership to the values of a specified enumerated type.
Attempting to add a prohibited element to a collection always throws
an unchecked exception such as
NullPointerException or
ClassCastException. Checking whether a collection
contains a prohibited element may also throw such an exception, or it
may simply return false.

The Set Interface

 A
set

is a collection of objects that does not allow duplicates: it may not
contain two references to the same object, two references to
null, or references to two objects
a and b such that
a.equals(b). Most general-purpose
Set implementations impose no ordering on the
elements of the set, but ordered sets are not prohibited (see
SortedSet and LinkedHashSet).
Sets are further distinguished from ordered collections like lists by
the general expectation that they have an efficient
contains()
 method
that runs in constant or logarithmic time.

 Set defines no additional methods beyond those
defined by Collection but places additional
restrictions on those methods. The add(
)

 and
addAll() methods of a Set are
required to enforce the no-duplicates rules: they may not add an
element to the Set if the set already contains
that element. Recall that the add() and
addAll() methods defined by the
Collection
 interface return true if
the call resulted in a change to the collection and
false if it did not. This return value is relevant
for Set objects because the no-duplicates
restriction means that adding an element does not always result in a
change to the set.

 Table 5-2 lists the implementations of the
Set interface and summarizes their internal
representation, ordering characteristics, member restrictions, and
the performance of the basic add(),
remove()
 , and
contains() operations as well as iteration
performance. You can read more about each class in the reference
section. Note that CopyOnWriteArraySet is in the
java.util.concurrent

package; all the other implementations are part of
java.util. Also note that
java.util.BitSet is not a Set
implementation. This legacy class is useful as a compact and
efficient list of boolean values but is not part
of the Java Collections
Framework.

Table 5-2. Set Implementations
	
 Class

 	
 Internal represen-tation

 	
 Element order

 	
 Member restric-tions

 	
 Basic opera-tions

 	
 Iteration perfor-mance

 	
 Notes

	

 HashSet

 	
 hashtable

 	
 none

 	
 none

 	
 O(1)

 	
 O(capacity)

 	
 Best general-purpose implementation.

	

 LinkedHashSet

 	
 linked hashtable

 	
 insertion order

 	
 none

 	
 O(1)

 	
 O(n)

 	
 Preserves insertion order.

	

 EnumSet

 	
 bit fields

 	
 enum declaration

 	
 enum values

 	
 O(1)

 	
 O(n)

 	
 Holds non-null enum values only.

	

 TreeSet

 	
 red-black tree

 	
 sorted ascending

 	
 comparable

 	
 O(log(n))

 	
 O(n)

 	

 Comparable elements or
Comparator.

	
 CopyOnWriteArraySet

 	
 array

 	
 insertion order

 	
 none

 	
 O(n)

 	
 O(n)

 	
 Threadsafe without synchronized methods.

The TreeSet implementation uses a

 red-black tree data structure to
maintain a set that is iterated in ascending order according to the
natural ordering of Comparable objects or
according to an ordering specified by a Comparator
object. TreeSet actually implements the
SortedSet

interface, which is a subinterface of Set.

 SortedSet
 offers several interesting methods
that take advantage of its sorted nature. The following code
illustrates:
public static void testSortedSet(String[] args) {
 // Create a SortedSet
 SortedSet<String> s = new TreeSet<String>(Arrays.asList(args));

 // Iterate set: elements are automatically sorted
 for(String word : s) System.out.println(word);

 // Special elements
 String first = s.first(); // First element
 String last = s.last(); // Last element
 // Subrange views of the set
 SortedSet<String> tail = s.tailSet(first+'\0'); // all elements but first
 SortedSet<String> head = s.headSet(last); // all elements but last
 SortedSet<String> middle = s.subSet(first+'\0', // all but ends
 last);
}

The List Interface

 A List is an
ordered collection of objects. Each element of a list has a position
in the list, and the List interface defines
methods to query or set the element at a particular position, or
index
 .
In this respect a List is like an array whose size
changes as needed to accommodate the number of elements it contains.
Unlike sets, lists allow duplicate elements.
In addition to its index-based get(
)

 and
set() methods, the List
interface defines methods to add or remove an element at a particular
index and also defines methods to return the index of the first or
last occurrence of a particular value in the list. The add(
)

 and
remove() methods inherited from
Collection are defined to append to the list and
to remove the first occurrence of the specified value from the list.
The inherited addAll()
 appends
all elements in the specified collection to the end of the list, and
another version inserts the elements at a specified index. The
retainAll()

 and removeAll()
methods behave as they do for any Collection,
retaining or removing multiple occurrences of the same value, if
needed.
The List interface does not define methods that
operate on a range of list indexes. Instead it defines a single
subList method that returns a
List object that represents just the specified
range of the original list. The sublist is backed by the parent list,
and any changes made to the sublist are immediately visible in the
parent list. Examples of subList() and the other
basic List manipulation methods are below.
// Create lists to work with
List<String> l = new ArrayList<String>(Arrays.asList(args));
List<String> words = Arrays.asList("hello", "world");

// Querying and setting elements by index
String first = l.get(0); // First element of list
String last = l.get(l.size()-1); // Last element of list
l.set(0, last); // The last shall be first

// Adding and inserting elements. add() can append or insert
l.add(first); // Append the first word at end of list
l.add(0, first); // Insert first word at the start of the list again
l.addAll(words); // Append a collection at the end of the list
l.addAll(1, words); // Insert collection after first word

// Sublists: backed by the original list
List<String> sub = l.subList(1,3); // second and third elements
sub.set(0, "hi"); // modifies 2nd element of l
// Sublists can restrict operations to a subrange of backing list
String s = Collections.min(l.subList(0,4));
Collections.sort(l.subList(0,4));
// Independent copies of a sublist don't affect the parent list.
List<String> subcopy = new ArrayList<String>(l.subList(1,3));

// Searching lists
int p = l.indexOf(last); // Where does the last word appear?
p = l.lastIndexOf(last); // Search backward

// Print the index of all occurrences of last in l. Note subList()
int n = l.size();
p = 0;
do {
 // Get a view of the list that includes only the elements we
 // haven't searched yet.
 List<String> list = l.subList(p, n);
 int q = list.indexOf(last);
 if (q == -1) break;
 System.out.printf("Found '%s' at index %d%n", last, p+q);
 p += q+1;
} while(p < n);

// Removing elements from a list
l.remove(last); // Remove first occurrence of the element
l.remove(0); // Remove element at specified index
l.subList(0,2).clear(); // Remove a range of elements using subList()
l.retainAll(words); // Remove all but elements in words
l.removeAll(words); // Remove all occurrences of elements in words
l.clear(); // Remove everything

 A
general expectation of List implementations is
that they can be efficiently iterated, typically in time proportional
to the size of the list. Lists do not all provide efficient
random-access to the elements at any index, however.
Sequential-access lists, such as the LinkedList
class, provide efficient insertion and deletion operations at the
expense of random access performance. In Java 1.4 and later,
implementations that provide efficient random access implement the
RandomAccess marker interface, and you can test
for this interface with instanceof if you need to
ensure efficient list manipulations:
List<?> l = ...; // Arbitrary list we're passed to manipulate
// Ensure we can do efficient random access. If not, use a copy constructor
// to make a random-access copy of the list before manipulating it.
if (!(l instanceof RandomAccess)) l = new ArrayList<?>(l);
The Iterator returned by the
iterator()
 method
of a List iterates the list elements in the order
that they occur in the list. List implements
Iterable, and lists can be iterated with a
for/in loop just as any other collection can.
To iterate just a portion of a list, you can use the
subList() method to create a sublist view:
List<String> words = ...; // Get a list to iterate

// Iterate just all elements of the list but the first
for(String word : words.subList(1, words.size()))
 System.out.println(word);
In addition to normal iteration, lists also provide enhanced
bidirectional iteration using a ListIterator
object returned by the
listIterator()

 method. To iterate backward through a
List, for example, start with a
ListIterator with its cursor positioned after the
end of the list:
ListIterator<String> li = words.listIterator(words.size());
while(li.hasPrevious()) {
 System.out.println(li.previous());
}

 Table 5-3 summarizes the five general-purpose
List
 implementations in the Java
platform. Vector and Stack are
legacy implementations left over from Java 1.0.
CopyOnWriteArrayList is a new in Java 5.0 and is
part of the
java.util.concurrent

package.
Table 5-3. List implementations
	
 Class

 	
 Representation

 	
 Random access

 	
 Notes

	

 ArrayList

 	
 array

 	
 yes

 	
 Best all-around implementation.

	

 LinkedList

 	
 double-linked list

 	
 no

 	
 Efficient insertion and deletion.

	

 CopyOnWriteArrayList

 	
 array

 	
 yes

 	
 Threadsafe; fast traversal, slow modification.

	

 Vector

 	
 array

 	
 yes

 	
 Legacy class; synchronized method.

	

 Stack

 	
 array

 	
 yes

 	
 Extends Vector; adds push(),
pop(), peek().

The Map Interface

 A
map

is a set of key
 objects and a mapping from each
member of that set to a value object. The
Map interface defines an API for defining and
querying mappings. Map is part of the Java
Collections Framework, but it does not extend the
Collection interface, so a Map
is a little-c collection, not a big-C Collection.
Map is a parameterized
type with two type variables. Type variable K
represents the type of keys held by the map, and type variable
V represents the type of the values that the keys
are mapped to. A mapping from String keys to
Integer values, for example, can be represented
with a Map<String,Integer>.
The most important Map methods are
put()
 , which
defines a key/value pair in the map, get(
)
 , which queries the value associated
with a specified key, and remove(
)
 , which removes the specified key
and its associated value from the map. The general performance
expectation for Map implementations is that these
three basic methods are quite efficient: they should usually run in
constant time and certainly no worse than in logarithmic time.

 An important feature of
Map is its support for
“collection views.” Although a
Map is not a Collection, its
keys can be viewed as a Set, its values can be
viewed as a Collection, and its mappings can be
viewed as a Set of
Map.Entry
 objects. (Map.Entry is
a nested interface defined within Map: it simply
represents a single key/value pair.)
The sample code below shows the get(),
put(), remove(), and other
methods of a Map and also demonstrates some common
uses of the collection views of a Map:
// Create maps to work with
Map<String,Integer> m = new HashMap<String,Integer>(); // New, empty map
// Immutable Map containing a single key-value pair
Map<String,Integer> singleton = Collections.singletonMap("testing", -1);
// Note this rarely-used syntax to explicitly specify the parameter
// types of the generic emptyMap() method. The returned map is immutable
Map<String,Integer> empty = Collections.<String,Integer>emptyMap();

// Populate the map using the put() method to define mappings from array
// elements to the index at which each element appears
String[] words = { "this", "is", "a", "test" };
for(int i = 0; i < words.length; i++)
 m.put(words[i], i); // Note autoboxing of int to Integer

// Each key must map to a single value. But keys may map to the same value
for(int i = 0; i < words.length; i++)
 m.put(words[i].toUpperCase(), i);

// The putAll() method copies mappings from another Map
m.putAll(singleton);

// Query the mappings with the get() method
for(int i = 0; i < words.length; i++)
 if (m.get(words[i]) != i) throw new AssertionError();

// Key and value membership testing
m.containsKey(words[0]); // true
m.containsValue(words.length); // false

// Map keys, values, and entries can be viewed as collections
Set<String> keys = m.keySet();
Collection<Integer> values = m.values();
Set<Map.Entry<String,Integer>> entries = m.entrySet();

// The Map and its collection views typically have useful toString() methods
System.out.printf("Map: %s%nKeys: %s%nValues: %s%nEntries: %s%n",
 m, keys, values, entries);

// These collections can be iterated.
// Most maps have an undefined iteration order (but see SortedMap)
for(String key : m.keySet()) System.out.println(key);
for(Integer value: m.values()) System.out.println(value);

// The Map.Entry<K,V> type represents a single key/value pair in a map
for(Map.Entry<String,Integer> pair : m.entrySet()) {
 // Print out mappings
 System.out.printf("'%s' ==> %d%n", pair.getKey(), pair.getValue());
 // And increment the value of each Entry
 pair.setValue(pair.getValue() + 1);
}

// Removing mappings
m.put("testing", null); // Mapping to null can "erase" a mapping:
m.get("testing"); // Returns null
m.containsKey("testing"); // Returns true: mapping still exists
m.remove("testing"); // Deletes the mapping altogether
m.get("testing"); // Still returns null
m.containsKey("testing"); // Now returns false.

// Deletions may also be made via the collection views of a map.

// Additions to the map may not be made this way, however.
m.keySet().remove(words[0]); // Same as m.remove(words[0]);
m.values().remove(2); // Remove one mapping to the value 2
m.values().removeAll(Collections.singleton(4)); // Remove all mappings to 4
m.values().retainAll(Arrays.asList(2, 3)); // Keep only mappings to 2 & 3

// Deletions can also be done via iterators
Iterator<Map.Entry<String,Integer>> iter = m.entrySet().iterator();
while(iter.hasNext()) {
 Map.Entry<String,Integer> e = iter.next();
 if (e.getValue() == 2) iter.remove();
}

// Find values that appear in both of two maps. In general, addAll() and
// retainAll() with
keySet() and values() allow union and intersection
Set<Integer> v = new HashSet<Integer>(m.values());
v.retainAll(singleton.values());

// Miscellaneous methods
m.clear(); // Deletes all mappings
m.size(); // Returns number of mappings: currently 0
m.isEmpty(); // Returns true
m.equals(empty); // true: Maps implementations override equals
The
Map

interface includes a variety of general-purpose and special-purpose
implementations, which are summarized in Table 5-4. As always, complete details are in the
reference section. All classes in Table 5-4 are in
the java.util package except
ConcurrentHashMap, which is part of
java.util.concurrent
 .
Table 5-4. Map implementations
	
 Class

 	
 Representation

 	
 Since

 	
 null keys

 	
 null values

 	
 Notes

	

 HashMap

 	
 hashtable

 	
 1.2

 	
 yes

 	
 yes

 	
 General-purpose implementation.

	

 ConcurrentHashMap

 	
 hashtable

 	
 5.0

 	
 no

 	
 no

 	
 General-purpose threadsafe implementation; see
ConcurrentMap interface.

	

 EnumMap

 	
 array

 	
 5.0

 	
 no

 	
 yes

 	
 Keys are instances of an enum.

	

 LinkedHashMap

 	
 hashtable plus list

 	
 1.4

 	
 yes

 	
 yes

 	
 Preserves insertion or access order.

	

 TreeMap

 	
 red-black tree

 	
 1.2

 	
 no

 	
 yes

 	
 Sorts by key value. Operations are O(log(n)). See
SortedMap.

	

 IdentityHashMap

 	
 hashtable

 	
 1.4

 	
 yes

 	
 yes

 	
 Compares with = = instead of equals(
).

	

 WeakHashMap

 	
 hashtable

 	
 1.2

 	
 yes

 	
 yes

 	
 Doesn’t prevent garbage collection of keys.

	

 Hashtable

 	
 hashtable

 	
 1.0

 	
 no

 	
 no

 	
 Legacy class; synchronized methods.

	

 Properties

 	
 hashtable

 	
 1.0

 	
 no

 	
 no

 	
 Extends Hashtable with String
methods.

The ConcurrentHashMap
 class of the
java.util.concurrent package implements the
ConcurrentMap
 interface of the same package.
ConcurrentMap extends Map and
defines some additional atomic operations that are important in
multithreaded programming. For example, the
putIfAbsent()
 method is like put(
) but adds the key/value pair to the map only if the key is
not already mapped.

 TreeMap implements the
SortedMap
 interface, which extends
Map to add methods that take advantage of the
sorted nature of the map. SortedMap is quite
similar to the SortedSet interface. The
firstKey()

 and
lastKey() methods return the first and last keys
in the keySet()
 .
And headMap()

 , tailMap(), and
subMap() return a restricted range of the original
map.

The Queue and BlockingQueue Interfaces

A queue

is an ordered collection of elements with methods for extracting
elements, in order, from the head of the queue.
Queue implementations are commonly based
on insertion order as in first-in, first-out (FIFO) queues
or last in, first-out queues (LIFO queues
are also known as stacks). Other orderings are possible,
however: a priority
queue
 orders its elements according to an
external Comparator object, or according to the
natural ordering of Comparable elements. Unlike a
Set, Queue implementations
typically allow duplicate elements. Unlike List,
the Queue interface does not define methods for
manipulating queue elements at arbitrary positions. Only the element
at the head of the queue is available for examination. It is common
for Queue implementations to have a fixed
capacity: when a queue is full, it is not possible to add more
elements. Similarly, when a queue is empty, it is not possible to
remove any more elements. Because full and empty conditions are a
normal part of many queue-based algorithms, the
Queue interface defines methods that signal these
conditions with return values rather than by throwing exceptions.
Specifically, the peek()

 and poll()
methods return null to indicate that the queue is
empty. For this reason, most Queue implementations
do not allow null elements.

 A
blocking queue
 is a type
of queue that defines blocking put() and
take() methods. The put(
)
 method adds an element to the
queue, waiting, if necessary, until there is space in the queue for
the element. And the take() method removes an
element from the head of the queue, waiting, if necessary, until
there is an element to remove. Blocking queues are an important part
of many multithreaded algorithms, and the
BlockingQueue interface (which extends
Queue) is defined as part of the
java.util.concurrent
 package. Queue,
BlockingQueue, and their implementations are new
in Java 5.0. See Section 5.7.7 later in this chapter for a
list of BlockingQueue implementations.
Queues are not nearly as commonly used as sets, lists, and maps,
except perhaps in certain multithreaded programming styles. In lieu
of example code here, we’ll try to clarify the
confusing array of
queue insertion and removal
operations:
	Adding elements to queues

	
 add()

	This Collection method simply adds an element in
the normal way. In bounded queues, this method may throw an exception
if the queue is full.

	
 offer()

	This Queue method is like add(
) but returns false instead of throwing
an exception if the element cannot be added because a bounded queue
is full.

 BlockingQueue defines a timeout version of
offer() that waits up to a specified amount of
time for space to become available in a full queue. Like the basic
version of the method, it returns true if the
element was inserted and false otherwise.

	
 put()

	This BlockingQueue method blocks: if the element
cannot be inserted because the queue is full, put(
) waits until some other thread removes an element from the
queue, and space becomes available for the new element.

	Removing elements from queues

	
 remove()

	In addition to the Collection.remove() method,
which removes a specified element from the queue, the
Queue interface defines a no-argument version of
remove() that removes and returns the element at
the head of the queue. If the queue is empty, this method throws a
NoSuchElementException.

	
 poll()

	This Queue method removes and returns the element
at the head of the queue, like remove() does but
returns null if the queue is empty instead of
throwing an exception.

 BlockingQueue defines a timeout version of
poll() that waits up to a specified amount of time
for an element to be added to an empty queue.

	
 take()

	This BlockingQueue method removes and returns the
element at the head of the queue. If the queue is empty, it blocks
until some other thread adds an element to the queue.

	
 drainTo()

	This BlockingQueue method removes all available
elements from the queue and adds them to a specified
Collection. It does not block to wait for elements
to be added to the queue. A variant of the method accepts a maximum
number of elements to drain.

	Querying the element at the head, without removing it from the queue

	
 element()

	This Queue method returns the element at the head
of the queue but does not remove that element from the queue. If the
queue is empty, it throws NoSuchElementException.

	
 peek()

	This Queue method is like
element() but returns null if
the queue is empty.

The LinkedList

class has been retrofitted, in Java 5.0, to implement
Queue. It provides unbounded FIFO (first in, first
out) ordering, and insertion and removal operations require constant
time. LinkedList allows
null

elements, although their use is discouraged when the list is being
used as a queue.
The only other Queue implementation in the
java.util package is
PriorityQueue
 , which orders its elements according to a
Comparator or orders Comparable
elements according to the order defined by their compareTo(
) methods. The head of a PriorityQueue
is always the smallest element according to the defined ordering.
The java.util.concurrent package contains a number
of BlockingQueue implementations; they are
described later in the chapter. This package also contains
ConcurrentLinkedQueue
 , an efficient threadsafe
Queue implementation that does not suffer the
overhead of synchronized
methods.

Collection Wrappers

 The
java.util.Collections class is home to quite a few
static utility methods designed for use with collections. One
important group of these methods are the collection
wrapper
 methods: they return a
special-purpose collection wrapped around a collection you specify.
The purpose of the wrapper collection is to wrap additional
functionality around a collection that does not provide it itself.
Wrappers exist to provide thread-safety, write-protection and runtime
type checking. Wrapper collections are always backed
by the original collection, which means that the methods
of the wrapper simply dispatch to the equivalent methods of the
wrapped collection. This means that changes made to the collection
through the wrapper are visible through the wrapped collection and
vice versa.
The first set of wrapper methods provides threadsafe wrappers around
collections. Except for the legacy classes Vector
and Hashtable, the collection implementations in
java.util do not have
synchronized methods and are not protected against
concurrent access by multiple threads. If you need
threadsafe collections, create them
with code like this:
List<String> list = Collections.synchronizedList(new ArrayList<String>());
Set<Integer> set = Collections.synchronizedSet(new HashSet<Integer>());
Map<String,Integer> map =
 Collections.synchronizedMap(new HashMap<String,Integer>());
A second set of wrapper methods provides collection objects through
which the underlying collection cannot be modified. They return a
read-only view of a collection: any
attempt to change the content of the collection results in an
UnsupportedOperationException. These wrappers are
useful when you must pass a collection to a method that must not be
allowed to modify or mutate the content of the collection in any way:
List<Integer> primes = new ArrayList<Integer>();
List<Integer> readonly = Collections.unmodifiableList(primes);
// We can modify the list through primes
primes.addAll(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19));
// But we can't modify through the read-only wrapper
readonly.add(23); // UnsupportedOperationException
The final set of wrapper methods provides runtime type checking of
any values added to the collection. They were added in
Java 5.0 to complement the
compile-time type safety provided by generics. These wrappers are
helpful when working with legacy code that has not been converted to
use generics. If you have a
SortedSet<String>, for example, and must
pass it to a method that expects a Set, you can
use a checked wrapper to ensure that that method cannot add anything
to the set that is not a String:
SortedSet<String> words = new TreeSet<String>(); // A set
SortedSet<String> checkedWords = // A checked set
 Collections.checkedSortedSet(words, String.class);
addWordsFromFile(checkedWords, filename); // Passed to legacy method

Special-Case Collections

In addition to its wrapper methods,
the java.util.Collections class also defines
utility methods for creating immutable collection instances that
contain a single element and other methods for creating empty
collections.
singleton()

 , singletonList(
), and singletonMap() return immutable
Set

 , List, and
Map objects that contain a single specified object
or a single key/value pair. These methods are useful, for example,
when you need to pass a single object to a method that expects a
collection.
The Collections class also includes methods that
return empty collections. If you are
writing a method that returns a collection, it is usually best to
handle the no-values-to-return case by returning an empty collection
instead of a special-case value like null:
Set<Integer> si = Collections.emptySet();
List<String> ss = Collections.emptyList();
Map<String,Integer> m = Collections.emptyMap();
Finally, nCopies()
 returns an immutable
List that contains a specified number of copies of
a single specified object:
List<Integer> tenzeros = Collections.nCopies(10, 0);

Converting to and from Arrays

 Arrays of objects and collections serve
similar purposes. It is possible to convert from one to the other:
String[] a ={ "this", "is", "a", "test" }; // An array
List<String> l = Arrays.asList(a); // View array as an ungrowable list
List<String> m = new ArrayList<String>(l); // Make a growable copy of the view

// In Java 5.0, asList() is a varargs method so we can do this, too:
Set<Character> abc = new HashSet<Character>(Arrays.asList('a', 'b', 'c'));

// Collection defines the toArray() method. The no-args version creates
// an Object[] array, copies collection elements to it and returns it
Object[] members = set.toArray(); // Get set elements as an array
Object[] items = list.toArray(); // Get list elements as an array
Object[] keys = map.keySet().toArray(); // Get map key objects as an array
Object[] values = map.values().toArray(); // Get map value objects as an array

// If you want the return value to be something other than Object[], pass
// in an array of the appropriate type. If the array is not big enough,
// another one of the same type will be allocated. If the array is too big,
// the collection elements copied to it will be null-terminated
String[] c = l.toArray(new String[0]);

Collections Utility Methods

 Just as the
java.util.Arrays class defined methods to operate
on arrays, the java.util.Collections class defines
methods to operate on collections. Most notable are methods to sort
and search the elements of collections:

Collections.sort(list);
int pos = Collections.binarySearch(list, "key"); // list must be sorted first
Here are some other interesting Collections
methods:
Collections.copy(list1, list2); // Copy list2 into list1, overwriting list1
Collections.fill(list, o); // Fill list with Object o
Collections.max(c); // Find the largest element in Collection c
Collections.min(c); // Find the smallest element in Collection c

Collections.reverse(list); // Reverse list
Collections.shuffle(list); // Mix up list

Implementing Collections

The

 Java
Collections Framework provides
abstract
classes that make it simple to implement common types of collections.
The following code extends
AbstractList

 to define a
QuadraticSequence, a list implementation that
computes list values on demand rather than actually storing them in
memory anywhere. See also AbstractSet,
AbstractMap, AbstractQueue, and
AbstractSequentialList.
import java.util.*;

/** An immutable List<Double> representing the sequence ax^2 + bx + c */
public class QuadraticSequence extends AbstractList<Double> {
 final int size;
 final double a, b, c;

 QuadraticSequence(double a, double b, double c, int size) {
 this.a = a; this.b = b; this.c = c; this.size = size;
 }

 @Override public int size() { return size; }

 @Override public Double get(int index) {
 if (index<0 || index>=size) throw new ArrayIndexOutOfBoundsException();
 return a*index*index + b*index + c;
 }
}

Threads and Concurrency

 The Java platform has supported

 multithreaded
or concurrent programming with the
Thread class and
Runnable
 interface since Java 1.0. Java 5.0
bolsters that support with a comprehensive set of new utilities for
concurrent programming.
Creating, Running, and Manipulating Threads

 Java
makes it easy to define and
work with multiple threads of execution within a program.
java.lang.Thread
 is the fundamental thread class in the
Java API. There are two ways to define a thread. One is to subclass
Thread, override the run(
)
 method and then instantiate your
Thread subclass. The other is to define a class
that implements the Runnable method (i.e., define
a run() method) and then pass an instance of this
Runnable object to the Thread()
constructor. In either case, the result is a
Thread object, where the run()
method is the body of the thread. When you call the
start() method of the Thread
object, the interpreter creates a new thread to execute the
run() method. This new thread continues to run
until the run() method exits. Meanwhile, the
original thread continues running itself, starting with the statement
following the start()
 method.
The following code demonstrates:
final List list; // Some long unsorted list of objects; initialized elsewhere

/** A Thread class for sorting a List in the background */
class BackgroundSorter extends Thread {
 List l;
 public BackgroundSorter(List l) { this.l = l; } // Constructor
 public void run() { Collections.sort(l); } // Thread body
}

// Create a BackgroundSorter thread
Thread sorter = new BackgroundSorter(list);
// Start it running; the new thread runs the run() method above while
// the original thread continues with whatever statement comes next.
sorter.start();

// Here's another way to define a similar thread
Thread t = new Thread(new Runnable() { // Create a new thread
 public void run() { Collections.sort(list); } // to sort the list of objects.
});
t.start(); // Start it running
Thread lifecycle

 A
thread can be in one of six states. In
 Java
5.0, these states are represented by the
Thread.State
 enumerated type, and the state of a
thread can be queried with the getState() method.
A listing of the
Thread.State

constants provides a good overview of the
lifecycle of a thread:
	
 NEW

	The Thread has been created but its
start() method has not yet been called. All
threads start in this state.

	
 RUNNABLE

	The thread is running or is available to run when the operating
system schedules it.

	
 BLOCKED

	The thread is not running because it is waiting to acquire a lock so
that it can enter a synchronized method or block.
We’ll see more about synchronized
methods and blocks later in this section.

	
 WAITING

	The thread is not running because it has called
Object.wait()

 or
Thread.join().

	
 TIMED_WAITING

	The thread is not running because it has called
Thread.sleep() or has called Object.wait(
) or Thread.join() with a timeout value.

	
 TERMINATED

	The thread has completed execution. Its run()
method has exited normally or by throwing an exception.

Thread priorities

 Threads can run at different priority
levels. A thread at a given priority level does not typically run
unless no higher-priority threads are waiting to run. Here is some
code you can use when working with thread priorities:
// Set a thread t to lower-than-normal priority
t.setPriority(Thread.NORM_PRIORITY-1);

// Set a thread to lower priority than the current thread
t.setPriority(Thread.currentThread().getPriority() - 1);

// Threads that don't pause for I/O should explicitly yield the CPU
// to give other threads with the same priority a chance to run.
Thread t = new Thread(new Runnable() {
 public void run() {
 for(int i = 0; i < data.length; i++) { // Loop through a bunch of data
 process(data[i]); // Process it
 if ((i % 10) == 0) // But after every 10 iterations,
 Thread.yield(); // pause to let other threads run.
 }
 }
});

Handling uncaught exceptions

 A thread terminates normally when it
reaches the end of its run() method or when it
executes a return statement in that method. A
thread can also terminate by throwing an exception, however. When a
thread exits in this way, the default behavior is to print the name
of the thread, the type of the exception, the exception message, and
a stack trace. In Java 5.0, you can install a custom handler for
uncaught exceptions in a thread. For
example:
// This thread just throws an exception
Thread t = new Thread() {
 public void run() {throw new UnsupportedOperationException();}
 };

// Giving threads a name helps with debugging
t.setName("My Broken Thread");

// Here's a handler for the error.
t.setUncaughtExceptionHandler(new Thread.UncaughtExceptionHandler() {
 public void uncaughtException(Thread t, Throwable e) {
 System.err.printf("Exception in thread %d '%s':" +
 "%s at line %d of %s%n",
 t.getId(), // Thread id
 t.getName(), // Thread name
 e.toString(), // Exception name and message
 e.getStackTrace()[0].getLineNumber(), // line #
 e.getStackTrace()[0].getFileName()); // filename
 }
 });

Making a Thread Sleep

 Often,
threads are used to perform some kind of repetitive task at a fixed
interval. This is particularly true when doing graphical programming
that involves animation or similar effects. The key to doing this is
making a thread sleep, or stop running, for a
specified amount of time. This is done with the static
Thread.sleep()

 method,
or, in

 Java 5.0,
with utility methods of enumerated
constants of the
TimeUnit

 class:
import static java.util.concurrent.TimeUnit.SECONDS; // utility class

public class Clock extends Thread {
 // This field is volatile because two different threads may access it
 volatile boolean keepRunning = true;

 public Clock() { // The constructor
 setDaemon(true); // Daemon thread: interpreter can exit while it runs
 }

 public void run() { // The body of the thread
 while(keepRunning) { // This thread runs until asked to stop
 long now = System.currentTimeMillis(); // Get current time
 System.out.printf("%tr%n", now); // Print it out
 try { Thread.sleep(1000); } // Wait 1000 milliseconds
 catch (InterruptedException e) { return; }// Quit on interrupt
 }
 }

 // Ask the thread to stop running. An alternative to interrupt().
 public void pleaseStop() { keepRunning = false; }

 // This method demonstrates how to use the Clock class
 public static void main(String[] args) {
 Clock c = new Clock(); // Create a Clock thread
 c.start(); // Start it
 try { SECONDS.sleep(10); } // Wait 10 seconds
 catch(InterruptedException ignore) {} // Ignore interrupts
 // Now stop the clock thread. We could also use c.interrupt()
 c.pleaseStop();
 }
}

 Notice the
pleaseStop() method in this example: it is
designed to stop the clock thread in a controlled way. The example is
coded so that it can also be stopped by calling the
interrupt()

 method it inherits from
Thread. The
Thread
 class defines a
stop() method, but it is deprecated.

Running and Scheduling Tasks

 Java provides a number of
ways to run tasks asynchronously or to schedule them for future
execution without having to explicitly create
Thread objects. The following sections illustrate
the Timer class added in Java 1.3 and the
executors framework of the Java 5.0
java.util.concurrent package.
Scheduling tasks with Timer

 Added in Java 1.3, the
java.util.Timer and
java.util.TimerTask classes make it easy to run
repetitive tasks. Here is some code that behaves much like the
Clock class shown earlier:
import java.util.*;

// Define the time-display task
TimerTask displayTime = new TimerTask() {
 public void run() { System.out.printf("%tr%n", System.currentTimeMillis()); }
};
// Create a timer object to run the task (and possibly others)
Timer timer = new Timer();
// Now schedule that task to be run every 1,000 milliseconds, starting now
timer.schedule(displayTime, 0, 1000);

// To stop the time-display task
displayTime.cancel();

The Executor interface

 In Java 5.0, the
java.util.concurrent
 package includes the
Executor interface. An Executor
is an object that can execute a Runnable object. A
user of an Executor often does not need to be
aware of just how the Executor accomplishes this:
it just needs to know that the Runnable will, at
some point, run. Executor implementations can be
created to use a number of different threading strategies, as the
following code makes clear. (Note that this example also demonstrates
the use of a
BlockingQueue
 .)
import java.util.concurrent.*;

/** Execute a Runnable in the current thread. */
class CurrentThreadExecutor implements Executor {
 public void execute(Runnable r) { r.run(); }
}

/** Execute each Runnable using a newly created thread */
class NewThreadExecutor implements Executor {
 public void execute(Runnable r) { new Thread(r).start(); }
}

/**
 * Queue up the Runnables and execute them in order using a single thread
 * created for that purpose.
 */
class SingleThreadExecutor extends Thread implements Executor {
 BlockingQueue<Runnable> q = new LinkedBlockingQueue<Runnable>();

 public void execute(Runnable r) {
 // Don't execute the Runnable here; just put it on the queue.
 // Our queue is effectively unbounded, so this should never block.
 // Since it never blocks, it should never throw InterruptedException.
 try { q.put(r); }
 catch(InterruptedException never) { throw new AssertionError(never); }
 }

 // This is the body of the thread that actually executes the Runnables
 public void run() {
 for(;;) { // Loop forever
 try {
 Runnable r = q.take(); // Get next Runnable, or wait
 r.run(); // Run it!
 }
 catch(InterruptedException e) {
 // If interrupted, stop executing queued Runnables.
 return;
 }
 }
 }
}
These sample implementations help demonstrate how an
Executor works and how it separates the notion of
executing a task from the scheduling policy and threading details of
the implementation. It is rarely necessary to actually implement your
own Executor, however, since
java.util.concurrent provides the flexible and
powerful
ThreadPoolExecutor

class. This class is typically used via one of the static factory
methods in the Executors class:
Executor oneThread = Executors.newSingleThreadExecutor(); // pool size of 1
Executor fixedPool = Executors.newFixedThreadPool(10); // 10 threads in pool
Executor unboundedPool = Executors.newCachedThreadPool(); // as many as needed
In addition to these convenient factory methods, you can also
explicitly create a ThreadPoolExecutor if you want
to specify a minimum and maximum size for the thread pool or want to
specify the queue type (bounded, unbounded, priority-sorted, or
synchronized, for example) to use for tasks that cannot immediately
be run by a thread.

ExecutorService

If you’ve
looked at the signature for ThreadPoolExecutor or
for the Executors factory methods cited above,
you’ll see that it is an
ExecutorService

 . The
ExecutorService interface extends
Executor and adds the ability to execute
Callable
 objects. Callable
is something like a
Runnable
 . Instead of encapsulating arbitrary
code in a run()
 method,
however, a Callable puts that code in a
call()
 method. call() differs
from run() in two important ways: it returns a
result, and it is allowed to throw exceptions.
Because call() returns a result, the
Callable interface takes the result type as a
parameter. A time-consuming chunk of code that computes a large prime
number, for example, could be wrapped in a
Callable<BigInteger>:

import java.util.concurrent.*;
import java.math.BigInteger;
import java.util.Random;
import java.security.SecureRandom;

/** This is a Callable implementation for computing big primes. */
public class RandomPrimeSearch implements Callable<BigInteger> {
 static Random prng = new SecureRandom(); // self-seeding
 int n;
 public RandomPrimeSearch(int bitsize) { n = bitsize; }
 public BigInteger call() { return BigInteger.probablePrime(n, prng); }
}
You can invoke the call() method of any
Callable object directly, of course, but to
execute it using an ExecutorService, you pass it
to the submit()
 method. Because
ExecutorService implementations typically run
tasks asynchronously, the submit() method cannot
simply return the result of the call() method.
Instead, submit() returns a
Future

 object. A Future is
simply the promise of a result sometime in the future. It is
parameterized with the type of the result, as shown in this code
snippet:
// Try to compute two primes at the same time
ExecutorService threadpool = Executors.newFixedThreadPool(2);
Future<BigInteger> p = threadpool.submit(new RandomPrimeSearch(512));
Future<BigInteger> q = threadpool.submit(new RandomPrimeSearch(512));
Once you have a Future object, what can you do
with it? You can call
isDone()
 to see if the
Callable has finished running. You can call
cancel() to cancel execution of the
Callable and can call
isCancelled()
 to see if the
Callable was canceled before it completed. But
most of the time, you simply call get(
)
 to get the result of the call(
) method. get() blocks, if necessary, to
wait for the call() method to complete. Here is
code you might use with the Future objects shown
above:
BigInteger product = p.get().multiply(q.get());
Note that the get() method may throw an
ExecutionException. Recall that
Callable.call() can throw any kind of exception.
If this happens, the Future wraps that exception
in an
ExecutionException

and throws it from get(). Note that the
Future.isDone() method considers a
Callable to be
“done,” even if the call(
) method terminated abnormally with an exception.

ScheduledExecutorService

 ScheduledExecutorService

 is
an extension of ExecutorService that adds
Timer-like scheduling capabilities. It allows you
to schedule a Runnable

 or Callable to be
executed once after a specified time delay or to schedule a
Runnable for repeated execution. In each case, the
result of scheduling a task for future execution is a
ScheduledFuture
 object. This is simply a
Future that also implements the
Delay

 interface and provides a
getDelay() method that can be used to query the
remaining time before execution of the task.
The easiest way to obtain a
ScheduledExecutorService is with factory methods
of the Executors
 class. The following code uses a
ScheduledExecutorService to repeatedly perform an
action and also to cancel the repeated action after a fixed
interval.
/**
 * Print random ASCII characters at a rate of cps characters per second
 * for a total of totalSeconds seconds.
 */
public static void spew(int cps, int totalSeconds) {
 final Random rng = new Random(System.currentTimeMillis());
 final ScheduledExecutorService executor =
 Executors.newSingleThreadScheduledExecutor();
 final ScheduledFuture<?> spewer =
 executor.scheduleAtFixedRate(new Runnable() {
 public void run() {
 System.out.print((char)(rng.nextInt('~' - ' ') + ' '));
 System.out.flush();
 }
 },
 0, 1000000/cps, TimeUnit.MICROSECONDS);
 executor.schedule(new Runnable() {
 public void run() {
 spewer.cancel(false);
 executor.shutdown();
 System.out.println();
 }
 },
 totalSeconds, TimeUnit.SECONDS);
}

Exclusion and Locks

 When
 using
multiple threads, you must be very careful if you allow more than one
thread to access the same data structure. Consider what would happen
if one thread was trying to loop through the elements of a
List while another thread was sorting those
elements. Preventing this kind of unwanted concurrency is one of the
central problems of multithreaded computing. The basic technique for
preventing two threads from accessing the same object at the same
time is to require a thread to obtain a lock on the object before the
thread can modify it. While any one thread holds the lock, another
thread that requests the lock has to wait until the first thread is
done and releases the lock. Every Java object has the fundamental
ability to provide such a locking capability.

 The easiest way to keep objects
threadsafe is to declare all sensitive methods
synchronized. A thread must obtain a lock on an
object before it can execute any of its
synchronized methods, which means that no other
thread can execute any other synchronized method
at the same time. (If a static method is declared
synchronized, the thread must obtain a lock on the
class, and this works in the same manner.) To do finer-grained
locking, you can specify synchronized blocks of
code that hold a lock on a specified object for a short time:
// This method swaps two array elements in a synchronized block
public static void swap(Object[] array, int index1, int index2) {
 synchronized(array) {
 Object tmp = array[index1];
 array[index1] = array[index2];
 array[index2] = tmp;
 }
}

// The Collection, Set, List, and Map implementations in java.util do
// not have synchronized methods (except for the legacy implementations
// Vector and Hashtable). When working with multiple threads, you can
// obtain synchronized wrapper objects.
List synclist = Collections.synchronizedList(list);
Map syncmap = Collections.synchronizedMap(map);
The java.util.concurrent.locks package

 Note
that when you use the synchronized modifier or
statement, the lock you acquire is block-scoped, and is automatically
released when the thread exits the method or block. The
java.util.concurrent.locks
 package in Java 5.0
provides an alternative: a Lock object that you
explicitly lock and unlock. Lock objects are not
automatically block-scoped and you must be careful to use
try/finally constructs to ensure that locks are
always released. On the other hand, Lock enables
algorithms that are simply not possible with block-scoped locks, such
as the following “hand-over-hand”
linked list traversal:
import java.util.concurrent.locks.*; // New in Java 5.0

/**
 * A partial implementation of a linked list of values of type E.
 * It demonstrates hand-over-hand locking with Lock
 */
public class LinkList<E> {
 E value; // The value of this node of the list
 LinkList<E> rest; // The rest of the list
 Lock lock; // A lock for this node

 public LinkList(E value) { // Constructor for a list
 this.value = value; // Node value
 rest = null; // This is the only node in the list
 lock = new ReentrantLock(); // We can lock this node
 }

 /**
 * Append a node to the end of the list, traversing the list using
 * hand-over-hand locking. This method is threadsafe: multiple threads
 * may traverse different portions of the list at the same time.
 **/
 public void append(E value) {
 LinkList<E> node = this; // Start at this node
 node.lock.lock(); // Lock it.

 // Loop 'till we find the last node in the list
 while(node.rest != null) {
 LinkList<E> next = node.rest;

 // This is the hand-over-hand part. Lock the next node and then
 // unlock the current node. We use a try/finally construct so
 // that the current node is unlocked even if the lock on the
 // next node fails with an exception.
 try { next.lock.lock(); } // lock the next node
 finally { node.lock.unlock(); } // unlock the current node
 node = next;
 }

 // At this point, node is the final node in the list, and we have
 // a lock on it. Use a try/finally to ensure that we unlock it.
 try {
 node.rest = new LinkList<E>(value); // Append new node
 }
 finally { node.lock.unlock(); }
 }
}

Deadlock

 When
you are using locking to prevent threads from accessing the same data
at the same time, you must be careful to avoid
deadlock, which occurs when two threads end up
waiting for each other to release a lock they need. Since neither can
proceed, neither one can release the lock it holds, and they both
stop running. The following code is prone to deadlock. Whether or not
a deadlock actually occurs may vary from system to system and from
execution to execution.
// When two threads try to lock two objects, deadlock can occur unless
// they always request the locks in the same order.
final Object resource1 = new Object(); // Here are two objects to lock
final Object resource2 = new Object();
Thread t1 = new Thread(new Runnable() { // Locks resource1 then resource2
 public void run() {
 synchronized(resource1) {
 synchronized(resource2) { compute(); }
 }
 }
});

Thread t2 = new Thread(new Runnable() { // Locks resource2 then resource1
 public void run() {
 synchronized(resource2) {
 synchronized(resource1) { compute(); }
 }
 }
});

t1.start(); // Locks resource1
t2.start(); // Locks resource2 and now neither
thread can progress!

Coordinating Threads

 It
is common in multithreaded programming to require one thread to wait
for another thread to take some action. The Java platform provides a
number of ways to coordinate threads, including methods built into
the Object and Thread classes,
as well as “synchronizer” utility
classes introduced in Java 5.0.
wait() and notify()

 Sometimes a thread needs to stop running
and wait until some kind of event occurs, at which point it is told
to continue running. This is done with the
wait()
 and
notify()
 methods.
These aren’t methods of the
Thread class, however; they are methods of
Object. Just as every Java object has a lock
associated with it, every object can maintain a list of waiting
threads. When a thread calls the wait() method of
an object, any locks the thread holds are temporarily released, and
the thread is added to the list of waiting threads for that object
and stops running. When another thread calls the notifyAll(
)
 method of the same object, the object
wakes up the waiting threads and allows them to continue running:
import java.util.*;

/**
 * A queue. One thread calls push() to put an object on the queue.
 * Another calls pop() to get an object off the queue. If there is no
 * data, pop() waits until there is some, using wait()/notify().
 * wait() and notify() must be used within a synchronized method or
 * block. In Java 5.0, use a java.util.concurrent.BlockingQueue instead.
 */
public class WaitingQueue<E> {
 LinkedList<E> q = new LinkedList<E>(); // Where objects are stored
 public synchronized void push(E o) {
 q.add(o); // Append the object to the end of the list
 this.notifyAll(); // Tell waiting threads that data is ready
 }
 public synchronized E pop() {
 while(q.size() == 0) {
 try { this.wait(); }
 catch (InterruptedException ignore) {}
 }
 return q.remove(0);
 }
}
Note that such a class is not necessary in Java 5.0 because
java.util.concurrent defines the
BlockingQueue
 interface and general-purpose
implementations such as ArrayBlockingQueue.

Waiting on a Condition

 Java 5.0
provides an alternative to the
wait() and notifyAll() methods
of Object.
java.util.concurrent.locks

 defines a Condition
object with await()
 and
signalAll()
 methods.
Condition objects are always associated with
Lock objects and are used in much the same way as
the locking and waiting capability built into each Java object. The
primary benefit is that it is possible to have more than one
Condition for each Lock,
something that is not possible with Object-based
locking and waiting.

Waiting for a thread to finish

 Sometimes one thread
needs to stop and wait for another thread to complete. You can
accomplish this with the
 join() method:
List list; // A long list of objects to be sorted; initialized elsewhere

// Define a thread to sort the list: lower its priority, so it runs only
// when the current thread is waiting for I/O and then start it running.
Thread sorter = new BackgroundSorter(list); // Defined earlier
sorter.setPriority(Thread.currentThread.getPriority()-1); // Lower priority
sorter.start(); // Start sorting

// Meanwhile, in this original thread, read data from a file
byte[] data = readData(); // Method defined elsewhere

// Before we can proceed, we need the list to be fully sorted, so
// we must wait for the sorter thread to exit, if it hasn't already.
try { sorter.join(); } catch(InterruptedException e) {}

Synchronizer utilities

 java.util.concurrent
 includes four
"
 synchronizer”
classes that help to synchronize the state of a concurrent program by
making threads wait until certain conditions hold:
	
 Semaphore

	The Semaphore

 class
models semaphores, a traditional concurrent programming construct.
Conceptually, a semaphore represents one or more
“permits.” A thread that needs a
permit calls acquire(
)

 and then calls
release() when done with it.
acquire() blocks if no permits are available,
suspending the thread until another thread releases a permit.

	
 CountDownLatch

	A
latch

 is
conceptually any variable or concurrency
construct that has two possible states and transitions from its
initial state to its final state only once. Once the transition
occurs, it remains in that final state forever.
CountDownLatch is a concurrency utility that can
exist in two states, closed and open. In its initial closed state,
any threads that call the await() method block
and cannot proceed until it transitions to its latched open state.
Once this transition occurs, all waiting threads proceed, and any
threads that call
await()
 in
the future will not block at all. The transition from closed to open
occurs when a specified number of calls to
countDown() have occurred.

	
 Exchanger

	An Exchanger

 is a
utility that allows two threads to rendezvous
and exchange values. The first thread to call the exchange(
) method blocks until a second thread calls the same
method. When this happens, the argument passed to the
exchange() method by the first thread becomes the
return value of the method for the second thread and vice-versa. When
the two exchange() invocations return, both
threads are free to continue running concurrently.
Exchanger is a generic type and uses its type
parameter to specify the type of values to be exchanged.

	
 CyclicBarrier

	A CyclicBarrier

is a utility that enables a group of N threads to wait for each other
to reach a synchronization point. The number of threads is specified
when the CyclicBarrier is first created. Threads
call the await()

method to block until the last thread calls await(
), at which point all threads resume again. Unlike a
CountDownLatch, a CyclicBarrier
resets its count and is ready for immediate reuse.
CyclicBarrier is useful in parallel algorithms in
which a computation is decomposed into parts, and each part is
handled by a separate thread. In such algorithms, the threads must
typically rendezvous so that their partial solutions can be merged
into a complete solution. To facilitate this, the
CyclicBarrier constructor allows you to specify a
Runnable
 object to be executed by the last
thread that calls await() before any of the other
threads are woken up and allowed to resume. This
Runnable can provide the coordination required to
assemble a solution from the threads computations or to assign a new
computation to each of the threads.

Thread Interruption

 In
the examples illustrating the sleep(),
join(), and wait() methods,
you may have noticed that calls to each of these methods are wrapped
in a try statement that catches an
InterruptedException
 .
This is necessary because the
 interrupt() method
allows one thread to interrupt the execution of another. The outcome
of an interrupt depends on how you handle the
InterruptedException. The response that is usually
preferred is for an interrupted thread to stop running. On the other
hand, if you simply catch and ignore the
InterruptedException, an interrupt simply stops a
thread from blocking.

 If the interrupt()
method is called on a thread that is not blocked, the thread
continues running, but its “interrupt
status” is set to indicate that an interrupt has
been requested. A thread can test its own interrupt status by calling
the static Thread.interrupted() method, which
returns true if the thread has been interrupted
and, as a side effect, clears the interrupt status. One thread can
test the interrupt status of another thread with the instance method
isInterrupted()
 , which queries the status but does
not clear it.

 If a thread calls sleep(
), join(), or
wait()
 while its interrupt status is set, it does
not block but immediately throws an
InterruptedException (the interrupt status is
cleared as a side effect of throwing the exception). Similarly, if
the interrupt() method is called on a thread that
is already blocked in a call to sleep(),
join(), or wait(), that thread
stops blocking by throwing an
InterruptedException.

 One of the most common times that threads
block is while doing input/output; a thread often has to pause and
wait for data to become available from the filesystem or from the
network. (The java.io,
java.net, and java.nio APIs for
performing I/O operations are discussed later in this chapter.)
Unfortunately, the interrupt() method does not
wake up a thread blocked in an I/O method of the
java.io package. This is one of the shortcomings
of java.io that is cured by the New I/O API in
java.nio. If a thread is interrupted while blocked
in an I/O operation on any channel that implements
java.nio.channels.InterruptibleChannel, the
channel is closed, the thread’s interrupt status is
set, and the thread wakes up by throwing a
java.nio.channels.ClosedByInterruptException. The
same thing happens if a thread tries to call a blocking I/O method
while its interrupt status is set. Similarly, if a thread is
interrupted while it is blocked in the
 select() method of a
java.nio.channels.Selector (or if it calls
select() while its interrupt status is set),
select() will stop blocking (or will never start)
and will return immediately. No exception is thrown in this case; the
interrupted thread simply wakes up, and the
select() call returns.

Blocking Queues

 As
noted
 in Section 5.6.5 earlier in this chapter, a
queue is a collection in which elements are
inserted at the “tail” and removed
at the “head.” The
Queue interface and various implementations were
added to java.util as part of
Java 5.0.
java.util.concurrent extends the
Queue interface: BlockingQueue
defines put() and take()
methods that allow you to add and remove elements of the queue,
blocking if necessary until the queue has room, or until there is an
element to be removed. The use of blocking queues is a common pattern
in multithreaded programming: one thread produces objects and places
them on a queue for consumption by another thread which removes them
from the queue.

 java.util.concurrent

provides five implementations of BlockingQueue:
	
 ArrayBlockingQueue

	This implementation is based on an array, and, like all arrays, has a
fixed capacity established when it is created. At the cost of reduced
throughput, this queue can operate in a
“fair” mode in which threads
blocking to put()

 or take() an element are
served in the order in which they arrived.

	
 LinkedBlockingQueue

	This implementation is based on a linked-list data structure. It may
have a maximum size specified, but, by default, it is essentially
unbounded.

	
 PriorityBlockingQueue

	This unbounded queue does not implement FIFO (first-in, first-out)
ordering. Instead, it orders its elements based on a specified
Comparator object, or based on their natural
ordering if they are Comparable objects and no
Comparator is specified. The element returned by
take() is the smallest element according to the
Comparator or Comparable
ordering. See also
java.util.PriorityQueue
 for a nonblocking version.

	
 DelayQueue

	A DelayQueue
 is like a
PriorityBlockingQueue for elements that implement
the Delayed interface. Delayed
is Comparable and orders elements by how long they
are delayed. But DelayQueue is more than just an
unbounded queue that sorts its elements. It also restricts
take() and related methods so that elements
cannot be removed from the queue until their delay has elapsed.

	
 SynchronousQueue

	This class implements the degenerate case of a
BlockingQueue with a capacity of zero. A call to
put() blocks until some other thread calls
take(), and a call to take()
blocks until some other thread calls put().

Atomic Variables

 The
java.util.concurrent.atomic

 package contains utility classes
that permit atomic

 operations on fields
without locking. An atomic operation is one that is indivisible: no
other thread can observe an atomic variable in the middle of an
atomic operation on it. These utility classes define
get()

 and set() accessor
methods that have the properties of
volatile
 fields but also define compound
operations such as compare-and-set and get-and-increment that behave
atomically. The code below demonstrates the use of
AtomicInteger
 and contrasts it with the use of a
traditional
synchronized

method:
// The count1(), count2() and count3() methods are all threadsafe. Two
// threads can call these methods at the same time, and they will never
// see the same return value.
public class Counters {
 // A counter using a synchronized method and locking
 int count1 = 0;
 public synchronized int count1() { return count1++; }

 // A counter using an atomic increment on an AtomicInteger
 AtomicInteger count2 = new AtomicInteger(0);
 public int count2() { return count2.getAndIncrement(); }

 // An optimistic counter using compareAndSet()
 AtomicInteger count3 = new AtomicInteger(0);
 public int count3() {
 // Get the counter value with get() and set it with compareAndSet().
 // If compareAndSet() returns false, try again until we get
 // through the loop without interference.
 int result;
 do {
 result = count3.get();
 } while(!count3.compareAndSet(result, result+1));
 return result;
 }
}

Files and Directories

 The
java.io.File
 class represents a file
or a directory and defines a number of important methods for
manipulating files and directories. Note, however, that none of these
methods allow you to read the contents of a file; that is the job of
java.io.FileInputStream
 , which is just one of the many types of
I/O streams used in Java and discussed in the next section. Here are
some things you can do with File:
import java.io.*;
import java.util.*;

// Get the name of the user's home directory and represent it with a File
File homedir = new File(System.getProperty("user.home"));
// Create a File object to represent a file in that directory
File f = new File(homedir, ".configfile");

// Find out how big a file is and when it was last modified
long filelength = f.length();
Date lastModified = new java.util.Date(f.lastModified());

// If the file exists, is not a directory, and is readable,
// move it into a newly created directory.
if (f.exists() && f.isFile() && f.canRead()) { // Check config file
 File configdir = new File(homedir, ".configdir"); // A new config directory
 configdir.mkdir(); // Create that directory
 f.renameTo(new File(configdir, ".config")); // Move the file into it
}

// List all files in the home directory
String[] allfiles = homedir.list();

// List all files that have a ".java" suffix
String[] sourcecode = homedir.list(new FilenameFilter() {
 public boolean accept(File d, String name) { return name.endsWith(".java"); }
});

 The File class
gained some important additional functionality as of Java 1.2:
// List all filesystem root directories; on Windows, this gives us
// File objects for all drive letters (Java 1.2 and later).
File[] rootdirs = File.listRoots();

// Atomically, create a lock file, then delete it (Java 1.2 and later)
File lock = new File(configdir, ".lock");
if (lock.createNewFile()) {
 // We successfully created the file. Now arrange to delete it on exit
 lock.deleteOnExit();

 // Now run the application secure in the knowledge that no one else
 // is running it at the same time
 ...
}
else {
 // We didn't create the file; someone else has a lock
 System.err.println("Can't create lock file; exiting.");
 System.exit(1);
}

// Create a temporary file to use during processing (Java 1.2 and later)
File temp = File.createTempFile("app", ".tmp"); // Filename prefix and suffix
// Do something with the temp file
 ...
// And delete it when we're done
temp.delete();
RandomAccessFile

 The
java.io package also defines a
RandomAccessFile class that allows you to read
binary data from arbitrary locations in a file. This can be useful in
certain situations, but most applications read files sequentially,
using the stream classes described in the next section. Here is a
short example of using RandomAccessFile:
// Open a file for read/write ("rw") access
File datafile = new File(configdir, "datafile");
RandomAccessFile f = new RandomAccessFile(datafile, "rw");
f.seek(100); // Move to byte 100 of the file
byte[] data = new byte[100]; // Create a buffer to hold data
f.read(data); // Read 100 bytes from the file
int i = f.readInt(); // Read a 4-byte integer from the file
f.seek(100); // Move back to byte 100
f.writeInt(i); // Write the integer first
f.write(data); // Then write the 100 bytes
f.close(); // Close file when done with it

Input/Output with java.io

 The
java.io package defines a large number of
classes for reading and writing streaming, or sequential, data. The
InputStream and OutputStream
classes are for reading and writing streams of bytes while the
Reader and Writer classes are
for reading and writing streams of
characters. Streams can be
nested, meaning you might read characters from a
FilterReader
 object that reads and processes
characters from an underlying Reader stream. This
underlying Reader stream might read bytes from an
InputStream and convert them to characters.
Reading Console Input

 You
can perform a number of common
operations with streams. One is to read lines of input the user types
at the console:
import java.io.*;

BufferedReader console = new BufferedReader(new InputStreamReader(System.in));
System.out.print("What is your name: ");
String name = null;
try {
 name = console.readLine();
}
catch (IOException e) { name = "<" + e + ">"; } // This should never happen
System.out.println("Hello " + name);

Reading Lines from a Text File

 Reading lines of text
from a file is a similar operation. The following code reads an
entire text file and quits when it reaches the end:
String filename = System.getProperty("user.home") + File.separator + ".cshrc";
try {
 BufferedReader in = new BufferedReader(new FileReader(filename));
 String line;
 while((line = in.readLine()) != null) { // Read line, check for end-of-file
 System.out.println(line); // Print the line
 }
 in.close(); // Always close a stream when you are done with it
}
catch (IOException e) {
 // Handle FileNotFoundException, etc. here
}

Writing Text to a File

 Throughout this book,
you’ve seen the use of the
System.out.println()
 method to
 display text on the console.
System.out simply refers to an output stream. You
can print text to any output stream using similar techniques. The
following code shows how to output text to a file:
try {
 File f = new File(homedir, ".config");
 PrintWriter out = new PrintWriter(new FileWriter(f));
 out.println("## Automatically generated config file. DO NOT EDIT!");
 out.close(); // We're done writing
}
catch (IOException e) { /* Handle exceptions */ }

Reading a Binary File

 Not all files contain
text, however. The following lines of code treat a file as a stream
of bytes and read the bytes into a large array:
try {
 File f; // File to read; initialized elsewhere
 int filesize = (int) f.length(); // Figure out the file size
 byte[] data = new byte[filesize]; // Create an array that is big enough
 // Create a stream to read the file
 DataInputStream in = new DataInputStream(new FileInputStream(f));
 in.readFully(data); // Read file contents into array
 in.close();
}
catch (IOException e) { /* Handle exceptions */ }

Compressing Data

 Various

 other
packages of the Java
platform define specialized stream classes that operate on streaming
data in some useful way. The following code shows how to use stream
classes from java.util.zip to compute a checksum
of data and then compress the data while writing it to a file:
import java.io.*;
import java.util.zip.*;

try {
 File f; // File to write to; initialized elsewhere
 byte[] data; // Data to write; initialized elsewhere
 Checksum check = new Adler32(); // An object to compute a simple checksum

 // Create a stream that writes bytes to the file f
 FileOutputStream fos = new FileOutputStream(f);
 // Create a stream that compresses bytes and writes them to fos
 GZIPOutputStream gzos = new GZIPOutputStream(fos);
 // Create a stream that computes a checksum on the bytes it writes to gzos
 CheckedOutputStream cos = new CheckedOutputStream(gzos, check);

 cos.write(data); // Now write the data to the nested streams
 cos.close(); // Close down the nested chain of streams
 long sum = check.getValue(); // Obtain the computed checksum
}
catch (IOException e) { /* Handle exceptions */ }

Reading ZIP Files

 The java.util.zip
package also contains a
 ZipFile
class that gives you random access to the entries of a ZIP archive
and allows you to read those entries through a stream:
import java.io.*;
import java.util.zip.*;

String filename; // File to read; initialized elsewhere
String entryname; // Entry to read from the ZIP file; initialized elsewhere
ZipFile zipfile = new ZipFile(filename); // Open the ZIP file
ZipEntry entry = zipfile.getEntry(entryname); // Get one entry
InputStream in = zipfile.getInputStream(entry); // A stream to read the entry
BufferedInputStream bis = new BufferedInputStream(in); // Improves efficiency
// Now read bytes from bis...
// Print out contents of the ZIP file
for(java.util.Enumeration e = zipfile.entries(); e.hasMoreElements();) {
 ZipEntry zipentry = (ZipEntry) e.nextElement();
 System.out.println(zipentry.getName());
}

Computing Message Digests

 If you need to compute a
cryptographic-strength checksum (also known as a message digest), use
one of the stream classes of the java.security
package. For example:
import java.io.*;
import java.security.*;
import java.util.*;

File f; // File to read and compute digest on; initialized elsewhere
List text = new ArrayList(); // We'll store the lines of text here

// Get an object that can compute an SHA message digest
MessageDigest digester = MessageDigest.getInstance("SHA");
// A stream to read bytes from the file f
FileInputStream fis = new FileInputStream(f);
// A stream that reads bytes from fis and computes an SHA message digest
DigestInputStream dis = new DigestInputStream(fis, digester);
// A stream that reads bytes from dis and converts them to characters
InputStreamReader isr = new InputStreamReader(dis);
// A stream that can read a line at a time
BufferedReader br = new BufferedReader(isr);
// Now read lines from the stream
for(String line; (line = br.readLine()) != null; text.add(line)) ;
// Close the streams
br.close();
// Get the message digest
byte[] digest = digester.digest();

Streaming Data to and from Arrays

 So far,
we’ve used a variety of stream classes to manipulate
streaming data, but the data itself ultimately comes from a file or
is written to the console. The java.io package
defines other stream classes that can read data from and write data
to arrays of bytes or strings of text:
import java.io.*;

// Set up a stream that uses a byte array as its destination
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream out = new DataOutputStream(baos);
out.writeUTF("hello"); // Write some string data out as bytes
out.writeDouble(Math.PI); // Write a floating-point value out as bytes
byte[] data = baos.toByteArray(); // Get the array of bytes we've written
out.close(); // Close the streams

// Set up a stream to read characters from a string
Reader in = new StringReader("Now is the time!");
// Read characters from it until we reach the end
int c;
while((c = in.read()) != -1) System.out.print((char) c);
Other classes that operate this way include
ByteArrayInputStream,
StringWriter, CharArrayReader,
and CharArrayWriter.

Thread Communication with Pipes

 PipedInputStream and
PipedOutputStream and their character-based
counterparts, PipedReader and
PipedWriter, are another interesting set of
streams defined by java.io. These streams are used
in pairs by two threads that want to communicate. One thread writes
bytes to a PipedOutputStream or characters to a
PipedWriter, and another thread reads bytes or
characters from the corresponding PipedInputStream
or PipedReader:
// A pair of connected piped I/O streams forms a pipe. One thread writes
// bytes to the PipedOutputStream, and another thread reads them from the
// corresponding PipedInputStream. Or use PipedWriter/PipedReader for chars.
final PipedOutputStream writeEndOfPipe = new PipedOutputStream();
final PipedInputStream readEndOfPipe = new PipedInputStream(writeEndOfPipe);

// This thread reads bytes from the pipe and discards them
Thread devnull = new Thread(new Runnable() {
 public void run() {
 try { while(readEndOfPipe.read() != -1); }
 catch (IOException e) {} // ignore it
 }
});
devnull.start();

Networking with java.net

 The java.net package
defines a number of classes that make writing networked applications
surprisingly easy. Various examples follow.
Networking with the URL Class

 The easiest networking
class to use is URL, which represents a uniform
resource locator. Different Java implementations may support
different sets of URL protocols, but, at a minimum, you can rely on
support for the http://,
ftp://, and file:// protocols.
As of Java 1.4, secure HTTP is also supported with the

 https:// protocol.
Here are some ways you can use the URL class:
import java.net.*;
import java.io.*;

// Create some URL objects
URL url=null, url2=null, url3=null;
try {
 url = new URL("http://www.oreilly.com"); // An absolute URL
 url2 = new URL(url, "catalog/books/javanut4/"); // A relative URL
 url3 = new URL("http:", "www.oreilly.com", "index.html");
} catch (MalformedURLException e) { /* Ignore this exception */ }

// Read the content of a URL from an input stream
InputStream in = url.openStream();

// For more control over the reading process, get a URLConnection object
URLConnection conn = url.openConnection();

// Now get some information about the URL
String type = conn.getContentType();
String encoding = conn.getContentEncoding();
java.util.Date lastModified = new java.util.Date(conn.getLastModified());
int len = conn.getContentLength();

// If necessary, read the contents of the URL using this stream
InputStream in = conn.getInputStream();

Working with Sockets

 Sometimes
you
need more control over your networked application than is possible
with the URL class. In this case, you can use a
Socket to communicate directly with a server. For
example:
import java.net.*;
import java.io.*;

// Here's a simple client program that connects to a web server,
// requests a document and reads the document from the server.
String hostname = "java.oreilly.com"; // The server to connect to
int port = 80; // Standard port for HTTP
String filename = "/index.html"; // The file to read from the server
Socket s = new Socket(hostname, port); // Connect to the server

// Get I/O streams we can use to talk to the server
InputStream sin = s.getInputStream();
BufferedReader fromServer = new BufferedReader(new InputStreamReader(sin));
OutputStream sout = s.getOutputStream();
PrintWriter toServer = new PrintWriter(new OutputStreamWriter(sout));

// Request the file from the server, using the HTTP protocol
toServer.print("GET " + filename + " HTTP/1.0\r\n\r\n");
toServer.flush();

// Now read the server's response, assume it is a text file, and print it out
for(String l = null; (l = fromServer.readLine()) != null;)
 System.out.println(l);

// Close everything down when we're done
toServer.close();
fromServer.close();
s.close();

Secure Sockets with SSL

 In
Java 1.4, the Java Secure Socket
Extension, or JSSE, was added to the core Java platform in the
packages javax.net and
javax.net.ssl.[1] This API enables encrypted network communication over
sockets that use the SSL (Secure Sockets Layer, also known as TLS)
protocol. SSL is widely used on the Internet: it is the basis for
secure web communication using the https://
protocol. In Java 1.4 and later, you can use
https:// with the URL class as
previously shown to securely download documents from web servers that
support SSL.
Like all Java security APIs, JSSE is highly configurable and gives
low-level control over all details of setting up and communicating
over an SSL socket. The javax.net and
javax.net.ssl packages are fairly complex, but in
practice, you need only a few classes to securely communicate with a
server. The following program is a variant on the preceding code that
uses HTTPS instead of HTTP to securely transfer the contents of the
requested URL:
import java.io.*;
import java.net.*;
import javax.net.ssl.*;
import java.security.cert.*;

/**
 * Get a document from a web server using HTTPS. Usage:
 * java HttpsDownload <hostname> <filename>
 **/
public class HttpsDownload {
 public static void main(String[] args) throws IOException {
 // Get a SocketFactory object for creating SSL sockets
 SSLSocketFactory factory =
 (SSLSocketFactory) SSLSocketFactory.getDefault();

 // Use the factory to create a secure socket connected to the
 // HTTPS port of the specified web server.
 SSLSocket sslsock=(SSLSocket)factory.createSocket(args[0], // Hostname
 443); // HTTPS port

 // Get the certificate presented by the web server
 SSLSession session = sslsock.getSession();
 X509Certificate cert;
 try { cert = (X509Certificate)session.getPeerCertificates()[0]; }
 catch(SSLPeerUnverifiedException e) { // If no or invalid certificate
 System.err.println(session.getPeerHost() +
 " did not present a valid certificate.");
 return;
 }

 // Display details about the certificate
 System.out.println(session.getPeerHost() +
 " has presented a certificate belonging to:");
 System.out.println("\t[" + cert.getSubjectDN().getName() + "]");
 System.out.println("The certificate bears the valid signature of:");
 System.out.println("\t[" + cert.getIssuerDN().getName() + "]");

 // If the user does not trust the certificate, abort
 System.out.print("Do you trust this certificate (y/n)? ");
 System.out.flush();
 BufferedReader console =
 new BufferedReader(new InputStreamReader(System.in));
 if (Character.toLowerCase(console.readLine().charAt(0)) != 'y') return;

 // Now use the secure socket just as you would use a regular socket
 // First, send a regular HTTP request over the SSL socket
 PrintWriter out = new PrintWriter(sslsock.getOutputStream());
 out.print("GET " + args[1] + " HTTP/1.0\r\n\r\n");
 out.flush();

 // Next, read the server's response and print it to the console
 BufferedReader in =
 new BufferedReader(new InputStreamReader(sslsock.getInputStream()));
 String line;
 while((line = in.readLine()) != null) System.out.println(line);

 // Finally, close the socket
 sslsock.close();
 }
}

Servers

 A

 client application
uses a Socket to communicate with a server. The
server does the same thing: it uses a Socket
object to communicate with each of its clients. However, the server
has an additional task in that it must be able to recognize and
accept client connection requests. This is done with the

 ServerSocket class. The
following code shows how you might use a
ServerSocket. The code implements a simple
HTTP server that
responds to all requests by sending back (or mirroring) the exact
contents of the HTTP request. A dummy server like this is useful when
debugging HTTP
clients:

import java.io.*;
import java.net.*;

public class HttpMirror {
 public static void main(String[] args) {
 try {
 int port = Integer.parseInt(args[0]); // The port to listen on
 ServerSocket ss = new ServerSocket(port); // Create a socket to listen
 for(;;) { // Loop forever
 Socket client = ss.accept(); // Wait for a connection
 ClientThread t = new ClientThread(client);// A thread to handle it
 t.start(); // Start the thread running
 } // Loop again
 }
 catch (Exception e) {
 System.err.println(e.getMessage());
 System.err.println("Usage: java HttpMirror <port>;");
 }
 }

 static class ClientThread extends Thread {
 Socket client;
 ClientThread(Socket client) { this.client = client; }
 public void run() {
 try {
 // Get streams to talk to the client
 BufferedReader in =
 new BufferedReader(new InputStreamReader(client.getInputStream()));
 PrintWriter out =
 new PrintWriter(new OutputStreamWriter(client.getOutputStream()));

 // Send an HTTP response header to the client
 out.print("HTTP/1.0 200\r\nContent-Type: text/plain\r\n\r\n");

 // Read the HTTP request from the client and send it right back
 // Stop when we read the blank line from the client that marks
 // the end of the request and its headers.
 String line;
 while((line = in.readLine()) != null) {
 if (line.length() == 0) break;
 out.println(line);
 }

 out.close();
 in.close();
 client.close();
 }
 catch (IOException e) { /* Ignore exceptions */ }
 }
 }
}
This server code could be modified using JSSE to support SSL
connections. Making a server secure is more complex than making a
client secure, however, because a server must have a certificate it
can present to the client. Therefore, server-side JSSE is not
demonstrated here.

Datagrams

 Both

 URL
and Socket perform networking on top of a
stream-based network connection. Setting up and maintaining a stream
across a network takes work at the network level, however. Sometimes
you need a low-level way to speed a packet of data across a network,
but you don’t care about maintaining a stream. If,
in addition, you don’t need a guarantee that your
data will get there or that the packets of data will arrive in the
order you sent them, you may be interested in the

 DatagramSocket and

 DatagramPacket classes:
import java.net.*;

// Send a message to another computer via a datagram
try {
 String hostname = "host.example.com"; // The computer to send the data to
 InetAddress address = // Convert the DNS hostname
 InetAddress.getByName(hostname); // to a lower-level IP address.
 int port = 1234; // The port to connect to
 String message = "The eagle has landed."; // The message to send
 byte[] data = message.getBytes(); // Convert string to bytes
 DatagramSocket s = new DatagramSocket(); // Socket to send message with
 DatagramPacket p = // Create the packet to send
 new DatagramPacket(data, data.length, address, port);
 s.send(p); // Now send it!
 s.close(); // Always close sockets when done
}
catch (UnknownHostException e) {} // Thrown by InetAddress.getByName()
catch (SocketException e) {} // Thrown by new DatagramSocket()
catch (java.io.IOException e) {} // Thrown by DatagramSocket.send()

// Here's how the other computer can receive the datagram
try {
 byte[] buffer = new byte[4096]; // Buffer to hold data

 DatagramSocket s = new DatagramSocket(1234); // Socket that receives it
 // through
 DatagramPacket p =
 new DatagramPacket(buffer, buffer.length); // The packet that receives it
 s.receive(p); // Wait for a packet to arrive
 String msg = // Convert the bytes from the
 new String(buffer, 0, p.getLength()); // packet back to a string.
 s.close(); // Always close the socket
}
catch (SocketException e) {} // Thrown by new DatagramSocket()
catch (java.io.IOException e) {} // Thrown by DatagramSocket.receive()

Testing the Reachability of a Host

In
 Java
5.0 the InetAddress

 class has an isReachable(
) method that attempts to determine whether the host is
reachable. The following code uses it in a naive Java implementation
of the Unix ping
 utility:
import java.io.IOException;
import java.net.InetAddress;
import java.net.UnknownHostException;

public class Ping {
 public static void main(String[] args) throws IOException {
 try {
 String hostname = args[0];
 int timeout = (args.length > 1)?Integer.parseInt(args[1]):2000;
 InetAddress[] addresses = InetAddress.getAllByName(hostname);
 for(InetAddress address : addresses) {
 if (address.isReachable(timeout))
 System.out.printf("%s is reachable%n", address);
 else
 System.out.printf("%s could not be contacted%n", address);
 }
 }
 catch (UnknownHostException e) {
 System.out.printf("Unknown host: %s%n", args[0]);
 }
 catch(IOException e) { System.out.printf("Network error: %s%n", e); }
 catch (Exception e) {
 // ArrayIndexOutOfBoundsException or NumberFormatException
 System.out.println("Usage: java Ping <hostname> [timeout in ms]");
 }
 }
}

[1] An earlier version
of JSSE using different package names is available as a separate
download for use with Java 1.2 and Java 1.3. See
http://java.sun.com/products/jsse/.

I/O and Networking with java.nio

 Java 1.4 introduced an entirely new API for
high-performance, nonblocking I/O and networking. This API consists
primarily of three new packages.
 java.nio defines
Buffer classes that are used to store sequences of
bytes or other primitive values.

 java.nio.channels
defines
channels

through which data can be transferred between a buffer and a data
source or sink, such as a file or a network socket. This package also
contains important classes used for nonblocking I/O.
Finally, the
java.nio.charset
 package contains classes for
efficiently converting buffers of
bytes into buffers of
characters.
The sections that follow contain examples of using all three of these
packages as well as examples of specific I/O tasks with the New I/O
API.
Basic Buffer Operations

 The java.nio

 package
includes an
abstract Buffer class, which defines generic
operations on buffers. This package also defines type-specific
subclasses such as ByteBuffer,
CharBuffer, and IntBuffer. (See
Buffer and ByteBuffer in the
reference section for details on these classes and their various
methods.) The following code illustrates typical sequences of buffer
operations on a ByteBuffer. The other
type-specific buffer classes have similar methods.
import java.nio.*;

// Buffers don't have public constructors. They are allocated instead.
ByteBuffer b = ByteBuffer.allocate(4096); // Create a buffer for 4,096 bytes
// Or do this to try to get an efficient buffer from the low-level OS
ByteBuffer buf2 = ByteBuffer.allocateDirect(65536);
// Here's another way to get a buffer: by "wrapping" an array
byte[] data; // Assume this array is created and initialized elsewhere
ByteBuffer buf3 = ByteBuffer.wrap(data); // Create buffer that uses the array
// It is also possible to create a "view buffer" to view bytes as other types
buf3.order(ByteOrder.BIG_ENDIAN); // Specify the byte order for the buffer
IntBuffer ib = buf3.asIntBuffer(); // View those bytes as integers

// Now store some data in the buffer
b.put(data); // Copy bytes from array to buffer at current position
b.put((byte)42); // Store another byte at the new current position
b.put(0, (byte)9); // Overwrite first byte in buffer. Don't change position.
b.order(ByteOrder.BIG_ENDIAN); // Set the byte order of the buffer
b.putChar('x'); // Store the two bytes of a Unicode character in buffer
b.putInt(0xcafebabe); // Store four bytes of an int into the buffer

// Here are methods for querying basic numbers about a buffer
int capacity = b.capacity(); // How many bytes can the buffer hold? (4,096)
int position = b.position(); // Where will the next byte be written or read?
// A buffer's limit specifies how many bytes of the buffer can be used.
// When writing into a buffer, this should be the capacity. When reading data
// from a buffer, it should be the number of bytes that were previously
// written.
int limit = b.limit(); // How many should be used?
int remaining = b.remaining(); // How many left? Return limit-position.
boolean more=b.hasRemaining(); // Test if there is still room in the buffer

// The position and limit can also be set with methods of the same name
// Suppose you want to read the bytes you've written into the buffer
b.limit(b.position()); // Set limit to current position
b.position(0); // Set limit to 0; start reading at beginning

// Instead of the two previous calls, you usually use a convenience method
b.flip(); // Set limit to position and position to 0; prepare for reading
b.rewind(); // Set position to 0; don't change limit; prepare for rereading
b.clear(); // Set position to 0 and limit to capacity; prepare for writing

// Assuming you've called flip(), you can start reading bytes from the buffer
buf2.put(b); // Read all bytes from b and put them into buf2
b.rewind(); // Rewind b for rereading from the beginning
byte b0 = b.get(); // Read first byte; increment buffer position
byte b1 = b.get(); // Read second byte; increment buffer position
byte[] fourbytes = new byte[4];
b.get(fourbytes); // Read next four bytes, add 4 to buffer position
byte b9 = b.get(9); // Read 10th byte, without changing current position
int i = b.getInt(); // Read next four bytes as an integer; add 4 to position

// Discard bytes you've already read; shift the remaining ones to the
// beginning of the buffer; set position to new limit and limit to capacity,
// preparing the buffer for writing more bytes into it.
b.compact();

 You
may notice that many buffer methods return the object on which they
operate. This is done so that method calls can be
“chained” in code, as follows:
ByteBuffer bb=ByteBuffer.allocate(32).order(ByteOrder.BIG_ENDIAN).putInt(1234);
Many methods throughout java.nio and its
subpackages return the current object to enable this kind of method
chaining. Note that the use of this kind of chaining is a stylistic
choice (which I have avoided in this chapter) and does not have any
significant impact on efficiency.

 ByteBuffer is the
most important of the buffer classes. However, another commonly used
class is
 CharBuffer.
CharBuffer objects can be created by wrapping a
string and can also be converted to strings.
CharBuffer implements the new
java.lang.CharSequence interface, which means that
it can be used like a String or
StringBuffer in certain applications (e.g., for
regular expression pattern matching).
// Create a read-only CharBuffer from a string
CharBuffer cb = CharBuffer.wrap("This string is the data for the CharBuffer");
String s = cb.toString(); // Convert to a String with toString() method
System.out.println(cb); // or rely on an implicit call to toString().
char c = cb.charAt(0); // Use CharSequence methods to get characters
char d = cb.get(1); // or use a CharBuffer absolute read.
// A relative read that reads the char and increments the current position
// Note that only the characters between the position and limit are used when
// a CharBuffer is converted to a String or used as a CharSequence.
char e = cb.get();
Bytes in a ByteBuffer are commonly converted to
characters in a CharBuffer and vice versa.
We’ll see how to do this when we consider the
java.nio.charset package.

Basic Channel Operations

 Buffers are not all that useful on
their own—there isn’t much point in storing
bytes into a buffer only to read them out again. Instead, buffers are
typically used with channels: your program stores bytes into a
buffer, then passes the buffer to a channel, which reads the bytes
out of the buffer and writes them to a file, network socket, or some
other destination. Or, in the reverse, your program passes a buffer
to a channel, which reads bytes from a file, socket, or other source
and stores those bytes into the buffer, where they can then be
retrieved by your program. The
 java.nio.channels
package defines several channel classes that represent files,
sockets, datagrams, and pipes. (We’ll see examples
of these concrete classes later in this chapter.) The following code,
however, is based on the capabilities of the various channel
interfaces defined by java.nio.channels and should
work with any Channel object:

Channel c; // Object that implements Channel interface; initialized elsewhere
if (c.isOpen()) c.close(); // These are the only methods defined by Channel

// The read() and write() methods are defined by the
// ReadableByteChannel and WritableByteChannel interfaces.
ReadableByteChannel source; // Initialized elsewhere
WritableByteChannel destination; // Initialized elsewhere
ByteBuffer buffer = ByteBuffer.allocateDirect(16384); // Low-level 16 KB buffer

// Here is the basic loop to use when reading bytes from a source channel and
// writing them to a destination channel until there are no more bytes to read
// from the source and no more buffered bytes to write to the destination.
while(source.read(buffer) != -1 || buffer.position() > 0) {
 // Flip buffer: set limit to position and position to 0. This prepares
 // the buffer for reading (which is done by a channel *write* operation).
 buffer.flip();
 // Write some or all of the bytes in the buffer to the destination
 destination.write(buffer);
 // Discard the bytes that were written, copying the remaining ones to
 // the start of the buffer. Set position to limit and limit to capacity,
 // preparing the buffer for writing (done by a channel *read* operation).
 buffer.compact();
}

// Don't forget to close the channels
source.close();
destination.close();

 In addition to the
ReadableByteChannel

 and
WritableByteChannel interfaces illustrated in the
preceding code, java.nio.channels defines several
other channel interfaces. ByteChannel simply
extends the readable and writable interfaces without adding any new
methods. It is a useful shorthand for channels that support both
reading and writing. GatheringByteChannel is an
extension of WritableByteChannel that defines
write() methods that gather
bytes from more than one buffer and write them out. Similarly,
ScatteringByteChannel is an extension of
ReadableByteChannel that defines
read() methods that read bytes from the channel
and scatter or distribute them into more than
one buffer. The gathering and scattering write()
and read() methods can be useful when working with
network protocols that use fixed-size headers that you want to store
in a buffer separate from the rest of the transferred data.

 One confusing point to be aware of is that a
channel read operation involves writing (or putting) bytes into a
buffer, and a channel write operation involves reading (or getting)
bytes from a buffer. Thus, when I say that the flip(
) method prepares a buffer for reading, I mean that it
prepares a buffer for use in a channel write()
operation! The reverse is true for the buffer’s
compact() method.

Encoding and Decoding Text with Charsets

 A
java.nio.charset.Charset
 object represents a
character set plus
an encoding for that character set. Charset and
its associated classes,

 CharsetEncoder and

 CharsetDecoder,
define methods for encoding strings of characters into sequences of
bytes and decoding sequences of bytes into strings
of characters. Since these classes are part of the New I/O API, they
use the
 ByteBuffer and

 CharBuffer
classes:
// The simplest case. Use Charset convenience routines to convert.
Charset charset = Charset.forName("ISO-8859-1"); // Get Latin-1 Charset
CharBuffer cb = CharBuffer.wrap("Hello World"); // Characters to encode
// Encode the characters and store the bytes in a newly allocated ByteBuffer
ByteBuffer bb = charset.encode(cb);
// Decode these bytes into a newly allocated CharBuffer and print them out
System.out.println(charset.decode(bb));

 Note
the use of the ISO-8859-1 (a.k.a. Latin-1) charset in
this example. This 8-bit charset is suitable for most Western
European languages, including English. Programmers who work only with
English may also use the 7-bit US-ASCII charset. The
Charset class does not do encoding and decoding
itself, and the previous convenience routines create
CharsetEncoder and
CharsetDecoder classes internally. If you plan to
encode or decode multiple times, it is more efficient to create these
objects yourself:
Charset charset = Charset.forName("US-ASCII"); // Get the charset
CharsetEncoder encoder = charset.newEncoder(); // Create an encoder from it
CharBuffer cb = CharBuffer.wrap("Hello World!"); // Get a CharBuffer
WritableByteChannel destination; // Initialized elsewhere
destination.write(encoder.encode(cb)); // Encode chars and write

 The preceding
CharsetEncoder.encode() method must allocate a
new ByteBuffer each time it is called. For maximum
efficiency, you can call lower-level methods to do the encoding and
decoding into an existing buffer:
ReadableByteChannel source; // Initialized elsewhere
Charset charset = Charset.forName("ISO-8859-1"); // Get the charset
CharsetDecoder decoder = charset.newDecoder(); // Create a decoder from it
ByteBuffer bb = ByteBuffer.allocateDirect(2048); // Buffer to hold bytes
CharBuffer cb = CharBuffer.allocate(2048); // Buffer to hold characters

while(source.read(bb) != -1) { // Read bytes from the channel until EOF
 bb.flip(); // Flip byte buffer to prepare for decoding
 decoder.decode(bb, cb, true); // Decode bytes into characters
 cb.flip(); // Flip char buffer to prepare for printing
 System.out.print(cb); // Print the characters
 cb.clear(); // Clear char buffer to prepare for decoding
 bb.clear(); // Prepare byte buffer for next channel read
}
source.close(); // Done with the channel, so close it
System.out.flush(); // Make sure all output characters appear

 The preceding code relies on the fact
that ISO-8859-1 is an 8-bit encoding charset and
that there is one-to-one mapping between characters and bytes. For
more complex charsets, such as the UTF-8 encoding of Unicode or the
EUC-JP charset used with Japanese text; however, this does not
hold, and more than one byte is required for some (or all)
characters. When this is the case, there is no guarantee that all
bytes in a buffer can be decoded at once (the end of the buffer may
contain a partial character). Also, since a single character may
encode to more than one byte, it can be tricky to know how many bytes
a given string will encode into. The following code shows a loop you
can use to decode bytes in a more general way:
ReadableByteChannel source; // Initialized elsewhere
Charset charset = Charset.forName("UTF-8"); // A Unicode encoding
CharsetDecoder decoder = charset.newDecoder(); // Create a decoder from it
ByteBuffer bb = ByteBuffer.allocateDirect(2048); // Buffer to hold bytes
CharBuffer cb = CharBuffer.allocate(2048); // Buffer to hold characters

// Tell the decoder to ignore errors that might result from bad bytes
decoder.onMalformedInput(CodingErrorAction.IGNORE);
decoder.onUnmappableCharacter(CodingErrorAction.IGNORE);

decoder.reset(); // Reset decoder if it has been used before
while(source.read(bb) != -1) { // Read bytes from the channel until EOF
 bb.flip(); // Flip byte buffer to prepare for decoding
 decoder.decode(bb, cb, false); // Decode bytes into characters
 cb.flip(); // Flip char buffer to prepare for printing
 System.out.print(cb); // Print the characters
 cb.clear(); // Clear the character buffer
 bb.compact(); // Discard already decoded bytes
}
source.close(); // Done with the channel, so close it

// At this point, there may still be some bytes in the buffer to decode
bb.flip(); // Prepare for decoding
decoder.decode(bb, cb, true); // Pass true to indicate this is the last call
decoder.flush(cb); // Output any final characters
cb.flip(); // Flip char buffer
System.out.print(cb); // Print the final characters

Working with Files

 FileChannel

 is
a concrete Channel class that performs file I/O
and implements
ReadableByteChannel

 and
WritableByteChannel (although its

 read() method works
only if the underlying file is open for reading, and its

 write() method works
only if the file is open for writing). Obtain a
FileChannel object by using the
java.io package to create a
FileInputStream, a
FileOutputStream, or a
RandomAccessFile and then call the

 getChannel() method (added
in Java 1.4) of that object. As an example, you can use two
FileChannel objects to copy a file:
String filename = "test"; // The name of the file to copy
// Create streams to read the original and write the copy
FileInputStream fin = new FileInputStream(filename);
FileOutputStream fout = new FileOutputStream(filename + ".copy");
// Use the streams to create corresponding channel objects
FileChannel in = fin.getChannel();
FileChannel out = fout.getChannel();
// Allocate a low-level 8KB buffer for the copy
ByteBuffer buffer = ByteBuffer.allocateDirect(8192);
while(in.read(buffer) != -1 || buffer.position() > 0) {
 buffer.flip(); // Prepare to read from the buffer and write to the file
 out.write(buffer); // Write some or all buffer contents
 buffer.compact(); // Discard all bytes that were written and prepare to
} // read more from the file and store them in the buffer.
in.close(); // Always close channels and streams when done with them
out.close();
fin.close(); // Note that closing a FileChannel does not
fout.close(); // automatically close the underlying stream.

 FileChannel has
special transferTo() and
transferFrom() methods that make it particularly
easy (and on many operating systems, particularly efficient) to
transfer a specified number of bytes from a
FileChannel to some other specified channel, or
from some other channel to a FileChannel. These
methods allow us to simplify the preceding file-copying code to the
following:
FileChannel in, out; // Assume these are initialized as in the
 // preceding example.
long numbytes = in.size(); // Number of bytes in original file
in.transferTo(0, numbytes, out); // Transfer that amount to output channel
This code could be equally well-written using transferFrom(
) instead of transferTo() (note that
these two methods expect their arguments in different orders):
long numbytes = in.size();
out.transferFrom(in, 0, numbytes);

 FileChannel has other
capabilities that are not shared by other channel classes. One of the
most important is the ability to “memory
map” a file or a portion of a file, i.e., to obtain
a MappedByteBuffer (a subclass of
ByteBuffer) that represents the contents of the
file and allows you to read (and optionally write) file contents
simply by reading from and writing to the buffer. Memory mapping a
file is a somewhat expensive operation, so this technique is usually
efficient only when you are working with a large file to which you
need repeated access. Memory mapping offers you yet another way to
perform the same file-copy operation shown previously:
long filesize = in.size();
ByteBuffer bb = in.map(FileChannel.MapMode.READ_ONLY, 0, filesize);
while(bb.hasRemaining()) out.write(bb);
The channel interfaces defined by
java.nio.channels include
ByteChannel but not
CharChannel. The channel API is low-level and
provides methods for reading bytes only. All of the previous examples
have treated files as binary files. It is possible to use the
CharsetEncoder and
CharsetDecoder classes introduced earlier to
convert between bytes and characters, but when you want to work with
text files, the Reader and
Writer classes of the java.io
package are usually much easier to use than
CharBuffer. Fortunately, the
Channels class defines convenience methods that
bridge between the old and new APIs. Here is code that wraps a
Reader and a Writer object
around input and output channels, reads lines of
Latin-1 text from the input channel, and
writes them back out to the output channel, with the encoding changed
to UTF-8:

ReadableByteChannel in; // Assume these are initialized elsewhere
WritableByteChannel out;
// Create a Reader and Writer from a FileChannel and charset name
BufferedReader reader=new BufferedReader(Channels.newReader(in, "ISO-8859-1"));
PrintWriter writer = new PrintWriter(Channels.newWriter(out, "UTF-8"));
String line;
while((line = reader.readLine()) != null) writer.println(line);
reader.close();
writer.close();

 Unlike the FileInputStream
and FileOutputStream classes, the
FileChannel class allows random access to the
contents of the file. The zero-argument position()
method returns the file pointer (the position
of the next byte to be read), and the one-argument position(
) method allows you to set this pointer to any value you
want. This allows you to skip around in a file in the way that the
java.io.RandomAccessFile does. Here is an example:
// Suppose you have a file that has data records scattered throughout, and the
// last 1,024 bytes of the file are an index that provides the position of
// those records. Here is code that reads the index of the file, looks up the
// position of the first record within the file and then reads that record.
FileChannel in = new FileInputStream("test.data").getChannel(); // The channel
ByteBuffer index = ByteBuffer.allocate(1024); // A buffer to hold the index
long size = in.size(); // The size of the file
in.position(size - 1024); // Position at start of index
in.read(index); // Read the index
int record0Position = index.getInt(0); // Get first index entry
in.position(record0Position); // Position file at that point
ByteBuffer record0 = ByteBuffer.allocate(128); // Get buffer to hold data
in.read(record0); // Finally, read the record

 The final feature of
FileChannel that we’ll consider
here is its ability to lock a file or a portion of a file against all
concurrent access (an exclusive lock) or against concurrent writes (a
shared lock). (Note that some operating systems strictly enforce all
locks while others provide only an advisory locking facility that
requires programs to cooperate and to attempt to acquire a lock
before reading or writing portions of a shared file.) In the previous
random-access example, suppose we wanted to ensure that no other
program was modifying the record data while we read it. We could
acquire a shared lock on that portion of the file with the following
code:

FileLock lock = in.lock(record0Position, // Start of locked region
 128, // Length of locked region
 true); // Shared lock: prevent concurrent updates
 // but allow concurrent reads.
in.position(record0Position); // Move to start of index
in.read(record0); // Read the index data
lock.release(); // You're done with the lock, so release it

Client-Side Networking

The

 New I/O API includes networking
capabilities as well as file-access capabilities. To communicate over
the network, you can use the
SocketChannel

 class.
Create a SocketChannel with the static

 open() method,
then read and write bytes from and to it as you would with any other
channel object. The following code uses
SocketChannel to send an HTTP request to a web
server and saves the server’s response (including
all of the HTTP headers) to a file.
Note the use of
java.net.InetSocketAddress
 , a subclass of
java.net.SocketAddress
 , to tell the
SocketChannel what to connect to. These classes
were also introduced as part of the New I/O API.
import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;

// Create a SocketChannel connected to the web server at www.oreilly.com
SocketChannel socket =
 SocketChannel.open(new InetSocketAddress("www.oreilly.com",80));
// A charset for encoding the HTTP request
Charset charset = Charset.forName("ISO-8859-1");
// Send an HTTP request to the server. Start with a string, wrap it to
// a CharBuffer, encode it to a ByteBuffer, then write it to the socket.
socket.write(charset.encode(CharBuffer.wrap("GET / HTTP/1.0\r\n\r\n")));
// Create a FileChannel to save the server's response to
FileOutputStream out = new FileOutputStream("oreilly.html");
FileChannel file = out.getChannel();
// Get a buffer for holding bytes while transferring from socket to file
ByteBuffer buffer = ByteBuffer.allocateDirect(8192);
// Now loop until all bytes are read from the socket and written to the file
while(socket.read(buffer) != -1 || buffer.position() > 0) { // Are we done?
 buffer.flip(); // Prepare to read bytes from buffer and write to file
 file.write(buffer); // Write some or all bytes to the file
 buffer.compact(); // Discard those that were written
}
socket.close(); // Close the socket channel
file.close(); // Close the file channel
out.close(); // Close the underlying file

 Another way to create a
SocketChannel is with the no-argument version of
open(), which creates an unconnected channel. This
allows you to call the socket() method to obtain
the underlying socket, configure the socket as desired, and connect
to the desired host with the connect method. For example:
SocketChannel sc = SocketChannel.open(); // Open an unconnected socket channel
Socket s = sc.socket(); // Get underlying java.net.Socket
s.setSoTimeout(3000); // Time out after three seconds
// Now connect the socket channel to the desired host and port
sc.connect(new InetSocketAddress("www.davidflanagan.com", 80));

ByteBuffer buffer = ByteBuffer.allocate(8192); // Create a buffer
try { sc.read(buffer); } // Try to read from socket
catch(SocketTimeoutException e) { // Catch timeouts here
 System.out.println("The remote computer is not responding.");
 sc.close();
}

 In addition to the
SocketChannel class, the
java.nio.channels package defines a
DatagramChannel for networking with datagrams
instead of sockets. DatagramChannel is not
demonstrated here, but you can read about it in the reference
section.
One of the most powerful features of the New I/O API is that channels
such as SocketChannel and
DatagramChannel can be used in nonblocking mode.
We’ll see examples of this in later sections.

Server-Side Networking

 The
java.net

 package
defines a

 Socket class for
communication between a client and a server and defines a
ServerSocket class used by the server to listen
for and accept connections from clients. The

 java.nio.channels
package is analogous: it defines a
SocketChannel

 class for data transfer and a

 ServerSocketChannel
class for accepting connections.
ServerSocketChannel is an unusual channel because
it does not implement ReadableByteChannel or
WritableByteChannel. Instead of
read() and write() methods, it
has an
 accept() method for
accepting client connections and obtaining a
SocketChannel through which it communicates with
the client. Here is the code for a simple, single-threaded server
that listens for connections on port 8000 and reports the current
time to any client that connects:
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;

public class DateServer {
 public static void main(String[] args) throws java.io.IOException {
 // Get a CharsetEncoder for encoding the text sent to the client
 CharsetEncoder encoder = Charset.forName("US-ASCII").newEncoder();

 // Create a new ServerSocketChannel and bind it to port 8000
 // Note that this must be done using the underlying ServerSocket
 ServerSocketChannel server = ServerSocketChannel.open();
 server.socket().bind(new java.net.InetSocketAddress(8000));

 for(;;) { // This server runs forever
 // Wait for a client to connect
 SocketChannel client = server.accept();
 // Get the current date and time as a string
 String response = new java.util.Date().toString() + "\r\n";
 // Wrap, encode, and send the string to the client
 client.write(encoder.encode(CharBuffer.wrap(response)));
 // Disconnect from the client
 client.close();
 }
 }
}

Nonblocking I/O

 The

 preceding
DateServer class is a simple network server.
Because it does not maintain a connection with any client, it never
needs to communicate with more than one at a time, and there is never
more than one SocketChannel in use. More realistic
servers must be able to communicate with more than one client at a
time. The java.io and java.net
APIs allow only blocking I/O, so servers written using these APIs
must use a separate thread for each client. For large-scale servers
with many clients, this approach does not scale well. To solve this
problem, the New I/O API allows most channels (but not
FileChannel) to be used in nonblocking mode and
allows a single thread to manage all pending connections. This is
done with a Selector object, which keeps track of
a set of registered channels and can block until one or more of those
channels is ready for I/O, as the following code illustrates. This is
a longer example than most in this chapter, but it is a complete
working server class that manages a
ServerSocketChannel and any number of
SocketChannel connections to clients through a
single Selector
 object.
import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;
import java.util.*; // For Set and Iterator

public class NonBlockingServer {
 public static void main(String[] args) throws IOException {

 // Get the character encoders and decoders you'll need
 Charset charset = Charset.forName("ISO-8859-1");
 CharsetEncoder encoder = charset.newEncoder();
 CharsetDecoder decoder = charset.newDecoder();

 // Allocate a buffer for communicating with clients
 ByteBuffer buffer = ByteBuffer.allocate(512);

 // All of the channels in this code will be in nonblocking mode.
 // So create a Selector object that will block while monitoring
 // all of the channels and stop blocking only when one or more
 // of the channels is ready for I/O of some sort.
 Selector selector = Selector.open();

 // Create a new ServerSocketChannel and bind it to port 8000
 // Note that this must be done using the underlying ServerSocket
 ServerSocketChannel server = ServerSocketChannel.open();
 server.socket().bind(new java.net.InetSocketAddress(8000));
 // Put the ServerSocketChannel into nonblocking mode
 server.configureBlocking(false);
 // Now register it with the Selector (note that register() is called
 // on the channel, not on the selector object, however).
 // The SelectionKey represents the registration of this channel with
 // this Selector.
 SelectionKey serverkey = server.register(selector,
 SelectionKey.OP_ACCEPT);

 for(;;) { // The main server loop. The server runs forever.
 // This call blocks until there is activity on one of the
 // registered channels. This is the key method in nonblocking
 // I/O.
 selector.select();

 // Get a java.util.Set containing the SelectionKey objects for
 // all channels that are ready for I/O.
 Set keys = selector.selectedKeys();

 // Use a java.util.Iterator to loop through the selected keys
 for(Iterator i = keys.iterator(); i.hasNext();) {
 // Get the next SelectionKey in the set and remove it
 // from the set. It must be removed explicitly, or it will
 // be returned again by the next call to select().
 SelectionKey key = (SelectionKey) i.next();
 i.remove();

 // Check whether this key is the SelectionKey obtained when
 // you registered the ServerSocketChannel.
 if (key == serverkey) {
 // Activity on the ServerSocketChannel means a client
 // is trying to connect to the server.
 if (key.isAcceptable()) {
 // Accept the client connection and obtain a
 // SocketChannel to communicate with the client.
 SocketChannel client = server.accept();
 // Put the client channel in nonblocking mode
 client.configureBlocking(false);
 // Now register it with the Selector object,
 // telling it that you'd like to know when
 // there is data to be read from this channel.
 SelectionKey clientkey =
 client.register(selector, SelectionKey.OP_READ);
 // Attach some client state to the key. You'll
 // use this state when you talk to the client.
 clientkey.attach(new Integer(0));
 }
 }
 else {
 // If the key obtained from the Set of keys is not the
 // ServerSocketChannel key, then it must be a key
 // representing one of the client connections.
 // Get the channel from the key.
 SocketChannel client = (SocketChannel) key.channel();

 // If you are here, there should be data to read from
 // the channel, but double-check.
 if (!key.isReadable()) continue;

 // Now read bytes from the client. Assume that all the
 // client's bytes are in one read operation.
 int bytesread = client.read(buffer);

 // If read() returns -1, it indicates end-of-stream,
 // which means the client has disconnected, so
 // deregister the selection key and close the channel.
 if (bytesread == -1) {
 key.cancel();
 client.close();
 continue;
 }

 // Otherwise, decode the bytes to a request string
 buffer.flip();
 String request = decoder.decode(buffer).toString();
 buffer.clear();
 // Now reply to the client based on the request string
 if (request.trim().equals("quit")) {
 // If the request was "quit", send a final message
 // Close the channel and deregister the
 // SelectionKey
 client.write(encoder.encode(CharBuffer.wrap("Bye.")));
 key.cancel();
 client.close();
 }
 else {
 // Otherwise, send a response string comprised of
 // the sequence number of this request plus an
 // uppercase version of the request string. Note
 // that you keep track of the sequence number by
 // "attaching" an Integer object to the
 // SelectionKey and incrementing it each time.

 // Get sequence number from SelectionKey
 int num = ((Integer)key.attachment()).intValue();
 // For response string
 String response = num + ": " +
 request.toUpperCase();
 // Wrap, encode, and write the response string
 client.write(encoder.encode(CharBuffer.wrap(response)));
 // Attach an incremented sequence nubmer to the key
 key.attach(new Integer(num+1));
 }
 }
 }
 }
 }
}

 Nonblocking I/O is most useful for
writing network servers. It is also useful in clients that have more
than one network connection pending at the same time. For example,
consider a web browser downloading a web page and the images
referenced by that page at the same time. One other interesting use
of nonblocking I/O is to perform nonblocking socket connection
operations. The idea is that you can ask a
SocketChannel to establish a connection to a
remote host and then go do other stuff (such as build a GUI, for
example) while the underlying OS is setting up the connection across
the network. Later, you do a select() call to
block until the connection has been established, if it
hasn’t been already. The code for a nonblocking
connect looks like this:
// Create a new, unconnected SocketChannel. Put it in nonblocking
// mode, register it with a new Selector, and then tell it to connect.
// The connect call will return instead of waiting for the network
// connect to be fully established.
Selector selector = Selector.open();
SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);
channel.register(selector, SelectionKey.OP_CONNECT);
channel.connect(new InetSocketAddress(hostname, port));

// Now go do other stuff while the connection is set up
// For example, you can create a GUI here

// Now block if necessary until the SocketChannel is ready to connect.
// Since you've registered only one channel with this selector, you
// don't need to examine the key set; you know which channel is ready.
while(selector.select() == 0) /* empty loop */;

// This call is necessary to finish the nonblocking connections
channel.finishConnect();

// Finally, close the selector, which deregisters the channel from it
selector.close();

XML

 Java 1.4
and Java 5.0 have added powerful XML processing features to the Java
platform:
	
 org.xml.sax

	

 This package and its two
subpackages define the de facto standard SAX API (SAX stands for
Simple API for XML). SAX is an event-driven, XML-parsing API: a SAX
parser invokes methods of a specified
ContentHandler object (as well as some other
related handler objects) as it parses an XML document. The structure
and content of the document are fully described by the method calls.
This is a streaming API that does not build any permanent
representation of the document. It is up to the
ContentHandler implementation to store any state
or perform any actions that are appropriate. This package includes
classes for the SAX 2 API and deprecated classes for SAX 1.

	
 org.w3c.dom

	

 This package defines interfaces
that represent an XML document in tree form. The Document Object
Model (DOM) is a recommendation (essentially a standard) of the World
Wide Web Consortium (W3C). A DOM parser reads an XML document and
converts it into a tree of nodes that represent the full content of
the document. Once the tree representation of the document is
created, a program can examine and manipulate it however it wants.
Java 1.4 includes the core module of the Level 2 DOM, and Java 5.0
includes the core, events, and load/save modules of the Level 3 DOM.

	
 javax.xml.parsers

	
 This package provides high-level
interfaces for instantiating SAX and DOM parsers for parsing XML
documents.

	
 javax.xml.transform

	

 This
package and its subpackages define a Java API for transforming XML
document content and representation using the XSLT standard.

	
 javax.xml.validation

	This Java
5.0 package provides support for validating an XML document against a
schema. Implementations are required to support the W3C XML Schema
standard and may also support other schema types as well.

	
 javax.xml.xpath

	This package, also new in
 Java
5.0, supports the evaluation of XPath for selecting nodes in an XML
document.

Examples using each of these packages are presented in the following
sections.
Parsing XML with SAX

 The first
step in parsing an XML document with SAX is to obtain a SAX parser.
If you have a SAX parser implementation of your own, you can simply
instantiate the appropriate parser class. It is usually simpler,
however, to use the javax.xml.parsers package to
instantiate whatever SAX parser is provided by the Java
implementation. The code looks like this:
import javax.xml.parsers.*;

// Obtain a factory object for creating SAX parsers
SAXParserFactory parserFactory = SAXParserFactory.newInstance();

// Configure the factory object to specify attributes of the parsers it creates
parserFactory.setValidating(true);
parserFactory.setNamespaceAware(true);

// Now create a SAXParser object
SAXParser parser = parserFactory.newSAXParser(); // May throw exceptions

 The SAXParser
class is a simple wrapper around the
org.xml.sax.XMLReader class. Once you have
obtained one, as shown in the previous code, you can parse a document
by simply calling one of the various parse()
methods. Some of these methods use the deprecated SAX 1
HandlerBase class, and others use the current SAX
2 org.xml.sax.helpers.DefaultHandler class. The
DefaultHandler class provides an empty
implementation of all the methods of the
ContentHandler, ErrorHandler,
DTDHandler, and EntityResolver
interfaces. These are all the methods that the SAX parser can call
while parsing an XML document. By subclassing
DefaultHandler and defining the methods you care
about, you can perform whatever actions are necessary in response to
the method calls generated by the parser. The following code shows a
method that uses SAX to parse an XML file and determine the number of
XML elements that appear in a document as well as the number of
characters of plain text (possibly excluding
“ignorable whitespace”) that appear
within those elements:
import java.io.*;
import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class SAXCount {
 public static void main(String[] args)
 throws SAXException,IOException, ParserConfigurationException
 {
 // Create a parser factory and use it to create a parser
 SAXParserFactory parserFactory = SAXParserFactory.newInstance();
 SAXParser parser = parserFactory.newSAXParser();
 // This is the name of the file you're parsing
 String filename = args[0];
 // Instantiate a DefaultHandler subclass to do your counting for you
 CountHandler handler = new CountHandler();
 // Start the parser. It reads the file and calls methods of the handler.
 parser.parse(new File(filename), handler);
 // When you're done, report the results stored by your handler object
 System.out.println(filename + " contains " + handler.numElements +
 " elements and " + handler.numChars +
 " other characters ");
 }

 // This inner class extends DefaultHandler to count elements and text in
 // the XML file and saves the results in public fields. There are many
 // other DefaultHandler methods you could override, but you need only
 // these.
 public static class CountHandler extends DefaultHandler {
 public int numElements = 0, numChars = 0; // Save counts here
 // This method is invoked when the parser encounters the opening tag
 // of any XML element. Ignore the arguments but count the element.
 public void startElement(String uri, String localname, String qname,
 Attributes attributes) {
 numElements++;
 }

 // This method is called for any plain text within an element
 // Simply count the number of characters in that text
 public void characters(char[] text, int start, int length) {
 numChars += length;
 }
 }
}

Parsing XML with DOM

 The DOM API is much different from
the SAX API. While SAX is an efficient way to scan an XML document,
it is not well-suited for programs that want to modify documents.
Instead of converting an XML document into a series of method calls,
a DOM parser converts the document into an
org.w3c.dom.Document object, which is a tree of
org.w3c.dom.Node objects. The conversion of the
complete XML document to tree form allows random access to the entire
document but can consume substantial amounts of memory.

 In the DOM API, each node in the document
tree implements the Node interface and a
type-specific subinterface. (The most common types of node in a DOM
document are Element and Text
nodes.) When the parser is done parsing the document, your program
can examine and manipulate that tree using the various methods of
Node and its subinterfaces. The following code
uses JAXP to obtain a DOM parser (which, in JAXP parlance, is called
a DocumentBuilder). It then parses an XML file and
builds a document tree from it. Next, it examines the
Document tree to search for
<sect1> elements and prints the contents of
the <title> of each.
import java.io.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class GetSectionTitles {
 public static void main(String[] args)
 throws IOException, ParserConfigurationException,
 org.xml.sax.SAXException
 {
 // Create a factory object for creating DOM parsers and configure it
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 factory.setIgnoringComments(true); // We want to ignore comments
 factory.setCoalescing(true); // Convert CDATA to Text nodes
 factory.setNamespaceAware(false); // No namespaces: this is default
 factory.setValidating(false); // Don't validate DTD: also default

 // Now use the factory to create a DOM parser, a.k.a. DocumentBuilder
 DocumentBuilder parser = factory.newDocumentBuilder();

 // Parse the file and build a Document tree to represent its content
 Document document = parser.parse(new File(args[0]));

 // Ask the document for a list of all <sect1> elements it contains
 NodeList sections = document.getElementsByTagName("sect1");
 // Loop through those <sect1> elements one at a time
 int numSections = sections.getLength();
 for(int i = 0; i < numSections; i++) {
 Element section = (Element)sections.item(i); // A <sect1>
 // The first Element child of each <sect1> should be a <title>
 // element, but there may be some whitespace Text nodes first, so
 // loop through the children until you find the first element
 // child.
 Node title = section.getFirstChild();
 while(title != null && title.getNodeType() != Node.ELEMENT_NODE)
 title = title.getNextSibling();
 // Print the text contained in the Text node child of this element
 if (title != null)
 System.out.println(title.getFirstChild().getNodeValue());
 }
 }
}

Transforming XML Documents

 The javax.xml.transform
package defines a TransformerFactory class for
creating Transformer objects. A
Transformer can transform a document from its
Source representation into a new
Result representation and optionally apply an XSLT
transformation to the document content in the process. Three
subpackages define concrete implementations of the
Source and Result interfaces,
which allow documents to be transformed among three representations:
	
 javax.xml.transform.stream

	Represents documents as streams of XML text.

	
 javax.xml.transform.dom

	Represents documents as DOM Document trees.

	
 javax.xml.transform.sax

	Represents documents as sequences of SAX method calls.

The following code shows one use of these packages to transform the
representation of a document from a DOM Document
tree into a stream of XML text. An interesting feature of this code
is that it does not create the Document tree by
parsing a file; instead, it builds it up from scratch.
import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMToStream {
 public static void main(String[] args)
 throws ParserConfigurationException,
 TransformerConfigurationException,
 TransformerException
 {
 // Create a DocumentBuilderFactory and a DocumentBuilder
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 // Instead of parsing an XML document, however, just create an empty
 // document that you can build up yourself.
 Document document = db.newDocument();

 // Now build a document tree using DOM methods
 Element book = document.createElement("book"); // Create new element
 book.setAttribute("id", "javanut4"); // Give it an attribute
 document.appendChild(book); // Add to the document
 for(int i = 1; i <= 3; i++) { // Add more elements
 Element chapter = document.createElement("chapter");
 Element title = document.createElement("title");
 title.appendChild(document.createTextNode("Chapter " + i));
 chapter.appendChild(title);
 chapter.appendChild(document.createElement("para"));
 book.appendChild(chapter);
 }

 // Now create a TransformerFactory and use it to create a Transformer
 // object to transform our DOM document into a stream of XML text.
 // No arguments to newTransformer() means no XSLT stylesheet
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer transformer = tf.newTransformer();

 // Create the Source and Result objects for the transformation
 DOMSource source = new DOMSource(document); // DOM document
 StreamResult result = new StreamResult(System.out); // to XML text

 // Finally, do the transformation
 transformer.transform(source, result);
 }
}

 The most interesting uses of
javax.xml.transform involve XSLT stylesheets. XSLT
is a complex but powerful XML grammar that describes how XML document
content should be converted to another form (e.g., XML, HTML, or
plain text). A tutorial on XSLT stylesheets is beyond the scope of
this book, but the following code (which contains only six key lines)
shows how you can apply such a stylesheet (which is an XML document
itself) to another XML document and write the resulting document to a
stream:
import java.io.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class Transform {
 public static void main(String[] args)
 throws TransformerConfigurationException,
 TransformerException
 {
 // Get Source and Result objects for input, stylesheet, and output
 StreamSource input = new StreamSource(new File(args[0]));
 StreamSource stylesheet = new StreamSource(new File(args[1]));
 StreamResult output = new StreamResult(new File(args[2]));

 // Create a transformer and perform the transformation
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer transformer = tf.newTransformer(stylesheet);
 transformer.transform(input, output);
 }
}

Validating XML Documents

The
javax.xml.validation

package allows you to validate XML documents against a schema. SAX
and DOM parsers obtained from the
javax.xml.parsers package can perform validation
against a DTD during the parsing process, but this package separates
validation from parsing and also provides general support for
arbitrary schema types. All implementations must
support W3C
XML Schema and are allowed to support other schema types, such as
RELAX
NG.
To use this package, begin with a SchemaFactory
instance—a parser for a specific type of schema. Use this
parser to parse a schema file into a Schema
object. Obtain a Validator from the
Schema, and then use the
Validator to validate your XML document. The
document is specified as a
SAXSource

 or DOMSource object.
You may recall these classes from the subpackages of
javax.xml.transform.
If the document is valid, the validate(
)
 method
of the Validator object returns normally. If it is
not valid, validate() throws a
SAXException. You can install an
org.xml.sax.ErrorHandler object for the
Validator to provide some control over the kinds
of validation errors that cause exceptions.
import javax.xml.XMLConstants;
import javax.xml.validation.*;
import javax.xml.transform.sax.SAXSource;
import org.xml.sax.*;
import java.io.*;

public class Validate {
 public static void main(String[] args) throws IOException {
 File documentFile = new File(args[0]); // 1st arg is document
 File schemaFile = new File(args[1]); // 2nd arg is schema

 // Get a parser to parse W3C schemas. Note use of javax.xml package
 // This package contains just one class of constants.
 SchemaFactory factory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

 // Now parse the schema file to create a Schema object
 Schema schema = null;
 try { schema = factory.newSchema(schemaFile); }
 catch(SAXException e) { fail(e); }

 // Get a Validator object from the Schema.
 Validator validator = schema.newValidator();

 // Get a SAXSource object for the document
 // We could use a DOMSource here as well
 SAXSource source =
 new SAXSource(new InputSource(new FileReader(documentFile)));

 // Now validate the document
 try { validator.validate(source); }
 catch(SAXException e) { fail(e); }

 System.err.println("Document is valid");
 }

 static void fail(SAXException e) {
 if (e instanceof SAXParseException) {
 SAXParseException spe = (SAXParseException) e;
 System.err.printf("%s:%d:%d: %s%n",
 spe.getSystemId(), spe.getLineNumber(),
 spe.getColumnNumber(), spe.getMessage());
 }
 else {
 System.err.println(e.getMessage());
 }
 System.exit(1);
 }
}

Evaluating XPath Expressions

 XPath is a language for referring to
specific nodes in an XML document. For example, the XPath expression
“//section/title/text()” refers to
the text inside of a <title> element inside
a <section> element at any depth within the
document. A full description of the XPath language is beyond the
scope of this book. The javax.xml.xpath package,
new in Java 5.0, provides a way to find all nodes in a document that
match an XPath expression.
import javax.xml.xpath.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class XPathEvaluator {
 public static void main(String[] args)
 throws ParserConfigurationException, XPathExpressionException,
 org.xml.sax.SAXException, java.io.IOException
 {
 String documentName = args[0];
 String expression = args[1];

 // Parse the document to a DOM tree
 // XPath can also be used with a SAX InputSource
 DocumentBuilder parser =
 DocumentBuilderFactory.newInstance().newDocumentBuilder();
 Document doc = parser.parse(new java.io.File(documentName));

 // Get an XPath object to evaluate the expression
 XPath xpath = XPathFactory.newInstance().newXPath();

 System.out.println(xpath.evaluate(expression, doc));

 // Or evaluate the expression to obtain a DOM NodeList of all matching
 // nodes. Then loop through each of the resulting nodes
 NodeList nodes = (NodeList)xpath.evaluate(expression, doc,
 XPathConstants.NODESET);
 for(int i = 0, n = nodes.getLength(); i < n; i++) {
 Node node = nodes.item(i);
 System.out.println(node);
 }
 }
}

Types, Reflection, and Dynamic Loading

 The
java.lang.Class

class represents data
types in Java and, along with the classes in the
java.lang.reflect package, gives Java programs the
capability of introspection (or self-reflection); a Java class can
look at itself, or any other class, and determine its superclass,
what methods it defines, and so on.
Class Objects

You can obtain a Class object in Java in several
ways:
// Obtain the Class of an arbitrary object o
Class c = o.getClass();

// Obtain a Class object for primitive types with various predefined constants
c = Void.TYPE; // The special "no-return-value" type
c = Byte.TYPE; // Class object that represents a byte
c = Integer.TYPE; // Class object that represents an int
c = Double.TYPE; // etc; see also Short, Character, Long, Float

// Express a class literal as a type name followed by ".class"
c = int.class; // Same as Integer.TYPE
c = String.class; // Same as "dummystring".getClass()
c = byte[].class; // Type of byte arrays
c = Class[][].class; // Type of array of arrays of Class objects

Reflecting on a Class

Once you have a Class object, you can perform some
interesting reflective operations with it:
import java.lang.reflect.*;

Object o; // Some unknown object to investigate
Class c = o.getClass(); // Get its type

// If it is an array, figure out its base type
while (c.isArray()) c = c.getComponentType();

// If c is not a primitive type, print its class hierarchy
if (!c.isPrimitive()) {
 for(Class s = c; s != null; s = s.getSuperclass())
 System.out.println(s.getName() + " extends");
}

// Try to create a new instance of c; this requires a no-arg constructor
Object newobj = null;
try { newobj = c.newInstance(); }
catch (Exception e) {
 // Handle InstantiationException, IllegalAccessException
}

// See if the class has a method named setText that takes a single String
// If so, call it with a string argument
try {
 Method m = c.getMethod("setText", new Class[] { String.class });
 m.invoke(newobj, new Object[] { "My Label" });
} catch(Exception e) { /* Handle exceptions here */ }

// These are varargs methods in Java 5.0 so the syntax is much cleaner.
// Look for and invoke a method named "put" that takes two Object arguments
try {
 Method m = c.getMethod("add", Object.class, Object.class);
 m.invoke(newobj, "key", "value");
} catch(Exception e) { System.out.println(e); }

// In Java 5.0 we can use reflection on enumerated types and constants
Class<Thread.State> ts = Thread.State.class; // Thread.State type
if (ts.isEnum()) { // If it is an enumerated type
 Thread.State[] constants = ts.getEnumConstants(); // get its constants
}
try {
 Field f = ts.getField("RUNNABLE"); // Get the field named "RUNNABLE"
 System.out.println(f.isEnumConstant()); // Is it an enumerated constant?
}
catch(Exception e) { System.out.println(e); }

// The VM discards generic type information at runtime, but it is stored
// in the class file for the compiler and is accessible through reflection
try {
 Class map = Class.forName("java.util.Map");

 TypeVariable<?>[] typevars = map.getTypeParameters();
 for(TypeVariable<?> typevar : typevars) {
 System.out.print(typevar.getName());
 Type[] bounds = typevar.getBounds();
 if (bounds.length > 0) System.out.print(" extends ");
 for(int i = 0; i < bounds.length; i++) {
 if (i > 0) System.out.print(" & ");
 System.out.print(bounds[i]);
 }
 System.out.println();
 }
}
catch(Exception e) { System.out.println(e); }

// In Java 5.0, reflection can also be used on annotation types and to
// determine the values of runtime visible annotations
Class<?> a = Override.class; // an annotation class
if (a.isAnnotation()) { // is this an annotation type?
 // Look for some meta-annotations
 java.lang.annotation.Retention retention =
 a.getAnnotation(java.lang.annotation.Retention.class);
 if (retention != null)
 System.out.printf("Retention: %s%n", retention.value());
}

Dynamic Class Loading

 Class also provides a
simple mechanism for dynamic class loading in Java. For more complete
control over dynamic class loading, however, you should use a
java.lang.ClassLoader object, typically a
java.net.URLClassLoader. This technique is useful,
for example, when you want to load a class that is named in a
configuration file instead of being hardcoded into your program:
// Dynamically load a class specified by name in a config file
String classname = // Look up the name of the class
 config.getProperty("filterclass", // The property name
 "com.davidflanagan.filters.Default"); // A default

try {
 Class c = Class.forName(classname); // Dynamically load the class
 Object o = c.newInstance(); // Dynamically instantiate it
} catch (Exception e) { /* Handle exceptions */ }
The preceding code works only if the class to be loaded is in the
class path. If this is not the case, you can create a custom
ClassLoader object to load a class from a path (or
URL) you specify yourself:
import java.net.*;
String classdir = config.getProperty("filterDirectory"); // Look up class path
try {
 ClassLoader loader = new URLClassLoader(new URL[] { new URL(classdir) });
 Class c = loader.loadClass(classname);
}
catch (Exception e) { /* Handle exceptions */ }

Dynamic Proxies

 The Proxy
class and InvocationHandler interface to the
java.lang.reflect package were added to Java 1.3.
Proxy is a powerful but infrequently used class
that allows you to dynamically create a new class or instance that
implements a specified interface or set of interfaces. It also
dispatches invocations of the interface methods to an InvocationHandler

object.

Object Persistence

 The Java platform provides two mechanisms
for object persistence: the ability to save object state so that the
object can later be recreated. Both mechanisms involve serialization;
the second is aimed particularly at JavaBeans.
Serialization

 One of the most important features of
the java.io package is the ability to
serialize objects: to convert an object into a
stream of bytes that can later be deserialized back into a copy of
the original object. The following code shows how to use
serialization to save an object to a file and later read it back:
Object o; // The object we are serializing; it must implement Serializable
File f; // The file we are saving it to

try {
 // Serialize the object
 ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(f));
 oos.writeObject(o);
 oos.close();

 // Read the object back in
 ObjectInputStream ois = new ObjectInputStream(new FileInputStream(f));
 Object copy = ois.readObject();
 ois.close();
}
catch (IOException e) { /* Handle input/output exceptions */ }
catch (ClassNotFoundException cnfe) { /* readObject() can throw this */ }
The previous example
serializes to a file, but remember, you can write serialized objects
to any type of stream. Thus, you can write an object to a byte array,
then read it back from the byte array, creating a deep copy of the
object. You can write the object’s bytes to a
compression stream or even write the bytes to a stream connected
across a network to another program!

JavaBeans Persistence

 Java 1.4 introduced a
serialization mechanism intended for use with JavaBeans components.
java.io serialization works by saving the state of
the internal fields of an object. java.beans
persistence, on the other hand, works by saving a
bean’s state as a sequence of calls to the public
methods defined by the class. Since it is based on the public API
rather than on the internal state, the JavaBeans persistence
mechanism allows interoperability between different implementations
of the same API, handles version skew more robustly, and is suitable
for longer-term storage of serialized objects.
A bean and any descendant beans or other objects that are serialized
with
java.beans.XMLEncoder
 can be deserialized with
java.beans.XMLDecoder
 . These classes write to and read from
specified streams, but they are not stream classes themselves. Here
is how you might encode a bean:
// Create a JavaBean, and set some properties on it
javax.swing.JFrame bean = new javax.swing.JFrame("PersistBean");
bean.setSize(300, 300);
// Now save its encoded form to the file bean.xml
BufferedOutputStream out = // Create an output stream
 new BufferedOutputStream(new FileOutputStream("bean.xml"));
XMLEncoder encoder = new XMLEncoder(out); // Create encoder for stream
encoder.writeObject(bean); // Encode the bean
encoder.close(); // Close encoder and stream
Here is the corresponding code to decode the bean from its serialized
form:
BufferedInputStream in = // Create input stream
 new BufferedInputStream(new FileInputStream("bean.xml"));
XMLDecoder decoder = new XMLDecoder(in); // Create decoder for stream
Object b = decoder.readObject(); // Decode a bean
decoder.close(); // Close decoder and stream
bean = (javax.swing.JFrame) b; // Cast bean to proper type
bean.setVisible(true); // Start using it

Security

 The java.security
package defines quite a few classes related to the Java
access-control architecture, which is discussed in more detail in
Chapter 6. These classes allow Java programs to
run untrusted code in a restricted environment from which it can do
no harm. While these are important classes, you rarely need to use
them. The more interesting classes are the ones used for message
digests and digital signatures; they are demonstrated in the sections
that follow.
Message Digests

 A message digest
is a value, also known as cryptographic checksum or secure hash, that
is computed over a sequence of bytes. The length of the digest is
typically much smaller than the length of the data for which it is
computed, but any change, no matter how small, in the input bytes
produces a change in the digest. When transmitting data (a message),
you can transmit a message digest along with it. The recipient of the
message can then recompute the message digest on the received data
and, by comparing the computed digest to the received digest,
determine whether the message or the digest was corrupted or tampered
with during transmission. We saw a way to compute a message digest
earlier in the chapter when we discussed streams. A similar technique
can be used to compute a message digest for nonstreaming binary data:
import java.security.*;

// Obtain an object to compute message digests using the "Secure Hash
// Algorithm"; this method can throw a NoSuchAlgorithmException.
MessageDigest md = MessageDigest.getInstance("SHA");

byte[] data, data1, data2, secret; // Some byte arrays initialized elsewhere

// Create a digest for a single array of bytes
byte[] digest = md.digest(data);

// Create a digest for several chunks of data
md.reset(); // Optional: automatically called by digest()
md.update(data1); // Process the first chunk of data
md.update(data2); // Process the second chunk of data
digest = md.digest(); // Compute the digest

// Create a keyed digest that can be verified if you know the secret bytes
md.update(data); // The data to be transmitted with the digest
digest = md.digest(secret); // Add the secret bytes and compute the digest

// Verify a digest like this
byte[] receivedData, receivedDigest; // The data and the digest we received
byte[] verifyDigest = md.digest(receivedData); // Digest the received data
// Compare computed digest to the received digest
boolean verified = java.util.Arrays.equals(receivedDigest, verifyDigest);

Digital Signatures

 A digital
signature combines a message-digest algorithm with public-key
cryptography. The sender of a message, Alice, can compute a digest
for a message and then encrypt that digest with her private key. She
then sends the message and the encrypted digest to a recipient, Bob.
Bob knows Alice’s public key (it is public, after
all), so he can use it to decrypt the digest and verify that the
message has not been tampered with. In performing this verification,
Bob also learns that the digest was encrypted with
Alice’s private key since he was able to decrypt the
digest successfully using Alice’s public key. As
Alice is the only one who knows her private key, the message must
have come from Alice. A digital signature is called such because,
like a pen-and-paper signature, it serves to authenticate the origin
of a document or message. Unlike a pen-and-paper signature, however,
a digital signature is very difficult, if not impossible, to forge,
and it cannot simply be cut and pasted onto another document.
Java makes creating digital signatures easy. In order to create a
digital signature, however, you need a
java.security.PrivateKey object. Assuming that a
keystore exists on your system (see the keytool
documentation in Chapter 8), you can get one
with code like the following:
// Here is some basic data we need
File homedir = new File(System.getProperty("user.home"));
File keyfile = new File(homedir, ".keystore"); // Or read from config file
String filepass = "KeyStore password" // Password for entire file
String signer = "david"; // Read from config file
String password = "No one can guess this!"; // Better to prompt for this
PrivateKey key; // This is the key we want to look up from the keystore

try {
 // Obtain a KeyStore object and then load data into it
 KeyStore keystore = KeyStore.getInstance(KeyStore.getDefaultType());
 keystore.load(new BufferedInputStream(new FileInputStream(keyfile)),
 filepass.toCharArray());
 // Now ask for the desired key
 key = (PrivateKey) keystore.getKey(signer, password.toCharArray());
}
catch (Exception e) { /* Handle various exception types here */ }
Once you have a PrivateKey object, you can create
a digital signature with a java.security.Signature
object:
PrivateKey key; // Initialized as shown previously
byte[] data; // The data to be signed
Signature s = // Obtain object to create and verify signatures
 Signature.getInstance("SHA1withDSA"); // Can throw a
 // NoSuchAlgorithmException
s.initSign(key); // Initialize it; can throw an InvalidKeyException
s.update(data); // Data to sign; can throw a SignatureException
/* s.update(data2); */ // Call multiple times to specify all data
byte[] signature = s.sign(); // Compute signature
A Signature object can verify a digital signature:
byte[] data; // The signed data; initialized elsewhere
byte[] signature; // The signature to be verified; initialized elsewhere
String signername; // Who created the signature; initialized elsewhere
KeyStore keystore; // Where certificates stored; initialize as shown earlier

// Look for a public-key certificate for the signer
java.security.cert.Certificate cert = keystore.getCertificate(signername);
PublicKey publickey = cert.getPublicKey(); // Get the public key from it

Signature s = Signature.getInstance("SHA1withDSA"); // Or some other algorithm
s.initVerify(publickey); // Setup for verification
s.update(data); // Specify signed data
boolean verified = s.verify(signature); // Verify signature data

Signed Objects

 The
java.security.SignedObject class is a convenient
utility for wrapping a digital signature around an
object. The
SignedObject can then be serialized and
transmitted to a recipient, who can deserialize it and use the
verify() method to verify the signature:
Serializable o; // The object to be signed; must be Serializable
PrivateKey k; // The key to sign with; initialized elsewhere
Signature s = Signature.getInstance("SHA1withDSA"); // Signature "engine"
SignedObject so = new SignedObject(o, k, s); // Create the SignedObject

// The SignedObject encapsulates the object o; it can now be serialized
// and transmitted to a recipient.

// Here's how the recipient verifies the SignedObject
SignedObject so; // The deserialized SignedObject
Object o; // The original object to extract from it
PublicKey pk; // The key to verify with
Signature s = Signature.getInstance("SHA1withDSA"); // Verification "engine"
if (so.verify(pk,s)) // If the signature is valid,
 o = so.getObject(); // retrieve the encapsulated object.

Cryptography

 The java.security
package includes cryptography-based classes, but it does not contain
classes for actual encryption and
decryption. That is the job of the javax.crypto
package. This package supports symmetric-key cryptography, in which
the same key is used for both encryption and decryption and must be
known by both the sender and the receiver of encrypted data.
Secret Keys

 The SecretKey
interface represents an encryption key; the first step of any
cryptographic operation is to obtain an appropriate
SecretKey. Unfortunately, the

 keytool program
supplied with the JDK cannot generate and store secret keys, so a
program must handle these tasks itself. Here is some code that shows
various ways to work with SecretKey objects:
import javax.crypto.*;
import javax.crypto.spec.*;

// Generate encryption keys with a KeyGenerator object
KeyGenerator desGen = KeyGenerator.getInstance("DES"); // DES algorithm
SecretKey desKey = desGen.generateKey(); // Generate a key
KeyGenerator desEdeGen = KeyGenerator.getInstance("DESede"); // Triple DES
SecretKey desEdeKey = desEdeGen.generateKey(); // Generate a key

// SecretKey is an opaque representation of a key. Use SecretKeyFactory to
// convert to a transparent representation that can be manipulated: saved
// to a file, securely transmitted to a receiving party, etc.
SecretKeyFactory desFactory = SecretKeyFactory.getInstance("DES");
DESKeySpec desSpec = (DESKeySpec)
 desFactory.getKeySpec(desKey, javax.crypto.spec.DESKeySpec.class);
byte[] rawDesKey = desSpec.getKey();
// Do the same for a DESede key
SecretKeyFactory desEdeFactory = SecretKeyFactory.getInstance("DESede");
DESedeKeySpec desEdeSpec = (DESedeKeySpec)
 desEdeFactory.getKeySpec(desEdeKey, javax.crypto.spec.DESedeKeySpec.class);
byte[] rawDesEdeKey = desEdeSpec.getKey();

// Convert the raw bytes of a key back to a SecretKey object
DESedeKeySpec keyspec = new DESedeKeySpec(rawDesEdeKey);
SecretKey k = desEdeFactory.generateSecret(keyspec);

// For DES and DESede keys, there is an even easier way to create keys
// SecretKeySpec implements SecretKey, so use it to represent these keys
byte[] desKeyData = new byte[8]; // Read 8 bytes of data from a file
byte[] tripleDesKeyData = new byte[24]; // Read 24 bytes of data from a file
SecretKey myDesKey = new SecretKeySpec(desKeyData, "DES");
SecretKey myTripleDesKey = new SecretKeySpec(tripleDesKeyData, "DESede");

Encryption and Decryption with Cipher

 Once you have
obtained an appropriate SecretKey object, the
central class for encryption and decryption is
Cipher. Use it like this:
SecretKey key; // Obtain a SecretKey as shown earlier
byte[] plaintext; // The data to encrypt; initialized elsewhere

// Obtain an object to perform encryption or decryption
Cipher cipher = Cipher.getInstance("DESede"); // Triple-DES encryption
// Initialize the cipher object for encryption
cipher.init(Cipher.ENCRYPT_MODE, key);
// Now encrypt data
byte[] ciphertext = cipher.doFinal(plaintext);

// If we had multiple chunks of data to encrypt, we can do this
cipher.update(message1);
cipher.update(message2);
byte[] ciphertext = cipher.doFinal();

// We simply reverse things to decrypt
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] decryptedMessage = cipher.doFinal(ciphertext);

// To decrypt multiple chunks of data
byte[] decrypted1 = cipher.update(ciphertext1);
byte[] decrypted2 = cipher.update(ciphertext2);
byte[] decrypted3 = cipher.doFinal(ciphertext3);

Encrypting and Decrypting Streams

 The Cipher
 class can also be used with
CipherInputStream or
CipherOutputStream to encrypt or decrypt while
reading or writing streaming data:
byte[] data; // The data to encrypt
SecretKey key; // Initialize as shown earlier
Cipher c = Cipher.getInstance("DESede"); // The object to perform encryption
c.init(Cipher.ENCRYPT_MODE, key); // Initialize it

// Create a stream to write bytes to a file
FileOutputStream fos = new FileOutputStream("encrypted.data");

// Create a stream that encrypts bytes before sending them to that stream
// See also CipherInputStream to encrypt or decrypt while reading bytes
CipherOutputStream cos = new CipherOutputStream(fos, c);

cos.write(data); // Encrypt and write the data to the file
cos.close(); // Always remember to close streams
java.util.Arrays.fill(data, (byte)0); // Erase the unencrypted data

Encrypted Objects

 Finally, the
javax.crypto.SealedObject class provides an
especially easy way to perform encryption. This class
serializes a specified object and
encrypts the resulting stream of bytes. The
SealedObject can then be serialized itself and
transmitted to a recipient. The recipient can retrieve the original
object only if she knows the required
SecretKey:
Serializable o; // The object to be encrypted; must be Serializable
SecretKey key; // The key to encrypt it with
Cipher c = Cipher.getInstance("Blowfish"); // Object to perform encryption
c.init(Cipher.ENCRYPT_MODE, key); // Initialize it with the key
SealedObject so = new SealedObject(o, c); // Create the sealed object

// Object so is a wrapper around an encrypted form of the original object o;
// it can now be serialized and transmitted to another party.
// Here's how the recipient decrypts the original object
Object original = so.getObject(key); // Must use the same SecretKey

Miscellaneous Platform Features

The following sections detail important but miscellaneous features of
the Java platform, including properties, preferences, processes, and
management and instrumentation.
Properties

 java.util.Properties
is a subclass of java.util.Hashtable, a legacy
collections class that predates the Collections API introduced in
Java 1.2. A Properties object maintains a mapping
between string keys and string values and defines methods that allow
the mappings to be written to and read from a simple text file or (in
Java 5.0) an XML file. This makes the Properties
class ideal for configuration and user preference files. The
Properties class is also used for the system
properties returned by System.getProperty():
import java.util.*;
import java.io.*;

// Note: many of these system properties calls throw a security exception if
// called from untrusted code such as applets.
String homedir = System.getProperty("user.home"); // Get a system property
Properties sysprops = System.getProperties(); // Get all system properties

// Print the names of all defined system properties
for(Enumeration e = sysprops.propertyNames(); e.hasMoreElements();)
 System.out.println(e.nextElement());

sysprops.list(System.out); // Here's an even easier way to list the properties

// Read properties from a configuration file
Properties options = new Properties(); // Empty properties list
File configfile = new File(homedir, ".config"); // The configuration file
try {
 options.load(new FileInputStream(configfile)); // Load props from the file
} catch (IOException e) { /* Handle exception here */ }

// Query a property ("color"), specifying a default ("gray") if undefined
String color = options.getProperty("color", "gray");

// Set a property named "color" to the value "green"
options.setProperty("color", "green");

// Store the contents of the Properties object back into a file
try {
 options.store(new FileOutputStream(configfile), // Output stream
 "MyApp Config File"); // File header comment text
} catch (IOException e) { /* Handle exception */ }

// In Java 5.0 properties can be written to or read from XML files
try {
 options.storeToXML(new FileOutputStream(configfile), // Output stream
 "MyApp Config File"); // Comment text
 options.loadFromXML(new FileInputStream(configfile)); // Read it back in
}
catch(IOException e) { /* Handle exception */ }
catch(InvalidPropertiesFormatException e) { /* malformed input */ }

Preferences

 Java 1.4 introduced the
Preferences API, which is specifically tailored for working with user
and systemwide preferences and is more useful than Properties for
this purpose. The Preferences API is defined by the
java.util.prefs package. The key class in that
package is Preferences. You can obtain a
Preferences object that contains user-specific
preferences with the static method
Preferences.userNodeForPackage() and obtain a
Preferences object that contains systemwide
preferences with
Preferences.systemNodeForPackage(). Both methods
take a java.lang.Class object as their sole
argument and return a Preferences object shared by
all classes in that package. (This means that the preference names
you use must be unique within the package.) Once you have a
Preferences object, use the get(
) method to query the string value of a named preference,
or use other type-specific methods such as getInt(
), getBoolean(), and
getByteArray(). Note that to query preference
values, a default value must be passed for all methods. This default
value is returned if no preference with the specified name has been
registered or if the file or database that holds the preference data
cannot be accessed. A typical use of Preferences
is the following:
package com.davidflanagan.editor;
import java.util.prefs.Preferences;

public class TextEditor {
 // Fields to be initialized from preference values
 public int width; // Screen width in columns
 public String dictionary; // Dictionary name for spell checking

 public void initPrefs() {
 // Get Preferences objects for user and system preferences for this package
 Preferences userprefs = Preferences.userNodeForPackage(TextEditor.class);
 Preferences sysprefs = Preferences.systemNodeForPackage(TextEditor.class);

 // Look up preference values. Note that you always pass a default value.
 width = userprefs.getInt("width", 80);
 // Look up a user preference using a system preference as the default
 dictionary = userprefs.get("dictionary",
 sysprefs.get("dictionary",
 "default_dictionary"));
 }
}
In addition to the get() methods for querying
preference values, there are corresponding put()
methods for setting the values of named preferences:
// User has indicated a new preference, so store it
userprefs.putBoolean("autosave", false);
If your application wants to be notified of user or system preference
changes while the application is in progress, it may register a
PreferenceChangeListener with
addPreferenceChangeListener(). A
Preferences object can export the names and values
of its preferences as an XML file and can read preferences from such
an XML file. (See importPreferences(),
exportNode(), and exportSubtree(
) in java.util.pref.Preferences in the
reference section.) Preferences objects exist in a
hierarchy that typically corresponds to the hierarchy of package
names. Methods for navigating this hierarchy exist but are not
typically used by ordinary applications.

Processes

 Earlier in the chapter, we saw how
easy it is to create and manipulate multiple threads of execution
running within the same Java interpreter. Java also has a
java.lang.Process class that represents an
operating system process running externally to the interpreter. A
Java program can communicate with an external process using streams
in the same way that it might communicate with a server running on
some other computer on the network. Using a
Process is always platform-dependent and is rarely
portable, but it is sometimes a useful thing to do:
// Maximize portability by looking up the name of the command to execute
// in a configuration file.
java.util.Properties config;
String cmd = config.getProperty("sysloadcmd");
if (cmd != null) {
 // Execute the command; Process p represents the running command
 Process p = Runtime.getRuntime().exec(cmd); // Start the command
 InputStream pin = p.getInputStream(); // Read bytes from it
 InputStreamReader cin = new InputStreamReader(pin); // Convert them to chars
 BufferedReader in = new BufferedReader(cin); // Read lines of chars
 String load = in.readLine(); // Get the command output
 in.close(); // Close the stream
}
In
 Java 5.0 the
java.lang.ProcessBuilder class provides a more
flexible way to launch new processes than the
Runtime.exec() method.
ProcessBuilder allows control of environment
variables through a Map and makes it simple to set
the working directory. It also has an option to automatically
redirect the standard error stream of the processes it launches to
the standard output stream, which makes it much easier to read all
output of a Process.
import java.util.Map;
import java.io.*

public class JavaShell {
 public static void main(String[] args) {
 // We use this to start commands
 ProcessBuilder launcher = new ProcessBuilder();
 // Our inherited environment vars. We may modify these below
 Map<String,String> environment = launcher.environment();
 // Our processes will merge error stream with standard output stream
 launcher.redirectErrorStream(true);
 // Where we read the user's input from
 BufferedReader console =
 new BufferedReader(new InputStreamReader(System.in));

 while(true) {
 try {
 System.out.print("> "); // display prompt
 System.out.flush(); // force it to show
 String command = console.readLine(); // Read input

 if (command.equals("exit")) return; // Exit command

 else if (command.startsWith("cd ")) { // change directory
 launcher.directory(new File(command.substring(3)));
 }

 else if (command.startsWith("set ")) {// set environment var
 command = command.substring(4);
 int pos = command.indexOf('=');
 String name = command.substring(0,pos).trim();
 String var = command.substring(pos+1).trim();
 environment.put(name, var);
 }

 else { // Otherwise it is a process to launch
 // Break command into individual tokens
 String[] words = command.split(" ");
 launcher.command(words); // Set the command
 Process p = launcher.start(); // And launch a new process

 // Now read and display output from the process
 // until there is no more output to read
 BufferedReader output = new BufferedReader(
 new InputStreamReader(p.getInputStream()));
 String line;
 while((line = output.readLine()) != null)
 System.out.println(line);

 // The process should be done now, but wait to be sure.
 p.waitFor();
 }
 }
 catch(Exception e) {
 System.out.println(e);
 }
 }
 }
}

Management and Instrumentation

 Java 5.0
includes the powerful

 JMX API for remote monitoring
and management of running applications. The full
javax.management API is beyond the scope of this
book. The reference section does cover the
java.lang.management package, however: this
package is an application of JMX for the monitoring and management of
the Java virtual machine itself.
java.lang.instrument is another
Java
5.0 package: it allows the definition of
"agents”
that can be used to instrument the running JVM. In VMs that support
it, java.lang.instrument can be used to redefine
class files as they are loaded to add profiling or coverage testing
code, for example. Class redefinition is beyond the scope of this
chapter, but the following code uses the new instrumentation and
management features of Java 5.0 to determine resource usages of a
Java program. The example also demonstrates the
Runtime.addShutdownHook()

 method, which registers code to be
run when the VM starts shutting down.
import java.lang.instrument.*;
import java.lang.management.*;
import java.util.List;
import java.io.*;

public class ResourceUsageAgent {
 // A Java agent class defines a premain() method to run before main()
 public static void premain(final String args, final Instrumentation inst) {
 // This agent simply registers a shutdown hook to run when the VM exits
 Runtime.getRuntime().addShutdownHook(new Thread() {
 public void run() {
 // This code runs when the VM exits
 try {
 // Decide where to send our output
 PrintWriter out;
 if (args != null && args.length() > 0)
 out = new PrintWriter(new FileWriter(args));
 else
 out = new PrintWriter(System.err);

 // Use java.lang.management to query peak thread usage
 ThreadMXBean tb = ManagementFactory.getThreadMXBean();
 out.printf("Current thread count: %d%n",
 tb.getThreadCount());
 out.printf("Peak thread count: %d%n",
 tb.getPeakThreadCount());

 // Use java.lang.management to query peak memory usage
 List<MemoryPoolMXBean> pools =
 ManagementFactory.getMemoryPoolMXBeans();
 for(MemoryPoolMXBean pool: pools) {
 MemoryUsage peak = pool.getPeakUsage();
 out.printf("Peak %s memory used: %,d%n",
 pool.getName(), peak.getUsed());
 out.printf("Peak %s memory reserved: %,d%n",
 pool.getName(), peak.getCommitted());
 }

 // Use the Instrumentation object passed to premain()
 // to get a list of all classes that have been loaded
 Class[] loaded = inst.getAllLoadedClasses();
 out.println("Loaded classes:");
 for(Class c : loaded) out.println(c.getName());

 out.close(); // close and flush the output stream
 }
 catch(Throwable t) {
 // Exceptions in shutdown hooks are ignored so
 // we've got to print this out explicitly
 System.err.println("Exception in agent: " + t);
 }
 }
 });
 }
}
To monitor the resource usage of a Java program with this agent, you
first must compile the class normally. You then store the generated
class files in a JAR file with a manifest that specifies the class
that contains the premain() method. Create a
manifest file that contains this line:
Premain-Class: ResourceUsageAgent
Create the JAR file with a command like this:
% jar cmf manifest agent.jar ResourceUsageAgent*.class

Finally, to use the agent, specify the JAR file and the agent
arguments with the -javaagent flag to the
Java

interpreter:
% java -javaagent:agent.jar=/tmp/usage.info my.java.Program

Chapter 6. Java Security

 Java programs can
dynamically load Java classes from a
variety of sources, including untrusted sources, such as web sites
reached across an insecure network. The ability to create and work
with such mobile code is one of the great strengths and features of
Java. To make it work successfully, however, Java puts great emphasis
on a security architecture that allows untrusted code to run safely,
without fear of damage to the host system.

 The need for a security system in Java is
most acutely demonstrated by applets—miniature Java
applications designed to be embedded in web pages.[1] When a user visits a web page (with a Java-enabled web
browser) that contains an applet, the web browser downloads the Java
class files that define that applet and runs them. In the absence of
a security system, an applet could wreak havoc on the
user’s system by deleting files, installing a virus,
stealing confidential information, and so on. Somewhat more subtly,
an applet could take advantage of the user’s system
to forge email, generate spam, or launch hacking attempts on other
systems.

 Java’s main line of
defense against such malicious code is access
control: untrusted code is simply not given access to
certain sensitive portions of the core Java API. For example, an
untrusted applet is not typically allowed to read, write, or delete
files on the host system or connect over the network to any computer
other than the web server from which it was downloaded. This chapter
describes the Java access control architecture and a few other facets
of the Java security system.

[1] Applets are documented in Java Foundation Classes in
a Nutshell (O’Reilly) and are not covered
in this book. Still, they serve as good examples here.

Security Risks

 Java
has been designed from the ground up with security in mind; this
gives it a great advantage over many other existing systems and
platforms. Nevertheless, no system can guarantee 100% security, and
Java is no exception.

 The Java
security architecture was designed by security experts and has been
studied and probed by many other security experts. The consensus is
that the architecture itself is strong and robust, theoretically
without any security holes (at least none that have been discovered
yet). The implementation of the security architecture is another
matter, however, and there is a long history of security flaws being
found and patched in particular implementations of Java. For example,
in April 1999, a flaw was found in Sun’s
implementation of the class verifier in Java 1.1. Patches for Java
1.1.6 and 1.1.7 were issued and the problem was fixed in Java 1.1.8.
In August 1999, a severe flaw was found in
Microsoft’s Java Virtual Machine. Microsoft fixed
the problem, and no longer distributes their VM with the latest
versions of their web browser.
In all likelihood, security flaws will continue to be discovered (and
patched) in Java VM implementations. Despite this, Java remains
perhaps the most secure platform currently available. There have been
few, if any, reported instances of malicious Java code exploiting
security holes “in the wild.” For
practical purposes, the Java platform appears to be adequately
secure, especially when contrasted with some of the insecure and
virus-ridden alternatives.

Java VM Security and Class File Verification

 The
lowest level of the Java security architecture involves the design of
the Java Virtual Machine and the byte codes it executes. The Java VM
does not allow any kind of direct access to individual memory
addresses of the underlying system, which prevents Java code from
interfering with the native hardware and operating system. These
intentional restrictions on the VM are reflected in the Java language
itself, which does not support pointers or pointer arithmetic. The
language does not allow an integer to be cast to an object reference
or vice versa, and there is no way whatsoever to obtain an
object’s address in memory. Without capabilities
like these, malicious code simply cannot gain a foothold.

 In addition to the secure
design of the Virtual Machine instruction set, the VM goes through a
process known as byte-code
 verification whenever it loads an untrusted
class. This process ensures that the byte codes of a class (and their
operands) are all valid; that the code never underflows or overflows
the VM stack; that local variables are not used before they are
initialized; that field, method, and class access control modifiers
are respected; and so on. The verification step is designed to
prevent the VM from executing byte codes that might crash it or put
it into an undefined and untested state where it might be vulnerable
to other attacks by malicious code. Byte-code verification is a
defense against malicious hand-crafted Java byte codes and untrusted
Java compilers that might output invalid byte codes.

Authentication and Cryptography

 The java.security
package (and its subpackages) provides classes and interfaces for
authentication
 .
As described in Chapter 5, this piece of the
security architecture allows Java code to create and verify message
digests and digital signatures. These
technologies can ensure that any data (such as a Java class file) is
authentic: that it originates from the person who claims to have
originated it and has not been accidentally or maliciously modified
in transit.

 The Java Cryptography Extension, or JCE,
consists of the javax.crypto package and its
subpackages. These packages define classes for encryption and
decryption of data. This is an important security-related feature for
many applications, but is not directly relevant to the basic problem
of preventing untrusted code from damaging the host system, so it is
not discussed in this chapter.

Access Control

 As we noted at the beginning of this
chapter, the heart of the Java security architecture is access
control: untrusted code simply must not be granted access to the
sensitive parts of the Java API that would allow it to do malicious
things. As we’ll discuss in the following sections,
the Java access control model evolved significantly between Java 1.0
and Java 1.2. Since then, the access control model has been
relatively stable; it has not changed significantly since Java 1.2.
The next sections provide a brief history of the evolution of Java
security as it developed from Java 1.0 to Java 1.2, which marked the
last major changes to the security model.
Java 1.0: The Sandbox

 In this first release of Java, all
Java code installed locally on the system is trusted implicitly. All
code downloaded over the network, however, is untrusted and run in a
restricted environment playfully called “the
sandbox.” The access control policies of the sandbox
are defined by the currently installed
java.lang.SecurityManager
object. When system code is about to perform a
restricted operation, such as reading a file from the local
filesystem, it first calls an appropriate method (such as
checkRead()) of the currently installed
SecurityManager object. If untrusted code is
running, the SecurityManager throws a
SecurityException that prevents the restricted
operation from taking place.

 The most common user of the
SecurityManager class is a Java-enabled web
browser, which installs a SecurityManager object
to allow applets to run without damaging the host system. The precise
details of the security policy are an implementation detail of the
web browser, of course, but applets are typically restricted in the
following ways:
	An applet cannot read, write, rename, or delete files. It cannot
query the length or modification date of a file or even check whether
a given file exists. Similarly, an applet cannot create, list, or
delete a directory.

	An applet cannot connect to or accept a connection from any computer
other than the one it was downloaded from. It cannot use any
privileged ports (i.e., ports below and including
port 1024).

	
 An applet cannot
perform system-level functions, such as loading a native library,
spawning a new process, or exiting the Java interpreter. An applet
cannot manipulate any threads or thread groups, except for those it
creates itself. In Java 1.1 and later, applets cannot use the Java
Reflection API to obtain information about the nonpublic members of
classes, except for classes that were downloaded with the applet.

	An applet cannot access certain

 graphics- and GUI-related
facilities. It cannot initiate a print job or access the system
clipboard or event queue. In addition, all windows created by an
applet typically display a prominent visual indicator that they are
“insecure” to prevent an applet
from spoofing the appearance of some other application.

	An applet cannot read certain system properties, notably the
user.home and user.dir
properties, that specify the user’s home directory
and current working directory.

	An applet cannot circumvent these security restrictions by
registering a new
SecurityManager
 object.

How the sandbox works

Suppose that an applet (or some other untrusted code running in the
sandbox) attempts to read the contents of the file
/etc/passwd
 by passing this
filename to the
FileInputStream()

constructor. The programmers who wrote the
FileInputStream class were aware that the class
provides access to a system resource (a file), so use of the class
should therefore be subject to access control. For this reason, they
coded the FileInputStream() constructor to use
the
SecurityManager
 class.
Every time FileInputStream() is called, it checks
to see if a SecurityManager object has been
installed. If so, the constructor calls the
checkRead()
 method of that
SecurityManager object, passing the filename
(/etc/passwd, in this case) as the sole
argument. The checkRead() method has no return
value; it either returns normally or throws a
SecurityException. If the method returns, the
FileInputStream() constructor simply proceeds with
whatever initialization is necessary and returns. Otherwise, it
allows the SecurityException to propagate to the
caller. When this happens, no FileInputStream
object is created, and the applet does not gain access to the
/etc/passwd file.

Java 1.1: Digitally Signed Classes

 Java 1.1 retained the sandbox model
of Java 1.0 but added the java.security package
and its digital signature capabilities. With these capabilities, Java
classes can be digitally signed and verified. Thus, web browsers and
other Java installations can be configured to trust downloaded code
that bears a valid digital signature of a trusted entity. Such code
is treated as if it were installed locally, so it is given full
access to the Java APIs. In this release, the

 javakey program
manages keys and digitally signs JAR files of Java code. Although
Java 1.1 added the important ability to trust digitally signed code
that would otherwise be untrusted, it sticks to the basic sandbox
model: trusted code gets full access and untrusted code gets totally
restricted access.

Java 1.2: Permissions and Policies

 Java 1.2 introduced substantial access
control features into the Java security architecture. These features
are implemented by classes in the java.security
package. The Policy class is one of the most
important: it defines a Java security policy. A
Policy object maps CodeSource
objects to associated sets of Permission objects.
A CodeSource object represents the source of a
piece of Java code, which includes both the URL of the class file
(and can be a local file) and a list of entities that have applied
their digital signatures to the class file. The
Permission objects associated with a
CodeSource in the Policy define
the permissions that are granted to code from a given source. Various
Java APIs include subclasses of Permission that
represent different types of permissions. These include
java.lang.RuntimePermission,
java.io.FilePermission, and
java.net.SocketPermission, for example.

 Under this access control model, the
SecurityManager class continues to be the central
class; access control requests are still made by invoking methods of
a SecurityManager. However, the default
SecurityManager implementation delegates most of
those requests to an AccessController class that
makes access decisions based on the Permission and
Policy architecture.

 The Java 1.2 access control architecture
has several important features:
	Code from different sources can be given different sets of
permissions. In other words, the architecture supports fine-grained
levels of trust. Even locally installed code can be treated as
untrusted or partially untrusted. Under this architecture, only
system classes and standard extensions run as fully trusted.

	
 It is no
longer necessary to define a custom subclass of
SecurityManager to define a security policy.
Policies can be configured by a system administrator by editing a
text file or using the policytool program,
described in Chapter 8.

	
 The architecture is not limited to a
fixed set of access control methods in the
SecurityManager class.
Permission subclasses can be defined easily to
govern access to system resources (which might be exposed, for
example, by standard extensions that include native code).

How policies and permissions work

Let’s

 return to the example of an
applet that attempts to create a FileInputStream
to read the file
/etc/passwd
 . In Java 1.2 and
later, the FileInputStream() constructor behaves
exactly the same as it does in Java 1.0 and Java 1.1: it looks to see
if a SecurityManager is installed and, if so,
calls its checkRead() method, passing the name of
the file to be read.

 What changed as of Java 1.2 is
the default behavior of the checkRead() method.
Unless a program has replaced the default security manager with one
of its own, the default implementation creates a
FilePermission object to represent the access
being requested. This FilePermission object has a
target of
“/etc/passwd” and an
action of
“read.” The
checkRead() method passes this
FilePermission object to the static
checkPermission() method of the
java.security.AccessController class.

 It is the
AccessController and its

 checkPermission()
method that do the real work of access control as of Java 1.2. The
method determines the CodeSource of each calling
method and uses the current Policy object to
determine the Permission objects associated with
it. With this information, the AccessController
can determine whether read access to the
/etc/passwd file should be allowed.

 The Permission class
represents both the permissions granted by a
Policy and the permissions requested by a method
like the FileInputStream() constructor. When
requesting a permission, Java typically uses a
FilePermission (or other
Permission subclass) with a very specific target,
like “/etc/passwd”. When granting a
permission, however, a Policy commonly uses a
FilePermission object with a wildcard target, such
as “/etc/*”, to represent many
files. One of the key features of a Permission
subclass such as FilePermission is that it defines
an implies() method that can determine whether
permission to read “/etc/*” implies
permission to read
“/etc/passwd”.

Security for Everyone

Programmers, system administrators, and end users all have different
security concerns and, thus, different roles to play in the Java
security architecture.
Security for System Programmers

 System
programmers are the people who define new Java APIs that allow access
to sensitive system resources. These programmers are typically
working with native methods that have unprotected access to the
system. They need to use the Java access control architecture to
prevent untrusted code from executing those native methods. To do
this, system programmers must carefully insert
SecurityManager calls at appropriate places in
their code. A system programmer may choose to use an existing
Permission subclass to govern access to the system
resources exposed by her API, or she may decide to define a
specialized subclass of Permission.
The system programmer carries a tremendous security burden: if she
does not perform appropriate access control checks in her code, she
compromises the security of the entire Java platform. The details are
complex and are beyond the scope of this book. Fortunately, however,
system programming that involves native methods is rare in Java;
almost all of us are application programmers who can simply rely on
the existing APIs.

Security for Application Programmers

 Programmers who use the core Java
APIs and standard extensions but do not define new extensions or
write native methods can simply rely on the security efforts of the
system programmers who created those APIs. In other words, most of us
Java programmers can simply use the Java APIs and need not worry
about introducing security holes into the Java platform.
In fact, application programmers rarely have to use the access
control architecture. If you are writing Java code that may be run as
untrusted code, you should be aware of the restrictions placed on
untrusted code by typical security policies. Keep in mind that some
methods (such as methods that read or write files) can throw
SecurityException objects, but
don’t feel you must write your code to catch these
exceptions. Often, the appropriate response to a
SecurityException is to allow it to propagate
uncaught so that it terminates the application.

 Sometimes, as an application programmer,
you want to write an application (such as an applet viewer) that can
load untrusted classes and run them subject to access control checks.
To do this in Java 1.2 and later, you must first install a security
manager:
System.setSecurityManager(new SecurityManager());
You then use java.net.URLClassLoader to load the
untrusted classes. URLClassLoader assigns a
default set of safe permissions to the classes it loads, but in some
cases you may want to modify the permissions granted to the loaded
code through the Policy and
PermissionCollection classes.

Security for System Administrators

 In Java 1.2 and later, system
administrators are responsible for defining the default security
policy for the computers at their site. The default policy is stored
in the file lib/security/java.policy in the Java
installation. A system administrator can edit this text file by hand
or use the policytool program from Sun to edit
the file graphically. policytool is the
preferred way to define policies, so the syntax of the underlying
policy file is not documented in this book.

 The default
java.policy file defines a policy that is much
like the policy of Java 1.0 and Java 1.1: system classes and
installed extensions are fully trusted, while all other code is
untrusted and only allowed a few simple permissions. While this
default policy is adequate for many purposes, it may not be
appropriate for all sites. For example, at some organizations, it may
be appropriate to grant extra permissions to code downloaded from a
secure intranet.

 In order to define
effective security policies, a system administrator must understand
the various Permission subclasses of the Java
platform, the target and action names they support, and the security
implications of granting any particular permission. These topics are
explained well in a document titled “Permissions in
the Java 2 Standard Edition Development Kit (JDK),”
which is available online at http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html.

Security for End Users

 Most end users do not have to
think about security at all: their Java programs should simply run in
a secure way with no intervention from them. Some sophisticated end
users may want to define their own security policies, however. An end
user can do this by running policytool himself
to define personal policy files that augment the system policy. The
default personal policy is stored in a file named
.java.policy in the user’s home
directory. By default, Java loads this policy file and uses it to
augment the system policy file.
In Java 1.2 and later, a user can specify an additional policy file
to use when starting up the Java interpreter. To do so, you use the
-D option to define the
java.security.policy property. For example:
C:\> java -Djava.security.policy
 =
 policyfile
 UntrustedApp

 This line runs the class
UntrustedApp after augmenting the default system
and user policies with the policy specified in the file or URL
policyfile. To replace the system and user
policies instead of augmenting them, use a double equals sign in the
property specification:
C:\> java -Djava.security.policy= =
 policyfile
 UntrustedApp

 Note, however, that specifying a
policy file is useful only if there is a
SecurityManager installed. If a user
doesn’t trust an application, he presumably
doesn’t trust that application to voluntarily
install its own security manager. In this case, he can define the
java.security.manager

system property:
C:\> java -Djava.security.manager -Djava.security.policy
 =
 policyfile
 \
 UntrustedApp

The value of this property does not matter; simply defining it is
enough to tell the Java interpreter to automatically install a
default SecurityManager object that subjects an
application to the
 access control policies described in the
system, user, and java.security.policy policy
files.

Permission Classes

 Table 6-1 lists
some important Permission subclasses defined by
the core Java platform and summarizes the permissions they represent.
See the reference section for more information on the individual
classes. See http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html
for a complete list and detailed description of these permissions
classes, along with their target and action names and a list of
methods and the permissions they require (this document is part of
the standard documentation bundle that can be downloaded along with
the JDK).
Table 6-1. Java permission classes
	
 Permission class

 	
 Description

	

 java.security.AllPermission

 	
 An instance of this special permission class implies all other
permissions.

	

 javax.sound.sampled.AudioPermission

 	
 Controls the ability to play and record sound.

	

 javax.security.auth.AuthPermission

 	
 Controls access to authentication methods in
javax.security.auth and its subpackages.

	

 java.awt.AWTPermission

 	
 Controls access to sensitive methods in java.awt
and its subpackages.

	

 java.io.FilePermission

 	
 Governs access to the filesystem.

	

 java.util.logging.LoggingPermission

 	
 Controls the ability of a program to modify the logging configuration.

	

 java.net.NetPermission

 	
 Governs access to networking-related resources such as stream
handlers and HTTP authentication. See also
java.net.SocketPermission.

	

 java.util.PropertyPermission

 	
 Governs access to system properties.

	

 java.lang.reflect.ReflectPermission

 	
 Governs access through the java.lang.reflect
package to classes and class members that would normally be
inaccessible.

	

 java.lang.RuntimePermission

 	
 Governs access to a number of methods and resources. Many of the
controlled methods are defined by java.lang.System
and java.lang.Runtime.

	

 java.security.SecurityPermission

 	
 Governs access to various security-related methods.

	

 java.io.SerializablePermission

 	
 Governs access to serialization-related methods.

	

 java.net.SocketPermission

 	
 Governs access to the network.

	

 java.sql.SQLPermission

 	
 Governs the ability to specify logging streams in the
java.sql JDBC API.

Chapter 7. Programming and Documentation Conventions

 This
chapter explains a number of important and useful Java programming
and documentation conventions. It covers:
	General naming and capitalization conventions

	Portability tips and conventions

	Javadoc documentation comment syntax and conventions

	JavaBeans conventions

None of the conventions described here are mandatory. Following them,
however, will make your code easier to read and maintain, portable,
and self-documenting.

Naming and Capitalization Conventions

 The following widely
adopted naming conventions apply to packages, reference types,
methods, fields, and constants in Java. Because these conventions are
almost universally followed and because they affect the public API of
the classes you define, they should be followed carefully:
	Packages
	

 Ensure
that your publicly visible package names are unique by prefixing them
with the inverted name of your Internet domain (e.g.,
com.davidflanagan.utils). All package names should
be lowercase. Packages of code used internally by applications
distributed in self-contained JAR files are not publicly visible and
need not follow this convention. It is common in this case to use the
application name as the package name or as a package prefix.

	Reference types
	

 A type
name should begin with a capital letter and be written in mixed case
(e.g., String). If a class name consists of more
than one word, each word should begin with a capital letter (e.g.,
StringBuffer). If a type name, or one of the words
of a type name, is an acronym, the acronym can be written in all
capital letters (e.g., URL,
HTMLParser).
Since classes and enumerated types are designed to represent objects,
you should choose class names that are nouns (e.g.,
Thread, Teapot,
FormatConverter).

 When
an interface is used to provide additional information about the
classes that implement it, it is common to choose an interface name
that is an adjective (e.g., Runnable,
Cloneable, Serializable).
Annotation types are also commonly named in this way. When an
interface works more like an abstract superclass, use a name that is
a noun (e.g., Document,
FileNameMap, Collection).

	Methods
	

 A
method name always begins with a lowercase letter. If the name
contains more than one word, every word after the first begins with a
capital letter (e.g., insert(),
insertObject(), insertObjectAt(
)). Method names are typically chosen so that the first
word is a verb. Method names can be as long as is necessary to make
their purpose clear, but choose succinct names where possible.

	Fields and constants
	

 Nonconstant field names follow the
same capitalization conventions as method names. If a field is a
static final constant, it should be written in
uppercase. If the name of a constant includes more than one word, the
words should be separated with underscores (e.g.,
MAX_VALUE). A field name should be chosen to best
describe the purpose of the field or the value it holds.
The constants defined by enum types are also
typically written in all capital letters. Because other programming
languages use lowercase or mixed case for enumerated values, however,
this convention is not as strong as the convention for capital
letters in the static final fields of classes and
interfaces.

	Parameters
	

 Method parameters follow the same
capitalization conventions as nonconstant fields. The names of method
parameters appear in the documentation for a method, so you should
choose names that make the purpose of the parameters as clear as
possible. Try to keep parameter names to a single word and use them
consistently. For example, if a WidgetProcessor
class defines many methods that accept a Widget
object as the first parameter, name this parameter
widget or even w in each
method.

	Local variables
	

 Local variable names are an
implementation detail and never visible outside your class.
Nevertheless, choosing good names makes your code easier to read,
understand, and maintain. Variables are typically named following the
same conventions as methods and fields.

 In
addition to the conventions for specific types of names, there are
conventions regarding the characters you should use in your names.
Java allows the $ character in any identifier,
but, by convention, its use is reserved for synthetic names generated
by source-code processors. (It is used by the Java compiler, for
example, to make inner classes work.) Also, Java allows names to use
any alphanumeric characters from the entire Unicode character set.
While this can be convenient for non-English-speaking programmers,
the use of Unicode characters should typically be restricted to local
variables, private methods and fields, and other names that are not
part of the public API of a class.

Portability Conventions and Pure Java Rules

 Sun’s motto, or
core value proposition, for Java is “Write
once, run anywhere.” Java makes it easy to write
portable programs, but Java programs do not automatically run
successfully on any Java platform. The following tips help to avoid
portability problems. Portability rules like those listed here were
the focus of Sun’s now-defunct
“100% Pure Java” certification
program and branding campaign.
	Native methods
	
 Portable Java code can use any methods in
the core Java APIs, including methods implemented as
native methods. However, portable code must not
define its own native methods. By their very nature, native methods
must be ported to each new platform, so they directly subvert the
“Write once, run anywhere” promise
of Java.

	The Runtime.exec() method
	

 Calling the
Runtime.exec() method to spawn a process and
execute an external command on the native system is rarely allowed in
portable code. This is because the native OS command to be executed
is never guaranteed to exist or behave the same way on all platforms.
The only time it is legal to use Runtime.exec()
is when the user is allowed to specify the command to run, either by
typing the command at runtime or by specifying the command in a
configuration file or preferences dialog box.

	The System.getenv() method
	

 Using
System.getenv() is nonportable. The method was
deprecated but has been reintroduced in Java
5.0.

	Undocumented classes
	

 Portable Java code
must use only classes and interfaces that are a documented part of
the Java platform. Most Java implementations ship with additional
undocumented public classes that are part of the implementation but
not part of the Java platform specification. Nothing prevents a
program from using and relying on these undocumented classes, but
doing so is not portable because the classes are not guaranteed to
exist in all Java implementations or on all platforms.

	The java.awt.peer package
	

 The interfaces in the
java.awt.peer package are part of the Java
platform but are documented for use by AWT implementors only.
Applications that use these interfaces directly are not portable.

	Implementation-specific features
	

 Portable code must not rely on features
specific to a single implementation. For example, Microsoft
distributed a version of the Java runtime system that included a
number of additional methods that were not part of the Java platform
as defined by Sun. Any program that depends on such extensions is
obviously not portable to other platforms.
Microsoft’s
proprietary extension of the Java platform resulted in legal action
between Sun and Microsoft and ultimately caused Microsoft to
discontinue ongoing support for Java.

	Implementation-specific bugs
	

 Just as portable code must
not depend on implementation-specific features, it must not depend on
implementation-specific bugs. If a class or method behaves
differently than the specification says it should, a portable program
cannot rely on this behavior, which may be different on different
platforms, and ultimately may be fixed.

	Implementation-specific behavior
	
 Sometimes
different platforms and different implementations present different
behaviors, all of which are legal according to the Java
specification. Portable code must not depend on any one specific
behavior. For example, the Java specification does not indicate
whether threads of equal priority share the CPU or if one
long-running thread can starve another thread at the same priority.
If an application assumes one behavior or the other, it may not run
properly on all platforms.

	Standard extensions
	

 Portable code can rely on
standard extensions to the Java platform, but, if it does so, it
should clearly specify which extensions it uses and exit cleanly with
an appropriate error message when run on a system that does not have
the extensions installed.

	Complete programs
	
 Any portable Java program must
be complete and self-contained: it must supply all the classes it
uses, except core platform and standard extension classes.

	Defining system classes
	

 Portable Java code
never defines classes in any of the system or standard extension
packages. Doing so violates the protection boundaries of those
packages and exposes package-visible implementation details.

	Hardcoded filenames
	

 A portable program contains no
hardcoded file or directory names. This is because different
platforms have significantly
different filesystem organizations and use different directory
separator
characters. If you need to work with a file or directory, have the
user specify the filename, or at least the base directory beneath
which the file can be found. This specification can be done at
runtime, in a configuration file, or as a command-line argument to
the program. When concatenating a file or directory name to a
directory name, use the File() constructor or the
File.separator constant.

	Line separators
	

 Different systems use
different characters or sequences of characters as line separators.
Do not hardcode \n, \r, or
\r\n as the line separator in your program.
Instead, use the
println()

 method of PrintStream or
PrintWriter, which automatically terminates a line
with the line separator appropriate for the platform, or use the
value of the line.separator system property. In

 Java 5.0 and later, you can also use the
“%n” format string to
printf() and format() methods
of java.util.Formatter and related classes.

Java Documentation Comments

 Most ordinary comments within Java
code explain the implementation details of that code. By contrast,
the Java language specification defines a special type of comment
known as a doc comment
 that
serves to document the API of your code. A doc comment is an ordinary
multiline comment that begins with
 /** (instead of
the usual /*) and ends with */.
A doc comment appears immediately before a type or member definition
and contains documentation for that type or member. The documentation
can include simple HTML formatting tags and other special
keywords that provide additional information. Doc comments are
ignored by the compiler, but they can be extracted and automatically
turned into online HTML documentation by the
javadoc program. (See Chapter 8 for more information about
javadoc.) Here is an example class that contains
appropriate doc comments:
/**
 * This immutable class represents <i>complex numbers</i>.
 *
 * @author David Flanagan
 * @version 1.0
 */
public class Complex {
 /**
 * Holds the real part of this complex number.
 * @see #y
 */
 protected double x;

 /**
 * Holds the imaginary part of this complex number.
 * @see #x
 */
 protected double y;

 /**
 * Creates a new Complex object that represents the complex number x+yi.
 * @param x The real part of the complex number.
 * @param y The imaginary part of the complex number.
 */
 public Complex(double x, double y) {
 this.x = x;
 this.y = y;
 }

 /**
 * Adds two Complex objects and produces a third object that represents
 * their sum.
 * @param c1 A Complex object
 * @param c2 Another Complex object
 * @return A new Complex object that represents the sum of
 * <code>c1</code> and <code>c2</code>.
 * @exception java.lang.NullPointerException
 * If either argument is <code>null</code>.
 */
 public static Complex add(Complex c1, Complex c2) {
 return new Complex(c1.x + c2.x, c1.y + c2.y);
 }
}
Structure of a Doc Comment

 The
body of a doc comment should begin with a one-sentence summary of the
type or member being documented. This sentence may be displayed by
itself as summary documentation, so it should be written to stand on
its own. The initial sentence may be followed by any number of other
sentences and paragraphs that describe the class, interface, method,
or field in full detail.

 After the descriptive paragraphs, a
doc comment can contain any number of other paragraphs, each of which
begins with a special doc-comment tag, such as
@author, @param, or
@returns. These tagged paragraphs provide specific
information about the class, interface, method, or field that the
javadoc program displays in a standard way. The
full set of doc-comment tags is listed in the next section.

 The descriptive material in a
doc comment can contain simple HTML markup tags, such as
<i> for emphasis,
<code> for class, method, and field names,
and <pre> for multiline code examples. It
can also contain <p> tags to break the
description into separate paragraphs and
, , and
related tags to display bulleted lists and similar structures.
Remember, however, that the material you write is embedded within a
larger, more complex HTML document. For this reason, doc comments
should not contain major structural HTML tags, such as
<h2> or <hr>, that
might interfere with the structure of the larger document.

 Avoid the use of the
<a>
 tag to include
hyperlinks or cross-references in your doc comments. Instead, use the
special {@link} doc-comment tag, which, unlike the
other doc-comment tags, can appear anywhere within a doc comment. As
described in the next section, the {@link} tag
allows you to specify hyperlinks to other classes, interfaces,
methods, and fields without knowing the HTML-structuring conventions
and filenames used by javadoc.

 If you want to include an image in a
doc comment, place the image file in a doc-files
subdirectory of the source code directory. Give the image the same
name as the class, with an integer suffix. For example, the second
image that appears in the doc comment for a class named
Circle can be included with this HTML tag:

 Because the lines of a doc comment are
embedded within a Java comment, any leading spaces and asterisks
(*) are stripped from each line of the comment
before processing. Thus, you don’t need to worry
about the asterisks appearing in the generated documentation or about
the indentation of the comment affecting the indentation of code
examples included within the comment with a
<pre>
 tag.

Doc-Comment Tags

 javadoc recognizes a
number of special tags, each of which begins with an
@ character. These doc-comment tags allow you to
encode specific information into your comments in a standardized way,
and they allow javadoc to choose the appropriate
output format for that information. For example, the
@param tag lets you specify the name and meaning
of a single parameter for a method. javadoc can
extract this information and display it using an HTML
<dl> list, an HTML
<table>, or however it sees fit.
The following doc-comment tags are recognized by
javadoc; a doc comment should typically use
these tags in the order listed here:
	
 @author
 name

	
 Adds
an “Author:” entry that contains
the specified name. This tag should be used for every class or
interface definition but must not be used for individual methods and
fields. If a class has multiple authors, use multiple
@author tags on adjacent lines. For example:

@author David Flanagan
@author Paula Ferguson
List the authors in chronological order, with the original author
first. If the author is unknown, you can use
“unascribed.”
javadoc does not output authorship information
unless the -author command-line argument is
specified.
	
 @version
 text

	
 Inserts a
“Version:” entry that contains the
specified text. For example:

@version 1.32, 08/26/04
This tag should be included in every class and interface doc comment
but cannot be used for individual methods and fields. This tag is
often used in conjunction with the automated version-numbering
capabilities of a version control system, such as SCCS, RCS, or CVS.
javadoc does not output version information in
its generated documentation unless the -version
command-line argument is specified.
	
 @param
 parameter-name
 description

	
 Adds
the specified parameter and its description to the
“Parameters:” section of the
current method. The doc comment for a method or constructor must
contain one @param tag for each parameter the
method expects. These tags should appear in the same order as the
parameters specified by the method. The tag can be used only in doc
comments for methods and constructors. You are encouraged to use
phrases and sentence fragments where possible to keep the
descriptions brief. However, if a parameter requires detailed
documentation, the description can wrap onto multiple lines and
include as much text as necessary. For readability in source-code
form, consider using spaces to align the descriptions with each
other. For example:

@param o the object to insert
@param index the position to insert it at
	
 @return
 description

	
 Inserts a
“Returns:” section that contains
the specified description. This tag should appear in every doc
comment for a method, unless the method returns
void or is a constructor. The description can be
as long as necessary, but consider using a sentence fragment to keep
it short. For example:

@return <code>true</code> if the insertion is successful, or
 <code>false</code> if the list already contains the specified object.
	
 @exception
 full-classname
 description

	
 Adds a
“Throws:” entry that contains the
specified exception name and description. A doc comment for a method
or constructor should contain an @exception tag
for every checked exception that appears in its
throws clause. For example:

@exception java.io.FileNotFoundException
 If the specified file could not be found
The @exception tag can optionally be used to
document unchecked exceptions (i.e., subclasses of
RuntimeException) the method may throw, when these
are exceptions that a user of the method may reasonably want to
catch. If a method can throw more than one exception, use multiple
@exception tags on adjacent lines and list the
exceptions in alphabetical order. The description can be as short or
as long as necessary to describe the significance of the exception.
This tag can be used only for method and constructor comments. The
@throws tag is a synonym for
@exception.
	
 @throws
 full-classname
 description

	
 This
tag is a synonym for @exception.

	
 @see
 reference

	

 Adds a
“See Also:” entry that contains the
specified reference. This tag can appear in any kind of doc comment.
The syntax for the reference is explained
in Section 7.3.4 later in this
chapter.

	
 @deprecated
 explanation

	

 This tag specifies
that the following type or member has been deprecated and that its
use should be avoided. javadoc adds a prominent
“Deprecated” entry to the
documentation and includes the specified
explanation text. This text should specify
when the class or member was deprecated and, if possible, suggest a
replacement class or member and include a link to it. For example:

@deprecated As of Version 3.0, this method is replaced
 by {@link #setColor}.
Although the Java compiler ignores all comments, it does take note of
the @deprecated tag in doc comments. When this tag
appears, the compiler notes the deprecation in the class file it
produces. This allows it to issue warnings for other classes that
rely on the deprecated feature.
	
 @since
 version

	

 Specifies when the
type or member was added to the API. This tag should be followed by a
version number or other version specification. For example:

@since JNUT 3.0
Every doc comment for a type should include an
@since tag, and any members added after the
initial release of the type should have @since
tags in their doc comments.
	
 @serial
 description

	

 Technically,
the way a class is serialized
is part of its public API. If you write a class that you expect to be
serialized, you should document its serialization format using
@serial and the related tags listed below.
@serial should appear in the doc comment for any
field that is part of the serialized state of a
Serializable class. For classes that use the
default serialization mechanism, this means all fields that are not
declared transient, including fields declared
private. The
description should be a brief description
of the field and of its purpose within a serialized object.
As of Java 1.4, you can also use the @serial tag
at the class and package level to specify whether a
“serialized form page” should be
generated for the class or package. The syntax is:

@serial include
@serial exclude
	
 @serialField
 name
 type
 description

	

 A
Serializable class can define its serialized
format by declaring an array of ObjectStreamField
objects in a field named serialPersistentFields.
For such a class, the doc comment for
serialPersistentFields should include an
@serialField tag for each element of the array.
Each tag specifies the name, type, and description for a particular
field in the serialized state of the class.

	
 @serialData
 description

	

 A Serializable class
can define a writeObject() method to write data
other than that written by the default serialization mechanism. An
Externalizable class defines a
writeExternal() method responsible for writing the
complete state of an object to the serialization stream. The
@serialData tag should be used in the doc comments
for these writeObject() and
writeExternal() methods, and the
description should document the
serialization format used by the method.

Inline Doc Comment Tags

 In addition to the preceding tags,
javadoc also supports several inline
tags that may appear anywhere that HTML text appears in a
doc comment. Because these tags appear directly within the flow of
HTML text, they require the use of curly braces as delimiters to
separate the tagged text from the HTML text. Supported inline tags
include the following:
	
 {@link
 reference
 }

	
 In
Java 1.2 and later, the {@link} tag is like the
@see tag except that instead of placing a link to
the specified reference in a special
“See Also:” section, it inserts the
link inline. An {@link} tag can appear anywhere
that HTML text appears in a doc comment. In other words, it can
appear in the initial description of the class, interface, method, or
field and in the descriptions associated with the
@param, @returns,
@exception, and @deprecated
tags. The reference for the
{@link} tag uses the syntax described next in
Section 7.3.4. For example:

@param regexp The regular expression to search for. This string
 argument must follow the syntax rules described for
 {@link java.util.regex.Pattern}.
	
 {@linkplain
 reference
 }

	In Java 1.4 and later, the
{@linkplain}
 tag is just like the
{@link} tag, except that the text of the link is
formatted using the normal font rather than the code font used by the
{@link} tag. This is most useful when
reference contains both a
feature to link to and a
label that specifies alternate text to be
displayed in the link. See Section 7.3.4 for a discussion of the
feature and
label portions of the
reference argument.

	
 {@inheritDoc}

	

 When a method
overrides a method in a superclass or implements a method in an
interface, you can omit a doc comment, and
javadoc automatically inherits the documentation
from the overridden or implemented method. As of Java 1.4, however,
the {@inheritDoc} tag allows you to inherit the
text of individual tags. This tag also allows you to inherit and
augment the descriptive text of the comment. To inherit individual
tags, use it like this:

@param index @{inheritDoc}
@return @{inheritDoc}
To inherit the entire doc comment, including your own text before and
after it, use the tag like this:
This method overrides {@link java.langObject#toString}, documented as follows:
<P>{@inheritDoc}
<P>This overridden version of the method returns a string of the form...
	
 {@docRoot}

	

 This inline tag takes no
parameters and is replaced with a reference to the root directory of
the generated documentation. It is useful in hyperlinks that refer to
an external file, such as an image or a copyright statement:

This is Copyrighted material.

 {@docRoot} was introduced in Java 1.3.
	
 {@literal
 text
 }

	This inline tag displays text literally,
escaping any HTML in it and ignoring any javadoc tags it may contain.
It does not retain whitespace formatting but is useful when used
within a <pre> tag.
{@literal} is available in Java 5.0 and later.

	
 {@code
 text
 }

	This tag is like the {@literal} tag, but displays
the literal text in code font. Equivalent
to:

<code>{@literal text}</code>

 {@code} is available in Java 5.0 and later.
	
 {@value}

	The {@value}
 tag, with no arguments, is used
inline in doc comments for static final fields and
is replaced with the constant value of that field. This tag was
introduced in Java 1.4 and is used only for constant fields.

	
 {@value

 reference
 }

	This variant of the {@value} tag includes a
reference to a static
final field and is replaced with the constant value of that
field. Although the no-argument version of the
{@value} tag was introduced in Java 1.4, this
version is available only in Java 5.0 and later. See Section 7.3.4 for the syntax of the
reference.

Cross-References in Doc Comments

 The
@see

 tag and the inline tags
{@link}, {@linkplain} and
{@value} all encode a cross-reference to some
other source of documentation, typically to the documentation comment
for some other type or member.

 reference
 can take three different
forms. If it begins with a quote character, it is taken to be the
name of a book or some other printed resource and is displayed as is.
If reference begins with a < character,
it is taken to be an arbitrary HTML hyperlink that uses the
<a> tag and the hyperlink is inserted into
the output documentation as is. This form of the
@see tag can insert links to other online
documents, such as a programmer’s guide or
user’s manual.
If reference is not a quoted string or a
hyperlink, it is expected to have the following form:
 feature
 label

In this case, javadoc outputs the text specified
by label and encodes it as a hyperlink to
the specified feature. If
label is omitted (as it usually is),
javadoc uses the name of the specified
feature instead.

 feature
 can refer to a
package, type, or type member, using one of the following forms:
	
 pkgname

	
 A reference to the named
package. For example:

@see java.lang.reflect
	
 pkgname.typename

	

 A reference to a
class, interface, enumerated type, or annotation type specified with
its full package name. For example:

@see java.util.List
	
 typename

	A reference to a type specified without its package name. For example:

@see List

 javadoc resolves this reference by searching the
current package and the list of imported classes for a class with
this name.
	
 typename
 #
 methodname

	

 A reference to a
named method or constructor within the specified type. For example:

@see java.io.InputStream#reset
@see InputStream#close
If the type is specified without its package name, it is resolved as
described for typename. This syntax is
ambiguous if the method is overloaded or the class defines a field by
the same name.
	
 typename
 #
 methodname
 (
 paramtypes
)

	A reference to a method or constructor with the type of its
parameters explicitly specified. This is useful when
cross-referencing an overloaded method. For example:

@see InputStream#read(byte[], int, int)
	
 #
 methodname

	A reference to a nonoverloaded method or constructor in the current
class or interface or one of the containing classes, superclasses, or
superinterfaces of the current class or interface. Use this concise
form to refer to other methods in the same class. For example:

@see #setBackgroundColor
	
 #
 methodname
 (
 paramtypes
)

	

 A reference to a method or
constructor in the current class or interface or one of its
superclasses or containing classes. This form works with overloaded
methods because it lists the types of the method parameters
explicitly. For example:

@see #setPosition(int, int)
	
 typename
 #
 fieldname

	A reference to a named field within the specified class. For example:

@see java.io.BufferedInputStream#buf
If the type is specified without its package name, it is resolved as
described for typename.
	
 #
 fieldname

	
 A reference to a field in the
current type or one of the containing classes, superclasses, or
superinterfaces of the current type. For example:

@see #x

Doc Comments for Packages

 Documentation comments for classes,
interfaces, methods, constructors, and fields appear in Java source
code immediately before the definitions of the features they
document. javadoc can also read and display
summary documentation for packages. Since a package is defined in a
directory, not in a single file of source code,
javadoc looks for the package documentation in a
file named package.html in the directory that
contains the source code for the classes of the package.

 The
package.html file should contain simple HTML
documentation for the package. It can also contain
@see, @link,
@deprecated, and @since tags.
Since package.html is not a file of Java source
code, the documentation it contains should be HTML and should
not be a Java comment (i.e., it should not be
enclosed within /** and */
characters). Finally, any @see and
@link tags that appear in
package.html must use fully qualified class
names.

 In addition to defining a
package.html file for each package, you can also
provide high-level documentation for a group of packages by defining
an overview.html file in the source tree for
those packages. When javadoc is run over that
source tree, it uses overview.html as the
highest level overview it displays.

JavaBeans Conventions

 JavaBeans is a framework for
defining reusable modular software components. The JavaBeans
specification includes the following definition of a bean:
“a reusable software component that can be
manipulated visually in a builder tool.” As you can
see, this is a rather loose definition; beans can take a variety of
forms. The most common use of beans is for graphical user interface
components, such as components of the java.awt and
javax.swing packages, which are documented in
Java Foundation Classes in a Nutshell and
Java Swing, both from O’Reilly.
Although all beans can be manipulated visually, this does not mean
every bean has its own visual representation. For example, the
javax.sql.RowSet class (documented in
O’Reilly’s Java
Enterprise in a Nutshell) is a JavaBeans component that
represents the data resulting from a database query. There are no
limits on the simplicity or complexity of a JavaBeans component. The
simplest beans are typically basic graphical interface components,
such as a java.awt.Button object. But even complex
systems, such as an embeddable spreadsheet application, can function
as individual beans.
The JavaBeans component model consists of the
java.beans, the
java.beans.beancontext packages, and a number of
important naming and API conventions to which conforming beans and
bean-manipulation tools must adhere. These conventions are not part
of the JavaBeans API itself but are in many ways more important to
bean developers than the API itself. The conventions are sometimes
referred to as design
 patterns; they specify such things as method
names and signatures for property accessor methods defined by a bean.
If the class you are writing is not intended to be a bean, suitable
for visual manipulation in a builder tool, you don’t
need to follow these conventions. The JavaBeans conventions are
widely used and well-understood, however, and you can improve the
usability and reusabilty of your code by following the relevant ones.
This is particularly true of the property accessor method naming
conventions.
We cover the conventions themselves later in this section. First,
however, an overview of the JavaBeans model is in order.
Bean Basics

 Any object that conforms to certain
basic rules can be a bean; there is no Bean class
that all beans are required to subclass. Many beans are GUI
components, but it is also quite possible, and often useful, to write
“invisible” beans that do not have
an onscreen appearance. (A bean having no onscreen appearance in a
finished application does not mean it cannot be visually manipulated
by a beanbox tool, however.)

 A
bean is characterized by the properties, events, and methods it
exports. It is these properties, events, and methods that an
application designer manipulates in a beanbox tool. A
property

is a piece of the bean’s internal state that can be
programmatically set and/or queried, usually through a standard pair
of get and set accessor
methods.

 A bean communicates with the
application in which it is embedded as well as with other beans by
generating events. The JavaBeans API uses the
same event model that AWT and Swing components use. The model is
based on the java.util.EventObject
class and
the java.util.EventListener interface; it is
described in detail in Java Foundation Classes in a
Nutshell (O’Reilly). In brief, the event
model works like this:
	

 A bean defines an event if
it provides add and remove
methods for registering and deregistering listener objects for that
event.

	An application that wants to be notified when an event of that type
occurs uses these methods to register an event listener object of the
appropriate type.

	When the event occurs, the bean notifies all registered listeners by
passing an event object that describes the event to a method defined
by the event listener interface.

 A
unicast event is a rare kind of event for which
there can be only a single registered listener object. The
add registration method for a unicast event throws
a TooManyListenersException if an attempt is made
to register more than a single listener.

 The
methods exported by a bean are simply any public
methods defined by the bean, excluding those methods that get and set
property values and register and remove event listeners.

 In addition to the regular sort of
properties described earlier, the JavaBeans API also supports several
specialized property subtypes. An indexed
property is a property that has an array value, as well as
getter and setter methods that access both individual elements of the
array and the entire array. A bound property is
one that sends a PropertyChangeEvent to any
interested PropertyChangeListener objects whenever
the value of the property changes. A constrained
property is one that can have any changes vetoed by any
interested listener. When the value of a constrained property of a
bean changes, the bean must send out a
PropertyChangeEvent to the list of interested
VetoableChangeListener objects. If any of these
objects throws a PropertyVetoException, the
property value is not changed, and the
PropertyVetoException is propagated back to the
property setter method.

Bean Classes

 A bean class itself must adhere to
the following conventions:
	Class name
	There are no restrictions on the class name of a bean.

	Superclass
	A bean can extend any other class. Beans are often AWT or Swing
components, but there are no restrictions.

	Instantiation
	A bean should provide a no-parameter constructor so bean manipulation
tools can easily instantiate the bean.

Properties

 A
bean defines a property p of type
T if it has accessor methods that follow
these patterns (if T is
boolean, a special form of getter method is
allowed):
	Getter
	
 public
 T
 get
 P
 (
)

	Boolean getter
	
 public boolean
is
 P
 ()

	Setter
	
 public void
set
 P
 (
 T
)

	Exceptions
	
 Property accessor methods can
throw any type of checked or unchecked exceptions.

Indexed Properties

 An indexed property is a
property of array type that provides accessor methods that get and
set the entire array as well as methods that get and set individual
elements of the array. A bean defines an indexed property
p of type
T
 [] if it defines the
following accessor methods:
	Array getter
	
 public
 T
 []
get
 P
 ()

	Element getter
	
 public
 T
 get
 P
 (int)

	Array setter
	
 public void
set
 P
 (
 T
 [])

	Element setter
	
 public void
set
 P
 (int,T
)

	Exceptions
	

 Indexed
property accessor methods can throw any type of checked or unchecked
exceptions. They should throw an
ArrayIndexOutOfBoundsException if the supplied
index is out of bounds.

Bound Properties

 A bound property is one that
generates a PropertyChangeEvent when its value
changes. Here are the conventions for a bound property:
	Accessor methods
	The getter and setter methods for a bound property follow the same
conventions as a regular property.

	Listener registration
	

 A bean that defines one or more
bound properties must define a pair of methods for the registration
of listeners that are notified when any bound property value changes.
The methods must have these signatures:

public void addPropertyChangeListener(PropertyChangeListener)
public void removePropertyChangeListener(PropertyChangeListener)
	Named property listener registration
	A bean can optionally provide additional methods that allow event
listeners to be registered for changes to a single bound property
value. These methods are passed the name of a property and have the
following signatures:

public void addPropertyChangeListener(String, PropertyChangeListener)
public void removePropertyChangeListener(String, PropertyChangeListener)
	Per-property listener registration
	A bean can optionally provide additional event listener registration
methods that are specific to a single property. For a property
p, these methods have the following
signatures:

public void addPListener(PropertyChangeListener)
public void removePListener(PropertyChangeListener)
Methods of this type allow a beanbox to distinguish a bound property
from an unbound property.
	Notification
	
 When the value of a bound property
changes, the bean should update its internal state to reflect the
change and then pass a PropertyChangeEvent to the
propertyChange() method of every
PropertyChangeListener object registered for the
bean or the specific bound property.

	Support
	

 java.beans.PropertyChangeSupport
is a helpful class for implementing bound properties.

Constrained Properties

 A
constrained property is one for which any changes can be vetoed by
registered listeners. Most constrained properties are also bound
properties. Here are the conventions for a constrained property:
	Getter
	The getter method for a constrained property is the same as the
getter method for a regular property.

	Setter
	The setter method of a constrained property throws a
PropertyVetoException if the property change is
vetoed. For a property p of type
T, the signature looks like this:

public void setP(T) throws PropertyVetoException
	Listener registration
	

 A bean that defines one or more
constrained properties must define a pair of methods for the
registration of listeners that are notified when any constrained
property value changes. The methods must have these signatures:

public void addVetoableChangeListener(VetoableChangeListener)
public void removeVetoableChangeListener(VetoableChangeListener)
	Named property listener registration
	A bean can optionally provide additional methods that allow event
listeners to be registered for changes to a single constrained
property value. These methods are passed the name of a property and
have the following signatures:

public void addVetoableChangeListener(String, VetoableChangeListener)
public void removeVetoableChangeListener(String, VetoableChangeListener)
	Per-property listener registration
	A bean can optionally provide additional listener registration
methods that are specific to a single constrained property. For a
property p, these methods have the
following signatures:

public void addPListener(VetoableChangeListener)
public void removePListener(VetoableChangeListener)
	Notification
	

 When the setter method of a constrained
property is invoked, the bean must generate a
PropertyChangeEvent that describes the requested
change and pass that event to the vetoableChange(
) method of every VetoableChangeListener
object registered for the bean or the specific constrained property.
If any listener vetoes the change by throwing a
PropertyVetoException, the bean must send out
another PropertyChangeEvent to revert the property
to its original value. It should then throw a
PropertyVetoException itself. If, on the other
hand, the property change is not vetoed, the bean should update its
internal state to reflect the change. If the constrained property is
also a bound property, the bean should notify
PropertyChangeListener objects at this point.

	Support
	

 java.beans.VetoableChangeSupport
is a helpful class for implementing constrained properties.

Events

 In
addition to PropertyChangeEvent events generated
when bound and constrained properties are changed, a bean can
generate other types of events. An event named
E should follow these conventions:
	Event class
	

 The event class should directly or
indirectly extend java.util.EventObject and should
be named E
 Event.

	Listener interface
	

 The event must be associated with an
event listener interface that extends
java.util.EventListener and is named
E
 Listener.

	Listener methods
	
 The event listener interface can
define any number of methods that take a single argument of type
E
 Event and return
void.

	Listener registration
	
 The bean must define a pair of methods
for registering event listeners that want to be notified when an
E event occurs. The methods should have
the following signatures:

public void addEListener(EListener)
public void removeEListener(EListener)
	Unicast events
	

 A unicast event allows only one listener
object to be registered at a single time. If
E is a unicast event, the listener
registration method should have this signature:

public void addEListener(EListener) throws TooManyListenersException

Chapter 8. Java Development Tools

 Sun’s
implementation of Java includes a number of tools for
Java developers. Chief among
these are the Java interpreter and the Java compiler, of course, but
there are a number of others as well. This chapter documents most
tools shipped with the JDK. Notable omissions are the RMI and IDL
tools that are specific to enterprise programming and which are
documented in Java Enterprise in a Nutshell
(O’Reilly).
The tools documented here are part of Sun’s
development kit; they are implementation details and not part of the
Java specification itself. If you are using a Java development
environment other than Sun’s JDK,
you should consult your vendor’s tool documentation.

 Some examples in this chapter use
Unix conventions for file and path separators. If Windows is your
development platform, change forward slashes in filenames to backward
slashes, and colons in path specifications to semicolons.

Name
apt — Annotation Processing Tool

Synopsis
apt [options] sourcefiles

Description

 apt

 reads and parses the
specified sourcefiles. Any annotations it
finds are passed to appropriate annotation processor factory objects,
which can use the annotations to produce auxiliary source or resource
files based on annotation content. apt next
compiles sourcefiles and generated files.
Annotation processor classes and factory classes are defined with the
com.sun.mirror.apt API and other subpackages of
com.sun.mirror.

Options

 apt shares several options with
javac
 . If a command-line argument begins with
@, apt treats it as a file
and reads options and source files from that specified file. See
javac for more on this.
	
 -A
 name=value

	Passes the name=value pair as an argument
to annotation processors.

	
 -cp
 path

 -classpath
 path

	Sets the classpath. See javac.

	
 -d
 dir

	The directory under which to place class files. See
javac.

	
 -factory
 classname

	Explicitly specifies the class name of the annotation processor
factory to use.

	
 -factorypath
 path

	A path to search for annotation processor factories instead of
searching the classpath.

	
 -help

	Prints usage information and exits.

	
 -nocompile

	Tells apt not to compile the
sourcefiles or any generated files.

	
 -print

	Simply parses the specified sourcefiles
and prints a synopsis of the types they define. Does not process
annotations or compile any files.

	
 -s
 dir

	Specifies the root directory beneath which generated source files
will be stored.

	
 -source
 version

	Specifies what version of the language to accept. See
javac.

	
 -version

	Prints apt version information.

	
 -X

	Displays information about nonstandard options.

See also

 javac, Chapter 4

Name
extcheck — JAR Version Conflict Utility

Synopsis
extcheck [-verbose] jarfile

Description

 extcheck checks
to see if the extension contained in the specified
jarfile (or a newer version of that
extension) has already been installed on the system. It does this by
reading the Specification-Title and
Specification-Version manifest attributes from the
specified jarfile and from all of the JAR
files found in the system extensions directory.

 extcheck is designed for use in automated
installation scripts. Without the -verbose option,
it does not print the results of its check. Instead, it sets its exit
code to 0 if the specified extension does not conflict with any
installed extensions and can be safely installed. It sets its exit
code to a nonzero value if an extension with the same name is already
installed and has a specification version number equal to or greater
than the version of the specified file.

Options
	
 -verbose

	Lists the installed extensions as they are checked and displays the
results of the check.

See also

 jar

Name
jarsigner — JAR Signing and Verification Tool

Synopsis
jarsigner [options] jarfile
 signer
jarsigner -verify jarfile

Description

 jarsigner
adds a
 digital signature to the specified
jarfile, or, if the
-verify option is specified, it verifies the
digital signature or signatures already attached to the JAR file. The
specified signer is a case-insensitive
nickname or alias for the entity whose signature is to be used. The
specified signer name is used to look up
the private key that generates the signature.
When you apply your digital signature to a JAR file, you are
implicitly vouching for the contents of the archive. You are offering
your personal word that the JAR file contains only nonmalicious code,
files that do not violate copyright laws, and so forth. When you
verify a digitally signed JAR file, you can determine who the signer
or signers of the file are and (if the verification succeeds) that
the contents of the JAR file have not been changed, corrupted, or
tampered with since the signature or signatures were applied.
Verifying a digital signature is entirely different from deciding
whether or not you trust the person or organization whose signature
you verified.

 jarsigner and the related
keytool program replace the
javakey program of Java 1.1.

Options

 jarsigner defines a number of options, many of
which specify how a private key is to be found for the specified
signer. Most of these options are
unnecessary when using the -verify option to
verify a signed JAR file:
	
 -certs

	
 If this option is
specified along with either the -verify or
-verbose option, it causes
jarsigner to display details of the public key
certificates associated with the signed JAR file.

	
 -J
 javaoption

	Passes the specified javaoption directly
to the Java interpreter.

	
 -keypass
 password

	

 Specifies the password that encrypts
the private key of the specified signer.
If this option is not specified, jarsigner
prompts you for the password.

	
 -keystore
 url

	

 A keystore is
a file that contains keys and certificates. This option specifies the
filename or URL of the keystore in which the private and public key
certificates of the specified signer are
looked up. The default is the file named
.keystore in the user’s home
directory (the value of the system property
user.home). This is also the default location of
the keystore managed by keytool.

	
 -sigfile
 basename

	Specifies the base names of the .SF and
.DSA files added to the
META-INF/ directory of the JAR file. If you
leave this option unspecified, the base filename is chosen based on
the signer name.

	
 -signedjar
 outputfile

	Specifies the name for the signed JAR file created by
jarsigner. If this option is not specified,
jarsigner overwrites the
jarfile specified on the command line.

	
 -storepass
 password

	Specifies the password that verifies the integrity of the keystore
(but does not encrypt the private key). If this option is omitted,
jarsigner prompts you for the password.

	
 -storetype
 type

	

 Specifies the type of keystore
specified by the -keystore option. The default is
the system-default keystore type, which on most systems is the Java
Keystore type, known as JKS. If you have the Java
Cryptography Extension installed, you may want to use a
JCEKS keystore instead.

	
 -verbose

	Displays extra information about the signing or verification process.

	
 -verify

	Specifies that jarsigner should verify the
specified JAR file rather than sign it.

See also

 jar, keytool,
javakey

Name
jar — Java Archive Tool

Synopsis
jar c|t|u|x[f][m][M][0][v] [jar-file] [manifest] [-C directory] [input-files]
jar i [jar-file]

Description

 jar is a tool that can
create and manipulate Java Archive (JAR) files. A JAR file is a ZIP
file that contains Java class files, auxiliary resource files
required by those classes, and optional meta-information. This
meta-information includes a manifest file that lists the contents of
the JAR archive and provides auxiliary information about each file.
The jar command can create JAR files, list the
contents of JAR files, and extract files from a JAR archive. In Java
1.2 and later, it can also add files to an existing archive or update
the manifest file of an archive. In Java 1.3 and later,
jar can also add an index entry to a JAR file.

 The syntax of the
jar command is reminiscent of the Unix
tar (tape archive) command. Most options to
jar are specified as a block of concatenated
letters passed as a single argument rather than as individual
command-line arguments. The first letter of the first argument
specifies what action jar is to perform; it is
required. Other letters are optional. The various file arguments
depend on which letters are specified.
As in javac, any command-line argument that
begins with @ is taken to be the name of a file that contains options
or filenames.

Command options

 The first letter of the first option
to jar specifies the basic operation
jar is to perform. The available options are:
	
 c

	
 Creates a new JAR archive. A
list of input files and/or directories must be specified as the final
arguments to jar. The newly created JAR file has
a META-INF/MANIFEST.MF file as its first entry.
This automatically created manifest lists the contents of the JAR
file and contains a message digest for each file.

	
 i

	Indexes the contents of this JAR file as well as the contents of all
JAR files it refers to in the Class-Path manifest
attribute. The resulting index is stored in the JAR file as
META-INF/INDEX.LIST and can be used by a Java
interpreter or applet viewer to optimize its class and resource
lookup algorithm and avoid downloading unnecessary JAR files. This
i option must be followed by the name of the JAR
file to be indexed. No other options are allowed. Java 1.3 and later.

	
 t

	Lists the contents of a JAR archive.

	
 u

	Updates the contents of a JAR archive. Any files listed on the
command line are added to the archive. When used with the
m option, this adds the specified manifest
information to the JAR file. Java 1.2 and later.

	
 x

	Extracts the contents of a JAR archive. The files and directories
specified on the command line are extracted and created in the
current working directory. If no file or directory names are
specified, all the files and directories in the JAR file are
extracted.

Modifier options

 Each of the four command specifier
letters can be followed by additional letters that provide further
detail about the operation to be performed:
	
 f

	Indicates that jar is to operate on a JAR file
whose name is specified on the command line. If this option is not
present, jar reads a JAR file from standard
input and/or writes a JAR file to standard output. If the
f option is present, the command line must contain
the name of the JAR file to operate
on.

	
 m

	When jar creates or updates a JAR file, it
automatically creates (or updates) a manifest file named
META-INF/MANIFEST.MF in the JAR archive. This
default manifest simply lists the contents of the JAR file. Many JAR
files require additional information to be specified in the manifest;
the m option tells the jar
command that a manifest template is specified on the command line.
jar reads this manifest file and stores all the
information it contains into the
META-INF/MANIFEST.MF file it creates. This
m option should be used only with the
c or u commands, not with the
t or x commands.

	
 M

	Used with the c and u commands
to tell jar not to create a default manifest
file.

	
 v

	Tells jar to produce verbose output.

	
 0

	
 Used with the c and
u commands to tell jar to
store files in the JAR archive without compressing them. Note that
this option is the digit zero, not the letter O.

Files

 The first
option to jar consists of an initial command
letter and various option letters. This first option is followed by a
list of files:
	
 jar-file

	If the first option contains the letter f, that
option must be followed by the name of the JAR file to create or
manipulate.

	
 manifest-file

	
 If the
first option contains the letter m, that option
must be followed by the name of the file that contains manifest
information. If the first option contains both the letters
f and m, the JAR and manifest
files should be listed in the same order the f and
m options appear. jar
automatically creates a manifest for the JAR file it creates unless
the M option is specified. The
manifest-file specified with the
m option should contain additional manifest
entries to be placed in the manifest in addition to the automatically
generated entries.

	
 files

	The list of one or more files and/or directories to be inserted into
or extracted from the JAR archive.

Additional options
In addition to all the options listed previously,
jar also supports the following:
	
 -C
 dir

	Used within the list of files to process; it tells
jar to change to the specified
dir while processing the subsequent files
and directories. The subsequent file and directory names are
interpreted relative to dir and are
inserted into the JAR archive without dir
as a prefix. Any number of -C options can be used;
each remains in effect until the next is encountered. The directory
specified by a -C option is interpreted relative
to the current working directory, not the directory specified by the
previous -C option. Java 1.2 and later.

	
 -J
 javaopt

	Passes the option javaopt to the Java
interpreter.

Examples

 The
jar command has a confusing array of options,
but, in most cases, its use is quite simple. To create a simple JAR
file that contains all the class files in the current directory and
all files in a subdirectory called images, you
can type:
% jar cf my.jar *.class images

To verbosely list the contents of a JAR archive:
% jar tvf your.jar

To extract the manifest file from a JAR file for examination or
editing:
% jar xf the.jar META-INF/MANIFEST.MF

To update the manifest of a JAR file:
% jar ufm my.jar manifest.template

See also

 jarsigner

Name
java — The Java Interpreter

Synopsis
java [interpreter-options] classname [program-arguments]
java [interpreter-options] -jar jarfile [program-arguments]

Description

 java
 is the Java
byte-code interpreter; it runs Java programs. The program to be run
is the class specified by classname. This
must be a fully qualified name: it must include the package name of
the class but not the .class file extension. For
example:
% java david.games.Checkers
% java Test

 The specified class must define a
main() method with exactly the following
signature:
public static void main(String[] args)
This method serves as the program entry point: the interpreter begins
execution here.

 In Java 1.2 and
later, a program can be packaged in an executable JAR file. To run a
program packaged in this fashion, use the -jar
option to specify the JAR file. The manifest of an executable JAR
file must contain a Main-Class attribute that
specifies which class within the JAR file contains the main(
) method at which the interpreter is to begin execution.
Any command-line options that precede the name of the class or JAR
file to execute are options to the Java interpreter itself. Any
options that follow the class name or JAR filename are options to the
program; they are ignored by the Java interpreter and passed as an
array of strings to the main() method of the
program.
The Java interpreter runs until the main() method
exits, and any threads (except for threads marked as daemon threads)
created by the program have also exited.

Interpreter versions

 The java
program is the basic version of the Java interpreter. In addition to
this program, however, there are several other versions of the Java
interpreter. Each of these versions is similar to
java but has a specialized function. This list
includes all the interpreter versions, including those that are no
longer in use.
	
 java

	This is the basic version of the Java interpreter; it is usually the
correct one to use.

	
 javaw

	

 This version of the interpreter is
included only on Windows platforms. Use javaw
when you want to run a Java program (from a script, for example)
without forcing a console window to appear.

	
 Client or Server VM

	

 Sun’s
“HotSpot” virtual machine comes in
two versions: one is tuned for use with short-lived client
applications and one is for use with long-running server code. As of
Java 1.4, you can select the server version of the VM with the
-server option. You can specify the client VM
(which is the default) with the -client option. In
Java 5.0, the interpreter automatically enters server mode if it
detects that it is running on
“server-class” hardware (typically
a computer with multiple CPUs).

Legacy interpreter versions
	
 oldjava

	
 This
version of the interpreter was included in Java 1.2 and Java 1.3 for
compatibility with the Java 1.1 interpreter. It loaded classes using
the Java 1.1 class-loading scheme. Very few Java applications needed
to use this version of the interpreter, and it was removed in Java
1.4.

	
 oldjavaw

	
 In Java
1.2 and 1.3, this version of the interpreter, included only on
Windows platforms, combined the features of
oldjava and javaw.

	
 java_g

	

 In Java 1.0 and Java 1.1,
java_g was a debugging version of the Java
interpreter. It included a few specialized command-line options.
Windows platforms also had a javaw_g program.
java_g is not included in Java 1.2 or later
versions.

	
 Classic VM

	
 In Java
1.3, you could use the -classic option to specify
that you wanted to use the “Classic
VM” (essentially the same as the Java 1.2 VM)
instead of the HotSpot VM (which uses incremental compilation). This
option was removed in Java 1.4.

	
 Just-in-time compiler

	

 In Java 1.2 and Java 1.3 when you
specified the -classic option, the Java
interpreter used a just-in-time compiler (if one were available for
your platform). A JIT converts Java byte codes to native machine
instructions at runtime and significantly speeds up the execution of
a typical Java program. If you do not want to use the JIT, you can
disable it by setting the JAVA_COMPILER
environment variable to “NONE” or
the java.compiler system property to
“NONE” using the
-D option:
% setenv JAVA_COMPILER NONE // Unix csh syntax
% java -Djava.compiler=NONE MyProgram

If you want to use a different JIT compiler implementation, set the
environment variable or system property to the name of the desired
implementation. This environment variable and property are no longer
used as of Java 1.4, which uses the HotSpot VM, which includes
efficient JIT technology.

	
 Threading systems

	

 On Solaris and related Unix
platforms, you had a choice of the type of threads used by the Java
1.2 interpreter and the “Classic
VM” of Java 1.3. To use

 native OS threads, you could specify
-native. To use nonnative, or green, threads (the
default), you could specify -green. In Java 1.3,
the default “Client VM” used native
threads. Specifying -green or
-native in Java 1.3 implicitly specified
-classic as well. These options are no longer
supported (or necessary) as of Java 1.4.

Common options
The following options are the most commonly
used.

	
 -classpath
 path

	
 Specifies
the directories and JAR files java searches when
trying to load a class. In Java 1.2 and later, this option specifies
only the location of application classes. In Java 1.0 and 1.1, and
with the oldjava interpreter, this option
specified the location of system classes, extension classes, and
application classes.

	
 -cp

	A synonym for -classpath. Java 1.2 and later.

	
 -D
 propertyname
 =
 value

	Defines propertyname to equal
value in the system properties list. Your
Java program can then look up the specified value by its property
name. You can specify any number of -D options.
For example:
% java -Dawt.button.color=gray -Dmy.class.pointsize=14 my.class

	
 -fullversion

	Prints the full Java version string, including build number, and
exits. Compare with -version.

	
 -help, -?

	Prints a usage message and exits. See also -X.

	
 -jar
 jarfile

	Runs the specified executable jarfile. The
manifest of the specified jarfile must
contain a Main-Class attribute that identifies the
class with the main() method at which program
execution is to begin. Java 1.2 and later.

	
 -showversion

	

 Works
like the -version option, except that the
interpreter continues running after printing the version information.
Java 1.3 and later.

	
 -version

	Prints the version of the Java interpreter and exits.

	
 -X

	Displays usage information for the nonstandard interpreter options
(those beginning with -X) and exits. See also
-help. Java 1.2 and later.

	
 -Xbootclasspath:path

	Specifies a search path consisting of directories, ZIP files, and JAR
files the java interpreter should use to look up
system classes. Use of this option is very rare. Java 1.2 and later.

	
 -Xbootclasspath/a:path

	Appends the specified path to the system
classpath. Java 1.3 and later.

	
 -Xbootclasspath/p:path

	Prepends the specified path to the system
boot classpath. Java 1.3 and later.

Assertion options
The following options specify whether and where

 assertions are tested. These options
were added in Java 1.4.
	
 -disableassertions[:where
]

	Disables assertions. It is new in Java 1.4 and can be abbreviated
-da. Used alone, it disables all assertions
(except those in the system classes), which is the default. To
disable assertions in a single class, follow the option with a colon
and the fully qualified class name. To disable assertions in an
entire package (and all of its subpackages), follow this option with
a colon, the name of the package, and three dots. See also
-enableassertions and
-disablesystemassertions.

	
 -da[:where
]

	Disables assertions. See -disableassertions.

	
 -disablesystemassertions

	Disables assertions in all system classes (which is the default). It
can be abbreviated -dsa and takes no options.

	
 -dsa

	An abbreviation for -disablesystemassertions.

	
 -enableassertions[:where
]

	Enables assertions. This option can be abbreviated
-ea. Used alone, it enables all assertions (except
in system classes). To enable assertions in a single class, follow
the option with a colon and the full class name. To enable assertions
in an entire package (and its subpackages), follow the option with a
colon, the package name, and three dots. See also
-disableassertions and
-enablesystemassertions.

	
 -ea[:where
]

	Enables assertions. An abbreviation for
-enableassertions.

	
 -enablesystemassertions

	Enables assertions in all system classes. May be abbreviated
-esa.

	
 -esa

	An abbreviation for -enablesystemassertions.

Performance tuning options
The
 following
options select which version of the VM is to be run and fine-tune its
memory allocation, garbage collection, and incremental compilation.
Options beginning with -X are nonstandard and may
change from release to release.
	
 -classic

	Runs the “Classic VM” instead of
the default high-performance “Client
VM.” Java 1.3 only.

	
 -client

	Optimizes the incremental compilation of the
HotSpot VM for typical client-side
applications. This option typically defers some compilation to favor
quicker application launch times. Java 1.4 and later. See also the
-server option.

	
 -d32

	Runs in 32-bit mode. This option is valid in Java 1.4 and later but
is currently implemented only for Solaris platforms.

	
 -d64

	Runs in 64-bit mode. This option is valid in Java 1.4 and later but
is currently implemented only for Solaris platforms.

	
 -green

	Selects

 nonnative, or green, threads on
operating systems such as Solaris and Linux that support multiple
styles of threading. This is the default in Java 1.2. In Java 1.3,
using this option also selects the -classic
option. See also -native. Java 1.2 and 1.3 only.

	
 -native

	Selects native threads, instead of the default
green threads, on operating systems such as Solaris that support
multiple styles of threading. Using native threads can be
advantageous in some circumstances, such as when running on a
multi-CPU computer. In Java 1.3, the default HotSpot virtual machine
uses native threads. Java 1.2 and 1.3 only.

	
 -server

	Optimizes the incremental compilation of the VM for server-class
applications. In general, this option results in slower startup time
but better subsequent performance. Java 1.4 and later. In Java 5.0
and later, many VMs automatically select this option if they are
running on “server-class” hardware
such as a dual-processor machine. See also
-client.

	
 -Xbatch

	Tells the HotSpot VM to perform all just-in-time compilation in the
foreground, regardless of the time required for compilation. Without
this option, the VM compiles methods in the background while
interpreting them in the foreground. Java 1.3 and later.

	
 -Xincgc

	
 Uses incremental garbage collection. In
this mode, the garbage collector runs continuously in the background,
and a running program is rarely, if ever, subject to noticeable
pauses while garbage collection occurs. Using this option typically
results in a 10% decrease in overall performance, however. Java 1.3
and later.

	
 -Xint

	Tells the HotSpot VM to operate in interpreted mode only, without
performing any just-in-time compilation. Java 1.3 and later.

	
 -Xmixed

	
 Tells the HotSpot VM to perform
just-in-time compilation on frequently used methods
(“hotspots”) and execute other
methods in interpreted mode. This is the default behavior. Contrast
with -Xbatch and -Xint. Java
1.3 and later.

	
 -Xms
 initmem
 [k|m]

	

 Specifies how much memory is allocated for
the heap when the interpreter starts up. By default,
initmem is specified in bytes. You can
specify it in kilobytes by appending the letter k
or in megabytes by appending the letter m. The
default is 2 MB. For large or memory-intensive applications (such as
the Java compiler), you can improve runtime performance by starting
the interpreter with a larger amount of memory. You must specify an
initial heap size of at least 1 MB. Java 1.2 and later. Prior to Java
1.2, use -ms.

	
 -Xmx
 maxmem
 [k|m]

	Specifies the maximum heap size the interpreter uses for dynamically
allocated objects and arrays. maxmem is
specified in bytes by default. You can specify
maxmem in kilobytes by appending the
letter k and in megabytes by appending the letter
m. The default is 64 MB. You cannot specify a heap
size less than 2 MB. Java 1.2 and later. Prior to Java 1.2, use
-mx.

	
 -Xnoclassgc

	

 Does not garbage-collect classes. Java
1.2 and later. In Java 1.1, use -noclassgc.

	
 -Xss
 size
 [k|m]

	
 Sets the thread stack size in
bytes, kilobytes, or megabytes. Java 1.3 and later.

Instrumentation options

 The following options
support
 debugging, profiling, and other
VM instrumentation. Options beginning
with -X are nonstandard and may change from
release to release.
	
 -agentlib:agent[=options]

	New in Java
5.0, this option specifies a JVMTI
agent, and options
for it, to be started along with the interpeter.
JVMTI is the Java Virtual Machine
Tool Interface, and it is slated to supersede the JVMDI and JVMPI
(debugging and profiling interfaces) in a future release. This means
that the general -agentlib option will replace
tool-specific options such as -Xdebug and
-Xrunhprof. Examples:
% java -agentlib:hprof=help
% java -agentlib:jdwp=help

	
 -agentpath:path-to-agent[=options]

	Like -agentlib, but with an explicitly specified
path to the agent library. Java 5.0 and later.

	
 -debug

	Causes java to start up in a way that allows the
jdb debugger to attach itself to the interpreter
session. In Java 1.2 and later, this option has been replaced with
-Xdebug.

	
 -javaagent:jarfile[=options]

	Load a Java-language instrumentation agent when the interpreter
starts. The specified jarfile must have a
manifest that includes an Agent-Class attribute.
This attribute must name a class that includes the
agent’s premain() method. Any
options will be passed to this
premain() method along with a
java.lang.instrument.Instrumentation object. See
java.lang.instrument for further detail.

	
 -verbose, -verbose:class

	Prints a message each time java loads a class.
In Java 1.2 and later, you can use -verbose:class
as a synonym.

	
 -verbose:gc

	
 Prints a message when
garbage collection occurs. Java 1.2 and later. Prior to Java 1.2, use
-verbosegc.

	
 -verbose:jni

	
 Prints a message when
native methods are called. Java 1.2 and later.

	
 -Xcheck:jni

	Performs additional validity checks when using Java Native Interface
functions. Java 1.2 and later.

	
 -Xdebug

	Starts the interpreter in a way that allows a debugger to communicate
with it. Java 1.2 and later. Prior to Java 1.2, use
-debug. Deprecated in Java 5.0 in favor of the
-agentlib option.

	
 -Xfuture

	Strictly checks the format of all class files loaded. Without this
option, java performs the same checks that were
performed in Java 1.1. Java 1.2 and later.

	
 -Xloggc:filename

	
 Logs garbage collection events with
timestamps to the named file.

	
 -Xprof

	

 Prints
profiling output to standard output. Java 1.3 and later. In Java 1.2,
or when using the -classic option, use
-Xrunhprof. Prior to Java 1.2, use
-prof.

	
 -Xrunhprof:suboptions

	Turns on CPU, heap, or monitor profiling.
suboptions is a comma-separated list of
name=value pairs. Use
-Xrunhprof:help for a list of supported options
and values. Java 1.2 and later. Deprecated in Java 5.0 in favor of
the -agentlib option.

Advanced options
The Java interpreter also supports quite a
few advanced configuration options that begin with
-XX. These options are release and
platform-dependent, and Sun’s documentation
describes them as “not recommended for casual
use.” If you want to fine-tune the threading, memory
allocation, garbage collection, signal-handling, or just-in-time
compilation performance of a production application, however, you may
be interested in them. See
http://java.sun.com/docs/hotspot/.

Loading classes

 The
Java interpreter knows where to find the system classes that comprise
the Java platform. In Java 1.2 and later, it also knows where to find
the class files for all extensions installed in the system extensions
directory. However, the interpreter must be told where to find the
nonsystem classes that comprise the application to be run.
Class files are stored in a directory that corresponds to their
package name. For example, the class
com.davidflanagan.utils.Util is stored in a file
com/davidflanagan/utils/Util.class. By default,
the interpreter uses the current working directory as the root and
looks for all classes in and beneath this directory.
The interpreter can also search for classes within ZIP and JAR files.
To tell the interpreter where to look for classes, you specify a
classpath: a list of directories and ZIP and JAR
archives. When looking for a class, the interpreter searches each of
the specified locations in the order in which they are specified.

 The easiest way to specify a classpath
is to set the CLASSPATH environment variable,
which works much like the PATH variable used by a
Unix shell or a Windows command-interpreter path. To specify a
classpath in Unix, you might type a command like this:
% setenv CLASSPATH .:~/myclasses:/usr/lib/javautils.jar:/usr/lib/javaapps

On a Windows system, you might use a command like the following:
C:\> set CLASSPATH=.;c:\myclasses;c:\javatools\classes.zip;d:\javaapps

Note that Unix and Windows use different characters to separate
directory and path components.
You can also specify a classpath with the
-classpath or -cp options to
the Java interpreter. A path specified with one of these options
overrides any path specified by the CLASSPATH
environment variable. In Java 1.2 and later, the
-classpath option specifies only the search path
for application and user classes. Prior to Java 1.2, or when using
the oldjava interpreter, this option specified
the search path for all classes, including system classes and
extension classes.

See also

 javac, jdb

Name
javac — The Java Compiler

Synopsis
javac [options] files

Description

 javac

is the Java compiler; it compiles Java source code (in
.java files) into Java byte codes (in
.class files). The Java compiler is itself
written in Java.

 javac can be passed any number of Java source
files, whose names must all end with the .java
extension. javac produces a separate
.class class file for each class defined in the
source files. Each source file can contain any number of classes,
although only one can be a public top-level class.
The name of the source file (minus the .java
extension) must match the name of the public class
it contains.

 In Java 1.2
and later, if a filename specified on the command line begins with
the character @, that file is taken not as a Java
source file but as a list of compiler options and Java source files.
Thus, if you keep a list of Java source files for a particular
project in a file named project.list, you can
compile all those files at once with the command:
% javac @project.list

To compile a source file, javac must be able to
find definitions of all classes used in the source file. It looks for
definitions in both source-file and class-file form, automatically
compiling any source files that have no corresponding class files or
that have been modified since they were most recently compiled.

Common options
The most commonly used compilation options
include the following:
	
 -classpath
 path

	Specifies the path javac uses to look up classes
referenced in the specified source code. This option overrides any
path specified by the CLASSPATH environment
variable. The path specified is an ordered
list of directories, ZIP files, and JAR archives, separated by colons
on Unix systems or semicolons on Windows systems. If the
-sourcepath option is not set, this option also
specifies the search path for source files.

	
 -d
 directory

	Specifies the directory in which (or beneath which) class files
should be stored. By default, javac stores the
.class files it generates in the same directory
as the .java files those classes were defined
in. If the -d option is specified, however, the
specified directory is treated as the root
of the class hierarchy, and .class files are
placed in this directory or the appropriate subdirectory below it,
depending on the package name of the class. Thus, the following
command:
% javac -d /java/classes Checkers.java

places the file Checkers.class in the directory
/java/classes if the
Checkers.java file has no
package statement. On the other hand, if the
source file specifies that it is in a package:
package com.davidflanagan.games;
the .class file is stored in
/java/classes/com/davidflanagan/games. When the
-d option is specified, javac
automatically creates any directories it needs to store its class
files in the appropriate place.

	
 -encoding
 encoding-name

	Specifies the name of the character encoding used by the source files
if it differs from the default platform encoding.

	
 -g

	Tells javac to add line number, source file, and
local variable information to the output class files, for use by
debuggers. By default, javac generates only the
line numbers.

	
 -g:none

	Tells javac to include no debugging information
in the output class files. Java 1.2 and later.

	
 -g:keyword-list

	

 Tells
javac to output the types of debugging
information specified by the comma-separated
keyword-list. The valid keywords are:
source, which specifies source-file information;
lines, which specifies line number information;
and vars, which specifies local variable debugging
information. Java 1.2 and later.

	
 -help

	Prints a list of options. See also -X.

	
 -J
 javaoption

	Passes the argument javaoption directly
through to the Java interpreter. For example:
-J-Xmx32m. javaoption
should not contain spaces; if multiple arguments must be passed to
the interpreter, use multiple -J options. Java 1.1
and later.

	
 -source
 release-number

	Specifies the version of Java the code is written in. Legal values of
release-number are 5, 1.5, 1.4, and 1.3. The
options 5 and 1.5 are synonyms and are the default: the compiler
accepts all Java 5.0 language features. Use -source
1.4 to have the compiler ignore Java 5.0 language features
such as the enum keyword. Use -source
1.3 to have the compiler ignore the
assert keyword that was introduced in Java 1.4.
This option is available in Java 1.4 and later.

	
 -sourcepath
 path

	
 Specifies the list of
directories, ZIP files, and JAR archives that
javac searches when looking for source files.
The files found in this source path are compiled if no corresponding
class files are found or if the source files are newer than the class
files. By default, source files are searched for in the same places
class files are searched for. Java 1.2 and later.

	
 -verbose

	Tells the compiler to display messages about what it is doing. In
particular, it causes javac to list all the
source files it compiles, including files that did not appear on the
command line.

	
 -X

	Tells the javac compiler to display usage
information for its nonstandard options (all of which begin with
-X). Java 1.2 and later.

Warning options
The following options control the generation of warning messages by
javac

 :
	
 -deprecation

	Tells javac to issue a warning for every use of
a deprecated API. By default, javac issues only
a single warning for each source file that uses deprecated APIs. Java
1.1 and later. In Java 5.0, this is a synonym for
-Xlint:deprecation.

	
 -nowarn

	Tells javac not to print warning messages.
Errors are still reported as usual.

	
 -Xlint

	Enables all recommended warnings about program
“lint.”
At the time of this writing, all the warnings detailed below are
recommended.

	
 -Xlint:warnings

	Enables or disables a comma-separated list of named warning types. At
the time of this writing, the available warning types are the
following. A named warning can be suppressed by preceding it with a
minus sign:
	
 all

	Enables all lint warnings.

	
 deprecation

	Warns about the use of deprecated APIs. See also
-deprecation.

	
 fallthrough

	Warns when a case in a switch
statement “falls through” to the
next case. See also -Xswitchcheck.

	
 finally

	Warns when a finally clause cannot complete
normally.

	
 path

	Warns if any path directories specified elsewhere on the command line
are nonexistent.

	
 serial

	Warns about Serializable classes that do not have
a serialVersionUID field.

	
 unchecked

	Provides detailed warnings about each unchecked use of a generic type.

	
 -Xmaxerrors
 num

	Don’t print more than num
errors.

	
 -Xmaxwarns
 num

	Don’t print more than num
warnings.

	
 -Xstdout
 filename

	Tells javac to send warning and error messages
to the specified file instead of writing them to the console. Java
1.4 and later.

	
 -Xswitchcheck

	Warns about case clauses in
switch statements that “fall
through.” In Java 5.0, use
-Xlint:fallthrough.

Cross-compilation options
The
 following
options are useful when
using javac to compile class files intended to
run under a different version of Java:
	
 -bootclasspath
 path

	Specifies the search path javac uses to look up
system classes. This option does not specify the system classes used
to run the compiler itself, only the system classes read by the
compiler. Java 1.2 and later.

	
 -endorseddirs
 path

	Overrides the directories to search for endorsed standards JAR files.

	
 -extdirs
 path

	Specifies a list of directories to search for standard extension JAR
files. Java 1.2 and later.

	
 -target
 version

	Specifies the class file format version to use for the generated
class files. version may be 1.1, 1.2, 1.3, 1.4,
1.5, or 5. The options 1.5 and 5 are synonyms and are the default in
Java 5.0, unless -source 1.4 is specified, in
which case -target 1.4 is the default. Use of this
flag sets the class file version number so that the resulting class
file cannot be run by VMs from previous releases.

	
 -Xbootclasspath:path

	An alternative to -bootclasspath

	
 -Xbootclasspath/a:path

	Appends the specified path to the
bootclasspath. Java 1.3 and later.

	
 -Xbootclasspath/p:path

	Prefixes the bootclasspath with the specified
path.

Environment
	
 CLASSPATH

	
 Specifies an ordered list
(colon-separated on Unix, semicolon-separated on Windows systems) of
directories, ZIP files, and JAR archives in which
javac should look for user class files and
source files. This variable is overridden by the
-classpath option.

See also

 java, jdb

Name
javadoc — The Java Documentation Generator

Synopsis
javadoc [options] @list
 package... sourcefiles...

Description

 javadoc
generates API documentation for any number of packages and classes
you specify. The javadoc command line can list
any number of package names and any number of Java source files. For
convenience, when working with a large number of command-line
options, or a large number of package or class names, you can place
them all in an auxiliary file and specify the name of that file on
the command line, preceded by an
@

character.

 javadoc uses the
javac

compiler to process all the specified Java source files and all the
Java source files in all the specified packages. It uses the
information it gleans from this processing to generate detailed API
documentation. Most importantly, the generated documentation includes
the contents of all documentation comments included in the source
files. See Chapter 7 for information about
writing doc comments in your own Java code.
When you specify a Java source file for
javadoc to process, you must specify the name of
the file that contains the source, including a complete path to the
file. It is more common, however, to use javadoc
to create documentation for entire packages of classes. When you
specify a package for javadoc to process, you
specify the package name, not the directory that contains the source
code for the package. In this case, you may need to specify the
-sourcepath option so that
javadoc can find your package source code
correctly if it is not stored in a location already listed in your
default classpath.

 javadoc creates
HTML documentation by default, but you can customize its behavior by
defining a doclet class that generates documentation in whatever
format you desire. You can write your own doclets using the doclet
API defined by the com.sun.javadoc package.
Documentation for this package is included in the standard
documentation bundle for Java 1.2 and later.

 javadoc gained significant new functionality in
Java 1.2. Here we document Java 1.2 and later versions of the program
and do not distinguish these features from those in previous
versions.

Options

 javadoc
 defines a
large number of options. Some are standard options that are always
recognized by javadoc. Other options are defined
by the doclet that produces the documentation. The options for the
standard HTML doclet are included in the following list:
	
 -1.1

	Simulates the output style and directory structure of the Java 1.1
version of javadoc. This option existed in Java
1.2 and 1.3 and was removed in Java 1.4.

	
 -author

	Includes authorship information specified with
@author in the generated documentation. Default
doclet only.

	
 -bootclasspath

	Specifies the location of an alternate set of system classes. This
can be useful when cross-compiling. See javac
for more information on this option.

	
 -bottom
 text

	Displays text at the bottom of each
generated HTML file. text can contain HTML
tags. See also -footer. Default doclet only.

	
 -breakiterator

	Uses the java.text.BreakIterator algorithm for
determining the end of the summary sentence in doc comments. Default
doclet only.

	
 -charset
 encoding

	Specifies the character encoding for the output. This
depends on the encoding used in the documentation comments of your
source code, of course. The encoding value
is used in a <meta> tag in the HTML output.
Default doclet only.

	
 -classpath
 path

	Specifies a path javadoc uses to look up both
class files and, if you do not specify the
-sourcepath option, source files. Because
javadoc uses the javac
compiler, it needs to be able to locate class files for all classes
referenced by the packages being documented. See
java and javac for more
information about this option and the default value provided by the
CLASSPATH environment variable.

	
 -d
 directory

	Specifies the directory in and beneath which
javadoc should store the HTML files it
generates. If this option is omitted, the current directory is used.
Default doclet only.

	
 -docencoding
 encoding

	Specifies the encoding to be used for output HTML documents. The name
of the encoding specified here may not exactly match the name of the
charset specified with the -charset option.
Default doclet only.

	
 -docfilessubdirs

	Recursively copies any subdirectories of a
doc-files directory instead of simply copying
the files contained directly within doc-files.
Default doclet only.

	
 -doclet
 classname

	Specifies the name of the doclet class to use to generate the
documentation. If this option is not specified,
javadoc generates documentation using the
default HTML doclet.

	
 -docletpath
 classpath

	Specifies a path from which the class specified by the
-doclet tag can be loaded if it is not available
from the default classpath.

	
 -doctitle
 text

	Provides a title to display at the top of the documentation overview
file. This file is often the first thing readers see when they browse
the generated documentation. The title can contain HTML tags. Default
doclet only.

	
 -encoding
 encoding-name

	Specifies the character encoding of the input source files and the
documentation comments they contain. This can be different from the
desired output encoding specified by -docencoding.
The default is the platform default encoding.

	
 -exclude
 packages

	Excludes the named packages from the set of packages defined by a
-subpackages option.
packages is a colon-separated list of
package names. Default doclet only.

	
 -excludedocfilessubdir
 dirs

	Excludes specified subdirectories of a doc-files
directory when -docfilessubdirs is specified. This
is useful for excluding version control directories, for example.
dirs is a colon-separated list of
directory names relative to the doc-files
directory. Default doclet only.

	
 -extdirs
 dirlist

	Specifies a list of directories to search for standard extensions.
Only necessary when cross-compiling with
-bootclasspath. See javac for
details.

	
 -footer
 text

	Specifies text to be displayed near the bottom of each file to the
right of the navigation bar. text can
contain HTML tags. See also -bottom and
-header. Default doclet only.

	
 -group
 title
 packagelist

	

 javadoc
generates a top-level overview page that lists all packages in the
generated document. By default, these packages are listed in
alphabetical order in a single table. You can break them into groups
of related packages with this option, however. The
title specifies the title of the package
group, such as “Core Packages.” The
packagelist is a colon-separated list of
package names, each of which can include a trailing
* character as a wildcard. The
javadoc command line can contain any number of
-group options. For example:
% javadoc -group "AWT Packages" java.awt* \
 -group "Swing Packages" javax.accessibility:javax.swing*

	
 -header
 text

	Specifies text to be displayed near the top of file, to the right of
the upper navigation bar. text can contain
HTML tags. See also -footer,
-doctitle, and -windowtitle.
Default doclet only.

	
 -help

	
 Displays a usage message for
javadoc.

	
 -helpfile
 file

	Specifies the name of an HTML file that contains help for using the
generated documentation. javadoc includes links
to this help file in all files it generates. If this option is not
specified, javadoc creates a default help file.
Default doclet only.

	
 -J
 javaoption

	
 Passes the
argument javaoption directly through to the Java
interpreter. When processing a large number of packages, you may need
to use this option to increase the amount of memory
javadoc is allowed to use. For example:
% javadoc -J-Xmx64m

Note that because -J options are passed directly
to the Java interpreter before javadoc starts
up, they cannot be included in an external file specified on the
command line with the @list syntax.

	
 -keywords

	Tells javadoc to include type and member names
in <Meta> tag keyword lists. Default doclet
only.

	
 -link
 url

	
 Specifies an absolute or relative
URL of the top-level directory of another
javadoc-generated document.
javadoc uses this URL as the base URL for links
from the current document to packages, classes, methods, and fields
that are not documented in the current document. For example, when
using javadoc to produce documentation for your
own packages, you can use this option to link your documentation to
the javadoc documentation for the core Java
APIs. Default doclet only.

The directory specified by url must
contain a file named package-list, and
javadoc must be able to read this file at
runtime. This file is automatically generated by a previous run of
javadoc; it contains a list of all packages
documented at the url.
More than one -link option can be specified,
although this does not work properly in early releases of Java 1.2.
If no -link option is specified, references in the
generated documentation to classes and members that are external to
the documentation are not hyperlinked.
	
 -linkoffline
 url
 packagelist

	Similar to the -link option, except that the
packagelist file is explicitly specified
on the command line. This is useful when the directory specified by
url does not have a
package-list file or when that file is not
available when javadoc is run. Default doclet
only.

	
 -linksource

	Creates an HTML version of each source file read and includes links
to it from the documentation pages. Default doclet only.

	
 -locale
 language_country_variant

	

 Specifies
the locale to use for generated documentation. This is used to look
up a resource file that contains localized messages and text for the
output files.

	
 -nocomment

	Ignores all doc comments and generates documentation that includes
only raw API information without any accompanying prose. Default
doclet only.

	
 -nodeprecated

	
 Tells javadoc
to omit documentation for deprecated features. This option implies
-nodeprecatedlist. Default doclet only.

	
 -nodeprecatedlist

	Tells javadoc not to generate the
deprecated-list.html file and not to output a
link to it on the navigation bar. Default doclet only.

	
 -nohelp

	Tells javadoc not to generate a help file or a
link to it in the navigation bar. Default doclet only.

	
 -noindex

	
 Tells javadoc
not to generate index files. Default doclet only.

	
 -nonavbar

	Tells javadoc to omit the navigation bars from
the top and bottom of every file. Also omits the text specified by
-header and -footer. This is
useful when generating documentation to be printed. Default doclet
only.

	
 -noqualifier
 packages
 | all

	

 javadoc
omits package names in its generated documentation for classes in the
same package being documented. This option tells it to additionally
omit package names for classes in the specified packages, or, if the
all keyword is used, in all packages.
packages is a colon-separated list of
package names, which may include the * wildcard to
indicate subpackages. For example, -noqualifier
java.io:java.nio.* would exclude package names for all
classes in the java.io package and in
java.nio and its subpackages. Default doclet only.

	
 -nosince

	
 Ignores @since
tags in doc comments. Default doclet only.

	
 -notimestamp

	Don’t output timestamps in HTML comments. Default
doclet only.

	
 -notree

	Tells javadoc not to generate the
tree.html
 class hierarchy diagram or a
link to it in the navigation bar. Default doclet only.

	
 -overview
 filename

	

 Reads an overview doc comment from
filename and uses that comment in the
overview page. This file does not contain Java source code, so the
doc comment should not actually appear between /**
and */ delimiters.

	
 -package

	
 Includes package-visible
classes and members in the output, as well as
public and protected classes
and members.

	
 -private

	Includes all classes and members, including
private and package-visible classes and members,
in the generated documentation.

	
 -protected

	Includes public and protected
classes and members in the generated output. This is the default.

	
 -public

	Includes only public classes and members in the
generated output. Omits protected,
private, and package-visible classes and members.

	
 -quiet

	Suppresses output except warnings and error messages.

	
 -serialwarn

	
 Issues warnings about
serializable classes that do not adequately document their
serialization format with @serial and related
doc-comment tags. Default doclet only.

	
 -source
 release

	Specifies the
release

 of Java for which the source
files were written. See the -source option of
javac. Legal values are 5, 1.5, 1.4, and 1.3.
The options 1.5 and 5 are synonyms and are the default.

	
 -sourcepath
 path

	
 Specifies a search path for source
files, typically set to a single root directory.
javadoc uses this path when looking for the Java
source files that implement a specified package.

	
 -splitindex

	
 Generates multiple index
files, one for each letter of the alphabet. Use this option when
documenting large amounts of code. Otherwise, the single index file
generated by javadoc will be too large to be
useful. Default doclet only.

	
 -stylesheetfile
 file

	Specifies a file to use as a CSS stylesheet for the generated HTML.
javadoc inserts appropriate links to this file
in the generated documentation. Default doclet only.

	
 -subpackages
 packages

	Specifies that javadoc should process the
specified packages and all of their subpackages.
packages is a colon-separated list of
package names or package name prefixes. Using this option is often
easier than explicitly listing all desired package names. For
example:
-subpackages java:javax
See also -exclude. Default doclet only.

	
 -tag
 tagname:where:header-text

	Specifies that javadoc should handle a
doc-comment tag named tagname by outputting the
text header-text followed by whatever text
follows the tag. This enables the use of simple custom tags (with the
same syntax as @return and
@author) in
 doc
comments. where is a string of characters
that specifies the types of doc comments in which this custom tag is
allowed. The characters and their meanings are a
(all: valid everywhere), p (packages),
t (types: classes and interfaces),
c (constructors), m (methods),
and f (fields).

A secondary purpose of the -tag option is to
specify the order in which tags are processed and in which their
output appears. You can include the names of standard tags after the
-tag option to specify this ordering. Custom tags
and taglets can be included within this list of standard
-tag options. Default doclet only.
	
 -taglet
 classname

	Specifies the classname of a
“taglet” class to process a custom
tag. Writing taglets is not covered here. -taglet
tags may be interspersed with -tag tags to specify
the order in which tags should be processed and output. Default
doclet only.

	
 -tagletpath
 classpath

	
 Specifies a colon-separated list of JAR
files or directories that form the classpath to be searched for
taglet classes. Default doclet only.

	
 -use

	Generates and inserts links to an additional file for each class and
package that lists the uses of the class or package.

	
 -verbose

	Displays additional messages while processing source files.

	
 -version

	Includes information from @version tags in the
generated output. This option does not tell
javadoc to print its own version number. Default
doclet only.

	
 -windowtitle
 text

	Specifies text to be output in the
<Title> tag of each generated file. This
title typically appears as the title of the web browser window and in
history and bookmark lists. text should
not contain HTML tags. See also -doctitle and
-header. Default doclet only.

Environment
	
 CLASSPATH

	

 This
environment variable specifies the default classpath
javadoc uses to find the class files and source
files. It is overridden by the -classpath and
-sourcepath options. See java
and javac for further discussion of the
classpath.

See also

 java, javac

Name
javah — Native Method C Stub Generator

Synopsis
javah [options] classnames

Description

 javah generates C

 header and source files
(.h and .c files) that are
used when implementing Java native methods in C. The preferred native
method interface changed between Java 1.0 and Java 1.1. In Java 1.1
and earlier, javah generated files for old-style
native methods. In Java 1.1, the -jni option
specified that javah should generate new-style
files. In Java 1.2 and later, this option is the default.
This section describes only how to use javah. A
full description of how to implement Java native methods in C is
beyond the scope of this book.

Options
	
 -bootclasspath

	
 Specifies the path to search for
system classes. See javac for further
discussion. Java 1.2 and later.

	
 -classpath
 path

	
 Specifies the path
javah uses to look up the classes named on the
command line. This option overrides any path specified by the
CLASSPATH environment variable. Prior to Java 1.2,
this option can specify the location of the system classes and
extensions. In Java 1.2 and later, it specifies only the location of
application classes. See -bootclasspath. See also
java for further discussion of the classpath.

	
 -d
 directory

	Specifies the directory into which javah stores
the files it generates. By default, it stores them in the current
directory. This option cannot be used with -o.

	
 -force

	Causes javah to always write output files, even
if they contain no useful content.

	
 -help

	Causes javah to display a simple usage message
and exit.

	
 -J
 javaopt

	Passes the option javaopt to the Java
interpreter.

	
 -jni

	
 Specifies that javah
should output header files for use with the Java Native
Interface (JNI) rather than the old JDK 1.0 native interface. This
option is the default in Java 1.2 and later. See also
-old. Java 1.1 and later.

	
 -o
 outputfile

	Combines all output into a single file,
outputfile, instead of creating separate
files for each specified class.

	
 -old

	Outputs files for Java 1.0-style native methods. Prior to Java 1.2,
this was the default. See also -jni. Java 1.2 and
later.

	
 -stubs

	
 Generates .c
stub files for the class or classes instead of header files. This
option is only for the Java 1.0 native methods interface. See
-old.

	
 -trace

	Specifies that javah should include tracing
output commands in the stub files it generates. In Java 1.2 and
later, this option is obsolete and has been removed. In its place,
you can use the -verbose:jni option of the Java
interpreter.

	
 -v, -verbose

	Specifies verbose mode. Causes javah to print
messages about what it is doing. In Java 1.2 and later,
-verbose is a synonym.

	
 -version

	Causes javah to display its version number.

Environment
	
 CLASSPATH

	Specifies the default classpath javah searches
to find the specified classes. See java for a
further discussion of the classpath.

See also

 java, javac

Name
javap — The Java Class Disassembler

Synopsis
javap [options] classnames

Description

 javap reads
the class files specified by the class names on the command line and
prints a human-readable version of the API defined by those classes.
javap can also disassemble the specified
classes, displaying the Java VM byte codes for the methods they
contain.

Options
	
 -b

	Enables backward compatibility with the output of the Java 1.1
version of javap. This option exists for
programs that depend on the precise output format of
javap. Java 1.2 and later.

	
 -bootclasspath
 path

	
 Specifies the
search path for the system classes. See javac
for information about this rarely used option. Java 1.2 and later.

	
 -c

	

 Displays the code (i.e., Java VM byte
codes) for each method of each specified class. This option always
disassembles all methods, regardless of their visibility level.

	
 -classpath
 path

	
 Specifies the path
javap uses to look up the classes named on the
command line. This option overrides the path specified by the
CLASSPATH environment variable. Prior to Java 1.2,
this argument specifies the path for all system classes, extensions,
and application classes. In Java 1.2 and later, it specifies only the
application classpath. See also -bootclasspath and
-extdirs. See java and
javac for more information on the classpath.

	
 -extdirs
 dirs

	Specifies one or more directories that should be searched for
extension classes. See javac for information
about this rarely used option. Java 1.2 and later.

	
 -J
 javaopt

	Pass the option javaopt to the Java interpreter.

	
 -l

	Displays tables of line numbers and local variables, if available in
the class files. This option is typically useful only when used with
-c. The javac compiler does
not include local variable information in its class files by default.
See -g and related options to
javac.

	
 -help

	
 Prints a usage message and exits.

	
 -J
 javaoption

	Passes the specified javaoption directly
to the Java interpreter.

	
 -package

	
 Displays
package-visible, protected, and
public class members, but not
private members. This is the default.

	
 -private

	Displays all class members, including private
members.

	
 -protected

	Displays only protected and
public members.

	
 -public

	Displays only public members of the specified
classes.

	
 -s

	Outputs the class member declarations using the internal VM type and
method signature format instead of the more readable source-code
format.

	
 -verbose

	Specifies verbose mode. Outputs additional information (in the form
of Java comments) about each member of each specified class.

Environment
	
 CLASSPATH

	

 Specifies the
default search path for application classes. The
-classpath option overrides this environment
variable. See java for a discussion of the
classpath.

See also

 java, javac

Name
javaws — Java Web Start launcher

Synopsis
javaws
javaws [options] url

Description

 javaws is the command-line interface to the Java
Web Start network application launcher. When started without a
url, javaws displays
a graphical cache viewer which allows cached applications to be
launched and Java Web Start to be configured.
If the URL of a JNLP (Java Network Launching Protocol) is specified
on the command line, javaws launches the
specified application.

Options
	
 -association

	Allows the creation of file associations during a -silent
-import.

	
 -codebase
 url

	Overrides the codebase in the JNLP file with the specified
url.

	
 -import

	Imports the specified application to the user cache but does not run
it.

	
 -offline

	Runs in offline mode.

	
 -online

	Starts in online mode. This is the default behavior.

	
 -shortcut

	Allows desktop shortcuts to be created during a -silent
-import.

	
 -silent

	When used with -import, this option prevents a GUI
window from appearing.

	
 -system

	Uses the system cache.

	
 -uninstall

	Removes the application identified by url
from the user’s cache and exits.

	
 -updateVersions

	Updates the javaws configuration file (such as
after upgrading to a newer version of Java).

	
 -userConfig
 name [value]
	Sets the deployment property name or, if
value is specified, sets it to the
specified value.

	
 -viewer

	Launches the cache viewer application. This is the default behavior
if javaws is invoked with no arguments.

	
 -wait

	Does not exit until the launched application exits.

	
 -Xclearcache

	Clears the user’s cache and exits.

	
 -Xnosplash

	Does not display the Java Web Start splash screen.

Name
jconsole — Graphical Java Process Monitor

Synopsis
jconsole [options]
jconsole [options] pid
jconsole [options] host:port

Description

 jconsole

is a

 graphical interface to the memory,
thread, class loading, and other
monitoring
tools provided by the java.lang.management
package. It can monitor one or more local or remote Java processes.
Processes can be monitored only if started with special system
properties set. To allow a Java VM to be monitored locally, start it
with:
% jconsole -Dcom.sun.management.jmxremote=true

To allow a Java VM to be monitored remotely, start it with:
% jconsole -Dcom.sun.management.jmxremote.port=
 port

where port is the remote port to which
jconsole will connect.
You may start jconsole with no local or remote
process specified and use its Connection menu to establish
connections. This is the only way to connect
jconsole to more than one Java process.
To connect jconsole to a local process when it
starts up, simply list the process id on the command line. See
jps to determine process ids.
To connect jconsole to a remote process when it
starts up, specify the hostname and port number on the command line.
The port should be the same as that specified by the
com.sun.management.jmxremote.port system property
of the target process.

Options
	
 -help

	Display a usage message.

	
 -interval=
 n

	Set the update interval to n seconds. The
default is 4.

	
 -version

	Display the jconsole version and exit.

See also

 jps, jstat

Name
jdb — The Java Debugger

Synopsis
jdb [options] class [program options]
jdb connect options

Description

 jdb is a
debugger for Java classes. It is text-based, command-line-oriented,
and has a command syntax like that of the Unix
dbx or gdb debuggers used
with C and C++ programs.

 jdb is written in Java, so it runs within a
Java interpreter. When
jdb is invoked with the name of a Java class, it
starts another copy of the java interpreter,
using any interpreter options specified on the command line. The new
interpreter is started with special options that enable it to
communicate with jdb. The new interpreter loads
the specified class file and then stops and waits for debugging
commands before executing the first byte code.

 jdb can also debug a program that is already
running in another Java interpreter. Doing so requires that special
options be passed to both the java interpreter
and to jdb. See the -attach
option below.

jdb expression syntax

 jdb debugging
commands such as print, dump,
and suspend allow you to refer to classes,
objects, methods, fields, and threads in the program being debugged.
You can refer to classes by name, with or without their package
names. You can also refer to static class members
by name. You can refer to individual objects by object ID, which is
an eight-digit hexadecimal integer. Or, when the classes you are
debugging contain local variable information, you can often use local
variable names to refer to objects. You can use normal Java syntax to
refer to the fields of an object and the elements of an array; you
can also use this syntax to write quite complex expressions. As of
Java 1.3, jdb even supports method invocation
using standard Java syntax.

Options

 When
invoking jdb with a specified class file, any of
the java interpreter options can be specified.
See the java reference page for an explanation
of these options. In addition, jdb supports the
following options:
	
 -attach [host:]port

	
 Specifies that jdb
should connect to the Java VM that is already running on the
specified host (or the local host, if unspecified) and listening for
debugging connections on the specified port. Java 1.3 and later.
In order to use jdb to connect to a running VM
in this way, the VM must have been started with special command-line
options. In Java 1.3 and 1.4, use these options:
% java -Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n

In
 Java 5.0, use these options
instead:
% java -agentlib:jdwp=transport=dt_socket,address=8000,server=y,suspend=n

The Java debugging architecture allows a complex set of
interpreter-to-debugger connection
options, and java and jdb
provide a complex set of options and suboptions to enable it. A
detailed description of those options is beyond the scope of this
book.

	
 -connect
 connector:args

	
 This option provides the most general and
flexible method for connecting jdb to the
process to be debugged. Specify the name of a
connector (a Java class) followed by a
colon and a comma-separated list of arguments in name=value form.
Java 1.4 and later. See -listconnectors for
available connectors and their arguments.

	
 -help

	Displays a usage message listing supported options.

	
 -launch

	Starts the specified application when jdb
starts. This avoids the need to explicitly use the
run command to start it. Java 1.3 and later.

	
 -listconnectors

	List available connection methods. Each connector is a Java class and
a list of arguments. Java 5.0 and later. See the
-connect option.

	
 -listen
 port

	Listens on the specified port for a Java
VM to connect to the debugger. To make this work, the VM must be with
options like these:
% java -agentlib:jdwp=transport=dt_socket,address=8000,server=n,suspend=y

Java 1.4 and later.

	
 -listenany

	Like the -listen option but
jdb picks a port to listen on and prints out the
port number for use when launching the Java process to debug. Java
1.4 and later.

	
 -sourcepath
 path

	
 Specifies the locations
jdb searches when attempting to find source
files that correspond to the class files being debugged. If
unspecified, jdb uses the classpath by default.
Java 1.3 and later.

	
 -tclient

	Tells jdb to invoke the client version of the
Java interpreter.

	
 -tserver

	Tells jdb to invoke the server version of the
Java interpreter.

	
 -version

	Displays the jdb version number and exits.

Commands

 jdb
understands the following debugging commands. Use the
help command for more.
	
 ? or help

	
 Lists all supported commands, with a
short explanation of each.

	
 !!

	
 A shorthand command that is
replaced with the text of the last command entered. It can be
followed with additional text to append to that command.

	
 catch [exception-class]
	

 Causes a breakpoint whenever the
specified exception is thrown. If no exception is specified, the
command lists the exceptions currently being caught. Use
ignore to stop these breakpoints from occurring.

	
 classes

	Lists all classes that have been loaded.

	
 clear

	Lists all currently set breakpoints.

	
 clear
 class.method [(
 param-type...
)]
	Clears the breakpoint set in the specified method of the specified
class.

	
 clear [class:line]
	Removes the breakpoint set at the specified line of the specified
class.

	
 cont

	Resumes execution. This command should be used when the current
thread is stopped at a breakpoint.

	
 down [n]
	Moves down n frames in the call stack of
the current thread. If n is not specified,
moves down one frame.

	
 dump
 id...

	Prints the value of all fields of the specified object or objects. If
you specify the name of a class, dump displays all
class (static) methods and variables of the class and also displays
the superclass and list of implemented interfaces. Objects and
classes can be specified by name or by their eight-digit hexadecimal
ID numbers. Threads can also be specified with the shorthand
t@
 thread-number.

	
 exit or quit

	Quits jdb.

	
 gc

	
 Runs the garbage collector to force
unused objects to be reclaimed.

	
 ignore
 exception-class

	Does not treat the specified exception as a breakpoint. This command
turns off a catch command. This command does not
cause the Java interpreter to ignore exceptions; it merely tells
jdb to ignore them.

	
 list [line-number]
	Lists the specified line of source code as well as several lines that
appear before and after it. If no line number is specified, uses the
line number of the current stack frame of the current thread. The
lines listed are from the source file of the current stack frame of
the current thread. Use the use command to tell
jdb where to find source files.

	
 list
 method

	Displays the source code of the specified method.

	
 load
 classname

	Loads the specified class into jdb.

	
 locals

	Displays a list of local variables for the current stack frame. Java
code must be compiled with the -g option in order
to contain local variable information.

	
 methods
 class

	

 Lists all methods of the specified
class. Use dump to list the instance variables of
an object or the class (static) variables of a class.

	
 print
 id...

	Prints the value of the specified item or items. Each item can be a
class, object, field, or local variable, and can be specified by name
or by eight-digit hexadecimal ID number. You can also refer to
threads with the special syntax
t@
 thread-number. The
print command displays an
object’s value by invoking its
toString() method.

	
 next

	Executes the current line of source code, including any method calls
it makes. See also step.

	
 resume [thread-id...]
	Resumes execution of the specified thread or threads. If no threads
are specified, all suspended threads are resumed. See also
suspend.

	
 run [class] [args]
	
 Runs the main()
method of the specified class, passing the specified arguments to it.
If no class or arguments are specified, uses the class and arguments
specified on the jdb command line.

	
 step

	Runs the current line of the current thread and stops again. If the
line invokes a method, steps into that method and stops. See also
next.

	
 stepi

	Executes a single Java VM instruction.

	
 step up

	Runs until the current method returns to its caller and stops again.

	
 stop

	
 Lists current breakpoints.

	
 stop at
 class:line

	Sets a breakpoint at the specified line of the specified class.
Program execution stops when it reaches this line. Use
clear to remove a breakpoint.

	
 stop in
 class.method [(
 param-type...
)]
	Sets a breakpoint at the beginning of the specified method of the
specified class. Program execution stops when it enters the method.
Use clear to remove a breakpoint.

	
 suspend [thread-id...]
	
 Suspends the specified thread or
threads. If no threads are specified, suspends all running threads.
Use resume to restart them.

	
 thread
 thread-id

	Sets the current thread to the specified thread number. This thread
is used implicitly by a number of other jdb
commands.

	
 threadgroup
 name

	Sets the current thread group.

	
 threadgroups

	Lists all thread groups running in the Java interpreter session being
debugged.

	
 threads [threadgroup]
	Lists all threads in the named thread group. If no thread group is
specified, lists all threads in the current thread group (specified
by threadgroup).

	
 up [n]
	Moves up n frames in the call stack of the
current thread. If n is not specified, moves up
one frame.

	
 use [source-file-path]
	
 Sets the path used by
jdb to look up source files for the classes
being debugged. If no path is specified, displays the current source
path.

	
 where [thread-id] [all]
	Displays a stack trace for the specified thread. If no thread is
specified, displays a stack trace for the current thread. If
all is specified, displays a stack trace for all
threads.

	
 wherei [thread-id x]
	

 Displays a stack
trace for the specified or current thread, including detailed program
counter information.

Environment
	
 CLASSPATH

	
 Specifies an ordered list
(colon-separated on Unix, semicolon-separated on Windows systems) of
directories, ZIP files, and JAR archives in which
jdb should look for class definitions. When a
path is specified with this environment variable,
jdb always implicitly appends the location of
the system classes to the end of the path. If this environment
variable is not specified, the default path is the current directory
and the system classes. This variable is overridden by the
-classpath option.

See also

 java

Name
jinfo — Display configuration of a Java process

Synopsis
jinfo [options] pid // info on local process
jinfo [options] executable
 core // info from core file
jinfo [options] [process-name@]hostname // info from remote process

Description

 jinfo

 prints the
system properties and JVM command-line options for a running Java
process or core file. jinfo can be started in
one of three ways:
	Specify the process id of a Java process running locally to obtain
configuration information about it. See jps to
list local processes.

	To obtain post-mortem configuration information from a core file,
specify the java executable that produced the core file and the core
file itself on the command line.

	To obtain configuration information about a Java process running
remotely, specify the name of the remote host, optionally prefixed by
a remote process name. jsadebugd must be running
on the remote host.

In Java 5.0, jinfo is experimental, unsupported,
and not available on all platforms.

Options
These options are mutually exclusive; only one may be specified.
	
 -flags

	Prints only JVM flags, not system properties.

	
 -help, -h

	Prints a help message.

	
 -sysprops

	Prints only system properties, not JVM flags.

See also

 jps, jsadebugd

Name
jmap — Display memory usage

Synopsis
jmap [options] pid // local process
jmap [options] executable
 core // core file
jmap [options] [process-name@]hostname // remote process

Description

 jmap

 prints
memory usage
information for a local or remote Java process or a Java core file.
Depending on the option it is invoked with, jmap
displays one of four memory usage reports. See the Options section
for details. jmap can be started in three ways:
	Specify the process id of a Java process running locally to obtain
configuration information about it. See jps to
list local processes.

	To obtain post-mortem configuration information from a core file,
specify the java executable that produced the core file and the core
file itself on the command line.

	To obtain configuration information about a Java process running
remotely, specify the name of the remote host, optionally prefixed by
a remote process name and @ sign. jsadebugd must
be running on the remote host.

In Java 5.0, jmap is experimental, unsupported,
and not available on all platforms.

Options
When invoked with no options, jmap prints a
memory map of the shared objects or libraries loaded by the VM. Other
reports can be produced by using the options below. These options are
mutually exclusive; only one may be specified.
	
 -heap

	Displays a summary of heap memory usage.

	
 -help, -h

	Prints a help message.

	
 -histo

	Displays a histogram of heap usage by class.

	
 -permstat

	Displays memory used by loaded classes, grouped by class loader.

See also

 jps, jsadebugd

Name
jps — List Java processes

Synopsis
jps [options] [hostname[:port]]

Description

 jps

lists the Java processes running on the local host or on the
specified remote host. If a remote host is specified, it must be
running the jstatd daemon. For each Java
process, it displays a process id and names the class or JAR file
that the process is executing. Process ids are used by a number of
other Java tools, such as jconsole,
jstat, and jmap.

Options
The options below alter the default jps display.
The single-letter options, except for -q, may be
combined into a single command-line argument, such as
-lmv:
	
 -help

	Displays a usage message.

	
 -l

	Lists the full package name of the main class or the full path of the
JAR file running in each Java process.

	
 -m

	Lists the arguments passed to main() method of
each Java process.

	
 -q

	Lists only Java process identifiers, without application name or any
additional information.

	
 -v

	Lists arguments passed to the Java interpreter for each Java process.

	
 -V

	Lists arguments passed to the interpreter through a flags file such
as .hotspotrc.

See also

 jstatd

Name
jsadebugd — Daemon process for remote debugging

Synopsis
jsadebugd pid [process-name] // running process
jsadebugd executable
 core [process-name] // core file

Description

 jsadebugd

 is a server process that allows
remote invocations of jinfo,
jmap, and jstack on a local
Java process or core file. Invoke jsadebugd by
specifying either the process id of a running Java process or an
executable file and core file pair on the command line. If more than
one jsadebugd server will run on the same host
at the same time, follow these arguments with an identifying process
name that remote clients can use to identify the desired process.

 jsadebugd starts the
rmiregistry server.
In Java 5.0, jsadebugd is experimental,
unsupported, and not available on all platforms.

See also

 jinfo, jmap,
jstack

Name
jstack — Display stack traces for a Java process

Synopsis
jstack [options] pid // local process
jstack [options] executable
 core // core file
jstack [options] [process-name@]hostname // remote process

Description

 jstack

 prints
stack traces for each of the Java threads running in the specified
Java process. jstack can be started in three
ways:
	Specify the process id of a Java process running locally to obtain
configuration information about it. See jps to
list local processes.

	To obtain post-mortem configuration information from a core file,
specify the Java executable that produced the core file and the core
file itself on the command line.

	To obtain configuration information about a Java process running
remotely, specify the name of the remote host, optionally prefixed by
a remote process name and @ sign. jsadebugd must
be running on the remote host.

In Java 5.0, jstack is experimental,
unsupported, and not available on all platforms.

Options
	
 -help, -h

	Prints a help message.

	
 -m

	Displays stack traces in “mixed
mode,” that is, displays both Java and native method
stack frames. Without this option, the default is to display Java
stack frames only.

See also

 jps, jsadebugd

Name
jstat — Java VM statistics

Synopsis
jstat [options] pid [interval[s|ms] [count]]
jstat [options] pid@hostname[:port] [interval[s|ms] [count]]

Description

 jstat probes a running
 JVM
once or repeatedly and displays

 statistics about its class loading,
just-in-time compilation, memory, or garbage collection performance.
The type of information to be displayed is specified by
options. A local process to be probed is
specified by its process id, as returned, for example, by
jps. A remote Java process may be probed by
specifying the remote process id, the remote host name, and the port
number on which the remote host’s
rmiregistry server is running (if other than the
default of 1099). The remote host must also be running the
jstatd server.
By default, jstat probes the specified Java VM
once. You may also specify a probe interval, in milliseconds or
seconds, to have it probe repeatedly. If you do this, you may
additionally specify a total number of probes it should conduct.

 jconsole can report many of the same statistics
that jstat does but displays them in graphical
rather than tabular form. In Java 5.0, jinfo is
experimental, unsupported, and not available on all platforms.

Options
	
 -help

	Displays a help message.

	
 -options

	Displays a list of report types that jstat can
display. You must use one of the listed options each time you run
jstat.

	
 -version

	Displays the jstat version information and exits.

	
 -h
 n

	When jstat probes the Java process repeatedly,
this option specifies how often it should repeat the table headers in
its output. This option must follow one of the report type options
below.

	
 -t

	Adds a Timestamp column to the report generated by
jstat. The column displays elapsed time (in
seconds) since the target Java process was started.

The following options specify the type of statistics to be reported
by jstat. Unless you run
jstat with -help,
-options or -version, you must
specify exactly one of these options, and it must be the first option
on the command line. Most of the options produce detailed reports of
garbage collection minutiae. Consult Sun’s tool
documentation (part of the JDK documentation bundle) for the
interpretation of these reports.
	
 -class

	Reports the number of classes loaded and their size in
kilobytes.

	
 -compiler

	Reports the amount of just-in-time compilation that has been
performed, and how long it has taken.

	
 -gc

	Reports heap garbage collection statistics.

	
 -gccapacity

	Reports capacity information of the garbage
collector’s various memory pools.

	
 -gccause

	Like the -gcutil report but includes information
about the cause of the most recent garbage collection.

	
 -gcnew

	Reports information on the “new
generation” memory pools of the garbage collector.

	
 -gcnewcapacity

	Reports capacity information for the garbage
collector’s “new
generation” memory pools.

	
 -gcold

	Reports information on the old generation and permanent memory pools
of the garbage collector.

	
 -gcoldcapacity

	Reports capacity information for the garbage
collector’s old generation memory pools.

	
 -gcpermcapacity

	Reports capacity information for the garbage
collector’s permanent generation.

	
 -gcutil

	Reports garbage collection summaries.

	
 -printcompilation

	Reports additional information about just-in-time compilation,
including the method names of compiled methods.

See also

 jconsole, jps,
jstatd

Name
jstatd — jstat daemon

Synopsis
jstatd options

Description

 jstatd

 is a
server that provides information about local Java
processes to
the jps and jstat programs
running on remote hosts.

 jstatd uses RMI and requires special security

 permissions to run successfully.
To start jstatd, create the following file and
name it jstatd.policy:
grant codebase "file:${java.home}../lib/tools.jar {
 permission java.security.AllPermission
}
This policy grants all permissions to any class loaded from the
JDK’s tools.jar JAR file. To
launch jstatd with this policy, use this command
line:
% jstatd -J-Djava.security.policy=jstat.policy

If an existing rmiregistry server is running,
jstatd uses it. Otherwise, it creates its own
RMI registry.

Options
	
 -n
 rminame

	Binds the jstatd remote object to the name
rminame in the RMI registry. The default name is
“JStatRemoteHost”, which is what
jps and jstat look for. Use
of this option requires rminame to be used
in remote jps and jstat
invocations.

	
 -nr

	Tells jstatd that not to start an internal RMI
registry if none are already running.

	
 -p
 port

	Looks for an existing RMI registry on
port, or starts one on that port if no
existing registry is found.

See also

 jps, jstat

Name
keytool — Key and Certificate Management Tool

Synopsis
keytool command
 options

Description

 keytool

 manages
and manipulates a
keystore
 , a repository for public and
private keys and public key certificates.
keytool defines various commands for generating
keys, importing data into the keystore, and exporting and displaying
keystore data.
Keys and certificates are stored in a keystore using a
case-insensitive name or alias.
keytool uses this alias to refer to a key or
certificate.
The first option to keytool always specifies the
basic command to be performed. Subsequent options provide details
about how the command is to be performed. Only the command must be
specified. If a command requires an option that does not have a
default value, keytool prompts you interactively
for the value.

Commands
	
 -certreq

	
 Generates
a certificate signing request in PKCS#10 format for the specified
alias. The request is written to the specified file or to the
standard output stream. The request should be sent to a certificate
authority (CA), which authenticates the requestor and sends back a
signed certificate authenticating the requestor’s
public key. This signed certificate can then be imported into the
keystore with the -import command. This command
uses the following options: -alias,
-file, -keypass,
-keystore, -sigalg,
-storepass, -storetype, and
-v.

	
 -delete

	Deletes a specified alias from a specified keystore. This command
uses the following options: -alias,
-keystore, -storepass,
-storetype, and -v.

	
 -export

	Writes the certificate associated with the specified alias to the
specified file or to standard output. This command uses the following
options: -alias, -file,
-keystore, -rfc,
-storepass, -storetype, and
-v.

	
 -genkey

	Generates a public/private key pair and a self-signed X.509
certificate for the public key. Self-signed certificates are not
often useful by themselves, so this command is often followed by
-certreq. This command uses the following options:
-alias, -dname,
-keyalg, -keypass,
-keysize, -keystore,
-sigalg, -storepass,
-storetype, -v, and
-validity.

	
 -help

	Lists all available keytool commands and their
options. This command is not used with any other options.

	
 -identitydb

	Reads keys and certificates from a legacy identity database managed
with the deprecated javakey program and stores
them into a keystore so that they can be manipulated by
keytool. The identity database is read from the
specified file or from standard input if no file is specified. The
keys and certificates are written into the specified keystore file,
which is automatically created if it does not exist yet. This command
uses the following options: -file,
-keystore, -storepass,
-storetype, and -v.

	
 -import

	Reads a certificate or PKCS#7-formatted certificate chain from a
specified file or from standard input and stores it as a trusted
certificate in the keystore with the specified alias. This command
uses the following options: -alias,
-file, -keypass,
-keystore, -noprompt,
-storepass, -storetype,
-trustcacerts, and -v.

	
 -keyclone

	Duplicates the keystore entry of a specified alias and stores it in
the keystore under a new alias. This command uses the following
options: -alias, -dest,
-keypass, -keystore,
-new, -storepass,
-storetype, and -v.

	
 -keypasswd

	Changes the password that encrypts the private key associated with a
specified alias. This command uses the following options:
-alias, -keypass,
-new, -storetype, and
-v.

	
 -list

	
 Displays (on standard
output) the fingerprint of the certificate associated with the
specified alias. With the -v option, prints
certificate details in human-readable format. With
-rfc, prints certificate contents in a
machine-readable, printable-encoding format. This command uses the
following options: -alias,
-keystore, -rfc,
-storepass, -storetype, and
-v.

	
 -printcert

	Displays the contents of a certificate read from the specified file
or from standard input. Unlike most keytool
commands, this one does not use a keystore. This command uses the
following options: -file and
-v.

	
 -selfcert

	
 Creates a self-signed certificate for
the public key associated with the specified alias and uses it to
replace any certificate or certificate chain already associated with
that alias. This command uses the following options:
-alias, -dname,
-keypass, -keystore,
-sigalg, -storepass,
-storetype, -v, and
-validity.

	
 -storepasswd

	

 Changes the password that protects
the integrity of the keystore as a whole. The new password must be at
least six characters long. This command uses the following options:
-keystore, -new,
-storepass, -storetype, and
-v.

Options

 The
various keytool commands can be passed various
options from the following list. Many of these options have
reasonable default values. keytool interactively
prompts for any unspecified options that do not have defaults:
	
 -alias
 name

	Specifies the alias to be manipulated in the keystore. The default is
“mykey”.

	
 -dest
 newalias

	Specifies the new alias name (the destination alias) for the
-keyclone command. If not specified,
keytool prompts for a value.

	
 -dname
 X.500-distinguished-name

	

 Specifies the X.500
distinguished name to appear on the certificate generated by
-selfcert or -genkey. A
distinguished name is a highly qualified name intended to be globally
unique. For example:
CN=David Flanagan, OU=Editorial, O=OReilly, L=Cambridge, S=Massachusetts, C=US
The -genkey command of
keytool prompts for a distinguished name if none
is specified. The -selfcert command uses the
distinguished name of the current certificate if no replacement name
is specified.

	
 -file
 file

	
 Specifies the input or output file for
many of the keytool commands. If left
unspecified, keytool reads from the standard
input or writes to the standard output.

	
 -keyalg
 algorithm-name

	

 Used with -genkey
to specify what type of cryptographic keys to generate. In the
default Java implementation shipped from Sun, the only supported
algorithm is “DSA”; this is the
default if this option is omitted.

	
 -keypass
 password

	Specifies the password that encrypts a private key in the keystore.
If this option is unspecified, keytool first
tries the -storepass password. If that does not
work, it prompts for the appropriate password.

	
 -keysize
 size

	Used with the -genkey command to specify the
length in bits of the generated keys. If unspecified, the default is
1024.

	
 -keystore
 filename

	Specifies the location of the keystore file. If unspecified, a file
named .keystore in the user’s
home directory is used.

	
 -new
 new-password-or-alias

	Used with the -keyclone command to specify the new
alias name and with -keypasswd and
-storepasswd to specify the new password. If
unspecified, keytool prompts for the value of
this option.

	
 -noprompt

	Used with the -import command to disable
interactive prompting of the user when a chain of trust cannot be
established for an imported certificate. If this option is not
specified, the -import command prompts the user.

	
 -rfc

	Used with the -list and -export
commands to specify that certificate output should be in the
printable encoding format specified by RFC 1421. If this option is
not specified, -export outputs the certificate in
binary format, and -list lists only the
certificate fingerprint. This option cannot be combined with
-v in the -list command.

	
 -sigalg
 algorithm-name

	

 Specifies a digital signature
algorithm that signs a certificate. If omitted, the default for this
option depends on the type of underlying public key. If it is a DSA
key, the default algorithm is
“SHA1withDSA”. If the key is an RSA
key, the default signature algorithm is
“MD5withRSA”.

	
 -storepass
 password

	Specifies a password that protects the integrity of the entire
keystore file. This password also serves as a default password for
any private keys that do not have their own
-keypass specified. If
-storepass is not specified,
keytool prompts for it. The password must be at
least six characters long.

	
 -storetype
 type

	

 Specifies the type of the keystore to
be used. If this option is not specified, the default is taken from
the system security properties file. Often, the default is
“JKS”—Sun’s
Java Keystore type.

	
 -trustcacerts

	
 Used with the
-import command to specify that the self-signed
certificate authority certificates contained in the keystore in the
jre/lib/security/cacerts file should be
considered trusted. If this option is omitted,
keytool ignores that file.

	
 -v

	Specifies verbose mode, if present, and makes many
keytool commands produce additional output.

	
 -validity
 time

	
 Used with
the -genkey and -selfcert
commands to specify the period of validity (in days) of the generated
certificate. If unspecified, the default is 90 days.

See also

 jarsigner, policytool

Name
native2ascii — Convert text to ASCII with Unicode escapes

Synopsis
native2ascii [options] [inputfile [outputfile]]

Description

 native2ascii is a
simple program that reads a text file (usually of Java source code)
encoded using a local encoding and converts it to a
Latin-1-plus-ASCII-encoded-Unicode form allowed by the Java Language
Specification. This is helpful when you must edit a file of Java code
but do not have an editor that can handle the encoding of the file.
The inputfile and
outputfile are optional. If unspecified,
standard input and standard output are used, making
native2ascii suitable for use in pipes.

Options
	
 -encoding
 encoding-name

	Specifies the encoding used by source files. If this option is not
specified, the encoding is taken from the
file.encoding system property.

	
 -reverse

	Specifies that the conversion should be done in reverse—from
encoded \u
 xxxx
characters to characters in the native encoding.

See also

 java.io.InputStreamReader,
java.io.OutputStreamWriter

Name
pack200 — Compress a JAR file

Synopsis
pack200 [options] outputfile
 jarfile

Description

 pack200

 tightly
compresses a JAR file using the compression algorithm defined by JSR
200 and the standard gzip compression algorithm. Notice that
the output file is specified on the command line before the input JAR
file.

Basic options
All pack200

options exist in both a long form that begins with a double dash and
a single-letter form that begins with a single dash. When the option
requires a value, the value should be separated from the long form of
the option with an equals sign and no space or should immediately
follow the short form with no intervening space or punctuation.
	
 --config-file=
 file, -f
 file

	Reads options from the specified configuration file.
file should be a
java.util.Properties file in
name=value format. Supported property names are
the same as the long-form option names listed here, with with hyphens
converted to periods.

	
 --effort=
 value, -E
 value

	Specifies how hard to try to pack the JAR file.
value must be a digit between 0 and 9. 0
means no compression at all and simply produces a copy of the input
JAR file. The default is 5.

	
 --help, -h

	Displays a help message and exits.

	
 --log-file=
 file, -l
 file

	Log output to file.

	
 --no-gzip, -g

	Tells pack200 not to apply gzip compression to
the packed JAR file. Use this option if you want to apply a different
compression filter, such as bzip2. The default
is --gzip.

	
 --no-keep-file-order, -o

	Allows pack200 to reorder the elements of the
JAR file. --keep-file-order is the default.

	
 --quiet, -q

	Suppresses output messages.

	
 --pass-file=
 file, -P
 file

	Passes the specified file without
compression. If file ends with a
/, all files in the directory are passed through
without packing. This option may be specified multiple times.

	
 --repack, -r

	Packs the specified JAR file, and then immediately unpacks it. In
this case, the outputfile specified on the
command line should be the name of a JAR file. It is important to do
a pack/unpack cycle on a JAR file before signing it with
jarsigner because the pack/unpack cycle reorders
some internal elements of a class file and invalidates any digital
signatures or checksums in the JAR file manifest.

	
 --strip-debug, -G

	Permanently strips debugging attributes from the Java class files
instead of compressing them. This makes it harder to debug the
resulting JAR file.

	
 --verbose, -v

	Displays more output messages.

	
 --version, -V

	Displays version number and exits.

Advanced packing options
The following options provide fine control
over the compression performed by pack200.
	
 --deflate-hint=
 value, -H
 value

	Specifies whether pack200 should preserve the
deflation status of each entry in the input JAR file. The default
value is keep, which
preserves the status. A value of
true places a hint in the packed archive that the
unpacker should deflate all entries after unpacking them. A
value of true places a
hint in the packed archive that the unpacker should store each entry
in the JAR file without deflation. Using a value of
true or false reduces the
packed file size slightly because deflation hints do not need to be
stored for each entry.

	
 --modification-time=
 value, -m
 value

	With the default value of
keep, pack200 transmits the
modification time of each entry in the JAR file. If you specify
latest instead, only the most recent modification
time is transmitted, and is applied to all entries when they are
unpacked.

	
 --segment-limit=
 n, -S
 n

	Sets a target segment size of n. Pack200
files may be divided into separately packed segments in order to
reduce the amount of memory required by the unpacker. This option
sets the approximate size of each segment. The default value is one
million bytes. The value -1 produces a single
large segment, and the value 0 produces a single segment for each
class file. Larger segment sizes result in better compression ratios,
but require additional memory to unpack.

	
 --unknown-attribute=
 action, -U
 action

	Specifies how pack200 should handle unknown
class file attributes. The default action
is pass, which specifies that the entire class
file will be transmitted with no compression. An
action of error
specifies that pack200 should produce an error
message. An action of strip
says that the attribute should be stripped from the class file.

	
 --class-attribute=
 name=action, -C
 name=action,

 --code-attribute=
 name=action, -D
 name=action,

 --field-attribute=
 name=action, -F
 name=action,

 --method-attribute=
 name=action, -M
 name=action,
	These four options specify how pack200 should
handle specific named class, field, method, and code attributes in a
class file. The name of the attribute is specified by
name. The
action may be any of the
pass, strip, and
error values supported by the
--unknown-attribute option. The
action may also be a
“layout string” that specifies how
the attribute should be packed. See the Pack200 specification for
details on the layout language. These options may be repeated to
specify handling for more than one attribute.

See also

 unpack200

Name
policytool — Policy File Creation and Management Tool

Synopsis
policytool

Description

 policytool
displays a Swing user interface that makes it easy to edit security
policy configuration files. The Java security architecture is based
on policy files, which specify sets of permissions to be granted to
code from various sources. By default, the Java security policy is
defined by a system policy file stored in the
jre/lib/security/java.policy file and a user
policy file stored in the .java.policy file in
the user’s home directory. System administrators and
users can edit these files with a text editor, but the syntax of the
file is somewhat complex, so it is usually easier to use
policytool to define and edit security policies.

Selecting the policy file to edit
When policytool starts up, it opens the
.java.policy file in the user’s
home directory by default. Use the New, Open, and Save commands in
the File menu to create a new policy file, open an existing file, and
save an edited file, respectively.

Editing the policy file
The main policytool window displays a list of
the entries contained in the policy file. Each entry specifies a code
source and the permissions that are to be granted to code from that
source. The window also contains buttons that allow you to add a new
entry, edit an existing entry, or delete an entry from the policy
file. If you add or edit an entry, policytool
opens a new window that displays the details of that policy entry.

 With the
addition of the JAAS API to the core Java platform in Java 1.4,
policytool allows the specification of a
Principal to whom a set of permissions is granted.

 Every policy file has an
associated keystore from which it obtains the certificates it needs
when verifying the digital signatures of Java code. You can usually
rely on the default keystore, but if you need to specify the keystore
explicitly for a policy file, use the Change Keystore command in the
Edit menu of the main policytool window.

Adding or editing a policy entry
The policy entry editor window displays the code source for the
policy entry and a list of permissions associated with that code
source. It also contains buttons that allow you to add a new
permission, delete a permission, or edit an existing permission.
When defining a new policy entry, the first step is to specify the
code source. A code source is defined by a URL from which the code is
downloaded and/or a list of digital signatures that must appear on
the code. Specify one or both of these values by typing in a URL
and/or a comma-separated list of aliases. These aliases identify
trusted certificates in the keystore associated with the policy file.
After you have defined the code source for a policy entry, you must
define the permissions to be granted to code from that source. Use
the Add Permission and Edit Permission buttons to add and edit
permissions. These buttons bring up yet another
policytool window.

Defining a permission

 To define a permission in the
permission editor window, first select the desired permission type
from the Permission pulldown menu, then select an appropriate target
value from the Target Name menu. The choices in this menu are
customized depending on the permission type you selected. Some types
of permissions, such as FilePermission, do not
have a fixed set of possible targets, and you usually have to type in
the target you want. For example, you might type
“/tmp” to specify the directory
/tmp, “/tmp/*”
to specify all the files in that directory, or
“/tmp/-” to specify all the files
in the directory, and, recursively, any subdirectories. See the
documentation of the individual Permission classes
for a description of the targets they support.
Depending on the type of permission you select, you may also have to
select one or more action values from the Actions menu. When you have
selected a permission and appropriate target and action values, click
the Okay button to dismiss the window.

See also

 jarsigner, keytool

Name
serialver — Class Version Number Generator

Synopsis
serialver [-classpath path] classnames...
serialver [-classpath path] -show

Description

 serialver displays
the version number of a class or classes. This version number is used
for the purposes of serialization: the version number must change
each time the serialization format of the class changes.
If the specified class declares a long
 serialVersionUID constant, the value of that field
is displayed. Otherwise, a unique version number is computed by
applying the
 Secure Hash Algorithm (SHA) to the
API defined by the class. This program is primarily useful for
computing an initial unique version number for a class, which is then
declared as a constant in the class. The output of
serialver is a line of legal Java code, suitable
for pasting into a class definition.

Options
	
 -classpath
 path

	Specifies the search path for classes.

	
 -show

	When the -show option is specified,
serialver displays a simple graphical interface
that allows the user to type in a single class name at a time and
obtain its serialization UID. When using -show, no
class names can be specified on the command line.

Environment
	
 CLASSPATH

	
 serialver is written in Java, so it is sensitive
to the CLASSPATH environment variable in the same
way the java interpreter is. The specified
classes are looked up relative to this
classpath.

See also

 java.io.ObjectStreamClass

Name
unpack200 — Unpack a JAR file

Synopsis
unpack200 [options] packedfile
 jarfile

Description

 unpack200

 unpacks a
JAR
file that has been compressed, or packed, by the
pack200 tool, and optionally additionally
compressed with gzip. Specify the name of the
packed file and the name of the JAR file to unpack it to on the
command line.
Because unpack200 is used as part of the Java
installation process, it is a native application that can run on a
system without a Java interpreter.

Options
All unpack200 options exist in both a long form
that begins with a double dash and a single-letter form that begins
with a single dash. When the option requires a value, the value
should be separated from the long form of the option with an equals
sign and no space or should immediately follow the short form with no
intervening space or punctuation.
	
 --deflate-hint=
 value
 -H
 value

	Specifies whether unpack200 should compress
individual entries in the resulting JAR file.
value must be true,
false, or keep. The default is
keep, which specifies that each JAR entry should
have the same compression that it had in the original JAR file.

	
 --help, -h

	Displays a help message and exits.

	
 --log-file=
 file, -l
 file

	Logs output to file.

	
 --quiet, -q

	Suppresses output messages.

	
 --remove-pack-file, -r

	Deletes the packed file after unpacking it.

	
 --verbose, -v

	Displays more output messages.

	
 --version, -V

	Displays version number and exits.

See also

 jar, pack200

Part II. API Quick Reference

Part II provides quick-reference material for the essential APIs of
the Java platform. Please read the following section, How
to Use This Quick Reference, to learn how to get the most
out of this material.

How to Use This Quick Reference

The quick-reference section that follows packs a lot of information
into a small space. This introduction explains how to get the most
out of that information. It describes how the quick reference is
organized and how to read the individual quick-reference entries.

Finding a Quick-Reference Entry

The quick reference is organized into chapters, each of which
documents a single package of the Java platform or a group of related
packages. Packages are listed alphabetically within and between
chapters, so you never really need to know which chapter documents
which package: you can simply search alphabetically, as you might do
in a dictionary. The documentation for each package begins with a
quick-reference entry for the package itself. This entry includes a
short overview of the package and a listing of the classes and
interfaces included in the package. In this listing of package
contents, package members are first grouped by general category
(interfaces, eumerated types, classes and exceptions, for example).
Within each category, they are grouped by class hierarchy, with
indentation to indicate the level of the hierarchy. Finally, classes
and interfaces at the same hierarchy level are listed alphabetically.
Each package overview is followed by individual quick-reference
entries, in alphabetical order, for the types defined in the package.
The overall organization of the quick-reference is therefore
alphabetical by the fully-qualified name of the type. To look up a
quick-reference entry for a particular type, you must also know the
name of the package that defines that type. Use the dictionary-style
headers on the upper corner of each page to help you quickly find the
package and class you need.
Usually, the package name of a type is obvious from its context, and
you should have no trouble looking up the quick-reference entry you
want. Occasionally, you may need to look up a type for which you do
not already know the package. In this case, refer to theChapter 23. This index allows you to look up a class by
class name and find out what package it is part of.

Reading a Quick-Reference Entry

The quick-reference entries for classes and interfaces contain quite
a bit of information. The sections that follow describe the structure
of a quick-reference entry, explaining what information is available,
where it is found, and what it means. While reading the descriptions
that follow, you may find it helpful to flip through the reference
section itself to find examples of the features being described.
Class Name, Package Name, Availability, and Flags

Each quick-reference entry begins with a four-part title that
specifies the name, package name, and availability of the class, and
may also specify various additional flags that describe the class.
The class name appears in bold at the upper left of the title. The
package name appears, in smaller print, in the lower left, below the
class name.
The upper-right portion of the title indicates the availability of
the class; it specifies the earliest release that contained the
class. If a class was introduced in Java 1.1, for example, this
portion of the title reads “Java
1.1”. The availability section of the title is also
used to indicate whether a class has been deprecated, and, if so, in
what release. For example, it might read “Java 1.1;
Deprecated in Java 1.2”.
In the lower-right corner of the title you may find a list of flags
that describe the class. Java 5.0 annotations and meta-annotations
are listed here, as are the following flags:
	
 annotation

	The type is an annotation type.

	appendable
	The class implements java.lang.Appendable.

	
 checked

	The class is a checked exception, meaning that it extends
java.lang.Exception, but not
java.lang.RuntimeException. In other words, it
must be declared in the throws clause of any
method that may throw it.

	
 cloneable

	The class, or a superclass, implements
java.lang.Cloneable.

	closeable
	The class implements java.io.Closeable.

	
 collection

	The class, or a superclass, implements
java.util.Collection or
java.util.Map.

	
 comparable

	The class, or a superclass, implements
java.lang.Comparable.

	enum
	The type is an enumerated type.

	
 error

	The class extends java.lang.Error.

	flushable
	The class implements java.io.Flushable.

	readable
	The class implements java.lang.Readable.

	
 runnable

	The class, or a superclass, implements
java.lang.Runnable.

	
 serializable

	The class, or a superclass, implements
java.io.Serializable.

	
 unchecked

	The class is an unchecked exception, meaning that it extends
java.lang.RuntimeException and therefore does not
need to be declared in the throws clause of a
method that may throw it.

Description

The title of each quick-reference entry is followed by a short
description of the most important features of the class or interface.
This description is typically about two paragraphs long.

Hierarchy

If a class or interface has a nontrivial class hierarchy, the
“Description” section is followed
by a figure that illustrates the hierarchy and helps you understand
the class in the context of that hierarchy. The name of each class or
interface in the diagram appears in a box; classes and enumerated
types appear in rectangles (except for abstract classes, which appear
in skewed rectangles or parallelograms). Interfaces and annotation
types appear in rounded rectangles, in which the corners have been
replaced by arcs. The current class—the one that is the subject
of the diagram—appears in a box that is bolder than the others.
The boxes are connected by lines: solid lines indicate an
“extends” relationship, and dotted
lines indicate an “implements”
relationship. The superclass-to-subclass hierarchy reads from left to
right in the top row (or only row) of boxes in the figure. Interfaces
are usually positioned beneath the classes that implement them,
although in simple cases an interface is sometimes positioned on the
same line as the class that implements it, resulting in a more
compact figure. Note that the hierarchy figure shows only the
superclasses of a class. If a class has subclasses, those are listed
in the cross-reference section at the end of the quick-reference
entry for the class.

Synopsis

The most important part of every quick-reference entry is the
synopsis, which follows the title and description. The synopsis for a
type looks a lot like the source code for the type, except that the
method bodies are omitted and some additional annotations are added.
If you know Java syntax, you know how to read the synopsis.
The first line of the synopsis contains information about the class
itself. It begins with a list of modifiers, such as
public, abstract, and
final. These modifiers are followed by the
class, interface,
enum, or @interface keyword and
then by the name of the class. The class name may be followed by type
variables, an extends clause that specifies the
superclass, and an implements clause that
specifies any interfaces the class implements.
The class definition line is followed by a list of the fields,
methods, and nested types that the class defines. Once again, if you
understand basic Java syntax, you should have no trouble making sense
of these lines. The listing for each member includes the modifiers,
type, and name of the member. For methods, the synopsis also includes
the type and name of each method parameter and an optional
throws clause that lists the exceptions the method
can throw. The member names are in boldface, so it is easy to scan
the list of members looking for the one you want. The names of method
parameters are in italics to indicate that they are not to be used
literally. The member listings are printed on alternating gray and
white backgrounds to keep them visually separate.
Member availability and flags

Each member listing is a single line that defines the API for that
member. These listings use Java syntax, so their meaning is
immediately clear to any Java programmer. There is some auxiliary
information associated with each member synopsis that requires
explanation, however.
Recall that each quick-reference entry begins with a title section
that includes the release in which the class was first defined. When
a member is introduced into a class after the initial release of the
class, the version in which the member was introduced appears, in
small print, to the left of the member synopsis. For example, if a
class was first introduced in Java 1.1, but had a new method added in
Java 1.2 the title contains the string
“1.1”, and the listing for the new
member is preceded by the number
“1.2”. Furthermore, if a member has
been deprecated, that fact is indicated with a hash mark
(#) to the left of the member synopsis.
The area to the right of the member synopsis is used to display a
variety of flags that provide additional information about the
member. Some of these flags indicate additional specification details
that do not appear in the member API itself. Other flags contain
implementation-specific information. This information can be quite
useful in understanding the class and in debugging your code, but be
aware that it may differ between implementations. The
implementation-specific flags displayed in this book are based on
Sun’s Linux implementation of Java.
The following flags may be displayed to the right of a member
synopsis:
	
 native

	An implementation-specific flag that indicates that a method is
implemented in native code. Although native is a
Java keyword and can appear in method signatures, it is part of the
method implementation, not part of its specification. Therefore, this
information is included with the member flags, rather than as part of
the member listing. This flag is useful as a hint about the expected
performance of a method.

	
 synchronized

	An implementation-specific flag that indicates that a method
implementation is declared synchronized, meaning
that it obtains a lock on the object or class before executing. Like
the native keyword, the
synchronized keyword is part of the method
implementation, not part of the specification, so it appears as a
flag, not in the method synopsis itself. This flag is a useful hint
that the method is probably implemented in a threadsafe manner.
Whether or not a method is thread-safe is part of the method
specification, and this information should
appear (although it often does not) in the method documentation.
There are a number of different ways to make a method threadsafe,
however, and declaring the method with the
synchronized keyword is only one possible
implementation. In other words, a method that does not bear the
synchronized flag can still be threadsafe.

	
 Overrides:
	This flag indicates that a method overrides a method in one of its
superclasses. The flag is followed by the name of the superclass that
the method overrides. This is a specification detail, not an
implementation detail. As we’ll see in the next
section, overriding methods are usually grouped together in their own
section of the class synopsis. The Overrides: flag
is only used when an overriding method is not grouped in that way.

	
 Implements:
	This flag indicates that a method implements a method in an
interface. The flag is followed by the name of the interface that is
implemented. This is a specification detail, not an implementation
detail. As we’ll see in the next section, methods
that implement an interface are usually grouped into a special
section of the class synopsis. The Implements:
flag is only used for methods that are not grouped in this way.

	
 empty

	This flag indicates that the implementation of the method has an
empty body. This can be a hint to the programmer that the method may
need to be overridden in a subclass.

	
 constant

	An implementation-specific flag that indicates that a method has a
trivial implementation. Only methods with a void
return type can be truly empty. Any method declared to return a value
must have at least a return statement. The
constant flag indicates that the method
implementation is empty except for a return
statement that returns a constant value. Such a method might have a
body like return null; or return
false;. Like the empty flag, this flag
may indicate that a method needs to be overridden.

	
 default:
	This flag is used with property accessor methods that read the value
of a property (i.e., methods whose names begins with get and take no
arguments). The flag is followed by the default value of the
property. Strictly speaking, default property values are a
specification detail. In practice, however, these defaults are not
always documented, and care should be taken, because the default
values may change between implementations.
Not all property accessors have a default: flag. A default value is
determined by dynamically loading the class in question,
instantiating it using a no-argument constructor, and then calling
the method to find out what it returns. This technique can be used
only on classes that can be dynamically loaded and instantiated and
that have no-argument constructors, so default values are shown for
those classes only. Furthermore, note that when a class is
instantiated using a different constructor, the default values for
its properties may be different.

	
 =

	For static final fields, this flag is followed by
the constant value of the field. Only constants of primitive and
String types and constants with the value
null are displayed. Some constant values are
specification details, while others are implementation details. The
reason that symbolic constants are defined, however, is so you can
write code that does not rely directly upon the constant value. Use
this flag to help you understand the class, but do not rely upon the
constant values in your own programs.

Functional grouping of members

Within a class synopsis, the members are not listed in strict
alphabetical order. Instead, they are broken down into functional
groups and listed alphabetically within each group. Constructors,
methods, fields, and inner classes are all listed separately.
Instance methods are kept separate from static (class) methods.
Constants are separated from non-constant fields. Public members are
listed separately from protected members. Grouping members by
category breaks a class down into smaller, more comprehensible
segments, making the class easier to understand. This grouping also
makes it easier for you to find a desired member.
Functional groups are separated from each other in a class synopsis
with Java comments, such as //
 Public
 Constructors,
//
 Inner
 Classes, and //
 Methods Implementing
 DataInput.
The various functional categories are as follows (in the order in
which they appear in a class synopsis):
	
 Constructors

	Displays the constructors for the class. Public constructors and
protected constructors are displayed separately in subgroupings. If a
class defines no constructor at all, the Java compiler adds a default
no-argument constructor that is displayed here. If a class defines
only private constructors, it cannot be instantiated, so a special,
empty grouping entitled “No
Constructor” indicates this fact. Constructors are
listed first because the first thing you do with most classes is
instantiate them by calling a constructor.

	
 Constants

	Displays all of the constants (i.e., fields that are declared
static and final) defined by
the class. Public and protected constants are displayed in separate
subgroups. Constants are listed here, near the top of the class
synopsis, because constant values are often used throughout the class
as legal values for method parameters and return values.

	
 Inner classes

	Groups all of the inner classes and interfaces defined by the class
or interface. For each inner class, there is a single-line synopsis.
Each inner class also has its own quick-reference entry that includes
a full class synopsis for the inner class. Like constants, inner
classes are listed near the top of the class synopsis because they
are often used by a number of other members of the class.

	
 Static methods

	Lists the static methods (class methods) of the class, broken down
into subgroups for public static methods and protected static
methods.

	
 Event listener registration methods

	Lists the public instance methods that register and deregister event
listener objects with the class. The names of these methods begin
with the words “add” and
“remove” and end in
“Listener”. These methods are
always passed a java.util.EventListener object.
The methods are typically defined in pairs, so the pairs are listed
together. The methods are listed alphabetically by event name rather
than by method name.

	
 Public instance methods

	Contains all of the public instance methods that are not grouped
elsewhere.

	
 Implementing methods

	Groups the methods that implement the same interface. There is one
subgroup for each interface implemented by the class. Methods that
are defined by the same interface are almost always related to each
other, so this is a useful functional grouping of methods. If a class
is modified so that it implements an interface after its initial
release, the methods of that interface will be grouped here, but will
also appear in the “Public Instance
methods” section.

	
 Overriding methods

	Groups the methods that override methods of a superclass broken down
into subgroups by superclass. This is typically a useful grouping,
because it helps to make it clear how a class modifies the default
behavior of its superclasses. In practice, it is also often true that
methods that override the same superclass are functionally related to
each other.

	
 Protected instance methods

	Contains all of the protected instance methods that are not grouped
elsewhere.

	
 Fields

	Lists all the nonconstant fields of the class, breaking them down
into subgroups for public and protected static fields and public and
protected instance fields. Many classes do not define any publicly
accessible fields. For those that do, many object-oriented
programmers prefer not to use those fields directly, but instead to
use accessor methods when such methods are available.

	
 Deprecated members

	Deprecated methods and deprecated fields are grouped at the very
bottom of the class synopsis. Use of these members is strongly
discouraged.

Cross-References

The synopsis section of a quick-reference entry is followed by a
number of optional cross-reference sections that indicate other,
related classes and methods that may be of interest. These sections
are the following:
	
 Subclasses

	This section lists the subclasses of this class, if there are any.

	
 Implementations

	This section lists classes that implement this interface.

	
 Passed To

	This section lists all of the methods and constructors that are
passed an object of this type as an argument. This is useful when you
have an object of a given type and want to figure out what you can do
with it. Methods defined by this type itself are not included in the
list.

	
 Returned By

	This section lists all of the methods (but not constructors) that
return an object of this type. This is useful when you know that you
want to work with an object of this type, but don’t
know how to obtain one. Methods of this type itself are excluded.

	
 Thrown By

	For checked exception classes, this section lists all of the methods
and constructors that throw exceptions of this type. This material
helps you figure out when a given exception or error may be thrown.
Note, however, that this section is based on the exception types
listed in the throws clauses of methods and
constructors. Subclasses of RuntimeException and
Error do not have to be listed in
throws clauses, so it is not possible to generate
a complete cross-reference of methods that throw these types of
unchecked exceptions.

	
 Type Of

	This section lists all of the fields and constants that are of this
type, which can help you figure out how to obtain an object of this
type. If the type defines self-typed fields or constants, they are
not included on this list.

A Note About Class Names

Throughout the quick reference, you’ll notice that
classes are sometimes referred to by class name alone and at other
times referred to by class name and package name. If package names
were always used, the class synopses would become long and hard to
read. On the other hand, if package names were never used, it would
sometimes be difficult to know what class was being referred to. The
rules for including or omitting the package name are complex. They
can be summarized approximately as follows, however:
	If the class name alone is ambiguous, the package name is always
used. The name Annotation is ambiguous, for
example, because it can refer to either
java.lang.annotation.Annotation or
java.text.Annotation.

	If the class is part of the java.lang package or
is a very commonly used class, such as
java.io.Serializable, the package name is omitted.

	If the class being referred to is part of the current package (and
has a quick-reference entry in the current chapter), the package name
is omitted.

	
 Chapter 9
 java.io

	
 Chapter 10
 java.lang and Subpackages

	
 Chapter 11
 java.math

	
 Chapter 12
 java.net

	
 Chapter 13
 java.nio and Subpackages

	
 Chapter 14
 java.security and Subpackages

	
 Chapter 15
 java.text

	
 Chapter 16
 java.util and Subpackages

	
 Chapter 17
 java.crypto and Subpackages

	
 Chapter 18
 java.net and javax.net.ssl

	
 Chapter 19
 javax.security.auth and Subpackages

	
 Chapter 20
 javax.xml and Subpackages

	
 Chapter 21
 org.w3c.dom

	
 Chapter 22
 org.xml.sax and Subpackages

	
 Chapter 23
 Class, Method, and Field Index

Chapter 9. java.io

Name
Package java.io

Synopsis

 The java.io package
is large,
but
most of the classes it contains fall into a well-structured
hierarchy. Most of the package consists of byte
streams—subclasses of InputStream or
OutputStream and character
streams—subclasses of
Reader or Writer. Each of these
stream subtypes has a specific purpose, and, despite its size,
java.io is a straightforward package to understand
and to use. In Java 1.4, the java.io package was
complemented by a “New I/O API”
defined in the java.nio package and its
subpackages. The java.nio package is totally new,
although it included some compatibility with the classes in this
package. It was designed for high-performance I/O, particularly for
use in servers and has a lower-level API than this package does. The
I/O facilities of java.io are still quite adequate
for most of the I/O required by typical client-side applications.

 Before we consider the stream classes
that comprise the bulk of this package, let’s
examine the important nonstream classes. File
represents a file or directory name in a system-independent way and
provides methods for listing directories, querying file attributes,
and renaming and deleting files.
FilenameFilter
 is an interface that defines a method
that accepts or rejects specified filenames. It is used by
File to specify what types of files should be
included in directory listings.
RandomAccessFile
 allows you to read from or write to
arbitrary locations of a file. Often, though, you’ll
prefer sequential access to a file and should use one of the stream
classes.

 InputStream and
OutputStream are abstract classes that define
methods for reading and writing

 bytes.
Their subclasses allow bytes to be read from and written to a variety
of sources and sinks.
FileInputStream

 and FileOutputStream
read from and write to files.
ByteArrayInputStream

 and
ByteArrayOutputStream read from and write to an
array of bytes in memory.
PipedInputStream

 reads bytes from a
PipedOutputStream, and
PipedOutputStream writes bytes to a
PipedInputStream. These classes work together to
implement a
pipe
 for communication
between threads.

 FilterInputStream and
FilterOutputStream are special; they filter

 input and output bytes. When you
create a FilterInputStream, you specify an
InputStream for it to filter. When you call the
read() method of a
FilterInputStream, it calls the read(
)

 method of its
InputStream, processes the bytes it reads, and
returns the filtered bytes. Similarly, when you create a
FilterOutputStream, you specify an
OutputStream

 to be filtered. Calling the
write() method of a
FilterOutputStream causes it to process your bytes
in some way and then pass those filtered bytes to the write(
) method of its OutputStream.

 FilterInputStream and
FilterOutputStream do not perform any
filtering themselves; this is done by
their subclasses. BufferedInputStream and

 BufferedOutputStream
are filtered streams that provide input and output
buffering and can
increase I/O efficiency.
DataInputStream

 reads raw bytes from a stream and
interprets them in various binary formats. It has various methods to
read primitive Java data types in
their standard binary formats.
DataOutputStream

 allows you to write Java
primitive data types in binary format. The
ObjectInputStream

 and
ObjectOutputStream classes are special. These
byte-stream classes are used for serializing and deserializing the
internal state of objects for storage or interprocess communication.

 The byte streams just described are
complemented by an analogous set of character input and output
streams.
 Reader is the
superclass of all character input streams, and
Writer
 is the superclass of all character output
streams. Most of the Reader and
Writer streams have obvious byte-stream analogs.
BufferedReader

 is
a commonly used stream; it provides buffering for efficiency and also
has a readLine() method to read a line of
text at a time.
PrintWriter
 is another very common stream; its
methods allow output of a textual representation of any primitive
Java type or of any object (via the object’s
toString() method).

 Java 5.0 adds the
Closeable

 and Flushable
interfaces to identify types that have close(
)

 and
flush() methods. All
streams have a
close() method and implement the
Closeable interface. And all byte and character
output streams have a
flush() method and implement
Flushable.
In a related change, all

 character output streams (and the
byte stream
PrintStream

) implement the (new in Java 5.0)
interface java.lang.Appendable, making them
suitable for use with the
java.util.Formatter

class. Similarly, all
 character input streams implement the
java.lang.Readable interface, making them suitable
for use with the java.util.Scanner class. Finally,
both PrintStream and
PrintWriter have been enhanced in two ways for

 Java 5.0. Both now include
constructors for creating a stream that writes directly to a file.
And both include formatted-text output methods printf(
)

 and
format(). See
java.util.Formatter for details.

Interfaces
public interface Closeable;
public interface DataInput;
public interface DataOutput;
public interface Externalizable extends Serializable;
public interface FileFilter;
public interface FilenameFilter;
public interface Flushable;
public interface ObjectInput extends DataInput;
public interface ObjectInputValidation;
public interface ObjectOutput extends DataOutput;
public interface ObjectStreamConstants;
public interface Serializable;

Classes
public class File implements Serializable, Comparable<File>;
public final class FileDescriptor;
public final class FilePermission extends java.security.Permission implements
 Serializable;
public abstract class InputStream implements Closeable;
 public class ByteArrayInputStream extends InputStream;
 public class FileInputStream extends InputStream;
 public class FilterInputStream extends InputStream;
 public class BufferedInputStream extends FilterInputStream;
 public class DataInputStream extends FilterInputStream implements
 DataInput;
 public class LineNumberInputStream extends FilterInputStream;
 public class PushbackInputStream extends FilterInputStream;
 public class ObjectInputStream extends InputStream implements ObjectInput,
 ObjectStreamConstants;
 public class PipedInputStream extends InputStream;
 public class SequenceInputStream extends InputStream;
 public class StringBufferInputStream extends InputStream;
public abstract static class ObjectInputStream.GetField;
public abstract static class ObjectOutputStream.PutField;
public class ObjectStreamClass implements Serializable;
public class ObjectStreamField implements Comparable<Object>;
public abstract class OutputStream implements Closeable, Flushable;
 public class ByteArrayOutputStream extends OutputStream;
 public class FileOutputStream extends OutputStream;
 public class FilterOutputStream extends OutputStream;
 public class BufferedOutputStream extends FilterOutputStream;
 public class DataOutputStream extends FilterOutputStream implements
 DataOutput;
 public class PrintStream extends FilterOutputStream implements Appendable,
 Closeable;
 public class ObjectOutputStream extends OutputStream implements ObjectOutput,
 ObjectStreamConstants;
 public class PipedOutputStream extends OutputStream;
public class RandomAccessFile implements Closeable, DataInput, DataOutput;
public abstract class Reader implements Closeable, Readable;
 public class BufferedReader extends Reader;
 public class LineNumberReader extends BufferedReader;
 public class CharArrayReader extends Reader;
 public abstract class FilterReader extends Reader;
 public class PushbackReader extends FilterReader;
 public class InputStreamReader extends Reader;
 public class FileReader extends InputStreamReader;
 public class PipedReader extends Reader;
 public class StringReader extends Reader;
public final class SerializablePermission extends java.security.BasicPermission;
public class StreamTokenizer;
public abstract class Writer implements Appendable, Closeable, Flushable;
 public class BufferedWriter extends Writer;
 public class CharArrayWriter extends Writer;
 public abstract class FilterWriter extends Writer;
 public class OutputStreamWriter extends Writer;
 public class FileWriter extends OutputStreamWriter;
 public class PipedWriter extends Writer;
 public class PrintWriter extends Writer;
 public class StringWriter extends Writer;

Exceptions
public class IOException extends Exception;
 public class CharConversionException extends IOException;
 public class EOFException extends IOException;
 public class FileNotFoundException extends IOException;
 public class InterruptedIOException extends IOException;
 public abstract class ObjectStreamException extends IOException;
 public class InvalidClassException extends ObjectStreamException;
 public class InvalidObjectException extends ObjectStreamException;
 public class NotActiveException extends ObjectStreamException;
 public class NotSerializableException extends ObjectStreamException;
 public class OptionalDataException extends ObjectStreamException;
 public class StreamCorruptedException extends ObjectStreamException;
 public class WriteAbortedException extends ObjectStreamException;
 public class SyncFailedException extends IOException;
 public class UnsupportedEncodingException extends IOException;
 public class UTFDataFormatException extends IOException;

Name
BufferedInputStream

Synopsis

 This class is a
FilterInputStream that provides input data
buffering; efficiency is increased by reading in a large amount of
data and storing it in an internal buffer. When data is requested, it
is usually available from the buffer. Thus, most calls to read data
do not actually have to read data from a disk, network, or other slow
source. Create a BufferedInputStream by specifying
the InputStream that is to be buffered in the call
to the constructor. See also BufferedReader.
[image: java.io.BufferedInputStream]

Figure 9-1. java.io.BufferedInputStream

public class BufferedInputStream extends FilterInputStream {
// Public Constructors
 public BufferedInputStream(InputStream in);
 public BufferedInputStream(InputStream in, int size);
// Public Methods Overriding FilterInputStream
 public int available() throws IOException; synchronized
 1.2 public void close() throws IOException;
 public void mark(int readlimit); synchronized
 public boolean markSupported(); constant
 public int read() throws IOException; synchronized
 public int read(byte[] b, int off, int len) throws IOException; synchronized
 public void reset() throws IOException; synchronized
 public long skip(long n) throws IOException; synchronized
 // Protected Instance Fields
 protected volatile byte[] buf;
 protected int count;
 protected int marklimit;
 protected int markpos;
 protected int pos;
}

Name
BufferedOutputStream

Synopsis

 This class is a
FilterOutputStream that provides output data
buffering; output efficiency is increased by storing values to be
written in a buffer and actually writing them out only when the
buffer fills up or when the flush(
)
 method is called. Create a
BufferedOutputStream by specifying the
OutputStream that is to be buffered in the call to
the constructor. See also BufferedWriter.
[image: java.io.BufferedOutputStream]

Figure 9-2. java.io.BufferedOutputStream

public class BufferedOutputStream extends FilterOutputStream {
// Public Constructors
 public BufferedOutputStream(OutputStream out);
 public BufferedOutputStream(OutputStream out, int size);
// Public Methods Overriding FilterOutputStream
 public void flush() throws IOException; synchronized
 public void write(int b) throws IOException; synchronized
 public void write(byte[] b, int off, int len) throws IOException; synchronized
 // Protected Instance Fields
 protected byte[] buf;
 protected int count;
}

Name
BufferedReader

Synopsis

 This class applies buffering to a
character input stream, thereby improving the efficiency of character
input. You create a BufferedReader by specifying
some other character input stream from
which it is to buffer input. (You can also specify a buffer size at
this time, although the default size is usually fine.) Typically, you
use this sort of buffering with a FileReader or
InputStreamReader.
BufferedReader defines the standard set of
Reader methods and provides a readLine(
) method that reads a line of text (not including the line
terminator) and returns it as a String.
BufferedReader is the character-stream analog of
BufferedInputStream. It also provides a
replacement for the deprecated readLine(
)
 method of
DataInputStream, which did not properly convert
bytes into characters.
[image: java.io.BufferedReader]

Figure 9-3. java.io.BufferedReader

public class BufferedReader extends Reader {
// Public Constructors
 public BufferedReader(Reader in);
 public BufferedReader(Reader in, int sz);
// Public Instance Methods
 public String readLine() throws IOException;
// Public Methods Overriding Reader
 public void close() throws IOException;
 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(char[] cbuf, int off, int len) throws IOException;
 public boolean ready() throws IOException;
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
}

Subclasses

 LineNumberReader

Name
BufferedWriter

Synopsis

 This class applies buffering to a
character output stream, improving output efficiency by coalescing
many small write requests into a single larger request. You create a
BufferedWriter by specifying some other character
output stream to which it sends its buffered and coalesced output.
(You can also specify a buffer size at this time, although the
default size is usually satisfactory.) Typically, you use this sort
of buffering with a FileWriter or
OutputStreamWriter.
BufferedWriter defines the standard
write(), flush(), and
close() methods all output streams define, but it
adds a newLine() method that outputs the
platform-dependent line separator (usually a newline character, a
carriage-return character, or both) to the stream.
BufferedWriter is the character-stream analog of
BufferedOutputStream.
[image: java.io.BufferedWriter]

Figure 9-4. java.io.BufferedWriter

public class BufferedWriter extends Writer {
// Public Constructors
 public BufferedWriter(Writer out);
 public BufferedWriter(Writer out, int sz);
// Public Instance Methods
 public void newLine() throws IOException;
// Public Methods Overriding Writer
 public void close() throws IOException;
 public void flush() throws IOException;
 public void write(int c) throws IOException;
 public void write(char[] cbuf, int off, int len) throws IOException;
 public void write(String s, int off, int len) throws IOException;
}

Name
ByteArrayInputStream

Synopsis

 This class is a subclass of
InputStream in which input data comes from a
specified array of byte values.
This is useful when you want to read data in memory as if it were
coming from a file, pipe, or socket. Note that the specified array of
bytes is not copied when a ByteArrayInputStream is
created. See also CharArrayReader.
[image: java.io.ByteArrayInputStream]

Figure 9-5. java.io.ByteArrayInputStream

public class ByteArrayInputStream extends InputStream {
// Public Constructors
 public ByteArrayInputStream(byte[] buf);
 public ByteArrayInputStream(byte[] buf, int offset, int length);
// Public Methods Overriding InputStream
 public int available(); synchronized
 1.2 public void close() throws IOException; empty
 1.1 public void mark(int readAheadLimit);
1.1 public boolean markSupported(); constant
 public int read(); synchronized
 public int read(byte[] b, int off, int len); synchronized
 public void reset(); synchronized
 public long skip(long n); synchronized
 // Protected Instance Fields
 protected byte[] buf;
 protected int count;
1.1 protected int mark;
 protected int pos;
}

Name
ByteArrayOutputStream

Synopsis

 This class is a subclass of
OutputStream in which output data is stored in an
internal byte
 array. The internal array grows as
necessary and can be retrieved with toByteArray(
)

 or toString(). The
reset() method discards any data currently stored
in the internal array and stores data from the beginning again. See
also CharArrayWriter.
[image: java.io.ByteArrayOutputStream]

Figure 9-6. java.io.ByteArrayOutputStream

public class ByteArrayOutputStream extends OutputStream {
// Public Constructors
 public ByteArrayOutputStream();
 public ByteArrayOutputStream(int size);
// Public Instance Methods
 public void reset(); synchronized
 public int size();
 public byte[] toByteArray(); synchronized
 1.1 public String toString(String enc) throws UnsupportedEncodingException;
 public void writeTo(OutputStream out) throws IOException; synchronized
 // Public Methods Overriding OutputStream
 1.2 public void close() throws IOException; empty
 public void write(int b); synchronized
 public void write(byte[] b, int off, int len); synchronized
 // Public Methods Overriding Object
 public String toString();
// Protected Instance Fields
 protected byte[] buf;
 protected int count;
// Deprecated Public Methods
 # public String toString(int hibyte);
}

Name
CharArrayReader

Synopsis

 This
class is a character input stream that uses a character
array as the source of the
characters it returns. You create a
CharArrayReader by specifying the character array
(or portion of an array) it is to read from.
CharArrayReader defines the usual
Reader methods and supports the mark(
)

 and reset()
methods. Note that the character array you pass to the
CharArrayReader() constructor is not copied. This
means that changes you make to the elements of the array after you
create the input stream affect the values read from the array.
CharArrayReader is the character-array analog of
ByteArrayInputStream and is similar to
StringReader.
[image: java.io.CharArrayReader]

Figure 9-7. java.io.CharArrayReader

public class CharArrayReader extends Reader {
// Public Constructors
 public CharArrayReader(char[] buf);
 public CharArrayReader(char[] buf, int offset, int length);
// Public Methods Overriding Reader
 public void close();
 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(char[] b, int off, int len) throws IOException;
 public boolean ready() throws IOException;
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
// Protected Instance Fields
 protected char[] buf;
 protected int count;
 protected int markedPos;
 protected int pos;
}

Name
CharArrayWriter

Synopsis

 This
class is a character output stream that uses an internal character
array as the destination of characters written to it. When you create
a CharArrayWriter, you may optionally specify an
initial size for the character array, but you do not specify the
character array itself; this array is managed internally by the
CharArrayWriter and grows as necessary to
accommodate all the characters written to it. The toString(
)

and toCharArray() methods return a copy of all
characters written to the stream, as a string and an array of
characters, respectively. CharArrayWriter defines
the standard write()

 ,
flush(), and close() methods
all Writer subclasses define. It also defines a
few other useful methods. size(
)

 returns the number of characters that
have been written to the stream. reset() resets
the stream to its initial state, with an empty character array; this
is more efficient than creating a new
CharArrayWriter. Finally, writeTo(
)
 writes the contents of the
internal character array to some other specified character stream.
CharArrayWriter is the character-stream analog of
ByteArrayOutputStream and is quite similar to
StringWriter.
[image: java.io.CharArrayWriter]

Figure 9-8. java.io.CharArrayWriter

public class CharArrayWriter extends Writer {
// Public Constructors
 public CharArrayWriter();
 public CharArrayWriter(int initialSize);
// Public Instance Methods
 5.0 public CharArrayWriter append(CharSequence csq);
5.0 public CharArrayWriter append(char c);
5.0 public CharArrayWriter append(CharSequence csq, int start, int end);
 public void reset();
 public int size();
 public char[] toCharArray();
 public void writeTo(Writer out) throws IOException;
// Public Methods Overriding Writer
 public void close(); empty
 public void flush(); empty
 public void write(int c);
 public void write(char[] c, int off, int len);
 public void write(String str, int off, int len);
// Public Methods Overriding Object
 public String toString();
// Protected Instance Fields
 protected char[] buf;
 protected int count;
}

Name
CharConversionException

Synopsis

 Signals
an
 error when converting bytes to characters
or vice versa.
[image: java.io.CharConversionException]

Figure 9-9. java.io.CharConversionException

public class CharConversionException extends IOException {
// Public Constructors
 public CharConversionException();
 public CharConversionException(String s);
}

Name
Closeable

Synopsis

 This interface defines a
close()

method and is implemented by closeable objects such as
java.io streams and java.nio
channels. This interface was added in Java 5.0 to enable
java.util.Formatter to distinguish
java.lang.Appendable objects that need to be
closed (such as streams) from those that do not (such as
StringBuilder objects). See also
Flushable.
public interface Closeable {
// Public Instance Methods
 void close() throws IOException;
}

Implementations

 InputStream, OutputStream,
PrintStream, RandomAccessFile,
Reader, Writer,
java.nio.channels.Channel,
java.util.Formatter

Name
DataInput

Synopsis

 This interface
defines the methods required for
streams that can
read Java primitive data types in a machine-independent binary
format. It is implemented by DataInputStream and
RandomAccessFile. See
DataInputStream for more information on the
methods.

public interface DataInput {
// Public Instance Methods
 boolean readBoolean() throws IOException;
 byte readByte() throws IOException;
 char readChar() throws IOException;
 double readDouble() throws IOException;
 float readFloat() throws IOException;
 void readFully(byte[] b) throws IOException;
 void readFully(byte[] b, int off, int len) throws IOException;
 int readInt() throws IOException;
 String readLine() throws IOException;
 long readLong() throws IOException;
 short readShort() throws IOException;
 int readUnsignedByte() throws IOException;
 int readUnsignedShort() throws IOException;
 String readUTF() throws IOException;
 int skipBytes(int n) throws IOException;
}

Implementations

 DataInputStream, ObjectInput,
RandomAccessFile

Passed To

 DataInputStream.readUTF()

Name
DataInputStream

Synopsis

 This
class is a type of FilterInputStream that allows
you to read
 binary
representations of Java primitive data types in a portable way.
Create a DataInputStream by specifying the
InputStream that is to be filtered in the call to
the constructor. DataInputStream reads only
primitive Java types; use ObjectInputStream to
read object values.
Many of the methods read and return a single Java primitive type, in
binary format, from the stream.

 readUnsignedByte() and
readUnsignedShort() read
unsigned values and
return them as int values, since unsigned
byte

 and short types are
not supported in Java. read(
)

reads data into an array of bytes, blocking until at least some data
is available. By contrast, readFully(
)
 reads data into an array of
bytes, but blocks until all requested data becomes available.
skipBytes()
 blocks until the specified
number of bytes have been read and discarded. readLine(
)
 reads characters from the stream
until it encounters a newline, a carriage return, or a
newline/carriage return pair. The returned string is not terminated
with a newline or carriage return. This method is deprecated as of
Java 1.1; see BufferedReader for an alternative.
readUTF() reads a string of Unicode text encoded
in a slightly modified version of the UTF-8 transformation format.

 UTF-8
is an ASCII-compatible encoding of Unicode characters that is often
used for the transmission and storage of Unicode text. This class
uses a modified UTF-8 encoding that never contains embedded null
characters.
[image: java.io.DataInputStream]

Figure 9-10. java.io.DataInputStream

public class DataInputStream extends FilterInputStream implements DataInput {
// Public Constructors
 public DataInputStream(InputStream in);
// Public Class Methods
 public static final String readUTF(DataInput in) throws IOException;
// Methods Implementing DataInput
 public final boolean readBoolean() throws IOException;
 public final byte readByte() throws IOException;
 public final char readChar() throws IOException;
 public final double readDouble() throws IOException;
 public final float readFloat() throws IOException;
 public final void readFully(byte[] b) throws IOException;
 public final void readFully(byte[] b, int off, int len) throws IOException;
 public final int readInt() throws IOException;
 public final long readLong() throws IOException;
 public final short readShort() throws IOException;
 public final int readUnsignedByte() throws IOException;
 public final int readUnsignedShort() throws IOException;
 public final String readUTF() throws IOException;
 public final int skipBytes(int n) throws IOException;
// Public Methods Overriding FilterInputStream
 public final int read(byte[] b) throws IOException;
 public final int read(byte[] b, int off, int len) throws IOException;
// Deprecated Public Methods
 # public final String readLine() throws IOException; Implements:DataInput
}

Name
DataOutput

Synopsis

 This
interface defines the methods required for streams that can write
Java primitive data types in a machine-independent binary format. It
is implemented by DataOutputStream and
RandomAccessFile. See
DataOutputStream for more information on the
methods.
public interface DataOutput {
// Public Instance Methods
 void write(byte[] b) throws IOException;
 void write(int b) throws IOException;
 void write(byte[] b, int off, int len) throws IOException;
 void writeBoolean(boolean v) throws IOException;
 void writeByte(int v) throws IOException;
 void writeBytes(String s) throws IOException;
 void writeChar(int v) throws IOException;
 void writeChars(String s) throws IOException;
 void writeDouble(double v) throws IOException;
 void writeFloat(float v) throws IOException;
 void writeInt(int v) throws IOException;
 void writeLong(long v) throws IOException;
 void writeShort(int v) throws IOException;
 void writeUTF(String str) throws IOException;
}

Implementations

 DataOutputStream, ObjectOutput,
RandomAccessFile

Name
DataOutputStream

Synopsis

 This
class is a subclass of FilterOutputStream that
allows you to write Java primitive data types in a
portable binary format. Create a DataOutputStream
by specifying the OutputStream that is to be
filtered in the call to the constructor.
DataOutputStream has methods that output only
primitive types; use ObjectOutputStream to output
object values.
Many of this class’s methods write a single Java
primitive type, in binary format, to the output stream.

 write() writes a
single byte, an array, or a subarray of bytes. flush(
) forces any buffered data to be output. size(
) returns the number of bytes written so far.
writeUTF()

 outputs a Java string of
Unicode characters using a slightly modified version of the UTF-8
transformation format. UTF-8 is an ASCII-compatible encoding of
Unicode characters that is often used for the transmission and
storage of Unicode text. Except for the writeUTF(
) method, this class is used for binary output of data.
Textual output should be done with PrintWriter (or
PrintStream in Java 1.0).
[image: java.io.DataOutputStream]

Figure 9-11. java.io.DataOutputStream

public class DataOutputStream extends FilterOutputStream implements DataOutput {
// Public Constructors
 public DataOutputStream(OutputStream out);
// Public Instance Methods
 public final int size();
// Methods Implementing DataOutput
 public void write(int b) throws IOException; synchronized
 public void write(byte[] b, int off, int len) throws IOException; synchronized
 public final void writeBoolean(boolean v) throws IOException;
 public final void writeByte(int v) throws IOException;
 public final void writeBytes(String s) throws IOException;
 public final void writeChar(int v) throws IOException;
 public final void writeChars(String s) throws IOException;
 public final void writeDouble(double v) throws IOException;
 public final void writeFloat(float v) throws IOException;
 public final void writeInt(int v) throws IOException;
 public final void writeLong(long v) throws IOException;
 public final void writeShort(int v) throws IOException;
 public final void writeUTF(String str) throws IOException;
// Public Methods Overriding FilterOutputStream
 public void flush() throws IOException;
// Protected Instance Fields
 protected int written;
}

Name
EOFException

Synopsis

 An
IOException that signals the end-of-file.
[image: java.io.EOFException]

Figure 9-12. java.io.EOFException

public class EOFException extends IOException {
// Public Constructors
 public EOFException();
 public EOFException(String s);
}

Name
Externalizable

Synopsis

 This interface defines the methods
that must be implemented by an object that wants complete control
over the way it is
serialized. The
writeExternal()

 and readExternal(
) methods should be implemented to write and read object
data in some arbitrary format, using the methods of the
DataOutput and DataInput
interfaces. Externalizable objects must serialize
their own fields and are also responsible for serializing the fields
of their superclasses. Most objects do not need to define a custom
output format and can use the Serializable
interface instead of Externalizable for
serialization.
[image: java.io.Externalizable]

Figure 9-13. java.io.Externalizable

public interface Externalizable extends Serializable {
// Public Instance Methods
 void readExternal(ObjectInput in) throws IOException, ClassNotFoundException;
 void writeExternal(ObjectOutput out) throws IOException;
}

Name
File

Synopsis

 This class supports a platform-independent
definition of file and

 directory names. It also
provides methods to list the files in a directory; check the
existence, readability, writability, type, size, and modification
time of files and directories; make new directories; rename files and
directories; delete files and directories; and create and delete
temporary and lock files.
 The constants
defined by this class are the platform-dependent directory and
path-separator characters, available as a String
and a char.

 getName() returns the
name of the File with any directory names omitted.
getPath() returns the full name of the file,
including the directory name. getParent() and
getParentFile() return the directory that
contains the File; the only difference between the
two methods is that one returns a String, while
the other returns a File. isAbsolute(
) tests whether the File is an
absolute
specification. If not, getAbsolutePath() returns
an absolute filename created by appending the relative filename to
the current working directory. getAbsoluteFile()
returns the equivalent absolute File object.
getCanonicalPath() and getCanonicalFile(
) are similar methods: they return an absolute filename or
File object that has been converted to its
system-dependent canonical form. This can be useful
when comparing two File objects to see if they
refer to the same file or directory. In Java 1.4 and later, the
toURI()
 method returns a
java.net.URI object that uses a
file: scheme to name this file.
This file-to-URI transformation can be
reversed by passing a file: URI object to the
File() constructor.

 exists(),
canWrite(), canRead(),
isFile(), isDirectory(), and
isHidden() perform the obvious tests on the
specified File. length()
returns the length of the file. lastModified()
returns the modification time of the file (which should
be used for comparison with other file times only and not interpreted
as any particular time format). setLastModified()
allows the modification time to be set; setReadOnly(
) makes a file or directory read-only.

 list() returns the
names of all entries in a
directory that are not rejected by an
optional FilenameFilter. listFiles(
) returns an array of File objects that
represent all entries in a directory not rejected by an optional
FilenameFilter or FileFilter.
listRoots() returns an array of
File objects representing all root directories on
the system. Unix systems typically have only one
root, /. Windows systems have a different
root for each drive letter: c:\,
d:\, and e:\, for example.

 mkdir() creates a
directory, and
mkdirs() creates all the directories in a
File specification. renameTo()
renames a file or directory; delete() deletes a
file or directory. Prior to Java
1.2, the File class doesn’t
provide any way to create a file; that task is accomplished typically
with FileOutputStream. Two special-purpose file
creation methods have were added in Java 1.2. The static
createTempFile(
)

 method
returns a File object that refers to a newly
created empty file with a unique name that begins with the specified
prefix (which must be at least three characters long) and ends with
the specified suffix. One version of this method creates the file in
a specified directory, and the other creates it in the system
temporary directory. Applications can use temporary files for any
purpose without worrying about overwriting files belonging to other
applications. The other file-creation method of Java 1.2 is
createNewFile()
 . This instance method attempts to
create a new, empty file with the name specified by the
File object. If it succeeds, it returns
true. However, if the file already exists, it
returns false. createNewFile()
works atomically and is therefore useful for
file locking and other mutual-exclusion schemes. When working with
createTempFile() or createNewFile(
), consider using deleteOnExit(
)
 to request that the files be deleted
when the Java VM exits normally.
[image: java.io.File]

Figure 9-14. java.io.File

public class File implements Serializable, Comparable<File> {
// Public Constructors
 1.4 public File(java.net.URI uri);
 public File(String pathname);
 public File(File parent, String child);
 public File(String parent, String child);
// Public Constants
 public static final String pathSeparator;
 public static final char pathSeparatorChar;
 public static final String separator;
 public static final char separatorChar;
// Public Class Methods
 1.2 public static File createTempFile(String prefix, String suffix) throws IOException;
1.2 public static File createTempFile(String prefix, String suffix, File directory) throws
 IOException;
1.2 public static File[] listRoots();
// Public Instance Methods
 public boolean canRead();
 public boolean canWrite();
1.2 public boolean createNewFile() throws IOException;
 public boolean delete();
1.2 public void deleteOnExit();
 public boolean exists();
1.2 public File getAbsoluteFile();
 public String getAbsolutePath();
1.2 public File getCanonicalFile() throws IOException;
1.1 public String getCanonicalPath() throws IOException;
 public String getName();
 public String getParent();
1.2 public File getParentFile();
 public String getPath();
 public boolean isAbsolute();
 public boolean isDirectory();
 public boolean isFile();
1.2 public boolean isHidden();
 public long lastModified();
 public long length();
 public String[] list();
 public String[] list(FilenameFilter filter);
1.2 public File[] listFiles();
1.2 public File[] listFiles(FilenameFilter filter);
1.2 public File[] listFiles(FileFilter filter);
 public boolean mkdir();
 public boolean mkdirs();
 public boolean renameTo(File dest);
1.2 public boolean setLastModified(long time);
1.2 public boolean setReadOnly();
1.4 public java.net.URI toURI();
1.2 public java.net.URL toURL() throws java.net.MalformedURLException;
// Methods Implementing Comparable
 1.2 public int compareTo(File pathname);
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Passed To
Too many methods to list.

Returned By

 ProcessBuilder.directory()

Name
FileDescriptor

Synopsis

 This class is a platform-independent
representation of a low-level
 handle to an open file or socket. The
static in

 , out, and
err variables are
FileDescriptor objects that represent the standard
input, output, and error streams, respectively. There is no public
constructor method to create a FileDescriptor
object. You can obtain one with the getFD(
)
 method
of FileInputStream,
FileOutputStream, or
RandomAccessFile.
public final class FileDescriptor {
// Public Constructors
 public FileDescriptor();
// Public Constants
 public static final FileDescriptor err;
 public static final FileDescriptor in;
 public static final FileDescriptor out;
// Public Instance Methods
 1.1 public void sync() throws SyncFailedException; native
 public boolean valid();
}

Passed To

 FileInputStream.FileInputStream(),
FileOutputStream.FileOutputStream(),
FileReader.FileReader(),
FileWriter.FileWriter(),
SecurityManager.{checkRead(),
checkWrite()}

Returned By

 FileInputStream.getFD(),
FileOutputStream.getFD(),
RandomAccessFile.getFD(),
java.net.DatagramSocketImpl.getFileDescriptor(),
java.net.SocketImpl.getFileDescriptor()

Type Of

 java.net.DatagramSocketImpl.fd,
java.net.SocketImpl.fd

Name
FileFilter

Synopsis

 This interface, added in Java 1.2,
defines an accept() method that filters a list of
files. You can list the contents of a
directory by calling the
listFiles()
 method of the File
object that represents the desired directory. If you want a filtered
listing, such as a listing of files but not subdirectories or a
listing of files whose names end in .class, you
can pass a FileFilter object to
listFiles(). For each entry in the directory, a
File object is passed to the accept(
) method. If accept() returns
true, that File is included in
the return value of listFiles(). If
accept() returns false, that entry is not
included in the listing. Use FilenameFilter if
compatibility with previous releases of Java is required or if you
prefer to filter filenames (i.e., String objects)
rather than File objects.
public interface FileFilter {
// Public Instance Methods
 boolean accept(File pathname);
}

Passed To

 File.listFiles()

Name
FileInputStream

Synopsis

 This class is a subclass of
InputStream that reads bytes from a file specified
by name or by a File or
FileDescriptor object. read()
reads a byte or array of bytes from the file. It returns -1 when the
end-of-file has been reached. To read binary data, you typically use
this class in conjunction with a
BufferedInputStream and
DataInputStream. To read
text, you typically use it
with an InputStreamReader and
BufferedReader. Call close(
)

to close the file when input is no longer needed.
In Java 1.4 and later, use getChannel(
)

 to obtain a
FileChannel object for reading from the underlying
file using the New I/O API of java.nio and its
subpackages.
[image: java.io.FileInputStream]

Figure 9-15. java.io.FileInputStream

public class FileInputStream extends InputStream {
// Public Constructors
 public FileInputStream(String name) throws FileNotFoundException;
 public FileInputStream(File file) throws FileNotFoundException;
 public FileInputStream(FileDescriptor fdObj);
// Public Instance Methods
 1.4 public java.nio.channels.FileChannel getChannel();
 public final FileDescriptor getFD() throws IOException;
// Public Methods Overriding InputStream
 public int available() throws IOException; native
 public void close() throws IOException;
 public int read() throws IOException; native
 public int read(byte[] b) throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
 public long skip(long n) throws IOException; native
 // Protected Methods Overriding Object
 protected void finalize() throws IOException;
}

Name
FilenameFilter

Synopsis

 This interface defines the
accept()
 method that must be implemented by
any object that filters filenames (i.e., selects a subset of
filenames from a list of filenames). There are no standard
FilenameFilter classes implemented by Java, but
objects that implement this interface are used by the
java.awt.FileDialog object and the
File.list() method. A typical
FilenameFilter object might check that the
specified File represents a file (not a
directory), is readable (and possibly writable as well), and that its
name ends with some desired extension.
public interface FilenameFilter {
// Public Instance Methods
 boolean accept(File dir, String name);
}

Passed To

 File.{list(), listFiles()}

Name
FileNotFoundException

Synopsis

 An
IOException that signals that a specified file
cannot be found.
[image: java.io.FileNotFoundException]

Figure 9-16. java.io.FileNotFoundException

public class FileNotFoundException extends IOException {
// Public Constructors
 public FileNotFoundException();
 public FileNotFoundException(String s);
}

Thrown By
Too many methods to list.

Name
FileOutputStream

Synopsis

 This
class is a subclass of
OutputStream that writes data to a file specified
by name or by a File or
FileDescriptor object. If the specified file
already exists, a FileOutputStream can be
configured to overwrite or append to the existing file.
write()

writes a byte or array of bytes to the file. To
write binary data, you typically use this class in conjunction with a
BufferedOutputStream and a
DataOutputStream. To write
text, you typically use it
with a PrintWriter,
BufferedWriter and an
OutputStreamWriter (or you use the convenience
class FileWriter). Use close(
)

to close a FileOutputStream when no further output
will be written to it.
In Java 1.4 and later, use getChannel(
)

 to obtain a
FileChannel object for writing to the underlying
file using the New I/O API of java.nio and its
subpackages.
[image: java.io.FileOutputStream]

Figure 9-17. java.io.FileOutputStream

public class FileOutputStream extends OutputStream {
// Public Constructors
 public FileOutputStream(FileDescriptor fdObj);
 public FileOutputStream(File file) throws FileNotFoundException;
 public FileOutputStream(String name) throws FileNotFoundException;
1.1 public FileOutputStream(String name, boolean append) throws FileNotFoundException;
1.4 public FileOutputStream(File file, boolean append) throws FileNotFoundException;
// Public Instance Methods
 1.4 public java.nio.channels.FileChannel getChannel();
 public final FileDescriptor getFD() throws IOException;
// Public Methods Overriding OutputStream
 public void close() throws IOException;
 public void write(int b) throws IOException; native
 public void write(byte[] b) throws IOException;
 public void write(byte[] b, int off, int len) throws IOException;
// Protected Methods Overriding Object
 protected void finalize() throws IOException;
}

Name
FilePermission

Synopsis

 This class is
a java.security.Permission that governs access to
the local filesystem. A FilePermission has a name,
or target, which specifies what file or files it pertains to, and a
commaseparated list of actions that may be performed on the file or
files. The supported actions are

 read,
write, delete, and execute. Read and write permission are required by
any methods that read or write a file. Delete permission is required
by File.delete(), and execute permission is
required by Runtime.exec().
The
name
of a FilePermission may be as simple as a file or
directory name. FilePermission also supports the
use of certain wildcards, however, to specify a
permission that applies to more than one file. If the name of the
FilePermission is a directory name followed by
/* (* on
Windows platforms), it
specifies all files in the named directory. If the name is a
directory name followed by /-
(\- on Windows), it specifies all files in the
directory, and, recursively, all files in all subdirectories. A
* alone specifies all files in the current
directory, and a - alone specifies all files in or
beneath the current directory. Finally, the special name <<ALL
FILES>> matches all files anywhere in the filesystem.

 Applications
do not need to use
this class directly. Programmers writing system-level code and system
administrators configuring security policies may need to use it,
however. Be very careful when granting any type of
FilePermission. Restricting access (especially
write access) to files is one of the cornerstones of the Java
security model with regard to untrusted
code.
[image: java.io.FilePermission]

Figure 9-18. java.io.FilePermission

public final class FilePermission extends java.security.Permission implements Serializable {
// Public Constructors
 public FilePermission(String path, String actions);
// Public Methods Overriding Permission
 public boolean equals(Object obj);
 public String getActions();
 public int hashCode();
 public boolean implies(java.security.Permission p);
 public java.security.PermissionCollection newPermissionCollection();
}

Name
FileReader

Synopsis

 FileReader is a
convenience subclass of InputStreamReader that is
useful when you want to read
text (as opposed to binary data)
from a file. You create a FileReader by specifying
the file to be read in any of three possible forms. The
FileReader constructor internally creates a
FileInputStream to read bytes from the specified
file and uses the functionality of its superclass,
InputStreamReader, to convert those bytes from
characters in the local encoding to the
Unicode characters used by Java.
Because FileReader is a trivial subclass of
InputStreamReader, it does not define any
read() methods or other methods of its own.
Instead, it inherits all its methods from its superclass. If you want
to read Unicode characters from a file that uses some encoding other
than the default encoding for the locale, you must explicitly create
your own InputStreamReader to perform the

 byte-to-character conversion.
[image: java.io.FileReader]

Figure 9-19. java.io.FileReader

public class FileReader extends InputStreamReader {
// Public Constructors
 public FileReader(FileDescriptor fd);
 public FileReader(File file) throws FileNotFoundException;
 public FileReader(String fileName) throws FileNotFoundException;
}

Name
FileWriter

Synopsis

 FileWriter is a
convenience subclass of OutputStreamWriter that is
useful when you want to write text (as opposed to binary data) to a
file. You create a FileWriter by specifying the
file to be written to and, optionally, whether the data should be
appended to the end of an existing file instead of overwriting that
file. The FileWriter class creates an internal
FileOutputStream to write bytes to the specified
file and uses the functionality of its superclass,
OutputStreamWriter, to convert the Unicode
characters written to the stream into bytes using the default
encoding of the default locale. (If you want to use an encoding other
than the default, you cannot use FileWriter; in
that case you must create your own
OutputStreamWriter and
FileOutputStream.) Because
FileWriter is a trivial subclass of
OutputStreamWriter, it does not define any methods
of its own, but simply inherits them from its superclass.
[image: java.io.FileWriter]

Figure 9-20. java.io.FileWriter

public class FileWriter extends OutputStreamWriter {
// Public Constructors
 public FileWriter(File file) throws IOException;
 public FileWriter(FileDescriptor fd);
 public FileWriter(String fileName) throws IOException;
1.4 public FileWriter(File file, boolean append) throws IOException;
 public FileWriter(String fileName, boolean append) throws IOException;
}

Name
FilterInputStream

Synopsis

 This
class provides method definitions required to filter data obtained
from the InputStream specified when the
FilterInputStream is created. It must be
subclassed to perform some sort of filtering operation and cannot be
instantiated directly. See the subclasses
BufferedInputStream,
DataInputStream, and
PushbackInputStream.
[image: java.io.FilterInputStream]

Figure 9-21. java.io.FilterInputStream

public class FilterInputStream extends InputStream {
// Protected Constructors
 protected FilterInputStream(InputStream in);
// Public Methods Overriding InputStream
 public int available() throws IOException;
 public void close() throws IOException;
 public void mark(int readlimit); synchronized
 public boolean markSupported();
 public int read() throws IOException;
 public int read(byte[] b) throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
 public void reset() throws IOException; synchronized
 public long skip(long n) throws IOException;
// Protected Instance Fields
 protected volatile InputStream in;
}

Subclasses

 BufferedInputStream,
DataInputStream,
LineNumberInputStream,
PushbackInputStream,
java.security.DigestInputStream,
java.util.zip.CheckedInputStream,
java.util.zip.InflaterInputStream,
javax.crypto.CipherInputStream

Name
FilterOutputStream

Synopsis

 This class provides method definitions
required to filter the data to be written to the
OutputStream specified when the
FilterOutputStream is created. It must be
subclassed to perform some sort of filtering operation and may not be
instantiated directly. See the subclasses
BufferedOutputStream and
DataOutputStream.
[image: java.io.FilterOutputStream]

Figure 9-22. java.io.FilterOutputStream

public class FilterOutputStream extends OutputStream {
// Public Constructors
 public FilterOutputStream(OutputStream out);
// Public Methods Overriding OutputStream
 public void close() throws IOException;
 public void flush() throws IOException;
 public void write(int b) throws IOException;
 public void write(byte[] b) throws IOException;
 public void write(byte[] b, int off, int len) throws IOException;
// Protected Instance Fields
 protected OutputStream out;
}

Subclasses

 BufferedOutputStream,
DataOutputStream, PrintStream,
java.security.DigestOutputStream,
java.util.zip.CheckedOutputStream,
java.util.zip.DeflaterOutputStream,
javax.crypto.CipherOutputStream

Name
FilterReader

Synopsis

 This abstract class is intended
to act as a superclass for
character input streams that read data
from some other character input stream, filter it in some way, and
then return the filtered data when a read(
)

method is called. FilterReader is declared
abstract so that it cannot be instantiated. But
none of its methods are themselves abstract: they all simply call the
requested operation on the input stream passed to the
FilterReader() constructor. If you were allowed
to instantiate a FilterReader,
you’d find that it is a null filter (i.e., it simply
reads characters from the specified input stream and returns them
without any kind of filtering).
Because FilterReader implements a null filter, it
is an ideal superclass for classes that want to implement simple
filters but do not want to override all the methods of
Reader. In order to create your own filtered
character input stream, you should subclass
FilterReader and override both its read(
) methods to perform the desired filtering operation. Note
that you can implement one of the read() methods
in terms of the other, and thus only implement the filtration once.
Recall that the other read() methods defined by
Reader are implemented in terms of these methods,
so you do not need to override those. In some cases, you may need to
override other methods of FilterReader and provide
methods or constructors that are specific to your subclass.
FilterReader is the character-stream analog to
FilterInputStream.
[image: java.io.FilterReader]

Figure 9-23. java.io.FilterReader

public abstract class FilterReader extends Reader {
// Protected Constructors
 protected FilterReader(Reader in);
// Public Methods Overriding Reader
 public void close() throws IOException;
 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported();
 public int read() throws IOException;
 public int read(char[] cbuf, int off, int len) throws IOException;
 public boolean ready() throws IOException;
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
// Protected Instance Fields
 protected Reader in;
}

Subclasses

 PushbackReader

Name
FilterWriter

Synopsis

 This
abstract class is intended to act as a superclass for character
output streams that filter the data written to them before writing it
to some other character output stream.
FilterWriter is declared
abstract so that it cannot be instantiated. But
none of its methods are themselves abstract: they all simply invoke
the corresponding method on the output stream that was passed to the
FilterWriter constructor. If you were allowed to
instantiate a FilterWriter object,
you’d find that it acts as a null filter (i.e., it
simply passes the characters written to it along, without any
filtration).
Because FilterWriter implements a null filter, it
is an ideal superclass for classes that want to implement simple
filters without having to override all of the methods of
Writer. In order to create your own filtered
character output stream, you should subclass

 FilterWriter and
override all its write() methods to perform the
desired filtering operation. Note that you can implement two of the
write() methods in terms of the third and thus
implement your filtering algorithm only once. In some cases, you may
want to override other Writer methods and add
other methods or constructors that are specific to your subclass.
FilterWriter is the character-stream analog of
FilterOutputStream.
[image: java.io.FilterWriter]

Figure 9-24. java.io.FilterWriter

public abstract class FilterWriter extends Writer {
// Protected Constructors
 protected FilterWriter(Writer out);
// Public Methods Overriding Writer
 public void close() throws IOException;
 public void flush() throws IOException;
 public void write(int c) throws IOException;
 public void write(char[] cbuf, int off, int len) throws IOException;
 public void write(String str, int off, int len) throws IOException;
// Protected Instance Fields
 protected Writer out;
}

Name
Flushable

Synopsis
This

 interface defines a flush(
)
 method and is implemented by
flushable objects such as java.io streams. This
interface was added in Java 5.0 to enable
java.util.Formatter to distinguish
java.lang.Appendable objects that need to be
flushed (such as streams) from those that do not (such as
StringBuilder objects). See also
Closeable.
public interface Flushable {
// Public Instance Methods
 void flush() throws IOException;
}

Implementations

 OutputStream, Writer,
java.util.Formatter

Name
InputStream

Synopsis

 This abstract class is the
superclass of all input streams. It defines the basic input methods
all input stream classes provide. read(
)
 reads
a single byte or an array (or subarray) of bytes.
It returns the bytes read, the number of bytes read, or -1 if the
end-of-file has been reached. skip() skips a
specified number of bytes of input. available()
returns the number of bytes that can be read without blocking.
close()

closes the input stream and frees up any system resources associated
with it. The stream should not be used after close(
) has been called.

 If
markSupported() returns true
for a given InputStream, that stream supports
mark() and reset() methods.
mark() marks the current position in the input
stream so that reset() can return to that
position (as long as no more than the specified number of bytes have
been read between the calls to mark() and
reset()). See also Reader.
[image: java.io.InputStream]

Figure 9-25. java.io.InputStream

public abstract class InputStream implements Closeable {
// Public Constructors
 public InputStream();
// Public Instance Methods
 public int available() throws IOException; constant
 public void close() throws IOException; Implements:Closeable empty
 public void mark(int readlimit); synchronized empty
 public boolean markSupported(); constant
 public abstract int read() throws IOException;
 public int read(byte[] b) throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
 public void reset() throws IOException; synchronized
 public long skip(long n) throws IOException;
// Methods Implementing Closeable
 public void close() throws IOException; empty
}

Subclasses

 ByteArrayInputStream,
FileInputStream,
FilterInputStream,
ObjectInputStream,
PipedInputStream,
SequenceInputStream,
StringBufferInputStream

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Type Of

 FilterInputStream.in, System.in

Name
InputStreamReader

Synopsis

 This class is a character input stream
that uses a byte input stream as its data source. It reads bytes from
a specified InputStream and translates them into

 Unicode characters according to a
particular platform- and locale-dependent
character encoding.
This is an important
internationalization feature in
Java 1.1 and later. InputStreamReader supports the
standard Reader methods. It also has a
getEncoding()
 method that returns the name of the encoding
being used to convert bytes to characters.
When you create an InputStreamReader, you specify
an InputStream from which the
InputStreamReader is to read bytes and,
optionally, the name of the character encoding used by those bytes.
If you do not specify an encoding name, the
InputStreamReader uses the default encoding for
the default locale, which is usually the correct thing to do. In Java
1.4 and later, this class uses the charset conversion facilities of
the java.nio.charset package and allows you to
explicitly specify the Charset or
CharsetDecoder to be used. Prior to Java 1.4, the
class allows you to specify only the name of the desired charset
encoding.
[image: java.io.InputStreamReader]

Figure 9-26. java.io.InputStreamReader

public class InputStreamReader extends Reader {
// Public Constructors
 public InputStreamReader(InputStream in);
 public InputStreamReader(InputStream in, String charsetName) throws
 UnsupportedEncodingException;
1.4 public InputStreamReader(InputStream in, java.nio.charset.Charset cs);
1.4 public InputStreamReader(InputStream in, java.nio.charset.CharsetDecoder dec);
// Public Instance Methods
 public String getEncoding();
// Public Methods Overriding Reader
 public void close() throws IOException;
 public int read() throws IOException;
 public int read(char[] cbuf, int offset, int length) throws IOException;
 public boolean ready() throws IOException;
}

Subclasses

 FileReader

Name
InterruptedIOException

Synopsis

 An
IOException that signals that an input or output
operation was interrupted. The bytesTransferred
field contains the number of bytes read or written before the
operation was interrupted.
[image: java.io.InterruptedIOException]

Figure 9-27. java.io.InterruptedIOException

public class InterruptedIOException extends IOException {
// Public Constructors
 public InterruptedIOException();
 public InterruptedIOException(String s);
// Public Instance Fields
 public int bytesTransferred;
}

Subclasses

 java.net.SocketTimeoutException

Name
InvalidClassException

Synopsis

 Signals
that the serialization mechanism has encountered one of several
possible problems with the class of an object that is being
serialized or deserialized. The classname field
should contain the name of the class in question, and the
getMessage()
 method is overridden to return this class
name with the message.
[image: java.io.InvalidClassException]

Figure 9-28. java.io.InvalidClassException

public class InvalidClassException extends ObjectStreamException {
// Public Constructors
 public InvalidClassException(String reason);
 public InvalidClassException(String cname, String reason);
// Public Methods Overriding Throwable
 public String getMessage();
// Public Instance Fields
 public String classname;
}

Name
InvalidObjectException

Synopsis

 This
exception should be thrown by the validateObject(
)
 method of an object that implements the
ObjectInputValidation interface when a
deserialized object fails an input validation test for any reason.
[image: java.io.InvalidObjectException]

Figure 9-29. java.io.InvalidObjectException

public class InvalidObjectException extends ObjectStreamException {
// Public Constructors
 public InvalidObjectException(String reason);
}

Thrown By

 ObjectInputStream.registerValidation(),
ObjectInputValidation.validateObject(),
java.text.AttributedCharacterIterator.Attribute.readResolve(
), java.text.DateFormat.Field.readResolve(
), java.text.MessageFormat.Field.readResolve(
), java.text.NumberFormat.Field.readResolve(
)

Name
IOException

Synopsis

 Signals that an
exceptional condition has occurred during input or output. This class
has several more specific subclasses. See
EOFException,
FileNotFoundException,
InterruptedIOException, and
UTFDataFormatException.
[image: java.io.IOException]

Figure 9-30. java.io.IOException

public class IOException extends Exception {
// Public Constructors
 public IOException();
 public IOException(String s);
}

Subclasses

 CharConversionException,
EOFException,
FileNotFoundException,
InterruptedIOException,
ObjectStreamException,
SyncFailedException,
UnsupportedEncodingException,
UTFDataFormatException,
java.net.HttpRetryException,
java.net.MalformedURLException,
java.net.ProtocolException,
java.net.SocketException,
java.net.UnknownHostException,
java.net.UnknownServiceException,
java.nio.channels.ClosedChannelException,
java.nio.channels.FileLockInterruptionException,
java.nio.charset.CharacterCodingException,
java.util.InvalidPropertiesFormatException,
java.util.zip.ZipException,
javax.net.ssl.SSLException

Passed To

 java.net.ProxySelector.connectFailed()

Returned By

 java.util.Formatter.ioException(),
java.util.Scanner.ioException()

Thrown By
Too many methods to list.

Name
LineNumberInputStream

Synopsis

 This class is a
FilterInputStream that keeps track of the number
of lines of data that have been read. getLineNumber(
) returns the current line number; setLineNumber(
) sets the line number of the current line. Subsequent
lines are numbered starting from that number. This class is
deprecated as of Java 1.1 because it does not properly convert bytes
to characters. Use LineNumberReader instead.
[image: java.io.LineNumberInputStream]

Figure 9-31. java.io.LineNumberInputStream

public class LineNumberInputStream extends FilterInputStream {
// Public Constructors
 public LineNumberInputStream(InputStream in);
// Public Instance Methods
 public int getLineNumber();
 public void setLineNumber(int lineNumber);
// Public Methods Overriding FilterInputStream
 public int available() throws IOException;
 public void mark(int readlimit);
 public int read() throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
}

Name
LineNumberReader

Synopsis

 This class is a character input stream
that keeps track of the number of lines of text that have been read
from it. It supports the usual Reader methods and
also the readLine() method introduced by its
superclass. In addition to these methods, you can call

 getLineNumber() to
query the number of lines set so far. You can also call

 setLineNumber(
) to set the line number for the current line. Subsequent
lines are numbered sequentially from this specified starting point.
This class is a character-stream analog to
LineNumberInputStream, which has been deprecated
as of Java 1.1.
[image: java.io.LineNumberReader]

Figure 9-32. java.io.LineNumberReader

public class LineNumberReader extends BufferedReader {
// Public Constructors
 public LineNumberReader(Reader in);
 public LineNumberReader(Reader in, int sz);
// Public Instance Methods
 public int getLineNumber();
 public void setLineNumber(int lineNumber);
// Public Methods Overriding BufferedReader
 public void mark(int readAheadLimit) throws IOException;
 public int read() throws IOException;
 public int read(char[] cbuf, int off, int len) throws IOException;
 public String readLine() throws IOException;
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
}

Name
NotActiveException

Synopsis

 This
exception is thrown in several circumstances. It indicates that the
invoked method was not invoked at the right time or in the correct
context. Typically, it means that an
ObjectOutputStream or
ObjectInputStream is not currently active and
therefore the requested operation cannot be performed.
[image: java.io.NotActiveException]

Figure 9-33. java.io.NotActiveException

public class NotActiveException extends ObjectStreamException {
// Public Constructors
 public NotActiveException();
 public NotActiveException(String reason);
}

Thrown By

 ObjectInputStream.registerValidation()

Name
NotSerializableException

Synopsis

 Signals
that an object cannot be serialized. It is thrown when serialization
is attempted on an instance of a class that does not implement the
Serializable interface. Note that it is also
thrown when an attempt is made to serialize a
Serializable object that refers to (or contains)
an object that is not Serializable. A subclass of
a class that is Serializable can prevent itself
from being serialized by throwing this exception from its
writeObject() and/or readObject(
) methods.
[image: java.io.NotSerializableException]

Figure 9-34. java.io.NotSerializableException

public class NotSerializableException extends ObjectStreamException {
// Public Constructors
 public NotSerializableException();
 public NotSerializableException(String classname);
}

Name
ObjectInput

Synopsis

 This
interface extends the DataInput interface and adds
methods for deserializing objects and reading bytes and arrays of
bytes.
[image: java.io.ObjectInput]

Figure 9-35. java.io.ObjectInput

public interface ObjectInput extends DataInput {
// Public Instance Methods
 int available() throws IOException;
 void close() throws IOException;
 int read() throws IOException;
 int read(byte[] b) throws IOException;
 int read(byte[] b, int off, int len) throws IOException;
 Object readObject() throws ClassNotFoundException, IOException;
 long skip(long n) throws IOException;
}

Implementations

 ObjectInputStream

Passed To

 Externalizable.readExternal()

Name
ObjectInputStream

Synopsis

 ObjectInputStream
deserializes objects, arrays, and other values from a stream that was
previously created with an ObjectOutputStream. The
readObject() method deserializes objects and
arrays (which should then be cast to the appropriate type); various
other methods read primitive data values from the stream. Note that
only objects that implement the Serializable or
Externalizable interface can be serialized and
deserialized.
A class may implement its own private
readObject(ObjectInputStream)
 method to customize the way it is
deserialized. If you define such a method, there are several
ObjectInputStream methods you can use to help
deserialize the object. defaultReadObject() is
the easiest. It reads the content of the object just as an
ObjectInputStream would normally do. If you wrote
additional data before or after the default object contents, you
should read that data before or after calling
defaultReadObject(). When working with multiple
versions or implementations of a class, you may have to deserialize a
set of
fields
that do not match the fields of your class. In this case, give your
class a static field named
serialPersistentFields
 whose value is an array of
ObjectStreamField objects that describe the fields
to be deserialized. If you do this, your readObject(
) method can call readFields() to read
the specified fields from the stream and return them in a
ObjectInputStream.GetField object. See
ObjectStreamField and
ObjectInputStream.GetField for more details.
Finally, you can call registerValidation(
)
 from a custom readObject(
) method. This method registers an
ObjectInputValidation object (typically the object
being deserialized) to be notified when a complete tree of objects
has been deserialized, and the original call to the
readObject() method of the
ObjectInputStream is about to return to its
caller.
The remaining methods include miscellaneous stream-manipulation
methods and several protected methods for use by subclasses that want
to customize the deserialization behavior of
ObjectInputStream.
[image: java.io.ObjectInputStream]

Figure 9-36. java.io.ObjectInputStream

public class ObjectInputStream extends InputStream implements ObjectInput,
 ObjectStreamConstants {
// Public Constructors
 public ObjectInputStream(InputStream in) throws IOException;
// Protected Constructors
 1.2 protected ObjectInputStream() throws IOException, SecurityException;
// Nested Types
 1.2 public abstract static class GetField;
// Public Instance Methods
 public void defaultReadObject() throws IOException, ClassNotFoundException;
1.2 public ObjectInputStream.GetField readFields() throws IOException,
 ClassNotFoundException;
1.4 public Object readUnshared() throws IOException, ClassNotFoundException;
 public void registerValidation(ObjectInputValidation obj, int prio) throws
 NotActiveException, InvalidObjectException;
// Methods Implementing DataInput
 public boolean readBoolean() throws IOException;
 public byte readByte() throws IOException;
 public char readChar() throws IOException;
 public double readDouble() throws IOException;
 public float readFloat() throws IOException;
 public void readFully(byte[] buf) throws IOException;
 public void readFully(byte[] buf, int off, int len) throws IOException;
 public int readInt() throws IOException;
 public long readLong() throws IOException;
 public short readShort() throws IOException;
 public int readUnsignedByte() throws IOException;
 public int readUnsignedShort() throws IOException;
 public String readUTF() throws IOException;
 public int skipBytes(int len) throws IOException;
// Methods Implementing ObjectInput
 public int available() throws IOException;
 public void close() throws IOException;
 public int read() throws IOException;
 public int read(byte[] buf, int off, int len) throws IOException;
 public final Object readObject() throws IOException, ClassNotFoundException;
// Protected Instance Methods
 protected boolean enableResolveObject(boolean enable) throws SecurityException;
1.3 protected ObjectStreamClass readClassDescriptor() throws IOException,
 ClassNotFoundException;
1.2 protected Object readObjectOverride() throws IOException,
 ClassNotFoundException; constant
 protected void readStreamHeader() throws IOException, StreamCorruptedException;
 protected Class<?> resolveClass(ObjectStreamClass desc) throws IOException,
 ClassNotFoundException;
 protected Object resolveObject(Object obj) throws IOException;
1.3 protected Class<?> resolveProxyClass(String[] interfaces) throws IOException,
 ClassNotFoundException;
// Deprecated Public Methods
 # public String readLine() throws IOException; Implements:DataInput
}

Name
ObjectInputStream.GetField

Synopsis

 This class
holds the values of named
fields read by an
ObjectInputStream. It gives the programmer precise
control over the deserialization process and is typically used when
implementing an object with a set of fields that do not match the set
of fields (and the serialization stream format) of the original
implementation of the object. This class allows the implementation of
a class to change without breaking
serialization compatibility.

 In order to use the
GetField class, your class must implement a
private readObject() method that is responsible
for custom deserialization. Typically, when using the
GetField class, you have also specified an array
of ObjectStreamField objects as the value of a
private static field named serialPersistentFields.
This array specifies the names and types of all fields expected to be
found when reading from a serialization stream. If there is no
serialPersistentField field, the array of
ObjectStreamField objects is created from the
actual fields (excluding static and
transient fields) of the class.

 Within the readObject(
) method of your class, call the readFields(
) method of ObjectInputStream(). This
method reads the values of all fields from the stream and stores them
in an ObjectInputStream.GetField object that it
returns. This GetField object is essentially a
mapping from field names to field values, and you can extract the
values of whatever fields you need in order to restore the proper
state of the object being deserialized. The various get(
) methods return the values of named fields of specified
types. Each method takes a default value as an argument, in case no
value for the named field was present in the serialization stream.
(This can happen when deserializing an object written by an earlier
version of the class, for example.) Use the defaulted(
) method to determine whether the
GetField object contains a value for the named
field. If this method returns true, the named
field had no value in the stream, so the get()
method of the GetField object has to return the
specified default value. The getObjectStreamClass(
) method of a GetField object returns
the ObjectStreamClass object for the object being
deserialized. This ObjectStreamClass can obtain
the array of ObjectStreamField objects for the
class.

See also

 ObjectOutputStream.PutField

public abstract static class ObjectInputStream.GetField {
// Public Constructors
 public GetField();
// Public Instance Methods
 public abstract boolean defaulted(String name) throws IOException;
 public abstract boolean get(String name, boolean val) throws IOException;
 public abstract byte get(String name, byte val) throws IOException;
 public abstract char get(String name, char val) throws IOException;
 public abstract short get(String name, short val) throws IOException;
 public abstract int get(String name, int val) throws IOException;
 public abstract long get(String name, long val) throws IOException;
 public abstract float get(String name, float val) throws IOException;
 public abstract double get(String name, double val) throws IOException;
 public abstract Object get(String name, Object val) throws IOException;
 public abstract ObjectStreamClass getObjectStreamClass();
}

Returned By

 ObjectInputStream.readFields()

Name
ObjectInputValidation

Synopsis

 A class implements this interface and
defines the validateObject(
)
 method in order to validate itself when
it and all the objects it depends on have been completely
deserialized from an ObjectInputStream. The
validateObject() method is only invoked, however,
if the object is passed to
ObjectInputStream.registerValidation(
)
 ; this must be done from the
readObject()

method of the object. Note that if an object is deserialized as part
of a larger object graph, its validateObject()
method is not invoked until the entire graph is read, and the
original call to ObjectInputStream.readObject()
is about to return. validateObject() should throw
an
InvalidObjectException

if the object fails validation. This stops object serialization, and
the original call to ObjectInputStream.readObject(
) terminates with the
InvalidObjectException exception.
public interface ObjectInputValidation {
// Public Instance Methods
 void validateObject() throws InvalidObjectException;
}

Passed To

 ObjectInputStream.registerValidation()

Name
ObjectOutput

Synopsis

 This interface extends the
DataOutput interface and adds methods for
serializing objects and writing bytes and arrays of bytes.
[image: java.io.ObjectOutput]

Figure 9-37. java.io.ObjectOutput

public interface ObjectOutput extends DataOutput {
// Public Instance Methods
 void close() throws IOException;
 void flush() throws IOException;
 void write(byte[] b) throws IOException;
 void write(int b) throws IOException;
 void write(byte[] b, int off, int len) throws IOException;
 void writeObject(Object obj) throws IOException;
}

Implementations

 ObjectOutputStream

Passed To

 Externalizable.writeExternal(),
ObjectOutputStream.PutField.write()

Name
ObjectOutputStream

Synopsis

 The ObjectOutputStream
serializes objects, arrays, and other values to a stream. The
writeObject() method serializes an object or
array, and various other methods write primitive data values to the
stream. Note that only objects that implement the
Serializable or Externalizable
interface can be serialized.
A class that wants to customize the way instances are serialized
should declare a private
writeObject(ObjectOutputStream)
 method. This method is invoked when an object
is being serialized and can use several additional methods of
ObjectOutputStream. defaultWriteObject(
) performs the same serialization that would happen if no
writeObject() method existed. An object can call
this method to serialize itself and then use other methods of
ObjectOutputStream to write additional data to the
serialization stream. The class must define a matching
readObject()
 method to read that additional data, of
course. When working with multiple versions or implementations of a
class, you may have to serialize a set of fields that do not
precisely match the fields of your class. In this case, give your
class a static field named
serialPersistentFields
 whose value is an array of
ObjectStreamField objects that describe the fields
to be serialized. In your writeObject() method,
call putFields()
 to obtain an
ObjectOutputStream.PutField object. Store field
names and values into this object, and then call
writeFields() to write them out to the
serialization stream. See ObjectStreamField and
ObjectOutputStream.PutField for further details.
The remaining methods of ObjectOutputStream are
miscellaneous stream-manipulation methods and protected methods for
use by subclasses that want to customize its serialization behavior.
[image: java.io.ObjectOutputStream]

Figure 9-38. java.io.ObjectOutputStream

public class ObjectOutputStream extends OutputStream implements ObjectOutput,
 ObjectStreamConstants {
// Public Constructors
 public ObjectOutputStream(OutputStream out) throws IOException;
// Protected Constructors
 1.2 protected ObjectOutputStream() throws IOException, SecurityException;
// Nested Types
 1.2 public abstract static class PutField;
// Public Instance Methods
 public void defaultWriteObject() throws IOException;
1.2 public ObjectOutputStream.PutField putFields() throws IOException;
 public void reset() throws IOException;
1.2 public void useProtocolVersion(int version) throws IOException;
1.2 public void writeFields() throws IOException;
1.4 public void writeUnshared(Object obj) throws IOException;
// Methods Implementing DataOutput
 public void writeBoolean(boolean val) throws IOException;
 public void writeByte(int val) throws IOException;
 public void writeBytes(String str) throws IOException;
 public void writeChar(int val) throws IOException;
 public void writeChars(String str) throws IOException;
 public void writeDouble(double val) throws IOException;
 public void writeFloat(float val) throws IOException;
 public void writeInt(int val) throws IOException;
 public void writeLong(long val) throws IOException;
 public void writeShort(int val) throws IOException;
 public void writeUTF(String str) throws IOException;
// Methods Implementing ObjectOutput
 public void close() throws IOException;
 public void flush() throws IOException;
 public void write(int val) throws IOException;
 public void write(byte[] buf) throws IOException;
 public void write(byte[] buf, int off, int len) throws IOException;
 public final void writeObject(Object obj) throws IOException;
// Protected Instance Methods
 protected void annotateClass(Class<?> cl) throws IOException; empty
 1.3 protected void annotateProxyClass(Class<?> cl) throws IOException; empty
 protected void drain() throws IOException;
 protected boolean enableReplaceObject(boolean enable) throws SecurityException;
 protected Object replaceObject(Object obj) throws IOException;
1.3 protected void writeClassDescriptor(ObjectStreamClass desc) throws IOException;
1.2 protected void writeObjectOverride(Object obj) throws IOException; empty
 protected void writeStreamHeader() throws IOException;
}

Name
ObjectOutputStream.PutField

Synopsis

 This class holds values of named
fields and allows them to be written to
an ObjectOutputStream during the process of object
serialization. It gives the programmer
precise control over the serialization process and is typically used
when the set of fields defined by a class does not match the set of
fields (and the serialization stream format) defined by the original
implementation of the class. In other words,
ObjectOutputStream.PutField allows the
implementation of a class to change without breaking serialization
compatibility.
In order to use the PutField class, you typically
define a private static serialPersistentFields
field that refers to an array of ObjectStreamField
objects. This array defines the set of fields written to the
ObjectOutputStream and therefore defines the
serialization format. If you do not declare a
serialPersistentFields field, the set of fields is
all fields of the class, excluding static and
transient fields.

 In
addition to the serialPersistentFields field, your
class must also define a private writeObject()
method that is responsible for the custom serialization of your
class. In this method, call the putFields()
method of ObjectOutputStream to obtain an
ObjectOutputStream.PutField object. Once you have
this object, use its various put() methods to
specify the names and values of the field to be written out. The set
of named fields should match those specified by
serialPersistentFields. You may specify the fields
in any order; the PutField class is responsible
for writing them out in the correct order. Once you have specified
the values of all fields, call the write() method
of your PutField object in order to write the
field values out to the serialization stream.
To reverse this custom serialization process, see
ObjectInputStream.GetField.
public abstract static class ObjectOutputStream.PutField {
// Public Constructors
 public PutField();
// Public Instance Methods
 public abstract void put(String name, long val);
 public abstract void put(String name, int val);
 public abstract void put(String name, float val);
 public abstract void put(String name, Object val);
 public abstract void put(String name, double val);
 public abstract void put(String name, byte val);
 public abstract void put(String name, boolean val);
 public abstract void put(String name, short val);
 public abstract void put(String name, char val);
// Deprecated Public Methods
 # public abstract void write(ObjectOutput out) throws IOException;
}

Returned By

 ObjectOutputStream.putFields()

Name
ObjectStreamClass

Synopsis

 This
class represents a class that is being
serialized. An
ObjectStreamClass object contains the name of a
class, its unique version identifier, and the name and type of the
fields that constitute the serialization format for the class.
getSerialVersionUID(
)

 returns a unique version identifier
for the class. It returns either the value of the private
serialVersionUID
 field of the class or a computed value
that is based upon the public API of the class. In Java 1.2 and
later,
 getFields(
) returns an array of ObjectStreamField
objects that represent the names and types of the fields of the class
to be serialized. getField(
)

returns a single ObjectStreamField object that
represents a single named field. By default, these methods use all
the fields of a class except those that are static
or transient. However, this default set of fields
can be overridden by declaring a private
serialPersistentFields field in the class. The
value of this field should be the desired array of
ObjectStreamField objects.

 ObjectStreamClass
class does not have a constructor; you should use the static
lookup() method to obtain an
ObjectStreamClass object for a given
Class object. The forClass()
instance method performs the opposite operation; it returns the
Class object that corresponds to a given
ObjectStreamClass. Most applications never need to
use this class.
[image: java.io.ObjectStreamClass]

Figure 9-39. java.io.ObjectStreamClass

public class ObjectStreamClass implements Serializable {
// No Constructor
 // Public Constants
 1.2 public static final ObjectStreamField[] NO_FIELDS;
// Public Class Methods
 public static ObjectStreamClass lookup(Class<?> cl);
// Public Instance Methods
 public Class<?> forClass();
1.2 public ObjectStreamField getField(String name);
1.2 public ObjectStreamField[] getFields();
 public String getName();
 public long getSerialVersionUID();
// Public Methods Overriding Object
 public String toString();
}

Passed To

 ObjectInputStream.resolveClass(),
ObjectOutputStream.writeClassDescriptor()

Returned By

 ObjectInputStream.readClassDescriptor(),
ObjectInputStream.GetField.getObjectStreamClass()

Name
ObjectStreamConstants

Synopsis

 This interface defines various
constants used by the Java
object-serialization mechanism. Two important constants are
PROTOCOL_VERSION_1 and
PROTOCOL_VERSION_2, which specify the version of
the serialization protocol to use. In Java 1.2, you
can pass either of these values to the

 useProtocolVersion(
) method of an ObjectOutputStream. By
default, Java 1.2 uses Version 2 of the protocol, and Java 1.1 uses
Version 1 when serializing objects. Java 1.2 can deserialize objects
written using either version of the protocol, as can Java 1.1.7 and
later. If you want to serialize an object so that it can be read by
versions of Java prior to Java 1.1.7, use
PROTOCOL_VERSION_1.
The other constants defined by this interface are low-level values
used by the serialization protocol. You do not need to use them
unless you are reimplementing the serialization mechanism yourself.
public interface ObjectStreamConstants {
// Public Constants
 public static final int baseWireHandle; =8257536
 public static final int PROTOCOL_VERSION_1; =1
 public static final int PROTOCOL_VERSION_2; =2
 public static final byte SC_BLOCK_DATA; =8
 5.0 public static final byte SC_ENUM; =16
 public static final byte SC_EXTERNALIZABLE; =4
 public static final byte SC_SERIALIZABLE; =2
 public static final byte SC_WRITE_METHOD; =1
 public static final short STREAM_MAGIC; =-21267
 public static final short STREAM_VERSION; =5
 public static final SerializablePermission SUBCLASS_IMPLEMENTATION_PERMISSION;
 public static final SerializablePermission SUBSTITUTION_PERMISSION;
 public static final byte TC_ARRAY; =117
 public static final byte TC_BASE; =112
 public static final byte TC_BLOCKDATA; =119
 public static final byte TC_BLOCKDATALONG; =122
 public static final byte TC_CLASS; =118
 public static final byte TC_CLASSDESC; =114
 public static final byte TC_ENDBLOCKDATA; =120
 5.0 public static final byte TC_ENUM; =126
 public static final byte TC_EXCEPTION; =123
 1.3 public static final byte TC_LONGSTRING; =124
 public static final byte TC_MAX; =126
 public static final byte TC_NULL; =112
 public static final byte TC_OBJECT; =115
 1.3 public static final byte TC_PROXYCLASSDESC; =125
 public static final byte TC_REFERENCE; =113
 public static final byte TC_RESET; =121
 public static final byte TC_STRING; =116
}

Implementations

 ObjectInputStream,
ObjectOutputStream

Name
ObjectStreamException

Synopsis

 This
class is the superclass of a number of more specific exception types
that may be raised in the process of serializing and deserializing
objects with the ObjectOutputStream and
ObjectInputStream classes.
[image: java.io.ObjectStreamException]

Figure 9-40. java.io.ObjectStreamException

public abstract class ObjectStreamException extends IOException {
// Protected Constructors
 protected ObjectStreamException();
 protected ObjectStreamException(String classname);
}

Subclasses

 InvalidClassException,
InvalidObjectException,
NotActiveException,
NotSerializableException,
OptionalDataException,
StreamCorruptedException,
WriteAbortedException

Thrown By

 java.security.KeyRep.readResolve(),
java.security.cert.Certificate.writeReplace(),
java.security.cert.Certificate.CertificateRep.readResolve(
), java.security.cert.CertPath.writeReplace(
),
java.security.cert.CertPath.CertPathRep.readResolve(
)

Name
ObjectStreamField

Synopsis

 This class represents a named
field of a specified type (i.e., a
specified Class). When a class serializes itself
by writing a set of fields that are different from the fields it uses
in its own implementation, it defines the set of fields to be written
with an array of ObjectStreamField objects. This
array should be the value of a private static field named
serialPersistentFields. The methods of this class
are used internally by the serialization mechanism and are not
typically used elsewhere. See also
ObjectOutputStream.PutField and
ObjectInputStream.GetField.
[image: java.io.ObjectStreamField]

Figure 9-41. java.io.ObjectStreamField

public class ObjectStreamField implements Comparable<Object> {
// Public Constructors
 public ObjectStreamField(String name, Class<?> type);
1.4 public ObjectStreamField(String name, Class<?> type, boolean unshared);
// Public Instance Methods
 public String getName();
 public int getOffset();
 public Class<?> getType();
 public char getTypeCode();
 public String getTypeString();
 public boolean isPrimitive();
1.4 public boolean isUnshared();
// Methods Implementing Comparable
 public int compareTo(Object obj);
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected void setOffset(int offset);
}

Returned By

 ObjectStreamClass.{getField(),
getFields()}

Type Of

 ObjectStreamClass.NO_FIELDS

Name
OptionalDataException

Synopsis

 Thrown
by the
 readObject() method
of an ObjectInputStream when it encounters
primitive type data where it expects
object data. Despite the exception name, this data is not optional,
and object deserialization is stopped.
[image: java.io.OptionalDataException]

Figure 9-42. java.io.OptionalDataException

public class OptionalDataException extends ObjectStreamException {
// No Constructor
 // Public Instance Fields
 public boolean eof;
 public int length;
}

Name
OutputStream

Synopsis

 This abstract class is the
superclass
of all output streams. It defines the basic output methods all output
stream classes provide.
 write() writes a
single byte or an array (or subarray) of bytes.

 flush() forces any
buffered output to be written.
 close() closes the
stream and frees up any system resources associated with it. The
stream may not be used once close() has been
called. See also Writer.
[image: java.io.OutputStream]

Figure 9-43. java.io.OutputStream

public abstract class OutputStream implements Closeable, Flushable {
// Public Constructors
 public OutputStream();
// Public Instance Methods
 public void close() throws IOException; Implements:Closeable empty
 public void flush() throws IOException; Implements:Flushable empty
 public abstract void write(int b) throws IOException;
 public void write(byte[] b) throws IOException;
 public void write(byte[] b, int off, int len) throws IOException;
// Methods Implementing Closeable
 public void close() throws IOException; empty
 // Methods Implementing Flushable
 public void flush() throws IOException; empty
}

Subclasses

 ByteArrayOutputStream,
FileOutputStream,
FilterOutputStream,
ObjectOutputStream,
PipedOutputStream

Passed To
Too many methods to list.

Returned By

 Process.getOutputStream(),
Runtime.getLocalizedOutputStream(),
java.net.CacheRequest.getBody(),
java.net.Socket.getOutputStream(),
java.net.SocketImpl.getOutputStream(),
java.net.URLConnection.getOutputStream(),
java.nio.channels.Channels.newOutputStream(),
javax.xml.transform.stream.StreamResult.getOutputStream(
)

Type Of

 FilterOutputStream.out

Name
OutputStreamWriter

Synopsis

 This class is a character output stream
that uses a byte output stream as the destination for its data. When

 characters are written to an
OutputStreamWriter, it translates
them into bytes according to a particular
locale- and/or platform-specific
character encoding and writes those bytes to the specified
OutputStream. This is a very important
internationalization feature in Java 1.1 and later.
OutputStreamWriter supports the usual
Writer methods. It also has a
getEncoding()

 method that returns the name of the
encoding being used to convert characters to bytes.
When you create an OutputStreamWriter, specify the
OutputStream to which it writes bytes and,
optionally, the name of the character encoding that should be used to
convert characters to bytes. If you do not specify an encoding name,
the OutputStreamWriter uses the default encoding
of the default locale, which is usually the correct thing to do. In
Java 1.4 and later, this class uses the
charset
conversion facilities of the java.nio.charset
package and allows you to explicitly specify the
Charset or CharsetEncoder to be
used. Prior to Java 1.4, the class allows you to specify only the
name of the desired charset encoding.
[image: java.io.OutputStreamWriter]

Figure 9-44. java.io.OutputStreamWriter

public class OutputStreamWriter extends Writer {
// Public Constructors
 public OutputStreamWriter(OutputStream out);
 public OutputStreamWriter(OutputStream out, String charsetName) throws
 UnsupportedEncodingException;
1.4 public OutputStreamWriter(OutputStream out, java.nio.charset.CharsetEncoder enc);
1.4 public OutputStreamWriter(OutputStream out, java.nio.charset.Charset cs);
// Public Instance Methods
 public String getEncoding();
// Public Methods Overriding Writer
 public void close() throws IOException;
 public void flush() throws IOException;
 public void write(int c) throws IOException;
 public void write(char[] cbuf, int off, int len) throws IOException;
 public void write(String str, int off, int len) throws IOException;
}

Subclasses

 FileWriter

Name
PipedInputStream

Synopsis

 This class is an
InputStream that implements one half of a pipe and
is useful for communication between
threads. A
PipedInputStream must be connected to a
PipedOutputStream object, which may be specified
when the PipedInputStream is created or with the
connect()

method. Data read from a PipedInputStream object
is received from the PipedOutputStream to which it
is connected. See InputStream for information on
the low-level methods for reading data from a
PipedInputStream. A
FilterInputStream can provide a higher-level
interface for reading data from a
PipedInputStream.
[image: java.io.PipedInputStream]

Figure 9-45. java.io.PipedInputStream

public class PipedInputStream extends InputStream {
// Public Constructors
 public PipedInputStream();
 public PipedInputStream(PipedOutputStream src) throws IOException;
// Protected Constants
 1.1 protected static final int PIPE_SIZE; =1024
 // Public Instance Methods
 public void connect(PipedOutputStream src) throws IOException;
// Public Methods Overriding InputStream
 public int available() throws IOException; synchronized
 public void close() throws IOException;
 public int read() throws IOException; synchronized
 public int read(byte[] b, int off, int len) throws IOException; synchronized
 // Protected Instance Methods
 1.1 protected void receive(int b) throws IOException; synchronized
 // Protected Instance Fields
 1.1 protected byte[] buffer;
1.1 protected int in;
1.1 protected int out;
}

Passed To

 PipedOutputStream.{connect(),
PipedOutputStream()}

Name
PipedOutputStream

Synopsis

 This class is an
OutputStream that implements one half a pipe and
is useful for communication between threads. A
PipedOutputStream must be connected to a
PipedInputStream, which may be specified when the
PipedOutputStream is created or with the

 connect() method.
Data written to the PipedOutputStream is available
for reading on the PipedInputStream. See
OutputStream for information on the low-level
methods for writing data to a PipedOutputStream. A
FilterOutputStream can provide a higher-level
interface for writing data to a PipedOutputStream.
[image: java.io.PipedOutputStream]

Figure 9-46. java.io.PipedOutputStream

public class PipedOutputStream extends OutputStream {
// Public Constructors
 public PipedOutputStream();
 public PipedOutputStream(PipedInputStream snk) throws IOException;
// Public Instance Methods
 public void connect(PipedInputStream snk) throws IOException; synchronized
 // Public Methods Overriding OutputStream
 public void close() throws IOException;
 public void flush() throws IOException; synchronized
 public void write(int b) throws IOException;
 public void write(byte[] b, int off, int len) throws IOException;
}

Passed To

 PipedInputStream.{connect(),
PipedInputStream()}

Name
PipedReader

Synopsis

 PipedReader is a
character input stream that reads characters from a
PipedWriter character output stream to which it is
connected. PipedReader implements one half of a
pipe and is useful for communication between two threads of an
application. A PipedReader cannot be used until it
is connected to a PipedWriter object, which may be
passed to the PipedReader() constructor or to the
connect()

method. PipedReader inherits most of the methods
of its superclass. See Reader for more
information. PipedReader is the character-stream
analog of PipedInputStream.
[image: java.io.PipedReader]

Figure 9-47. java.io.PipedReader

public class PipedReader extends Reader {
// Public Constructors
 public PipedReader();
 public PipedReader(PipedWriter src) throws IOException;
// Public Instance Methods
 public void connect(PipedWriter src) throws IOException;
// Public Methods Overriding Reader
 public void close() throws IOException;
1.2 public int read() throws IOException; synchronized
 public int read(char[] cbuf, int off, int len) throws IOException; synchronized
 1.2 public boolean ready() throws IOException; synchronized
}

Passed To

 PipedWriter.{connect(), PipedWriter(
)}

Name
PipedWriter

Synopsis

 PipedWriter is a
character output stream that writes characters to the
PipedReader character input stream to which it is
connected. PipedWriter implements one half of a
pipe and is useful for communication between two threads of an
application. A PipedWriter cannot be used until it
is connected to a PipedReader object, which may be
passed to the PipedWriter() constructor or to the
connect() method. PipedWriter
inherits most of the methods of its superclass. See
Writer for more information.
PipedWriter is the character-stream analog of
PipedOutputStream.
[image: java.io.PipedWriter]

Figure 9-48. java.io.PipedWriter

public class PipedWriter extends Writer {
// Public Constructors
 public PipedWriter();
 public PipedWriter(PipedReader snk) throws IOException;
// Public Instance Methods
 public void connect(PipedReader snk) throws IOException; synchronized
 // Public Methods Overriding Writer
 public void close() throws IOException;
 public void flush() throws IOException; synchronized
 1.2 public void write(int c) throws IOException;
 public void write(char[] cbuf, int off, int len) throws IOException;
}

Passed To

 PipedReader.{connect(), PipedReader(
)}

Name
PrintStream

Synopsis

 This class is a byte output stream that
implements a number of methods for displaying

 textual representations of
Java primitive data types.
System.out

 and
System.err are PrintStream
objects. PrintStream converts characters to bytes
using the platform’s default charset, or the charset
or encoding named in the PrintStream()
constructor invocation. In Java 5.0, convenience constructors allow
you to specify a file (either as a file name or a
File object) as the destination of a
PrintStream. Prior to Java 5.0 the destination had
to be another OutputStream object.
The print()

methods output standard textual representations of each data type.
The println()

methods do the same and follow the representations with newlines.
Each method converts a Java primitive type to a
String representation and outputs the resulting
string. When an Object is passed to a
print() or println(), it is
converted to a String by calling its
toString() method. In Java 5.0, you can also use the
printf() methods (or the format(
)

methods that behave identically) for formatted output. These methods
behave like the format() method of a
java.util.Formatter object that uses the
PrintStream as its destination.
This class implements the java.lang.Appendable
interface in
 Java 5.0, which makes it suitable
for use with a java.util.Formatter.
See also PrintWriter for a character output stream
with similar functionality. And see
DataOutputStream for a byte output stream that
outputs binary, rather than textual, representations of
Java’s primitive types.
[image: java.io.PrintStream]

Figure 9-49. java.io.PrintStream

public class PrintStream extends FilterOutputStream implements Appendable, Closeable {
// Public Constructors
 5.0 public PrintStream(File file) throws FileNotFoundException;
5.0 public PrintStream(String fileName) throws FileNotFoundException;
 public PrintStream(OutputStream out);
5.0 public PrintStream(String fileName, String csn) throws FileNotFoundException,
 UnsupportedEncodingException;
 public PrintStream(OutputStream out, boolean autoFlush);
5.0 public PrintStream(File file, String csn) throws FileNotFoundException,
 UnsupportedEncodingException;
1.4 public PrintStream(OutputStream out, boolean autoFlush, String encoding) throws
 UnsupportedEncodingException;
// Public Instance Methods
 5.0 public PrintStream append(char c);
5.0 public PrintStream append(CharSequence csq);
5.0 public PrintStream append(CharSequence csq, int start, int end);
 public boolean checkError();
 public void close(); Implements:Closeable
5.0 public PrintStream format(String format, Object... args);
5.0 public PrintStream format(java.util.Locale l, String format, Object... args);
 public void print(double d);
 public void print(float f);
 public void print(char[] s);
 public void print(Object obj);
 public void print(String s);
 public void print(long l);
 public void print(boolean b);
 public void print(char c);
 public void print(int i);
5.0 public PrintStream printf(String format, Object... args);
5.0 public PrintStream printf(java.util.Locale l, String format, Object... args);
 public void println();
 public void println(char[] x);
 public void println(double x);
 public void println(Object x);
 public void println(String x);
 public void println(float x);
 public void println(char x);
 public void println(boolean x);
 public void println(long x);
 public void println(int x);
// Methods Implementing Closeable
 public void close();
// Public Methods Overriding FilterOutputStream
 public void flush();
 public void write(int b);
 public void write(byte[] buf, int off, int len);
// Protected Instance Methods
 1.1 protected void setError();
}

Passed To

 System.{setErr(), setOut()},
Throwable.printStackTrace(),
java.util.Formatter.Formatter(),
java.util.Properties.list(),
javax.xml.transform.TransformerException.printStackTrace(
), javax.xml.xpath.XPathException.printStackTrace(
)

Type Of

 System.{err, out}

Name
PrintWriter

Synopsis

 This class is a character output stream
that implements a number of print(
)

 and println()
methods that output textual representations of primitive values and
objects. When you create a PrintWriter object, you
specify a character or byte output stream that it should write its
characters to and, optionally, whether the
PrintWriter stream should be automatically flushed
whenever println() is called. If you specify a
byte output stream as the destination, the PrintWriter(
) constructor automatically creates the necessary
OutputStreamWriter object to convert characters to
bytes using the default encoding. In Java 5.0, convenience constructors allow
you to specify a file (either as a file name or a
File object) as the destination. You may
optionally specify the name of a charset to use for
character-to-byte conversion when writing
to the file.

 PrintWriter
implements the normal write(), flush(
), and close() methods all
Writer subclasses define. It is more common to use
the higher-level print() and println(
) methods, each of which converts its argument to a string
before outputting it. println() can also
terminate the line (and optionally flush the buffer) after printing
its argument. In Java 5.0, you can also use the printf(
)

 methods (or the
format() methods that behave identically) for
formatted output. These methods behave like the format(
) method of a java.util.Formatter object
that uses the PrintWriter as its destination.

 The methods of
PrintWriter never throw exceptions. Instead, when
errors occur, they set an internal flag you can check by calling
checkError(). checkError()
first flushes the internal stream and then returns
true if any exception has occurred while writing
values to that stream. Once an error has occurred on a
PrintWriter object, all subsequent calls to
checkError() return true;
there is no way to reset the error flag.

 PrintWriter is the character stream analog to
PrintStream, which it supersedes. You can usually
easily replace any PrintStream objects in a
program with PrintWriter objects. This is
particularly important for internationalized programs. The only valid
remaining use for the PrintStream class is for the
System.out and System.err
standard output streams. See PrintStream for
details.
[image: java.io.PrintWriter]

Figure 9-50. java.io.PrintWriter

public class PrintWriter extends Writer {
// Public Constructors
 5.0 public PrintWriter(String fileName) throws FileNotFoundException;
5.0 public PrintWriter(File file) throws FileNotFoundException;
 public PrintWriter(OutputStream out);
 public PrintWriter(Writer out);
5.0 public PrintWriter(File file, String csn) throws FileNotFoundException,
 UnsupportedEncodingException;
5.0 public PrintWriter(String fileName, String csn) throws FileNotFoundException,
 UnsupportedEncodingException;
 public PrintWriter(OutputStream out, boolean autoFlush);
 public PrintWriter(Writer out, boolean autoFlush);
// Public Instance Methods
 5.0 public PrintWriter append(char c);
5.0 public PrintWriter append(CharSequence csq);
5.0 public PrintWriter append(CharSequence csq, int start, int end);
 public boolean checkError();
5.0 public PrintWriter format(String format, Object... args);
5.0 public PrintWriter format(java.util.Locale l, String format, Object... args);
 public void print(double d);
 public void print(float f);
 public void print(long l);
 public void print(Object obj);
 public void print(String s);
 public void print(char[] s);
 public void print(boolean b);
 public void print(char c);
 public void print(int i);
5.0 public PrintWriter printf(String format, Object... args);
5.0 public PrintWriter printf(java.util.Locale l, String format, Object... args);
 public void println();
 public void println(double x);
 public void println(float x);
 public void println(char[] x);
 public void println(Object x);
 public void println(String x);
 public void println(char x);
 public void println(boolean x);
 public void println(long x);
 public void println(int x);
// Public Methods Overriding Writer
 public void close();
 public void flush();
 public void write(String s);
 public void write(char[] buf);
 public void write(int c);
 public void write(String s, int off, int len);
 public void write(char[] buf, int off, int len);
// Protected Instance Methods
 protected void setError();
// Protected Instance Fields
 1.2 protected Writer out;
}

Passed To

 Throwable.printStackTrace(),
java.util.Properties.list(),
javax.xml.transform.TransformerException.printStackTrace(
), javax.xml.xpath.XPathException.printStackTrace(
)

Name
PushbackInputStream

Synopsis

 This class is a
FilterInputStream that implements a one-byte
pushback
buffer
or, as of Java 1.1, a pushback buffer of a specified length. The
unread() methods push bytes back into the stream;
these bytes are the first ones read by the next call to a
read()
 method. This class is sometimes useful
when writing parsers. See also PushbackReader.
[image: java.io.PushbackInputStream]

Figure 9-51. java.io.PushbackInputStream

public class PushbackInputStream extends FilterInputStream {
// Public Constructors
 public PushbackInputStream(InputStream in);
1.1 public PushbackInputStream(InputStream in, int size);
// Public Instance Methods
 public void unread(int b) throws IOException;
1.1 public void unread(byte[] b) throws IOException;
1.1 public void unread(byte[] b, int off, int len) throws IOException;
// Public Methods Overriding FilterInputStream
 public int available() throws IOException;
1.2 public void close() throws IOException; synchronized
 5.0 public void mark(int readlimit); synchronized empty
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
5.0 public void reset() throws IOException; synchronized
 1.2 public long skip(long n) throws IOException;
// Protected Instance Fields
 1.1 protected byte[] buf;
1.1 protected int pos;
}

Name
PushbackReader

Synopsis

 This class is a character input stream
that uses another input stream as its input source and adds the
ability to push characters back onto the stream. This feature is
often useful when writing parsers. When you create a
PushbackReader stream, you specify the stream to
be read from and, optionally, the size of the pushback
buffer
(i.e., the number of characters that may be pushed back onto the
stream or unread). If you do not specify a size for this buffer, the
default size is one character. PushbackReader
inherits or overrides all standard Reader methods
and adds three unread(
)

methods that push a single character, an array of characters, or a
portion of an array of characters back onto the stream. This class is
the character stream analog of
PushbackInputStream.
[image: java.io.PushbackReader]

Figure 9-52. java.io.PushbackReader

public class PushbackReader extends FilterReader {
// Public Constructors
 public PushbackReader(Reader in);
 public PushbackReader(Reader in, int size);
// Public Instance Methods
 public void unread(int c) throws IOException;
 public void unread(char[] cbuf) throws IOException;
 public void unread(char[] cbuf, int off, int len) throws IOException;
// Public Methods Overriding FilterReader
 public void close() throws IOException;
1.2 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(char[] cbuf, int off, int len) throws IOException;
 public boolean ready() throws IOException;
1.2 public void reset() throws IOException;
1.4 public long skip(long n) throws IOException;
}

Name
RandomAccessFile

Synopsis

 This class allows you to read and write
arbitrary bytes, text, and primitive Java data types from or to any
specified location in a file. Because this class provides random,
rather than sequential, access to files, it is neither a subclass of
InputStream nor of
OutputStream, but provides an entirely independent
method for reading and writing data from or to files.
RandomAccessFile implements the same interfaces as
DataInputStream and
DataOutputStream, and thus defines the same
methods for reading and writing data as those classes do.

 The seek(
) method provides random access to the file; it is used to
select the position in the file where data should be read or written.
The various read and write methods update this file position so that
a sequence of read or write operations can be performed on a
contiguous portion of the file without having to call the
seek() method before each read or write.
The mode argument to the constructor
methods should be “r” for a file
that is to be read-only or “rw” for
a file that is to be written (and perhaps read as well). In Java 1.4
and later, two other values for the mode
argument are allowed as well. A mode of
“rwd” opens the file for reading
and writing, and requires that (if the file resides on a local
filesystem) every update to the file content be written synchronously
to the underlying file. The “rws”
mode is similar, but requires synchronous updates to both the
file’s content and its metadata (which includes
things such as file access times). Using
“rws” mode may require that the
file metadata be modified every time the file is read.
In Java 1.4 and later, use the getChannel(
)

 method to obtain a
FileChannel object that you can use to access the
file using the New I/O API of java.nio and its
subpackages. If the RandomAccessFile was opened
with a mode of “r”, the
FileChannel allows only reading. Otherwise, it
allows both reading and writing.
[image: java.io.RandomAccessFile]

Figure 9-53. java.io.RandomAccessFile

public class RandomAccessFile implements Closeable, DataInput, DataOutput {
// Public Constructors
 public RandomAccessFile(File file, String mode) throws FileNotFoundException;
 public RandomAccessFile(String name, String mode) throws FileNotFoundException;
// Public Instance Methods
 public void close() throws IOException; Implements:Closeable
1.4 public final java.nio.channels.FileChannel getChannel();
 public final FileDescriptor getFD() throws IOException;
 public long getFilePointer() throws IOException; native
 public long length() throws IOException; native
 public int read() throws IOException; native
 public int read(byte[] b) throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
 public void seek(long pos) throws IOException; native
 1.2 public void setLength(long newLength) throws IOException; native
 // Methods Implementing Closeable
 public void close() throws IOException;
// Methods Implementing DataInput
 public final boolean readBoolean() throws IOException;
 public final byte readByte() throws IOException;
 public final char readChar() throws IOException;
 public final double readDouble() throws IOException;
 public final float readFloat() throws IOException;
 public final void readFully(byte[] b) throws IOException;
 public final void readFully(byte[] b, int off, int len) throws IOException;
 public final int readInt() throws IOException;
 public final String readLine() throws IOException;
 public final long readLong() throws IOException;
 public final short readShort() throws IOException;
 public final int readUnsignedByte() throws IOException;
 public final int readUnsignedShort() throws IOException;
 public final String readUTF() throws IOException;
 public int skipBytes(int n) throws IOException;
// Methods Implementing DataOutput
 public void write(int b) throws IOException; native
 public void write(byte[] b) throws IOException;
 public void write(byte[] b, int off, int len) throws IOException;
 public final void writeBoolean(boolean v) throws IOException;
 public final void writeByte(int v) throws IOException;
 public final void writeBytes(String s) throws IOException;
 public final void writeChar(int v) throws IOException;
 public final void writeChars(String s) throws IOException;
 public final void writeDouble(double v) throws IOException;
 public final void writeFloat(float v) throws IOException;
 public final void writeInt(int v) throws IOException;
 public final void writeLong(long v) throws IOException;
 public final void writeShort(int v) throws IOException;
 public final void writeUTF(String str) throws IOException;
}

Name
Reader

Synopsis

 This abstract class
is the superclass of all character input streams. It is an analog to
InputStream, which is the superclass of all byte
input streams. Reader defines the basic methods
that all character output streams provide. read(
)
 returns a single character or an array
(or subarray) of characters, blocking if necessary; it returns -1 if
the end of the stream has been reached. ready(
)
 returns true if
there are characters available for reading. If ready(
) returns true, the next call to
read() is guaranteed not to block.
close()
 closes the
character input stream. skip(
)
 skips a specified number of characters
in the input stream. If markSupported(
)

 returns true,
mark() marks a position in the stream and, if
necessary, creates a look-ahead buffer of the specified size. Future
calls to reset()
 restore
the stream to the marked position if they occur within the specified
look-ahead limit. Note that not all stream types support this
mark-and-reset functionality. To create a subclass of
Reader, you need only implement the three-argument
version of read() and the close(
) method. Most subclasses implement additional methods,
however.
[image: java.io.Reader]

Figure 9-54. java.io.Reader

public abstract class Reader implements Closeable, Readable {
// Protected Constructors
 protected Reader();
 protected Reader(Object lock);
// Public Instance Methods
 public abstract void close() throws IOException; Implements:Closeable
 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(char[] cbuf) throws IOException;
 public abstract int read(char[] cbuf, int off, int len) throws IOException;
 public boolean ready() throws IOException; constant
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
// Methods Implementing Closeable
 public abstract void close() throws IOException;
// Methods Implementing Readable
 5.0 public int read(java.nio.CharBuffer target) throws IOException;
// Protected Instance Fields
 protected Object lock;
}

Subclasses

 BufferedReader,
CharArrayReader, FilterReader,
InputStreamReader, PipedReader,
StringReader

Passed To

 BufferedReader.BufferedReader(),
FilterReader.FilterReader(),
LineNumberReader.LineNumberReader(),
PushbackReader.PushbackReader(),
StreamTokenizer.StreamTokenizer(),
javax.xml.transform.stream.StreamSource.{setReader(
), StreamSource()},
org.xml.sax.InputSource.{InputSource(),
setCharacterStream()}

Returned By

 java.nio.channels.Channels.newReader(),
javax.xml.transform.stream.StreamSource.getReader(
), org.xml.sax.InputSource.getCharacterStream(
)

Type Of

 FilterReader.in

Name
SequenceInputStream

Synopsis

 This
class provides a way of seamlessly
concatenating the data from two or more input streams. It provides an
InputStream interface to a sequence of
InputStream objects. Data is read from the streams
in the order in which the streams are specified. When the end of one
stream is reached, data is automatically read from the next stream.
This class might be useful, for example, when implementing an include
file facility for a parser.
[image: java.io.SequenceInputStream]

Figure 9-55. java.io.SequenceInputStream

public class SequenceInputStream extends InputStream {
// Public Constructors
 public SequenceInputStream(java.util.Enumeration<? extends InputStream> e);
 public SequenceInputStream(InputStream s1, InputStream s2);
// Public Methods Overriding InputStream
 1.1 public int available() throws IOException;
 public void close() throws IOException;
 public int read() throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
}

Name
Serializable

Synopsis

 The
Serializable interface defines no methods or
constants. A class should implement this interface simply to indicate
that it allows itself to be serialized and deserialized with
ObjectOutputStream.writeObject(
)

 and
ObjectInputStream.readObject().
Objects that need special handling during serialization or
deserialization may implement one or both of the following methods;
note, however, that these methods are not part of the
Serializable interface):
private void writeObject(java.io.ObjectOutputStream out) throws IOException;
private void readObject(java.io.ObjectInputStream in) throws IOException,
 ClassNotFoundException;

 Typically, the writeObject(
) method performs any necessary cleanup or preparation for
serialization, invokes the defaultWriteObject()
method of the ObjectOutputStream to serialize the
nontransient fields of the class, and optionally writes any
additional data that is required. Similarly, the readObject(
) method typically invokes the defaultReadObject(
) method of the ObjectInputStream, reads
any additional data written by the corresponding
writeObject() method, and performs any extra
initialization required by the object. The readObject(
) method may also register an
ObjectInputValidation
 object to validate the object once it is
completely deserialized.
public interface Serializable {
}

Implementations
Too many classes to list.

Passed To

 java.security.SignedObject.SignedObject(),
javax.crypto.SealedObject.SealedObject()

Name
SerializablePermission

Synopsis

 This
class is a
java.security.Permission that governs the use of
certain sensitive features of serialization.
SerializablePermission objects have a name, or
target, but do not have an action list. The name
“enableSubclassImplementation”
represents permission to serialize and deserialize objects using
subclasses of ObjectOutputStream and
ObjectInputStream. This capability is protected by
a permission because malicious code can define object stream
subclasses that incorrectly serialize and deserialize objects.

 The only other name supported by
SerializablePermission is
“enableSubstitution,” which
represents permission for one object to be substituted for another
during serialization or deserialization. Permission of this type is
required by the ObjectOutputStream.enableReplaceObject(
) and ObjectInputStream.enableResolveObject(
) methods.
Applications never need to use this class. Programmers writing
system-level code may use it, and system administrators configuring
security policies should be familiar with it.
[image: java.io.SerializablePermission]

Figure 9-56. java.io.SerializablePermission

public final class SerializablePermission extends java.security.BasicPermission {
// Public Constructors
 public SerializablePermission(String name);
 public SerializablePermission(String name, String actions);
}

Type Of

 ObjectStreamConstants.{SUBCLASS_IMPLEMENTATION_PERMISSION,
SUBSTITUTION_PERMISSION}

Name
StreamCorruptedException

Synopsis

 Signals
that the data stream being read by an
ObjectInputStream

 has been
corrupted and does not contain valid serialized object data.
[image: java.io.StreamCorruptedException]

Figure 9-57. java.io.StreamCorruptedException

public class StreamCorruptedException extends ObjectStreamException {
// Public Constructors
 public StreamCorruptedException();
 public StreamCorruptedException(String reason);
}

Thrown By

 ObjectInputStream.readStreamHeader()

Name
StreamTokenizer

Synopsis

 This class performs lexical
analysis of a specified input stream and breaks the input into
tokens. It can be extremely useful when writing simple parsers.

 nextToken(
) returns the next token in the stream; this is either one
of the constants defined by the class (which represent end-of-file,
end-of-line, a parsed floating-point number, and a parsed word) or a
character value. pushBack() pushes the token back
onto the stream, so that it is returned by the next call to
nextToken(). The public variables
sval and nval contain the
string and numeric values (if applicable) of the most recently read
token. They are applicable when the returned token is
TT_WORD or TT_NUMBER.
lineno() returns the current line number.
The remaining methods allow you to specify how tokens are recognized.

 wordChars(
) specifies a range of
characters that should be
treated as parts of words.
 whitespaceChars(
) specifies a range of characters that serve to delimit
tokens. ordinaryChars(
)

 and ordinaryChar(
) specify characters that are never part of tokens and
should be returned as-is. resetSyntax(
)
 makes all characters
ordinary. eolIsSignificant(
)
 specifies whether end-of-line is significant.
If so, the TT_EOL constant is returned for
end-of-lines; otherwise, they are treated as whitespace.
commentChar()
 specifies a character that begins a
comment that lasts until the end of the
line. No characters in the comment are returned.
slashStarComments(
)
 and
slashSlashComments(
)

 specify whether the
StreamTokenizer should recognize C- and C++-style
comments.
If
so, no part of the comment is returned as a token.
quoteChar()
 specifies a character used to
delimit strings. When a string token is parsed, the quote character
is returned as the token value, and the body of the string is stored
in the sval variable. lowerCaseMode(
)

specifies whether TT_WORD tokens should be
converted to all lowercase characters before being stored in
sval. parseNumbers(
)

 specifies that the
StreamTokenizer should recognize and return
double-precision floating-point number tokens.
public class StreamTokenizer {
// Public Constructors
 # public StreamTokenizer(InputStream is);
1.1 public StreamTokenizer(Reader r);
// Public Constants
 public static final int TT_EOF; =-1
 public static final int TT_EOL; =10
 public static final int TT_NUMBER; =-2
 public static final int TT_WORD; =-3
 // Public Instance Methods
 public void commentChar(int ch);
 public void eolIsSignificant(boolean flag);
 public int lineno();
 public void lowerCaseMode(boolean fl);
 public int nextToken() throws IOException;
 public void ordinaryChar(int ch);
 public void ordinaryChars(int low, int hi);
 public void parseNumbers();
 public void pushBack();
 public void quoteChar(int ch);
 public void resetSyntax();
 public void slashSlashComments(boolean flag);
 public void slashStarComments(boolean flag);
 public void whitespaceChars(int low, int hi);
 public void wordChars(int low, int hi);
// Public Methods Overriding Object
 public String toString();
// Public Instance Fields
 public double nval;
 public String sval;
 public int ttype;
}

Name
StringBufferInputStream

Synopsis

 This class is a subclass of
InputStream in which input bytes come from the
characters of a specified String object. This
class does not correctly convert the characters of a
StringBuffer into bytes and is deprecated as of
Java 1.1. Use StringReader instead to convert
characters into bytes or use ByteArrayInputStream
to read bytes from an array of bytes.
[image: java.io.StringBufferInputStream]

Figure 9-58. java.io.StringBufferInputStream

public class StringBufferInputStream extends InputStream {
// Public Constructors
 public StringBufferInputStream(String s);
// Public Methods Overriding InputStream
 public int available(); synchronized
 public int read(); synchronized
 public int read(byte[] b, int off, int len); synchronized
 public void reset(); synchronized
 public long skip(long n); synchronized
 // Protected Instance Fields
 protected String buffer;
 protected int count;
 protected int pos;
}

Name
StringReader

Synopsis

 This class is a character input stream
that uses a String object as the source of the
characters it returns. When you create a
StringReader, you must specify the
String to read from.
StringReader defines the normal
Reader methods and supports mark(
)

 and reset(). If
reset() is called before mark(
) has been called, the stream is reset to the beginning of
the specified string. StringReader is a character
stream analog to StringBufferInputStream, which is
deprecated as of Java 1.1. StringReader is also
similar to CharArrayReader.
[image: java.io.StringReader]

Figure 9-59. java.io.StringReader

public class StringReader extends Reader {
// Public Constructors
 public StringReader(String s);
// Public Methods Overriding Reader
 public void close();
 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(char[] cbuf, int off, int len) throws IOException;
 public boolean ready() throws IOException;
 public void reset() throws IOException;
 public long skip(long ns) throws IOException;
}

Name
StringWriter

Synopsis

 This class is a
character output stream that uses
an internal StringBuffer object as the destination
of the characters written to the stream. When you create a
StringWriter, you may optionally specify an
initial size for the StringBuffer, but you do not
specify the StringBuffer itself; it is managed
internally by the StringWriter and grows as
necessary to accommodate the characters written to it.
StringWriter defines the standard write(
)

 ,
flush(), and close() methods
all Writer subclasses define, as well as two
methods to obtain the characters that have been written to the
stream’s internal buffer. toString(
)

returns the contents of the internal buffer as a
String, and getBuffer(
)
 returns the buffer itself. Note
that getBuffer() returns a reference to the
actual internal buffer, not a copy of it, so any changes you make to
the buffer are reflected in subsequent calls to toString(
). StringWriter is quite similar to
CharArrayWriter, but does not have a byte-stream
analog.
[image: java.io.StringWriter]

Figure 9-60. java.io.StringWriter

public class StringWriter extends Writer {
// Public Constructors
 public StringWriter();
 public StringWriter(int initialSize);
// Public Instance Methods
 5.0 public StringWriter append(CharSequence csq);
5.0 public StringWriter append(char c);
5.0 public StringWriter append(CharSequence csq, int start, int end);
 public StringBuffer getBuffer();
// Public Methods Overriding Writer
 public void close() throws IOException; empty
 public void flush(); empty
 public void write(int c);
 public void write(String str);
 public void write(String str, int off, int len);
 public void write(char[] cbuf, int off, int len);
// Public Methods Overriding Object
 public String toString();
}

Name
SyncFailedException

Synopsis

 Signals that a call to
FileDescriptor.sync() did not complete
successfully.
[image: java.io.SyncFailedException]

Figure 9-61. java.io.SyncFailedException

public class SyncFailedException extends IOException {
// Public Constructors
 public SyncFailedException(String desc);
}

Thrown By

 FileDescriptor.sync()

Name
UnsupportedEncodingException

Synopsis

 Signals
that a requested character encoding is not supported by the current
Java
Virtual Machine.
[image: java.io.UnsupportedEncodingException]

Figure 9-62. java.io.UnsupportedEncodingException

public class UnsupportedEncodingException extends IOException {
// Public Constructors
 public UnsupportedEncodingException();
 public UnsupportedEncodingException(String s);
}

Thrown By
Too many methods to list.

Name
UTFDataFormatException

Synopsis

 An
IOException that signals that a malformed
UTF-8 string has been encountered by a
class that implements the DataInput interface.
UTF-8 is an ASCII-compatible transformation format for Unicode
characters that is often used to store and transmit Unicode text.
[image: java.io.UTFDataFormatException]

Figure 9-63. java.io.UTFDataFormatException

public class UTFDataFormatException extends IOException {
// Public Constructors
 public UTFDataFormatException();
 public UTFDataFormatException(String s);
}

Name
WriteAbortedException

Synopsis

 Thrown
when reading a
stream
of data that is incomplete because an exception was thrown while it
was being written. The detail field may contain
the exception that terminated the output stream. In Java 1.4 and
later, this exception can also be obtained with the standard
Throwable

 getCause() method. The getMessage(
)

method has been overridden to include the message of this
detail exception, if any.
[image: java.io.WriteAbortedException]

Figure 9-64. java.io.WriteAbortedException

public class WriteAbortedException extends ObjectStreamException {
// Public Constructors
 public WriteAbortedException(String s, Exception ex);
// Public Methods Overriding Throwable
 1.4 public Throwable getCause();
 public String getMessage();
// Public Instance Fields
 public Exception detail;
}

Name
Writer

Synopsis

 This abstract class
is the superclass of all character output streams. It is an analog to
OutputStream, which is the superclass of all byte
output streams. Writer defines the basic
write()

 ,
flush(), and close() methods
all character output streams provide. The five versions of the
write() method write a single character, a
character array or subarray, or a string or substring to the
destination of the stream. The most general version of this
method—the one that writes a specified portion of a character
array—is abstract and must be implemented by all subclasses. By
default, the other write() methods are
implemented in terms of this abstract one. The flush(
) method is another abstract method all subclasses must
implement. It should force any output buffered by the stream to be
written to its destination. If that destination is itself a character
or byte output stream, it should invoke the flush(
) method of the destination stream as well. The
close() method is also abstract. A subclass must
implement this method so that it flushes and then closes the current
stream and also closes whatever destination stream it is connected
to. Once the stream is closed, any future calls to write(
) or flush() should throw an
IOException.
In Java 5.0, this class has been
modified to implement the Closeable and
Flushable interfaces. It has also changed to
implement java.lang.Appendable, which means that
any Writer object can be used as the destination
for a java.util.Formatter.
[image: java.io.Writer]

Figure 9-65. java.io.Writer

public abstract class Writer implements Appendable, Closeable, Flushable {
// Protected Constructors
 protected Writer();
 protected Writer(Object lock);
// Public Instance Methods
 5.0 public Writer append(char c) throws IOException;
5.0 public Writer append(CharSequence csq) throws IOException;
5.0 public Writer append(CharSequence csq, int start, int end) throws IOException;
 public abstract void close() throws IOException; Implements:Closeable
 public abstract void flush() throws IOException; Implements:Flushable
 public void write(int c) throws IOException;
 public void write(String str) throws IOException;
 public void write(char[] cbuf) throws IOException;
 public abstract void write(char[] cbuf, int off, int len) throws IOException;
 public void write(String str, int off, int len) throws IOException;
// Methods Implementing Closeable
 public abstract void close() throws IOException;
// Methods Implementing Flushable
 public abstract void flush() throws IOException;
// Protected Instance Fields
 protected Object lock;
}

Subclasses

 BufferedWriter,
CharArrayWriter, FilterWriter,
OutputStreamWriter,
PipedWriter,PrintWriter,
StringWriter

Passed To

 BufferedWriter.BufferedWriter(),
CharArrayWriter.writeTo(),
FilterWriter.FilterWriter(),
PrintWriter.PrintWriter(),
javax.xml.transform.stream.StreamResult.{setWriter(
), StreamResult()}

Returned By

 CharArrayWriter.append(),
PrintWriter.append(),
StringWriter.append(),
java.nio.channels.Channels.newWriter(),
javax.xml.transform.stream.StreamResult.getWriter(
)

Type Of

 FilterWriter.out,
PrintWriter.out

Chapter 10. java.lang and Subpackages

 This chapter covers the
java.lang package which defines the core classes
and interfaces that are indispensable to the Java platform and the
Java programming language. It also covers more specialized
subpackages:
	
 java.lang.annotation

	
 Defines the
Annotation interface that all annotation types
extend, and also defines meta-annotation types and related enumerated
types. Added in Java 5.0.

	
 java.lang.instrument

	
 Provides support for Java-based
"agents”
that can instrument a Java program by transforming class files as
they are loaded. Added in Java 5.0.

	
 java.lang.management

	

 Defines “management
bean” interfaces for remote monitoring and
management of a running Java interpreter.

	
 java.lang.ref

	Defines
"reference” classes
that are used to refer to objects without preventing the garbage
collector from reclaiming those objects.

	
 java.lang.reflect

	
 Allows Java programs to examine the
members of arbitrary classes, invoking methods, and querying and
setting the value of fields.

Name
Package java.lang

Synopsis
The java.lang package contains the classes that
are most central to the Java language. Object is
the ultimate superclass of all Java classes and is therefore at the
top of all class hierarchies. Class is a class
that describes a Java class. There is one Class
object for each class that is loaded into Java.

 Boolean,
Character, Byte,
Short, Integer,
Long, Float, and
Double
 are
immutable class wrappers around each of the
primitive Java data types. These
classes are useful when you need to manipulate primitive types as
objects. They also contain useful conversion and utility methods.
Void is a related class that defines a
representation for the void method return type,
but that defines no methods. String and
StringBuffer are objects that represent strings.
String is an immutable type, while
StringBuffer can have its string changed in place.
In Java 5.0, StringBuilder is like
StringBuffer but without
synchronized methods, which makes it the preferred
choice in most applications. String,
StringBuffer and StringBuilder
implement the Java 1.4 interface CharSequence
which allows instances of these classes to be manipulated through a
simple shared API.

 String and the various primitive type wrapper
classes all implement the Comparable interface
which defines an ordering for instances of those classes and enables
sorting and searching algorithms (such as those of
java.util.Arrays and
java.util.Collections, for example).
Cloneable is an important marker interface that
specifies that the Object.clone() method is
allowed to make copies of an object.

 The
Math class (and, in Java 1.3, the
StrictMath class) defines static methods for
various floating-point mathematical functions.

 The
Thread class provides support for multiple threads
of control running within the same Java interpreter. The
Runnable

 interface is implemented by objects that have
a run() method that can serve as the body of a
thread.

 System provides
low-level system methods. Runtime provides similar
low-level methods, including an exec() method
that, along with the Process class, defines a
platform-dependent API for running external processes.

 Java 5.0 allows Process
objects to be created more easily with the
ProcessBuilder class.

 Throwable is the
root class of the exception and error hierarchy.
Throwable objects are used with the Java
throw and catch statements.
java.lang defines quite a few subclasses of
Throwable. Exception and
Error are the superclasses of all exceptions and
errors. RuntimeException defines a special class
or “unchecked exceptions” that do
not need to be declared in a method’s
throws clause. The Throwable
class was overhauled in Java 1.4, adding the ability to
“chain” exceptions, and the ability
to obtain the stack trace of an exception as an array of
StackTraceElement objects.
Java 5.0 adds three important interfaces to this package.
Iterable

marks types that have an iterator(
)

method and enables iteration with the
for/in

looping statement introduced in
 Java
5.0. The Appendable interface is implemented by
classes (such as StringBuilder and
character
output streams) that can have characters appended to them.
Implementing this interface enables formatted text output with a
java.util.Formatter

 . The
Readable

interface is implemented by classes (such as character input streams)
that can sequentially copy characters into a buffer. It enables
interaction with a java.util.Scanner.

Also new in
 Java 5.0
is Enum, which serves as the superclass of all
enumerated types declared with the new enum
keyword. Deprecated

 , Override, and
SuppressWarnings are annotation types that provide
metadata for the compiler.

Interfaces
public interface Appendable;
public interface CharSequence;
public interface Cloneable;
public interface Comparable<T>;
public interface Iterable<T>;
public interface Readable;
public interface Runnable;
public interface Thread.UncaughtExceptionHandler;

Enumerated Types
public enum Thread.State;

Annotation Types
public @interface Deprecated;
public @interface Override;
public @interface SuppressWarnings;

Classes
public class Object;
 abstract class AbstractStringBuilder implements Appendable, CharSequence;
 public final class StringBuffer extends AbstractStringBuilder implements
 CharSequence, Serializable;
 public final class StringBuilder extends AbstractStringBuilder implements
 CharSequence, Serializable;
 public final class Boolean implements Serializable, Comparable<Boolean>;
 public final class Character implements Serializable, Comparable<Character>;
 public static class Character.Subset;
 public static final class Character.UnicodeBlock extends Character.Subset;
 public final class Class<T> implements Serializable, java.lang.reflect.
 GenericDeclaration, java.lang.reflect.Type, java.lang.reflect.AnnotatedElement;
 public abstract class ClassLoader;
 public final class Compiler;
 public abstract class Enum<E extends Enum<E>> implements Comparable<E>,
 Serializable;
 public final class Math;
 public abstract class Number implements Serializable;
 public final class Byte extends Number implements Comparable<Byte>;
 public final class Double extends Number implements Comparable<Double>;
 public final class Float extends Number implements Comparable<Float>;
 public final class Integer extends Number implements Comparable<Integer>;
 public final class Long extends Number implements Comparable<Long>;
 public final class Short extends Number implements Comparable<Short>;
 public class Package implements java.lang.reflect.AnnotatedElement;
 public abstract class Process;
 public final class ProcessBuilder;
 public class Runtime;
 public class SecurityManager;
 public final class StackTraceElement implements Serializable;
 public final class StrictMath;
 public final class String implements Serializable, Comparable<String>, CharSequence;
 public final class System;
 public class Thread implements Runnable;
 public class ThreadGroup implements Thread.UncaughtExceptionHandler;
 public class ThreadLocal<T>;
 public class InheritableThreadLocal<T> extends ThreadLocal<T>;
 public class Throwable implements Serializable;
 public final class Void;
public final class RuntimePermission extends java.security.BasicPermission;

Exceptions
public class Exception extends Throwable;
 public class ClassNotFoundException extends Exception;
 public class CloneNotSupportedException extends Exception;
 public class IllegalAccessException extends Exception;
 public class InstantiationException extends Exception;
 public class InterruptedException extends Exception;
 public class NoSuchFieldException extends Exception;
 public class NoSuchMethodException extends Exception;
 public class RuntimeException extends Exception;
 public class ArithmeticException extends RuntimeException;
 public class ArrayStoreException extends RuntimeException;
 public class ClassCastException extends RuntimeException;
 public class EnumConstantNotPresentException extends RuntimeException;
 public class IllegalArgumentException extends RuntimeException;
 public class IllegalThreadStateException extends IllegalArgumentException;
 public class NumberFormatException extends IllegalArgumentException;
 public class IllegalMonitorStateException extends RuntimeException;
 public class IllegalStateException extends RuntimeException;
 public class IndexOutOfBoundsException extends RuntimeException;
 public class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException;
 public class StringIndexOutOfBoundsException extends IndexOutOfBoundsException;
 public class NegativeArraySizeException extends RuntimeException;
 public class NullPointerException extends RuntimeException;
 public class SecurityException extends RuntimeException;
 public class TypeNotPresentException extends RuntimeException;
 public class UnsupportedOperationException extends RuntimeException;

Errors
public class Error extends Throwable;
 public class AssertionError extends Error;
 public class LinkageError extends Error;
 public class ClassCircularityError extends LinkageError;
 public class ClassFormatError extends LinkageError;
 public class UnsupportedClassVersionError extends ClassFormatError;
 public class ExceptionInInitializerError extends LinkageError;
 public class IncompatibleClassChangeError extends LinkageError;
 public class AbstractMethodError extends IncompatibleClassChangeError;
 public class IllegalAccessError extends IncompatibleClassChangeError;
 public class InstantiationError extends IncompatibleClassChangeError;
 public class NoSuchFieldError extends IncompatibleClassChangeError;
 public class NoSuchMethodError extends IncompatibleClassChangeError;
 public class NoClassDefFoundError extends LinkageError;
 public class UnsatisfiedLinkError extends LinkageError;
 public class VerifyError extends LinkageError;
 public class ThreadDeath extends Error;
 public abstract class VirtualMachineError extends Error;
 public class InternalError extends VirtualMachineError;
 public class OutOfMemoryError extends VirtualMachineError;
 public class StackOverflowError extends VirtualMachineError;
 public class UnknownError extends VirtualMachineError;

Name
AbstractMethodError

Synopsis

 Signals
an attempt to invoke an abstract method.
[image: java.lang.AbstractMethodError]

Figure 10-1. java.lang.AbstractMethodError

public class AbstractMethodError extends IncompatibleClassChangeError {
// Public Constructors
 public AbstractMethodError();
 public AbstractMethodError(String s);
}

Name
AbstractStringBuilder

Synopsis

 This package-private class is the abstract
superclass of StringBuffer and
StringBuilder. Because this class is not public,
you may not use it directly. It is included in this quick-reference
to fully document the shared API of its two subclasses.
Note that many of the methods of this class are declared to return an
AbstractStringBuilder object.
StringBuilder and StringBuffer(
) override those methods and narrow the return type to
StringBuilder or StringBuffer.
(This is an example of
"covariant returns,”
which are allowed in Java 5.0 and later.)
[image: java.lang.AbstractStringBuilder]

Figure 10-2. java.lang.AbstractStringBuilder

abstract class AbstractStringBuilder implements Appendable, CharSequence {
// No Constructor
 // Public Instance Methods
 public AbstractStringBuilder append(char[] str);
 public AbstractStringBuilder append(boolean b);
 public AbstractStringBuilder append(char c);
 public AbstractStringBuilder append(Object obj);
 public AbstractStringBuilder append(CharSequence s);
 public AbstractStringBuilder append(StringBuffer sb);
 public AbstractStringBuilder append(String str);
 public AbstractStringBuilder append(int i);
 public AbstractStringBuilder append(double d);
 public AbstractStringBuilder append(float f);
 public AbstractStringBuilder append(long l);
 public AbstractStringBuilder append(char[] str, int offset, int len);
 public AbstractStringBuilder append(CharSequence s, int start, int end);
 public AbstractStringBuilder appendCodePoint(int codePoint);
 public int capacity();
 public int codePointAt(int index);
 public int codePointBefore(int index);
 public int codePointCount(int beginIndex, int endIndex);
 public AbstractStringBuilder delete(int start, int end);
 public AbstractStringBuilder deleteCharAt(int index);
 public void ensureCapacity(int minimumCapacity);
 public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
 public int indexOf(String str);
 public int indexOf(String str, int fromIndex);
 public AbstractStringBuilder insert(int offset, char c);
 public AbstractStringBuilder insert(int offset, boolean b);
 public AbstractStringBuilder insert(int dstOffset, CharSequence s);
 public AbstractStringBuilder insert(int offset, int i);
 public AbstractStringBuilder insert(int offset, double d);
 public AbstractStringBuilder insert(int offset, float f);
 public AbstractStringBuilder insert(int offset, long l);
 public AbstractStringBuilder insert(int offset, char[] str);
 public AbstractStringBuilder insert(int offset, Object obj);
 public AbstractStringBuilder insert(int offset, String str);
 public AbstractStringBuilder insert(int index, char[] str, int offset, int len);
 public AbstractStringBuilder insert(int dstOffset, CharSequence s, int start, int end);
 public int lastIndexOf(String str);
 public int lastIndexOf(String str, int fromIndex);
 public int offsetByCodePoints(int index, int codePointOffset);
 public AbstractStringBuilder replace(int start, int end, String str);
 public AbstractStringBuilder reverse();
 public void setCharAt(int index, char ch);
 public void setLength(int newLength);
 public String substring(int start);
 public String substring(int start, int end);
 public void trimToSize();
// Methods Implementing CharSequence
 public char charAt(int index);
 public int length();
 public CharSequence subSequence(int start, int end);
 public abstract String toString();
}

Subclasses

 StringBuffer, StringBuilder

Returned By
Too many methods to list.

Name
Appendable

Synopsis

 Objects that implement this
interface can have characters or character sequences appended to
them. Appendable was added in Java 5.0 as a simple
unifying API for StringBuffer and
StringBuilder,
java.nio.CharBuffer, and character output stream
subclasses of java.io.Writer. The
java.util.Formatter class can send formatted
output to any Appendable object. See also
Readable.
public interface Appendable {
// Public Instance Methods
 Appendable append(char c) throws java.io.IOException;
 Appendable append(CharSequence csq) throws java.io.IOException;
 Appendable append(CharSequence csq, int start, int end) throws java.io.IOException;
}

Implementations

 java.io.PrintStream,
java.io.Writer,
java.nio.CharBuffer

Passed To

 java.util.Formatter.Formatter()

Returned By
Too many methods to list.

Name
ArithmeticException

Synopsis

 A
RuntimeException that signals an exceptional
arithmetic condition, such as integer division by zero.
[image: java.lang.ArithmeticException]

Figure 10-3. java.lang.ArithmeticException

public class ArithmeticException extends RuntimeException {
// Public Constructors
 public ArithmeticException();
 public ArithmeticException(String s);
}

Name
ArrayIndexOutOfBoundsException

Synopsis

 Signals
that an array index less than zero or greater than or equal to the
array size has been used.
[image: java.lang.ArrayIndexOutOfBoundsException]

Figure 10-4. java.lang.ArrayIndexOutOfBoundsException

public class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException {
// Public Constructors
 public ArrayIndexOutOfBoundsException();
 public ArrayIndexOutOfBoundsException(String s);
 public ArrayIndexOutOfBoundsException(int index);
}

Thrown By
Too many methods to list.

Name
ArrayStoreException

Synopsis

 Signals
an attempt to store the wrong type of object into an array.
[image: java.lang.ArrayStoreException]

Figure 10-5. java.lang.ArrayStoreException

public class ArrayStoreException extends RuntimeException {
// Public Constructors
 public ArrayStoreException();
 public ArrayStoreException(String s);
}

Name
AssertionError

Synopsis

 An instance of this class is thrown if
when an assertion fails. This happens when assertions are enabled,
and the expression following an assert statement
does not evaluate to true. If an assertion fails,
and the assert statement has a second expression
separated from the first by a colon, then the second expression is
evaluated and the resulting value is passed to the
AssertionError() constructor, where it is
converted to a string and used as the error message.
[image: java.lang.AssertionError]

Figure 10-6. java.lang.AssertionError

public class AssertionError extends Error {
// Public Constructors
 public AssertionError();
 public AssertionError(long detailMessage);
 public AssertionError(float detailMessage);
 public AssertionError(double detailMessage);
 public AssertionError(int detailMessage);
 public AssertionError(Object detailMessage);
 public AssertionError(boolean detailMessage);
 public AssertionError(char detailMessage);
}

Name
Boolean

Synopsis

 This class
provides an immutable object wrapper around the
boolean primitive type. Note that the
TRUE and FALSE constants are
Boolean objects; they are not the same as the
true and false
 boolean values. As of Java 1.1, this class defines
a Class constant that represents the
boolean type. booleanValue()
returns the boolean value of a
Boolean object. The class method
getBoolean() retrieves the
boolean value of a named property from the system
property list. The static method valueOf() parses
a string and returns the Boolean object it
represents. Java 1.4 added two static methods that convert primitive
boolean values to Boolean and
String objects. In Java 5.0, the
parseBoolean() method behaves like
valueOf() but returns a primitive
boolean value instead of a
Boolean object.
Prior to Java 5.0, this class does not implement the
Comparable interface.
[image: java.lang.Boolean]

Figure 10-7. java.lang.Boolean

public final class Boolean implements Serializable, Comparable<Boolean> {
// Public Constructors
 public Boolean(String s);
 public Boolean(boolean value);
// Public Constants
 public static final Boolean FALSE;
 public static final Boolean TRUE;
1.1 public static final Class<Boolean> TYPE;
// Public Class Methods
 public static boolean getBoolean(String name);
5.0 public static boolean parseBoolean(String s);
1.4 public static String toString(boolean b);
1.4 public static Boolean valueOf(boolean b);
 public static Boolean valueOf(String s);
// Public Instance Methods
 public boolean booleanValue();
// Methods Implementing Comparable
 5.0 public int compareTo(Boolean b);
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Name
Byte

Synopsis

 This class provides an immutable object
wrapper around the byte primitive type. It defines
useful constants for the minimum and maximum values that can be
stored by the byte type and a
Class object constant that represents the
byte type. It also provides various methods for
converting Byte values to and from strings and
other numeric types.

 Most of the
static methods of this class can convert a String
to a Byte object or a byte
value: the four parseByte() and valueOf(
) methods parse a number from the specified string using an
optionally specified radix and return it in one of these two forms.
The decode() method parses a byte specified in
base 10, base 8, or base 16 and returns it as a
Byte. If the string begins with
“0x” or
“#”, it is interpreted as a
hexadecimal number. If it begins with
“0”, it is interpreted as an octal
number. Otherwise, it is interpreted as a decimal number.

 Note that this class has two
toString() methods. One is static and converts a
byte primitive value to a string; the other is the
usual toString() method that converts a
Byte object to a string. Most of the remaining
methods convert a Byte to various primitive
numeric types.
[image: java.lang.Byte]

Figure 10-8. java.lang.Byte

public final class Byte extends Number implements Comparable<Byte> {
// Public Constructors
 public Byte(byte value);
 public Byte(String s) throws NumberFormatException;
// Public Constants
 public static final byte MAX_VALUE; =127
 public static final byte MIN_VALUE; =-128
 5.0 public static final int SIZE; =8
 public static final Class<Byte> TYPE;
// Public Class Methods
 public static Byte decode(String nm) throws NumberFormatException;
 public static byte parseByte(String s) throws NumberFormatException;
 public static byte parseByte(String s, int radix) throws NumberFormatException;
 public static String toString(byte b);
 public static Byte valueOf(String s) throws NumberFormatException;
5.0 public static Byte valueOf(byte b);
 public static Byte valueOf(String s, int radix) throws NumberFormatException;
// Methods Implementing Comparable
 1.2 public int compareTo(Byte anotherByte);
// Public Methods Overriding Number
 public byte byteValue();
 public double doubleValue();
 public float floatValue(); yu
 public int intValue();
 public long longValue();
 public short shortValue();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Name
Character

Synopsis

 This class provides an immutable
object wrapper around the primitive char data
type. charValue() returns the
char value of a Character
object. The compareTo(
)
 method
implements the Comparable interface so that
Character objects can be ordered and sorted. The
static methods are the most interesting thing about this class,
however: they categorize char values based on the
categories defined by the Unicode standard. (Some
of the methods are only useful if you have a detailed understanding
of that standard.) Static methods beginning with
“is” test
whether
a character is in a
given category. isDigit(
)

 , isLetter(),
isWhitespace(), isUpperCase()
and isLowerCase() are some of the most useful.
Note that these methods work for any Unicode character, not just with
the familiar Latin letters and Arabic numbers of the ASCII character
set. getType()
 returns
a constant that identifies the category of a character.
getDirectionality(
)

 returns a separate
DIRECTIONALITY_ constant that specifies the
“directionality category” of a
character.
In addition to testing the category of a character, this class also
defines static methods for converting characters.
toUpperCase()

 returns the uppercase equivalent of the
specified character (or returns the character itself if the character
is uppercase or has no uppercase equivalent). toLowerCase(
) converts instead to lowercase.
 digit()
returns the integer equivalent of a given character in a given radix
(or base; for example, use 16 for hexadecimal). It works with any
Unicode digit character, and also (for sufficiently large radix
values) the ASCII letters a-z and A-Z. forDigit(
)
 returns the ASCII character that
corresponds to the specified value (0-35) for the specified radix.
getNumericValue(
)
 is similar, but also works with any
Unicode character including those, such as Roman numerals, that
represent numbers but are not decimal digits. Finally, the static
toString()

 method returns a String
of length 1 that contains the specified char
value.

 Java 5.0
 introduces many new methods to this class
to accommodate
Unicode supplementary characters that use
21 bits and do not fit in a single
char
 value. The two representations for
these supplementary characters are as an int
codepoint in the range 0 through 0x10ffff, or as a sequence of two
char values known as a
"surrogate pair.”
The first char of such a pair should fall in the
“high surrogate” range and the
second char should fall in the
“low surrogate” range.
toChars()
 converts an int
codepoint into one or two char values.
toCodePoint()

 , codePointAt(),
and codePointBefore() convert one or two
char values into the corresponding
int value. codePointCount(
)
 returns
the number of characters in a char array or
CharSequence, counting surrogate pairs as a single
supplementary character. offsetByCodePoints(
)
 tells
you how many char indexes to advance in a run of
text if you want to skip over the specified number of code points.
Finally, the various character type testing and case conversion
methods such as isWhitespace() and
toUpperCase() are available in new versions that
take an int codepoint argument instead of a single
char argument.
[image: java.lang.Character]

Figure 10-9. java.lang.Character

public final class Character implements Serializable, Comparable<Character> {
// Public Constructors
 public Character(char value);
// Public Constants
 1.1 public static final byte COMBINING_SPACING_MARK; =8
 1.1 public static final byte CONNECTOR_PUNCTUATION; =23
 1.1 public static final byte CONTROL; =15
 1.1 public static final byte CURRENCY_SYMBOL; =26
 1.1 public static final byte DASH_PUNCTUATION; =20
 1.1 public static final byte DECIMAL_DIGIT_NUMBER; =9
 1.4 public static final byte DIRECTIONALITY_ARABIC_NUMBER; =6
 1.4 public static final byte DIRECTIONALITY_BOUNDARY_NEUTRAL; =9
 1.4 public static final byte DIRECTIONALITY_COMMON_NUMBER_SEPARATOR; =7
 1.4 public static final byte DIRECTIONALITY_EUROPEAN_NUMBER; =3
 1.4 public static final byte DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR; =4
 1.4 public static final byte DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR; =5
 1.4 public static final byte DIRECTIONALITY_LEFT_TO_RIGHT; =0
 1.4 public static final byte DIRECTIONALITY_LEFT_TO_RIGHT_EMBEDDING; =14
 1.4 public static final byte DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE; =15
 1.4 public static final byte DIRECTIONALITY_NONSPACING_MARK; =8
 1.4 public static final byte DIRECTIONALITY_OTHER_NEUTRALS; =13
 1.4 public static final byte DIRECTIONALITY_PARAGRAPH_SEPARATOR; =10
 1.4 public static final byte DIRECTIONALITY_POP_DIRECTIONAL_FORMAT; =18
 1.4 public static final byte DIRECTIONALITY_RIGHT_TO_LEFT; =1
 1.4 public static final byte DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC; =2
 1.4 public static final byte DIRECTIONALITY_RIGHT_TO_LEFT_EMBEDDING; =16
 1.4 public static final byte DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE; =17
 1.4 public static final byte DIRECTIONALITY_SEGMENT_SEPARATOR; =11
 1.4 public static final byte DIRECTIONALITY_UNDEFINED; =-1
 1.4 public static final byte DIRECTIONALITY_WHITESPACE; =12
 1.1 public static final byte ENCLOSING_MARK; =7
 1.1 public static final byte END_PUNCTUATION; =22
 1.4 public static final byte FINAL_QUOTE_PUNCTUATION; =30
 1.1 public static final byte FORMAT; =16
 1.4 public static final byte INITIAL_QUOTE_PUNCTUATION; =29
 1.1 public static final byte LETTER_NUMBER; =10
 1.1 public static final byte LINE_SEPARATOR; =13
 1.1 public static final byte LOWERCASE_LETTER; =2
 1.1 public static final byte MATH_SYMBOL; =25
 5.0 public static final int MAX_CODE_POINT; =1114111
 5.0 public static final char MAX_HIGH_SURROGATE; = \uDBFF
5.0 public static final char MAX_LOW_SURROGATE; = \uDFFF
 public static final int MAX_RADIX; =36
 5.0 public static final char MAX_SURROGATE; = \uDFFF
 public static final char MAX_VALUE; = \uFFFF
5.0 public static final int MIN_CODE_POINT; =0
 5.0 public static final char MIN_HIGH_SURROGATE; = \uD800
5.0 public static final char MIN_LOW_SURROGATE; = \uDC00
 public static final int MIN_RADIX; =2
 5.0 public static final int MIN_SUPPLEMENTARY_CODE_POINT; =65536
 5.0 public static final char MIN_SURROGATE; = \uD800
 public static final char MIN_VALUE; = \0
1.1 public static final byte MODIFIER_LETTER; =4
 1.1 public static final byte MODIFIER_SYMBOL; =27
 1.1 public static final byte NON_SPACING_MARK; =6
 1.1 public static final byte OTHER_LETTER; =5
 1.1 public static final byte OTHER_NUMBER; =11
 1.1 public static final byte OTHER_PUNCTUATION; =24
 1.1 public static final byte OTHER_SYMBOL; =28
 1.1 public static final byte PARAGRAPH_SEPARATOR; =14
 1.1 public static final byte PRIVATE_USE; =18
 5.0 public static final int SIZE; =16
 1.1 public static final byte SPACE_SEPARATOR; =12
 1.1 public static final byte START_PUNCTUATION; =21
 1.1 public static final byte SURROGATE; =19
 1.1 public static final byte TITLECASE_LETTER; =3
 1.1 public static final Class<Character> TYPE;
1.1 public static final byte UNASSIGNED; =0
 1.1 public static final byte UPPERCASE_LETTER; =1
 // Nested Types
 1.2 public static class Subset;
1.2 public static final class UnicodeBlock extends Character.Subset;
// Public Class Methods
 5.0 public static int charCount(int codePoint);
5.0 public static int codePointAt(char[] a, int index);
5.0 public static int codePointAt(CharSequence seq, int index);
5.0 public static int codePointAt(char[] a, int index, int limit);
5.0 public static int codePointBefore(CharSequence seq, int index);
5.0 public static int codePointBefore(char[] a, int index);
5.0 public static int codePointBefore(char[] a, int index, int start);
5.0 public static int codePointCount(char[] a, int offset, int count);
5.0 public static int codePointCount(CharSequence seq, int beginIndex, int endIndex);
5.0 public static int digit(int codePoint, int radix);
 public static int digit(char ch, int radix);
 public static char forDigit(int digit, int radix);
1.4 public static byte getDirectionality(char ch);
5.0 public static byte getDirectionality(int codePoint);
1.1 public static int getNumericValue(char ch);
5.0 public static int getNumericValue(int codePoint);
1.1 public static int getType(char ch);
5.0 public static int getType(int codePoint);
5.0 public static boolean isDefined(int codePoint);
 public static boolean isDefined(char ch);
5.0 public static boolean isDigit(int codePoint);
 public static boolean isDigit(char ch);
5.0 public static boolean isHighSurrogate(char ch);
5.0 public static boolean isIdentifierIgnorable(int codePoint);
1.1 public static boolean isIdentifierIgnorable(char ch);
1.1 public static boolean isISOControl(char ch);
5.0 public static boolean isISOControl(int codePoint);
1.1 public static boolean isJavaIdentifierPart(char ch);
5.0 public static boolean isJavaIdentifierPart(int codePoint);
1.1 public static boolean isJavaIdentifierStart(char ch);
5.0 public static boolean isJavaIdentifierStart(int codePoint);
 public static boolean isLetter(char ch);
5.0 public static boolean isLetter(int codePoint);
 public static boolean isLetterOrDigit(char ch);
5.0 public static boolean isLetterOrDigit(int codePoint);
5.0 public static boolean isLowerCase(int codePoint);
 public static boolean isLowerCase(char ch);
5.0 public static boolean isLowSurrogate(char ch);
5.0 public static boolean isMirrored(int codePoint);
1.4 public static boolean isMirrored(char ch);
5.0 public static boolean isSpaceChar(int codePoint);
1.1 public static boolean isSpaceChar(char ch);
5.0 public static boolean isSupplementaryCodePoint(int codePoint);
5.0 public static boolean isSurrogatePair(char high, char low);
 public static boolean isTitleCase(char ch);
5.0 public static boolean isTitleCase(int codePoint);
1.1 public static boolean isUnicodeIdentifierPart(char ch);
5.0 public static boolean isUnicodeIdentifierPart(int codePoint);
5.0 public static boolean isUnicodeIdentifierStart(int codePoint);
1.1 public static boolean isUnicodeIdentifierStart(char ch);
 public static boolean isUpperCase(char ch);
5.0 public static boolean isUpperCase(int codePoint);
5.0 public static boolean isValidCodePoint(int codePoint);
5.0 public static boolean isWhitespace(int codePoint);
1.1 public static boolean isWhitespace(char ch);
5.0 public static int offsetByCodePoints(CharSequence seq, int index,
 int codePointOffset);
5.0 public static int offsetByCodePoints(char[] a, int start, int count,
 int index, int codePointOffset);
5.0 public static char reverseBytes(char ch);
5.0 public static char[] toChars(int codePoint);
5.0 public static int toChars(int codePoint, char[] dst, int dstIndex);
5.0 public static int toCodePoint(char high, char low);
 public static char toLowerCase(char ch);
5.0 public static int toLowerCase(int codePoint);
1.4 public static String toString(char c);
 public static char toTitleCase(char ch);
5.0 public static int toTitleCase(int codePoint);
 public static char toUpperCase(char ch);
5.0 public static int toUpperCase(int codePoint);
5.0 public static Character valueOf(char c);
// Public Instance Methods
 public char charValue();
// Methods Implementing Comparable
 1.2 public int compareTo(Character anotherCharacter);
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
// Deprecated Public Methods
 # public static boolean isJavaLetter(char ch);
public static boolean isJavaLetterOrDigit(char ch);
public static boolean isSpace(char ch);
}

Name
Character.Subset

Synopsis

 This class
represents a named subset of the Unicode character set. The
toString() method returns the name of the subset.
This is a base class intended for further subclassing. Note, in
particular, that it does not provide a way to list the members of the
subset, nor a way to test for membership in the subset. See
Character.UnicodeBlock.
public static class Character.Subset {
// Protected Constructors
 protected Subset(String name);
// Public Methods Overriding Object
 public final boolean equals(Object obj);
 public final int hashCode();
 public final String toString();
}

Subclasses

 Character.UnicodeBlock

Name
Character.UnicodeBlock

Synopsis

 This
subclass of Character.Subset defines a number of
constants that represent named subsets of the Unicode character set.
The subsets and their names are the character blocks defined by the
Unicode specification (see
http://www.unicode.org/). Java 1.4 and
5.0 both update this class to a new
version of the Unicode standard and define a number of new block
constants. The static method of(
)
 takes a character or
int codepoint and returns the
Character.UnicodeBlock to which it belongs, or
null if it is not part of any defined block. When
presented with an unknown Unicode character, this method provides a
useful way to determine what alphabet it belongs to. In Java 5.0, the
forName()

factory method allows lookup of a UnicodeBlock by
name.
public static final class Character.UnicodeBlock extends Character.Subset {
// No Constructor
 // Public Constants
 5.0 public static final Character.UnicodeBlock AEGEAN_NUMBERS;
 public static final Character.UnicodeBlock ALPHABETIC_PRESENTATION_FORMS;
 public static final Character.UnicodeBlock ARABIC;
 public static final Character.UnicodeBlock ARABIC_PRESENTATION_FORMS_A;
 public static final Character.UnicodeBlock ARABIC_PRESENTATION_FORMS_B;
 public static final Character.UnicodeBlock ARMENIAN;
 public static final Character.UnicodeBlock ARROWS;
 public static final Character.UnicodeBlock BASIC_LATIN;
 public static final Character.UnicodeBlock BENGALI;
 public static final Character.UnicodeBlock BLOCK_ELEMENTS;
 public static final Character.UnicodeBlock BOPOMOFO;
1.4 public static final Character.UnicodeBlock BOPOMOFO_EXTENDED;
 public static final Character.UnicodeBlock BOX_DRAWING;
1.4 public static final Character.UnicodeBlock BRAILLE_PATTERNS;
5.0 public static final Character.UnicodeBlock BUHID;
5.0 public static final Character.UnicodeBlock BYZANTINE_MUSICAL_SYMBOLS;
1.4 public static final Character.UnicodeBlock CHEROKEE;
 public static final Character.UnicodeBlock CJK_COMPATIBILITY;
 public static final Character.UnicodeBlock CJK_COMPATIBILITY_FORMS;
 public static final Character.UnicodeBlock CJK_COMPATIBILITY_IDEOGRAPHS;
5.0 public static final Character.UnicodeBlock CJK_COMPATIBILITY_IDEOGRAPHS_SUPPLEMENT;
1.4 public static final Character.UnicodeBlock CJK_RADICALS_SUPPLEMENT;
 public static final Character.UnicodeBlock CJK_SYMBOLS_AND_PUNCTUATION;
 public static final Character.UnicodeBlock CJK_UNIFIED_IDEOGRAPHS;
1.4 public static final Character.UnicodeBlock CJK_UNIFIED_IDEOGRAPHS_EXTENSION_A;
5.0 public static final Character.UnicodeBlock CJK_UNIFIED_IDEOGRAPHS_EXTENSION_B;
 public static final Character.UnicodeBlock COMBINING_DIACRITICAL_MARKS;
 public static final Character.UnicodeBlock COMBINING_HALF_MARKS;
 public static final Character.UnicodeBlock COMBINING_MARKS_FOR_SYMBOLS;
 public static final Character.UnicodeBlock CONTROL_PICTURES;
 public static final Character.UnicodeBlock CURRENCY_SYMBOLS;
5.0 public static final Character.UnicodeBlock CYPRIOT_SYLLABARY;
 public static final Character.UnicodeBlock CYRILLIC;
5.0 public static final Character.UnicodeBlock CYRILLIC_SUPPLEMENTARY;
5.0 public static final Character.UnicodeBlock DESERET;
 public static final Character.UnicodeBlock DEVANAGARI;
 public static final Character.UnicodeBlock DINGBATS;
 public static final Character.UnicodeBlock ENCLOSED_ALPHANUMERICS;
 public static final Character.UnicodeBlock ENCLOSED_CJK_LETTERS_AND_MONTHS;
1.4 public static final Character.UnicodeBlock ETHIOPIC;
 public static final Character.UnicodeBlock GENERAL_PUNCTUATION;
 public static final Character.UnicodeBlock GEOMETRIC_SHAPES;
 public static final Character.UnicodeBlock GEORGIAN;
5.0 public static final Character.UnicodeBlock GOTHIC;
 public static final Character.UnicodeBlock GREEK;
 public static final Character.UnicodeBlock GREEK_EXTENDED;
 public static final Character.UnicodeBlock GUJARATI;
 public static final Character.UnicodeBlock GURMUKHI;
 public static final Character.UnicodeBlock HALFWIDTH_AND_FULLWIDTH_FORMS;
 public static final Character.UnicodeBlock HANGUL_COMPATIBILITY_JAMO;
 public static final Character.UnicodeBlock HANGUL_JAMO;
 public static final Character.UnicodeBlock HANGUL_SYLLABLES;
5.0 public static final Character.UnicodeBlock HANUNOO;
 public static final Character.UnicodeBlock HEBREW;
5.0 public static final Character.UnicodeBlock HIGH_PRIVATE_USE_SURROGATES;
5.0 public static final Character.UnicodeBlock HIGH_SURROGATES;
 public static final Character.UnicodeBlock HIRAGANA;
1.4 public static final Character.UnicodeBlock IDEOGRAPHIC_DESCRIPTION_CHARACTERS;
 public static final Character.UnicodeBlock IPA_EXTENSIONS;
 public static final Character.UnicodeBlock KANBUN;
1.4 public static final Character.UnicodeBlock KANGXI_RADICALS;
 public static final Character.UnicodeBlock KANNADA;
 public static final Character.UnicodeBlock KATAKANA;
5.0 public static final Character.UnicodeBlock KATAKANA_PHONETIC_EXTENSIONS;
1.4 public static final Character.UnicodeBlock KHMER;
5.0 public static final Character.UnicodeBlock KHMER_SYMBOLS;
 public static final Character.UnicodeBlock LAO;
 public static final Character.UnicodeBlock LATIN_1_SUPPLEMENT;
 public static final Character.UnicodeBlock LATIN_EXTENDED_A;
 public static final Character.UnicodeBlock LATIN_EXTENDED_ADDITIONAL;
 public static final Character.UnicodeBlock LATIN_EXTENDED_B;
 public static final Character.UnicodeBlock LETTERLIKE_SYMBOLS;
5.0 public static final Character.UnicodeBlock LIMBU;
5.0 public static final Character.UnicodeBlock LINEAR_B_IDEOGRAMS;
5.0 public static final Character.UnicodeBlock LINEAR_B_SYLLABARY;
5.0 public static final Character.UnicodeBlock LOW_SURROGATES;
 public static final Character.UnicodeBlock MALAYALAM;
5.0 public static final Character.UnicodeBlock MATHEMATICAL_ALPHANUMERIC_SYMBOLS;
 public static final Character.UnicodeBlock MATHEMATICAL_OPERATORS;
5.0 public static final Character.UnicodeBlock MISCELLANEOUS_MATHEMATICAL_SYMBOLS_A;
5.0 public static final Character.UnicodeBlock MISCELLANEOUS_MATHEMATICAL_SYMBOLS_B;
 public static final Character.UnicodeBlock MISCELLANEOUS_SYMBOLS;
5.0 public static final Character.UnicodeBlock MISCELLANEOUS_SYMBOLS_AND_ARROWS;
 public static final Character.UnicodeBlock MISCELLANEOUS_TECHNICAL;
1.4 public static final Character.UnicodeBlock MONGOLIAN;
5.0 public static final Character.UnicodeBlock MUSICAL_SYMBOLS;
1.4 public static final Character.UnicodeBlock MYANMAR;
 public static final Character.UnicodeBlock NUMBER_FORMS;
1.4 public static final Character.UnicodeBlock OGHAM;
5.0 public static final Character.UnicodeBlock OLD_ITALIC;
 public static final Character.UnicodeBlock OPTICAL_CHARACTER_RECOGNITION;
 public static final Character.UnicodeBlock ORIYA;
5.0 public static final Character.UnicodeBlock OSMANYA;
5.0 public static final Character.UnicodeBlock PHONETIC_EXTENSIONS;
 public static final Character.UnicodeBlock PRIVATE_USE_AREA;
1.4 public static final Character.UnicodeBlock RUNIC;
5.0 public static final Character.UnicodeBlock SHAVIAN;
1.4 public static final Character.UnicodeBlock SINHALA;
 public static final Character.UnicodeBlock SMALL_FORM_VARIANTS;
 public static final Character.UnicodeBlock SPACING_MODIFIER_LETTERS;
 public static final Character.UnicodeBlock SPECIALS;
 public static final Character.UnicodeBlock SUPERSCRIPTS_AND_SUBSCRIPTS;
5.0 public static final Character.UnicodeBlock SUPPLEMENTAL_ARROWS_A;
5.0 public static final Character.UnicodeBlock SUPPLEMENTAL_ARROWS_B;
5.0 public static final Character.UnicodeBlock SUPPLEMENTAL_MATHEMATICAL_OPERATORS;
5.0 public static final Character.UnicodeBlock SUPPLEMENTARY_PRIVATE_USE_AREA_A;
5.0 public static final Character.UnicodeBlock SUPPLEMENTARY_PRIVATE_USE_AREA_B;
1.4 public static final Character.UnicodeBlock SYRIAC;
5.0 public static final Character.UnicodeBlock TAGALOG;
5.0 public static final Character.UnicodeBlock TAGBANWA;
5.0 public static final Character.UnicodeBlock TAGS;
5.0 public static final Character.UnicodeBlock TAI_LE;
5.0 public static final Character.UnicodeBlock TAI_XUAN_JING_SYMBOLS;
 public static final Character.UnicodeBlock TAMIL;
 public static final Character.UnicodeBlock TELUGU;
1.4 public static final Character.UnicodeBlock THAANA;
 public static final Character.UnicodeBlock THAI;
 public static final Character.UnicodeBlock TIBETAN;
5.0 public static final Character.UnicodeBlock UGARITIC;
1.4 public static final Character.UnicodeBlock UNIFIED_CANADIAN_ABORIGINAL_SYLLABICS;
5.0 public static final Character.UnicodeBlock VARIATION_SELECTORS;
5.0 public static final Character.UnicodeBlock VARIATION_SELECTORS_SUPPLEMENT;
1.4 public static final Character.UnicodeBlock YI_RADICALS;
1.4 public static final Character.UnicodeBlock YI_SYLLABLES;
5.0 public static final Character.UnicodeBlock YIJING_HEXAGRAM_SYMBOLS;
// Public Class Methods
 5.0 public static final Character.UnicodeBlock forName(String blockName);
5.0 public static Character.UnicodeBlock of(int codePoint);
 public static Character.UnicodeBlock of(char c);
// Deprecated Public Fields
 # public static final Character.UnicodeBlock SURROGATES_AREA;
}

Name
CharSequence

Synopsis

 This
interface defines a simple API for read-only access to sequences of
characters. In the core platform it is implemented by the
String, StringBuffer and
java.nio.CharBuffer classes. charAt(
)

returns the character at a specified position in the sequence.
length()

returns the number of characters in the sequence.
subSequence()

returns a CharSequence that consists of the
characters starting at, and including, the specified
start index, and continuing up to, but not
including the specified end index.
Finally, toString()

returns a String version of the sequence.
Note that CharSequence implementations do not
typically have interoperable equals() or
hashCode() methods, and it is not usually
possible to compare two CharSequence objects or
use multiple sequences in a set or hashtable unless they are
instances of the same implementing class.
public interface CharSequence {
// Public Instance Methods
 char charAt(int index);
 int length();
 CharSequence subSequence(int start, int end);
 String toString();
}

Implementations

 String, StringBuffer,
StringBuilder,
java.nio.CharBuffer

Passed To
Too many methods to list.

Returned By

 String.subSequence(),
StringBuffer.subSequence(),
java.nio.CharBuffer.subSequence()

Name
Class<T>

Synopsis

 This class represents a Java type. There
is one Class object for each class that is loaded
into the Java Virtual Machine, and, as of Java 1.1, there are special
Class objects that represent the Java primitive
types. The TYPE constants defined by
Boolean, Integer, and the other
primitive wrapper classes hold these special Class
objects. Array types are also represented by Class
objects in Java 1.1.

 There is no constructor for this class.
You can obtain a Class object by calling the
getClass() method of any instance of the desired
class. In Java 1.1 and later, you can also refer to a
Class object by appending
.class to the name of a class. Finally, and most
interestingly, a class can be dynamically loaded by passing its fully
qualified name (i.e., package name plus class name) to the static
Class.forName()
 method.
This method loads the named class (if it is not already loaded) into
the Java interpreter and returns a Class object
for it. Classes can also be loaded with a
ClassLoader object.

 The newInstance()
method creates an instance of a given class; this allows you to
create instances of dynamically loaded classes for which you cannot
use the new keyword. Note that this method works
only when the target class has a no-argument constructor. See
newInstance() in
java.lang.reflect.Constructor for a more powerful
way to instantiate dynamically loaded classes. In

 Java 5.0, Class is a
generic type and the type variable T
specifies the type that is returned by the newInstance(
) method.

 getName() returns
the name of the class. getSuperclass() returns
its superclass. isInterface() tests whether the
Class object represents an interface, and
getInterfaces() returns an array of the
interfaces that this class implements. In Java 1.2 and later,
getPackage() returns a Package
object that represents the package containing the class.
getProtectionDomain() returns the
java.security.ProtectionDomain to which this class
belongs. The various other get() and is(
) methods return other information about the represented
class; they form part of the Java Reflection API, along with the
classes in java.lang.reflect.

 Java 5.0 adds a number of methods to
support the new language features it defines. isAnnotation(
)

 tests whether a type is an annotation
type. Class implements
java.lang.reflect.AnnotatedElement
 in Java 5.0 and the
getAnnotation()
 and related methods allow the retrieval of
annotations (with runtime retention) on the class. isEnum(
)

 tests whether a
Class object represents an enumerated type and
getEnumConstants(
)

 returns an array of the
constants defined by an enumerated type. getTypeParameters(
) returns the type variables declared by a generic type.
getGenericSuperclass() and
getGenericInterfaces() are the generic variants
of the getSuperclass() and
getInterfaces() methods, returning the generic
type information that appears in the extends and
implements clause of the class declaration. See
java.lang.reflect.Type for more information.
Java 5.0 also adds methods that are useful for
reflection on inner classes.
isMemberClass()

 , isLocalClass(), and
isAnonymousClass() determine whether a
Class represents one of these kinds of nested
types. getEnclosingClass(
)

 , getEnclosingMethod(),
and getEnclosingConstructor() return the type,
method, or constructor that an inner class is nested within. Finally,
getSimpleName()

returns the name of a type as it would appear in Java source code.
This is typically more useful than the Java VM formatted names
returned by getName().
[image: java.lang.Class<T>]

Figure 10-10. java.lang.Class<T>

public final class Class<T>
 implements Serializable, java.lang.reflect.GenericDeclaration,
 java.lang.reflect.Type, java.lang.reflect.AnnotatedElement {
// No Constructor
 // Public Class Methods
 public static Class<?> forName(String className)
 throws ClassNotFoundException;
1.2 public static Class<?> forName(String name, boolean initialize,
 ClassLoader loader) throws ClassNotFoundException;
// Public Instance Methods
 5.0 public <U> Class<? extends U> asSubclass(Class<U> clazz);
5.0 public T cast(Object obj);
1.4 public boolean desiredAssertionStatus();
5.0 public String getCanonicalName();
1.1 public Class[] getClasses();
 public ClassLoader getClassLoader();
1.1 public Class<?> getComponentType(); native
 1.1 public java.lang.reflect.Constructor<T> getConstructor(Class ...
 parameterTypes) throws NoSuchMethodException, SecurityException
1.1 public java.lang.reflect.Constructor[] getConstructors()
 throws SecurityException;
1.1 public Class[] getDeclaredClasses()
 throws SecurityException;
1.1 public java.lang.reflect.Constructor<T> getDeclaredConstructor(Class ...
parameterTypes) throws NoSuchMethodException, SecurityException;
1.1 public java.lang.reflect.Constructor[] getDeclaredConstructors()
 throws SecurityException;
1.1 public java.lang.reflect.Field getDeclaredField(String name)
 throws NoSuchFieldException, SecurityException;
1.1 public java.lang.reflect.Field[] getDeclaredFields()
 throws SecurityException;
1.1 public java.lang.reflect.Method getDeclaredMethod(String name, Class...
parameterTypes) throws NoSuchMethodException, SecurityException;
1.1 public java.lang.reflect.Method[] getDeclaredMethods()
 throws SecurityException;
1.1 public Class<?> getDeclaringClass(); native
 5.0 public Class<?> getEnclosingClass();
5.0 public java.lang.reflect.Constructor<?> getEnclosingConstructor();
5.0 public java.lang.reflect.Method getEnclosingMethod();
5.0 public T[] getEnumConstants();
1.1 public java.lang.reflect.Field getField(String name)
 throws NoSuchFieldException, SecurityException;
1.1 public java.lang.reflect.Field[] getFields() throws SecurityException;
5.0 public java.lang.reflect.Type[] getGenericInterfaces();
5.0 public java.lang.reflect.Type getGenericSuperclass();
 public Class[] getInterfaces(); native
 1.1 public java.lang.reflect.Method getMethod(String name, Class...
parameterTypes) throws NoSuchMethodException, SecurityException;
1.1 public java.lang.reflect.Method[] getMethods() throws SecurityException;
1.1 public int getModifiers(); native
 public String getName();
1.2 public Package getPackage();
1.2 public java.security.ProtectionDomain getProtectionDomain();
1.1 public java.net.URL getResource(String name);
1.1 public java.io.InputStream getResourceAsStream(String name);
1.1 public Object[] getSigners(); native
 5.0 public String getSimpleName();
 public Class<? super T> getSuperclass(); native
 5.0 public boolean isAnnotation();
5.0 public boolean isAnonymousClass();
1.1 public boolean isArray(); native
 1.1 public boolean isAssignableFrom(Class<?> cls); native
 5.0 public boolean isEnum();
1.1 public boolean isInstance(Object obj); native
 public boolean isInterface(); native
 5.0 public boolean isLocalClass();
5.0 public boolean isMemberClass();
1.1 public boolean isPrimitive(); native
 5.0 public boolean isSynthetic();
 public T newInstance()
 throws InstantiationException, IllegalAccessException;
// Methods Implementing AnnotatedElement
 5.0 public <A extends java.lang.annotation.Annotation> A getAnnotation
(Class<A> annotationClass);
5.0 public java.lang.annotation.Annotation[] getAnnotations();
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
5.0 public boolean isAnnotationPresent(Class<? extends java.lang.annotation.
Annotation> annotationClass);
// Methods Implementing GenericDeclaration
 5.0 public java.lang.reflect.TypeVariable<Class<T>>[] getTypeParameters();
// Public Methods Overriding Object
 public String toString();
}

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Type Of

 Boolean.TYPE, Byte.TYPE,
Character.TYPE, Double.TYPE,
Float.TYPE, Integer.TYPE,
Long.TYPE, Short.TYPE,
Void.TYPE

Name
ClassCastException

Synopsis

 Signals
an invalid cast of an object to a type of which it is not an
instance.
[image: java.lang.ClassCastException]

Figure 10-11. java.lang.ClassCastException

public class ClassCastException extends RuntimeException {
// Public Constructors
 public ClassCastException();
 public ClassCastException(String s);
}

Thrown By

 org.xml.sax.helpers.ParserFactory.makeParser()

Name
ClassCircularityError

Synopsis

 Signals that a circular dependency
has been detected while performing initialization for a class.
[image: java.lang.ClassCircularityError]

Figure 10-12. java.lang.ClassCircularityError

public class ClassCircularityError extends LinkageError {
// Public Constructors
 public ClassCircularityError();
 public ClassCircularityError(String s);
}

Name
ClassFormatError

Synopsis

 Signals
an error in the binary format of a class file.
[image: java.lang.ClassFormatError]

Figure 10-13. java.lang.ClassFormatError

public class ClassFormatError extends LinkageError {
// Public Constructors
 public ClassFormatError();
 public ClassFormatError(String s);
}

Subclasses

 UnsupportedClassVersionError,
java.lang.reflect.GenericSignatureFormatError

Thrown By

 ClassLoader.defineClass()

Name
ClassLoader

Synopsis

 This class is the abstract
superclass of objects that know how to load Java classes into a Java
VM. Given a ClassLoader object, you can
dynamically load a class by calling the public loadClass(
) method, specifying the full name of the desired class.
You can obtain a resource associated with a class by calling
getResource(), getResources(
), and getResourceAsStream().
Many applications do not need to use
ClassLoader directly; these applications use the
Class.forName() and Class.getResource(
) methods to dynamically load classes and resources using
the ClassLoader object that loaded the application
itself.

 In order to load classes over the
network or from any source other than the class path, you must use a
custom ClassLoader object that knows how to obtain
data from that source. A java.net.URLClassLoader
is suitable for this purpose for almost all applications. Only rarely
should an application need to define a ClassLoader
subclass of its own. When this is necessary, the subclass should
typically extend java.security.SecureClassLoader
and override the findClass() method. This method
must find the bytes that comprise the named class, then pass them to
the defineClass() method and return the resulting
Class object. In Java 1.2 and later, the
findClass() method must also
define the Package
object associated with the class, if it has not already been defined.
It can use getPackage() and
definePackage() for this purpose. Custom
subclasses of ClassLoader should also override
findResource() and findResources(
) to enable the public getResource()
and getResources() methods.
In Java 1.4 and later you can specify whether the
classes
loaded through a ClassLoader should have
assertions
(assert statements) enabled.
setDefaultAssertionStatus(
)
 enables or disables assertions for all loaded
classes. setPackageAssertionStatus(
)
 and setClassAssertionStatus(
)
 allow you to override the default assertion
status for a named
package or a named class.
Finally, clearAssertionStatus(
)
 sets the default status to
false and discards the assertions status for any
named packages and classes.
public abstract class ClassLoader {
// Protected Constructors
 protected ClassLoader();
1.2 protected ClassLoader(ClassLoader parent);
// Public Class Methods
 1.2 public static ClassLoader getSystemClassLoader();
1.1 public static java.net.URL getSystemResource(String name);
1.1 public static java.io.InputStream getSystemResourceAsStream(String name);
1.2 public static java.util.Enumeration<java.net.URL> getSystemResources(String name)
throws java.io.IOException;
// Public Instance Methods
 1.4 public void clearAssertionStatus(); synchronized
 1.2 public final ClassLoader getParent();
1.1 public java.net.URL getResource(String name);
1.1 public java.io.InputStream getResourceAsStream(String name);
1.2 public java.util.Enumeration<java.net.URL> getResources(String name) throws
java.io.IOException;
1.1 public Class<?> loadClass(String name) throws ClassNotFoundException;
1.4 public void setClassAssertionStatus(String className, boolean enabled); synchronized
 1.4 public void setDefaultAssertionStatus(boolean enabled); synchronized
 1.4 public void setPackageAssertionStatus(String packageName, boolean enabled); synchronized
 // Protected Instance Methods
 5.0 protected final Class<?> defineClass(String name, java.nio.ByteBuffer b,
java.security.ProtectionDomain protectionDomain)
throws ClassFormatError;
1.1 protected final Class<?> defineClass(String name, byte[] b, int off, int len)
throws ClassFormatError;
1.2 protected final Class<?> defineClass(String name, byte[] b, int off, int len,
java.security.ProtectionDomain protectionDomain)
throws ClassFormatError;
1.2 protected Package definePackage(String name, String specTitle, String specVersion,
String specVendor, String implTitle, String implVersion, String implVendor, java.net.URL sealBase)
throws IllegalArgumentException;
1.2 protected Class<?> findClass(String name) throws ClassNotFoundException;
1.2 protected String findLibrary(String libname); constant
 1.1 protected final Class<?> findLoadedClass(String name);
1.2 protected java.net.URL findResource(String name); constant
 1.2 protected java.util.Enumeration<java.net.URL> findResources(String name) throws
java.io.IOException;
 protected final Class<?> findSystemClass(String name) throws ClassNotFoundException;
1.2 protected Package getPackage(String name);
1.2 protected Package[] getPackages();
 protected Class<?> loadClass(String name, boolean resolve)
throws ClassNotFoundException; synchronized
 protected final void resolveClass(Class<?> c);
1.1 protected final void setSigners(Class<?> c, Object[] signers);
// Deprecated Protected Methods
 # protected final Class<?> defineClass(byte[] b, int off, int len) throws ClassFormatError;
}

Subclasses

 java.security.SecureClassLoader

Passed To

 Class.forName(),
Thread.setContextClassLoader(),
java.lang.instrument.ClassFileTransformer.transform(
),
java.lang.instrument.Instrumentation.getInitiatedClasses(
), java.lang.reflect.Proxy.{getProxyClass(
), newProxyInstance()},
java.net.URLClassLoader.{newInstance(),
URLClassLoader()},
java.security.ProtectionDomain.ProtectionDomain(
),
java.security.SecureClassLoader.SecureClassLoader(
), java.util.ResourceBundle.getBundle()

Returned By

 Class.getClassLoader(),
SecurityManager.currentClassLoader(),
Thread.getContextClassLoader(),
java.security.ProtectionDomain.getClassLoader()

Name
ClassNotFoundException

Synopsis

 Signals
that a class to be loaded cannot be found. If an exception of this
type was caused by some underlying exception, you can query that
lower-level exeption with getException() or with
the newer, more general getCause().
[image: java.lang.ClassNotFoundException]

Figure 10-14. java.lang.ClassNotFoundException

public class ClassNotFoundException extends Exception {
// Public Constructors
 public ClassNotFoundException();
 public ClassNotFoundException(String s);
1.2 public ClassNotFoundException(String s, Throwable ex);
// Public Instance Methods
 1.2 public Throwable getException(); default:null
 // Public Methods Overriding Throwable
 1.4 public Throwable getCause(); default:null
}

Thrown By
Too many methods to list.

Name
Cloneable

Synopsis

 This
interface defines no methods or variables, but indicates that the
class that implements it may be cloned (i.e., copied) by calling the
Object method
 clone(). Calling
clone() for an object that does not implement
this interface (and does not override clone()
with its own implementation) causes a
CloneNotSupportedException to be thrown.
public interface Cloneable {
}

Implementations
Too many classes to list.

Name
CloneNotSupportedException

Synopsis

 Signals
that the clone() method has been called for an
object of a class that does not implement the
Cloneable interface.
[image: java.lang.CloneNotSupportedException]

Figure 10-15. java.lang.CloneNotSupportedException

public class CloneNotSupportedException extends Exception {
// Public Constructors
 public CloneNotSupportedException();
 public CloneNotSupportedException(String s);
}

Thrown By

 Enum.clone(), Object.clone(),
java.security.MessageDigest.clone(),
java.security.MessageDigestSpi.clone(),
java.security.Signature.clone(),
java.security.SignatureSpi.clone(),
java.util.AbstractMap.clone(),
java.util.EnumMap.clone(),
java.util.EnumSet.clone(),
javax.crypto.Mac.clone(),
javax.crypto.MacSpi.clone()

Name
Comparable<T>

Synopsis

 This interface defines a single
method, compareTo(), that is responsible for
comparing one object to another and determining their relative order,
according to some natural ordering for that class of objects. Any
general-purpose class that represents a value that can be sorted or
ordered should implement this interface. Any class that does
implement this interface can make use of various powerful methods
such as java.util.Collections.sort() and
java.util.Arrays.binarySearch(). Many of the key
classes in the Java API implement this interface. In Java 5.0, this
interface has been made generic. The type variable
T represents the type of the object that
is passed to the compareTo() method.
The compareTo() method compares this object to
the object passed as an argument. It should assume that the supplied
object is of the appropriate type; if it is not, it should throw a
ClassCastException. If this object is less than
the supplied object or should appear before the supplied object in a
sorted list, compareTo() should return a negative
number. If this object is greater than the supplied object or should
come after the supplied object in a sorted list, compareTo(
) should return a positive integer. If the two objects are
equivalent, and their relative order in a sorted list does not
matter, compareTo() should return 0. If
compareTo() returns 0 for two objects, the
equals() method should typically return
true. If this is not the case, the
Comparable objects are not suitable for use in
java.util.TreeSet and
java.util.TreeMap classes.

See java.util.Comparator for a way to define an
ordering for objects that do not implement
Comparable or to define an ordering other than the
natural ordering defined by a Comparable class.
public interface Comparable<T> {
// Public Instance Methods
 int compareTo(T o);
}

Implementations
Too many classes to list.

Name
Compiler

Synopsis

 The static methods of this class provide an
interface to the just-in-time (JIT)
byte-code-to-native code compiler in
use by the Java interpreter. If no JIT compiler is in use by the VM,
these methods do nothing. compileClass() asks the
JIT compiler to compile the specified class. compileClasses(
) asks the JIT compiler to compile all classes that match
the specified name. These methods return true if
the compilation was successful, or false if it
failed or if there is no JIT compiler on the system. enable(
) and disable() turn just-in-time
compilation on and off. command() asks the JIT
compiler to perform some compiler-specific operation; this is a hook
for vendor extensions. No standard operations have been defined.
public final class Compiler {
// No Constructor
 // Public Class Methods
 public static Object command(Object any); native
 public static boolean compileClass(Class<?> clazz); native
 public static boolean compileClasses(String string); native
 public static void disable(); native
 public static void enable(); native
}

Name
Deprecated

Synopsis
This annotation
type marks the annotated program element as deprecated. The Java
compiler issues a warning if the annotated element is used or
overrided in code that is not itself @Deprecated.
In Java 5.0,
the @Deprecated
 annotation works in the same way as
the @deprecated javadoc tag. In future releases of
Java, the compiler may ignore @deprecated javadoc
tag and rely only on the @Deprecated annotation.
This annotation type has runtime retention and does not have an
@Target meta-annotation, which means it may be
applied to any program element. Deprecated has an
@Documented
 meta-annotation, meaning that the
presence of an @Deprecated annotation should be a
documented part of the annotated element’s API.
[image: java.lang.Deprecated]

Figure 10-16. java.lang.Deprecated

public @interface Deprecated {
}

Name
Double

Synopsis

 This class
provides an immutable object wrapper around the
double primitive data type. doubleValue(
) returns the primitive double value of
a Double object, and there are other methods
(which override Number methods and whose names all
end in “Value”) for returning a the
wrapped double value as a variety of other
primitive types.
This class also provides some useful constants and static methods for
testing double values.
MIN_VALUE and MAX_VALUE are the
smallest (closest to zero) and largest representable
double

 values.
POSITIVE_INFINITY and
NEGATIVE_INFINITY are the
double representations of

 infinity and negative infinity, and
NaN is special double
“not a number” value.
isInfinite() in class and instance method forms
tests whether a double or a
Double has an infinite value. Similarly,
isNaN() tests whether a double
or Double is not-a-number; this is a comparison
that cannot be done directly because the NaN
constant never tests equal to any other value, including itself.
The static parseDouble(
)

 method converts a
String to a double. The static
valueOf()
 converts a
String to a Double, and is
basically equivalent to the Double() constructor
that takes a String argument. The static and
instance toString() methods perform the opposite
conversion: they convert a double or a
Double to a String. See also
java.text.NumberFormat for more flexible number
parsing and formatting.
The compareTo()
 method
makes Double object Comparable
which is useful for ordering and sorting. The static
compare()
 method is
similar (its return values have the same meaning as those of
Comparable.compareTo()) but works on primitive
values rather than objects and is useful when ordering and sorting
arrays of double values.

 doubleToLongBits(),
doubleToRawBits(
)
 and longBitsToDouble()
allow you to manipulate the bit representation (defined by IEEE 754)
of a double directly (which is not something that
most applications ever need to do).
[image: java.lang.Double]

Figure 10-17. java.lang.Double

public final class Double extends Number implements Comparable<Double> {
// Public Constructors
 public Double(String s) throws NumberFormatException;
 public Double(double value);
// Public Constants
 public static final double MAX_VALUE; =1.7976931348623157E308
 public static final double MIN_VALUE; =4.9E-324
 public static final double NaN; =NaN
 public static final double NEGATIVE_INFINITY; =-Infinity
 public static final double POSITIVE_INFINITY; =Infinity
5.0 public static final int SIZE; =64
 1.1 public static final Class<Double> TYPE;
// Public Class Methods
 1.4 public static int compare(double d1, double d2);
 public static long doubleToLongBits(double value); native
 1.3 public static long doubleToRawLongBits(double value); native
 public static boolean isInfinite(double v);
 public static boolean isNaN(double v);
 public static double longBitsToDouble(long bits); native
 1.2 public static double parseDouble(String s) throws NumberFormatException;
5.0 public static String toHexString(double d);
 public static String toString(double d);
 public static Double valueOf(String s) throws NumberFormatException;
5.0 public static Double valueOf(double d);
// Public Instance Methods
 public boolean isInfinite();
 public boolean isNaN();
// Methods Implementing Comparable
 1.2 public int compareTo(Double anotherDouble);
// Public Methods Overriding Number
 1.1 public byte byteValue();
 public double doubleValue();
 public float floatValue();
 public int intValue();
 public long longValue();
1.1 public short shortValue();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Name
Enum<E extends Enum<E>>

Synopsis

 This class is the common superclass of
all enumerated types. It is not itself an enum
type, however, and a Java compiler does not allow other classes to
extend it. Subclasses of Enum may be only created
with enum declarations. Enum is
a generic type, and the type variable
E represents the concrete enumerated type
that actually extends Enum. This type variable
exists so that Enum can implement
Comparable<E>.
Every enumerated constant has a name (the name it was declared with)
and an ordinal value—the first constant in an
enum declaration has an ordinal of 0, the second
has an ordinal of 1, and so on. The final methods
name()

 and ordinal() return
these values. Most users of enumerated constants will use
toString()
 instead of
name(). The implementation of toString(
) defined by Enum returns the same value
as name(). The toString()
method is not final, however, and it can be
overridden in enum declarations.

 Enum implements a number of
Object and Comparable methods
and makes its implementations final so that they
are inherited by all enum types and may not be
overridden. equals()
 compares
enumerated constants with the = = operator, and
hashCode()
 returns the
System.identityHashCode(
)

 value. In order to make this
identity-based equals() implementation work,
Enum overrides the protected clone(
)

method to throw CloneNotSupportedException,
preventing additional copies of enumerated values from being created.
Finally, the compareTo(
)
 method of the
Comparable interface is defined to compare
enumerated values based on their ordinal() value.

 getDeclaringClass(
)
 returns the Class
object that represents the enum type of which the
constant is a part. It is like the getClass()
method inherited from Object, but the return
values of these two methods will be different for enumerated
constants that have value-specific class bodies, since those
constants are instances of an anonymous subclass of the
enum type.
The static valueOf()
 method is
passed the type and name of an enumerated constant and returns the
object that represents that constant (or throws an
IllegalArgumentException).
[image: java.lang.Enum<E extends Enum<E>>]

Figure 10-18. java.lang.Enum<E extends Enum<E>>

public abstract class Enum<E extends Enum<E>> implements Comparable<E>, Serializable {
// Protected Constructors
 protected Enum(String name, int ordinal);
// Public Class Methods
 public static <T extends Enum<T>> T valueOf(Class<T> enumType, String name);
// Public Instance Methods
 public final Class<E> getDeclaringClass();
 public final String name();
 public final int ordinal();
// Methods Implementing Comparable
 public final int compareTo(E o);
// Public Methods Overriding Object
 public final boolean equals(Object other);
 public final int hashCode();
 public String toString();
// Protected Methods Overriding Object
 protected final Object clone() throws CloneNotSupportedException;
}

Subclasses

 Thread.State,
java.lang.annotation.ElementType,
java.lang.annotation.RetentionPolicy,
java.lang.management.MemoryType,
java.math.RoundingMode,
java.net.Authenticator.RequestorType,
java.net.Proxy.Type,
java.security.KeyRep.Type,
java.util.Formatter.BigDecimalLayoutForm,
java.util.concurrent.TimeUnit,
javax.net.ssl.SSLEngineResult.HandshakeStatus,
javax.net.ssl.SSLEngineResult.Status

Passed To
Too many methods to list.

Name
EnumConstantNotPresentException

Synopsis

 This
unchecked exception is thrown when Java code attempts to use an enum
constant that no longer exists. This can happen only if the
enumerated constant was removed from its enumerated type after the
referencing code was compiled. The methods of the exception provide
the Class of the enumerated type and the name of
the nonexistent constant.
[image: java.lang.EnumConstantNotPresentException]

Figure 10-19. java.lang.EnumConstantNotPresentException

public class EnumConstantNotPresentException extends RuntimeException {
// Public Constructors
 public EnumConstantNotPresentException(Class<? extends Enum> enumType,
 String constantName);
// Public Instance Methods
 public String constantName();
 public Class<? extends Enum> enumType();
}

Name
Error

Synopsis

 This class forms
the root of the error hierarchy in Java. Subclasses of
Error, unlike subclasses of
Exception, should not be caught and generally
cause termination of the program. Subclasses of
Error need not be declared in the
throws clause of a method definition. This class
inherits methods from Throwable but declares none
of its own. Each of its constructors simply invokes the corresponding
Throwable() constructor. See
Throwable for details.
[image: java.lang.Error]

Figure 10-20. java.lang.Error

public class Error extends Throwable {
// Public Constructors
 public Error();
1.4 public Error(Throwable cause);
 public Error(String message);
1.4 public Error(String message, Throwable cause);
}

Subclasses

 AssertionError, LinkageError,
ThreadDeath,
VirtualMachineError,
java.lang.annotation.AnnotationFormatError,
java.nio.charset.CoderMalfunctionError,
javax.xml.parsers.FactoryConfigurationError,
javax.xml.transform.TransformerFactoryConfigurationError

Name
Exception

Synopsis

 This class forms the root of the
exception hierarchy in Java. An Exception signals
an abnormal condition that must be specially handled to prevent
program termination. Exceptions may be caught and handled. An
exception that is not a subclass of
RuntimeException must be declared in the
throws clause of any method that can throw it.
This class inherits methods from Throwable but
declares none of its own. Each of its constructors simply invokes the
corresponding Throwable() constructor. See
Throwable for details.
[image: java.lang.Exception]

Figure 10-21. java.lang.Exception

public class Exception extends Throwable {
// Public Constructors
 public Exception();
1.4 public Exception(Throwable cause);
 public Exception(String message);
1.4 public Exception(String message, Throwable cause);
}

Subclasses
Too many classes to list.

Passed To

 java.io.WriteAbortedException.WriteAbortedException(
),
java.nio.charset.CoderMalfunctionError.CoderMalfunctionError(
),
java.security.PrivilegedActionException.PrivilegedActionException(
), java.util.logging.ErrorManager.error(
), java.util.logging.Handler.reportError(
),
javax.xml.parsers.FactoryConfigurationError.FactoryConfigurationError(
),
javax.xml.transform.TransformerFactoryConfigurationError.TransformerFactoryConfigurationError(
), org.xml.sax.SAXException.SAXException(
),
org.xml.sax.SAXParseException.SAXParseException()

Returned By

 java.security.PrivilegedActionException.getException(
),
javax.xml.parsers.FactoryConfigurationError.getException(
),
javax.xml.transform.TransformerFactoryConfigurationError.getException(
), org.xml.sax.SAXException.getException(
)

Thrown By

 java.security.PrivilegedExceptionAction.run(),
java.util.concurrent.Callable.call()

Type Of

 java.io.WriteAbortedException.detail

Name
ExceptionInInitializerError

Synopsis

 This
error is thrown by the Java Virtual Machine when an exception occurs
in the static initializer of a class. You can use the
getException()
 method to obtain the
Throwable object that was thrown from the
initializer. In Java 1.4 and later, getException(
) has been superseded by the more general
getCause()
 method of the
Throwable class.
[image: java.lang.ExceptionInInitializerError]

Figure 10-22. java.lang.ExceptionInInitializerError

public class ExceptionInInitializerError extends LinkageError {
// Public Constructors
 public ExceptionInInitializerError();
 public ExceptionInInitializerError(String s);
 public ExceptionInInitializerError(Throwable thrown);
// Public Instance Methods
 public Throwable getException(); default:null
 // Public Methods Overriding Throwable
 1.4 public Throwable getCause(); default:null
}

Name
Float

Synopsis

 This class provides an immutable object
wrapper around a primitive float value.
floatValue() returns the primitive
float value of a Float object,
and there are methods for returning the value of a
Float as a variety of other primitive types. This
class is very similar to Double, and defines the
same set of useful methods and constants as that class does. See
Double for details.
[image: java.lang.Float]

Figure 10-23. java.lang.Float

public final class Float extends Number implements Comparable<Float> {
// Public Constructors
 public Float(double value);
 public Float(String s) throws NumberFormatException;
 public Float(float value);
// Public Constants
 public static final float MAX_VALUE; =3.4028235E38
 public static final float MIN_VALUE; =1.4E-45
 public static final float NaN; =NaN
 public static final float NEGATIVE_INFINITY; =-Infinity
 public static final float POSITIVE_INFINITY; =Infinity
5.0 public static final int SIZE; =32
 1.1 public static final Class<Float> TYPE;
// Public Class Methods
 1.4 public static int compare(float f1, float f2);
 public static int floatToIntBits(float value); native
 1.3 public static int floatToRawIntBits(float value); native
 public static float intBitsToFloat(int bits); native
 public static boolean isInfinite(float v);
 public static boolean isNaN(float v);
1.2 public static float parseFloat(String s) throws NumberFormatException;
5.0 public static String toHexString(float f);
 public static String toString(float f);
 public static Float valueOf(String s) throws NumberFormatException;
5.0 public static Float valueOf(float f);
// Public Instance Methods
 public boolean isInfinite();
 public boolean isNaN();
// Methods Implementing Comparable
 1.2 public int compareTo(Float anotherFloat);
// Public Methods Overriding Number
 1.1 public byte byteValue();
 public double doubleValue();
 public float floatValue();
 public int intValue();
 public long longValue();
1.1 public short shortValue();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Name
IllegalAccessError

Synopsis

 Signals
an attempted use of a class, method, or field that is not accessible.
[image: java.lang.IllegalAccessError]

Figure 10-24. java.lang.IllegalAccessError

public class IllegalAccessError extends IncompatibleClassChangeError {
// Public Constructors
 public IllegalAccessError();
 public IllegalAccessError(String s);
}

Name
IllegalAccessException

Synopsis

 Signals
that a class or initializer is not accessible. Thrown by
Class.newInstance().
[image: java.lang.IllegalAccessException]

Figure 10-25. java.lang.IllegalAccessException

public class IllegalAccessException extends Exception {
// Public Constructors
 public IllegalAccessException();
 public IllegalAccessException(String s);
}

Thrown By
Too many methods to list.

Name
IllegalArgumentException

Synopsis

 Signals
an illegal argument to a method. See subclasses
IllegalThreadStateException and
NumberFormatException.
[image: java.lang.IllegalArgumentException]

Figure 10-26. java.lang.IllegalArgumentException

public class IllegalArgumentException extends RuntimeException {
// Public Constructors
 public IllegalArgumentException();
5.0 public IllegalArgumentException(Throwable cause);
 public IllegalArgumentException(String s);
5.0 public IllegalArgumentException(String message, Throwable cause);
}

Subclasses

 IllegalThreadStateException,
NumberFormatException,
java.nio.channels.IllegalSelectorException,
java.nio.channels.UnresolvedAddressException,
java.nio.channels.UnsupportedAddressTypeException,
java.nio.charset.IllegalCharsetNameException,
java.nio.charset.UnsupportedCharsetException,
java.security.InvalidParameterException,
java.util.IllegalFormatException,
java.util.regex.PatternSyntaxException

Thrown By
Too many methods to list.

Name
IllegalMonitorStateException

Synopsis

 Signals an
illegal monitor state. It is thrown by the Object
 notify() and wait() methods
used for thread synchronization.
[image: java.lang.IllegalMonitorStateException]

Figure 10-27. java.lang.IllegalMonitorStateException

public class IllegalMonitorStateException extends RuntimeException {
// Public Constructors
 public IllegalMonitorStateException();
 public IllegalMonitorStateException(String s);
}

Name
IllegalStateException

Synopsis

 Signals
that a method has been invoked on an object that is not in an
appropriate state to perform the requested operation.
[image: java.lang.IllegalStateException]

Figure 10-28. java.lang.IllegalStateException

public class IllegalStateException extends RuntimeException {
// Public Constructors
 public IllegalStateException();
5.0 public IllegalStateException(Throwable cause);
 public IllegalStateException(String s);
5.0 public IllegalStateException(String message, Throwable cause);
}

Subclasses

 java.nio.InvalidMarkException,
java.nio.channels.AlreadyConnectedException,java.nio.channels.CancelledKeyException,
java.nio.channels.ClosedSelectorException,java.nio.channels.ConnectionPendingException,
java.nio.channels.IllegalBlockingModeException,java.nio.channels.NoConnectionPendingException,
java.nio.channels.NonReadableChannelException,
java.nio.channels.NonWritableChannelException,
java.nio.channels.NotYetBoundException,java.nio.channels.NotYetConnectedException,
java.nio.channels.OverlappingFileLockException,java.util.FormatterClosedException,
java.util.concurrent.CancellationException

Thrown By
Too many methods to list.

Name
IllegalThreadStateException

Synopsis

 Signals
that a thread is not in the appropriate state for an attempted
operation to succeed.
[image: java.lang.IllegalThreadStateException]

Figure 10-29. java.lang.IllegalThreadStateException

public class IllegalThreadStateException extends IllegalArgumentException {
// Public Constructors
 public IllegalThreadStateException();
 public IllegalThreadStateException(String s);
}

Name
IncompatibleClassChangeError

Synopsis

 This
is the superclass of a group of related error types. It signals an
illegal use of a legal class.
[image: java.lang.IncompatibleClassChangeError]

Figure 10-30. java.lang.IncompatibleClassChangeError

public class IncompatibleClassChangeError extends LinkageError {
// Public Constructors
 public IncompatibleClassChangeError();
 public IncompatibleClassChangeError(String s);
}

Subclasses

 AbstractMethodError,
IllegalAccessError,
InstantiationError,
NoSuchFieldError,
NoSuchMethodError

Name
IndexOutOfBoundsException

Synopsis

 Signals
that an index is out of bounds. See the subclasses
ArrayIndexOutOfBoundsException and
StringIndexOutOfBoundsException.
[image: java.lang.IndexOutOfBoundsException]

Figure 10-31. java.lang.IndexOutOfBoundsException

public class IndexOutOfBoundsException extends RuntimeException {
// Public Constructors
 public IndexOutOfBoundsException();
 public IndexOutOfBoundsException(String s);
}

Subclasses

 ArrayIndexOutOfBoundsException,
StringIndexOutOfBoundsException

Name
InheritableThreadLocal<T>

Synopsis

 This
class holds a thread-local value that is inherited by child threads.
See ThreadLocal for a discussion of thread-local
values. Note that the inheritance referred to in the name of this
class is not from superclass to subclass; it is inheritance from
parent thread to child thread. Like its superclass, this class has
been made generic in Java 5.0. The type variable
T represents the type of the referenced
object.
This class is best understood by example. Suppose that an application
has defined an InheritableThreadLocal object and
that a certain thread (the parent thread) has a thread-local value
stored in that object. Whenever that thread creates a new thread (a
child thread), the InheritableThreadLocal object
is automatically updated so that the new child thread has the same
value associated with it as the parent thread. Note that the value
associated with the child thread is independent from the value
associated with the parent thread. If the child thread subsequently
alters its value by calling the set() method of
the InheritableThreadLocal, the value associated
with the parent thread does not change.
By default, a child thread inherits a parent’s
values unmodified. By overriding the childValue()
method, however, you can create a subclass of
InheritableThreadLocal in which the child thread
inherits some arbitrary function of the parent
thread’s value.
[image: java.lang.InheritableThreadLocal<T>]

Figure 10-32. java.lang.InheritableThreadLocal<T>

public class InheritableThreadLocal<T> extends ThreadLocal<T> {
// Public Constructors
 public InheritableThreadLocal();
// Protected Instance Methods
 protected T childValue(T parentValue);
}

Name
InstantiationError

Synopsis

 Signals
an attempt to instantiate an interface or abstract class.
[image: java.lang.InstantiationError]

Figure 10-33. java.lang.InstantiationError

public class InstantiationError extends IncompatibleClassChangeError {
// Public Constructors
 public InstantiationError();
 public InstantiationError(String s);
}

Name
InstantiationException

Synopsis

 Signals
an attempt to instantiate an interface or an abstract class.
[image: java.lang.InstantiationException]

Figure 10-34. java.lang.InstantiationException

public class InstantiationException extends Exception {
// Public Constructors
 public InstantiationException();
 public InstantiationException(String s);
}

Thrown By

 Class.newInstance(),
java.lang.reflect.Constructor.newInstance(),
org.xml.sax.helpers.ParserFactory.makeParser()

Name
Integer

Synopsis

 This class provides an immutable object
wrapper around the int

primitive data type. This class also contains useful minimum and
maximum constants and useful
 conversion methods.
parseInt()

 and
valueOf() convert a string to an
int or to an Integer,
respectively. Each can take a radix argument to specify the base the
value is represented in. decode(
)
 also converts a
String to an Integer. It
assumes a

 hexadecimal number if the string
begins with “0X” or
“0x”, or an octal number if the
string begins with “0”. Otherwise,
a decimal number is assumed. toString(
)
 converts
in the other direction, and the static version
takes a radix argument. toBinaryString(
)

 ,
toOctalString(), and toHexString(
) convert an int to a string using base
2, base 8, and base 16. These methods treat the integer as an
unsigned value. Other routines return the value of an
Integer as various primitive types, and, finally,
the getInteger()
 methods return the integer value of a
named property from the system property list, or the specified
default value.

 Java 5.0 adds a number of static methods
that operate on the bits of an int value.
rotateLeft()

 and rotateRight()
shift the bits the specified distance in the specified direction,
with bits shifted off one end being shifted in on the other end.
signum()
 returns
the sign of the integer as -1, 0, or 1. highestOneBit(
)

 , numberOfTrailingZeros(
), bitCount() and related methods can
be useful if you use an int value as a set of bits
and want to iterate through the ones bits in the set.
[image: java.lang.Integer]

Figure 10-35. java.lang.Integer

public final class Integer extends Number implements Comparable<Integer> {
// Public Constructors
 public Integer(int value);
 public Integer(String s) throws NumberFormatException;
// Public Constants
 public static final int MAX_VALUE; =2147483647
 public static final int MIN_VALUE; =-2147483648
 5.0 public static final int SIZE; =32
 1.1 public static final Class<Integer> TYPE;
// Public Class Methods
 5.0 public static int bitCount(int i);
1.1 public static Integer decode(String nm) throws NumberFormatException;
 public static Integer getInteger(String nm);
 public static Integer getInteger(String nm, int val);
 public static Integer getInteger(String nm, Integer val);
5.0 public static int highestOneBit(int i);
5.0 public static int lowestOneBit(int i);
5.0 public static int numberOfLeadingZeros(int i);
5.0 public static int numberOfTrailingZeros(int i);
 public static int parseInt(String s) throws NumberFormatException;
 public static int parseInt(String s, int radix) throws NumberFormatException;
5.0 public static int reverse(int i);
5.0 public static int reverseBytes(int i);
5.0 public static int rotateLeft(int i, int distance);
5.0 public static int rotateRight(int i, int distance);
5.0 public static int signum(int i);
 public static String toBinaryString(int i);
 public static String toHexString(int i);
 public static String toOctalString(int i);
 public static String toString(int i);
 public static String toString(int i, int radix);
5.0 public static Integer valueOf(int i);
 public static Integer valueOf(String s) throws NumberFormatException;
 public static Integer valueOf(String s, int radix) throws NumberFormatException;
// Methods Implementing Comparable
 1.2 public int compareTo(Integer anotherInteger);
// Public Methods Overriding Number
 1.1 public byte byteValue();
 public double doubleValue();
 public float floatValue();
 public int intValue();
 public long longValue();
1.1 public short shortValue();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Name
InternalError

Synopsis

 Signals
an internal error in the Java interpreter.
[image: java.lang.InternalError]

Figure 10-36. java.lang.InternalError

public class InternalError extends VirtualMachineError {
// Public Constructors
 public InternalError();
 public InternalError(String s);
}

Name
InterruptedException

Synopsis

 Signals
that the thread has been interrupted.
[image: java.lang.InterruptedException]

Figure 10-37. java.lang.InterruptedException

public class InterruptedException extends Exception {
// Public Constructors
 public InterruptedException();
 public InterruptedException(String s);
}

Thrown By
Too many methods to list.

Name
Iterable<T>

Synopsis
This

 interface defines a single method
for returning a
java.util.Iterator
 object. Iterable
was added in Java 5.0 to support the for/in loop,
which is also new in Java 5.0. The Collection,
List, Set, and
Queue collection interfaces of
java.util extend this interface, making all
collections other than maps Iterable. You can
implement this interface in your own classes if you want to allow
them to be iterated with the for/in loop.
The type variable T specifies the type parameter
of the returned Iterator object, which, in turn,
specifies the element type of the collection being iterated over.
public interface Iterable<T> {
// Public Instance Methods
 java.util.Iterator<T> iterator();
}

Implementations

 java.util.Collection

Name
LinkageError

Synopsis

 The
superclass of a group of errors that signal problems linking a class
or resolving dependencies between classes.
[image: java.lang.LinkageError]

Figure 10-38. java.lang.LinkageError

public class LinkageError extends Error {
// Public Constructors
 public LinkageError();
 public LinkageError(String s);
}

Subclasses

 ClassCircularityError,
ClassFormatError,
ExceptionInInitializerError,
IncompatibleClassChangeError,
NoClassDefFoundError,
UnsatisfiedLinkError,
VerifyError

Name
Long

Synopsis

 This class provides an immutable object
wrapper around the long primitive data type. This
class also contains useful minimum and maximum constants and useful
conversion methods. parseLong(
)

 and
valueOf() convert a

 string to a long or
to a Long, respectively. Each can take a radix
argument to specify the base the value is represented in.
toString()

 converts in the other direction and may
also take a

 radix argument.
toBinaryString(), toOctalString(
), and toHexString() convert a
long to a string using base 2, base 8, and base
16. These methods treat the long as an unsigned
value. Other routines return the value of a Long
as various primitive types, and, finally, the getLong(
)
 methods return the
long value of a named property or the value of the
specified default.

 Java 5.0 adds a number of
static methods that operate on the bits of a long
value. Except for their argument type and return type, they are the
same as the Integer methods of the same name.
[image: java.lang.Long]

Figure 10-39. java.lang.Long

public final class Long extends Number implements Comparable<Long> {
// Public Constructors
 public Long(long value);
 public Long(String s) throws NumberFormatException;
// Public Constants
 public static final long MAX_VALUE; =9223372036854775807
 public static final long MIN_VALUE; =-9223372036854775808
 5.0 public static final int SIZE; =64
 1.1 public static final Class<Long> TYPE;
// Public Class Methods
 5.0 public static int bitCount(long i);
1.2 public static Long decode(String nm) throws NumberFormatException;
 public static Long getLong(String nm);
 public static Long getLong(String nm, Long val);
 public static Long getLong(String nm, long val);
5.0 public static long highestOneBit(long i);
5.0 public static long lowestOneBit(long i);
5.0 public static int numberOfLeadingZeros(long i);
5.0 public static int numberOfTrailingZeros(long i);
 public static long parseLong(String s) throws NumberFormatException;
 public static long parseLong(String s, int radix) throws NumberFormatException;
5.0 public static long reverse(long i);
5.0 public static long reverseBytes(long i);
5.0 public static long rotateLeft(long i, int distance);
5.0 public static long rotateRight(long i, int distance);
5.0 public static int signum(long i);
 public static String toBinaryString(long i);
 public static String toHexString(long i);
 public static String toOctalString(long i);
 public static String toString(long i);
 public static String toString(long i, int radix);
5.0 public static Long valueOf(long l);
 public static Long valueOf(String s) throws NumberFormatException;
 public static Long valueOf(String s, int radix) throws NumberFormatException;
// Methods Implementing Comparable
 1.2 public int compareTo(Long anotherLong);
// Public Methods Overriding Number
 1.1 public byte byteValue();
 public double doubleValue();
 public float floatValue();
 public int intValue();
 public long longValue();
1.1 public short shortValue();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Name
Math

Synopsis

 This class
defines constants for the mathematical values e
and π and defines static methods for floating-point trigonometry,
exponentiation, and other operations. It is the equivalent of the C
<math.h> functions. It also contains
methods for computing minimum and maximum values and for generating
pseudorandom numbers.
Most methods of Math operate on
float and double
 floating-point values. Remember
that these values are only approximations of actual real numbers. To
allow implementations to take full advantage of the floating-point
capabilities of a native platform, the methods of
Math are not required to return exactly the same
values on all platforms. In other words, the results returned by
different implementations may differ slightly in the
least-significant bits. As of Java 1.3, applications that require
strict platform-independence of results should use
StrictMath instead.

 Java 5.0 adds several methods
including log10()
 to compute the base-ten logarithm,
cbrt()

 to compute the cube root of a number,
and signum()
 to compute
the sign of a number as well as sinh(
)

 , cosh(), and
tanh() hyperbolic trigonometric functions.
public final class Math {
// No Constructor
 // Public Constants
 public static final double E; =2.718281828459045
 public static final double PI; =3.141592653589793
// Public Class Methods
 public static int abs(int a);
 public static long abs(long a);
 public static float abs(float a);
 public static double abs(double a);
 public static double acos(double a);
 public static double asin(double a);
 public static double atan(double a);
 public static double atan2(double y, double x);
5.0 public static double cbrt(double a);
 public static double ceil(double a);
 public static double cos(double a);
5.0 public static double cosh(double x);
 public static double exp(double a);
5.0 public static double expm1(double x);
 public static double floor(double a);
5.0 public static double hypot(double x, double y);
 public static double IEEEremainder(double f1, double f2);
 public static double log(double a);
5.0 public static double log10(double a);
5.0 public static double log1p(double x);
 public static int max(int a, int b);
 public static long max(long a, long b);
 public static float max(float a, float b);
 public static double max(double a, double b);
 public static int min(int a, int b);
 public static long min(long a, long b);
 public static float min(float a, float b);
 public static double min(double a, double b);
 public static double pow(double a, double b);
 public static double random();
 public static double rint(double a);
 public static int round(float a);
 public static long round(double a);
5.0 public static float signum(float f);
5.0 public static double signum(double d);
 public static double sin(double a);
5.0 public static double sinh(double x);
 public static double sqrt(double a);
 public static double tan(double a);
5.0 public static double tanh(double x);
1.2 public static double toDegrees(double angrad);
1.2 public static double toRadians(double angdeg);
5.0 public static float ulp(float f);
5.0 public static double ulp(double d);
}

Name
NegativeArraySizeException

Synopsis

 Signals
an attempt to allocate an array with fewer than zero elements.
[image: java.lang.NegativeArraySizeException]

Figure 10-40. java.lang.NegativeArraySizeException

public class NegativeArraySizeException extends RuntimeException {
// Public Constructors
 public NegativeArraySizeException();
 public NegativeArraySizeException(String s);
}

Thrown By

 java.lang.reflect.Array.newInstance()

Name
NoClassDefFoundError

Synopsis

 Signals
that the definition of a specified class cannot be found.
[image: java.lang.NoClassDefFoundError]

Figure 10-41. java.lang.NoClassDefFoundError

public class NoClassDefFoundError extends LinkageError {
// Public Constructors
 public NoClassDefFoundError();
 public NoClassDefFoundError(String s);
}

Name
NoSuchFieldError

Synopsis

 Signals
that a specified field cannot be found.
[image: java.lang.NoSuchFieldError]

Figure 10-42. java.lang.NoSuchFieldError

public class NoSuchFieldError extends IncompatibleClassChangeError {
// Public Constructors
 public NoSuchFieldError();
 public NoSuchFieldError(String s);
}

Name
NoSuchFieldException

Synopsis

 This
exception signals that the specified field does not exist in the
specified class.
[image: java.lang.NoSuchFieldException]

Figure 10-43. java.lang.NoSuchFieldException

public class NoSuchFieldException extends Exception {
// Public Constructors
 public NoSuchFieldException();
 public NoSuchFieldException(String s);
}

Thrown By

 Class.{getDeclaredField(), getField(
)}

Name
NoSuchMethodError

Synopsis

 Signals
that a specified method cannot be found.
[image: java.lang.NoSuchMethodError]

Figure 10-44. java.lang.NoSuchMethodError

public class NoSuchMethodError extends IncompatibleClassChangeError {
// Public Constructors
 public NoSuchMethodError();
 public NoSuchMethodError(String s);
}

Name
NoSuchMethodException

Synopsis

 Signals
that the specified method does not exist in the specified class.
[image: java.lang.NoSuchMethodException]

Figure 10-45. java.lang.NoSuchMethodException

public class NoSuchMethodException extends Exception {
// Public Constructors
 public NoSuchMethodException();
 public NoSuchMethodException(String s);
}

Thrown By

 Class.{getConstructor(),
getDeclaredConstructor(),
getDeclaredMethod(), getMethod(
)}

Name
NullPointerException

Synopsis

 Signals
an attempt to access a field or invoke a method of a
null object.
[image: java.lang.NullPointerException]

Figure 10-46. java.lang.NullPointerException

public class NullPointerException extends RuntimeException {
// Public Constructors
 public NullPointerException();
 public NullPointerException(String s);
}

Thrown By

 org.xml.sax.helpers.ParserFactory.makeParser()

Name
Number

Synopsis

 This is an abstract class that is the
superclass of Byte, Short,
Integer, Long,
Float, and Double. It defines
the conversion functions those types implement.
[image: java.lang.Number]

Figure 10-47. java.lang.Number

public abstract class Number implements Serializable {
// Public Constructors
 public Number();
// Public Instance Methods
 1.1 public byte byteValue();
 public abstract double doubleValue();
 public abstract float floatValue();
 public abstract int intValue();
 public abstract long longValue();
1.1 public short shortValue();
}

Subclasses

 Byte, Double,
Float, Integer,
Long, Short,
java.math.BigDecimal,
java.math.BigInteger,
java.util.concurrent.atomic.AtomicInteger,
java.util.concurrent.atomic.AtomicLong

Returned By

 java.text.ChoiceFormat.parse(),
java.text.DecimalFormat.parse(),
java.text.NumberFormat.parse(),
javax.xml.datatype.Duration.getField()

Name
NumberFormatException

Synopsis

 Signals
an illegal number format.
[image: java.lang.NumberFormatException]

Figure 10-48. java.lang.NumberFormatException

public class NumberFormatException extends IllegalArgumentException {
// Public Constructors
 public NumberFormatException();
 public NumberFormatException(String s);
}

Thrown By
Too many methods to list.

Name
Object

Synopsis

 This is the root class in Java. All
classes are subclasses of Object, and thus all
objects can invoke the public and
protected methods of this class. For classes that
implement the Cloneable interface, clone(
) makes a byte-for-byte copy of an
Object. getClass(
)
 returns the Class
object associated with any Object, and the
notify()

 ,
notifyAll(), and wait()
methods are used for

 thread synchronization on
a given Object.
A number of these Object methods should be
overridden by subclasses of Object. For example, a
subclass should provide its own definition of the

 toString() method so
that it can be used with the string concatenation operator and with
the PrintWriter.println() methods. Defining the
toString() method for all objects also helps with
debugging.
The default implementation of the equals() method
simply uses the = = operator to test whether this
object reference and the specified object reference refer to the same
object. Many subclasses override this method to compare the
individual fields of two distinct objects (i.e., they override the
method to test for the equivalence of distinct objects rather than
the equality of object references).
 Some
classes, particularly those that override equals(
), may also want to override the hashCode(
) method to provide an appropriate hashcode to be used when
storing instances in a Hashtable data structure.

 A class that allocates system
resources other than memory (such as file descriptors or windowing
system graphic contexts) should override the finalize(
) method to release these resources when the object is no
longer referred to and is about to be garbage-collected.
public class Object {
// Public Constructors
 public Object(); empty
 // Public Instance Methods
 public boolean equals(Object obj);
 public final Class<? extends Object> getClass(); native
 public int hashCode(); native
 public final void notify(); native
 public final void notifyAll(); native
 public String toString();
 public final void wait() throws InterruptedException;
 public final void wait(long timeout) throws InterruptedException; native
 public final void wait(long timeout, int nanos) throws InterruptedException;
// Protected Instance Methods
 protected Object clone() throws CloneNotSupportedException; native
 protected void finalize() throws Throwable; empty
}

Subclasses
Too many classes to list.

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Type Of

 java.io.Reader.lock,
java.io.Writer.lock,
java.util.EventObject.source,
java.util.Vector.elementData,
java.util.prefs.AbstractPreferences.lock

Name
OutOfMemoryError

Synopsis

 Signals
that the interpreter has run out of memory (and that garbage
collection is unable to free any memory).
[image: java.lang.OutOfMemoryError]

Figure 10-49. java.lang.OutOfMemoryError

public class OutOfMemoryError extends VirtualMachineError {
// Public Constructors
 public OutOfMemoryError();
 public OutOfMemoryError(String s);
}

Name
Override

Synopsis

 An
annotation of this type may be applied to methods and indicates that
the programmer intends for the method to override a method from a
superclass. In effect, it is an assertion for the compiler to verify.
If a method annotated
@Override

 does
not, in fact, override another method (perhaps because the method
name was misspelled or an argument was incorrectly typed), the
compiler issues an error. This annotation type has source retention.
[image: java.lang.Override]

Figure 10-50. java.lang.Override

public @interface Override {
}

Name
Package

Synopsis

 This class represents a Java package.
You can obtain the Package object for a given
Class by calling the getPackage(
) method of the Class object. The static
Package.getPackage() method returns a
Package object for the named package, if any such
package has been loaded by the current class loader. Similarly, the
static Package.getPackages() returns all
Package objects that have been loaded by the
current class loader. Note that a Package object
is not defined unless at least one class has been loaded from that
package. Although you can obtain the Package of a
given Class, you cannot obtain an array of
Class objects contained in a specified
Package.

 If the classes that comprise a package
are contained in a JAR file that has the appropriate attributes set
in its manifest file, the Package object allows
you to query the title, vendor, and
version of
both the package specification and the package implementation; all
six values are strings. The specification version string has a
special format. It consists of one or more integers, separated from
each other by periods. Each integer can have leading zeros, but is
not considered an octal digit. Increasing numbers indicate later
versions. The isCompatibleWith() method calls
getSpecificationVersion(
)
 to obtain the specification version and
compares it with the version string supplied as an argument. If the
package-specification version is the same as or greater than the
specified string, isCompatibleWith() returns
true. This allows you to test whether the version
of a package (typically a standard extension) is new enough for the
purposes of your application.

 Packages may
be sealed, which means that all classes in the package must come from
the same JAR file. If a package is sealed, the no-argument version of
isSealed() returns true. The
one-argument version of isSealed() returns
true if the specified URL represents the JAR file
from which the package is loaded.
[image: java.lang.Package]

Figure 10-51. java.lang.Package

public class Package implements java.lang.reflect.AnnotatedElement {
// No Constructor
 // Public Class Methods
 public static Package getPackage(String name);
 public static Package[] getPackages();
// Public Instance Methods
 public String getImplementationTitle();
 public String getImplementationVendor();
 public String getImplementationVersion();
 public String getName();
 public String getSpecificationTitle();
 public String getSpecificationVendor();
 public String getSpecificationVersion();
 public boolean isCompatibleWith(String desired) throws NumberFormatException;
 public boolean isSealed();
 public boolean isSealed(java.net.URL url);
// Methods Implementing AnnotatedElement
 5.0 public <A extends java.lang.annotation.Annotation> A getAnnotation(Class<A>
annotationClass);
5.0 public java.lang.annotation.Annotation[] getAnnotations();
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
5.0 public boolean isAnnotationPresent(Class<? extends java.lang.annotation.
Annotation> annotationClass);
// Public Methods Overriding Object
 public int hashCode();
 public String toString();
}

Returned By

 Class.getPackage(),
ClassLoader.{definePackage(),
getPackage(), getPackages()},
java.net.URLClassLoader.definePackage()

Name
Process

Synopsis

 This class
describes a process that is running externally to the Java
interpreter. Note that a Process is very different
from a Thread; the Process
class is abstract and cannot be instantiated. Call one of the
Runtime.exec() methods to start a process and
return a corresponding Process object.

 waitFor() blocks until the
process exits. exitValue() returns the exit code
of the process. destroy() kills the process.
getErrorStream(
)

 returns
an
InputStream from which you can read any bytes the
process sends to its standard error stream. getInputStream(
) returns an InputStream from which you
can read any bytes the process sends to its standard output stream.
getOutputStream() returns an
OutputStream you can use to send bytes to the
standard input stream of the process.
public abstract class Process {
// Public Constructors
 public Process();
// Public Instance Methods
 public abstract void destroy();
 public abstract int exitValue();
 public abstract java.io.InputStream getErrorStream();
 public abstract java.io.InputStream getInputStream();
 public abstract java.io.OutputStream getOutputStream();
 public abstract int waitFor() throws InterruptedException;
}

Returned By

 ProcessBuilder.start(), Runtime.exec(
)

Name
ProcessBuilder

Synopsis

 This class launches operating system
processes, producing Process objects. Specify the
operating system command when you invoke the ProcessBuilder(
) constructor or with the command(
)
 method. Commands are specified
with one or more strings, typically the filename of the executable to
run followed by the command-line arguments for the executable.
Specify these strings in a List, a
String[], or, most conveniently, using a
variable-length argument list of strings.
Before launching the command you have specified, you can configure
the ProcessBuilder. Query the current working
directory with the no-argument version of directory(
)
 and set it with the
one-argument version of the method. Query the mapping of environment
variables to values with the environment(
)
 method. You can alter the
mappings in the returned Map to specify the
environment you want the child process to run in. Pass
true to redirectErrorStream(
)
 if you would like both the
standard output and the standard error stream of the child process to
be merged into a single stream that you can obtain with
Process.getInputStream(). If you do so, you do
not have to arrange to read two separate input streams to get the
output of the process.
Once you have specified a command and configured your
ProcessBuilder as desired, call the
start()
 method
to launch the process. You then use methods of the returned
Process to provide input to the process, read
output from the process, or wait for the process to exit.
start() may throw an
IOException. This may occur, for example, if the
executable filename you have specified does not exist. The
command() and directory()
methods do not perform error checking on the values you provide them;
these checks are performed by the start() method,
so it is also possible for start() to throw
exceptions based on bad input to the configuration methods.
Note that a ProcessBuilder can be reused: once you
have established a working directory and environment variables, you
can change the command() and launch multiple
processes with repeated calls to start().
public final class ProcessBuilder {
// Public Constructors
 public ProcessBuilder(java.util.List<String> command);
 public ProcessBuilder(String... command);
// Public Instance Methods
 public java.util.List<String> command();
 public ProcessBuilder command(String... command);
 public ProcessBuilder command(java.util.List<String> command);
 public java.io.File directory();
 public ProcessBuilder directory(java.io.File directory);
 public java.util.Map<String,String> environment();
 public boolean redirectErrorStream();
 public ProcessBuilder redirectErrorStream(boolean redirectErrorStream);
 public Process start() throws java.io.IOException;
}

Name
Readable

Synopsis

 Objects that implement this
interface can serve as a source of characters and can transfer one or
more at a time to a java.nio.CharBuffer.
Readable was added in Java 5.0 as a simple
unifying API for java.nio.CharBuffer and character
input stream subclasses of java.io.Reader. The
java.util.Scanner class can parse input from any
Readable object. See also
Appendable.
public interface Readable {
// Public Instance Methods
 int read(java.nio.CharBuffer cb) throws java.io.IOException;
}

Implementations

 java.io.Reader,
java.nio.CharBuffer

Passed To

 java.util.Scanner.Scanner()

Name
Runnable

Synopsis

 This
interface specifies the run() method that is
required to use with the Thread class. Any class
that implements this interface can provide the body of a thread. See
Thread for more information.
public interface Runnable {
// Public Instance Methods
 void run();
}

Implementations

 Thread, java.util.TimerTask,
java.util.concurrent.FutureTask

Passed To
Too many methods to list.

Returned By

 javax.net.ssl.SSLEngine.getDelegatedTask()

Name
Runtime

Synopsis

 This class encapsulates a number of
platform-dependent system functions. The static method
getRuntime() returns the
Runtime object for the current platform; this
object can perform system functions in a platform-independent way.

 exit() causes the
Java interpreter to exit and return a specified return code. This
method is usually invoked through System.exit().
In Java 1.3, addShutdownHook() registers an
unstarted Thread object that is run when the
virtual machine shuts down, either through a call to exit(
) or through a user interrupt (a CTRL-C, for example). The
purpose of a shutdown hook is to perform necessary cleanup, such as
shutting down network connections, deleting temporary files, and so
on. Any number of hooks can be registered with
addShutdownHook(). Before the interpreter exits,
it starts all registered shutdown-hook threads and lets them run
concurrently. Any hooks you write should perform their cleanup
operation and exit promptly so they do not delay the shutdown
process. To remove a shutdown hook before it is run, call
removeShutdownHook(). To force an immediate exit
that does not invoke the shutdown hooks, call halt(
).

 exec() starts a
new process running externally to the interpreter. Note that any
processes run outside of Java may be system-dependent.

 freeMemory() returns the
approximate amount of free
memory. totalMemory(
) returns the total amount of memory available to the Java
interpreter. gc() forces the garbage collector to
run synchronously, which may free up more memory. Similarly,
runFinalization() forces the finalize(
) methods of unreferenced objects to be run immediately.
This may free up system resources those objects were holding.

 load() loads a
dynamic library with a fully specified pathname.

 loadLibrary() loads
a dynamic library with only the library name specified; it looks in
platform-dependent locations for the specified library. These
libraries generally contain native code definitions for native
methods.

 traceInstructions() and
traceMethodCalls() enable and disable tracing by
the interpreter. These methods are used for debugging or profiling an
application. It is not specified how the VM emits the trace
information, and VMs are not even required to support this feature.
Note that some of the Runtime methods are more
commonly called via the static methods of the
System class.
public class Runtime {
// No Constructor
 // Public Class Methods
 public static Runtime getRuntime();
// Public Instance Methods
 1.3 public void addShutdownHook(Thread hook);
1.4 public int availableProcessors(); native
 public Process exec(String[] cmdarray) throws java.io.IOException;
 public Process exec(String command) throws java.io.IOException;
 public Process exec(String command, String[] envp) throws java.io.IOException;
 public Process exec(String[] cmdarray, String[] envp) throws java.io.IOException;
1.3 public Process exec(String[] cmdarray, String[] envp, java.io.File dir)
 throws java.io.IOException;
1.3 public Process exec(String command, String[] envp, java.io.File dir) throws
 java.io.IOException;
 public void exit(int status);
 public long freeMemory(); native
 public void gc(); native
 1.3 public void halt(int status);
 public void load(String filename);
 public void loadLibrary(String libname);
1.4 public long maxMemory(); native
 1.3 public boolean removeShutdownHook(Thread hook);
 public void runFinalization();
 public long totalMemory(); native
 public void traceInstructions(boolean on); native
 public void traceMethodCalls(boolean on); native
 // Deprecated Public Methods
 # public java.io.InputStream getLocalizedInputStream(java.io.InputStream in);
public java.io.OutputStream getLocalizedOutputStream(java.io.OutputStream out);
1.1# public static void runFinalizersOnExit(boolean value);
}

Name
RuntimeException

Synopsis

 This
exception type is not used directly, but serves as a superclass of a
group of run-time exceptions that need not be declared in the
throws clause of a method definition. These
exceptions need not be declared because they are runtime conditions
that can generally occur in any Java method. Thus, declaring them
would be unduly burdensome, and Java does not require it.
This class inherits methods from Throwable but
declares none of its own. Each of the
RuntimeException constructors simply invokes the
corresponding Exception() and Throwable(
) constructor. See Throwable for
details.
[image: java.lang.RuntimeException]

Figure 10-52. java.lang.RuntimeException

public class RuntimeException extends Exception {
// Public Constructors
 public RuntimeException();
1.4 public RuntimeException(Throwable cause);
 public RuntimeException(String message);
1.4 public RuntimeException(String message, Throwable cause);
}

Subclasses
Too many classes to list.

Name
RuntimePermission

Synopsis

 This class is a
java.security.Permission that represents access to
various important system facilities. A
RuntimePermission has a name, or target, that
represents the facility for which permission is being sought or
granted. The name “exitVM”
represents permission to call System.exit(), and
the name
“accessClassInPackage.java.lang”
represents permission to read classes from the
java.lang package. The name of a
RuntimePermission may use a
“.*” suffix as a wildcard. For
example, the name
“accessClassInPackage.java.*”
represents permission to read classes from any package whose name
begins with “java.”.
RuntimePermission does not use action list strings
as some Permission classes do; the name of the
permission alone is enough.
The following are supported RuntimePermssion names:
	
 accessClassInPackage.package

 	
 getProtectionDomain

 	
 setFactory

	
 accessDeclaredMembers

 	
 loadLibrary.li
 brary_name

 	
 setIO

	
 createClassLoader

 	
 modifyThread

 	
 setSecurityManager

	
 createSecurityManager

 	
 modifyThreadGroup

 	
 stopThread

	
 defineClassInPackage.package

 	
 queuePrintJob

 	
 writeFileDescriptor

	
 exitVM

 	
 readFileDescriptor

 	

	
 getClassLoader

 	
 set-ContextClassLoader

 	

 System administrators configuring
security policies should be familiar with these permission names, the
operations they govern access to, and with the risks inherent in
granting any of them. Although system programmers may need to work
with this class, application programmers should never need to use
RuntimePermssion directly.
[image: java.lang.RuntimePermission]

Figure 10-53. java.lang.RuntimePermission

public final class RuntimePermission extends java.security.BasicPermission {
// Public Constructors
 public RuntimePermission(String name);
 public RuntimePermission(String name, String actions);
}

Name
SecurityException

Synopsis

 Signals
that an operation is not permitted for security reasons.
[image: java.lang.SecurityException]

Figure 10-54. java.lang.SecurityException

public class SecurityException extends RuntimeException {
// Public Constructors
 public SecurityException();
5.0 public SecurityException(Throwable cause);
 public SecurityException(String s);
5.0 public SecurityException(String message, Throwable cause);
}

Subclasses

 java.security.AccessControlException

Thrown By
Too many methods to list.

Name
SecurityManager

Synopsis

 This class defines the methods necessary to
implement a security policy for the safe
execution of untrusted code. Before performing potentially sensitive
operations, Java calls methods of the
SecurityManager object currently in effect to
determine whether the operations are permitted. These methods throw a
SecurityException if the operation is not
permitted. Typical applications do not need to use or subclass
SecurityManager. It is typically used only by web
browsers, applet viewers, and other programs that need to run
untrusted code in a controlled environment.

 Prior to Java 1.2, this class
is abstract, and the default implementation of
each check() method throws a
SecurityException unconditionally. The Java
security mechanism has been overhauled as of Java 1.2. As part of the
overhaul, this class is no longer abstract and its
methods have useful default implementations, so there is rarely a
need to subclass it. checkPermission() operates
by invoking the checkPermission() method of the
system java.security.AccessController object. In
Java 1.2 and later, all other check() methods of
SecurityManager are now implemented on top of
checkPermission().
public class SecurityManager {
// Public Constructors
 public SecurityManager();
// Public Instance Methods
 public void checkAccept(String host, int port);
 public void checkAccess(ThreadGroup g);
 public void checkAccess(Thread t);
1.1 public void checkAwtEventQueueAccess();
 public void checkConnect(String host, int port);
 public void checkConnect(String host, int port, Object context);
 public void checkCreateClassLoader();
 public void checkDelete(String file);
 public void checkExec(String cmd);
 public void checkExit(int status);
 public void checkLink(String lib);
 public void checkListen(int port);
1.1 public void checkMemberAccess(Class<?> clazz, int which);
1.1 public void checkMulticast(java.net.InetAddress maddr);
 public void checkPackageAccess(String pkg);
 public void checkPackageDefinition(String pkg);
1.2 public void checkPermission(java.security.Permission perm);
1.2 public void checkPermission(java.security.Permission perm, Object context);
1.1 public void checkPrintJobAccess();
 public void checkPropertiesAccess();
 public void checkPropertyAccess(String key);
 public void checkRead(String file);
 public void checkRead(java.io.FileDescriptor fd);
 public void checkRead(String file, Object context);
1.1 public void checkSecurityAccess(String target);
 public void checkSetFactory();
1.1 public void checkSystemClipboardAccess();
 public boolean checkTopLevelWindow(Object window);
 public void checkWrite(java.io.FileDescriptor fd);
 public void checkWrite(String file);
 public Object getSecurityContext(); default:AccessControlContext
 1.1 public ThreadGroup getThreadGroup();
// Protected Instance Methods
 protected Class[] getClassContext(); native
 // Deprecated Public Methods
 1.1# public void checkMulticast(java.net.InetAddress maddr, byte ttl);
public boolean getInCheck(); default:false
 // Deprecated Protected Methods
 # protected int classDepth(String name); native
 # protected int classLoaderDepth();
protected ClassLoader currentClassLoader();
1.1# protected Class<?> currentLoadedClass();
protected boolean inClass(String name);
protected boolean inClassLoader();
// Deprecated Protected Fields
 # protected boolean inCheck;
}

Passed To

 System.setSecurityManager()

Returned By

 System.getSecurityManager()

Name
Short

Synopsis

 This class provides an immutable object wrapper
around the short primitive type. It defines useful
constants for the minimum and maximum values that can be stored by
the short type, and also a
Class object constant that represents the
short type. It also provides various methods for
converting Short values to and from strings and
other numeric types.

 Most of the
static methods of this class can convert a String
to a Short object or a short
value; the four parseShort() and
valueOf() methods parse a number from the
specified string using an optionally specified radix and return it in
one of these two forms. The decode() method
parses a number

 specified in base 10, base 8, or
base 16 and returns it as a Short. If the string
begins with “0x” or
“#”, it is interpreted as a
hexadecimal number; if it begins with
“0”, it is interpreted as an octal
number. Otherwise, it is interpreted as a decimal number.

 Note that this class has two different
toString() methods. One is static and converts a
short primitive value to a string. The other is
the usual toString() method that converts a
Short object to a string. Most of the remaining
methods convert a Short to various primitive
numeric types.
[image: java.lang.Short]

Figure 10-55. java.lang.Short

public final class Short extends Number implements Comparable<Short> {
// Public Constructors
 public Short(short value);
 public Short(String s) throws NumberFormatException;
// Public Constants
 public static final short MAX_VALUE; =32767
 public static final short MIN_VALUE; =-32768
 5.0 public static final int SIZE; =16
 public static final Class<Short> TYPE;
// Public Class Methods
 public static Short decode(String nm) throws NumberFormatException;
 public static short parseShort(String s) throws NumberFormatException;
 public static short parseShort(String s, int radix) throws NumberFormatException;
5.0 public static short reverseBytes(short i);
 public static String toString(short s);
 public static Short valueOf(String s) throws NumberFormatException;
5.0 public static Short valueOf(short s);
 public static Short valueOf(String s, int radix) throws NumberFormatException;
// Methods Implementing Comparable
 1.2 public int compareTo(Short anotherShort);
// Public Methods Overriding Number
 public byte byteValue();
 public double doubleValue();
 public float floatValue();
 public int intValue();
 public long longValue();
 public short shortValue();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Name
StackOverflowError

Synopsis

 Signals
that a stack overflow has occurred within the Java interpreter.
[image: java.lang.StackOverflowError]

Figure 10-56. java.lang.StackOverflowError

public class StackOverflowError extends VirtualMachineError {
// Public Constructors
 public StackOverflowError();
 public StackOverflowError(String s);
}

Name
StackTraceElement

Synopsis

 Instances of this class are returned in an
array by Throwable.getStackTrace(
)

 .
Each instance represents one frame in the stack trace associated with
an exception or error. getClassName(
)

 and
getMethodName() return the name of the class
(including package name) and method that contain the point of
execution that the stack frame represents. If the class file contains
sufficient information, getFileName() and
getLineNumber() return the source file and line
number associated with the frame. getFileName()
returns null and getLineNumber(
) returns a negative value if source or line number
information is not available. isNativeMethod(
)
 returns
true if the named method is a
native method (and
therefore does not have a meaningful source file or line number).
[image: java.lang.StackTraceElement]

Figure 10-57. java.lang.StackTraceElement

public final class StackTraceElement implements Serializable {
// Public Constructors
 5.0 public StackTraceElement(String declaringClass, String methodName,
 String fileName, int lineNumber);
// Public Instance Methods
 public String getClassName();
 public String getFileName();
 public int getLineNumber();
 public String getMethodName();
 public boolean isNativeMethod();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Passed To

 Throwable.setStackTrace()

Returned By

 Thread.getStackTrace(),
Throwable.getStackTrace(),
java.lang.management.ThreadInfo.getStackTrace()

Name
StrictMath

Synopsis

 This class
is identical to the Math
 class, but additionally requires that its
methods strictly adhere to the behavior of certain published
algorithms. The methods of StrictMath are intended
to operate identically on all platforms, and must produce exactly the
same result (down to the very least significant bit) as certain
well-known standard algorithms. When strict platform-independence of
floating-point results is not required, use the
Math class for better performance.
public final class StrictMath {
// No Constructor
 // Public Constants
 public static final double E; =2.718281828459045
 public static final double PI; =3.141592653589793
// Public Class Methods
 public static int abs(int a);
 public static long abs(long a);
 public static float abs(float a);
 public static double abs(double a);
 public static double acos(double a); native
 public static double asin(double a); native
 public static double atan(double a); native
 public static double atan2(double y, double x); native
 5.0 public static double cbrt(double a); native
 public static double ceil(double a); native
 public static double cos(double a); native
 5.0 public static double cosh(double x); native
 public static double exp(double a); native
 5.0 public static double expm1(double x); native
 public static double floor(double a); native
 5.0 public static double hypot(double x, double y); native
 public static double IEEEremainder(double f1, double f2); native
 public static double log(double a); native
 5.0 public static double log10(double a); native
 5.0 public static double log1p(double x); native
 public static int max(int a, int b);
 public static long max(long a, long b);
 public static float max(float a, float b);
 public static double max(double a, double b);
 public static int min(int a, int b);
 public static long min(long a, long b);
 public static float min(float a, float b);
 public static double min(double a, double b);
 public static double pow(double a, double b); native
 public static double random();
 public static double rint(double a);
 public static int round(float a);
 public static long round(double a);
5.0 public static float signum(float f);
5.0 public static double signum(double d);
 public static double sin(double a); native
 5.0 public static double sinh(double x); native
 public static double sqrt(double a); native
 public static double tan(double a); native
 5.0 public static double tanh(double x); native
 public static double toDegrees(double angrad);
 strictfp
 public static double toRadians(double angdeg);
 strictfp
5.0 public static float ulp(float f);
5.0 public static double ulp(double d);
}

Name
String

Synopsis

 The String class
represents a read-only string of characters. A
String object is created by the Java compiler
whenever it encounters a string in double quotes; this method of
creation is typically simpler than using a constructor. The static
valueOf() factory methods create new
String objects that hold the textual
representation of various Java primitive types. There are also
valueOf() methods, copyValueOf(
) methods and String() constructors for
creating a String object that holds a copy of the
text contained in another String,
StringBuffer, StringBuilder, or
a char or int array. You can
also use the String() constructor to create a
String object from an array of bytes. If you do
this, you may explicitly specify the name of the charset (or
character encoding) to be used to decode the bytes into characters,
or you can rely on the default charset for your platform. (See
java.nio.charset.Charset for more on charset
names.)
In Java
5.0, the
static format() methods provide another useful
way to create String objects that hold formatted
text. These utility methods create and use a new
java.util.Formatter object and behave like the
sprintf() function in the C programming language.

 length() returns the
number of characters in a string. charAt()
extracts a character from a string. You can use these two methods to
iterate through the characters of a string. You can obtain a
char array that holds the characters of a string
with toCharArray(), or use getChars(
) to copy just a selected region of the string into an
existing array. Use getBytes() if you want to
obtain an array of bytes that contains the encoded form of the
characters in a string, using either the platform’s
default encoding or a named encoding.

 This class
defines many methods for comparing strings and substrings.
equals() returns true if two
String objects contain the same text, and
equalsIgnoreCase() returns
true if two strings are equal when uppercase and
lowercase differences are ignored. As of Java 1.4, the
contentEquals() method compares a string to a
specified StringBuffer object, returning
true if they contain the same text.
startsWith()

 and endsWith()
return true if a string starts with the specified
prefix string or ends with the specified suffix string. A
two-argument version of startsWith() allows you
to specify a position within this string at which the prefix
comparison is to be done. The regionMatches(
)
 method is a generalized version of
this startsWith() method. It returns
true if the specified region of the specified
string matches the characters that begin at a specified position
within this string. The five-argument version of this method allows
you to perform this comparison ignoring the case of the characters
being compared. The final string comparison method is
matches()
 , which, as described below, compares a
string to a regular expression pattern.

 compareTo() is another
string comparison method, but it is used for comparing the order of
two strings, rather than simply comparing them for equality.
compareTo() implements the
Comparable interface and enables sorting of lists
and arrays of String objects. See
Comparable for more information.
compareToIgnoreCase() is like compareTo(
) but ignores the case of the two strings when doing the
comparison. The CASE_INSENSITIVE_ORDER constant is
a Comparator for sorting strings in a way that
ignores the case of their characters. (The
java.util.Comparator interface is similar to the
Comparable interface but allows the definition of
object orderings that are different from the default ordering defined
by Comparable.) The compareTo(
) and compareToIgnoreCase() methods and
the CASE_INSENSITIVE_ORDER
 Comparator object order strings based only on the
numeric ordering of the Unicode encoding of their characters. This is
not always the preferred “alphabetical
ordering” in some languages. See
java.text.Collator for a more general technique
for collating strings.

 indexOf() and
lastIndexOf() search forward and backward in a
string for a specified character or substring. They return the
position of the match, or -1 if there is no match. The one argument
versions of these methods start at the beginning or end of the
string, and the two-argument versions start searching from a
specified character position.
Java 5.0 adds new comparison methods that work with any
CharSequence. A new version of
contentEquals() enables the comparison of a
string with any CharSequence, including
StringBuilder objects. The contains(
) method returns true if the string
contains any sequence of characters equal to the specified
CharSequence.

 substring() returns a
string that consists of the characters from (and including) the
specified start position to (but not including) the specified end
position. A one-argument version returns all characters from (and
including) the specified start position to the end of the string. As
of Java 1.4, the String class implements the
CharSequence
 interface and defines the
subSequence()
 method, which works just like the
two-argument version of substring() but returns
the specified characters as a CharSequence rather
than as a String.

 Several methods return new strings that
contain modified versions of the text held by the original string
(the original string remains unchanged). replace(
) creates a new string with all occurrences of one
character replaced by another. Java 5.0 adds a generalized version of
replace() that replaces all occurrences of one
CharSequence with another. More general methods,
replaceAll() and replaceFirst(
), use regular expression pattern matching; they are
described later in this section.

 toUpperCase() and
toLowerCase() return a new string in which all
characters are converted to upper- or lowercase respectively. These
case-conversion methods take an optional Locale
argument to perform locale-specific case conversion. trim(
)

is a utility method that returns a new string in which all leading
and trailing whitespace has been removed. concat(
)
 returns the new string formed by
concatenating or appending the specified string to this string.
String concatenation is more commonly done, however, with the
+ operator.
Note that String objects are immutable; there is
no setCharAt() method to change the contents. The
methods that return a String do not modify the
string they are invoked on but instead return a new
String object that holds a modified copy of the
text of the original. Use a StringBuffer if you
want to manipulate the contents of a string or call
toCharArray() or getChars(
)

 to convert a string to an array
of char values.

Java 1.4 introduced support for pattern matching with
regular expressions.
matches()
 returns true if this string exactly
matches the pattern specified by the regular expression argument.
replaceAll()

 and replaceFirst()
create a new string in which all occurrences or the first occurrence
of a substring that matches the specified regular expression is
replaced with the specified replacement string. The split(
)
 methods return an array of substrings
of this string, formed by splitting this string at positions that
match the specified regular expression. These regular expression
methods are all convenience methods that simply call methods of the
same name in the java.util.regex package. See the
Pattern and Matcher classes in
that package for further details.

 Many
programs use strings as commonly as they use Java primitive values.
Because the String type is an object rather than a
primitive value, however, you cannot in general use
the
 = = operator to compare
two strings for equality. Instead, even though strings are immutable,
you must use the more expensive equals() method.
For programs that perform a lot of string comparison, the
intern()
 provides a way to speed up those
comparisons. The String class maintains a set of
String objects that includes all double-quoted
string literals and all compile-time constant strings defined in a
Java program. The set is guaranteed not to contain duplicates, and
the set is used to ensure that duplicate String
objects are not created unnecessarily. The intern(
) method looks up a string in or adds a new string to this
set of unique strings. It searches the set for a string that contains
exactly the same characters as the string you invoked the method on.
If such a string is found, intern() returns it.
If no matching string is found, the string you invoked
intern() on is itself stored in the set
(“interned”) and becomes the return
value of the method. What this means is that you can safely compare
any strings returned by the intern() method using
the = = and != operators
instead of equals(). You can also successfully
compare any string returned by intern() to any
string constant with = = and
!=.
In

 Java 5.0,
Unicode supplementary characters may
be represented as a single int codepoint value or
as a sequence of two char values known as a
“surrogate pair.” See
Character for more on supplementary characters and
methods for working with them. String methods for
working with supplementary characters, such as codePointAt(
)

 ,
codePointCount(), and
offsetByCodePoints(), are similar to those
defined by Character.
[image: java.lang.String]

Figure 10-58. java.lang.String

public final class String implements Serializable, Comparable<String>, CharSequence {
// Public Constructors
 public String();
5.0 public String(StringBuilder builder);
 public String(StringBuffer buffer);
 public String(char[] value);
 public String(String original);
1.1 public String(byte[] bytes);
1.1 public String(byte[] bytes, String charsetName)
 throws java.io.UnsupportedEncodingException;
public String(byte[] ascii, int hibyte);
 public String(char[] value, int offset, int count);
1.1 public String(byte[] bytes, int offset, int length);
5.0 public String(int[] codePoints, int offset, int count);
public String(byte[] ascii, int hibyte, int offset, int count);
1.1 public String(byte[] bytes, int offset, int length, String charsetName)
 throws java.io.UnsupportedEncodingException;
// Public Constants
 1.2 public static final java.util.Comparator<String> CASE_INSENSITIVE_ORDER;
// Public Class Methods
 public static String copyValueOf(char[] data);
 public static String copyValueOf(char[] data, int offset, int count);
5.0 public static String format(String format, Object... args);
5.0 public static String format(java.util.Locale l, String format, Object... args);
 public static String valueOf(float f);
 public static String valueOf(long l);
 public static String valueOf(Object obj);
 public static String valueOf(double d);
 public static String valueOf(boolean b);
 public static String valueOf(char[] data);
 public static String valueOf(int i);
 public static String valueOf(char c);
 public static String valueOf(char[] data, int offset, int count);
// Public Instance Methods
 public char charAt(int index); Implements:CharSequence
5.0 public int codePointAt(int index);
5.0 public int codePointBefore(int index);
5.0 public int codePointCount(int beginIndex, int endIndex);
 public int compareTo(String anotherString); Implements:Comparable
1.2 public int compareToIgnoreCase(String str);
 public String concat(String str);
5.0 public boolean contains(CharSequence s);
1.4 public boolean contentEquals(StringBuffer sb);
5.0 public boolean contentEquals(CharSequence cs);
 public boolean endsWith(String suffix);
 public boolean equalsIgnoreCase(String anotherString);
1.1 public byte[] getBytes();
1.1 public byte[] getBytes(String charsetName) throws java.io.
 UnsupportedEncodingException;
 public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
 public int indexOf(int ch);
 public int indexOf(String str);
 public int indexOf(int ch, int fromIndex);
 public int indexOf(String str, int fromIndex);
 public String intern(); native
 public int lastIndexOf(String str);
 public int lastIndexOf(int ch);
 public int lastIndexOf(String str, int fromIndex);
 public int lastIndexOf(int ch, int fromIndex);
 public int length(); Implements:CharSequence
1.4 public boolean matches(String regex);
5.0 public int offsetByCodePoints(int index, int codePointOffset);
 public boolean regionMatches(int toffset, String other, int ooffset, int len);
 public boolean regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len);
 public String replace(char oldChar, char newChar);
5.0 public String replace(CharSequence target, CharSequence replacement);
1.4 public String replaceAll(String regex, String replacement);
1.4 public String replaceFirst(String regex, String replacement);
1.4 public String[] split(String regex);
1.4 public String[] split(String regex, int limit);
 public boolean startsWith(String prefix);
 public boolean startsWith(String prefix, int toffset);
 public String substring(int beginIndex);
 public String substring(int beginIndex, int endIndex);
 public char[] toCharArray();
 public String toLowerCase();
1.1 public String toLowerCase(java.util.Locale locale);
 public String toString(); Implements:CharSequence
 public String toUpperCase();
1.1 public String toUpperCase(java.util.Locale locale);
 public String trim();
// Methods Implementing CharSequence
 public char charAt(int index);
 public int length();
1.4 public CharSequence subSequence(int beginIndex, int endIndex);
 public String toString();
// Methods Implementing Comparable
 public int compareTo(String anotherString);
// Public Methods Overriding Object
 public boolean equals(Object anObject);
 public int hashCode();
// Deprecated Public Methods
 # public void getBytes(int srcBegin, int srcEnd, byte[] dst, int dstBegin);
}

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Type Of
Too many fields to list.

Name
StringBuffer

Synopsis

 This
class represents a mutable string of characters that can grow or
shrink as necessary. Its mutability makes it suitable for processing
text in place, which is not possible with the immutable
String class. Its resizability and the various
methods it implements make it easier to use than a char[
]. Create a StringBuffer with the
StringBuffer() constructor. You may pass a
String that contains the initial text for the
buffer to this constructor, but if you do not, the buffer will start
out empty. You may also specify the initial capacity for the buffer
if you can estimate the number of characters the buffer will
eventually hold.
The methods of this class are synchronized, which
makes StringBuffer objects suitable for use by
multiple threads. In Java 5.0 and later, when working with a single
thread, StringBuilder is preferred over this class
because it does not have the overhead of synchronized methods.
StringBuilder implements the same methods as
StringBuffer and can be used in the same way.
Query the character stored at a given index with

 charAt() and set or
delete that character with

 setCharAt(
) or deleteCharAt(). Use
length() to return the length of the buffer, and
use setLength() to set the length of the buffer,
truncating it or filling it with null characters
('\u0000') as necessary.
capacity() returns the number of characters a
StringBuffer can hold before its internal buffer
needs to be reallocated. If you expect a
StringBuffer to grow substantially and can
approximate its eventual size, you can use ensureCapacity(
) to preallocate sufficient internal storage.
Use the various
 append()
methods to append text to the end of the buffer. Use insert(
) to insert text at a specified position within the buffer.
Note that in addition to strings, primitive values, character arrays,
and arbitrary objects may be passed to append()
and

 insert(). These
values are converted to strings before they are appended or inserted.
Use delete() to delete a range of characters from
the buffer and use replace() to replace a range
of characters with a specified String.
Use substring()

 to convert a portion of a
StringBuffer to a String. The
two versions of this method work just like the same-named methods of
String. Call toString() to
obtain the contents of a StringBuffer as a
String object. Or use getChars(
)
 to
extract the specified range of characters from the
StringBuffer and store them into the specified
character array starting at the specified index of that array.
As of Java 1.4, StringBuffer implements
CharSequence and so also defines a
subSequence()

method that is like substring() but returns its
value as a CharSequence. Java 1.4 also added
indexOf()

 and lastIndexOf()
methods that search forward or backward (from the optionally
specified index) in a StringBuffer for a sequence
of characters that matches the specified String.
These methods return the index of the matching string or
-1 if no match was found. See also the similarly
named methods of String after which these methods
are modeled.
In
 Java 5.0, this class has a new
constructor and new methods for working with
CharSequence objects. It implements the
Appendable interface for use with
java.util.Formatter and includes new methods for
working with 21-bit Unicode characters as int
codepoints.

 String concatenation in Java is
performed with the + operator and is implemented,
prior to Java 5.0, using the append() method of a
StringBuffer. In Java 5.0 and later,
StringBuilder is used instead. After a string is
processed in a StringBuffer object, it can be
efficiently converted to a String object for
subsequent use. The StringBuffer.toString()
method is typically implemented so that it does not copy the internal
array of characters. Instead, it shares that array with the new
String object, making a new copy for itself only
if and when further modifications are made to the
StringBuffer object.
[image: java.lang.StringBuffer]

Figure 10-59. java.lang.StringBuffer

public final class StringBuffer extends AbstractStringBuilder implements CharSequence,
Serializable {
// Public Constructors
 public StringBuffer();
 public StringBuffer(String str);
 public StringBuffer(int capacity);
5.0 public StringBuffer(CharSequence seq);
// Public Instance Methods
 public StringBuffer append(String str); synchronized
 1.4 public StringBuffer append(StringBuffer sb); synchronized
 5.0 public StringBuffer append(CharSequence s);
 public StringBuffer append(Object obj); synchronized
 public StringBuffer append(char[] str); synchronized
 public StringBuffer append(long lng); synchronized
 public StringBuffer append(float f); synchronized
 public StringBuffer append(double d); synchronized
 public StringBuffer append(boolean b); synchronized
 public StringBuffer append(char c); synchronized
 public StringBuffer append(int i); synchronized
 public StringBuffer append(char[] str, int offset, int len); synchronized
 5.0 public StringBuffer append(CharSequence s, int start, int end); synchronized
 5.0 public StringBuffer appendCodePoint(int codePoint); synchronized
 public char charAt(int index); Implements:CharSequence synchronized
1.2 public StringBuffer delete(int start, int end); synchronized
 1.2 public StringBuffer deleteCharAt(int index); synchronized
 public StringBuffer insert(int offset, char c); synchronized
 public StringBuffer insert(int offset, boolean b);
 public StringBuffer insert(int offset, long l);
 public StringBuffer insert(int offset, int i);
 public StringBuffer insert(int offset, String str); synchronized
 public StringBuffer insert(int offset, Object obj); synchronized
 5.0 public StringBuffer insert(int dstOffset, CharSequence s);
 public StringBuffer insert(int offset, char[] str); synchronized
 public StringBuffer insert(int offset, double d);
 public StringBuffer insert(int offset, float f);
1.2 public StringBuffer insert(int index, char[] str, int offset, int len); synchronized
 5.0 public StringBuffer insert(int dstOffset, CharSequence s, int start,
 int end); synchronized
 public int length(); Implements:CharSequence synchronized
1.2 public StringBuffer replace(int start, int end, String str); synchronized
 public StringBuffer reverse(); synchronized
 public String toString(); Implements:CharSequence synchronized
// Methods Implementing CharSequence
 public char charAt(int index); synchronized
 public int length(); synchronized
 1.4 public CharSequence subSequence(int start, int end); synchronized
 public String toString(); synchronized
 // Public Methods Overriding AbstractStringBuilder
 public int capacity(); synchronized
 5.0 public int codePointAt(int index); synchronized
 5.0 public int codePointBefore(int index); synchronized
 5.0 public int codePointCount(int beginIndex, int endIndex); synchronized
 public void ensureCapacity(int minimumCapacity); synchronized
 public void getChars(int srcBegin,
 int srcEnd, char[] dst, int dstBegin); synchronized
 1.4 public int indexOf(String str);
1.4 public int indexOf(String str, int fromIndex); synchronized
 1.4 public int lastIndexOf(String str);
1.4 public int lastIndexOf(String str, int fromIndex); synchronized
 5.0 public int offsetByCodePoints(int index, int codePointOffset); synchronized
 public void setCharAt(int index, char ch); synchronized
 public void setLength(int newLength); synchronized
 1.2 public String substring(int start); synchronized
 1.2 public String substring(int start, int end); synchronized
 5.0 public void trimToSize(); synchronized
}

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Name
StringBuilder

Synopsis

 This class defines the same methods as
StringBuffer but does not declare those methods
synchronized, which can result in better
performance in the common case in which only a single thread is using
the object. StringBuilder is a drop-in replacement
for StringBuffer and should be used in preference
to StringBuffer except where thread safety is
required. See StringBuffer for an overview of the
methods shared by these two classes.
[image: java.lang.StringBuilder]

Figure 10-60. java.lang.StringBuilder

public final class StringBuilder extends AbstractStringBuilder implements CharSequence,
Serializable {
// Public Constructors
 public StringBuilder();
 public StringBuilder(int capacity);
 public StringBuilder(String str);
 public StringBuilder(CharSequence seq);
// Public Instance Methods
 public StringBuilder append(long lng);
 public StringBuilder append(float f);
 public StringBuilder append(double d);
 public StringBuilder append(int i);
 public StringBuilder append(String str);
 public StringBuilder append(StringBuffer sb);
 public StringBuilder append(CharSequence s);
 public StringBuilder append(Object obj);
 public StringBuilder append(char c);
 public StringBuilder append(boolean b);
 public StringBuilder append(char[] str);
 public StringBuilder append(CharSequence s, int start, int end);
 public StringBuilder append(char[] str, int offset, int len);
 public StringBuilder appendCodePoint(int codePoint);
 public StringBuilder delete(int start, int end);
 public StringBuilder deleteCharAt(int index);
 public StringBuilder insert(int offset, boolean b);
 public StringBuilder insert(int offset, char c);
 public StringBuilder insert(int offset, int i);
 public StringBuilder insert(int dstOffset, CharSequence s);
 public StringBuilder insert(int offset, Object obj);
 public StringBuilder insert(int offset, String str);
 public StringBuilder insert(int offset, char[] str);
 public StringBuilder insert(int offset, double d);
 public StringBuilder insert(int offset, long l);
 public StringBuilder insert(int offset, float f);
 public StringBuilder insert(int index, char[] str, int offset, int len);
 public StringBuilder insert(int dstOffset, CharSequence s, int start, int end);
 public StringBuilder replace(int start, int end, String str);
 public StringBuilder reverse();
// Methods Implementing CharSequence
 public String toString();
// Public Methods Overriding AbstractStringBuilder
 public int indexOf(String str);
 public int indexOf(String str, int fromIndex);
 public int lastIndexOf(String str);
 public int lastIndexOf(String str, int fromIndex);
}

Passed To

 String.String()

Name
StringIndexOutOfBoundsException

Synopsis

 Signals
that the index used to access a character of a
String or StringBuffer is less
than zero or is too large.
[image: java.lang.StringIndexOutOfBoundsException]

Figure 10-61. java.lang.StringIndexOutOfBoundsException

public class StringIndexOutOfBoundsException extends IndexOutOfBoundsException {
// Public Constructors
 public StringIndexOutOfBoundsException();
 public StringIndexOutOfBoundsException(int index);
 public StringIndexOutOfBoundsException(String s);
}

Name
SuppressWarnings

Synopsis

 An
annotation of this type tells the Java compiler not to generate
specified kinds of
warning messages for code
within the annotated program element. Annotations of this type have
source retention and may be applied to any program element except
packages and other annotation types. An
@SuppressWarnings
 annotation has an array of
String objects as its value.
These strings specify the names of the warnings to be suppressed. The
available warnings (and their names) depend on the compiler
implementation, and compilers will ignore warning names they do not
support. Compiler vendors are expected to cooperate in defining at
least a core set of common warning names. In Java 5.0, the
@SuppressWarnings warning names supported by the
javac
 compiler are the same as the
warning flags that can be specfied with the -Xlint
compiler flag.
[image: java.lang.SuppressWarnings]

Figure 10-62. java.lang.SuppressWarnings

public @interface SuppressWarnings {
// Public Instance Methods
 String[] value();
}

Name
System

Synopsis

 This class defines a platform-independent
interface to system facilities, including system properties and
system input and output streams. All methods and variables of this
class are static, and the class cannot be instantiated. Because the
methods defined by this class are low-level system methods, most
require special permissions and cannot be executed by untrusted code.

 getProperty() looks
up a named property on the system properties list,
returning the optionally specified default value if no property
definition is found. getProperties(
)
 returns the entire properties list.

 setProperties() sets
a Properties object on the properties list. In
Java 1.2 and later, setProperty(
)
 sets
the value of a system property. In Java 5.0, you can clear a property
setting with clearProperty(
)

 . The following table lists system
properties that are always defined. Untrusted code may be unable to
read some or all of these properties. Additional properties can be
defined using the -D option when invoking the Java
interpreter.
	
 Property name

 	
 Description

	

 file.separator

 	
 Platform directory separator character

	

 path.separator

 	
 Platform path separator character

	

 line.separator

 	
 Platform line separator character(s)

	

 user.name

 	
 Current user s account name

	

 user.home

 	
 Home directory of current user

	

 user.dir

 	
 The current working directory

	

 java.class.path

 	
 Where classes are loaded from

	

 java.class.version

 	
 Version of the Java class file format

	

 java.compiler

 	
 The name of the just-in-time compiler

	

 java.ext.dirs

 	
 Path to directories that hold extensions

	

 java.home

 	
 The directory Java is installed in

	

 java.io.tmpdir

 	
 The directory that temporary files are written to

	

 java.library.path

 	
 Directories to search for native libraries

	

 java.specification.version

 	
 Version of the Java API specification

	

 java.specification.vendor

 	
 Vendor of the Java API specification

	

 java.specification.name

 	
 Name of the Java API specification

	

 java.version

 	
 Version of the Java API implementation

	

 java.vendor

 	
 Vendor of this Java API implementation

	

 java.vendor.url

 	
 URL of the vendor of this Java API implementation

	

 java.vm.specification.version

 	
 Version of the Java VM specification

	

 java.vm.specification.vendor

 	
 Vendor of the Java VM specification

	

 java.vm.specification.name

 	
 Name of the Java VM specification

	

 java.vm.version

 	
 Version of the Java VM implementation

	

 java.vm.vendor

 	
 Vendor of the Java VM implementation

	

 java.vm.name

 	
 Name of the Java VM implementation

	

 os.name

 	
 Name of the host operating system

	

 os.arch

 	
 Host operating system architecture

	

 os.version

 	
 Version of the host operating system

 The
in

 , out, and
err
 fields hold the standard
input, output, and error streams for the system. These fields are
frequently used in calls such as System.out.println(
). In Java 1.1, setIn(),
setOut(), and setErr() allow
these streams to be redirected.

 System
also defines various other useful static methods. exit(
) causes the Java VM to exit. arraycopy(
) efficiently copies an array or a portion of an array into
a destination array. currentTimeMillis(
)

returns the current time in milliseconds since midnight GMT, January
1, 1970 GMT. In

 Java 5.0, nanoTime()
returns a time in nanoseconds. Unlike currentTimeMillis(
) this time is not relative to any fixed point and so is
useful only for elapsed time computations.

 getenv()

returns the value of a platform-dependent environment variable, or
(in Java 5.0) returns a Map of all environment
variables. The one-argument version of getenv()
was previously deprecated but has been restored in Java 5.0.

 identityHashCode(
)
 computes the hashcode for an object in
the same way that the default Object.hashCode()
method does. It does this regardless of whether or how the
hashCode() method has been overridden.
In

 Java 5.0, inheritedChannel(
) returns a java.nio.channels.Channel
object that represents a network connection passed to the Java
process by the invoking process. This allows Java programs to be used
with the Unix inetd daemon, for example.

 load()

 and loadLibrary()
can read
 libraries of native code
into the system. mapLibraryName(
)

converts a system-independent library name into a system-dependent
library filename. Finally, getSecurityManager(
)

 and
setSecurityManager() get and set the system
SecurityManager object responsible for the system
security policy.
See also Runtime, which defines several other
methods that provide low-level access to system facilities.
public final class System {
// No Constructor
 // Public Constants
 public static final java.io.PrintStream err;
 public static final java.io.InputStream in;
 public static final java.io.PrintStream out;
// Public Class Methods
 public static void arraycopy(Object src, int srcPos, Object dest, int destPos,
 int length); native
 5.0 public static String clearProperty(String key);
 public static long currentTimeMillis(); native
 public static void exit(int status);
 public static void gc();
5.0 public static java.util.Map<String,String> getenv();
 public static String getenv(String name);
 public static java.util.Properties getProperties();
 public static String getProperty(String key);
 public static String getProperty(String key, String def);
 public static SecurityManager getSecurityManager();
1.1 public static int identityHashCode(Object x); native
 5.0 public static java.nio.channels.Channel inheritedChannel() throws java.io.IOException;
 public static void load(String filename);
 public static void loadLibrary(String libname);
1.2 public static String mapLibraryName(String libname); native
 5.0 public static long nanoTime(); native
 public static void runFinalization();
1.1 public static void setErr(java.io.PrintStream err);
1.1 public static void setIn(java.io.InputStream in);
1.1 public static void setOut(java.io.PrintStream out);
 public static void setProperties(java.util.Properties props);
1.2 public static String setProperty(String key, String value);
 public static void setSecurityManager(SecurityManager s);
// Deprecated Public Methods
 1.1# public static void runFinalizersOnExit(boolean value);
}

Name
Thread

Synopsis

 This class encapsulates all information
about a single thread of control running on the Java interpreter. To
create a thread, you must either pass a Runnable
object (i.e., an object that implements the
Runnable interface by defining a run(
) method) to the Thread constructor or
subclass Thread so that it defines its own
run() method. The run()
method of the Thread or of the specified
Runnable object is the body of the thread. It
begins executing when the start() method of the
Thread object is called. The thread runs until the
run() method returns. isAlive(
) returns true if a thread has been
started, and the run() method has not yet exited.

 The static methods of this class
operate on the currently running thread. currentThread(
) returns the Thread object of the
currently running code. sleep() makes the current
thread stop for a specified amount of time. yield(
) makes the current thread give up control to any other
threads of equal priority that are waiting to run.
holdsLock() tests whether the current thread
holds a lock (through a synchronized method or
statement) on the specified object; this Java 1.4 method is often
useful with an assert statement.

 The instance methods may be called by
one thread to operate on a different thread. checkAccess(
) checks whether the running thread has permission to
modify a Thread object and throws a
SecurityException if it does not. join(
) waits for a thread to die. interrupt(
) wakes up a waiting or sleeping thread (with an
InterruptedException) or sets an interrupted flag
on a nonsleeping thread. A thread can test its own interrupted flag
with the static interrupted(
)
 method or can test the flag of another
thread with isInterrupted(). Calling
interrupted() implicitly clears the interrupted
flag, but calling isInterrupted() does not.
Methods related to sleep() and
interrupt() are the wait()
and notify() methods defined by the
Object class. Calling wait()
causes the current thread to block until the
object’s notify() method is
called by another thread.

 setName() sets
the name of a thread, which is purely optional. setPriority(
) sets the priority of the thread. Higher priority threads
run before lower priority threads. Java does not specify what happens
to multiple threads of equal priority; some systems perform
time-slicing and share the CPU between such threads. On other
systems, one compute-bound thread that does not call yield(
) may starve another thread of the same priority.
setDaemon() sets a boolean flag that specifies
whether this thread is a daemon or not. The Java VM keeps running as
long as at least one nondaemon thread is running. Call
getThreadGroup() to obtain the
ThreadGroup of which a thread is part. In Java 1.2
and later, use setContextClassLoader() to specify
the ClassLoader to be used to load any classes
required by the thread.

 suspend(),
resume(), and stop() suspend,
resume, and stop a given thread, respectively, but all three methods
are deprecated because they are inherently unsafe and can cause
deadlock. If a thread must be stoppable, have it periodically check a
flag and exit if the flag is set.
In Java 1.4 and later, the four-argument Thread()
constructor allows you to specify the “stack
size” parameter for the thread. Typically, larger
stack sizes allow threads to recurse more deeply before running out
of stack space. Smaller stack sizes reduce the fixed per-thread
memory requirements and may allow more threads to exist concurrently.
The meaning of this argument is implementation dependent, and
implementations may even ignore it.

 Java 5.0 adds important new features to
this class. getId()
 returns a unique
long

identifier for the thread. getState(
)

returns the state of the thread as an enumerated constant of type
Thread.State.
Thread.UncaughtExceptionHandler

defines an API for handling
exceptions that
cause the run() method of the thread to exit.
Register a handler of this type with
setUncaughtExceptionHandler(
)
 or register a default handler with the static
methods setDefaultUncaughtExceptionHandler(
)
 . Obtain a snapshot of a
thread’s current stack trace with
getStackTrace()

 . This returns an array of
StackTraceElement objects: the first element of
the array is the most recent method invocation and the last element
is the least recent. The static getAllStackTraces(
)
 returns stack traces for all running threads
(the traces may be obtained at different times for different
threads).
[image: java.lang.Thread]

Figure 10-63. java.lang.Thread

public class Thread implements Runnable {
// Public Constructors
 public Thread();
 public Thread(String name);
 public Thread(Runnable target);
 public Thread(Runnable target, String name);
 public Thread(ThreadGroup group, String name);
 public Thread(ThreadGroup group, Runnable target);
 public Thread(ThreadGroup group, Runnable target, String name);
1.4 public Thread(ThreadGroup group, Runnable target, String name, long stackSize);
// Public Constants
 public static final int MAX_PRIORITY; =10
 public static final int MIN_PRIORITY; =1
 public static final int NORM_PRIORITY; =5
 // Nested Types
 5.0 public enum State;
5.0 public interface UncaughtExceptionHandler;
// Public Class Methods
 public static int activeCount();
 public static Thread currentThread(); native
 public static void dumpStack();
 public static int enumerate(Thread[] tarray);
5.0 public static java.util.Map<Thread,StackTraceElement[]> getAllStackTraces();
5.0 public static Thread.UncaughtExceptionHandler getDefaultUncaughtExceptionHandler();
1.4 public static boolean holdsLock(Object obj); native
 public static boolean interrupted();
5.0 public static void setDefaultUncaughtExceptionHandler(Thread.UncaughtExceptionHandler eh);
 public static void sleep(long millis) throws InterruptedException; native
 public static void sleep(long millis, int nanos) throws InterruptedException;
 public static void yield(); native
 // Public Instance Methods
 public final void checkAccess();
1.2 public ClassLoader getContextClassLoader();
5.0 public long getId(); default:7
 public final String getName(); default:"Thread-0"
 public final int getPriority(); default:5
 5.0 public StackTraceElement[] getStackTrace();
5.0 public Thread.State getState();
 public final ThreadGroup getThreadGroup();
5.0 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler(); default:ThreadGroup
 public void interrupt();
 public final boolean isAlive(); native default:false
 public final boolean isDaemon(); default:false
 public boolean isInterrupted(); default:false
 public final void join() throws InterruptedException;
 public final void join(long millis) throws InterruptedException; synchronized
 public final void join(long millis, int nanos) throws InterruptedException; synchronized
 1.2 public void setContextClassLoader(ClassLoader cl);
 public final void setDaemon(boolean on);
 public final void setName(String name);
 public final void setPriority(int newPriority);
5.0 public void setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler eh);
 public void start(); synchronized
 // Methods Implementing Runnable
 public void run();
// Public Methods Overriding Object
 public String toString();
// Deprecated Public Methods
 # public int countStackFrames(); native
 # public void destroy();
public final void resume();
public final void stop();
public final void stop(Throwable obj); synchronized
 # public final void suspend();
}

Passed To

 Runtime.{addShutdownHook(),
removeShutdownHook()},
SecurityManager.checkAccess(),
Thread.UncaughtExceptionHandler.uncaughtException(
), ThreadGroup.{enumerate(),
uncaughtException()},
java.util.concurrent.ThreadPoolExecutor.beforeExecute(
), java.util.concurrent.TimeUnit.timedJoin(
),
java.util.concurrent.locks.AbstractQueuedSynchronizer.isQueued(
), java.util.concurrent.locks.LockSupport.unpark(
),
java.util.concurrent.locks.ReentrantLock.hasQueuedThread(
),
java.util.concurrent.locks.ReentrantReadWriteLock.hasQueuedThread(
)

Returned By

 java.util.concurrent.ThreadFactory.newThread(),
java.util.concurrent.locks.AbstractQueuedSynchronizer.getFirstQueuedThread(
),
java.util.concurrent.locks.ReentrantLock.getOwner(
),
java.util.concurrent.locks.ReentrantReadWriteLock.getOwner(
)

Name
Thread.State

Synopsis

 This enumerated
type defines the possible
states
of a thread. Call the getState(
)
 method of a Thread
object to obtain one of the enumerated constants defined here. A
NEW

 thread has not been started yet, and a
TERMINATED thread has exited. A
BLOCKED thread is waiting to enter a
synchronized method or block. A
WAITING
 thread is waiting in
Object.wait(), Thread.join(),
or a similar method. A
TIMED_WAITING
 thread is waiting but is subject to a
timeout, such as in Thread.sleep() or the timed
versions of Object.wait() and
Thread.join(). Finally, a thread that has been
started and has not yet exited and is not blocked or waiting is
RUNNABLE
 . This does not mean that the operating
system is currently running it or that it is even making any forward
progress, but that it is at least available to run when the operating
system gives it the CPU.
public enum Thread.State {
// Enumerated Constants
 NEW,
 RUNNABLE,
 BLOCKED,
 WAITING,
 TIMED_WAITING,
 TERMINATED;
// Public Class Methods
 public static Thread.State valueOf(String name);
 public static final Thread.State[] values();
}

Returned By

 Thread.getState(),
java.lang.management.ThreadInfo.getThreadState()

Name
Thread.UncaughtExceptionHandler

Synopsis

 This
interface defines a handler to be invoked when a thread throws an
exception that remains uncaught. When
this happens, the uncaughtException(
)
 method of the registered handler is
invoked with the Thread object that threw the
exception and the Throwable exception object as
arguments. The handler is run by the thread that received the
exception, and that thread will exit as soon as the handler exits. If
uncaughtException() itself throws an exception,
that exception will be ignored.
An object that implements this interface may be registered for a
Thread with the
setUncaughtExceptionHandler(
)
 method. A default
UncaughtExceptionHandler may be registered with
the static method Thread.setDefaultUncaughtExceptionHandler(
)
 . If no handler or default handler is
registered, the uncaughtException() method of the
containing ThreadGroup is used instead.
public interface Thread.UncaughtExceptionHandler {
// Public Instance Methods
 void uncaughtException(Thread t, Throwable e);
}

Implementations

 ThreadGroup

Passed To

 Thread.{setDefaultUncaughtExceptionHandler(),
setUncaughtExceptionHandler()}

Returned By

 Thread.{getDefaultUncaughtExceptionHandler(),
getUncaughtExceptionHandler()}

Name
ThreadDeath

Synopsis

 Signals that a thread should terminate.
This error is thrown in a thread when the Thread.stop(
) method is called for that thread. This is an unusual
Error type that simply causes a thread to be
terminated, but does not print an error message or cause the
interpreter to exit. You can catch ThreadDeath
errors to do any necessary cleanup for a thread, but if you do, you
must rethrow the error so that the thread actually terminates.
[image: java.lang.ThreadDeath]

Figure 10-64. java.lang.ThreadDeath

public class ThreadDeath extends Error {
// Public Constructors
 public ThreadDeath();
}

Name
ThreadGroup

Synopsis

 This class represents a
group of threads and allows that group to
be manipulated as a whole. A ThreadGroup can
contain Thread objects, as well as other child
ThreadGroup objects. All
ThreadGroup objects are created as children of
some other ThreadGroup, and thus there is a
parent/child hierarchy of ThreadGroup objects. Use
getParent()
 to
obtain the parent ThreadGroup, and use
activeCount()

 ,
activeGroupCount(), and the various
enumerate() methods to list the child
Thread and ThreadGroup objects.
Most applications can simply rely on the default system thread group.
System-level code and applications such as servers that need to
create a large number of threads may find it convenient to create
their own ThreadGroup objects, however.

 interrupt()
interrupts all threads in the group at once. setMaxPriority(
) specifies the maximum priority any thread in the group
can have. checkAccess() checks whether the
calling thread has permission to modify the given thread group. The
method throws a SecurityException if the current
thread does not have access. uncaughtException()
contains the code that is run when a thread terminates because of an
uncaught exception or error. You can customize this method by
subclassing ThreadGroup.
[image: java.lang.ThreadGroup]

Figure 10-65. java.lang.ThreadGroup

public class ThreadGroup implements Thread.UncaughtExceptionHandler {
// Public Constructors
 public ThreadGroup(String name);
 public ThreadGroup(ThreadGroup parent, String name);
// Public Instance Methods
 public int activeCount();
 public int activeGroupCount();
 public final void checkAccess();
 public final void destroy();
 public int enumerate(ThreadGroup[] list);
 public int enumerate(Thread[] list);
 public int enumerate(Thread[] list, boolean recurse);
 public int enumerate(ThreadGroup[] list, boolean recurse);
 public final int getMaxPriority();
 public final String getName();
 public final ThreadGroup getParent();
1.2 public final void interrupt();
 public final boolean isDaemon();
1.1 public boolean isDestroyed(); synchronized
 public void list();
 public final boolean parentOf(ThreadGroup g);
 public final void setDaemon(boolean daemon);
 public final void setMaxPriority(int pri);
 public void uncaughtException(Thread t, Throwable e);
Implements:Thread.UncaughtExceptionHandler
// Methods Implementing Thread.UncaughtExceptionHandler
 public void uncaughtException(Thread t, Throwable e);
// Public Methods Overriding Object
 public String toString();
// Deprecated Public Methods
 1.1# public boolean allowThreadSuspension(boolean b);
public final void resume();
public final void stop();
public final void suspend();
}

Passed To

 SecurityManager.checkAccess(),
Thread.Thread()

Returned By

 SecurityManager.getThreadGroup(),
Thread.getThreadGroup()

Name
ThreadLocal<T>

Synopsis

 This
class provides a convenient way to create thread-local
variables.
When you declare a static field in a class, there is only one value
for that field, shared by all objects of the class. When you declare
a nonstatic instance field in a class, every object of the class has
its own separate copy of that variable.
ThreadLocal provides an option between these two
extremes. If you declare a static field to hold a
ThreadLocal object, that
ThreadLocal holds a different value for each
thread. Objects running in the same thread see the same value when
they call the get() method of the
ThreadLocal object. Objects running in different
threads obtain different values from get(),
however.
In Java 5.0, this class has been made
generic and the type variable T represents
the type of the object referenced by this
ThreadLocal.

 The set() method
sets the value held by the ThreadLocal object for
the currently running thread. get() returns the
value held for the currently running thread. Note that there is no
way to obtain the value of the ThreadLocal object
for any thread other than the one that calls get(
). To understand the ThreadLocal class,
you may find it helpful to think of a ThreadLocal
object as a hashtable or java.util.Map that maps
from Thread objects to arbitrary values. Calling
set() creates an association between the current
Thread (Thread.currentThread(
)) and the specified value. Calling get(
) first looks up the current thread, then uses the
hashtable to look up the value associated with that current thread.
If a thread calls get() for the first time
without having first called set() to establish a
thread-local value, get() calls the protected
initialValue()
 method to obtain the initial
value to return. The default implementation of initialValue(
) simply returns null, but subclasses
can override this if they desire.
See also InheritableThreadLocal, which allows
thread-local values to be inherited from parent threads by child
threads.
public class ThreadLocal<T> {
// Public Constructors
 public ThreadLocal();
// Public Instance Methods
 public T get();
5.0 public void remove();
 public void set(T value);
// Protected Instance Methods
 protected T initialValue(); constant
}

Subclasses

 InheritableThreadLocal

Name
Throwable

Synopsis

 This
is the root class of the Java exception and error hierarchy. All
exceptions and errors are subclasses of Throwable.
The getMessage() method retrieves any error
message associated with the exception or error. The default
implemenation of getLocalizedMessage() simply
calls getMessage(), but subclasses may override
this method to return an error message that has been localized for
the default locale.
It is often the case that an Exception or
Error is generated as a direct result of some
other exception or error, perhaps one thrown by a lower-level API. As
of Java 1.4 and later, all Throwable objects may
have a “cause” which specifies the
Throwable that caused this one. If there is a
cause, pass it to the Throwable() constructor, or
to the initCause() method. When you catch a
Throwable object, you can obtain the
Throwable that caused it, if any, with
getCause().
Every Throwable object has information about the
execution stack associated with it. This information is initialized
when the Throwable object is created. If the
object will be thrown somewhere other than where it was created, or
if it caught and will be re-thrown, you can use
fillInStackTrace() to capture the current
execution stack before throwing it. printStackTrace(
) prints a textual representation of the stack to the
specified PrintWriter,
PrintStream, or to the
System.err stream. In Java 1.4, you can also
obtain this information with getStackTrace()
which returns an array of StackTraceElement
objects describing the execution stack.
[image: java.lang.Throwable]

Figure 10-66. java.lang.Throwable

public class Throwable implements Serializable {
// Public Constructors
 public Throwable();
 public Throwable(String message);
1.4 public Throwable(Throwable cause);
1.4 public Throwable(String message, Throwable cause);
// Public Instance Methods
 public Throwable fillInStackTrace(); native synchronized
1.4 public Throwable getCause(); default:null
 1.1 public String getLocalizedMessage(); default:null
 public String getMessage(); default:null
 1.4 public StackTraceElement[] getStackTrace();
1.4 public Throwable initCause(Throwable cause); synchronized
 public void printStackTrace();
 public void printStackTrace(java.io.PrintStream s);
1.1 public void printStackTrace(java.io.PrintWriter s);
1.4 public void setStackTrace(StackTraceElement[] stackTrace);
// Public Methods Overriding Object
 public String toString();
}

Subclasses

 Error, Exception

Passed To
Too many methods to list.

Returned By

 java.io.WriteAbortedException.getCause(),
ClassNotFoundException.{getCause(),
getException()},
ExceptionInInitializerError.{getCause(),
getException()},
java.lang.reflect.InvocationTargetException.{getCause(
), getTargetException()},
java.lang.reflect.UndeclaredThrowableException.{getCause(
), getUndeclaredThrowable()},
java.security.PrivilegedActionException.getCause(
), java.util.logging.LogRecord.getThrown(
),
javax.xml.transform.TransformerException.{getCause(
), getException(), initCause(
)}, javax.xml.xpath.XPathException.getCause(
)

Thrown By

 Object.finalize(),
java.lang.reflect.InvocationHandler.invoke()

Name
TypeNotPresentException

Synopsis
This unchecked exception signals that a class file associated with a
java.lang.reflect.Type could not be found. It
typically results when a class depends on a type that has changed or
been removed and indicates version skew that requires recompilation
or code refactoring. This is essentially the generic type version of
ClassNotFoundException.
[image: java.lang.TypeNotPresentException]

Figure 10-67. java.lang.TypeNotPresentException

public class TypeNotPresentException extends RuntimeException {
// Public Constructors
 public TypeNotPresentException(String typeName, Throwable cause);
// Public Instance Methods
 public String typeName();
}

Name
UnknownError

Synopsis

 Signals
that an unknown error has occurred at the level of the Java Virtual
Machine.
[image: java.lang.UnknownError]

Figure 10-68. java.lang.UnknownError

public class UnknownError extends VirtualMachineError {
// Public Constructors
 public UnknownError();
 public UnknownError(String s);
}

Name
UnsatisfiedLinkError

Synopsis

 Signals
that Java cannot satisfy all the links in a class that it has loaded.
[image: java.lang.UnsatisfiedLinkError]

Figure 10-69. java.lang.UnsatisfiedLinkError

public class UnsatisfiedLinkError extends LinkageError {
// Public Constructors
 public UnsatisfiedLinkError();
 public UnsatisfiedLinkError(String s);
}

Name
UnsupportedClassVersionError

Synopsis

 Every
Java class file contains a version number that specifies the version
of the class file format. This error is thrown when the Java Virtual
Machine attempts to read a class file with a version number it does
not support.
[image: java.lang.UnsupportedClassVersionError]

Figure 10-70. java.lang.UnsupportedClassVersionError

public class UnsupportedClassVersionError extends ClassFormatError {
// Public Constructors
 public UnsupportedClassVersionError();
 public UnsupportedClassVersionError(String s);
}

Name
UnsupportedOperationException

Synopsis

 Signals that a method
you have called is not supported, and its implementation does not do
anything (except throw this exception). This exception is used most
often by the Java collection framework of
java.util. Immutable or unmodifiable collections
throw this exception when a modification method, such as
add() or delete(), is called.
[image: java.lang.UnsupportedOperationException]

Figure 10-71. java.lang.UnsupportedOperationException

public class UnsupportedOperationException extends RuntimeException {
// Public Constructors
 public UnsupportedOperationException();
5.0 public UnsupportedOperationException(Throwable cause);
 public UnsupportedOperationException(String message);
5.0 public UnsupportedOperationException(String message, Throwable cause);
}

Subclasses

 java.nio.ReadOnlyBufferException

Name
VerifyError

Synopsis

 Signals that a class has
not passed the byte-code verification procedures.
[image: java.lang.VerifyError]

Figure 10-72. java.lang.VerifyError

public class VerifyError extends LinkageError {
// Public Constructors
 public VerifyError();
 public VerifyError(String s);
}

Name
VirtualMachineError

Synopsis

 An
abstract error type that serves as superclass for a group of errors
related to the Java Virtual Machine. See
InternalError, UnknownError,
OutOfMemoryError, and
StackOverflowError.
[image: java.lang.VirtualMachineError]

Figure 10-73. java.lang.VirtualMachineError

public abstract class VirtualMachineError extends Error {
// Public Constructors
 public VirtualMachineError();
 public VirtualMachineError(String s);
}

Subclasses

 InternalError,
OutOfMemoryError,
StackOverflowError,
UnknownError

Name
Void

Synopsis

 The
Void class cannot be instantiated and serves
merely as a placeholder for its static TYPE field,
which is a Class object constant that represents
the void type.
public final class Void {
// No Constructor
 // Public Constants
 public static final Class<Void> TYPE;
}

Name
Package java.lang.annotation

Synopsis

 This
package defines the framework for annotations. It includes the base
Annotation
 interface that all annotation types
extend, meta-annotation types, their associated
enumerated types, and exception and error
classes related to annotations. The most important members of this
package are the meta-annotation types: Documented,
Inherited, Retention, and
Target.

Interfaces
public interface Annotation;

Enumerated Types
public enum ElementType;
public enum RetentionPolicy;

Annotation Types
public @interface Documented;
public @interface Inherited;
public @interface Retention;
public @interface Target;

Exceptions
public class AnnotationTypeMismatchException extends RuntimeException;
public class IncompleteAnnotationException extends RuntimeException;

Errors
public class AnnotationFormatError extends Error;

Name
Annotation

Synopsis

 A type declared with the
@interface syntax is an annotation type that
implicitly extends this interface. Note that the
Annotation interface is not itself an annotation
type. Furthermore, if you define an interface
(rather than an @interface) that explicitly
extends Annotation, the result is not an
annotation type either. The only way to define an annotation type is
with an @interface definition. When an annotation
is queried with the
java.lang.reflect.AnnotatedElement API, the object
returned implements this interface as well as the interface defined
by the specific annotation type.
This interface defines the annotationType(
)
 method, which returns the
Class of the annotation type for any annotation
object. It also includes the equals(
)

and hashCode() methods of
Object to require an implementation to compare
annotations by the values of their members rather than simply by
using = =. Finally, Annotation
also overrides the toString() method to require
implementations to provide some meaningful string representation of
an annotation. The format of the returned string is not specified,
but you can expect implementations to produce a string using a syntax
similar to that used to encode annotations in Java source code.
public interface Annotation {
// Public Instance Methods
 Class<? extends java.lang.annotation.Annotation> annotationType();
 boolean equals(Object obj);
 int hashCode();
 String toString();
}

Implementations

 Deprecated, Override,
SuppressWarnings, Documented,
Inherited, Retention,
Target

Returned By
Too many methods to list.

Name
AnnotationFormatError

Synopsis
An
error
of this type indicates that a class file includes a malformed
annotation.
[image: java.lang.annotation.AnnotationFormatError]

Figure 10-74. java.lang.annotation.AnnotationFormatError

public class AnnotationFormatError extends Error {
// Public Constructors
 public AnnotationFormatError(Throwable cause);
 public AnnotationFormatError(String message);
 public AnnotationFormatError(String message, Throwable cause);
}

Name
AnnotationTypeMismatchException

Synopsis

 An
exception of this type indicates version skew in an annotation type.
It occurs when the Java VM attempts to read an annotation from a
class file and discovers that the type of an annotation member has
changed since the class file (and the annotation it contains) was
compiled.
[image: java.lang.annotation.AnnotationTypeMismatchException]

Figure 10-75. java.lang.annotation.AnnotationTypeMismatchException

public class AnnotationTypeMismatchException extends RuntimeException {
// Public Constructors
 public AnnotationTypeMismatchException(java.lang.reflect.Method element, String foundType);
// Public Instance Methods
 public java.lang.reflect.Method element();
 public String foundType();
}

Name
Documented

Synopsis
A

 meta-annotation
of this type indicates that the annotated type should be documented
by Javadoc and similar documentation tools. If an annotation type is
an @Documented annotation, then the presence of an
annotation of that type is part of the public API of the annotated
program element. java.lang.Deprecated is an
@Documented annotation type, for example, and so
are each of the meta-annotation types in this package.
It is recommended that any annotation type that is
@Documented should also have runtime
@Retention so that the presence of the annotation
can be queried via reflection.
[image: java.lang.annotation.Documented]

Figure 10-76. java.lang.annotation.Documented

public @interface Documented {
}

Name
ElementType

Synopsis
The

 constants
declared by this enumerated type represent the types of program
elements that can be annotated. The value of an
@Target annotation is an array of
ElementType constants. Most of the
constants
have obvious meanings, but some require additional explanation.
TYPE represents a class, interface, enumerated
type, or annotation type. ANNOTATION_TYPE
represents only annotation types and is used for meta-annotations.
FIELD includes enumerated constants, and
PARAMETER includes both method parameters and
catch clause parameters. Note that the
METHOD and CONSTRUCTOR are
distinct constants.
[image: java.lang.annotation.ElementType]

Figure 10-77. java.lang.annotation.ElementType

public enum ElementType {
// Enumerated Constants
 TYPE,
 FIELD,
 METHOD,
 PARAMETER,
 CONSTRUCTOR,
 LOCAL_VARIABLE,
 ANNOTATION_TYPE,
 PACKAGE;
// Public Class Methods
 public static ElementType valueOf(String name);
 public static final ElementType[] values();
}

Returned By

 Target.value()

Name
IncompleteAnnotationException

Synopsis

 An
exception of this type indicates version skew in an annotation type.
It occurs when the Java VM attempts to read an annotation from a
class file and discovers that the annotation type has added a new
member since the class file was compiled. This means that the
annotation compiled into the class file is incomplete since it does
not define a value for all members of the annotation type. Note that
this exception does not occur if a new member with a
default clause is added to the annotation type.
[image: java.lang.annotation.IncompleteAnnotationException]

Figure 10-78. java.lang.annotation.IncompleteAnnotationException

public class IncompleteAnnotationException extends RuntimeException {
// Public Constructors
 public IncompleteAnnotationException(Class<? extends java.lang.annotation.Annotation> annotationType,
 String elementName);
// Public Instance Methods
 public Class<? extends java.lang.annotation.Annotation> annotationType();
 public String elementName();
}

Name
Inherited

Synopsis
When an annotation type that has an @Inherited

 meta-annotation
is applied to a class, that annotation should be inherited by
subclasses and descendants of the annotated class. The inheritance is
only for classes and their subclasses. If an
@Inherited annotation type is applied to a method
or program element other than a class, no inheritance applies. If the
@Inherited annotation type also has runtime
Retention, reflective access to the annotation
through java.lang.reflect.AnnotatedElement manages
the inheritance of the annotation.
[image: java.lang.annotation.Inherited]

Figure 10-79. java.lang.annotation.Inherited

public @interface Inherited {
}

Name
Retention

Synopsis
A

 meta-annotation
of this type specifies how long the annotated annotation type should
be retained. The value() of this annotation type
is one of the three RetentionPolicy enumerated
constants. See RetentionPolicy for details. If an
annotation type does not have an @Retention
meta-annotation, its default retention is
RetentionPolicy.CLASS.
[image: java.lang.annotation.Retention]

Figure 10-80. java.lang.annotation.Retention

public @interface Retention {
// Public Instance Methods
 RetentionPolicy value();
}

Name
RetentionPolicy

Synopsis
The

 constants
declared by the enumerated type specify the possible retention values
for an @Retention meta-annotation. Annotations
with SOURCE retention appear in Java source code
only and are discarded by the compiler. Annotations with
CLASS retention are compiled into the class file
and are visible to tools that read class files but are not loaded by
the Java VM at runtime. (This is the default retention for annotation
types that do not have an @Retention
meta-annotation.) Finally, annotations with
RUNTIME retention are stored in the class file and
loaded by the Java interpreter at runtime. These annotations are
available for reflective access through
java.lang.reflect.AnnotatedElement.
[image: java.lang.annotation.RetentionPolicy]

Figure 10-81. java.lang.annotation.RetentionPolicy

public enum RetentionPolicy {
// Enumerated Constants
 SOURCE,
 CLASS,
 RUNTIME;
// Public Class Methods
 public static RetentionPolicy valueOf(String name);
 public static final RetentionPolicy[] values();
}

Returned By

 Retention.value()

Name
Target

Synopsis
A

 meta-annotation
of this type specifies what program elements the annotated annotation
type can be applied to. The value(
)
 of a Target
annotation is an array of ElementType enumerated
constants. See ElementType for details on the
allowed values. If an annotation type does not have an
@Target meta-annotation, it can be applied to any
program element.
[image: java.lang.annotation.Target]

Figure 10-82. java.lang.annotation.Target

public @interface Target {
// Public Instance Methods
 ElementType[] value();
}

Name
Package java.lang.instrument

Synopsis

 This
package defines the API for instrumenting a Java VM by
transforming class files to add profiling support, code coverage
testing, or other features.
The -javaagent command-line option to the Java
interpreter provides a hook for running the premain(
) method of a Java instrumentation
agent. An Instrumentation
object passed to the premain() method provides an
entry point into this package, and methods of
Instrumentation allow loaded classes to be
redefined and ClassFileTransformer objects to be
registered for classes not yet loaded.

Interfaces
public interface ClassFileTransformer;
public interface Instrumentation;

Classes
public final class ClassDefinition;

Exceptions
public class IllegalClassFormatException extends Exception;
public class UnmodifiableClassException extends Exception;

Name
ClassDefinition

Synopsis

 This class is a simple wrapper around a
Class object and an array of bytes that represents
a class file for that class. An array of
ClassDefinition objects is passed to the
redefineClasses() method of the
Instrumentation class. Class redefinitions are
allowed to change method implementations, but not the members or
inheritance of a class or the signature of the methods.
public final class ClassDefinition {
// Public Constructors
 public ClassDefinition(Class<?> theClass, byte[] theClassFile);
// Public Instance Methods
 public Class<?> getDefinitionClass();
 public byte[] getDefinitionClassFile();
}

Passed To

 Instrumentation.redefineClasses()

Name
ClassFileTransformer

Synopsis
A
ClassFileTransformer

 registered through an
Instrumentation object is offered a chance to
transform every class that is subsequently loaded or redefined. The
final argument to transform() is a byte array
that contains the raw bytes of the class file (or bytes returned by a
previously invoked ClassFileTransformer). If the
transform()

method wishes to transform the class, it should return the
transformed bytes in a newly allocated array. The array passed to
transform() should not be modified. If the
transform() method does not wish to transform a
given class, it should return null.
public interface ClassFileTransformer {
// Public Instance Methods
 byte[] transform(ClassLoader loader, String className, Class<?> classBeingRedefined,
java.security.ProtectionDomain protectionDomain, byte[] classfileBuffer)
throws IllegalClassFormatException;
}

Passed To

 Instrumentation.{addTransformer(),
removeTransformer()}

Name
IllegalClassFormatException

Synopsis

 A
ClassFileTransformer should throw an exception of
this type from its transform() method if it
believes that the class file bytes it has been passed are malformed
(this could happen, for example, if a defective
ClassFileTransformer had previously transformed a
valid class file).
[image: java.lang.instrument.IllegalClassFormatException]

Figure 10-83. java.lang.instrument.IllegalClassFormatException

public class IllegalClassFormatException extends Exception {
// Public Constructors
 public IllegalClassFormatException();
 public IllegalClassFormatException(String s);
}

Thrown By

 ClassFileTransformer.transform()

Name
Instrumentation

Synopsis

 This interface is the main entry
point to the java.lang.instrument API. A Java
instrumentation

 agent specified on the Java
interpreter command line with the -javaagent
argument must be a class that defines the following method:
public static void premain(String args, Instrumentation instr)
The Java interpreter invokes the premain(
)

method during startup before calling the main(
)
 method
of the program. Any arguments specified with the
-javaagent command line are passed in the first
premain() argument, and an
Instrumentation object is passed as the second
argument.
The most powerful feature of the Instrumentation
object is the ability to register
ClassFileTransformer objects to augment or rewrite
the byte code of Java class files as they are loaded into the
interpreter. If isRedefineClassesSupported(
)
 returns
true, you can also redefine already-loaded classes
on the fly with redefineClasses(
)
 .

 getAllLoadedClasses(
)
 returns an array of all
classes loaded into the VM, and getInitiatedClasses(
)
 returns an array of classes
loaded by a specified ClassLoader.
getObjectSize()

 returns an
implementation-specific approximation of the amount of memory
required by a specified object.
public interface Instrumentation {
// Public Instance Methods
 void addTransformer(ClassFileTransformer transformer);
 Class[] getAllLoadedClasses();
 Class[] getInitiatedClasses(ClassLoader loader);
 long getObjectSize(Object objectToSize);
 boolean isRedefineClassesSupported();
 void redefineClasses(ClassDefinition[] definitions) throws ClassNotFoundException,
 UnmodifiableClassException;
 boolean removeTransformer(ClassFileTransformer transformer);
}

Name
UnmodifiableClassException

Synopsis

 An
exception of this type is thrown from
Instrumentation.redefineClasses() if a requested
redefinition cannot be performed. This might occur, for example, if
the redefinition attempts to add or remove members from the class.
[image: java.lang.instrument.UnmodifiableClassException]

Figure 10-84. java.lang.instrument.UnmodifiableClassException

public class UnmodifiableClassException extends Exception {
// Public Constructors
 public UnmodifiableClassException();
 public UnmodifiableClassException(String s);
}

Thrown By

 Instrumentation.redefineClasses()

Name
Package java.lang.management

Synopsis

 This package defines
“management bean” or
"

 MXBean” interfaces for
managing and monitoring a running Java virtual machine. It relies on
the JMX API of the javax.management package, which
is not covered in this book. ManagementFactory is
the main entry point to this API; it defines static factory methods
for obtaining instances of the various management bean interfaces.
These instances can then be queried for specific information about
the Java VM. The jconsole tool shipped with the
Java 5.0 JDK demonstrates the capabilites of this package.

Interfaces
public interface ClassLoadingMXBean;
public interface CompilationMXBean;
public interface GarbageCollectorMXBean extends MemoryManagerMXBean;
public interface MemoryManagerMXBean;
public interface MemoryMXBean;
public interface MemoryPoolMXBean;
public interface OperatingSystemMXBean;
public interface RuntimeMXBean;
public interface ThreadMXBean;

Enumerated Types
public enum MemoryType;

Classes
public class ManagementFactory;
public final class ManagementPermission extends java.security.BasicPermission;
public class MemoryNotificationInfo;
public class MemoryUsage;
public class ThreadInfo;

Name
ClassLoadingMXBean

Synopsis
This
 MXBean
interface defines methods for determining how many classes are
currently loaded in the Java VM, how many have ever been loaded,
and how many have ever been unloaded. The setVerbose(
)
 method turns verbose class
loading output from the VM on or off.
public interface ClassLoadingMXBean {
// Public Instance Methods
 int getLoadedClassCount();
 long getTotalLoadedClassCount();
 long getUnloadedClassCount();
 boolean isVerbose();
 void setVerbose(boolean value);
}

Returned By

 ManagementFactory.getClassLoadingMXBean()

Name
CompilationMXBean

Synopsis

 This MXBean interface defines
methods for querying the just-in-time compiler of the
Java virtual machine. getName(
)
 returns an identifying name for the
compiler. If the implementation tracks compilation time,
getTotalCompilationTime() returns the approximate
total compilation time in milliseconds.
public interface CompilationMXBean {
// Public Instance Methods
 String getName();
 long getTotalCompilationTime();
 boolean isCompilationTimeMonitoringSupported();
}

Returned By

 ManagementFactory.getCompilationMXBean()

Name
GarbageCollectorMXBean

Synopsis
This MXBean interface allows
monitoring of the number of
garbage collections that have occurred and the approximate time they
consumed in milliseconds. The methods return -1 to indicate that the
garbage collector does not maintain those statistics. Note that VM
implementations commonly have more than one garbage collector and use
different collection strategies for new objects and old objects. Note
also that this is a subinterface of
MemoryManagerMXBean.
[image: java.lang.management.GarbageCollectorMXBean]

Figure 10-85. java.lang.management.GarbageCollectorMXBean

public interface GarbageCollectorMXBean extends MemoryManagerMXBean {
// Public Instance Methods
 long getCollectionCount();
 long getCollectionTime();
}

Name
ManagementFactory

Synopsis
This class provides the main entry point into
the java.lang.management API. The static factory
methods provide a convenient way to obtain instances of the various
MXBean interfaces for the currently running Java virtual machine. The returned
instances can then be queried to monitor memory usage, class loading,
and other details of virtual machine performance.
To obtain an MXBean for a Java virtual machine running in another
process, use the newPlatformMXBeanProxy(
)
 method, specifying a
javax.management.MBeanServerConnection as well as
the name and type of the desired MXBean. The constant fields of this
class define the names of the available beans. Note that the
javax.management package is beyond the scope of
this quick reference.
public class ManagementFactory {
// No Constructor
 // Public Constants
 public static final String CLASS_LOADING_MXBEAN_NAME; ="java.lang:type=ClassLoading"
 public static final String COMPILATION_MXBEAN_NAME; ="java.lang:type=Compilation"
 public static final String GARBAGE_COLLECTOR_MXBEAN_DOMAIN_TYPE; ="java.lang:type=GarbageCollector"
 public static final String MEMORY_MANAGER_MXBEAN_DOMAIN_TYPE; ="java.lang:type=MemoryManager"
 public static final String MEMORY_MXBEAN_NAME; ="java.lang:type=Memory"
 public static final String MEMORY_POOL_MXBEAN_DOMAIN_TYPE; ="java.lang:type=MemoryPool"
 public static final String OPERATING_SYSTEM_MXBEAN_NAME; ="java.lang:type=OperatingSystem"
 public static final String RUNTIME_MXBEAN_NAME; ="java.lang:type=Runtime"
 public static final String THREAD_MXBEAN_NAME; ="java.lang:type=Threading"
// Public Class Methods
 public static ClassLoadingMXBean getClassLoadingMXBean();
 public static CompilationMXBean getCompilationMXBean();
 public static java.util.List<GarbageCollectorMXBean> getGarbageCollectorMXBeans();
 public static java.util.List<MemoryManagerMXBean> getMemoryManagerMXBeans();
 public static MemoryMXBean getMemoryMXBean();
 public static java.util.List<MemoryPoolMXBean> getMemoryPoolMXBeans();
 public static OperatingSystemMXBean getOperatingSystemMXBean();
 public static javax.management.MBeanServer getPlatformMBeanServer(); synchronized
 public static RuntimeMXBean getRuntimeMXBean();
 public static ThreadMXBean getThreadMXBean();
 public static <T> T newPlatformMXBeanProxy(javax.management.
MBeanServerConnection connection, String mxbeanName, Class<T> mxbeanInterface)
throws java.io.IOException;
}

Name
ManagementPermission

Synopsis

 This
java.security.Permission
 subclass governs access to the Java VM
monitoring and management capabilities of this package. The two
defined targets for this permission are control,
which grants permission to manage the VM, and
monitor, which grants permission to monitor VM
state. Fine-grained control over individual MXBeans is not supported.
[image: java.lang.management.ManagementPermission]

Figure 10-86. java.lang.management.ManagementPermission

public final class ManagementPermission extends java.security.BasicPermission {
// Public Constructors
 public ManagementPermission(String name);
 public ManagementPermission(String name, String actions) throws IllegalArgumentException;
}

Name
MemoryManagerMXBean

Synopsis
This MXBean interface allows monitoring of
a single memory manager (such as a garbage collector) in a
Java VM. A VM implementation
typically has more than one memory manager, and the
ManagementFactory method
getMemoryManagerMXBeans() returns a
List of objects of this type. Some or all of the
objects in the returned list will also implement the
GarbageCollectorMXBean subinterface.
Each memory manager may manage one or more memory pools, and
getMemoryPoolNames(
)
 returns the names of these pools. See also
ManagementFactory.getMemoryPoolMXBeans() and
MemoryPoolMXBean.
public interface MemoryManagerMXBean {
// Public Instance Methods
 String[] getMemoryPoolNames();
 String getName();
 boolean isValid();
}

Implementations

 GarbageCollectorMXBean

Name
MemoryMXBean

Synopsis
This MXBean interface allows monitoring of
current memory usage information for

 heap memory (allocated
objects) and nonheap memory (loaded classes and libraries). It also
allows the garbage collector to be explicitly invoked and verbose
garbage-collection related output to be turned on or off.
See MemoryUsage for details on how memory usage
information is returned. See also MemoryPoolMXBean
for a way to obtain both current and peak memory usage for individual
memory pools.
public interface MemoryMXBean {
// Public Instance Methods
 void gc();
 MemoryUsage getHeapMemoryUsage();
 MemoryUsage getNonHeapMemoryUsage();
 int getObjectPendingFinalizationCount();
 boolean isVerbose();
 void setVerbose(boolean value);
}

Returned By

 ManagementFactory.getMemoryMXBean()

Name
MemoryNotificationInfo

Synopsis
This class holds information about memory usage
in a given memory pool and is generated when that usage crosses a
threshold specified by a MemoryPoolMXBean. Use the
from()
 method to construct a
MemoryNotificationInfo object from the user data
of a javax.management.Notification object.
Notifications and the javax.management package are
beyond the scope of this book.
public class MemoryNotificationInfo {
// Public Constructors
 public MemoryNotificationInfo(String poolName, MemoryUsage usage, long count);
// Public Constants
 public static final String MEMORY_COLLECTION_THRESHOLD_EXCEEDED;
 ="java.management.memory.collection.threshold.exceeded"
 public static final String MEMORY_THRESHOLD_EXCEEDED;
 ="java.management.memory.threshold.exceeded"
// Public Class Methods
 public static MemoryNotificationInfo from(javax.management.openmbean.CompositeData cd);
// Public Instance Methods
 public long getCount();
 public String getPoolName();
 public MemoryUsage getUsage();
}

Name
MemoryPoolMXBean

Synopsis
This MXBean interface allows monitoring of
the current and peak memory usage for a single memory pool. Typical
Java VM implementations segregate garbage-collected heap memory into
two or more memory pools based on the age of the objects. Obtain a
List of MemoryPoolMXBean
instances with ManagementFactory.getMemoryPoolMXBeans(
). getName(
)

 and
getType() return the name and type of each pool.
getUsage()

 and getPeakUsage() return
the current and peak memory usage for the pool in the form of a
MemoryUsage object.
If isUsageThresholdSupported(
)
 returns true, you can use
setUsageThreshold(
)
 to define a memory usage threshold. The
MemoryPoolMXBean then keeps track of threshold
crossings and issues notifications through the
javax.management.NotificationEmitter API. You can
register a javax.management.NotificationListener
to receive these notifications. (Note that the
javax.management package is not covered in this
book.) Use setCollectionUsageThreshold() instead
to receive notifications when memory usage exceeds a specified
threshold after a garbage collection pass.
public interface MemoryPoolMXBean {
// Public Instance Methods
 MemoryUsage getCollectionUsage();
 long getCollectionUsageThreshold();
 long getCollectionUsageThresholdCount();
 String[] getMemoryManagerNames();
 String getName();
 MemoryUsage getPeakUsage();
 MemoryType getType();
 MemoryUsage getUsage();
 long getUsageThreshold();
 long getUsageThresholdCount();
 boolean isCollectionUsageThresholdExceeded();
 boolean isCollectionUsageThresholdSupported();
 boolean isUsageThresholdExceeded();
 boolean isUsageThresholdSupported();
 boolean isValid();
 void resetPeakUsage();
 void setCollectionUsageThreshold(long threhsold);
 void setUsageThreshold(long threshold);
}

Name
MemoryType

Synopsis
The constants defined by this
enumerated
type define the type of a memory pool as either heap or nonheap
memory. See MemoryPoolMXBean.getType().
[image: java.lang.management.MemoryType]

Figure 10-87. java.lang.management.MemoryType

public enum MemoryType {
// Enumerated Constants
 HEAP,
 NON_HEAP;
// Public Class Methods
 public static MemoryType valueOf(String name);
 public static final MemoryType[] values();
// Public Methods Overriding Enum
 public String toString();
}

Returned By

 MemoryPoolMXBean.getType()

Name
MemoryUsage

Synopsis
A MemoryUsage
 object represents a snapshot of memory
usage for a specified type or pool of memory. Memory usage is
measured as four long values, each of which
represents a number of bytes. getInit(
)
 returns the initial amount of
memory that the Java VM requests from the operating system.
getUsed()

 returns the actual number of
bytes used. getCommitted() returns the number of
bytes that the operating system has committed to the Java VM for this
pool. These bytes may not all be in use, but they are not available
to other processes running on the system. getMax(
)
 returns the maximum amount of
memory that the Java VM requests for this pool. getMax(
) returns -1 if there is no defined
maximum value.
public class MemoryUsage {
// Public Constructors
 public MemoryUsage(long init, long used, long committed, long max);
// Public Class Methods
 public static MemoryUsage from(javax.management.openmbean.CompositeData cd);
// Public Instance Methods
 public long getCommitted();
 public long getInit();
 public long getMax();
 public long getUsed();
// Public Methods Overriding Object
 public String toString();
}

Passed To

 MemoryNotificationInfo.MemoryNotificationInfo()

Returned By

 MemoryMXBean.{getHeapMemoryUsage(),
getNonHeapMemoryUsage()},
MemoryNotificationInfo.getUsage(),
MemoryPoolMXBean.{getCollectionUsage(),
getPeakUsage(), getUsage()}

Name
OperatingSystemMXBean

Synopsis
This MXBean interface allows queries of the
operating system name, version, and CPU architecture as well as the
number of available CPUs.
public interface OperatingSystemMXBean {
// Public Instance Methods
 String getArch();
 int getAvailableProcessors();
 String getName();
 String getVersion();
}

Returned By

 ManagementFactory.getOperatingSystemMXBean()

Name
RuntimeMXBean

Synopsis
This MXBean interface provides access to
the runtime configuration of the Java virtual machine, including
system properties, command-line arguments, class path, virtual
machine vendor and version, and so on. getUptime(
)

 returns the uptime of the
virtual machine in milliseconds.
public interface RuntimeMXBean {
// Public Instance Methods
 String getBootClassPath();
 String getClassPath();
 java.util.List<String> getInputArguments();
 String getLibraryPath();
 String getManagementSpecVersion();
 String getName();
 String getSpecName();
 String getSpecVendor();
 String getSpecVersion();
 long getStartTime();
 java.util.Map<String,String> getSystemProperties();
 long getUptime();
 String getVmName();
 String getVmVendor();
 String getVmVersion();
 boolean isBootClassPathSupported();
}

Returned By

 ManagementFactory.getRuntimeMXBean()

Name
ThreadInfo

Synopsis
This
 class represents information about a
thread from a ThreadMXBean. Some information, such
as thread name, id, state, and stack trace are also available through
the java.lang.Thread object. Other more useful
information includes the object upon which a thread is waiting and
the owner of the lock that the thread is trying to acquire. If
ThreadMXBean indicates that thread contention
monitoring is supported and enabled, the
ThreadInfo methods getBlockedCount(
)

 and getBlockedTime(
) return the number of times the thread has blocked or
waited and the amount of time it has spent in the blocked and waiting
states.
public class ThreadInfo {
// No Constructor
 // Public Class Methods
 public static ThreadInfo from(javax.management.openmbean.CompositeData cd);
// Public Instance Methods
 public long getBlockedCount();
 public long getBlockedTime();
 public String getLockName();
 public long getLockOwnerId();
 public String getLockOwnerName();
 public StackTraceElement[] getStackTrace();
 public long getThreadId();
 public String getThreadName();
 public Thread.State getThreadState();
 public long getWaitedCount();
 public long getWaitedTime();
 public boolean isInNative();
 public boolean isSuspended();
// Public Methods Overriding Object
 public String toString();
}

Returned By

 ThreadMXBean.getThreadInfo()

Name
ThreadMXBean

Synopsis
This MXBean interface

 allows monitoring of thread usage
in a Java VM. A number of methods, such as getThreadCount(
) and getPeakThreadCount(), return
information about all running threads. Other methods return
information about individual threads. Threads are identified by their
thread id, which is a long integer.
getAllThreadIds(
)
 returns all ids as an array of
long. Complete information, including stack trace,
about a thread or set of threads can be obtained with the
getThreadInfo()
 methods, which return
ThreadInfo objects.
If isThreadCpuTimeSupported(
)
 returns true, you can
enable thread timing with setThreadCpuTimeEnabled(
)
 and query the runtime of a specific thread
with getThreadCpuTime(
)

 and getThreadUserTime().
The values returned by these methods are measured in nanoseconds.
One of the potentially most useful methods of this interface is
findMonitorDeadlockedThreads(
)

 . It looks for cycles of
threads that are deadlocked waiting to lock objects whose locks are
held by other threads in the cycle.
public interface ThreadMXBean {
// Public Instance Methods
 long[] findMonitorDeadlockedThreads();
 long[] getAllThreadIds();
 long getCurrentThreadCpuTime();
 long getCurrentThreadUserTime();
 int getDaemonThreadCount();
 int getPeakThreadCount();
 int getThreadCount();
 long getThreadCpuTime(long id);
 ThreadInfo getThreadInfo(long id);
 ThreadInfo[] getThreadInfo(long[] ids);
 ThreadInfo[] getThreadInfo(long[] ids, int maxDepth);
 ThreadInfo getThreadInfo(long id, int maxDepth);
 long getThreadUserTime(long id);
 long getTotalStartedThreadCount();
 boolean isCurrentThreadCpuTimeSupported();
 boolean isThreadContentionMonitoringEnabled();
 boolean isThreadContentionMonitoringSupported();
 boolean isThreadCpuTimeEnabled();
 boolean isThreadCpuTimeSupported();
 void resetPeakThreadCount();
 void setThreadContentionMonitoringEnabled(boolean enable);
 void setThreadCpuTimeEnabled(boolean enable);
}

Returned By

 ManagementFactory.getThreadMXBean()

Name
Package java.lang.ref

Synopsis

 The
java.lang.ref package defines classes that allow
Java programs to interact with the Java garbage collector. A
Reference represents an indirect reference to an
arbitrary object, known as the
referent
 .
SoftReference, WeakReference,
and PhantomReference are three concrete subclasses
of Reference that interact with the garbage
collector in different ways, as explained in the individual class
descriptions that follow. ReferenceQueue
represents a linked list of Reference objects. Any
Reference object may have a
ReferenceQueue associated with it. A
Reference object is enqueued
on its ReferenceQueue at some point after the
garbage collector determines that the referent object has become
appropriately unreachable. (The exact level of unreachability depends
on the type of Reference being used.) An
application can monitor a ReferenceQueue to
determine when referent objects enter a new reachability status.
Using the mechanisms defined in this package, you can implement a
cache that grows and shrinks in size according to the amount of
available system memory. Or, you can implement a hashtable that
associates auxiliary information with arbitrary objects, but does not
prevent those objects from being garbage-collected if they are
otherwise unused. The mechanisms provided by this package are
low-level ones, however, and typical applications do not use
java.lang.ref directly. Instead, they rely on
higher-level utilities built on top of the package. See
java.util.WeakHashMap for one example.
In
 Java 5.0, the classes in this package have
all been made into generic types. The type variable
T represents the type of the object that
is referred to.

Classes
public abstract class Reference<T>;
 public class PhantomReference<T> extends Reference<T>;
 public class SoftReference<T> extends Reference<T>;
 public class WeakReference<T> extends Reference<T>;
public class ReferenceQueue<T>;

Name
PhantomReference<T>

Synopsis

 This class represents a reference to an
object that does not prevent the referent object from being finalized
by the garbage collector. When (or at some point after) the garbage
collector determines that there are no more hard (direct) references
to the referent object, that there are no
SoftReference or WeakReference
objects that refer to the referent, and that the referent has been
finalized, it enqueues the PhantomReference object
on the ReferenceQueue specified when the
PhantomReference was created. This serves as
notification that the object has been finalized and provides one last
opportunity for any required cleanup code to be run.
To prevent a PhantomReference object from
resurrecting its referent object, its
 get() method always
returns null, both before and after the
PhantomReference is enqueued. Nevertheless, a
PhantomReference is not automatically cleared when
it is enqueued, so when you remove a
PhantomReference from a
ReferenceQueue, you must call its

 clear() method or
allow the PhantomReference object itself to be
garbage-collected.
This class provides a more flexible mechanism for object cleanup than
the finalize() method does. Note that in order to
take advantage of it, it is necessary to subclass
PhantomReference and define a method to perform
the desired cleanup. Furthermore, since the get()
method of a PhantomReference always returns
null, such a subclass must also store whatever
data is required for the cleanup operation.
[image: java.lang.ref.PhantomReference<T>]

Figure 10-88. java.lang.ref.PhantomReference<T>

public class PhantomReference<T> extends Reference<T> {
// Public Constructors
 public PhantomReference(T referent, ReferenceQueue<? super T> q);
// Public Methods Overriding Reference
 public T get(); constant
}

Name
Reference<T>

Synopsis

 This
abstract class represents some type of indirect reference to a
referent.
 get() returns the
referent if the reference has not been explicitly cleared by the

 clear() method or
implicitly cleared by the garbage collector. There are three concrete
subclasses of Reference. The garbage collector
handles these subclasses differently and clears their references
under different circumstances.

 Each of the subclasses of
Reference defines a constructor that allows a
ReferenceQueue to be associated with the
Reference object. The garbage collector places
Reference objects onto their associated
ReferenceQueue objects to provide notification
about the state of the referent object. isEnqueued(
) tests whether a Reference has been
placed on the associated queue, and enqueue()
explicitly places it on the queue. enqueue()
returns false if the Reference
object does not have an associated ReferenceQueue,
or if it has already been enqueued.
public abstract class Reference<T> {
// No Constructor
 // Public Instance Methods
 public void clear();
 public boolean enqueue();
 public T get();
 public boolean isEnqueued();
}

Subclasses

 PhantomReference,
SoftReference, WeakReference

Returned By

 ReferenceQueue.{poll(), remove(
)}

Name
ReferenceQueue<T>

Synopsis

 This class represents a queue (or linked
list) of Reference objects that have been enqueued
because the garbage collector has determined that the referent
objects to which they refer are no longer adequately reachable. It
serves as a notification system for object-reachability changes. Use
poll() to return the first
Reference object on the queue; the method returns
null if the queue is empty. Use remove(
) to return the first element on the queue, or, if the
queue is empty, to wait for a Reference object to
be enqueued. You can create as many ReferenceQueue
objects as needed. Specify a ReferenceQueue for a
Reference object by passing it to the
SoftReference(), WeakReference(
), or PhantomReference() constructor.

 A ReferenceQueue is
required to use PhantomReference objects. It is
optional with SoftReference and
WeakReference objects; for these classes, the
get() method returns null if
the referent object is no longer adequately reachable.
public class ReferenceQueue<T> {
// Public Constructors
 public ReferenceQueue();
// Public Instance Methods
 public Reference<? extends T> poll();
 public Reference<? extends T> remove() throws InterruptedException;
 public Reference<? extends T> remove(long timeout) throws IllegalArgumentException,
InterruptedException;
}

Passed To

 PhantomReference.PhantomReference(),
SoftReference.SoftReference(),
WeakReference.WeakReference()

Name
SoftReference<T>

Synopsis

 This class represents a soft reference
to an object. A SoftReference is not cleared while
there are any remaining hard (direct) references to the referent.
Once the referent is no longer in use (i.e., there are no remaining
hard references to it), the garbage collector may clear the
SoftReference to the referent at any time.
However, the garbage collector does not clear a
SoftReference until it determines that system
memory is running low. In particular, the Java VM never throws an
OutOfMemoryError without first clearing all soft
references and reclaiming the memory of the referents. The VM may
(but is not required to) clear soft references according to a
least-recently-used ordering.
If a SoftReference has an associated
ReferenceQueue, the garbage collector enqueues the
SoftReference at some time after it clears the
reference.

 SoftReference is particularly useful for
implementing object-caching systems that do not have a fixed size,
but grow and shrink as available memory allows.
[image: java.lang.ref.SoftReference<T>]

Figure 10-89. java.lang.ref.SoftReference<T>

public class SoftReference<T> extends Reference<T> {
// Public Constructors
 public SoftReference(T referent);
 public SoftReference(T referent, ReferenceQueue<? super T> q);
// Public Methods Overriding Reference
 public T get();
}

Name
WeakReference<T>

Synopsis

 This class refers to an object in a way
that does not prevent that referent object from being finalized and
reclaimed by the garbage collector. When the garbage collector
determines that there are no more hard (direct) references to the
object, and that there are no SoftReference
objects that refer to the object, it clears the
WeakReference and marks the referent object for
finalization. At some point after this, it also enqueues the
WeakReference on its associated
ReferenceQueue, if there is one, in order to
provide notification that the referent has been reclaimed.

 WeakReference is used by
java.util.WeakHashMap

 to implement a hashtable that does not
prevent the hashtable key object from being garbage-collected.
WeakHashMap is useful when you want to associate
auxiliary information with an object but do not want to prevent the
object from being reclaimed.
[image: java.lang.ref.WeakReference<T>]

Figure 10-90. java.lang.ref.WeakReference<T>

public class WeakReference<T> extends Reference<T> {
// Public Constructors
 public WeakReference(T referent);
 public WeakReference(T referent, ReferenceQueue<? super T> q);

}

Name
Package java.lang.reflect

Synopsis

 The java.lang.reflect
package contains the classes and interfaces that, along with
java.lang.Class, comprise the Java
Reflection API.

 The
Constructor, Field, and
Method classes represent the constructors, fields,
and methods of a class. Because these types all represent members of
a class, they each implement the Member interface,
which defines a simple set of methods that can be invoked for any
class member. These classes allow information about the class members
to be obtained, methods and constructors to be invoked, and fields to
be queried and set.

 Class member modifiers are represented
as integers that specify a number of bit flags. The
Modifier class defines static methods that help
interpret the meanings of these flags. The Array
class defines static methods for creating arrays and reading and
writing array elements.

 As of Java 1.3, the
Proxy class allows the dynamic creation of new
Java classes that implement a specified set of interfaces. When an
interface method is invoked on an instance of such a proxy class, the
invocation is delegated to an InvocationHandler
object.
There have been a number of changes to this package to support the
new language features of
 Java 5.0. The most important changes are
support for querying the generic signature of classes, methods,
constructors, and fields. Class,
Method and Constructor
implement the new
GenericDeclaration
 interface, which provides access to
the TypeVariable declarations of generic classes,
methods, and constructors. In general, the package has been modified
to add new generic versions of methods like Field.getType(
) and Method.getParameterTypes().
Instead of returning Class objects, the new
generic methods, like Field.getGenericType(
)

 and
Method.getGenericParameterTypes(), return
Type objects. The
Type
 interface is new in Java 5.0, and
represents any kind of generic or nongeneric type.
Class implements Type, so a
Type object may simply be an ordinary
Class. Type is also the
super-interface for four other new interfaces:
ParameterizedType,
TypeVariable, WildcardType and
GenericArrayType. A Type object
that is not a Class should be an instance of one
of these other interfaces, representing a generic type of some sort.
Support for reflection on
annotations is provided by the
AnnotatedElement interface which is implemented by
Class, Package,
Method, Constructor and
Field. Method and
Constructor also have new
getParameterAnnotations() for querying
annotations on method parameters. Other, more minor changes in Java
5.0 include the isEnumConstant() method of
Field and the isVarArgs()
method of Method and
Constructor.

Interfaces
public interface AnnotatedElement;
public interface GenericArrayType extends Type;
public interface GenericDeclaration;
public interface InvocationHandler;
public interface Member;
public interface ParameterizedType extends Type;
public interface Type;
public interface TypeVariable<D extends GenericDeclaration> extends Type;
public interface WildcardType extends Type;

Classes
public class AccessibleObject implements AnnotatedElement;
 public final class Constructor<T> extends AccessibleObject implements
GenericDeclaration, Member;
 public final class Field extends AccessibleObject implements Member;
 public final class Method extends AccessibleObject implements
GenericDeclaration, Member;
public final class Array;
public class Modifier;
public class Proxy implements Serializable;
public final class ReflectPermission extends java.security.BasicPermission;

Exceptions
public class InvocationTargetException extends Exception;
public class MalformedParameterizedTypeException extends RuntimeException;
public class UndeclaredThrowableException extends RuntimeException;

Errors
public class GenericSignatureFormatError extends ClassFormatError;

Name
AccessibleObject

Synopsis

 This class is the superclass of the
Method, Constructor, and
Field classes; its methods provide a mechanism for
trusted applications to work with private,
protected, and default visibility members that
would otherwise not be accessible through the Reflection API. This
class is new as of Java 1.2; in Java 1.1, the
Method, Constructor, and
Field classes extended Object
directly.

 To use the
java.lang.reflect package to access a member to
which your code would not normally have access, pass
true to the setAccessible()
method. If your code has an appropriate
ReflectPermission (such as
“suppressAccessChecks”), this
allows access to the member as if it were declared
public. The static version of
setAccessible() is a convenience method that sets
the accessible flag for an array of members but performs only a
single security check.
[image: java.lang.reflect.AccessibleObject]

Figure 10-91. java.lang.reflect.AccessibleObject

public class AccessibleObject implements AnnotatedElement {
// Protected Constructors
 protected AccessibleObject();
// Public Class Methods
 public static void setAccessible(AccessibleObject[] array, boolean flag)
 throws SecurityException;
// Public Instance Methods
 public boolean isAccessible();
 public void setAccessible(boolean flag) throws SecurityException;
// Methods Implementing AnnotatedElement
 5.0 public <T extends java.lang.annotation.Annotation> T getAnnotation(Class<T>
annotationClass);
5.0 public java.lang.annotation.Annotation[] getAnnotations();
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
5.0 public boolean isAnnotationPresent(Class<? extends java.lang.annotation.
Annotation> annotationClass);
}

Subclasses

 Constructor, Field,
Method

Name
AnnotatedElement

Synopsis
This
interface is implemented by the
classes representing program elements that can be annotated in
Java
5.0: java.lang.Class,
java.lang.Package, Method,
Constructor, and Field. The
methods of this interface allow you to test for the presence of a
specific annotation, query an annotation object of a specific type,
or query all annotations present on an annotated element.
getDeclaredAnnotations(
)

 differs from getAnnotations(
) in that it does not include inherited annotations. (See
the java.lang.annotation.Inherited
meta-annotation.) If no annotations are present,
getAnnotations() and
getDeclaredAnnotations() return an array of
length zero rather than null. It is safe to modify
the arrays returned by these methods.
See also the getParameterAnnotations() methods of
Method and Constructor, which
provide access to annotations on method parameters.
public interface AnnotatedElement {
// Public Instance Methods
 <T extends java.lang.annotation.Annotation> T getAnnotation(Class<T> annotationType);
 java.lang.annotation.Annotation[] getAnnotations();
 java.lang.annotation.Annotation[] getDeclaredAnnotations();
 boolean isAnnotationPresent(Class<? extends java.lang.annotation.Annotation>
 annotationType);
}

Implementations

 Class, Package,
AccessibleObject

Name
Array

Synopsis

 This class contains methods that allow
you to set and query the values of array elements, to determine the
length of an array, and to create new instances of arrays. Note that
the Array class can manipulate only array values,
not array types; Java data types, including array types, are
represented by java.lang.Class. Since the
Array class represents a Java value, unlike the
Field, Method, and
Constructor classes, which represent class
members, the Array class is significantly
different (despite some surface similarities) from those other
classes in this package. Most notably, all the methods of
Array are static and apply to all array values,
not just a specific field, method, or constructor.

 The get() method
returns the value of the specified element of the specified array as
an Object. If the array elements are of a
primitive type, the value is converted to a wrapper object before
being returned. You can also use getInt() and
related methods to query array elements and return them as specific
primitive types. The set() method and its
primitive type variants perform the opposite operation. Also, the
getLength() method returns the length of the
array.

 The newInstance()
methods create new arrays. One version of this method is passed the
number of elements in the array and the type of those elements. The
other version of this method creates multidimensional arrays. Besides
specifying the component type of the array, it is passed an array of
numbers. The length of this array specifies the number of dimensions
for the array to be created, and the values of each of the array
elements specify the size of each dimension of the created array.
public final class Array {
// No Constructor
 // Public Class Methods
 public static Object get(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static boolean getBoolean(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static byte getByte(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static char getChar(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static double getDouble(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static float getFloat(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static int getInt(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static int getLength(Object array)
throws IllegalArgumentException; native
 public static long getLong(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static short getShort(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static Object newInstance(Class<?> componentType, int length)
throws NegativeArraySizeException;
 public static Object newInstance(Class<?> componentType, int[] dimensions)
throws IllegalArgumentException, NegativeArraySizeException;
 public static void set(Object array, int index, Object value)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static void setBoolean(Object array, int index, boolean z)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static void setByte(Object array, int index, byte b)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static void setChar(Object array, int index, char c)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static void setDouble(Object array, int index, double d)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static void setFloat(Object array, int index, float f)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static void setInt(Object array, int index, int i)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static void setLong(Object array, int index, long l)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
 public static void setShort(Object array, int index, short s)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException; native
}

Name
Constructor<T>

Synopsis

 This class represents a constructor
method of a class. Instances of Constructor are
obtained by calling
 getConstructor() and
related methods of java.lang.Class.
Constructor implements the
Member interface, so you can use the methods of
that interface to obtain the constructor name, modifiers, and
declaring class. In addition, getParameterTypes()
and getExceptionTypes() also return important
information about the represented constructor.

 In addition to these methods that return
information about the constructor, the newInstance(
) method allows the constructor to be invoked with an array
of arguments in order to create a new instance of the class that
declares the constructor. If any of the arguments to the constructor
are of primitive types, they must be converted to their corresponding
wrapper object types to be passed to newInstance(
). If the constructor causes an exception, the
Throwable object it throws is wrapped within the
InvocationTargetException that is thrown by
newInstance(). Note that newInstance(
) is much more useful than the newInstance(
) method of java.lang.Class because it
can pass arguments to the constructor.

 Constructor has been modified in

 Java 5.0 to support

 generics, annotations, and varargs. The
changes are the same as the Java 5.0 changes to the
Method class. Additionally,
Constructor has been made a generic type in Java
5.0. The type variable T represents the
type that the constructor constructs, and is used as the return type
of the newInstance() method.
[image: java.lang.reflect.Constructor<T>]

Figure 10-92. java.lang.reflect.Constructor<T>

public final class Constructor<T> extends AccessibleObject implements
GenericDeclaration, Member {
// No Constructor
 // Public Instance Methods
 public Class<?>[] getExceptionTypes();
5.0 public Type[] getGenericExceptionTypes();
5.0 public Type[] getGenericParameterTypes();
5.0 public java.lang.annotation.Annotation[][] getParameterAnnotations();
 public Class<?>[] getParameterTypes();
5.0 public boolean isVarArgs();
 public T newInstance(Object ... initargs)
throws InstantiationException, IllegalAccessException, IllegalArgumentException,
InvocationTargetException;
5.0 public String toGenericString();
// Methods Implementing GenericDeclaration
 5.0 public TypeVariable<Constructor<T>>[] getTypeParameters();
// Methods Implementing Member
 public Class<T> getDeclaringClass();
 public int getModifiers();
 public String getName();
5.0 public boolean isSynthetic();
// Public Methods Overriding AccessibleObject
 5.0 public <T extends java.lang.annotation.Annotation> T getAnnotation
(Class<T> annotationClass);
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Returned By

 Class.{getConstructor(),
getConstructors(),
getDeclaredConstructor(),
getDeclaredConstructors(),
getEnclosingConstructor()}

Name
Field

Synopsis

 This class represents a field of a
class. Instances of Field are obtained by calling
the getField()
 and related
methods of java.lang.Class.
Field implements the Member
interface, so once you have obtained a Field
object, you can use getName(
)

 , getModifiers(),
and getDeclaringClass() to determine the name,
modifiers, and class of the field. Additionally, getType(
)
 returns the type of the field.

 The set() method
sets the value of the represented field for a specified object. (If
the represented field is static, no object need be
specified, of course.) If the field is of a
primitive type, its value can be specified using a wrapper object of
type Boolean, Integer, and so
on, or it can be set using the setBoolean(),
setInt(), and related methods. Similarly, the
get() method queries the value of the represented
field for a specified object and returns the field value as an
Object. Various other methods query the field
value and return it as various primitive types.
In Java 5.0, Field
implements AnnotatedElement to support reflection
on field annotations. The new
getGenericType(
)

 method supports reflection on the generic
type of fields, and isEnumConstant(
)

 supports
fields of enum types.
[image: java.lang.reflect.Field]

Figure 10-93. java.lang.reflect.Field

public final class Field extends AccessibleObject implements Member {
// No Constructor
 // Public Instance Methods
 public Object get(Object obj)
throws IllegalArgumentException, IllegalAccessException;
 public boolean getBoolean(Object obj)
throws IllegalArgumentException, IllegalAccessException;
 public byte getByte(Object obj)
throws IllegalArgumentException, IllegalAccessException;
 public char getChar(Object obj)
throws IllegalArgumentException, IllegalAccessException;
 public double getDouble(Object obj)
throws IllegalArgumentException, IllegalAccessException;
 public float getFloat(Object obj)
throws IllegalArgumentException, IllegalAccessException;
5.0 public Type getGenericType();
 public int getInt(Object obj)
throws IllegalArgumentException, IllegalAccessException;
 public long getLong(Object obj)
throws IllegalArgumentException, IllegalAccessException;
 public short getShort(Object obj)
throws IllegalArgumentException, IllegalAccessException;
 public Class<?> getType();
5.0 public boolean isEnumConstant();
 public void set(Object obj, Object value)
throws IllegalArgumentException, IllegalAccessException;
 public void setBoolean(Object obj, boolean z)
throws IllegalArgumentException, IllegalAccessException;
 public void setByte(Object obj, byte b)
throws IllegalArgumentException, IllegalAccessException;
 public void setChar(Object obj, char c)
throws IllegalArgumentException, IllegalAccessException;
 public void setDouble(Object obj, double d)
throws IllegalArgumentException, IllegalAccessException;
 public void setFloat(Object obj, float f)
throws IllegalArgumentException, IllegalAccessException;
 public void setInt(Object obj, int i)
throws IllegalArgumentException, IllegalAccessException;
 public void setLong(Object obj, long l)
throws IllegalArgumentException, IllegalAccessException;
 public void setShort(Object obj, short s)
throws IllegalArgumentException, IllegalAccessException;
5.0 public String toGenericString();
// Methods Implementing Member
 public Class<?> getDeclaringClass();
 public int getModifiers();
 public String getName();
5.0 public boolean isSynthetic();
// Public Methods Overriding AccessibleObject
 5.0 public <T extends java.lang.annotation.Annotation> T getAnnotation
(Class<T> annotationClass);
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Returned By

 Class.{getDeclaredField(),
getDeclaredFields(), getField(
), getFields()}

Name
GenericArrayType

Synopsis
This
 interface
extends
Type and represents a one-dimensional array of
some element Type. Note that in the case of
multidimensional arrays, the Type returned by
getGenericComponentType(
)
 is itself a
GenericArrayType.
[image: java.lang.reflect.GenericArrayType]

Figure 10-94. java.lang.reflect.GenericArrayType

public interface GenericArrayType extends Type {
// Public Instance Methods
 Type getGenericComponentType();
}

Name
GenericDeclaration

Synopsis

 This interface
is implemented by the classes that represent program elements that
can be made generic:
java.lang.Class as well as
Method and Constructor. It
provides access to the type variables declared by the generic type,
method, or constructor. getTypeParameters(
)

never returns null: if there are no declared type
variables, it returns a zero-length array.
public interface GenericDeclaration {
// Public Instance Methods
 TypeVariable<?>[] getTypeParameters();
}

Implementations

 Class, Constructor,
Method

Returned By

 TypeVariable.getGenericDeclaration()

Name
GenericSignatureFormatError

Synopsis

 An

 error
of this type is thrown if the Java interpreter tries to load a class
file that contains malformed generic signature information.
[image: java.lang.reflect.GenericSignatureFormatError]

Figure 10-95. java.lang.reflect.GenericSignatureFormatError

public class GenericSignatureFormatError extends ClassFormatError {
// Public Constructors
 public GenericSignatureFormatError();
}

Name
InvocationHandler

Synopsis

 This
interface defines a single invoke() method that
is called whenever a method is invoked on a dynamically created
Proxy object. Every Proxy
object has an associated InvocationHandler object
that is specified when the Proxy is instantiated.
All method invocations on the proxy object are translated into calls
to the invoke() method of the
InvocationHandler.

 The first argument to invoke(
) is the Proxy object through which the
method was invoked. The second argument is a
Method object that represents the method that was
invoked. Call the getDeclaringClass() method of
this Method object to determine the interface in
which the method was declared. This may be a superinterface of one of
the specified interfaces or even java.lang.Object
when the method invoked is toString(),
hashCode(), or one of the other
Object methods. The third argument to
invoke() is the array of method arguments. Any
primitive type arguments are wrapped in their corresponding object
wrappers (e.g., Boolean,
Integer, Double).

 The
value returned by invoke() becomes the return
value of the proxy object method invocation and must be of an
appropriate type. If the proxy object method returns a primitive
type, invoke() should return an instance of the
corresponding wrapper class. invoke() can throw
any unchecked (i.e., runtime) exceptions or any checked exceptions
declared by the proxy object method. If invoke()
throws a checked exception that is not declared by the proxy object,
that exception is wrapped within an unchecked
UndeclaredThrowableException that is thrown in its
place.
public interface InvocationHandler {
// Public Instance Methods
 Object invoke(Object proxy, Method method, Object[] args) throws Throwable;
}

Passed To

 java.lang.reflect.Proxy.{newProxyInstance(),
Proxy()}

Returned By

 java.lang.reflect.Proxy.getInvocationHandler()

Type Of

 java.lang.reflect.Proxy.h

Name
InvocationTargetException

Synopsis

 An object of this class is thrown by
Method.invoke() and
Constructor.newInstance() when an exception is
thrown by the method or constructor invoked through those methods.
The InvocationTargetException class serves as a
wrapper around the object that was thrown; that object can be
retrieved with the getTargetException() method.
In Java 1.4 and later, all exceptions can be
“chained” in this way, and
getTargetException() is superseded by the more
general getCause() method.
[image: java.lang.reflect.InvocationTargetException]

Figure 10-96. java.lang.reflect.InvocationTargetException

public class InvocationTargetException extends Exception {
// Public Constructors
 public InvocationTargetException(Throwable target);
 public InvocationTargetException(Throwable target, String s);
// Protected Constructors
 protected InvocationTargetException();
// Public Instance Methods
 public Throwable getTargetException();
// Public Methods Overriding Throwable
 1.4 public Throwable getCause();
}

Thrown By

 Constructor.newInstance(),
Method.invoke()

Name
MalformedParameterizedTypeException

Synopsis

 An
 exception of this type is thrown
during reflection if the generic type information contained in a
class file is syntactically correct but semantically wrong. An
example would be if the number of type parameters in a
ParameterizedType differs from the number of type
variables declared by the generic type. See also
GenericSignatureFormatError. Although this type is
not an Error, it does indicate a malformed class
file and should not arise in common practice.
[image: java.lang.reflect.MalformedParameterizedTypeException]

Figure 10-97. java.lang.reflect.MalformedParameterizedTypeException

public class MalformedParameterizedTypeException extends RuntimeException {
// Public Constructors
 public MalformedParameterizedTypeException();
}

Name
Member

Synopsis

 This
interface defines the methods shared by all members (fields, methods,
and constructors) of a class. getName() returns
the name of the member, getModifiers() returns
its modifiers, and getDeclaringClass() returns
the Class object that represents the class of
which the member is a part. isSynthetic(
)
 returns true if the
member is one that does not appear in the source code but was
introduced by the compiler.
public interface Member {
// Public Constants
 public static final int DECLARED; =1
 public static final int PUBLIC; =0
 // Public Instance Methods
 Class getDeclaringClass();
 int getModifiers();
 String getName();
5.0 boolean isSynthetic();
}

Implementations

 Constructor, Field,
Method

Name
Method

Synopsis

 This
class represents a method. Instances of Method are
obtained by calling the getMethod() and related
methods of java.lang.Class.
Method implements the Member
interface, so you can use the methods of that interface to obtain the
method name, modifiers, and declaring class. In addition,
getReturnType()

 , getParameterTypes(
), and getExceptionTypes() also return
important information about the represented method.

 Perhaps most importantly, the
invoke() method allows the method represented by
the Method object to be invoked with a specified
array of argument values. If any of the arguments are of primitive
types, they must be converted to their corresponding wrapper object
types in order to be passed to invoke(). If the
represented method is an instance method (i.e., if it is not
static), the instance on which it should be
invoked must also be passed to invoke(). The
return value of the represented method is returned by
invoke(). If the return value is a primitive
value, it is first converted to the corresponding wrapper type. If
the invoked method causes an exception, the
Throwable object it throws is wrapped within the
InvocationTargetException that is thrown by
invoke().
In Java 5.0,
Method

 implements
GenericDeclaration to support reflection on the
type variables defined by generic methods and
AnnotatedElement to support reflection on method
annotations. Additionally, getParameterAnnotations(
)
 supports reflection on method parameter
annotations. The new methods getGenericReturnType(
)

 , getGenericParameterTypes(
), and getGenericExceptionTypes()
support reflection on generic method signatures. Finally, the new
isVarArgs()

 method returns true if the method was
declared using Java 5.0 varargs syntax.
[image: java.lang.reflect.Method]

Figure 10-98. java.lang.reflect.Method

public final class Method extends AccessibleObject implements GenericDeclaration, Member {
// No Constructor
 // Public Instance Methods
 5.0 public Object getDefaultValue();
 public Class<?>[] getExceptionTypes();
5.0 public Type[] getGenericExceptionTypes();
5.0 public Type[] getGenericParameterTypes();
5.0 public Type getGenericReturnType();
5.0 public java.lang.annotation.Annotation[][] getParameterAnnotations();
 public Class<?>[] getParameterTypes();
 public Class<?> getReturnType();
 public Object invoke(Object obj, Object... args)
throws IllegalAccessException, IllegalArgumentException, InvocationTargetException;
5.0 public boolean isBridge();
5.0 public boolean isVarArgs();
5.0 public String toGenericString();
// Methods Implementing GenericDeclaration
 5.0 public TypeVariable<Method>[] getTypeParameters();
// Methods Implementing Member
 public Class<?> getDeclaringClass();
 public int getModifiers();
 public String getName();
5.0 public boolean isSynthetic();
// Public Methods Overriding AccessibleObject
 5.0 public <T extends java.lang.annotation.Annotation> T getAnnotation
(Class<T> annotationClass);
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Passed To

 java.lang.annotation.AnnotationTypeMismatchException.AnnotationTypeMismatchException(
), InvocationHandler.invoke()

Returned By

 Class.{getDeclaredMethod(),
getDeclaredMethods(),
getEnclosingMethod(), getMethod(
), getMethods()},
java.lang.annotation.AnnotationTypeMismatchException.element(
)

Name
Modifier

Synopsis

 This class defines a number of constants and
static methods that can interpret the integer values returned by the
getModifiers() methods of the
Field, Method, and
Constructor classes. The isPublic(
)

 , isAbstract(),
and related methods return true if the modifier
value includes the specified modifier; otherwise, they return
false. The
constants defined by this class specify
the various bit flags used in the modifiers value. You can use these
constants to test for modifiers if you want to perform your own
boolean algebra.
public class Modifier {
// Public Constructors
 public Modifier();
// Public Constants
 public static final int ABSTRACT; =1024
 public static final int FINAL; =16
 public static final int INTERFACE; =512
 public static final int NATIVE; =256
 public static final int PRIVATE; =2
 public static final int PROTECTED; =4
 public static final int PUBLIC; =1
 public static final int STATIC; =8
 1.2 public static final int STRICT; =2048
 public static final int SYNCHRONIZED; =32
 public static final int TRANSIENT; =128
 public static final int VOLATILE; =64
 // Public Class Methods
 public static boolean isAbstract(int mod);
 public static boolean isFinal(int mod);
 public static boolean isInterface(int mod);
 public static boolean isNative(int mod);
 public static boolean isPrivate(int mod);
 public static boolean isProtected(int mod);
 public static boolean isPublic(int mod);
 public static boolean isStatic(int mod);
1.2 public static boolean isStrict(int mod);
 public static boolean isSynchronized(int mod);
 public static boolean isTransient(int mod);
 public static boolean isVolatile(int mod);
 public static String toString(int mod);
}

Name
ParameterizedType

Synopsis

 This subinterface
of Type represents a parameterized type.
getRawType()
 returns the base type that
has been parameterized. getActualTypeArguments(
)
 returns the type parameters as a
Type[]. Note that these parameters may themselves
be ParameterizedType objects.
getOwnerType()
 is used with parameterized
types that are also nested types: it returns the generic type of the
containing type.
[image: java.lang.reflect.ParameterizedType]

Figure 10-99. java.lang.reflect.ParameterizedType

public interface ParameterizedType extends Type {
// Public Instance Methods
 Type[] getActualTypeArguments();
 Type getOwnerType();
 Type getRawType();
}

Name
Proxy

Synopsis

 This
class defines a simple but powerful API for dynamically generating a
proxy class. A proxy class implements a
specified list of interfaces and delegates invocations of the methods
defined by those interfaces to a separate invocation handler object.

 The
static getProxyClass() method dynamically creates
a new Class object that implements each of the
interfaces specified in the supplied Class[]
array. The newly created class is defined in the context of the
specified ClassLoader. The
Class returned by getProxyClass(
) is a subclass of Proxy. Every class
that is dynamically generated by getProxyClass()
has a single public constructor, which expects a single argument of
type InvocationHandler. You can create an instance
of the dynamic proxy class by using the
Constructor class to invoke this constructor. Or,
more simply, you can combine the call to getProxyClass(
) with the constructor call by calling the static
newProxyInstance(
)
 method, which both defines and
instantiates a proxy class.
Every instance of a dynamic proxy class has an associated
InvocationHandler
 object. All method calls made on a proxy
class are translated into calls to the invoke(
)

method of this InvocationHandler object, which can
handle the call in any way it sees fit. The static
getInvocationHandler(
)
 method returns the
InvocationHandler object for a given proxy object.
The static isProxyClass() method returns
true if a specified Class
object is a dynamically generated proxy class.

[image: java.lang.reflect.Proxy]

Figure 10-100. java.lang.reflect.Proxy

public class Proxy implements Serializable {
// Protected Constructors
 protected Proxy(InvocationHandler h);
// Public Class Methods
 public static InvocationHandler getInvocationHandler(Object proxy)
throws IllegalArgumentException;
 public static Class<?> getProxyClass(ClassLoader loader, Class<?>
... interfaces) throws IllegalArgumentException;
 public static boolean isProxyClass(Class<?> cl);
 public static Object newProxyInstance(ClassLoader loader, Class<?>[]
interfaces, InvocationHandler h) throws IllegalArgumentException;
// Protected Instance Fields
 protected InvocationHandler h;
}

Name
ReflectPermission

Synopsis

 This class is a
java.security.Permission that governs access to
private, protected, and
default-visibility methods, constructors, and fields through the Java
Reflection API. In Java 1.2, the only defined name, or target, for
ReflectPermission is
“suppressAccessChecks”. This
permission is required to call the

 setAccessible() method
of AccessibleObject. Unlike some
Permission subclasses,
ReflectPermission does not use a list of actions.
See also AccessibleObject.

 System administrators configuring
security policies should be familiar with this class, but application
programmers should never need to use it directly.
[image: java.lang.reflect.ReflectPermission]

Figure 10-101. java.lang.reflect.ReflectPermission

public final class ReflectPermission extends java.security.BasicPermission {
// Public Constructors
 public ReflectPermission(String name);
 public ReflectPermission(String name, String actions);
}

Name
Type

Synopsis

 This interface has no members but is
implemented or extended by any type that represents a generic or
nongeneric type. java.lang.Class implements this
interface. Type is also extended by four
interfaces that represent four specific kinds of
generic types:
ParameterizedType,
TypeVariable, WildcardType, and
GenericArrayType.
public interface Type {
}

Implementations

 Class, GenericArrayType,
ParameterizedType,
TypeVariable, WildcardType

Returned By

 Class.{getGenericInterfaces(),
getGenericSuperclass()},
Constructor.{getGenericExceptionTypes(),
getGenericParameterTypes()},
Field.getGenericType(),
GenericArrayType.getGenericComponentType(),
Method.{getGenericExceptionTypes(),
getGenericParameterTypes(),
getGenericReturnType()},
ParameterizedType.{getActualTypeArguments(),
getOwnerType(), getRawType(
)}, TypeVariable.getBounds(),
WildcardType.{getLowerBounds(),
getUpperBounds()}

Name
TypeVariable<D extends GenericDeclaration>

Synopsis
This

 interface extends
Type and represents the generic type represented
by a type variable. getName(
)

returns the name of the type variable, as it was declared in Java
source code. getBounds(
)
 returns an array of
Type objects that serve as the upper bounds for
the variable. The returned array is never empty: if the type variable
has no bounds declared, the single element of the array is
Object.class. The getGenericDeclaration(
)
 method returns the Class,
Method, or Constructor that
declared this type variable (each of these classes implements the
GenericDeclaration interface). Note that
TypeVariable is itself a generic type and is
parameterized with the kind of GenericDeclaration
that declared the variable.
[image: java.lang.reflect.TypeVariable<D extends GenericDeclaration>]

Figure 10-102. java.lang.reflect.TypeVariable<D extends GenericDeclaration>

public interface TypeVariable<D extends GenericDeclaration> extends Type {
// Public Instance Methods
 Type[] getBounds();
 D getGenericDeclaration();
 String getName();
}

Returned By

 Class.getTypeParameters(),
Constructor.getTypeParameters(),
GenericDeclaration.getTypeParameters(),
Method.getTypeParameters()

Name
UndeclaredThrowableException

Synopsis

 Thrown by a method of a
Proxy object if the invoke()
method of the proxy’s
InvocationHandler throws a checked exception not
declared by the original method. This class serves as an unchecked
exception wrapper around the checked exception. Use
getUndeclaredThrowable() to obtain the checked
exception thrown by invoke(). In Java 1.4 and
later, all exceptions can be
“chained” in this way, and
getUndeclaredThrowable() is superseded by the
more general getCause() method.
[image: java.lang.reflect.UndeclaredThrowableException]

Figure 10-103. java.lang.reflect.UndeclaredThrowableException

public class UndeclaredThrowableException extends RuntimeException {
// Public Constructors
 public UndeclaredThrowableException(Throwable undeclaredThrowable);
 public UndeclaredThrowableException(Throwable undeclaredThrowable, String s);
// Public Instance Methods
 public Throwable getUndeclaredThrowable();
// Public Methods Overriding Throwable
 1.4 public Throwable getCause();
}

Name
WildcardType

Synopsis

 This
interface extends Type and represents a generic
type declared with a
 bounded or unbounded wildcard.
getUpperBounds(
)
 returns the upper bounds of the
wildcard. The returned array always includes at least one element. If
no upper bound is declared, Object.class is the
implicit upper bound. getLowerBounds(
)
 returns the lower bounds of the
wildcard. If no lower bound is declared, this method returns an

empty
array
.
[image: java.lang.reflect.WildcardType]

Figure 10-104. java.lang.reflect.WildcardType

public interface WildcardType extends Type {
// Public Instance Methods
 Type[] getLowerBounds();
 Type[] getUpperBounds();
}

Chapter 11. java.math

Name
Package java.math

Synopsis

 The
java.math package contains the
BigInteger class for arbitrary-precision integer
arithmetic, which is useful for cryptography. It also contains the
BigDecimal class for arbitrary precision decimal
floating-point arithmetic, which is useful for financial applications
that need to be careful about rounding errors. The
BigDecimal class is greatly enhanced in Java 5.0
and is accompanied by the new types MathContext
and RoundingMode.

Enumerated Types
public enum RoundingMode;

Classes
public class BigDecimal extends Number implements Comparable<BigDecimal>;
public class BigInteger extends Number implements Comparable<BigInteger>;
public final class MathContext implements Serializable;

Name
BigDecimal

Synopsis

 This subclass of
java.lang.Number represents a floating-point
number of arbitrary size and precision. Because it uses a decimal
rather than binary floating-point representation, it is not subject
to the rounding errors that the
float and double types are.
This makes BigDecimal well-suited to financial and
similar applications.

 BigDecimal provides add(
)

 , subtract(),
multiply(), and divide()
methods to support basic arithmetic. In Java
5.0, this class has been expanded to define many more methods,
including pow() for exponentiation. Many of the
new methods use a MathContext to specify the
desired precision of the result and the
RoundingMode to be used to achieve that precision.

 BigDecimal extends Number and
implements the Comparable interface.
The compareTo()
method compares the value of two BigDecimal
objects and returns -1, 0, or 1 to indicate the result of the
comparison. Use this method in place of the <,
<=, >, and
>= operators that you’d use
with float and double values.

 A BigDecimal
object is represented as an integer of arbitrary size and an integer
scale that specifies the number of decimal places in the value. When
working with BigDecimal values, you can explicitly
specify the precision (i.e., the number of decimal places) you are
interested in. Also, whenever a BigDecimal method
can discard precision (e.g., in a division operation), you are
required to specify what sort of rounding should be performed on the
digit to the left of the discarded digit or digits. The eight
constants defined by this class specify the available rounding modes.
In Java 5.0, however, the preferred way to
specify a rounding mode is with the enumerated type
RoundingMode.
[image: java.math.BigDecimal]

Figure 11-1. java.math.BigDecimal

public class BigDecimal extends Number implements Comparable<BigDecimal> {
// Public Constructors
 public BigDecimal(BigInteger val);
5.0 public BigDecimal(int val);
5.0 public BigDecimal(long val);
 public BigDecimal(String val);
5.0 public BigDecimal(char[] in);
 public BigDecimal(double val);
5.0 public BigDecimal(long val, MathContext mc);
5.0 public BigDecimal(int val, MathContext mc);
5.0 public BigDecimal(double val, MathContext mc);
5.0 public BigDecimal(String val, MathContext mc);
5.0 public BigDecimal(char[] in, MathContext mc);
 public BigDecimal(BigInteger unscaledVal, int scale);
5.0 public BigDecimal(BigInteger val, MathContext mc);
5.0 public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc);
5.0 public BigDecimal(char[] in, int offset, int len);
5.0 public BigDecimal(char[] in, int offset, int len, MathContext mc);
// Public Constants
 5.0 public static final BigDecimal ONE;
 public static final int ROUND_CEILING; =2
 public static final int ROUND_DOWN; =1
 public static final int ROUND_FLOOR; =3
 public static final int ROUND_HALF_DOWN; =5
 public static final int ROUND_HALF_EVEN; =6
 public static final int ROUND_HALF_UP; =4
 public static final int ROUND_UNNECESSARY; =7
 public static final int ROUND_UP; =0
 5.0 public static final BigDecimal TEN;
5.0 public static final BigDecimal ZERO;
// Public Class Methods
 public static BigDecimal valueOf(long val);
5.0 public static BigDecimal valueOf(double val);
 public static BigDecimal valueOf(long unscaledVal, int scale);
// Public Instance Methods
 public BigDecimal abs();
5.0 public BigDecimal abs(MathContext mc);
 public BigDecimal add(BigDecimal augend);
5.0 public BigDecimal add(BigDecimal augend, MathContext mc);
5.0 public byte byteValueExact();
 public int compareTo(BigDecimal val); Implements:Comparable
5.0 public BigDecimal divide(BigDecimal divisor);
 public BigDecimal divide(BigDecimal divisor, int roundingMode);
5.0 public BigDecimal divide(BigDecimal divisor, RoundingMode roundingMode);
5.0 public BigDecimal divide(BigDecimal divisor, MathContext mc);
 public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode);
5.0 public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode);
5.0 public BigDecimal[] divideAndRemainder(BigDecimal divisor);
5.0 public BigDecimal[] divideAndRemainder(BigDecimal divisor, MathContext mc);
5.0 public BigDecimal divideToIntegralValue(BigDecimal divisor);
5.0 public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc);
5.0 public int intValueExact();
5.0 public long longValueExact();
 public BigDecimal max(BigDecimal val);
 public BigDecimal min(BigDecimal val);
 public BigDecimal movePointLeft(int n);
 public BigDecimal movePointRight(int n);
 public BigDecimal multiply(BigDecimal multiplicand);
5.0 public BigDecimal multiply(BigDecimal multiplicand, MathContext mc);
 public BigDecimal negate();
5.0 public BigDecimal negate(MathContext mc);
5.0 public BigDecimal plus();
5.0 public BigDecimal plus(MathContext mc);
5.0 public BigDecimal pow(int n);
5.0 public BigDecimal pow(int n, MathContext mc);
5.0 public int precision();
5.0 public BigDecimal remainder(BigDecimal divisor);
5.0 public BigDecimal remainder(BigDecimal divisor, MathContext mc);
5.0 public BigDecimal round(MathContext mc);
 public int scale();
5.0 public BigDecimal scaleByPowerOfTen(int n);
 public BigDecimal setScale(int newScale);
 public BigDecimal setScale(int newScale, int roundingMode);
5.0 public BigDecimal setScale(int newScale, RoundingMode roundingMode);
5.0 public short shortValueExact();
 public int signum();
5.0 public BigDecimal stripTrailingZeros();
 public BigDecimal subtract(BigDecimal subtrahend);
5.0 public BigDecimal subtract(BigDecimal subtrahend, MathContext mc);
 public BigInteger toBigInteger();
5.0 public BigInteger toBigIntegerExact();
5.0 public String toEngineeringString();
5.0 public String toPlainString();
5.0 public BigDecimal ulp();
1.2 public BigInteger unscaledValue();
// Methods Implementing Comparable
 public int compareTo(BigDecimal val);
// Public Methods Overriding Number
 public double doubleValue();
 public float floatValue();
 public int intValue();
 public long longValue();
// Public Methods Overriding Object
 public boolean equals(Object x);
 public int hashCode();
 public String toString();
}

Passed To

 javax.xml.datatype.DatatypeFactory.{newDuration(
), newXMLGregorianCalendar(),
newXMLGregorianCalendarTime()},
javax.xml.datatype.Duration.multiply(),
javax.xml.datatype.XMLGregorianCalendar.{setFractionalSecond(
), setTime()}

Returned By

 java.util.Scanner.nextBigDecimal(),
javax.xml.datatype.XMLGregorianCalendar.getFractionalSecond(
)

Name
BigInteger

Synopsis

 This subclass of
java.lang.Number represents integers that can be
arbitrarily large (i.e., integers that are not limited to the 64 bits
available with the long data type).
BigInteger defines methods that duplicate the
functionality of the standard Java arithmetic and bit-manipulation
operators. The compareTo(
)
 method
compares two BigInteger objects and returns -1, 0,
or 1 to indicate the result of the comparison. The gcd(
)

 , modPow(),
modInverse(), and isProbablePrime(
) methods perform advanced operations and are used
primarily in
cryptographic and
related algorithms.
[image: java.math.BigInteger]

Figure 11-2. java.math.BigInteger

public class BigInteger extends Number implements Comparable<BigInteger> {
// Public Constructors
 public BigInteger(byte[] val);
 public BigInteger(String val);
 public BigInteger(String val, int radix);
 public BigInteger(int signum, byte[] magnitude);
 public BigInteger(int numBits, java.util.Random rnd);
 public BigInteger(int bitLength, int certainty, java.util.Random rnd);
// Public Constants
 1.2 public static final BigInteger ONE;
5.0 public static final BigInteger TEN;
1.2 public static final BigInteger ZERO;
// Public Class Methods
 1.4 public static BigInteger probablePrime(int bitLength, java.util.Random rnd);
 public static BigInteger valueOf(long val);
// Public Instance Methods
 public BigInteger abs();
 public BigInteger add(BigInteger val);
 public BigInteger and(BigInteger val);
 public BigInteger andNot(BigInteger val);
 public int bitCount();
 public int bitLength();
 public BigInteger clearBit(int n);
 public int compareTo(BigInteger val); Implements:Comparable
 public BigInteger divide(BigInteger val);
 public BigInteger[] divideAndRemainder(BigInteger val);
 public BigInteger flipBit(int n);
 public BigInteger gcd(BigInteger val);
 public int getLowestSetBit();
 public boolean isProbablePrime(int certainty);
 public BigInteger max(BigInteger val);
 public BigInteger min(BigInteger val);
 public BigInteger mod(BigInteger m);
 public BigInteger modInverse(BigInteger m);
 public BigInteger modPow(BigInteger exponent, BigInteger m);
 public BigInteger multiply(BigInteger val);
 public BigInteger negate();
5.0 public BigInteger nextProbablePrime();
 public BigInteger not();
 public BigInteger or(BigInteger val);
 public BigInteger pow(int exponent);
 public BigInteger remainder(BigInteger val);
 public BigInteger setBit(int n);
 public BigInteger shiftLeft(int n);
 public BigInteger shiftRight(int n);
 public int signum();
 public BigInteger subtract(BigInteger val);
 public boolean testBit(int n);
 public byte[] toByteArray();
 public String toString(int radix);
 public BigInteger xor(BigInteger val);
// Methods Implementing Comparable
 public int compareTo(BigInteger val);
// Public Methods Overriding Number
 public double doubleValue();
 public float floatValue();
 public int intValue();
 public long longValue();
// Public Methods Overriding Object
 public boolean equals(Object x);
 public int hashCode();
 public String toString();
}

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Type Of

 java.security.spec.RSAKeyGenParameterSpec.{F0,
F4}

Name
MathContext

Synopsis

 This simple class represents a

 precision
(number of significant digits) and a RoundingMode
to be used in BigDecimal arithmetic. The constants
are predefined MathContext objects that can be
used to select unlimited precision arithmetic or to select specific
operating modes that match
 decimal floating-point modes defined
by the IEEE 754R standard.
[image: java.math.MathContext]

Figure 11-3. java.math.MathContext

public final class MathContext implements Serializable {
// Public Constructors
 public MathContext(int setPrecision);
 public MathContext(String val);
 public MathContext(int setPrecision, RoundingMode setRoundingMode);
// Public Constants
 public static final MathContext DECIMAL128;
 public static final MathContext DECIMAL32;
 public static final MathContext DECIMAL64;
 public static final MathContext UNLIMITED;
// Public Instance Methods
 public int getPrecision();
 public RoundingMode getRoundingMode();
// Public Methods Overriding Object
 public boolean equals(Object x);
 public int hashCode();
 public String toString();
}

Passed To
Too many methods to list.

Name
RoundingMode

Synopsis

 The

 constants
defined by this enumerated type represent possible ways of rounding
numbers. UP and DOWN specify
rounding away from zero or toward zero. CEILING
and FLOOR represent rounding toward positive
infinity and negative infinity. HALF_UP,
HALF_DOWN, and HALF_EVEN all
round toward the nearest value and differ only in what they do when
two values are equidistant. In this case, they round up, down, or to
the “even” neighbor.
UNNECESSARY is a special rounding mode that serves
as an assertion that an arithmetic operation will have an exact
result and that rounding is not needed. If this assertion
fails—that is, if the operation does require rounding—an
ArithmeticException is thrown.
[image: java.math.RoundingMode]

Figure 11-4. java.math.RoundingMode

public enum RoundingMode {
// Enumerated Constants
 UP,
 DOWN,
 CEILING,
 FLOOR,
 HALF_UP,
 HALF_DOWN,
 HALF_EVEN,
 UNNECESSARY;
// Public Class Methods
 public static RoundingMode valueOf(int rm);
 public static RoundingMode valueOf(String name);
 public static final RoundingMode[] values();
}

Passed To

 BigDecimal.{divide(), setScale(
)}, MathContext.MathContext()

Returned By

 MathContext.getRoundingMode()

Chapter 12. java.net

Name
Package java.net

Synopsis

 The java.net
package provides a powerful and flexible infrastructure for
networking. This introduction describes the most commonly used
classes in brief. Note that as of Java 1.4, the New I/O API of
java.nio and java.nio.channels
can be used for high-performance nonblocking networking. See also the
javax.net.ssl package for classes for secure
networking using SSL.

 The
URL class represents an Internet uniform resource
locator (URL). It provides a very simple interface to networking: the
object referred to by the URL can be downloaded with a single call,
or streams may be opened to read from or write to the object. At a
slightly more complex level, a URLConnection
object can be obtained from a given URL object.
The URLConnection class provides additional
methods that allow you to work with URLs in more sophisticated ways.
Java 1.4 introduced the URI class; it provides a
powerful API for manipulating URI and URL strings but does not have
any networking capabilities itself. Java 5.0 defines APIs for
defining and registering cache, cookie, and proxy handlers to be used
by built-in protocol handlers when network resources are requested
through the URL class. See
RequestCache, CookieHandler,
ProxySelector, and Proxy.

 If you want to do more than simply
download an object referenced by a URL, you can do your own
networking with the Socket class. This class
allows you to connect to a specified port on a specified Internet
host and read and write data using the InputStream
and OutputStream classes of the
java.io package. If you want to implement a server
to accept connections from clients, you can use the related
ServerSocket class. Both Socket
and ServerSocket use the
InetAddress address class, which represents an
Internet address. Added in Java 1.4, Inet4Address
and Inet6Address are subclasses that represent the
addresses used by version 4 and version 6 of the IP protocol. Java
1.4 also introduced the SocketAddress class as a
high-level representation of a network address that is not tied to a
specific networking protocol. An IP-specific
InetSocketAddress subclass encapsulates an
InetAddress and a port number.
The java.net
 package allows you
to do low-level networking with DatagramPacket
objects, which may be sent and received over the network through a
DatagramSocket object.
MulticastSocket extends
DatagramSocket to support multicast networking.

Interfaces
public interface ContentHandlerFactory;
public interface DatagramSocketImplFactory;
public interface FileNameMap;
public interface SocketImplFactory;
public interface SocketOptions;
public interface URLStreamHandlerFactory;

Enumerated Types
public enum Authenticator.RequestorType;
public enum Proxy.Type;

Classes
public abstract class Authenticator;
public abstract class CacheRequest;
public abstract class CacheResponse;
 public abstract class SecureCacheResponse extends CacheResponse;
public abstract class ContentHandler;
public abstract class CookieHandler;
public final class DatagramPacket;
public class DatagramSocket;
 public class MulticastSocket extends DatagramSocket;
public abstract class DatagramSocketImpl implements SocketOptions;
public class InetAddress implements Serializable;
 public final class Inet4Address extends InetAddress;
 public final class Inet6Address extends InetAddress;
public final class NetPermission extends java.security.BasicPermission;
public final class NetworkInterface;
public final class PasswordAuthentication;
public class Proxy;
public abstract class ProxySelector;
public abstract class ResponseCache;
public class ServerSocket;
public class Socket;
public abstract class SocketAddress implements Serializable;
 public class InetSocketAddress extends SocketAddress;
public abstract class SocketImpl implements SocketOptions;
public final class SocketPermission extends java.security.Permission implements Serializable;
public final class URI implements Comparable<URI>, Serializable;
public final class URL implements Serializable;
public class URLClassLoader extends java.security.SecureClassLoader;
public abstract class URLConnection;
 public abstract class HttpURLConnection extends URLConnection;
 public abstract class JarURLConnection extends URLConnection;
public class URLDecoder;
public class URLEncoder;
public abstract class URLStreamHandler;

Exceptions
public class HttpRetryException extends java.io.IOException;
public class MalformedURLException extends java.io.IOException;
public class ProtocolException extends java.io.IOException;
public class SocketException extends java.io.IOException;
 public class BindException extends SocketException;
 public class ConnectException extends SocketException;
 public class NoRouteToHostException extends SocketException;
 public class PortUnreachableException extends SocketException;
public class SocketTimeoutException extends java.io.InterruptedIOException;
public class UnknownHostException extends java.io.IOException;
public class UnknownServiceException extends java.io.IOException;
public class URISyntaxException extends Exception;

Name
Authenticator

Synopsis

 This
abstract class defines a customizable mechanism for requesting and
performing
password authentication
when required in URL-based networking. The static
setDefault()

method establishes the systemwide Authenticator.
An Authenticator implementation can obtain the
required authentication information from the user however it wants
(e.g., through a text- or a GUI-based interface).
setDefault() can be called only once; subsequent
calls are ignored. Calling setDefault() requires
an appropriate NetPermission.

 When an application or the Java runtime system
requires password authentication (to read the contents of a specified
URL, for example), it calls the static
requestPasswordAuthentication() method, passing
arguments that specify the host and port for which the password is
required and a prompt that may be displayed to the user. This method
looks up the default Authenticator for the system
and calls its getPasswordAuthentication() method.
Calling requestPasswordAuthentication() requires
an appropriate NetPermission.

 Authenticator is an
abstract class; its default implementation of
getPasswordAuthentication() always returns
null. To create an
Authenticator, you must override this method so
that it prompts the user to enter a username and password and returns
that information in the form of a
PasswordAuthentication object. Your implementation
of getPasswordAuthentication() may call the
various getRequesting() methods to find out who
is requesting the password and what the recommended user prompt is.
Java 1.4 added a version of the static
requestPasswordAuthentication() method that
allows specification of the requesting hostname. A corresponding
getRequestingHost() instance method was also
added.
Java 5.0 adds yet another version of
requestPasswordAuthentication(), and
corresponding methods to query the URL that
requires the password and the RequestorType of the
request. RequestorType is a nested enum type that
specifies whether the request comes from an HTTP server or a proxy
server.
public abstract class Authenticator {
// Public Constructors
 public Authenticator();
// Nested Types
 5.0 public enum RequestorType;
// Public Class Methods
 public static PasswordAuthentication requestPasswordAuthentication
(InetAddress addr, int port, String protocol,
String prompt, String scheme);
1.4 public static PasswordAuthentication requestPasswordAuthentication
(String host, InetAddress addr, int port, String protocol,
String prompt, String scheme);
5.0 public static PasswordAuthentication
 requestPasswordAuthentication(String host,
 InetAddress addr, int port, String protocol, String prompt,
 String scheme, URL url, Authenticator.RequestorType reqType);
 public static void setDefault(Authenticator a); synchronized
 // Protected Instance Methods
 protected PasswordAuthentication getPasswordAuthentication(); constant
 1.4 protected final String getRequestingHost();
 protected final int getRequestingPort();
 protected final String getRequestingPrompt();
 protected final String getRequestingProtocol();
 protected final String getRequestingScheme();
 protected final InetAddress getRequestingSite();
5.0 protected URL getRequestingURL();
5.0 protected Authenticator.RequestorType getRequestorType();
}

Name
Authenticator.RequestorType

Synopsis

 The
constants defined
by this enumerated type specify whether an authentication request
comes from an HTTP origin server or a proxy server.
public enum Authenticator.RequestorType {
// Enumerated Constants
 PROXY,
 SERVER;
// Public Class Methods
 public static Authenticator.RequestorType valueOf(String name);
 public static final Authenticator.RequestorType[] values();
}

Passed To

 Authenticator.requestPasswordAuthentication()

Returned By

 Authenticator.getRequestorType()

Name
BindException

Synopsis

 Signals
that a socket cannot be bound to a local address and port. This often
means that the port is already in use.
[image: java.net.BindException]

Figure 12-1. java.net.BindException

public class BindException extends SocketException {
// Public Constructors
 public BindException();
 public BindException(String msg);
}

Name
CacheRequest

Synopsis

 When
a URLStreamHandler reads a network resource, it
should call the put() method of the currently
installed ResponseCache, if there is one. If the
cache wants to save a local copy of the resource, it will return a
CacheRequest object to the
URLStreamHandler. The handler should then write
the resource to the OutputStream returned by the
getBody()

method.
See also CacheResponse. This class is used by the
implementors of URLStreamHandler, not by casual
users of the java.net package.
public abstract class CacheRequest {
// Public Constructors
 public CacheRequest();
// Public Instance Methods
 public abstract void abort();
 public abstract java.io.OutputStream getBody() throws java.io.IOException;
}

Returned By

 ResponseCache.put()

Name
CacheResponse

Synopsis
If a

 ResponseCache holds a
local copy of a network resource, it returns a
CacheResponse object from the
ResponseCache.get() method. The resource can then
be read from the java.io.InputStream returned by
getBody()
 .
The protocol response headers are available in the form of
java.util.Map from getHeaders(
)
 .
See also SecureCacheResponse and
CacheRequest. Note that this class is intended for
use in URLStreamHandler implementations, not by
casual users of the java.net package.
public abstract class CacheResponse {
// Public Constructors
 public CacheResponse();
// Public Instance Methods
 public abstract java.io.InputStream getBody() throws java.io.IOException;
 public abstract java.util.Map<String,java.util.List<String>> getHeaders()
 throws java.io.IOException;
}

Subclasses

 SecureCacheResponse

Returned By

 ResponseCache.get()

Name
ConnectException

Synopsis

 Signals
that a socket cannot be connected to a remote address and port. This
means that the remote host can be reached, but is not responding,
perhaps because there is no process on that host that is listening on
the specified port.
[image: java.net.ConnectException]

Figure 12-2. java.net.ConnectException

public class ConnectException extends SocketException {
// Public Constructors
 public ConnectException();
 public ConnectException(String msg);
}

Name
ContentHandler

Synopsis

 This abstract class defines a method that
reads data from a URLConnection and returns an
object that represents that data. Each subclass that implements this
method is responsible for handling a different type of content (i.e.,
a different MIME type). Applications never create
ContentHandler objects directly; they are created,
when necessary, by the registered
ContentHandlerFactory object. Applications should
also never call ContentHandler methods directly;
they should call URL.getContent(
)
 or URLConnection.getContent(
)

instead. You need to subclass ContentHandler only
if you are writing a web browser or similar application that needs to
parse and understand some new content type.
public abstract class ContentHandler {
// Public Constructors
 public ContentHandler();
// Public Instance Methods
 public abstract Object getContent(URLConnection urlc)
throws java.io.IOException;
1.3 public Object getContent(URLConnection urlc, Class[] classes)
throws java.io.IOException;
}

Returned By

 ContentHandlerFactory.createContentHandler()

Name
ContentHandlerFactory

Synopsis

 This interface defines a method that
creates and returns an appropriate ContentHandler
object for a specified MIME type. A systemwide
ContentHandlerFactory interface may be specified
using the URLConnection.setContentHandlerFactory(
)
 method. Normal applications
never need to use or implement this interface.
public interface ContentHandlerFactory {
// Public Instance Methods
 java.net.ContentHandler createContentHandler(String mimetype);
}

Passed To

 URLConnection.setContentHandlerFactory()

Name
CookieHandler

Synopsis

 This abstract class defines an API to be
implemented by an application that wants to manage HTTP cookies for
networking done via the URL class. Install an
implementation of this class with the setDefault(
)

method. The default HTTP protocol handler uses getDefault(
)
 to
obtain the CookieHandler implementation. The
protocol handler then calls get() when it wants
the CookieHandler to copy cookie values into HTTP
request headers and calls put() when it wants the
CookieHandler to read a set of response headers
and store the cookies they contain.
This class is intended to be subclassed by advanced users of the
package; it is not intended for casual users.
public abstract class CookieHandler {
// Public Constructors
 public CookieHandler();
// Public Class Methods
 public static CookieHandler getDefault(); synchronized
 public static void setDefault(CookieHandler cHandler); synchronized
 // Public Instance Methods
 public abstract java.util.Map<String,java.util.List<String>>
get(URI uri, java.util.Map<String,java.util.List<String>> requestHeaders)
throws java.io.IOException;
 public abstract void put(URI uri, java.util.Map<String,
java.util.List<String>> responseHeaders)
throws java.io.IOException;
}

Name
DatagramPacket

Synopsis

 This
class implements a packet of data that may be sent or received over
the network through a DatagramSocket. Create a
DatagramPacket to be sent over the network with
one of the consructor methods that includes a network address. Create
a DatagramPacket into which data can be received
using one of the constructors that does not include a network address
argument. The receive() method of
DatagramSocket waits for data and stores it in a
DatagramPacket created in this way. The contents
and sender of a received packet can be queried with the
DatagramPacket instance methods.
New constructors and methods were added to this class in Java 1.4 to
support the SocketAddress abstraction of a network
address.
public final class DatagramPacket {
// Public Constructors
 public DatagramPacket(byte[] buf, int length);
1.4 public DatagramPacket(byte[] buf, int length, SocketAddress address)
throws SocketException;
1.2 public DatagramPacket(byte[] buf, int offset, int length);
 public DatagramPacket(byte[] buf, int length, InetAddress address,
 int port);
1.4 public DatagramPacket(byte[] buf, int offset, int length,
SocketAddress address) throws SocketException;
1.2 public DatagramPacket(byte[] buf, int offset, int length,
InetAddress address, int port);
// Public Instance Methods
 public InetAddress getAddress(); synchronized
 public byte[] getData(); synchronized
 public int getLength(); synchronized
 1.2 public int getOffset(); synchronized
 public int getPort(); synchronized
 1.4 public SocketAddress getSocketAddress(); synchronized
 1.1 public void setAddress(InetAddress iaddr); synchronized
 1.1 public void setData(byte[] buf); synchronized
 1.2 public void setData(byte[] buf, int offset, int length); synchronized
 1.1 public void setLength(int length); synchronized
 1.1 public void setPort(int iport); synchronized
 1.4 public void setSocketAddress(SocketAddress address); synchronized
}

Passed To

 DatagramSocket.{receive(), send(
)}, DatagramSocketImpl.{peekData(),
receive(), send()},
MulticastSocket.send()

Name
DatagramSocket

Synopsis

 This class defines a socket that can
receive and send unreliable datagram packets over the network using
the UDP protocol. A
datagram

is a very low-level networking interface: it is simply an array of
bytes sent over the network. A datagram does not implement any kind
of stream-based communication protocol, and there is no connection
established between the sender and the receiver. Datagram packets are
called unreliable because the protocol does not make any attempt to
ensure they arrive or to resend them if they don’t.
Thus, packets sent through a DatagramSocket are
not guaranteed to arrive in the order sent or even to arrive at all.
On the other hand, this low-overhead protocol makes datagram
transmission very fast. See Socket and
URL for higher-level interfaces to networking.
This class was introduced in Java 1.0, and was enhanced in Java 1.4
to allow local and remote addresses to be specified using the
protocol-independent SocketAddress class.

 send() sends a
DatagramPacket through the socket. The packet must
contain the destination address to which it should be sent.
receive() waits for data to arrive at the socket
and stores it, along with the address of the sender, in the specified
DatagramPacket. close() closes
the socket and frees the local port for reuse. Once close(
) has been called, the DatagramSocket
should not be used again, except to call the isClosed(
) method which returns true if the
socket has been closed.

 Each time a packet is sent or received,
the system must perform a security check to ensure that the calling
code has permission to send data to or receive data from the
specified host. In Java 1.2 and later, if you are sending multiple
packets to or receiving multiple packets from a single host, use
connect() to specify the host with which you are
communicating. This causes the security check to be done a single
time, but does not allow the socket to communicate with any other
host until disconnect() is called. Use
getRemoteSocketAddress() or
getInetAddress() and getPort(
) to obtain the network address, if any, that the socket is
connected to. Use isConnected() to determine if
the socket is currently connected in this way.
By default, a DatagramSocket sends data through a
local address assigned by the system. If desired, however, you can
bind the socket to a specified local address. Do
this by using one of the constructors other than the no-arg
constructor. Or, bind the DatagramSocket to a
local SocketAddress with the bind(
)

method. You can determine whether a DatagramSocket is bound with
isBound()

 ,
and you can obtain the local address of the socket with
getLocalSocketAddress() or with
getLocalAddress() and getLocalPort(
).

 This
class defines a number of get/set method pairs for setting and
querying a variety of “socket
options” for datagram transmission.
setSoTimeout() specifies the number of
milliseconds that receive() waits for a packet to
arrive before throwing an InterruptedIOException.
Specify 0 milliseconds to wait forever.
setSendBufferSize(
)

 and setReceiveBufferSize(
) set hints as to the underlying size of the networking
buffers.

 setBroadcast(), setReuseAddress(
), and setTrafficClass() set more
complex socket options; use of these options requires a sophisticated
understanding of low-level network protocols, and an explaination of
them is beyond the scope of this reference.
In Java 1.4 and later, getChannel(
)

 returns a
java.nio.channels.DatagramChannel associated with
this DatagramSocket. Sockets created with one of
the DatagramSocket() constructors always return
null from this method. getChannel(
) only returns a useful value for sockets that were created
by and belong to a DatagramChannel.
public class DatagramSocket {
// Public Constructors
 public DatagramSocket() throws SocketException;
1.4 public DatagramSocket(SocketAddress bindaddr) throws SocketException;
 public DatagramSocket(int port) throws SocketException;
1.1 public DatagramSocket(int port, InetAddress laddr) throws SocketException;
// Protected Constructors
 1.4 publicprotected DatagramSocket(DatagramSocketImpl impl);
// Public Class Methods
 1.3 public static void setDatagramSocketImplFactory(DatagramSocketImplFactory
fac) throws java.io.IOException; synchronized
 // Public Instance Methods
 1.4 public void bind(SocketAddress addr) throws SocketException; synchronized
 public void close();
1.4 public void connect(SocketAddress addr) throws SocketException;
1.2 public void connect(InetAddress address, int port);
1.2 public void disconnect();
1.4 public boolean getBroadcast()
throws SocketException; synchronized default:true
 1.4 public java.nio.channels.DatagramChannel getChannel();
 constant default:null
 1.2 public InetAddress getInetAddress(); default:null
 1.1 public InetAddress getLocalAddress(); default:Inet4Address
 public int getLocalPort(); default:32777
 1.4 public SocketAddress getLocalSocketAddress(); default:InetSocketAddress
 1.2 public int getPort(); default:-1
 1.2 public int getReceiveBufferSize()
throws SocketException; synchronized default:32767
 1.4 public SocketAddress getRemoteSocketAddress(); default:null
 1.4 public boolean getReuseAddress()
throws SocketException; synchronized default:false
 1.2 public int getSendBufferSize()
throws SocketException; synchronized default:32767
 1.1 public int getSoTimeout() throws SocketException; synchronized default:0
 1.4 public int getTrafficClass() throws SocketException; synchronized default:0
 1.4 public boolean isBound(); default:true
 1.4 public boolean isClosed(); default:false
 1.4 public boolean isConnected(); default:false
 public void receive(DatagramPacket p) throws java.io.IOException; synchronized
 public void send(DatagramPacket p) throws java.io.IOException;
1.4 public void setBroadcast(boolean on) throws SocketException; synchronized
 1.2 public void setReceiveBufferSize(int size) throws SocketException; synchronized
 1.4 public void setReuseAddress(boolean on) throws SocketException; synchronized
 1.2 public void setSendBufferSize(int size) throws SocketException; synchronized
 1.1 public void setSoTimeout(int timeout) throws SocketException; synchronized
 1.4 public void setTrafficClass(int tc) throws SocketException; synchronized
}

Subclasses

 MulticastSocket

Returned By

 java.nio.channels.DatagramChannel.socket()

Name
DatagramSocketImpl

Synopsis

 This abstract class defines the methods
necessary to implement communication through datagram and multicast
sockets. System programmers may create subclasses of this class when
they need to implement datagram or multicast sockets in a nonstandard
network environment, such as behind a firewall or on a network that
uses a nonstandard transport protocol. Normal applications never need
to use or subclass this class.
[image: java.net.DatagramSocketImpl]

Figure 12-3. java.net.DatagramSocketImpl

public abstract class DatagramSocketImpl implements SocketOptions {
// Public Constructors
 public DatagramSocketImpl();
// Protected Instance Methods
 protected abstract void bind(int lport, InetAddress laddr)
throws SocketException;
 protected abstract void close();
1.4 protected void connect(InetAddress address, int port)
throws SocketException; empty
 protected abstract void create() throws SocketException;
1.4 protected void disconnect(); empty
 protected java.io.FileDescriptor getFileDescriptor();
 protected int getLocalPort();
1.2 protected abstract int getTimeToLive() throws java.io.IOException;
 protected abstract void join(InetAddress inetaddr)
throws java.io.IOException;
1.4 protected abstract void joinGroup(SocketAddress mcastaddr, NetworkInterface
netIf) throws java.io.IOException;
 protected abstract void leave(InetAddress inetaddr)
throws java.io.IOException;
1.4 protected abstract void leaveGroup(SocketAddress mcastaddr, NetworkInterface
netIf) throws java.io.IOException;
 protected abstract int peek(InetAddress i) throws java.io.IOException;
1.4 protected abstract int peekData(DatagramPacket p) throws java.io.IOException;
 protected abstract void receive(DatagramPacket p) throws java.io.IOException;
 protected abstract void send(DatagramPacket p) throws java.io.IOException;
1.2 protected abstract void setTimeToLive(int ttl) throws java.io.IOException;
// Protected Instance Fields
 protected java.io.FileDescriptor fd;
 protected int localPort;
// Deprecated Protected Methods
 # protected abstract byte getTTL() throws java.io.IOException;
protected abstract void setTTL(byte ttl) throws java.io.IOException;
}

Passed To

 DatagramSocket.DatagramSocket()

Returned By

 DatagramSocketImplFactory.createDatagramSocketImpl(
)

Name
DatagramSocketImplFactory

Synopsis

 This interface defines a method that creates
DatagramSocketImpl objects. You can register an
instance of this factory interface with the static
setDatagramSocketImplFactory() method of
DatagramSocket. Application-level code never needs
to use or implement this interface.
public interface DatagramSocketImplFactory {
// Public Instance Methods
 DatagramSocketImpl createDatagramSocketImpl();
}

Passed To

 DatagramSocket.setDatagramSocketImplFactory()

Name
FileNameMap

Synopsis

 This interface defines a single
method that is called to obtain the MIME type of a file based on the name of
the file. The fileNameMap field of the
URLConnection class refers to an object that
implements this interface. The filename-to-file-type map it
implements is used by the static
URLConnection.guessContentTypeFromName() method.
public interface FileNameMap {
// Public Instance Methods
 String getContentTypeFor(String fileName);
}

Passed To

 URLConnection.setFileNameMap()

Returned By

 URLConnection.getFileNameMap()

Name
HttpRetryException

Synopsis

 An
exception of this type is thrown when an HTTP request needs to be
retried (due to a server redirect or authentication request, for
example) but the protocol handler cannot automatically retry it
because the HttpURLConnection has been placed in
streaming mode. (See the setFixedLengthStreamingMode(
) and setChunkedStreamingMode() methods
of HttpURLConnection.) The methods of the
exception provide details about how the request should be retried.
[image: java.net.HttpRetryException]

Figure 12-4. java.net.HttpRetryException

public class HttpRetryException extends java.io.IOException {
// Public Constructors
 public HttpRetryException(String detail, int code);
 public HttpRetryException(String detail, int code, String location);
// Public Instance Methods
 public String getLocation();
 public String getReason();
 public int responseCode();
}

Name
HttpURLConnection

Synopsis

 This class is a specialization of
URLConnection. An instance of this class is
returned when the openConnection() method is
called for a URL object that uses the HTTP
protocol. The many
constants
defined by this class are the status codes returned by HTTP servers.
setRequestMethod(
)
 specifies what kind of HTTP request is made.
The contents of this request must be sent through the
OutputStream returned by the
getOutputStream(
)
 method of the superclass. Once an HTTP
request has been sent, getResponseCode(
)
 returns the HTTP server’s
response code as an integer, and getResponseMessage(
)
 returns the server’s
response message. The disconnect(
)

method closes the connection. The static setFollowRedirects(
) specifies whether URL connections that use the HTTP
protocol should automatically follow redirect responses sent by HTTP
servers. In order to successfully use this class, you need to
understand the details of the HTTP protocol.
[image: java.net.HttpURLConnection]

Figure 12-5. java.net.HttpURLConnection

public abstract class HttpURLConnection extends URLConnection {
// Protected Constructors
 protected HttpURLConnection(URL u);
// Public Constants
 public static final int HTTP_ACCEPTED; =202
 public static final int HTTP_BAD_GATEWAY; =502
 public static final int HTTP_BAD_METHOD; =405
 public static final int HTTP_BAD_REQUEST; =400
 public static final int HTTP_CLIENT_TIMEOUT; =408
 public static final int HTTP_CONFLICT; =409
 public static final int HTTP_CREATED; =201
 public static final int HTTP_ENTITY_TOO_LARGE; =413
 public static final int HTTP_FORBIDDEN; =403
 public static final int HTTP_GATEWAY_TIMEOUT; =504
 public static final int HTTP_GONE; =410
 public static final int HTTP_INTERNAL_ERROR; =500
 public static final int HTTP_LENGTH_REQUIRED; =411
 public static final int HTTP_MOVED_PERM; =301
 public static final int HTTP_MOVED_TEMP; =302
 public static final int HTTP_MULT_CHOICE; =300
 public static final int HTTP_NO_CONTENT; =204
 public static final int HTTP_NOT_ACCEPTABLE; =406
 public static final int HTTP_NOT_AUTHORITATIVE; =203
 public static final int HTTP_NOT_FOUND; =404
 1.3 public static final int HTTP_NOT_IMPLEMENTED; =501
 public static final int HTTP_NOT_MODIFIED; =304
 public static final int HTTP_OK; =200
 public static final int HTTP_PARTIAL; =206
 public static final int HTTP_PAYMENT_REQUIRED; =402
 public static final int HTTP_PRECON_FAILED; =412
 public static final int HTTP_PROXY_AUTH; =407
 public static final int HTTP_REQ_TOO_LONG; =414
 public static final int HTTP_RESET; =205
 public static final int HTTP_SEE_OTHER; =303
 public static final int HTTP_UNAUTHORIZED; =401
 public static final int HTTP_UNAVAILABLE; =503
 public static final int HTTP_UNSUPPORTED_TYPE; =415
 public static final int HTTP_USE_PROXY; =305
 public static final int HTTP_VERSION; =505
 // Public Class Methods
 public static boolean getFollowRedirects();
 public static void setFollowRedirects(boolean set);
// Public Instance Methods
 public abstract void disconnect();
1.2 public java.io.InputStream getErrorStream(); constant
 1.3 public boolean getInstanceFollowRedirects();
 public String getRequestMethod();
 public int getResponseCode() throws java.io.IOException;
 public String getResponseMessage() throws java.io.IOException;
5.0 public void setChunkedStreamingMode(int chunklen);
5.0 public void setFixedLengthStreamingMode(int contentLength);
1.3 public void setInstanceFollowRedirects(boolean followRedirects);
 public void setRequestMethod(String method) throws ProtocolException;
 public abstract boolean usingProxy();
// Public Methods Overriding URLConnection
 1.4 public String getHeaderField(int n); constant
 1.3 public long getHeaderFieldDate(String name, long Default);
1.4 public String getHeaderFieldKey(int n); constant
 1.2 public java.security.Permission getPermission()
throws java.io.IOException;
// Protected Instance Fields
 5.0 protected int chunkLength;
5.0 protected int fixedContentLength;
1.3 protected boolean instanceFollowRedirects;
 protected String method;
 protected int responseCode;
 protected String responseMessage;
// Deprecated Public Fields
 # public static final int HTTP_SERVER_ERROR; =500
}

Subclasses

 javax.net.ssl.HttpsURLConnection

Name
Inet4Address

Synopsis

 Inet4Address
 implements methods defined by its
superclass to make them specific to IPv4
(Internet Protocol version 4) internet addresses.
Inet4Address does not have a constructor. Create
instances with the static methods of InetAddress,
which return instances of Inet4Address or
Inet6Address as appropriate.
[image: java.net.Inet4Address]

Figure 12-6. java.net.Inet4Address

public final class Inet4Address extends InetAddress {
// No Constructor
 // Public Methods Overriding InetAddress
 public boolean equals(Object obj);
 public byte[] getAddress();
 public String getHostAddress();
 public int hashCode();
 public boolean isAnyLocalAddress();
 public boolean isLinkLocalAddress();
 public boolean isLoopbackAddress();
 public boolean isMCGlobal();
 public boolean isMCLinkLocal();
 public boolean isMCNodeLocal(); constant
 public boolean isMCOrgLocal();
 public boolean isMCSiteLocal();
 public boolean isMulticastAddress();
 public boolean isSiteLocalAddress();
}

Name
Inet6Address

Synopsis

 Inet6Address
 implements methods defined by its
superclass to make them specific to IPv6
(Internet Protocol version 6) internet addresses. See RFC 2373 for
complete details about internet addresses of this type.
Inet6Address does not have a constructor. Create
instances with the static methods of InetAddress,
which return instances of Inet4Address or
Inet6Address as appropriate. In

 Java 5.0, you can also use the
getByAddress()
 factory methods of this class
directly.
[image: java.net.Inet6Address]

Figure 12-7. java.net.Inet6Address

public final class Inet6Address extends InetAddress {
// No Constructor
 // Public Class Methods
 5.0 public static Inet6Address getByAddress(String host,
byte[] addr, NetworkInterface nif) throws UnknownHostException;
5.0 public static Inet6Address getByAddress(String host,
byte[] addr, int scope_id) throws UnknownHostException;
// Public Instance Methods
 5.0 public NetworkInterface getScopedInterface();
5.0 public int getScopeId();
 public boolean isIPv4CompatibleAddress();
// Public Methods Overriding InetAddress
 public boolean equals(Object obj);
 public byte[] getAddress();
 public String getHostAddress();
 public int hashCode();
 public boolean isAnyLocalAddress();
 public boolean isLinkLocalAddress();
 public boolean isLoopbackAddress();
 public boolean isMCGlobal();
 public boolean isMCLinkLocal();
 public boolean isMCNodeLocal();
 public boolean isMCOrgLocal();
 public boolean isMCSiteLocal();
 public boolean isMulticastAddress();
 public boolean isSiteLocalAddress();
}

Name
InetAddress

Synopsis

 This class
represents an Internet Protocol (IP) address. The
class does not have a public constructor but instead supports static
factory methods for obtaining InetAddress objects.
getLocalHost()

 returns the
InetAddress of the local computer.
getByName() returns the
InetAddress of a
host specified by name.
getAllByName() returns an array of
InetAddress objects that represents all the
available addresses for a host specified by name.
getByAddress() returns an
InetAddress that represents the IP address defined
by the specified array of bytes.
Once you have obtained an InetAddress object, its
instance methods provide various sorts of information about it. Two
of the most important are getHostName(
)

 , which returns the hostname, and
getAddress(), which returns the IP address as an
array of bytes, with the highest-order byte as the first element of
the array. getHostAddress(
)
 returns the IP address formatted
as a string rather than as an array of bytes. The various methods
whose names begin with “is”
determine whether the address falls into any of the named categories.
The “isMC” methods are all related
to multicast addresses.
This class was originally defined in Java 1.0, but many of its
methods were added in Java 1.4. Java 1.4 also defined two subclasses,
Inet4Address and Inet6Address
representing IPv4 and IPv6 (version 4 and version 6) addresses.

 Java 5.0 adds isReachable(
) for testing whether the address describes a reachable
(and responsive) host.
[image: java.net.InetAddress]

Figure 12-8. java.net.InetAddress

public class InetAddress implements Serializable {
// No Constructor
 // Public Class Methods
 public static InetAddress[] getAllByName(String host) throws UnknownHostException;
1.4 public static InetAddress getByAddress(byte[] addr)
throws UnknownHostException;
1.4 public static InetAddress getByAddress(String host, byte[] addr) throws UnknownHostException;
 public static InetAddress getByName(String host) throws UnknownHostException;
 public static InetAddress getLocalHost() throws UnknownHostException;
// Public Instance Methods
 public byte[] getAddress(); constant
 1.4 public String getCanonicalHostName();
 public String getHostAddress(); constant
 public String getHostName();
1.4 public boolean isAnyLocalAddress(); constant
 1.4 public boolean isLinkLocalAddress(); constant
 1.4 public boolean isLoopbackAddress(); constant
 1.4 public boolean isMCGlobal(); constant
 1.4 public boolean isMCLinkLocal(); constant
 1.4 public boolean isMCNodeLocal(); constant
 1.4 public boolean isMCOrgLocal(); constant
 1.4 public boolean isMCSiteLocal(); constant
 1.1 public boolean isMulticastAddress(); constant
 5.0 public boolean isReachable(int timeout) throws java.io.IOException;
5.0 public boolean isReachable(NetworkInterface netif, int ttl, int timeout)
throws java.io.IOException;
1.4 public boolean isSiteLocalAddress(); constant
 // Public Methods Overriding Object
 public boolean equals(Object obj); constant
 public int hashCode(); constant
 public String toString();
}

Subclasses

 Inet4Address, Inet6Address

Passed To
Too many methods to list.

Returned By

 Authenticator.getRequestingSite(),
DatagramPacket.getAddress(),
DatagramSocket.{getInetAddress(),
getLocalAddress()},
InetSocketAddress.getAddress(),
MulticastSocket.getInterface(),
ServerSocket.getInetAddress(),
Socket.{getInetAddress(),
getLocalAddress()},
SocketImpl.getInetAddress(),
URLStreamHandler.getHostAddress(),
javax.security.auth.kerberos.KerberosTicket.getClientAddresses(
)

Type Of

 SocketImpl.address

Name
InetSocketAddress

Synopsis

 InetSocketAddress

 represents an the combination of an IP
(Internet Protocol) address and a port number. The constructors allow
you to specify the IP address as an InetAddress or
as a hostname, and they also allow you to omit the IP address, in
which case the wildcard address is used (this is useful for server
sockets).
[image: java.net.InetSocketAddress]

Figure 12-9. java.net.InetSocketAddress

public class InetSocketAddress extends SocketAddress {
// Public Constructors
 public InetSocketAddress(int port);
 public InetSocketAddress(InetAddress addr, int port);
 public InetSocketAddress(String hostname, int port);
// Public Class Methods
 5.0 public static InetSocketAddress createUnresolved(String host, int port);
// Public Instance Methods
 public final InetAddress getAddress();
 public final String getHostName();
 public final int getPort();
 public final boolean isUnresolved();
// Public Methods Overriding Object
 public final boolean equals(Object obj);
 public final int hashCode();
 public String toString();
}

Name
JarURLConnection

Synopsis

 This
class is a specialized URLConnection that
represents a connection to a jar: URL. A
jar: URL is a compound URL that includes the URL
of a JAR archive and, optionally, a reference to a file or directory
within the JAR archive. The jar: URL syntax uses
the ! character
to separate the pathname of the JAR archive from the
filename within the JAR archive. Note that a jar:
URL contains a subprotocol that specifies the protocol that retrieves
the JAR file itself. For example:
jar:http://my.jar.com/my.jar!/ // The whole archive
jar:file:/usr/java/lib/my.jar!/com/jar/ // A directory of the archive
jar:ftp://ftp.jar.com/pub/my.jar!/com/jar/Jar.class // A file in the archive
To obtain a JarURLConnection, define a
URL object for a jar: URL, open
a connection to it with openConnection(), and
cast the returned URLConnection object to a
JarURLConnection. The various methods defined by
JarURLConnection allow you to read the manifest
file of the JAR archive and look up attributes from that manifest for
the archive as a whole or for individual entries in the archive.
These methods make use of various classes from the
java.util.jar
 package.
[image: java.net.JarURLConnection]

Figure 12-10. java.net.JarURLConnection

public abstract class JarURLConnection extends URLConnection {
// Protected Constructors
 protected JarURLConnection(URL url) throws MalformedURLException;
// Public Instance Methods
 public java.util.jar.Attributes getAttributes() throws java.io.IOException;
 public java.security.cert.Certificate[] getCertificates()
throws java.io.IOException;
 public String getEntryName();
 public java.util.jar.JarEntry getJarEntry() throws java.io.IOException;
 public abstract java.util.jar.JarFile getJarFile()
throws java.io.IOException;
 public URL getJarFileURL();
 public java.util.jar.Attributes getMainAttributes()
throws java.io.IOException;
 public java.util.jar.Manifest getManifest() throws java.io.IOException;
// Protected Instance Fields
 protected URLConnection jarFileURLConnection;
}

Name
MalformedURLException

Synopsis

 Signals
that an unparseable URL specification has been passed to a method.
[image: java.net.MalformedURLException]

Figure 12-11. java.net.MalformedURLException

public class MalformedURLException extends java.io.IOException {
// Public Constructors
 public MalformedURLException();
 public MalformedURLException(String msg);
}

Thrown By

 java.io.File.toURL(),
JarURLConnection.JarURLConnection(),
URI.toURL(), URL.URL()

Name
MulticastSocket

Synopsis

 This subclass of
DatagramSocket can send and receive multicast UDP
packets. It extends DatagramSocket by adding
joinGroup()

 and leaveGroup(
) methods to join and leave multicast
groups. You do not have to join a group
to send a packet to a multicast address, but you must join the group
to receive packets sent to that address. Note that the use of a
MulticastSocket is governed by a security manager.
Use setTimeToLive(
)

 to set a time-to-live value
for any packets sent through a MulticastSocket.
This constrains the number of network hops a packet can take and
controls the scope of a multicast. Use setInterface(
)

 or
setNetworkInterface() to specify the
InetAddress or the
NetworkInterface that outgoing multicast packets
should use: this is useful for servers or other computers that have
more than one internet address or network interface.
setLoopbackMode(
)
 specifies whether a multicast
packets sent through this socket should be send back to this socket
or not. This method should really be named
“setLoopbackModeDisabled()”:
passing an argument of true requests (but does not
require) that the system disable
 loopback
packets.
[image: java.net.MulticastSocket]

Figure 12-12. java.net.MulticastSocket

public class MulticastSocket extends DatagramSocket {
// Public Constructors
 public MulticastSocket() throws java.io.IOException;
1.4 public MulticastSocket(SocketAddress bindaddr) throws java.io.IOException;
 public MulticastSocket(int port) throws java.io.IOException;
// Public Instance Methods
 public InetAddress getInterface()
throws SocketException; default:Inet4Address
 1.4 public boolean getLoopbackMode() throws SocketException; default:false
 1.4 public NetworkInterface getNetworkInterface() throws SocketException;
1.2 public int getTimeToLive() throws java.io.IOException; default:1
 public void joinGroup(InetAddress mcastaddr) throws java.io.IOException;
1.4 public void joinGroup(SocketAddress mcastaddr, NetworkInterface netIf)
throws java.io.IOException;
 public void leaveGroup(InetAddress mcastaddr)
throws java.io.IOException;
1.4 public void leaveGroup(SocketAddress mcastaddr, NetworkInterface netIf) throws java.io.IOException;
 public void setInterface(InetAddress inf) throws SocketException;
1.4 public void setLoopbackMode(boolean disable) throws SocketException;
1.4 public void setNetworkInterface(NetworkInterface netIf)
throws SocketException;
1.2 public void setTimeToLive(int ttl) throws java.io.IOException;
// Deprecated Public Methods
 # public byte getTTL() throws java.io.IOException; default:1
 # public void send(DatagramPacket p, byte ttl) throws java.io.IOException;
public void setTTL(byte ttl) throws java.io.IOException;
}

Name
NetPermission

Synopsis

 This class is a
java.security.Permission that represents various
permissions required for Java’s URL-based networking
system. See also SocketPermission, which
represents permissions to perform lower-level networking operations.
A NetPermission is defined solely by its name; no
actions list is required or supported. As of Java 1.2, there are
three NetPermission
 targets
defined: “setDefaultAuthenticator”
is required to call Authenticator.setDefault(
)
 ;
“requestPasswordAuthentication” to
call Authenticator.requestPasswordAuthentication(
)
 ; and
“specifyStreamHandler” to
explicitly pass a URLStreamHandler object to the
URL() constructor. The target
“*” is a
wildcard that represents all defined
NetPermission targets.
System administrators configuring security policies must be familiar with
this class and the permissions it represents. System programmers may
use this class, but application programmers never need to use it
explicitly.
[image: java.net.NetPermission]

Figure 12-13. java.net.NetPermission

public final class NetPermission extends java.security.BasicPermission {
// Public Constructors
 public NetPermission(String name);
 public NetPermission(String name, String actions);
}

Name
NetworkInterface

Synopsis

 Instances of this class represent a
network
interface
on the local machine. getName(
)

 and
getDisplayName() return the name of the
interface, and getInetAddresses() returns a
java.util.Enumeration of the
internet addresses for the
interface. Obtain a NetworkInterface object with
one of the static methods defined by this class.
getNetworkInterfaces(
)
 returns an enumeration of all interfaces for
the local host. This class is typically only used in advanced
networking applications.
public final class NetworkInterface {
// No Constructor
 // Public Class Methods
 public static NetworkInterface getByInetAddress(InetAddress addr)
throws SocketException;
 public static NetworkInterface getByName(String name) throws SocketException;
 public static java.util.Enumeration<NetworkInterface> getNetworkInterfaces()
throws SocketException;
// Public Instance Methods
 public String getDisplayName();
 public java.util.Enumeration<InetAddress> getInetAddresses();
 public String getName();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Passed To

 DatagramSocketImpl.{joinGroup(),
leaveGroup()},
Inet6Address.getByAddress(),
InetAddress.isReachable(),
MulticastSocket.{joinGroup(),
leaveGroup(), setNetworkInterface(
)}

Returned By

 Inet6Address.getScopedInterface(),
MulticastSocket.getNetworkInterface()

Name
NoRouteToHostException

Synopsis

 This exception
signals that a socket cannot be connected to a remote host because
the host cannot be contacted. Typically, this means that some link in
the network between the local machine and the remote host is down or
that the host is behind a firewall.
[image: java.net.NoRouteToHostException]

Figure 12-14. java.net.NoRouteToHostException

public class NoRouteToHostException extends SocketException {
// Public Constructors
 public NoRouteToHostException();
 public NoRouteToHostException(String msg);
}

Name
PasswordAuthentication

Synopsis

 This simple immutable
class encapsulates a username and a password. The password is stored
as a character array rather than as a String
object so that the caller can erase the contents of the array after
use for increased security. Note that the
PasswordAuthentication() constructor clones the
specified password character array, but

 getPassword(
) returns a reference to the object’s
internal array.
Application programmers defining an Authenticator
object for their application need to create and return a
PasswordAuthentication object from the
getPasswordAuthentication(
)
 method of that object. System programmers
writing URLStreamHandler implementations or
otherwise interacting with a network server that requests password
authentication may obtain a PasswordAutentication
object representing the user’s name and password by
calling the static
Authenticator.requestPasswordAuthentication()
method.
public final class PasswordAuthentication {
// Public Constructors
 public PasswordAuthentication(String userName, char[] password);
// Public Instance Methods
 public char[] getPassword();
 public String getUserName();
}

Returned By

 Authenticator.{getPasswordAuthentication(),
requestPasswordAuthentication()}

Name
PortUnreachableException

Synopsis

 An
exception of this type may be thrown by a send(
)

 or
receive() call on a
DatagramSocket if the connect(
) method of that socket has been called, and if the
connection attempt resulted in an ICMP “port
unreachable” message.
[image: java.net.PortUnreachableException]

Figure 12-15. java.net.PortUnreachableException

public class PortUnreachableException extends SocketException {
// Public Constructors
 public PortUnreachableException();
 public PortUnreachableException(String msg);
}

Name
ProtocolException

Synopsis

 Signals
a protocol error in the Socket class.
[image: java.net.ProtocolException]

Figure 12-16. java.net.ProtocolException

public class ProtocolException extends java.io.IOException {
// Public Constructors
 public ProtocolException();
 public ProtocolException(String host);
}

Thrown By

 HttpURLConnection.setRequestMethod()

Name
Proxy

Synopsis

 An
instance of this class represents a set of proxy server settings: a
network address and a proxy server type. The
NO_PROXY constant represents a
Proxy.Type.DIRECT connection.
Proxy objects may be passed to the
Socket() constructor or to the
URL.openConnection() method to connect through a
specific proxy server. The ProxySelector class
provides a way to automate the selection of proxy servers based on
requested URLs.
public class Proxy {
// Public Constructors
 public Proxy(Proxy.Type type, SocketAddress sa);
// Public Constants
 public static final java.net.Proxy NO_PROXY;
// Nested Types
 public enum Type;
// Public Instance Methods
 public SocketAddress address();
 public Proxy.Type type();
// Public Methods Overriding Object
 public final boolean equals(Object obj);
 public final int hashCode();
 public String toString();
}

Passed To

 Socket.Socket(), URL.openConnection(
), URLStreamHandler.openConnection()

Name
Proxy.Type

Synopsis

 The constants of this

 enumerated type
represent a type of proxy server. DIRECT indicates
a direct, nonproxied connection. HTTP represents a
proxy server that understands high-level protocols such as HTTP or
FTP. And SOCKS represents a low-level SOCKS proxy
server.
public enum Proxy.Type {
// Enumerated Constants
 DIRECT,
 HTTP,
 SOCKS;
// Public Class Methods
 public static Proxy.Type valueOf(String name);
 public static final Proxy.Type[] values();
}

Passed To

 java.net.Proxy.Proxy()

Returned By

 java.net.Proxy.type()

Name
ProxySelector

Synopsis

 An implementation of this abstract class
can be used to automatically select one or more
Proxy objects to use to connect to a specified
URL. Install an implementation of this class with
the setDefault()

method. URLConnection implementations use the
installed ProxySelector, if there is one, and call
select()
 to
obtain a list of suitable Proxy objects for the
connection. If a URLConnection cannot contact the
proxy server specified in a Proxy object, it calls
the connectFailed() method to notify the
ProxySelector object of the failure.
This class is intended to be implemented by advanced users of
java.net and is not for casual use.
public abstract class ProxySelector {
// Public Constructors
 public ProxySelector();
// Public Class Methods
 public static ProxySelector getDefault();
 public static void setDefault(ProxySelector ps);
// Public Instance Methods
 public abstract void connectFailed(URI uri, SocketAddress sa,
java.io.IOException ioe);
 public abstract java.util.List<java.net.Proxy> select(URI uri);
}

Name
ResponseCache

Synopsis

 This abstract class defines an API for
low-level caching of network resources retrieved through the
URL

 and
URLConnection classes. This class is intended for
use by URLStreamHandler
 implementations, not by casual users of
the java.net package. Clients that wish to enable
local caching should register a ResponseCache
implementation with setDefault(
)
 and
enable caching with URLConnection.setDefaultUseCaches(
)
 .
The static getDefault(
)
 and
setDefault() methods query and set a
ResponseCache for the system. If there is a
ResponseCache installed, protocol handlers should
call put() to offer a network resource to the
cache. If the cache is interested, it returns a
CacheRequest object into which the
URLStreamHandler can write its data. A
URLStreamHandler that wants to query the cache
should call get(). If the
ResponseCache holds a cached copy of the requested
resource, it returns a CacheResponse from which
the URLStreamHandler can read the resource.
public abstract class ResponseCache {
// Public Constructors
 public ResponseCache();
// Public Class Methods
 public static ResponseCache getDefault(); synchronized
 public static void setDefault(ResponseCache responseCache); synchronized
 // Public Instance Methods
 public abstract CacheResponse get(URI uri, String rqstMethod,
java.util.Map<String,java.util.List<String>> rqstHeaders)
 throws java.io.IOException;
 public abstract CacheRequest put(URI uri, URLConnection conn)
 throws java.io.IOException;
}

Name
SecureCacheResponse

Synopsis

 This subclass of
CacheResponse
 represents a cached network resource
that was retreived through a secure protocol such as HTTPS. Its
methods return certificates and other details about the secure
transfer. See also ResponseCache. This class is
not intended for casual users of the java.net
package.
[image: java.net.SecureCacheResponse]

Figure 12-17. java.net.SecureCacheResponse

public abstract class SecureCacheResponse extends CacheResponse {
// Public Constructors
 public SecureCacheResponse();
// Public Instance Methods
 public abstract String getCipherSuite();
 public abstract java.util.List<java.security.cert.Certificate>
 getLocalCertificateChain();
 public abstract java.security.Principal getLocalPrincipal();
 public abstract java.security.Principal getPeerPrincipal()
 throws javax.net.ssl.SSLPeerUnverifiedException;
 public abstract java.util.List<java.security.cert.Certificate>
 getServerCertificateChain()
 throws javax.net.ssl.SSLPeerUnverifiedException;
}

Name
ServerSocket

Synopsis

 This class is used by servers to listen
for connection requests from clients. Before you can use a
ServerSocket, it must be
bound to the local network address that it is to
listen on. All of the ServerSocket() constructors
except for the no-argument constructor create a server socket and
bind it to the specified local port, optionally specifying a
“connection backlog” value: this is
the number of client connection attempts that may be queued up before
subsequent connection attempts are rejected.
In Java 1.4 and later, the no-argument ServerSocket(
) constructor allows you to create an unbound socket. Doing
this allows you to bind the socket using the bind(
)

method which uses a SocketAddress object rather
than a port number. It also allows you to call
setReuseAddress(
)
 ,
which is only useful when done before the socket is bound. Call
isBound()
 to
determine whether a server socket has been bound. If it has, use
getLocalSocketAddress(
)

 or
getLocalPort() and getInetAddress(
) to obtain the local address it is bound to.

 Once a ServerSocket
has been bound, you can call the accept() method
to listen on the specified port and block until the client requests a
connection on the port. When this happens, accept(
) accepts the connection, creating and returning a
Socket the server can use to communicate with the
client. A typical server starts a new thread to handle the
communication with the client and calls accept()
again to listen for another connection.

 ServerSocket defines several methods for setting
socket options that affect the socket’s behavior.
setSoTimeout()

 specifies the number of
milliseconds that accept() should block before
throwing an InterruptedIOException. A value of 0
means that it should block forever. setReceiveBufferSize(
)

 is an advanced option that suggests
the desired size for the internal receive buffer of the
Socket objects returned by accept(
). This is only a hint, and may be ignored by the system.
setReuseAddress() is another advanced option; it
specifies that a bind() operation should succeed
even if the local bind address is still nominally in use by a socket
that is in the process of shutting down.
Like all sockets, a ServerSocket should be closed
with the close()

method when it is no longer needed. Once closed, a
ServerSocket should not be used, except to call
the isClosed() method which returns
true if it has been closed.
The getChannel(
)

 method is a link between this
ServerSocket class and the New I/O
java.nio.channels.ServerSocketChannel class. It
returns the ServerSocketChannel associated with
this ServerSocket if there is one. Note, however,
that this method always returns null for sockets
created with any of the ServerSocket()
constructors. If you create a ServerSocketChannel
object, and obtain a ServerSocket from it,
however, then the getChannel() method provides a
way to link back to the parent channel.
public class ServerSocket {
// Public Constructors
 1.4 public ServerSocket() throws java.io.IOException;
 public ServerSocket(int port) throws java.io.IOException;
 public ServerSocket(int port, int backlog)
throws java.io.IOException;
1.1 public ServerSocket(int port, int backlog, InetAddress bindAddr) throws java.io.IOException;
// Public Class Methods
 public static void setSocketFactory(SocketImplFactory fac)
throws java.io.IOException; synchronized
 // Public Instance Methods
 public Socket accept() throws java.io.IOException;
1.4 public void bind(SocketAddress endpoint) throws java.io.IOException;
1.4 public void bind(SocketAddress endpoint, int backlog) throws java.io.IOException;
 public void close() throws java.io.IOException;
1.4 public java.nio.channels.ServerSocketChannel getChannel();
 constant default:null
 public InetAddress getInetAddress(); default:null
 public int getLocalPort(); default:-1
 1.4 public SocketAddress getLocalSocketAddress(); default:null
 1.4 public int getReceiveBufferSize() throws SocketException; synchronized default:43690
 1.4 public boolean getReuseAddress() throws SocketException; default:true
 1.1 public int getSoTimeout()
throws java.io.IOException; synchronized default:0
 1.4 public boolean isBound(); default:false
 1.4 public boolean isClosed(); default:false
 5.0 public void setPerformancePreferences(int connectionTime, int latency,
int bandwidth); empty
 1.4 public void setReceiveBufferSize(int size)
throws SocketException; synchronized
 1.4 public void setReuseAddress(boolean on) throws SocketException;
1.1 public void setSoTimeout(int timeout) throws SocketException; synchronized
 // Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 1.1 protected final void implAccept(Socket s) throws java.io.IOException;
}

Subclasses

 javax.net.ssl.SSLServerSocket

Returned By

 java.nio.channels.ServerSocketChannel.socket(),
javax.net.ServerSocketFactory.createServerSocket(
)

Name
Socket

Synopsis

 This class implements a socket for
stream-based communication over the network. See
URL for a higher-level interface to networking and
DatagramSocket for a lower-level interface.
Before you can use a socket for communication, it must be
bound to a local address and
connected to a remote address. Binding and
connection are done automatically for you when you call any of the
Socket() constructors except the no-argument
constructor. These constructors allow you to specify either the name
or the InetAddress of the computer to connect to,
and also require you to specify the port number to connect to. Two of
these constructors also allow you to specify the local
InetAddress and port number to bind the socket to.
Most applications do not need to specify a local address, and can
simply use one of the two-argument versions of Socket(
) and can allow the constructor to choose an ephemeral
local port to bind the socket to.
The no-argument Socket() constructor is different
from the others: it creates an unbound and unconnected socket. In
Java 1.4 and later, you can explicitly call bind(
)

 and
connect() to bind and connect the socket. It can
be useful to do this when you want to set a socket option (described
below) that must be set before binding or connection. bind(
) uses a SocketAddress object to
describe the local address to bind to, and connect(
) uses a SocketAddress to specify the
remote address to connect to. There is also a version of
connect() that takes a timeout value in
milliseconds: if the connection attempt takes longer than the
specified amount of time, connect() throws an
IOException. (See ServerSocket
for a description of how to write server code that accepts socket
connection requests from client code.) Java 5.0 includes a
constructor that takes a Proxy object as its sole
argument. Like the no-argument constructor, this creates an unbound
and unconnected socket. When you attempt to connect it, the
connection will be made through the specified
Proxy.
Use isBound()

 and
isConnected() to determine whether a
Socket is bound and connected. Use
getInetAddress(
)

 and getPort() to
determine the IP address and port number that the socket is connected
to. Or, in Java 1.4 and later, use getRemoteSocketAddress(
)
 to obtain the remote address as a
SocketAddress object. Similarly, use
getLocalAddress(
)

 and
getLocalPort() or use
getLocalSocketAddress() to find out what address
a socket is bound to.

 Once you have a
Socket object that is bound and connected, use
getInputStream() and getOutputStream(
) to obtain InputStream and
OutputStream objects you can use to communicate
with the remote host. You can use these streams just as you would use
similar streams for file input and output. When you are done with a
Socket, use close() to close
it. Once a socket has been closed, it is not possible to call
connect() again to reuse it, and you should not
call any of its methods except isClosed().
Because networking code can throw many exceptions, it is common
practice to close() a socket in the
finally clause of a try/catch
statement to ensure that the socket always gets closed. Note,
however, that the close() method itself can throw
an IOException, and you may need to put it in its
own try block. In Java 1.3 and later
shutdownInput() and shutdownOutput(
) allow you to close the input and output communication
channels individually without closing the entire socket. In Java 1.4
and later, isInputShutdown(
)

 and isOutputShutdown(
) allow you to test for this.

 The
Socket class defines a number of methods that
allow you to set (and query) “socket
options” that affect the low-level networking
behavior of the socket. setSendBufferSize() and
setReceiveBufferSize() provide hints to the
underlying networking system about what
buffer size is best to use with this
socket. setSoTimeout(
)
 specifies
the number of milliseconds a read() call on the
input stream returned by getInputStream() waits
for data before throwing an
InterruptedIOException. The default value of
0 specifies that the stream blocks indefinitely.
setSoLinger()
 specifies what to do when a socket is
closed while there is still data waiting to be transmitted. If
lingering is turned on, the close() call blocks
for up to the specified number of seconds while attempting to
transmit the remaining data. Calling setTcpNoDelay(
)
 with an argument of
true causes data to be sent through the socket as
soon as it is available, instead of waiting for the TCP packet to
become more full before sending it. In Java 1.3, use
setKeepAlive()
 to enable or disable the periodic
exchange of control messages across an idle socket connection. The
keepalive protocol enables a client to
determine if its server has crashed without closing the socket and
vice versa. In Java 1.4, pass true to
setOOBInline()

 if you want to receive
“out of band” data sent to this
socket “inline” on the input stream
of the socket (by default such data is simply discarded). This can be
used to receive bytes sent with sendUrgentData(
)
 . Java 1.4 also adds
setReuseAddress(
)
 which you
can use before binding the socket to specify that the socket should
be allowed to bind to a port that is still nominally in use by
another socket that is in the process of shutting
down.

 setTrafficClass()
is also new in Java 1.4; it sets the “traffic
class” field for the socket, and requires an
understanding of the low-level details of the IP protocol.
The getChannel()

method is a link between this Socket class and the
New I/O java.nio.channels.SocketChannel class. It
returns the SocketChannel associated with this
Socket if there is one. Note, however, that this
method always returns null for sockets created
with any of the Socket() constructors. If you
create a SocketChannel object, and obtain a
Socket from it, then the getChannel(
) method provides a way to link back to the parent channel.
public class Socket {
// Public Constructors
 1.1 public Socket();
5.0 public Socket(java.net.Proxy proxy);
 public Socket(String host, int port)
throws UnknownHostException, java.io.IOException;
 public Socket(InetAddress address, int port) throws java.io.IOException;
public Socket(String host, int port, boolean stream)
throws java.io.IOException;
public Socket(InetAddress host, int port, boolean stream)
throws java.io.IOException;
1.1 public Socket(String host, int port, InetAddress localAddr, int localPort)
throws java.io.IOException;
1.1 public Socket(InetAddress address, int port, InetAddress localAddr,
int localPort) throws java.io.IOException;
// Protected Constructors
 1.1 protected Socket(SocketImpl impl) throws SocketException;
// Public Class Methods
 public static void setSocketImplFactory(SocketImplFactory fac)
throws java.io.IOException; synchronized
 // Public Instance Methods
 1.4 public void bind(SocketAddress bindpoint) throws java.io.IOException;
 public void close() throws java.io.IOException; synchronized
 1.4 public void connect(SocketAddress endpoint) throws java.io.IOException;
1.4 public void connect(SocketAddress endpoint, int timeout)
throws java.io.IOException;
1.4 public java.nio.channels.SocketChannel getChannel(); constant default:null
 public InetAddress getInetAddress(); default:null
 public java.io.InputStream getInputStream() throws java.io.IOException;
1.3 public boolean getKeepAlive() throws SocketException; default:false
 1.1 public InetAddress getLocalAddress(); default:Inet4Address
 public int getLocalPort(); default:-1
 1.4 public SocketAddress getLocalSocketAddress(); default:null
 1.4 public boolean getOOBInline() throws SocketException; default:false
 public java.io.OutputStream getOutputStream() throws java.io.IOException;
 public int getPort(); default:0
 1.2 public int getReceiveBufferSize()
 throws SocketException; synchronized default:43690
 1.4 public SocketAddress getRemoteSocketAddress(); default:null
 1.4 public boolean getReuseAddress() throws SocketException; default:false
 1.2 public int getSendBufferSize() throws SocketException;
 synchronized default:8192
 1.1 public int getSoLinger() throws SocketException; default:-1
 1.1 public int getSoTimeout() throws SocketException; synchronized default:0
 1.1 public boolean getTcpNoDelay() throws SocketException; default:false
 1.4 public int getTrafficClass() throws SocketException; default:0
 1.4 public boolean isBound(); default:false
 1.4 public boolean isClosed(); default:false
 1.4 public boolean isConnected(); default:false
 1.4 public boolean isInputShutdown(); default:false
 1.4 public boolean isOutputShutdown(); default:false
 1.4 public void sendUrgentData(int data) throws java.io.IOException;
1.3 public void setKeepAlive(boolean on) throws SocketException;
1.4 public void setOOBInline(boolean on) throws SocketException;
5.0 public void setPerformancePreferences(int connectionTime, int latency,
int bandwidth); empty
 1.2 public void setReceiveBufferSize(int size)
throws SocketException; synchronized
 1.4 public void setReuseAddress(boolean on) throws SocketException;
1.2 public void setSendBufferSize(int size)
 throws SocketException; synchronized
 1.1 public void setSoLinger(boolean on, int linger) throws SocketException;
1.1 public void setSoTimeout(int timeout)
throws SocketException; synchronized
 1.1 public void setTcpNoDelay(boolean on) throws SocketException;
1.4 public void setTrafficClass(int tc) throws SocketException;
1.3 public void shutdownInput() throws java.io.IOException;
1.3 public void shutdownOutput() throws java.io.IOException;
// Public Methods Overriding Object
 public String toString();
}

Subclasses

 javax.net.ssl.SSLSocket

Passed To

 ServerSocket.implAccept(),
javax.net.ssl.SSLSocketFactory.createSocket(),
javax.net.ssl.X509KeyManager.{chooseClientAlias(
), chooseServerAlias()}

Returned By

 ServerSocket.accept(),
java.nio.channels.SocketChannel.socket(),
javax.net.SocketFactory.createSocket(),
javax.net.ssl.SSLSocketFactory.createSocket()

Name
SocketAddress

Synopsis

 Instances of this abstract class are
opaque representations of network socket addresses. The only concrete
subclass in the core Java platform is
InetSocketAddress which represents an internet
address and port number. See InetSocketAddress.
[image: java.net.SocketAddress]

Figure 12-18. java.net.SocketAddress

public abstract class SocketAddress implements Serializable {
// Public Constructors
 public SocketAddress();
}

Subclasses

 InetSocketAddress

Passed To
Too many methods to list.

Returned By

 DatagramPacket.getSocketAddress(),
DatagramSocket.{getLocalSocketAddress(),
getRemoteSocketAddress()},
java.net.Proxy.address(),
ServerSocket.getLocalSocketAddress(),
Socket.{getLocalSocketAddress(),
getRemoteSocketAddress()},
java.nio.channels.DatagramChannel.receive()

Name
SocketException

Synopsis

 Signals
an exceptional condition while using a socket.
[image: java.net.SocketException]

Figure 12-19. java.net.SocketException

public class SocketException extends java.io.IOException {
// Public Constructors
 public SocketException();
 public SocketException(String msg);
}

Subclasses

 BindException,
ConnectException,
NoRouteToHostException,
PortUnreachableException

Thrown By
Too many methods to list.

Name
SocketImpl

Synopsis

 This abstract class defines the methods
necessary to implement communication through sockets. Different
subclasses of this class may provide different implementations
suitable in different environments (such as behind firewalls). These
socket implementations are used by the Socket and
ServerSocket classes. Normal applications never
need to use or subclass this class.
[image: java.net.SocketImpl]

Figure 12-20. java.net.SocketImpl

public abstract class SocketImpl implements SocketOptions {
// Public Constructors
 public SocketImpl();
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected abstract void accept(SocketImpl s) throws java.io.IOException;
 protected abstract int available() throws java.io.IOException;
 protected abstract void bind(InetAddress host, int port)
 throws java.io.IOException;
 protected abstract void close() throws java.io.IOException;
 protected abstract void connect(String host, int port)
throws java.io.IOException;
 protected abstract void connect(InetAddress address, int port)
throws java.io.IOException;
1.4 protected abstract void connect(SocketAddress address, int timeout)
throws java.io.IOException;
 protected abstract void create(boolean stream) throws java.io.IOException;
 protected java.io.FileDescriptor getFileDescriptor();
 protected InetAddress getInetAddress();
 protected abstract java.io.InputStream getInputStream()
 throws java.io.IOException;
 protected int getLocalPort();
 protected abstract java.io.OutputStream getOutputStream()
 throws java.io.IOException;
 protected int getPort();
 protected abstract void listen(int backlog) throws java.io.IOException;
1.4 protected abstract void sendUrgentData(int data) throws java.io.IOException;
5.0 protected void setPerformancePreferences(int connectionTime, int latency,
int bandwidth); empty
 1.3 protected void shutdownInput() throws java.io.IOException;
1.3 protected void shutdownOutput() throws java.io.IOException;
1.4 protected boolean supportsUrgentData(); constant
 // Protected Instance Fields
 protected InetAddress address;
 protected java.io.FileDescriptor fd;
 protected int localport;
 protected int port;
}

Passed To

 Socket.Socket()

Returned By

 SocketImplFactory.createSocketImpl()

Name
SocketImplFactory

Synopsis

 This interface defines a method that
creates SocketImpl objects.
SocketImplFactory objects may be registered to
create SocketImpl objects for the
Socket and ServerSocket
classes. Normal applications never need to use or implement this
interface.
public interface SocketImplFactory {
// Public Instance Methods
 SocketImpl createSocketImpl();
}

Passed To

 ServerSocket.setSocketFactory(),
Socket.setSocketImplFactory()

Name
SocketOptions

Synopsis

 This interface defines constants
that represent low-level BSD Unix-style socket options and methods
that set and query the value of those options. In Java 1.2,
SocketImpl and
DatagramSocketImpl implement this interface. Any
custom socket implementations you define should also provide
meaningful implementations for the getOption(
)

 and setOption(
) methods. Your implementation may support options other
than those defined here. Only custom socket implementations need to
use this interface. All other code can use methods defined by
Socket, ServerSocket,
DatagramSocket, and
MulticastSocket to set specific socket options for
those socket types.
public interface SocketOptions {
// Public Constants
 public static final int IP_MULTICAST_IF; =16
 1.4 public static final int IP_MULTICAST_IF2; =31
 1.4 public static final int IP_MULTICAST_LOOP; =18
 1.4 public static final int IP_TOS; =3
 public static final int SO_BINDADDR; =15
 1.4 public static final int SO_BROADCAST; =32
 1.3 public static final int SO_KEEPALIVE; =8
 public static final int SO_LINGER; =128
 1.4 public static final int SO_OOBINLINE; =4099
 public static final int SO_RCVBUF; =4098
 public static final int SO_REUSEADDR; =4
 public static final int SO_SNDBUF; =4097
 public static final int SO_TIMEOUT; =4102
 public static final int TCP_NODELAY; =1
 // Public Instance Methods
 Object getOption(int optID) throws SocketException;
 void setOption(int optID, Object value) throws SocketException;
}

Implementations

 DatagramSocketImpl, SocketImpl

Name
SocketPermission

Synopsis

 This class is a
java.security.Permission that governs all
networking operations performed with sockets. Like all permissions, a
SocketPermission consists of a name, or target,
and a list of actions that may be performed on that target. The
target of a SocketPermission is the host and,
optionally, the port or ports for which permission is being granted
or requested. The target consists of a hostname optionally followed
by a colon and a port specification. The host may be a DNS domain
name, a numerical IP address, or the string
“localhost”. If you specify a host
domain name, you may use * as a wildcard as the
leftmost portion of the hostname. The port specification, if present,
must be a single port number or a range of port numbers in the form
n1-n2. If n1 is omitted, it is
taken to be 0, and if n2 is
omitted, it is taken to be 65535. If no port is
specified, the socket permission applies to all ports of the
specified host. Here are some legal
SocketPermission targets:
java.sun.com:80
*.sun.com:1024-2000
*:1024-
localhost:-1023
In addition to a target, each SocketPermission
must have a comma-separated list of actions, which specify the
operations that may be performed on the specified host(s) and
port(s). The available actions are
“connect”,
“accept”,
“listen”, and
“resolve”.
“connect” represents permission to
connect to the specified target.
“accept” indicates permission to
accept connections from the specified target.
“listen” represents permission to
listen on the specified ports for connection requests. This action is
only valid when used for ports on
“localhost”. Finally, the
“resolve” action indicates
permission to use the DNS name service to resolve domain names into
IP addresses. This action is required for and implied by all other
actions.
System administrators configuring security policies must be familiar
with this class and understand the risks of granting the various
permissions it represents. System programmers writing new low-level
networking libraries or connecting to native code that performs
networking may need to use this class. Application programmers,
however, should never need to use it directly.
[image: java.net.SocketPermission]

Figure 12-21. java.net.SocketPermission

public final class SocketPermission extends java.security.Permission
implements Serializable {
// Public Constructors
 public SocketPermission(String host, String action);
// Public Methods Overriding Permission
 public boolean equals(Object obj);
 public String getActions();
 public int hashCode();
 public boolean implies(java.security.Permission p);
 public java.security.PermissionCollection newPermissionCollection();
}

Name
SocketTimeoutException

Synopsis

 Signals
that a timeout value was exceeded for a socket read or accept
operation. See the setSoTimeout() method of
Socket.
[image: java.net.SocketTimeoutException]

Figure 12-22. java.net.SocketTimeoutException

public class SocketTimeoutException extends java.io.InterruptedIOException {
// Public Constructors
 public SocketTimeoutException();
 public SocketTimeoutException(String msg);
}

Name
UnknownHostException

Synopsis

 Signals
that the name of a specified host could not be resolved.
[image: java.net.UnknownHostException]

Figure 12-23. java.net.UnknownHostException

public class UnknownHostException extends java.io.IOException {
// Public Constructors
 public UnknownHostException();
 public UnknownHostException(String host);
}

Thrown By

 Inet6Address.getByAddress(),
InetAddress.{getAllByName(),
getByAddress(), getByName(),
getLocalHost()}, Socket.Socket(
), javax.net.SocketFactory.createSocket(
), javax.net.ssl.SSLSocket.SSLSocket()

Name
UnknownServiceException

Synopsis

 Signals
an attempt to use an unsupported service of a network connection.
[image: java.net.UnknownServiceException]

Figure 12-24. java.net.UnknownServiceException

public class UnknownServiceException extends java.io.IOException {
// Public Constructors
 public UnknownServiceException();
 public UnknownServiceException(String msg);
}

Name
URI

Synopsis
The URI class is an immutable representation of a
Uniform Resource Identifier or URI. A
URI is a generalization of the URLs or Uniform Resource Locators used
on the world wide web. The URI supports parsing
and textual manipulation of URI strings, but does not have any direct
networking capabilities the way that the URL class
does. The advantages of the URI class over the
URL class are that it provides more general
facilities for parsing and manipulating URLs than the
URL class, that it can can represent relative URIs
which do not include a scheme (or protocol), and that it can
manipulate URIs that include unsupported or even unknown schemes.
Obtain a URI with one of the constructors, which allow a URI to be
parsed from a single string, or allow the specification of the
individual components of a URI. These constructors can throw
URISyntaxException, which is a checked exception.
When using hard-coded URIs (rather than URIs based on user input) you
may prefer to use the static create(
)

method which does not throw any checked exceptions.
Once you have created a URI, object you can use
the various get methods to query the various
portions of the URI. The getRaw(
)

methods are like the get() methods except that
they do not decode hexadecimal escape sequences of the form
%xx that appear in the URI. normalize(
)
 returns a new URI object that has
“.” and unnecessary
“..” sequences removed from its
path component. resolve(
)

interprets its URI (or string) argument relative to this URI and
returns the result. relativize(
)
 performs the reverse operation. It
returns a new URI which represents the same
resource as the specified URI argument, but which
is relative to this URI. Finally, the
toURL()
 method converts an absolute
URI object to the equivalent
URL. Since the URI class
provides superior textual manipulation capabilities for URLs, it can
be useful to use the URI class to resolve relative
URLs (for example) and then convert those URI
objects to URL objects when they are ready for
networking.
[image: java.net.URI]

Figure 12-25. java.net.URI

public final class URI implements Comparable<URI>, Serializable {
// Public Constructors
 public URI(String str) throws URISyntaxException;
 public URI(String scheme, String ssp, String fragment)
 throws URISyntaxException;
 public URI(String scheme, String host, String path, String fragment)
 throws URISyntaxException;
 public URI(String scheme, String authority, String path, String query,
 String fragment) throws URISyntaxException;
 public URI(String scheme, String userInfo, String host, int port,
 String path, String query, String fragment)
throws URISyntaxException;
// Public Class Methods
 public static URI create(String str);
// Public Instance Methods
 public String getAuthority();
 public String getFragment();
 public String getHost();
 public String getPath();
 public int getPort();
 public String getQuery();
 public String getRawAuthority();
 public String getRawFragment();
 public String getRawPath();
 public String getRawQuery();
 public String getRawSchemeSpecificPart();
 public String getRawUserInfo();
 public String getScheme();
 public String getSchemeSpecificPart();
 public String getUserInfo();
 public boolean isAbsolute();
 public boolean isOpaque();
 public URI normalize();
 public URI parseServerAuthority() throws URISyntaxException;
 public URI relativize(URI uri);
 public URI resolve(URI uri);
 public URI resolve(String str);
 public String toASCIIString();
 public URL toURL() throws MalformedURLException;
// Methods Implementing Comparable
 5.0 public int compareTo(URI that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Passed To

 java.io.File.File(), CookieHandler.{get(
), put()},
ProxySelector.{connectFailed(), select(
)}, ResponseCache.{get(), put(
)}

Returned By

 java.io.File.toURI(), URL.toURI(
)

Name
URISyntaxException

Synopsis

 Signals
that a string could not be parsed as a valid URI. getInput(
) returns the string that could not be parsed.
getReason() returns an error message.
getIndex() returns the character position at
which the syntax error occurred, if that information is available.
getMessage() returns a human-readable string that
includes the information from each of the other three methods.
This is a checked exception thrown by all the URI(
) constructors. If you are parsing a hard-coded URI that
you do not believe to contain any syntax errors, and wish to avoid
the checked exception, you can use the URI.create(
) factory method instead of the one-argument version of the
URI()
 constructor.
[image: java.net.URISyntaxException]

Figure 12-26. java.net.URISyntaxException

public class URISyntaxException extends Exception {
// Public Constructors
 public URISyntaxException(String input, String reason);
 public URISyntaxException(String input, String reason, int index);
// Public Instance Methods
 public int getIndex();
 public String getInput();
 public String getReason();
// Public Methods Overriding Throwable
 public String getMessage();
}

Thrown By

 URI.{parseServerAuthority(), URI(
)}, URL.toURI()

Name
URL

Synopsis

 This
class represents a uniform resource locator and allows the data
referred to by the URL to be downloaded. A URL can be specified as a
single string or with separate protocol, host, port, and file
specifications. Relative URLs can also be specified with a
String and the URL object to
which it is relative. getFile(
)

 , getHost(),
getProtocol() and related methods return the
various portions of the URL specified by a URL
object. sameFile()
 determines whether a
URL object refers to the same file as this one.
getDefaultPort(
)
 returns the default port number for the
protocol of the URL object; it may differ from the
number returned by getPort(
)

 . Use
openConnection() to obtain a
URLConnection object with which you can download
the content of the URL. In Java 5.0, you can explicitly specify a
Proxy object through which the connection should
be opened. For simple cases, however, the URL
class defines shortcut methods that create and invoke methods on a
URLConnection internally. getContent(
)
 downloads the URL data and parses it
into an appropriate Java object (such as a string or image) if an
appropriate ContentHandler can be found. In Java
1.3 and later, you can pass an array of Class
objects that specify the type of objects that you are willing to
accept as the return value of this method. If you wish to parse the
URL content yourself, call openStream(
)
 to obtain an
InputStream from which you can read the data.
[image: java.net.URL]

Figure 12-27. java.net.URL

public final class URL implements Serializable {
// Public Constructors
 public URL(String spec) throws MalformedURLException;
 public URL(URL context, String spec) throws MalformedURLException;
1.2 public URL(URL context, String spec, URLStreamHandler handler)
 throws MalformedURLException;
 public URL(String protocol, String host, String file)
 throws MalformedURLException;
 public URL(String protocol, String host, int port, String file)
 throws MalformedURLException;
1.2 public URL(String protocol, String host, int port, String file,
 URLStreamHandler handler) throws MalformedURLException;
// Public Class Methods
 public static void setURLStreamHandlerFactory(URLStreamHandlerFactory fac);
// Public Instance Methods
 1.3 public String getAuthority();
 public final Object getContent() throws java.io.IOException;
1.3 public final Object getContent(Class[] classes)
 throws java.io.IOException;
1.4 public int getDefaultPort();
 public String getFile();
 public String getHost();
1.3 public String getPath();
 public int getPort();
 public String getProtocol();
1.3 public String getQuery();
 public String getRef();
1.3 public String getUserInfo();
 public URLConnection openConnection() throws java.io.IOException;
5.0 public URLConnection openConnection(java.net.Proxy proxy)
 throws java.io.IOException;
 public final java.io.InputStream openStream() throws java.io.IOException;
 public boolean sameFile(URL other);
 public String toExternalForm();
5.0 public URI toURI() throws URISyntaxException;
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode(); synchronized
 public String toString();
// Protected Instance Methods
 protected void set(String protocol, String host, int port, String file,
String ref);
1.3 protected void set(String protocol, String host, int port, String authority,
String userInfo, String path, String query,
String ref);
}

Passed To
Too many methods to list.

Returned By

 java.io.File.toURL(), Class.getResource(
), ClassLoader.{findResource(),
getResource(), getSystemResource(
)}, Authenticator.getRequestingURL(),
JarURLConnection.getJarFileURL(),
URI.toURL(),
URLClassLoader.{findResource(), getURLs(
)}, URLConnection.getURL(),
java.security.CodeSource.getLocation()

Type Of

 URLConnection.url

Name
URLClassLoader

Synopsis

 This ClassLoader
provides a useful way to load untrusted Java code from a search path
of arbitrary URLs, where each URL represents a directory or JAR file
to search. Use the inherited loadClass() method
to load a named class with a URLClassLoader.
Classes loaded by a URLClassLoader have whatever
permissions are granted to their
java.security.CodeSource by the system
java.security.Policy, plus they have one
additional permission that allows the class loader to read any
resource files associated with the class. If the class is loaded from
a local file: URL that represents a directory, the
class is given permission to read all files and directories below
that directory. If the class is loaded from a local
file: URL that represents a JAR file, the class is
given permission to read that JAR file. If the class is loaded from a
URL that represents a resource on another host, that class is given
permission to connect to and accept network connections from that
host. Note, however, that loaded classes are not granted this
additional permission if the code that created the
URLClassLoader in the first place would not have
had that permission.

 You can obtain a
URLClassLoader by calling one of the
URLClassLoader() constructors or one of the
static newInstance() methods. If you call
newInstance(), the loadClass(
) method of the returned URLClassLoader
performs an additional check to ensure that the caller has permission
to access the specified package.
[image: java.net.URLClassLoader]

Figure 12-28. java.net.URLClassLoader

public class URLClassLoader extends java.security.SecureClassLoader {
// Public Constructors
 public URLClassLoader(URL[] urls);
 public URLClassLoader(URL[] urls, ClassLoader parent);
 public URLClassLoader(URL[] urls, ClassLoader parent,
 URLStreamHandlerFactory factory);
// Public Class Methods
 public static URLClassLoader newInstance(URL[] urls);
 public static URLClassLoader newInstance(URL[] urls, ClassLoader parent);
// Public Instance Methods
 public URL[] getURLs();
// Protected Methods Overriding SecureClassLoader
 protected java.security.PermissionCollection getPermissions(java.security.
 CodeSource codesource);
// Public Methods Overriding ClassLoader
 public URL findResource(String name);
 public java.util.Enumeration<URL> findResources(String name)
 throws java.io.IOException;
// Protected Methods Overriding ClassLoader
 protected Class<?> findClass(String name) throws ClassNotFoundException;
// Protected Instance Methods
 protected void addURL(URL url);
 protected Package definePackage(String name, java.util.jar.Manifest man,
 URL url) throws IllegalArgumentException;
}

Name
URLConnection

Synopsis

 This abstract class defines a network
connection to an object specified by a URL.
URL.openConnection() returns a
URLConnection instance. You should use a
URLConnection object when you want more control
over the downloading of data than is available through the simpler
URL methods. connect()
actually establishes the network connection. Some methods must be
called before the connection is made, and others depend on being
connected. The methods that depend on being connected call
connect() themselves if no connection exists yet,
so you never need to call this method explicitly. The
getContent() methods are just like the same-named
methods of the URL class: they download the data
referred to by the URL and parse it into an appropriate type of
object (such as a string or an image). In Java 1.3 and later, there
is a version of getContent() that allows you to
specify the types of parsed objects that you are willing to accept by
passing an array of Class objects. If you prefer
to parse the URL content yourself instead of calling
getContent(), you can call
getInputStream() (and getOutputStream(
) if the URL protocol supports writing) to obtain a stream
through which you can read (or write) data from (or to) the resource
identified by the URL.
Before a connection is established, you may want to set request
fields (such as HTTP request headers) to refine the URL request. Use
setRequestProperty() to set a new value for a
named header. In Java 1.4 and later, you can use
addRequestProperty() to add a new comma-separated
item to an existing header. Java 1.4 also added
getRequestProperties(), a method that returns the
current set of request properties in the form of an unmodifiable
Map object that maps request header names to
List objects that contain the string value or
values for the named header.

 Once a connection has been established, there
are a number of methods you can call to obtain information from the
“response headers” of the URL.
getContentLength(), getContentType(
), getContentEncoding(),
getExpiration(), getDate(),
and getLastModified() return the appropriate
information about the object referred to by the URL, if that
information can be determined (e.g., from HTTP header fields).
getHeaderField(
)
 returns an HTTP header field specified by
name or by number. getHeaderFieldInt(
)

 and getHeaderFieldDate()
return the value of a named header field parsed as an integer or a
date. In Java 1.4 and later, getHeaderFields(
)
 returns an unmodifiable
Map object that maps response header names to an
unmodifiable List that contains the string value
or values for the named header.
There are a number of options you can specify to control how the
URLConnection behaves. These options are set with
the various set() methods and may be queried with
corresponding get() methods. The options must be
set before the connect() method is called.
setDoInput()

 and setDoOutput(
) allow you to specify whether you are using the
URLConnection for input and/or output (input-only
by default). setAllowUserInteraction(
)
 specifies whether user interaction (such as
typing a password) is allowed during the data transfer
(false by default).
setDefaultAllowUserInteraction(
)
 is a class method that allows you to change
the default value for user interaction. setUseCaches(
)

allows you to specify whether a cached version of the URL can be
used. You can set this to false to force a URL to
be reloaded. setDefaultUseCaches(
)
 sets the default value for
setUseCaches(). setIfModifiedSince(
)

 allows you to specify that a URL should
not be fetched unless it has been modified since a specified time (if
it is possible to determine its modification date). In
Java 5.0 and later, you can specify
how long a URLConnection should wait while
connecting or reading data with setConnectTimeout(
)

and setReadTimeout().
public abstract class URLConnection {
// Protected Constructors
 protected URLConnection(URL url);
// Public Class Methods
 public static boolean getDefaultAllowUserInteraction();
1.1 public static FileNameMap getFileNameMap(); synchronized
 public static String guessContentTypeFromName(String fname);
 public static String guessContentTypeFromStream(java.io.InputStream is)
 throws java.io.IOException;
 public static void setContentHandlerFactory(ContentHandlerFactory
 fac); synchronized
 public static void setDefaultAllowUserInteraction(boolean
 defaultallowuserinteraction);
1.1 public static void setFileNameMap(FileNameMap map);
// Public Instance Methods
 1.4 public void addRequestProperty(String key, String value);
 public abstract void connect() throws java.io.IOException;
 public boolean getAllowUserInteraction();
5.0 public int getConnectTimeout();
 public Object getContent() throws java.io.IOException;
1.3 public Object getContent(Class[] classes) throws java.io.IOException;
 public String getContentEncoding();
 public int getContentLength();
 public String getContentType();
 public long getDate();
 public boolean getDefaultUseCaches();
 public boolean getDoInput();
 public boolean getDoOutput();
 public long getExpiration();
 public String getHeaderField(int n); constant
 public String getHeaderField(String name); constant
 public long getHeaderFieldDate(String name, long Default);
 public int getHeaderFieldInt(String name, int Default);
 public String getHeaderFieldKey(int n); constant
 1.4 public java.util.Map<String,java.util.List<String>> getHeaderFields();
 public long getIfModifiedSince();
 public java.io.InputStream getInputStream() throws java.io.IOException;
 public long getLastModified();
 public java.io.OutputStream getOutputStream() throws java.io.IOException;
1.2 public java.security.Permission getPermission()
 throws java.io.IOException;
5.0 public int getReadTimeout();
1.4 public java.util.Map<String,java.util.List<String>> getRequestProperties();
 public String getRequestProperty(String key);
 public URL getURL();
 public boolean getUseCaches();
 public void setAllowUserInteraction(boolean allowuserinteraction);
5.0 public void setConnectTimeout(int timeout);
 public void setDefaultUseCaches(boolean defaultusecaches);
 public void setDoInput(boolean doinput);
 public void setDoOutput(boolean dooutput);
 public void setIfModifiedSince(long ifmodifiedsince);
5.0 public void setReadTimeout(int timeout);
 public void setRequestProperty(String key, String value);
 public void setUseCaches(boolean usecaches);
// Public Methods Overriding Object
 public String toString();
// Protected Instance Fields
 protected boolean allowUserInteraction;
 protected boolean connected;
 protected boolean doInput;
 protected boolean doOutput;
 protected long ifModifiedSince;
 protected URL url;
 protected boolean useCaches;
// Deprecated Public Methods
 # public static String getDefaultRequestProperty(String key); constant
 # public static void setDefaultRequestProperty(String key,
 String value); empty
}

Subclasses

 HttpURLConnection,
JarURLConnection

Passed To

 java.net.ContentHandler.getContent(),
ResponseCache.put()

Returned By

 URL.openConnection(),
URLStreamHandler.openConnection()

Type Of

 JarURLConnection.jarFileURLConnection

Name
URLDecoder

Synopsis

 This
class defines a static decode() method that
reverses the encoding performed by URLEncoder.encode(
). It decodes 8-bit text with the MIME type
“x-www-form-urlencoded”, which is a
standard encoding used by web browsers to submit form contents to CGI
scripts and other server-side programs.
public class URLDecoder {
// Public Constructors
 public URLDecoder();
// Public Class Methods
 1.4 public static String decode(String s, String enc)
throws java.io.UnsupportedEncodingException;
// Deprecated Public Methods
 # public static String decode(String s);
}

Name
URLEncoder

Synopsis

 This
class defines a single static method
that converts a string to its URL-encoded form. That is, spaces are
converted to +, and nonalphanumeric characters other than underscore
are output as two hexadecimal digits following a
percent sign. Note that this technique works only for 8-bit
characters. This method canonicalizes a URL specification so that it
uses only characters from an extremely portable subset of ASCII that
can be correctly handled by computers around the world.
public class URLEncoder {
// No Constructor
 // Public Class Methods
 1.4 public static String encode(String s, String enc)
throws java.io.UnsupportedEncodingException;
// Deprecated Public Methods
 # public static String encode(String s);
}

Chapter 13. java.nio and Subpackages

This chapter documents the New
I/O API defined by the java.nio package and its
subpackages. It covers:
	
 java.nio

	Defines the Buffer class and type-specific
subclasses, most notably the ByteBuffer class that
is heavily used for I/O in the java.nio.channels
class.

	
 java.nio.channels

	Defines the Channel abstraction for
high-performance I/O, and implements channels for file and network
I/O. Also allows nonblocking I/O with the Selector
class.

	
 java.nio.channels.spi

	The service provider interface for
channel and selector implementations.

	
 java.nio.charset

	Defines classes for encoding
sequences of
characters into bytes and
decoding sequences of bytes into characters, according to the
encoding rules of a named charset.

	
 java.nio.charset.spi

	The
 service provider interface for charset
implementations.

Name
Package java.nio

Synopsis
This package defines buffer classes that are
fundamental to the
java.nio API. See Buffer for an
overview of buffers, and see ByteBuffer (the most
important of the buffer classes) for full documentation of byte
buffers. The other type-specific buffer classes are close analogs to
ByteBuffer and are documented in terms of that
class. See the java.nio.channels package for
classes that perform I/O operations on buffers.

Classes
public abstract class Buffer;
 public abstract class ByteBuffer extends Buffer
 implements Comparable<ByteBuffer>;
 public abstract class MappedByteBuffer extends ByteBuffer;
 public abstract class CharBuffer extends Buffer
 implements Comparable<CharBuffer>, Appendable, CharSequence,
 Readable;
 public abstract class DoubleBuffer extends Buffer
 implements Comparable<DoubleBuffer>;
 public abstract class FloatBuffer extends Buffer
 implements Comparable<FloatBuffer>;
 public abstract class IntBuffer extends Buffer
 implements Comparable<IntBuffer>;
 public abstract class LongBuffer extends Buffer
 implements Comparable<LongBuffer>;
 public abstract class ShortBuffer extends Buffer
 implements Comparable<ShortBuffer>;
public final class ByteOrder;

Exceptions
public class BufferOverflowException extends RuntimeException;
public class BufferUnderflowException extends RuntimeException;
public class InvalidMarkException extends IllegalStateException;
public class ReadOnlyBufferException extends UnsupportedOperationException;

Name
Buffer

Synopsis

 This class is the abstract superclass of
all buffer classes in the java.nio API. A
buffer is a linear (finite) sequence of
prmitive values. The java.nio package defines a
Buffer subclass for each
primitive type in Java except for
boolean. Buffer itself defines
the common, type-independent features of all buffers.
Buffer and its subclasses are intended for use by
a single thread at a time, and contain no synchronization code to
make them thread-safe.
The purpose of a buffer is to store data, and buffer classes must
define methods for reading data from a buffer and writing data into a
buffer. Because each Buffer subclass stores data
of a different primitive type, however, the get(
)

 and
put() methods that read and write data must be
defined by each of the individual subclasses. See
ByteBuffer (the most important subclass) for
documentation of these methods; all the other subclasses define
similar methods which differ only in the datatype of the values being
read or written.
Each buffer has four numbers associated with it:
	capacity
	A buffer’s capacity is its maximum size; it can
hold this many values. The capacity is specified when a buffer is
created, and may not be changed; it can be queried with the
capacity() method.

	limit
	A buffer’s limit is its current size, or the
index of the first element that does not contain valid data. Data
cannot be read from or written into a buffer beyond the limit. When
data is being written into a buffer, the limit is usually the same as
the capacity. When data is being read from a buffer, the limit may be
less than the capacity, and indicates the amount of valid data
contained in the buffer. Two limit() methods
exist: one to query a buffer’s limit, and one to set
it.

	position
	A buffer’s position is the index of the element
in the buffer at which data is being read or written. It is used and
updated by the relative get() and put(
) methods defined by ByteBuffer and the
other Buffer subclasses. Two position(
) methods exist to query and set the current position of
the buffer. A buffer’s position is always greater
than or equal to zero and always less than or equal to the
buffer’s limit. The remaining()
method returns the number of elements between the position and the
limit and hasRemaining() returns
true if this number is greater than zero.

	mark
	A buffer’s mark is a temporarily saved position.
Call mark() to set the mark to the current
position. Call reset() to restore the
buffer’s position to the marked position.

Buffer defines several methods that perform important operations on a
buffer:
	
 clear()

	This method does not actually clear the contents of the buffer, but
it sets the position to zero, sets the limit to the capacity, and
discards any saved mark. This prepares the buffer to have new data
written into it.

	
 flip()

	This method sets the limit to the position, sets the position to
zero, and discards any saved mark. After data has been written into a
buffer, this method “flips” the
purpose of the buffer and prepares it for reading.

	
 rewind()

	This method sets the position to zero and discards any saved mark. It
does not alter the limit, and can be used to restart a read operation
at the beginning of the buffer.

Buffer objects may be read-only, in which case any attempt to
store data in the buffer results in a
ReadonlyBufferException. The isReadOnly(
)
 method returns true
if a buffer is read-only.
public abstract class Buffer {
// No Constructor
 // Public Instance Methods
 public final int capacity();
 public final Buffer clear(); omu
 public final Buffer flip();
 public final boolean hasRemaining();
 public abstract boolean isReadOnly();
 public final int limit();
 public final Buffer limit(int newLimit);
 public final Buffer mark();
 public final int position();
 public final Buffer position(int newPosition);
 public final int remaining();
 public final Buffer reset();
 public final Buffer rewind();
}

Subclasses

 ByteBuffer, CharBuffer,
DoubleBuffer, FloatBuffer,
IntBuffer, LongBuffer,
ShortBuffer

Name
BufferOverflowException

Synopsis

 Signals
that a relative put() operation on a buffer could
not complete because the number of elements to write exceeds the
number of remaining elements between the buffer’s
position and its limit.
[image: java.nio.BufferOverflowException]

Figure 13-1. java.nio.BufferOverflowException

public class BufferOverflowException extends RuntimeException {
// Public Constructors
 public BufferOverflowException();
}

Name
BufferUnderflowException

Synopsis

 Signals
that a relative get() operation on a buffer could
not complete because the number of elements to read exceeds the
number of remaining elements between the buffer’s
position and its limit.
[image: java.nio.BufferUnderflowException]

Figure 13-2. java.nio.BufferUnderflowException

public class BufferUnderflowException extends RuntimeException {
// Public Constructors
 public BufferUnderflowException();
}

Name
ByteBuffer

Synopsis

 ByteBuffer

 holds a sequence of bytes for use in an
I/O operation. ByteBuffer is an abstract class, so
you cannot instantiate one by calling a constructor. Instead, you
must use allocate()

 ,
allocateDirect(), or wrap().

 allocate() returns a
ByteBuffer with the specified capacity. The
position of this new buffer is zero, and its limit is set to its
capacity. allocateDirect() is like
allocate() except that it attempts to allocate a
buffer that the underlying operating system can use
“directly.” Such
direct
buffers” may be substantially more efficient for
low-level I/O operations than normal buffers, but may also have
significantly larger allocation costs.
If you have already allocated an array of bytes, you can use the
wrap() method to create a
ByteBuffer that uses the byte array as its
storage. In the one-argument version of wrap()
you specify only the array; the buffer capacity and limit are set to
the array length, and the position is set to zero. In the other form
of wrap() you specify the array, as well as an
offset and length that specify a portion of that array. The capacity
of the resulting ByteBuffer is again set to the
total array length, but its position is set to the specified offset,
and its limit is set to the offset plus length.
Once you have obtained a ByteBuffer, you can use
the various get()

 and put() methods
to read data from it or write data into it. Several versions of these
methods exist to read and write single bytes or arrays of bytes. The
single-byte methods come in two forms. Relative get(
) and put() methods query or set the
byte at the current position and then increment the position. The
absolute forms of the methods take an additional arguement that
specifies the buffer element that is to be read or written and do not
affect the buffer position. Two other relative forms of the
get() method exist to read as sequence of bytes
(starting at and incrementing the buffer’s position)
into a specified byte array or a specified sub-array. These methods
throw a BufferUnderflowException if there are not
enough bytes left in the buffer. Two relative forms of the
put() method copy bytes from a specified array or
sub-array into the buffer (starting at and incrementing the
buffer’s position). They throw a
BufferOverflowException if there is not enough
room left in the buffer to hold the bytes. One final form of the
put() method transfers all the remaining bytes
from one ByteBuffer into this buffer, incrementing
the positions of both buffers.
In addition to the get() and put(
) methods, ByteBuffer also defines
another operation that affect the buffer’s content.
compact()

discards any bytes before the buffer position, and copies all bytes
between the position and limit to the beginning of the buffer. The
position is then set to the new limit, and the limit is set to the
capacity. This method compacts a buffer by discarding elements that
have already been read, and then prepares the buffer for appending
new elements to those that remain.
All Buffer subclasses, such as
CharBuffer, IntBuffer and
FloatBuffer have analogous methods which are just
like these get() and put()
methods except that they operate on different data types.
ByteBuffer is unique among
Buffer subclasses in that it has additional
methods for reading and writing values of other primitive types from
and into the byte buffer. These methods have names like
getInt() and putChar(), and
there are methods for all primitive types except
byte and boolean. Each method
reads or writes a single primitive value. Like the get(
) and put() methods, they come in
relative and absolute variations: the relative methods start with the
byte at the buffer’s position, and increment the
position by the appropriate number of bytes (two bytes for a
char, four bytes for an int,
eight bytes for a double, etc.). The absolute
methods take an buffer index (it is a byte index and is not
multiplied by the size of the primitive value) as an argument and do
not modify the buffer position. The encoding of multi-byte primitive
values into a byte buffer can be done most-significant byte to
least-significant byte (“big-endian byte
order”) or the reverse
(“little-endian byte order”). The
byte order used by these primitive-type get and put methods is
specified by a ByteOrder object. The byte order
for a ByteBuffer can be queried and set with the
two forms of the order(
)
 method. The default byte order for
all newly-created ByteBuffer objects is
ByteOrder.BIG_ENDIAN.
Other methods that are unique
to ByteBuffer() are a set of
methods that
allow a buffer of bytes to be viewed as a buffer of other primitive
types. asCharBuffer(), asIntBuffer(
) and related methods return “view
buffers” that allow the bytes between the position
and the limit of the underlying ByteBuffer to be
viewed as a sequence of characters, integers, or other primitive
values. The returned buffers have

 position, limit, and mark values that
are independent of those of the underlying buffer. The initial
position of the returned buffer is zero, and the limit and capacity
are the number of bytes between the position and limit of the
original buffer divided by the size in bytes of the relevant
primitive type (two for char and
short, four for int and
float, and eight for long and
double). Note that the returned view buffer is a
view of the bytes between the position and limit of the byte buffer.
Subsequent changes to the position and limit of the byte buffer do
not change the size of the view buffer, but changes to the bytes
themselves to change the values that are viewed through the view
buffer. View buffers use the byte ordering that was current in the
byte buffer when they were created; subsequent changes to the byte
order of the byte buffer do not affect the view buffer. If the
underlying byte buffer is direct, then the returned buffer is also
direct; this is important because ByteBuffer is
the only buffer class with an allocateDirect()
method.

 ByteBuffer defines some additional methods, which,
like the get() and put()
methods have analogs in all Buffer subclasses.
duplicate()
 returns a new buffer that shares
the content with this one. The two buffers have independent position,
limit, and mark values, although the duplicate buffer starts off with
the same values as the original buffer. The duplicate buffer is
direct if the original is direct and is read-only if the original is read-only.
The buffers share content, and content changes made to either buffer
are visible through the other. asReadOnlyBuffer()
is like duplicate() except that the returned
buffer is read-only, and all of its put() and
related methods throw a ReadOnlyBufferException.
slice() is also somewhat like duplicate(
) except the returned buffer represents only the content
between the current position and limit. The returned buffer has a
position of zero, a limit and capacity equal to the number of
remaining elements in this buffer, and an undefined mark.

 isDirect() is a
simple method that returns true if a buffer is a
direct buffer and false otherwise. If this buffer
has a backing array and is not a read-only buffer (e.g., if it was
created with the allocate() or wrap(
) methods) then hasArray() returns
true, array() returns the
backing array, and arrayOffset() returns the
offset within that array of the first element of the buffer. If
hasArray() returns false, then array(
) and arrayOffset() may throw an
UnsupportedOperationException or a
ReadOnlyBufferException.
Finally, ByteBuffer and other
Buffer subclasses override several standard object
methods. The equals()

methods compares the elements between the position and limit of two
buffers and returns true only if there are the
same number and have the same value. Note that elements before the
position of the buffer are not considered. The hashCode(
) method is implemented to match the equals(
) method: the hashcode is based only upon the elements
between the position and limit of the buffer. This means that the
hashcode changes if either the contents or position of the buffer
changes. This means that instances of ByteBuffer
and other Buffer subclasses are not usually useful
as keys for hashtables or java.util.Map objects.
toString()

returns a string summary of the buffer, but the precise contents of
the string are unspecified. ByteBuffer and each of
the other Buffer subclasses also implement the
Comparable interface and define a
compareTo()
 method
that performs an element-by-element comparison operation on the
buffer elements between the position and the limit of the buffer.
[image: java.nio.ByteBuffer]

Figure 13-3. java.nio.ByteBuffer

public abstract class ByteBuffer extends Buffer
implements Comparable<ByteBuffer> {
// No Constructor
 // Public Class Methods
 public static ByteBuffer allocate(int capacity);
 public static ByteBuffer allocateDirect(int capacity);
 public static ByteBuffer wrap(byte[] array);
 public static ByteBuffer wrap(byte[] array, int offset, int length);
// Public Instance Methods
 public final byte[] array();
 public final int arrayOffset();
 public abstract CharBuffer asCharBuffer();
 public abstract DoubleBuffer asDoubleBuffer();
 public abstract FloatBuffer asFloatBuffer();
 public abstract IntBuffer asIntBuffer();
 public abstract LongBuffer asLongBuffer();
 public abstract ByteBuffer asReadOnlyBuffer();
 public abstract ShortBuffer asShortBuffer();
 public abstract ByteBuffer compact();
 public abstract ByteBuffer duplicate();
 public abstract byte get();
 public abstract byte get(int index);
 public ByteBuffer get(byte[] dst);
 public ByteBuffer get(byte[] dst, int offset, int length);
 public abstract char getChar();
 public abstract char getChar(int index);
 public abstract double getDouble();
 public abstract double getDouble(int index);
 public abstract float getFloat();
 public abstract float getFloat(int index);
 public abstract int getInt();
 public abstract int getInt(int index);
 public abstract long getLong();
 public abstract long getLong(int index);
 public abstract short getShort();
 public abstract short getShort(int index);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public final ByteOrder order();
 public final ByteBuffer order(ByteOrder bo);
 public ByteBuffer put(ByteBuffer src);
 public abstract ByteBuffer put(byte b);
 public final ByteBuffer put(byte[] src);
 public abstract ByteBuffer put(int index, byte b);
 public ByteBuffer put(byte[] src, int offset, int length);
 public abstract ByteBuffer putChar(char value);
 public abstract ByteBuffer putChar(int index, char value);
 public abstract ByteBuffer putDouble(double value);
 public abstract ByteBuffer putDouble(int index, double value);
 public abstract ByteBuffer putFloat(float value);
 public abstract ByteBuffer putFloat(int index, float value);
 public abstract ByteBuffer putInt(int value);
 public abstract ByteBuffer putInt(int index, int value);
 public abstract ByteBuffer putLong(long value);
 public abstract ByteBuffer putLong(int index, long value);
 public abstract ByteBuffer putShort(short value);
 public abstract ByteBuffer putShort(int index, short value);
 public abstract ByteBuffer slice();
// Methods Implementing Comparable
 5.0 public int compareTo(ByteBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Subclasses

 MappedByteBuffer

Passed To
Too many methods to list.

Returned By

 java.nio.charset.Charset.encode(),
java.nio.charset.CharsetEncoder.encode()

Name
ByteOrder

Synopsis
This
 class is a type-safe enumeration of byte
orders, and is used by the ByteBuffer class. The
two constant fields define the two legal byte order values:
BIG_ENDIAN

 byte order means most-significant-byte
first. LITTLE_ENDIAN means least-significant-byte
first. The static nativeOrder(
)
 method returns whichever of these
two constants represents the native byte order of the underlying
operating system and hardware. Finally, the toString(
)
 method
returns the string “BIG_ENDIAN” or “LITTLE_ENDIAN”.
public final class ByteOrder {
// No Constructor
 // Public Constants
 public static final ByteOrder BIG_ENDIAN;
 public static final ByteOrder LITTLE_ENDIAN;
// Public Class Methods
 public static ByteOrder nativeOrder();
// Public Methods Overriding Object
 public String toString();
}

Passed To

 ByteBuffer.order()

Returned By

 ByteBuffer.order(), CharBuffer.order(
), DoubleBuffer.order(),
FloatBuffer.order(), IntBuffer.order(
), LongBuffer.order(),
ShortBuffer.order()

Name
CharBuffer

Synopsis

 CharBuffer

 holds
a sequence of
Unicode character values for use in an
I/O operation. Most of the methods of this class are directly
analogous to methods defined by ByteBuffer except
that they use char and char[]
argument and return values instead of byte and
byte[] values. See ByteBuffer
for details.
In addition to the ByteBuffer analogs, this class
also implements the java.lang.CharSequence
interface so that it can be used with
java.util.regex regular expression operations or
anywhere else a CharSequence is expected. In Java
5.0, CharBuffer adds the append(
) and read() methods of the
java.lang.Appendable and
java.lang.Readable interfaces, making
CharBuffer objects suitable for use with the
Formatter and Scanner classes
of java.util.
Note that CharBuffer is an abstract class and does
not defined a constructor. There are three ways to obtain a
CharBuffer:
	By calling the static allocate(
)

method. Note that there is no allocateDirect()
method as there is for ByteBuffer.

	By calling one of the static wrap(
)
 methods to create a
CharBuffer that uses the specified
char array or CharSequence for
its content. Note that wrapping a CharSequence
results in a read-only CharBuffer.

	By calling the asCharBuffer(
)
 method of a
ByteBuffer to obtain a
CharBuffer
“view” of the underlying bytes. If
the underlying ByteBuffer is direct, then the
CharBuffer view will also be direct.

Note that this class holds a sequence of 16-bit Unicode characters,
and does not represent text in any other encoding. Classes in the
java.nio.charset package can be used to encode a
CharBuffer of Unicode characters into a
ByteBuffer, or decode the bytes in a
ByteBuffer into a CharBuffer of
Unicode text. Java 5.0 supports Unicode supplementary characters that
do not fit in 16 bits. See java.lang.Character for
details. Note that CharBuffer does not include any
utility methods for working with int codepoints or
surrogate pairs.
[image: java.nio.CharBuffer]

Figure 13-4. java.nio.CharBuffer

public abstract class CharBuffer extends Buffer
implements Comparable<CharBuffer>, Appendable, CharSequence, Readable {
// No Constructor
 // Public Class Methods
 public static CharBuffer allocate(int capacity);
 public static CharBuffer wrap(char[] array);
 public static CharBuffer wrap(CharSequence csq);
 public static CharBuffer wrap(char[] array, int offset, int length);
 public static CharBuffer wrap(CharSequence csq, int start, int end);
// Public Instance Methods
 5.0 public CharBuffer append(char c);
5.0 public CharBuffer append(CharSequence csq);
5.0 public CharBuffer append(CharSequence csq, int start, int end);
 public final char[] array();
 public final int arrayOffset();
 public abstract CharBuffer asReadOnlyBuffer();
 public abstract CharBuffer compact();
 public abstract CharBuffer duplicate();
 public abstract char get();
 public abstract char get(int index);
 public CharBuffer get(char[] dst);
 public CharBuffer get(char[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public final CharBuffer put(char[] src);
 public CharBuffer put(CharBuffer src);
 public final CharBuffer put(String src);
 public abstract CharBuffer put(char c);
 public abstract CharBuffer put(int index, char c);
 public CharBuffer put(String src, int start, int end);
 public CharBuffer put(char[] src, int offset, int length);
 public abstract CharBuffer slice();
// Methods Implementing CharSequence
 public final char charAt(int index);
 public final int length();
 public abstract CharSequence subSequence(int start, int end);
 public String toString();
// Methods Implementing Comparable
 5.0 public int compareTo(CharBuffer that);
// Methods Implementing Readable
 5.0 public int read(CharBuffer target) throws java.io.IOException;
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
}

Passed To

 java.io.Reader.read(), Readable.read(
), java.nio.charset.Charset.encode(),
java.nio.charset.CharsetDecoder.{decode(),
decodeLoop(), flush(),
implFlush()},
java.nio.charset.CharsetEncoder.{encode(),
encodeLoop()}

Returned By

 ByteBuffer.asCharBuffer(),
java.nio.charset.Charset.decode(),
java.nio.charset.CharsetDecoder.decode()

Name
DoubleBuffer

Synopsis

 DoubleBuffer

 holds
a sequence of double values for use in an I/O
operation. Most of the methods of this class are directly analogous
to methods defined by ByteBuffer except that they
use double and double[]
argument and return values instead of byte and
byte[] values. See ByteBuffer
for details.

 DoubleBuffer is abstract and has no constructor.
Create one by calling the static allocate(
)

 or wrap() methods,
which are also analogs of ByteBuffer methods. Or,
create a “view”
DoubleBuffer by calling the
asDoubleBuffer(
)
 method of an underlying
ByteBuffer.
[image: java.nio.DoubleBuffer]

Figure 13-5. java.nio.DoubleBuffer

public abstract class DoubleBuffer extends Buffer
implements Comparable<DoubleBuffer> {
// No Constructor
 // Public Class Methods
 public static DoubleBuffer allocate(int capacity);
 public static DoubleBuffer wrap(double[] array);
 public static DoubleBuffer wrap(double[] array, int offset, int length);
// Public Instance Methods
 public final double[] array();
 public final int arrayOffset();
 public abstract DoubleBuffer asReadOnlyBuffer();
 public abstract DoubleBuffer compact();
 public abstract DoubleBuffer duplicate();
 public abstract double get();
 public abstract double get(int index);
 public DoubleBuffer get(double[] dst);
 public DoubleBuffer get(double[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public DoubleBuffer put(DoubleBuffer src);
 public abstract DoubleBuffer put(double d);
 public final DoubleBuffer put(double[] src);
 public abstract DoubleBuffer put(int index, double d);
 public DoubleBuffer put(double[] src, int offset, int length);
 public abstract DoubleBuffer slice();
// Methods Implementing Comparable
 5.0 public int compareTo(DoubleBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Returned By

 ByteBuffer.asDoubleBuffer()

Name
FloatBuffer

Synopsis

 FloatBuffer

 holds
a sequence of float values for use in an I/O
operation. Most of the methods of this class are directly analogous
to methods defined by ByteBuffer except that they
use float and float[] argument
and return values instead of byte and
byte[] values. See ByteBuffer
for details.

 FloatBuffer is abstract and has no constructor.
Create one by calling the static

 allocate() or
wrap() methods, which are also analogs of
ByteBuffer methods. Or, create a
“view”
FloatBuffer by calling the asFloatBuffer(
)
 method of an underlying
ByteBuffer.
[image: java.nio.FloatBuffer]

Figure 13-6. java.nio.FloatBuffer

public abstract class FloatBuffer extends Buffer
implements Comparable<FloatBuffer> {
// No Constructor
 // Public Class Methods
 public static FloatBuffer allocate(int capacity);
 public static FloatBuffer wrap(float[] array);
 public static FloatBuffer wrap(float[] array, int offset, int length);
// Public Instance Methods
 public final float[] array();
 public final int arrayOffset();
 public abstract FloatBuffer asReadOnlyBuffer();
 public abstract FloatBuffer compact();
 public abstract FloatBuffer duplicate();
 public abstract float get();
 public abstract float get(int index);
 public FloatBuffer get(float[] dst);
 public FloatBuffer get(float[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public FloatBuffer put(FloatBuffer src);
 public abstract FloatBuffer put(float f);
 public final FloatBuffer put(float[] src);
 public abstract FloatBuffer put(int index, float f);
 public FloatBuffer put(float[] src, int offset, int length);
 public abstract FloatBuffer slice();
// Methods Implementing Comparable
 5.0 public int compareTo(FloatBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Returned By

 ByteBuffer.asFloatBuffer()

Name
IntBuffer

Synopsis

 IntBuffer

 holds a sequence of
int values for use in an I/O operation. Most of
the methods of this class are directly analogous to methods defined
by ByteBuffer except that they use
int and int[] argument and
return values instead of byte and byte[
] values. See ByteBuffer for details.

 IntBuffer is abstract and has no constructor.
Create one by calling the static

 allocate() or
wrap() methods, which are also analogs of
ByteBuffer methods. Or, create a
“view” IntBuffer
by calling the asIntBuffer(
)
 method of an underlying
ByteBuffer.
[image: java.nio.IntBuffer]

Figure 13-7. java.nio.IntBuffer

public abstract class IntBuffer extends Buffer implements Comparable<IntBuffer> {
// No Constructor
 // Public Class Methods
 public static IntBuffer allocate(int capacity);
 public static IntBuffer wrap(int[] array);
 public static IntBuffer wrap(int[] array, int offset, int length);
// Public Instance Methods
 public final int[] array();
 public final int arrayOffset();
 public abstract IntBuffer asReadOnlyBuffer();
 public abstract IntBuffer compact();
 public abstract IntBuffer duplicate();
 public abstract int get();
 public abstract int get(int index);
 public IntBuffer get(int[] dst);
 public IntBuffer get(int[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public IntBuffer put(IntBuffer src);
 public abstract IntBuffer put(int i);
 public final IntBuffer put(int[] src);
 public abstract IntBuffer put(int index, int i);
 public IntBuffer put(int[] src, int offset, int length);
 public abstract IntBuffer slice();
// Methods Implementing Comparable
 5.0 public int compareTo(IntBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Returned By

 ByteBuffer.asIntBuffer()

Name
InvalidMarkException

Synopsis
Signals

 that
a buffer’s position cannot be reset(
) because there is no mark defined.
[image: java.nio.InvalidMarkException]

Figure 13-8. java.nio.InvalidMarkException

public class InvalidMarkException extends IllegalStateException {
// Public Constructors
 public InvalidMarkException();
}

Name
LongBuffer

Synopsis

 LongBuffer

 holds
a sequence of long values for use in an I/O
operation. Most of the methods of this class are directly analogous
to methods defined by ByteBuffer except that they
use long and long[] argument
and return values instead of byte and
byte[] values. See ByteBuffer
for details.

 LongBuffer is abstract and has no constructor.
Create one by calling the static allocate() or
wrap() methods, which are also analogs of
ByteBuffer methods. Or, create a
“view”
LongBuffer by calling
the
 asLongBuffer()
method of an underlying ByteBuffer.
[image: java.nio.LongBuffer]

Figure 13-9. java.nio.LongBuffer

public abstract class LongBuffer extends Buffer
implements Comparable<LongBuffer> {
// No Constructor
 // Public Class Methods
 public static LongBuffer allocate(int capacity);
 public static LongBuffer wrap(long[] array);
 public static LongBuffer wrap(long[] array, int offset, int length);
// Public Instance Methods
 public final long[] array();
 public final int arrayOffset();
 public abstract LongBuffer asReadOnlyBuffer();
 public abstract LongBuffer compact();
 public abstract LongBuffer duplicate();
 public abstract long get();
 public abstract long get(int index);
 public LongBuffer get(long[] dst);
 public LongBuffer get(long[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public LongBuffer put(LongBuffer src);
 public abstract LongBuffer put(long l);
 public final LongBuffer put(long[] src);
 public abstract LongBuffer put(int index, long l);
 public LongBuffer put(long[] src, int offset, int length);
 public abstract LongBuffer slice();
// Methods Implementing Comparable
 5.0 public int compareTo(LongBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Returned By

 ByteBuffer.asLongBuffer()

Name
MappedByteBuffer

Synopsis
This
 class
is a ByteBuffer that represents a memory-mapped
portion of a file. Create a MappedByteBuffer by
calling the map()
 method of a
java.nio.channels.FileChannel. All
MappedByteBuffer buffers are
direct
buffers.

 isLoaded() returns a hint as to whether the
contents of the buffer are currently in primary memory (as opposed to
resident on disk). If it returns true, then
operations on the buffer will probably execute very quickly. The
load()

method requests (but does not require) that the operating system load
the buffer contents into primary memory. It is not guaranteed to
succeed. For buffers that are mapped in read/write mode, the
force() method outputs any changes that have been
made to the buffer contents to the underlying file. If the file is on
a local device, then it is guaranteed to be updated before
force() returns. No such guarantees can be made
for mapped network files.
Note that the underlying file of a
MappedByteBuffer may be shared, which means that
the contents of such a buffer can change asynchronously if the
contents of the file are modified by another thread or another
process (such asynchronous changes to the underlying file may or may
not be visible through the buffer; this is a platform-dependent, and
should not be relied on). Furthermore, if another thread or process
truncates the file, some or all of the elements of the buffer may no
longer map to any content of the file. An attempt to read or write
such an inaccesible element of the buffer will cause an
implementation-defined exception, either immediately or at some later
time.
[image: java.nio.MappedByteBuffer]

Figure 13-10. java.nio.MappedByteBuffer

public abstract class MappedByteBuffer extends ByteBuffer {
// No Constructor
 // Public Instance Methods
 public final MappedByteBuffer force();
 public final boolean isLoaded();
 public final MappedByteBuffer load();
}

Returned By

 java.nio.channels.FileChannel.map()

Name
ReadOnlyBufferException

Synopsis
Signals

 that
a buffer is read-only and that its put() or
compact() methods are not allowed to modify the
buffer contents.
[image: java.nio.ReadOnlyBufferException]

Figure 13-11. java.nio.ReadOnlyBufferException

public class ReadOnlyBufferException extends UnsupportedOperationException {
// Public Constructors
 public ReadOnlyBufferException();
}

Name
ShortBuffer

Synopsis

 ShortBuffer

 holds
a sequence of short values for use in an I/O
operation. Most of the methods of this class are directly analogous
to methods defined by ByteBuffer except that they
use short and short[] argument
and return values instead of byte and
byte[] values. See ByteBuffer
for details.

 ShortBuffer is abstract and has no constructor.
Create one by calling the static allocate(
)

 or wrap() methods,
which are also analogs of ByteBuffer methods. Or,
create a “view”
ShortBuffer by calling the asShortBuffer(
)
 method of an underlying
ByteBuffer.
[image: java.nio.ShortBuffer]

Figure 13-12. java.nio.ShortBuffer

public abstract class ShortBuffer extends Buffer
implements Comparable<ShortBuffer> {
// No Constructor
 // Public Class Methods
 public static ShortBuffer allocate(int capacity);
 public static ShortBuffer wrap(short[] array);
 public static ShortBuffer wrap(short[] array, int offset, int length);
// Public Instance Methods
 public final short[] array();
 public final int arrayOffset();
 public abstract ShortBuffer asReadOnlyBuffer();
 public abstract ShortBuffer compact();
 public abstract ShortBuffer duplicate();
 public abstract short get();
 public abstract short get(int index);
 public ShortBuffer get(short[] dst);
 public ShortBuffer get(short[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public ShortBuffer put(ShortBuffer src);
 public abstract ShortBuffer put(short s);
 public final ShortBuffer put(short[] src);
 public abstract ShortBuffer put(int index, short s);
 public ShortBuffer put(short[] src, int offset, int length);
 public abstract ShortBuffer slice();
// Methods Implementing Comparable
 5.0 public int compareTo(ShortBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Returned By

 ByteBuffer.asShortBuffer()

Name
Package java.nio.channels

Synopsis
This
 package is at the heart of the NIO API.
A channel is a communication channel for
transferring bytes from or to a
java.nio.ByteBuffer. Channels serve a similar
purpose to the InputStream and
OutputStream classes of the
java.io package, but are completely unrelated to
those classes, and provide important features not available with the
java.io API. The Channels class
defines methods that bridge the java.io and
java.nio.channels APIs, by returning channels
based on
 streams and streams based on channels.
The
Channel
 interface simply defines methods
for testing whether a channel is open and for closing a channel. The
other interfaces in the package extend Channel and
define read() and write()
methods for reading bytes from the channel into one or more byte
buffers and for writing bytes from one or more byte buffers to the
channel.
The FileChannel class defines an channel-based API
for reading and writing from files (and also provides other important
file functionality such as file locking and memory mapping that is
not available through the java.io package).
SocketChannel,
ServerSocketChannel, and
DatagramChannel are channels for communication
over a network, and Pipe defines two inner classes
that use the channel abstraction for communication between threads.
The network and pipe channels are all subclasses of the
SelectableChannel class, and may be put into
nonblocking mode, in which calls to read() and
write() return immediately, even if the channel
is not ready for reading or writing. nonblocking IO and networking is
not possible using the stream abstraction of the
java.io and java.net packages,
and is perhaps the most important new feature of the
java.nio API. The Selector
class is crucial to the efficient use of nonblocking channels: it
allows a program to register interested in I/O operations on several
different channels at once. A call to the select(
) method of a Selector will block until
one of those channels becomes ready for I/O, and will then wake up.
This technique is important for writing scalable high-performance
network servers. See Selector and
SelectionKey for details.
Finally, this package allows for very fine-grained error handling by
defining a large number of exception classes, several of which may be
thrown by only a single method within the java.nio
API.

Interfaces
public interface ByteChannel extends ReadableByteChannel, WritableByteChannel;
public interface Channel extends java.io.Closeable;
public interface GatheringByteChannel extends WritableByteChannel;
public interface InterruptibleChannel extends Channel;
public interface ReadableByteChannel extends Channel;
public interface ScatteringByteChannel extends ReadableByteChannel;
public interface WritableByteChannel extends Channel;

Classes
public final class Channels;
public abstract class DatagramChannel extends java.nio.channels.spi.
AbstractSelectableChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel;
public abstract class FileChannel extends java.nio.channels.spi.
AbstractInterruptibleChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel;
public static class FileChannel.MapMode;
public abstract class FileLock;
public abstract class Pipe;
public abstract static class Pipe.SinkChannel extends java.nio.channels.spi.
AbstractSelectableChannel
 implements GatheringByteChannel, WritableByteChannel;
public abstract static class Pipe.SourceChannel extends java.nio.channels.spi.
AbstractSelectableChannel
 implements ReadableByteChannel, ScatteringByteChannel;
public abstract class SelectableChannel extends java.nio.channels.spi.
AbstractInterruptibleChannel
 implements Channel;
public abstract class SelectionKey;
public abstract class Selector;
public abstract class ServerSocketChannel extends java.nio.channels.spi.
AbstractSelectableChannel;
public abstract class SocketChannel extends java.nio.channels.spi.
AbstractSelectableChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel;

Exceptions
public class AlreadyConnectedException extends IllegalStateException;
public class CancelledKeyException extends IllegalStateException;
public class ClosedChannelException extends java.io.IOException;
 public class AsynchronousCloseException extends ClosedChannelException;
 public class ClosedByInterruptException extends AsynchronousCloseException;
public class ClosedSelectorException extends IllegalStateException;
public class ConnectionPendingException extends IllegalStateException;
public class FileLockInterruptionException extends java.io.IOException;
public class IllegalBlockingModeException extends IllegalStateException;
public class IllegalSelectorException extends IllegalArgumentException;
public class NoConnectionPendingException extends IllegalStateException;
public class NonReadableChannelException extends IllegalStateException;
public class NonWritableChannelException extends IllegalStateException;
public class NotYetBoundException extends IllegalStateException;
public class NotYetConnectedException extends IllegalStateException;
public class OverlappingFileLockException extends IllegalStateException;
public class UnresolvedAddressException extends IllegalArgumentException;
public class UnsupportedAddressTypeException extends IllegalArgumentException;

Name
AlreadyConnectedException

Synopsis
Thrown by a call to connect(
)

 on a SocketChannel
that is already connected.
[image: java.nio.channels.AlreadyConnectedException]

Figure 13-13. java.nio.channels.AlreadyConnectedException

public class AlreadyConnectedException extends IllegalStateException {
// Public Constructors
 public AlreadyConnectedException();
}

Name
AsynchronousCloseException

Synopsis
Signals
the
termination of a blocked I/O operation because another thread closed
the channel asynchronously. See also
ClosedByInterruptException.
[image: java.nio.channels.AsynchronousCloseException]

Figure 13-14. java.nio.channels.AsynchronousCloseException

public class AsynchronousCloseException extends ClosedChannelException {
// Public Constructors
 public AsynchronousCloseException();
}

Subclasses

 ClosedByInterruptException

Thrown By

 java.nio.channels.spi.AbstractInterruptibleChannel.end(
)

Name
ByteChannel

Synopsis
This interface extends
ReadableByteChannel and
WritableByteChannel but adds no methods or
constants of its own. It exists simply as a convience that to unify
the two interfaces.
[image: java.nio.channels.ByteChannel]

Figure 13-15. java.nio.channels.ByteChannel

public interface ByteChannel extends ReadableByteChannelWritableByteChannel {
}

Implementations

 DatagramChannel, FileChannel,
SocketChannel

Name
CancelledKeyException

Synopsis
Signals
an
attempt to use a SelectionKey whose
cancel() method has previously been called.
[image: java.nio.channels.CancelledKeyException]

Figure 13-16. java.nio.channels.CancelledKeyException

public class CancelledKeyException extends IllegalStateException {
// Public Constructors
 public CancelledKeyException();
}

Name
Channel

Synopsis
This
interface defines a communication
channel for input and output. The Channel
interface is a high-level generic interface which is extended by more
specific interfaces, such as ReadableByteChannel
and WritableByteChannel.
Channel defines only two methods: isOpen(
)

determines whether a channel is open, and close()
closes a channel. Channels are open when they are first created. Once
closed, a channel remains closed forever, and no further I/O
operations may take place through it.
Many channel implementations are interruptible and asynchonously
closeable, and implement the InterruptibleChannel
interface to advertise this fact. See
InterruptibleChannel for details.
[image: java.nio.channels.Channel]

Figure 13-17. java.nio.channels.Channel

public interface Channel extends java.io.Closeable {
// Public Instance Methods
 void close() throws java.io.IOException;
 boolean isOpen();
}

Implementations

 InterruptibleChannel,
ReadableByteChannel,
SelectableChannel,
WritableByteChannel,
java.nio.channels.spi.AbstractInterruptibleChannel

Returned By

 System.inheritedChannel(),
java.nio.channels.spi.SelectorProvider.inheritedChannel(
)

Name
Channels

Synopsis
This
class defines static methods that
provide a bridge between the byte stream and character stream classes
of the java.io package and the channel classes of
java.nio.channels. Channels is
never intended to be instantiated: it serves solely as a placeholder
for static methods. These methods create byte channels based on
java.io byte streams, and create
java.io byte streams based on byte channels. Note
that the channel objects returned by the newChannel(
) methods may not implement
InterruptibleChannel, and so may not be
asynchonously closeable and interruptible like other channel classes
in this package. Channels also defines methods to
create character streams (java.io.Reader and
java.io.Writer) based on the combination of a byte
channel and a character encoding. The encoding may be specified by
charset name, or with a CharsetDecoder or
CharsetEncoder (see
java.nio.charset).
public final class Channels {
// No Constructor
 // Public Class Methods
 public static ReadableByteChannel newChannel(java.io.InputStream in);
 public static WritableByteChannel newChannel(java.io.OutputStream out);
 public static java.io.InputStream newInputStream(ReadableByteChannel ch);
 public static java.io.OutputStream newOutputStream(WritableByteChannel ch);
 public static java.io.Reader newReader(ReadableByteChannel ch,
String csName);
 public static java.io.Reader newReader(ReadableByteChannel ch,
java.nio.charset.CharsetDecoder dec, int minBufferCap);
 public static java.io.Writer newWriter(WritableByteChannel ch,
String csName);
 public static java.io.Writer newWriter(WritableByteChannel ch,
java.nio.charset.CharsetEncoder enc, int minBufferCap);
}

Name
ClosedByInterruptException

Synopsis
An
exception
of this type is thrown by a thread blocked in an I/O operation on a
channel when another thread calls its interrupt()
method. This exception is a subclass of
AsynchronousCloseException and the channel will be
closed as a side-effect of the thread interruption.
[image: java.nio.channels.ClosedByInterruptException]

Figure 13-18. java.nio.channels.ClosedByInterruptException

public class ClosedByInterruptException extends AsynchronousCloseException {
// Public Constructors
 public ClosedByInterruptException();
}

Name
ClosedChannelException

Synopsis
Signals an
attempt
to perform I/O on a channel that has been closed with the
close() method, or that is closed for a
particular type of I/O operation (a SocketChannel,
for example, may have its read and write halves shut down
independently.) Channels may be closed asynchronously, and threads
blocking to complete an I/O operation will throw a subclass of this
exception type. See AsynchronousCloseException and
ClosedByInterruptException.
[image: java.nio.channels.ClosedChannelException]

Figure 13-19. java.nio.channels.ClosedChannelException

public class ClosedChannelException extends java.io.IOException {
// Public Constructors
 public ClosedChannelException();
}

Subclasses

 AsynchronousCloseException

Thrown By

 SelectableChannel.register(),
java.nio.channels.spi.AbstractSelectableChannel.register(
)

Name
ClosedSelectorException

Synopsis
Signals an
attempt
to use a Selector object whose close(
)
 method has been called.
[image: java.nio.channels.ClosedSelectorException]

Figure 13-20. java.nio.channels.ClosedSelectorException

public class ClosedSelectorException extends IllegalStateException {
// Public Constructors
 public ClosedSelectorException();
}

Name
ConnectionPendingException

Synopsis
Signals a
call
to the connect() method of a
SocketChannel when there is already a connection
pending for that channel. See
SocketChannel.isConnectionPending().
[image: java.nio.channels.ConnectionPendingException]

Figure 13-21. java.nio.channels.ConnectionPendingException

public class ConnectionPendingException extends IllegalStateException {
// Public Constructors
 public ConnectionPendingException();
}

Name
DatagramChannel

Synopsis
This class implements a communication channel
based on network datagrams. Obtain a
DatagramChannel by calling the static
open()

 method. Call socket(
) to obtain the java.net.DatagramSocket
object on which the channel is based if you need to set any socket
options to control low-level networking details.
The send()

 method sends the remaining bytes of the
specified ByteBuffer to the host and port
specified in the java.net.SocketAddress in the
form of a datagram. receive() does the opposite:
it receives a datagram, stores its content into the specified buffer
(discarding any bytes that do not fit) and then returns a
SocketAddress that specifies the sender of the
datagram (or returns null if the channel was in
nonblocking mode and no datagram was waiting).
The send() and receive()
methods typically perform security checks on each invocation to see
if the application has permissions to communicate with the remote
host. If your application will use a
DatagramChannel to exchange datagrams with a
single remote host and port, use the connect(
)

method to connect to a specified SocketAddress.
The connect() method performs the required
security checks once and allows future communication with the
specified address without the overhead. Once a
DatagramChannel is connected, you can use the
standard read()

 and
write() methods defined by the
ReadableByteChannel,
WritableByteChannel,
GatheringByteChannel and
ScatteringByteChannel interfaces. Like the
receive() method, the read()
methods silently discard any received bytes that do not fit in the
specified ByteBuffer. The read(
) and write() methods throw a
NotYetConnected exception if connect(
) has not been called.

 DatagramChannel is a
SelectableChannel; its validOps(
)

method specifies that read and write operations may be selected.
DatagramChannel objects are thread-safe. Read and
write operations may proceed concurrently, but the class ensures that
only one thread may read and one thread write at a time.
[image: java.nio.channels.DatagramChannel]

Figure 13-2. java.nio.channels.DatagramChannel

public abstract class DatagramChannel extends java.nio.channels.spi.
AbstractSelectableChannel
implements ByteChannel, GatheringByteChannel, ScatteringByteChannel {
// Protected Constructors
 protected DatagramChannel(java.nio.channels.spi.SelectorProvider provider);
// Public Class Methods
 public static DatagramChannel open() throws java.io.IOException;
// Public Instance Methods
 public abstract DatagramChannel connect(java.net.SocketAddress remote)
throws java.io.IOException;
 public abstract DatagramChannel disconnect() throws java.io.IOException;
 public abstract boolean isConnected();
 public abstract java.net.SocketAddress receive(java.nio.ByteBuffer dst)
throws java.io.IOException;
 public abstract int send(java.nio.ByteBuffer src, java.net.SocketAddress
target) throws java.io.IOException;
 public abstract java.net.DatagramSocket socket();
// Methods Implementing GatheringByteChannel
 public final long write(java.nio.ByteBuffer[] srcs)
throws java.io.IOException;
 public abstract long write(java.nio.ByteBuffer[] srcs, int offset,
int length) throws java.io.IOException;
// Methods Implementing ReadableByteChannel
 public abstract int read(java.nio.ByteBuffer dst)
throws java.io.IOException;
// Methods Implementing ScatteringByteChannel
 public final long read(java.nio.ByteBuffer[] dsts)
throws java.io.IOException;
 public abstract long read(java.nio.ByteBuffer[] dsts, int offset,
int length) throws java.io.IOException;
// Methods Implementing WritableByteChannel
 public abstract int write(java.nio.ByteBuffer src)
throws java.io.IOException;
// Public Methods Overriding SelectableChannel
 public final int validOps(); constant
}

Returned By

 java.net.DatagramSocket.getChannel(),
java.nio.channels.spi.SelectorProvider.openDatagramChannel(
)

Name
FileChannel

Synopsis
This

 class
implements a communication channel for efficiently reading and and
writing files. It implements the standard read()
and write() methods of the
ReadableByteChannel,
WritableByteChannel,
GatheringByteChannel and
ScatteringByteChannel methods. In addition,
however, FileChannel provides methods for:
random-access to the file, efficient transfer of bytes between the
file and another channel, file locking, memory mapping, querying and
setting the file size and forcing buffered updates to be written to
disk. These important features are described in further detail below.
Note that since file operations do not typically block for extended
periods the way network operations can,
FileChannel does not subclass
SelectableChannel (it is the only channel class
that does not) and cannot be used with Selector
objects.

 FileChannel has no public constructor and no
static factory methods. To obtain a FileChannel,
first create a FileInputStream,
FileOutputStream, or
RandomAccessFile object (see the
java.io package) and then call the
getChannel() method of that object. If you use a
FileInputStream, the resulting channel will allow
reading but not writing, and if you use a
FileOutputStream, the channel will allow writing
but not reading. If you obtain a FileChannel from
a RandomAccessFile, then the channel will allow
reading, or both reading and writing, depending on the
mode argument to the
RandomAccessFile constructor.
A FileChannel has a position
or file pointer that specifies the current point in the file. You can
set or query the file position with two methods, both of which share
the name position()
 . The
position of a FileChannel and of the stream or
RandomAccessFile from which it is derived are
always the same: changing the position of the channel changes the
position of the stream, and vice versa. The initial position of a
FileChannel is the position of the stream or
RandomAccessFile when the getChannel(
) method was called. If you create a
FileChannel from a
FileOutputStream that was opened in append mode,
then any output to the channel always occurs at the end of the file,
and sets the file position to the end end of the file.
Once you have a FileChannel object, you can use
the standard read()

 and write() methods
defined by the various channel interfaces. In addition to updating
the buffer position as they read and write bytes, these methods also
update the file position to or from which those bytes are written or
read. These standard read() methods return the
number of bytes actually read, and return -1 if there are no bytes
left in the file to read. The write() methods
enlarge the file if they write past the current end-of-file.

 FileChannel also defines position-independent
read() and write() methods
that take a file position as an explicit argument: they read or write
starting at that position of the file, and although they update the
position of the ByteBuffer, they do not update the
file position of the FileChannel. If the specified
position is past the end-of-file, the read() method does not read
any bytes and returns -1, and the write() method
enlarges the file, leaving any bytes between the old end-of-file and
the specified position undefined.
It is common to read bytes from a FileChannel and
then immediately write them out to some other channel (such as a
SocketChannel: think of a web server, for
example), or to read bytes from a channel and immediately write them
to a FileChannel (consider an FTP client).
FileChannel provides two methods,
transferTo()

 and transferFrom(
) that do this very efficiently, without the need for a
temporary ByteBuffer. transferTo(
) reads up to the specified number of bytes starting at the
specified location from this FileChannel and
writes them to the specified channel. It does not alter the file
position of the FileChannel, and it returns the
number of bytes actually transferred. transferFrom(
) does the reverse: it reads up to the specified number of
available bytes from the specified channel, and writes them to this
FileChannel at the specified location, without
altering the file position of this channel, and returns the actual
number of bytes transferred. For both methods, if the destination or
source channel is a FileChannel itself, then the
file position of that channel is updated.
The size()

method returns the size (in bytes) of the underlying file.
truncate()
 reduces the file size to the
specified value, discarding any file content that exceeds that size.
If the specified size is greater than or equal to the current file
size, the file is unchanged. If the file position is greater than the
new size of the file, it the position is changed to the new size.
Use the force()
 method to force any buffered
modifications to the file to be written to the underlying storage
device. If the file resides on a local device, (as opposed to a
network filesystem, for example) then force()
guarantees that any changes to the file made since the channel was
opened or since a previous call to force() will
have been written to the device. The argument to this method is a
hint as to whether file meta-data (such as last modification time) is
to be forced out in addition to file content. If this argument is
true, the system will force content and meta-data.
If false, the system may omit updates to
meta-data. Note that force() is only required to
output change made directly through the
FileChannel. File updates made through a
MappedByteBuffer returned by the map(
)
 method (described below)y should
be forced out with the force() method of
MappedByteBuffer.

 FileChannel defines two blocking lock(
)
 and two nonblocking
tryLock()
 methods for locking a file or a region
of a file against concurrent access by another program. (These
methods are not suitable for preventing concurrent access to a file
by two threads within the same Java virtual machine.) The no-argument
versions of these methods attempt to acquire an exclusive lock on the
entire file. The three-argument versions of the methods attempt to
lock a specified region of the file, and may acquire
shared locks in
addition to exclusive locks. (A shared lock prevents
any other process from acquiring an exclusive lock, but does not
prevent other shared locks: typically, you acquire a shared lock when
reading a file that should not be concurrently updated, and acquire
an exclusive lock before writing file content to ensure that no one
else is trying to read it at the same time.) The tryLock(
) methods return a FileLock object, or
null if there was already a conflicting lock on
the file. The lock() methods block if there is
already a conflicting lock and never return null.
See FileLock for more information about locks. The
FileChannel file locking mechanism uses whatever
locking capability is provided by the underlying platform. Some
operating systems enforce file locking: if one process holds a lock,
other processes are prevented by the operating system from accessing
the file. Other operating systems merely prevent other processes from
acquiring a conflicting lock: in this case, successful file locking
requires the cooperation of all processes. Some operating systems do
not support shared locks: on these systems an exclusive lock is
returned even when a shared lock is requested.
The map()
 method returns a
MappedByteBuffer
 that represents the specified region of
the file. File contents can be read directly from the buffer, and (if
the mapping is done in read/write mode) bytes placed in the buffer
will be written to the file. The mapping represented by a
MappedByteBuffer remains valid until the buffer is
garbage collected; the buffer continues to function even if the
FileChannel from which it was created is closed.
File mappings can be done in three different modes which specify
whether bytes can be written into the buffer and what happens when
this is done. See FileChannel.MapMode for a
description of the three modes.
The map() method relies on the memory-mapping
facilities provided by the underlying operating system. This means
that a number of details may vary from implementation to
implementation. In particular, it is not specified whether changes to
the underlying file made after the call to map()
are visible through the MappedByteBuffer. Using a
mapped file is typically more efficient that an unmapped file only
when the file is a large one.
[image: java.nio.channels.FileChannel]

Figure 13-23. java.nio.channels.FileChannel

public abstract class FileChannel extends java.nio.channels.spi.
AbstractInterruptibleChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel {
// Protected Constructors
 protected FileChannel();
// Nested Types
 public static class MapMode;
// Public Instance Methods
 public abstract void force(boolean metaData) throws java.io.IOException;
 public final FileLock lock() throws java.io.IOException;
 public abstract FileLock lock(long position, long size, boolean shared)
 throws java.io.IOException;
 public abstract java.nio.MappedByteBuffer map(FileChannel.MapMode mode,
 long position, long size) throws java.io.IOException;
 public abstract long position() throws java.io.IOException;
 public abstract FileChannel position(long newPosition)
 throws java.io.IOException;
 public abstract int read(java.nio.ByteBuffer dst, long position)
 throws java.io.IOException;
 public abstract long size() throws java.io.IOException;
 public abstract long transferFrom(ReadableByteChannel src, long position,
 long count) throws java.io.IOException;
 public abstract long transferTo(long position, long count,
 WritableByteChannel target) throws java.io.IOException;
 public abstract FileChannel truncate(long size) throws java.io.IOException;
 public final FileLock tryLock() throws java.io.IOException;
 public abstract FileLock tryLock(long position, long size, boolean shared)
 throws java.io.IOException;
 public abstract int write(java.nio.ByteBuffer src, long position)
 throws java.io.IOException;
// Methods Implementing GatheringByteChannel
 public final long write(java.nio.ByteBuffer[] srcs)
 throws java.io.IOException;
 public abstract long write(java.nio.ByteBuffer[] srcs, int offset,
 int length) throws java.io.IOException;
// Methods Implementing ReadableByteChannel
 public abstract int read(java.nio.ByteBuffer dst)
 throws java.io.IOException;
// Methods Implementing ScatteringByteChannel
 public final long read(java.nio.ByteBuffer[] dsts)
 throws java.io.IOException;
 public abstract long read(java.nio.ByteBuffer[] dsts, int offset,
 int length) throws java.io.IOException;
// Methods Implementing WritableByteChannel
 public abstract int write(java.nio.ByteBuffer src)
 throws java.io.IOException;
}

Passed To

 FileLock.FileLock()

Returned By

 java.io.FileInputStream.getChannel(),
java.io.FileOutputStream.getChannel(),
java.io.RandomAccessFile.getChannel(),
FileLock.channel()

Name
FileChannel.MapMode

Synopsis
This
 class defines three constants that
define the legal values of the mode
argument to the map() method of the
FileChannel class. The constants and their
meanings are the following:
	
 READ_ONLY

	The memory mapping is read-only. The contents of the
MappedByteBuffer returned by the map(
) method may be read but may not be modified.

	
 READ_WRITE

	The memory mapping is bidirectional: The contents of the returned
buffer can be modified, and any modifications will (eventually) be
written to the underlying file. The FileChannel
must have been created from a
java.io.RandomAccessFile opened in read/write
mode.

	
 PRIVATE

	The returned buffer may be modified, but any such changes are private
to the buffer, and are never written to the underlying file. This
mapping mode is also known as
“copy-on-write.”

public static class FileChannel.MapMode {
// No Constructor
 // Public Constants
 public static final FileChannel.MapMode PRIVATE;
 public static final FileChannel.MapMode READ_ONLY;
 public static final FileChannel.MapMode READ_WRITE;
// Public Methods Overriding Object
 public String toString();
}

Passed To

 FileChannel.map()

Name
FileLock

Synopsis
A
FileLock

 object is returned by the lock(
) and tryLock() methods of
FileChannel and represents a lock on a file or a
region of a file. See FileChannel for more
information on file locking with those methods. When a lock is no
longer required, it should be released with the release(
) method. A lock will also be released if the channel is
closed, or when the virtual machine terminates. isValid(
)
 returns
true if the lock has not yet been released, and
returns false if it has been released.
The channel()

 , position(),
size() and isShared() methods
return basic information about the lock: the
FileChannel that was locked, the region of the
file that was locked, and whether the lock is shared or exclusive. If
the entire file is locked, then the size() method
returns a value (Long.MAX_VALUE) that is much
greater than the actual file size. If the underlying operating system
does not support shared locks, then isShared()
may return false even if a shared lock was requested.
overlaps()
 is a convenience method that returns
true if the position and size of this lock overlap
the specified position and size.
public abstract class FileLock {
// Protected Constructors
 protected FileLock(FileChannel channel, long position, long size,
 boolean shared);
// Public Instance Methods
 public final FileChannel channel();
 public final boolean isShared();
 public abstract boolean isValid();
 public final boolean overlaps(long position, long size);
 public final long position();
 public abstract void release() throws java.io.IOException;
 public final long size();
// Public Methods Overriding Object
 public final String toString();
}

Returned By

 FileChannel.{lock(), tryLock(
)}

Name
FileLockInterruptionException

Synopsis
Signals

 that the interrupt()
method of a thread blocked waiting to acquire a file lock was called.
See FileChannel.lock().
[image: java.nio.channels.FileLockInterruptionException]

Figure 13-24. java.nio.channels.FileLockInterruptionException

public class FileLockInterruptionException extends java.io.IOException {
// Public Constructors
 public FileLockInterruptionException();
}

Name
GatheringByteChannel

Synopsis
This
interface
extends WritableByteChannel and adds two
additional write()
 methods that can
“gather” bytes from one or more
buffers and write them out to the channel. These methods are passed
an array of ByteBuffer objects, and, optionally,
an offset and length that define the relevant sub-array to be used.
The write() method attempts to write all the
remaining bytes from all the specified buffers (in the order in which
they appear in the buffer array) to the channel. The return value of
the method is the number of bytes actually written. See
WritableByteChannel for a discussion of exceptions
and thread-safety that apply to these write()
methods as well.
[image: java.nio.channels.GatheringByteChannel]

Figure 13-25. java.nio.channels.GatheringByteChannel

public interface GatheringByteChannel extends WritableByteChannel {
// Public Instance Methods
 long write(java.nio.ByteBuffer[] srcs) throws java.io.IOException;
 long write(java.nio.ByteBuffer[] srcs, int offset, int length)
 throws java.io.IOException;
}

Implementations

 DatagramChannel, FileChannel,
Pipe.SinkChannel, SocketChannel

Name
IllegalBlockingModeException

Synopsis
Signals
an
attempt to use a channel in the wrong blocking mode. An exception of
this type is thrown by SelectableChannel.register(
) if the channel is not in nonblocking mode.
[image: java.nio.channels.IllegalBlockingModeException]

Figure 13-26. java.nio.channels.IllegalBlockingModeException

public class IllegalBlockingModeException extends IllegalStateException {
// Public Constructors
 public IllegalBlockingModeException();
}

Name
IllegalSelectorException

Synopsis

 Signals
an attempt to register a SelectableChannel with a
Selector

when the channel and the selector were not created by the same
java.nio.channels.spi.SelectorProvider.
[image: java.nio.channels.IllegalSelectorException]

Figure 13-27. java.nio.channels.IllegalSelectorException

public class IllegalSelectorException extends IllegalArgumentException {
// Public Constructors
 public IllegalSelectorException();
}

Name
InterruptibleChannel

Synopsis
Channels that implement this marker interface
have two important properties that are relevant to multithreaded
programs: they are asynchonously closeable and
interruptible. When the close(
) method of an InterruptibleChannel is
called, any other thread that is blocked waiting for an I/O operation
to complete on that channel will stop blocking and receive an
AsynchronousCloseException. Furthermore, if a
thread is blocked waiting for an I/O operation to complete on an
InterruptibleChannel, then another thread may call
the interrupt() method of the blocked thread.
This causes the interrupt status of the blocked thread to be set and
causes the thread to wake up and receive an
ClosedByInterruptException (a subclass of
AsynchronousCloseException). As the name of this
interrupt implies, the channel that the thread was blocked on is
closed as a side-effect of the thread interruption. There is no way
to interrupt a blocked thread without closing the channel upon which
it is blocked. This ability to interrupt a blocked thread is
particularly noteworthy because it has never worked reliably with the
older java.io API.
All the concrete channel implementations that are part of this
package implement InterruptibleChannel. Note,
however, that methods such as Channels.newChannel(
) may return channel objects that are not interruptible.
You can use the instanceof to determine whether an
unknown channel object implements this interface.
[image: java.nio.channels.InterruptibleChannel]

Figure 13-28. java.nio.channels.InterruptibleChannel

public interface InterruptibleChannel extends Channel {
// Public Instance Methods
 void close() throws java.io.IOException;
}

Implementations

 java.nio.channels.spi.AbstractInterruptibleChannel

Name
NoConnectionPendingException

Synopsis
Signals
that
SocketChannel.finishConnect() was called without
a previous call to SocketChannel.connect().
[image: java.nio.channels.NoConnectionPendingException]

Figure 13-29. java.nio.channels.NoConnectionPendingException

public class NoConnectionPendingException extends IllegalStateException {
// Public Constructors
 public NoConnectionPendingException();
}

Name
NonReadableChannelException

Synopsis
Signals
a
call to the read() method of a readable channel
that is not open for reading, such as a
FileChannel created from a
FileOutputStream.
[image: java.nio.channels.NonReadableChannelException]

Figure 13-30. java.nio.channels.NonReadableChannelException

public class NonReadableChannelException extends IllegalStateException {
// Public Constructors
 public NonReadableChannelException();
}

Name
NonWritableChannelException

Synopsis
Signal
a
call to a write() method of a writable channel
that is not open for writing, such as a
FileChannel created from a
FileInputStream.
[image: java.nio.channels.NonWritableChannelException]

Figure 13-31. java.nio.channels.NonWritableChannelException

public class NonWritableChannelException extends IllegalStateException {
// Public Constructors
 public NonWritableChannelException();
}

Name
NotYetBoundException

Synopsis
Signals
a call
to ServerSocketChannel.accept() before the
underlying server socket has been bound to a local port. Call
socket().bind() to bind the
java.net.ServerSocket that underlies the
ServerSocketChannel.
[image: java.nio.channels.NotYetBoundException]

Figure 13-32. java.nio.channels.NotYetBoundException

public class NotYetBoundException extends IllegalStateException {
// Public Constructors
 public NotYetBoundException();
}

Name
NotYetConnectedException

Synopsis
Signals
an
attempt to read() or write()
on a SocketChannel that is not yet connected to a
remote host. See SocketChannel.connect().
[image: java.nio.channels.NotYetConnectedException]

Figure 13-33. java.nio.channels.NotYetConnectedException

public class NotYetConnectedException extends IllegalStateException {
// Public Constructors
 public NotYetConnectedException();
}

Name
OverlappingFileLockException

Synopsis
This

 exception is thrown by the
lock() and tryLock() methods
of FileChannel if the requested lock region
overlaps a file lock that is already held by some thread in this JVM,
or if there is already a thread in this JVM waiting to lock an
overlapping region of the same file. The
FileChannel file locking mechanism is designed to
lock files against concurrent access by two separate processes. Two
threads within the same JVM should not attempt to acquire a lock on
overlapping regions of the same file, and any attempt to do so causes
an exception of this type to be thrown.
[image: java.nio.channels.OverlappingFileLockException]

Figure 13-34. java.nio.channels.OverlappingFileLockException

public class OverlappingFileLockException extends IllegalStateException {
// Public Constructors
 public OverlappingFileLockException();
}

Name
Pipe

Synopsis
A pipe is an
abstraction that allows the one-way transfer of bytes from one
thread to another. A pipe has a
“read end” and a
“write end” which are represented
by objects that implement the ReadableByteChannel
and WritableByteChannel interfaces. Create a new
pipe with the static Pipe.open(
)
 method. Call the sink(
)

method to obtain the Pipe.SinkChannel object that
represents the write end of the pipe, and call the source(
)

method to obtain the Pipe.SourceChannel object
that represents the read end of the pipe.
Programmers familiar with
Unix-style
pipes may find the names and return values of the sink(
) and source() methods confusing. A
Unix pipe is an interprocess communication mechanism that is tied to
two specific processes, one of which is a source of bytes and one of
which is a destination, or sink, for those bytes. With this
conceptual model of a pipe, you would expect the source to obtain the
channel it writes to with the source() method and
the sink to obtain the channel it reads from with the sink(
) method.
This Pipe class is not a Unix-style pipe, however.
While it can be used for communication between two threads, the ends
of the pipe are not tied to those threads, and there need not be a
single source thread and a single sink thread. Therefore, in the
Pipe API it is the pipe itself that serves as the
source and the sink of bytes: bytes are read from the source end of
the pipe, and are written to the sink end.
public abstract class Pipe {
// Protected Constructors
 protected Pipe();
// Nested Types
 public abstract static class SinkChannel extends java.nio.channels.spi.
 AbstractSelectableChannel implements GatheringByteChannel,
 WritableByteChannel;
 public abstract static class SourceChannel extends java.nio.channels.spi.
 AbstractSelectableChannel implements ReadableByteChannel,
 ScatteringByteChannel;
// Public Class Methods
 public static Pipe open() throws java.io.IOException;
// Public Instance Methods
 public abstract Pipe.SinkChannel sink();
 public abstract Pipe.SourceChannel source();
}

Returned By

 java.nio.channels.spi.SelectorProvider.openPipe()

Name
Pipe.SinkChannel

Synopsis
This
 public inner class is represents the
write end of a pipe. Bytes written to a
Pipe.SinkChannel become available on the
corresponding Pipe.SourceChannel of the pipe.
Obtain a Pipe.SinkChannel by creating a
Pipe object with Pipe.open()
and then calling the sink() method of that
object. See also the containing Pipe class.

 Pipe.SinkChannel implements
WritableByteChannel

 and
GatheringByteChannel and defines the
write() methods of those interfaces. This class
subclasses SelectableChannel, so that it can be
used with a Selector. It overrides the abstract
validOps()

method of SelectableChannel to return
SelectionKey.OP_WRITE, but defines no new methods
of its own.
public abstract static class Pipe.SinkChannel extends java.nio.channels.spi.
AbstractSelectableChannel implements GatheringByteChannel, WritableByteChannel {
// Protected Constructors
 protected SinkChannel(java.nio.channels.spi.SelectorProvider provider);
// Public Methods Overriding SelectableChannel
 public final int validOps(); constant
}

Returned By

 Pipe.sink()

Name
Pipe.SourceChannel

Synopsis
This
 public inner class is represents the read
end of a pipe. Bytes that are written to the corresponding write end
of the pipe (see Pipe.SinkChannel) become
available for reading through this channel. Obtain a
Pipe.SourceChannel by creating a
Pipe object with Pipe.open()
and then calling the source(
)

method of that object. See also the containing
Pipe class.

 Pipe.SourceChannel implements
ReadableByteChannel and
ScatteringByteChannel and defines the
read() methods of those interfaces. This class
subclasses SelectableChannel, so that it can be
used with a Selector. It overrides the abstract
validOps()
 method of
SelectableChannel to return
SelectionKey.OP_READ, but defines no new methods
of its own.
public abstract static class Pipe.SourceChannel extends java.nio.channels.spi.
AbstractSelectableChannel implements ReadableByteChannel, ScatteringByteChannel {
// Protected Constructors
 protected SourceChannel(java.nio.channels.spi.SelectorProvider provider);
// Public Methods Overriding SelectableChannel
 public final int validOps(); constant
}

Returned By

 Pipe.source()

Name
ReadableByteChannel

Synopsis
This subinterface of
Channel defines a single key read(
)

method which reads bytes from the channel and stores them in the
specified ByteBuffer, updating the buffer position
as it does so. read() attempts to read as many
bytes as will fit in the specified buffer, (see
Buffer.remaining()) but may read fewer than this.
If the channel is a nonblocking channel, for example, the
read() will return immediately, even if there are
no bytes available to be read. read() returns the
number of bytes actually read (which may be zero in the nonblocking
case), or returns -1 if there are no more bytes to be read in the
channel (if, for example, the end of a file has been reached, or the
other end of a socket has been closed.)

 read() is declared to throw an
IOException. More specifically, it may throw a
ClosedChannelException if the channel is closed.
If the channel is closed asynchronously, or if a blocked thread is
interrupted, the read() method may terminate with
an AsynchronousCloseException or a
ClosedByInterruptException. read(
) may also throw an unchecked
NonReadableChannelException if it is called on a
channel that was not opened or configured to allow reading.

 ReadableByteChannel implementations are required
to be thread-safe: only one thread may perform a read operation on a
channel at a time. If a read operation is in progress, then any call
to read() will block until the in-progress
operation completes. Some channel implementations may allow read and
write operations to proceed concurrently, but none will allow two
read operations to proceed at the same time.
[image: java.nio.channels.ReadableByteChannel]

Figure 13-35. java.nio.channels.ReadableByteChannel

public interface ReadableByteChannel extends Channel {
// Public Instance Methods
 int read(java.nio.ByteBuffer dst) throws java.io.IOException;
}

Implementations

 ByteChannel,
Pipe.SourceChannel,
ScatteringByteChannel

Passed To

 Channels.{newInputStream(), newReader(
)}, FileChannel.transferFrom(),
java.util.Scanner.Scanner()

Returned By

 Channels.newChannel()

Name
ScatteringByteChannel

Synopsis
This interface extends
ReadableByteChannel and adds two additional
read() methods that read bytes for a channel and
“scatter” them to an array (or
subarray) of buffers. These methods are passed an array of
ByteBuffer objects, and, optionally, an offset and
length that define the region of the array to be used. The
read() method attempts to read enough bytes from
the channel to fill each of the specified buffers in the order in
which they appear in the buffer array (the
“scattering” process is actually
much more orderly and linear than the name implies). The return value
of the method is the number of bytes actually read, which may be
different than the sum of the remaining bytes in the buffers. See
ReadableByteChannel for a discussion of exceptions
and thread-safety that apply to these read()
methods as well.
[image: java.nio.channels.ScatteringByteChannel]

Figure 13-36. java.nio.channels.ScatteringByteChannel

public interface ScatteringByteChannel extends ReadableByteChannel {
// Public Instance Methods
 long read(java.nio.ByteBuffer[] dsts) throws java.io.IOException;
 long read(java.nio.ByteBuffer[] dsts, int offset, int length)
throws java.io.IOException;
}

Implementations

 DatagramChannel, FileChannel,
Pipe.SourceChannel,
SocketChannel

Name
SelectableChannel

Synopsis
This abstract class defines the API for
channels that can be used with a Selector object
to allow a thread to block while waiting for activity on any of a
group of channels. All channel classes in the
java.nio.channels package except for
FileChannel are subclasses of
SelectableChannel.
A selectable channel may only be registered with a
Selector if it is nonblocking, so this class
defines the configureBlocking(
)

method. Pass false to this method to put a channel
into nonblocking mode, or pass true to make calls
to its read()

 and/or write()
methods block. Use isBlocking() to determine the
current blocking mode of a selectable channel.
Register a SelectableChannel with a
Selector by calling the register(
)
 method of the channel (not
of the selector). There are two versions of this method: both take a
Selector object and a bitmask that specifies the
set of channel operations that are to be
“selected” on that channel. (see
SelectionKey for the constants that can be OR-ed
together to form this bitmask). Both methods return a
SelectionKey object that represents the
registration of the channel with the selector. One version of the
register() method also takes an arbitrary object
argument which serves as an
“attachment” to the
SelectionKey and allows you to associate arbitrary
data with it. The validOps() method returns a
bitmask that specifies the set of operations that a particular
channel object allows to be selected. The bitmask
passed to register() may only contain bits that
are set in this validOps() value.
Note that SelectableChannel does not define a
deregister() method. Instead, to remove a channel
from the set of channels being monitored by a
Selector, you must call the cancel(
) method of the SelectionKey returned by
register().
Call isRegistered(
)
 to determine whether a
SelectableChannel is registered with any
Selector. (Note that a single channel may be
registered with more than one Selector.) If you
did not keep track of the SelectionKey returned by
a call to register(), you can query it with the
keyFor() method.
See Selector and SelectionKey
for further details on multiplexing selectable channels.
[image: java.nio.channels.SelectableChannel]

Figure 13-37. java.nio.channels.SelectableChannel

public abstract class SelectableChannel extends java.nio.channels.spi.
AbstractInterruptibleChannel implements Channel {
// Protected Constructors
 protected SelectableChannel();
// Public Instance Methods
 public abstract Object blockingLock();
 public abstract SelectableChannel configureBlocking(boolean block)
 throws java.io.IOException;
 public abstract boolean isBlocking();
 public abstract boolean isRegistered();
 public abstract SelectionKey keyFor(Selector sel);
 public abstract java.nio.channels.spi.SelectorProvider provider();
 public final SelectionKey register(Selector sel, int ops)
 throws ClosedChannelException;
 public abstract SelectionKey register(Selector sel, int ops, Object att)
 throws ClosedChannelException;
 public abstract int validOps();
}

Subclasses

 java.nio.channels.spi.AbstractSelectableChannel

Returned By

 SelectionKey.channel(),
java.nio.channels.spi.AbstractSelectableChannel.configureBlocking(
)

Name
SelectionKey

Synopsis
A SelectionKey
 represents the registration of a
SelectableChannel with a
Selector, and serves to identify a selected
channel and the operations that are ready to be performed on that
channel. After a call to the select(
)

 method of a selector, the
selectedKeys() method of the selector returns a
Set of SelectionKey objects to
identify the channel or channels that are ready for reading, for
writing, or for another operation.
Create a SelectionKey by passing a
Selector object to the register(
)
 method of a
SelectableChannel. The channel(
) and selector() methods of the
returned SelectionKey return the
SelectableChannel and Selector
objects associated with that key.
When you no longer wish the channel to be registered with the
selector, call the cancel() method of the
SelectionKey. isValid()
determines whether a SelectionKey is still
“valid”—it returns true
unless the cancel() method has been called, the
channel has been closed or the selector has been closed.
The main purpose of a SelectionKey is to hold the
"interest set” of
channel operations that the selector should monitor for the channel,
and also the “ready set” of
operations that the selector has determined are ready to proceed on
the channel. Both sets are represented as integer bitmasks (not
java.util.Set objects) formed by OR-ing together
any of the OP_ constants defined by this class.
Those constants are the following:
	
 OP_READ

	In the interest set, this bit specifies an interest in read
operations. In the ready set, this bit specifies that the channel has
bytes available for reading, has reached the end-of-stream, has been
remotely closed, or that an error has occurred.

	
 OP_WRITE

	In the interest set, this bit specifies an interest in write
operations. In the ready set, this bit specifies that the channel is
ready to have bytes written, or has been closed, or that an error has
occurred.

	
 OP_CONNECT

	In the interest set, this bit specifies an interest in socket
connection operations. In the ready set, it indicates that a socket
channel is ready to connect, or that an error has occurred.

	
 OP_ACCEPT

	In the interest set, this bit specifies an interest in server socket
accept operations. In the ready set, it indicates that a server
socket channel is ready to accept a connection or that an error has
occurred.

The no-argument version of the interestOps(
)
 method allows you to query the
interest set. The inital value of the interest set the bitmask that
was passed to the register() method of the
channel. It can be changed, however, by passing a new bitmask to the
one-argument version of interestOps(). (Note that
the same method name is used to both query and set the interest set.)
The current state of the ready set can be queried with
readyOps()
 . You can also use the
convenience methods isReadable(),
isWritable()
 isConnectable()
and isAcceptable() to test whether individual
operation bits are set in the ready set bitmask. There is no way to
explicitly set the state of the ready set—each call to
select() method updates the ready set for you.
Note, however, that you must remove a SelectionKey
object from the Set returned by
Selector.selectedKeys() for the bits of the ready
set to be cleared at the start of the next selection operation. If
you never remove the SelectionKey from the set of
selected keys, the Selector assumes that none of
the I/O readyness conditions represented by the ready set have been
handled yet, and leaves their bits set.
Use attach() to associate an arbitrary object
with a SelectionKey, and call attachment(
) to query that object. This ability to associate data with
a selection key is often useful when using a
Selector with multiple channels: it can provide
the context necessary to process a SelectionKey
that has been selected.
public abstract class SelectionKey {
// Protected Constructors
 protected SelectionKey();
// Public Constants
 public static final int OP_ACCEPT; =16
 public static final int OP_CONNECT; =8
 public static final int OP_READ; =1
 public static final int OP_WRITE; =4
 // Public Instance Methods
 public final Object attach(Object ob);
 public final Object attachment();
 public abstract void cancel();
 public abstract SelectableChannel channel();
 public abstract int interestOps();
 public abstract SelectionKey interestOps(int ops);
 public final boolean isAcceptable();
 public final boolean isConnectable();
 public final boolean isReadable();
 public abstract boolean isValid();
 public final boolean isWritable();
 public abstract int readyOps();
 public abstract Selector selector();
}

Subclasses

 java.nio.channels.spi.AbstractSelectionKey

Returned By

 SelectableChannel.{keyFor(), register(
)},
java.nio.channels.spi.AbstractSelectableChannel.{keyFor(
), register()},
java.nio.channels.spi.AbstractSelector.register()

Name
Selector

Synopsis
A Selector

 is an object that monitors multiple
nonblocking SelectableChannel objects and (after
blocking if necessary) “selects”
the channel that is (or the channels that are) ready for I/O. Create
a new Selector with the static open(
) method. Next register the channels that it is to monitor:
a channel is registered by passing the Selector to
the register() method of the channel
(register() is defined by the abstract
SelectableChannel class). In addition to the
Selector you must also pass a bitmask that
specifies which I/O operations (reading, writing, connecting, and
accepting) that the Selector is to monitor for
that channel. Each call to this register() method
returns a SelectionKey object. (The
SelectionKey class also defines the constants that
are used to form the bitmask of I/O operations.) Note that before a
SelectableChannel can be registered, it must be in
nonblocking mode, which can be accomplished with the
configureBlocking() method of
SelectableChannel.
Once the channels are registered with the
Selector, call select(
)
 to block until one or more of the
channels is ready for I/O. One version of select(
) takes a timeout value and returns if the specified number
of milliseconds elapses without any channels becoming ready for I/O.
These methods also return if any of the channels is closed, if an
error occurs on any channel, if the wakeup()
method of the Selector is called, or if the
interrupt() method of the blocked thread is
called. There is also a selectNow() method which
is like select() except that it does not block:
it simply polls each of the channels and determines which have become
ready for I/O. The return value of selectNow()
and of both select() methods is the number of
channels ready for I/O. It is possible for this return value to be
zero.
The select() and selectNow()
methods returns the number of channels that are ready for I/O; they
do not return the channels themselves. To obtain this information,
you must call the selectedKeys() method, which
returns a java.util.Set containing
SelectionKey objects. After calling
select() and selectedKeys(),
applications typically obtain a java.util.Iterator
for the Set and use it to loop through the
SelectionKey objects that represent the channels
that are ready for I/O. Use the channel() method
of the SelectionKey to determine which channel is
ready, and call readyOps(), isReadable(
), isWritable() or related methods of
the SelectionKey to determine what kind of I/O
operation is ready on the channel. SelectionKey
objects remain in the selectedKeys() set until
explicitly removed, so after performing the I/O operation for a given
SelectionKey, you should remove that key from the
Set returned by selectedKeys()
(use the remove() method of the
Set of its Iterator).
In addition to the selectedKeys() method,
Selector also defines a keys(
)
 method, which also returns a
Set of SelectionKey objects.
This set represents the complete set of channels that are being
monitored by the Selector and may not be modified,
except by closing the channel or deregistring the channel by calling
the cancel() method of the associated
SelectionKey. Cancelled keys are removed from the
keys() set on the next call to select(
) or selectNow().
Call wakeup()
 to cause another thread blocked in a
call to select() to wake up and return
immediately. If wakeup() is called but no thread
is currently blocked in a select() call, then the
next call to select() or selectNow(
) will return immediately.
When a Selector object is no longer needed, close
it by calling close(). If any thread is blocked
in a select() call, it will return immediately as
if wakeup() had been called. After calling
close(), you should not call any other methods of
a Selector. isOpen() returns
true if a Selector is still
open, and returns false if it has been closed.
The Selector class is thread-safe. Note, however,
that the Set object returnd by
selectedKeys() is not: it should be used by only
one thread at a time.
public abstract class Selector {
// Protected Constructors
 protected Selector();
// Public Class Methods
 public static Selector open() throws java.io.IOException;
// Public Instance Methods
 public abstract void close() throws java.io.IOException;
 public abstract boolean isOpen();
 public abstract java.util.Set<SelectionKey> keys();
 public abstract java.nio.channels.spi.SelectorProvider provider();
 public abstract int select() throws java.io.IOException;
 public abstract int select(long timeout) throws java.io.IOException;
 public abstract java.util.Set<SelectionKey> selectedKeys();
 public abstract int selectNow() throws java.io.IOException;
 public abstract Selector wakeup();
}

Subclasses

 java.nio.channels.spi.AbstractSelector

Passed To

 SelectableChannel.{keyFor(), register(
)},
java.nio.channels.spi.AbstractSelectableChannel.{keyFor(
), register()}

Returned By

 SelectionKey.selector()

Name
ServerSocketChannel

Synopsis
This
 class
is the java.nio version of
java.net.ServerSocket. It is a selectable channel
that can be used by servers to accept connections from clients.
Unlike other channel classes in this package, this class cannot be
used for reading or writing bytes: it does not implement any of the
ByteChannel interfaces, and exists only to accept
and establish connections with clients, not to communicate with those
clients. ServerSocketChannel differs from
java.net.ServerSocket in two important ways: it
can put into nonblocking mode and used with a
Selector, and its accept(
)
 method returns a
SocketChannel rather than a
Socket, so that communication with the client
whose connection was just accepted can be done using the
java.nio APIs.
Create a new ServerSocketChannel with the static
open() method. Next, call socket(
) to obtain the associated ServerSocket
object, and use its bind() method to bind the
server socket to a specific port on the local host. You can also call
any other ServerSocket methods to configure other
socket options at this point.
To accept a new connection through this
ServerSocketChannel, simply call accept(
). If the channel is in blocking mode, this method will
block until a client connects, and will then return a
SocketChannel that is connected to the client. In
nonblocking mode, (see the inherited configureBlocking(
) method) accept() returns a
SocketChannel only if there is a client currently
waiting to connect, and otherwise immediately returns
null. To be notified when a client is waiting to
connect, use the inherited register() method to
register nonblocking a ServerSocketChannel with a
Selector and specify an interest in accept
operations with the SelectionKey.OP_ACCEPT
constant. See Selector and
SelectionKey for further details.
Note that the SocketChannel object returned by the
accept() method is always in nonblocking mode,
regardless of the blocking mode of the
ServerSocketChannel.

 ServerSocketChannel is thread-safe; only one
thread may call the accept() method at a time.
When a ServerSocketChannel is no longer required,
close it with the inherited close() method.
[image: java.nio.channels.ServerSocketChannel]

Figure 13-38. java.nio.channels.ServerSocketChannel

public abstract class ServerSocketChannel extends java.nio.channels.spi.
AbstractSelectableChannel {
// Protected Constructors
 protected ServerSocketChannel(java.nio.channels.spi.SelectorProvider
 provider);
// Public Class Methods
 public static ServerSocketChannel open() throws java.io.IOException;
// Public Instance Methods
 public abstract SocketChannel accept() throws java.io.IOException;
 public abstract java.net.ServerSocket socket();
// Public Methods Overriding SelectableChannel
 public final int validOps();
}

Returned By

 java.net.ServerSocket.getChannel(),
java.nio.channels.spi.SelectorProvider.openServerSocketChannel(
)

Name
SocketChannel

Synopsis
This
class
is a channel for communicating over a
java.net.Socket. It implements
ReadableByteChannel and
WriteableByteChannel as well as
GatheringByteChannel and
ScatteringByteChannel. It is a subclass of
SelectableChannel and can be used with a
Selector.
Create a new SocketChannel with one of the static
open() methods. The no-argument version of
open() creates a new
SocketChannel but does not connect it to a remote
host. The other version of open() opens a new
channel and connects it to the specified
java.net.SocketAddress. If you create an
unconnected socket, you can explictly connect it with the
connect() method. The main reason to open the
channel and connect to the remote host in separate steps is if you
want to do a nonblocking
connect. To do this, first put the channel into nonblocking mode with
the inherited configureBlocking(
)

method. Then, call connect(
)
 : it
will return immediately, without waiting for the connection to be
established. Then register the channel with a
Selector specifying that you are interested in
SelectionKey.OP_CONNECT operations. When you are
notified that your channel is ready to connect (see
Selector and SelectionKey for
details) simply call the nonblocking finishConnect(
) method to complete the connection. isConnected(
) returns true once a connection is
established, and false otherwise.
isConnectionPending() returns
true if connect() has been
called in blocking mode and has not yet returned, or if
connect() has been called in nonblocking mode,
but finishConnect() has not been called yet.
Once you have opened and connected a
SocketChannel, you can read and write bytes to it
with the various read()

 and write()
methods. SocketChannel is thread-safe: read and
write operations may proceed concurrently, but
SocketChannel will not allow more than one read
operation and more than one write operation to proceed at the same
time. If you place a SocketChannel into
nonblocking mode, you can register it with a
Selector using the SelectionKey
constants OP_READ and OP_WRITE,
to have the Selector tell you when the channel is
ready for reading or writing.
The socket()

method returns the java.net.Socket that is
associated with the SocketChannel. You can use
this Socket object to configure socket options,
bind the socket to a specific local address, close the socket, or
shutdown its input or output sides. See
java.net.Socket. Note that although all
SocketChannel objects have associated
Socket objects, the reverse is not true: you
cannot obtain a SocketChannel from a
Socket unless the Socket was
created along with the SocketChannel by a call to
SocketChannel.open().
When you are done with a SocketChannel, close it
with the close()

method. You can also independently shut down the read and write
portions of the channel with socket().shutdownInput(
) and socket().shutdownOutput(). When
the input is shut down, any future reads (and any blocked read
operation) will return -1 to indicate that the end-of-stream has been
reached. When the output is shut down, any future writes throw a
ClosedChannelException, and any write operation
that was blocked at the time of shut down throws a
AsynchronousCloseException.
[image: java.nio.channels.SocketChannel]

Figure 13-39. java.nio.channels.SocketChannel

public abstract class SocketChannel extends java.nio.channels.spi.
AbstractSelectableChannel
implements ByteChannel, GatheringByteChannel, ScatteringByteChannel {
// Protected Constructors
 protected SocketChannel(java.nio.channels.spi.SelectorProvider provider);
// Public Class Methods
 public static SocketChannel open() throws java.io.IOException;
 public static SocketChannel open(java.net.SocketAddress remote)
 throws java.io.IOException;
// Public Instance Methods
 public abstract boolean connect(java.net.SocketAddress remote)
 throws java.io.IOException;
 public abstract boolean finishConnect() throws java.io.IOException;
 public abstract boolean isConnected();
 public abstract boolean isConnectionPending();
 public abstract java.net.Socket socket();
// Methods Implementing GatheringByteChannel
 public final long write(java.nio.ByteBuffer[] srcs)
 throws java.io.IOException;
 public abstract long write(java.nio.ByteBuffer[] srcs, int offset,
 int length) throws java.io.IOException;
// Methods Implementing ReadableByteChannel
 public abstract int read(java.nio.ByteBuffer dst)
 throws java.io.IOException;
// Methods Implementing ScatteringByteChannel
 public final long read(java.nio.ByteBuffer[] dsts)
 throws java.io.IOException;
 public abstract long read(java.nio.ByteBuffer[] dsts, int offset,
 int length) throws java.io.IOException;
// Methods Implementing WritableByteChannel
 public abstract int write(java.nio.ByteBuffer src)
 throws java.io.IOException;
// Public Methods Overriding SelectableChannel
 public final int validOps();
}

Returned By

 java.net.Socket.getChannel(),
ServerSocketChannel.accept(),
java.nio.channels.spi.SelectorProvider.openSocketChannel(
)

Name
UnresolvedAddressException

Synopsis
Signals
the
use of a
java.net.SocketAddress

that could not be resolved: for example a
java.net.InetSocketAddress that contains an
unknown hostname.
[image: java.nio.channels.UnresolvedAddressException]

Figure 13-40. java.nio.channels.UnresolvedAddressException

public class UnresolvedAddressException extends IllegalArgumentException {
// Public Constructors
 public UnresolvedAddressException();
}

Name
UnsupportedAddressTypeException

Synopsis
Signals
the
use of a java.net.SocketAddress subclass that is
unknown to or not supported by the implementation. It is safe to
assume that addresses of the type
java.net.InetSocketAddress are universally
supported.
[image: java.nio.channels.UnsupportedAddressTypeException]

Figure 13-41. java.nio.channels.UnsupportedAddressTypeException

public class UnsupportedAddressTypeException extends IllegalArgumentException {
// Public Constructors
 public UnsupportedAddressTypeException();
}

Name
WritableByteChannel

Synopsis
This subinterface of
Channel defines a single key write(
) method which writes bytes from a specified
ByteBuffer (updating the buffer position as it
goes) to the channel. If possible, it writes all remaining bytes in
the buffer (see Buffer.remaining()). This is not
always possible (with nonblocking channels, for example) so the
write() method returns the number of bytes that
it was actually able to write to the channel.

 write() is declared to throw an
IOException. More specifically, it may throw a
ClosedChannelException if the channel is closed.
If the channel is closed asynchronously, or if a blocked thread is
interrupted, the write(
)

method may terminate with an
AsynchronousCloseException or a
ClosedByInterruptException. write(
) may also throw an unchecked
NonWritableChannelException if it is called on a
channel (such as a FileChannel) that was not
opened or configured to allow writing.

 WritableByteChannel implementations are required
to be thread-safe: only one thread may perform a write operation on a
channel at a time. If a write operation is in progress, then any call
to write() will block until the in-progress
operation completes. Some channel implementations may allow read and
write operations to proceed concurrently; some may not.
[image: java.nio.channels.WritableByteChannel]

Figure 13-42. java.nio.channels.WritableByteChannel

public interface WritableByteChannel extends Channel {
// Public Instance Methods
 int write(java.nio.ByteBuffer src) throws java.io.IOException;
}

Implementations

 ByteChannel,
GatheringByteChannel,
Pipe.SinkChannel

Passed To

 Channels.{newOutputStream(), newWriter(
)}, FileChannel.transferTo()

Returned By

 Channels.newChannel()

Name
Package java.nio.channels.spi

Synopsis
This

 package defines four classes that are used by
implementors of channels and selector classes of
java.nio.channels. It also defines the
SelectorProvider class which allows a custom
implementation of channels and selectors to be specified for use
instead of the default implementation. Application programmers should
never need to use this package, except in rare circumstances to
explicitly install a SelectionProvider
implementation with the SelectionProvider.provider(
) method.

Classes
public abstract class AbstractInterruptibleChannel
 implements java.nio.channels.Channel, java.nio.channels.
 InterruptibleChannel;
public abstract class AbstractSelectableChannel extends java.nio.channels.
 SelectableChannel;
public abstract class AbstractSelectionKey extends java.nio.channels.
 SelectionKey;
public abstract class AbstractSelector extends java.nio.channels.Selector;
public abstract class SelectorProvider;

Name
AbstractInterruptibleChannel

Synopsis
This class exists as a convenience for implementors
of new Channel classes. Application programmers should never need to
subclass or use it.
[image: java.nio.channels.spi.AbstractInterruptibleChannel]

Figure 13-43. java.nio.channels.spi.AbstractInterruptibleChannel

public abstract class AbstractInterruptibleChannel
implements java.nio.channels.Channel, java.nio.channels.InterruptibleChannel {
// Protected Constructors
 protected AbstractInterruptibleChannel();
// Methods Implementing Channel
 public final void close() throws java.io.IOException;
 public final boolean isOpen();
// Protected Instance Methods
 protected final void begin();
 protected final void end(boolean completed)
 throws java.nio.channels.AsynchronousCloseException;
 protected abstract void implCloseChannel() throws java.io.IOException;
}

Subclasses

 java.nio.channels.FileChannel,
java.nio.channels.SelectableChannel

Name
AbstractSelectableChannel

Synopsis
This class exists as a convenience for
implementors of new selectable channel classes: it defines common
methods of SelectableChannel in terms of protected
methods whose names begin with impl. Application
programmers should never need to use or subclass this class.
[image: java.nio.channels.spi.AbstractSelectableChannel]

Figure 13-44. java.nio.channels.spi.AbstractSelectableChannel

public abstract class AbstractSelectableChannel extends java.nio.channels.
SelectableChannel {
// Protected Constructors
 protected AbstractSelectableChannel(SelectorProvider provider);
// Public Methods Overriding SelectableChannel
 public final Object blockingLock();
 public final java.nio.channels.SelectableChannel configureBlocking(boolean
 block) throws java.io.IOException;
 public final boolean isBlocking();
 public final boolean isRegistered();
 public final java.nio.channels.SelectionKey keyFor(java.nio.channels.
 Selector sel);
 public final SelectorProvider provider();
 public final java.nio.channels.SelectionKey register(java.nio.channels.
Selector sel, int ops, Object att)
throws java.nio.channels.ClosedChannelException;
// Protected Methods Overriding AbstractInterruptibleChannel
 protected final void implCloseChannel() throws java.io.IOException;
// Protected Instance Methods
 protected abstract void implCloseSelectableChannel()
 throws java.io.IOException;
 protected abstract void implConfigureBlocking(boolean block)
 throws java.io.IOException;
}

Subclasses

 java.nio.channels.DatagramChannel,
java.nio.channels.Pipe.SinkChannel,
java.nio.channels.Pipe.SourceChannel,
java.nio.channels.ServerSocketChannel,
java.nio.channels.SocketChannel

Passed To

 AbstractSelector.register()

Name
AbstractSelectionKey

Synopsis
This class exists as a
convenience for implementors of new
SelectionKey classes. Application programmers
should never need to use or subclass this class.
[image: java.nio.channels.spi.AbstractSelectionKey]

Figure 13-45. java.nio.channels.spi.AbstractSelectionKey

public abstract class AbstractSelectionKey extends java.nio.channels
.SelectionKey {
// Protected Constructors
 protected AbstractSelectionKey();
// Public Methods Overriding SelectionKey
 public final void cancel();
 public final boolean isValid();
}

Passed To

 AbstractSelector.deregister()

Name
AbstractSelector

Synopsis
This
 class exists as a convenience for
implementors of new Selector classes. Application
programmers should never need to use or subclass this class.
[image: java.nio.channels.spi.AbstractSelector]

Figure 13-46. java.nio.channels.spi.AbstractSelector

public abstract class AbstractSelector extends java.nio.channels.Selector {
// Protected Constructors
 protected AbstractSelector(SelectorProvider provider);
// Public Methods Overriding Selector
 public final void close() throws java.io.IOException;
 public final boolean isOpen();
 public final SelectorProvider provider();
// Protected Instance Methods
 protected final void begin();
 protected final java.util.Set<java.nio.channels.SelectionKey>
 cancelledKeys();
 protected final void deregister(AbstractSelectionKey key);
 protected final void end();
 protected abstract void implCloseSelector() throws java.io.IOException;
 protected abstract java.nio.channels.SelectionKey register
 (AbstractSelectableChannel ch, int ops, Object att);
}

Returned By

 SelectorProvider.openSelector()

Name
SelectorProvider

Synopsis
This class is the central service-provider
class for the channels and selectors of the
java.nio.channels API. A concrete subclass of
SelectorProvider implements factory methods that
return open socket channels, server socket channels, datagram
channels, pipes (with their two internal channels) and
Selector objects. There is one default
SelectorProvider object per JVM: this object can
be obtained with the static SelectorProvider.provider(
) method.
You can specify a custom SelectorProvider
implementation by setting its class name as the value of the system
property java.nio.channels.spi.SelectorProvider.
Or, you can put the class name in a file named
META-INF/services/java.nio.channels.spi.SelectorProvider,
in your application’s JAR file. The
provider()
 method first looks for the
system property, then looks for the JAR file entry. If it finds
neither, it instantiates the implementation’s
default SelectorProvider.
Applications are not required to use the default
SelectorProvider exclusively. It is legal to
instantiate other SelectorProvider objects and
explictly invoke their open() methods to create
channels in that way.
public abstract class SelectorProvider {
// Protected Constructors
 protected SelectorProvider();
// Public Class Methods
 public static SelectorProvider provider();
// Public Instance Methods
 5.0 public java.nio.channels.Channel inheritedChannel() throws java.io.
 IOException; constant
 public abstract java.nio.channels.DatagramChannel openDatagramChannel()
 throws java.io.IOException;
 public abstract java.nio.channels.Pipe openPipe()
 throws java.io.IOException;
 public abstract AbstractSelector openSelector()
 throws java.io.IOException;
 public abstract java.nio.channels.ServerSocketChannel
 openServerSocketChannel() throws java.io.IOException;
 public abstract java.nio.channels.SocketChannel openSocketChannel()
 throws java.io.IOException;
}

Passed To

 java.nio.channels.DatagramChannel.DatagramChannel(
), java.nio.channels.Pipe.SinkChannel.SinkChannel(
),
java.nio.channels.Pipe.SourceChannel.SourceChannel(
),
java.nio.channels.ServerSocketChannel.ServerSocketChannel(
), java.nio.channels.SocketChannel.SocketChannel(
),
AbstractSelectableChannel.AbstractSelectableChannel(
), AbstractSelector.AbstractSelector()

Returned By

 java.nio.channels.SelectableChannel.provider(),
java.nio.channels.Selector.provider(),
AbstractSelectableChannel.provider(),
AbstractSelector.provider()

Name
Package java.nio.charset

Synopsis
This

 package contains classes that
represent character sets or
 encodings, and defines
methods that encode characters into bytes and decode bytes into
characters. The key class is Charset, and you can
obtain a Charset object for a named character
encoding with the static forName() method.
Charset defines encode() and
decode() convenience methods, but for full
control over the encoding and decoding process, you can also obtain a
CharsetEncoder or
CharsetDecoder object from the
Charset.
The Java platform has had a character encoding and decoding facility
since Java 1.1, and defines a number of classes and methods that
perform character encoding or decoding. Some of these classes and
methods are specified to use the default charset for the locale;
others take the name of a charset as a method or constructor
argument. See, for example, the String(),
java.io.InputStreamReader() and
java.io.OutputStreamWriter() constructors. In
Java 1.4, the java.nio.charset package defines a
public API to the character encoding and decoding facility and allows
applications to work with it explicitly. Most applications will not
have to do this, however, and can simply continue to rely on the
default charset, or can continue to supply charset names where
needed. Even applications that use the
java.nio.channels
 package can avoid
explicit character encoding and decoding by passing the name of a
desired charset to the newReader(
)

 and newWriter()
methods of java.nio.channels.Channels.

Classes
public abstract class Charset implements Comparable<Charset>;
public abstract class CharsetDecoder;
public abstract class CharsetEncoder;
public class CoderResult;
public class CodingErrorAction;

Exceptions
public class CharacterCodingException extends java.io.IOException;
 public class MalformedInputException extends CharacterCodingException;
 public class UnmappableCharacterException extends CharacterCodingException;
public class IllegalCharsetNameException extends IllegalArgumentException;
public class UnsupportedCharsetException extends IllegalArgumentException;

Errors
public class CoderMalfunctionError extends Error;

Name
CharacterCodingException

Synopsis
Signals a
problem
encoding or decoding characters or bytes. This is a generic
superclass for more-specific exception types. Note that the
one-argument versions of CharsetEncoder.encode()
and CharsetDecoder.decode(
)

may throw an exception of this type, but that the three-argument
versions of the same method instead report encoding problems through
their CoderResult return value. Note also that the
encode()

 and decode()
convenience methods of Charset do not throw this
exception because they specify that malformed input and unmappable
characters or bytes should be replaced. (See
CodingErrorAction.)
[image: java.nio.charset.CharacterCodingException]

Figure 13-47. java.nio.charset.CharacterCodingException

public class CharacterCodingException extends java.io.IOException {
// Public Constructors
 public CharacterCodingException();
}

Subclasses

 MalformedInputException,
UnmappableCharacterException

Thrown By

 CharsetDecoder.decode(),
CharsetEncoder.encode(),
CoderResult.throwException()

Name
Charset

Synopsis
A Charset
 represents a character set or encoding.
Each Charset has a cannonical name, returned by
name()
 , and a
set of aliases, returned by aliases(
)
 . You can look up a
Charset by name or alias with the static
Charset.forName() method, which throws an
UnsupportedCharsetException if the named charset
is not installed on the system. In Java 5.0, you can obtain the
default Charset used by the Java VM with the
static defaultCharset(
)
 method. Check whether a charset specified by
name or alias is supported with the static isSupported(
)
 . Obtain the complete set of installed
charsets with availableCharsets(
)
 which returns a sorted map from
canonical names to Charset objects.
Note that charset names are not
case-sensitive, and you can use any capitialization for charset names
you pass to isSupported() and forName(
). Note that there are a number of classes and methods in
the Java platform that specify charsets by name rather than by
Charset object. See, for example,
java.io.InputStreamReader,
java.io.OutputStreamWriter,
String.getBytes(), and
java.nio.channels.Channels.newWriter(). When
working with classes and methods such as these, there is no need to
use a Charset object.
All implementations of Java are required to support at least the
following 6 charsets:

	
 Canonical name

 	
 Description

	
 US-ASCII

 	
 seven-bit ASCII

	
 ISO-8859-1

 	
 The 8-bit superset of ASCII which includes the characters used in
most Western-European languages. Also known as ISO-LATIN-1.

	
 UTF-8

 	
 An 8-bit encoding of Unicode characters that is compatible with
US-ASCII.

	
 UTF-16BE

 	
 A 16-bit encoding of Unicode characters, using big-endian byte order.

	
 UTF-16LE

 	
 A 16-bit encoding of Unicode characters, using little-endian byte
order.

	
 UTF-16

 	
 A 16-bit encoding of Unicode characters, with byte order specified by
a byte order mark character. Assumes big-endian when decoding if
there is no byte order mark. Encodes using big-endian byte order and
outputs an appropriate byte order mark.

Once you have obtained a Charset with
forName() or availableCharsets(
), you can use the encode(
)

 method to
encode a String or CharBuffer
of text into a ByteBuffer, or you can use the
decode() method to convert the bytes in a
ByteBuffer into characters in a
CharBuffer. These convenience methods create a new
CharsetEncoder or
CharsetDecoder, specify that malformed input or
unmappable characters or bytes should be replaced with the default
replacement string or bytes, and then invoke the encode(
) or decode() method of the encoder or
decoder. For full control over the encoding and decoding process, you
may prefer to obtain your own CharsetEncoder or
CharsetDecoder object with newEncoder(
)

 or newDecoder(
). See CharsetDecoder for details.
Instead of using a Charset,
CharsetEncoder, or
CharsetDecoder directly, you may also pass an
encoder or decoder to the static methods of
java.nio.channels.Channels to obtain a
java.io.Reader

 or
java.io.Writer that you can use to read or write
characters from or to a byte-oriented Channel.
Note that not all Charset objects support encoding
(“auto-detect” charsets can
determine the source charset when decoding, but have no way to
encode). Use canEncode() to determine whether a
given Charset can encode.

 Charset also defines, implements, or overrides
various other methods. displayName() returns a
localized name for the charset, or returns the cannonical name if
there is no localization. toString() returns an
implementation-dependent textual representation of the charset. The
equals()
 method
compares two charsets by comparing their canonical names.
Charset implements Comparable,
and its compareTo()
 method
orders charsets by their canonical name. contains(
) returns true if a specified charset is
“contained in” this charset. That
is, if every character that can be represented in the specified
charset can also be represented in this charset. Note that those
representations need not be the same, however. isRegistered(
)
 returns
true if the charset is registered with the
IANA
charset registry (see http://www.iana.org/assignments/character-sets.)
[image: java.nio.charset.Charset]

Figure 13-48. java.nio.charset.Charset

public abstract class Charset implements Comparable<Charset> {
// Protected Constructors
 protected Charset(String canonicalName, String[] aliases);
// Public Class Methods
 public static java.util.SortedMap<String,Charset> availableCharsets();
5.0 public static Charset defaultCharset();
 public static Charset forName(String charsetName);
 public static boolean isSupported(String charsetName);
// Public Instance Methods
 public final java.util.Set<String> aliases();
 public boolean canEncode(); constant
 public abstract boolean contains(Charset cs);
 public final java.nio.CharBuffer decode(java.nio.ByteBuffer bb);
 public String displayName();
 public String displayName(java.util.Locale locale);
 public final java.nio.ByteBuffer encode(java.nio.CharBuffer cb);
 public final java.nio.ByteBuffer encode(String str);
 public final boolean isRegistered();
 public final String name();
 public abstract CharsetDecoder newDecoder();
 public abstract CharsetEncoder newEncoder();
// Methods Implementing Comparable
 5.0 public final int compareTo(Charset that);
// Public Methods Overriding Object
 public final boolean equals(Object ob);
 public final int hashCode();
 public final String toString();
}

Passed To

 java.io.InputStreamReader.InputStreamReader(),
java.io.OutputStreamWriter.OutputStreamWriter(),
CharsetDecoder.CharsetDecoder(),
CharsetEncoder.CharsetEncoder()

Returned By

 CharsetDecoder.{charset(),
detectedCharset()},
CharsetEncoder.charset(),
java.nio.charset.spi.CharsetProvider.charsetForName(
)

Name
CharsetDecoder

Synopsis
A
 CharsetDecoder is a
“decoding engine” that converts a
sequence of bytes into a sequence of characters based on the encoding
of some charset. Obtain a CharsetDecoder from the
Charset that represents the charset to be decoded.
If you have a complete sequence of bytes to be decoded in a
ByteBuffer you can pass that buffer to the
one-argument version of decode(
)
 .
This convenience method decodes the bytes and stores the resulting
characters into a newly allocated CharBuffer,
resetting and flushing the decoder as necessary. It throws an
exception if there are problems with the bytes to be decoded.
Typically, however, the three-argument version of decode(
) is used in a multistep decoding process:
	Call the reset() method, unless this is the first
time the CharsetDecoder has been used.

	Call the three-argument version of decode() one
or more times. The third argument should be true
on, and only on, the last invocation of the method. The first
argument to decode() is a
ByteBuffer that contains bytes to be decoded. The
second argument is a CharBuffer into which the
resulting characters are stored. The return value of the method is a
CoderResult object that specifies the state of the
ongoing the decoding operation. The possible
CoderResult return values are detailed below. In a
typical case, however, decode() returns after it
has decoded all of the bytes in the input buffer. In this case, you
would then typically fill the input buffer with more bytes to be
decoded, and read characters from the output buffer, calling its
compact() method to make room for more. If an
unexpected problem arises in the CharsetDecoder
implementation, decode() throws a
CoderMalfunctionError.

	Pass the output CharBuffer to the flush(
) method to allow any remaining characters to be output.

The decode() method returns a
CoderResult that indicates the state of the
decoding operation. If the return value is
CoderResult.UNDERFLOW, then it means that
decode() returned because all bytes from the
input buffer have been read, and more input is required. If the
return value is CoderResult.OVERFLOW, then it
means that decode() returned because the output
CharBuffer is full, and no more characters can be
decoded into it. Otherwise, the reurn value is a
CoderResult whose isError()
method returns true. There are two basic types of
decoding errors. If isMalformed() returns
true then the input included bytes that are not
legal for the charset. These bytes start at the position of the input
buffer, and continue for length() bytes.
Otherwise, if isUnmappable() returns
true, then the input bytes include a character for
which there is no representation in Unicode. The relevant bytes start
at the position of the input buffer and continue for length(
) bytes.
By default a CharsetDecoder reports all malformed
input and unmappable character errors by returning a
CoderResult object as described above. This
behavior can be altered, however, by passing a
CodingErrorAction to onMalformedInput(
) and onUnmappableCharacter(). (Query
the current action for these types of errors with
malformedInputAction() and
unmappableCharacterAction().)
CodingErrorAction defines three constants that
represent the three possible actions. The default action is
REPORT. The action IGNORE tells
the CharsetDecoder to ignore (i.e. skip) malformed
input and unmappable charaters. The REPLACE action
tells the CharsetDecoder to replace malformed
input and unmappable characters with the replacement string. This
replacement string can be set with replaceWith(),
and can be queried with replacement().

 averageCharsPerByte() and
maxCharsPerByte() return the average and maximum
number of characters that are produced by this decoder per decoded
byte. These values can be used to help you choose the size of the
CharBuffer to allocate for decoding.

 CharsetDecoder is not a thread-safe class. Only
one thread should use an instance at a time.

 CharsetDecoder is an abstract class. Implementors
defining new charsets will need to subclass
CharsetDecoder and define the abstract
decodeLoop() method, which is invoked by
decode().
public abstract class CharsetDecoder {
// Protected Constructors
 protected CharsetDecoder(Charset cs,
 float averageCharsPerByte, float maxCharsPerByte);
// Public Instance Methods
 public final float averageCharsPerByte();
 public final Charset charset();
 public final java.nio.CharBuffer decode(java.nio.ByteBuffer in)
 throws CharacterCodingException;
 public final CoderResult decode(java.nio.ByteBuffer in, java.nio.
 CharBuffer out, boolean endOfInput);
 public Charset detectedCharset();
 public final CoderResult flush(java.nio.CharBuffer out);
 public boolean isAutoDetecting(); constant
 public boolean isCharsetDetected();
 public CodingErrorAction malformedInputAction();
 public final float maxCharsPerByte();
 public final CharsetDecoder onMalformedInput(CodingErrorAction newAction);
 public final CharsetDecoder onUnmappableCharacter(CodingErrorAction
 newAction);
 public final String replacement();
 public final CharsetDecoder replaceWith(String newReplacement);
 public final CharsetDecoder reset();
 public CodingErrorAction unmappableCharacterAction();
// Protected Instance Methods
 protected abstract CoderResult decodeLoop(java.
 nio.ByteBuffer in, java.nio.CharBuffer out);
 protected CoderResult implFlush(java.nio.CharBuffer out);
 protected void implOnMalformedInput(CodingErrorAction
 newAction); empty
 protected void implOnUnmappableCharacter(CodingErrorAction
 newAction); empty
 protected void implReplaceWith(String
 newReplacement); empty
 protected void implReset(); empty
}

Passed To

 java.io.InputStreamReader.InputStreamReader(),
java.nio.channels.Channels.newReader()

Returned By

 Charset.newDecoder()

Name
CharsetEncoder

Synopsis
A
 CharsetEncoder is an
“encoding engine” that converts a
sequence of characters into a sequence of bytes using some character
encoding. Obtain a CharsetEncoder with the
newEncoder() method of the
Charset that represents the desired encoding.
A CharsetEncoder works like a
CharsetDecoder in reverse. Use the
encode()

method to encode characters read from a CharBuffer
into bytes stored in a ByteBuffer. Please see
CharsetDecoder, which is documented in detail.
public abstract class CharsetEncoder {
// Protected Constructors
 protected CharsetEncoder(Charset cs,
 float averageBytesPerChar, float maxBytesPerChar);
 protected CharsetEncoder(Charset cs,
 float averageBytesPerChar, float maxBytesPerChar, byte[] replacement);
// Public Instance Methods
 public final float averageBytesPerChar();
 public boolean canEncode(CharSequence cs);
 public boolean canEncode(char c);
 public final Charset charset();
 public final java.nio.ByteBuffer encode(java.nio.CharBuffer in)
 throws CharacterCodingException;
 public final CoderResult encode(java.nio.CharBuffer in,
 java.nio.ByteBuffer out, boolean endOfInput);
 public final CoderResult flush(java.nio.ByteBuffer out);
 public boolean isLegalReplacement(byte[] repl);
 public CodingErrorAction malformedInputAction();
 public final float maxBytesPerChar();
 public final CharsetEncoder onMalformedInput(CodingErrorAction
 newAction);
 public final CharsetEncoder onUnmappableCharacter(CodingErrorAction
 newAction);
 public final byte[] replacement();
 public final CharsetEncoder replaceWith(byte[] newReplacement);
 public final CharsetEncoder reset();
 public CodingErrorAction unmappableCharacterAction();
// Protected Instance Methods
 protected abstract CoderResult encodeLoop(java.nio.CharBuffer in,
 java.nio.ByteBuffer out);
 protected CoderResult implFlush(java.nio.ByteBuffer out);
 protected void implOnMalformedInput(CodingErrorAction
 newAction); empty
 protected void implOnUnmappableCharacter(CodingErrorAction
 newAction); empty
 protected void implReplaceWith(byte[] newReplacement); empty
 protected void implReset(); empty
}

Passed To

 java.io.OutputStreamWriter.OutputStreamWriter(),
java.nio.channels.Channels.newWriter()

Returned By

 Charset.newEncoder()

Name
CoderMalfunctionError

Synopsis
Signals
a
malfunction—typically an unknown and unrecoverable
error—in a CharsetEncoder or
CharsetDecoder. An error of this type is thrown by
the encode() and decode()
methods when the protected encodeLoop(
)

or decodeLoop() methods upon which they are
implemented throws an exception of an unexpected type.
[image: java.nio.charset.CoderMalfunctionError]

Figure 13-49. java.nio.charset.CoderMalfunctionError

public class CoderMalfunctionError extends Error {
// Public Constructors
 public CoderMalfunctionError(Exception cause);
}

Name
CoderResult

Synopsis
A
 CoderResult object
specifies the results of a call to CharsetDecoder.decode(
)

 or CharsetEncoder.encode(
). There are four possible reasons why a call to the
decode() or encode() would
return:
	If all the bytes have been decoded or all the characters have been
encoded, and the input buffer is empty, then the return value is the
constant object CoderResult.UNDERFLOW, indicating
that coding stopped because there was no more data to code. Calling
the isUnderflow() method on the returned object
returns true and calling isError(
) returns false. This is a normal return
value.

	If there is more data to be coded, but there is no more room in the
output buffer to store the coded data, then the return value is the
constant object CoderResult.OVERFLOW. Calling
isOverflow() on the returned object returns true,
and calling isError() returns
false. This is a normal return value.

	If the input data was malformed, containing characters or bytes that
are not legal for the charset, and the
CharsetEncoder or
CharsetDecoder has not specified that malformed
input should be ignored or replaced, then the returned value is a
CoderResult object whose isError(
)

 and isMalformed(
) methods both return true. The position
of the input buffer is at the first malformed character or byte, and
the length()

method of the returned object specifies how many characters or bytes
are malformed.

	If the input was well-formed, but contains characters or bytes that
are “unmappable”—that cannot be encoded or
decoded in the specified charset—and if the
CharsetEncoder or
CharsetDecoder has not specified that unmappable
characters should be ignored or replaced, then the returned value is
a CoderResult object whose isError(
) and isUnmappable() methods both
return true. The input buffer is positioned at the
first unmappable character or byte, and the length(
) method of the CoderResult specifies
the number of unmappable characters or bytes.

public class CoderResult {
// No Constructor
 // Public Constants
 public static final CoderResult OVERFLOW;
 public static final CoderResult UNDERFLOW;
// Public Class Methods
 public static CoderResult malformedForLength(int length);
 public static CoderResult unmappableForLength(int length);
// Public Instance Methods
 public boolean isError();
 public boolean isMalformed();
 public boolean isOverflow();
 public boolean isUnderflow();
 public boolean isUnmappable();
 public int length();
 public void throwException() throws CharacterCodingException;
// Public Methods Overriding Object
 public String toString();
}

Returned By

 CharsetDecoder.{decode(), decodeLoop(
), flush(), implFlush(
)}, CharsetEncoder.{encode(),
encodeLoop(), flush(),
implFlush()}

Name
CodingErrorAction

Synopsis
This class is a typesafe enumeration that
defines three constants that serve as the legal argument values to
the onMalformedInput(
)

 and onUnmappableCharacter(
) methods of CharsetDecoder and
CharsetEncoder. These constants specify how
malformed input and unmappable error conditions should be handled.
The values are:
	
 CodingErrorAction.REPORT

	Specifies that the error should be reported. This is done by
returning a CoderResult object from the
three-argument version of decode() or
encode() or by throwing a
MalformedInputException or
UnmappableCharacterException from the one-argument
version of decode() or encode(
). This is the default action for both error types for both
CharsetDecoder and
CharsetEncoder.

	
 CodingErrorAction.IGNORE

	Specifies that the malformed input or unmappable input character
should simply be skipped, with no output.

	
 CodingErrorAction.REPLACE

	Specifies that the malformed input or unmappable character should be
skipped and the replacement string or replacement bytes should be
appended to the output.

See CharsetDecoder for more information.
public class CodingErrorAction {
// No Constructor
 // Public Constants
 public static final CodingErrorAction IGNORE;
 public static final CodingErrorAction REPLACE;
 public static final CodingErrorAction REPORT;
// Public Methods Overriding Object
 public String toString();
}

Passed To

 CharsetDecoder.{implOnMalformedInput(),
implOnUnmappableCharacter(),
onMalformedInput(),
onUnmappableCharacter()},
CharsetEncoder.{implOnMalformedInput(),
implOnUnmappableCharacter(),
onMalformedInput(),
onUnmappableCharacter()}

Returned By

 CharsetDecoder.{malformedInputAction(),
unmappableCharacterAction()},
CharsetEncoder.{malformedInputAction(),
unmappableCharacterAction()}

Name
IllegalCharsetNameException

Synopsis
Signals
that
a charset name (for example one passed to Charset.forName(
) or Charset.isSupported()) is not
legal. Charset names may contain only the characters A-Z (in upper-
and lowercase), the digits 0-9, and hyphens, underscores, colons, and
periods. They must begin with a letter or a digit, not with a
punctuation character.
[image: java.nio.charset.IllegalCharsetNameException]

Figure 13-50. java.nio.charset.IllegalCharsetNameException

public class IllegalCharsetNameException extends IllegalArgumentException {
// Public Constructors
 public IllegalCharsetNameException(String charsetName);
// Public Instance Methods
 public String getCharsetName();
}

Name
MalformedInputException

Synopsis
Signals
that
input to the CharsetDecoder.decode() or
CharsetEncoder.encode() method was malformed.
[image: java.nio.charset.MalformedInputException]

Figure 13-51. java.nio.charset.MalformedInputException

public class MalformedInputException extends CharacterCodingException {
// Public Constructors
 public MalformedInputException(int inputLength);
// Public Instance Methods
 public int getInputLength();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
UnmappableCharacterException

Synopsis
Signals
that
input to the CharsetDecoder.decode() or
CharsetEncoder.encode() method contained a
character or byte sequence that is not mappable in the specified
charset.
[image: java.nio.charset.UnmappableCharacterException]

Figure 13-52. java.nio.charset.UnmappableCharacterException

public class UnmappableCharacterException extends CharacterCodingException {
// Public Constructors
 public UnmappableCharacterException(int inputLength);
// Public Instance Methods
 public int getInputLength();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
UnsupportedCharsetException

Synopsis
Signals
that
the requested charset is not supported on the current platform. This
exception is thrown by
 Charset.forName()
when no Charset object can be obtained for the
named charset. See also Charset.isSupported().
[image: java.nio.charset.UnsupportedCharsetException]

Figure 13-53. java.nio.charset.UnsupportedCharsetException

public class UnsupportedCharsetException extends IllegalArgumentException {
// Public Constructors
 public UnsupportedCharsetException(String charsetName);
// Public Instance Methods
 public String getCharsetName();

}

Name
Package java.nio.charset.spi

Synopsis
This

 package defines a
“provider” class for system
developers who are defining new Charset
implementations and want to make them available to the system.
Application programmers never need to us this package or the class it
defines.

Classes
public abstract class CharsetProvider;

Name
CharsetProvider

Synopsis
System programmers developing new Charset
implementations should implement this class to make those charsets
available to the system. charsetForName() should
return a Charset instance for the given name.
charsets() should return a
java.util.Iterator that allows the caller to
iterate through the set of Charset objects defined
by the provider.
A CharsetProvider and its associated
Charset implementations should be packaged in a
JAR file and made available to the system in the
jre/lib/ext/ extensions directory (or some other
extensions location.) The JAR file should contain a file named
META-INF/services/java.nio.charset.spi.CharsetProvider
which contains the class name of the
CharsetProvider implementation.
public abstract class CharsetProvider {
// Protected Constructors
 protected CharsetProvider();
// Public Instance Methods
 public abstract java.nio.charset.Charset charsetForName(String charsetName);
 public abstract java.util.Iterator<java.nio.charset.Charset> charsets();
}

Chapter 14. java.security and Subpackages

 This

 chapter documents the
java.security package and its subpackages. Those
packages are:
	
 java.security

	This large packages contains much of Java’s security
infrastructure, including a group of classes that provide access
control through policies and permissions, and another group that
provides authentication-related services such as digital signatures.

	
 java.security.cert

	This package defines classes and interfaces for working with public
key certificates, certificate revocation lists (CRLs) and, in Java
1.4 and later, certificate chains (or certificate paths). It defines
classes that should work with any type of certificate, and
type-specific subclasses for X.509 certificates and CRLs.

	
 java.security.interfaces

	This package defines interfaces for algorithm-specific types of
cryptographic keys. Providers that support those algorithms must
implement these interfaces.

	
 java.security.spec

	This package defines classes that define a transparent, portable
representation of algorithm-specific objects such as cryptographic
keys. Instances of these classes can be used with any security
provider.

The java.security.acl package is part of the Java
platform, but has been superseded by access-control classes in
java.security. It is not documented here.

Name
Package java.security

Synopsis

 The java.security
package contains the classes and interfaces that implement the Java
security architecture. These classes can be divided into two broad
categories. First, there are classes that implement access control
and prevent untrusted code from performing sensitive operations.
Second, there are authentication classes that implement message
digests and digital signatures and can authenticate Java classes and
other objects.

 The central access control class is
AccessController; it uses the currently installed
Policy object to decide whether a given class has
Permission to access a given system resource. The
Permissions and
ProtectionDomain classes are also important pieces
of the Java access control architecture.

 The key classes for authentication
are MessageDigest and
Signature; they compute and verify cryptographic
message digests and digital signatures. These classes use
public-key
cryptography techniques and rely on the PublicKey
and PrivateKey interfaces. They also rely on an
infrastructure of related classes, such as
SecureRandom for producing cryptographic-strength
pseudorandom numbers, KeyPairGenerator for
generating pairs of public and private keys, and
KeyStore for managing a collection of keys and
certificates. (This package defines a Certificate
interface, but it is deprecated; see the
java.security.cert package for the preferred
Certificate class.)
The
 CodeSource class unites
the authentication classes with the access control classes. It
represents the source of a Java class as a URL and
a set of java.security.cert.Certificate objects
that contain the digital signatures of the code. The
AccessController and Policy
classes look at the CodeSource of a class when
making access control decisions.

 All the cryptographic-authentication
features of this package are provider-based, which means they are
implemented by security provider modules that can be plugged easily
into any Java 1.2 (or later) installation. Thus, in addition to
defining a security API, this package also defines a service provider
interface (SPI). Various classes with names that end in Spi are part
of this SPI. Security provider implementations must subclass these
Spi classes, but applications never need to use them. Each security
provider is represented by a Provider class, and
the Security class allows new providers to be
dynamically installed.

 The
java.security package contains several useful
utility classes. For example,
DigestInputStream
 and
DigestOutputStream make it easy to compute message
digests. GuardedObject provides customizable
access control for an individual object.
SignedObject protects the integrity of an
arbitrary Java object by attaching a digital signature, making it
easy to detect any tampering with the object. Although the
java.security package contains cryptographic
classes for authentication, it does not contain classes for
encryption or decryption. Instead, this functionality is part of the
Java Cryptography Extension or JCE which defines the
javax.crypto package and its subpackages. The JCE
is part of the core platform in Java 1.4 and later, and is available
as a standard extension to Java 1.2 and Java 1.3.

Interfaces
public interface Certificate;
public interface DomainCombiner;
public interface Guard;
public interface Key extends Serializable;
public interface KeyStore.Entry;
public interface KeyStore.LoadStoreParameter;
public interface KeyStore.ProtectionParameter;
public interface Principal;
public interface PrivateKey extends Key;
public interface PrivilegedAction<T>;
public interface PrivilegedExceptionAction<T>;
public interface PublicKey extends Key;

Enumerated Types
public enum KeyRep.Type;

Collections
public abstract class Provider extends java.util.Properties;
 public abstract class AuthProvider extends Provider;

Other Classes
public final class AccessControlContext;
public final class AccessController;
public class AlgorithmParameterGenerator;
public abstract class AlgorithmParameterGeneratorSpi;
public class AlgorithmParameters;
public abstract class AlgorithmParametersSpi;
public final class CodeSigner implements Serializable;
public class CodeSource implements Serializable;
public class DigestInputStream extends java.io.FilterInputStream;
public class DigestOutputStream extends java.io.FilterOutputStream;
public class GuardedObject implements Serializable;
public abstract class Identity implements Principal, Serializable;
 public abstract class IdentityScope extends Identity;
 public abstract class Signer extends Identity;
public class KeyFactory;
public abstract class KeyFactorySpi;
public final class KeyPair implements Serializable;
public abstract class KeyPairGeneratorSpi;
 public abstract class KeyPairGenerator extends KeyPairGeneratorSpi;
public class KeyRep implements Serializable;
public class KeyStore;
public abstract static class KeyStore.Builder;
public static class KeyStore.CallbackHandlerProtection implements KeyStore.
 ProtectionParameter;
public static class KeyStore.PasswordProtection
 implements javax.security.auth.Destroyable, KeyStore.ProtectionParameter;
public static final class KeyStore.PrivateKeyEntry implements KeyStore.Entry;
public static final class KeyStore.SecretKeyEntry implements KeyStore.Entry;
public static final class KeyStore.TrustedCertificateEntry implements KeyStore.
 Entry;
public abstract class KeyStoreSpi;
public abstract class MessageDigestSpi;
 public abstract class MessageDigest extends MessageDigestSpi;
public abstract class Permission implements Guard, Serializable;
 public final class AllPermission extends Permission;
 public abstract class BasicPermission extends Permission implements
 Serializable;
 public final class SecurityPermission extends BasicPermission;
 public final class UnresolvedPermission extends Permission implements
 Serializable;
public abstract class PermissionCollection implements Serializable;
 public final class Permissions extends PermissionCollection implements
 Serializable;
public abstract class Policy;
public class ProtectionDomain;
public static class Provider.Service;
public class SecureClassLoader extends ClassLoader;
public class SecureRandom extends java.util.Random;
public abstract class SecureRandomSpi implements Serializable;
public final class Security;
public abstract class SignatureSpi;
 public abstract class Signature extends SignatureSpi;
public final class SignedObject implements Serializable;
public final class Timestamp implements Serializable;

Exceptions
public class AccessControlException extends SecurityException;
public class GeneralSecurityException extends Exception;
 public class DigestException extends GeneralSecurityException;
 public class InvalidAlgorithmParameterException extends
 GeneralSecurityException;
 public class KeyException extends GeneralSecurityException;
 public class InvalidKeyException extends KeyException;
 public class KeyManagementException extends KeyException;
 public class KeyStoreException extends GeneralSecurityException;
 public class NoSuchAlgorithmException extends GeneralSecurityException;
 public class NoSuchProviderException extends GeneralSecurityException;
 public class SignatureException extends GeneralSecurityException;
 public class UnrecoverableEntryException extends GeneralSecurityException;
 public class UnrecoverableKeyException extends GeneralSecurityException;
public class InvalidParameterException extends IllegalArgumentException;
public class PrivilegedActionException extends Exception;
public class ProviderException extends RuntimeException;

Name
AccessControlContext

Synopsis

 This class encapsulates the
state of a call stack. The checkPermission()
method can make access-control decisions based on the saved state of
the call stack. Access-control checks are usually performed by the
AccessController.checkPermission() method, which
checks that the current call stack has the required permissions.
Sometimes, however, it is necessary to make access-control decisions
based on a previous state of the call stack. Call
AccessController.getContext() to create an
AccessControlContext for a particular call stack.
In Java 1.3, this class has constructors that specify a custom
context in the form of an array of
ProtectionDomain objects and that associate a
DomainCombiner object with an existing
AccessControlContext. This class is used only by
system-level code; typical applications rarely need to use it.
public final class AccessControlContext {
// Public Constructors
 public AccessControlContext(ProtectionDomain[] context);
1.3 public AccessControlContext(AccessControlContext acc, DomainCombiner
 combiner);
// Public Instance Methods
 public void checkPermission(Permission perm) throws AccessControlException;
1.3 public DomainCombiner getDomainCombiner();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
}

Passed To

 AccessController.doPrivileged(),
javax.security.auth.Subject.{doAsPrivileged(),
getSubject()}

Returned By

 AccessController.getContext()

Name
AccessControlException

Synopsis

 Thrown
by AccessController to signal that an access
request has been denied. getPermission() returns
the Permission object, if any, that was involved
in the denied request.
[image: java.security.AccessControlException]

Figure 14-1. java.security.AccessControlException

public class AccessControlException extends SecurityException {
// Public Constructors
 public AccessControlException(String s);
 public AccessControlException(String s, Permission p);
// Public Instance Methods
 public Permission getPermission();
}

Thrown By

 AccessControlContext.checkPermission(),
AccessController.checkPermission()

Name
AccessController

Synopsis

 The static methods of this class
implement the default access-control mechanism as of Java 1.2.
checkPermission() traverses the call stack of the
current thread and checks whether all classes in the call stack have
the requested permission. If so, checkPermission(
) returns, and the operation can proceed. If not,
checkPermission() throws an
AccessControlException. As of Java 1.2, the
checkPermission() method of the default
java.lang.SecurityManager calls
AccessController.checkPermission(). System-level
code that needs to perform an access check should invoke the
SecurityManager method rather than calling the
AccessController method directly. Unless you are
writing system-level code that must control access to system
resources, you never need to use this class or the
SecurityManager.checkPermission() method.
The various doPrivileged() methods run blocks of
privileged code encapsulated in a PrivilegedAction
or PrivilegedExceptionAction object. When
checkPermission() is traversing the call stack of
a thread, it stops if it reaches a privileged block that was executed
with doPrivileged(). This means that privileged
code can run with a full set of privileges, even if it was invoked by
untrusted or lower-privileged code. See
PrivilegedAction for more details.

 The getContext(
) method returns an AccessControlContext
that represents the current security context of the caller. Such a
context might be saved and passed to a future call (perhaps a call
made from a different thread). Use the two-argument version of
doPrivileged() to force permission checks to
check the AccessControlContext as well.
public final class AccessController {
// No Constructor
 // Public Class Methods
 public static void checkPermission(Permission perm)
 throws AccessControlException;
 public static <T> T doPrivileged(PrivilegedExceptionAction<T> action)
 throws PrivilegedActionException; naopdtive
 public static <T> T doPrivileged(PrivilegedAction<T> action); native
 public static <T> T doPrivileged(PrivilegedExceptionAction<T> action,
 AccessControlContext context)
 throws PrivilegedActionException; native
 public static <T> T doPrivileged(PrivilegedAction<T> action,
 AccessControlContext context); native
 public static AccessControlContext getContext();
}

Name
AlgorithmParameterGenerator

Synopsis

 This
class defines a generic API for generating
parameters for a cryptographic algorithm, typically a
Signature or a
javax.crypto.Cipher. Create an
AlgorithmParameterGenerator by calling one of the
static
 getInstance(
) factory methods and specifying the name of the algorithm
and, optionally, the name or Provider object of
the desired provider. The default
“SUN” provider supports the
“DSA” algorithm. The
“SunJCE” provider shipped with the
JCE supports “DiffieHellman”. Once
you have obtained a generator, initialize it by calling the
init() method and specifying an
algorithm-independent parameter size (in bits) or an
algorithm-dependent AlgorithmParameterSpec object.
You may also specify a SecureRandom source of
randomness when you call init(). Once you have
created and initialized the
AlgorithmParameterGenerator, call
generateParameters() to generate an
AlgorithmParameters object.
public class AlgorithmParameterGenerator {
// Protected Constructors
 protected AlgorithmParameterGenerator(AlgorithmParameterGeneratorSpi
paramGenSpi, Provider provider, String algorithm);
// Public Class Methods
 public static AlgorithmParameterGenerator getInstance(String algorithm)
 throws NoSuchAlgorithmException;
1.4 public static AlgorithmParameterGenerator getInstance(String algorithm,
Provider provider) throws NoSuchAlgorithmException;
 public static AlgorithmParameterGenerator getInstance(String algorithm,
 String provider)
 throws NoSuchAlgorithmException, NoSuchProviderException;
// Public Instance Methods
 public final AlgorithmParameters generateParameters();
 public final String getAlgorithm();
 public final Provider getProvider();
 public final void init(java.security.spec.AlgorithmParameterSpec
 genParamSpec) throws InvalidAlgorithmParameterException;
 public final void init(int size);
 public final void init(java.security.spec.AlgorithmParameterSpec
 genParamSpec, SecureRandom random)
 throws InvalidAlgorithmParameterException;
 public final void init(int size, SecureRandom random);
}

Name
AlgorithmParameterGeneratorSpi

Synopsis

 This abstract class defines the
service-provider interface for
algorithm-parameter generation. A security provider must implement a
concrete subclass of this class for each algorithm it supports.
Applications never need to use or subclass this class.
public abstract class AlgorithmParameterGeneratorSpi {
// Public Constructors
 public AlgorithmParameterGeneratorSpi();
// Protected Instance Methods
 protected abstract AlgorithmParameters engineGenerateParameters();
 protected abstract void engineInit(java.security.spec.
AlgorithmParameterSpec genParamSpec, SecureRandom random)
throws InvalidAlgorithmParameterException;
 protected abstract void engineInit(int size, SecureRandom random);
}

Passed To

 AlgorithmParameterGenerator.AlgorithmParameterGenerator(
)

Name
AlgorithmParameters

Synopsis

 This class is a generic, opaque
representation of the parameters used by some cryptographic
algorithm. You can create an instance of the class with one of the
static getInstance() factory methods, specifying
the desired algorithm and, optionally, the desired provider. The
default “SUN” provider supports the
“DSA” algorithm. The
“SunJCE” provider shipped with the
JCE supports “DES”,
“DESede”,
“PBE”,
“Blowfish”, and
“DiffieHellman”. Once you have
obtained an AlgorithmParameters object, initialize
it by passing an algorithm-specific
java.security.spec.AlgorithmParameterSpec object
or the encoded parameter values as a byte array to the init(
) method. You can also create an
AlgorithmParameters object with an
AlgorithmParameterGenerator.

 getEncoded() returns
the initialized algorithm parameters as a byte array, using either
the algorithm-specific default encoding or the named encoding format
you specified.
public class AlgorithmParameters {
// Protected Constructors
 protected AlgorithmParameters(AlgorithmParametersSpi paramSpi, Provider
provider, String algorithm);
// Public Class Methods
 public static AlgorithmParameters getInstance(String algorithm)
throws NoSuchAlgorithmException;
 public static AlgorithmParameters getInstance(String algorithm,
String provider) throws NoSuchAlgorithmException, NoSuchProviderException;
1.4 public static AlgorithmParameters getInstance(String algorithm, Provider provider)
throws NoSuchAlgorithmException;
// Public Instance Methods
 public final String getAlgorithm();
 public final byte[] getEncoded() throws java.io.IOException;
 public final byte[] getEncoded(String format) throws java.io.IOException;
 public final <T extends java.security.spec.AlgorithmParameterSpec>
T getParameterSpec(Class<T> paramSpec) throws java.security.spec.
InvalidParameterSpecException;
 public final Provider getProvider();
 public final void init(java.security.spec.AlgorithmParameterSpec paramSpec)
throws java.security.spec.InvalidParameterSpecException;
 public final void init(byte[] params) throws java.io.IOException;
 public final void init(byte[] params, String format)
throws java.io.IOException;
// Public Methods Overriding Object
 public final String toString();
}

Passed To

 javax.crypto.Cipher.init(),
javax.crypto.CipherSpi.engineInit(),
javax.crypto.EncryptedPrivateKeyInfo.EncryptedPrivateKeyInfo(
), javax.crypto.ExemptionMechanism.init(
), javax.crypto.ExemptionMechanismSpi.engineInit(
)

Returned By

 AlgorithmParameterGenerator.generateParameters(),
AlgorithmParameterGeneratorSpi.engineGenerateParameters(
), Signature.getParameters(),
SignatureSpi.engineGetParameters(),
javax.crypto.Cipher.getParameters(),
javax.crypto.CipherSpi.engineGetParameters(),
javax.crypto.EncryptedPrivateKeyInfo.getAlgParameters(
)

Name
AlgorithmParametersSpi

Synopsis

 This abstract class defines the
service-provider
interface for AlgorithmParameters. A security
provider must implement a concrete subclass of this class for each
cryptographic algorithm it supports. Applications never need to use
or subclass this class.
public abstract class AlgorithmParametersSpi {
// Public Constructors
 public AlgorithmParametersSpi();
// Protected Instance Methods
 protected abstract byte[] engineGetEncoded() throws java.io.IOException;
 protected abstract byte[] engineGetEncoded(String format)
 throws java.io.IOException;
 protected abstract <T extends java.security.spec.AlgorithmParameterSpec>
 T engineGetParameterSpec(Class<T> paramSpec)
 throws java.security.spec.InvalidParameterSpecException;
 protected abstract void engineInit(java.security.spec.
 AlgorithmParameterSpec paramSpec)
 throws java.security.spec.InvalidParameterSpecException;
 protected abstract void engineInit(byte[] params)
 throws java.io.IOException;
 protected abstract void engineInit(byte[] params, String format)
 throws java.io.IOException;
 protected abstract String engineToString();
}

Passed To

 AlgorithmParameters.AlgorithmParameters()

Name
AllPermission

Synopsis

 This class is a
Permission subclass whose implies(
)

method always returns true. This means that code
that has been granted AllPermission is granted all
other possible permissions. This class exists to provide a convenient
way to grant all permissions to completely trusted code. It should be
used with care. Applications typically do not need to work directly
with Permission objects.
[image: java.security.AllPermission]

Figure 14-2. java.security.AllPermission

public final class AllPermission extends Permission {
// Public Constructors
 public AllPermission();
 public AllPermission(String name, String actions);
// Public Methods Overriding Permission
 public boolean equals(Object obj);
 public String getActions(); default:"<all actions>"
 public int hashCode(); constant
 public boolean implies(Permission p); constant
 public PermissionCollection newPermissionCollection();
}

Name
AuthProvider

Synopsis

 This
subclass of Provider defines methods that allow
users to “log in” before using the
provider’s services. An implementation of the
login()

method should use the supplied
javax.security.auth.callback.CallbackHandler class
to request the user’s password or other
authentication credentials. If no callback handler is passed to
login(), it should use the one registered with
setCallbackHandler() or a default.
[image: java.security.AuthProvider]

Figure 14-3. java.security.AuthProvider

public abstract class AuthProvider extends Provider {
// Protected Constructors
 protected AuthProvider(String name, double version, String info);
// Public Instance Methods
 public abstract void login(javax.security.auth.Subject subject, javax.
 security.auth.callback.CallbackHandler handler)
 throws javax.security.auth.login.LoginException;
 public abstract void logout() throws javax.security.auth.login.LoginException;
 public abstract void setCallbackHandler(javax.security.auth.callback.
 CallbackHandler handler);
}

Name
BasicPermission

Synopsis

 This Permission class
is the abstract superclass for a number of simple permission types.
BasicPermission is typically subclassed to
implement named permissions that have a name, or target, string, but
do not support actions. The implies() method of
BasicPermission defines a simple wildcarding
capability. The target “*” implies
permission for any target. The target
“x.*” implies permission for any
target that begins with “x.”.
Applications typically do not need to work directly with
Permission objects.
[image: java.security.BasicPermission]

Figure 14-4. java.security.BasicPermission

public abstract class BasicPermission extends Permission
 implements Serializable {
// Public Constructors
 public BasicPermission(String name);
 public BasicPermission(String name, String actions);
// Public Methods Overriding Permission
 public boolean equals(Object obj);
 public String getActions();
 public int hashCode();
 public boolean implies(Permission p);
 public PermissionCollection newPermissionCollection();
}

Subclasses

 java.io.SerializablePermission,
RuntimePermission,
java.lang.management.ManagementPermission,
java.lang.reflect.ReflectPermission,
java.net.NetPermission,
SecurityPermission,
java.util.PropertyPermission,
java.util.logging.LoggingPermission,
javax.net.ssl.SSLPermission,
javax.security.auth.AuthPermission,
javax.security.auth.kerberos.DelegationPermission

Name
Certificate

Synopsis

 This interface was used in Java 1.1
to represent an identity certificate. It has been deprecated as of
Java 1.2 in favor of the java.security.cert
package (see Chapter 19). See also
java.security.cert.Certificate.
public interface Certificate {
// Public Instance Methods
 void decode(java.io.InputStream stream)
 throws KeyException, java.io.IOException;
 void encode(java.io.OutputStream stream)
 throws KeyException, java.io.IOException;
 String getFormat();
 Principal getGuarantor();
 Principal getPrincipal();
 PublicKey getPublicKey();
 String toString(boolean detailed);
}

Passed To

 Identity.{addCertificate(),
removeCertificate()}

Returned By

 Identity.certificates()

Name
CodeSigner

Synopsis

 This class encapsulates the certificate
path of a code signer and a signed timestamp. Instances are
immutable. See CodeSource and
java.util.jar.JarEntry.
[image: java.security.CodeSigner]

Figure 14-5. java.security.CodeSigner

public final class CodeSigner implements Serializable {
// Public Constructors
 public CodeSigner(java.security.cert.CertPath signerCertPath,
 Timestamp timestamp);
// Public Instance Methods
 public java.security.cert.CertPath getSignerCertPath();
 public Timestamp getTimestamp();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Passed To

 CodeSource.CodeSource()

Returned By

 CodeSource.getCodeSigners(),
java.util.jar.JarEntry.getCodeSigners()

Name
CodeSource

Synopsis

 This class represents the source of a
Java class, as defined by the URL from which the class was loaded and
the set of digital signatures attached to the class. A
CodeSource object is created by specifying a
java.net.URL and an array of
java.security.cert.Certificate objects. In Java
5.0, the class has been generalized to accept an array of
CodeSigner objects instead of
Certificate objects. Only applications that create
custom ClassLoader objects should ever need to use
or subclass this class.

 When a CodeSource
represents a specific piece of Java code, it includes a fully
qualified URL and the actual set of certificates used to sign the
code. When a CodeSource object defines a
ProtectionDomain, however, the URL may include
wildcards, and the array of certificates is a minimum required set of
signatures. The implies() method of such a
CodeSource tests whether a particular Java class
comes from a matching URL and has the required set of signatures.
[image: java.security.CodeSource]

Figure 14-6. java.security.CodeSource

public class CodeSource implements Serializable {
// Public Constructors
 5.0 public CodeSource(java.net.URL url, CodeSigner[] signers);
 public CodeSource(java.net.URL url, java.security.cert.
 Certificate[] certs);
// Public Instance Methods
 public final java.security.cert.Certificate[] getCertificates();
5.0 public final CodeSigner[] getCodeSigners();
 public final java.net.URL getLocation();
 public boolean implies(CodeSource codesource);
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Passed To

 java.net.URLClassLoader.getPermissions(),
java.security.Policy.getPermissions(),
ProtectionDomain.ProtectionDomain(),
SecureClassLoader.{defineClass(),
getPermissions()},
javax.security.auth.Policy.getPermissions()

Returned By

 ProtectionDomain.getCodeSource()

Name
DigestException

Synopsis

 Signals a
problem creating a message digest.
[image: java.security.DigestException]

Figure 14-7. java.security.DigestException

public class DigestException extends GeneralSecurityException {
// Public Constructors
 public DigestException();
5.0 public DigestException(Throwable cause);
 public DigestException(String msg);
5.0 public DigestException(String message, Throwable cause);
}

Thrown By

 MessageDigest.digest(),
MessageDigestSpi.engineDigest()

Name
DigestInputStream

Synopsis

 This class is a
byte input stream with an associated
MessageDigest object. When bytes are read with any
of the read()

methods, those bytes are automatically passed to the update(
)

method of the MessageDigest. When you have
finished reading bytes, you can call the digest(
)
 method of the
MessageDigest to obtain a message digest. If you
want to compute a digest just for some of the bytes read from the
stream, use on()

to turn the digesting function on and off. Digesting is on by
default; call on(false) to turn it off. See also
DigestOutputStream and
MessageDigest.
[image: java.security.DigestInputStream]

Figure 14-8. java.security.DigestInputStream

public class DigestInputStream extends java.io.FilterInputStream {
// Public Constructors
 public DigestInputStream(java.io.InputStream stream, MessageDigest digest);
// Public Instance Methods
 public MessageDigest getMessageDigest();
 public void on(boolean on);
 public void setMessageDigest(MessageDigest digest);
// Public Methods Overriding FilterInputStream
 public int read() throws java.io.IOException;
 public int read(byte[] b, int off, int len) throws java.io.IOException;
// Public Methods Overriding Object
 public String toString();
// Protected Instance Fields
 protected MessageDigest digest;
}

Name
DigestOutputStream

Synopsis

 This class is a byte output stream with
an associated MessageDigest object. When bytes are
written to the stream with any of the
 write() methods,
those bytes are automatically passed to the update(
) method of the MessageDigest. When you
have finished writing bytes, you can call the digest(
) method of the MessageDigest to obtain
a message digest. If you want to compute a digest just for some of
the bytes written to the stream, use
 on() to turn the
digesting function on and off. Digesting is on by default; call
on(false) to turn it off. See also
DigestInputStream and
MessageDigest.
[image: java.security.DigestOutputStream]

Figure 14-9. java.security.DigestOutputStream

public class DigestOutputStream extends java.io.FilterOutputStream {
// Public Constructors
 public DigestOutputStream(java.io.OutputStream stream,
 MessageDigest digest);
// Public Instance Methods
 public MessageDigest getMessageDigest();
 public void on(boolean on);
 public void setMessageDigest(MessageDigest digest);
// Public Methods Overriding FilterOutputStream
 public void write(int b) throws java.io.IOException;
 public void write(byte[] b, int off, int len) throws java.io.IOException;
// Public Methods Overriding Object
 public String toString();
// Protected Instance Fields
 protected MessageDigest digest;
}

Name
DomainCombiner

Synopsis

 This interface defines a single
combine()
 method that combines two
arrays of ProtectionDomain objects into a single
equivalent (and perhaps optimized) array. You can associate a
DomainCombiner with an existing
AccessControlContext by calling the two-argument
AccessControlContext() constructor. Then, when
the checkPermission() method of the
AccessControlContext is called or when the
AccessControlContext is passed to a
doPrivileged() method of
AccessController, the specified
DomainCombiner merges the protection domains of
the current stack frame with the protection domains encapsulated in
the AccessControlContext. This class is used only
by system-level code; typical applications rarely need to use it.
public interface DomainCombiner {
// Public Instance Methods
 ProtectionDomain[] combine(ProtectionDomain[] currentDomains,
 ProtectionDomain[] assignedDomains);
}

Implementations

 javax.security.auth.SubjectDomainCombiner

Passed To

 AccessControlContext.AccessControlContext()

Returned By

 AccessControlContext.getDomainCombiner()

Name
GeneralSecurityException

Synopsis

 This
class is the superclass of most of the exceptions defined by the
java.security package.
[image: java.security.GeneralSecurityException]

Figure 14-10. java.security.GeneralSecurityException

public class GeneralSecurityException extends Exception {
// Public Constructors
 public GeneralSecurityException();
5.0 public GeneralSecurityException(Throwable cause);
 public GeneralSecurityException(String msg);
5.0 public GeneralSecurityException(String message, Throwable cause);
}

Subclasses
Too many classes to list.

Name
Guard

Synopsis

 This interface guards access to an
object. The checkGuard() method is passed an
object to which access has been requested. If access should be
granted, checkGuard() should return silently.
Otherwise, if access is denied, checkGuard()
should throw a java.lang.SecurityException. The
Guard object is used primarily by the
GuardedObject class. Note that all
Permission objects implement the
Guard interface.
public interface Guard {
// Public Instance Methods
 void checkGuard(Object object) throws SecurityException;
}

Implementations

 Permission

Passed To

 GuardedObject.GuardedObject()

Name
GuardedObject

Synopsis
This class uses a Guard
object to guard against unauthorized access to an arbitrary
encapsulated object. Create a GuardedObject by
specifying an object and a Guard for it. The
getObject()

method calls the checkGuard() method of the
Guard to determine whether access to the object
should be allowed. If access is allowed, getObject(
) returns the encapsulated object. Otherwise, it throws a
java.lang.SecurityException.
The Guard object used by a
GuardedObject is often a
Permission. In this case, access to the guarded
object is granted only if the calling code is granted the specified
permission by the current security policy.
[image: java.security.GuardedObject]

Figure 14-11. java.security.GuardedObject

public class GuardedObject implements Serializable {
// Public Constructors
 public GuardedObject(Object object, Guard guard);
// Public Instance Methods
 public Object getObject() throws SecurityException;
}

Name
Identity

Synopsis

 This
deprecated class was used in Java 1.1 to represent an entity or
Principal with an associated
PublicKey object. In Java 1.1, the public key for
a named entity could be retrieved from the system keystore with a
line like the following:
IdentityScope.getSystemScope().getIdentity(name).getPublicKey()

 As of Java 1.2, the
Identity class and the related
IdentityScope and Signer
classes have been deprecated in favor of KeyStore
and java.security.cert.Certificate.
[image: java.security.Identity]

Figure 14-12. java.security.Identity

public abstract class Identity implements Principal, Serializable {
// Public Constructors
 public Identity(String name);
 public Identity(String name, IdentityScope scope)
 throws KeyManagementException;
// Protected Constructors
 protected Identity();
// Public Instance Methods
 public void addCertificate(java.security.Certificate certificate)
 throws KeyManagementException;
 public java.security.Certificate[] certificates();
 public String getInfo();
 public PublicKey getPublicKey();
 public final IdentityScope getScope();
 public void removeCertificate(java.security.Certificate certificate)
 throws KeyManagementException;
 public void setInfo(String info);
 public void setPublicKey(PublicKey key) throws KeyManagementException;
 public String toString(boolean detailed);
// Methods Implementing Principal
 public final boolean equals(Object identity);
 public final String getName();
 public int hashCode();
 public String toString();
// Protected Instance Methods
 protected boolean identityEquals(Identity identity);
}

Subclasses

 IdentityScope, Signer

Passed To

 IdentityScope.{addIdentity(),
removeIdentity()}

Returned By

 IdentityScope.getIdentity()

Name
IdentityScope

Synopsis

 This
deprecated class was used in Java 1.1 to represent a group of
Identity and Signer objects and
their associated PublicKey and
PrivateKey objects. As of Java 1.2, it has been
replaced by the KeyStore class.
[image: java.security.IdentityScope]

Figure 14-13. java.security.IdentityScope

public abstract class IdentityScope extends Identity {
// Public Constructors
 public IdentityScope(String name);
 public IdentityScope(String name, IdentityScope scope)
 throws KeyManagementException;
// Protected Constructors
 protected IdentityScope();
// Public Class Methods
 public static IdentityScope getSystemScope();
// Protected Class Methods
 protected static void setSystemScope(IdentityScope scope);
// Public Instance Methods
 public abstract void addIdentity(Identity identity)
 throws KeyManagementException;
 public abstract Identity getIdentity(String name);
 public Identity getIdentity(Principal principal);
 public abstract Identity getIdentity(PublicKey key);
 public abstract java.util.Enumeration<Identity> identities();
 public abstract void removeIdentity(Identity identity)
 throws KeyManagementException;
 public abstract int size();
// Public Methods Overriding Identity
 public String toString();
}

Passed To

 Identity.Identity(), Signer.Signer(
)

Returned By

 Identity.getScope()

Name
InvalidAlgorithmParameterException

Synopsis

 Signals
that one or more algorithm parameters (usually specified by a
java.security.spec.AlgorithmParameterSpec object)
are not valid.
[image: java.security.InvalidAlgorithmParameterException]

Figure 14-14. java.security.InvalidAlgorithmParameterException

public class InvalidAlgorithmParameterException
 extends GeneralSecurityException {
// Public Constructors
 public InvalidAlgorithmParameterException();
5.0 public InvalidAlgorithmParameterException(Throwable cause);
 public InvalidAlgorithmParameterException(String msg);
5.0 public InvalidAlgorithmParameterException(String message, Throwable cause);
}

Thrown By
Too many methods to list.

Name
InvalidKeyException

Synopsis

 Signals that a Key
is not valid.
[image: java.security.InvalidKeyException]

Figure 14-15. java.security.InvalidKeyException

public class InvalidKeyException extends KeyException {
// Public Constructors
 public InvalidKeyException();
5.0 public InvalidKeyException(Throwable cause);
 public InvalidKeyException(String msg);
5.0 public InvalidKeyException(String message, Throwable cause);
}

Thrown By
Too many methods to list.

Name
InvalidParameterException

Synopsis

 This
subclass of java.lang.IllegalArgumentException
signals that a parameter passed to a security method is not valid.
This exception type is not widely used.
[image: java.security.InvalidParameterException]

Figure 14-16. java.security.InvalidParameterException

public class InvalidParameterException extends IllegalArgumentException {
// Public Constructors
 public InvalidParameterException();
 public InvalidParameterException(String msg);
}

Thrown By

 Signature.{getParameter(), setParameter(
)}, SignatureSpi.{engineGetParameter(),
engineSetParameter()},
Signer.setKeyPair(),
java.security.interfaces.DSAKeyPairGenerator.initialize(
)

Name
Key

Synopsis

 This
interface defines the high-level characteristics of all cryptographic
keys. getAlgorithm() returns the name of the
cryptographic algorithm (such as RSA) used with the key.
getFormat() return the name of the external
encoding (such as X.509) used with the key. getEncoded(
) returns the key as an array of bytes, encoded using the
format specified by getFormat().
[image: java.security.Key]

Figure 14-17. java.security.Key

public interface Key extends Serializable {
// Public Constants
 1.2 public static final long serialVersionUID; =6603384152749567654
 // Public Instance Methods
 String getAlgorithm();
 byte[] getEncoded();
 String getFormat();
}

Implementations

 PrivateKey, PublicKey,
javax.crypto.SecretKey

Passed To
Too many methods to list.

Returned By

 KeyFactory.translateKey(),
KeyFactorySpi.engineTranslateKey(),
KeyStore.getKey(),
KeyStoreSpi.engineGetKey(),
javax.crypto.Cipher.unwrap(),
javax.crypto.CipherSpi.engineUnwrap(),
javax.crypto.KeyAgreement.doPhase(),
javax.crypto.KeyAgreementSpi.engineDoPhase()

Name
KeyException

Synopsis

 Signals that
something is wrong with a key. See also the subclasses
InvalidKeyException and
KeyManagementException.
[image: java.security.KeyException]

Figure 14-18. java.security.KeyException

public class KeyException extends GeneralSecurityException {
// Public Constructors
 public KeyException();
5.0 public KeyException(Throwable cause);
 public KeyException(String msg);
5.0 public KeyException(String message, Throwable cause);
}

Subclasses

 InvalidKeyException,
KeyManagementException

Thrown By

 java.security.Certificate.{decode(),
encode()}, Signer.setKeyPair(
)

Name
KeyFactory

Synopsis

 This class
translates asymmetric cryptographic keys between the two
representations used by the Java Security API.
java.security.Key is the opaque,
algorithm-independent representation of a key used by most of the
Security API. java.security.spec.KeySpec is a
marker interface implemented by transparent, algorithm-specific
representations of keys. KeyFactory is used with
public and private keys; see
javax.crypto.SecretKeyFactory if you are working
with symmetric or secret keys.

 To
convert a Key to a KeySpec or
vice versa, create a KeyFactory by calling one of
the static getInstance() factory methods
specifying the name of the key algorithm (e.g., DSA or RSA) and
optionally specifying the name or Provider object
for the desired provider. Then, use generatePublic(
) or generatePrivate() to create a
PublicKey or PrivateKey object
from a corresponding KeySpec. Or use
getKeySpec() to obtain a
KeySpec for a given Key.
Because there can be more than one KeySpec
implementation used by a particular cryptographic algorithm, you must
also specify the Class of the
KeySpec you desire.
If you do not need to transport keys portably between applications
and/or systems, you can use a KeyStore to store
and retrieve keys and certificates, avoiding
KeySpec and KeyFactory
altogether.
public class KeyFactory {
// Protected Constructors
 protected KeyFactory(KeyFactorySpi keyFacSpi, Provider provider,
 String algorithm);
// Public Class Methods
 public static KeyFactory getInstance(String algorithm)
 throws NoSuchAlgorithmException;
 public static KeyFactory getInstance(String algorithm, String provider)
 throws NoSuchAlgorithmException, NoSuchProviderException;
1.4 public static KeyFactory getInstance(String algorithm, Provider provider)
 throws NoSuchAlgorithmException;
// Public Instance Methods
 public final PrivateKey generatePrivate(java.security.spec.KeySpec keySpec)
 throws java.security.spec.InvalidKeySpecException;
 public final PublicKey generatePublic(java.security.spec.KeySpec keySpec)
 throws java.security.spec.InvalidKeySpecException;
 public final String getAlgorithm();
 public final <T extends java.security.spec.KeySpec> T getKeySpec(Key key,
 Class<T> keySpec)
 throws java.security.spec.InvalidKeySpecException;
 public final Provider getProvider();
 public final Key translateKey(Key key) throws InvalidKeyException;
}

Name
KeyFactorySpi

Synopsis

 This
abstract
class defines the service-provider interface for
KeyFactory. A security provider must implement a
concrete subclass of this class for each cryptographic algorithm it
supports. Applications never need to use or subclass this class.
public abstract class KeyFactorySpi {
// Public Constructors
 public KeyFactorySpi();
// Protected Instance Methods
 protected abstract PrivateKey engineGeneratePrivate(java.security.spec.
 KeySpec keySpec) throws java.security.spec.InvalidKeySpecException;
 protected abstract PublicKey engineGeneratePublic(java.security.spec.
 KeySpec keySpec) throws java.security.spec.InvalidKeySpecException;
 protected abstract <T extends java.security.spec.KeySpec>
 T engineGetKeySpec(Key key, Class<T> keySpec)
 throws java.security.spec.InvalidKeySpecException;
 protected abstract Key engineTranslateKey(Key key)
 throws InvalidKeyException;
}

Passed To

 KeyFactory.KeyFactory()

Name
KeyManagementException

Synopsis
Signals
an
exception in a key management operation. In Java 1.2, this exception
is only thrown by deprecated methods.
[image: java.security.KeyManagementException]

Figure 14-19. java.security.KeyManagementException

public class KeyManagementException extends KeyException {
// Public Constructors
 public KeyManagementException();
5.0 public KeyManagementException(Throwable cause);
 public KeyManagementException(String msg);
5.0 public KeyManagementException(String message, Throwable cause);
}

Thrown By

 Identity.{addCertificate(), Identity(
), removeCertificate(),
setPublicKey()},
IdentityScope.{addIdentity(),
IdentityScope(), removeIdentity(
)}, Signer.Signer(),
javax.net.ssl.SSLContext.init(),
javax.net.ssl.SSLContextSpi.engineInit()

Name
KeyPair

Synopsis
This class is
a simple container for a PublicKey and a
PrivateKey object. Because a
KeyPair contains an unprotected private key, it
must be used with as much caution as a PrivateKey
object.
[image: java.security.KeyPair]

Figure 14-20. java.security.KeyPair

public final class KeyPair implements Serializable {
// Public Constructors
 public KeyPair(PublicKey publicKey, PrivateKey privateKey);
// Public Instance Methods
 public PrivateKey getPrivate();
 public PublicKey getPublic();
}

Passed To

 Signer.setKeyPair()

Returned By

 KeyPairGenerator.{generateKeyPair(),
genKeyPair()},
KeyPairGeneratorSpi.generateKeyPair()

Name
KeyPairGenerator

Synopsis
This class generates a public/private key pair
for a specified cryptographic algorithm. To create a
KeyPairGenerator, call one of the static

 getInstance()
methods, specifying the name of the algorithm and, optionally, the
name or Provider object of the security provider
to use. The default “SUN” provider
shipped with Java 1.2 supports only the
“DSA” algorithm. The
“SunJCE” provider of the Java
Cryptography Extension (JCE) additionally supports the
“DiffieHellman” algorithm.

 Once you have created a
KeyPairGenerator, initialize it by calling
initialize(). You can perform an
algorithm-independent initialization by simply specifying the desired
key size in bits. Alternatively, you can do an algorithm-dependent
initialization by providing an appropriate
AlgorithmParameterSpec object for the
key-generation algorithm. In either case, you may optionally provide
your own source of randomness in the guise of a
SecureRandom object. Once you have created and
initialized a KeyPairGenerator, call

 genKeyPair(
) to create a KeyPair object. Remember
that the KeyPair contains a
PrivateKey that must be kept
private.
For historical reasons, KeyPairGenerator extends
KeyPairGeneratorSpi. Applications should not use
any methods inherited from that class.
[image: java.security.KeyPairGenerator]

Figure 14-21. java.security.KeyPairGenerator

public abstract class KeyPairGenerator extends KeyPairGeneratorSpi {
// Protected Constructors
 protected KeyPairGenerator(String algorithm);
// Public Class Methods
 public static KeyPairGenerator getInstance(String algorithm)
 throws NoSuchAlgorithmException;
1.4 public static KeyPairGenerator getInstance(String algorithm,
 Provider provider) throws NoSuchAlgorithmException;
 public static KeyPairGenerator getInstance(String algorithm,
 String provider)
throws NoSuchAlgorithmException, NoSuchProviderException;
// Public Instance Methods
 1.2 public final KeyPair genKeyPair();
 public String getAlgorithm();
1.2 public final Provider getProvider();
1.2 public void initialize(java.security.spec.AlgorithmParameterSpec params)
 throws InvalidAlgorithmParameterException;
 public void initialize(int keysize);
// Public Methods Overriding KeyPairGeneratorSpi
 public KeyPair generateKeyPair(); constant
 1.2 public void initialize(java.security.spec.AlgorithmParameterSpec params,
 SecureRandom random)
 throws InvalidAlgorithmParameterException; empty
 public void initialize(int keysize, SecureRandom random); empty
}

Name
KeyPairGeneratorSpi

Synopsis
This abstract class defines
the service-provider interface for
KeyPairGenerator. A security provider must
implement a concrete subclass of this class for each cryptographic
algorithm for which it can generate key pairs. Applications never
need to use or subclass this class.
public abstract class KeyPairGeneratorSpi {
// Public Constructors
 public KeyPairGeneratorSpi();
// Public Instance Methods
 public abstract KeyPair generateKeyPair();
 public void initialize(java.security.spec.AlgorithmParameterSpec params,
 SecureRandom random)
 throws InvalidAlgorithmParameterException;
 public abstract void initialize(int keysize, SecureRandom random);
}

Subclasses

 KeyPairGenerator

Name
KeyRep

Synopsis
This class
defines a serialized representation for
Key implementations and is typically used only by
security providers, not users of the java.security
package.
[image: java.security.KeyRep]

Figure 14-22. java.security.KeyRep

public class KeyRep implements Serializable {
// Public Constructors
 public KeyRep(KeyRep.Type type, String algorithm, String format,
 byte[] encoded);
// Nested Types
 public enum Type;
// Protected Instance Methods
 protected Object readResolve() throws java.io.ObjectStreamException;
}

Name
KeyRep.Type

Synopsis
The constants defined
by this enumerated
type represent the general types of cryptographic keys: public keys,
private keys, and secret keys.
public enum KeyRep.Type {
// Enumerated Constants
 SECRET,
 PUBLIC,
 PRIVATE;
// Public Class Methods
 public static KeyRep.Type valueOf(String name);
 public static final KeyRep.Type[] values();
}

Passed To

 KeyRep.KeyRep()

Name
KeyStore

Synopsis

 This
class
represents a mapping of names, or aliases, to Key
and java.security.cert.Certificate objects. Obtain
a KeyStore object by calling one of the static
getInstance() methods, specifying the desired key
store type and, optionally, the desired provider. Use
"JKS” to specify the
“Java Key Store” type defined by
Sun. Because of U.S. export regulations, this default
KeyStore supports only weak encryption of private
keys. If you have the Java Cryptography Extension installed, use the
type "JCEKS” and
provider “SunJCE” to obtain a
KeyStore implementation that offers much stronger
password-based encryption of keys. Once you have created a
KeyStore, use load() to read
its contents from a stream, supplying an optional password that
verifies the integrity of the stream data. Keystores are typically
read from a file named .keystore in the
user’s home directory.

 The KeyStore API
has been substantially enhanced in Java 5.0. We describe pre-5.0
methods first, and then cover Java 5.0 enhancements below. A
KeyStore may contain both public and private key
entries. A public key entry is represented by a
Certificate object. Use getCertificate(
) to look up a named public key certificate and
setCertificateEntry() to add a new public key
certificate to the keystore. A private key entry in the keystore
contains both a password-protected Key and an
array of Certificate objects that represent the
certificate chain for the public key that corresponds to the private
key. Use getKey() and
getCertificateChain() to look up the key and
certificate chain. Use setKeyEntry(
)
 to create a new private key entry.
You must provide a password when reading or writing a private key
from the keystore; this password encrypts the key data, and each
private key entry should have a different password. If you are using
the JCE, you may also store javax.crypto.SecretKey
objects in a KeyStore. Secret keys are stored like
private keys, except that they do not have a certificate chain
associated with them. To delete an entry from a
KeyStore, use deleteEntry(
)
 . If you modify the contents of a
KeyStore, use store(
)
 to save the keystore to a specified
stream. You may specify a password that is used to validate the
integrity of the data, but it is not used to encrypt the keystore.
In Java 5.0 the
KeyStore.Entry interface defines a keystore entry.
Implementations include the nested types
PrivateKeyEntry,
SecretKeyEntry, and
TrustedCertificateEntry. You can get or set an
entry of any type with the new methods getEntry(
)

 and
setEntry(). These methods accept a
KeyStore.ProtectionParameter object, such as a
password represented as a
KeyStore.PasswordProtection object. Java 5.0 also
defines new load()
 and
store() methods that specify a password
indirectly through a KeyStore.LoadStoreParameter.
public class KeyStore {
// Protected Constructors
 protected KeyStore(KeyStoreSpi keyStoreSpi, Provider provider, String type);
// Nested Types
 5.0 public abstract static class Builder;
5.0 public static class CallbackHandlerProtection
 implements KeyStore.ProtectionParameter;
5.0 public interface Entry;
5.0 public interface LoadStoreParameter;
5.0 public static class PasswordProtection
 implements javax.security.auth.Destroyable, KeyStore.ProtectionParameter;
5.0 public static final class PrivateKeyEntry
 implements KeyStore.Entry;
5.0 public interface ProtectionParameter;
5.0 public static final class SecretKeyEntry implements KeyStore.Entry;
5.0 public static final class TrustedCertificateEntry implements KeyStore.Entry;
// Public Class Methods
 public static final String getDefaultType();
 public static KeyStore getInstance(String type) throws KeyStoreException;
 public static KeyStore getInstance(String type, String provider)
 throws KeyStoreException, NoSuchProviderException;
1.4 public static KeyStore getInstance(String type, Provider provider)
 throws KeyStoreException;
// Public Instance Methods
 public final java.util.Enumeration<String> aliases()
 throws KeyStoreException;
 public final boolean containsAlias(String alias) throws KeyStoreException;
 public final void deleteEntry(String alias) throws KeyStoreException;
5.0 public final boolean entryInstanceOf(String alias,
 Class<? extends KeyStore.Entry> entryClass)
 throws KeyStoreException;
 public final java.security.cert.Certificate getCertificate(String alias)
 throws KeyStoreException;
 public final String getCertificateAlias(java.security.cert.Certificate cert)
 throws KeyStoreException;
 public final java.security.cert.Certificate[] getCertificateChain
 (String alias) throws KeyStoreException;
 public final java.util.Date getCreationDate(String alias)
 throws KeyStoreException;
5.0 public final KeyStore.Entry getEntry(String alias, KeyStore.
 ProtectionParameter protParam)
 throws NoSuchAlgorithmException, UnrecoverableEntryException, KeyStoreException;
 public final Key getKey(String alias, char[] password)
 throws KeyStoreException, NoSuchAlgorithmException, UnrecoverableKeyException;
 public final Provider getProvider();
 public final String getType();
 public final boolean isCertificateEntry(String alias)
 throws KeyStoreException;
 public final boolean isKeyEntry(String alias) throws KeyStoreException;
5.0 public final void load(KeyStore.LoadStoreParameter param)
 throws java.io.IOException, NoSuchAlgorithmException,
 java.security.cert.CertificateException;
 public final void load(java.io.InputStream stream, char[] password)
 throws java.io.IOException, NoSuchAlgorithmException,
 java.security.cert.CertificateException;
 public final void setCertificateEntry(String alias, java.security.cert.
 Certificate cert) throws KeyStoreException;
5.0 public final void setEntry(String alias, KeyStore.Entry entry,
 KeyStore.ProtectionParameter protParam)
 throws KeyStoreException;
 public final void setKeyEntry(String alias, byte[] key,
 java.security.cert.Certificate[] chain)
 throws KeyStoreException;
 public final void setKeyEntry(String alias, Key key, char[] password,
 java.security.cert.Certificate[] chain)
 throws KeyStoreException;
 public final int size() throws KeyStoreException;
5.0 public final void store(KeyStore.LoadStoreParameter param)
 throws KeyStoreException, java.io.IOException, NoSuchAlgorithmException,
 java.security.cert.CertificateException;
 public final void store(java.io.OutputStream stream, char[] password)
 throws KeyStoreException, java.io.IOException, NoSuchAlgorithmException,
 java.security.cert.CertificateException;
}

Passed To

 KeyStore.Builder.newInstance(),
java.security.cert.PKIXBuilderParameters.PKIXBuilderParameters(
),
java.security.cert.PKIXParameters.PKIXParameters(
), javax.net.ssl.KeyManagerFactory.init(
), javax.net.ssl.KeyManagerFactorySpi.engineInit(
), javax.net.ssl.TrustManagerFactory.init(
),
javax.net.ssl.TrustManagerFactorySpi.engineInit()

Returned By

 KeyStore.Builder.getKeyStore()

Name
KeyStore.Builder

Synopsis
An instance of this class encapsulates the
parameters necessary to obtain a KeyStore object
at some later time. This class is useful when you want to defer the
initialization of a KeyStore (which may require
the user to enter a password) until it is needed. See the
javax.net.ssl.KeyStoreBuilderParameters class, for
example.
public abstract static class KeyStore.Builder {
// Protected Constructors
 protected Builder();
// Public Class Methods
 public static KeyStore.Builder newInstance(KeyStore keyStore,
 KeyStore.ProtectionParameter protectionParameter);
 public static KeyStore.Builder newInstance(String type, Provider provider,
 KeyStore.ProtectionParameter protection);
 public static KeyStore.Builder newInstance(String type, Provider provider,
 java.io.File file,
KeyStore.ProtectionParameter protection);
// Public Instance Methods
 public abstract KeyStore getKeyStore() throws KeyStoreException;
 public abstract KeyStore.ProtectionParameter getProtectionParameter
 (String alias) throws KeyStoreException;
}

Passed To

 javax.net.ssl.KeyStoreBuilderParameters.KeyStoreBuilderParameters(
)

Name
KeyStore.CallbackHandlerProtection

Synopsis

 This
class
is a KeyStore.ProtectionParameter implementation
that wraps a
javax.security.auth.callback.CallbackHandler for
prompting the user for a password or other authentication
credentials.
public static class KeyStore.CallbackHandlerProtection
 implements KeyStore.ProtectionParameter {
// Public Constructors
 public CallbackHandlerProtection(javax.security.auth.callback.
 CallbackHandler handler);
// Public Instance Methods
 public javax.security.auth.callback.CallbackHandler getCallbackHandler();
}

Name
KeyStore.Entry

Synopsis
This
 marker interface represents an entry in
a KeyStore.
public interface KeyStore.Entry {
}

Implementations

 KeyStore.PrivateKeyEntry,
KeyStore.SecretKeyEntry,
KeyStore.TrustedCertificateEntry

Passed To

 KeyStore.setEntry(),
KeyStoreSpi.engineSetEntry()

Returned By

 KeyStore.getEntry(),
KeyStoreSpi.engineGetEntry()

Name
KeyStore.LoadStoreParameter

Synopsis
This
interface represents an object passed to the
load() or store() methods of
KeyStore. An implementation must be able to return
a KeyStore.ProtectionParameter.
public interface KeyStore.LoadStoreParameter {
// Public Instance Methods
 KeyStore.ProtectionParameter getProtectionParameter();
}

Passed To

 KeyStore.{load(), store()},
KeyStoreSpi.{engineLoad(), engineStore(
)}

Name
KeyStore.PasswordProtection

Synopsis
This
class
is a KeyStore.ProtectionParameter implementation
that wraps a
password specified as a
char[]. Note that getPassword(
)

returns a reference to the internal array, not a clone of it. The
destroy()

method zeros out this array.
public static class KeyStore.PasswordProtection
 implements javax.security.auth.Destroyable, KeyStore.ProtectionParameter {
// Public Constructors
 public PasswordProtection(char[] password);
// Public Instance Methods
 public char[] getPassword(); synchronized
 // Methods Implementing Destroyable
 public void destroy()
 throws javax.security.auth.DestroyFailedException; synchronized
 public boolean isDestroyed(); synchronized
}

Name
KeyStore.PrivateKeyEntry

Synopsis
This KeyStore.Entry

 implementation represents a
private key. getPrivateKey(
)

returns the key. getCertificateChain() returns
the certificate chain of the corresponding public key. The first
element of the returned array is the certificate of the ultimate
certificate authority (CA). This “end
entity” certificate is also available through the
getCertificate() method.
public static final class KeyStore.PrivateKeyEntry implements KeyStore.Entry {
// Public Constructors
 public PrivateKeyEntry(PrivateKey privateKey, java.security.cert.
 Certificate[] chain);
// Public Instance Methods
 public java.security.cert.Certificate getCertificate();
 public java.security.cert.Certificate[] getCertificateChain();
 public PrivateKey getPrivateKey();
// Public Methods Overriding Object
 public String toString();
}

Name
KeyStore.ProtectionParameter

Synopsis
This

 marker interface should be
implemented by classes that provide some form of protection for the
entries in a KeyStore.
public interface KeyStore.ProtectionParameter {
}

Implementations

 KeyStore.CallbackHandlerProtection,
KeyStore.PasswordProtection

Passed To

 KeyStore.{getEntry(), setEntry(
)}, KeyStore.Builder.newInstance(),
KeyStoreSpi.{engineGetEntry(),
engineSetEntry()}

Returned By

 KeyStore.Builder.getProtectionParameter(),
KeyStore.LoadStoreParameter.getProtectionParameter(
)

Name
KeyStore.SecretKeyEntry

Synopsis
This

 KeyStore.Entry
implementation represents a secret key. getSecretKey(
)

returns the key as a javax.crypto.SecretKey.
public static final class KeyStore.SecretKeyEntry implements KeyStore.Entry {
// Public Constructors
 public SecretKeyEntry(javax.crypto.SecretKey secretKey);
// Public Instance Methods
 public javax.crypto.SecretKey getSecretKey();
// Public Methods Overriding Object
 public String toString();
}

Name
KeyStore.TrustedCertificateEntry

Synopsis

 This

 implementation of
KeyStore.Entry represents a certificate that
contains and certifies a public key. getTrustedCertificate(
)
 returns the certificate.
public static final class KeyStore.TrustedCertificateEntry
 implements KeyStore.Entry {
// Public Constructors
 public TrustedCertificateEntry(java.security.cert.Certificate trustedCert);
// Public Instance Methods
 public java.security.cert.Certificate getTrustedCertificate();
// Public Methods Overriding Object
 public String toString();
}

Name
KeyStoreException

Synopsis

 Signals a
problem with a KeyStore.
[image: java.security.KeyStoreException]

Figure 14-23. java.security.KeyStoreException

public class KeyStoreException extends GeneralSecurityException {
// Public Constructors
 public KeyStoreException();
5.0 public KeyStoreException(Throwable cause);
 public KeyStoreException(String msg);
5.0 public KeyStoreException(String message, Throwable cause);
}

Thrown By
Too many methods to list.

Name
KeyStoreSpi

Synopsis

 This
 abstract
class defines the service-provider interface for
KeyStore. A security provider must implement a
concrete subclass of this class for each KeyStore
type it supports. Applications never need to use or subclass this
class.
public abstract class KeyStoreSpi {
// Public Constructors
 public KeyStoreSpi();
// Public Instance Methods
 public abstract java.util.Enumeration<String> engineAliases();
 public abstract boolean engineContainsAlias(String alias);
 public abstract void engineDeleteEntry(String alias)
 throws KeyStoreException;
5.0 public boolean engineEntryInstanceOf(String alias, Class<?
 extends KeyStore.Entry> entryClass);
 public abstract java.security.cert.Certificate engineGetCertificate
 (String alias);
 public abstract String engineGetCertificateAlias(java.security.cert.
 Certificate cert);
 public abstract java.security.cert.Certificate[] engineGetCertificateChain
 (String alias);
 public abstract java.util.Date engineGetCreationDate(String alias);
5.0 public KeyStore.Entry engineGetEntry(String alias,
 KeyStore.ProtectionParameter protParam)
 throws KeyStoreException, NoSuchAlgorithmException, UnrecoverableEntryException;
 public abstract Key engineGetKey(String alias, char[] password)
 throws NoSuchAlgorithmException, UnrecoverableKeyException;
 public abstract boolean engineIsCertificateEntry(String alias);
 public abstract boolean engineIsKeyEntry(String alias);
5.0 public void engineLoad(KeyStore.LoadStoreParameter param)
 throws java.io.IOException, NoSuchAlgorithmException,
 java.security.cert.CertificateException;
 public abstract void engineLoad(java.io.InputStream stream, char[] password)
 throws java.io.IOException, NoSuchAlgorithmException,
 java.security.cert.CertificateException;
 public abstract void engineSetCertificateEntry(String alias,
 java.security.cert.Certificate cert)
 throws KeyStoreException;
5.0 public void engineSetEntry(String alias, KeyStore.Entry entry,
 KeyStore.ProtectionParameter protParam)
 throws KeyStoreException;
 public abstract void engineSetKeyEntry(String alias, byte[] key,
 java.security.cert.Certificate[] chain)
 throws KeyStoreException;
 public abstract void engineSetKeyEntry(String alias, Key key,
 char[] password, java.security.cert.Certificate[] chain)
 throws KeyStoreException;
 public abstract int engineSize();
5.0 public void engineStore(KeyStore.LoadStoreParameter param)
 throws java.io.IOException, NoSuchAlgorithmException,
 java.security.cert.CertificateException;
 public abstract void engineStore(java.io.OutputStream stream,
 char[] password)
 throws java.io.IOException, NoSuchAlgorithmException,
 java.security.cert.CertificateException;
}

Passed To

 KeyStore.KeyStore()

Name
MessageDigest

Synopsis

 This class computes a message digest (also
known as a cryptographic checksum) for an arbitrary
sequence of bytes. Obtain a MessageDigest object
by calling one of the static getInstance(
)

factory methods and specifying the desired algorithm (e.g., SHA or
MD5) and, optionally, the desired provider. Next, specify the data to
be digested by calling any of the update()
methods one or more times. Prior to Java 5.0, you must pass a
byte[] to update(). In Java
5.0 and later, however, you can also use a
java.nio.ByteBuffer. This facilitates the
computation of message digests when using the New I/O API.
After you pass data to
 update(), call

 digest(),
which computes the message digest and returns it as an array of
bytes. If you have only one array of bytes to be digested, you can
pass it directly to digest() and skip the
update() step. When you call digest(
), the MessageDigest() object is reset
and is then ready to compute a new digest. You can also explicitly
reset a MessageDigest without computing the digest
by calling
 reset(). To compute
a digest for part of a message without resetting the
MessageDigest, clone the
MessageDigest and call digest(
) on the cloned copy. Note that not all implementations are
cloneable, so the clone() method may throw an
exception.
The MessageDigest class is often used in
conjunction with DigestInputStream and
DigestOutputStream, which automate the
update() calls for you.
[image: java.security.MessageDigest]

Figure 14-24. java.security.MessageDigest

public abstract class MessageDigest extends MessageDigestSpi {
// Protected Constructors
 protected MessageDigest(String algorithm);
// Public Class Methods
 public static MessageDigest getInstance(String algorithm)
 throws NoSuchAlgorithmException;
 public static MessageDigest getInstance(String algorithm,
 String provider)
 throws NoSuchAlgorithmException, NoSuchProviderException;
1.4 public static MessageDigest getInstance(String algorithm, Provider provider)
throws NoSuchAlgorithmException;
 public static boolean isEqual(byte[] digesta, byte[] digestb);
// Public Instance Methods
 public byte[] digest();
 public byte[] digest(byte[] input);
1.2 public int digest(byte[] buf, int offset, int len)
 throws DigestException;
 public final String getAlgorithm();
1.2 public final int getDigestLength();
1.2 public final Provider getProvider();
 public void reset();
 public void update(byte input);
 public void update(byte[] input);
5.0 public final void update(java.nio.ByteBuffer input);
 public void update(byte[] input, int offset, int len);
// Public Methods Overriding MessageDigestSpi
 public Object clone() throws CloneNotSupportedException;
// Public Methods Overriding Object
 public String toString();
}

Passed To

 DigestInputStream.{DigestInputStream(),
setMessageDigest()},
DigestOutputStream.{DigestOutputStream(),
setMessageDigest()}

Returned By

 DigestInputStream.getMessageDigest(),
DigestOutputStream.getMessageDigest()

Type Of

 DigestInputStream.digest,
DigestOutputStream.digest

Name
MessageDigestSpi

Synopsis

 This abstract class defines the
service-provider interface for MessageDigest. A
security provider must implement a concrete subclass of this class
for each message-digest algorithm it supports. Applications never
need to use or subclass this class.
public abstract class MessageDigestSpi {
// Public Constructors
 public MessageDigestSpi();
// Public Methods Overriding Object
 public Object clone() throws CloneNotSupportedException;
// Protected Instance Methods
 protected abstract byte[] engineDigest();
 protected int engineDigest(byte[] buf, int offset, int len)
 throws DigestException;
 protected int engineGetDigestLength(); constant
 protected abstract void engineReset();
 protected abstract void engineUpdate(byte input);
5.0 protected void engineUpdate(java.nio.ByteBuffer input);
 protected abstract void engineUpdate(byte[] input, int offset, int len);
}

Subclasses

 MessageDigest

Name
NoSuchAlgorithmException

Synopsis
Signals
that
a requested cryptographic algorithm is not available. Thrown by
getInstance() factory methods throughout the
java.security package.
[image: java.security.NoSuchAlgorithmException]

Figure 14-25. java.security.NoSuchAlgorithmException

public class NoSuchAlgorithmException extends GeneralSecurityException {
// Public Constructors
 public NoSuchAlgorithmException();
5.0 public NoSuchAlgorithmException(Throwable cause);
 public NoSuchAlgorithmException(String msg);
5.0 public NoSuchAlgorithmException(String message, Throwable cause);
}

Thrown By
Too many methods to list.

Name
NoSuchProviderException

Synopsis

 Signals
that
a requested cryptographic service provider is not available. Thrown
by getInstance() factory methods throughout the
java.security package.
[image: java.security.NoSuchProviderException]

Figure 14-26. java.security.NoSuchProviderException

public class NoSuchProviderException extends GeneralSecurityException {
// Public Constructors
 public NoSuchProviderException();
 public NoSuchProviderException(String msg);
}

Thrown By
Too many methods to list.

Name
Permission

Synopsis

 This abstract class represents a system
resource, such as a file in the filesystem, or a system capability,
such as the ability to accept network connections. Concrete
subclasses of Permission, such as
java.io.FilePermission and
java.net.SocketPermission, represent specific
types of resources. Permission objects are used by
system code that is requesting access to a resource. They are also
used by Policy objects that grant access to
resources. The AccessController.checkPermission()
method considers the source of the currently running Java code,
determines the set of permissions that are granted to that code by
the current Policy, and then checks to see whether
a specified Permission object is included in that
set. As of Java 1.2, this is the fundamental Java access-control
mechanism.
Each permission has a name (sometimes called the
target) and, optionally, a comma-separated list
of actions. For example, the name of a
FilePermission is the name of the file or
directory for which permission is being granted. The actions
associated with this permission might be
“read”;
“write”; or
“read,write”. The interpretation of
the name and action strings is entirely up to the implementation of
Permission. A number of implementations support
the use of wildcards; for example, a
FilePermission can have a name of
“/tmp/*”, which represents access
to any files in a /tmp directory. Permission
objects must be immutable, so an implementation must never define a
setName() or setActions()
method.

 One of the most important abstract
methods defined by Permission is implies(
). This method must return true if this
Permission implies another
Permission. For example, if an application
requests a FilePermission with name
“/tmp/test” and action
“read”, and the current security
Policy grants a FilePermission
with name “/tmp/*” and actions
“read,write”, the request is
granted because the requested permission is implied by the granted
one.
In general, only system-level code needs to work directly with
Permission and its concrete subclasses. System
administrators who are configuring security policies need to
understand the various Permission subclasses.
Applications that want to extend the Java access-control mechanism to
provide customized access control to their own resources should
subclass Permission to define custom permission
types.
[image: java.security.Permission]

Figure 14-27. java.security.Permission

public abstract class Permission implements Guard, Serializable {
// Public Constructors
 public Permission(String name);
// Public Instance Methods
 public abstract String getActions();
 public final String getName();
 public abstract boolean implies(Permission permission);
 public PermissionCollection newPermissionCollection(); constant
 // Methods Implementing Guard
 public void checkGuard(Object object) throws SecurityException;
// Public Methods Overriding Object
 public abstract boolean equals(Object obj);
 public abstract int hashCode();
 public String toString();
}

Subclasses

 java.io.FilePermission,
java.net.SocketPermission,
AllPermission, BasicPermission,
UnresolvedPermission,
javax.security.auth.PrivateCredentialPermission,
javax.security.auth.kerberos.ServicePermission

Passed To
Too many methods to list.

Returned By

 java.net.HttpURLConnection.getPermission(),
java.net.URLConnection.getPermission(),
AccessControlException.getPermission()

Name
PermissionCollection

Synopsis

 This class is used by
Permissions to store a collection of
Permission objects that are all the same type.
Like the Permission class itself,
PermissionCollection defines an

 implies() method
that can determine whether a requested Permission
is implied by any of the Permission objects in the
collection. Some Permission types may require a
custom PermissionCollection type in order to
correctly implement the implies() method. In this
case, the Permission subclass should override

 newPermissionCollection()
to return a Permission of the appropriate type.
PermissionCollection is used by system code that
manages security policies. Applications rarely need to use it.
[image: java.security.PermissionCollection]

Figure 14-28. java.security.PermissionCollection

public abstract class PermissionCollection implements Serializable {
// Public Constructors
 public PermissionCollection();
// Public Instance Methods
 public abstract void add(Permission permission);
 public abstract java.util.Enumeration<Permission> elements();
 public abstract boolean implies(Permission permission);
 public boolean isReadOnly();
 public void setReadOnly();
// Public Methods Overriding Object
 public String toString();
}

Subclasses

 Permissions

Passed To

 ProtectionDomain.ProtectionDomain()

Returned By
Too many methods to list.

Name
Permissions

Synopsis

 This
class stores an arbitrary collection of Permission
objects. When Permission objects are added with
the add() method, they are grouped into an
internal set of PermissionCollection objects that
contain only a single type of Permission. Use the
elements() method to obtain an
Enumeration of the Permission
objects in the collection. Use implies() to
determine if a specified Permission is implied by
any of the Permission objects in the collection.
Permissions is used by system code that manages
security policies. Applications rarely need to use it.
[image: java.security.Permissions]

Figure 14-29. java.security.Permissions

public final class Permissions extends PermissionCollection
 implements Serializable {
// Public Constructors
 public Permissions();
// Public Methods Overriding PermissionCollection
 public void add(Permission permission);
 public java.util.Enumeration<Permission> elements();
 public boolean implies(Permission permission);
}

Name
Policy

Synopsis

 This class
represents a security policy that determines the permissions granted
to code based on its source and signers, and, in Java 1.4 and later,
based on the user on whose behalf that code is running. There is only
a single Policy in effect at any one time. Obtain
the system policy by calling the static getPolicy(
) method. Code that has appropriate permissions can specify
a new system policy by calling setPolicy(). The
refresh() method is a request to a
Policy object to update its state (for example, by
rereading its configuration file). The Policy
class is used primarily by system-level code. Applications should not
need to use this class unless they implement some kind of custom
access-control mechanism.
Prior to Java 1.4, this class provides a mapping from
CodeSource objects to
PermissionCollection objects.

 getPermissions() is
the central Policy method; it evaluates the
Policy for a given CodeSource
and returns an appropriate PermissionCollection
representing the static set of permissions available to code from
that source.
As of Java 1.4, you can use a ProtectionDomain
object to encapsulate a CodeSource and a set of
users on whose behalf the code is running. In this release, there is
a new getPermissions() method that returns a
PermissionsCollection appropriate for the
specified ProtectionDomain. In addition, there is
a new implies() method that dynamically queries
the Policy to see if the specified permission is
granted to the specific ProtectionDomain.
public abstract class Policy {
// Public Constructors
 public Policy();
// Public Class Methods
 public static java.security.Policy getPolicy();
 public static void setPolicy(java.security.Policy p);
// Public Instance Methods
 public abstract PermissionCollection getPermissions(CodeSource codesource);
1.4 public PermissionCollection getPermissions(ProtectionDomain domain);
1.4 public boolean implies(ProtectionDomain domain, Permission permission);
 public abstract void refresh();
}

Name
Principal

Synopsis

 This
interface represents any entity that may serve as a principal in a
cryptographic transaction of any kind. A Principal
may represent an individual, a computer, or an organization, for
example.
public interface Principal {
// Public Instance Methods
 boolean equals(Object another);
 String getName();
 int hashCode();
 String toString();
}

Implementations

 Identity,
javax.security.auth.kerberos.KerberosPrincipal,
javax.security.auth.x500.X500Principal

Passed To

 IdentityScope.getIdentity(),
ProtectionDomain.ProtectionDomain(),
javax.net.ssl.X509ExtendedKeyManager.{chooseEngineClientAlias(
), chooseEngineServerAlias()},
javax.net.ssl.X509KeyManager.{chooseClientAlias(
), chooseServerAlias(),
getClientAliases(), getServerAliases(
)}

Returned By

 java.net.SecureCacheResponse.{getLocalPrincipal(
), getPeerPrincipal()},
java.security.Certificate.{getGuarantor(),
getPrincipal()},
ProtectionDomain.getPrincipals(),
java.security.cert.X509Certificate.{getIssuerDN(
), getSubjectDN()},
java.security.cert.X509CRL.getIssuerDN(),
javax.net.ssl.HandshakeCompletedEvent.{getLocalPrincipal(
), getPeerPrincipal()},
javax.net.ssl.HttpsURLConnection.{getLocalPrincipal(
), getPeerPrincipal()},
javax.net.ssl.SSLSession.{getLocalPrincipal(),
getPeerPrincipal()}

Name
PrivateKey

Synopsis

 This interface represents a private
cryptographic key. It extends the Key interface,
but does not add any new methods. The interface exists in order to
create a strong distinction between private and public keys. See also
PublicKey.
[image: java.security.PrivateKey]

Figure 14-30. java.security.PrivateKey

public interface PrivateKey extends Key {
// Public Constants
 1.2 public static final long serialVersionUID; =6034044314589513430
}

Implementations

 java.security.interfaces.DSAPrivateKey,
java.security.interfaces.ECPrivateKey,
java.security.interfaces.RSAPrivateKey,
javax.crypto.interfaces.DHPrivateKey

Passed To

 KeyPair.KeyPair(),
KeyStore.PrivateKeyEntry.PrivateKeyEntry(),
Signature.initSign(),
SignatureSpi.engineInitSign(),
SignedObject.SignedObject(),
javax.security.auth.x500.X500PrivateCredential.X500PrivateCredential(
)

Returned By

 KeyFactory.generatePrivate(),
KeyFactorySpi.engineGeneratePrivate(),
KeyPair.getPrivate(),
KeyStore.PrivateKeyEntry.getPrivateKey(),
Signer.getPrivateKey(),
javax.net.ssl.X509KeyManager.getPrivateKey(),
javax.security.auth.x500.X500PrivateCredential.getPrivateKey(
)

Name
PrivilegedAction<T>

Synopsis

 This interface
defines a block of code (the
run() method) that is to be executed as
privileged code by the AccessController.doPrivileged(
) method. In Java 5.0 this interface is generic and the
type variable T represents the return type
of the run() method. When privileged code is run
with the doPrivileged() method, the
AccessController looks only at the permissions of
the immediate caller, not the permissions of the entire call stack.
The immediate caller is typically fully trusted system code that has
a full set of permissions, and therefore the privileged code runs
with that full set of permissions, even if the system code is invoked
by untrusted code with no permissions whatsoever.
Privileged code is typically required only when you are writing a
trusted system library (such as a Java extension package) that must
read local files or perform other restricted actions, even when
called by untrusted code. For example, a class that must call
System.loadLibrary() to load native methods
should make the call to loadLibrary() within the
run() method of a
PrivilegedAction. If your privileged code may
throw a checked exception, implement it in the run(
) method of a PrivilegedExceptionAction
instead.
Be very careful when implementing this interface. To minimize the
possibility of security holes, keep the body of the run(
) method as short as possible.
public interface PrivilegedAction<T> {
// Public Instance Methods
 T run();
}

Passed To

 AccessController.doPrivileged(),
java.util.concurrent.Executors.callable(),
javax.security.auth.Subject.{doAs(),
doAsPrivileged()}

Name
PrivilegedActionException

Synopsis

 This
exception class is a wrapper around an arbitrary
Exception thrown by a
PrivilegedExceptionAction executed by the
AccessController.doPrivileged() method. Use
getException() to obtain the wrapped
Exception object. Or, in Java 1.4 and later, use
the more general getCause() method.
[image: java.security.PrivilegedActionException]

Figure 14-31. java.security.PrivilegedActionException

public class PrivilegedActionException extends Exception {
// Public Constructors
 public PrivilegedActionException(Exception exception);
// Public Instance Methods
 public Exception getException();
// Public Methods Overriding Throwable
 1.4 public Throwable getCause();
1.3 public String toString();
}

Thrown By

 AccessController.doPrivileged(),
javax.security.auth.Subject.{doAs(),
doAsPrivileged()}

Name
PrivilegedExceptionAction<T>

Synopsis

 This
interface
is like PrivilegedAction, except that its
run() method may throw an exception. See
PrivilegedAction for details.
public interface PrivilegedExceptionAction<T> {
// Public Instance Methods
 T run() throws Exception;
}

Passed To

 AccessController.doPrivileged(),
java.util.concurrent.Executors.callable(),
javax.security.auth.Subject.{doAs(),
doAsPrivileged()}

Name
ProtectionDomain

Synopsis

 This
class represents a “protection
domain”: the set of permissions associated with code
based on its source, and optionally, the identities of the users on
whose behalf the code is running. Use the

 getProtectionDomain(
) of a Class object to obtain the
ProtectionDomain that the class is part of.
Prior to Java 1.4, a ProtectionDomain simply
associates a CodeSource with the
PermissionCollection granted to code from that
source by a Policy. The set of permissions is
static, and the implies(
)

method checks to see whether the specified
Permission is implied by any of the permissions
granted to this ProtectionDomain.
In Java 1.4 and later, a ProtectionDomain can also
be created with the four-argument constructor which associates a
PermissionCollection with a
ClassLoader and an array of
Principal objects in addition to a
CodeSource. A ProtectionDomain
of this sort represents permisssions granted to code loaded from a
specified source, through a specified class loader, and running under
the auspices of one or more specified principals. When a
ProtectionDomain is instantiated with this
four-argument constructor, the
PermissionCollection is not static, and the
implies() method calls the implies(
) method of the current Policy object
before checking the specified collection of permissions. This allows
security policies to be updated (for example to add new permissions
for specific users) without having to restart long-running programs
such as servers.
public class ProtectionDomain {
// Public Constructors
 public ProtectionDomain(CodeSource codesource,
 PermissionCollection permissions);
1.4 public ProtectionDomain(CodeSource codesource,
 PermissionCollection permissions, ClassLoader classloader,
Principal[] principals);
// Public Instance Methods
 1.4 public final ClassLoader getClassLoader();
 public final CodeSource getCodeSource();
 public final PermissionCollection getPermissions();
1.4 public final Principal[] getPrincipals();
 public boolean implies(Permission permission);
// Public Methods Overriding Object
 public String toString();
}

Passed To

 ClassLoader.defineClass(),
java.lang.instrument.ClassFileTransformer.transform(
), AccessControlContext.AccessControlContext(
), DomainCombiner.combine(),
java.security.Policy.{getPermissions(),
implies()},
javax.security.auth.SubjectDomainCombiner.combine(
)

Returned By

 Class.getProtectionDomain(),
DomainCombiner.combine(),
javax.security.auth.SubjectDomainCombiner.combine(
)

Name
Provider

Synopsis

 This class represents a security
provider. It specifies class names for implementations of one or more
algorithms for message digests, digital signatures, key generation,
key conversion, key management, secure random number generation,
certificate conversion, and algorithm parameter management. The
getName(), getVersion(), and
getInfo() methods return information about the
provider. Provider inherits from
Properties and maintains a mapping of property
names to property values. These name/value pairs specify the
capabilities of the Provider implementation. Each
property name has the form:
 service_type.algorithm_name

The corresponding property value is the name of the class that
implements the named algorithm. For example, say a
Provider defines properties named
“Signature.DSA”,
“MessageDigest.MD5”, and
“KeyStore.JKS”. The values of these
properties are the class names of SignatureSpi,
MessageDigestSpi, and
KeyStoreSpi implementations. Other properties
defined by a Provider are used to provide aliases
for algorithm names. For example, the property
Alg.Alias.MessageDigest.SHA1 might have the value
“SHA”, meaning that the algorithm
name “SHA1” is an alias for
“SHA”.
In Java 5.0, the individual services provided by a
Provider are described by the nested
Service class, and various methods for querying
and setting the Service objects of a
Provider are available.

 Security providers are installed in
an implementation-dependent way. For Sun’s
implementation, the
${java.home}/lib/security/java.security file
specifies the class names of all installed
Provider implementations. An application can also
install its own custom Provider with the
addProvider() and insertProviderAt(
) methods of the Security class. Most
applications do not need to use the Provider class
directly. Typically, only security-provider implementors need to use
the Provider class. Some applications may
explicitly specify the name of a desired Provider
when calling a static getInstance() factory
method, however. Only applications with the most demanding
cryptographic needs require custom providers.
[image: java.security.Provider]

Figure 14-32. java.security.Provider

public abstract class Provider extends java.util.Properties {
// Protected Constructors
 protected Provider(String name, double version, String info);
// Nested Types
 5.0 public static class Service;
// Public Instance Methods
 public String getInfo();
 public String getName();
5.0 public Provider.Service getService(String type,
 String algorithm); synchronized
 5.0 public java.util.Set<Provider.Service> getServices(); synchronized
 public double getVersion();
// Public Methods Overriding Properties
 1.2 public void load(java.io.InputStream inStream) throws java.io.IOException; synchronized
 // Public Methods Overriding Hashtable
 1.2 public void clear(); synchronized
 1.2 public java.util.Set<java.util.Map.Entry<Object,
 Object>> entrySet(); synchronized
 1.2 public java.util.Set<Object> keySet();
1.2 public Object put(Object key, Object value); synchronized
 1.2 public void putAll(java.util.Map<?,?> t); synchronized
 1.2 public Object remove(Object key); synchronized
 public String toString();
1.2 public java.util.Collection<Object> values();
// Protected Instance Methods
 5.0 protected void putService(Provider.Service s); synchronized
 5.0 protected void removeService(Provider.Service s); synchronized
}

Subclasses

 AuthProvider

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Name
Provider.Service

Synopsis
This

 nested class represents a single
service (such as a hash algorithm) provided by a security
Provider. The various methods return information
about the service, including the name of the implementing class.
public static class Provider.Service {
// Public Constructors
 public Service(Provider provider, String type, String algorithm,
 String className, java.util.List<String> aliases,
 java.util.Map<String,String> attributes);
// Public Instance Methods
 public final String getAlgorithm();
 public final String getAttribute(String name);
 public final String getClassName();
 public final Provider getProvider();
 public final String getType();
 public Object newInstance(Object constructorParameter)
 throws NoSuchAlgorithmException;
 public boolean supportsParameter(Object parameter);
// Public Methods Overriding Object
 public String toString();
}

Passed To

 Provider.{putService(), removeService(
)}

Returned By

 Provider.getService()

Name
ProviderException

Synopsis

 Signals that an exception has occurred
inside a cryptographic service provider. Note that
ProviderException extends
RuntimeException and is therefore an unchecked
exception that may be thrown from any method without being declared.
[image: java.security.ProviderException]

Figure 14-33. java.security.ProviderException

public class ProviderException extends RuntimeException {
// Public Constructors
 public ProviderException();
5.0 public ProviderException(Throwable cause);
 public ProviderException(String s);
5.0 public ProviderException(String message, Throwable cause);
}

Name
PublicKey

Synopsis

 This
interface represents a public
cryptographic key. It extends the
Key interface, but does not add any new methods.
The interface exists in order to create a strong distinction between
public and private keys. See also PrivateKey.
[image: java.security.PublicKey]

Figure 14-34. java.security.PublicKey

public interface PublicKey extends Key {
// Public Constants
 1.2 public static final long serialVersionUID; =7187392471159151072
}

Implementations

 java.security.interfaces.DSAPublicKey,
java.security.interfaces.ECPublicKey,
java.security.interfaces.RSAPublicKey,
javax.crypto.interfaces.DHPublicKey

Passed To

 Identity.setPublicKey(),
IdentityScope.getIdentity(),
KeyPair.KeyPair(), Signature.initVerify(
), SignatureSpi.engineInitVerify(),
SignedObject.verify(),
java.security.cert.Certificate.verify(),
java.security.cert.PKIXCertPathBuilderResult.PKIXCertPathBuilderResult(
),
java.security.cert.PKIXCertPathValidatorResult.PKIXCertPathValidatorResult(
), java.security.cert.TrustAnchor.TrustAnchor(
),
java.security.cert.X509CertSelector.setSubjectPublicKey(
), java.security.cert.X509CRL.verify()

Returned By

 java.security.Certificate.getPublicKey(),
Identity.getPublicKey(),
KeyFactory.generatePublic(),
KeyFactorySpi.engineGeneratePublic(),
KeyPair.getPublic(),
java.security.cert.Certificate.getPublicKey(),
java.security.cert.PKIXCertPathValidatorResult.getPublicKey(
), java.security.cert.TrustAnchor.getCAPublicKey(
),
java.security.cert.X509CertSelector.getSubjectPublicKey(
)

Name
SecureClassLoader

Synopsis

 This class adds protected methods to
those defined by ClassLoader. The
defineClass() method is passed the bytes of a
class file as a byte[] or, in Java 5.0, as a
ByteBuffer and a CodeSource
object that represents the source of that class. It calls the
getPermissions() method to obtain a
PermissionCollection for that
CodeSource and then uses the
CodeSource and
PermissionCollection to create a
ProtectionDomain, which is passed to the
defineClass() method of its superclass.
The default implementation of the getPermissions(
) method uses the default Policy to
determine the appropriate set of permissions for a given code source.
The value of SecureClassLoader is that subclasses
can use its defineClass() method to load classes
without having to work explicitly with the
ProtectionDomain and Policy
classes. A subclass of SecureClassLoader can
define its own security policy by overriding getPermissions(
). In Java 1.2 and later, any application that implements a
custom class loader should do so by extending
SecureClassLoader, instead of subclassing
ClassLoader directly. Most applications can use
java.net.URLClassLoader, however, and never have
to subclass this class.
[image: java.security.SecureClassLoader]

Figure 14-35. java.security.SecureClassLoader

public class SecureClassLoader extends ClassLoader {
// Protected Constructors
 protected SecureClassLoader();
 protected SecureClassLoader(ClassLoader parent);
// Protected Instance Methods
 5.0 protected final Class<?> defineClass(String name,
 java.nio.ByteBuffer b, CodeSource cs);
 protected final Class<?> defineClass(String name, byte[] b, int off,
 int len, CodeSource cs);
 protected PermissionCollection getPermissions(CodeSource codesource);
}

Subclasses

 java.net.URLClassLoader

Name
SecureRandom

Synopsis

 This class generates cryptographic-quality
pseudorandom bytes. Although SecureRandom defines
public constructors, the preferred technique for obtaining a
SecureRandom object is to call one of the static

 getInstance()
factory methods, specifying the desired pseudorandom
number-generation algorithm, and, optionally, the desired provider of
that algorithm. Sun’s implementation of Java ships
with an algorithm named “SHA1PRNG”
in the “SUN” provider.

 Once you have obtained a
SecureRandom object, call nextBytes(
) to fill an array with pseudorandom bytes. You can also
call any of the methods defined by the Random
superclass to obtain random numbers. The first time one of these
methods is called, the SecureRandom() method uses
its generateSeed() method to seed itself. If you
have a source of random or very high-quality pseudorandom bytes, you
may provide your own seed by calling setSeed().
Repeated calls to setSeed() augment the existing
seed instead of replacing it. You can also call
generateSeed() to generate seeds for use with
other pseudorandom generators. generateSeed() may
use a different algorithm than nextBytes() and
may produce higher-quality randomness, usually at the expense of
increased computation time.
[image: java.security.SecureRandom]

Figure 14-36. java.security.SecureRandom

public class SecureRandom extends java.util.Random {
// Public Constructors
 public SecureRandom();
 public SecureRandom(byte[] seed);
// Protected Constructors
 1.2 protected SecureRandom(SecureRandomSpi secureRandomSpi, Provider provider);
// Public Class Methods
 1.2 public static SecureRandom getInstance(String algorithm)
 throws NoSuchAlgorithmException;
1.2 public static SecureRandom getInstance(String algorithm, String provider)
 throws NoSuchAlgorithmException, NoSuchProviderException;
1.4 public static SecureRandom getInstance(String algorithm, Provider provider)
 throws NoSuchAlgorithmException;
 public static byte[] getSeed(int numBytes);
// Public Instance Methods
 1.2 public byte[] generateSeed(int numBytes);
5.0 public String getAlgorithm(); default:"NativePRNG"
 1.2 public final Provider getProvider();
 public void setSeed(byte[] seed); synchronized
 // Public Methods Overriding Random
 public void nextBytes(byte[] bytes); synchronized
 public void setSeed(long seed);
// Protected Methods Overriding Random
 protected final int next(int numBits);
}

Passed To
Too many methods to list.

Type Of

 SignatureSpi.appRandom

Name
SecureRandomSpi

Synopsis

 This abstract class defines the
service-provider interface for SecureRandom. A
security provider must implement a concrete subclass of this class
for each pseudorandom number-generation algorithm it supports.
Applications never need to use or subclass this class.
[image: java.security.SecureRandomSpi]

Figure 14-37. java.security.SecureRandomSpi

public abstract class SecureRandomSpi implements Serializable {
// Public Constructors
 public SecureRandomSpi();
// Protected Instance Methods
 protected abstract byte[] engineGenerateSeed(int numBytes);
 protected abstract void engineNextBytes(byte[] bytes);
 protected abstract void engineSetSeed(byte[] seed);
}

Passed To

 SecureRandom.SecureRandom()

Name
Security

Synopsis

 This class defines static methods
both for managing the list of installed security providers and for
reading and setting the values of various properties used by the Java
security system. It is essentially an interface to the
${java.home}/lib/security/java.security
properties file that is included in Sun’s
implementation of Java. Use getProperty() and
setProperty() to query or set the value of
security properties whose default values are stored in that file.
One of the important features of the
java.security properties file is that it
specifies a set of security provider implementations and a preference
order in which they are to be used. getProviders(
) returns an array of Provider objects,
in the order they are specified in the file. In Java 1.3 and later,
versions of this method exist that only return providers that
implement the algorithm or algorithms specified in a
String or Map object. You can
also look up a single named Provider object by
name with getProvider(
)
 . Note that a provider name is the
string returned by getName() method of the
Provider class, not the classname of the
Provider.
You can alter the set of providers installed by default from the
java.security file. Use addProvider(
)
 to add a new
Provider object to the list, placing it at the end
of the list, with a lower preference than all other providers. Use
insertProviderAt(
)
 to insert a provider into the list
at a specified position. Note that provider preference positions are
1-based. Specify a position of 1 to make the provider the most
preferred one. Finally, use removeProvider(
)
 to remove a named provider.
In Java 1.4 and later, the getAlgorithms method
returns a Set that includes the names of all
supported algorithms (from any installed provider) for the specified
“service”. A service name specifies
the category of security service you are querying. It is a
case-insensitive value that has the same name as one of the key
service classes from this package or security-related
packages—for example,
“Signature”,
“MessageDigest”, and
“KeyStore” (from this package) or
“Cipher” (from the
javax.crypto package).
public final class Security {
// No Constructor
 // Public Class Methods
 public static int addProvider(Provider provider);
1.4 public static java.util.Set<String> getAlgorithms(String serviceName);
 public static String getProperty(String key);
 public static Provider getProvider(String name);
 public static Provider[] getProviders();
1.3 public static Provider[] getProviders(java.util.Map<String,String> filter);
1.3 public static Provider[] getProviders(String filter);
 public static int insertProviderAt(Provider provider,
 int position); synchronized
 public static void removeProvider(String name); synchronized
 public static void setProperty(String key, String datum);
// Deprecated Public Methods
 # public static String getAlgorithmProperty(String algName, String propName);
}

Name
SecurityPermission

Synopsis

 This class is a
Permission subclass that represents access to
various methods of the Policy,
Security, Provider,
Signer, and Identity objects.
SecurityPermission objects are defined by a name
only; they do not use a list of actions. Important
SecurityPermission names are
“getPolicy” and
“setPolicy”, which represent the
ability query and set the system security policy by invoking the
Policy.getPolicy()
 and Policy.setPolicy(
)
 methods. Applications do not typically
need to use this class.
[image: java.security.SecurityPermission]

Figure 14-38. java.security.SecurityPermission

public final class SecurityPermission extends BasicPermission {
// Public Constructors
 public SecurityPermission(String name);
 public SecurityPermission(String name, String actions);
}

Name
Signature

Synopsis

 This class computes or verifies a
digital signature. Obtain a Signature object by
calling one of the static
 getInstance()
factory methods and specifying the desired digital signature
algorithm and, optionally, the desired provider of that algorithm. A
digital signature is essentially a message
digest encrypted by a public-key encryption algorithm. Thus, to
specify a digital signature algorithm, you must specify both the
digest algorithm and the encryption algorithm. The only algorithm
supported by the default “SUN”
provider is “SHA1withDSA”.

 Once you
have obtained a Signature object, you must
initialize it before you can create or verify a digital signature. To
initialize a digital signature for creation, call initSign(
) and specify the private key to be used to create the
signature. To initialize a signature for verification, call
initVerify() and specify the public key of the
signer. Once the Signature object has been
initialized, call update() one or more times to
specify the data to be signed or verified. Prior to Java 5.0, the
data must be specified as an array of bytes. In Java 5.0 and later,
you can also pass a ByteBuffer to update(
), and this facilitates the use of the
Signature class with the
java.nio package.
Finally, to create a digital signature, call

 sign(), passing
a byte array into which the signature is stored. Or, pass the bytes
of the digital signature to
 verify(), which
returns true if the signature is valid or
false otherwise. After calling either
sign() or verify(), the
Signature object is reset internally and can be
used to create or verify another signature.
[image: java.security.Signature]

Figure 14-39. java.security.Signature

public abstract class Signature extends SignatureSpi {
// Protected Constructors
 protected Signature(String algorithm);
// Protected Constants
 protected static final int SIGN; =2
 protected static final int UNINITIALIZED; =0
 protected static final int VERIFY; =3
 // Public Class Methods
 public static Signature getInstance(String algorithm)
 throws NoSuchAlgorithmException;
1.4 public static Signature getInstance(String algorithm, Provider provider)
 throws NoSuchAlgorithmException;
 public static Signature getInstance(String algorithm, String provider)
throws NoSuchAlgorithmException, NoSuchProviderException;
// Public Instance Methods
 public final String getAlgorithm();
1.4 public final AlgorithmParameters getParameters();
1.2 public final Provider getProvider();
 public final void initSign(PrivateKey privateKey)
 throws InvalidKeyException;
1.2 public final void initSign(PrivateKey privateKey, SecureRandom random)
 throws InvalidKeyException;
1.3 public final void initVerify(java.security.cert.Certificate certificate)
 throws InvalidKeyException;
 public final void initVerify(PublicKey publicKey)
 throws InvalidKeyException;
1.2 public final void setParameter(java.security.spec.
 AlgorithmParameterSpec params)
 throws InvalidAlgorithmParameterException;
 public final byte[] sign() throws SignatureException;
1.2 public final int sign(byte[] outbuf, int offset, int len) throws SignatureException;
5.0 public final void update(java.nio.ByteBuffer data) throws SignatureException;
 public final void update(byte b) throws SignatureException;
 public final void update(byte[] data) throws SignatureException;
 public final void update(byte[] data, int off, int len)
 throws SignatureException;
 public final boolean verify(byte[] signature) throws SignatureException;
1.4 public final boolean verify(byte[] signature, int offset, int length)
 throws SignatureException;
// Public Methods Overriding SignatureSpi
 public Object clone() throws CloneNotSupportedException;
// Public Methods Overriding Object
 public String toString();
// Protected Instance Fields
 protected int state;
// Deprecated Public Methods
 # public final Object getParameter(String param)
 throws InvalidParameterException;
public final void setParameter(String param, Object value)
 throws InvalidParameterException;
}

Passed To

 SignedObject.{SignedObject(), verify(
)}

Name
SignatureException

Synopsis

 Signals
a problem while creating or verifying a digital signature.
[image: java.security.SignatureException]

Figure 14-40. java.security.SignatureException

public class SignatureException extends GeneralSecurityException {
// Public Constructors
 public SignatureException();
5.0 public SignatureException(Throwable cause);
 public SignatureException(String msg);
5.0 public SignatureException(String message, Throwable cause);
}

Thrown By
Too many methods to list.

Name
SignatureSpi

Synopsis

 This abstract class defines the
service-provider
interface for Signature. A security provider must
implement a concrete subclass of this class for each digital
signature algorithm it supports. Applications never need to use or
subclass this class.
public abstract class SignatureSpi {
// Public Constructors
 public SignatureSpi();
// Public Methods Overriding Object
 public Object clone() throws CloneNotSupportedException;
// Protected Instance Methods
 1.4 protected AlgorithmParameters engineGetParameters();
 protected abstract void engineInitSign(PrivateKey privateKey)
 throws InvalidKeyException;
 protected void engineInitSign(PrivateKey privateKey, SecureRandom random)
 throws InvalidKeyException;
 protected abstract void engineInitVerify(PublicKey publicKey)
 throws InvalidKeyException;
 protected void engineSetParameter(java.security.spec.
 AlgorithmParameterSpec params)
 throws InvalidAlgorithmParameterException;
 protected abstract byte[] engineSign() throws SignatureException;
 protected int engineSign(byte[] outbuf, int offset, int len)
 throws SignatureException;
5.0 protected void engineUpdate(java.nio.ByteBuffer input);
 protected abstract void engineUpdate(byte b) throws SignatureException;
 protected abstract void engineUpdate(byte[] b, int off, int len)
 throws SignatureException;
 protected abstract boolean engineVerify(byte[] sigBytes)
 throws SignatureException;
1.4 protected boolean engineVerify(byte[] sigBytes, int offset, int length)
 throws SignatureException;
// Protected Instance Fields
 protected SecureRandom appRandom;
// Deprecated Protected Methods
 # protected abstract Object engineGetParameter(String param)
 throws InvalidParameterException;
protected abstract void engineSetParameter(String param, Object value)
 throws InvalidParameterException;
}

Subclasses

 Signature

Name
SignedObject

Synopsis
This
 class applies a digital signature to any
serializable Java object. Create a
SignedObject by specifying the object to be
signed, the PrivateKey to use for the signature,
and the Signature object to create the signature.
The SignedObject() constructor serializes the
specified object into an array of bytes and creates a digital
signature for those bytes.

 After
creation, a SignedObject is itself typically
serialized for storage or transmission to another Java thread or
process. Once the SignedObject is reconstituted,
the integrity of the object it contains can be verified by calling
verify() and supplying the
PublicKey of the signer and a
Signature that performs the verification. Whether
or not verification is performed or is successful,
getObject() can be called to deserialize and
return the wrapped object.
[image: java.security.SignedObject]

Figure 14-41. java.security.SignedObject

public final class SignedObject implements Serializable {
// Public Constructors
 public SignedObject(Serializable object, PrivateKey signingKey,
 Signature signingEngine)
 throws java.io.IOException, InvalidKeyException, SignatureException;
// Public Instance Methods
 public String getAlgorithm();
 public Object getObject() throws java.io.IOException,
 ClassNotFoundException;
 public byte[] getSignature();
 public boolean verify(PublicKey verificationKey,
 Signature verificationEngine)
 throws InvalidKeyException, SignatureException;
}

Name
Signer

Synopsis

 This deprecated class was used in
Java 1.1 to represent an entity or Principal that
has an associated PrivateKey that enables it to
create digital signatures. As of Java 1.2, this class and the related
Identity and IdentityScope
classes have been replaced by KeyStore and
java.security.cert.Certificate. See also
Identity.
[image: java.security.Signer]

Figure 14-42. java.security.Signer

public abstract class Signer extends Identity {
// Public Constructors
 public Signer(String name);
 public Signer(String name, IdentityScope scope)
 throws KeyManagementException;
// Protected Constructors
 protected Signer();
// Public Instance Methods
 public PrivateKey getPrivateKey();
 public final void setKeyPair(KeyPair pair)
 throws InvalidParameterException, KeyException;
// Public Methods Overriding Identity
 public String toString();
}

Name
Timestamp

Synopsis

 An instance of this class is an immutable
signed timestamp. getTimestamp(
)

returns the timestamp as a java.util.Date.
getSignerCertPath() returns the certificate path
of the Timestamping Authority (TSA) that signed the object.
Timestamp objects are used by the
CodeSigner class.
[image: java.security.Timestamp]

Figure 14-43. java.security.Timestamp

public final class Timestamp implements Serializable {
// Public Constructors
 public Timestamp(java.util.Date timestamp,
 java.security.cert.CertPath signerCertPath);
// Public Instance Methods
 public java.security.cert.CertPath getSignerCertPath();
 public java.util.Date getTimestamp();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Passed To

 CodeSigner.CodeSigner()

Returned By

 CodeSigner.getTimestamp()

Name
UnrecoverableEntryException

Synopsis
An
 exception
of this type is thrown if a
KeyStore.Entry

cannot be recovered from a KeyStore.
[image: java.security.UnrecoverableEntryException]

Figure 14-44. java.security.UnrecoverableEntryException

public class UnrecoverableEntryException extends GeneralSecurityException {
// Public Constructors
 public UnrecoverableEntryException();
 public UnrecoverableEntryException(String msg);
}

Thrown By

 KeyStore.getEntry(),
KeyStoreSpi.engineGetEntry()

Name
UnrecoverableKeyException

Synopsis

 This
exception is thrown if a Key cannot be retrieved
from a KeyStore. This commonly occurs when an
incorrect password is used.
[image: java.security.UnrecoverableKeyException]

Figure 14-45. java.security.UnrecoverableKeyException

public class UnrecoverableKeyException extends GeneralSecurityException {
// Public Constructors
 public UnrecoverableKeyException();
 public UnrecoverableKeyException(String msg);
}

Thrown By

 KeyStore.getKey(),
KeyStoreSpi.engineGetKey(),
javax.net.ssl.KeyManagerFactory.init(),
javax.net.ssl.KeyManagerFactorySpi.engineInit()

Name
UnresolvedPermission

Synopsis

 This class is used internally to provide
a mechanism for delayed resolution of permissions (such as those
whose implementation is in an external JAR file that has not been
loaded yet). An UnresolvedPermission holds a
representation of a Permission object that can
later be used to create the actual Permission
object. Java 5.0 adds methods to obtain details about the unresolved
permission. Applications never need to use this class.
[image: java.security.UnresolvedPermission]

Figure 14-46. java.security.UnresolvedPermission

public final class UnresolvedPermission extends Permission
 implements Serializable {
// Public Constructors
 public UnresolvedPermission(String type, String name, String actions,
 java.security.cert.Certificate[] certs);
// Public Instance Methods
 5.0 public String getUnresolvedActions();
5.0 public java.security.cert.Certificate[] getUnresolvedCerts();
5.0 public String getUnresolvedName();
5.0 public String getUnresolvedType();
// Public Methods Overriding Permission
 public boolean equals(Object obj);
 public String getActions();
 public int hashCode();
 public boolean implies(Permission p); constant
 public PermissionCollection newPermissionCollection();
 public String toString();
}

Name
Package java.security.cert

Synopsis

 The java.security.cert
package contains classes for working with
identity
certificates, certificate chains (also known as certification paths)
and certificate revocation lists (CRLs). It defines generic
Certificate and CRL classes and
also X509Certificate and
X509CRL classes that provide full support for
standard X.509 certificates and CRLs. The CertPath
class represents a certificate chain, and
CertPathValidator provides the ability to validate
a certificate chain. The CertificateFactory class
serves as a certificate parser, providing the ability to convert a
stream of bytes (or the base64 encoding of those bytes) into a
Certificate, a CertPath or a
CRL object. In addition to the
algorithm-independent API of CertificateFactory,
this package also defines low-level algorithm-specific classes for
working with certificate chains using the PKIX standards.
This package replaces the deprecated
java.security.Certificate interface, and it also
replaces the deprecated javax.security.cert
package used by early versions of the JAAS API before
javax.security.auth and its subpackages were added
to the core Java platform.

Interfaces
public interface CertPathBuilderResult extends Cloneable;
public interface CertPathParameters extends Cloneable;
public interface CertPathValidatorResult extends Cloneable;
public interface CertSelector extends Cloneable;
public interface CertStoreParameters extends Cloneable;
public interface CRLSelector extends Cloneable;
public interface PolicyNode;
public interface X509Extension;

Classes
public abstract class Certificate implements Serializable;
 public abstract class X509Certificate extends Certificate
 implements X509Extension;
public class CertificateFactory;
public abstract class CertificateFactorySpi;
public abstract class CertPath implements Serializable;
public class CertPathBuilder;
public abstract class CertPathBuilderSpi;
public class CertPathValidator;
public abstract class CertPathValidatorSpi;
public class CertStore;
public abstract class CertStoreSpi;
public class CollectionCertStoreParameters implements CertStoreParameters;
public abstract class CRL;
 public abstract class X509CRL extends CRL implements X509Extension;
public class LDAPCertStoreParameters implements CertStoreParameters;
public abstract class PKIXCertPathChecker implements Cloneable;
public class PKIXCertPathValidatorResult implements CertPathValidatorResult;
 public class PKIXCertPathBuilderResult extends PKIXCertPathValidatorResult
 implements CertPathBuilderResult;
public class PKIXParameters implements CertPathParameters;
 public class PKIXBuilderParameters extends PKIXParameters;
public class PolicyQualifierInfo;
public class TrustAnchor;
public class X509CertSelector implements CertSelector;
public abstract class X509CRLEntry implements X509Extension;
public class X509CRLSelector implements CRLSelector;

Protected Nested Types
protected static class Certificate.CertificateRep implements Serializable;
protected static class CertPath.CertPathRep implements Serializable;

Exceptions
public class CertificateException extends java.security.GeneralSecurityException;
 public class CertificateEncodingException extends CertificateException;
 public class CertificateExpiredException extends CertificateException;
 public class CertificateNotYetValidException extends CertificateException;
 public class CertificateParsingException extends CertificateException;
public class CertPathBuilderException
extends java.security.GeneralSecurityException;
public class CertPathValidatorException
extends java.security.GeneralSecurityException;
public class CertStoreException extends java.security.GeneralSecurityException;
public class CRLException extends java.security.GeneralSecurityException;

Name
Certificate

Synopsis

 This abstract class represents an
public-key (or identity) certificate. A
certificate is an object that contains the name
of an entity and a public key for that entity. Certificates are
issued by, and bear the digital signature of, a (presumably trusted)
third party, typically a
 certificate authority
(CA). By issuing and signing the certificate, the CA is certifying
that, based on their research, the entity named on the certificate
really is who they say they are and that the public key in the
certificate really does belong to that entity. Sometimes the signer
of a certificate is not a trusted CA, and the certificate is
accompanied by the signer’s certificate which may be
signed by a CA, or by another untrusted intermediary who provides his
or her own certificate. A “chain”
of such certificates is known as a “certification
path”. See CertPath for further
details.

 Use a
CertificateFactory to parse a stream of bytes into
a Certificate object; getEncoded(
) reverses this process. Use verify()
to verify the digital signature of the entity that issued the
certificate. If the signature cannot be verified, the certificate
should not be trusted. Call getPublicKey() to
obtain the java.security.PublicKey of the subject
of the certificate. Note that this class does not define a method for
obtaining the Principal that is associated with
the PublicKey. That functionality is dependent on
the type of the certificate. See
X509Certificate.getSubjectDN(), for example.
Do not confuse this class with the
java.security.Certificate interface that was
defined in Java 1.1 and has been deprecated in Java 1.2.
[image: java.security.cert.Certificate]

Figure 14-47. java.security.cert.Certificate

public abstract class Certificate implements Serializable {
// Protected Constructors
 protected Certificate(String type);
// Nested Types
 1.3 protected static class CertificateRep implements Serializable;
// Public Instance Methods
 public abstract byte[] getEncoded() throws CertificateEncodingException;
 public abstract java.security.PublicKey getPublicKey();
 public final String getType();
 public abstract void verify(java.security.PublicKey key)
 throws CertificateException, java.security.NoSuchAlgorithmException,
 java.security.InvalidKeyException, java.security.NoSuchProviderException, java.security.SignatureException;
 public abstract void verify(java.security.PublicKey key, String sigProvider)
 throws CertificateException, java.security.NoSuchAlgorithmException,
 java.security.InvalidKeyException, java.security.NoSuchProviderException, java.security.SignatureException;
// Public Methods Overriding Object
 public boolean equals(Object other);
 public int hashCode();
 public abstract String toString();
// Protected Instance Methods
 1.3 protected Object writeReplace() throws java.io.ObjectStreamException;
}

Subclasses

 X509Certificate

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Name
Certificate.CertificateRep

Synopsis

 This protected inner class
provides an alternate representation of a certificate that can be
used for serialization purposes by the writeReplace(
) method of some Certificate
implementations. Applications do not typically need this class.
protected static class Certificate.CertificateRep implements Serializable {
// Protected Constructors
 protected CertificateRep(String type, byte[] data);
// Protected Instance Methods
 protected Object readResolve() throws java.io.ObjectStreamException;
}

Name
CertificateEncodingException

Synopsis
Signals an error while attempting to encode a certificate.
[image: java.security.cert.CertificateEncodingException]

Figure 14-48. java.security.cert.CertificateEncodingException

public class CertificateEncodingException extends CertificateException {
// Public Constructors
 public CertificateEncodingException();
5.0 public CertificateEncodingException(Throwable cause);
 public CertificateEncodingException(String message);
5.0 public CertificateEncodingException(String message, Throwable cause);
}

Thrown By

 java.security.cert.Certificate.getEncoded(),
CertPath.getEncoded(),
X509Certificate.getTBSCertificate()

Name
CertificateException

Synopsis

 This
class is the superclass of several more specific exception types that
may be thrown when working with certificates.
[image: java.security.cert.CertificateException]

Figure 14-49. java.security.cert.CertificateException

public class CertificateException
 extends java.security.GeneralSecurityException {
// Public Constructors
 public CertificateException();
5.0 public CertificateException(Throwable cause);
 public CertificateException(String msg);
5.0 public CertificateException(String message, Throwable cause);
}

Subclasses

 CertificateEncodingException,
CertificateExpiredException,
CertificateNotYetValidException,
CertificateParsingException

Thrown By
Too many methods to list.

Name
CertificateExpiredException

Synopsis

 Signals
that a certificate has expired or will have expired by a specified
date.
[image: java.security.cert.CertificateExpiredException]

Figure 14-50. java.security.cert.CertificateExpiredException

public class CertificateExpiredException extends CertificateException {
// Public Constructors
 public CertificateExpiredException();
 public CertificateExpiredException(String message);
}

Thrown By

 X509Certificate.checkValidity()

Name
CertificateFactory

Synopsis

 This class defines methods for parsing
certificates, certificate chains (certification paths) and

 certificate
revocation lists (CRLs) from byte streams. Obtain a
CertificateFactory by calling one of the static
getInstance() factory methods and specifying the
type of certificate or CRL to be parsed, and, optionally, the desired
service provider to perform the parsing. The default
“SUN” provider defines only a
single “X.509” certificate type, so
you typically obtain a CertificateFactory with
this code:
CertificateFactory certFactory = CertificateFactory.getInstance("X.509");
Once you have obtained a CertificateFactory for
the desired type of certificate, call

 generateCertificate() to
parse a Certificate from a specified byte stream,
or call
 generateCertificates() to
parse a group of unrelated certificates (i.e. certificates that do
not form a certificate chain) from a stream and return them as a
Collection of Certificate
objects. Similarly, call
 generateCRL() to parse a
single CRL object from a stream, and call generateCRLs(
) to parse a Collection of
CRL objects from the stream. These
CertificateFactory methods read to the end of the
specified stream. If the stream supports
 mark() and

 reset(
), however, the CertificateFactory
resets the stream to the position after the end of the last
certificate or CRL read. If you specified a certificate type of
“X.509”, the
Certificate and CRL objects
returned by a CertificateFactory can be cast
safely to X509Certificate and
X509CRL. A certificate factory for X.509
certificates can parse certificates encoded in binary or printable
hexadecimal form. If the certificate is in hexadecimal form, it must
begin with the string “——-BEGIN
CERTIFICATE——-” and end with the string
“——-END
CERTIFICATE——-”.
The generateCertPath(
)
 methods return a CertPath
object representing a certificate chain. These methods can create a
CertPath object from a List of
Certificate object, or by reading the chained
certificates from a stream. Specify the
encoding of the certificate chain by
passing the name of the encoding standard to
generateCertPath(). The default
“SUN” provider supports the
“PKCS7” and the
“PkiPath” encodings.
getCertPathEncoding(
)
 returns an Iterator of the
encodings supported by the current provider. The first encoding
returned by the iterator is the default used when no encoding is
explicitly specified.
public class CertificateFactory {
// Protected Constructors
 protected CertificateFactory(CertificateFactorySpi certFacSpi,
 java.security.Provider provider, String type);
// Public Class Methods
 public static final CertificateFactory getInstance(String type)
 throws CertificateException;
1.4 public static final CertificateFactory getInstance(String type,
 java.security.Provider provider)
 throws CertificateException;
 public static final CertificateFactory getInstance(String type,
 String provider)
 throws CertificateException, java.security.NoSuchProviderException;
// Public Instance Methods
 public final java.security.cert.Certificate generateCertificate
 (java.io.InputStream inStream)
 throws CertificateException;
 public final java.util.Collection<? extends java.security.cert.Certificate>
 generateCertificates(java.io.InputStream inStream)
 throws CertificateException;
1.4 public final CertPath generateCertPath(java.util.List<?
 extends java.security.cert.Certificate> certificates)
 throws CertificateException;
1.4 public final CertPath generateCertPath(java.io.InputStream inStream)
 throws CertificateException;
1.4 public final CertPath generateCertPath(java.io.InputStream inStream,
 String encoding)
 throws CertificateException;
 public final CRL generateCRL(java.io.InputStream inStream)
 throws CRLException;
 public final java.util.Collection<? extends CRL> generateCRLs
 (java.io.InputStream inStream)
 throws CRLException;
1.4 public final java.util.Iterator<String> getCertPathEncodings();
 public final java.security.Provider getProvider();
 public final String getType();
}

Name
CertificateFactorySpi

Synopsis

 This abstract class defines the service
provider interface, or SPI, for the
CertificateFactory class. A security provider must
implement this class for each type of certificate it wishes to
support. Applications never need to use or subclass this class.
public abstract class CertificateFactorySpi {
// Public Constructors
 public CertificateFactorySpi();
// Public Instance Methods
 public abstract java.security.cert.Certificate engineGenerateCertificate
 (java.io.InputStream inStream)
 throws CertificateException;
 public abstract java.util.Collection<? extends java.security.cert.Certificate>
 engineGenerateCertificates(java.io.InputStream inStream)
 throws CertificateException;
1.4 public CertPath engineGenerateCertPath(java.util.List<?
 extends java.security.cert.Certificate> certificates)
 throws CertificateException;
1.4 public CertPath engineGenerateCertPath(java.io.InputStream inStream)
 throws CertificateException;
1.4 public CertPath engineGenerateCertPath(java.io.InputStream inStream,
 String encoding) throws CertificateException;
 public abstract CRL engineGenerateCRL(java.io.InputStream inStream)
 throws CRLException;
 public abstract java.util.Collection<? extends CRL> engineGenerateCRLs
 (java.io.InputStream inStream)
 throws CRLException;
1.4 public java.util.Iterator<String> engineGetCertPathEncodings();
}

Passed To

 CertificateFactory.CertificateFactory()

Name
CertificateNotYetValidException

Synopsis

 Signals
that a certificate is not yet valid or will not yet be valid on a
specified date.
[image: java.security.cert.CertificateNotYetValidException]

Figure 14-51. java.security.cert.CertificateNotYetValidException

public class CertificateNotYetValidException extends CertificateException {
// Public Constructors
 public CertificateNotYetValidException();
 public CertificateNotYetValidException(String message);
}

Thrown By

 X509Certificate.checkValidity()

Name
CertificateParsingException

Synopsis

 Signals
an error or other problem while parsing a certificate.
[image: java.security.cert.CertificateParsingException]

Figure 14-52. java.security.cert.CertificateParsingException

public class CertificateParsingException extends CertificateException {
// Public Constructors
 public CertificateParsingException();
5.0 public CertificateParsingException(Throwable cause);
 public CertificateParsingException(String message);
5.0 public CertificateParsingException(String message, Throwable cause);
}

Thrown By

 X509Certificate.{getExtendedKeyUsage(),
getIssuerAlternativeNames(),
getSubjectAlternativeNames()}

Name
CertPath

Synopsis
A CertPath
 is a immutable sequence or

 chain
of certificates that establishes a “certification
path” from an unknown “end
entity” to a known and trusted Certificate Authority
or "trust anchor”. Use a
CertPathValidator to validate a certificate chain
and establish trust in the public key presented in the certificate of
the end entity.

 getType()
 returns
the type of the certificates in the CertPath. For
X.509 certificate chains (the only type supported by the default
“SUN” provider) this method returns
“X.509”. getCertificates(
)
 returns
a java.util.List object that contains the
Certificate objects that comprise the chain. For
X.509 chains, the list contains X509Certificate
objects. Also, for X.509 certificate paths, the
List returned by getCertificates(
) starts with the certificate of of the end entity, and
ends with a certificate signed by the trust anchor. The signer of any
certificate but the last must be the subject of the next certificate
in the List. If the end entity presents a
certificate that is directly signed by a trust anchor (which is a not
uncommon occurrence) then the List returned by
getCertificates() consists of only that single
certificate. Note that the list of certificates does not include the
certificate of the trust anchor. The public keys of trusted CAs must
be known by the system in advance. In Sun’s JDK
implementation, the public-key certificates of trusted CAs are stored
in the file jre/lib/security/cacerts.

 CertPath objects can be created with a
CertificateFactory, or at a lower level with a
CertPathBuilder object. A
CertificateFactory can parse or decode a
CertPath object from a binary stream. The
getEncoded()

methods reverse the process and encode a CertPath
into an array of bytes. getEncodings(
)
 returns the encodings supported for
a CertPath. The first returned encoding name is
the default one, but you can use any supported encoding by using the
one-argument version of getEncoded(). The default
“SUN” provider supports encodings
named “PKCS7” and
“PkiPath”.

 CertPath objects are immutable as is the
List object returned by getCertificates(
) and the Certificate objects contained
in the list. Furthermore, all CertPath methods are
threadsafe.
[image: java.security.cert.CertPath]

Figure 14-53. java.security.cert.CertPath

public abstract class CertPath implements Serializable {
// Protected Constructors
 protected CertPath(String type);
// Nested Types
 protected static class CertPathRep implements Serializable;
// Public Instance Methods
 public abstract java.util.List<? extends java.security.cert.Certificate>
 getCertificates();
 public abstract byte[] getEncoded() throws CertificateEncodingException;
 public abstract byte[] getEncoded(String encoding)
 throws CertificateEncodingException;
 public abstract java.util.Iterator<String> getEncodings();
 public String getType();
// Public Methods Overriding Object
 public boolean equals(Object other);
 public int hashCode();
 public String toString();
// Protected Instance Methods
 protected Object writeReplace() throws java.io.ObjectStreamException;
}

Passed To

 java.security.CodeSigner.CodeSigner(),
java.security.Timestamp.Timestamp(),
CertPathValidator.validate(),
CertPathValidatorException.CertPathValidatorException(
), CertPathValidatorSpi.engineValidate(
),
PKIXCertPathBuilderResult.PKIXCertPathBuilderResult(
)

Returned By

 java.security.CodeSigner.getSignerCertPath(),
java.security.Timestamp.getSignerCertPath(),
CertificateFactory.generateCertPath(),
CertificateFactorySpi.engineGenerateCertPath(),
CertPathBuilderResult.getCertPath(),
CertPathValidatorException.getCertPath(),
PKIXCertPathBuilderResult.getCertPath()

Name
CertPath.CertPathRep

Synopsis
This
protected
inner class defines an implementation-independent representation of a
CertPath for serialization purposes. Applications
never need to use this class.
protected static class CertPath.CertPathRep implements Serializable {
// Protected Constructors
 protected CertPathRep(String type, byte[] data);
// Protected Instance Methods
 protected Object readResolve() throws java.io.ObjectStreamException;
}

Name
CertPathBuilder

Synopsis

 CertPathBuilder

attempts to build a certification path from a specified certificate
to a trust anchor. Unlike the
CertificateFactory.generateCertPath() method,
which might be used by a server to parse a certificate chain
presented to it by a client, this class is used to create a new
certificate chain, and might be used by a client that needs to send a
certificate chain to a server. The CertPathBuilder
API is provider-based, and is algorithm independent, although the use
of any algorithms other than the
“PKIX” standards (which work with
X.509 certificate chains) require appropriate external
implementations of CertPathParameters and
CertPathBuilderResult.
Obtain a CertPathBuilder object by calling one of
the static getInstance() methods, specifying the
desired algorithm and, optionally, the desired provider. The
“PKIX” algorithm is the only one
supported by the default “SUN”
provider, and is the only one that has the required
algorithm-specific classes defined by this package. Once you have a
CertPathBuilder, you create a
CertPath object by passing a
CertPathParameters object to the build(
)
 method.
CertPathParameters is a marker interfaces that
defines no method of its own, so you must use an algorithm-specific
implementation such as PKIXBuilderParameters to
supply the information required to build a
CertPath. The build() method
returns a CertPathBuilderResult object. Use the
getCertPath() method of this returned object to
obtain the CertPath that was built. The
algorithm-specific implementation
PKIXCertPathBuilderResult has additional methods
that return further algorithm-specific results.
public class CertPathBuilder {
// Protected Constructors
 protected CertPathBuilder(CertPathBuilderSpi builderSpi,
 java.security.Provider provider, String algorithm);
// Public Class Methods
 public static final String getDefaultType();
 public static CertPathBuilder getInstance(String algorithm)
 throws java.security.NoSuchAlgorithmException;
 public static CertPathBuilder getInstance(String algorithm, String provider)
 throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
 public static CertPathBuilder getInstance(String algorithm,
 java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException;
// Public Instance Methods
 public final CertPathBuilderResult build(CertPathParameters params)
 throws CertPathBuilderException,
 java.security.InvalidAlgorithmParameterException;
 public final String getAlgorithm();
 public final java.security.Provider getProvider();
}

Name
CertPathBuilderException

Synopsis

 Signal
a problem while building a certification path with
CertPathBuilder.
[image: java.security.cert.CertPathBuilderException]

Figure 14-54. java.security.cert.CertPathBuilderException

public class CertPathBuilderException
 extends java.security.GeneralSecurityException {
// Public Constructors
 public CertPathBuilderException();
 public CertPathBuilderException(Throwable cause);
 public CertPathBuilderException(String msg);
 public CertPathBuilderException(String msg, Throwable cause);
}

Thrown By

 CertPathBuilder.build(),
CertPathBuilderSpi.engineBuild()

Name
CertPathBuilderResult

Synopsis
An
object
of this type is returned by the build() method of
a CertPathBuilder. The getCertPath(
) method returns the CertPath object
that was built; this method will never return
null. The algorithm-specific
PKIXCertPathBuilderResult implementation defines
other methods to return additional information about the path that
was built.
[image: java.security.cert.CertPathBuilderResult]

Figure 14-55. java.security.cert.CertPathBuilderResult

public interface CertPathBuilderResult extends Cloneable {
// Public Instance Methods
 Object clone();
 CertPath getCertPath();
}

Implementations

 PKIXCertPathBuilderResult

Returned By

 CertPathBuilder.build(),
CertPathBuilderSpi.engineBuild()

Name
CertPathBuilderSpi

Synopsis
This
 abstract
class defines the Service Provider Interface for the
CertPathBuilder. Security providers must implement
this interface, but applications never need to use it.
public abstract class CertPathBuilderSpi {
// Public Constructors
 public CertPathBuilderSpi();
// Public Instance Methods
 public abstract CertPathBuilderResult engineBuild(CertPathParameters params)
 throws CertPathBuilderException,
 java.security.InvalidAlgorithmParameterException;
}

Passed To

 CertPathBuilder.CertPathBuilder()

Name
CertPathParameters

Synopsis

 CertPathParamters

 is a marker interface for objects that
hold parameters (such as the set of trust anchors) for validating or
building a certification path with
CertPathValidator and
CertPathBuilder. It defines no methods of its own,
but requires that all implementations include a working
clone()
 method. You must use an algorithm-specific
implementation of this interface, such as
PKIXParameters or
PKIXBuilderParameters when validating or building
a CertPath, and it is rarely useful to work with
this interface directly.
[image: java.security.cert.CertPathParameters]

Figure 14-56. java.security.cert.CertPathParameters

public interface CertPathParameters extends Cloneable {
// Public Instance Methods
 Object clone();
}

Implementations

 PKIXParameters

Passed To

 CertPathBuilder.build(),
CertPathBuilderSpi.engineBuild(),
CertPathValidator.validate(),
CertPathValidatorSpi.engineValidate(),
javax.net.ssl.CertPathTrustManagerParameters.CertPathTrustManagerParameters(
)

Returned By

 javax.net.ssl.CertPathTrustManagerParameters.getParameters(
)

Name
CertPathValidator

Synopsis
This
class
validates certificate chains, establishing a chain of trust from the
end entity to a trust anchor, and thereby establishing the validity
of the public key presented in the end entity’s
certificate. The CertPathValidator is
provider-based and algorithm-independent. To obtain a
CertPathValidator instance, call one of the static
getInstance() methods specifying the name of the
desired validation algorithm and, optionally, the provider to use.
The “PKIX” algorithm for validating
X.509 certificates is the only one supported by the default
“SUN” provider.
Once you have a CertPathValidator object, you can
use it to validate certificate chains by passing the
CertPath object to be validated to the
validate()

method along with a CertPathParameters object that
specifies valid trust anchors and other validation parameters.
CertPathParameters is simply a marker interface,
and you must use an application-specific implementation such as
PKIXParameters. If validation fails, the
validate() method throws a
CertPathValidatorException which may include the
index in the chain of the certificate that failed to validate.
Otherwise, if validation is successful, the validate(
) method returns a
CertPathValidatorResult. If you are interested in
the details of the validation (such as the trust anchor that was used
or the public key of the end entity), you may cast this returned
value to an algorithm-specific subtype such as
PKIXCertPathValidatorResult and use its methods to
find out more about the result.
public class CertPathValidator {
// Protected Constructors
 protected CertPathValidator(CertPathValidatorSpi validatorSpi,
 java.security.Provider provider, String algorithm);
// Public Class Methods
 public static final String getDefaultType();
 public static CertPathValidator getInstance(String algorithm)
 throws java.security.NoSuchAlgorithmException;
 public static CertPathValidator getInstance(String algorithm,
 String provider)
 throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
 public static CertPathValidator getInstance(String algorithm,
 java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException;
// Public Instance Methods
 public final String getAlgorithm();
 public final java.security.Provider getProvider();
 public final CertPathValidatorResult validate(CertPath certPath,
 CertPathParameters params)
 throws CertPathValidatorException,
 java.security.InvalidAlgorithmParameterException;
}

Name
CertPathValidatorException

Synopsis

 Signals
a problem while validating a certificate chain with a
CertPathValidator. getCertPath(
) returns the CertPath object that was
being validated, and getIndex() returns the index
within the path of the certificate that caused the exception (or -1
if that information is not available).
[image: java.security.cert.CertPathValidatorException]

Figure 14-57. java.security.cert.CertPathValidatorException

public class CertPathValidatorException
 extends java.security.GeneralSecurityException {
// Public Constructors
 public CertPathValidatorException();
 public CertPathValidatorException(Throwable cause);
 public CertPathValidatorException(String msg);
 public CertPathValidatorException(String msg, Throwable cause);
 public CertPathValidatorException(String msg, Throwable cause,
 CertPath certPath, int index);
// Public Instance Methods
 public CertPath getCertPath(); default:null
 public int getIndex(); default:-1
}

Thrown By

 CertPathValidator.validate(),
CertPathValidatorSpi.engineValidate(),
PKIXCertPathChecker.{check(), init(
)}

Name
CertPathValidatorResult

Synopsis

 This
marker interface defines the type of the object returned by the
validate() method of a
CertPathValidator, but does not define any of the
contents of that object, other to specify that it must be
Cloneable. If you want any details about the
results of validating a CertPath, you must cast
the return value of validate() to an
algorithm-specific types implementation of this interface, such as
PKIXCertPathValidatorResult.
[image: java.security.cert.CertPathValidatorResult]

Figure 14-58. java.security.cert.CertPathValidatorResult

public interface CertPathValidatorResult extends Cloneable {
// Public Instance Methods
 Object clone();
}

Implementations

 PKIXCertPathValidatorResult

Returned By

 CertPathValidator.validate(),
CertPathValidatorSpi.engineValidate()

Name
CertPathValidatorSpi

Synopsis

 This
abstract class defines the Service Provider Interface for the
CertPathValidator class. Security providers must
implement this interface, but applications never need to use it.
public abstract class CertPathValidatorSpi {
// Public Constructors
 public CertPathValidatorSpi();
// Public Instance Methods
 public abstract CertPathValidatorResult engineValidate(CertPath certPath,
 CertPathParameters params)
 throws CertPathValidatorException,
 java.security.InvalidAlgorithmParameterException;
}

Passed To

 CertPathValidator.CertPathValidator()

Name
CertSelector

Synopsis

 This interface
defines an API for determining whether a
Certificate meets some criteria. Implementations
are used to specify critera by which a certificate or certificates
should be selected from a CertStore object. The
match()

method should examine the Certificate it is passed
and return true if it
“matches” based on whatever
criteria the implementation defines. See
X509CertSelector for an implementation that works
with X.509 certificates. See CRLSelector for a
similar interface for use when selecting CRL
objects from a CertStore.
[image: java.security.cert.CertSelector]

Figure 14-59. java.security.cert.CertSelector

public interface CertSelector extends Cloneable {
// Public Instance Methods
 Object clone();
 boolean match(java.security.cert.Certificate cert);
}

Implementations

 X509CertSelector

Passed To

 CertStore.getCertificates(),
CertStoreSpi.engineGetCertificates(),
PKIXBuilderParameters.PKIXBuilderParameters(),
PKIXParameters.setTargetCertConstraints()

Returned By

 PKIXParameters.getTargetCertConstraints()

Name
CertStore

Synopsis
A CertStore

 object
is a repository for Certificate and
CRL objects. You may query a
CertStore for a
java.util.Collection of
Certificate or CRL objects that
match specified criteria by passing a CertSelector
or CRLSelector to getCertificates(
) or getCRLs(). A
CertStore is conceptually similar to a
java.security.KeyStore, but there are significant
differences in how the two classes are intended to be used. A
KeyStore is designed to store a relatively small
local collection of private keys and trusted certificates. A
CertStore, however, may represent a large public
database (in the form of an LDAP server, for examle) of untrusted
certificates.
Obtain a CertStore object by calling a
getInstance()
 method
and specifying the name of the desired CertStore
type and a CertStoreParameters object that is
specific to that type. Optionally, you may also specify the desired
provider of your CertStore object. The default
“SUN” provider defines two
CertStore types, named
“LDAP” and
“Collection”, which you should use
with LDAPCertStoreParameters and
CollectionCertStoreParameters objects,
respectively. The “LDAP” type
obtains certificates and CRLs from a network LDAP server, and the
“Collection” type obtains them from
a a specified Collection object.
The CertStore class may be directly useful to
applications that want to query a LDAP server for certificates. It is
also used by PKIXParameters.addCertStore() and
PKIXParameters.setCertStores() to specify a
source of certificates to by used by the
CertPathBuilder and
CertPathValidator classes.
All public methods of CertStore are threadsafe.
public class CertStore {
// Protected Constructors
 protected CertStore(CertStoreSpi storeSpi, java.security.Provider provider,
 String type, CertStoreParameters params);
// Public Class Methods
 public static final String getDefaultType();
 public static CertStore getInstance(String type, CertStoreParameters params)
 throws java.security.InvalidAlgorithmParameterException,
 java.security.NoSuchAlgorithmException;
 public static CertStore getInstance(String type, CertStoreParameters params,
 String provider)
 throws java.security.InvalidAlgorithmParameterException,
 java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
 public static CertStore getInstance(String type, CertStoreParameters params,
 java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException,
 java.security.InvalidAlgorithmParameterException;
// Public Instance Methods
 public final java.util.Collection<? extends java.security.cert.Certificate>
 getCertificates(CertSelector selector)
 throws CertStoreException;
 public final CertStoreParameters getCertStoreParameters();
 public final java.util.Collection<? extends CRL> getCRLs
 (CRLSelector selector)
 throws CertStoreException;
 public final java.security.Provider getProvider();
 public final String getType();
}

Passed To

 PKIXParameters.addCertStore()

Name
CertStoreException

Synopsis

 Signals a
problem while querying a CertStore for
certificates or CRLs.
[image: java.security.cert.CertStoreException]

Figure 14-60. java.security.cert.CertStoreException

public class CertStoreException extends java.security.GeneralSecurityException {
// Public Constructors
 public CertStoreException();
 public CertStoreException(Throwable cause);
 public CertStoreException(String msg);
 public CertStoreException(String msg, Throwable cause);
}

Thrown By

 CertStore.{getCertificates(), getCRLs(
)}, CertStoreSpi.{engineGetCertificates(
), engineGetCRLs()}

Name
CertStoreParameters

Synopsis
This marker interface defines the type, but
not the content, of the parameters object that is passed to the
CertStore.getInstance() methods. It does not
define any methods of its own and simply requires that all
implementing classes be cloneable. Use one of the concrete
implementations of this class for CertStore
objects of type “LDAP” and
“Collection”.
[image: java.security.cert.CertStoreParameters]

Figure 14-61. java.security.cert.CertStoreParameters

public interface CertStoreParameters extends Cloneable {
// Public Instance Methods
 Object clone();
}

Implementations

 CollectionCertStoreParameters,
LDAPCertStoreParameters

Passed To

 CertStore.{CertStore(), getInstance(
)}, CertStoreSpi.CertStoreSpi()

Returned By

 CertStore.getCertStoreParameters()

Name
CertStoreSpi

Synopsis

 This
abstract class defines the Service Provider Interface for the
CertStore class. Security providers must implement
this interface, but applications never need to use it.
public abstract class CertStoreSpi {
// Public Constructors
 public CertStoreSpi(CertStoreParameters params)
 throws java.security.InvalidAlgorithmParameterException;
// Public Instance Methods
 public abstract java.util.Collection<? extends java.security.cert.
 Certificate> engineGetCertificates(CertSelector selector)
 throws CertStoreException;
 public abstract java.util.Collection<? extends CRL>
 engineGetCRLs(CRLSelector selector)
 throws CertStoreException;
}

Passed To

 CertStore.CertStore()

Name
CollectionCertStoreParameters

Synopsis
This

 concrete
implementation of CertStoreParameters is used when
creating a CertStore object of type
“Collection”. Pass the
Collection of Certificate and
CRL objects to be searched by the
CertStore to the constructor method.
[image: java.security.cert.CollectionCertStoreParameters]

Figure 14-62. java.security.cert.CollectionCertStoreParameters

public class CollectionCertStoreParameters implements CertStoreParameters {
// Public Constructors
 public CollectionCertStoreParameters();
 public CollectionCertStoreParameters(java.util.Collection<?> collection);
// Public Instance Methods
 public java.util.Collection<?> getCollection();
// Methods Implementing CertStoreParameters
 public Object clone();
// Public Methods Overriding Object
 public String toString();
}

Name
CRL

Synopsis

 This abstract class represents a
certificate revocation list (CRL). A CRL is an
object issued by a certificate authority (or other certificate
signer) that lists certificates that have been revoked, meaning that
they are now invalid and should be rejected. Use a
CertificateFactory to parse a
CRL from a byte stream. Use the
isRevoked() method to test whether a specified
Certificate is listed on the
CRL. Note that type-specific
CRL subclasses, such as
X509CRL, may provide access to substantially more
information about the revocation list.
public abstract class CRL {
// Protected Constructors
 protected CRL(String type);
// Public Instance Methods
 public final String getType();
 public abstract boolean isRevoked(java.security.cert.Certificate cert);
// Public Methods Overriding Object
 public abstract String toString();
}

Subclasses

 X509CRL

Passed To

 CRLSelector.match(),
X509CRLSelector.match()

Returned By

 CertificateFactory.generateCRL(),
CertificateFactorySpi.engineGenerateCRL()

Name
CRLException

Synopsis

 Signals
an error or other problem while working with a CRL.
[image: java.security.cert.CRLException]

Figure 14-63. java.security.cert.CRLException

public class CRLException extends java.security.GeneralSecurityException {
// Public Constructors
 public CRLException();
5.0 public CRLException(Throwable cause);
 public CRLException(String message);
5.0 public CRLException(String message, Throwable cause);
}

Thrown By

 CertificateFactory.{generateCRL(),
generateCRLs()},
CertificateFactorySpi.{engineGenerateCRL(),
engineGenerateCRLs()},
X509CRL.{getEncoded(), getTBSCertList(
), verify()},
X509CRLEntry.getEncoded()

Name
CRLSelector

Synopsis

 This
interface defines an API for determining whether a
CRL object meets some criteria. Implementations
are used to specify critera by which a CRL objects
should be selected from a CertStore. The
match()

method should examine the CRL it is passed and
return true if it
“matches” based on whatever
criteria the implementation defines. See
X509CRLSelector for an implementation that works
with X.509 certificates. See CertSelector for a
similar interface for use when selecting
Certificate objects from a
CertStore.
[image: java.security.cert.CRLSelector]

Figure 14-64. java.security.cert.CRLSelector

public interface CRLSelector extends Cloneable {
// Public Instance Methods
 Object clone();
 boolean match(CRL crl);
}

Implementations

 X509CRLSelector

Passed To

 CertStore.getCRLs(),
CertStoreSpi.engineGetCRLs()

Name
LDAPCertStoreParameters

Synopsis

 This
concrete implementation of CertStoreParameters is
used when creating a CertStore object of type
“LDAP”. It specifies the hostname
of the LDAP server to connect to and, optionally, the port to connect
on.
[image: java.security.cert.LDAPCertStoreParameters]

Figure 14-65. java.security.cert.LDAPCertStoreParameters

public class LDAPCertStoreParameters implements CertStoreParameters {
// Public Constructors
 public LDAPCertStoreParameters();
 public LDAPCertStoreParameters(String serverName);
 public LDAPCertStoreParameters(String serverName, int port);
// Public Instance Methods
 public int getPort(); default:389
 public String getServerName(); default:"localhost"
 // Methods Implementing CertStoreParameters
 public Object clone();
// Public Methods Overriding Object
 public String toString();
}

Name
PKIXBuilderParameters

Synopsis

 Instances of this class are used to
specify parameters to the build(
)
 method of a
CertPathBuilder object. These parameters must
include the two mandatory ones passed to the constructors. The first
is a source of trust anchors, which may be supplied as a
Set of TrustAnchor objects or
as a java.security.KeyStore object. The second
required parameter is a CertSelector object
(typically an X509CertSelector) that specifies the
selection criteria for the certificate that is to have the
certification path built. In addition to these parameters that are
passed to the constructor, this class also inherits a number of
methods for setting other parameters, and defines
setMaxPathLength(
)
 for specifying the maximum length of the
certificate chain that is built.
[image: java.security.cert.PKIXBuilderParameters]

Figure 14-66. java.security.cert.PKIXBuilderParameters

public class PKIXBuilderParameters extends PKIXParameters {
// Public Constructors
 public PKIXBuilderParameters(java.security.KeyStore keystore,
 CertSelector targetConstraints)
 throws java.security.KeyStoreException,
 java.security.InvalidAlgorithmParameterException;
 public PKIXBuilderParameters(java.util.Set<TrustAnchor> trustAnchors,
 CertSelector targetConstraints)
 throws java.security.InvalidAlgorithmParameterException;
// Public Instance Methods
 public int getMaxPathLength();
 public void setMaxPathLength(int maxPathLength);
// Public Methods Overriding PKIXParameters
 public String toString();
}

Name
PKIXCertPathBuilderResult

Synopsis

 An instance of this class is retured by
the build() method of a
CertPathBuilder created for the
“PKIX” algorithm.
getCertPath() returns the
CertPath object that was built, and methods
inherited from the superclass return additional information such as
the public key of the subject of the certificate chain and the trust
anchor that terminates the chain.
[image: java.security.cert.PKIXCertPathBuilderResult]

Figure 14-67. java.security.cert.PKIXCertPathBuilderResult

public class PKIXCertPathBuilderResult extends PKIXCertPathValidatorResult
 implements CertPathBuilderResult {
// Public Constructors
 public PKIXCertPathBuilderResult(CertPath certPath, TrustAnchor trustAnchor,
 PolicyNode policyTree,
 java.security.PublicKey subjectPublicKey);
// Methods Implementing CertPathBuilderResult
 public CertPath getCertPath();
// Public Methods Overriding PKIXCertPathValidatorResult
 public String toString();
}

Name
PKIXCertPathChecker

Synopsis
This abstract class defines an extension mechanism for the
PKIX certification path building and
validation algorithms. Most applications will never need to use this
class. You may pass one or more
PKIXCertPathChecker objects to the
setCertPathCheckers(
)

 or addCertPathChecker()
methods of the PKIXParameters or
PKIXBuilderParameters object that is passed to the
build() or validate() methods
of a CertPathBuilder or
CertPathValidator. The check()
method of all PKIXCertPathChecker objects
registered in this way will be invoked for each certificate
considered in the building or validation algorithms. check(
) should throw a
CertPathValidatorException if a certificate does
not the implemented test. The init(
)
 method is invoked to tell the checker
to reset its internal state and to notify it of the direction in
which certificates will be presented. Checkers are not required to
support the forward direction, and should return
false from isForwardCheckingSupported(
) if they do not.
[image: java.security.cert.PKIXCertPathChecker]

Figure 14-68. java.security.cert.PKIXCertPathChecker

public abstract class PKIXCertPathChecker implements Cloneable {
// Protected Constructors
 protected PKIXCertPathChecker();
// Public Instance Methods
 public abstract void check(java.security.cert.Certificate cert,
 java.util.Collection<String> unresolvedCritExts)
 throws CertPathValidatorException;
 public abstract java.util.Set<String> getSupportedExtensions();
 public abstract void init(boolean forward) throws CertPathValidatorException;
 public abstract boolean isForwardCheckingSupported();
// Public Methods Overriding Object
 public Object clone();
}

Passed To

 PKIXParameters.addCertPathChecker()

Name
PKIXCertPathValidatorResult

Synopsis
An instance of this class is returned upon
successful validation by the validate(
)

method of a CertPathValidator created for the
“PKIX” algorithm.
getPublicKey() returns the validated public key
of the subject of the certificate chain. getTrustAnchor(
)

 returns the
TrustAnchor that anchors the chain.
[image: java.security.cert.PKIXCertPathValidatorResult]

Figure 14-69. java.security.cert.PKIXCertPathValidatorResult

public class PKIXCertPathValidatorResult implements CertPathValidatorResult {
// Public Constructors
 public PKIXCertPathValidatorResult(TrustAnchor trustAnchor,
 PolicyNode policyTree,
 java.security.PublicKey subjectPublicKey);
// Public Instance Methods
 public PolicyNode getPolicyTree();
 public java.security.PublicKey getPublicKey();
 public TrustAnchor getTrustAnchor();
// Methods Implementing CertPathValidatorResult
 public Object clone();
// Public Methods Overriding Object
 public String toString();
}

Subclasses

 PKIXCertPathBuilderResult

Name
PKIXParameters

Synopsis
This implementation of CertPathParameters defines
parameters that are passed to the validate()
method of a PKIX CertPathValidator
and defines a subset of the parameters that are passed to the
build() method of a PKIX
CertPathBuilder. A full understanding of this
class requires a detailed discussion of the PKIX certification path
building and validation algorithms, which is beyond the scope of this
book. However, some of the more important parameters are described
here.
When you create a PKIXParameters object, you must
specify which trust
anchors are to be used. You can do this by passing a
Set of TrustAnchor objects to
the constructor, or by passing a KeyStore
containing trust anchor keys to the constructor. Once a
PKIXParameters object is created, you can modify
the set of TrustAnchor objects with
setTrustAnchors(
)
 . Specify a Set of
CertStore objects to be searched for certificates
with setCertStores(
)

or add a single CertStore to the set with addCertStore(
)
 .
If certificate validity is to be checked for some
date and time other than the
current time, use setDate() to specify this date.
[image: java.security.cert.PKIXParameters]

Figure 14-70. java.security.cert.PKIXParameters

public class PKIXParameters implements CertPathParameters {
// Public Constructors
 public PKIXParameters(java.security.KeyStore keystore)
 throws java.security.KeyStoreException,
 java.security.InvalidAlgorithmParameterException;
 public PKIXParameters(java.util.Set<TrustAnchor> trustAnchors)
throws java.security.InvalidAlgorithmParameterException;
// Public Instance Methods
 public void addCertPathChecker(PKIXCertPathChecker checker);
 public void addCertStore(CertStore store);
 public java.util.List<PKIXCertPathChecker> getCertPathCheckers();
 public java.util.List<CertStore> getCertStores();
 public java.util.Date getDate();
 public java.util.Set<String> getInitialPolicies();
 public boolean getPolicyQualifiersRejected();
 public String getSigProvider();
 public CertSelector getTargetCertConstraints();
 public java.util.Set<TrustAnchor> getTrustAnchors();
 public boolean isAnyPolicyInhibited();
 public boolean isExplicitPolicyRequired();
 public boolean isPolicyMappingInhibited();
 public boolean isRevocationEnabled();
 public void setAnyPolicyInhibited(boolean val);
 public void setCertPathCheckers(java.util.List<PKIXCertPathChecker>
 checkers);
 public void setCertStores(java.util.List<CertStore> stores);
 public void setDate(java.util.Date date);
 public void setExplicitPolicyRequired(boolean val);
 public void setInitialPolicies(java.util.Set<String> initialPolicies);
 public void setPolicyMappingInhibited(boolean val);
 public void setPolicyQualifiersRejected(boolean qualifiersRejected);
 public void setRevocationEnabled(boolean val);
 public void setSigProvider(String sigProvider);
 public void setTargetCertConstraints(CertSelector selector);
 public void setTrustAnchors(java.util.Set<TrustAnchor> trustAnchors)
throws java.security.InvalidAlgorithmParameterException;
// Methods Implementing CertPathParameters
 public Object clone();
// Public Methods Overriding Object
 public String toString();
}

Subclasses

 PKIXBuilderParameters

Name
PolicyNode

Synopsis

 This class
represents a node in the policy tree created by the PKIX
certification path validation algorithm. A discussion of X.509 policy
extensions and their use in the PKIX certification path algorithms is
beyond the scope of this reference.
public interface PolicyNode {
// Public Instance Methods
 java.util.Iterator<? extends PolicyNode> getChildren();
 int getDepth();
 java.util.Set<String> getExpectedPolicies();
 PolicyNode getParent();
 java.util.Set<? extends PolicyQualifierInfo> getPolicyQualifiers();
 String getValidPolicy();
 boolean isCritical();
}

Passed To

 PKIXCertPathBuilderResult.PKIXCertPathBuilderResult(
),
PKIXCertPathValidatorResult.PKIXCertPathValidatorResult(
)

Returned By

 PKIXCertPathValidatorResult.getPolicyTree()

Name
PolicyQualifierInfo

Synopsis
This class is a low-level representation of a
policy qualifier information from a X.509 certificate extension. A
discussion of X.509 policy extensions and their use in the PKIX
certification path algorithms is beyond the scope of this reference.
public class PolicyQualifierInfo {
// Public Constructors
 public PolicyQualifierInfo(byte[] encoded) throws java.io.IOException;
// Public Instance Methods
 public final byte[] getEncoded();
 public final byte[] getPolicyQualifier();
 public final String getPolicyQualifierId();
// Public Methods Overriding Object
 public String toString();
}

Name
TrustAnchor

Synopsis
A TrustAnchor
 represents a certificate authority that
is trusted to “anchor” a
certificate chain. A TrustAnchor object includes
the X.500 distinguished name of the CA and the public key of the CA.
You may specify the name and key explictly or by passing an
X509Certificate to the TrustAnchor(
) constructor. If you do not pass a certificate, you can
specify the CA name as a String or as an
X500Principal object from the
javax.security.auth.x500 package. All forms of the
TrustAnchor() constructor also allow you to
specify a byte array containing a binary representation of a
“Name Constraints” extension. The
format and meaning of such name constraints is beyond the scope of
this reference, and most applications can simply specify
null for this constructor argument.
public class TrustAnchor {
// Public Constructors
 public TrustAnchor(X509Certificate trustedCert, byte[] nameConstraints);
5.0 public TrustAnchor(javax.security.auth.x500.X500Principal caPrincipal,
 java.security.PublicKey pubKey,
 byte[] nameConstraints);
 public TrustAnchor(String caName, java.security.PublicKey pubKey,
 byte[] nameConstraints);
// Public Instance Methods
 5.0 public final javax.security.auth.x500.X500Principal getCA();
 public final String getCAName();
 public final java.security.PublicKey getCAPublicKey();
 public final byte[] getNameConstraints();
 public final X509Certificate getTrustedCert();
// Public Methods Overriding Object
 public String toString();
}

Passed To

 PKIXCertPathBuilderResult.PKIXCertPathBuilderResult(
),
PKIXCertPathValidatorResult.PKIXCertPathValidatorResult(
)

Returned By

 PKIXCertPathValidatorResult.getTrustAnchor()

Name
X509Certificate

Synopsis

 This class represents an X.509
certificate. Its various methods provide complete access to the
contents of the certificate. A full understanding of this class
requires detailed knowledge of the X.509 standard which is beyond the
scope of this reference. Some of the more important methods are
described here, however. getSubjectDN() returns
the Principal to whom this certificate applies,
and the inherited getPublicKey() method returns
the PublicKey that the certificate associates with
that Principal. getIssuerDN()
returns a Principal that represents the issuer of
the certificate, and if you know the public key for that
Principal, you can pass it to the

 verify() method to
check the digital signature of the issuer and ensure that the
certificate is not forged. checkValidity() checks
whether the certificate has expired or has not yet gone into effect.
Note that verify() and getPublicKey(
) are inherited from Certificate.

 Obtain an X509Certificate
object by creating a CertificateFactory for
certificate type “X.509” and then
using generateCertificate() to parse an X.509
certificate from a stream of bytes. Finally, cast the
Certificate returned by this method to an
X509Certificate.
[image: java.security.cert.X509Certificate]

Figure 14-71. java.security.cert.X509Certificate

public abstract class X509Certificate extends java.security.cert.Certificate
 implements X509Extension {
// Protected Constructors
 protected X509Certificate();
// Public Instance Methods
 public abstract void checkValidity()
 throws CertificateExpiredException, CertificateNotYetValidException;
 public abstract void checkValidity(java.util.Date date)
 throws CertificateExpiredException, CertificateNotYetValidException;
 public abstract int getBasicConstraints();
1.4 public java.util.List<String> getExtendedKeyUsage()
 throws CertificateParsingException;
1.4 public java.util.Collection<java.util.List<?>> getIssuerAlternativeNames()
 throws CertificateParsingException;
 public abstract java.security.Principal getIssuerDN();
 public abstract boolean[] getIssuerUniqueID();
1.4 public javax.security.auth.x500.X500Principal getIssuerX500Principal();
 public abstract boolean[] getKeyUsage();
 public abstract java.util.Date getNotAfter();
 public abstract java.util.Date getNotBefore();
 public abstract java.math.BigInteger getSerialNumber();
 public abstract String getSigAlgName();
 public abstract String getSigAlgOID();
 public abstract byte[] getSigAlgParams();
 public abstract byte[] getSignature();
1.4 public java.util.Collection<java.util.List<?>> getSubjectAlternativeNames()
 throws CertificateParsingException;
 public abstract java.security.Principal getSubjectDN();
 public abstract boolean[] getSubjectUniqueID();
1.4 public javax.security.auth.x500.X500Principal getSubjectX500Principal();
 public abstract byte[] getTBSCertificate()
 throws CertificateEncodingException;
 public abstract int getVersion();
}

Passed To

 TrustAnchor.TrustAnchor(),
X509CertSelector.setCertificate(),
X509CRL.getRevokedCertificate(),
X509CRLSelector.setCertificateChecking(),
javax.net.ssl.X509TrustManager.{checkClientTrusted(
), checkServerTrusted()},
javax.security.auth.x500.X500PrivateCredential.X500PrivateCredential(
)

Returned By

 TrustAnchor.getTrustedCert(),
X509CertSelector.getCertificate(),
X509CRLSelector.getCertificateChecking(),
javax.net.ssl.X509KeyManager.getCertificateChain(
),
javax.net.ssl.X509TrustManager.getAcceptedIssuers(
),
javax.security.auth.x500.X500PrivateCredential.getCertificate(
)

Name
X509CertSelector

Synopsis
This class is a CertSelector for X.509
certificates. Its various set methods allow you to
specify values for various certificate fields and extensions. The
match() method will only return
true for certificates that have the specified
values for those fields and extensions. A full understanding of this
class requires detailed knowledge of the X.509 standard which is
beyond the scope of this reference. Some of the more important
methods are described here, however.
When you want to match exactly one specific certificate, simply pass
the desired X509Certificate to
setCertificate(). Constrain the subject of the
certificate with setSubject(),
setSubjectAlternativeNames(), of
addSubjectAlternativeName(). Constrain the issuer
of the certificate with setIssuer(). Constrain
the public key of the certificate with setPublicKey(
). Constrain the certificate to be valid on a given date
with setCertificateValid(). And specify a
specific issuer’s serial number for the certificate
with setSerialNumber().
Java 5.0 adds methods for identifying certificate subjects and
issuers with
javax.security.auth.x500.X500Principal objects
instead of with strings.
[image: java.security.cert.X509CertSelector]

Figure 14-72. java.security.cert.X509CertSelector

public class X509CertSelector implements CertSelector {
// Public Constructors
 public X509CertSelector();
// Public Instance Methods
 public void addPathToName(int type, String name)
 throws java.io.IOException;
 public void addPathToName(int type, byte[] name)
 throws java.io.IOException;
 public void addSubjectAlternativeName(int type, byte[] name)
 throws java.io.IOException;
 public void addSubjectAlternativeName(int type, String name)
 throws java.io.IOException;
 public byte[] getAuthorityKeyIdentifier(); default:null
 public int getBasicConstraints(); default:-1
 public X509Certificate getCertificate(); default:null
 public java.util.Date getCertificateValid(); default:null
 public java.util.Set<String> getExtendedKeyUsage(); default:null
 5.0 public javax.security.auth.x500.X500Principal getIssuer(); default:null
 public byte[] getIssuerAsBytes()
 throws java.io.IOException; default:null
 public String getIssuerAsString(); default:null
 public boolean[] getKeyUsage(); default:null
 public boolean getMatchAllSubjectAltNames(); default:true
 public byte[] getNameConstraints(); default:null
 public java.util.Collection<java.util.List<?>>
 getPathToNames(); default:null
 public java.util.Set<String> getPolicy(); default:null
 public java.util.Date getPrivateKeyValid(); default:null
 public java.math.BigInteger getSerialNumber(); default:null
 5.0 public javax.security.auth.x500.X500Principal
 getSubject(); default:null
 public java.util.Collection<java.util.List<?>>
 getSubjectAlternativeNames(); default:null
 public byte[] getSubjectAsBytes()
 throws java.io.IOException; default:null
 public String getSubjectAsString(); default:null
 public byte[] getSubjectKeyIdentifier(); default:null
 public java.security.PublicKey getSubjectPublicKey(); default:null
 public String getSubjectPublicKeyAlgID(); default:null
 public void setAuthorityKeyIdentifier(byte[] authorityKeyID);
 public void setBasicConstraints(int minMaxPathLen);
 public void setCertificate(X509Certificate cert);
 public void setCertificateValid(java.util.Date certValid);
 public void setExtendedKeyUsage(java.util.Set<String> keyPurposeSet)
 throws java.io.IOException;
5.0 public void setIssuer(javax.security.auth.x500.X500Principal issuer);
 public void setIssuer(byte[] issuerDN) throws java.io.IOException;
 public void setIssuer(String issuerDN) throws java.io.IOException;
 public void setKeyUsage(boolean[] keyUsage);
 public void setMatchAllSubjectAltNames(boolean matchAllNames);
 public void setNameConstraints(byte[] bytes) throws java.io.IOException;
 public void setPathToNames(java.util.Collection<java.util.List<?>> names)
 throws java.io.IOException;
 public void setPolicy(java.util.Set<String> certPolicySet) throws java.io.IOException;
 public void setPrivateKeyValid(java.util.Date privateKeyValid);
 public void setSerialNumber(java.math.BigInteger serial);
 public void setSubject(String subjectDN) throws java.io.IOException;
5.0 public void setSubject(javax.security.auth.x500.X500Principal subject);
 public void setSubject(byte[] subjectDN) throws java.io.IOException;
 public void setSubjectAlternativeNames(java.util.Collection<
 java.util.List<?>> names) throws java.io.IOException;
 public void setSubjectKeyIdentifier(byte[] subjectKeyID);
 public void setSubjectPublicKey(byte[] key) throws java.io.IOException;
 public void setSubjectPublicKey(java.security.PublicKey key);
 public void setSubjectPublicKeyAlgID(String oid) throws java.io.IOException;
// Methods Implementing CertSelector
 public Object clone();
 public boolean match(java.security.cert.Certificate cert);
// Public Methods Overriding Object
 public String toString();
}

Name
X509CRL

Synopsis

 This class represents an X.509 CRL,
which consists primarily of a set of X509CRLEntry
objects. The various methods of this class provide access to the full
details of the CRL, and require a complete understanding of the X.509
standard, which is beyond the scope of this reference. Use
verify() to check the digital signature of the
CRL to ensure that it does indeed originate from the the source it
specifies. Use the inherited isRevoked() method
to determine whether a given certificate has been revoked. If you are
curious about the revocation date for a revoked certificate, obtain
the X509CRLEntry for that certificate by calling
getRevokedCertificate(). Call
getThisUpdate() to obtain the date this CRL was
issued. Use getNextUpdate() to find if the CRL
has been superseded by a newer version. Use
getRevokedCertificates() to obtain a
Set of all X509CRLEntry objects
from this CRL.

 Obtain an
X509CRL object by creating a
CertificateFactory for certificate type
“X.509” and then using the
generateCRL() to parse an X.509 CRL from a stream
of bytes. Finally, cast the CRL returned by this
method to an X509CRL.
[image: java.security.cert.X509CRL]

Figure 14-73. java.security.cert.X509CRL

public abstract class X509CRL extends CRL implements X509Extension {
// Protected Constructors
 protected X509CRL();
// Public Instance Methods
 public abstract byte[] getEncoded() throws CRLException;
 public abstract java.security.Principal getIssuerDN();
1.4 public javax.security.auth.x500.X500Principal getIssuerX500Principal();
 public abstract java.util.Date getNextUpdate();
5.0 public X509CRLEntry getRevokedCertificate(X509Certificate certificate);
 public abstract X509CRLEntry
 getRevokedCertificate(java.math.BigInteger serialNumber);
 public abstract java.util.Set<? extends X509CRLEntry>
 getRevokedCertificates();
 public abstract String getSigAlgName();
 public abstract String getSigAlgOID();
 public abstract byte[] getSigAlgParams();
 public abstract byte[] getSignature();
 public abstract byte[] getTBSCertList() throws CRLException;
 public abstract java.util.Date getThisUpdate();
 public abstract int getVersion();
 public abstract void verify(java.security.PublicKey key)
 throws CRLException, java.security.NoSuchAlgorithmException,
 java.security.InvalidKeyException, java.security.NoSuchProviderException, java.security.SignatureException;
 public abstract void verify(java.security.PublicKey key, String sigProvider)
 throws CRLException,
 java.security.NoSuchAlgorithmException, java.security.InvalidKeyException,
 java.security.NoSuchProviderException, java.security.SignatureException;
// Public Methods Overriding Object
 public boolean equals(Object other);
 public int hashCode();
}

Name
X509CRLEntry

Synopsis

 This class represents a single entry in an
X509CRL. It contains the serial number and
revocation date for a revoked certificate.
[image: java.security.cert.X509CRLEntry]

Figure 14-74. java.security.cert.X509CRLEntry

public abstract class X509CRLEntry implements X509Extension {
// Public Constructors
 public X509CRLEntry();
// Public Instance Methods
 5.0 public javax.security.auth.x500.X500Principal
 getCertificateIssuer(); constant
 public abstract byte[] getEncoded() throws CRLException;
 public abstract java.util.Date getRevocationDate();
 public abstract java.math.BigInteger getSerialNumber();
 public abstract boolean hasExtensions();
// Public Methods Overriding Object
 public boolean equals(Object other);
 public int hashCode();
 public abstract String toString();
}

Returned By

 X509CRL.getRevokedCertificate()

Name
X509CRLSelector

Synopsis
This class is a
CRLSelector

implementation for X.509 CRLs. The various set
methods allow you to specify criteria that the match(
)

method will use to accept or reject CRL objects.
Use addIssuerName() to specify the
distinguished name of an acceptable
issuer for the CRL, or use setIssuerNames() or
setIssuers() to specify a
Collection of valid issuers. Use
setDateAndTime() to specify a
Date for which the CRL must be valid. Use
setMinCRLNumber(
)

 and setMaxCRLNumber() to
set bounds on the sequence number of the CRL. If you are selecting a
CRL in order to check for revocation of a
particular X509Certificate, pass that certificate
to setCertificateChecking(). This method does not
actually constrain the returned CRL objects, but
it may help a CertStore optimize its search for a
relevant CRL.
[image: java.security.cert.X509CRLSelector]

Figure 14-75. java.security.cert.X509CRLSelector

public class X509CRLSelector implements CRLSelector {
// Public Constructors
 public X509CRLSelector();
// Public Instance Methods
 5.0 public void addIssuer(javax.security.auth.x500.X500Principal issuer);
 public void addIssuerName(String name) throws java.io.IOException;
 public void addIssuerName(byte[] name) throws java.io.IOException;
 public X509Certificate getCertificateChecking(); default:null
 public java.util.Date getDateAndTime(); default:null
 public java.util.Collection<Object> getIssuerNames(); default:null
 5.0 public java.util.Collection<javax.security.auth.x500.X500Principal>
 getIssuers(); default:null
 public java.math.BigInteger getMaxCRL(); default:null
 public java.math.BigInteger getMinCRL(); default:null
 public void setCertificateChecking(X509Certificate cert);
 public void setDateAndTime(java.util.Date dateAndTime);
 public void setIssuerNames(java.util.Collection<?> names)
 throws java.io.IOException;
5.0 public void setIssuers(java.util.Collection
 <javax.security.auth.x500.X500Principal> issuers);
 public void setMaxCRLNumber(java.math.BigInteger maxCRL);
 public void setMinCRLNumber(java.math.BigInteger minCRL);
// Methods Implementing CRLSelector
 public Object clone();
 public boolean match(CRL crl);
// Public Methods Overriding Object
 public String toString();
}

Name
X509Extension

Synopsis

 This interface defines methods
for handling a set of extensions to X.509 certificates and CRLs. Each
extension has a name, or OID (object identifier), that identifies the
type of the extension. An extension may be marked critical or
noncritical. Noncritical extensions whose OIDs are not recognized can
safely be ignored. However, if a critical exception is not
recognized, the Certificate or
CRL should be rejected. Each extension in the set
has a byte array of data as its value. The interpretation of these
bytes depends on the OID of the extension, of course. Specific
extensions are defined by the X.509 and related standards and their
details are beyond the scope of this reference.
public interface X509Extension {
// Public Instance Methods
 java.util.Set<String> getCriticalExtensionOIDs();
 byte[] getExtensionValue(String oid);
 java.util.Set<String> getNonCriticalExtensionOIDs();
 boolean hasUnsupportedCriticalExtension();
}

Implementations

 X509Certificate, X509CRL,
X509CRLEntry

Name
Package java.security.interfaces

Synopsis

 As its name implies, the
java.security.interfaces package contains only
interfaces. These interfaces define methods that provide
algorithm-specific information (such as key values and initialization
parameter values) about DSA, RSA, and EC public and private keys. If
you are using the RSA algorithm, for example, and working with a
java.security.PublicKey object, you can cast that
PublicKey to an RSAPublicKey
object and use the RSA-specific methods defined by
RSAPublicKey to query the key value directly.
The java.security.interfaces package was
introduced in Java 1.1. As of Java 1.2, the
java.security.spec package is the preferred way
for obtaining algorithm-specific information about keys and algorithm
parameters. This package remains useful in Java 1.2 and later,
however, for identifying the type of a given
PublicKey or PrivateKey object.
The interfaces in this package are typically of interest only to
programmers who are implementing a security provider or who want to
implement cryptographic algorithms themselves. Use of this package
typically requires some familiarity with the mathematics underlying
DSA and RSA public-key cryptography.

Interfaces
public interface DSAKey;
public interface DSAKeyPairGenerator;
public interface DSAParams;
public interface DSAPrivateKey extends DSAKey, java.security.PrivateKey;
public interface DSAPublicKey extends DSAKey, java.security.PublicKey;
public interface ECKey;
public interface ECPrivateKey extends ECKey, java.security.PrivateKey;
public interface ECPublicKey extends ECKey, java.security.PublicKey;
public interface RSAKey;
public interface RSAMultiPrimePrivateCrtKey extends RSAPrivateKey;
public interface RSAPrivateCrtKey extends RSAPrivateKey;
public interface RSAPrivateKey extends java.security.PrivateKey, RSAKey;
public interface RSAPublicKey extends java.security.PublicKey, RSAKey;

Name
DSAKey

Synopsis

 This
interface defines a method that must be implemented by both public
and private DSA keys.
public interface DSAKey {
// Public Instance Methods
 DSAParams getParams();
}

Implementations

 DSAPrivateKey, DSAPublicKey

Name
DSAKeyPairGenerator

Synopsis

 This interface defines algorithm-specific
KeyPairGenerator initialization methods for DSA
keys. To generate a pair of DSA keys, use the static
getInstance() factory method of
java.security.KeyPairGenerator and specify
“DSA” as the desired algorithm
name. If you wish to perform DSA-specific initialization, cast the
returned KeyPairGenerator to a
DSAKeyPairGenerator and call one of the
initialize() methods defined by this interface.
Finally, generate the keys by calling generateKeyPair(
) on the KeyPairGenerator.
public interface DSAKeyPairGenerator {
// Public Instance Methods
 void initialize(DSAParams params, java.security.SecureRandom random)
 throws java.security.InvalidParameterException;
 void initialize(int modlen, boolean genParams,
 java.security.SecureRandom random)
 throws java.security.InvalidParameterException;
}

Name
DSAParams

Synopsis

 This
interface defines methods for obtaining the DSA parameters
g, p, and q.
These methods are useful only if you wish to perform cryptographic
computation yourself. Using these methods requires a detailed
understanding of the mathematics underlying DSA public-key
cryptography.
public interface DSAParams {
// Public Instance Methods
 java.math.BigInteger getG();
 java.math.BigInteger getP();
 java.math.BigInteger getQ();
}

Implementations

 java.security.spec.DSAParameterSpec

Passed To

 DSAKeyPairGenerator.initialize()

Returned By

 DSAKey.getParams()

Name
DSAPrivateKey

Synopsis

 This interface represents a DSA private key
and provides direct access to the underlying key value. If you are
working with a private key you know is a DSA key, you can cast the
PrivateKey to a DSAPrivateKey.
[image: java.security.interfaces.DSAPrivateKey]

Figure 14-76. java.security.interfaces.DSAPrivateKey

public interface DSAPrivateKey extends DSAKeyjava.security.PrivateKey {
// Public Constants
 1.2 public static final long serialVersionUID; =7776497482533790279
 // Public Instance Methods
 java.math.BigInteger getX();
}

Name
DSAPublicKey

Synopsis

 This interface represents a DSA public key
and provides direct access to the underlying key value. If you are
working with a public key you know is a DSA key, you can cast the
PublicKey to a DSAPublicKey.
[image: java.security.interfaces.DSAPublicKey]

Figure 14-77. java.security.interfaces.DSAPublicKey

public interface DSAPublicKey extends DSAKeyjava.security.PublicKey {
// Public Constants
 1.2 public static final long serialVersionUID; =1234526332779022332
 // Public Instance Methods
 java.math.BigInteger getY();
}

Name
ECKey

Synopsis
This interface defines the API that must be implemented by all
elliptic curve keys.
public interface ECKey {
// Public Instance Methods
 java.security.spec.ECParameterSpec getParams();
}

Implementations

 ECPrivateKey, ECPublicKey

Name
ECPrivateKey

Synopsis
This interface defines an API that must be implemented by all
elliptic curve private keys.
[image: java.security.interfaces.ECPrivateKey]

Figure 14-78. java.security.interfaces.ECPrivateKey

public interface ECPrivateKey extends ECKeyjava.security.PrivateKey {
// Public Constants
 public static final long serialVersionUID; =-7896394956925609184
 // Public Instance Methods
 java.math.BigInteger getS();
}

Name
ECPublicKey

Synopsis

 This interface defines an API that must be
implemented by all elliptic curve public keys.
[image: java.security.interfaces.ECPublicKey]

Figure 14-79. java.security.interfaces.ECPublicKey

public interface ECPublicKey extends ECKeyjava.security.PublicKey {
// Public Constants
 public static final long serialVersionUID; =-3314988629879632826
 // Public Instance Methods
 java.security.spec.ECPoint getW();
}

Name
RSAKey

Synopsis

 This is a superinterface for
RSAPublicKey and RSAPrivateKey;
it defines a method shared by both classes. Prior to Java 1.3, the
getModulus() method was defined independently by
RSAPublicKey and RSAPrivateKey.
public interface RSAKey {
// Public Instance Methods
 java.math.BigInteger getModulus();
}

Implementations

 RSAPrivateKey, RSAPublicKey

Name
RSAMultiPrimePrivateCrtKey

Synopsis
This interface extends RSAPrivateKey and provides
a decomposition of the private key into the various numbers used to
create it. This interface is very similar to
RSAPrivateCrtKey, except that it is used to
represent RSA private keys that are based on more than two prime
factors, and implements the addition getOtherPrimeInfo(
) method to return information about these additional prime
numbers.
[image: java.security.interfaces.RSAMultiPrimePrivateCrtKey]

Figure 14-80. java.security.interfaces.RSAMultiPrimePrivateCrtKey

public interface RSAMultiPrimePrivateCrtKey extends RSAPrivateKey {
// Public Constants
 5.0 public static final long serialVersionUID; =618058533534628008
 // Public Instance Methods
 java.math.BigInteger getCrtCoefficient();
 java.security.spec.RSAOtherPrimeInfo[] getOtherPrimeInfo();
 java.math.BigInteger getPrimeExponentP();
 java.math.BigInteger getPrimeExponentQ();
 java.math.BigInteger getPrimeP();
 java.math.BigInteger getPrimeQ();
 java.math.BigInteger getPublicExponent();
}

Name
RSAPrivateCrtKey

Synopsis

 This interface extends
RSAPrivateKey and provides a decomposition (based
on the Chinese remainder theorem) of the private-key value into the
various pieces that comprise it. This interface is useful only if you
plan to implement your own cryptographic algorithms. To use this
interface, you must have a detailed understanding of the mathematics
underlying RSA public-key cryptography. Given a
java.security.PrivateKey object, you can use the
instanceof operator to determine whether you can
safely cast it to an RSAPrivateCrtKey.
[image: java.security.interfaces.RSAPrivateCrtKey]

Figure 14-81. java.security.interfaces.RSAPrivateCrtKey

public interface RSAPrivateCrtKey extends RSAPrivateKey {
// Public Constants
 5.0 public static final long serialVersionUID; =-5682214253527700368
 // Public Instance Methods
 java.math.BigInteger getCrtCoefficient();
 java.math.BigInteger getPrimeExponentP();
 java.math.BigInteger getPrimeExponentQ();
 java.math.BigInteger getPrimeP();
 java.math.BigInteger getPrimeQ();
 java.math.BigInteger getPublicExponent();
}

Name
RSAPrivateKey

Synopsis

 This
interface represents an RSA private key and provides direct access to
the underlying key values. If you are working with a private key you
know is an RSA key, you can cast the PrivateKey to
an RSAPrivateKey.
[image: java.security.interfaces.RSAPrivateKey]

Figure 14-82. java.security.interfaces.RSAPrivateKey

public interface RSAPrivateKey extends java.security.PrivateKeyRSAKey {
// Public Constants
 5.0 public static final long serialVersionUID; =5187144804936595022
 // Public Instance Methods
 java.math.BigInteger getPrivateExponent();
}

Implementations

 RSAMultiPrimePrivateCrtKey,
RSAPrivateCrtKey

Name
RSAPublicKey

Synopsis

 This interface represents an RSA public key
and provides direct access to the underlying key values. If you are
working with a public key you know is an RSA key, you can cast the
PublicKey to an RSAPublicKey.
[image: java.security.interfaces.RSAPublicKey]

Figure 14-83. java.security.interfaces.RSAPublicKey

public interface RSAPublicKey extends java.security.PublicKeyRSAKey {
// Public Constants
 5.0 public static final long serialVersionUID; =-8727434096241101194
 // Public Instance Methods
 java.math.BigInteger getPublicExponent();
}

Name
Package java.security.spec

Synopsis

 The
java.security.spec package contains classes that
define transparent representations for DSA, RSA, and EC public and
private keys and for X.509 and PKCS#8 encodings of those keys. It
also defines a transparent representation for DSA algorithm
parameters. The classes in this package are used in conjunction with
java.security.KeyFactory and
java.security.AlgorithmParameters for converting
opaque Key and
AlgorithmParameters objects to and from
transparent representations.
This package is not frequently used. To make use of it, you must be
somewhat familiar with the mathematics that underlies DSA and RSA
public-key encryption and the encoding standards that specify how
keys are encoded as byte streams.

Interfaces
public interface AlgorithmParameterSpec;
public interface ECField;
public interface KeySpec;

Classes
public class DSAParameterSpec implements AlgorithmParameterSpec,
 java.security.interfaces.DSAParams;
public class DSAPrivateKeySpec implements KeySpec;
public class DSAPublicKeySpec implements KeySpec;
public class ECFieldF2m implements ECField;
public class ECFieldFp implements ECField;
public class ECGenParameterSpec implements AlgorithmParameterSpec;
public class ECParameterSpec implements AlgorithmParameterSpec;
public class ECPoint;
public class ECPrivateKeySpec implements KeySpec;
public class ECPublicKeySpec implements KeySpec;
public class EllipticCurve;
public abstract class EncodedKeySpec implements KeySpec;
 public class PKCS8EncodedKeySpec extends EncodedKeySpec;
 public class X509EncodedKeySpec extends EncodedKeySpec;
public class MGF1ParameterSpec implements AlgorithmParameterSpec;
public class PSSParameterSpec implements AlgorithmParameterSpec;
public class RSAKeyGenParameterSpec implements AlgorithmParameterSpec;
public class RSAOtherPrimeInfo;
public class RSAPrivateKeySpec implements KeySpec;
 public class RSAMultiPrimePrivateCrtKeySpec extends RSAPrivateKeySpec;
 public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec;
public class RSAPublicKeySpec implements KeySpec;

Exceptions
public class InvalidKeySpecException
 extends java.security.GeneralSecurityException;
public class InvalidParameterSpecException
 extends java.security.GeneralSecurityException;

Name
AlgorithmParameterSpec

Synopsis

 This interface defines no methods; it
marks classes that define a transparent representation of
cryptographic parameters. You can use an
AlgorithmParameterSpec object to initialize an
opaque java.security.AlgorithmParameters object.
public interface AlgorithmParameterSpec {
}

Implementations

 DSAParameterSpec,
ECGenParameterSpec,
ECParameterSpec,
MGF1ParameterSpec,
PSSParameterSpec,
RSAKeyGenParameterSpec,
javax.crypto.spec.DHGenParameterSpec,
javax.crypto.spec.DHParameterSpec,
javax.crypto.spec.IvParameterSpec,
javax.crypto.spec.OAEPParameterSpec,
javax.crypto.spec.PBEParameterSpec,
javax.crypto.spec.RC2ParameterSpec,
javax.crypto.spec.RC5ParameterSpec

Passed To
Too many methods to list.

Returned By

 java.security.AlgorithmParameters.getParameterSpec(
),
java.security.AlgorithmParametersSpi.engineGetParameterSpec(
), PSSParameterSpec.getMGFParameters(),
javax.crypto.Cipher.getMaxAllowedParameterSpec(),
javax.crypto.spec.OAEPParameterSpec.getMGFParameters(
)

Name
DSAParameterSpec

Synopsis

 This class represents algorithm
parameters used with DSA public-key cryptography.
[image: java.security.spec.DSAParameterSpec]

Figure 14-84. java.security.spec.DSAParameterSpec

public class DSAParameterSpec implements AlgorithmParameterSpec,
 java.security.interfaces.DSAParams {
// Public Constructors
 public DSAParameterSpec(java.math.BigInteger p, java.math.BigInteger q,
 java.math.BigInteger g);
// Methods Implementing DSAParams
 public java.math.BigInteger getG();
 public java.math.BigInteger getP();
 public java.math.BigInteger getQ();
}

Name
DSAPrivateKeySpec

Synopsis

 This class is a transparent
representation of a DSA private key.
[image: java.security.spec.DSAPrivateKeySpec]

Figure 14-85. java.security.spec.DSAPrivateKeySpec

public class DSAPrivateKeySpec implements KeySpec {
// Public Constructors
 public DSAPrivateKeySpec(java.math.BigInteger x, java.math.BigInteger p,
 java.math.BigInteger q, java.math.BigInteger g);
// Public Instance Methods
 public java.math.BigInteger getG();
 public java.math.BigInteger getP();
 public java.math.BigInteger getQ();
 public java.math.BigInteger getX();
}

Name
DSAPublicKeySpec

Synopsis

 This class is a transparent
representation of a DSA public key.
[image: java.security.spec.DSAPublicKeySpec]

Figure 14-86. java.security.spec.DSAPublicKeySpec

public class DSAPublicKeySpec implements KeySpec {
// Public Constructors
 public DSAPublicKeySpec(java.math.BigInteger y, java.math.BigInteger p,
 java.math.BigInteger q, java.math.BigInteger g);
// Public Instance Methods
 public java.math.BigInteger getG();
 public java.math.BigInteger getP();
 public java.math.BigInteger getQ();
 public java.math.BigInteger getY();
}

Name
ECField

Synopsis
This interface represents a “finite
field” for elliptic curve cryptography.
public interface ECField {
// Public Instance Methods
 int getFieldSize();
}

Implementations

 ECFieldF2m, ECFieldFp

Passed To

 EllipticCurve.EllipticCurve()

Returned By

 EllipticCurve.getField()

Name
ECFieldF2m

Synopsis
This class defines an immutable representation of a
“characteristic 2 finite field” for
elliptic curve cryptography.
[image: java.security.spec.ECFieldF2m]

Figure 14-87. java.security.spec.ECFieldF2m

public class ECFieldF2m implements ECField {
// Public Constructors
 public ECFieldF2m(int m);
 public ECFieldF2m(int m, int[] ks);
 public ECFieldF2m(int m, java.math.BigInteger rp);
// Public Instance Methods
 public int getM();
 public int[] getMidTermsOfReductionPolynomial();
 public java.math.BigInteger getReductionPolynomial();
// Methods Implementing ECField
 public int getFieldSize();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
}

Name
ECFieldFp

Synopsis
This class defines an immutable representation of a
“prime finite field” for elliptic
curve cryptography.
[image: java.security.spec.ECFieldFp]

Figure 14-88. java.security.spec.ECFieldFp

public class ECFieldFp implements ECField {
// Public Constructors
 public ECFieldFp(java.math.BigInteger p);
// Public Instance Methods
 public java.math.BigInteger getP();
// Methods Implementing ECField
 public int getFieldSize();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
}

Name
ECGenParameterSpec

Synopsis
This class specifies parameters for generating elliptic curve domain
parameters.
[image: java.security.spec.ECGenParameterSpec]

Figure 14-89. java.security.spec.ECGenParameterSpec

public class ECGenParameterSpec implements AlgorithmParameterSpec {
// Public Constructors
 public ECGenParameterSpec(String stdName);
// Public Instance Methods
 public String getName();
}

Name
ECParameterSpec

Synopsis
This class defines an immutable representation for a set of
parameters for elliptic curve cryptography.
[image: java.security.spec.ECParameterSpec]

Figure 14-90. java.security.spec.ECParameterSpec

public class ECParameterSpec implements AlgorithmParameterSpec {
// Public Constructors
 public ECParameterSpec(EllipticCurve curve, ECPoint g,
 java.math.BigInteger n, int h);
// Public Instance Methods
 public int getCofactor();
 public EllipticCurve getCurve();
 public ECPoint getGenerator();
 public java.math.BigInteger getOrder();
}

Passed To

 ECPrivateKeySpec.ECPrivateKeySpec(),
ECPublicKeySpec.ECPublicKeySpec()

Returned By

 java.security.interfaces.ECKey.getParams(),
ECPrivateKeySpec.getParams(),
ECPublicKeySpec.getParams()

Name
ECPoint

Synopsis
This class defines an immutable representation of a point on an
elliptic curve, using affine coordinates.
public class ECPoint {
// Public Constructors
 public ECPoint(java.math.BigInteger x, java.math.BigInteger y);
// Public Constants
 public static final ECPoint POINT_INFINITY;
// Public Instance Methods
 public java.math.BigInteger getAffineX();
 public java.math.BigInteger getAffineY();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
}

Passed To

 ECParameterSpec.ECParameterSpec(),
ECPublicKeySpec.ECPublicKeySpec()

Returned By

 java.security.interfaces.ECPublicKey.getW(),
ECParameterSpec.getGenerator(),
ECPublicKeySpec.getW()

Name
ECPrivateKeySpec

Synopsis
This class is an immutable representation of a private key for
elliptic curve cryptography.
[image: java.security.spec.ECPrivateKeySpec]

Figure 14-91. java.security.spec.ECPrivateKeySpec

public class ECPrivateKeySpec implements KeySpec {
// Public Constructors
 public ECPrivateKeySpec(java.math.BigInteger s, ECParameterSpec params);
// Public Instance Methods
 public ECParameterSpec getParams();
 public java.math.BigInteger getS();
}

Name
ECPublicKeySpec

Synopsis

 This
class is an immutable representation of a public key for elliptic
curve cryptography.
[image: java.security.spec.ECPublicKeySpec]

Figure 14-92. java.security.spec.ECPublicKeySpec

public class ECPublicKeySpec implements KeySpec {
// Public Constructors
 public ECPublicKeySpec(ECPoint w, ECParameterSpec params);
// Public Instance Methods
 public ECParameterSpec getParams();
 public ECPoint getW();
}

Name
EllipticCurve

Synopsis
This class is an immutable representation of an
elliptic curve. See ECParameterSpec.
public class EllipticCurve {
// Public Constructors
 public EllipticCurve(ECField field, java.math.BigInteger a,
 java.math.BigInteger b);
 public EllipticCurve(ECField field, java.math.BigInteger a,
 java.math.BigInteger b, byte[] seed);
// Public Instance Methods
 public java.math.BigInteger getA();
 public java.math.BigInteger getB();
 public ECField getField();
 public byte[] getSeed();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
}

Passed To

 ECParameterSpec.ECParameterSpec()

Returned By

 ECParameterSpec.getCurve()

Name
EncodedKeySpec

Synopsis

 This abstract class represents a
public or private key in an encoded format. It serves as the
superclass for encoding-specific classes.
[image: java.security.spec.EncodedKeySpec]

Figure 14-93. java.security.spec.EncodedKeySpec

public abstract class EncodedKeySpec implements KeySpec {
// Public Constructors
 public EncodedKeySpec(byte[] encodedKey);
// Public Instance Methods
 public byte[] getEncoded();
 public abstract String getFormat();
}

Subclasses

 PKCS8EncodedKeySpec,
X509EncodedKeySpec

Name
InvalidKeySpecException

Synopsis

 Signals
a problem with a KeySpec.
[image: java.security.spec.InvalidKeySpecException]

Figure 14-94. java.security.spec.InvalidKeySpecException

public class InvalidKeySpecException
 extends java.security.GeneralSecurityException {
// Public Constructors
 public InvalidKeySpecException();
5.0 public InvalidKeySpecException(Throwable cause);
 public InvalidKeySpecException(String msg);
5.0 public InvalidKeySpecException(String message, Throwable cause);
}

Thrown By

 java.security.KeyFactory.{generatePrivate(),
generatePublic(), getKeySpec(
)},
java.security.KeyFactorySpi.{engineGeneratePrivate(
), engineGeneratePublic(),
engineGetKeySpec()},
javax.crypto.EncryptedPrivateKeyInfo.getKeySpec(
), javax.crypto.SecretKeyFactory.{generateSecret(
), getKeySpec()},
javax.crypto.SecretKeyFactorySpi.{engineGenerateSecret(
), engineGetKeySpec()}

Name
InvalidParameterSpecException

Synopsis

 Signals
a problem with an AlgorithmParameterSpec.
[image: java.security.spec.InvalidParameterSpecException]

Figure 14-95. java.security.spec.InvalidParameterSpecException

public class InvalidParameterSpecException
 extends java.security.GeneralSecurityException {
// Public Constructors
 public InvalidParameterSpecException();
 public InvalidParameterSpecException(String msg);
}

Thrown By

 java.security.AlgorithmParameters.{getParameterSpec(
), init()},
java.security.AlgorithmParametersSpi.{engineGetParameterSpec(
), engineInit()}

Name
KeySpec

Synopsis

 This
interface defines no methods; it marks classes that define a
transparent representation of a cryptographic key. Use a
java.security.KeyFactory to convert a
KeySpec to and from an opaque
java.security.Key.
public interface KeySpec {
}

Implementations

 DSAPrivateKeySpec,
DSAPublicKeySpec,
ECPrivateKeySpec,
ECPublicKeySpec,
EncodedKeySpec,
RSAPrivateKeySpec,
RSAPublicKeySpec,
javax.crypto.spec.DESedeKeySpec,
javax.crypto.spec.DESKeySpec,
javax.crypto.spec.DHPrivateKeySpec,
javax.crypto.spec.DHPublicKeySpec,
javax.crypto.spec.PBEKeySpec,
javax.crypto.spec.SecretKeySpec

Passed To

 java.security.KeyFactory.{generatePrivate(),
generatePublic()},
java.security.KeyFactorySpi.{engineGeneratePrivate(
), engineGeneratePublic()},
javax.crypto.SecretKeyFactory.generateSecret(),
javax.crypto.SecretKeyFactorySpi.engineGenerateSecret(
)

Returned By

 java.security.KeyFactory.getKeySpec(),
java.security.KeyFactorySpi.engineGetKeySpec(),
javax.crypto.SecretKeyFactory.getKeySpec(),
javax.crypto.SecretKeyFactorySpi.engineGetKeySpec(
)

Name
MGF1ParameterSpec

Synopsis
This class represents parameters for
"mask generation
function” MGF1 of the
 OAEP Padding and RSA-PSS signature
scheme, defined in the PKCS #1 standard, version 2.1. The constants
represent predefined instances of the class, whose digest algorithm
matches the constant name.
[image: java.security.spec.MGF1ParameterSpec]

Figure 14-96. java.security.spec.MGF1ParameterSpec

public class MGF1ParameterSpec implements AlgorithmParameterSpec {
// Public Constructors
 public MGF1ParameterSpec(String mdName);
// Public Constants
 public static final MGF1ParameterSpec SHA1;
 public static final MGF1ParameterSpec SHA256;
 public static final MGF1ParameterSpec SHA384;
 public static final MGF1ParameterSpec SHA512;
// Public Instance Methods
 public String getDigestAlgorithm();
}

Name
PKCS8EncodedKeySpec

Synopsis

 This class represents a private key,
encoded according to the PKCS#8 standard.
[image: java.security.spec.PKCS8EncodedKeySpec]

Figure 14-97. java.security.spec.PKCS8EncodedKeySpec

public class PKCS8EncodedKeySpec extends EncodedKeySpec {
// Public Constructors
 public PKCS8EncodedKeySpec(byte[] encodedKey);
// Public Methods Overriding EncodedKeySpec
 public byte[] getEncoded();
 public final String getFormat();
}

Returned By

 javax.crypto.EncryptedPrivateKeyInfo.getKeySpec()

Name
PSSParameterSpec

Synopsis

 This
class represents algorithm parameters used with the
RSA PSS encoding scheme, which is
defined by version 2.1 of the RSA standard PKCS#1. This class has
been substantially enhanced in Java 5.0.
[image: java.security.spec.PSSParameterSpec]

Figure 14-98. java.security.spec.PSSParameterSpec

public class PSSParameterSpec implements AlgorithmParameterSpec {
// Public Constructors
 public PSSParameterSpec(int saltLen);
5.0 public PSSParameterSpec(String mdName, String mgfName,
 AlgorithmParameterSpec mgfSpec,
 int saltLen, int trailerField);
// Public Constants
 5.0 public static final PSSParameterSpec DEFAULT;
// Public Instance Methods
 5.0 public String getDigestAlgorithm();
5.0 public String getMGFAlgorithm();
5.0 public AlgorithmParameterSpec getMGFParameters();
 public int getSaltLength();
5.0 public int getTrailerField();
}

Name
RSAKeyGenParameterSpec

Synopsis

 This class represents parameters that
generate public/private key pairs for RSA cryptography.
[image: java.security.spec.RSAKeyGenParameterSpec]

Figure 14-99. java.security.spec.RSAKeyGenParameterSpec

public class RSAKeyGenParameterSpec implements AlgorithmParameterSpec {
// Public Constructors
 public RSAKeyGenParameterSpec(int keysize,
 java.math.BigInteger publicExponent);
// Public Constants
 public static final java.math.BigInteger F0;
 public static final java.math.BigInteger F4;
// Public Instance Methods
 public int getKeysize();
 public java.math.BigInteger getPublicExponent();
}

Name
RSAMultiPrimePrivateCrtKeySpec

Synopsis
This

 class is a transparent representation of a
multi-prime RSA private key. It is very similar to
RSAPrivateCrtKeySpec, but adds an additional
method for obtaining information about the other primes associated
with the key.
[image: java.security.spec.RSAMultiPrimePrivateCrtKeySpec]

Figure 14-100. java.security.spec.RSAMultiPrimePrivateCrtKeySpec

public class RSAMultiPrimePrivateCrtKeySpec extends RSAPrivateKeySpec {
// Public Constructors
 public RSAMultiPrimePrivateCrtKeySpec(java.math.BigInteger modulus,
 java.math.BigInteger publicExponent,
 java.math.BigInteger privateExponent,
 java.math.BigInteger primeP,
 java.math.BigInteger primeQ,
 java.math.BigInteger primeExponentP,
 java.math.BigInteger primeExponentQ,
 java.math.BigInteger crtCoefficient,
 RSAOtherPrimeInfo[] otherPrimeInfo);
// Public Instance Methods
 public java.math.BigInteger getCrtCoefficient();
 public RSAOtherPrimeInfo[] getOtherPrimeInfo();
 public java.math.BigInteger getPrimeExponentP();
 public java.math.BigInteger getPrimeExponentQ();
 public java.math.BigInteger getPrimeP();
 public java.math.BigInteger getPrimeQ();
 public java.math.BigInteger getPublicExponent();
}

Name
RSAOtherPrimeInfo

Synopsis
This class represents the (prime, exponent,
coefficient) triplet that constitues an
“OtherPrimeInfo” structure that is
used with RSA multi-prime private keys, as defined in version 2.1 of
the PKCS#1 standard.
public class RSAOtherPrimeInfo {
// Public Constructors
 public RSAOtherPrimeInfo(java.math.BigInteger prime,
 java.math.BigInteger primeExponent,
 java.math.BigInteger crtCoefficient);
// Public Instance Methods
 public final java.math.BigInteger getCrtCoefficient();
 public final java.math.BigInteger getExponent();
 public final java.math.BigInteger getPrime();
}

Passed To

 RSAMultiPrimePrivateCrtKeySpec.RSAMultiPrimePrivateCrtKeySpec(
)

Returned By

 java.security.interfaces.RSAMultiPrimePrivateCrtKey.getOtherPrimeInfo(
),
RSAMultiPrimePrivateCrtKeySpec.getOtherPrimeInfo(
)

Name
RSAPrivateCrtKeySpec

Synopsis

 This class is a transparent
representation of an RSA private key including, for convenience, the
Chinese remainder theorem values associated with the key.
[image: java.security.spec.RSAPrivateCrtKeySpec]

Figure 14-101. java.security.spec.RSAPrivateCrtKeySpec

public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec {
// Public Constructors
 public RSAPrivateCrtKeySpec(java.math.BigInteger modulus,
 java.math.BigInteger publicExponent,
 java.math.BigInteger privateExponent,
 java.math.BigInteger primeP,
 java.math.BigInteger primeQ,
 java.math.BigInteger primeExponentP,
 java.math.BigInteger primeExponentQ,
 java.math.BigInteger crtCoefficient);
// Public Instance Methods
 public java.math.BigInteger getCrtCoefficient();
 public java.math.BigInteger getPrimeExponentP();
 public java.math.BigInteger getPrimeExponentQ();
 public java.math.BigInteger getPrimeP();
 public java.math.BigInteger getPrimeQ();
 public java.math.BigInteger getPublicExponent();
}

Name
RSAPrivateKeySpec

Synopsis

 This
class is a transparent representation of an RSA private key.
[image: java.security.spec.RSAPrivateKeySpec]

Figure 14-102. java.security.spec.RSAPrivateKeySpec

public class RSAPrivateKeySpec implements KeySpec {
// Public Constructors
 public RSAPrivateKeySpec(java.math.BigInteger modulus,
 java.math.BigInteger privateExponent);
// Public Instance Methods
 public java.math.BigInteger getModulus();
 public java.math.BigInteger getPrivateExponent();
}

Subclasses

 RSAMultiPrimePrivateCrtKeySpec,
RSAPrivateCrtKeySpec

Name
RSAPublicKeySpec

Synopsis

 This class is a transparent
representation of an RSA public key.
[image: java.security.spec.RSAPublicKeySpec]

Figure 14-103. java.security.spec.RSAPublicKeySpec

public class RSAPublicKeySpec implements KeySpec {
// Public Constructors
 public RSAPublicKeySpec(java.math.BigInteger modulus,
 java.math.BigInteger publicExponent);
// Public Instance Methods
 public java.math.BigInteger getModulus();
 public java.math.BigInteger getPublicExponent();
}

Name
X509EncodedKeySpec

Synopsis

 This class represents a public or
private key encoded according to the X.509 standard.
[image: java.security.spec.X509EncodedKeySpec]

Figure 14-104. java.security.spec.X509EncodedKeySpec

public class X509EncodedKeySpec extends EncodedKeySpec {
// Public Constructors
 public X509EncodedKeySpec(byte[] encodedKey);
// Public Methods Overriding EncodedKeySpec
 public byte[] getEncoded();
 public final String getFormat();
}

Chapter 15. java.text

Name
Package java.text

Synopsis

 The java.text

 package
consists of classes and interfaces that are useful for writing
internationalized programs that handle local customs, such as date
and time formatting and string alphabetization, correctly.

 The NumberFormat
class formats numbers, monetary quantities, and percentages as
appropriate for the default or specified locale.
DateFormat formats dates and times in a
locale-specific way. The concrete DecimalFormat
and SimpleDateFormat subclasses of these classes
can be used for customized number, date, and time formatting.
MessageFormat allows substitution of dynamic
values, including formatted numbers and dates, into static message
strings. ChoiceFormat formats a number using an
enumerated set of string values. See the Format
superclass for a general description of formatting and parsing
strings with these classes. Collator compares
strings according to the customary sorting order for a locale.
BreakIterator scans text to find word, line, and
sentence boundaries following locale-specific rules. The
Bidi class of Java 1.4 implements the Unicode
“bidirectional” algorithm for
working with languages such as Arabic and Hebrew that display text
right-to-left but display numbers left-to-right.

Interfaces
public interface AttributedCharacterIterator extends CharacterIterator;
public interface CharacterIterator extends Cloneable;

Classes
public class Annotation;
public static class AttributedCharacterIterator.Attribute implements Serializable;
 public static class Format.Field extends AttributedCharacterIterator.Attribute;
 public static class DateFormat.Field extends Format.Field;
 public static class MessageFormat.Field extends Format.Field;
 public static class NumberFormat.Field extends Format.Field;
public class AttributedString;
public final class Bidi;
public abstract class BreakIterator implements Cloneable;
public final class CollationElementIterator;
public final class CollationKey implements Comparable<CollationKey>;
public abstract class Collator implements java.util.Comparator<Object>, Cloneable;
 public class RuleBasedCollator extends Collator;
public class DateFormatSymbols implements Cloneable, Serializable;
public final class DecimalFormatSymbols implements Cloneable, Serializable;
public class FieldPosition;
public abstract class Format implements Cloneable, Serializable;
 public abstract class DateFormat extends Format;
 public class SimpleDateFormat extends DateFormat;
 public class MessageFormat extends Format;
 public abstract class NumberFormat extends Format;
 public class ChoiceFormat extends NumberFormat;
 public class DecimalFormat extends NumberFormat;
public class ParsePosition;
public final class StringCharacterIterator implements CharacterIterator;

Exceptions
public class ParseException extends Exception;

Name
Annotation

Synopsis

 This class is a wrapper for a the value
of a text attribute that represents an annotation. Annotations differ
from other types of text attributes in two ways. First, annotations
are linked to the text they are applied to, so changing the text
invalidates or corrupts the meaning of the annotation. Second,
annotations cannot be merged with adjacent annotations, even if they
have the same value. Putting an annotation value in an
Annotation wrapper serves to indicate these
special characteristics. Note that two of the attribute keys defined
by AttributedCharaterIterator.Attribute,
READING and
INPUT_METHOD_SEGMENT, must be used with
Annotation objects.
public class Annotation {
// Public Constructors
 public Annotation(Object value);
// Public Instance Methods
 public Object getValue();
// Public Methods Overriding Object
 public String toString();
}

Name
AttributedCharacterIterator

Synopsis

 This
interface extends CharacterIterator for working
with text that is marked up with attributes in some way. It defines
an inner class,
AttributedCharaterIterator.Attribute, that
represents attribute keys.
AttributedCharacterIterator defines methods for
querying the attribute keys, values, and runs for the text being
iterated over. getAllAttributeKeys() returns the
Set of all attribute keys that appear anywhere in
the text. getAttributes() returns a
Map that contains the attribute keys and values
that apply to the current character. getAttribute(
) returns the value associated with the specified attribute
key for the current character.

 getRunStart() and
getRunLimit() return the index of the first and
last characters in a run. A run is a string of
adjacent characters for which an attribute has the same value or is
undefined (i.e., has a value of null). A run can
also be defined for a set of attributes, in which case it is a set of
adjacent characters for which all attributes in the set hold a
constant value (which may include null). Programs
that process or display attributed text must usually work with it one
run at a time. The no-argument versions of getRunStart(
) and getRunLimit() return the start
and end of the run that includes the current character and all
attributes that are applied to the current character. The other
versions of these methods return the start and end of the run of the
specified attribute or set of attributes that includes the current
character.

 The
AttributedString class provides a simple way to
define short strings of attributed text and obtain an
AttributedCharacterIterator over them. Most
applications that process attributed text are working with attributed
text from specialized data sources, stored in some specialized data
format, so they need to define a custom implementation of
AttributedCharacterIterator.
[image: java.text.AttributedCharacterIterator]

Figure 15-1. java.text.AttributedCharacterIterator

public interface AttributedCharacterIterator extends CharacterIterator {
// Nested Types
 public static class Attribute implements Serializable;
// Public Instance Methods
 java.util.Set<AttributedCharacterIterator.Attribute>
 getAllAttributeKeys();
 Object getAttribute(AttributedCharacterIterator.Attribute attribute);
 java.util.Map<AttributedCharacterIterator.Attribute,Object>
 getAttributes();
 int getRunLimit();
 int getRunLimit(java.util.Set<? extends AttributedCharacterIterator.
 Attribute> attributes);
 int getRunLimit(AttributedCharacterIterator.Attribute attribute);
 int getRunStart();
 int getRunStart(AttributedCharacterIterator.Attribute attribute);
 int getRunStart(java.util.Set<? extends AttributedCharacterIterator.
 Attribute> attributes);
}

Passed To

 AttributedString.AttributedString(),
Bidi.Bidi()

Returned By

 AttributedString.getIterator(),
DecimalFormat.formatToCharacterIterator(),
Format.formatToCharacterIterator(),
MessageFormat.formatToCharacterIterator(),
SimpleDateFormat.formatToCharacterIterator()

Name
AttributedCharacterIterator.Attribute

Synopsis

 This class
defines the types of the attribute keys used with
AttributedCharacterIterator and
AttributedString. It defines several constant
Attribute keys that are commonly used with
multilingual text and input methods. The LANGUAGE
key represents the language of the underlying text. The value of this
key should be a Locale object. The
READING key represents arbitrary reading
information associated with text. The value must be an
Annotation object. The
INPUT_METHOD_SEGMENT key serves to define text
segments (usually words) that an input method operates on. The value
of this attribute should be an Annotation object
that contains null. Other classes may subclass
this class and define other attribute keys that are useful in other
circumstances or problem domains. See, for example,
java.awt.font.TextAttribute in Java
Foundation Classes in a Nutshell
(O’Reilly).
public static class AttributedCharacterIterator.Attribute
 implements Serializable {
// Protected Constructors
 protected Attribute(String name);
// Public Constants
 public static final AttributedCharacterIterator.Attribute
 INPUT_METHOD_SEGMENT;
 public static final AttributedCharacterIterator.Attribute LANGUAGE;
 public static final AttributedCharacterIterator.Attribute READING;
// Public Methods Overriding Object
 public final boolean equals(Object obj);
 public final int hashCode();
 public String toString();
// Protected Instance Methods
 protected String getName();
 protected Object readResolve() throws java.io.InvalidObjectException;
}

Subclasses

 Format.Field

Passed To

 AttributedCharacterIterator.{getAttribute(),
getRunLimit(), getRunStart(
)}, AttributedString.{addAttribute(),
AttributedString(), getIterator(
)}

Name
AttributedString

Synopsis

 This class represents text
and associated attributes. An AttributedString can
be defined in terms of an underlying
AttributedCharacterIterator or an underlying
String. Additional attributes can be specified
with the addAttribute() and
addAttributes() methods. getIterator(
) returns an AttributedCharacterIterator
over the AttributedString or over a specified
portion of the string. Note that two of the getIterator(
) methods take an array of Attribute
keys as an argument. These methods return an
AttributedCharacterIterator that ignores all
attributes that are not in the specified array. If the array argument
is null, however, the returned iterator contains
all attributes.
public class AttributedString {
// Public Constructors
 public AttributedString(String text);
 public AttributedString(AttributedCharacterIterator text);
 public AttributedString(String text, java.util.Map<?
 extends AttributedCharacterIterator.Attribute,?> attributes);
 public AttributedString(AttributedCharacterIterator text, int beginIndex,
 int endIndex);
 public AttributedString(AttributedCharacterIterator text, int beginIndex,
 int endIndex, AttributedCharacterIterator.Attribute[] attributes);
// Public Instance Methods
 public void addAttribute(AttributedCharacterIterator.Attribute attribute,
 Object value);
 public void addAttribute(AttributedCharacterIterator.Attribute attribute,
 Object value, int beginIndex, int endIndex);
 public void addAttributes(java.util.Map<?
 extends AttributedCharacterIterator.Attribute,?> attributes,
 int beginIndex, int endIndex);
 public AttributedCharacterIterator getIterator();
 public AttributedCharacterIterator
 getIterator(AttributedCharacterIterator.Attribute[] attributes);
 public AttributedCharacterIterator
 getIterator(AttributedCharacterIterator.Attribute[] attributes,
 int beginIndex, int endIndex);
}

Name
Bidi

Synopsis
The Bidi
 class implements the
"

 Unicode Version 3.0 Bidirectional
Algorithm” for working with Arabic and Hebrew text
in which letters run right-to-left and numbers run left-to-right. It
is named after the first four letters of
“bidirectional.” A full description
of the bidirectional text handling and the bidirectional algorithim
is beyond the scope of this book, but the simplest use case for this
class is outlined here. Create a Bidi object by
passing an AttributedCharacterIterator or a
String and one of the DIRECTION
constants (to indicate the base direction of the text) to the
Bidi() constructor. Or use
createLineBidi() to return a substring of an
existing Bidi object (this is usually done when
formatting a paragraph of text to fit on individual lines).
Once you have a Bidi object, use
isLeftToRight() and isRightToLeft(
) to determine whether all the text has the same direction.
If both of these methods return false (which is
the same as isMixed() returning
true) then you cannot treat the text as a single
run of uni-directional text. In this case, you must break it into two
or more runs of unidirectional text. getRunCount(
) returns the number of distinct runs of text. For each
such numbered run, getRunStart() returns the
index of the first character of the run, and getRunLimit(
) returns the index of the first character past the end of
the run. getRunLevel() returns the
level of the text, which is an integer that
represents the direction and nesting level of the text. Even levels
represent left-to-right text, and odd levels represent right-to-left
text. The level divided by two is the nesting level of the text. For
example, left-to-right text embedded within right-to-left text has a
level of 2.
public final class Bidi {
// Public Constructors
 public Bidi(AttributedCharacterIterator paragraph);
 public Bidi(String paragraph, int flags);
 public Bidi(char[] text, int textStart, byte[] embeddings,
 int embStart, int paragraphLength, int flags);
// Public Constants
 public static final int DIRECTION_DEFAULT_LEFT_TO_RIGHT; =-2
 public static final int DIRECTION_DEFAULT_RIGHT_TO_LEFT; =-1
 public static final int DIRECTION_LEFT_TO_RIGHT; =0
 public static final int DIRECTION_RIGHT_TO_LEFT; =1
 // Public Class Methods
 public static void reorderVisually(byte[] levels, int levelStart,
 Object[] objects, int objectStart, int count);
 public static boolean requiresBidi(char[] text, int start, int limit);
// Public Instance Methods
 public boolean baseIsLeftToRight();
 public Bidi createLineBidi(int lineStart, int lineLimit);
 public int getBaseLevel();
 public int getLength();
 public int getLevelAt(int offset);
 public int getRunCount();
 public int getRunLevel(int run);
 public int getRunLimit(int run);
 public int getRunStart(int run);
 public boolean isLeftToRight();
 public boolean isMixed();
 public boolean isRightToLeft();
// Public Methods Overriding Object
 public String toString();
}

Name
BreakIterator

Synopsis

 This
class determines
 character, word, sentence, and line breaks
in a block of text in a way that is independent of locale and text
encoding. As an abstract class, BreakIterator
cannot be instantiated directly. Instead, you must use one of the
class methods getCharacterInstance(),
getWordInstance(), getSentenceInstance(
), or getLineInstance() to return an
instance of a nonabstract subclass of
BreakIterator. These various factory methods
return a BreakIterator object that is configured
to locate the requested boundary types and is localized to work for
the optionally specified locale.

 Once you have obtained an
appropriate BreakIterator object, use
setText() to specify the text in which to locate
boundaries. To locate boundaries in a Java String
object, simply specify the string. To locate boundaries in text that
uses some other encoding, you must specify a
CharacterIterator object for that text so that the
BreakIterator object can locate the individual
characters of the text. Having set the text to be searched, you can
determine the character positions of characters, words, sentences, or
line breaks with the first(), last(
), next(), previous(
), current(), and following(
) methods, which perform the obvious functions. Note that
these methods do not return text itself, but merely the position of
the appropriate word, sentence, or line break.
[image: java.text.BreakIterator]

Figure 15-2. java.text.BreakIterator

public abstract class BreakIterator implements Cloneable {
// Protected Constructors
 protected BreakIterator();
// Public Constants
 public static final int DONE; =-1
 // Public Class Methods
 public static java.util.Locale[] getAvailableLocales(); synchronized
 public static BreakIterator getCharacterInstance();
 public static BreakIterator getCharacterInstance(java.util.Locale where);
 public static BreakIterator getLineInstance();
 public static BreakIterator getLineInstance(java.util.Locale where);
 public static BreakIterator getSentenceInstance();
 public static BreakIterator getSentenceInstance(java.util.Locale where);
 public static BreakIterator getWordInstance();
 public static BreakIterator getWordInstance(java.util.Locale where);
// Protected Class Methods
 5.0 protected static int getInt(byte[] buf, int offset);
5.0 protected static long getLong(byte[] buf, int offset);
5.0 protected static short getShort(byte[] buf, int offset);
// Public Instance Methods
 public abstract int current();
 public abstract int first();
 public abstract int following(int offset);
 public abstract CharacterIterator getText();
1.2 public boolean isBoundary(int offset);
 public abstract int last();
 public abstract int next();
 public abstract int next(int n);
1.2 public int preceding(int offset);
 public abstract int previous();
 public void setText(String newText);
 public abstract void setText(CharacterIterator newText);
// Public Methods Overriding Object
 public Object clone();
}

Name
CharacterIterator

Synopsis

 This interface defines an API for
portably iterating through the characters that make up a string of
text, regardless of the encoding of that text. Such an API is
necessary because the number of bytes per character is different for
different encodings, and some encodings even use variable-width
characters within the same string of text. In addition to allowing
iteration, a class that implements the
CharacterIterator interface for non-Unicode text
also performs translation of characters from their native encoding to
standard Java Unicode characters.

 CharacterIterator
is similar to java.util.Enumeration, but is
somewhat more complex than that interface. The first(
) and last() methods return the first
and last characters in the text, and the next()
and prev() methods allow you to loop forward or
backwards through the characters of the text. These methods return
the DONE constant when they go beyond the first or
last character in the text; a test for this constant can be used to
terminate a loop. The CharacterIterator interface
also allows random access to the characters in a string of text. The
getBeginIndex() and getEndIndex(
) methods return the character positions for the start and
end of the string, and setIndex() sets the
current position. getIndex() returns the index of
the current position, and current() returns the
character at that position.
[image: java.text.CharacterIterator]

Figure 15-3. java.text.CharacterIterator

public interface CharacterIterator extends Cloneable {
// Public Constants
 public static final char DONE; = \uFFFF
// Public Instance Methods
 Object clone();
 char current();
 char first();
 int getBeginIndex();
 int getEndIndex();
 int getIndex();
 char last();
 char next();
 char previous();
 char setIndex(int position);
}

Implementations

 AttributedCharacterIterator,
StringCharacterIterator

Passed To

 BreakIterator.setText(),
CollationElementIterator.setText(),
RuleBasedCollator.getCollationElementIterator()

Returned By

 BreakIterator.getText()

Name
ChoiceFormat

Synopsis

 This
class is a subclass of Format that converts a
number to a String in a way reminiscent of a
switch statement or an enumerated type. Each
ChoiceFormat object has an array of doubles known
as its limits and an array of strings known as
its formats. When the format(
) method is called to format a number x,
the ChoiceFormat finds an index
i such that:
limits[i] <= x < limits[i+1]
If x is less than the first element of the array,
the first element is used, and if it is greater than the last, the
last element is used. Once the index i has been
determined, it is used as the index into the array of strings, and
the indexed string is returned as the result of the format(
) method.
A ChoiceFormat object may also be created by
encoding its limits and formats into a single string known as its
pattern. A typical pattern looks like the one
below, used to return the singular or plural form of a word based on
the numeric value passed to the format() method:
ChoiceFormat cf = new ChoiceFormat("0#errors|1#error|2#errors");
A ChoiceFormat object created in this way returns
the string “errors” when it formats
the number 0 or any number greater than or equal to 2. It returns
“error” when it formats the number
1. In the syntax shown here, note the pound sign
(#) used to separate the limit number from the
string that corresponds to that case and the vertical bar
(|) used to separate the

 individual cases. You can use the
applyPattern() method to change the pattern used
by a ChoiceFormat object; use toPattern(
) to query the pattern it uses.
[image: java.text.ChoiceFormat]

Figure 15-4. java.text.ChoiceFormat

public class ChoiceFormat extends NumberFormat {
// Public Constructors
 public ChoiceFormat(String newPattern);
 public ChoiceFormat(double[] limits, String[] formats);
// Public Class Methods
 public static final double nextDouble(double d);
 public static double nextDouble(double d, boolean positive);
 public static final double previousDouble(double d);
// Public Instance Methods
 public void applyPattern(String newPattern);
 public Object[] getFormats();
 public double[] getLimits();
 public void setChoices(double[] limits, String[] formats);
 public String toPattern();
// Public Methods Overriding NumberFormat
 public Object clone();
 public boolean equals(Object obj);
 public StringBuffer format(long number, StringBuffer toAppendTo,
 FieldPosition status);
 public StringBuffer format(double number, StringBuffer toAppendTo,
 FieldPosition status);
 public int hashCode();
 public Number parse(String text, ParsePosition status);
}

Name
CollationElementIterator

Synopsis

 A CollationElementIterator
object is returned by the getCollationElementIterator(
) method of the RuleBasedCollator
object. The purpose of this class is to allow a program to iterate
(with the next() method) through the characters
of a string, returning ordering values for each of the collation keys
in the string. Note that collation keys are not exactly the same as
characters. In the traditional Spanish collation order, for example,
the two-character sequence “ch” is
treated as a single collation key that comes alphabetically between
the letters “c” and
“d.” The value returned by the
next() method is the collation order of the next
collation key in the string. This numeric value can be directly
compared to the value returned by next() for
other CollationElementIterator objects. The value
returned by next() can also be decomposed into
primary, secondary, and tertiary ordering values with the static
methods of this class. This class is used by
RuleBasedCollator to implement its
compare() method and to create
CollationKey objects. Few applications ever need
to use it directly.
public final class CollationElementIterator {
// No Constructor
 // Public Constants
 public static final int NULLORDER; =-1
 // Public Class Methods
 public static final int primaryOrder(int order);
 public static final short secondaryOrder(int order);
 public static final short tertiaryOrder(int order);
// Public Instance Methods
 1.2 public int getMaxExpansion(int order);
1.2 public int getOffset();
 public int next();
1.2 public int previous();
 public void reset();
1.2 public void setOffset(int newOffset);
1.2 public void setText(String source);
1.2 public void setText(CharacterIterator source);
}

Returned By

 RuleBasedCollator.getCollationElementIterator()

Name
CollationKey

Synopsis

 CollationKey objects
compare strings more quickly than is possible with
Collation.compare(). Objects of this class are
returned by Collation.getCollationKey(). To
compare two CollationKey objects, invoke the
compareTo() method of key A,
passing the key B as an argument (both
CollationKey objects must be created through the
same Collation object). The return value of this
method is less than zero if the key A is collated
before the key B, equal to zero if they are
equivalent for the purposes of collation, or greater than zero if the
key A is collated after the key
B. Use getSourceString() to
obtain the string represented by a CollationKey.
[image: java.text.CollationKey]

Figure 15-5. java.text.CollationKey

public final class CollationKey implements Comparable<CollationKey> {
// No Constructor
 // Public Instance Methods
 public int compareTo(CollationKey target); Implements:Comparable
 public String getSourceString();
 public byte[] toByteArray();
// Methods Implementing Comparable
 public int compareTo(CollationKey target);
// Public Methods Overriding Object
 public boolean equals(Object target);
 public int hashCode();
}

Returned By

 Collator.getCollationKey(),
RuleBasedCollator.getCollationKey()

Name
Collator

Synopsis

 This
class compares, orders, and sorts strings in a way appropriate for
the default locale or some other specified locale. Because it is an
abstract class, it cannot be instantiated directly. Instead, you must
use the static getInstance() method to obtain an
instance of a Collator subclass that is
appropriate for the default or specified locale. You can use
getAvailableLocales() to determine whether a
Collator object is available for a desired locale.

 Once an appropriate
Collator object has been obtained, you can use the
compare() method to compare strings. The possible
return values of this method are -1, 0, and 1, which indicate,
respectively, that the first string is collated before the second,
that the two are equivalent for collation purposes, and that the
first string is collated after the second. The equals(
) method is a convenient shortcut for testing two strings
for collation equivalence.
When sorting an array of strings, each string in the array is
typically compared more than once. Using the compare(
) method in this case is inefficient. A more efficient
method for comparing strings multiple times is to use

 getCollationKey()
for each string to create CollationKey objects.
These objects can then be compared to each other more quickly than
the strings themselves can be compared.

 You can customize the way the
Collator object performs comparisons by calling
setStrength(). If you pass the constant
PRIMARY to this method, the comparison looks only
at primary differences in the strings; it compares letters but
ignores accents and case differences. If you pass the constant
SECONDARY, it ignores case differences but does
not ignore accents. And if you pass TERTIARY (the
default), the Collator object takes both accents
and case differences into account in its comparison.
[image: java.text.Collator]

Figure 15-6. java.text.Collator

public abstract class Collator implements java.util.Comparator<Object>,
 Cloneable {
// Protected Constructors
 protected Collator();
// Public Constants
 public static final int CANONICAL_DECOMPOSITION; =1
 public static final int FULL_DECOMPOSITION; =2
 public static final int IDENTICAL; =3
 public static final int NO_DECOMPOSITION; =0
 public static final int PRIMARY; =0
 public static final int SECONDARY; =1
 public static final int TERTIARY; =2
 // Public Class Methods
 public static java.util.Locale[] getAvailableLocales(); synchronized
 public static Collator getInstance(); synchronized
 public static Collator
 getInstance(java.util.Locale desiredLocale); synchronized
 // Public Instance Methods
 public abstract int compare(String source, String target);
 public boolean equals(Object that); Implements:Comparator
 public boolean equals(String source, String target);
 public abstract CollationKey getCollationKey(String source);
 public int getDecomposition(); synchronized
 public int getStrength(); synchronized
 public void setDecomposition(int decompositionMode); synchronized
 public void setStrength(int newStrength); synchronized
 // Methods Implementing Comparator
 1.2 public int compare(Object o1, Object o2);
 public boolean equals(Object that);
// Public Methods Overriding Object
 public Object clone();
 public abstract int hashCode();
}

Subclasses

 RuleBasedCollator

Name
DateFormat

Synopsis

 This class formats and parses
dates and times in a locale-specific
way. As an abstract class, it cannot be instantiated directly, but it
provides a number of static methods that return instances of a
concrete subclass you can use to format dates in a variety of ways.
The getDateInstance() methods return a
DateFormat object suitable for formatting dates in
either the default locale or a specified locale. A formatting style
may also optionally be specified; the constants
FULL, LONG,
MEDIUM, SHORT, and
DEFAULT specify this style. Similarly, the
getTimeInstance() methods return a
DateFormat object that formats and parses times,
and the getDateTimeInstance() methods return a
DateFormat object that formats both dates and
times. These methods also optionally take a format style constant and
a Locale. Finally, getInstance(
) returns a default DateFormat object
that formats both dates and times in the SHORT
format.

 Once you have created a
DateFormat object, you can use the
setCalendar() and setTimeZone(
) methods if you want to format the date using a calendar
or time zone other than the default. The various format(
) methods convert java.util.Date objects
to strings using whatever format is encapsulated in the
DateFormat object. The parse()
and parseObject() methods perform the reverse
operation; they parse a string formatted according to the rules of
the DateFormat object and convert it into to a
Date object. The DEFAULT,
FULL, MEDIUM,
LONG, and SHORT constants
specify how verbose or compact the formatted date or time should be.
The remaining constants, which all end with
_FIELD, specify various fields of formatted dates
and times and are used with the FieldPosition
object that is optionally passed to format().
[image: java.text.DateFormat]

Figure 15-7. java.text.DateFormat

public abstract class DateFormat extends Format {
// Protected Constructors
 protected DateFormat();
// Public Constants
 public static final int AM_PM_FIELD; =14
 public static final int DATE_FIELD; =3
 public static final int DAY_OF_WEEK_FIELD; =9
 public static final int DAY_OF_WEEK_IN_MONTH_FIELD; =11
 public static final int DAY_OF_YEAR_FIELD; =10
 public static final int DEFAULT; =2
 public static final int ERA_FIELD; =0
 public static final int FULL; =0
 public static final int HOUR0_FIELD; =16
 public static final int HOUR1_FIELD; =15
 public static final int HOUR_OF_DAY0_FIELD; =5
 public static final int HOUR_OF_DAY1_FIELD; =4
 public static final int LONG; =1
 public static final int MEDIUM; =2
 public static final int MILLISECOND_FIELD; =8
 public static final int MINUTE_FIELD; =6
 public static final int MONTH_FIELD; =2
 public static final int SECOND_FIELD; =7
 public static final int SHORT; =3
 public static final int TIMEZONE_FIELD; =17
 public static final int WEEK_OF_MONTH_FIELD; =13
 public static final int WEEK_OF_YEAR_FIELD; =12
 public static final int YEAR_FIELD; =1
 // Nested Types
 1.4 public static class Field extends Format.Field;
// Public Class Methods
 public static java.util.Locale[] getAvailableLocales();
 public static final DateFormat getDateInstance();
 public static final DateFormat getDateInstance(int style);
 public static final DateFormat getDateInstance(int style,
 java.util.Locale aLocale);
 public static final DateFormat getDateTimeInstance();
 public static final DateFormat getDateTimeInstance(int dateStyle,
 int timeStyle);
 public static final DateFormat getDateTimeInstance(int dateStyle,
 int timeStyle, java.util.Locale aLocale);
 public static final DateFormat getInstance();
 public static final DateFormat getTimeInstance();
 public static final DateFormat getTimeInstance(int style);
 public static final DateFormat getTimeInstance(int style,
 java.util.Locale aLocale);
// Public Instance Methods
 public final String format(java.util.Date date);
 public abstract StringBuffer format(java.util.Date date,
 StringBuffer toAppendTo, FieldPosition fieldPosition);
 public java.util.Calendar getCalendar();
 public NumberFormat getNumberFormat();
 public java.util.TimeZone getTimeZone();
 public boolean isLenient();
 public java.util.Date parse(String source) throws ParseException;
 public abstract java.util.Date parse(String source, ParsePosition pos);
 public void setCalendar(java.util.Calendar newCalendar);
 public void setLenient(boolean lenient);
 public void setNumberFormat(NumberFormat newNumberFormat);
 public void setTimeZone(java.util.TimeZone zone);
// Public Methods Overriding Format
 public Object clone();
 public final StringBuffer format(Object obj, StringBuffer toAppendTo,
 FieldPosition fieldPosition);
 public Object parseObject(String source, ParsePosition pos);
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
// Protected Instance Fields
 protected java.util.Calendar calendar;
 protected NumberFormat numberFormat;
}

Subclasses

 SimpleDateFormat

Name
DateFormat.Field

Synopsis
This

 class
defines a typesafe enumeration of
AttributedCharacterIterator.Attribute objects that
may be used by the AttributedCharacterIterator
returned by the formatToCharacterIterator()
inherited from Format, or that may be used when
creating a FieldPosition object with which to
obtain the bounds of a specific date field in formatted output. Note
that the constants defined by this class correspond closely to the
integer constants defined by java.util.Calendar,
and that this class defines methods for converting between the two
sets of constants.
public static class DateFormat.Field extends Format.Field {
// Protected Constructors
 protected Field(String name, int calendarField);
// Public Constants
 public static final DateFormat.Field AM_PM;
 public static final DateFormat.Field DAY_OF_MONTH;
 public static final DateFormat.Field DAY_OF_WEEK;
 public static final DateFormat.Field DAY_OF_WEEK_IN_MONTH;
 public static final DateFormat.Field DAY_OF_YEAR;
 public static final DateFormat.Field ERA;
 public static final DateFormat.Field HOUR0;
 public static final DateFormat.Field HOUR1;
 public static final DateFormat.Field HOUR_OF_DAY0;
 public static final DateFormat.Field HOUR_OF_DAY1;
 public static final DateFormat.Field MILLISECOND;
 public static final DateFormat.Field MINUTE;
 public static final DateFormat.Field MONTH;
 public static final DateFormat.Field SECOND;
 public static final DateFormat.Field TIME_ZONE;
 public static final DateFormat.Field WEEK_OF_MONTH;
 public static final DateFormat.Field WEEK_OF_YEAR;
 public static final DateFormat.Field YEAR;
// Public Class Methods
 public static DateFormat.Field ofCalendarField(int);
// Public Instance Methods
 public int getCalendarField();
// Protected Methods Overriding AttributedCharacterIterator.Attribute
 protected Object readResolve() throws java.io.InvalidObjectException;
}

Name
DateFormatSymbols

Synopsis

 This
class defines accessor methods for the various pieces of data, such
as names of months and days, used by
SimpleDateFormat to format and parse dates and
times. You do not typically need to use this class unless you are
formatting dates for an unsupported locale or in some highly
customized way.
[image: java.text.DateFormatSymbols]

Figure 15-8. java.text.DateFormatSymbols

public class DateFormatSymbols implements Cloneable, Serializable {
// Public Constructors
 public DateFormatSymbols();
 public DateFormatSymbols(java.util.Locale locale);
// Public Instance Methods
 public String[] getAmPmStrings();
 public String[] getEras();
 public String getLocalPatternChars();
 public String[] getMonths();
 public String[] getShortMonths();
 public String[] getShortWeekdays();
 public String[] getWeekdays();
 public String[][] getZoneStrings();
 public void setAmPmStrings(String[] newAmpms);
 public void setEras(String[] newEras);
 public void setLocalPatternChars(String newLocalPatternChars);
 public void setMonths(String[] newMonths);
 public void setShortMonths(String[] newShortMonths);
 public void setShortWeekdays(String[] newShortWeekdays);
 public void setWeekdays(String[] newWeekdays);
 public void setZoneStrings(String[][] newZoneStrings);
// Public Methods Overriding Object
 public Object clone();
 public boolean equals(Object obj);
 public int hashCode();
}

Passed To

 SimpleDateFormat.{setDateFormatSymbols(),
SimpleDateFormat()}

Returned By

 SimpleDateFormat.getDateFormatSymbols()

Name
DecimalFormat

Synopsis

 This is the concrete
Format class used by
NumberFormat for all locales that use base 10
numbers. Most applications do not need to use this class directly;
they can use the static methods of NumberFormat to
obtain a default NumberFormat object for a desired
locale and then perform minor locale-independent customizations on
that object.
Applications that require highly customized number formatting and
parsing may create custom DecimalFormat objects by
passing a suitable pattern to the DecimalFormat()
constructor method. The
 applyPattern()
method can change this pattern. A pattern consists of a string of
characters from the table below. For example:
"$#,##0.00;($#,##0.00)"
	
 Character

 	
 Meaning

	

 #

 	
 A digit; zeros show as absent.

	

 0

 	
 A digit; zeros show as 0.

	
 .

 	
 The locale-specific decimal separator.

	
 ,

 	
 The locale-specific grouping separator (comma).

	

 -

 	
 The locale-specific negative prefix.

	

 %

 	
 Shows value as a percentage.

	

 ;

 	
 Separates positive number format (on left) from optiona negative
number format (on right).

	
 '

 	
 Quotes a reserved character, so it appears literally in the output
(apostrophe).

	

 other

 	
 Appears literally in output.

A DecimalFormatSymbols object can be specified
optionally when creating a DecimalFormat object.
If one is not specified, a DecimalFormatSymbols
object suitable for the default locale is used.
In Java 5.0, DecimalFormat can return
java.math.BigDecimal values from its
parse() method. Call setParseBigDecimal(
) to enable this feature. This is useful when working with
very large numbers, very precise numbers, or financial applications
that use BigDecimal to avoid rounding errors.
[image: java.text.DecimalFormat]

Figure 15-9. java.text.DecimalFormat

public class DecimalFormat extends NumberFormat {
// Public Constructors
 public DecimalFormat();
 public DecimalFormat(String pattern);
 public DecimalFormat(String pattern, DecimalFormatSymbols symbols);
// Public Instance Methods
 public void applyLocalizedPattern(String pattern);
 public void applyPattern(String pattern);
 public DecimalFormatSymbols getDecimalFormatSymbols();
 public int getGroupingSize(); default:3
 public int getMultiplier(); default:1
 public String getNegativePrefix(); default:"-"
 public String getNegativeSuffix(); default:""
 public String getPositivePrefix(); default:""
 public String getPositiveSuffix(); default:""
 public boolean isDecimalSeparatorAlwaysShown(); default:false
 5.0 public boolean isParseBigDecimal(); default:false
 public void setDecimalFormatSymbols(DecimalFormatSymbols newSymbols);
 public void setDecimalSeparatorAlwaysShown(boolean newValue);
 public void setGroupingSize(int newValue);
 public void setMultiplier(int newValue);
 public void setNegativePrefix(String newValue);
 public void setNegativeSuffix(String newValue);
5.0 public void setParseBigDecimal(boolean newValue);
 public void setPositivePrefix(String newValue);
 public void setPositiveSuffix(String newValue);
 public String toLocalizedPattern();
 public String toPattern();
// Public Methods Overriding NumberFormat
 public Object clone();
 public boolean equals(Object obj);
5.0 public final StringBuffer format(Object number, StringBuffer toAppendTo,
 FieldPosition pos);
 public StringBuffer format(double number, StringBuffer result,
 FieldPosition fieldPosition);
 public StringBuffer format(long number, StringBuffer result,
 FieldPosition fieldPosition);
1.4 public java.util.Currency getCurrency();
5.0 public int getMaximumFractionDigits(); default:3
 5.0 public int getMaximumIntegerDigits(); default:2147483647
 5.0 public int getMinimumFractionDigits(); default:0
 5.0 public int getMinimumIntegerDigits(); default:1
 public int hashCode();
 public Number parse(String text, ParsePosition pos);
1.4 public void setCurrency(java.util.Currency currency);
1.2 public void setMaximumFractionDigits(int newValue);
1.2 public void setMaximumIntegerDigits(int newValue);
1.2 public void setMinimumFractionDigits(int newValue);
1.2 public void setMinimumIntegerDigits(int newValue);
// Public Methods Overriding Format
 1.4 public AttributedCharacterIterator formatToCharacterIterator(Object obj);
}

Name
DecimalFormatSymbols

Synopsis

 This class defines the various characters
and strings, such as the decimal point, percent sign, and thousands
separator, used by DecimalFormat when formatting
numbers. You do not typically use this class directly unless you are
formatting dates for an unsupported locale or in some highly
customized way.
[image: java.text.DecimalFormatSymbols]

Figure 15-10. java.text.DecimalFormatSymbols

public final class DecimalFormatSymbols implements Cloneable, Serializable {
// Public Constructors
 public DecimalFormatSymbols();
 public DecimalFormatSymbols(java.util.Locale locale);
// Public Instance Methods
 1.4 public java.util.Currency getCurrency();
1.2 public String getCurrencySymbol(); default:"$"
 public char getDecimalSeparator(); default:.
 public char getDigit(); default:#
 public char getGroupingSeparator(); default:,
 public String getInfinity(); default:"\u221E"
 1.2 public String getInternationalCurrencySymbol(); default:"USD"
 public char getMinusSign(); default:-
 1.2 public char getMonetaryDecimalSeparator(); default:.
 public String getNaN(); default:"\uFFFD"
 public char getPatternSeparator(); default:;
 public char getPercent(); default:%
 public char getPerMill(); default:\u2030
 public char getZeroDigit(); default:0
 1.4 public void setCurrency(java.util.Currency currency);
1.2 public void setCurrencySymbol(String currency);
 public void setDecimalSeparator(char decimalSeparator);
 public void setDigit(char digit);
 public void setGroupingSeparator(char groupingSeparator);
 public void setInfinity(String infinity);
1.2 public void setInternationalCurrencySymbol(String currencyCode);
 public void setMinusSign(char minusSign);
1.2 public void setMonetaryDecimalSeparator(char sep);
 public void setNaN(String NaN);
 public void setPatternSeparator(char patternSeparator);
 public void setPercent(char percent);
 public void setPerMill(char perMill);
 public void setZeroDigit(char zeroDigit);
// Public Methods Overriding Object
 public Object clone();
 public boolean equals(Object obj);
 public int hashCode();
}

Passed To

 DecimalFormat.{DecimalFormat(),
setDecimalFormatSymbols()}

Returned By

 DecimalFormat.getDecimalFormatSymbols()

Name
FieldPosition

Synopsis

 FieldPosition objects
are optionally passed to the format() methods of
the Format class and its subclasses to return
information about the start and end positions of a specific part or
“field” of the formatted string.
This kind of information is often useful for aligning formatted
strings in columns—for example, aligning the decimal points in
a column of numbers.
The field of interest is specified when the FieldPosition(
) constructor is called. The
NumberFormat and DateFormat
classes define integer various constants (which end with the string
_FIELD) that can be used here. In Java 1.4 and
later you can also construct a FieldPosition by
specifying the Format.Field object that identifies
the field. (For constant Field instances, see
DateFormat.Field,
MessageFormat.Field and
NumberFormat.Field.)
After a FieldPosition has been created and passed
to a format() method, use

 getBeginIndex(
) and getEndIndex() methods of this
class to obtain the starting and ending character positions of the
desired field of the formatted string.
public class FieldPosition {
// Public Constructors
 1.4 public FieldPosition(Format.Field attribute);
 public FieldPosition(int field);
1.4 public FieldPosition(Format.Field attribute, int fieldID);
// Public Instance Methods
 public int getBeginIndex();
 public int getEndIndex();
 public int getField();
1.4 public Format.Field getFieldAttribute();
1.2 public void setBeginIndex(int bi);
1.2 public void setEndIndex(int ei);
// Public Methods Overriding Object
 1.2 public boolean equals(Object obj);
1.2 public int hashCode();
1.2 public String toString();
}

Passed To

 ChoiceFormat.format(),
DateFormat.format(),
DecimalFormat.format(), Format.format(
), MessageFormat.format(),
NumberFormat.format(),
SimpleDateFormat.format()

Name
Format

Synopsis

 This abstract
class is the base class for all

 number,
date, and string formatting classes in the
java.text package. It defines the key formatting
and parsing methods that are implemented by all subclasses.
format()
 converts
an object to a string using the formatting rules encapsulated by the
Format subclass and optionally appends the
resulting string to an existing StringBuffer.
parseObject()
 performs the reverse operation; it parses a
formatted string and returns the corresponding object. Status
information for these two operations is returned in
FieldPosition and ParsePosition
objects.
Java 1.4 defined a variant on the format()
method. formatToCharacterIterator(
)
 performs the same formating operation as
format() but returns the result as an
AtttributedCharacterIterator which uses attributes
to identify the various parts (such the integer part, the decimal
separtator, and the fractional part of a formatted number) of the
formatted string. The attribute keys are all instances of the
Format.Field inner class. Each of the
Format subclasses define a
Field subclass that defines a set of
Field constants, (such as
NumberFormat.Field.DECIMAL_SEPARATOR) for use by
the character iterator returned by this method. See
ChoiceFormat, DateFormat,
MessageFormat, and NumberFormat
for subclasses that perform specific types of formatting.
[image: java.text.Format]

Figure 15-11. java.text.Format

public abstract class Format implements Cloneable, Serializable {
// Public Constructors
 public Format();
// Nested Types
 1.4 public static class Field extends AttributedCharacterIterator.Attribute;
// Public Instance Methods
 public final String format(Object obj);
 public abstract StringBuffer format(Object obj, StringBuffer toAppendTo,
 FieldPosition pos);
1.4 public AttributedCharacterIterator formatToCharacterIterator(Object obj);
 public Object parseObject(String source) throws ParseException;
 public abstract Object parseObject(String source, ParsePosition pos);
// Public Methods Overriding Object
 public Object clone();
}

Subclasses

 DateFormat, MessageFormat,
NumberFormat

Passed To

 MessageFormat.{setFormat(),
setFormatByArgumentIndex(), setFormats(
), setFormatsByArgumentIndex()}

Returned By

 MessageFormat.{getFormats(),
getFormatsByArgumentIndex()}

Name
Format.Field

Synopsis

 This inner class extends
AttributedCharacterIterator.Attribute and serves
as the common superclass for DateFormat.Field,
MessageFormat.Field, and
NumberFormat.Field. See those specific subclasses
for details.
public static class Format.Field extends AttributedCharacterIterator.Attribute {
// Protected Constructors
 protected Field(String name);
}

Subclasses

 DateFormat.Field,
MessageFormat.Field,
NumberFormat.Field

Passed To

 FieldPosition.FieldPosition()

Returned By

 FieldPosition.getFieldAttribute()

Name
MessageFormat

Synopsis

 This
class formats and substitutes objects into specified positions in a
message string (also known as the pattern string). It provides the
closest Java equivalent to the printf() function
of the C programming language. If a message is to be displayed only a
single time, the simplest way to use the
MessageFormat class is through the static
format() method. This method is passed a message
or pattern string and an array of argument objects to be formatted
and substituted into the string. If the message is to be displayed
several times, it makes more sense to create a
MessageFormat object, supplying the pattern
string, and then call the format() instance
method of this object, supplying the array of objects to be formatted
into the message.
The message or pattern string used by the
MessageFormat contains digits enclosed in curly
braces to indicate where each argument should be substituted. The
sequence "{0}"
indicates that the first object should be converted to a string (if
necessary) and inserted at that point, while the sequence
"{3}" indicates
that the fourth object should be inserted. If the object to be
inserted is not a string, MessageFormat checks to
see if it is a Date or a subclass of
Number. If so, it uses a default
DateFormat or NumberFormat
object to convert the value to a string. If not, it simply invokes
the object’s toString() method
to convert it.

A digit within curly braces in a pattern string may be followed
optionally by a comma, and one of the words
“date”,
“time”,
“number”, or
“choice”, to indicate that the
corresponding argument should be formatted as a date, time, number,
or choice before being substituted into the pattern string. Any of
these keywords can additionally be followed by a comma and additional
pattern information to be used in formatting the date, time, number,
or choice. (See SimpleDateFormat,
DecimalFormat, and ChoiceFormat
for more information.)

 You can pass a
Locale to the constructor or call
setLocale() to specify a nondefault locale that
the MessageFormat should use when obtaining
DateFormat and NumberFormat
objects to format dates, time, and numbers inserted into the pattern.
You can change the Format object used at a
particular position in the pattern with the setFormat(
) method, or change all Format objects
with setFormats(). Both of these methods depend
on the order of in which arguments are displayed in the pattern
string. The pattern string is often subject to localization and the
arguments may appear in different orders in different localizations
of the pattern. Therefore, in Java 1.4 and later it is usually more
convenient to use the
“ByArgumentIndex” versions of the
setFormat(), setFormats()
methods, and getFormats() methods.
You can set a new pattern for the MessageFormat
object by calling
 applyPattern(), and
you can obtain a string that represents the current formatting
pattern by calling toPattern().
MessageFormat also supports a parse(
) method that can parse an array of objects out of a
specified string, according to the specified pattern.
[image: java.text.MessageFormat]

Figure 15-12. java.text.MessageFormat

public class MessageFormat extends Format {
// Public Constructors
 public MessageFormat(String pattern);
1.4 public MessageFormat(String pattern, java.util.Locale locale);
// Nested Types
 1.4 public static class Field extends Format.Field;
// Public Class Methods
 public static String format(String pattern, Object... arguments);
// Public Instance Methods
 public void applyPattern(String pattern);
 public final StringBuffer format(Object[] arguments, StringBuffer result,
 FieldPosition pos);
 public Format[] getFormats();
1.4 public Format[] getFormatsByArgumentIndex();
 public java.util.Locale getLocale();
 public Object[] parse(String source) throws ParseException;
 public Object[] parse(String source, ParsePosition pos);
 public void setFormat(int formatElementIndex, Format newFormat);
1.4 public void setFormatByArgumentIndex(int argumentIndex, Format newFormat);
 public void setFormats(Format[] newFormats);
1.4 public void setFormatsByArgumentIndex(Format[] newFormats);
 public void setLocale(java.util.Locale locale);
 public String toPattern();
// Public Methods Overriding Format
 public Object clone();
 public final StringBuffer format(Object arguments, StringBuffer result,
 FieldPosition pos);
1.4 public AttributedCharacterIterator
 formatToCharacterIterator(Object arguments);
 public Object parseObject(String source, ParsePosition pos);
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
}

Name
MessageFormat.Field

Synopsis

 This
class defines an ARGUMENT
 AttributedCharacterIterator.Attribute constant
that is be used by the AttributedCharacterIterator
returned by MessageFormat.formatToCharacterIterator(
)
 to identify portions of the formatted message
that are derived from the arguments passed to
formatToCharacterIterator(). The value associated
with this ARGUMENT attribute will be an
Integer specifying the argument number.
public static class MessageFormat.Field extends Format.Field {
// Protected Constructors
 protected Field(String name);
// Public Constants
 public static final MessageFormat.Field ARGUMENT;
// Protected Methods Overriding AttributedCharacterIterator.Attribute
 protected Object readResolve() throws java.io.InvalidObjectException;
}

Name
NumberFormat

Synopsis

 This
class formats and parses numbers in a locale-specific way. As an
abstract class, it cannot be instantiated directly, but it provides a
number of static methods that return instances of a concrete subclass
you can use for formatting. The getInstance()
method returns a NumberFormat object suitable for
normal formatting of numbers in either the default locale or in a
specified locale. getIntegerInstance(),
getCurrencyInstance(), and
getPercentInstance() return
NumberFormat objects for formatting numbers that
are integers, or represent monetary amounts or
percentages.
These methods return a NumberFormat suitable for
the default locale, or for the specified Locale
object. getAvailableLocales() returns an array of
locales for which NumberFormat objects are
available. In Java 1.4 and later, use setCurrency(
) to provide a java.util.Currency object
for use when formating monetary values. Note that the
NumberFormat class is not intended for the display
of very large or very small numbers that require exponential
notation, and it may not gracefully handle infinite or
NaN (not-a-number) values.

 Once you have created a suitable
NumberFormat object, you can customize its
localeindependent behavior with setMaximumFractionDigits(
), setGroupingUsed(), and similar
set methods. In order to customize the
locale-dependent behavior, you can use instanceof
to test if the NumberFormat object is an instance
of DecimalFormat, and, if so, cast it to that
type. The DecimalFormat class provides complete
control over number formatting. Note, however, that a
NumberFormat customized in this way may no longer
be appropriate for the desired locale.

 After creating and customizing a
NumberFormat object, you can use the various
format() methods to convert numbers to strings or
string buffers, and you can use the parse() or
parseObject() methods to convert strings to
numbers. You can also use the formatToCharacterIterator(
) method inherited from Format (and
overridden by DecimalFormat) in place of
format(). The constants defined by this class are
to be used by the FieldPosition object.
[image: java.text.NumberFormat]

Figure 15-13. java.text.NumberFormat

public abstract class NumberFormat extends Format {
// Public Constructors
 public NumberFormat();
// Public Constants
 public static final int FRACTION_FIELD; =1
 public static final int INTEGER_FIELD; =0
 // Nested Types
 1.4 public static class Field extends Format.Field;
// Public Class Methods
 public static java.util.Locale[] getAvailableLocales();
 public static final NumberFormat getCurrencyInstance();
 public static NumberFormat getCurrencyInstance(java.util.Locale inLocale);
 public static final NumberFormat getInstance();
 public static NumberFormat getInstance(java.util.Locale inLocale);
1.4 public static final NumberFormat getIntegerInstance();
1.4 public static NumberFormat getIntegerInstance(java.util.Locale inLocale);
 public static final NumberFormat getNumberInstance();
 public static NumberFormat getNumberInstance(java.util.Locale inLocale);
 public static final NumberFormat getPercentInstance();
 public static NumberFormat getPercentInstance(java.util.Locale inLocale);
// Public Instance Methods
 public final String format(long number);
 public final String format(double number);
 public abstract StringBuffer format(long number, StringBuffer toAppendTo,
 FieldPosition pos);
 public abstract StringBuffer format(double number, StringBuffer toAppendTo,
 FieldPosition pos);
1.4 public java.util.Currency getCurrency();
 public int getMaximumFractionDigits();
 public int getMaximumIntegerDigits();
 public int getMinimumFractionDigits();
 public int getMinimumIntegerDigits();
 public boolean isGroupingUsed();
 public boolean isParseIntegerOnly();
 public Number parse(String source) throws ParseException;
 public abstract Number parse(String source, ParsePosition parsePosition);
1.4 public void setCurrency(java.util.Currency currency);
 public void setGroupingUsed(boolean newValue);
 public void setMaximumFractionDigits(int newValue);
 public void setMaximumIntegerDigits(int newValue);
 public void setMinimumFractionDigits(int newValue);
 public void setMinimumIntegerDigits(int newValue);
 public void setParseIntegerOnly(boolean value);
// Public Methods Overriding Format
 public Object clone();
 public StringBuffer format(Object number, StringBuffer toAppendTo,
 FieldPosition pos);
 public final Object parseObject(String source, ParsePosition pos);
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
}

Subclasses

 ChoiceFormat, DecimalFormat

Passed To

 DateFormat.setNumberFormat()

Returned By

 DateFormat.getNumberFormat()

Type Of

 DateFormat.numberFormat

Name
NumberFormat.Field

Synopsis
This class defines a
 typesafe
enumeration of
AttributedCharacterIterator.Attribute objects that
may be used by the AttributedCharacterIterator
returned by formatToCharacterIterator() method
inherited from the Format class, or that may be
used when creating a FieldPosition object to pass
to format() in order to obtain the bounds of a
specific number field (such as the decimal point for aligning
numbers) in formatted output.
public static class NumberFormat.Field extends Format.Field {
// Protected Constructors
 protected Field(String name);
// Public Constants
 public static final NumberFormat.Field CURRENCY;
 public static final NumberFormat.Field DECIMAL_SEPARATOR;
 public static final NumberFormat.Field EXPONENT;
 public static final NumberFormat.Field EXPONENT_SIGN;
 public static final NumberFormat.Field EXPONENT_SYMBOL;
 public static final NumberFormat.Field FRACTION;
 public static final NumberFormat.Field GROUPING_SEPARATOR;
 public static final NumberFormat.Field INTEGER;
 public static final NumberFormat.Field PERCENT;
 public static final NumberFormat.Field PERMILLE;
 public static final NumberFormat.Field SIGN;
// Protected Methods Overriding AttributedCharacterIterator.Attribute
 protected Object readResolve() throws java.io.InvalidObjectException;
}

Name
ParseException

Synopsis

 Signals that
a string has an incorrect format and cannot be parsed. It is
typically thrown by the parse() or
parseObject() methods of
Format and its subclasses, but is also thrown by
certain methods in the java.text package that are
passed patterns or other rules in string form. The
getErrorOffset() method of this class returns the
character position at which the parsing error occurred in the
offending string.
[image: java.text.ParseException]

Figure 15-14. java.text.ParseException

public class ParseException extends Exception {
// Public Constructors
 public ParseException(String s, int errorOffset);
// Public Instance Methods
 public int getErrorOffset();
}

Thrown By

 DateFormat.parse(), Format.parseObject(
), MessageFormat.parse(),
NumberFormat.parse(),
RuleBasedCollator.RuleBasedCollator()

Name
ParsePosition

Synopsis

 ParsePosition objects are
passed to the parse() and parseObject(
) methods of Format and its subclasses.
The ParsePosition class represents the position in
a string at which parsing should begin or at which parsing stopped.
Before calling a parse() method, you can specify
the starting position of parsing by passing the desired index to the
ParsePosition() constructor or by calling the
setIndex() of an existing
ParsePosition object. When parse(
) returns, you can determine where parsing ended by calling
getIndex(). When parsing multiple objects or
values from a string, a single ParsePosition
object can be used sequentially.
public class ParsePosition {
// Public Constructors
 public ParsePosition(int index);
// Public Instance Methods
 1.2 public int getErrorIndex();
 public int getIndex();
1.2 public void setErrorIndex(int ei);
 public void setIndex(int index);
// Public Methods Overriding Object
 1.2 public boolean equals(Object obj);
1.2 public int hashCode();
1.2 public String toString();
}

Passed To

 ChoiceFormat.parse(), DateFormat.{parse(
), parseObject()},
DecimalFormat.parse(),
Format.parseObject(),
MessageFormat.{parse(), parseObject(
)}, NumberFormat.{parse(),
parseObject()}, SimpleDateFormat.parse(
)

Name
RuleBasedCollator

Synopsis

 This
class is a concrete subclass of the abstract
Collator class. It performs collations using a
table of rules that are specified in textual form. Most applications
do not use this class directly; instead they call
Collator.getInstance() to obtain a
Collator object (typically a
RuleBasedCollator object) that implements the
default collation order for a specified or default locale. You should
need to use this class only if you are collating strings for a locale
that is not supported by default or if you need to implement a highly
customized collation order.
[image: java.text.RuleBasedCollator]

Figure 15-15. java.text.RuleBasedCollator

public class RuleBasedCollator extends Collator {
// Public Constructors
 public RuleBasedCollator(String rules) throws ParseException;
// Public Instance Methods
 1.2 public CollationElementIterator getCollationElementIterator(CharacterIterator source);
 public CollationElementIterator getCollationElementIterator(String source);
 public String getRules();
// Public Methods Overriding Collator
 public Object clone();
 public int compare(String source, String target); synchronized
 public boolean equals(Object obj);
 public CollationKey getCollationKey(String source); synchronized
 public int hashCode();
}

Name
SimpleDateFormat

Synopsis

 This is the concrete
Format subclass used by
DateFormat to handle the formatting and parsing of
dates. Most applications should not use this class directly; instead,
they should obtain a localized DateFormat object
by calling one of the static methods of
DateFormat.

 SimpleDateFormat formats dates and times according
to a pattern, which specifies the positions of the various fields of
the date, and a DateFormatSymbols object, which
specifies important auxiliary data, such as the names of months.
Applications that require highly customized date or time formatting
can create a custom SimpleDateFormat object by
specifying the desired pattern. This creates a
SimpleDateFormat object that uses the
DateFormatSymbols object for the default locale.
You may also specify an locale explicitly, to use the
DateFormatSymbols object for that locale. You can
even provide an explicit DateFormatSymbols object
of your own if you need to format dates and times for an unsupported
locale.

 You can use the applyPattern(
) method of a SimpleDateFormat to change
the formatting pattern used by the object. The syntax of this pattern
is described in the following table. Any characters in the format
string that do not appear in this table appear literally in the
formatted date.
	
 Field

 	
 Full form

 	
 Short form

	
 Year

 	

 yyyy (4 digits)

 	

 yy (2 digits)

	
 Month

 	

 MMM (name)

 	

 MM (2 digits), M (1 or 2 digits)

	
 Day of week

 	

 EEEE

 	

 EE

	
 Day of month

 	

 dd (2 digits)

 	

 d (1 or 2 digits)

	
 Hour (1-12)

 	

 hh (2 digits)

 	

 h (1 or 2 digits)

	
 Hour (0-23)

 	

 HH (2 digits)

 	

 H (1 or 2 digits)

	
 Hour (0-11)

 	

 KK

 	

 K

	
 Hour (1-24)

 	

 kk

 	

 k

	
 Minute

 	

 mm

 	

	
 Second

 	

 ss

 	

	
 Millisecond

 	

 SSS

 	

	
 AM/PM

 	

 a

 	

	
 Time zone

 	

 zzzz

 	

 zz

	
 Day of week in month

 	

 F (e.g., 3rd Thursday)

 	

	
 Day in year

 	

 DDD (3 digits)

 	

 D (1, 2, or 3 digits)

	
 Week in year

 	

 ww

 	

	
 Era (e.g., BC/AD)

 	

 G

 	

[image: java.text.SimpleDateFormat]

Figure 15-16. java.text.SimpleDateFormat

public class SimpleDateFormat extends DateFormat {
// Public Constructors
 public SimpleDateFormat();
 public SimpleDateFormat(String pattern);
 public SimpleDateFormat(String pattern, java.util.Locale locale);
 public SimpleDateFormat(String pattern, DateFormatSymbols formatSymbols);
// Public Instance Methods
 public void applyLocalizedPattern(String pattern);
 public void applyPattern(String pattern);
1.2 public java.util.Date get2DigitYearStart();
 public DateFormatSymbols getDateFormatSymbols();
1.2 public void set2DigitYearStart(java.util.Date startDate);
 public void setDateFormatSymbols(DateFormatSymbols newFormatSymbols);
 public String toLocalizedPattern();
 public String toPattern();
// Public Methods Overriding DateFormat
 public Object clone();
 public boolean equals(Object obj);
 public StringBuffer format(java.util.Date date, StringBuffer toAppendTo,
 FieldPosition pos);
 public int hashCode();
 public java.util.Date parse(String text, ParsePosition pos);
// Public Methods Overriding Format
 1.4 public AttributedCharacterIterator formatToCharacterIterator(Object obj);
}

Name
StringCharacterIterator

Synopsis

 This class is a trivial implementation
of the CharacterIterator interface that works for
text stored in Java String objects. See
CharacterIterator for details.
[image: java.text.StringCharacterIterator]

Figure 15-17. java.text.StringCharacterIterator

public final class StringCharacterIterator implements CharacterIterator {
// Public Constructors
 public StringCharacterIterator(String text);
 public StringCharacterIterator(String text, int pos);
 public StringCharacterIterator(String text, int begin, int end, int pos);
// Public Instance Methods
 1.2 public void setText(String text);
// Methods Implementing CharacterIterator
 public Object clone();
 public char current();
 public char first();
 public int getBeginIndex();
 public int getEndIndex();
 public int getIndex();
 public char last();
 public char next();
 public char previous();
 public char setIndex(int p);
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
}

Chapter 16. java.util and Subpackages

This chapter documents the java.util package, and
each of its subpackages. Those packages are:

	
 java.util

	This package defines many important and
commonly used utility classes, the most important of which are the
various Collection, Set,
List, and Map implementations.
In Java 5.0 the collection classes and interfaces have been converted
into generic types.

	
 java.util.concurrent

	This package includes utilities for
concurrent programming, including
threadsafe collection classes, threadpool implementations, and
synchronizer utilities.

	
 java.util.concurrent.atomic

	
 This package includes classes that
define atomic operations on primitive values
or object references.

	
 java.util.concurrent.locks

	

 This
package contains low-level lock and condition utilities.

	
 java.util.jar

	This package defines classes for reading and writing
JAR (Java ARchive) files. They are
based on the classes of the java.util.zip package.

	
 java.util.logging

	This package defines a powerful and flexible
logging API for Java applications.

	
 java.util.prefs

	This package allows applications to set and query persistent values
for user-specific
preferences or system-wide
configuration parameters.

	
 java.util.regex

	This package defines an API for textual pattern matching using
regular expressions.

	
 java.util.zip

	This package defines classes for reading and writing

 ZIP files and for compressing and
uncompressing data using the “gzip”
format.

Name
Package java.util

Synopsis

 The java.util package
defines a number of useful classes, primarily collections classes
that are useful for working with groups of objects. This package
should not be considered merely a utility package that is separate
from the rest of the language; it is an integral and frequently used
part of the Java platform.
The most important classes in java.util are the
collections classes. Prior
to Java 1.2, these were Vector, a growable list of
objects, and Hashtable, a mapping between
arbitrary key and value objects. Java 1.2 adds an entire collections
framework consisting of the Collection,
Map, Set,
List, SortedMap, and
SortedSet interfaces and the classes that
implement them. Other important classes and interfaces of the
collections framework are Comparator,
Collections, Arrays,
Iterator, and ListIterator.
Java 1.4 extends the Collections framework with the addition of new
Map and Set implementations,
and a new RandomAccess marker interface used by
List implementations.

 Java 5.0 adds a
Queue
 collection interface and
implementations. It also adds
EnumSet

 and
EnumMap which efficiently implement the
Set and Map interfaces for use
with enumerated types. Most importantly, Java 5.0 modifies all
collection interfaces and classes to be generic types, which enable type-safe
collections such as List<String>.
BitSet is a related class that is not actually
part of the Collections framework (and is not even a set). It
provides a very compact representation of an arbitrary-size array or
list of boolean values or bits. Its API was
substantially enhanced in Java 1.4.

 The other classes of the
package are also quite useful. Date,
Calendar, and TimeZone work
with dates and times. Currency
 represents
a national currency. Locale represents the
language and related text formatting conventions of a country,
region, or culture. ResourceBundle and its
subclasses represent a bundle of localized resources that are read in
by an internationalized program at runtime. Random
generates and returns pseudorandom numbers in a variety of forms.
StringTokenizer is a simple parser that breaks a
string into tokens. In Java 1.3 and later,

 Timer
and TimerTask provide a powerful API for
scheduling code to be run by a background thread, once or
repetitively, at a specified time in the future. In Java 5.0, the
Formatter
 class enables poweful formatted text
output in the style of the C programming language’s
printf() function. The Java 5.0
Scanner
 class is a text
tokenizer or scanner that can also parse
numbers and match tokens based on regular expressions.

Interfaces
public interface Collection<E> extends Iterable<E>;
public interface Comparator<T>;
public interface Enumeration<E>;
public interface EventListener;
public interface Formattable;
public interface Iterator<E>;
public interface List<E> extends Collection<E>;
public interface ListIterator<E> extends Iterator<E>;
public interface Map<K, V>;
public interface Map.Entry<K, V>;
public interface Observer;
public interface Queue<E> extends Collection<E>;
public interface RandomAccess;
public interface Set<E> extends Collection<E>;
public interface SortedMap<K, V> extends Map<K, V>;
public interface SortedSet<E> extends Set<E>;

Enumerated Types
public enum Formatter.BigDecimalLayoutForm;

Collections
public abstract class AbstractCollection<E> implements Collection<E>;
 public abstract class AbstractList<E> extends AbstractCollection<E>
 implements List<E>;
 public abstract class AbstractSequentialList<E> extends AbstractList<E>;
 public class LinkedList<E> extends AbstractSequentialList<E>
 implements List<E>, Queue<E>, Cloneable, Serializable;
 public class ArrayList<E> extends AbstractList<E> implements List<E>,
 RandomAccess, Cloneable, Serializable;
 public class Vector<E> extends AbstractList<E> implements List<E>,
 RandomAccess, Cloneable, Serializable;
 public class Stack<E> extends Vector<E>;
 public abstract class AbstractQueue<E> extends AbstractCollection<E>
 implements Queue<E>;
 public class PriorityQueue<E> extends AbstractQueue<E>
 implements Serializable;
 public abstract class AbstractSet<E> extends AbstractCollection<E>
 implements Set<E>;
 public abstract class EnumSet<E extends Enum<E>> extends AbstractSet<E>
 implements Cloneable, Serializable;
 public class HashSet<E> extends AbstractSet<E> implements Set<E>,
 Cloneable, Serializable;
 public class LinkedHashSet<E> extends HashSet<E> implements Set<E>,
 Cloneable, Serializable;
 public class TreeSet<E> extends AbstractSet<E> implements SortedSet<E>,
 Cloneable, Serializable;
public abstract class AbstractMap<K, V> implements Map<K, V>;
 public class EnumMap<K extends Enum<K>, V> extends AbstractMap<K, V>
 implements Serializable, Cloneable;
 public class HashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>,
 Cloneable, Serializable;
 public class LinkedHashMap<K, V> extends HashMap<K, V>
 implements Map<K, V>;
 public class IdentityHashMap<K, V> extends AbstractMap<K, V>
 implements Map<K, V>, Serializable, Cloneable;
 public class TreeMap<K, V> extends AbstractMap<K, V>
 implements SortedMap<K, V>, Cloneable, Serializable;
 public class WeakHashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>;
public class Hashtable<K, V> extends Dictionary<K, V> implements Map<K, V>,
 Cloneable, Serializable;
 public class Properties extends Hashtable<Object, Object>;

Events
public class EventObject implements Serializable;

Other Classes
public class Arrays;
public class BitSet implements Cloneable, Serializable;
public abstract class Calendar implements Serializable, Cloneable, Comparable<Calendar>;
 public class GregorianCalendar extends Calendar;
public class Collections;
public final class Currency implements Serializable;
public class Date implements Serializable, Cloneable, Comparable<Date>;
public abstract class Dictionary<K, V>;
public abstract class EventListenerProxy implements EventListener;
public class FormattableFlags;
public final class Formatter implements java.io.Closeable, java.io.Flushable;
public final class Locale implements Cloneable, Serializable;
public class Observable;
public final class PropertyPermission extends java.security.BasicPermission;
public class Random implements Serializable;
public abstract class ResourceBundle;
 public abstract class ListResourceBundle extends ResourceBundle;
 public class PropertyResourceBundle extends ResourceBundle;
public final class Scanner implements Iterator<String>;
public class StringTokenizer implements Enumeration<Object>;
public class Timer;
public abstract class TimerTask implements Runnable;
public abstract class TimeZone implements Cloneable, Serializable;
 public class SimpleTimeZone extends TimeZone;
public final class UUID implements Serializable, Comparable<UUID>;

Exceptions
public class ConcurrentModificationException extends RuntimeException;
public class EmptyStackException extends RuntimeException;
public class FormatterClosedException extends IllegalStateException;
public class IllegalFormatException extends IllegalArgumentException;
 public class DuplicateFormatFlagsException extends IllegalFormatException;
 public class FormatFlagsConversionMismatchException extends IllegalFormatException;
 public class IllegalFormatCodePointException extends IllegalFormatException;
 public class IllegalFormatConversionException extends IllegalFormatException;
 public class IllegalFormatFlagsException extends IllegalFormatException;
 public class IllegalFormatPrecisionException extends IllegalFormatException;
 public class IllegalFormatWidthException extends IllegalFormatException;
 public class MissingFormatArgumentException extends IllegalFormatException;
 public class MissingFormatWidthException extends IllegalFormatException;
 public class UnknownFormatConversionException extends IllegalFormatException;
 public class UnknownFormatFlagsException extends IllegalFormatException;
public class InvalidPropertiesFormatException extends java.io.IOException;
public class MissingResourceException extends RuntimeException;
public class NoSuchElementException extends RuntimeException;
 public class InputMismatchException extends NoSuchElementException;
public class TooManyListenersException extends Exception;

Name
AbstractCollection<E>

Synopsis

 This
abstract class is a partial implementation of
Collection that makes it easy to define custom
Collection implementations. To create an
unmodifiable collection, simply override size(
)

 and iterator(). The
Iterator object returned by iterator(
) has to support only the hasNext() and
next() methods. To define a modifiable
collection, you must additionally override the add(
)
 method of
AbstractCollection and make sure the
Iterator returned by iterator(
) supports the remove(
)
 method. Some subclasses may choose
to override other methods to tune performance. In addition, it is
conventional that all subclasses provide two constructors: one that
takes no arguments and one that accepts a
Collection argument that specifies the initial
contents of the collection.
Note that if you subclass AbstractCollection
directly, you are implementing a
bag
 —an
unordered collection that allows duplicate
elements. If your add() method rejects duplicate
elements, you should subclass AbstractSet instead.
See also AbstractList.
[image: java.util.AbstractCollection<E>]

Figure 16-1. java.util.AbstractCollection<E>

public abstract class AbstractCollection<E> implements Collection<E> {
// Protected Constructors
 protected AbstractCollection();
// Methods Implementing Collection
 public boolean add(E o);
 public boolean addAll(Collection<? extends E> c);
 public void clear();
 public boolean contains(Object o);
 public boolean containsAll(Collection<?> c);
 public boolean isEmpty();
 public abstract Iterator<E> iterator();
 public boolean remove(Object o);
 public boolean removeAll(Collection<?> c);
 public boolean retainAll(Collection<?> c);
 public abstract int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Public Methods Overriding Object
 public String toString();
}

Subclasses

 AbstractList, AbstractQueue,
AbstractSet

Name
AbstractList<E>

Synopsis

 This abstract class is a partial
implementation of the List interface that makes it
easy to define custom List implementations based
on random-access list elements (such as objects stored in an array).
If you want to base a List implementation on a
sequential-access data model (such as a linked list), subclass
AbstractSequentialList instead.

 To
create an unmodifiable List, simply subclass
AbstractList and override the (inherited)
size() and get() methods. To
create a modifiable list, you must also override set(
) and, optionally, add() and
remove(). These three methods are optional, so
unless you override them, they simply throw an
UnsupportedOperationException. All other methods
of the List interface are implemented in terms of
size(), get(), set(
), add(), and remove(
). In some cases, you may want to override these other
methods to improve performance. By convention, all
List implementations should define two
constructors: one that accepts no arguments and another that accepts
a Collection of initial elements for the list.
[image: java.util.AbstractList<E>]

Figure 16-2. java.util.AbstractList<E>

public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {
// Protected Constructors
 protected AbstractList();
// Methods Implementing List
 public boolean add(E o);
 public void add(int index, E element);
 public boolean addAll(int index, Collection<? extends E> c);
 public void clear();
 public boolean equals(Object o);
 public abstract E get(int index);
 public int hashCode();
 public int indexOf(Object o);
 public Iterator<E> iterator();
 public int lastIndexOf(Object o);
 public ListIterator<E> listIterator();
 public ListIterator<E> listIterator(int index);
 public E remove(int index);
 public E set(int index, E element);
 public List<E> subList(int fromIndex, int toIndex);
// Protected Instance Methods
 protected void removeRange(int fromIndex, int toIndex);
// Protected Instance Fields
 protected transient int modCount;
}

Subclasses

 AbstractSequentialList,
ArrayList, Vector

Name
AbstractMap<K,V>

Synopsis

 This
abstract class is a partial implementation of the
Map interface that makes it easy to define simple
custom Map implementations. To define an
unmodifiable map, subclass AbstractMap and
override the entrySet() method so that it returns
a set of Map.Entry objects. (Note that you must
also implement Map.Entry, of course.) The returned
set should not support add() or remove(
), and its iterator should not support remove(
). In order to define a modifiable Map,
you must additionally override the put() method
and provide support for the remove() method of
the iterator returned by entrySet().iterator().
In addition, it is conventional that all Map
implementations define two constructors: one that accepts no
arguments and another that accepts a Map of
initial mappings.

 AbstractMap defines all Map
methods in terms of its entrySet() and
put() methods and the remove(
) method of the entry set iterator. Note, however, that the
implementation is based on a linear search of the
Set returned by entrySet() and
is not efficient when the Map contains more than a
handful of entries. Some subclasses may want to override additional
AbstractMap methods to improve performance.
HashMap and TreeMap use
different algorithms are are substantially more efficient.
[image: java.util.AbstractMap<K,V>]

Figure 16-3. java.util.AbstractMap<K,V>

public abstract class AbstractMap<K,V> implements Map<K,V> {
// Protected Constructors
 protected AbstractMap();
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public abstract Set<Map.Entry<K,V>> entrySet();
 public boolean equals(Object o);
 public V get(Object key);
 public int hashCode();
 public boolean isEmpty();
 public Set<K> keySet();
 public V put(K key, V value);
 public void putAll(Map<? extends K,? extends V> t);
 public V remove(Object key);
 public int size();
 public Collection<V> values();
// Public Methods Overriding Object
 public String toString();
// Protected Methods Overriding Object
 1.4 protected Object clone() throws CloneNotSupportedException;
}

Subclasses

 EnumMap, HashMap,
IdentityHashMap, TreeMap,
WeakHashMap,
java.util.concurrent.ConcurrentHashMap

Name
AbstractQueue<E>

Synopsis
This abstract class provides a framework for simple
Queue implementations. A concrete subclass must
implement offer(), peek(),
and poll() and must also implement the inherited
size() and iterator() methods
of the Collection interface. The
Iterator returned by iterator(
) must support the remove() operation.
[image: java.util.AbstractQueue<E>]

Figure 16-4. java.util.AbstractQueue<E>

public abstract class AbstractQueue<E> extends AbstractCollection<E> implements Queue<E> {
// Protected Constructors
 protected AbstractQueue();
// Methods Implementing Collection
 public boolean add(E o);
 public boolean addAll(Collection<? extends E> c);
 public void clear();
// Methods Implementing Queue
 public E element();
 public E remove();
}

Subclasses

 PriorityQueue,
java.util.concurrent.ArrayBlockingQueue,
java.util.concurrent.ConcurrentLinkedQueue,
java.util.concurrent.DelayQueue,
java.util.concurrent.LinkedBlockingQueue,
java.util.concurrent.PriorityBlockingQueue,
java.util.concurrent.SynchronousQueue

Name
AbstractSequentialList<E>

Synopsis

 This
abstract class is a partial implementation of the
List interface that makes it easy to define
List implementations based on a sequential-access
data model, as is the case with the LinkedList
subclass. To implement a List based on an array or
other random-access model, subclass AbstractList
instead.

 To implement an unmodifiable list,
subclass this class and override the size() and
listIterator() methods. listIterator(
) must return a ListIterator that
defines the hasNext(), hasPrevious(
), next(), previous(
), and index() methods. If you want to
allow the list to be modified, the ListIterator
should also support the set() method and,
optionally, the add() and remove(
) methods. AbstractSequentialList
implements all other List methods in terms of
these methods. Some subclasses may want to override additional
methods to improve performance. In addition, it is conventional that
all List implementations define two constructors:
one that accepts no arguments and another that accepts a
Collection of initial elements for the list.
[image: java.util.AbstractSequentialList<E>]

Figure 16-5. java.util.AbstractSequentialList<E>

public abstract class AbstractSequentialList<E> extends AbstractList<E> {
// Protected Constructors
 protected AbstractSequentialList();
// Public Methods Overriding AbstractList
 public void add(int index, E element);
 public boolean addAll(int index, Collection<? extends E> c);
 public E get(int index);
 public Iterator<E> iterator();
 public abstract ListIterator<E> listIterator(int index);
 public E remove(int index);
 public E set(int index, E element);
}

Subclasses

 LinkedList

Name
AbstractSet<E>

Synopsis

 This abstract class is a partial
implementation of the Set interface that makes it
easy to create custom Set implementations. Since
Set defines the same methods as
Collection, you can subclass
AbstractSet exactly as you would subclass
AbstractCollection. See
AbstractCollection for details. Note, however,
that when subclassing AbstractSet, you should be
sure that your add() method and your constructors
do not allow duplicate elements to be added to the set. See also
AbstractList.
[image: java.util.AbstractSet<E>]

Figure 16-6. java.util.AbstractSet<E>

public abstract class AbstractSet<E> extends AbstractCollection<E> implements Set<E> {
// Protected Constructors
 protected AbstractSet();
// Methods Implementing Set
 public boolean equals(Object o);
 public int hashCode();
1.3 public boolean removeAll(Collection<?> c);
}

Subclasses

 EnumSet, HashSet,
TreeSet,
java.util.concurrent.CopyOnWriteArraySet

Name
ArrayList<E>

Synopsis

 This
class is a List implementation based on an array
(that is recreated as necessary as the list grows or shrinks).
ArrayList implements all optional
List and Collection methods and
allows list elements of any type (including null).
Because ArrayList is based on an array, the
get() and set() methods are
very efficient. (This is not the case for the
LinkedList implementation, for example.)
ArrayList is a general-purpose implementation of
List and is quite commonly used.
ArrayList is very much like the
Vector class, except that its methods are not
synchronized. If you are using an ArrayList in a
multithreaded environment, you should explicitly synchronize any
modifications to the list, or wrap the list with
Collections.synchronizedList(). See
List and Collection for details
on the methods of ArrayList. See also
LinkedList.

 An ArrayList has
a capacity, which is the number of elements in
the internal array that contains the elements of the list. When the
number of elements exceeds the capacity, a new array, with a larger
capacity, must be created. In addition to the List
and Collection methods,
ArrayList defines a couple of methods that help
you manage this capacity. If you know in advance how many elements an
ArrayList will contain, you can call
ensureCapacity(), which can increase efficiency
by avoiding incremental reallocation of the internal array. You can
also pass an initial capacity value to the ArrayList(
) constructor. Finally, if an ArrayList
has reached its final size and will not change in the future, you can
call trimToSize() to reallocate the internal
array with a capacity that matches the list size exactly. When the
ArrayList will have a long lifetime, this can be a
useful technique to reduce memory usage.
[image: java.util.ArrayList<E>]

Figure 16-7. java.util.ArrayList<E>

public class ArrayList<E> extends AbstractList<E> implements List<E>,
 RandomAccess, Cloneable, Serializable {
// Public Constructors
 public ArrayList();
 public ArrayList(int initialCapacity);
 public ArrayList(Collection<? extends E> c);
// Public Instance Methods
 public void ensureCapacity(int minCapacity);
 public void trimToSize();
// Methods Implementing List
 public boolean add(E o);
 public void add(int index, E element);
 public boolean addAll(Collection<? extends E> c);
 public boolean addAll(int index, Collection<? extends E> c);
 public void clear();
 public boolean contains(Object elem);
 public E get(int index);
 public int indexOf(Object elem);
 public boolean isEmpty(); default:true
 public int lastIndexOf(Object elem);
5.0 public boolean remove(Object o);
 public E remove(int index);
 public E set(int index, E element);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Protected Methods Overriding AbstractList
 protected void removeRange(int fromIndex, int toIndex);
// Public Methods Overriding Object
 public Object clone();
}

Returned By

 Collections.list()

Name
Arrays

Synopsis

 This class defines static methods for
sorting, searching, and performing other useful operations on arrays.
It also defines the asList() method, which
returns a List wrapper around a specified array of
objects. Any changes made to the List are also
made to the underlying array. This is a powerful method that allows
any array of objects to be manipulated in any of the ways a
List can be manipulated. It provides a link
between arrays and the Java collections framework.

 The various sort()
methods sort an array (or a specified portion of an array) in place.
Variants of the method are defined for arrays of each primitive type
and for arrays of Object. For arrays of primitive
types, the sorting is done according to the natural ordering of the
type. For arrays of objects, the sorting is done according to the
specified Comparator, or, if the array contains
only java.lang.Comparable objects, according to
the ordering defined by that interface. When sorting an array of
objects, a stable sorting algorithm is used so that the relative
ordering of equal objects is not disturbed. (This allows repeated
sorts to order objects by key and subkey, for example.)

 The binarySearch()
methods perform an efficient search (in logarithmic time) of a sorted
array for a specified value. If a match is found in the array,
binarySearch() returns the index of the match. If
no match is found, the method returns a negative number. For a
negative return value r, the index
-(r+1) specifies the array index at which the
specified value can be inserted to maintain the sorted order of the
array. When the array to be searched is an array of objects, the
elements of the array must all implement
java.lang.Comparable, or you must provide a
Comparator object to compare them.

 The
equals() methods test whether two arrays are
equal. Two arrays of primitive type are equal if they contain the
same number of elements and if corresponding pairs of elements are
equal according to the == operator. Two arrays of
objects are equal if they contain the same number of elements and if
corresponding pairs of elements are equal according to the
equals() method defined by those objects. The
fill() methods fill an array or a specified range
of an array with the specified value.
Java 5.0 adds hashCode() methods that compute a
hashcode for the contents of the array. These methods are compatible
with the equals() methods: equal(
) arrays will always have the same hashCode(
). Java 5.0 also adds deepEquals() and
deepHashCode() methods that handle
multi-dimensional arrays. Finally, the Java 5.0 toString(
) and deepToString() methods convert
arrays to strings. The returned strings are a comma-separated list of
elements enclosed in square brackets.
public class Arrays {
// No Constructor
 // Public Class Methods
 public static <T> List<T> asList(T ... a);
 public static int binarySearch(char[] a, char key);
 public static int binarySearch(short[] a, short key);
 public static int binarySearch(long[] a, long key);
 public static int binarySearch(int[] a, int key);
 public static int binarySearch(float[] a, float key);
 public static int binarySearch(Object[] a, Object key);
 public static int binarySearch(byte[] a, byte key);
 public static int binarySearch(double[] a, double key);
 public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c);
5.0 public static boolean deepEquals(Object[] a1, Object[] a2);
5.0 public static int deepHashCode(Object[] a);
5.0 public static String deepToString(Object[] a);
 public static boolean equals(boolean[] a, boolean[] a2);
 public static boolean equals(long[] a, long[] a2);
 public static boolean equals(float[] a, float[] a2);
 public static boolean equals(double[] a, double[] a2);
 public static boolean equals(char[] a, char[] a2);
 public static boolean equals(byte[] a, byte[] a2);
 public static boolean equals(int[] a, int[] a2);
 public static boolean equals(short[] a, short[] a2);
 public static boolean equals(Object[] a, Object[] a2);
 public static void fill(char[] a, char val);
 public static void fill(short[] a, short val);
 public static void fill(byte[] a, byte val);
 public static void fill(int[] a, int val);
 public static void fill(double[] a, double val);
 public static void fill(boolean[] a, boolean val);
 public static void fill(Object[] a, Object val);
 public static void fill(float[] a, float val);
 public static void fill(long[] a, long val);
 public static void fill(int[] a, int fromIndex, int toIndex, int val);
 public static void fill(double[] a, int fromIndex, int toIndex, double val);
 public static void fill(short[] a, int fromIndex, int toIndex, short val);
 public static void fill(char[] a, int fromIndex, int toIndex, char val);
 public static void fill(float[] a, int fromIndex, int toIndex, float val);
 public static void fill(byte[] a, int fromIndex, int toIndex, byte val);
 public static void fill(boolean[] a, int fromIndex, int toIndex, boolean val);
 public static void fill(Object[] a, int fromIndex, int toIndex, Object val);
 public static void fill(long[] a, int fromIndex, int toIndex, long val);
5.0 public static int hashCode(short[] a);
5.0 public static int hashCode(char[] a);
5.0 public static int hashCode(long[] a);
5.0 public static int hashCode(int[] a);
5.0 public static int hashCode(byte[] a);
5.0 public static int hashCode(double[] a);
5.0 public static int hashCode(Object[] a);
5.0 public static int hashCode(boolean[] a);
5.0 public static int hashCode(float[] a);
 public static void sort(Object[] a);
 public static void sort(short[] a);
 public static void sort(float[] a);
 public static void sort(double[] a);
 public static void sort(long[] a);
 public static void sort(byte[] a);
 public static void sort(char[] a);
 public static void sort(int[] a);
 public static <T> void sort(T[] a, Comparator<? super T> c);
 public static void sort(short[] a, int fromIndex, int toIndex);
 public static void sort(int[] a, int fromIndex, int toIndex);
 public static void sort(char[] a, int fromIndex, int toIndex);
 public static void sort(long[] a, int fromIndex, int toIndex);
 public static void sort(float[] a, int fromIndex, int toIndex);
 public static void sort(double[] a, int fromIndex, int toIndex);
 public static void sort(byte[] a, int fromIndex, int toIndex);
 public static void sort(Object[] a, int fromIndex, int toIndex);
 public static <T> void sort(T[] a, int fromIndex, int toIndex, Comparator<? super T> c);
5.0 public static String toString(float[] a);
5.0 public static String toString(boolean[] a);
5.0 public static String toString(Object[] a);
5.0 public static String toString(double[] a);
5.0 public static String toString(int[] a);
5.0 public static String toString(long[] a);
5.0 public static String toString(short[] a);
5.0 public static String toString(byte[] a);
5.0 public static String toString(char[] a);
}

Name
BitSet

Synopsis

 This class
implements an array or list of boolean values
storing them using a very compact representation that requires only
about one bit per value stored. It implements methods for setting,
querying, and flipping the values stored at any given position within
the list, for counting the number of true values
stored in the list, and for finding the next true
or false value in the list. It also defines a
number of methods that perform bitwise boolean operations on two
BitSet objects. Despite its name,
BitSet does not implement the
Set interface, and does not even have the behavior
associated with a set; it is a list or vector for
boolean values, but is not related to the
List interface or Vector class.
This class was introduced in Java 1.0, but was substantially enhanced
in Java 1.4; note that many of the methods described below are only
available in Java 1.4 and later.
Create a BitSet with the BitSet(
) constructor. You may optionally specify a size (the
number of bits) for the BitSet, but this merely
provides an optimization since a BitSet will grow
as needed to accomodate any number of boolean
values. BitSet does not define a precise notion of
the size of a “set.” The
size() method returns the number of boolean
values that can be stored before more internal storage needs to be
allocated. The length() method returns one more
than the highest index of a set bit (i.e., a true
value). This means that a BitSet that contains all
false values will have a length(
) of zero. If your code needs to remember the index of the
highest value stored in a BitSet, regardless of
whether that value was true or
false, then you should maintain that length
information separately from the BitSet.
Set values in a BitSet with the set(
) method. There are four versions of this method. Two set
the value at a specific index, and two set values for a range of
indexes. Two of the set() methods do not take a
value argument to set: they “set”
the specified bit or range of bites, which means they store the value
true. The other two methods take a
boolean argument, allowing you to set the
specified value or range of values to true (a set
bit) or false (a clear bit). There are also two
clear() methods that
“clear” (or set to
false) the value at the specified index or range
of indexes. The flip() methods flip, or toggle
(change true to false and
false to true), the value or
values at the specified index or range. The set(
), clear(), and flip(
) methods, as well as all other BitSet
methods that operate on a range of values specify the range with two
index values. They define the range as the values starting from, and
including, the value stored at the first specified index up to,
but not including, the value stored at the
second specified index. (A number of methods of
String and related classes follow the same
convention for specifying a range of characters.)
To test the value stored at a specified location, use get(
), which returns true if the specified
bit is set, or false if it is not set. There is
also a get() method that specifies a range of
bits, and returns their state in the form of a
BitSet: this get() method is
analogous to the substring() method of a
String. Because a BitSet does
not define a maximum index, it is legal to pass any non-negative
value to get(). If the index you specify is
greater than or equal to the value returned by length(
), then the returned value will always be
false.

 cardinality() returns the number of
true values (or of set bits) stored in a
BitSet. isEmpty() returns
true if a BitSet has no
true values stored in it (in this case, both
length() and cardinality()
return 0). nextSetBit() returns the first index
at or after the specified index at which a true
value is stored (or at which the bit is set). You can use this method
in a loop to iterate through the indexes of true
values. nextClearBit() is similar, but searches
the BitSet for false values
(clear bits) intead. The intersects() method
returns true if the target
BitSet and the argument BitSet
intersect: that is if there is at least one index at which both
BitSet objects have a true
value.

 BitSet defines several methods that perform
bitwise Boolean operations. These methods combine the
BitSet on which they are invoked (called the
“target” BitSet
below) with the BitSet passed as an argument, and
store the result in the target BitSet. If you want
to perform a Boolean operation without altering the original
BitSet, you should first make a copy of the
original with the clone() method and invoke the
method on the copy. The and() method preforms a
bitwise Boolean AND operation, much like the &
does when applied to integer arguments. A value in the target
BitSet will be true only if it
was originally true
 and the
value at the same index of argument BitSet is also
true. For all false values in
the argument BitSet, and()
sets the corresponding value in the target BitSet
to false, leaving other values unchanged. The
andNot() method combines a Boolean AND operation
with a Boolean NOT operation on the argument
BitSet (it does not alter the contents of that
argument BitSet, hoever). The result is that for
all true values in the argument
BitSet, the corresponding values in the target
BitSet are set to false.
The or() method performs a bitwise Boolean OR
operation like the | operator: a value in the
BitSet will be set to true if
its original value was true
 or the corresponding value in the argument
BitSet was true. For all true
values in the argument BitSet, the or(
) method sets the corresponding value in the target
BitSet to true, leaving the
other values unchanged. The xor() method performs
an “exclusive OR” operation: sets a
value in the target BitSet to
true if it was originally true
or if the corresponding value in the argument
BitSet was true. If both values
were false, or if both values were
true, however, it sets the value to
false.
Finally, the toString() method returns a
String representation of a
BitSet that consists of a list within curly braces
of the indexes at which true values are stored.
The BitSet class is not threadsafe.
[image: java.util.BitSet]

Figure 16-8. java.util.BitSet

public class BitSet implements Cloneable, Serializable {
// Public Constructors
 public BitSet();
 public BitSet(int nbits);
// Public Instance Methods
 public void and(BitSet set);
1.2 public void andNot(BitSet set);
1.4 public int cardinality();
1.4 public void clear();
 public void clear(int bitIndex);
1.4 public void clear(int fromIndex, int toIndex);
1.4 public void flip(int bitIndex);
1.4 public void flip(int fromIndex, int toIndex);
 public boolean get(int bitIndex);
1.4 public BitSet get(int fromIndex, int toIndex);
1.4 public boolean intersects(BitSet set);
1.4 public boolean isEmpty(); default:true
 1.2 public int length();
1.4 public int nextClearBit(int fromIndex);
1.4 public int nextSetBit(int fromIndex);
 public void or(BitSet set);
 public void set(int bitIndex);
1.4 public void set(int bitIndex, boolean value);
1.4 public void set(int fromIndex, int toIndex);
1.4 public void set(int fromIndex, int toIndex, boolean value);
 public int size();
 public void xor(BitSet set);
// Public Methods Overriding Object
 public Object clone();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Name
Calendar

Synopsis

 This abstract
class defines methods that perform date and time arithmetic. It also
includes methods that convert dates and times to and from the
machine-usable millisecond format used by the Date
class and units such as minutes, hours, days, weeks, months, and
years that are more useful to humans. As an abstract class,
Calendar cannot be directly instantiated. Instead,
it provides static getInstance() methods that
return instances of a Calendar subclass suitable
for use in a specified or default locale with a specified or default
time zone. See also Date,
DateFormat, and TimeZone.

 Calendar defines a number of useful constants.
Some of these are values that represent days of the week and months
of the year. Other constants, such as HOUR and
DAY_OF_WEEK, represent various fields of date and
time information. These field constants are passed to a number of
Calendar methods, such as get(
) and set(), in order to indicate what
particular date or time field is desired.

 setTime() and the
various set() methods set the date represented by
a Calendar object. The add()
method adds (or subtracts) values to a calendar field, incrementing
the next larger field when the field being set rolls over.
roll() does the same, without modifying anything
but the specified field. before() and
after() compare two Calendar
objects. Many of the methods of the Calendar class
are replacements for methods of Date that have
been deprecated as of Java 1.1. While the Calendar
class converts a time value to its various hour, day, month, and
other fields, it is not intended to present those fields in a form
suitable for display to the end user. That function is performed by
the java.text.DateFormat class, which handles
internationalization issues.

 Calendar implements Comparable
in Java 5.0, but not in earlier releases.
[image: java.util.Calendar]

Figure 16-9. java.util.Calendar

public abstract class Calendar implements Serializable, Cloneable, Comparable<Calendar> {
// Protected Constructors
 protected Calendar();
 protected Calendar(TimeZone zone, Locale aLocale);
// Public Constants
 public static final int AM; =0
 public static final int AM_PM; =9
 public static final int APRIL; =3
 public static final int AUGUST; =7
 public static final int DATE; =5
 public static final int DAY_OF_MONTH; =5
 public static final int DAY_OF_WEEK; =7
 public static final int DAY_OF_WEEK_IN_MONTH; =8
 public static final int DAY_OF_YEAR; =6
 public static final int DECEMBER; =11
 public static final int DST_OFFSET; =16
 public static final int ERA; =0
 public static final int FEBRUARY; =1
 public static final int FIELD_COUNT; =17
 public static final int FRIDAY; =6
 public static final int HOUR; =10
 public static final int HOUR_OF_DAY; =11
 public static final int JANUARY; =0
 public static final int JULY; =6
 public static final int JUNE; =5
 public static final int MARCH; =2
 public static final int MAY; =4
 public static final int MILLISECOND; =14
 public static final int MINUTE; =12
 public static final int MONDAY; =2
 public static final int MONTH; =2
 public static final int NOVEMBER; =10
 public static final int OCTOBER; =9
 public static final int PM; =1
 public static final int SATURDAY; =7
 public static final int SECOND; =13
 public static final int SEPTEMBER; =8
 public static final int SUNDAY; =1
 public static final int THURSDAY; =5
 public static final int TUESDAY; =3
 public static final int UNDECIMBER; =12
 public static final int WEDNESDAY; =4
 public static final int WEEK_OF_MONTH; =4
 public static final int WEEK_OF_YEAR; =3
 public static final int YEAR; =1
 public static final int ZONE_OFFSET; =15
 // Public Class Methods
 public static Locale[] getAvailableLocales(); synchronized
 public static Calendar getInstance();
 public static Calendar getInstance(Locale aLocale);
 public static Calendar getInstance(TimeZone zone);
 public static Calendar getInstance(TimeZone zone, Locale aLocale);
// Public Instance Methods
 public abstract void add(int field, int amount);
 public boolean after(Object when);
 public boolean before(Object when);
 public final void clear();
 public final void clear(int field);
 public int get(int field);
1.2 public int getActualMaximum(int field);
1.2 public int getActualMinimum(int field);
 public int getFirstDayOfWeek();
 public abstract int getGreatestMinimum(int field);
 public abstract int getLeastMaximum(int field);
 public abstract int getMaximum(int field);
 public int getMinimalDaysInFirstWeek();
 public abstract int getMinimum(int field);
 public final Date getTime();
 public long getTimeInMillis();
 public TimeZone getTimeZone();
 public boolean isLenient();
 public final boolean isSet(int field);
1.2 public void roll(int field, int amount);
 public abstract void roll(int field, boolean up);
 public void set(int field, int value);
 public final void set(int year, int month, int date);
 public final void set(int year, int month, int date, int hourOfDay, int minute);
 public final void set(int year, int month, int date, int hourOfDay, int minute,
 int second);
 public void setFirstDayOfWeek(int value);
 public void setLenient(boolean lenient);
 public void setMinimalDaysInFirstWeek(int value);
 public final void setTime(Date date);
 public void setTimeInMillis(long millis);
 public void setTimeZone(TimeZone value);
// Methods Implementing Comparable
 5.0 public int compareTo(Calendar anotherCalendar);
// Public Methods Overriding Object
 public Object clone();
 public boolean equals(Object obj);
1.2 public int hashCode();
 public String toString();
// Protected Instance Methods
 protected void complete();
 protected abstract void computeFields();
 protected abstract void computeTime();
 protected final int internalGet(int field);
// Protected Instance Fields
 protected boolean areFieldsSet;
 protected int[] fields;
 protected boolean[] isSet;
 protected boolean isTimeSet;
 protected long time;
}

Subclasses

 GregorianCalendar

Passed To

 java.text.DateFormat.setCalendar(),
javax.xml.datatype.Duration.{addTo(),
getTimeInMillis(), normalizeWith(
)}

Returned By

 java.text.DateFormat.getCalendar()

Type Of

 java.text.DateFormat.calendar

Name
Collection<E>

Synopsis

 This interface represents a group,
or collection, of objects. In Java 5.0 this is a generic interface
and the type variable E represents the
type of the objects in the collection. The objects may or may not be
ordered, and the collection may or may not contain duplicate objects.
Collection is not often implemented directly.
Instead, most collection classes implement one of the more specific
subinterfaces: Set, an unordered collection that
does not allow duplicates, or List, an ordered
collection that does allow duplicates.

 The Collection
type provides a general way to refer to any set, list, or other
collection of objects; it defines generic methods that work with any
collection. contains() and containsAll(
) test whether the Collection contains a
specified object or all the objects in a given collection.
isEmpty() returns true if the
Collection has no elements, or
false otherwise. size()
returns the number of elements in the Collection.
iterator() returns an Iterator
object that allows you to iterate through the objects in the
collection. toArray() returns the objects in the
Collection in a new array of type
Object. Another version of toArray(
) takes an array as an argument and stores all elements of
the Collection (which must all be compatible with
the array) into that array. If the array is not big enough, the
method allocates a new, larger array of the same type. If the array
is too big, the method stores null into the first
empty element of the array. This version of toArray(
) returns the array that was passed in or the new array, if
one was allocated.

 The
previous methods all query or extract the contents of a collection.
The Collection interface also defines methods for
modifying the contents of the collection. add()
and addAll() add an object or a collection of
objects to a Collection. remove(
) and removeAll() remove an object or
collection. retainAll() is a variant that removes
all objects except those in a specified
Collection. clear() removes
all objects from the collection. All these modification methods
except clear() return true if
the collection was modified as a result of the call. An interface
cannot specify constructors, but it is conventional that all
implementations of Collection provide at least two
standard constructors: one that takes no arguments and creates an
empty collection, and a copy constructor that accepts a
Collection object that specifies the initial
contents of the new Collection.

 Implementations
of Collection and its subinterfaces are not
required to support all operations defined by the
Collection interface. All modification methods
listed above are optional; an implementation (such as an immutable
Set implementation) that does not support them
simply throws
java.lang.UnsupportedOperationException for these
methods. Furthermore, implementations are free to impose restrictions
on the types of objects that can be members of a collection. Some
implementations might require elements to be of a particular type,
for example, and others might not allow null as an
element.
See also Set, List,
Map, and Collections.
[image: java.util.Collection<E>]

Figure 16-10. java.util.Collection<E>

public interface Collection<E> extends Iterable<E> {
// Public Instance Methods
 boolean add(E o);
 boolean addAll(Collection<? extends E> c);
 void clear();
 boolean contains(Object o);
 boolean containsAll(Collection<?> c);
 boolean equals(Object o);
 int hashCode();
 boolean isEmpty();
 Iterator<E> iterator();
 boolean remove(Object o);
 boolean removeAll(Collection<?> c);
 boolean retainAll(Collection<?> c);
 int size();
 Object[] toArray();
 <T> T[] toArray(T[] a);
}

Implementations

 AbstractCollection, List,
Queue, Set

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Name
Collections

Synopsis

 This class defines static methods
and constants that are useful for working with collections and maps.
One of the most commonly used methods is sort(),
which sorts a List in place (the list cannot be
immutable, of course). The sorting algorithm is stable, which means
that equal elements retain the same relative order. One version of
sort() uses a specified
Comparator to perform the sort; the other relies
on the natural ordering of the list elements and requires all the
elements to implement java.lang.Comparable.
reverseOrder() returns a
Comparator object that reverses the order of
another Comparator or that reverse the natural
ordering of Comparable objects.

 A related method is
binarySearch(). It efficiently (in logarithmic
time) searches a sorted List for a specified
object and returns the index at which a matching object is found. If
no match is found, it returns a negative number. For a negative
return value r, the value
-(r+1) specifies the index at which the specified
object can be inserted into the list to maintain the sorted order of
the list. As with sort(), binarySearch(
) can be passed a Comparator that
defines the order of the sorted list. If no
Comparator is specified, the list elements must
all implement Comparable, and the list is assumed
to be sorted according to the natural ordering defined by this
interface.
See Arrays for methods that perform sorting and
searching operations on arrays instead of collections.

 The
various methods whose names begin with
synchronized return a threadsafe collection object
wrapped around the specified collection. Vector
and Hashtable are the only two collection objects
threadsafe by default. Use these methods to obtain a
synchronized wrapper object if you are using any
other type of Collection or Map
in a multithreaded environment where more than one thread can modify
it.

 The
various methods whose names begin with
unmodifiable function like
synchronized methods. They return a
Collection or Map object
wrapped around the specified collection. The returned object is
unmodifiable, however, so its add(),
remove(), set(),
put(), etc. methods all throw
java.lang.UnsupportedOperationException. In Java
5.0, the “checked” methods return
wrapped collections that enforce a specified element type for the
collection, so that it is not possible to add an element of the wrong
type.
In addition to the “synchronized”,
“unmodifiable”, and
“checked” methods,
Collections defines a number of other methods that
return special-purpose collections or maps:

 singleton()
returns an unmodifiable set that contains only the specified object.
singletonList() and singletonMap(
) return an immutable list and an immutable map,
respectively, each of which contains only a single entry. The
Collections class also defines related constants,
EMPTY_LIST, EMPTY_SET, and
EMPTY_MAP, which are immutable
List, Set, and
Map objects that contain no elements or mappings.
In Java 5.0, the emptySet(), emptyList(
), and emptyMap() methods are preferred
alternatives to these constants, because they are generic methods and
return correctly parameterized empty collections. nCopies(
) creates a new immutable List that
contains a specified number of copies of a specified object.
list() returns a List object
that represents the elements of the specified
Enumeration object. enumeration(
) does the reverse: it returns an
Enumeration for a Collection,
which is useful when working with code that uses the old
Enumeration interface instead of the newer
Iterator interface.

 The Collections
class also defines methods that mutate a collection. These methods
throw an UnsupportedOperationException if the
target collection is does not allow mutation. copy(
) copies elements of a source list into a destination list.
fill() replaces all elements of the specified
list with the specified object. swap() swaps the
elements at two specified indexes of a List.
replaceAll() replaces all elements in a
List that are equal to (using the equals(
) method) with another object, and returns
true if any replacements were done.
reverse() reverses the order of the elements in a
list. rotate()
“rotates” a list, adding the
specified number to the index of each element, and wrapping elements
from the end of the list back to the front of the list. (Specifying a
negative rotation rotates the list in the other direction.)
shuffle() randomizes the order of elements in a
list, using either an internal source of randomness or the
Random pseudorandom number generator you provide.
In Java 5.0, the addAll() method adds the
specified elements to the specified collection. This method is a
varargs method and allows elements to be specified in an array or
listed individually in the argument list.

 Finally,
Collections defines methods (in addition to the
binarySearch() methods described above) that
search the elements of a collection: min() and
max() methods search an unordered
Collection for the minimum and maximum elements,
according either to a specified Comparator or to
the natural order defined by the Comparable
elements themselves. indexOfSubList() and
lastIndexOfSubList() search a specified list
forward or backward for a subsequence of elements that match (using
equals()) the elements the a second specified
list. They return the start index of any such matching sublist, or
return -1 if no match was found. These methods are like the
indexOf() and lastIndexOf()
methods of String, and do not require the
List to be sorted, as the binarySearch(
) methods do. In Java 5.0, frequency()
returns the number of occurences of a specified element in a
specified collection, and disjoint() determines
whether two collections are entirely disjoint—whether they have
no elements in common.
public class Collections {
// No Constructor
 // Public Constants
 public static final List EMPTY_LIST;
1.3 public static final Map EMPTY_MAP;
 public static final Set EMPTY_SET;
// Public Class Methods
 5.0 public static <T> boolean addAll(Collection<? super T> c, T ... a);
 public static <T> int binarySearch(List<? extends Comparable<? super T>> list, T key);
 public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c);
5.0 public static <E> Collection<E> checkedCollection(Collection<E> c, Class<E> type);
5.0 public static <E> List<E> checkedList(List<E> list, Class<E> type);
5.0 public static <K,V> Map<K,V> checkedMap(Map<K,V> m, Class<K> keyType, Class<V> valueType);
5.0 public static <E> Set<E> checkedSet(Set<E> s, Class<E> type);
5.0 public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K,V> m, Class<K> keyType,
Class<V> valueType);
5.0 public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s, Class<E> type);
 public static <T> void copy(List<? super T> dest, List<? extends T> src);
5.0 public static boolean disjoint(Collection<?> c1, Collection<?> c2);
5.0 public static final <T> List<T> emptyList();
5.0 public static final <K,V> Map<K,V> emptyMap();
5.0 public static final <T> Set<T> emptySet();
 public static <T> Enumeration<T> enumeration(Collection<T> c);
 public static <T> void fill(List<? super T> list, T obj);
5.0 public static int frequency(Collection<?> c, Object o);
1.4 public static int indexOfSubList(List<?> source, List<?> target);
1.4 public static int lastIndexOfSubList(List<?> source, List<?> target);
1.4 public static <T> ArrayList<T> list(Enumeration<T> e);
 public static <T extends Object&Comparable<? super T>> T max(Collection<? extends T> coll);
 public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp);
 public static <T extends Object&Comparable<? super T>> T min(Collection<? extends T> coll);
 public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp);
 public static <T> List<T> nCopies(int n, T o);
1.4 public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal);
 public static void reverse(List<?> list);
 public static <T> Comparator<T> reverseOrder();
5.0 public static <T> Comparator<T> reverseOrder(Comparator<T> cmp);
1.4 public static void rotate(List<?> list, int distance);
 public static void shuffle(List<?> list);
 public static void shuffle(List<?> list, Random rnd);
 public static <T> Set<T> singleton(T o);
1.3 public static <T> List<T> singletonList(T o);
1.3 public static <K,V> Map<K,V> singletonMap(K key, V value);
 public static <T extends Comparable<? super T>> void sort(List<T> list);
 public static <T> void sort(List<T> list, Comparator<? super T> c);
1.4 public static void swap(List<?> list, int i, int j);
 public static <T> Collection<T> synchronizedCollection(Collection<T> c);
 public static <T> List<T> synchronizedList(List<T> list);
 public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m);
 public static <T> Set<T> synchronizedSet(Set<T> s);
 public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m);
 public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s);
 public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c);
 public static <T> List<T> unmodifiableList(List<? extends T> list);
 public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K,? extends V> m);
 public static <T> Set<T> unmodifiableSet(Set<? extends T> s);
 public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K,? extends V> m);
 public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s);
}

Name
Comparator<T>

Synopsis

 This interface defines a
compare() method that specifies a total ordering
for a set of objects, allowing those objects to be sorted. The
Comparator is used when the objects to be ordered
do not have a natural ordering defined by the
Comparable interface, or when you want to order
them using something other than their natural ordering.
Comparator has been made generic in Java 5.0 and
the type variable T represents the type of
objects being compared.

 The
compare() method is passed two objects. If the
first argument is less than the second argument or should be placed
before the second argument in a sorted list, compare(
) should return a negative integer. If the first argument
is greater than the second argument or should be placed after the
second argument in a sorted list, compare()
should return a positive integer. If the two objects are equivalent
or if their relative position in a sorted list does not matter,
compare() should return 0.
Comparator implementations may assume that both
Object arguments are of appropriate types and cast
them as desired. If either argument is not of the expected type, the
compare() method throws a
ClassCastException.

 Note that the magnitude of the numbers
returned by compare() does not matter, only
whether they are less than, equal to, or greater than zero. In most
cases, you should implement a Comparator so that
compare(o1,o2) returns 0 if and
only if o1.equals(o2) returns
true. This is particularly important when using a
Comparator to impose an ordering on a
TreeSet or a TreeMap.
See Collections and Arrays for
various methods that use Comparator objects for
sorting and searching. See also the related
java.lang.Comparable interface.
public interface Comparator<T> {
// Public Instance Methods
 int compare(T o1, T o2);
 boolean equals(Object obj);
}

Implementations

 java.text.Collator

Passed To

 Arrays.{binarySearch(), sort(
)}, Collections.{binarySearch(),
max(), min(),
reverseOrder(), sort()},
PriorityQueue.PriorityQueue(),
TreeMap.TreeMap(), TreeSet.TreeSet(
),
java.util.concurrent.PriorityBlockingQueue.PriorityBlockingQueue(
)

Returned By

 Collections.reverseOrder(),
PriorityQueue.comparator(),
SortedMap.comparator(),
SortedSet.comparator(),
TreeMap.comparator(),
TreeSet.comparator(),
java.util.concurrent.PriorityBlockingQueue.comparator(
)

Type Of

 String.CASE_INSENSITIVE_ORDER

Name
ConcurrentModificationException

Synopsis

 Signals
that a modification has been made to a data structure at the same
time some other operation is in progress and that, as a result, the
correctness of the ongoing operation cannot be guaranteed. It is
typically thrown by an Iterator or
ListIterator object to stop an iteration if it
detects that the underlying collection has been modified while the
iteration is in progress.
[image: java.util.ConcurrentModificationException]

Figure 16-11. java.util.ConcurrentModificationException

public class ConcurrentModificationException extends RuntimeException {
// Public Constructors
 public ConcurrentModificationException();
 public ConcurrentModificationException(String message);
}

Name
Currency

Synopsis
Instances of this class represent a currency. Obtain a
Currency object by passing a
“currency code” such as
“USD” for U.S. Dollars or
“EUR” for Euros to
getInstance(). Once you have a
Currency object, use getSymbol(
) to obtain the currency symbol (which is often different
from the currency code) for the default locale or for a specified
Locale. The symbol for a USD would be
“$” in a U.S locale, but might be
“US$” in other locales, for
example. If no symbol is known, this method returns the currency
code.
Use getDefaultFractionDigits() to determine how
many fractional digits are conventionally used with the currency.
This method returns 2 for the U.S. Dollar and other currencies that
are divided into hundredths, but returns 3 for the Jordanian Dinar
(JOD) and other currencies which are traditionally divided into
thousandths, and returns 0 for the Japanese Yen (JPY) and other
currencies that have a small unit value and are not usually divided
into fractional parts at all. Currency codes are standardized by the
ISO 4217 standard. For a complete list of currencies and currency
codes see the website of the “maintenance
agency” for this standard: http://www.iso.org/iso/en/prods-services/popstds/currencycodeslist.html.
[image: java.util.Currency]

Figure 16-12. java.util.Currency

public final class Currency implements Serializable {
// No Constructor
 // Public Class Methods
 public static Currency getInstance(String currencyCode);
 public static Currency getInstance(Locale locale);
// Public Instance Methods
 public String getCurrencyCode();
 public int getDefaultFractionDigits();
 public String getSymbol();
 public String getSymbol(Locale locale);
// Public Methods Overriding Object
 public String toString();
}

Passed To

 java.text.DecimalFormat.setCurrency(),
java.text.DecimalFormatSymbols.setCurrency(),
java.text.NumberFormat.setCurrency()

Returned By

 java.text.DecimalFormat.getCurrency(),
java.text.DecimalFormatSymbols.getCurrency(),
java.text.NumberFormat.getCurrency()

Name
Date

Synopsis

 This class represents dates and times and
lets you work with them in a system-independent way. You can create a
Date by specifying the number of milliseconds from
the epoch (midnight GMT, January 1st, 1970) or the year, month, date,
and, optionally, the hour, minute, and second. Years are specified as
the number of years since 1900. If you call the
Date constructor with no arguments, the
Date is initialized to the current time and date.
The instance methods of the class allow you to get and set the
various date and time fields, to compare dates and times, and to
convert dates to and from string representations. As of Java 1.1,
many of the date methods have been deprecated in favor of the methods
of the Calendar class.
[image: java.util.Date]

Figure 16-13. java.util.Date

public class Date implements Serializable, Cloneable, Comparable<Date> {
// Public Constructors
 public Date();
 public Date(long date);
public Date(String s);
public Date(int year, int month, int date);
public Date(int year, int month, int date, int hrs, int min);
public Date(int year, int month, int date, int hrs, int min, int sec);
// Public Instance Methods
 public boolean after(Date when);
 public boolean before(Date when);
 public long getTime(); default:1101702237486
 public void setTime(long time);
// Methods Implementing Comparable
 1.2 public int compareTo(Date anotherDate);
// Public Methods Overriding Object
 1.2 public Object clone();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
// Deprecated Public Methods
 # public int getDate(); default:28
 # public int getDay(); default:0
 # public int getHours(); default:20
 # public int getMinutes(); default:23
 # public int getMonth(); default:10
 # public int getSeconds(); default:57
 # public int getTimezoneOffset(); default:480
 # public int getYear(); default:104
 # public static long parse(String s);
public void setDate(int date);
public void setHours(int hours);
public void setMinutes(int minutes);
public void setMonth(int month);
public void setSeconds(int seconds);
public void setYear(int year);
public String toGMTString();
public String toLocaleString();
public static long UTC(int year, int month, int date, int hrs, int min, int sec);
}

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Name
Dictionary<K,V>

Synopsis

 This
abstract class is the superclass of Hashtable.
Other hashtable-like data structures might also extend this class.
See Hashtable for more information. As of Java
1.2, the Map interface replaces the functionality
of this class.
public abstract class Dictionary<K,V> {
// Public Constructors
 public Dictionary();
// Public Instance Methods
 public abstract Enumeration<V> elements();
 public abstract V get(Object key);
 public abstract boolean isEmpty();
 public abstract Enumeration<K> keys();
 public abstract V put(K key, V value);
 public abstract V remove(Object key);
 public abstract int size();
}

Subclasses

 Hashtable

Name
DuplicateFormatFlagsException

Synopsis
An IllegalFormatException of this type is thrown
by a Formatter when the format string contains
duplicate format flags for the same conversion specifier.
[image: java.util.DuplicateFormatFlagsException]

Figure 16-14. java.util.DuplicateFormatFlagsException

public class DuplicateFormatFlagsException extends IllegalFormatException {
// Public Constructors
 public DuplicateFormatFlagsException(String f);
// Public Instance Methods
 public String getFlags();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
EmptyStackException

Synopsis

 Signals
that a Stack object is empty.
[image: java.util.EmptyStackException]

Figure 16-15. java.util.EmptyStackException

public class EmptyStackException extends RuntimeException {
// Public Constructors
 public EmptyStackException();
}

Name
Enumeration<E>

Synopsis

 This interface defines the methods
necessary to enumerate, or iterate, through a set of values, such as
the set of values contained in a hashtable. This interface is
superseded in Java 1.2 by the Iterator inteface.
In Java 5.0 this interface has been made generic and defines the type
variable E to represent the type of the
objects being enumerated.
An Enumeration is usually not instantiated
directly, but instead is created by the object that is to have its
values enumerated. A number of classes, such as
Vector and Hashtable, have
methods that return Enumeration objects.

 To use an
Enumeration object, you use its two methods in a
loop. hasMoreElements() returns
true if there are more values to be enumerated and
can determine whether a loop should continue. Within a loop, a call
to nextElement() returns a value from the
enumeration. An Enumeration makes no guarantees
about the order in which the values are returned. The values in an
Enumeration can be iterated through only once;
there is no way to reset it to the beginning.
public interface Enumeration<E> {
// Public Instance Methods
 boolean hasMoreElements();
 E nextElement();
}

Implementations

 StringTokenizer

Passed To

 java.io.SequenceInputStream.SequenceInputStream(
), Collections.list()

Returned By
Too many methods to list.

Name
EnumMap<K extends Enum<K>,V>

Synopsis
This class is a Map implementation for use with
enumerated types. The key type K must be
an enumerated type, and all keys must be enumerated constants defined
by that type. null keys are not permitted. The
value type V is unrestricted and
null values are permitted.
The EnumMap implementation is based on an array of
elements of type V. The length of this
array is the same as the number of constants defined by the
enumerated type K. All
Map operations execute in constant time. The
iterators of the keySet(), entrySet(
), and values() collections iterate
their elements in the ordinal order of the enumerated constants.
EnumMap is not threadsafe, but its iterators are
based on a snapshot of the underlying array and never throw
ConcurrentModificationException.
[image: java.util.EnumMap<K extends Enum<K>,V>]

Figure 16-16. java.util.EnumMap<K extends Enum<K>,V>

public class EnumMap<K extends Enum<K>,V>
 extends AbstractMap<K,V> implements Serializable, Cloneable {
// Public Constructors
 public EnumMap(EnumMap<K,? extends V> m);
 public EnumMap(Class<K> keyType);
 public EnumMap(Map<K,? extends V> m);
// Public Instance Methods
 public EnumMap<K,V> clone();
 public V put(K key, V value);
// Public Methods Overriding AbstractMap
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public Set<Map.Entry<K,V>> entrySet();
 public boolean equals(Object o);
 public V get(Object key);
 public Set<K> keySet();
 public void putAll(Map<? extends K,? extends V> m);
 public V remove(Object key);
 public int size();
 public Collection<V> values();
}

Name
EnumSet<E extends Enum<E>>

Synopsis
This Set implementation is specialized for use
with enumerated constants. The element type
E must be an enumerated type, and
null is not allowed as a member of the set.

 EnumSet does not define a constructor. Instead, it
defines various static factory methods for creating sets. Use one of
the of() methods for creating an
EnumSet and initializing its elements. For
efficiency, versions of this method that accept one through five
arguments are defined. If you pass more than five arguments, the
varargs version will be invoked. The allOf() and
noneOf() methods define full and empty sets but
require the Class of the enumerated type since
they do not have any other arguments to define the element type.
complementOf() returns an
EnumSet that contains all enumerated constants not
contained by the specified EnumSet. The
range() factory creates a set that includes the
two specified values and any enumerated constants that fall between
them in the enumerated type declaration. (Note that this definition
of a range includes both endpoints and differs from most Java
methods, in which the second argument specifies the first value past
the end of the range.)
The EnumSet implementation is based on a bit
vector that includes one bit for each constant defined by the
enumerated type E. Because of this compact
and efficient representation, basic Set operations
occur in constant time, and the Iterator returns
enumerated constants in the order in which they are declared in the
type E. EnumSet is not
threadsafe, but the Iterator uses a copy of the
internal bit vector and never throws
ConcurrentModificationException.
[image: java.util.EnumSet<E extends Enum<E>>]

Figure 16-17. java.util.EnumSet<E extends Enum<E>>

public abstract class EnumSet<E extends Enum<E>>
 extends AbstractSet<E> implements Cloneable, Serializable {
// No Constructor
 // Public Class Methods
 public static <E extends Enum<E>> EnumSet<E> allOf(Class<E> elementType);
 public static <E extends Enum<E>> EnumSet<E> complementOf(EnumSet<E> s);
 public static <E extends Enum<E>> EnumSet<E> copyOf(EnumSet<E> s);
 public static <E extends Enum<E>> EnumSet<E> copyOf(Collection<E> c);
 public static <E extends Enum<E>> EnumSet<E> noneOf(Class<E> elementType);
 public static <E extends Enum<E>> EnumSet<E> of(E e);
 public static <E extends Enum<E>> EnumSet<E> of(E first, E ... rest);
 public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2);
 public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3);
 public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3, E e4);
 public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3, E e4, E e5);
 public static <E extends Enum<E>> EnumSet<E> range(E from, E to);
// Public Instance Methods
 public EnumSet<E> clone();
}

Name
EventListener

Synopsis

 EventListener
is a base interface for the event model that is used by AWT and Swing
in Java 1.1 and later. This interface defines no methods or
constants; it serves simply as a tag that identifies objects that act
as event listeners. The event listener interfaces in the
java.awt.event, java.beans, and
javax.swing.event packages extend this interface.
public interface EventListener {
}

Implementations

 EventListenerProxy,
java.util.prefs.NodeChangeListener,
java.util.prefs.PreferenceChangeListener,
javax.net.ssl.HandshakeCompletedListener,
javax.net.ssl.SSLSessionBindingListener

Passed To

 EventListenerProxy.EventListenerProxy()

Returned By

 EventListenerProxy.getListener()

Name
EventListenerProxy

Synopsis
This abstract class serves as the superclass for event listener proxy
objects. Subclasses of this class implement an event listener
interface and serve as a wrapper around an event listener of that
type, defining methods that provide additional information about the
listener. See
java.beans.PropertyChangeListenerProxy for an
explanation of how event listener proxy objects are used.
[image: java.util.EventListenerProxy]

Figure 16-18. java.util.EventListenerProxy

public abstract class EventListenerProxy implements EventListener {
// Public Constructors
 public EventListenerProxy(EventListener listener);
// Public Instance Methods
 public EventListener getListener();
}

Name
EventObject

Synopsis

 EventObject
serves as the superclass for all event objects used by the event
model introduced in Java 1.1 for AWT and JavaBeans and also used by
Swing in Java 1.2. This class defines a generic type of event; it is
extended by the more specific event classes in the
java.awt, java.awt.event,
java.beans, and
javax.swing.event packages. The only common
feature shared by all events is a source object, which is the object
that, in some way, generated the event. The source object is passed
to the EventObject() constructor and is returned
by the getSource() method.
[image: java.util.EventObject]

Figure 16-19. java.util.EventObject

public class EventObject implements Serializable {
// Public Constructors
 public EventObject(Object source);
// Public Instance Methods
 public Object getSource();
// Public Methods Overriding Object
 public String toString();
// Protected Instance Fields
 protected transient Object source;
}

Subclasses

 java.util.prefs.NodeChangeEvent,
java.util.prefs.PreferenceChangeEvent,
javax.net.ssl.HandshakeCompletedEvent,
javax.net.ssl.SSLSessionBindingEvent

Name
FormatFlagsConversionMismatchException

Synopsis
An
IllegalFormatException

 of this type is thrown
by a Formatter when a conversion specifier and a
format flag specified with it are incompatible.
[image: java.util.FormatFlagsConversionMismatchException]

Figure 16-20. java.util.FormatFlagsConversionMismatchException

public class FormatFlagsConversionMismatchException extends IllegalFormatException {
// Public Constructors
 public FormatFlagsConversionMismatchException(String f, char c);
// Public Instance Methods
 public char getConversion();
 public String getFlags();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
Formattable

Synopsis
This
 interface should be implemented by
classes that want to interact with the Formatter
class more intimately than is possible with the
toString method. When a
Formattable object is the argument for a
%s or %S conversion, its
formatTo() method is invoked rather than its
toString() method. formatTo()
is responsible for formatting a textual representation of the object
to the specified formatter, subject to the
constraints imposed by the flags,
width, and
precision arguments.
The flags argument is a bitmask of zero or
more FormattableFlags constants. Each flag
provides information about the format specification that resulted in
the invocation of formatTo().
FormattableFlags.ALTERNATE indicates that the
flag was used and that the
Formattable should format itself using some
alternate form. The interpretation of the alternate form is entirely
up to the Formattable implementation.
LEFT_JUSTIFY means that the -
flag was used and that the Formattable should pad
its output on the right, instead of on the left.
UPPERCASE indicates that the %S
conversion was used instead of %s and the
Formattable should output uppercase characters
instead of lowercase.
The width and
precision arguments specify the width and
precision specified along with the %s format
specifier, or -1 if no width and precision are specified. The
Formattable object should treat these values the
same way that Formatter does. The text to be
output should first be truncated to fit within
precision characters and then padded on
the left (or right if the LEFT_JUSTIFY flag is
set) with spaces for a total length of
width characters. Note that a
Formattable implementation may fulfill the
obligations imposed by the LEFT_JUSTIFY and
UPPERCASE flags and the
width and
precision arguments by constructing a
suitable format string to pass back to the specified
Formatter.
If a Formattable implementation wants to perform
locale-specific formatting, it can query the
Locale of the Formatter with
the locale() method. Note, however, that the
returned value is the locale specified when the
Formatter was created, not the
Locale, if any, passed to the format(
) method. There is no way for a
Formattable object to access that
Locale.
public interface Formattable {
// Public Instance Methods
 void formatTo(java.util.Formatter formatter, int flags, int width, int precision);
}

Name
FormattableFlags

Synopsis
This

 class defines three constants
representing flags that may be passed as a bitmask to the
Formattable.formatTo() method. See
Formattable for the interpretation of these flags.
public class FormattableFlags {
// No Constructor
 // Public Constants
 public static final int ALTERNATE; =4
 public static final int LEFT_JUSTIFY; =1
 public static final int UPPERCASE; =2
}

Name
Formatter

Synopsis
The Formatter

 class
is a utility for formatting text in the style of the printf(
) method of the C programming language. Every
Formatter has an associated
java.lang.Appendable object (such as a
StringBuilder or PrintWriter)
that is specified when the Formatter is created.
format() is a varargs method that expects a
“format string” argument followed
by some number of Object arguments. The format
string uses a grammar, described in detail later in the entry, to
specify how the arguments that follow are to be converted to strings.
After the arguments are converted, they are substituted into the
format string, and the resulting text is appended to the
Appendable. A variant of the format(
) method accepts a Locale object that
can affect the argument conversions.
For ease of use, a Formatter never throws a
java.io.IOException, even when the underlying
Appendable throws one. When using a
Formatter with a stream-based
Appendable object that may throw an
IOException, you can use the ioException(
) method to obtain the most recently thrown exception, or
null if no exception has been thrown by the
Appendable.

 Formatter implements the
Closeable and Flushable
interfaces of the java.io package, and its
close() and flush() methods
call the corresponding methods on its Appendable
object, if that object itself implements Closeable
or Flushable. When a Formatter
sends its output to a stream or similar
Appendable, remember to call close(
) when you are done with it. It is always safe to call
close() even if the underlying
Appendable is not Closeable.
Note that once a Formatter has been closed, no
other method except ioException() may be called.

 locale() returns the Locale
passed to the Formatter() constructor or
null. out() returns the
Appendable that this Formatter
sends its output to. toString() returns the
result of calling toString() on that
Appendable. This is useful when the
Appendable is a StringBuilder,
for example, as it is when the no-argument version of the
Formatter() constructor is used. If the
Appendable is a stream class, however, the
toString() method is not typically useful.
Note that the Java 5.0 API provides a number of convenience methods
that use the Formatter class, and in many cases it
is unnecessary to create a Formatter object
explicitly. See the static String.format() method
and the format() and printf()
methods of java.io.PrintWriter and
java.io.PrintStream.
If you do need to create a Formatter object
explicitly, you can choose from a number of constructors. The most
general case is to pass the desired Appendable or
the desired Locale and
Appendable objects to the constructor. The
no-argument constructor is a convenience that creates a
StringBuilder to append to. Obtain this
StringBuilder with out() or
obtain its contents as a String with
toString(). If you specify a single
Locale argument, the resulting
Formatter uses the specified locale with a
StringBuilder.
You can use a Formatter to write formatted output
to a file by specifying either the File object or
filename as a String. Variants of these
constructors allow you to specify the name of the charset to use for
character-to-byte conversion and also a Locale.
Note that these methods overwrite existing files rather than
appending to them. Other constructors create an
Appendable object for you based on the
java.io.OutputStream or
java.io.PrintStream you specify. In the
OutputStream case, you may optionally specify the
charset to use or the charset and a Locale.

The Format String and Format Specifiers
The API for
Formatter and Formatter-based

 convenience methods is relatively
simple. The power of these formatting methods lies in the format
string that is the first argument (or second argument if a
Locale is specified) to the various
format() and printf()
methods. The format string may contain any amount of regular text,
which is printed or appended literally to the destination
Appendable object. This plain text may be
interspersed with format
specifiers
 which specify how a subsequent
argument is to be formatted as a string. In contrast to the simple
API, the grammar for these format specifiers is surprisingly complex.
Experienced C programmers will find that the grammar is largely
compatible with the printf() format string
grammar of the standard C library.
Each format specifier begins with a percent sign and ends with a one-
or two-character conversion type that specifies most of the details
of the conversion and formatting. In between these two are optional
flags that provide additional details about how the formatting should
be done. The general syntax of a format specifier is as follows.
Square brackets indicate optional items:
%[argument][flags][width][.precision]type

Note that the percent sign and the type
are the only two required portions of a format specifier. We begin,
therefore, with a listing of conversion types (see Table 16-1). A discussion of
argument,
flags, width,
and precision follows. In the table of
conversion types below, if uppercase and lowercase variants of the
type specifier are listed together, the uppercase variant produces
the same output as the lowercase variant except that all lowercase
letters are converted to uppercase. Note that format(
) never throws NullPointerException
because of null arguments following the format
string. A null argument is formatted as
“null” or
“NULL” for all conversion
characters except %b and %B,
which produce “false” or
“FALSE”.
Table 16-1. Formatter conversion types
	
 Conversion

 	
 Description

	
 Simple conversions

	

 %%

 	
 Outputs a single percent sign.This is simply an escape sequence used
to embed percent signs literally in the output string. This
conversion does not use an argument.

	

 %n

 	
 Outputs the platform-specific line separator. This conversion
represents the value returned by
System.getProperty("line.separator").
This conversion does not use an argument.

	

 %s, %S

 	
 Formats and outputs the argument as a string, optionally converting
it to uppercase for the %S conversion. The
argument may be of any type. If the argument implements
Formattable, its formatTo()
method is called to perform the formatting. Otherwise, its
toString() method is called to convert it to a
string. If the argument is null, the output string
is “null” or
“NULL”.

	

 %c, %C

 	
 Outputs the argument as a single character. The argument type must be
Byte, Short,
Character, or Integer. The
argument value must represent a valid Unicode code point. (See
Character.isValidCodePoint().)

	

 %b, %B

 	
 Outputs the argument value as the string
“true” or
“false” (or
“TRUE” or
“FALSE”). The argument may be of
any type and any value. If it is a Boolean
argument, the output reflects the argument value. Otherwise, if the
argument is null, the output is
“false” or
“FALSE”. For any other value, the
output is “true” or
“TRUE”. Note that this differs from
normal Java conversions in which boolean values
are not convertible to or from any other type.

	

 %h, %H

 	
 Outputs the hexadecimal representation of the hashcode for the
argument. Arguments of any type and value are allowed. This
conversion type is useful mainly for debugging.

	

 Numeric Conversions

	

 %d

 	
 Formats the argument as a base-10 integer. The argument must be a
Byte, Short,
Integer, Long, or
BigInteger.

	

 %o

 	
 Formats the argument as a base-8 octal integer. The allowed argument
types are the same as for %d. For any argument
type other than BigInteger, the value is treated
as unsigned.

	

 %x, %X

 	
 Formats the argument as a base-16 hexadecimal integer. The allowed
argument types and values are the same as for %d.
For any argument type other than BigInteger, the
value is treated as unsigned.

	

 %e, %E

 	
 Formats the argument as a base-10 floating-point number, using
exponential notation. The output consists of a single digit, a
locale-specific decimal point, and the number of fractional digits
specified by the precision of the format
specifier, or six fractional digits if no
precision is specified. These digits are
followed by the letter e or E
and the exponent of the number.

 The argument must be a Float,
Double, or BigDecimal. The
values NaN and Infinity are
formatted as “NaN” and
“Infinity” or their uppercase
equivalents.

	

 %f

 	
 Formats the argument as a floating-point number in base-10, without
using exponential notation. If the number is large, this may produce
quite a few digits. Because exponential notation is never used, the
output will never include a letter, and there is no uppercase variant
of this conversion. Legal argument types and special-case values are
as for %e.

	

 %g, %G

 	
 Formats the argument as a base-10 floating-point number, displaying
no more than the number of significant digits specified by the
precision of the format specifier, or no
more than 6 significant digits if no
precision is specified. If the value has
more than the allowed number of significant digits, it is printed
using exponential notation (see %e) to limit the
display to the specified number of digits. Otherwise, all digits of
the value are printed explicitly as they would be with the
%f conversion type. Legal argument types and
special case values are as for %e.

	

 %a, %A

 	
 Formats the argument in hexadecimal floating-point format. Legal
argument types and special case values are as for
%e.

	

 Dates and Times

	

 %t, %T

 	
 All date and time format types are two-letter codes beginning with
%t or %T. The specific format
types are listed below, in alphabetical order, using
%t as the prefix. For uppercase, use
%T instead. Upper- and lowercase variants of the
second letter of a time or date format type are sometimes completely
unrelated. Other times, the lowercase conversion produces an
abbreviation of the value produced by the uppercase conversion.

 The argument for a date or time conversion must be a
Date, Calendar, or
Long. In the case of Long, the
value is interpreted as milliseconds since the epoch, as in
System currentTimeMillis().

	

 %tA

 	
 The locale-specific full name of the day of the week.

	

 %ta

 	
 The locale-specific abbreviation of the day of the week.

	

 %tB

 	
 The locale-specific name of the month. See %tm.

	

 %tb

 	
 The locale-specific abbreviation for the month.

	

 %tC

 	
 The century: the year divided by 100, with leading zeros if necessary
to produce a value from 00 to 99

	

 %tc

 	
 The complete date and time. Equivalent to “%ta %tb
%td %tT %tZ %tY”.

	

 %tD

 	
 The date in a short numeric form used in the US locale. Equivalent to
“%tm/%td/%ty”.

	

 %td

 	
 The day of the month, as a two-digit number between 01 and 31. See
%te.

	

 %tE

 	
 The date expressed as milliseconds since Midnight UTC on January 1st,
1970.

	

 %te

 	
 The day of the month as a one- or two-digit number without leading
zeros between 1 and 31. See %td.

	

 %tF

 	
 The numeric date in ISO8601 format: %tY-%tm-%td.

	

 %tH

 	
 Hour of the day using a 24-hour clock, formatted as two digits
between 00 and 23. See %tI.

	

 %th

 	
 The abbreviated month name. Same as %tb.

	

 %tI

 	
 Hour of the day using a 12-hour clock, formatted as two digits
between 01 and 12. See %tH and
%tP.

	

 %tj

 	
 The day of the year as three digits with leading zeros if necessary:
001-366

	

 %tk

 	
 Hour of the day on a 24-hour clock using one or two digits without a
leading zero: 0-23. See %tl.

	

 %tL

 	
 Milliseconds within the second, expressed as three digits with
leading zeros: 000-999.

	

 %tl

 	
 Hour of the day on a 12-hour clock using one or two digits without a
leading zero: 1-12.

	

 %tM

 	
 Minute within the hour as two digits with a leading zero if
necessary: 00-59.

	

 %tm

 	
 The month of the year as a two-digit number between 01 and 12, or
between 01 and 13 for lunar calendars. See %tB and
%tb.

	

 %tN

 	
 Nanosecond within the second, expressed as nine digits with leading
zeros if necessary. Note that platforms are not required to able to
resolve times with nanosecond precision.

	

 %tP

 	
 The locale-specific morning or afternoon indicator (such as
“am” or
“pm”) used with 12-hour clocks.
%tP uses lowercase and %TP uses
uppercase.

	

 %tp

 	
 Like %tP but uses uppercase for both
%tp and %Tp variants.

	

 %tR

 	
 The hour and minute on a 24-hour clock. Equivalent to
“%tH:%tM”.

	

 %tr

 	
 The hour, minute, and second on a 12-hour clock. Equivalent to
“%tI:%tM:%tS %tP” except that the
am/pm indicator %tP may be in a different
locale-dependent position.

	

 %tS

 	
 Seconds within the minute, as two digits with a leading zero if
necessary. The range is normally 00-59, but a value of 60 is allowed
for leap seconds.

	

 %ts

 	
 Seconds since the beginning of the epoch. See %tE.

	

 %tT

 	
 The time in hours, minutes, and seconds using 24-hour format.
Equivalent to “%tH:%tM:%tS”.

	

 %tY

 	
 The year, using at least four digits, formatted with leading zeros,
if necessary.

	

 %ty

 	
 The last two digits of the year, 00-99

	

 %tZ

 	
 An abbreviation for the time zone.

	

 %tz

 	
 The time zone as numeric offset from GMT.

Argument Specifier
Every format specifier in a format string
except for %% and %n requires
an argument that contains the value to format. These arguments follow
the format string in the call to format() or
printf(). By default, a format specifier uses the
next unused argument. In the following printf()
call, the first and second %s format specifiers
format the second and third arguments, respectively:
out.printf("Name: %s %s%n", first, last);
If a format specifier includes the character <
after the %, it specifies that the argument of the
previous format specifier should be reused. This allows the same
object (such as a date) to be formatted more than once (yielding a
formatted date and time, for example):
out.printf("Date: %tD%nTime: %<tr%n", System.currentTimeMillis());
It is an error to use < in the first format
specifier of a format string.
Argument numbers may also be specified absolutely. If the
% sign is followed by one or more digits and a
$ sign, those digits specify an argument number.
For example %1$d specifies that the first argument
following the format string should be formatted as an integer.
Absolute argument numbers are particularly useful for localization
since the different translations of a message may need to interpolate
the arguments in a different order. The following example includes a
format string that might be used in a locale where a
person’s family name is typically printed (in
uppercase) before the given name. Note that the arguments are not
passed in the same order that they are formatted.
String name = String.format("%2$S, %1$s", firstname, lastname);
Neither absolute argument indexing with a number and
$ character or relative argument indexing with
< affect the order in which arguments are
interpolated for format specifiers that use neither
$ or <. The first format
specifier that has neither an absolute or relative argument
specification uses the first argument following the format string,
regardless of what has come before. The code above could be rewritten
like this, for example:
String name = String.format("%2$S, %s", firstname, lastname);

Flags

 Following the
optional argument specifier, a format specifier may include one or
more flag characters. The defined flags, their effects, and the
format types for which they are legal are specified in Table 16-2:
Table 16-2. Formatter flags
	
 Flag

 	
 Description

	

 -

 	
 A hyphen specifies that the formatted value should be left-justified
within the specified width. This flag can
be used with any conversion type except %n as long
as the conversion specifier also includes a
width (see below). When a width is
specified without this flag, the formatted string is padded on the
left to produce right-justified output.

	

 #

 	
 The # flag specifies that output should appear in
an “alternate form” that depends on
the type being formatted. For %o conversions, this
flag specifies that the output should include a leading 0. For
%x and %X conversions, it
specifies that output should include a leading 0x
or 0X. For the %s and
%S conversions, the # flag may
be used if the argument implements Formattable. In
this case, the flag is passed on to the formatTo(
) method of the argument, and it is up to that
formatTo() method to produce its output in some
alternate form.

	

 +

 	
 This flag specifies that numeric output should always include a sign:
a value that is nonnegative will have
“+” added in front of it. This flag
may be used with any numeric conversion that may yield a signed
result. This includes %d, %e,
%f, %g, %a,
and their uppercase variants. It also includes %o,
%x, and %X conversions applied
to BigInteger arguments.

	

	
 The space character is a (hard-to-read) flag that specifies that
non-negative values should be prefixed with a space. This flag may be
used with the same conversion and argument types as the
+ flag, and is useful when aligning positive and
negative numbers in a column

	

 (

 	
 This flag specifies that negative numbers should be enclosed in
parentheses, as is commonly done in financial statements, for
example. This flag may be used with the same format and argument
types as the + flag, except that it may not be
used with %a conversions.

	

 0

 	
 The digit zero, used as a flag, specifies that numeric values should
be padded on the left (after the sign character, if any) with zeros.
This flag may be used only if a width is specified, and may not be
used in conjunction with the - flag.

	
 ,

 	
 This flag specifies that numbers should be formatted using the
locale-specific grouping separator. In the US locale, for example, a
comma would appear every three digits to separate the number into
thousands, millions, and so on. This flag may be used with
%d, %e, %E,
%f, %g, and
%G conversions only.

Width
The width

 portion of a format specifier is
one or more digits that specify the minimum number of characters to
be produced. If the formatted value is narrower than the specified
width, (by default) it is padded on the left with spaces, producing a
right-justified value. The - and
0 flags can be used to specify left-justification
or padding with zeros instead.
A width may be specified with any format type except
%n.

Precision
The precision

 portion of a format
specifier is one or more digits following a decimal point. The
meaning of this number depends on which format type it is used with:
	For %e, %E, and
%f, the precision specifies the number of digits
to appear after the decimal point. Zeros are appended on the right,
if necessary. The default precision is 6.

	For %g and %G format types, the
precision specifies the total number of significant digits to be
displayed. As a corollary, it specifies the largest and smallest
values that can be displayed without resorting to exponential
notation. The default precision is 6. If a precision of 0 is
specified, it is treated as a precision of 1.

	For %s, %h and
%b format types, and their uppercase variants, the
precision specifies the maximum number of characters to be output. If
no precision is specified, there is no maximum. If the formatted
output would exceed the precision of
characters, it is truncated. If precision
is smaller than width, the formatted value
is first truncated as necessary and then padded within the specified
width.

	Specifying a precision for any other conversion type causes an
exception at runtime.

Synopsis
[image: java.util.Formatter]

Figure 16-21. java.util.Formatter

public final class Formatter implements java.io.Closeable, java.io.Flushable {
// Public Constructors
 public Formatter();
 public Formatter(java.io.PrintStream ps);
 public Formatter(java.io.OutputStream os);
 public Formatter(java.io.File file) throws java.io.FileNotFoundException;
 public Formatter(String fileName) throws java.io.FileNotFoundException;
 public Formatter(Locale l);
 public Formatter(Appendable a);
 public Formatter(java.io.OutputStream os, String csn)
 throws java.io.UnsupportedEncodingException;
 public Formatter(java.io.File file, String csn)
 throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
 public Formatter(Appendable a, Locale l);
 public Formatter(String fileName, String csn)
 throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
 public Formatter(String fileName, String csn, Locale l)
 throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
 public Formatter(java.io.File file, String csn, Locale l)
 throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
 public Formatter(java.io.OutputStream os, String csn, Locale l)
 throws java.io.UnsupportedEncodingException;
// Nested Types
 public enum BigDecimalLayoutForm;
// Public Instance Methods
 public java.util.Formatter format(String format, Object... args);
 public java.util.Formatter format(Locale l, String format, Object... args);
 public java.io.IOException ioException();
 public Locale locale();
 public Appendable out();
// Methods Implementing Closeable
 public void close();
// Methods Implementing Flushable
 public void flush();
// Public Methods Overriding Object
 public String toString();
}

Passed To

 Formattable.formatTo()

Name
Formatter.BigDecimalLayoutForm

Synopsis

 This
enumerated
type is intended for internal use by the Formatter
class, but was inadvertently declared public. This
type serves no useful purpose and should not be used. It will likely
be removed in a future release.
public enum Formatter.BigDecimalLayoutForm {
// Enumerated Constants
 SCIENTIFIC,
 DECIMAL_FLOAT;
// Public Class Methods
 public static Formatter.BigDecimalLayoutForm valueOf(String name);
 public static final Formatter.BigDecimalLayoutForm[] values();
}

Name
FormatterClosedException

Synopsis
An
exception
of this type is thrown when an attempt is made to use a
Formatter whose close() method
has been called.
[image: java.util.FormatterClosedException]

Figure 16-22. java.util.FormatterClosedException

public class FormatterClosedException extends IllegalStateException {
// Public Constructors
 public FormatterClosedException();
}

Name
GregorianCalendar

Synopsis

 This
concrete subclass of Calendar implements the
standard solar calendar with years numbered from the birth of Christ
that is used is most locales throughout the world. You do not
typically use this class directly, but instead obtain a
Calendar object suitable for the default locale by
calling Calendar.getInstance(). See
Calendar for details on working with
Calendar objects. There is a discontinuity in the
Gregorian calendar that represents the historical switch from the
Julian calendar to the Gregorian calendar. By default,
GregorianCalendar assumes that this switch occurs
on October 15, 1582. Most programs need not be concerned with the
switch.
[image: java.util.GregorianCalendar]

Figure 16-23. java.util.GregorianCalendar

public class GregorianCalendar extends Calendar {
// Public Constructors
 public GregorianCalendar();
 public GregorianCalendar(Locale aLocale);
 public GregorianCalendar(TimeZone zone);
 public GregorianCalendar(TimeZone zone, Locale aLocale);
 public GregorianCalendar(int year, int month, int dayOfMonth);
 public GregorianCalendar(int year, int month, int dayOfMonth, int hourOfDay,
 int minute);
 public GregorianCalendar(int year, int month, int dayOfMonth, int hourOfDay, int minute,
 int second);
// Public Constants
 public static final int AD; =1
 public static final int BC; =0
 // Public Instance Methods
 public final Date getGregorianChange();
 public boolean isLeapYear(int year);
 public void setGregorianChange(Date date);
// Public Methods Overriding Calendar
 public void add(int field, int amount);
5.0 public Object clone();
 public boolean equals(Object obj);
1.2 public int getActualMaximum(int field);
1.2 public int getActualMinimum(int field);
 public int getGreatestMinimum(int field);
 public int getLeastMaximum(int field);
 public int getMaximum(int field);
 public int getMinimum(int field);
5.0 public TimeZone getTimeZone();
 public int hashCode();
 public void roll(int field, boolean up);
1.2 public void roll(int field, int amount);
5.0 public void setTimeZone(TimeZone zone);
// Protected Methods Overriding Calendar
 protected void computeFields();
 protected void computeTime();
}

Passed To

 javax.xml.datatype.DatatypeFactory.newXMLGregorianCalendar(
)

Returned By

 javax.xml.datatype.XMLGregorianCalendar.toGregorianCalendar(
)

Name
HashMap<K,V>

Synopsis

 This class
implements the Map interface using an internal
hashtable. It supports all optional Map methods,
allows key and value objects of any types, and allows
null to be used as a key or a value. Because
HashMap is based on a hashtable data structure,
the get() and put() methods
are very efficient. HashMap is much like the
Hashtable class, except that the
HashMap methods are not
synchronized (and are therefore faster), and
HashMap allows null to be used
as a key or a value. If you are working in a multithreaded
environment, or if compatibility with previous versions of Java is a
concern, use Hashtable. Otherwise, use
HashMap.
If you know in advance approximately how many mappings a
HashMap will contain, you can improve efficiency
by specifying initialCapacity when you
call the HashMap() constructor. The
initialCapacity argument times the
loadFactor argument should be greater than
the number of mappings the HashMap will contain. A
good value for loadFactor is 0.75; this is
also the default value. See Map for details on the
methods of HashMap. See also
TreeMap and HashSet.
[image: java.util.HashMap<K,V>]

Figure 16-24. java.util.HashMap<K,V>

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
// Public Constructors
 public HashMap();
 public HashMap(int initialCapacity);
 public HashMap(Map<? extends K,? extends V> m);
 public HashMap(int initialCapacity, float loadFactor);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public Set<Map.Entry<K,V>> entrySet();
 public V get(Object key);
 public boolean isEmpty(); default:true
 public Set<K> keySet();
 public V put(K key, V value);
 public void putAll(Map<? extends K,? extends V> m);
 public V remove(Object key);
 public int size();
 public Collection<V> values();
// Public Methods Overriding AbstractMap
 public Object clone();
}

Subclasses

 LinkedHashMap

Name
HashSet<E>

Synopsis

 This class implements
Set using an internal hashtable. It supports all
optional Set and Collection
methods and allows any type of object or null to
be a member of the set. Because HashSet is based
on a hashtable, the basic add(), remove(
), and contains() methods are all quite
efficient. HashSet makes no guarantee about the
order in which the set elements are enumerated by the
Iterator returned by iterator(
). The methods of HashSet are not
synchronized. If you are using it in a
multithreaded environment, you must explicitly synchronize all code
that modifies the set or obtain a synchronized wrapper for it by
calling Collections.synchronizedSet().
If you know in advance approximately how many mappings a
HashSet will contain, you can improve efficiency
by specifying initialCapacity when you
call the HashSet() constructor. The
initialCapacity argument times the
loadFactor argument should be greater than
the number of mappings the HashSet will contain. A
good value for loadFactor is 0.75; this is
also the default value. See Set and
Collection for details on the methods of
HashSet. See also TreeSet and
HashMap.
[image: java.util.HashSet<E>]

Figure 16-25. java.util.HashSet<E>

public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, Serializable {
// Public Constructors
 public HashSet();
 public HashSet(Collection<? extends E> c);
 public HashSet(int initialCapacity);
 public HashSet(int initialCapacity, float loadFactor);
// Methods Implementing Set
 public boolean add(E o);
 public void clear();
 public boolean contains(Object o);
 public boolean isEmpty(); default:true
 public Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
// Public Methods Overriding Object
 public Object clone();
}

Subclasses

 LinkedHashSet

Name
Hashtable<K,V>

Synopsis

 This
class implements a hashtable data structure, which maps key objects
to value objects and allows the efficient lookup of the value
associated with a given key. In Java 1.2 and later
Hashtable has been modified to impement the
Map interface. The HashMap
class is typically preferred over this one, although the
synchronized methods of this class are useful in
multi-threaded applications. (But see
java.util.concurrent.ConcurrentHashMap.) In Java
5.0 this class has been made generic along with the
Map interface. The type variable
K represents the type of the hashtable
keys and the type variable V represents
the type of the hashtable values.

 put() associates a value with a key in a
Hashtable. get() retrieves a
value for a specified key. remove() deletes a
key/value association. keys() and
elements() return Enumeration
objects that allow you to iterate through the complete set of keys
and values stored in the table. Objects used as keys in a
Hashtable must have valid equals(
) and hashCode() methods (the versions
inherited from Object are okay).
null is not legal as a key or value in a
Hashtable.
[image: java.util.Hashtable<K,V>]

Figure 16-26. java.util.Hashtable<K,V>

public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>,
 Cloneable, Serializable {
// Public Constructors
 public Hashtable();
1.2 public Hashtable(Map<? extends K,? extends V> t);
 public Hashtable(int initialCapacity);
 public Hashtable(int initialCapacity, float loadFactor);
// Public Instance Methods
 public void clear(); Implements:Map synchronized
 public boolean contains(Object value); synchronized
 public boolean containsKey(Object key); Implements:Map synchronized
 public V get(Object key); Implements:Map synchronized
 public boolean isEmpty(); Implements:Map synchronized default:true
 public V put(K key, V value); Implements:Map synchronized
 public V remove(Object key); Implements:Map synchronized
 public int size(); Implements:Map synchronized
// Methods Implementing Map
 public void clear(); synchronized
 public boolean containsKey(Object key); synchronized
 1.2 public boolean containsValue(Object value);
1.2 public Set<Map.Entry<K,V>> entrySet();
1.2 public boolean equals(Object o); synchronized
 public V get(Object key); synchronized
 1.2 public int hashCode(); synchronized
 public boolean isEmpty(); synchronized default:true
1.2 public Set<K> keySet();
 public V put(K key, V value); synchronized
 1.2 public void putAll(Map<? extends K,? extends V> t); synchronized
 public V remove(Object key); synchronized
 public int size(); synchronized
 1.2 public Collection<V> values();
// Public Methods Overriding Dictionary
 public Enumeration<V> elements(); synchronized
 public Enumeration<K> keys(); synchronized
 // Public Methods Overriding Object
 public Object clone(); synchronized
 public String toString(); synchronized
 // Protected Instance Methods
 protected void rehash();
}

Subclasses

 Properties

Name
IdentityHashMap<K,V>

Synopsis
This Map
 implementation has a API that is very
similar to HashMap, and uses an internal
hashtable, like HashMap does. However, it behaves
differently from HashMap in one very important
way. When testing two keys to see if they are equal,
HashMap, LinkedHashMap and
TreeMap use the equals()
method to determine whether the two objects are indistinguishable in
terms of their content or state. IdentityHashMap
is different: it uses the == operator to determine
whether the two key objects are identical—whether they are
exactly the same object. This one difference in how key equality is
tested has profound ramifications for the behavior of the
Map. In most cases, the equality testing of a
HashMap, LinkedHashMap or
TreeMap is the appropriate behavior, and you
should use one of those classes. For certain purposes, however, the
identity testing of IdentityHashMap is what is
required.
[image: java.util.IdentityHashMap<K,V>]

Figure 16-27. java.util.IdentityHashMap<K,V>

public class IdentityHashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>,
 Serializable, Cloneable {
// Public Constructors
 public IdentityHashMap();
 public IdentityHashMap(int expectedMaxSize);
 public IdentityHashMap(Map<? extends K,? extends V> m);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public Set<Map.Entry<K,V>> entrySet();
 public boolean equals(Object o);
 public V get(Object key);
 public int hashCode();
 public boolean isEmpty(); default:true
 public Set<K> keySet();
 public V put(K key, V value);
 public void putAll(Map<? extends K,? extends V> t);
 public V remove(Object key);
 public int size();
 public Collection<V> values();
// Public Methods Overriding AbstractMap
 public Object clone();
}

Name
IllegalFormatCodePointException

Synopsis
An IllegalFormatException

 of
this type is thrown by a Formatter when an
int used to represent a Unicode character is out
of range.
[image: java.util.IllegalFormatCodePointException]

Figure 16-28. java.util.IllegalFormatCodePointException

public class IllegalFormatCodePointException extends IllegalFormatException {
// Public Constructors
 public IllegalFormatCodePointException(int c);
// Public Instance Methods
 public int getCodePoint();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
IllegalFormatConversionException

Synopsis
An IllegalFormatException

 of this type is thrown by a
Formatter when the type of the format(
) or printf() argument does not match
the type required by the corresponding conversion specifier in the
format string.
[image: java.util.IllegalFormatConversionException]

Figure 16-29. java.util.IllegalFormatConversionException

public class IllegalFormatConversionException extends IllegalFormatException {
// Public Constructors
 public IllegalFormatConversionException(char c, Class<?> arg);
// Public Instance Methods
 public Class<?> getArgumentClass();
 public char getConversion();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
IllegalFormatException

Synopsis
An
 exception
of this type is thrown by a Formatter when there
is problem with the format string. This package defines many
subclasses of this exception type to describe particular format
string problems.
[image: java.util.IllegalFormatException]

Figure 16-30. java.util.IllegalFormatException

public class IllegalFormatException extends IllegalArgumentException {
// No Constructor
}

Subclasses

 DuplicateFormatFlagsException,
FormatFlagsConversionMismatchException,
IllegalFormatCodePointException,
IllegalFormatConversionException,
IllegalFormatFlagsException,
IllegalFormatPrecisionException,
IllegalFormatWidthException,
MissingFormatArgumentException,
MissingFormatWidthException,
UnknownFormatConversionException,
UnknownFormatFlagsException

Name
IllegalFormatFlagsException

Synopsis
An IllegalFormatException of

 this type is thrown by a
Formatter when a format string contains an illegal
combination of flags.
[image: java.util.IllegalFormatFlagsException]

Figure 16-31. java.util.IllegalFormatFlagsException

public class IllegalFormatFlagsException extends IllegalFormatException {
// Public Constructors
 public IllegalFormatFlagsException(String f);
// Public Instance Methods
 public String getFlags();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
IllegalFormatPrecisionException

Synopsis

 An
IllegalFormatException of this type is thrown by a
Formatter when the precision of a format string is
illegal.
[image: java.util.IllegalFormatPrecisionException]

Figure 16-32. java.util.IllegalFormatPrecisionException

public class IllegalFormatPrecisionException extends IllegalFormatException {
// Public Constructors
 public IllegalFormatPrecisionException(int p);
// Public Instance Methods
 public int getPrecision();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
IllegalFormatWidthException

Synopsis
An IllegalFormatException

 of this
type is thrown by a Formatter when the width of a
format string is illegal.
[image: java.util.IllegalFormatWidthException]

Figure 16-33. java.util.IllegalFormatWidthException

public class IllegalFormatWidthException extends IllegalFormatException {
// Public Constructors
 public IllegalFormatWidthException(int w);
// Public Instance Methods
 public int getWidth();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
InputMismatchException

Synopsis
An exception of this type is thrown by a
Scanner

 that
is not of the expected type or is out of range. Note that the
Scanner implements the Iterator
interface, and this exception is a subclass of
NoSuchElementException, which is thrown by
Iterator.next() when no more elements are
available.
[image: java.util.InputMismatchException]

Figure 16-34. java.util.InputMismatchException

public class InputMismatchException extends NoSuchElementException {
// Public Constructors
 public InputMismatchException();
 public InputMismatchException(String s);
}

Name
InvalidPropertiesFormatException

Synopsis
An

 exception of this type is thrown by
Properties.loadFromXML() if the specified input
stream does not contain appropriate XML.
[image: java.util.InvalidPropertiesFormatException]

Figure 16-35. java.util.InvalidPropertiesFormatException

public class InvalidPropertiesFormatException extends java.io.IOException {
// Public Constructors
 public InvalidPropertiesFormatException(String message);
 public InvalidPropertiesFormatException(Throwable cause);
}

Thrown By

 Properties.loadFromXML()

Name
Iterator<E>

Synopsis

 This
interface defines methods for iterating, or enumerating, the elements
of a collection. It has been made generic in Java 5.0 and the type
variable E represents the type of the
elements in the collection. The hasNext() method
returns true if there are more elements to be
enumerated or false if all elements have already
been returned. The next() method returns the next
element. These two methods make it easy to loop through an iterator
with code such as the following:
for(Iterator i = c.iterator(); i.hasNext();)
 processObject(i.next());
In Java 5.0, collections and other classes that can return an
Iterator implement the
java.lang.Iterable interface, which allows them to
be iterated much more simply with the for/in
looping statement.

 The
Iterator interface is much like the
Enumeration interface. In Java 1.2,
Iterator is preferred over
Enumeration because it provides a well-defined way
to safely remove elements from a collection while the iteration is in
progress. The remove() method removes the object
most recently returned by next() from the
collection that is being iterated through. Note, however, that
support for remove() is optional; if an
Iterator does not support remove(
), it throws a
java.lang.UnsupportedOperationException when you
call it. While you are iterating through a collection, you are
allowed to modify the collection only by calling the remove(
) method of the Iterator. If the
collection is modified in any other way while an iteration is
ongoing, the Iterator may fail to operate
correctly, or it may throw a
ConcurrentModificationException.
public interface Iterator<E> {
// Public Instance Methods
 boolean hasNext();
 E next();
 void remove();
}

Implementations

 ListIterator, Scanner

Returned By
Too many methods to list.

Name
LinkedHashMap<K,V>

Synopsis
This class is a Map
implementation based on a hashtable, just like its superclass
HashMap. It defines no new public methods, and can
be used exactly as HashMap is used. What is unique
about this Map is that in addition to the
hashtable data structure, it also uses a doubly-linked list to
connect the keys of the Map into an internal list
which defines a predictable iteration order.
You can iterate through the keys or values of a
LinkedHashMap by calling entrySet(
), keySet(), or values(
) and then obtaining an Iterator for the
returned collection, just as you would for a
HashMap. When you do this, however, the keys
and/or values are returned in a well-defined order rather than the
essentially random order provided by a HashMap.
The default ordering for LinkedHashMap is the
insertion order of the key: the first key inserted into the
Map is enumerated first (as is the value
associated with it), and the last entry inserted is enumerated last.
Note that this order is not affect by re-insertions. That is, if a
LinkedHashMap contains a mapping from a key
k to a value
v1, and you call the put(
) method to map from k to a new
value v2, this does not change the
insertion order, or the iteration order of the key
k. The iteration order of a value in the
map is the iteration order of the key with which it is associated.
Insertion order is the default iteration order for this class, but if
you instantiate a LinkedHashMap with the
three-argument constructor, and pass true for the
third argument, then the iteration order will be based on access
order: the first key returned by an iterator is the one that was
least-recently used in a get() or put(
) operation. The last key returned is the one that has been
most-recently used. As with insertion order, the values(
) collection is iterated in the order defined by the keys
with which those values are associated.
“Access ordering” is particularly
useful for implementing “LRU”
caches from which the Least-Recently Used elements are periodically
purged. To facilitate this use, LinkedHashMap
defines the protected removeEldestEntry() method.
Each time the put() method is called (or for each
mapping added by putAll()) the
LinkedHashMap calls removeEldestEntry(
) and passes the least-recently used (or first inserted if
insertion order is being used) Map.Entry object.
If the method returns true, then that entry will
be removed from the map. In LinkedHashMap,
removeEldestEntry() always returns
false, and old entries are never automatically
removed, but you can override this behavior in a subclass. The
decision to remove an old entry might be based on the content of the
entry itself, or might more simply be based on the size(
) of the LinkedHashMap. Note that
removeEldestEntry() need simply return
true or false; it should not
remove the entry itself.
[image: java.util.LinkedHashMap<K,V>]

Figure 16-36. java.util.LinkedHashMap<K,V>

public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> {
// Public Constructors
 public LinkedHashMap();
 public LinkedHashMap(int initialCapacity);
 public LinkedHashMap(Map<? extends K,? extends V> m);
 public LinkedHashMap(int initialCapacity, float loadFactor);
 public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder);
// Methods Implementing Map
 public void clear();
 public boolean containsValue(Object value);
 public V get(Object key);
// Protected Instance Methods
 protected boolean removeEldestEntry(Map.Entry<K,V> eldest); constant
}

Name
LinkedHashSet<E>

Synopsis

 This
subclass of HashSet is a Set
implementation based on a hashtable. It defines no new methods and is
used just like a HashSet is used. What is unique
about a LinkedHashSet is that in addition to the
hashtable data structure, it also uses a doubly-linked list to
connect the elements of the set into an internal list in the order in
which they were inserted. This means that the
Iterator returned by the inherited
iterator() method always enumerates the elements
of the set in the order which they were inserted. By contrast, the
elements of a HashSet are enumerated in an order
that is essentially random. Note that the iteration order is not
affected by reinsertion of set elements. That is, if you attempt to
add an element that already exists in the set, the iteration order of
the set is not modified. If you delete an element and then reinsert
it, the insertion order, and therefore the iteration order, does
change.
[image: java.util.LinkedHashSet<E>]

Figure 16-37. java.util.LinkedHashSet<E>

public class LinkedHashSet<E> extends HashSet<E> implements Set<E>, Cloneable, Serializable {
// Public Constructors
 public LinkedHashSet();
 public LinkedHashSet(Collection<? extends E> c);
 public LinkedHashSet(int initialCapacity);
 public LinkedHashSet(int initialCapacity, float loadFactor);
}

Name
LinkedList<E>

Synopsis

 This class implements the
List interface in terms of a doubly linked list.
In Java 5.0, it also implements the Queue
interface and uses its list as a first-in, first-out (FIFO) queue.
LinkedList is a generic type, and the type
variable E represents the type of the
elements of the list. LinkedList supports all
optional methods of List, Queue
and Collection and allows list elements of any
type, including null (in this it differs from most
Queue implementations, which prohibit
null elements).
Because LinkedList is implemented with a linked
list data structure, the get() and set(
) methods are substantially less efficient than the same
methods for an ArrayList. However, a
LinkedList may be more efficient when the
add() and remove() methods
are used frequently. The methods of LinkedList are
not synchronized. If you are using a
LinkedList in a multithreaded environment, you
must explicitly synchronize any code that modifies the list or obtain
a synchronized wrapper object with
Collections.synchronizedList().

 In addition to the methods defined by
the List interface, LinkedList
defines methods to get the first and last elements of the list, to
add an element to the beginning or end of the list, and to remove the
first or last element of the list. These convenient and efficient
methods make LinkedList well-suited for use as a
stack or queue. See List and
Collection for details on the methods of
LinkedList. See also ArrayList.
[image: java.util.LinkedList<E>]

Figure 16-38. java.util.LinkedList<E>

public class LinkedList<E> extends AbstractSequentialList<E>
 implements List<E>, Queue<E>, Cloneable, Serializable {
// Public Constructors
 public LinkedList();
 public LinkedList(Collection<? extends E> c);
// Public Instance Methods
 public void addFirst(E o);
 public void addLast(E o);
 public E getFirst();
 public E getLast();
 public E removeFirst();
 public E removeLast();
// Methods Implementing List
 public boolean add(E o);
 public void add(int index, E element);
 public boolean addAll(Collection<? extends E> c);
 public boolean addAll(int index, Collection<? extends E> c);
 public void clear();
 public boolean contains(Object o);
 public E get(int index);
 public int indexOf(Object o);
 public int lastIndexOf(Object o);
 public ListIterator<E> listIterator(int index);
 public boolean remove(Object o);
 public E remove(int index);
 public E set(int index, E element);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
 5.0 public E element();
5.0 public boolean offer(E o);
5.0 public E peek();
5.0 public E poll();
5.0 public E remove();
// Public Methods Overriding Object
 public Object clone();
}

Name
List<E>

Synopsis

 This interface represents an ordered
collection of objects. In Java 5.0 List is a
generic interface and the type variable E
represents the type of the objects in the list. Each element in a
List has an index, or position, in the list, and
elements can be inserted, queried, and removed by index. The first
element of a List has an index of
0. The last element in a list has index
size()-1.

 In
addition to the methods defined by the superinterface,
Collection, List defines a
number of methods for working with its indexed elements.
get() and set() query and set
the object at a particular index, respectively. Versions of
add() and addAll() that take
an index argument insert an object or
Collection of objects at a specified index. The
versions of add() and addAll(
) that do not take an index
argument insert an object or collection of objects at the end of the
list. List defines a version of remove(
) that removes the object at a specified index.

 The
iterator() method is just like the
iterator() method of
Collection, except that the
Iterator it returns is guaranteed to enumerate the
elements of the List in order.
listIterator() returns a
ListIterator object, which is more powerful than a
regular Iterator and allows the list to be
modified while iteration proceeds. listIterator()
can take an index argument to specify where in the list iteration
should begin.

 indexOf() and
lastIndexOf() perform linear searches from the
beginning and end, respectively, of the list, searching for a
specified object. Each method returns the index of the first matching
object it finds, or -1 if it does not find a match. Finally,
subList() returns a List that
contains only a specified contiguous range of list elements. The
returned list is simply a view into the original list, so changes in
the original List are visible in the returned
List. This subList() method is
particularly useful if you want to sort, search, clear(
), or otherwise manipulate only a partial range of a larger
list.
An interface cannot specify constructors, but it is conventional that
all implementations of List provide at least two
standard constructors: one that takes no arguments and creates an
empty list, and a copy constructor that accepts an arbitrary
Collection object that specifies the initial
contents of the new List.
As with Collection, List
methods that change the contents of the list are optional, and
implementations that do not support them simply throw
java.lang.UnsupportedOperationException. Different
implementations of List may have significantly
different efficiency characteristics. For example, the get(
) and set() methods of an
ArrayList are much more efficient than those of a
LinkedList. On the other hand, the add(
) and remove() methods of a
LinkedList can be more efficient than those of an
ArrayList. See also Collection,
Set, Map,
ArrayList, and LinkedList.
[image: java.util.List<E>]

Figure 16-39. java.util.List<E>

public interface List<E> extends Collection<E> {
// Public Instance Methods
 boolean add(E o);
 void add(int index, E element);
 boolean addAll(Collection<? extends E> c);
 boolean addAll(int index, Collection<? extends E> c);
 void clear();
 boolean contains(Object o);
 boolean containsAll(Collection<?> c);
 boolean equals(Object o);
 E get(int index);
 int hashCode();
 int indexOf(Object o);
 boolean isEmpty();
 Iterator<E> iterator();
 int lastIndexOf(Object o);
 ListIterator<E> listIterator();
 ListIterator<E> listIterator(int index);
 boolean remove(Object o);
 E remove(int index);
 boolean removeAll(Collection<?> c);
 boolean retainAll(Collection<?> c);
 E set(int index, E element);
 int size();
 List<E> subList(int fromIndex, int toIndex);
 Object[] toArray();
 <T> T[] toArray(T[] a);
}

Implementations

 AbstractList, ArrayList,
LinkedList, Vector,
java.util.concurrent.CopyOnWriteArrayList

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Type Of

 Collections.EMPTY_LIST

Name
ListIterator<E>

Synopsis

 This
interface is an extension of Iterator for use with
ordered collections, or lists. It defines methods to iterate forward
and backward through a list, to determine the list index of the
elements being iterated, and, for mutable lists, to safely insert,
delete, and edit elements in the list while the iteration is in
progress. For some lists, notably LinkedList,
using an iterator to enumerate the list’s elements
may be substantially more efficient than looping through the list by
index and calling get() repeatedly.
Like the Iterator interface,
ListIterator has been made generic in Java 5.0.
The type variable E represents the type of
the elements on the list.

 hasNext()
and next() are the most commonly used methods of
ListIterator; they iterate forward through the
list. See Iterator for details. In addition to
these two methods, however, ListIterator also
defines hasPrevious() and previous(
) that allow you to iterate backward through the list.
previous() returns the previous element on the
list or throws a NoSuchElementException if there
is no previous element. hasPrevious() returns
true if a subsequent call to previous(
) returns an object. nextIndex() and
previousIndex() return the index of the object
that would be returned by a subsequent call to next(
) or previous(). If next(
) or previous() throw a
NoSuchElementException, nextIndex(
) returns the size of the list, and previousIndex(
) returns -1.

 ListIterator
defines three optionally supported methods that provide a safe way to
modify the contents of the underlying list while the iteration is in
progress. add() inserts a new object into the
list, immediately before the object that would be returned by a
subsequent call to next(). Calling add(
) does not affect the value that is returned by
next(), however. If you call previous(
) immediately after calling add(), the
method returns the object you just added. remove(
) deletes from the list the object most recently returned
by next() or previous(). You
can only call remove() once per call to
next() or previous(). If you
have called add(), you must call next(
) or previous() again before calling
remove(). set() replaces the
object most recently returned by next() or
previous() with the specified object. If you have
called add() or remove(), you
must call next() or previous(
) again before calling set(). Remember
that support for the add(), remove(
), and set() methods is optional.
Iterators for immutable lists never support them, of course. An
unsupported method throws a
java.lang.UnsupportedOperationException when
called. Also, when an iterator is in use, all modifications should be
made through the iterator rather than to the list itself. If the
underlying list is modified while an iteration is ongoing, the
ListIterator may fail to operate correctly or may
throw a ConcurrentModificationException.
[image: java.util.ListIterator<E>]

Figure 16-40. java.util.ListIterator<E>

public interface ListIterator<E> extends Iterator<E> {
// Public Instance Methods
 void add(E o);
 boolean hasNext();
 boolean hasPrevious();
 E next();
 int nextIndex();
 E previous();
 int previousIndex();
 void remove();
 void set(E o);
}

Returned By

 AbstractList.listIterator(),
AbstractSequentialList.listIterator(),
LinkedList.listIterator(),
List.listIterator(),
java.util.concurrent.CopyOnWriteArrayList.listIterator(
)

Name
ListResourceBundle

Synopsis

 This abstract class provides a simple way
to define a ResourceBundle. You may find it easier
to subclass ListResourceBundle than to subclass
ResourceBundle directly.
ListResourceBundle provides implementations for
the abstract handleGetObject() and
getKeys() methods defined by
ResourceBundle and adds its own abstract
getContents() method a subclass must override.
getContents() returns an Object[][
]—an array of arrays of objects. This array can have
any number of elements. Each element of this array must itself be an
array with two elements: the first element of each subarray should be
a String that specifies the name of a resource,
and the corresponding second element should be the value of that
resource; this value can be an Object of any
desired type. See also ResourceBundle and
PropertyResourceBundle.
[image: java.util.ListResourceBundle]

Figure 16-41. java.util.ListResourceBundle

public abstract class ListResourceBundle extends ResourceBundle {
// Public Constructors
 public ListResourceBundle();
// Public Methods Overriding ResourceBundle
 public Enumeration<String> getKeys();
 public final Object handleGetObject(String key);
// Protected Instance Methods
 protected abstract Object[][] getContents();
}

Name
Locale

Synopsis

 The Locale class
represents a locale: a political, geographical, or cultural region
that typically has a distinct language and distinct customs and
conventions for such things as formatting dates, times, and numbers.
The Locale class defines a number of constants
that represent commonly used locales. Locale also
defines a static getDefault() method that returns
the default Locale object, which represents a
locale value inherited from the host system.
getAvailableLocales() returns the list of all
locales supported by the underlying system. If none of these methods
for obtaining a Locale object are suitable, you
can explicitly create your own Locale object. To
do this, you must specify a language code and optionally a country
code and variant string. getISOCountries() and
getISOLanguages() return the list of supported
country codes and language codes.
The Locale class does not implement any
internationalization behavior itself; it merely serves as a locale
identifier for those classes that can localize their behavior. Given
a Locale object, you can invoke the various
getDisplay methods to obtain a description of the
locale suitable for display to a user. These methods may themselves
take a Locale argument, so the names of languages
and countries can be localized as appropriate.
[image: java.util.Locale]

Figure 16-42. java.util.Locale

public final class Locale implements Cloneable, Serializable {
// Public Constructors
 1.4 public Locale(String language);
 public Locale(String language, String country);
 public Locale(String language, String country, String variant);
// Public Constants
 public static final Locale CANADA;
 public static final Locale CANADA_FRENCH;
 public static final Locale CHINA;
 public static final Locale CHINESE;
 public static final Locale ENGLISH;
 public static final Locale FRANCE;
 public static final Locale FRENCH;
 public static final Locale GERMAN;
 public static final Locale GERMANY;
 public static final Locale ITALIAN;
 public static final Locale ITALY;
 public static final Locale JAPAN;
 public static final Locale JAPANESE;
 public static final Locale KOREA;
 public static final Locale KOREAN;
 public static final Locale PRC;
 public static final Locale SIMPLIFIED_CHINESE;
 public static final Locale TAIWAN;
 public static final Locale TRADITIONAL_CHINESE;
 public static final Locale UK;
 public static final Locale US;
// Public Class Methods
 1.2 public static Locale[] getAvailableLocales();
 public static Locale getDefault();
1.2 public static String[] getISOCountries();
1.2 public static String[] getISOLanguages();
 public static void setDefault(Locale newLocale); synchronized
 // Public Instance Methods
 public String getCountry();
 public final String getDisplayCountry();
 public String getDisplayCountry(Locale inLocale);
 public final String getDisplayLanguage();
 public String getDisplayLanguage(Locale inLocale);
 public final String getDisplayName();
 public String getDisplayName(Locale inLocale);
 public final String getDisplayVariant();
 public String getDisplayVariant(Locale inLocale);
 public String getISO3Country() throws MissingResourceException;
 public String getISO3Language() throws MissingResourceException;
 public String getLanguage();
 public String getVariant();
// Public Methods Overriding Object
 public Object clone();
 public boolean equals(Object obj);
 public int hashCode();
 public final String toString();
}

Passed To
Too many methods to list.

Returned By

 java.text.BreakIterator.getAvailableLocales(),
java.text.Collator.getAvailableLocales(),
java.text.DateFormat.getAvailableLocales(),
java.text.MessageFormat.getLocale(),
java.text.NumberFormat.getAvailableLocales(),
Calendar.getAvailableLocales(),
java.util.Formatter.locale(),
ResourceBundle.getLocale(),
Scanner.locale(),
javax.security.auth.callback.LanguageCallback.getLocale(
)

Name
Map<K,V>

Synopsis

 This interface
represents a collection of mappings, or associations, between key
objects and value objects. Hashtables and associative arrays are
examples of maps. In Java 5.0 this interface has been made generic.
The type variable K represents the type of
the keys held by the map and the type variable
V represents the type of the values
associated with those keys.
The set of key objects in a Map must not have any
duplicates; the collection of value objects is under no such
constraint. The key objects should usually be immutable objects, or,
if they are not, care should be taken that they do not change while
in use in a Map. As of Java 1.2, the
Map interface replaces the abstract
Dictionary class. Although a
Map is not a Collection, the
Map interface is still considered an integral
part, along with Set, List, and
others, of the Java collections framework.

 You can
add a key/value association to a Map with the
put() method. Use putAll() to
copy all mappings from one Map to another. Call
get() to look up the value object associated with
a specified key object. Use remove() to delete
the mapping between a specified key and its value, or use
clear() to delete all mappings from a
Map. size() returns the number
of mappings in a Map, and isEmpty(
) tests whether the Map contains no
mappings. containsKey() tests whether a
Map contains the specified key object, and
containsValue() tests whether it contains the
specified value. (For most implementations, containsValue(
) is a much more expensive operation than
containsKey(), however.) keySet(
) returns a Set of all key objects in
the Map. values() returns a
Collection (not a Set, since it
may contain duplicates) of all value objects in the map.
entrySet() returns a Set of
all mappings in a Map. The elements of this
returned Set are Map.Entry
objects. The collections returned by values(),
keySet(), and entrySet() are
based on the Map itself, so changes to the
Map are reflected in the collections.
An interface cannot specify constructors, but it is conventional that
all implementations of Map provide at least two
standard constructors: one that takes no arguments and creates an
empty map, and a copy constructor that accepts a
Map object that specifies the initial contents of
the new Map.
Implementations are required to support all methods that query the
contents of a Map, but support for methods that
modify the contents of a Map is optional. If an
implementation does not support a particular method, the
implementation of that method simply throws a
java.lang.UnsupportedOperationException. See also
Collection, Set,
List, HashMap,
Hashtable, WeakHashMap,
SortedMap, and TreeMap.
public interface Map<K,V> {
// Nested Types
 public interface Entry<K,V>;
// Public Instance Methods
 void clear();
 boolean containsKey(Object key);
 boolean containsValue(Object value);
 Set<Map.Entry<K,V>> entrySet();
 boolean equals(Object o);
 V get(Object key);
 int hashCode();
 boolean isEmpty();
 Set<K> keySet();
 V put(K key, V value);
 void putAll(Map<? extends K,? extends V> t);
 V remove(Object key);
 int size();
 Collection<V> values();
}

Implementations

 AbstractMap, HashMap,
Hashtable, IdentityHashMap,
LinkedHashMap, SortedMap,
WeakHashMap,
java.util.concurrent.ConcurrentMap,
java.util.jar.Attributes

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Type Of

 Collections.EMPTY_MAP,
java.util.jar.Attributes.map

Name
Map.Entry<K,V>

Synopsis

 This
interface represents a single mapping, or association, between a key
object and a value object in a Map. Like
Map itself, Map.Entry has been
made generic in Java 5.0 and defines the same type variables that
Map does.
The entrySet() method of a Map
returns a Set of Map.Entry
objects that represent the set of mappings in the map. Use the
iterator() method of that Set
to enumerate these Map.Entry objects. Use
getKey() and getValue() to
obtain the key and value objects for the entry. Use the optionally
supported setValue() method to change the value
of an entry. This method throws a
java.lang.UnsupportedOperationException if it is
not supported by the implementation.
public interface Map.Entry<K,V> {
// Public Instance Methods
 boolean equals(Object o);
 K getKey();
 V getValue();
 int hashCode();
 V setValue(V value);
}

Passed To

 LinkedHashMap.removeEldestEntry()

Name
MissingFormatArgumentException

Synopsis
An IllegalFormatException

 of
this type is thrown by a
Formatter
 when a format()
or printf()

method does not have enough arguments to match the number conversion
specifiers in the format string.
[image: java.util.MissingFormatArgumentException]

Figure 16-43. java.util.MissingFormatArgumentException

public class MissingFormatArgumentException extends IllegalFormatException {
// Public Constructors
 public MissingFormatArgumentException(String s);
// Public Instance Methods
 public String getFormatSpecifier();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
MissingFormatWidthException

Synopsis
An IllegalFormatException

 of this
type is thrown by a Formatter when a format
conversion requires a field width, but the width is omitted.
[image: java.util.MissingFormatWidthException]

Figure 16-44. java.util.MissingFormatWidthException

public class MissingFormatWidthException extends IllegalFormatException {
// Public Constructors
 public MissingFormatWidthException(String s);
// Public Instance Methods
 public String getFormatSpecifier();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
MissingResourceException

Synopsis

 Signals
that no ResourceBundle can be located for the
desired locale or that a named resource cannot be found within a
given ResourceBundle. getClassName(
) returns the name of the ResourceBundle
class in question, and getKey() returns the name
of the resource that cannot be located.
[image: java.util.MissingResourceException]

Figure 16-45. java.util.MissingResourceException

public class MissingResourceException extends RuntimeException {
// Public Constructors
 public MissingResourceException(String s, String className, String key);
// Public Instance Methods
 public String getClassName();
 public String getKey();
}

Thrown By

 Locale.{getISO3Country(),
getISO3Language()}

Name
NoSuchElementException

Synopsis

 Signals
that there are no elements in an object (such as a
Vector) or that there are no more elements in an
object (such as an Enumeration).
[image: java.util.NoSuchElementException]

Figure 16-46. java.util.NoSuchElementException

public class NoSuchElementException extends RuntimeException {
// Public Constructors
 public NoSuchElementException();
 public NoSuchElementException(String s);
}

Subclasses

 InputMismatchException

Name
Observable

Synopsis

 This
class is the superclass for classes that want to provide
notifications of state changes to interested
Observer objects. Register an
Observer to be notified by passing it to the
addObserver() method of an
Observable, and de-register it by passing it to
the deleteObserver() method. You can delete all
observers registered for an Observable with
deleteObservers(), and can find out how many
observers have been added with countObservers().
Note that there is not a method to enumerate the particular
Observer objects that have been added.
An Observable subclass should call the protected
method setChanged() when its state has changed in
some way. This sets a “state
changed” flag. After an operation or series of
operations that may have caused the state to change, the
Observable subclass should call
notifyObservers(), optionally passing an
arbitrary Object argument. If the state changed
flag is set, this notifyObservers() calls the
update() method of each registered
Observer (in some arbitrary order), passing the
Observable object, and the optional argument, if
any. Once the update() method of each
Observable has been called,
notifyObservers() calls clearChanged(
) to clear the state changed flag. If
notifyObservers() is called when the state
changed flag is not set, it does not do anything. You can use
hasChanged() to query the current state of the
changed flag.
The Observable class and
Observer interface are not commonly used. Most
applications prefer the event-based notification model defined by the
JavaBeans component framework and by the
EventObject class and
EventListener interface of this package.
public class Observable {
// Public Constructors
 public Observable();
// Public Instance Methods
 public void addObserver(Observer o); synchronized
 public int countObservers(); synchronized
 public void deleteObserver(Observer o); synchronized
 public void deleteObservers(); synchronized
 public boolean hasChanged(); synchronized
 public void notifyObservers();
 public void notifyObservers(Object arg);
// Protected Instance Methods
 protected void clearChanged(); synchronized
 protected void setChanged(); synchronized
}

Passed To

 Observer.update()

Name
Observer

Synopsis

 This interface defines the
update() method required for an object to observe
subclasses of Observable. An
Observer registers interest in an
Observable object by calling the
addObserver() method of
Observable. Observer objects
that have been registered in this way have their update(
) methods invoked by the Observable when
that object has changed.
This interface is conceptually similar to, but less commonly used
than, the EventListener interface and its various
event-specific subinterfaces.
public interface Observer {
// Public Instance Methods
 void update(Observable o, Object arg);
}

Passed To

 Observable.{addObserver(),
deleteObserver()}

Name
PriorityQueue<E>

Synopsis
This

 class is a Queue
implementation that orders its elements according to a specified
Comparator or orders Comparable
elements according to their compareTo() methods.
The head of the queue (the element removed by remove(
) and poll()) is the smallest element
on the queue according to this ordering. The
Iterator return by the iterator(
) method is not guaranteed to iterate the elements in their
sorted order.

 PriorityQueue is unbounded and prohibits
null elements. It is not threadsafe.
[image: java.util.PriorityQueue<E>]

Figure 16-47. java.util.PriorityQueue<E>

public class PriorityQueue<E> extends AbstractQueue<E> implements Serializable {
// Public Constructors
 public PriorityQueue();
 public PriorityQueue(int initialCapacity);
 public PriorityQueue(SortedSet<? extends E> c);
 public PriorityQueue(PriorityQueue<? extends E> c);
 public PriorityQueue(Collection<? extends E> c);
 public PriorityQueue(int initialCapacity, Comparator<? super E> comparator);
// Public Instance Methods
 public Comparator<? super E> comparator();
// Methods Implementing Collection
 public Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
// Methods Implementing Queue
 public boolean offer(E o);
 public E peek();
 public E poll();
// Public Methods Overriding AbstractQueue
 public boolean add(E o);
 public void clear();
}

Name
Properties

Synopsis

 This
class is an extension of Hashtable that allows
key/value pairs to be read from and written to a stream. The
Properties class implements the system properties
list, which supports user customization by allowing programs to look
up the values of named resources. Because the load(
) and store() methods provide an easy
way to read and write properties from and to a text stream, this
class provides a convenient way to implement an application
configuration file.
When you create a Properties object, you may
specify another Properties object that contains
default values. Keys (property names) and values are associated in a
Properties object with the
Hashtable method put(). Values
are looked up with getProperty(); if this method
does not find the key

 in the
current Properties object, it looks in the default
Properties object that was passed to the
constructor method. A default value can also be specified, in case
the key is not found at all. Use setProperty() to
add a property name/value pair to the Properties
object. This Java 1.2 method is preferred over the inherited
put() method because it enforces the constraint
that property names and values be strings.

 propertyNames() returns an
enumeration of all property names (keys) stored in the
Properties object and (recursively) all property
names stored in the default Properties object
associated with it. list() prints the properties
stored in a Properties object, which can be useful
for debugging. store() writes a
Properties object to a stream, writing one
property per line, in name=value format. As of Java 1.2,
store() is preferred over the deprecated
save() method, which writes properties in the
same way but suppresses any I/O exceptions that may be thrown in the
process. The second argument to both store() and
save() is a comment that is written out at the
beginning of the property file. Finally, load()
reads key/value pairs from a stream and stores them in a
Properties object. It is suitable for reading both
properties written with store() and hand-edited
properties files. In Java 5.0, storeToXML() and
loadFromXML() are alternatives that write and
read properties files using a simple XML grammar.
[image: java.util.Properties]

Figure 16-48. java.util.Properties

public class Properties extends Hashtable<Object,Object> {
// Public Constructors
 public Properties();
 public Properties(Properties defaults);
// Public Instance Methods
 public String getProperty(String key);
 public String getProperty(String key, String defaultValue);
1.1 public void list(java.io.PrintWriter out);
 public void list(java.io.PrintStream out);
 public void load(java.io.InputStream inStream)
 throws java.io.IOException; synchronized
 5.0 public void loadFromXML(java.io.InputStream in)
 throws java.io.IOException, InvalidPropertiesFormatException; synchronized
 public Enumeration<?> propertyNames();
1.2 public Object setProperty(String key, String value); synchronized
 1.2 public void store(java.io.OutputStream out, String comments)
 throws java.io.IOException; synchronized
 5.0 public void storeToXML(java.io.OutputStream os, String comment)
 throws java.io.IOException; synchronized
 5.0 public void storeToXML(java.io.OutputStream os, String comment, String encoding)
throws java.io.IOException; synchronized
 // Protected Instance Fields
 protected Properties defaults;
// Deprecated Public Methods
 # public void save(java.io.OutputStream out, String comments); synchronized
}

Subclasses

 java.security.Provider

Passed To

 System.setProperties(),
javax.xml.transform.Transformer.setOutputProperties(
)

Returned By

 System.getProperties(),
javax.xml.transform.Templates.getOutputProperties(
),
javax.xml.transform.Transformer.getOutputProperties(
)

Name
PropertyPermission

Synopsis

 This class is a
java.security.Permission that governs read and
write access to system properties with System.getProperty(
) and System.setProperty(). A
PropertyPermission object has a name, or target,
and a comma-separated list of actions. The name of the permission is
the name of the property of interest. The action string can be
“read” for getProperty(
) access, “write” for
setProperty() access, or
“read,write” for both types of
access. PropertyPermission extends
java.security.BasicPermission, so the name of the
property supports simple wildcards. The name
“*” represents any property name.
If a name ends with “.*”, it
represents any property names that share the specified prefix. For
example, the name “java.*”
represents “java.version”,
“java.vendor”,
“java.vendor.url”, and all other
properties that begin with “java”.

 Granting access to system
properties is not overtly dangerous, but caution is still necessary.
Some properties, such as
“user.home”, reveal details about
the host system that malicious code can use to mount an attack.
Programmers writing system-level code and system administrators
configuring security policies may need to use this class, but
applications never need to use it.
[image: java.util.PropertyPermission]

Figure 16-49. java.util.PropertyPermission

public final class PropertyPermission extends java.security.BasicPermission {
// Public Constructors
 public PropertyPermission(String name, String actions);
// Public Methods Overriding BasicPermission
 public boolean equals(Object obj);
 public String getActions();
 public int hashCode();
 public boolean implies(java.security.Permission p);
 public java.security.PermissionCollection newPermissionCollection();
}

Name
PropertyResourceBundle

Synopsis

 This class is a concrete subclass of
ResourceBundle. It reads a
Properties file from a specified
InputStream and implements the
ResourceBundle API for looking up named resources
from the resulting Properties object. A
Properties file contains lines of the form:
 name=value

Each such line defines a named property with the specified
String value. Although you can instantiate a
PropertyResourceBundle yourself, it is more common
to simply define a Properties file and then allow
ResourceBundle.getBundle() to look up that file
and return the necessary PropertyResourceBundle
object. See also Properties and
ResourceBundle.
[image: java.util.PropertyResourceBundle]

Figure 16-50. java.util.PropertyResourceBundle

public class PropertyResourceBundle extends ResourceBundle {
// Public Constructors
 public PropertyResourceBundle(java.io.InputStream stream) throws java.io.IOException;
// Public Methods Overriding ResourceBundle
 public Enumeration<String> getKeys();
 public Object handleGetObject(String key);
}

Name
Queue<E>

Synopsis
A Queue<E> is

 an
ordered Collection of elements of type
E. Unlike List, the
Queue interface does not permit indexed access to
its elements: elements may be inserted at the
tail of the queue and may be removed from the
head of the queue, but the elements in between
may not be accessed by their position. Unlike Set,
Queue implementations do not prohibit duplicate
elements.
Queues may be manipulated through the methods of the
Collection interface, including iteration via the
iterator() method and the
Iterator object it returns. It is more common to
manipulate queues through the more specialized methods defined by the
Queue interface, however. Place an element at the
tail of the queue with offer(). If the queue is
already full, offer() returns
false. Remove an element from the head of the
queue with remove() or poll(
). These methods differ only in the case of an empty queue:
remove() throws an unchecked
NoSuchElementException and poll(
) returns null. (Most queue
implementations prohibit null elements for this
reason, but LinkedList is an exception.) Query the
element at the head of a queue without removing it with
element() or peek(). If the
queue is empty, element() throws
NoSuchElementException and peek(
) returns null.
Most Queue implementations order their elements in
first-in, first-out (FIFO) order. Other implementations may provide
other orderings. A queue Iterator is not required
to traverse the queue’s elements in order. A
Queue implementation with a fixed size is a
bounded queue. When a bounded queue is full, it
is not possible to insert a new element until an element is first
removed. Unlike the List and
Set interfaces, the Queue
interface does not require implementations to override the
equals() method, and Queue
implementations typically do not override it.
In Java 5.0, the LinkedList class has been
retrofitted to implement Queue as well as
List. PriorityQueue is a
Queue implementation that orders elements based on
the Comparable or Comparator
interfaces. AbstractQueue is an abstract
implementation that offers partial support for simple
Queue implementations. The
java.util.concurrent package defines a
BlockingQueue interface that extends this
implementation and includes Queue and
BlockingQueue implementations that are useful in
multithreaded programming.
[image: java.util.Queue<E>]

Figure 16-51. java.util.Queue<E>

public interface Queue<E> extends Collection<E> {
// Public Instance Methods
 E element();
 boolean offer(E o);
 E peek();
 E poll();
 E remove();
}

Implementations

 AbstractQueue, LinkedList,
java.util.concurrent.BlockingQueue,
java.util.concurrent.ConcurrentLinkedQueue

Name
Random

Synopsis

 This class implements a pseudorandom number
generator suitable for games and similar applications. If you need a
cryptographic-strength source of pseudorandomness, see
java.security.SecureRandom. nextDouble(
) and nextFloat() return a value
between 0.0 and 1.0. nextLong() and the
no-argument version of nextInt() return
long and int values distributed
across the range of those data types. As of Java 1.2, if you pass an
argument to nextInt(), it returns a value between
zero (inclusive) and the specified number (exclusive).
nextGaussian() returns pseudorandom
floating-point values with a Gaussian distribution; the mean of the
values is 0.0 and the standard deviation is 1.0.
nextBoolean() returns a pseudorandom
boolean value, and nextBytes()
fills in the specified byte array with
pseudorandom bytes. You can use the setSeed()
method or the optional constructor argument to initialize the
pseudorandom number generator with some variable seed value other
than the current time (the default) or with a constant to ensure a
repeatable sequence of pseudorandomness.
[image: java.util.Random]

Figure 16-52. java.util.Random

public class Random implements Serializable {
// Public Constructors
 public Random();
 public Random(long seed);
// Public Instance Methods
 1.2 public boolean nextBoolean();
1.1 public void nextBytes(byte[] bytes);
 public double nextDouble();
 public float nextFloat();
 public double nextGaussian(); synchronized
 public int nextInt();
1.2 public int nextInt(int n);
 public long nextLong();
 public void setSeed(long seed); synchronized
 // Protected Instance Methods
 1.1 protected int next(int bits);
}

Subclasses

 java.security.SecureRandom

Passed To

 java.math.BigInteger.{BigInteger(),
probablePrime()}, Collections.shuffle(
)

Name
RandomAccess

Synopsis
This marker interface is implemented by
List implementations to advertise that they
provide efficient (usually constant time) random access to all list
elements. ArrayList and Vector
implement this interface, but LinkedList does not.
Classes that manipulate generic List objects may
want to test for this interface with instanceof
and use different algorithms for lists that provide efficient random
access than they use for lists that are most efficiently accessed
sequentially.
public interface RandomAccess {
}

Implementations

 ArrayList, Vector,
java.util.concurrent.CopyOnWriteArrayList

Name
ResourceBundle

Synopsis

 This
abstract class allows subclasses to define sets of localized
resources that can then be dynamically loaded as needed by
internationalized programs. Such resources may include user-visible
text and images that appear in an application, as well as more
complex things such as Menu objects. Use
getBundle() to load a
ResourceBundle subclass that is appropriate for
the default or specified locale. Use getObject(),
getString(), and getStringArray(
) to look up a named resource in a bundle. To define a
bundle, provide implementations of handleGetObject(
) and getKeys(). It is often easier,
however, to subclass ListResourceBundle or provide
a Properties file that is used by
PropertyResourceBundle. The name of any localized
ResourceBundle class you define should include the
locale language code, and, optionally, the locale country code.
public abstract class ResourceBundle {
// Public Constructors
 public ResourceBundle();
// Public Class Methods
 public static final ResourceBundle getBundle(String baseName);
 public static final ResourceBundle getBundle(String baseName, Locale locale);
1.2 public static ResourceBundle getBundle(String baseName, Locale locale, ClassLoader loader);
// Public Instance Methods
 public abstract Enumeration<String> getKeys();
1.2 public Locale getLocale();
 public final Object getObject(String key);
 public final String getString(String key);
 public final String[] getStringArray(String key);
// Protected Instance Methods
 protected abstract Object handleGetObject(String key);
 protected void setParent(ResourceBundle parent);
// Protected Instance Fields
 protected ResourceBundle parent;
}

Subclasses

 ListResourceBundle,
PropertyResourceBundle

Passed To

 java.util.logging.LogRecord.setResourceBundle()

Returned By

 java.util.logging.Logger.getResourceBundle(),
java.util.logging.LogRecord.getResourceBundle()

Name
Scanner

Synopsis
This
 class is
a text scanner or tokenizer. It can read input from any
Readable object, and convenience constructors can
read text from a specified string, file, byte stream, or byte
channel. The constructors for files, byte streams, and byte channels
optionally allow you to specify the name of the charset to use for
byte-to-character conversions.
After creating a Scanner, you can configure it.
useDelimiter() specifies a regular expression (as
a java.util.regex.Pattern or a
String) that represents the token delimiter. The
default delimiter is any run of whitespace. useLocale(
) specifies the Locale to use for
scanning numbers: this may affect things like the character expected
for decimal points and the thousands separator. useRadix(
) specifies the radix, or base, in which numbers should be
parsed. Any value between 2 and 36 is allowed. These configuration
methods may be called at any time and are not required to be called
before scanning begins.

 Scanner implements the
Iterable<String> interface, and you can use
the hasNext() and next()
methods of this interface to break the input into a series of
String tokens separated by whitespace or by the
delimiter specified with useDelimiter(). In
addition to these Iterable methods, however,
Scanner defines a number of
next
 X and
hasNext
 X methods for
various numeric types X.
nextLine() returns the next line of input. Two
variants of the next() method accept a regular
expression as an argument and return the next chunk of text matching
a specified regular expression. The corresponding hasNext(
) methods accept a regular expression and return
true if the input matches it.
The skip() method ignores delimiters and skips
text matching the specified regular expression. findInLine(
) looks ahead for text matching the specified regular
expression in the current line. If a match is found, the
Scanner advances past that text and returns it.
Otherwise, the Scanner returns
null without advancing.
findWithinHorizon() is similar but looks for a
match within the specified number of characters (a horizon of 0
specifies an unlimited number).
The next() methods and its
next
 X variants throw a
NoSuchElementException if there is no more input
text. They throw an InputMismatchException (a
subclass of NoSuchElementException) if the next
token cannot be parsed as the specified type or does not match the
specified pattern. The Readable object that the
Scanner reads text from may throw a
java.io.IOException, but, for ease of use, the
Scanner never propagates this exception. If an
IOException occurs, the Scanner
assumes that no more input is available from the
Readable. Call ioException()
to obtain the most recent IOException, if any,
thrown by the Readable.
The close() method checks whether the
Readable object implements the
Closeable interface and, if so, calls the
close() method on that object. Once
close() has been called, any attempt to read
tokens from the Scanner results in an
IllegalStateException.
See also StringTokenizer and
java.io.StreamTokenizer.
[image: java.util.Scanner]

Figure 16-53. java.util.Scanner

public final class Scanner implements Iterator<String> {
// Public Constructors
 public Scanner(Readable source);
 public Scanner(java.nio.channels.ReadableByteChannel source);
 public Scanner(java.io.InputStream source);
 public Scanner(java.io.File source) throws java.io.FileNotFoundException;
 public Scanner(String source);
 public Scanner(java.nio.channels.ReadableByteChannel source, String charsetName);
 public Scanner(java.io.InputStream source, String charsetName);
 public Scanner(java.io.File source, String charsetName)
 throws java.io.FileNotFoundException;
// Public Instance Methods
 public void close();
 public java.util.regex.Pattern delimiter();
 public String findInLine(String pattern);
 public String findInLine(java.util.regex.Pattern pattern);
 public String findWithinHorizon(java.util.regex.Pattern pattern, int horizon);
 public String findWithinHorizon(String pattern, int horizon);
 public boolean hasNext(java.util.regex.Pattern pattern);
 public boolean hasNext(String pattern);
 public boolean hasNextBigDecimal();
 public boolean hasNextBigInteger();
 public boolean hasNextBigInteger(int radix);
 public boolean hasNextBoolean();
 public boolean hasNextByte();
 public boolean hasNextByte(int radix);
 public boolean hasNextDouble();
 public boolean hasNextFloat();
 public boolean hasNextInt();
 public boolean hasNextInt(int radix);
 public boolean hasNextLine();
 public boolean hasNextLong();
 public boolean hasNextLong(int radix);
 public boolean hasNextShort();
 public boolean hasNextShort(int radix);
 public java.io.IOException ioException();
 public Locale locale();
 public java.util.regex.MatchResult match();
 public String next(String pattern);
 public String next(java.util.regex.Pattern pattern);
 public java.math.BigDecimal nextBigDecimal();
 public java.math.BigInteger nextBigInteger();
 public java.math.BigInteger nextBigInteger(int radix);
 public boolean nextBoolean();
 public byte nextByte();
 public byte nextByte(int radix);
 public double nextDouble();
 public float nextFloat();
 public int nextInt();
 public int nextInt(int radix);
 public String nextLine();
 public long nextLong();
 public long nextLong(int radix);
 public short nextShort();
 public short nextShort(int radix);
 public int radix();
 public Scanner skip(java.util.regex.Pattern pattern);
 public Scanner skip(String pattern);
 public Scanner useDelimiter(java.util.regex.Pattern pattern);
 public Scanner useDelimiter(String pattern);
 public Scanner useLocale(Locale locale);
 public Scanner useRadix(int radix);
// Methods Implementing Iterator
 public boolean hasNext();
 public String next();
 public void remove();
// Public Methods Overriding Object
 public String toString();
}

Name
Set<E>

Synopsis

 This interface represents an unordered
Collection of objects that contains no duplicate
elements. That is, a Set cannot contain two
elements e1 and e2 where
e1.equals(e2), and it can contain at most one
null element. The Set interface
defines the same methods as its superinterface,
Collection. It constrains the add(
) and addAll() methods from adding
duplicate elements to the Set. In Java 5.0
Set is a generic interface and the type variable
E represents the type of the objects in
the set.
An interface cannot specify constructors, but it is conventional that
all implementations of Set provide at least two
standard constructors: one that takes no arguments and creates an
empty set, and a copy constructor that accepts a
Collection object that specifies the initial
contents of the new Set. This copy constructor
must ensure that duplicate elements are not added to the
Set, of course.
As with Collection, the Set
methods that modify the contents of the set are optional, and
implementations that do not support the methods throw
java.lang.UnsupportedOperationException. See also
Collection, List,
Map, SortedSet,
HashSet, and TreeSet.
[image: java.util.Set<E>]

Figure 16-54. java.util.Set<E>

public interface Set<E> extends Collection<E> {
// Public Instance Methods
 boolean add(E o);
 boolean addAll(Collection<? extends E> c);
 void clear();
 boolean contains(Object o);
 boolean containsAll(Collection<?> c);
 boolean equals(Object o);
 int hashCode();
 boolean isEmpty();
 Iterator<E> iterator();
 boolean remove(Object o);
 boolean removeAll(Collection<?> c);
 boolean retainAll(Collection<?> c);
 int size();
 Object[] toArray();
 <T> T[] toArray(T[] a);
}

Implementations

 AbstractSet, HashSet,
LinkedHashSet, SortedSet

Passed To

 java.security.cert.PKIXBuilderParameters.PKIXBuilderParameters(
),
java.security.cert.PKIXParameters.{PKIXParameters(
), setInitialPolicies(),
setTrustAnchors()},
java.security.cert.X509CertSelector.{setExtendedKeyUsage(
), setPolicy()},
java.text.AttributedCharacterIterator.{getRunLimit(
), getRunStart()},
Collections.{checkedSet(),
synchronizedSet(), unmodifiableSet(
)}, javax.security.auth.Subject.Subject(
)

Returned By
Too many methods to list.

Type Of

 Collections.EMPTY_SET

Name
SimpleTimeZone

Synopsis

 This concrete subclass of
TimeZone is a simple implementation of that
abstract class that is suitable for use in locales that use the
Gregorian calendar. Programs do not normally need to instantiate this
class directly; instead, they use one of the static factory methods
of TimeZone to obtain a suitable
TimeZone subclass. The only reason to instantiate
this class directly is if you need to support a time zone with
nonstandard daylight-savings-time rules. In that case, you can call
setStartRule() and setEndRule(
) to specify the starting and ending dates of
daylight-savings time for the time zone.
[image: java.util.SimpleTimeZone]

Figure 16-55. java.util.SimpleTimeZone

public class SimpleTimeZone extends TimeZone {
// Public Constructors
 public SimpleTimeZone(int rawOffset, String ID);
 public SimpleTimeZone(int rawOffset, String ID, int startMonth, int startDay,
 int startDayOfWeek, int startTime,
 int endMonth, int endDay,
 int endDayOfWeek, int endTime);
1.2 public SimpleTimeZone(int rawOffset, String ID, int startMonth, int startDay,
 int startDayOfWeek, int startTime,
 int endMonth, int endDay, int endDayOfWeek,
 int endTime, int dstSavings);
1.4 public SimpleTimeZone(int rawOffset, String ID, int startMonth, int startDay,
 int startDayOfWeek, int startTime,
 int startTimeMode, int endMonth,
 int endDay, int endDayOfWeek, int endTime,
 int endTimeMode, int dstSavings);
// Public Constants
 1.4 public static final int STANDARD_TIME; =1
 1.4 public static final int UTC_TIME; =2
 1.4 public static final int WALL_TIME; =0
 // Public Instance Methods
 1.2 public void setDSTSavings(int millisSavedDuringDST);
1.2 public void setEndRule(int endMonth, int endDay, int endTime);
 public void setEndRule(int endMonth, int endDay, int endDayOfWeek, int endTime);
1.2 public void setEndRule(int endMonth, int endDay, int endDayOfWeek, int endTime,
 boolean after);
1.2 public void setStartRule(int startMonth, int startDay, int startTime);
 public void setStartRule(int startMonth, int startDay, int startDayOfWeek, int startTime);
1.2 public void setStartRule(int startMonth, int startDay, int startDayOfWeek, int startTime,
 boolean after);
 public void setStartYear(int year);
// Public Methods Overriding TimeZone
 public Object clone();
1.2 public int getDSTSavings();
1.4 public int getOffset(long date);
 public int getOffset(int era, int year, int month, int day, int dayOfWeek, int millis);
 public int getRawOffset();
1.2 public boolean hasSameRules(TimeZone other);
 public boolean inDaylightTime(Date date);
 public void setRawOffset(int offsetMillis);
 public boolean useDaylightTime();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode(); synchronized
 public String toString();
}

Name
SortedMap<K,V>

Synopsis

 This interface represents a
Map object that keeps its set of key objects in
sorted order. As with Map, it is conventional that
all implementations of this interface define a no-argument
constructor to create an empty map and a copy constructor that
accepts a Map object that specifies the initial
contents of the SortedMap. Furthermore, when
creating a SortedMap, there should be a way to
specify a Comparator object to sort the key
objects of the map. If no Comparator is specified,
all key objects must implement the
java.lang.Comparable interface so they can be
sorted in their natural order. See also Map,
TreeMap, and SortedSet.

 The inherited keySet(
), values(), and entrySet(
) methods return collections that can be iterated in the
sorted order. firstKey() and lastKey(
) return the lowest and highest key values in the
SortedMap. subMap() returns a
SortedMap that contains only mappings for keys
from (and including) the first specified key up to (but not
including) the second specified key. headMap()
returns a SortedMap that contains mappings whose
keys are less than (but not equal to) the specified key.
tailMap() returns a SortedMap
that contains mappings whose keys are greater than or equal to the
specified key. subMap(), headMap(
), and tailMap() return
SortedMap objects that are simply views of the
original SortedMap; any changes in the original
map are reflected in the returned map and vice versa.
[image: java.util.SortedMap<K,V>]

Figure 16-56. java.util.SortedMap<K,V>

public interface SortedMap<K,V> extends Map<K,V> {
// Public Instance Methods
 Comparator<? super K> comparator();
 K firstKey();
 SortedMap<K,V> headMap(K toKey);
 K lastKey();
 SortedMap<K,V> subMap(K fromKey, K toKey);
 SortedMap<K,V> tailMap(K fromKey);
}

Implementations

 TreeMap

Passed To

 Collections.{checkedSortedMap(),
synchronizedSortedMap(),
unmodifiableSortedMap()},
TreeMap.TreeMap()

Returned By

 java.nio.charset.Charset.availableCharsets(),
Collections.{checkedSortedMap(),
synchronizedSortedMap(),
unmodifiableSortedMap()},
TreeMap.{headMap(), subMap(),
tailMap()},
java.util.jar.Pack200.Packer.properties(),
java.util.jar.Pack200.Unpacker.properties()

Name
SortedSet<E>

Synopsis

 This interface is a Set
that sorts its elements and guarantees that its iterator(
) method returns an Iterator that
enumerates the elements of the set in sorted order. As with the
Set interface, it is conventional for all
implementations of SortedSet to provide a
no-argument constructor that creates an empty set and a copy
constructor that expects a Collection object
specifying the initial (unsorted) contents of the set. Furthermore,
when creating a SortedSet, there should be a way
to specify a Comparator object that compares and
sorts the elements of the set. If no Comparator is
specified, the elements of the set must all implement
java.lang.Comparable so they can be sorted in
their natural order. See also Set,
TreeSet, and SortedMap.

 SortedSet defines
a few methods in addition to those it inherits from the
Set interface. first() and
last() return the lowest and highest objects in
the set. headSet() returns all elements from the
beginning of the set up to (but not including) the specified element.
tailSet() returns all elements between (and
including) the specified element and the end of the set.
subSet() returns all elements of the set from
(and including) the first specified element up to (but excluding) the
second specified element. Note that all three methods return a
SortedSet that is implemented as a view onto the
original SortedSet. Changes in the original set
are visible through the returned set and vice versa.
[image: java.util.SortedSet<E>]

Figure 16-57. java.util.SortedSet<E>

public interface SortedSet<E> extends Set<E> {
// Public Instance Methods
 Comparator<? super E> comparator();
 E first();
 SortedSet<E> headSet(E toElement);
 E last();
 SortedSet<E> subSet(E fromElement, E toElement);
 SortedSet<E> tailSet(E fromElement);
}

Implementations

 TreeSet

Passed To

 Collections.{checkedSortedSet(),
synchronizedSortedSet(),
unmodifiableSortedSet()},
PriorityQueue.PriorityQueue(),
TreeSet.TreeSet()

Returned By

 Collections.{checkedSortedSet(),
synchronizedSortedSet(),
unmodifiableSortedSet()},
TreeSet.{headSet(), subSet(),
tailSet()}

Name
Stack<E>

Synopsis

 This class implements
a last-in-first-out (LIFO) stack of objects. push(
) puts an object on the top of the stack. pop(
) removes and returns the top object from the stack.
peek() returns the top object without removing
it. In Java 1.2, you can instead use a LinkedList
as a stack.
[image: java.util.Stack<E>]

Figure 16-58. java.util.Stack<E>

public class Stack<E> extends Vector<E> {
// Public Constructors
 public Stack();
// Public Instance Methods
 public boolean empty();
 public E peek(); synchronized
 public E pop(); synchronized
 public E push(E item);
 public int search(Object o); synchronized
}

Name
StringTokenizer

Synopsis

 When
a StringTokenizer is instantiated with a
String, it breaks the string up into tokens
separated by any of the characters in the specified string of
delimiters. (For example, words separated by space and tab characters
are tokens.) The hasMoreTokens() and
nextToken() methods obtain the tokens in order.
countTokens() returns the number of tokens in the
string. StringTokenizer implements the
Enumeration interface, so you may also access the
tokens with the familiar hasMoreElements() and
nextElement() methods. When you create a
StringTokenizer, you can specify a string of
delimiter characters to use for the entire string, or you can rely on
the default whitespace delimiters. You can also specify whether the
delimiters themselves should be returned as tokens. Finally, you can
optionally specify a new string of delimiter characters when you call
nextToken().
[image: java.util.StringTokenizer]

Figure 16-59. java.util.StringTokenizer

public class StringTokenizer implements Enumeration<Object> {
// Public Constructors
 public StringTokenizer(String str);
 public StringTokenizer(String str, String delim);
 public StringTokenizer(String str, String delim, boolean returnDelims);
// Public Instance Methods
 public int countTokens();
 public boolean hasMoreTokens();
 public String nextToken();
 public String nextToken(String delim);
// Methods Implementing Enumeration
 public boolean hasMoreElements();
 public Object nextElement();
}

Name
Timer

Synopsis

 This class
implements a timer: its methods allow you to schedule one or more
runnable TimerTask objects to be executed (once or
repetitively) by a background thread at a specified time in the
future. You can create a timer with the Timer()
constructor. The no-argument version of this constructor creates a
regular non-daemon background thread, which means that the Java VM
will not terminate while the timer thread is running. Pass
true to the constructor if you want the background
thread to be a daemon thread. In Java 5.0 you can also specify the
name of the background thread when creating a
Timer.

 Once you have created a
Timer, you can schedule
TimerTask objects to be run in the future with the
various schedule() and
scheduleAtFixedRate() methods. To schedule a task
for a single execution, use one of the two-argument
schedule() methods and specify the desired
execution time either as a number of milliseconds in the future or as
an absolute Date. If the number of milliseconds is
0, or if the Date object
represents a time already passed, the task is scheduled for immediate
execution.
To schedule a repeating task, use one of the three-argument versions
of schedule() or scheduleAtFixedRate(
). These methods are passed an argument that specifies the
time (either as a number of milliseconds or as a
Date object) of the first execution of the task
and another argument, period, that
specifies the number of milliseconds between repeated executions of
the task. The schedule() methods schedule the
task for fixed-interval execution. That is, each
execution is scheduled for period
milliseconds after the previous execution ends.
Use schedule() for tasks such as animation, where
it is important to have a relatively constant interval between
executions. The scheduleAtFixedRate() methods, on
the other hand, schedule tasks for fixed-rate
execution. That is, each repetition of the task is scheduled for
period milliseconds after the previous
execution begins. Use
scheduleAtFixedRate() for tasks, such as updating
a clock display, that must occur at specific absolute times rather
than at fixed intervals.
A single Timer object can comfortably schedule
many TimerTask objects. Note, however, that all
tasks scheduled by a single Timer share a single
thread. If you are scheduling many rapidly repeating tasks, or if
some tasks take a long time to execute, other tasks may have their
scheduled executions delayed.

 When you are done with a
Timer, call cancel() to stop
its associated thread from running. This is particularly important
when you are using a timer whose associated thread is not a daemon
thread, because otherwise the timer thread can prevent the Java VM
from exiting. To cancel the execution of a particular task, use the
cancel() method of TimerTask.
public class Timer {
// Public Constructors
 public Timer();
 public Timer(boolean isDaemon);
5.0 public Timer(String name);
5.0 public Timer(String name, boolean isDaemon);
// Public Instance Methods
 public void cancel();
5.0 public int purge();
 public void schedule(TimerTask task, long delay);
 public void schedule(TimerTask task, Date time);
 public void schedule(TimerTask task, long delay, long period);
 public void schedule(TimerTask task, Date firstTime, long period);
 public void scheduleAtFixedRate(TimerTask task, long delay, long period);
 public void scheduleAtFixedRate(TimerTask task, Date firstTime, long period);
}

Name
TimerTask

Synopsis

 This
abstract Runnable class represents a task that is
scheduled with a Timer object for one-time or
repeated execution in the future. You can define a task by
subclassing TimerTask and implementing the
abstract run() method. Schedule the task for
future execution by passing an instance of your subclass to one of
the schedule() or scheduleAtFixedRate(
) methods of Timer. The
Timer object will then invoke the run(
) method at the scheduled time or times.

 Call cancel()
to cancel the one-time or repeated execution of a TimerTask(
). This method returns true if a pending
execution was actually canceled. It returns false
if the task has already been canceled, was never scheduled, or was
scheduled for one-time execution and has already been executed.
scheduledExecutionTime() returns the time in
milliseconds at which the most recent execution of the
TimerTask was scheduled to occur. When the host
system is heavily loaded, the run() method may
not be invoked exactly when scheduled. Some tasks may choose to do
nothing if they are not invoked on time. The run(
) method can compare the return values of
scheduledExecutionTime() and
System.currentTimeMillis() to determine whether
the current invocation is sufficiently timely.
[image: java.util.TimerTask]

Figure 16-60. java.util.TimerTask

public abstract class TimerTask implements Runnable {
// Protected Constructors
 protected TimerTask();
// Public Instance Methods
 public boolean cancel();
 public long scheduledExecutionTime();
// Methods Implementing Runnable
 public abstract void run();
}

Passed To

 Timer.{schedule(), scheduleAtFixedRate(
)}

Name
TimeZone

Synopsis

 The TimeZone class
represents a time zone; it is used with the
Calendar and DateFormat
classes. As an abstract class, TimeZone cannot be
directly instantiated. Instead, you should call the static
getDefault() method to obtain a
TimeZone object that represents the time zone
inherited from the host operating system. Or you can call the static
getTimeZone() method with the name of the desired
zone. You can obtain a list of the supported time-zone names by
calling the static getAvailableIDs() method.

 Once you have a
TimeZone object, you can call
inDaylightTime() to determine whether, for a
given Date, daylight-savings time is in effect for
that time zone. Call getID() to obtain the name
of the time zone. Call getOffset() for a given
date to determine the number of milliseconds to add to GMT to convert
to the time zone.
[image: java.util.TimeZone]

Figure 16-61. java.util.TimeZone

public abstract class TimeZone implements Cloneable, Serializable {
// Public Constructors
 public TimeZone();
// Public Constants
 1.2 public static final int LONG; =1
 1.2 public static final int SHORT; =0
 // Public Class Methods
 public static String[] getAvailableIDs(); synchronized
 public static String[] getAvailableIDs(int rawOffset); synchronized
 public static TimeZone getDefault(); synchronized
 public static TimeZone getTimeZone(String ID); synchronized
 public static void setDefault(TimeZone zone); synchronized
 // Public Instance Methods
 1.2 public final String getDisplayName();
1.2 public final String getDisplayName(Locale locale);
1.2 public final String getDisplayName(boolean daylight, int style);
1.2 public String getDisplayName(boolean daylight, int style, Locale locale);
1.4 public int getDSTSavings();
 public String getID();
1.4 public int getOffset(long date);
 public abstract int getOffset(int era, int year, int month, int day,
 int dayOfWeek, int milliseconds);
 public abstract int getRawOffset();
1.2 public boolean hasSameRules(TimeZone other);
 public abstract boolean inDaylightTime(Date date);
 public void setID(String ID);
 public abstract void setRawOffset(int offsetMillis);
 public abstract boolean useDaylightTime();
// Public Methods Overriding Object
 public Object clone();
}

Subclasses

 SimpleTimeZone

Passed To

 java.text.DateFormat.setTimeZone(),
Calendar.{Calendar(), getInstance(
), setTimeZone()},
GregorianCalendar.{GregorianCalendar(),
setTimeZone()},
SimpleTimeZone.hasSameRules(),
javax.xml.datatype.XMLGregorianCalendar.toGregorianCalendar(
)

Returned By

 java.text.DateFormat.getTimeZone(),
Calendar.getTimeZone(),
GregorianCalendar.getTimeZone(),
javax.xml.datatype.XMLGregorianCalendar.getTimeZone(
)

Name
TooManyListenersException

Synopsis

 Signals
that an AWT component, JavaBeans component, or Swing component can
have only one EventListener object registered for
some specific type of event. That is, it signals that a particular
event is a unicast event rather than a multicast event. This
exception type serves a formal purpose in the Java event model; its
presence in the throws clause of an
EventListener registration method (even if the
method never actually throws the exception) signals that an event is
a unicast event.
[image: java.util.TooManyListenersException]

Figure 16-62. java.util.TooManyListenersException

public class TooManyListenersException extends Exception {
// Public Constructors
 public TooManyListenersException();
 public TooManyListenersException(String s);
}

Name
TreeMap<K,V>

Synopsis

 This class
implements the SortedMap interface using an
internal Red-Black tree data structure and guarantees that the keys
and values of the mapping can be enumerated in ascending order of
keys. TreeMap supports all optional
Map methods. The objects used as keys in a
TreeMap must all be mutually
Comparable, or an appropriate
Comparator must be provided when the
TreeMap is created. Because
TreeMap is based on a binary tree data structure,
the get(), put(),
remove(), and containsKey()
methods operate in relatively efficient logarithmic time. If you do
not need the sorting capability of TreeMap,
however, use HashMap instead, as it is even more
efficient. See Map and
SortedMap for details on the methods of
TreeMap. See also the related
TreeSet class.

 In order for a
TreeMap to work correctly, the comparison method
from the Comparable or
Comparator interface must be consistent with the
equals() method. That is, the equals(
) method must compare two objects as equal if and only if
the comparison method also indicates those two objects are equal.
The methods of TreeMap are not
synchronized. If you are working in a
multithreaded environment, you must explicitly synchronize all code
that modifies the TreeMap, or obtain a
synchronized wrapper with Collections.synchronizedMap(
).
[image: java.util.TreeMap<K,V>]

Figure 16-63. java.util.TreeMap<K,V>

public class TreeMap<K,V> extends AbstractMap<K,V> implements SortedMap<K,V>,
 Cloneable, Serializable {
// Public Constructors
 public TreeMap();
 public TreeMap(Comparator<? super K> c);
 public TreeMap(SortedMap<K,? extends V> m);
 public TreeMap(Map<? extends K,? extends V> m);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public Set<Map.Entry<K,V>> entrySet();
 public V get(Object key);
 public Set<K> keySet();
 public V put(K key, V value);
 public void putAll(Map<? extends K,? extends V> map);
 public V remove(Object key);
 public int size();
 public Collection<V> values();
// Methods Implementing SortedMap
 public Comparator<? super K> comparator();
 public K firstKey();
 public SortedMap<K,V> headMap(K toKey);
 public K lastKey();
 public SortedMap<K,V> subMap(K fromKey, K toKey);
 public SortedMap<K,V> tailMap(K fromKey);
// Public Methods Overriding AbstractMap
 public Object clone();
}

Name
TreeSet<E>

Synopsis

 This class
implements SortedSet, provides support for all
optional methods, and guarantees that the elements of the set can be
enumerated in ascending order. In order to be sorted, the elements of
the set must all be mutually Comparable objects,
or they must all be compatible with a Comparator
object that is specified when the TreeSet is
created. TreeSet is implemented on top of a
TreeMap, so its add(),
remove(), and contains()
methods all operate in relatively efficient logarithmic time. If you
do not need the sorting capability of TreeSet,
however, use HashSet instead, as it is
significantly more efficient. See Set,
SortedSet, and Collection for
details on the methods of TreeSet.

 In order for a
TreeSet to operate correctly, the
Comparable or Comparator
comparison method must be consistent with the equals(
) method. That is, the equals() method
must compare two objects as equal if and only if the comparison
method also indicates those two objects are equal.

 The methods of
TreeSet are not synchronized.
If you are working in a multithreaded environment, you must
explicitly synchronize code that modifies the contents of the set, or
obtain a synchronized wrapper with
Collections.synchronizedSet().
[image: java.util.TreeSet<E>]

Figure 16-64. java.util.TreeSet<E>

public class TreeSet<E> extends AbstractSet<E> implements SortedSet<E>, Cloneable,
 Serializable {
// Public Constructors
 public TreeSet();
 public TreeSet(Comparator<? super E> c);
 public TreeSet(SortedSet<E> s);
 public TreeSet(Collection<? extends E> c);
// Methods Implementing Set
 public boolean add(E o);
 public boolean addAll(Collection<? extends E> c);
 public void clear();
 public boolean contains(Object o);
 public boolean isEmpty(); default:true
 public Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
// Methods Implementing SortedSet
 public Comparator<? super E> comparator();
 public E first();
 public SortedSet<E> headSet(E toElement);
 public E last();
 public SortedSet<E> subSet(E fromElement, E toElement);
 public SortedSet<E> tailSet(E fromElement);
// Public Methods Overriding Object
 public Object clone();
}

Name
UnknownFormatConversionException

Synopsis
An IllegalFormatException of this type is thrown
by a Formatter

when an unknown conversion specifier is included in a format string.
[image: java.util.UnknownFormatConversionException]

Figure 16-65. java.util.UnknownFormatConversionException

public class UnknownFormatConversionException extends IllegalFormatException {
// Public Constructors
 public UnknownFormatConversionException(String s);
// Public Instance Methods
 public String getConversion();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
UnknownFormatFlagsException

Synopsis
An IllegalFormatException of

 this type is thrown by a
Formatter when unknown flags are specified in a
format string.
[image: java.util.UnknownFormatFlagsException]

Figure 16-66. java.util.UnknownFormatFlagsException

public class UnknownFormatFlagsException extends IllegalFormatException {
// Public Constructors
 public UnknownFormatFlagsException(String f);
// Public Instance Methods
 public String getFlags();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
UUID

Synopsis
This class is an immutable representation of 128-bit

 Universal Unique
Identifier, or UUID, which serves as an identifier that is (with very
high probability) globally unique. Create a UUID based on random bits
with the randomUUID() factory method. Create a
UUID based on the MD5 hash code of an array of bytes with the
nameUUIDFromBytes() factory method. Or create a
UUID by parsing a string with the fromString()
factory method. The standard string format of a UUID is 32
hexadecimal digits, broken into five hyphen-separated groups of 8, 4,
4, 4, and 12 digits. For example:
7cbf3e1a-d521-40ac-87f1-e28b17530f60
Both lowercase and uppercase hex digits are allowed. The
toString() method converts a UUID object to a
string using this standard format. You can also create a UUID object
by explicitly passing the 128 bits in the form of two
long values to the UUID()
constructor, but this option should be used only if you are
intimately familiar with the relevant UUID standards.
The toString() and equals()
methods define the most common operations on a UUID. The
UUID class implements the
Comparable interface and defines an ordering for
UUID objects. Note, however, that the ordering
does not represent any meaningful property, such as generation order,
of the underlying bits.
Various accessor methods provide details about the bits of a
UUID, but these details are rarely useful.
getLeastSignificantBits() and
getMostSignificantBits() return the bits of a
UUID as two long values. version(
) and variant() return the version and
variant of the UUID, which specify the type (random, name-based,
time-based) and bit layout of the UUID. timestamp(
), clockSequence(), and node(
) return values only for time-based UUIDs that have a
version() of 1. Note that the
UUID class does not provide a factory method for
creating a time-based UUID.
[image: java.util.UUID]

Figure 16-67. java.util.UUID

public final class UUID implements Serializable, Comparable<UUID> {
// Public Constructors
 public UUID(long mostSigBits, long leastSigBits);
// Public Class Methods
 public static UUID fromString(String name);
 public static UUID nameUUIDFromBytes(byte[] name);
 public static UUID randomUUID();
// Public Instance Methods
 public int clockSequence();
 public long getLeastSignificantBits();
 public long getMostSignificantBits();
 public long node();
 public long timestamp();
 public int variant();
 public int version();
// Methods Implementing Comparable
 public int compareTo(UUID val);
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Name
Vector<E>

Synopsis

 This class
implements an ordered collection—essentially an array—of
objects that can grow or shrink as necessary. In Java 1.2,
Vector has been modified to implement the
List interface. Unless the
synchronized methods of the
Vector class are actually needed,
ArrayList is preferred in Java 1.2 and later. In
Java 5.0 this class has been made generic. The type variable
E represents the type of the elements of
the vector.

 Vector is useful when you need to keep track of a
number of objects, but do not know in advance how many there will be.
Use setElementAt() to set the object at a given
index of a Vector. Use elementAt(
) to retrieve the object stored at a specified index. Call
add() to append an object to the end of the
Vector or to insert an object at any specified
position. Use removeElementAt() to delete the
element at a specified index or removeElement()
to remove a specified object from the vector. size(
) returns the number of objects currently in the
Vector. elements() returns an
Enumeration that allows you to iterate through
those objects. capacity() is not the same as
size(); it returns the maximum number of objects
a Vector can hold before its internal storage must
be resized. Vector automatically resizes its
internal storage for you, but if you know in advance how many objects
a Vector will contain, you can increase its
efficiency by pre-allocating this many elements with
ensureCapacity().

[image: java.util.Vector<E>]

Figure 16-68. java.util.Vector<E>

public class Vector<E> extends AbstractList<E> implements List<E>,
RandomAccess, Cloneable, Serializable {
// Public Constructors
 public Vector();
1.2 public Vector(Collection<? extends E> c);
 public Vector(int initialCapacity);
 public Vector(int initialCapacity, int capacityIncrement);
// Public Instance Methods
 public void addElement(E obj); synchronized
 public int capacity(); synchronized
 public boolean contains(Object elem); Implements:List
 public void copyInto(Object[] anArray); synchronized
 public E elementAt(int index); synchronized
 public Enumeration<E> elements();
 public void ensureCapacity(int minCapacity); synchronized
 public E firstElement(); synchronized
 public int indexOf(Object elem); Implements:List
 public int indexOf(Object elem, int index); synchronized
 public void insertElementAt(E obj, int index); synchronized
 public boolean isEmpty(); Implements:List synchronized default:true
 public E lastElement(); synchronized
 public int lastIndexOf(Object elem); Implements:List synchronized
 public int lastIndexOf(Object elem, int index); synchronized
 public void removeAllElements(); synchronized
 public boolean removeElement(Object obj); synchronized
 public void removeElementAt(int index); synchronized
 public void setElementAt(E obj, int index); synchronized
 public void setSize(int newSize); synchronized
 public int size(); Implements:List synchronized
 public void trimToSize(); synchronized
 // Methods Implementing List
 1.2 public boolean add(E o); synchronized
 1.2 public void add(int index, E element);
1.2 public boolean addAll(Collection<? extends E> c); synchronized
 1.2 public boolean addAll(int index, Collection<? extends E> c); synchronized
 1.2 public void clear();
 public boolean contains(Object elem);
1.2 public boolean containsAll(Collection<?> c); synchronized
 1.2 public boolean equals(Object o); synchronized
 1.2 public E get(int index); synchronized
 1.2 public int hashCode(); synchronized
 public int indexOf(Object elem);
 public boolean isEmpty(); synchronized default:true
 public int lastIndexOf(Object elem); synchronized
 1.2 public boolean remove(Object o);
1.2 public E remove(int index); synchronized
 1.2 public boolean removeAll(Collection<?> c); synchronized
 1.2 public boolean retainAll(Collection<?> c); synchronized
 1.2 public E set(int index, E element); synchronized
 public int size(); synchronized
 1.2 public List<E> subList(int fromIndex, int toIndex); synchronized
 1.2 public Object[] toArray(); synchronized
 1.2 public <T> T[] toArray(T[] a); synchronized
 // Protected Methods Overriding AbstractList
 1.2 protected void removeRange(int fromIndex, int toIndex); synchronized
 // Public Methods Overriding AbstractCollection
 public String toString(); synchronized
 // Public Methods Overriding Object
 public Object clone(); synchronized
 // Protected Instance Fields
 protected int capacityIncrement;
 protected int elementCount;
 protected Object[] elementData;
}

Subclasses

 Stack

Name
WeakHashMap<K,V>

Synopsis

 This class implements
Map using an internal hashtable. It is similar in
features and performance to HashMap, except that
it uses the capabilities of the java.lang.ref
package, so that the key-to-value mappings it maintains do not
prevent the key objects from being reclaimed by the garbage
collector. When there are no more references to a key object except
for the weak reference maintained by the
WeakHashMap, the garbage collector reclaims the
object, and the WeakHashMap deletes the mapping
between the reclaimed key and its associated value. If there are no
references to the value object except for the one maintained by the
WeakHashMap, the value object also becomes
available for garbage collection. Thus, you can use a
WeakHashMap to associate an auxiliary value with
an object without preventing either the object (the key) or the
auxiliary value from being reclaimed. See HashMap
for a discussion of the implementation features of this class. See
Map for a description of the methods it defines.

 WeakHashMap is
primarily useful with objects whose equals()
methods use the == operator for comparison. It is
less useful with key objects of type String, for
example, because there can be multiple String
objects that are equal to one another and, even if the original key
value has been reclaimed by the garbage collector, it is always
possible to pass a String with the same value to
the get() method.
[image: java.util.WeakHashMap<K,V>]

Figure 16-69. java.util.WeakHashMap<K,V>

public class WeakHashMap<K,V> extends AbstractMap<K,V> implements Map<K,V> {
// Public Constructors
 public WeakHashMap();
 public WeakHashMap(int initialCapacity);
1.3 public WeakHashMap(Map<? extends K,? extends V> t);
 public WeakHashMap(int initialCapacity, float loadFactor);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
1.4 public boolean containsValue(Object value);
 public Set<Map.Entry<K,V>> entrySet();
 public V get(Object key);
 public boolean isEmpty(); default:true
 1.4 public Set<K> keySet();
 public V put(K key, V value);
1.4 public void putAll(Map<? extends K,? extends V> m);
 public V remove(Object key);
 public int size();
1.4 public Collection<V> values();
}

Name
Package java.util.concurrent

Synopsis
This

 package includes a number of powerful
utilities for multithreaded programming. Most of these utilities fall
into three main categories:
	Collections
	This package extends the Java Collections Framework, adding the
threadsafe classes ConcurrentHashMap,
CopyOnWriteArrayList,
CopyOnWriteArraySet, and
ConcurrentLinkedQueue. These classes achieve
threadsafety without relying exclusively on
synchronized methods, greatly increasing the
number of threads that can safely use them concurrently.
ConcurrentHashMap implements the
ConcurrentMap interface, which adds important
atomic methods to the base java.util.Map
interface.

In addition to these Map, List,
Set, and Queue implementations,
this package also defines the BlockingQueue
interface. Blocking queues are important in many concurrent
algorithms, and this package provides a variety of useful
implementations: ArrayBlockingQueue,
DelayQueue,
LinkedBlockingQueue,
PriorityBlockingQueue, and
SynchronousQueue.
	Asynchronous Execution with Thread Pools
	
 java.util.concurrent provides a robust framework
for asynchronous execution of tasks defined by the existing
java.lang.Runnable interface or the new
Callable interface. The
Executor, ExecutorService, and
ScheduledExecutorService interfaces define methods
for executing (or scheduling for future execution)
Runnable and Callable tasks.
The Future interface represents the future result
of the asynchronous execution of a task.
ThreadPoolExecutor and
ScheduledThreadPoolExecutor are executor
implementations based on highly configurable thread pools. The
Executors class provides convenient factory
methods for obtaining instances of these thread pool implementations.

	Synchronizers
	A number of classes in this package are useful for synchronizing two
or more concurrent threads. See CountDownLatch,
CyclicBarrier, Exchanger, and
Semaphore.

Interfaces
public interface BlockingQueue<E> extends java.util.Queue<E>;
public interface Callable<V>;
public interface CompletionService<V>;
public interface ConcurrentMap<K, V> extends java.util.Map<K, V>;
public interface Delayed extends Comparable<Delayed>;
public interface Executor;
public interface ExecutorService extends Executor;
public interface Future<V>;
public interface RejectedExecutionHandler;
public interface ScheduledExecutorService extends ExecutorService;
public interface ScheduledFuture<V> extends Delayed, Future<V>;
public interface ThreadFactory;

Enumerated Types
public enum TimeUnit;

Collections
public class ArrayBlockingQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable;
public class ConcurrentHashMap<K, V> extends java.util.AbstractMap<K, V>
 implements ConcurrentMap<K, V> Serializable;
public class ConcurrentLinkedQueue<E> extends java.util.AbstractQueue<E>
 implements java.util.Queue<E>, Serializable;
public class CopyOnWriteArrayList<E> implements java.util.List<E>, java.util.RandomAccess, Cloneable, Serializable;
public class CopyOnWriteArraySet<E> extends java.util.AbstractSet<E>
 implements Serializable;
public class DelayQueue<E extends Delayed> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>;
public class LinkedBlockingQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable;
public class PriorityBlockingQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable;
public class SynchronousQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable;

Other Classes
public abstract class AbstractExecutorService implements ExecutorService;
 public class ThreadPoolExecutor extends AbstractExecutorService;
 public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor
 implements ScheduledExecutorService;
public class CountDownLatch;
public class CyclicBarrier;
public class Exchanger<V>;
public class ExecutorCompletionService<V> implements CompletionService<V>;
public class Executors;
public class FutureTask<V> implements Future<V>, Runnable;
public class Semaphore implements Serializable;
public static class ThreadPoolExecutor.AbortPolicy implements RejectedExecutionHandler;
public static class ThreadPoolExecutor.CallerRunsPolicy implements RejectedExecutionHandler;
public static class ThreadPoolExecutor.DiscardOldestPolicy implements RejectedExecutionHandler;
public static class ThreadPoolExecutor.DiscardPolicy implements RejectedExecutionHandler;

Exceptions
public class BrokenBarrierException extends Exception;
public class CancellationException extends IllegalStateException;
public class ExecutionException extends Exception;
public class RejectedExecutionException extends RuntimeException;
public class TimeoutException extends Exception;

Name
AbstractExecutorService

Synopsis

 This abstract class implements the
submit(), invokeAll(), and
invokeAny() methods of the
ExecutorService interface. It does not implement
the ExecutorService shutdown methods or the
crucial execute() method for asynchronous
execution of Runnable tasks.
The methods implemented by AbstractExecutorService
wrap the submitted Callable or
Runnable task in a FutureTask
object. FutureTask implements
Runnable and Future, which are
first passed to the abstract execute() method to
be run asynchronously and then returned to the caller.
See ThreadPoolExecutor for a concrete
implementation, and see Executors for convenient
ExecutorService factory methods.
[image: java.util.concurrent.AbstractExecutorService]

Figure 16-70. java.util.concurrent.AbstractExecutorService

public abstract class AbstractExecutorService implements ExecutorService {
// Public Constructors
 public AbstractExecutorService();
// Methods Implementing ExecutorService
 public <T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks)
 throws InterruptedException;
 public <T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks,
 long timeout, TimeUnit unit) throws InterruptedException;
 public <T> T invokeAny(java.util.Collection<Callable<T>> tasks)
 throws InterruptedException, ExecutionException;
 public <T> T invokeAny(java.util.Collection<Callable<T>> tasks, long timeout, TimeUnit unit)
 throws InterruptedException, ExecutionException, TimeoutException;
 public Future<?> submit(Runnable task);
 public <T> Future<T> submit(Callable<T> task);
 public <T> Future<T> submit(Runnable task, T result);
}

Subclasses

 ThreadPoolExecutor

Name
ArrayBlockingQueue<E>

Synopsis
This BlockingQueue

 implementation
uses an array to store queue elements. The internal array has a fixed
size that is specified when the queue is created, which means that
this is a bounded queue and the put() method
blocks when the queue has no more room.
ArrayBlockingQueue orders its elements on a
first-in, first-out (FIFO) basis. As with all
BlockingQueue implementations,
null elements are prohibited.
If you pass true as the second argument to the
ArrayBlockingQueue constructor, the queue enforces
a fairness policy for blocked threads: threads blocked in
put() or take() are
themselves queued in FIFO order, and the thread that has been waiting
the longest is served first. This prevents thread starvation but may
decrease overall throughput for the
ArrayBlockingQueue.
[image: java.util.concurrent.ArrayBlockingQueue<E>]

Figure 16-71. java.util.concurrent.ArrayBlockingQueue<E>

public class ArrayBlockingQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable {
// Public Constructors
 public ArrayBlockingQueue(int capacity);
 public ArrayBlockingQueue(int capacity, boolean fair);
 public ArrayBlockingQueue(int capacity, boolean fair, java.util.Collection<? extends E> c);
// Methods Implementing BlockingQueue
 public int drainTo(java.util.Collection<? super E> c);
 public int drainTo(java.util.Collection<? super E> c, int maxElements);
 public boolean offer(E o);
 public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;
 public E poll(long timeout, TimeUnit unit) throws InterruptedException;
 public void put(E o) throws InterruptedException;
 public int remainingCapacity();
 public E take() throws InterruptedException;
// Methods Implementing Collection
 public void clear();
 public boolean contains(Object o);
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
 public E peek();
 public E poll();
// Public Methods Overriding AbstractCollection
 public String toString();
}

Name
BlockingQueue<E>

Synopsis
This

 interface extends the
java.util.Queue interface of the Java Collections
Framework and adds blocking put() and
take() methods. Blocking queues are useful in
many concurrent algorithms in which a producer thread puts objects
onto a queue and a consumer thread removes them for some kind of
processing. The producer thread must block if a bounded queue fills
up, and the consumer thread must block if no objects are available on
the queue.
In addition to put() and take(
) methods that block indefinitely,
BlockingQueue also defines timed versions of the
Queue methods offer() and
poll() that wait up to the specified time. The
timeout is specified as both a long and a
TimeUnit constant.

 drainTo() removes all available elements from a
BlockingQueue, adds them to the specified
collection, and returns the number of elements removed from the
queue. drainTo() does not block. A variant on
this method puts an upper bound on the number of elements removed
from the queue.

 remainingCapacity() returns the number of
elements that can be added to the queue before it becomes full or
returns Integer.MAX_VALUE if the
BlockingQueue is not a bounded queue. For bounded
queues, this method provides a hint as to whether a call to
put() will block.

 BlockingQueue implementations are not allowed to
accept null elements. The
BlockingQueue interface refines the
Collection.add() and Queue.offer(
) contracts to indicate that these methods throw
NullPointerException if passed a
null value.
[image: java.util.concurrent.BlockingQueue<E>]

Figure 16-72. java.util.concurrent.BlockingQueue<E>

public interface BlockingQueue<E> extends java.util.Queue<E> {
// Public Instance Methods
 boolean add(E o);
 int drainTo(java.util.Collection<? super E> c);
 int drainTo(java.util.Collection<? super E> c, int maxElements);
 boolean offer(E o);
 boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;
 E poll(long timeout, TimeUnit unit) throws InterruptedException;
 void put(E o) throws InterruptedException;
 int remainingCapacity();
 E take() throws InterruptedException;
}

Implementations

 ArrayBlockingQueue, DelayQueue,
LinkedBlockingQueue,
PriorityBlockingQueue,
SynchronousQueue

Passed To

 ExecutorCompletionService.ExecutorCompletionService(
), ThreadPoolExecutor.ThreadPoolExecutor(
)

Returned By

 ScheduledThreadPoolExecutor.getQueue(),
ThreadPoolExecutor.getQueue()

Name
BrokenBarrierException

Synopsis
An
exception
of this type is thrown when a thread calls
CyclicBarrier.await() on a broken barrier, or
when the barrier is broken while a thread is waiting. A
CyclicBarrier enters a broken state when one of
the waiting threads is interrupted or times out.
[image: java.util.concurrent.BrokenBarrierException]

Figure 16-73. java.util.concurrent.BrokenBarrierException

public class BrokenBarrierException extends Exception {
// Public Constructors
 public BrokenBarrierException();
 public BrokenBarrierException(String message);
}

Thrown By

 CyclicBarrier.await()

Name
Callable<V>

Synopsis
This interface is a generalized form of the
java.lang.Runnable interface. Unlike the
run() method of Runnable, the
call() method of Callable can
return a value and throw an Exception.
Callable is a generic type, and the type variable
V represents the return type of the
call() method.
An ExecutorService accepts
Callable objects for asynchronous execution and
returns a Future object representing the future
result of the call() method.
public interface Callable<V> {
// Public Instance Methods
 V call() throws Exception;
}

Passed To

 AbstractExecutorService.submit(),
CompletionService.submit(),
ExecutorCompletionService.submit(),
Executors.{privilegedCallable(),
privilegedCallableUsingCurrentClassLoader()},
ExecutorService.submit(),
FutureTask.FutureTask(),
ScheduledExecutorService.schedule(),
ScheduledThreadPoolExecutor.{schedule(),
submit()}

Returned By

 Executors.{callable(),
privilegedCallable(),
privilegedCallableUsingCurrentClassLoader()}

Name
CancellationException

Synopsis
An
 exception
of this type is thrown to indicate that the result of a computation
cannot be retrieved because the computation was canceled. The
get() method of the Future
interface may throw a CancellationException, for
example.
[image: java.util.concurrent.CancellationException]

Figure 16-74. java.util.concurrent.CancellationException

public class CancellationException extends IllegalStateException {
// Public Constructors
 public CancellationException();
 public CancellationException(String message);
}

Name
CompletionService<V>

Synopsis
This interface combines the features of an
ExecutorService with the features of a
BlockingQueue. A producer thread may submit
Callable or Runnable tasks for
asynchronous execution. As each submitted task completes, its result,
in the form of a Future object, becomes available
to be removed from the queue by a consumer thread that calls
poll() or take().
This generic type declares a type variable
V, which represents the result type of all
tasks on the queue.
public interface CompletionService<V> {
// Public Instance Methods
 Future<V> poll();
 Future<V> poll(long timeout, TimeUnit unit) throws InterruptedException;
 Future<V> submit(Callable<V> task);
 Future<V> submit(Runnable task, V result);
 Future<V> take() throws InterruptedException;
}

Implementations

 ExecutorCompletionService

Name
ConcurrentHashMap<K,V>

Synopsis
This class is a threadsafe implementation of
the java.util.Map interface, and of the atomic
operations added by the ConcurrentMap interface.
This class is intended as a drop-in replacement for
java.util.Hashtable. It is more efficient than
that class, however, because it provides threadsafety without using
synchronized methods that lock the entire data
structure. ConcurrentHashMap allows any number of
concurrent read operations without locking. Locking is required for
updates to a ConcurrentHashMap, but the internal
data structure is segmented so that only the segment being updated is
locked, and reads and writes can proceed concurrently in other
segments. You can specify the number of internal segments with the
concurrencyLevel argument to the
constructor. The default is 16. Set this to the approximate number of
updater threads you expect to access the data structure. Like
Hashtable, ConcurrentHashMap
does not allow null keys or values. (Note that
this differs from the behavior of
java.util.HashMap.)
[image: java.util.concurrent.ConcurrentHashMap<K,V>]

Figure 16-75. java.util.concurrent.ConcurrentHashMap<K,V>

public class ConcurrentHashMap<K,V> extends java.util.AbstractMap<K,V>
 implements ConcurrentMap<K,V>, Serializable {
// Public Constructors
 public ConcurrentHashMap();
 public ConcurrentHashMap(java.util.Map<? extends K,? extends V> t);
 public ConcurrentHashMap(int initialCapacity);
 public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel);
// Public Instance Methods
 public boolean contains(Object value);
 public java.util.Enumeration<V> elements();
 public java.util.Enumeration<K> keys();
// Methods Implementing ConcurrentMap
 public V putIfAbsent(K key, V value);
 public boolean remove(Object key, Object value);
 public V replace(K key, V value);
 public boolean replace(K key, V oldValue, V newValue);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public java.util.Set<java.util.Map.Entry<K,V>> entrySet();
 public V get(Object key);
 public boolean isEmpty(); default:true
 public java.util.Set<K> keySet();
 public V put(K key, V value);
 public void putAll(java.util.Map<? extends K,? extends V> t);
 public V remove(Object key);
 public int size();
 public java.util.Collection<V> values();
}

Name
ConcurrentLinkedQueue<E>

Synopsis
This
 class
is a threadsafe implementation of the
java.util.Queue interface (but not of the
BlockingQueue interface). It provides threadsafety
without using synchronized methods that would lock
the entire data structure. ConcurrentLinkedQueue
is unbounded and orders its elements on a first-in, first-out (FIFO)
basis. null elements are not allowed. This
implementation uses a linked-list data structure internally. Note
that the size() method must traverse the internal
data structure and is therefore a relatively expensive operation for
this class.
[image: java.util.concurrent.ConcurrentLinkedQueue<E>]

Figure 16-76. java.util.concurrent.ConcurrentLinkedQueue<E>

public class ConcurrentLinkedQueue<E> extends java.util.AbstractQueue<E>
 implements java.util.Queue<E>, Serializable {
// Public Constructors
 public ConcurrentLinkedQueue();
 public ConcurrentLinkedQueue(java.util.Collection<? extends E> c);
// Methods Implementing Collection
 public boolean add(E o);
 public boolean contains(Object o);
 public boolean isEmpty(); default:true
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
 public boolean offer(E o);
 public E peek();
 public E poll();
}

Name
ConcurrentMap<K,V>

Synopsis
This
 interface extends the
java.util.Map interface to add four important
atomic methods. As with the Map interface, the
type variables K and
V represent the types of the mapped keys
and values.

 putIfAbsent() atomically tests whether a key is
already defined in the map, and if not, maps it to the specified
value. remove() atomically removes the specified
key from the map, but only if it is mapped to the specified value. It
returns true if it modified the map. There are two
versions of the atomic replace() method. The
first checks whether the specified value is already mapped to a
value. If so, it replaces the existing mapping with the specified
value and returns true. Otherwise, it returns
false. The three-argument version of
replace() maps the specified key to the specified
new value, but only if the key is currently mapped to the specified
old value. It returns true if the replacement was
made and false otherwise.
[image: java.util.concurrent.ConcurrentMap<K,V>]

Figure 16-77. java.util.concurrent.ConcurrentMap<K,V>

public interface ConcurrentMap<K,V> extends java.util.Map<K,V> {
// Public Instance Methods
 V putIfAbsent(K key, V value);
 boolean remove(Object key, Object value);
 V replace(K key, V value);
 boolean replace(K key, V oldValue, V newValue);
}

Implementations

 ConcurrentHashMap

Name
CopyOnWriteArrayList<E>

Synopsis
This class is a threadsafe
java.util.List implementation based on an array.
Any number of read operations may proceed concurrently. All update
methods are synchronized and make a completely new
copy of the internal array, so this class is best suited to
applications in which reads greatly outnumber updates. The
Iterator of a
CopyOnWriteArrayList operates on the copy of the
array that was current when the iterator() method
was called: it does not see any updates that occur after the call to
iterator() and is guaranteed never to throw
ConcurrentModificationException. Update methods of
the Iterator and ListIterator
interfaces are not supported and throw
UnsupportedOperationException.

 CopyOnWriteArrayList defines a few useful methods
beyond those specified by the List interface.
addIfAbsent()

atomically adds an element to the list, but only if the list does not
already contain that element. addAllAbsent() adds
all elements of a collection that are not already in the list. Two
new indexOf()

and lastIndexOf() methods are defined that
specify a starting index for the search. These provide a convenient
alternative to using a subList() view when
searching for repeated matches in a list.
[image: java.util.concurrent.CopyOnWriteArrayList<E>]

Figure 16-78. java.util.concurrent.CopyOnWriteArrayList<E>

public class CopyOnWriteArrayList<E> implements java.util.List<E>,
 java.util.RandomAccess, Cloneable, Serializable {
// Public Constructors
 public CopyOnWriteArrayList();
 public CopyOnWriteArrayList(java.util.Collection<? extends E> c);
 public CopyOnWriteArrayList(E[] toCopyIn);
// Public Instance Methods
 public int addAllAbsent(java.util.Collection<? extends E> c); synchronized
 public boolean addIfAbsent(E element); synchronized
 public int indexOf(E elem, int index);
 public int lastIndexOf(E elem, int index);
// Methods Implementing List
 public boolean add(E element); synchronized
 public void add(int index, E element); synchronized
 public boolean addAll(java.util.Collection<? extends E> c); synchronized
 public boolean addAll(int index, java.util.Collection<? extends E> c); synchronized
 public void clear(); synchronized
 public boolean contains(Object elem);
 public boolean containsAll(java.util.Collection<?> c);
 public boolean equals(Object o);
 public E get(int index);
 public int hashCode();
 public int indexOf(Object elem);
 public boolean isEmpty(); default:true
 public java.util.Iterator<E> iterator();
 public int lastIndexOf(Object elem);
 public java.util.ListIterator<E> listIterator();
 public java.util.ListIterator<E> listIterator(int index);
 public boolean remove(Object o); synchronized
 public E remove(int index); synchronized
 public boolean removeAll(java.util.Collection<?> c); synchronized
 public boolean retainAll(java.util.Collection<?> c); synchronized
 public E set(int index, E element); synchronized
 public int size();
 public java.util.List<E> subList(int fromIndex, int toIndex); synchronized
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Public Methods Overriding Object
 public Object clone();
 public String toString();
}

Name
CopyOnWriteArraySet<E>

Synopsis
This class is a threadsafe
java.util.Set implementation based on the
CopyOnWriteArrayList class. Because the data
structure is array-based, the contains(
)

method is O(n); this means that this class is
suitable only for relatively small sets. Because the data structure
uses copy-on-write, the class is best suited to cases where read
operations and traversals greatly outnumber update operations.
Iteration over the members of the set is efficient, and the
Iterator returned by iterator(
) never throws
ConcurrentModificationException. The
remove() method of the iterator throws
UnsupportedOperationException. See also
CopyOnWriteArrayList.
[image: java.util.concurrent.CopyOnWriteArraySet<E>]

Figure 16-79. java.util.concurrent.CopyOnWriteArraySet<E>

public class CopyOnWriteArraySet<E> extends java.util.AbstractSet<E> implements Serializable {
// Public Constructors
 public CopyOnWriteArraySet();
 public CopyOnWriteArraySet(java.util.Collection<? extends E> c);
// Methods Implementing Set
 public boolean add(E o);
 public boolean addAll(java.util.Collection<? extends E> c);
 public void clear();
 public boolean contains(Object o);
 public boolean containsAll(java.util.Collection<?> c);
 public boolean isEmpty(); default:true
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public boolean retainAll(java.util.Collection<?> c);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Public Methods Overriding AbstractSet
 public boolean removeAll(java.util.Collection<?> c);
}

Name
CountDownLatch

Synopsis
This class

 synchronizes
threads. All threads that call await() block
until the countDown() method is invoked a
specified number of times. The required number of calls is specified
when the CountDownLatch is created. Once
countDown() has been called the required number
of times, all threads blocked in await() are
allowed to resume, and any subsequent calls to await(
) do not block. getCount() returns the
number of calls to countDown() that must still be
made before the threads blocked in await() can
resume. Note that there is no way to reset the count. Once a
CountDownLatch has
“latched,” it remains in that state
forever. Create a new CountDownLatch if you need
to synchronize another group of threads. Contrast this class with
CyclicBarrier.
public class CountDownLatch {
// Public Constructors
 public CountDownLatch(int count);
// Public Instance Methods
 public void await() throws InterruptedException;
 public boolean await(long timeout, TimeUnit unit) throws InterruptedException;
 public void countDown();
 public long getCount();
// Public Methods Overriding Object
 public String toString();
}

Name
CyclicBarrier

Synopsis
This

 class
synchronizes a group of n threads, where
n is specified to the
CyclicBarrier() constructor. Threads call the
await() method, which blocks until
n threads are waiting. In the simple case,
all n threads are then allowed to proceed,
and the CyclicBarrier resets itself until it has
another n threads blocked in
await().
More complex behavior is possible if you pass a
Runnable object to the
CyclicBarrier constructor. This
Runnable is a “barrier
action” and when the last of the
n threads invokes await(
), that method uses the thread to invoke the run(
) method of the Runnable. This
Runnable is typically used to perform some sort of
coordinating action on the blocked threads. When the run(
) method returns, the CyclicBarrier
allows all blocked threads to resume.
When threads resume from await(), the return
value of await() is an integer that represents
the order in which they called await(). This is
useful if you want to be able to distinguish between otherwise
identical worker threads. For example, you might have the thread that
arrived first perform some special action while the remaining threads
resume.
If any thread times out or is interrupted while blocked in
await(), the CyclicBarrier is
said to be “broken,” and all
waiting threads (and any threads that subsequently call
await()) wake up with a
BrokenBarrierException. Waiting threads also
receive a BrokenBarrierException if the
CyclicBarrier is reset(). The
reset() method is the only way to restore a
broken barrier to its initial state. This is difficult to coordinate
properly, however, unless one controller thread is coded differently
from the other threads at the barrier.
public class CyclicBarrier {
// Public Constructors
 public CyclicBarrier(int parties);
 public CyclicBarrier(int parties, Runnable barrierAction);
// Public Instance Methods
 public int await() throws InterruptedException, BrokenBarrierException;
 public int await(long timeout, TimeUnit unit)
 throws InterruptedException, BrokenBarrierException, TimeoutException;
 public int getNumberWaiting();
 public int getParties();
 public boolean isBroken();
 public void reset();
}

Name
Delayed

Synopsis
An object
that implements this interface has an associated delay. Typically, it
is some kind of task, such as a Callable, that has
been scheduled to execute at some future time. getDelay(
) returns the remaining time, measured in the specified
TimeUnit. If no time remains, getDelay(
) should return zero or a negative value. See
ScheduledFuture and DelayQueue.
[image: java.util.concurrent.Delayed]

Figure 16-80. java.util.concurrent.Delayed

public interface Delayed extends Comparable<Delayed> {
// Public Instance Methods
 long getDelay(TimeUnit unit);
}

Implementations

 ScheduledFuture

Passed To

 DelayQueue.{add(), offer(),
put()}

Returned By

 DelayQueue.{peek(), poll(),
take()}

Name
DelayQueue<E extends Delayed>

Synopsis
This BlockingQueue

 implementation restricts its elements to
instances of some class E that implements
the Delay interface. null
elements are not allowed. Elements on the queue are ordered by the
amount of delay remaining. The element whose getDelay(
) method returns the smallest value is the first to be
removed from the queue. No element may be removed, however, until its
getDelay() method returns zero or a negative
number.
[image: java.util.concurrent.DelayQueue<E extends Delayed>]

Figure 16-81. java.util.concurrent.DelayQueue<E extends Delayed>

public class DelayQueue<E extends Delayed> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E> {
// Public Constructors
 public DelayQueue();
 public DelayQueue(java.util.Collection<? extends E> c);
// Public Instance Methods
 public E peek();
 public E poll();
// Methods Implementing BlockingQueue
 public boolean add(E o);
 public int drainTo(java.util.Collection<? super E> c);
 public int drainTo(java.util.Collection<? super E> c, int maxElements);
 public boolean offer(E o);
 public boolean offer(E o, long timeout, TimeUnit unit);
 public E poll(long timeout, TimeUnit unit) throws InterruptedException;
 public void put(E o);
 public int remainingCapacity();
 public E take() throws InterruptedException;
// Methods Implementing Collection
 public void clear();
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] array);
}

Name
Exchanger<V>

Synopsis
This
 class
allows two threads to rendezvous and exchange data. This is a generic
type, and the type variable V represents
the type of data to be exchanged. Each thread should call
exchange() and pass the value of type
V that it wants to exchange. The first
thread to call exchange() blocks until the second
thread calls it. At that point, both threads resume. Both threads
receive as their return value the object of type
V passed by the other thread. Note that
this class also defines a timed version of exchange(
) that throws a TimeoutException if no
exchange occurs within the specified timeout interval. Unlike a
CountDownLatch, which is a one-shot latch, and
CyclicBarrier which can be
“broken,” an
Exchanger may be reused for any number of
exchanges.
public class Exchanger<V> {
// Public Constructors
 public Exchanger();
// Public Instance Methods
 public V exchange(V x) throws InterruptedException;
 public V exchange(V x, long timeout, TimeUnit unit)
 throws InterruptedException, TimeoutException;
}

Name
ExecutionException

Synopsis
An
exception
of this type is like a checked wrapper around an arbitrary exception
thrown while executing a task. The get() method
of a Future object, for example, throws an
ExecutionException if the call(
) method of a Callable throws an
exception. ExecutionException may also be thrown
by ExecutorService.invokeAny(). Use the
Throwable.getCause() method to obtain the
exception object that the ExecutionException
wraps.
[image: java.util.concurrent.ExecutionException]

Figure 16-82. java.util.concurrent.ExecutionException

public class ExecutionException extends Exception {
// Public Constructors
 public ExecutionException(Throwable cause);
 public ExecutionException(String message, Throwable cause);
// Protected Constructors
 protected ExecutionException();
 protected ExecutionException(String message);
}

Thrown By

 AbstractExecutorService.invokeAny(),
ExecutorService.invokeAny(), Future.get(
), FutureTask.get()

Name
Executor

Synopsis
This interface defines a mechanism for
executing Runnable tasks. A variety of
implementations are possible for the execute()
method. An implementation might simply synchronously invoke the
run() method of the specified
Runnable. Another implementation might create and
start a new thread for each Runnable object it is
passed. Another might select an existing thread from a thread pool to
run the Runnable or queue the
Runnable for future execution when a thread
becomes available.

 ExecutorService extends this interface with
methods to execute Callable tasks and methods for
canceling tasks. ThreadPoolExecutor is an
ExecutorService implementation that creates a
configurable thread pool. Finally, the Executors
class defines a number of factory methods for easily obtaining
ExecutorService instances.
public interface Executor {
// Public Instance Methods
 void execute(Runnable command);
}

Implementations

 ExecutorService

Passed To

 ExecutorCompletionService.ExecutorCompletionService(
)

Name
ExecutorCompletionService<V>

Synopsis
This class implements the
CompletionService interface, which uses an
Executor object passed to its constructor for
executing the tasks passed to its submit()
method. As these tasks complete, their result (or exception) is
placed, in the form of a Future object, on an
internal queue and becomes available for removal with the blocking
take() method or the nonblocking or timed
poll() methods.
This class is useful when you want to execute a number of tasks
concurrently and want to process their results in whatever order they
complete. See Executors for a source of
Executor objects to use with this class.
[image: java.util.concurrent.ExecutorCompletionService<V>]

Figure 16-83. java.util.concurrent.ExecutorCompletionService<V>

public class ExecutorCompletionService<V> implements CompletionService<V> {
// Public Constructors
 public ExecutorCompletionService(Executor executor);
 public ExecutorCompletionService(Executor executor, BlockingQueue<Future<V>>
 completionQueue);
// Methods Implementing CompletionService
 public Future<V> poll();
 public Future<V> poll(long timeout, TimeUnit unit) throws InterruptedException;
 public Future<V> submit(Callable<V> task);
 public Future<V> submit(Runnable task, V result);
 public Future<V> take() throws InterruptedException;
}

Name
Executors

Synopsis
This utility
class defines static factory methods for creating
ExecutorService and
ScheduledExecutorService objects. Each of the
factory methods has a variant that allows you to explicitly specify a
ThreadFactory. newSingleThreadExecutor(
) returns an ExecutorService that uses a
single thread and an unbounded queue of waiting tasks.
newFixedThreadPool() returns an
ExecutorService that uses a thread pool with the
specified number of threads and an unbounded queue.
newCachedThreadPool() returns an
ExecutorService that does not queue tasks but
instead creates as many threads as are needed. When a task
terminates, its thread is cached for reuse. Cached threads are
allowed to terminate if they remain unused for 60 seconds.

 newSingleThreadScheduledExecutor() returns a
ScheduledExecutorService that uses a single thread
for running tasks. newScheduledThreadPool()
returns a ScheduledExecutorService that uses a
thread pool of the specified size.
The factory methods of this class typically return instances of
ThreadPoolExecutor and
ScheduledThreadPoolExecutor. If the returned
objects are cast to these implementing types, they can be configured
(to change the thread pool size, for example). If you want to prevent
this from happening, use the unconfigurableExecutorService(
) and unconfigurableScheduledExecutorService(
) methods to obtain wrapper objects that implement only the
ExecutorService and
ScheduledExecutorService methods and do not permit
configuration.
Other methods of this class include callable(),
which returns a Callable object wrapped around a
Runnable and an optional result, and
defaultThreadFactory(), which returns a basic
ThreadFactory object. Executors also define
methods related to access control and the Java security system. A
variant of the callable() method wraps a
Callable around a
java.security.PrivilegedAction.
privilegedCallable() is intended to be invoked
from within a PrivilegedAction being run with
AccessController.doPrivileged(). When passed a
Callable in this way, it returns a new
Callable that can be used later to invoke the
original callable in a privileged access control context, granting it
permissions that it would not otherwise have.
public class Executors {
// No Constructor
 // Public Class Methods
 public static Callable<Object> callable(java.security.PrivilegedAction action);
 public static Callable<Object> callable(Runnable task);
 public static Callable<Object> callable(java.security.PrivilegedExceptionAction action);
 public static <T> Callable<T> callable(Runnable task, T result);
 public static ThreadFactory defaultThreadFactory();
 public static ExecutorService newCachedThreadPool();
 public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory);
 public static ExecutorService newFixedThreadPool(int nThreads);
 public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory);
 public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize);
 public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize,
 ThreadFactory threadFactory);
 public static ExecutorService newSingleThreadExecutor();
 public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory);
 public static ScheduledExecutorService newSingleThreadScheduledExecutor();
 public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory
 threadFactory);
 public static <T> Callable<T> privilegedCallable(Callable<T> callable);
 public static <T> Callable<T> privilegedCallableUsingCurrentClassLoader
 (Callable<T> callable);
 public static ThreadFactory privilegedThreadFactory();
 public static ExecutorService unconfigurableExecutorService(ExecutorService executor);
 public static ScheduledExecutorService unconfigurableScheduledExecutorService
 (ScheduledExecutorService executor);
}

Name
ExecutorService

Synopsis
This interface extends
Executor to add methods to obtain a
Future result of the asynchronous execution of a
Callable task. It also adds methods for graceful
termination or shutdown of an ExecutorService.
ThreadPoolExecutor is a useful and highly
configurable implementation of this interface. An easy way to obtain
instances of this class is through the factory methods of the
Executors utility class. Note that
ExecutorService is not a generic type; it does not
declare any type variables. It does have a number of generic methods,
however, that use the type variable T to
represent the result type of Callable and
Future objects.
The submit() method allows you to submit a
Callable<T> object to an
ExecutorService for execution. Typical
ExecutorService implementations invoke the
call() method of the Callable
on another thread, and the return value (of type
T) of the method is therefore not
available when the call to submit() returns.
submit() therefore returns a
Future<T> object: the promise of a return
value of type T at some point in the
future. See the Future interface for further
details.
Two variants on the submit() method accept a
java.lang.Runnable task instead of a
Callable task. The run()
method of a Runnable has no return value, so the
two-argument version of submit() accepts a dummy
return value of type T and returns a
Future<T> that makes this dummy value
available when the Runnable has completed running.
The other Runnable variant of the submit(
) method takes no return value and returns a
Future<?> value. The get(
) method of this Future object returns
null when the Runnable is done.
Other ExecutorService methods execute
Callable objects synchronously.
invokeAll() is passed a
java.util.Collection of
Callable<T> tasks. It executes them and
blocks until all have completed, or until an optionally specified
timeout has elapsed. invokeAll() returns the
results of the tasks as a List of
Future<T> objects. Note that a
Callable<T> task can complete either by
returning a result of type T or by throwing an
exception.

 invokeAny() is also passed a
Collection of Callable<T>
objects. It blocks until any one of these Callable
tasks has returned a value of type T and
returns that value. Tasks that terminate by throwing an exception are
ignored. If all tasks throw an exception, invokeAny(
) throws an ExecutionException. Before
invokeAny() returns, it cancels the execution of
any still-running Callable tasks. Like
invokeAll(), invokeAny() has
a variant with a timeout value.

 ExecutorService defines several methods for
gracefully shutting down the service. shutdown()
puts the ExecutorService into a special state in
which no new tasks may be submitted for execution, but all currently
running tasks continue running. isShutdown()
returns true if the
ExecutorService has entered this state.
awaitTermination() blocks until all executing
tasks in an ExecutorService that was shut down are
completed (or until a specified timeout elapses). Once this has
occurred, the isTerminated() method returns
true. The shutdownNow() method
shuts down an ExecutorService more abruptly: it
attempts to abort all currently executing tasks (typically via
Thread.interrupt()) and returns a
List of the tasks that have not yet started
executing.
[image: java.util.concurrent.ExecutorService]

Figure 16-84. java.util.concurrent.ExecutorService

public interface ExecutorService extends Executor {
// Public Instance Methods
 boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;
 <T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks)
 throws InterruptedException;
 <T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks,
 long timeout, TimeUnit unit) throws InterruptedException;
 <T> T invokeAny(java.util.Collection<Callable<T>> tasks)
 throws InterruptedException, ExecutionException;
 <T> T invokeAny(java.util.Collection<Callable<T>> tasks, long timeout, TimeUnit unit)
 throws InterruptedException, ExecutionException, TimeoutException;
 boolean isShutdown();
 boolean isTerminated();
 void shutdown();
 java.util.List<Runnable> shutdownNow();
 <T> Future<T> submit(Callable<T> task);
 Future<?> submit(Runnable task);
 <T> Future<T> submit(Runnable task, T result);
}

Implementations

 AbstractExecutorService,
ScheduledExecutorService

Passed To

 Executors.unconfigurableExecutorService()

Returned By

 Executors.{newCachedThreadPool(),
newFixedThreadPool(),
newSingleThreadExecutor(),
unconfigurableExecutorService()}

Name
Future<V>

Synopsis
This interface represents the result of a
computation that may not be available until some time in the future.
Future is a generic type, with a type variable
V. V represents
the type of the future value to be returned by the get(
) method. A Future<V> value is
typically obtained by submitting a
Callable<V> to an
ExecutorService for asynchronous execution.
The key method of the Future interface is
get(). It returns the result (of type
V) of the computation, blocking, if
necessary, until that result is ready. get()
throws a CancellationException if the computation
is canceled with the cancel() method before it
completes. If the computation throws an exception of its own (as the
Callable.call() method can), get(
) throws an ExecutionException wrapped
around that exception. Additionally, the timed version of the
get() method throws a
TimeoutException if the timeout elapses before the
computation completes.
As noted above, the computation represented by a
Future object can be canceled by calling its
cancel() method. This method returns
true if the computation was canceled successfully,
and false otherwise. If you pass
false to cancel(), any
computation that has started running is allowed to complete. In this
case, only computations that have not yet started can be canceled. If
you pass true to the cancel()
method, running computations are interrupted with
Thread.interrupt(). Note, however, that
interrupting a thread does not guarantee that it will stop running.

 isCancelled() returns true if
a Future was canceled before it completed (either
by returning a value or throwing an exception). isDone(
) returns true if the computation
represented by a Future is finished running. This
may be because it returned a value, threw an exception, or was
canceled. If isDone() returns
true, the get() method does
not block.
public interface Future<V> {
// Public Instance Methods
 boolean cancel(boolean mayInterruptIfRunning);
 V get() throws InterruptedException, ExecutionException;
 V get(long timeout, TimeUnit unit) throws InterruptedException,
 ExecutionException, TimeoutException;
 boolean isCancelled();
 boolean isDone();
}

Implementations

 FutureTask, ScheduledFuture

Returned By
Too many methods to list.

Name
FutureTask<V>

Synopsis
This
 class is
a Runnable wrapper around a
Callable object (or around another
Runnable). FutureTask is a
generic type and the type variable V
represents the return type of the wrapped Callable
object. AbstractExecutorService uses
FutureTask to convert Callable
objects passed to the submit() method into
Runnable objects it can pass to the
execute() method.

 FutureTask also implements the
Future interface, which means that the
get() method waits for the run(
) method to complete and provides access to the result (or
exception) of the Callable’s
execution.
The protected methods set() and
setException() are invoked when the
Callable returns a value or throws an exception.
done() is invoked when the
Callable completes or is canceled. Subclasses can
override any of these methods to insert hooks for notification,
logging, and so on.
[image: java.util.concurrent.FutureTask<V>]

Figure 16-85. java.util.concurrent.FutureTask<V>

public class FutureTask<V> implements Future<V>, Runnable {
// Public Constructors
 public FutureTask(Callable<V> callable);
 public FutureTask(Runnable runnable, V result);
// Methods Implementing Future
 public boolean cancel(boolean mayInterruptIfRunning);
 public V get() throws InterruptedException, ExecutionException;
 public V get(long timeout, TimeUnit unit) throws InterruptedException,
 ExecutionException, TimeoutException;
 public boolean isCancelled();
 public boolean isDone();
// Methods Implementing Runnable
 public void run();
// Protected Instance Methods
 protected void done(); empty
 protected boolean runAndReset();
 protected void set(V v);
 protected void setException(Throwable t);
}

Name
LinkedBlockingQueue<E>

Synopsis
This

 threadsafe
class implements the BlockingQueue interface based
on a linked-list data structure. It orders elements on a first-in,
first-out (FIFO) basis. You may specify a maximum queue capacity,
creating a bounded queue. The default capacity is
Integer.MAX_VALUE, which is effectively unbounded.
null elements are not permitted.
[image: java.util.concurrent.LinkedBlockingQueue<E>]

Figure 16-86. java.util.concurrent.LinkedBlockingQueue<E>

public class LinkedBlockingQueue<E> extends java.util.AbstractQueue<E>
implements BlockingQueue<E>, Serializable {
// Public Constructors
 public LinkedBlockingQueue();
 public LinkedBlockingQueue(int capacity);
 public LinkedBlockingQueue(java.util.Collection<? extends E> c);
// Methods Implementing BlockingQueue
 public int drainTo(java.util.Collection<? super E> c);
 public int drainTo(java.util.Collection<? super E> c, int maxElements);
 public boolean offer(E o);
 public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;
 public E poll(long timeout, TimeUnit unit) throws InterruptedException;
 public void put(E o) throws InterruptedException;
 public int remainingCapacity();
 public E take() throws InterruptedException;
// Methods Implementing Collection
 public void clear();
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
 public E peek();
 public E poll();
// Public Methods Overriding AbstractCollection
 public String toString();
}

Name
PriorityBlockingQueue<E>

Synopsis
This

 threadsafe
class implements the BlockingQueue interface. It
is an unbounded queue that orders its elements according to a
Comparator, or, for Comparable
elements, according to their compareTo() method.
The head of the queue (the next element to be removed) is always the
smallest element. Note that the Iterator returned
by the iterator() method is not guaranteed to
return elements in this order. See also
java.util.PriorityQueue.
[image: java.util.concurrent.PriorityBlockingQueue<E>]

Figure 16-87. java.util.concurrent.PriorityBlockingQueue<E>

public class PriorityBlockingQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable {
// Public Constructors
 public PriorityBlockingQueue();
 public PriorityBlockingQueue(int initialCapacity);
 public PriorityBlockingQueue(java.util.Collection<? extends E> c);
 public PriorityBlockingQueue(int initialCapacity, java.util.Comparator<? super E>
 comparator);
// Public Instance Methods
 public java.util.Comparator<? super E> comparator();
// Methods Implementing BlockingQueue
 public boolean add(E o);
 public int drainTo(java.util.Collection<? super E> c);
 public int drainTo(java.util.Collection<? super E> c, int maxElements);
 public boolean offer(E o);
 public boolean offer(E o, long timeout, TimeUnit unit);
 public E poll(long timeout, TimeUnit unit) throws InterruptedException;
 public void put(E o);
 public int remainingCapacity();
 public E take() throws InterruptedException;
// Methods Implementing Collection
 public void clear();
 public boolean contains(Object o);
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
 public E peek();
 public E poll();
// Public Methods Overriding AbstractCollection
 public String toString();
}

Name
RejectedExecutionException

Synopsis
An
exception
of this type is thrown by an Executor when it
cannot accept a task for execution. When a
ThreadPoolExecutor cannot accept a task, it
attempts to invoke a RejectedExecutionHandler.
ThreadPoolExecutor defines several nested
implementations of that handler interface that can handle the
rejected task without throwing an exception of this type.
[image: java.util.concurrent.RejectedExecutionException]

Figure 16-88. java.util.concurrent.RejectedExecutionException

public class RejectedExecutionException extends RuntimeException {
// Public Constructors
 public RejectedExecutionException();
 public RejectedExecutionException(Throwable cause);
 public RejectedExecutionException(String message);
 public RejectedExecutionException(String message, Throwable cause);
}

Name
RejectedExecutionHandler

Synopsis
This interface defines an API for a handler
method invoked by a ThreadPoolExecutor when its
execute() method cannot accept any more
Runnable objects. This can occur when both the
thread pool and the queue of waiting tasks is full, or when the
ThreadPoolExecutor has been shut down. Register an
instance of this class with the setRejectedExecutionHandler(
) method of ThreadPoolExecutor.
ThreadPoolExecutor includes several predefined
implementations of this interface as static member classes. If the
rejectedExecution() method cannot arrange for the
Runnable to be run and does not wish to simply
discard that task, it should throw a
RejectedExecutionException which propagates up to
the caller that submitted the task for execution.
public interface RejectedExecutionHandler {
// Public Instance Methods
 void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}

Implementations

 ThreadPoolExecutor.AbortPolicy,
ThreadPoolExecutor.CallerRunsPolicy,
ThreadPoolExecutor.DiscardOldestPolicy,
ThreadPoolExecutor.DiscardPolicy

Passed To

 ScheduledThreadPoolExecutor.ScheduledThreadPoolExecutor(
),
ThreadPoolExecutor.{setRejectedExecutionHandler(
), ThreadPoolExecutor()}

Returned By

 ThreadPoolExecutor.getRejectedExecutionHandler()

Name
ScheduledExecutorService

Synopsis
This
interface
extends Executor and
ExecutorService to add methods for scheduling
Callable or Runnable tasks for
future execution on a one-time basis or a repeating basis. The
schedule() methods schedule a
Callable or a Runnable task for
one-time execution after a specified delay. The delay is specified by
a long plus a TimeUnit. When a
Callable<V> is scheduled, the result is a
ScheduledFuture<V>. This is like a
Future<V> object but also implements the
Delay interface so you can call getDelay(
) to find out how much time remains before execution
begins. If you schedule() a
Runnable object, the result is a
ScheduledFuture<?>. Since a
Runnable has no return value, the get(
) method of this ScheduledFuture returns
null, but the cancel(),
getDelay(), and isDone()
methods remain useful.

 ScheduledExecutorService provides two alternatives
for scheduling Runnable tasks for repeated
execution. (See also java.util.Timer, which has
similar methods.) scheduleAtFixedRate() begins
the first execution of the Runnable after
initialDelay time units, and begins
subsequent executions at multiples of
period time units after that. This means
that the Runnable runs at a fixed rate, regardless
of how long each execution takes. scheduleWithFixedDelay(
) also begins the first execution after
initialDelay time units. But it waits for
this first execution (and all subsequent executions) to complete
before scheduling the next execution for
delay time units in the future. Both
methods return a ScheduledFuture object that you
can use to cancel() the repeated execution of
tasks. If the task is not canceled, the
ScheduledExecutorService runs it repeatedly until
the service is shut down (see ExecutorService) or
the Runnable throws an exception.
[image: java.util.concurrent.ScheduledExecutorService]

Figure 16-89. java.util.concurrent.ScheduledExecutorService

public interface ScheduledExecutorService extends ExecutorService {
// Public Instance Methods
 <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit);
 ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit);
 ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay,
 long period, TimeUnit unit);
 ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay,
 long delay, TimeUnit unit);
}

Implementations

 ScheduledThreadPoolExecutor

Passed To

 Executors.unconfigurableScheduledExecutorService(
)

Returned By

 Executors.{newScheduledThreadPool(),
newSingleThreadScheduledExecutor(),
unconfigurableScheduledExecutorService()}

Name
ScheduledFuture<V>

Synopsis
This interface extends
Future

and Delayed and adds no methods of its own. A
ScheduledFuture represents a computation and the
future result of that computation just as Future
does, but it adds a getDelay() method that
returns the amount of time until the computation begins. See
ScheduledExecutorService.
[image: java.util.concurrent.ScheduledFuture<V>]

Figure 16-90. java.util.concurrent.ScheduledFuture<V>

public interface ScheduledFuture<V> extends DelayedFuture<V> {
}

Returned By

 ScheduledExecutorService.{schedule(),
scheduleAtFixedRate(),
scheduleWithFixedDelay()},
ScheduledThreadPoolExecutor.{schedule(),
scheduleAtFixedRate(),
scheduleWithFixedDelay()}

Name
ScheduledThreadPoolExecutor

Synopsis
This
class
extends ThreadPoolExecutor to implement the
methods of the ScheduledExecutorService interface
to allow tasks to be submitted for execution once or repeatedly at
some scheduled time in the future. Instances of this class are
usually obtained through the static factory methods of the
Executors utility class. You can also explicitly
create one with the ScheduledThreadPoolExecutors(
) constructor.
ScheduledThreadPoolExecutor always creates its own
unbounded work queue, which means that you cannot pass a queue to the
constructor. Also, there is no need to specify a
maximumPoolSize since this configuration
parameter is irrelevant with unbounded queues.
Note that tasks submitted to a
ScheduledThreadPoolExecutor are not guaranteed to
run at the scheduled time. That is the time at which they first
become eligible to run. If all threads are busy with other tasks,
however, eligible tasks may get queued up to run later.
This class provides functionality similar to
java.util.Timer but adds multithreaded capability
and the ability to work with Callable and
Future objects.
[image: java.util.concurrent.ScheduledThreadPoolExecutor]

Figure 16-91. java.util.concurrent.ScheduledThreadPoolExecutor

public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor
 implements ScheduledExecutorService {
// Public Constructors
 public ScheduledThreadPoolExecutor(int corePoolSize);
 public ScheduledThreadPoolExecutor(int corePoolSize, ThreadFactory threadFactory);
 public ScheduledThreadPoolExecutor(int corePoolSize, RejectedExecutionHandler handler);
 public ScheduledThreadPoolExecutor(int corePoolSize, ThreadFactory threadFactory,
 RejectedExecutionHandler handler);
// Public Instance Methods
 public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy();
 public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy();
 public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value);
 public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value);
// Methods Implementing Executor
 public void execute(Runnable command);
// Methods Implementing ExecutorService
 public void shutdown();
 public java.util.List<Runnable> shutdownNow();
 public Future<?> submit(Runnable task);
 public <T> Future<T> submit(Callable<T> task);
 public <T> Future<T> submit(Runnable task, T result);
// Methods Implementing ScheduledExecutorService
 public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit);
 public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit);
 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay,
 long period, TimeUnit unit);
 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay,
 long delay, TimeUnit unit);
// Public Methods Overriding ThreadPoolExecutor
 public BlockingQueue<Runnable> getQueue();
 public boolean remove(Runnable task);
}

Name
Semaphore

Synopsis
This class
implements semaphores, a classic thread
synchronization primitive that can be used to implement mutual
exclusion and wait/notify-style thread synchronization. A
Semaphore maintains some fixed number (specified
when the Semaphore() constructor is called) of
permits. The acquire()
method blocks until a permit is available, then decrements the number
of available permits and returns. The release()
method does the reverse: it increments the number of permits,
possibly unblocking a thread waiting in acquire(
).
If you pass true as the second argument to the
Semaphore() constructor, the semaphore treats
waiting threads fairly by placing them on a FIFO queue in the order
they called acquire() and granting permits to the
threads in this order. This prevents thread starvation.
[image: java.util.concurrent.Semaphore]

Figure 16-92. java.util.concurrent.Semaphore

public class Semaphore implements Serializable {
// Public Constructors
 public Semaphore(int permits);
 public Semaphore(int permits, boolean fair);
// Public Instance Methods
 public void acquire() throws InterruptedException;
 public void acquire(int permits) throws InterruptedException;
 public void acquireUninterruptibly();
 public void acquireUninterruptibly(int permits);
 public int availablePermits();
 public int drainPermits();
 public final int getQueueLength();
 public final boolean hasQueuedThreads();
 public boolean isFair();
 public void release();
 public void release(int permits);
 public boolean tryAcquire();
 public boolean tryAcquire(int permits);
 public boolean tryAcquire(long timeout, TimeUnit unit)
 throws InterruptedException;
 public boolean tryAcquire(int permits, long timeout, TimeUnit unit)
 throws InterruptedException;
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected java.util.Collection<Thread> getQueuedThreads();
 protected void reducePermits(int reduction);
}

Name
SynchronousQueue<E>

Synopsis
This

 BlockingQueue
implementation is the degenerate case of a bounded queue with a
capacity of zero. Every call to put() blocks
until a corresponding call to take(), and vice
versa. You can think of this as an Exchanger that
does only a one-way exchange.
The size() and remainingCapacity(
) methods always return 0. The peek()
method always returns null. The iterator(
) method returns an Iterator for which
the hasNext() method returns
false.
[image: java.util.concurrent.SynchronousQueue<E>]

Figure 16-93. java.util.concurrent.SynchronousQueue<E>

public class SynchronousQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable {
// Public Constructors
 public SynchronousQueue();
 public SynchronousQueue(boolean fair);
// Methods Implementing BlockingQueue
 public int drainTo(java.util.Collection<? super E> c);
 public int drainTo(java.util.Collection<? super E> c, int maxElements);
 public boolean offer(E o);
 public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;
 public E poll(long timeout, TimeUnit unit) throws InterruptedException;
 public void put(E o) throws InterruptedException;
 public int remainingCapacity(); constant
 public E take() throws InterruptedException;
// Methods Implementing Collection
 public void clear(); empty
 public boolean contains(Object o); constant
 public boolean containsAll(java.util.Collection<?> c);
 public boolean isEmpty(); constant default:true
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o); constant
 public boolean removeAll(java.util.Collection<?> c); constant
 public boolean retainAll(java.util.Collection<?> c); constant
 public int size(); constant
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
 public E peek(); constant
 public E poll();
}

Name
ThreadFactory

Synopsis
An instance of this interface is an
object that creates Thread objects to run
Runnable objects. You might define a
ThreadFactory if you want to set the priority,
name, or ThreadGroup of the threads used by a
ThreadPoolExecutor, for example. A number of the
factory methods of the Executors utility class
rely on ThreadPoolExecutor and accept a
ThreadFactory argument.
public interface ThreadFactory {
// Public Instance Methods
 Thread newThread(Runnable r);
}

Passed To

 Executors.{newCachedThreadPool(),
newFixedThreadPool(),
newScheduledThreadPool(),
newSingleThreadExecutor(),
newSingleThreadScheduledExecutor()},
ScheduledThreadPoolExecutor.ScheduledThreadPoolExecutor(
), ThreadPoolExecutor.{setThreadFactory(
), ThreadPoolExecutor()}

Returned By

 Executors.{defaultThreadFactory(),
privilegedThreadFactory()},
ThreadPoolExecutor.getThreadFactory()

Name
ThreadPoolExecutor

Synopsis
This class implements the
ExecutorService interface to execute tasks using a
highly configurable thread pool. The easiest way to instantiate this
class is through the static factory methods of the
Executors class. If you want a more highly
configured thread pool, you can instantiate it directly.
Four configuration parameters must be passed to every
ThreadPoolExecutor() constructor; two others are
optional. Many of these parameters may also be queried and adjusted
after the executor has been created through various
ThreadPoolExecutor accessor methods. The most
important configuration parameters specify the size of the thread
pool, and the queue that the executor uses to hold tasks that it
cannot currently run. corePoolSize is the
number of threads that the pool should hold under normal usage. As
tasks are submitted to the ThreadPoolExecutor, a
new thread is created for each task until the total number of threads
reaches this size.
If corePoolSize threads have already been
created, newly submitted tasks are placed on the work queue. As these
core threads finish the tasks they are executing, they take(
) a new task from the work queue. You must specify the
workQueue when you call the
ThreadPoolExecutor() constructor. It may be any
BlockingQueue object and the behavior of the
thread pool depends strongly on the behavior of the queue you
specify. Options include an unbounded
LinkedBlockingQueue, a bounded
ArrayBlockingQueue with a capacity of your
choosing, or even a SynchronousQueue which has a
capacity of zero and cannot actually accept a task unless a thread is
already waiting to execute it.
If the work queue becomes empty, it is inefficient to leave all the
core threads sitting idly waiting for work. Threads are terminated if
they are idle for more than the “keep
alive” time. You specify this time with the
keepAliveTime parameter and a
TimeUnit constant.
If the work queue fills up, the
maximumPoolSize parameter comes into play.
ThreadPoolExecutor prefers to maintain
corePoolSize threads but allows this
number to grow up to maximumPoolSize. A
new thread is created only when the
workQueue is full. If you specify an
unbounded work queue, maximumPoolSize is
irrelevant because the queue never fills up. If on the other hand you
specify a SynchronousQueue (which is always full),
if none of the existing threads are waiting for a new task, a new
thread is always created (up to the
maximumPoolSize limit).
If a ThreadPoolExecutor has already created the
maximum number of threads and its work queue is full, it must reject
any newly submitted tasks. The default behavior is to throw a
RejectedExecutionException. You can alter this
behavior by specifying a RejectedExecutionHandler
object to the ThreadPoolExecutor() constructor or
with the setRejectedExecutionHandler() method.
The four inner classes of this class are implementations of four
handlers that address this case. See their individual entries for
details.
The final way that you can customize a
ThreadPoolExecutor is to pass
ThreadFactory to the constructor or to the
setThreadFactory() method. If you do not specify
a factory, the ThreadPoolExecutor obtains one with
Executors.defaultThreadFactory().
[image: java.util.concurrent.ThreadPoolExecutor]

Figure 16-94. java.util.concurrent.ThreadPoolExecutor

public class ThreadPoolExecutor extends AbstractExecutorService {
// Public Constructors
 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,
 long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue);
 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,
 long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory);
 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,
 long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
 RejectedExecutionHandler handler);
 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,
 long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory,
RejectedExecutionHandler handler);
// Nested Types
 public static class AbortPolicy implements RejectedExecutionHandler;
 public static class CallerRunsPolicy implements RejectedExecutionHandler;
 public static class DiscardOldestPolicy implements RejectedExecutionHandler;
 public static class DiscardPolicy implements RejectedExecutionHandler;
// Public Instance Methods
 public int getActiveCount();
 public long getCompletedTaskCount();
 public int getCorePoolSize();
 public long getKeepAliveTime(TimeUnit unit);
 public int getLargestPoolSize();
 public int getMaximumPoolSize();
 public int getPoolSize();
 public BlockingQueue<Runnable> getQueue();
 public RejectedExecutionHandler getRejectedExecutionHandler();
 public long getTaskCount();
 public ThreadFactory getThreadFactory();
 public boolean isTerminating();
 public int prestartAllCoreThreads();
 public boolean prestartCoreThread();
 public void purge();
 public boolean remove(Runnable task);
 public void setCorePoolSize(int corePoolSize);
 public void setKeepAliveTime(long time, TimeUnit unit);
 public void setMaximumPoolSize(int maximumPoolSize);
 public void setRejectedExecutionHandler(RejectedExecutionHandler handler);
 public void setThreadFactory(ThreadFactory threadFactory);
// Methods Implementing Executor
 public void execute(Runnable command);
// Methods Implementing ExecutorService
 public boolean awaitTermination(long timeout, TimeUnit unit)
 throws InterruptedException;
 public boolean isShutdown();
 public boolean isTerminated();
 public void shutdown();
 public java.util.List<Runnable> shutdownNow();
// Protected Methods Overriding Object
 protected void finalize();
// Protected Instance Methods
 protected void afterExecute(Runnable r, Throwable t); empty
 protected void beforeExecute(Thread t, Runnable r); empty
 protected void terminated(); empty
}

Subclasses

 ScheduledThreadPoolExecutor

Passed To

 RejectedExecutionHandler.rejectedExecution(),
ThreadPoolExecutor.AbortPolicy.rejectedExecution(
),
ThreadPoolExecutor.CallerRunsPolicy.rejectedExecution(
),
ThreadPoolExecutor.DiscardOldestPolicy.rejectedExecution(
),
ThreadPoolExecutor.DiscardPolicy.rejectedExecution(
)

Name
ThreadPoolExecutor.AbortPolicy

Synopsis

 This
RejectedExecutionHandler implementation simply
throws a RejectedExecutionException.
public static class ThreadPoolExecutor.AbortPolicy implements RejectedExecutionHandler {
// Public Constructors
 public AbortPolicy();
// Methods Implementing RejectedExecutionHandler
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e);
}

Name
ThreadPoolExecutor.CallerRunsPolicy

Synopsis
This RejectedExecutionHandler

 implementation runs the rejected
Runnable object directly in the calling thread,
causing that thread to block until the Runnable
completes. If the ThreadPoolExecutor has been shut
down, the Runnable is simply discarded instead of
being run.
public static class ThreadPoolExecutor.CallerRunsPolicy implements RejectedExecutionHandler {
// Public Constructors
 public CallerRunsPolicy();
// Methods Implementing RejectedExecutionHandler
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e);
}

Name
ThreadPoolExecutor.DiscardOldestPolicy

Synopsis
This
RejectedExecutionHandler

implementation discards the rejected Runnable if
the ThreadPoolExecutor has been shut down.
Otherwise, it discards the oldest pending task that has not run and
tries again to execute() the rejected task.
public static class ThreadPoolExecutor.DiscardOldestPolicy implements RejectedExecutionHandler {
// Public Constructors
 public DiscardOldestPolicy();
// Methods Implementing RejectedExecutionHandler
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e);
}

Name
ThreadPoolExecutor.DiscardPolicy

Synopsis
This RejectedExecutionHandler

 implementation silently discards the
rejected Runnable.
public static class ThreadPoolExecutor.DiscardPolicy implements RejectedExecutionHandler {
// Public Constructors
 public DiscardPolicy();
// Methods Implementing RejectedExecutionHandler
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e); empty
}

Name
TimeoutException

Synopsis
An
exception
of this type is thrown by timed methods to indicate that the
specified timeout has elapsed. Other timed methods are able to
indicate their timeout status in a boolean or
other return value.
[image: java.util.concurrent.TimeoutException]

Figure 16-95. java.util.concurrent.TimeoutException

public class TimeoutException extends Exception {
// Public Constructors
 public TimeoutException();
 public TimeoutException(String message);
}

Thrown By

 AbstractExecutorService.invokeAny(),
CyclicBarrier.await(),
Exchanger.exchange(),
ExecutorService.invokeAny(), Future.get(
), FutureTask.get()

Name
TimeUnit

Synopsis
The
 constants
defined by this enumerated type represent granularities of time.
Timeout and delay specifications throughout the
java.util.concurrent package are specified by a
long value and TimeUnit
constant that specifies the interpretation of that value.

 TimeUnit defines conversion methods that convert
values expressed in one unit to values in another unit. More
interestingly, it defines convenient alternatives to
Thread.sleep(), Thread.join(
), and Object.wait().
[image: java.util.concurrent.TimeUnit]

Figure 16-96. java.util.concurrent.TimeUnit

public enum TimeUnit {
// Enumerated Constants
 NANOSECONDS,
 MICROSECONDS,
 MILLISECONDS,
 SECONDS;
// Public Class Methods
 public static TimeUnit valueOf(String name);
 public static final TimeUnit[] values();
// Public Instance Methods
 public long convert(long duration, TimeUnit unit);
 public void sleep(long timeout) throws InterruptedException;
 public void timedJoin(Thread thread, long timeout) throws InterruptedException;
 public void timedWait(Object obj, long timeout) throws InterruptedException;
 public long toMicros(long duration);
 public long toMillis(long duration);
 public long toNanos(long duration);
 public long toSeconds(long duration);
}

Passed To
Too many methods to list.

Name
Package java.util.concurrent.atomic

Synopsis
This

 package includes classes that provide
atomic operations on boolean, integer, and reference values.
Instances of the classes defined here have the properties of
volatile fields but also add atomic operations
like the canonical compareAndSet(), which
verifies that the field holds an expected value, and, if it does,
sets it to a new value. The classes also define a
weakCompareAndSet() method that may be more
efficient than compareAndSet() but may also fail
to set the value even when the field holds the expected value.
The “Array” classes provide atomic
access to arrays of values and provide volatile
access semantics for array elements, which is not possible with the
volatile modifier itself. The
“FieldUpdater” classes use
reflection to provide atomic operations on a named
volatile field of an existing class. The
AtomicMarkableReference class and
AtomicStampedReference class maintain a reference
value and an associated boolean or
int value and allow the two values to be
atomically manipulated together. These classes can be useful in
concurrent algorithms that detect concurrent updates with version
numbering, for example.
Most implementations of this package rely on low-level atomic
instructions in the underlying CPU and perform atomic operations
without the overhead of locking.

Classes
public class AtomicBoolean implements Serializable;
public class AtomicInteger extends Number implements Serializable;
public class AtomicIntegerArray implements Serializable;
public abstract class AtomicIntegerFieldUpdater<T>;
public class AtomicLong extends Number implements Serializable;
public class AtomicLongArray implements Serializable;
public abstract class AtomicLongFieldUpdater<T>;
public class AtomicMarkableReference<V>;
public class AtomicReference<V> implements Serializable;
public class AtomicReferenceArray<E> implements Serializable;
public abstract class AtomicReferenceFieldUpdater<T, V>;
public class AtomicStampedReference<V>;

Name
AtomicBoolean

Synopsis
This threadsafe class holds a boolean value. In
addition to the get() and set(
) iterators, it provides atomic compareAndSet(
), weakCompareAndSet(), and
getAndSet() operations.
[image: java.util.concurrent.atomic.AtomicBoolean]

Figure 16-97. java.util.concurrent.atomic.AtomicBoolean

public class AtomicBoolean implements Serializable {
// Public Constructors
 public AtomicBoolean();
 public AtomicBoolean(boolean initialValue);
// Public Instance Methods
 public final boolean compareAndSet(boolean expect, boolean update);
 public final boolean get();
 public final boolean getAndSet(boolean newValue);
 public final void set(boolean newValue);
 public boolean weakCompareAndSet(boolean expect, boolean update);
// Public Methods Overriding Object
 public String toString();
}

Name
AtomicInteger

Synopsis
This threadsafe class holds an
int value. It extends
java.lang.Number, but unlike the
Integer class, it is mutable. Access the
int value with the get()
method and the various methods inherited from
Number. You can set the value with the
set() method or through various atomic methods.
In addition to the basic compareAndSet() and
weakCompareAndSet() methods, this class defines
methods for atomic pre-increment, post-increment, pre-decrement and
post-decrement operations as well as generalized addAndGet(
) and getAndAdd() methods.
addAndGet() atomically adds the specified amount
to the stored value and returns the new value. getAndAdd(
) atomically returns the current value and then adds the
specified amount to it.
[image: java.util.concurrent.atomic.AtomicInteger]

Figure 16-98. java.util.concurrent.atomic.AtomicInteger

public class AtomicInteger extends Number implements Serializable {
// Public Constructors
 public AtomicInteger();
 public AtomicInteger(int initialValue);
// Public Instance Methods
 public final int addAndGet(int delta);
 public final boolean compareAndSet(int expect, int update);
 public final int decrementAndGet();
 public final int get();
 public final int getAndAdd(int delta);
 public final int getAndDecrement(); default:0
 public final int getAndIncrement(); default:-1
 public final int getAndSet(int newValue);
 public final int incrementAndGet();
 public final void set(int newValue);
 public final boolean weakCompareAndSet(int expect, int update);
// Public Methods Overriding Number
 public double doubleValue();
 public float floatValue();
 public int intValue();
 public long longValue();
// Public Methods Overriding Object
 public String toString();
}

Name
AtomicIntegerArray

Synopsis
This

 class holds an array of
int values. It provides threadsafe access to the
array elements, treating each as if it was a
volatile field, and defines atomic operations on
them. The methods of this class are like those of
AtomicInteger, except that each has an additional
parameter that specifies the array index. Create an
AtomicIntegerArray by specifying the desired array
length or an actual int[] from which initial
values can be copied.
[image: java.util.concurrent.atomic.AtomicIntegerArray]

Figure 16-99. java.util.concurrent.atomic.AtomicIntegerArray

public class AtomicIntegerArray implements Serializable {
// Public Constructors
 public AtomicIntegerArray(int[] array);
 public AtomicIntegerArray(int length);
// Public Instance Methods
 public final int addAndGet(int i, int delta);
 public final boolean compareAndSet(int i, int expect, int update);
 public final int decrementAndGet(int i);
 public final int get(int i);
 public final int getAndAdd(int i, int delta);
 public final int getAndDecrement(int i);
 public final int getAndIncrement(int i);
 public final int getAndSet(int i, int newValue);
 public final int incrementAndGet(int i);
 public final int length();
 public final void set(int i, int newValue);
 public final boolean weakCompareAndSet(int i, int expect, int update);
// Public Methods Overriding Object
 public String toString();
}

Name
AtomicIntegerFieldUpdater<T>

Synopsis
This class uses
java.lang.reflect to provide atomic operations for
named volatile int fields within existing types.
Obtain an instance of this class with the newUpdater(
) factory method. Pass the name of the field (which must
have been declared volatile int) to be updated and
the class that it is defined within to this factory method. The
instance methods of the resulting
AtomicIntegerFieldUpdater object are like those of
the AtomicInteger class but require you to specify
the object whose field is to be manipulated. This is a generic type,
and the type variable T represents the
type whose volatile int field is being updated.
public abstract class AtomicIntegerFieldUpdater<T> {
// Protected Constructors
 protected AtomicIntegerFieldUpdater();
// Public Class Methods
 public static <U> AtomicIntegerFieldUpdater<U> newUpdater(Class<U> tclass,
 String fieldName);
// Public Instance Methods
 public int addAndGet(T obj, int delta);
 public abstract boolean compareAndSet(T obj, int expect, int update);
 public int decrementAndGet(T obj);
 public abstract int get(T obj);
 public int getAndAdd(T obj, int delta);
 public int getAndDecrement(T obj);
 public int getAndIncrement(T obj);
 public int getAndSet(T obj, int newValue);
 public int incrementAndGet(T obj);
 public abstract void set(T obj, int newValue);
 public abstract boolean weakCompareAndSet(T obj, int expect, int update);
}

Name
AtomicLong

Synopsis
This threadsafe class holds a mutable
long value and defines atomic operations on that
value. It behaves just like AtomicInteger, with
the substitution of long for
int.
[image: java.util.concurrent.atomic.AtomicLong]

Figure 16-100. java.util.concurrent.atomic.AtomicLong

public class AtomicLong extends Number implements Serializable {
// Public Constructors
 public AtomicLong();
 public AtomicLong(long initialValue);
// Public Instance Methods
 public final long addAndGet(long delta);
 public final boolean compareAndSet(long expect, long update);
 public final long decrementAndGet();
 public final long get();
 public final long getAndAdd(long delta);
 public final long getAndDecrement(); default:0
 public final long getAndIncrement(); default:-1
 public final long getAndSet(long newValue);
 public final long incrementAndGet();
 public final void set(long newValue);
 public final boolean weakCompareAndSet(long expect, long update);
// Public Methods Overriding Number
 public double doubleValue();
 public float floatValue();
 public int intValue();
 public long longValue();
// Public Methods Overriding Object
 public String toString();
}

Name
AtomicLongArray

Synopsis
This threadsafe class provides atomic
operations for an array of long values. See
AtomicIntegerArray, which offers the equivalent
operations for int arrays.
[image: java.util.concurrent.atomic.AtomicLongArray]

Figure 16-101. java.util.concurrent.atomic.AtomicLongArray

public class AtomicLongArray implements Serializable {
// Public Constructors
 public AtomicLongArray(long[] array);
 public AtomicLongArray(int length);
// Public Instance Methods
 public long addAndGet(int i, long delta);
 public final boolean compareAndSet(int i, long expect, long update);
 public final long decrementAndGet(int i);
 public final long get(int i);
 public final long getAndAdd(int i, long delta);
 public final long getAndDecrement(int i);
 public final long getAndIncrement(int i);
 public final long getAndSet(int i, long newValue);
 public final long incrementAndGet(int i);
 public final int length();
 public final void set(int i, long newValue);
 public final boolean weakCompareAndSet(int i, long expect, long update);
// Public Methods Overriding Object
 public String toString();
}

Name
AtomicLongFieldUpdater<T>

Synopsis
This class uses
java.lang.reflect to define atomic operations for
named volatile long fields of a specified class.
See AtomicIntegerFieldUpdater, which is very
similar.
public abstract class AtomicLongFieldUpdater<T> {
// Protected Constructors
 protected AtomicLongFieldUpdater();
// Public Class Methods
 public static <U> AtomicLongFieldUpdater<U> newUpdater(Class<U> tclass, String fieldName);
// Public Instance Methods
 public long addAndGet(T obj, long delta);
 public abstract boolean compareAndSet(T obj, long expect, long update);
 public long decrementAndGet(T obj);
 public abstract long get(T obj);
 public long getAndAdd(T obj, long delta);
 public long getAndDecrement(T obj);
 public long getAndIncrement(T obj);
 public long getAndSet(T obj, long newValue);
 public long incrementAndGet(T obj);
 public abstract void set(T obj, long newValue);
 public abstract boolean weakCompareAndSet(T obj, long expect, long update);
}

Name
AtomicMarkableReference<V>

Synopsis
This threadsafe class holds a mutable reference
to an object of type V and also holds a
mutable boolean value or
“mark.” It defines atomic
operations and volatile access semantics for the reference and the
mark. The set() method unconditionally sets the
reference and mark value. The get() method
queries both, returning the reference as its return value, and
storing the current value of the mark in element 0 of the specified
boolean array. The reference and mark can also be
queried individually (and nonatomically) with getReference(
) and isMarked().
The atomic compareAndSet() and
weakCompareAndSet() methods take expected and new
values for both the reference and the mark, and neither is set to its
new value unless both match their expected values.
attemptMark() atomically sets the value of the
mark but only if the reference is equal to the expected value. Like
weakCompareAndSet(), this method may fail
spuriously, even if the reference does equal the expected value.
Repeated invocation eventually succeeds, however, as long as the
expected value is correct, and other threads are not continuously
changing the reference value.
public class AtomicMarkableReference<V> {
// Public Constructors
 public AtomicMarkableReference(V initialRef, boolean initialMark);
// Public Instance Methods
 public boolean attemptMark(V expectedReference, boolean newMark);
 public boolean compareAndSet(V expectedReference, V newReference,
 boolean expectedMark, boolean newMark);
 public V get(boolean[] markHolder);
 public V getReference();
 public boolean isMarked();
 public void set(V newReference, boolean newMark);
 public boolean weakCompareAndSet(V expectedReference, V newReference,
 boolean expectedMark, boolean newMark);
}

Name
AtomicReference<V>

Synopsis
This
threadsafe class holds a mutable reference to an object of type
V, provides volatile
access semantics, and defines atomic operations for manipulating that
value. get() and set() are
ordinary accessor methods for the reference. compareAndSet(
), weakCompareAndSet(), and
getAndSet() perform the two named operations
atomically. compareAndSet() is the canonical
atomic operation: the reference is compared to an expected value,
and, if it matches, is set to a new value. compareAndSet(
) returns true if it set the value or
false otherwise. weakCompareAndSet(
) is similar but may fail to set the reference even if it
does match the expected value (it is guaranteed to succeed eventually
if the operation is repeatedly retried, however).
[image: java.util.concurrent.atomic.AtomicReference<V>]

Figure 16-102. java.util.concurrent.atomic.AtomicReference<V>

public class AtomicReference<V> implements Serializable {
// Public Constructors
 public AtomicReference();
 public AtomicReference(V initialValue);
// Public Instance Methods
 public final boolean compareAndSet(V expect, V update);
 public final V get();
 public final V getAndSet(V newValue);
 public final void set(V newValue);
 public final boolean weakCompareAndSet(V expect, V update);
// Public Methods Overriding Object
 public String toString();
}

Name
AtomicReferenceArray<E>

Synopsis
This threadsafe class holds an array of
elements of type E. It provides
volatile access semantics for these array elements
and defines atomic operations for manipulating them. Its methods are
like those of AtomicReference with the addition of
a parameter that specifies the array index of the desired element.
[image: java.util.concurrent.atomic.AtomicReferenceArray<E>]

Figure 16-103. java.util.concurrent.atomic.AtomicReferenceArray<E>

public class AtomicReferenceArray<E> implements Serializable {
// Public Constructors
 public AtomicReferenceArray(E[] array);
 public AtomicReferenceArray(int length);
// Public Instance Methods
 public final boolean compareAndSet(int i, E expect, E update);
 public final E get(int i);
 public final E getAndSet(int i, E newValue);
 public final int length();
 public final void set(int i, E newValue);
 public final boolean weakCompareAndSet(int i, E expect, E update);
// Public Methods Overriding Object
 public String toString();
}

Name
AtomicReferenceFieldUpdater<T,V>

Synopsis
This threadsafe class uses
java.lang.reflect to provide atomic operations for
a named volatile field of type V within an
object of type T. Its instance methods are
like those of AtomicReference and the static
newUpdater() factory method is like that of
AtomicIntegerFieldUpdater.
public abstract class AtomicReferenceFieldUpdater<T,V> {
// Protected Constructors
 protected AtomicReferenceFieldUpdater();
// Public Class Methods
 public static <U,W> AtomicReferenceFieldUpdater<U,W> newUpdater(Class<U> tclass,
 Class<W> vclass, String fieldName);
// Public Instance Methods
 public abstract boolean compareAndSet(T obj, V expect, V update);
 public abstract V get(T obj);
 public V getAndSet(T obj, V newValue);
 public abstract void set(T obj, V newValue);
 public abstract boolean weakCompareAndSet(T obj, V expect, V update);
}

Name
AtomicStampedReference<V>

Synopsis
This threadsafe class holds a mutable reference
to an object of type V and also holds a
mutable int value or
“stamp.” It defines atomic
operations and volatile access semantics for the reference and the
stamp. This class works just like
AtomicMarkableReference except that an
int “stamp”
replaces the boolean
“mark.” See
AtomicMarkableReference for further details.
public class AtomicStampedReference<V> {
// Public Constructors
 public AtomicStampedReference(V initialRef, int initialStamp);
// Public Instance Methods
 public boolean attemptStamp(V expectedReference, int newStamp);
 public boolean compareAndSet(V expectedReference, V newReference,
 int expectedStamp, int newStamp);
 public V get(int[] stampHolder);
 public V getReference();
 public int getStamp();
 public void set(V newReference, int newStamp);
 public boolean weakCompareAndSet(V expectedReference, V newReference,
 int expectedStamp, int newStamp);
}

Name
Package java.util.concurrent.locks

Synopsis
This

 package defines Lock
and associated Condition interfaces as well as
concrete implementations (such as ReentrantLock)
that provide an alternative to locking with
synchronized blocks and methods and to waiting
with the wait(), notify(),
and notifyAll() methods of
Object.
Although Lock and Condition are
somewhat more complex to use than the built-in locking, waiting, and
notification mechanisms of Object, they are also
more flexible. Lock, for example, does not require
that locks be block-structured and enables algorithms such as
“hand-over-hand locking” for
traversing linked data structures. A thread waiting to acquire a
Lock can time out or be interrupted, which is not
possible with synchronized locking. Also, more
than one Condition can be associated with a given
Lock, which is simply not possible with
Object-based locking and waiting.
The ReadWriteLock interface and its
ReentrantReadWriteLock implementation allow
multiple concurrent readers but only a single writer thread to hold
the lock.

Interfaces
public interface Condition;
public interface Lock;
public interface ReadWriteLock;

Classes
public abstract class AbstractQueuedSynchronizer implements Serializable;
public class AbstractQueuedSynchronizer.ConditionObject implements Condition, Serializable;
public class LockSupport;
public class ReentrantLock implements Lock, Serializable;
public class ReentrantReadWriteLock implements ReadWriteLock, Serializable;
public static class ReentrantReadWriteLock.ReadLock implements Lock, Serializable;
public static class ReentrantReadWriteLock.WriteLock implements Lock, Serializable;

Name
AbstractQueuedSynchronizer

Synopsis
This
 abstract
class is a low-level utility. A concrete subclass can be used as a
helper class for implementing the Lock interface
or for implementing synchronizer utilities like the
CountDownLatch class of
java.util.concurrent. Subclasses must define
tryAcquire(), tryRelease(),
tryAcquireShared(), tryReleaseShared(
), and isHeldExclusively.
[image: java.util.concurrent.locks.AbstractQueuedSynchronizer]

Figure 16-104. java.util.concurrent.locks.AbstractQueuedSynchronizer

public abstract class AbstractQueuedSynchronizer implements Serializable {
// Protected Constructors
 protected AbstractQueuedSynchronizer();
// Nested Types
 public class ConditionObject implements Condition, Serializable;
// Public Instance Methods
 public final void acquire(int arg);
 public final void acquireInterruptibly(int arg) throws InterruptedException;
 public final void acquireShared(int arg);
 public final void acquireSharedInterruptibly(int arg) throws InterruptedException;
 public final java.util.Collection<Thread> getExclusiveQueuedThreads();
 public final Thread getFirstQueuedThread();
 public final java.util.Collection<Thread> getQueuedThreads();
 public final int getQueueLength();
 public final java.util.Collection<Thread> getSharedQueuedThreads();
 public final java.util.Collection<Thread> getWaitingThreads(AbstractQueuedSynchronizer.
 ConditionObject condition);
 public final int getWaitQueueLength(AbstractQueuedSynchronizer.ConditionObject condition);
 public final boolean hasContended();
 public final boolean hasQueuedThreads();
 public final boolean hasWaiters(AbstractQueuedSynchronizer.ConditionObject condition);
 public final boolean isQueued(Thread thread);
 public final boolean owns(AbstractQueuedSynchronizer.ConditionObject condition);
 public final boolean release(int arg);
 public final boolean releaseShared(int arg);
 public final boolean tryAcquireNanos(int arg, long nanosTimeout)
 throws InterruptedException;
 public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
 throws InterruptedException;
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected final boolean compareAndSetState(int expect, int update);
 protected final int getState();
 protected boolean isHeldExclusively();
 protected final void setState(int newState);
 protected boolean tryAcquire(int arg);
 protected int tryAcquireShared(int arg);
 protected boolean tryRelease(int arg);
 protected boolean tryReleaseShared(int arg);
}

Name
AbstractQueuedSynchronizer.ConditionObject

Synopsis
This

 class
implements the Condition interface and is suitable
for use with an AbstractQueuedSynchronizer.
public class AbstractQueuedSynchronizer.ConditionObject implements Condition, Serializable {
// Public Constructors
 public ConditionObject();
// Methods Implementing Condition
 public final void await() throws InterruptedException;
 public final boolean await(long time, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 public final long awaitNanos(long nanosTimeout) throws InterruptedException;
 public final void awaitUninterruptibly();
 public final boolean awaitUntil(java.util.Date deadline) throws InterruptedException;
 public final void signal();
 public final void signalAll();
// Protected Instance Methods
 protected final java.util.Collection<Thread> getWaitingThreads();
 protected final int getWaitQueueLength();
 protected final boolean hasWaiters();
}

Passed To

 AbstractQueuedSynchronizer.{getWaitingThreads(),
getWaitQueueLength(), hasWaiters(
), owns()}

Name
Condition

Synopsis
This interface defines an alternative to
the wait(), notify(), and
notifyAll() methods of
java.lang.Object. Condition
objects are always associated with a corresponding
Lock. Obtain a Condition with
the newCondition() method of
Lock.
There are five choices for waiting. The no-argument version of
await() is the simplest: it blocks until the
thread is signaled or interrupted. awaitUninterruptibly(
) blocks until the thread is signaled and ignores
interrupts. The other three waiting methods are timed waits: they all
wait until signaled, interrupted, or until the specified time
elapses. await() and awaitUntil(
) return true if they are signaled and
false if a timeout occurs. awaitNanos(
) specifies the timeout in nanoseconds. It returns zero or
a negative number if the timeout elapses. If it wakes up because of a
signal (or because of a spurious wakeup), it returns an estimate of
the time remaining in the timeout. If it turns out that the thread
needs to continue waiting, this return value can be used as the new
timeout value.
The signal() and signalAll()
methods are just like the notify() and
notifyAll() methods of Object.
signal() wakes up one waiting thread, and
signalAll() wakes up all waiting threads.
Locking considerations apply to the use of a
Condition object just as they apply to the use of
the wait() and notify()
methods of Object. Before a thread can call any of
the waiting or signaling methods of a Condition,
it must hold the Lock associated with the
condition. When the thread begins waiting, it automatically
relinquishes the Lock, and when it awakes because
of a signal, timeout, or interrupt, it must reacquire the lock before
it can proceed. A thread is guaranteed to hold the lock when it
returns from one of the waiting methods.
Threads waiting on a Condition may wake up
spuriously, just as they may when waiting on an
Object. Therefore, calls to wait on a
Condition are typically written in the form of a
loop so that the desired condition is retested when the thread wakes
up.
public interface Condition {
// Public Instance Methods
 void await() throws InterruptedException;
 boolean await(long time, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 long awaitNanos(long nanosTimeout) throws InterruptedException;
 void awaitUninterruptibly();
 boolean awaitUntil(java.util.Date deadline) throws InterruptedException;
 void signal();
 void signalAll();
}

Implementations

 AbstractQueuedSynchronizer.ConditionObject

Passed To

 ReentrantLock.{getWaitingThreads(),
getWaitQueueLength(), hasWaiters(
)}, ReentrantReadWriteLock.{getWaitingThreads(
), getWaitQueueLength(),
hasWaiters()}

Returned By

 Lock.newCondition(),
ReentrantLock.newCondition(),
ReentrantReadWriteLock.ReadLock.newCondition(),
ReentrantReadWriteLock.WriteLock.newCondition()

Name
Lock

Synopsis
This interface represents a flexible API
for preventing thread concurrency with locking.
Lock defines four methods for acquiring a lock.
The simplest method is lock() which blocks
indefinitely and uninterruptibly until the lock is acquired. This
method is similar to entering a synchronized
block. lockInterruptibly() blocks until the lock
is acquired or until the thread is interrupted. The no-argument
version of tryLock() acquires the lock and
returns true if the lock is currently available or
returns false without blocking if the lock is
unavailable. The two-argument version of tryLock(
) is a timed method: it blocks until it acquires the lock
(in which case it returns true), or until the
specified timeout elapses (in which case it returns
false), or until the thread is interrupted (in
which case it throws InterruptedException).
Once a Lock has been acquired, no other thread can
acquire it until it is released with the unlock()
method. In order to ensure that locks are always released, even in
the presence of unanticipated exceptions, it is typical to begin a
try block immediately after acquiring the lock and
to call unlock() from the associated
finally clause.
Obtain a Condition object associated with a
Lock by calling newCondition(
). See Condition for details. See
ReentrantLock for a concrete implementation of the
Lock interface.
public interface Lock {
// Public Instance Methods
 void lock();
 void lockInterruptibly() throws InterruptedException;
 Condition newCondition();
 boolean tryLock();
 boolean tryLock(long time, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 void unlock();
}

Implementations

 ReentrantLock,
ReentrantReadWriteLock.ReadLock,
ReentrantReadWriteLock.WriteLock

Returned By

 ReadWriteLock.{readLock(), writeLock(
)}, ReentrantReadWriteLock.{readLock(),
writeLock()}

Name
LockSupport

Synopsis
This class
provides a low-level alternative to the deprecated methods
Thread.suspend() and Thread.resume(
). The park(), parkNanos(
), and parkUntil() methods suspend, or
park, the thread until it is unparked by another thread with
unpark(), or until it is interrupted by another
thread, or until the specified time elapses. parkNanos(
) parks the thread for the specified number of nanoseconds.
parkUntil() parks the thread until the specified
time, using the millisecond representation of
System.currentTimeMillis(). Any call to these
parking methods may return spuriously, so it is important to call
park() in a loop that can repark the thread if it
should not have resumed.
Unpark a thread with the unpark() method. Note
that while the parking methods affect the current thread, the
unpark() method affects the thread you specify.
If the specified thread is not parked, the next time that thread
calls one of the park() methods, it returns
immediately instead of blocking.
public class LockSupport {
// No Constructor
 // Public Class Methods
 public static void park();
 public static void parkNanos(long nanos);
 public static void parkUntil(long deadline);
 public static void unpark(Thread thread);
}

Name
ReadWriteLock

Synopsis
This interface represents a pair of
Lock objects with special locking behavior that is
useful for concurrent algorithms in which reader threads frequently
access a data structure and writer threads only infrequently modify
the structure. The Lock returned by
readLock() may be locked by multiple threads at
the same time as long as no thread has the writeLock(
) locked. See ReentrantReadWriteLock for
a concrete implementation with implementation-specific locking
details.
public interface ReadWriteLock {
// Public Instance Methods
 Lock readLock();
 Lock writeLock();
}

Implementations

 ReentrantReadWriteLock

Name
ReentrantLock

Synopsis
This class implements the
Lock interface and adds instrumentation methods to
determine what thread currently holds the lock, to return the number
of threads waiting to acquire the lock or waiting on an associated
Condition, and to test whether a specified thread
is waiting to acquire the lock.
The name of this class includes the term
“reentrant” because the thread that
holds the lock can call any of the locking methods again, and they
return immediately without blocking. isHeldByCurrentThread(
) tests whether the current thread already holds the lock.
getHoldCount() returns the number of times that
the current thread has acquired this lock. unlock(
) must be called this number of times before the lock is
actually relinquished.
A “fair” lock may be created by
passing true to the ReentrantLock(
) constructor. If you do this, the lock will always be
granted to the thread that has been waiting for it the longest.
[image: java.util.concurrent.locks.ReentrantLock]

Figure 16-105. java.util.concurrent.locks.ReentrantLock

public class ReentrantLock implements Lock, Serializable {
// Public Constructors
 public ReentrantLock();
 public ReentrantLock(boolean fair);
// Public Instance Methods
 public int getHoldCount(); default:0
 public final int getQueueLength(); default:0
 public int getWaitQueueLength(Condition condition);
 public final boolean hasQueuedThread(Thread thread);
 public final boolean hasQueuedThreads();
 public boolean hasWaiters(Condition condition);
 public final boolean isFair(); default:false
 public boolean isHeldByCurrentThread(); default:false
 public boolean isLocked(); default:false
 // Methods Implementing Lock
 public void lock();
 public void lockInterruptibly() throws InterruptedException;
 public Condition newCondition();
 public boolean tryLock();
 public boolean tryLock(long timeout, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 public void unlock();
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected Thread getOwner();
 protected java.util.Collection<Thread> getQueuedThreads();
 protected java.util.Collection<Thread> getWaitingThreads(Condition condition);
}

Name
ReentrantReadWriteLock

Synopsis
This class implements the
ReadWriteLock interface. The locks returned by the
readLock() and writeLock()
methods are instances of the inner classes
ReadLock and WriteLock.
ReentrantReadWriteLock defines a
“fair mode” and includes
instrumentation methods like ReentrantLock does.
Any number of threads can acquire the read lock as long as no thread
holds or is attempting to acquire the write lock. When a thread
attempts to acquire the write lock, no new read locks are granted.
When all existing readers have relinquished the lock, the writer
acquires the lock, and no reads are allowed until the writer has
relinquished it. A thread that holds the write lock may downgrade to
a read lock by acquiring the read lock and then relinquishing the
write lock.
Because the read lock is not exclusive, it cannot have a
Condition associated with it. The
ReadLock.newCondition() method throws
UnsupportedOperationException.
[image: java.util.concurrent.locks.ReentrantReadWriteLock]

Figure 16-106. java.util.concurrent.locks.ReentrantReadWriteLock

public class ReentrantReadWriteLock implements ReadWriteLock, Serializable {
// Public Constructors
 public ReentrantReadWriteLock();
 public ReentrantReadWriteLock(boolean fair);
// Nested Types
 public static class ReadLock implements Lock, Serializable;
 public static class WriteLock implements Lock, Serializable;
// Public Instance Methods
 public final int getQueueLength(); default:0
 public int getReadLockCount(); default:0
 public int getWaitQueueLength(Condition condition);
 public int getWriteHoldCount(); default:0
 public final boolean hasQueuedThread(Thread thread);
 public final boolean hasQueuedThreads();
 public boolean hasWaiters(Condition condition);
 public final boolean isFair(); default:false
 public boolean isWriteLocked(); default:false
 public boolean isWriteLockedByCurrentThread(); default:false
 public ReentrantReadWriteLock.ReadLock readLock();
 public ReentrantReadWriteLock.WriteLock writeLock();
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected Thread getOwner();
 protected java.util.Collection<Thread> getQueuedReaderThreads();
 protected java.util.Collection<Thread> getQueuedThreads();
 protected java.util.Collection<Thread> getQueuedWriterThreads();
 protected java.util.Collection<Thread> getWaitingThreads(Condition condition);
}

Passed To

 ReentrantReadWriteLock.ReadLock.ReadLock(),
ReentrantReadWriteLock.WriteLock.WriteLock()

Name
ReentrantReadWriteLock.ReadLock

Synopsis
A

 Lock implementation for
reader threads. Any number of threads can acquire the lock as long as
the corresponding WriteLock is not held.
newCondition() throws
UnsupportedOperationException.
public static class ReentrantReadWriteLock.ReadLock implements Lock, Serializable {
// Protected Constructors
 protected ReadLock(ReentrantReadWriteLock lock);
// Methods Implementing Lock
 public void lock();
 public void lockInterruptibly() throws InterruptedException;
 public Condition newCondition();
 public boolean tryLock();
 public boolean tryLock(long timeout, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 public void unlock();
// Public Methods Overriding Object
 public String toString();
}

Returned By

 ReentrantReadWriteLock.readLock()

Name
ReentrantReadWriteLock.WriteLock

Synopsis
A

 Lock implementation for
writer threads. This lock can be acquired only when all holders of
the corresponding ReadLock have relinquished the
locks. While this lock is held, no other thread may acquire either
this lock or the corresponding ReadLock.
public static class ReentrantReadWriteLock.WriteLock implements Lock, Serializable {
// Protected Constructors
 protected WriteLock(ReentrantReadWriteLock lock);
// Methods Implementing Lock
 public void lock();
 public void lockInterruptibly() throws InterruptedException;
 public Condition newCondition();
 public boolean tryLock();
 public boolean tryLock(long timeout, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 public void unlock();
// Public Methods Overriding Object
 public String toString();
}

Returned By

 ReentrantReadWriteLock.writeLock()

Name
Package java.util.jar

Synopsis

 The
java.util.jar
 package contains classes for reading and
writing Java archive, or JAR, files. A JAR file is nothing more than
a ZIP file whose first entry is a specially named manifest file that
contains attributes and digital signatures for the ZIP file entries
that follow it. Many of the classes in this package are relatively
simple extensions of classes from the
java.util.zip package.

 The easiest way to read a JAR file is with
the random-access JarFile class. This class allows
you to obtain the JarEntry that describes any
named file within the JAR archive. It also allows you to obtain an
enumeration of all entries in the archive and an
InputStream for reading the bytes of a specific
JarEntry. Each JarEntry
describes a single entry in the archive and allows access to the
Attributes and the digital signatures associated
with the entry. The JarFile also provides access
to the Manifest object for the JAR archive; this
object contains Attributes for all entries in the
JAR file. Attributes is a mapping of attribute
name/value pairs, of course, and the inner class
Attributes.Name defines constants for various
standard attribute names.

 You can also read a JAR file with
JarInputStream. This class requires to you read
each entry of the file sequentially, however.
JarOutputStream allows you to write out a JAR file
sequentially. Finally, you can also read an entry within a JAR file
and manifest attributes for that entry with a
java.net.JarURLConnection object.

Interfaces
public interface Pack200.Packer;
public interface Pack200.Unpacker;

Collections
public class Attributes implements java.util.Map<Object, Object>, Cloneable;

Other Classes
public static class Attributes.Name;
public class JarEntry extends java.util.zip.ZipEntry;
public class JarFile extends java.util.zip.ZipFile;
public class JarInputStream extends java.util.zip.ZipInputStream;
public class JarOutputStream extends java.util.zip.ZipOutputStream;
public class Manifest implements Cloneable;
public abstract class Pack200;

Exceptions
public class JarException extends java.util.zip.ZipException;

Name
Attributes

Synopsis

 This class is a
java.util.Map that maps the attribute names of a
JAR file manifest to arbitrary string values. The JAR manifest format
specifies that attribute names can contain only the ASCII characters
A to Z (uppercase and lowercase), the digits 0 through 9, and the
hyphen and underscore characters. Thus, this class uses
Attributes.Name as the type of attribute names, in
addition to the more general String class.
Although you can create your own Attributes
objects, you more commonly obtain Attributes
objects from a Manifest.
[image: java.util.jar.Attributes]

Figure 16-107. java.util.jar.Attributes

public class Attributes implements java.util.Map<Object,Object>, Cloneable {
// Public Constructors
 public Attributes();
 public Attributes(java.util.jar.Attributes attr);
 public Attributes(int size);
// Nested Types
 public static class Name;
// Public Instance Methods
 public String getValue(String name);
 public String getValue(Attributes.Name name);
 public String putValue(String name, String value);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object name);
 public boolean containsValue(Object value);
 public java.util.Set<java.util.Map.Entry<Object,Object>> entrySet();
 public boolean equals(Object o);
 public Object get(Object name);
 public int hashCode();
 public boolean isEmpty(); default:true
 public java.util.Set<Object> keySet();
 public Object put(Object name, Object value);
 public void putAll(java.util.Map<?,?> attr);
 public Object remove(Object name);
 public int size();
 public java.util.Collection<Object> values();
// Public Methods Overriding Object
 public Object clone();
// Protected Instance Fields
 protected java.util.Map<Object,Object> map;
}

Returned By

 java.net.JarURLConnection.{getAttributes(),
getMainAttributes()},
JarEntry.getAttributes(),
Manifest.{getAttributes(),
getMainAttributes()}

Name
Attributes.Name

Synopsis

 This
class represents the name of an attribute in an
Attributes object. It defines constants for the
various standard attribute names used in JAR file manifests.
Attribute names can contain only ASCII letters, digits, and the
hyphen and underscore characters. Any other Unicode characters are
illegal.
public static class Attributes.Name {
// Public Constructors
 public Name(String name);
// Public Constants
 public static final Attributes.Name CLASS_PATH;
 public static final Attributes.Name CONTENT_TYPE;
1.3 public static final Attributes.Name EXTENSION_INSTALLATION;
1.3 public static final Attributes.Name EXTENSION_LIST;
1.3 public static final Attributes.Name EXTENSION_NAME;
 public static final Attributes.Name IMPLEMENTATION_TITLE;
1.3 public static final Attributes.Name IMPLEMENTATION_URL;
 public static final Attributes.Name IMPLEMENTATION_VENDOR;
1.3 public static final Attributes.Name IMPLEMENTATION_VENDOR_ID;
 public static final Attributes.Name IMPLEMENTATION_VERSION;
 public static final Attributes.Name MAIN_CLASS;
 public static final Attributes.Name MANIFEST_VERSION;
 public static final Attributes.Name SEALED;
 public static final Attributes.Name SIGNATURE_VERSION;
 public static final Attributes.Name SPECIFICATION_TITLE;
 public static final Attributes.Name SPECIFICATION_VENDOR;
 public static final Attributes.Name SPECIFICATION_VERSION;
// Public Methods Overriding Object
 public boolean equals(Object o);
 public int hashCode();
 public String toString();
}

Passed To

 java.util.jar.Attributes.getValue()

Name
JarEntry

Synopsis

 This
class extends java.util.zip.ZipEntry; it
represents a single file in a JAR archive and the manifest attributes
and digital signatures associated with that file.
JarEntry objects can be read from a JAR file with
JarFile or JarInputStream, and
they can be written to a JAR file with
JarOutputStream. Use getAttributes(
) to obtain the Attributes for the
entry. Use getCertificates() to obtain a
java.security.cert.Certificate array that contains
the certificate chains for all digital signatures associated with the
file. In Java 5.0, this digital signature information may be more
conveniently retrieved as an array of CodeSigner
objects.
[image: java.util.jar.JarEntry]

Figure 16-108. java.util.jar.JarEntry

public class JarEntry extends java.util.zip.ZipEntry {
// Public Constructors
 public JarEntry(String name);
 public JarEntry(java.util.zip.ZipEntry ze);
 public JarEntry(JarEntry je);
// Public Instance Methods
 public java.util.jar.Attributes getAttributes() throws java.io.IOException;
 public java.security.cert.Certificate[] getCertificates();
5.0 public java.security.CodeSigner[] getCodeSigners();
}

Returned By

 java.net.JarURLConnection.getJarEntry(),
JarFile.getJarEntry(),
JarInputStream.getNextJarEntry()

Name
JarException

Synopsis

 Signals an
error while reading or writing a JAR file.
[image: java.util.jar.JarException]

Figure 16-109. java.util.jar.JarException

public class JarException extends java.util.zip.ZipException {
// Public Constructors
 public JarException();
 public JarException(String s);
}

Name
JarFile

Synopsis

 This class
represents a JAR file and allows the manifest, file list, and
individual files to be read from the JAR file. It extends
java.util.zip.ZipFile, and its use is similar to
that of its superclass. Create a JarFile by
specifying a filename or File object. If you do
not want JarFile to attempt to verify any digital
signatures contained in the JarFile, pass an
optional boolean argument of false to the
JarFile() constructor. As of Java 1.3, temporary
JAR files can be automatically deleted when they are closed. To take
advantage of this feature, pass
ZipFile.OPEN_READ|ZipFile.OPEN_DELETE as the
mode argument to the JarFile(
) constructor.

 Once you
have created a JarFile object, obtain the JAR
Manifest with getManifest().
Obtain an enumeration of the
java.util.zip.ZipEntry objects in the file with
entries(). Get the JarEntry
for a specified file in the JAR file with getJarEntry(
). To read the contents of a specific entry in the JAR
file, obtain the JarEntry or
ZipEntry object that represents that entry, pass
it to getInputStream(), and then read until the
end of that stream. JarFile does not support the
creation of new JAR files or the modification of existing files.
[image: java.util.jar.JarFile]

Figure 16-110. java.util.jar.JarFile

public class JarFile extends java.util.zip.ZipFile {
// Public Constructors
 public JarFile(String name) throws java.io.IOException;
 public JarFile(java.io.File file) throws java.io.IOException;
 public JarFile(String name, boolean verify) throws java.io.IOException;
 public JarFile(java.io.File file, boolean verify) throws java.io.IOException;
1.3 public JarFile(java.io.File file, boolean verify, int mode) throws java.io.IOException;
// Public Constants
 public static final String MANIFEST_NAME; ="META-INF/MANIFEST.MF"
// Public Instance Methods
 public JarEntry getJarEntry(String name);
 public Manifest getManifest() throws java.io.IOException;
// Public Methods Overriding ZipFile
 public java.util.Enumeration<JarEntry> entries();
 public java.util.zip.ZipEntry getEntry(String name);
 public java.io.InputStream getInputStream(java.util.zip.ZipEntry ze)
 throws java.io.IOException; synchronized
}

Passed To

 Pack200.Packer.pack()

Returned By

 java.net.JarURLConnection.getJarFile()

Name
JarInputStream

Synopsis

 This class allows a JAR file to be read
from an input stream. It extends
java.util.ZipInputStream and is used much like
that class is used. To create a JarInputStream,
simply specify the InputStream from which to read.
If you do not want the JarInputStream to attempt
to verify any digital signatures contained in the JAR file, pass
false as the second argument to the
JarInputStream() constructor. The
JarInputStream() constructor first reads the JAR
manifest entry, if one exists. The manifest must be the first entry
in the JAR file. getManifest() returns the
Manifest object for the JAR file.

 Once you have created a
JarInputStream, call getNextJarEntry(
) or getNextEntry() to obtain the
JarEntry or
java.util.zip.ZipEntry object that describes the
next entry in the JAR file. Then, call a read()
method (including the inherited versions) to read the contents of
that entry. When the stream reaches the end of file, call
getNextJarEntry() again to start reading the next
entry in the file. When all entries have been read from the JAR file,
getNextJarEntry() and getNextEntry(
) return null.
[image: java.util.jar.JarInputStream]

Figure 16-111. java.util.jar.JarInputStream

public class JarInputStream extends java.util.zip.ZipInputStream {
// Public Constructors
 public JarInputStream(java.io.InputStream in) throws java.io.IOException;
 public JarInputStream(java.io.InputStream in, boolean verify) throws java.io.IOException;
// Public Instance Methods
 public Manifest getManifest();
 public JarEntry getNextJarEntry() throws java.io.IOException;
// Public Methods Overriding ZipInputStream
 public java.util.zip.ZipEntry getNextEntry() throws java.io.IOException;
 public int read(byte[] b, int off, int len) throws java.io.IOException;
// Protected Methods Overriding ZipInputStream
 protected java.util.zip.ZipEntry createZipEntry(String name);
}

Passed To

 Pack200.Packer.pack()

Name
JarOutputStream

Synopsis

 This
class can write a JAR file to an arbitrary
OutputStream. JarOutputStream
extends java.util.zip.ZipOutputStream and is used
much like that class is used. Create a
JarOutputStream by specifying the stream to write
to and, optionally, the Manifest object for the
JAR file. The JarOutputStream() constructor
starts by writing the contents of the Manifest
object into an appropriate JAR file entry. It is the
programmer’s responsibility to ensure that the
contents of the JAR entries written subsequently match those
specified in the Manifest object. This class
provides no explicit support for attaching digital signatures to
entries in the JAR file.

 After creating a
JarOutputStream, call putNextEntry(
) to specify the JarEntry or
java.util.zip.ZipEntry to be written to the
stream. Then, call any of the inherited write()
methods to write the contents of the entry to the stream. When that
entry is finished, call putNextEntry() again to
begin writing the next entry. When you have written all JAR file
entries in this way, call close(). Before writing
any entry, you may call the inherited setMethod()
and setLevel() methods to specify how the entry
should be compressed. See
java.util.zip.ZipOutputStream.
[image: java.util.jar.JarOutputStream]

Figure 16-112. java.util.jar.JarOutputStream

public class JarOutputStream extends java.util.zip.ZipOutputStream {
// Public Constructors
 public JarOutputStream(java.io.OutputStream out) throws java.io.IOException;
 public JarOutputStream(java.io.OutputStream out, Manifest man) throws java.io.IOException;
// Public Methods Overriding ZipOutputStream
 public void putNextEntry(java.util.zip.ZipEntry ze) throws java.io.IOException;
}

Passed To

 Pack200.Unpacker.unpack()

Name
Manifest

Synopsis

 This
class represents the manifest entry of a JAR file.
getMainAttributes() returns an
Attributes object that represents the manifest
attributes that apply to the entire JAR file. getAttributes(
) returns an Attributes object that
represents the manifest attributes specified for a single file in the
JAR file. getEntries() returns a
java.util.Map that maps the names of entries in
the JAR file to the Attributes objects associated
with those entries. getEntries() returns the
Map object used internally by the
Manifest. You can edit the contents of the
Manifest by adding, deleting, or editing entries
in the Map. read() reads
manifest entries from an input stream, merging them into the current
set of entries. write() writes the
Manifest out to the specified output stream.
[image: java.util.jar.Manifest]

Figure 16-113. java.util.jar.Manifest

public class Manifest implements Cloneable {
// Public Constructors
 public Manifest();
 public Manifest(Manifest man);
 public Manifest(java.io.InputStream is) throws java.io.IOException;
// Public Instance Methods
 public void clear();
 public java.util.jar.Attributes getAttributes(String name);
 public java.util.Map<String,java.util.jar.Attributes> getEntries(); default:HashMap
 public java.util.jar.Attributes getMainAttributes();
 public void read(java.io.InputStream is) throws java.io.IOException;
 public void write(java.io.OutputStream out) throws java.io.IOException;
// Public Methods Overriding Object
 public Object clone();
 public boolean equals(Object o);
 public int hashCode();
}

Passed To

 java.net.URLClassLoader.definePackage(),
JarOutputStream.JarOutputStream()

Returned By

 java.net.JarURLConnection.getManifest(),
JarFile.getManifest(),
JarInputStream.getManifest()

Name
Pack200

Synopsis
This class
is
a factory for creating Pack200.Packer and
Pack200.Unpacker objects for compressing JAR files
to Pack200 archives and for uncompresssing those archives back into
JAR files.
public abstract class Pack200 {
// No Constructor
 // Nested Types
 public interface Packer;
 public interface Unpacker;
// Public Class Methods
 public static Pack200.Packer newPacker(); synchronized
 public static Pack200.Unpacker newUnpacker();
}

Name
Pack200.Packer

Synopsis
This interface defines the API for an
object that can convert a JAR file to an output stream in Pack200 (or
gzipped Pack200) format. Obtain a Packer object
with the Pack200.newPacker() factory method.
Configure the packer before using it by setting properties in the
Map returned by the properties(
) method. The constants defined by this class represent the
names (and in some cases values) of properties that can be set. Pack
a JAR file by passing JarFile or
JarInputStream to a pack()
method along with the byte output stream to which the packed
representation should be written. You can monitor the progress of the
packer engine by querying the PROGRESS property in
the properties() map. The value is the completion
percentage as an integer between 0 and 100 (or -1 to indicate a stall
or error.) If you want to be notified of changes to the
PROGRESS property, register a
java.beans.PropertyChangeListener with
addPropertyChangeListener(). See also the
pack200 command in Chapter 8.
public interface Pack200.Packer {
// Public Constants
 public static final String CLASS_ATTRIBUTE_PFX; ="pack.class.attribute."
 public static final String CODE_ATTRIBUTE_PFX; ="pack.code.attribute."
 public static final String DEFLATE_HINT; ="pack.deflate.hint"
 public static final String EFFORT; ="pack.effort"
 public static final String ERROR; ="error"
 public static final String FALSE; ="false"
 public static final String FIELD_ATTRIBUTE_PFX; ="pack.field.attribute."
 public static final String KEEP; ="keep"
 public static final String KEEP_FILE_ORDER; ="pack.keep.file.order"
 public static final String LATEST; ="latest"
 public static final String METHOD_ATTRIBUTE_PFX; ="pack.method.attribute."
 public static final String MODIFICATION_TIME; ="pack.modification.time"
 public static final String PASS; ="pass"
 public static final String PASS_FILE_PFX; ="pack.pass.file."
 public static final String PROGRESS; ="pack.progress"
 public static final String SEGMENT_LIMIT; ="pack.segment.limit"
 public static final String STRIP; ="strip"
 public static final String TRUE; ="true"
 public static final String UNKNOWN_ATTRIBUTE; ="pack.unknown.attribute"
// Event Registration Methods (by event name)
 void addPropertyChangeListener(java.beans.PropertyChangeListener listener);
 void removePropertyChangeListener(java.beans.PropertyChangeListener listener);
// Public Instance Methods
 void pack(JarInputStream in, java.io.OutputStream out) throws java.io.IOException;
 void pack(JarFile in, java.io.OutputStream out) throws java.io.IOException;
 java.util.SortedMap<String,String> properties();
}

Returned By

 Pack200.newPacker()

Name
Pack200.Unpacker

Synopsis
This interface defines an API for
converting a file or stream in Pack200 (or gzipped Pack200) format
into a JAR file in the form of a JarOutputStream.
Obtain an Unpacker object with the
Pack200.newUnpacker() method. Before using an
unpacker, you may configure it by setting properties in the
Map returned by the properties(
) method. Unpack a JAR file with the unpack(
) method, specifying a File or stream of
packed bytes. Monitor the progress of the unpacker by querying the
PROGRESS key in the Map
returned by properties(). The value should be an
Integer representing a completion percentage
between 0 and 100. If you want to be notified of changes to the
PROGRESS property, register a
java.beans.PropertyChangeListener with
addPropertyChangeListener(). See also the
unpack200 command in Chapter 8.
public interface Pack200.Unpacker {
// Public Constants
 public static final String DEFLATE_HINT; ="unpack.deflate.hint"
 public static final String FALSE; ="false"
 public static final String KEEP; ="keep"
 public static final String PROGRESS; ="unpack.progress"
 public static final String TRUE; ="true"
// Event Registration Methods (by event name)
 void addPropertyChangeListener(java.beans.PropertyChangeListener listener);
 void removePropertyChangeListener(java.beans.PropertyChangeListener listener);
// Public Instance Methods
 java.util.SortedMap<String,String> properties();
 void unpack(java.io.InputStream in, JarOutputStream out) throws java.io.IOException;
 void unpack(java.io.File in, JarOutputStream out) throws java.io.IOException;
}

Returned By

 Pack200.newUnpacker()

Name
Package java.util.logging

Synopsis
The java.util.logging

 package defines a sophisticated and
highly-configurable logging facility that Java applications can use
to emit, filter, format, and output warning, diagnostic, tracing and
debugging messages. An application generates log messages by calling
various methods of a Logger object. The content of
a log message (with other pertinant details such as the time and
sequence number) is encapsulated in a LogRecord
object generated by the Logger. A
Handler object represents a destination for
LogRecord objects. Concrete subclasses of
Handler support destinations such as files and
sockets. Most Handler objects have an associated
Formatter that converts a
LogRecord object into the actual text that is
logged. The subclasses SimpleFormatter and
XMLFormatter produce simple plain-text log
messages and detailed XML logs respectively.
Each log message has an associated severity level. The
Level class defines a type-safe enumeration of
defined levels. Logger and
Handler objects both have an associated
Level, and discard any log messages whose severity
is less than that specified level. In addition to this level-based
filtering, Logger and Handler
objects may also have an associated Filter object
which may be implemented to filter log messages based on any desired
criteria.
Applications that desire complete control over the logs they generate
can create a Logger object, along with
Handler, Formatter and
Filter objects that control the destination,
content, and appearance of the log. Simpler applications need only to
create a Logger for themselves, and can leave the rest to the
LogManager class. LogManager
reads a system-wide configuration file (or a configuration class) and
automatically directs log messages to a standard destination (or
destinations) for the system. In Java 5.0,
LoggingMXBean defines an interface for monitoring
and management of the logging facility through the
javax.management packages (which are beyond the
scope of this book).

Interfaces
public interface Filter;
public interface LoggingMXBean;

Classes
public class ErrorManager;
public abstract class Formatter;
 public class SimpleFormatter extends Formatter;
 public class XMLFormatter extends Formatter;
public abstract class Handler;
 public class MemoryHandler extends Handler;
 public class StreamHandler extends Handler;
 public class ConsoleHandler extends StreamHandler;
 public class FileHandler extends StreamHandler;
 public class SocketHandler extends StreamHandler;
public class Level implements Serializable;
public class Logger;
public final class LoggingPermission extends java.security.BasicPermission;
public class LogManager;
public class LogRecord implements Serializable;

Name
ConsoleHandler

Synopsis
This
 Handler subclass
formats LogRecord objects and outputs the
resulting string to the System.err output stream.
When a ConsoleHandler is created, the various
properties inherited from Handler are initialized
using system-wide defaults obtained by querying named values with
LogManager.getProperty(). The table below lists
these properties, the value passed to getProperty(
), and the default value used if getProperty(
) returns null. See
Handler for further details.
	
 Handler property

 	
 LogManager property name

 	
 Default

	
 level

 	
 java.util.logging.ConsoleHandler.level

 	
 Level.INFO

	
 filter

 	
 java.util.logging.ConsoleHandler.filter

 	
 null

	
 formatter

 	
 java.util.logging.ConsoleHandler.formatter

 	
 SimpleFormatter

	
 encoding

 	
 java.util.logging.ConsoleHandler.encoding

 	
 platform default

[image: java.util.logging.ConsoleHandler]

Figure 16-114. java.util.logging.ConsoleHandler

public class ConsoleHandler extends StreamHandler {
// Public Constructors
 public ConsoleHandler();
// Public Methods Overriding StreamHandler
 public void close();
 public void publish(LogRecord record);
}

Name
ErrorManager

Synopsis
An important feature of the Logging API is
that the logging methods called by applications never throw
exceptions: it is not reasonable to expect programmers to nest all
their logging calls within try/catch blocks, and
even if they did, there is no useful way for an application to
recover from an exception in the logging subsystem. Since handler
classes such as FileHandler are inherently subject
to I/O exceptions, the ErrorManager provides a way
for a handler to report an exception instead of simply discarding it.
All Handler objects have an instance of
ErrorManager associated with them. If an exception
occurs in the handler, it passes the exception, along with a message
and one of the error code constants defined by
ErrorManager to the error()
method. error() writes a message describing the
exception to System.err, but does so only the
first time it is called: the expectation is that a
Handler that throws an exception once will
continue to throw the same exception with each subsequent log
message, and it is not useful to flood System.err
with repeated error messages. You can of course define subclasses of
ErrorManager that override error(
) to provide some other reporting mechanism. If you do
this, register an instance of your custom
ErrorManager by calling the
setErrorManager() method of your
Handler.
public class ErrorManager {
// Public Constructors
 public ErrorManager();
// Public Constants
 public static final int CLOSE_FAILURE; =3
 public static final int FLUSH_FAILURE; =2
 public static final int FORMAT_FAILURE; =5
 public static final int GENERIC_FAILURE; =0
 public static final int OPEN_FAILURE; =4
 public static final int WRITE_FAILURE; =1
 // Public Instance Methods
 public void error(String msg, Exception ex, int code); synchronized
}

Passed To

 Handler.setErrorManager()

Returned By

 Handler.getErrorManager()

Name
FileHandler

Synopsis
This
 Handler subclass formats
LogRecord objects and outputs the resulting
strings to a file or to a rotating set of files. Arguments passed to
the FileHandler() constructor specify which file
or files are used, and how they are used. The arguments are optional,
and if they are not specified, defaults are obtained through
LogManager.getProperty() as described below. The
constructor arguments are:
	
 pattern

	A string containing substitution characters that describes one or
more files to use. The substitutions performed to convert this
pattern to a filename are described below.

	
 limit

	An approximate maximum file size for the log file, or 0 for no limit.
If count is set to greater than one, then
when a log file reaches this maximum, FileHandler
closes it, renames it, and then starts a new log with the original
filename.

	
 count

	When limit is set to be nonzero, this
arguemnt specifies the number of old log files to retain.

	
 append

	
 true if the FileHandler should
append to log messages already in the named file, or
false if it should overwrite the file.

The pattern argument is the most important
of these: it specifies which file or files the
FileHandler will write to.
FileHandler performs the following substitutions
on the specified pattern to convert it to a filename:
	
 For

 	
 Substitute

	

 /

 	
 The directory separator character for the platform. This means that
you can always use a forward slash in your patterns, even on Windows
filesystems that use backward slashes.

	

 %%

 	
 A single literal percent sign.

	

 %h

 	
 The user’s home directory: the value of the system
property “user.home”.

	

 %t

 	
 The temporary directory for the system.

	

 %u

 	
 A unique number to be used to distinguish this log file from other
log files with the same pattern (this may be necessary when multiple
Java programs are creating logs at the same time).

	

 %g

 	
 The “generation number” of old log
files when the limit argument is nonzero
and the count argument is greater than
one. FileHandler always writes log records into a
file in which %g is replaced by 0. But when that file fills up, it is
closed and renamed with the 0 replaced by a 1. Older files are
similarly renamed, with their generation number being incremented.
When the number of log files reaches the number specifed by
count, then the oldest file is deleted to
make room for the new one.

When a FileHandler is created, the
LogManager.getProperty() method is used to obtain
defaults for any unspecified constructor arguments, and also to
obtian initial values for the various properties inherited from
Handler. The table below lists these arguments and
properties, the value passed to getProperty(),
and the default value used if getProperty()
returns null. See Handler for
further details.
	
 Property or argument

 	
 LogManager property name

 	
 Default

	

 level

 	
 java.util.logging.FileHandler.level

 	
 Level.ALL

	

 filter

 	
 java.util.logging.FileHandler.filter

 	
 null

	

 formatter

 	
 java.util.logging.FileHandler.formatter

 	
 XMLFormatter

	

 encoding

 	
 java.util.logging.FileHandler.encoding

 	
 platform default

	

 pattern

 	
 java.util.logging.FileHandler.pattern

 	
 %h/java%u.log

	

 limit

 	
 java.util.logging.FileHandler.limit

 	
 0 (no limit)

	

 count

 	
 java.util.logging.FileHandler.count

 	
 1

	

 append

 	
 java.util.logging.FileHandler.append

 	
 false

[image: java.util.logging.FileHandler]

Figure 16-115. java.util.logging.FileHandler

public class FileHandler extends StreamHandler {
// Public Constructors
 public FileHandler() throws java.io.IOException, SecurityException;
 public FileHandler(String pattern) throws java.io.IOException, SecurityException;
 public FileHandler(String pattern, boolean append)
 throws java.io.IOException, SecurityException;
 public FileHandler(String pattern, int limit, int count)
 throws java.io.IOException, SecurityException;
 public FileHandler(String pattern, int limit, int count,
 boolean append) throws java.io.IOException, SecurityException;
// Public Methods Overriding StreamHandler
 public void close() throws SecurityException; synchronized
 public void publish(LogRecord record); synchronized
}

Name
Filter

Synopsis
This interface defines the method that a
class must implement if it wants to filter log messages for a
Logger or Handler class.
isLoggable() should return
true if the specified LogRecord
contains information that should be logged. It should return
false if the LogRecord should
be filtered out not appear in any destination log. Note that both
Logger and Handler provide
built-in filtering based on the severity level of the
LogRecord. This Filter
interface exists to provide a customized filtering capability.
public interface Filter {
// Public Instance Methods
 boolean isLoggable(LogRecord record);
}

Passed To

 Handler.setFilter(), Logger.setFilter(
)

Returned By

 Handler.getFilter(), Logger.getFilter(
)

Name
Formatter

Synopsis
A Formatter
 object is
used by a Handler to convert a
LogRecord to a String prior to logging it. Most
applications can simply use one one of the pre-defined concrete
subclasses: SimpleFormatter or
XMLFormatter. Applications requiring custom
formatting of log messages will need to subclass this class and
define the format() method to perform the desired
conversion. Such subclasses may find the formatMessage(
) method useful: it performs localization using
java.util.ResourceBundle and formatting using the
facilities of the java.text package.
getHead() and getTail()
return a prefix and suffix (such as opening and closing XML tags) for
a log file.
public abstract class Formatter {
// Protected Constructors
 protected Formatter();
// Public Instance Methods
 public abstract String format(LogRecord record);
 public String formatMessage(LogRecord record); synchronized
 public String getHead(Handler h);
 public String getTail(Handler h);
}

Subclasses

 SimpleFormatter, XMLFormatter

Passed To

 Handler.setFormatter(),
StreamHandler.StreamHandler()

Returned By

 Handler.getFormatter()

Name
Handler

Synopsis
A Handler
 takes LogRecord
objects from a Logger and, if their severity level
is high enough, formats and publishes them to some destination (a
file or socket, for example). The subclasses of this abstract class
support various destinations, and implement destination-specific
publish(), flush() and
close() methods.
In addition to the destination-specific abstract methods, this class
also defines concrete methods used by most Handler
subclasses. These are property getter and setter methods to specify
the severity Level of logging messages to be
handled, an optional Filter, a
Formatter to convert log messages from
LogRecord objects to text, a text encoding for the
output text, and an ErrorManager to handle any
exceptions that arise during log output. Subclass-specific defaults
for each of these properties are typically defined as properties of
LogManager and are read from a system-wide logging configuration
file.
In the simplest uses of the Logging API, a Logger
sends it log messages to one or more handlers defined by the
LogManager class for its “root
logger”. In this case there is no need for the
application to ever instantiate or use a Handler
directly. Applications that want custom control over the destination
of their logs create and configure an instance of a
Handler subclass, but never need to call its
publish(), flush() or
close() methods directly: that is done by the
Logger.
public abstract class Handler {
// Protected Constructors
 protected Handler();
// Public Instance Methods
 public abstract void close() throws SecurityException;
 public abstract void flush();
 public String getEncoding();
 public ErrorManager getErrorManager();
 public Filter getFilter();
 public java.util.logging.Formatter getFormatter();
 public Level getLevel(); synchronized
 public boolean isLoggable(LogRecord record);
 public abstract void publish(LogRecord record);
 public void setEncoding(String encoding) throws SecurityException,
 java.io.UnsupportedEncodingException;
 public void setErrorManager(ErrorManager em);
 public void setFilter(Filter newFilter) throws SecurityException;
 public void setFormatter(java.util.logging.Formatter newFormatter)
 throws SecurityException;
 public void setLevel(Level newLevel) throws SecurityException; synchronized
 // Protected Instance Methods
 protected void reportError(String msg, Exception ex, int code);
}

Subclasses

 MemoryHandler, StreamHandler

Passed To

 java.util.logging.Formatter.{getHead(),
getTail()}, Logger.{addHandler(
), removeHandler()},
MemoryHandler.MemoryHandler(),
XMLFormatter.{getHead(), getTail(
)}

Returned By

 Logger.getHandlers()

Name
Level

Synopsis
This class
defines constants that represent the seven standard severity levels
for log messages plus constants that turn logging off and enable
logging at any level. When logging is enabled at one severity level,
it is also enabled at all higher levels. The seven level constants,
in order from most severe to least severe are:
SEVERE, WARNING,
INFO, CONFIG,
FINE, FINER, and
FINEST. The constant ALL enable
logging of any message, regardless of its level. The constant
OFF disables logging entirely. Note that these
constants are all Level objects, rather than
integers. This provides type safety.
Application code should rarely, if ever, need to use any of the
methods of this class: instead they can simply use the constants it
defines.
[image: java.util.logging.Level]

Figure 16-116. java.util.logging.Level

public class Level implements Serializable {
// Protected Constructors
 protected Level(String name, int value);
 protected Level(String name, int value, String resourceBundleName);
// Public Constants
 public static final Level ALL;
 public static final Level CONFIG;
 public static final Level FINE;
 public static final Level FINER;
 public static final Level FINEST;
 public static final Level INFO;
 public static final Level OFF;
 public static final Level SEVERE;
 public static final Level WARNING;
// Public Class Methods
 public static Level parse(String name) throws IllegalArgumentException; synchronized
 // Public Instance Methods
 public String getLocalizedName();
 public String getName();
 public String getResourceBundleName();
 public final int intValue();
// Public Methods Overriding Object
 public boolean equals(Object ox);
 public int hashCode();
 public final String toString();
}

Passed To
Too many methods to list.

Returned By

 Handler.getLevel(), Logger.getLevel(
), LogRecord.getLevel(),
MemoryHandler.getPushLevel()

Name
Logger

Synopsis
A
 Logger object is used
to emit log messages. Logger does not have a
public constructor, but there are several ways to obtain a
Logger object to use in your code:
	Typically, applications call the static getLogger(
) method to create or lookup a named
Logger within a hierarchy of named loggers.
Loggers have dot-separated hierarchical names, which should be based
on the name of the class or package that uses them. Loggers obtained
in this way inherit their logging level, resource bundle (for
localization), and Handler objects from their
ancestors in the hierarchy and, ultimately, from the root
Logger defined by the global
LogManager.

	Applets that require a Logger with no security
restrictions should use the static getAnonymousLogger(
) method to create an unnamed Logger
that is not part of the hierarchy of named Logger
objects managed by the LogManager. A
Logger created by this method has the
LogManager root logger as its parent, and inherits
the logging level and handlers of that root logger.

	Finally, the static Logger.global field refers to
a pre-defined Logger named
“global”; programmers may find this
pre-defined Logger convenient during the early
stages of application development, but it should not be used in
production code.

Once a suitable Logger has been obtained, there
are a variety of methods that can be used to create a log message:
	The log() methods log a specified message at the
specified level, with optional parameters that can be used in message
localization. These methods examine the call stack and make an
attempt to determine the class and method name from which the method
is emitted. Because of code optimization and just-in-time compilation
techniques, however, they may not always be able to determine this
information.

	The logp() (“log
precise”) methods are like the log(
) methods but allow you to explicitly specify the name of
the class and method that are emitting the log message.

	The logrb() methods are like the logp(
) methods, but additionally take the name of a resource
bundle to use for localizing the message.

	
 entering(), exiting(), and
throwing() are convenience methods for emitting
log messages that trace the execution of a program. These methods use
a logging level of Level.FINER. Note that there
are variants of entering() and exiting(
) that allow specification of method arguments and return
values.

	Finally, Logger defines a set of easy-to-use
convenience methods for logging a simple message at a specific
logging level. These methods have the same names as the logging
levels: severe(), warning(),
info(), config(),
fine(), finer(),
finest().

A Logger has an associated logging
Level, and discards any log messages with a
severity lower than this. The severity level is initialized from the
system configuration file, which is usually the desired behavior. You
can explicitly override this setting with setLevel(
). You might want to do this if you created the
Logger with getAnonymousLogger(
) and have read the desired logging level from a
configuration file of your own. If level-based filtering of log
messages is not sufficient, you can associate a
Filter with your Logger by
calling setFilter. If you do this, any log
messages rejected by the Filter will be discarded.
A Logger sends its log messages to any
Handler objects that have been registered with
addHandler(). Call getHandlers(
) to obtain an array of all registered handlers, and call
removeHandler() to de-register a handler. By
default, all log messages are also sent to the handlers of the parent
logger and any other ancestor loggers. Since all named and anonymous
loggers have the LogManager root logger as a
parent or ancestor, all loggers by default send their log messages to
the handlers defined in the system logging configuration file. See
LogManager for details. If you do not want a
Logger to use the handlers of its ancestors, pass
false to setUseParentHandlers(
).

 getLogger() and getAnonymousLogger(
) allow you to specify the name of a
java.util.ResourceBundle for use in localizing log
messages, and logrb() allows you to specify the
name of a resource bundle to use to localize a specific log message.
If a resource bundle is specified for the Logger
or for a specific log message, then the message argument to the
various logging methods is treated not as a literal message but
instead as a localization key for which a localized version is to be
looked up in the resource bundle. As part of the localization, any
parameters, such as those specified by the
param1 and
params arguments to the log(
) method are substituted into the localized message string
as per java.text.MessageFormat. (Note, however
that this localization and formatting is not performed by the Logger
itself: instead, it simply stores the
ResourceBundle and parameters in the
LogRecord. It is the Formatter
associated with the output Handler object that
actually performs the localization.)
All the methods of this class are threadsafe and do not require
external synchronization.
public class Logger {
// Protected Constructors
 protected Logger(String name, String resourceBundleName);
// Public Constants
 public static final Logger global;
// Public Class Methods
 public static Logger getAnonymousLogger(); synchronized
 public static Logger getAnonymousLogger(String resourceBundleName); synchronized
 public static Logger getLogger(String name); synchronized
 public static Logger getLogger(String name, String resourceBundleName); synchronized
 // Public Instance Methods
 public void addHandler(Handler handler) throws SecurityException; synchronized
 public void config(String msg);
 public void entering(String sourceClass, String sourceMethod);
 public void entering(String sourceClass, String sourceMethod, Object param1);
 public void entering(String sourceClass, String sourceMethod, Object[] params);
 public void exiting(String sourceClass, String sourceMethod);
 public void exiting(String sourceClass, String sourceMethod, Object result);
 public void fine(String msg);
 public void finer(String msg);
 public void finest(String msg);
 public Filter getFilter();
 public Handler[] getHandlers(); synchronized
 public Level getLevel();
 public String getName();
 public Logger getParent();
 public java.util.ResourceBundle getResourceBundle();
 public String getResourceBundleName();
 public boolean getUseParentHandlers(); synchronized
 public void info(String msg);
 public boolean isLoggable(Level level);
 public void log(LogRecord record);
 public void log(Level level, String msg);
 public void log(Level level, String msg, Throwable thrown);
 public void log(Level level, String msg, Object param1);
 public void log(Level level, String msg, Object[] params);
 public void logp(Level level, String sourceClass, String sourceMethod,
 String msg);
 public void logp(Level level, String sourceClass, String sourceMethod,
 String msg, Object param1);
 public void logp(Level level, String sourceClass, String sourceMethod,
 String msg, Object[] params);
 public void logp(Level level, String sourceClass, String sourceMethod,
 String msg, Throwable thrown);
 public void logrb(Level level, String sourceClass, String sourceMethod,
 String bundleName, String msg);
 public void logrb(Level level, String sourceClass, String sourceMethod,
 String bundleName, String msg, Object param1);
 public void logrb(Level level, String sourceClass, String sourceMethod,
 String bundleName, String msg, Throwable thrown);
 public void logrb(Level level, String sourceClass, String sourceMethod,
 String bundleName, String msg, Object[] params);
 public void removeHandler(Handler handler) throws SecurityException; synchronized
 public void setFilter(Filter newFilter) throws SecurityException;
 public void setLevel(Level newLevel) throws SecurityException;
 public void setParent(Logger parent);
 public void setUseParentHandlers(boolean useParentHandlers); synchronized
 public void severe(String msg);
 public void throwing(String sourceClass, String sourceMethod, Throwable thrown);
 public void warning(String msg);
}

Passed To

 LogManager.addLogger()

Returned By

 LogManager.getLogger()

Name
LoggingMXBean

Synopsis
This
 interface
defines the API for the javax.management
“management bean” for the logging
system. Obtain an instance with the static method
LogManager.getLoggingMXBean(). The methods of
this class allow the monitoring of all registered loggers and their
logging level and allow management to change the logging level of any
named logger.
public interface LoggingMXBean {
// Public Instance Methods
 String getLoggerLevel(String loggerName);
 java.util.List<String> getLoggerNames();
 String getParentLoggerName(String loggerName);
 void setLoggerLevel(String loggerName, String levelName);
}

Returned By

 LogManager.getLoggingMXBean()

Name
LoggingPermission

Synopsis
This
 class
is a java.security.Permission that governs the use
of security-sensitive logging methods. The single defined name (or
target) for LoggingPermission is
“control” which represents
permission to invoke various logging control methods such as
Logger.setLevel() and
LogManager.readConfiguration(). The methods in
this package that throw SecurityException all
require a LoggingPermission named
“control” in order to run.
Application programmers never need to use this class. System
adminstrators configuring security policies may need to be familiar
with it.
[image: java.util.logging.LoggingPermission]

Figure 16-117. java.util.logging.LoggingPermission

public final class LoggingPermission extends java.security.BasicPermission {
// Public Constructors
 public LoggingPermission(String name, String actions) throws IllegalArgumentException;
}

Name
LogManager

Synopsis
As its name implies, this class is the
manager for the java.util.logging API. It has
three specific purposes: (1) to read a logging configuration file and
create the default Handler objects specified in
that file; (2) to manage a set of Logger objects,
arranging them into a tree based on their heirarchical names; and (3)
to create and manage the unnamed Logger object
that serves as the parent or ancestor of every other
Logger. This class handles the important
behind-the-scenes details that makes the Logging API work. Typical
applications can make use of logging without ever having to use this
class explicitly. Although its API is not commonly used by
application programmers, it is still useful to understand the
LogManager class, so it is described in detail
here.
There is a single global instance of LogManager,
which is obtained with the static getLogManager()
method. By default, this global log manager object is an instance of
the LogManager class itself. You may instead
instantiate an instance of a subclass of
LogManager by specifing the full class name of the
subclass as the value of the system property
java.util.logging.manager.
One of the primary purposes of the LogManager
class is to read a java.util.Properties file that
specifies the default logging configuration for the system. By
default, this file is named logging.properties
and is stored in the jre/lib directory of the
Java installation. If you want to run a Java application using a
different logging configuration, you can edit the default
configuration file, but it is typically easier to create a new
configuation file and tell the JVM about it by setting the system
property java.util.logging.config.file to the name
of your customized configuration file.
The most important purpose of the configuration file is to specify a
set of Handler objects to which all log messages
are sent. This is done by setting the handlers
property in the file to a space-separated list of
Handler class names. The
LogManager will load the specified classes, and
instantiate each one (using the default no-arg constructor), and then
register those Handler objects on the root
Logger, where they are inherited by all other
loggers. (We’ll see more about the root logger
below.) Each of these Handler objects further
configures itself by reading additional properties from the
configuration file, as described in the documentation for each
handler class.
The configuration file may also contain property name that are formed
by appending “.level” to the name
of a logger. The value of any such property is taken as the name of a
logging Level for the named
Logger. When the named logger is created and
registered with the LogManager (described below)
its logging level is automatically set to the specified level.
An application or any custom Handler or
Formatter subclass or Filter
implementation can read its own properties from the logging
configuration file with the getProperty() method
of LogManager. This is a useful way to provide
customizability for logging-related classes.
In addition to managing the configuration file properties, a second
purpose of LogManager is to maintain a tree of
Logger objects organized into a hierarchy based on
their dot-separated hierarchical names. The addLogger(
) method registers a new Logger object
with the LogManager and inserts it into the tree.
This method is called automatically by the Logger.getLogger(
) factory method, however, so you never need to call it
yourself. The getLogger() method of
LogManager finds and returns a named
Logger object within the tree. Use
getLoggerNames() to obtain an
Enumeration of the names of all registered
loggers.
At the root of the tree is a root logger, created by the
LogManager, and initialized with default
Handler objects specified in the logging
configuration file as described above. This root logger has no name,
and you can obtain a reference to it by passing the empty string to
the getLogger() method. Except for this root
logger and anonymous loggers (see Logger.getAnonymousLogger(
)), all loggers have names, and they are typically named
after the package or class for which they provide logging. When a
named logger is registered with the LogManager,
the LogManager examines its name and inserts it
into the tree of loggers at the appropriate place: a logger named
“java.util.logging” would be
inserted as the child of a logger named
“java.util”, if any such logger
existed, or as a child of a logger named
“java”, or, if no logger with that
name existed either, it would be inserted as a child of the root
logger named “”. When the
LogManager determines the position of a logger
within the tree of loggers, it calls the setParent(
) method of the newly-registered Logger
to tell it who its parent is. This is important because, by default,
loggers inherit their logging level and handlers from their parent.
Although the Logger.setParent() method is public,
it is intended for use only by the LogManager
class.
Anonymous loggers created with Logger.getAnonymousLogger(
) do not have names, and are not part of the logger tree.
When they are created, however, their parent is set to the root
logger of the LogManager. For this reason, anonymous loggers inherit
the default handlers specified in the logging configuration file.
The readConfiguration() methods are used to force
the LogManager to re-read the system configuration
file, or to read a new configuration file from the specified stream.
Both versions of the method generate a
java.beans.PropertyChangeEvent and use it to
notify any listeners that have been registered with
addPropertyChangeListener. Both methods also first
invoke the reset() method which discards the
properties of the current configuration file, removes and closes all
handlers for all loggers, and sets the logging level of all loggers
to null, except for the root
logger’s logging level, which it sets to
Level.INFO. It is unlikely that you would ever
want to invoke reset() yourself. A number of
LogManager methods throw a
SecurityException if the caller does not have
appropriate permissions. You can use checkAccess(
) to test whether the current calling context has the
required LoggingPermission named
“control”.
All LogManager methods can be safely used by
multiple threads.
public class LogManager {
// Protected Constructors
 protected LogManager();
// Public Constants
 5.0 public static final String LOGGING_MXBEAN_NAME; ="java.util.logging:type=Logging"
// Public Class Methods
 5.0 public static LoggingMXBean getLoggingMXBean(); synchronized
 public static LogManager getLogManager();
// Event Registration Methods (by event name)
 public void addPropertyChangeListener(java.beans.PropertyChangeListener l)
 throws SecurityException;
 public void removePropertyChangeListener(java.beans.PropertyChangeListener l)
 throws SecurityException;
// Public Instance Methods
 public boolean addLogger(Logger logger); synchronized
 public void checkAccess() throws SecurityException;
 public Logger getLogger(String name); synchronized
 public java.util.Enumeration<String> getLoggerNames(); synchronized
 public String getProperty(String name);
 public void readConfiguration() throws java.io.IOException, SecurityException;
 public void readConfiguration(java.io.InputStream ins)
 throws java.io.IOException, SecurityException;
 public void reset() throws SecurityException;
}

Name
LogRecord

Synopsis
Instances of
this class are used to represent log messages as they are passed
between Logger, Handler,
Filter and Formatter objects.
LogRecord defines a number of JavaBeans-type
property getter and setter methods. The values of the various
properties encapsulate all details of the log message. The
LogRecord() constructor takes arguments for the
two most important properties: the log level and the log message (or
localization key). The constructor also initializes the
millis property to the current time, the
sequenceNumber property to a unique (within the
VM) value that can be used to compare the order of two log messages,
and the threadID property to a unique identifier
for the current thread. All other properties of the
LogRecord are left uninitialized with their
default null values.
[image: java.util.logging.LogRecord]

Figure 16-118. java.util.logging.LogRecord

public class LogRecord implements Serializable {
// Public Constructors
 public LogRecord(Level level, String msg);
// Public Instance Methods
 public Level getLevel();
 public String getLoggerName();
 public String getMessage();
 public long getMillis();
 public Object[] getParameters();
 public java.util.ResourceBundle getResourceBundle();
 public String getResourceBundleName();
 public long getSequenceNumber();
 public String getSourceClassName();
 public String getSourceMethodName();
 public int getThreadID();
 public Throwable getThrown();
 public void setLevel(Level level);
 public void setLoggerName(String name);
 public void setMessage(String message);
 public void setMillis(long millis);
 public void setParameters(Object[] parameters);
 public void setResourceBundle(java.util.ResourceBundle bundle);
 public void setResourceBundleName(String name);
 public void setSequenceNumber(long seq);
 public void setSourceClassName(String sourceClassName);
 public void setSourceMethodName(String sourceMethodName);
 public void setThreadID(int threadID);
 public void setThrown(Throwable thrown);
}

Passed To

 ConsoleHandler.publish(),
FileHandler.publish(),
Filter.isLoggable(),
java.util.logging.Formatter.{format(),
formatMessage()}, Handler.{isLoggable(
), publish()}, Logger.log(
), MemoryHandler.{isLoggable(),
publish()}, SimpleFormatter.format(
), SocketHandler.publish(),
StreamHandler.{isLoggable(), publish(
)}, XMLFormatter.format()

Name
MemoryHandler

Synopsis
A MemoryHandler
 stores LogRecord
objects in a fixed-sized buffer in memory. When the buffer fills up,
it discards the oldest record one each time a new record arrives. It
maintains a reference to another Handler object,
and whenever the push() method is called, or
whenver a LogRecord arrives with a level at or
higher than the pushLevel threshold, it
“pushes” all of buffered
LogRecord objects to that other
Handler object, which typically formats and
outputs them to some appropriate destination. Because
MemoryHandler never outputs log records itself, it
does not use the formatter or
encoding properties inherited from its superclass.
When you create a MemoryHandler, you can specify
the target Handler object, the size of the
in-memory buffer, and the value of the pushLevel
property, or you can omit these constructor arguments and rely on
system-wide defaults obtained with LogManager.getProperty(
). MemoryHandler also uses
LogManager.getProperty() to obtain initial values
for the level and filter
properties inherited from Handler. The table below
lists these properties, as well as the
target, size,
and pushLevel constructor arguments, the
value passed to getProperty(), and the default
value used if getProperty() returns
null. See Handler for further
details.
	
 Property or argument

 	
 LogManager property name

 	
 Default

	

 level

 	
 java.util.logging.MemoryHandler.level

 	
 Level.ALL

	

 filter

 	
 java.util.logging.MemoryHandler.filter

 	
 null

	

 target

 	
 java.util.logging.MemoryHandler.target

 	
 no default

	

 size

 	
 java.util.logging.MemoryHandler.size

 	
 1000 log records

	

 pushLevel

 	
 java.util.logging.MemoryHandler.push

 	
 Level.SEVERE

[image: java.util.logging.MemoryHandler]

Figure 16-119. java.util.logging.MemoryHandler

public class MemoryHandler extends Handler {
// Public Constructors
 public MemoryHandler();
 public MemoryHandler(Handler target, int size, Level pushLevel);
// Public Instance Methods
 public Level getPushLevel(); synchronized
 public void push(); synchronized
 public void setPushLevel(Level newLevel) throws SecurityException;
// Public Methods Overriding Handler
 public void close() throws SecurityException;
 public void flush();
 public boolean isLoggable(LogRecord record);
 public void publish(LogRecord record); synchronized
}

Name
SimpleFormatter

Synopsis
This Formatter

subclass converts a LogRecord object to a
human-readable log message that is typically one or two lines long.
See also XMLFormatter.
[image: java.util.logging.SimpleFormatter]

Figure 16-120. java.util.logging.SimpleFormatter

public class SimpleFormatter extends java.util.logging.Formatter {
// Public Constructors
 public SimpleFormatter();
// Public Methods Overriding Formatter
 public String format(LogRecord record); synchronized
}

Name
SocketHandler

Synopsis
This Handler
 subclass formats
LogRecord objects and outputs the resulting
strings to a network socket. When you create a
SocketHandler, you can pass the hostname and port
of the socket to the constructor or you can rely on system-wide
defaults obtained with LogManager.getProperty().
SocketHandler also uses
LogManager.getProperty() to obtain initial values
for the properties inherited from Handler. The
table below lists these properties, as well as the host and port
arguments, the value passed to getProperty(), and
the default value used if getProperty() returns
null. See Handler for further
details.
	
 Handler property

 	
 LogManager property name

 	
 Default

	
 level

 	
 java.util.logging.SocketHandler.level

 	
 Level.ALL

	
 filter

 	
 java.util.logging.SocketHandler.filter

 	
 null

	
 formatter

 	
 java.util.logging.SocketHandler.formatter

 	
 XMLFormatter

	
 encoding

 	
 java.util.logging.SocketHandler.encoding

 	
 platform default

	
 hostname

 	
 java.util.logging.SocketHandler.host

 	
 no default

	
 port

 	
 java.util.logging.SocketHandler.port

 	
 no default

[image: java.util.logging.SocketHandler]

Figure 16-121. java.util.logging.SocketHandler

public class SocketHandler extends StreamHandler {
// Public Constructors
 public SocketHandler() throws java.io.IOException;
 public SocketHandler(String host, int port) throws java.io.IOException;
// Public Methods Overriding StreamHandler
 public void close() throws SecurityException; synchronized
 public void publish(LogRecord record); synchronized
}

Name
StreamHandler

Synopsis
This
 Handler subclass sends
log messages to an arbitrary java.io.OutputStream.
It exists primarily to serve as the common superclass of
ConsoleHandler, FileHandler,
and SocketHandler.
[image: java.util.logging.StreamHandler]

Figure 16-122. java.util.logging.StreamHandler

public class StreamHandler extends Handler {
// Public Constructors
 public StreamHandler();
 public StreamHandler(java.io.OutputStream out, java.util.logging.Formatter formatter);
// Public Methods Overriding Handler
 public void close() throws SecurityException; synchronized
 public void flush(); synchronized
 public boolean isLoggable(LogRecord record);
 public void publish(LogRecord record); synchronized
 public void setEncoding(String encoding) throws SecurityException,
 java.io.UnsupportedEncodingException;
// Protected Instance Methods
 protected void setOutputStream(java.io.OutputStream out)
 throws SecurityException; synchronized
}

Subclasses

 ConsoleHandler, FileHandler,
SocketHandler

Name
XMLFormatter

Synopsis
This Formatter

subclass converts a LogRecord to an XML-formatted
string. The format() method returns a
<record> element, which always contains
<date>, <millis>,
<sequence>, <level>
and <message> tags, and may also contain
<logger>, <class>,
<method>, <thread>,
<key>, <catalog>,
<param>, and
<exception> tags. See http://java.sun.com/dtd/logger.dtd for the
DTD of the output document.
The getHead() and getTail()
methods are overridden to return opening and closing
<log> and </log>
tags to surround all output <record> tags.
Note however, that if an application terminates abnormally, the
logging facility may be unable to terminate the log file with the
closing <log> tag.
[image: java.util.logging.XMLFormatter]

Figure 16-123. java.util.logging.XMLFormatter

public class XMLFormatter extends java.util.logging.Formatter {
// Public Constructors
 public XMLFormatter();
// Public Methods Overriding Formatter
 public String format(LogRecord record);
 public String getHead(Handler h);
 public String getTail(Handler h);
}

Name
Package java.util.prefs

Synopsis
The java.util.prefs

package contains classes and interfaces for managing persistant

 user and
system-wide preferences for Java applications and classes. Most
applications will use only the Preferences class
itself. Some will also use the event objects and listener interfaces
defined by this package, and some may need to explicitly catch the
types of exceptions defined by this package. Application programmers
never need to use the PreferencesFactory interface
or the AbstractPreferences class, which are
intended for Preferences implementors only.
To use the Preferences class, first use a static
method to obtain an appropriate Preferences object
or objects, and then use a get() method to query
a preference value or a put() method to set a
preference value. The code below shows a typical usage. See the
Preferences class for details.
import java.util.prefs.Preferences;
public class TextEditor {
 // some constants that define default values for preferences
 public static final int WIDTH_DEFAULT = 80;
 public static final String DICTIONARY_DEFAULT = "";
 // Fields to be initialized from preference values
 public int width; // Screen width in columns
 public String dictionary; // Dictionary name for spell-checking
 public void initPrefs() {
 // Get Preferences objects for user and system preferences for this package
 Preferences userprefs = Preferences.userNodeForPackage(TextEditor.class);
 Preferences sysprefs = Preferences.systemNodeForPackage(TextEditor.class);
 // Look up preference values. Note that we always pass a default value
 width = userprefs.getInt("width", WIDTH_DEFAULT);
 // Look up a user preference using a system preference as the default
 dictionary = userprefs.get("dictionary",
 sysprefs.get("dictionary",
 DICTIONARY_DEFAULT));
 }
}

Interfaces
public interface NodeChangeListener extends java.util.EventListener;
public interface PreferenceChangeListener extends java.util.EventListener;
public interface PreferencesFactory;

Events
public class NodeChangeEvent extends java.util.EventObject;
public class PreferenceChangeEvent extends java.util.EventObject;

Other Classes
public abstract class Preferences;
 public abstract class AbstractPreferences extends Preferences;

Exceptions
public class BackingStoreException extends Exception;
public class InvalidPreferencesFormatException extends Exception;

Name
AbstractPreferences

Synopsis
This
 class
implements all the abstract methods of Preferences
on top of a smaller set of abstract methods. Programmers creating a
Preferences implementation (or “service
provider”) can subclass this class and need define
only the nine methods whose names end in
“Spi”. Application programmers
never need to use this class.
[image: java.util.prefs.AbstractPreferences]

Figure 16-124. java.util.prefs.AbstractPreferences

public abstract class AbstractPreferences extends Preferences {
// Protected Constructors
 protected AbstractPreferences(AbstractPreferences parent, String name);
// Event Registration Methods (by event name)
 public void addNodeChangeListener(NodeChangeListener ncl);
 Overrides:Preferences
 public void removeNodeChangeListener(NodeChangeListener ncl);
 Overrides:Preferences
 public void addPreferenceChangeListener(PreferenceChangeListener pcl);
 Overrides:Preferences
 public void removePreferenceChangeListener(PreferenceChangeListener pcl);
 Overrides:Preferences
// Public Methods Overriding Preferences
 public String absolutePath();
 public String[] childrenNames() throws BackingStoreException;
 public void clear() throws BackingStoreException;
 public void exportNode(java.io.OutputStream os) throws java.io.IOException,
 BackingStoreException;
 public void exportSubtree(java.io.OutputStream os) throws java.io.IOException,
 BackingStoreException;
 public void flush() throws BackingStoreException;
 public String get(String key, String def);
 public boolean getBoolean(String key, boolean def);
 public byte[] getByteArray(String key, byte[] def);
 public double getDouble(String key, double def);
 public float getFloat(String key, float def);
 public int getInt(String key, int def);
 public long getLong(String key, long def);
 public boolean isUserNode();
 public String[] keys() throws BackingStoreException;
 public String name();
 public Preferences node(String path);
 public boolean nodeExists(String path) throws BackingStoreException;
 public Preferences parent();
 public void put(String key, String value);
 public void putBoolean(String key, boolean value);
 public void putByteArray(String key, byte[] value);
 public void putDouble(String key, double value);
 public void putFloat(String key, float value);
 public void putInt(String key, int value);
 public void putLong(String key, long value);
 public void remove(String key);
 public void removeNode() throws BackingStoreException;
 public void sync() throws BackingStoreException;
 public String toString();
// Protected Instance Methods
 protected final AbstractPreferences[] cachedChildren();
 protected abstract String[] childrenNamesSpi() throws BackingStoreException;
 protected abstract AbstractPreferences childSpi(String name);
 protected abstract void flushSpi() throws BackingStoreException;
 protected AbstractPreferences getChild(String nodeName) throws BackingStoreException;
 protected abstract String getSpi(String key);
 protected boolean isRemoved();
 protected abstract String[] keysSpi() throws BackingStoreException;
 protected abstract void putSpi(String key, String value);
 protected abstract void removeNodeSpi() throws BackingStoreException;
 protected abstract void removeSpi(String key);
 protected abstract void syncSpi() throws BackingStoreException;
// Protected Instance Fields
 protected final Object lock;
 protected boolean newNode;
}

Name
BackingStoreException

Synopsis
Signals that a

 Preferences
method could not complete because of an implementation-specific
problem with the preferences database. The most commonly used methods
of the Preferences class do not throw this exception, and are
guaranteed to succeed even if the implementation’s
preferences data is not available. Note that although this class
inherits the Serializable interface, implementations are not actually
required to be serializable.
[image: java.util.prefs.BackingStoreException]

Figure 16-125. java.util.prefs.BackingStoreException

public class BackingStoreException extends Exception {
// Public Constructors
 public BackingStoreException(Throwable cause);
 public BackingStoreException(String s);
}

Thrown By
Too many methods to list.

Name
InvalidPreferencesFormatException

Synopsis
Signals a

 syntax
error in XML preference data. Note that although this class inherits
the Serializable interface, implementations are not actually required
to be serializable.
[image: java.util.prefs.InvalidPreferencesFormatException]

Figure 16-126. java.util.prefs.InvalidPreferencesFormatException

public class InvalidPreferencesFormatException extends Exception {
// Public Constructors
 public InvalidPreferencesFormatException(String message);
 public InvalidPreferencesFormatException(Throwable cause);
 public InvalidPreferencesFormatException(String message, Throwable cause);
}

Thrown By

 Preferences.importPreferences()

Name
NodeChangeEvent

Synopsis
A
NodeChangeEvent

object is passed to the methods of any
NodeChangeListener objects registered on a
Preferences object when a child
Preferences node is added or removed.
getChild() returns the
Preferences object that was added or removed.
getParent() returns the parent
Preferences node from which the child was added or
removed. This parent Preferences object is the one
on which the NodeChangeListener was registered.
Although this class inherits the Serializable
interface, it is not actually serializable.
[image: java.util.prefs.NodeChangeEvent]

Figure 16-127. java.util.prefs.NodeChangeEvent

public class NodeChangeEvent extends java.util.EventObject {
// Public Constructors
 public NodeChangeEvent(Preferences parent, Preferences child);
// Public Instance Methods
 public Preferences getChild();
 public Preferences getParent();
}

Passed To

 NodeChangeListener.{childAdded(),
childRemoved()}

Name
NodeChangeListener

Synopsis
This
 interface
defines the methods that an object must implement if it wants to be
notified when a child preferences node is added to or removed from a
Preferences object. When such an addition or
removal occurs, the parent Preferences object
passes a NodeChangeEvent object to the appropriate
method of any NodeChangeListener objects that have
been registered through the
Preferences.addNodeChangeListener() method.
[image: java.util.prefs.NodeChangeListener]

Figure 16-128. java.util.prefs.NodeChangeListener

public interface NodeChangeListener extends java.util.EventListener {
// Public Instance Methods
 void childAdded(NodeChangeEvent evt);
 void childRemoved(NodeChangeEvent evt);
}

Passed To

 AbstractPreferences.{addNodeChangeListener(),
removeNodeChangeListener()},
Preferences.{addNodeChangeListener(),
removeNodeChangeListener()}

Name
PreferenceChangeEvent

Synopsis
A
PreferenceChangeEvent
 object is passed to the
preferenceChange() method of any
PreferenceChangeListener objects registered on a
Preferences object whenever a preferences value is
added to, removed from, or modified in that
Preferences node. getNode()
returns the affected Preferences object.
getKey() returns name of the modified preference.
If the preference value was added or modified, getNewValue(
) returns that value. If a preference was deleted,
getNewValue() returns null.
Although this class inherits the Serializable
interface, it is not actually serializable.
[image: java.util.prefs.PreferenceChangeEvent]

Figure 16-129. java.util.prefs.PreferenceChangeEvent

public class PreferenceChangeEvent extends java.util.EventObject {
// Public Constructors
 public PreferenceChangeEvent(Preferences node, String key, String newValue);
// Public Instance Methods
 public String getKey();
 public String getNewValue();
 public Preferences getNode();
}

Passed To

 PreferenceChangeListener.preferenceChange()

Name
PreferenceChangeListener

Synopsis
This
interface
defines the method that an object must implement if it wants to be
notified when a preference key/value pair is added to, removed from,
or changed in a Preferences object. After any such
change, the Preferences object passes a
PreferenceChangeEvent object describing the change
to the preferenceChange() method of any
PreferenceChangeListener objects that have been
registered through the
Preferences.addPreferenceChangeListener() method.
[image: java.util.prefs.PreferenceChangeListener]

Figure 16-130. java.util.prefs.PreferenceChangeListener

public interface PreferenceChangeListener extends java.util.EventListener {
// Public Instance Methods
 void preferenceChange(PreferenceChangeEvent evt);
}

Passed To

 AbstractPreferences.{addPreferenceChangeListener(
), removePreferenceChangeListener()},
Preferences.{addPreferenceChangeListener(),
removePreferenceChangeListener()}

Name
Preferences

Synopsis
A
 Preferences object
represents a mapping between preference names, which are
case-sensitive strings, and corresponding preference values.
get() allows you to query the string value of a
named preference, and put() allows you to set a
string value for a named preference. Although all preference values
are stored as strings, various convenience methods whose names begin
with “get” and
“put” exist to convert preference
values of type boolean
 byte[],
double, float,
int, and long to and from
strings.
The remove() method allows you to delete a named
preference altogether, and clear() deletes all
preference values stored in a Preferences object.
The keys() method returns an array of strings
that specify the names of all preferences in the
Preferences object.
Preference values are stored in some implementation-dependent
back-end which may be a file, a LDAP directory server, the Windows
Registry, or any other persistant “backing
store”. Note that all the get()
methods of this class require a default value to be specified. They
return this default if no value has been stored for the named
preference, or if the backing store is unavailable for any reason.
The Preferences class is completely independent of
the underlying implementation, except that it enforces an
80-character limit for preference names and
Preference node names (see below), and a
8192-character limit on preference value strings.

 Preferences does not have a public construtor. To
obtain a Preferences object for use in your
application, you must must use one of the static methods described
below. Each Preferences object is a node in a
hierarchy of Preferences nodes. There are two
distinct hierarchies: one stores user-specific preferences, and one
stores system-wide preferences. All Preferences nodes (in either
hierarchy) have a unique name and use the same naming convention that
Unix filesystems use. Applications (and classes) may store their
preferences in a Preferences node with any name,
but the convention is to use a node name that corresponds to the
package name of the application or class, with all
“.” characters in the package name
converted to “/” characters. For
example, the preferences node used by
java.lang.System would be
“/java/lang”.

 Preferences defines static methods that you can
use to obtain the Preferences objects your
application requires. Pass a Class object to
systemNodeForPackage() and
userNodeForPackage() to obtain the system and
user Preferences objects that are specific to the
package of that class. If you want a Preferences
node specific to a single class rather than to the package, you can
pass the class name to the node() method of the
package-specific node returned by systemNodeForPackage(
) or userNodeForPackage(). If you want
to navigate the entire tree of preferences nodes (which most
applications never need to do) call systemRoot()
and userRoot() to obtain the root node of the two
hierarchies, and then use the node() method to
look up child nodes of those roots.
Various Preferences methods allow you to traverse
the preferences hierarchies. parent() returns the
parent Preferences node. childrenNames(
) returns an array of the relative names of all children of
a Preferences node. node()
returns a named Preferences object from the
hierarchy. If the specified node name begins with a slash, it is an
absolute name and is interpreted relative to the root of the
hierarchy. Otherwise, it is a relative name and is interpreted
relative to the Preferences object on which
node() was called. nodeExists(
) allows you to test whether a named node exists.
removeNode() allows you to delete an entire
Preferences node from the hierarchy (useful when
uninstalling an application). name() returns the
simple name of a Preferences node, relative to its
parent. absoutePath() returns the full, absolute
name of the node, relative to the root of the hierarchy. Finally,
isUserNode() allows you to determine whether a
Preferences object is part of the user or system
hierarchies.
Many applications will simply read their preference values once at
startup. Long-lived applications or applications that want to respond
dynamically to modifications to preferences (such as applications
that are tightly integrated with a graphical desktop) may use
addPreferenceChangeListener() to register a
PreferenceChangeListener to recieve notifications
of preference changes (in the form of
PreferenceChangeEvent objects). Applications that
are interested in changes to the Preferences
hierarchy itself can register a
NodeChangeListener.

 put() and the various type-specific
put...() convenience methods may return
asynchonously, before the new preference value is stored persistantly
within the backing store. Call flush() to force
any preference changes to this Preferences node
(and any of its descendants in the hierarchy) to be stored
persistantly. (Note that it is not necessary to call flush(
) before an application terminates: all preferences will
eventually be made persistant.) More than one application (within
more than one Java virtual machine) may set preference values in the
same Preferences node at the same time. Call
sync() to ensure that future calls to
get() and its related convenience methods
retrieve current preference values set by this or other virtual
machines. Note that the flush() and
sync() operations are typically much more
expensive than get() and put(
) operations, and applications do not often need to use
them.

 Preferences implementations ensure that all the
methods of this class are thread safe. If multiple threads or
multiple VMs write store the same preferences concurrently, their
values may overwrite one another, but the preference data will not be
corrupted. Note that, for simplicity, Preferences
does not define any way to set multiple preferences in a single
atomic transaction. If you need to ensure atomicity for multiple
preference values, define a data format that allows you to store all
the requisite values in a single string, and set and query those
values with a single call to put() or
get().
The contents of a Preferences node, or of a node
and all of its descendants may be exported as an XML file with
exportNode() and exportSubtree(
). The static importPreferences()
method reads an exported XML file back into the preferences
hierarchy. These methods allow backups to be made of preference data,
and allow preferences to be transferred between systems or between
users.
Prior to Java 1.4, application preferences were sometimes managed
with the java.util.Properties object.
public abstract class Preferences {
// Protected Constructors
 protected Preferences();
// Public Constants
 public static final int MAX_KEY_LENGTH; =80
 public static final int MAX_NAME_LENGTH; =80
 public static final int MAX_VALUE_LENGTH; =8192
 // Public Class Methods
 public static void importPreferences(java.io.InputStream is)
throws java.io.IOException, InvalidPreferencesFormatException;
 public static Preferences systemNodeForPackage(Class<?> c);
 public static Preferences systemRoot();
 public static Preferences userNodeForPackage(Class<?> c);
 public static Preferences userRoot();
// Event Registration Methods (by event name)
 public abstract void addNodeChangeListener(NodeChangeListener ncl);
 public abstract void removeNodeChangeListener(NodeChangeListener ncl);
 public abstract void addPreferenceChangeListener(PreferenceChangeListener pcl);
 public abstract void removePreferenceChangeListener(PreferenceChangeListener pcl);
// Public Instance Methods
 public abstract String absolutePath();
 public abstract String[] childrenNames() throws BackingStoreException;
 public abstract void clear() throws BackingStoreException;
 public abstract void exportNode(java.io.OutputStream os) throws java.io.IOException,
 BackingStoreException;
 public abstract void exportSubtree(java.io.OutputStream os) throws java.io.IOException,
 BackingStoreException;
 public abstract void flush() throws BackingStoreException;
 public abstract String get(String key, String def);
 public abstract boolean getBoolean(String key, boolean def);
 public abstract byte[] getByteArray(String key, byte[] def);
 public abstract double getDouble(String key, double def);
 public abstract float getFloat(String key, float def);
 public abstract int getInt(String key, int def);
 public abstract long getLong(String key, long def);
 public abstract boolean isUserNode();
 public abstract String[] keys() throws BackingStoreException;
 public abstract String name();
 public abstract Preferences node(String pathName);
 public abstract boolean nodeExists(String pathName) throws BackingStoreException;
 public abstract Preferences parent();
 public abstract void put(String key, String value);
 public abstract void putBoolean(String key, boolean value);
 public abstract void putByteArray(String key, byte[] value);
 public abstract void putDouble(String key, double value);
 public abstract void putFloat(String key, float value);
 public abstract void putInt(String key, int value);
 public abstract void putLong(String key, long value);
 public abstract void remove(String key);
 public abstract void removeNode() throws BackingStoreException;
 public abstract void sync() throws BackingStoreException;
// Public Methods Overriding Object
 public abstract String toString();
}

Subclasses

 AbstractPreferences

Passed To

 NodeChangeEvent.NodeChangeEvent(),
PreferenceChangeEvent.PreferenceChangeEvent()

Returned By

 AbstractPreferences.{node(), parent(
)}, NodeChangeEvent.{getChild(),
getParent()},
PreferenceChangeEvent.getNode(),
PreferencesFactory.{systemRoot(),
userRoot()}

Name
PreferencesFactory

Synopsis
The
PreferencesFactory
 interface defines the factory
methods used by the static methods of the
Preferences class to obtain the root
Preferences nodes for user-specific and
system-wide preferences hierarchies. Application programmers never
need to use this interface.
An implementation of the preferences API for a specific back-end data
store must include an implementation of this interface that works
with that data store. Sun’s implementation of Java
includes a default filesystem-based implementation, which you can
override by specifying the name of a
PreferencesFactory implementation as the value of
the
“java.util.prefs.PreferencesFactory”
system property.
public interface PreferencesFactory {
// Public Instance Methods
 Preferences systemRoot();
 Preferences userRoot();
}

Name
Package java.util.regex

Synopsis
This
 small package provides a facility for
textual pattern matching with regular expressions.
Pattern objects represent regular expressions,
which are specified using a syntax very close to the one used by the
Perl programming language. The Matcher class
encapsulates a Pattern and a
java.lang.CharSequence of text, and defines
various methods for matching the pattern to the text. In Java 5.0,
the MatchResult interface represents the result of
a match. Matcher implements this interface and can
be queried directly.
In addition to the pattern matching methods defined in this package,
the java.lang.String class has been augmented in
Java 1.4 with a number of convenience methods for matching strings
against regular expressions that are specified in their text form as
strings, rather than in their compiled form as
Pattern objects. Applications with simple pattern
matching needs can use these convenience methods and may never have
to directly use the Pattern or
Matcher classes.

Interfaces
public interface MatchResult;

Classes
public final class Matcher implements MatchResult;
public final class Pattern implements Serializable;

Exceptions
public class PatternSyntaxException extends IllegalArgumentException;

Name
Matcher

Synopsis
A

 Matcher objects
encapsulate a regular expression and a string of text (a
Pattern and a
java.lang.CharSequence) and defines methods for
matching the pattern to the text in several different ways, for
obtaining details about pattern matches, and for doing
search-and-replace operations on the text. Matcher has no public
constructor. Obtain a Matcher by passing the
character sequence to be matched to the matcher()
method of the desired Pattern object. You can also
reuse an existing Matcher object with a new
character sequence (but the same Pattern) by
passing a new CharSequence to the
matcher’s reset() method. In
Java 5.0, you can use a new Pattern object on the
current character sequence with the usePattern()
method.
Once you have created or reset a Matcher, there
are three types of comparisons you can perform between the regular
expression and the character sequence. All three comparisons operate
on the current region of the character sequence.
By default, this region is the entire sequence. In Java 5.0, however,
you can set the bound of the region with region(
). The simplest type of comparison is the matches(
) method. It returns true if the pattern
matches the complete region of the character sequence, and returns
false otherwise. The lookingAt(
) method is similar: it returns true if the pattern matches
the complete region, or if it matches some subsequence at the
beginning of the region. If the pattern does not match the start of
the region, lookingAt() returns
false. matches() requires the
pattern to match both the beginning and ending of the region, and
lookingAt() requires the pattern to match the
beginning. The find() method, on the other hand,
has neither of these requirements: it returns true
if the pattern matches any part of the region. As will be described
below, find() has some special behavior that
allows it to be used in a loop to find all matches in the text.
If matches(), lookingAt(), or
find() return true, then
several other Matcher methods can be used to
obtain details about the matched text. The
MatchResult interface defines the start(
), end() and group(
) methods that return the starting position, the ending
position and the text of the match, and of any matching
subexpressions within the Pattern. See
MatchResult for details. The
MatchResult interface is new in Java 5.0, but
Matcher implements all of its methods in Java 1.4
as well. Calling MatchResult methods on a
Matcher returns results from the most recent
match. If you want to store these results, call
toMatchResult() to obtain an indepedent,
immutable MatchResult object whose methods can be
queried later.
The no-argument version of find() has special
behavior that makes it suitable for use in a loop to find all matches
of a pattern within a region. The first time find(
) is called after a Matcher is created
or after the reset() method is called, it starts
it search at the beginning of the string. If it finds a match, it
stores the start and end position of the matched text. If
reset() is not called in the meantime, then the
next call to find() searches again but starts the
search at the first character after the match: at the position
returned by end(). (If the previous call to
find() matched the empty string, then the next
call begins at end()+1 instead.) In this way, it
is possible to find all matches of a pattern within a string simply
by calling find() repeatedly until it returns
false indicating that no match was found. After
each repeated call to find() you can use the
MatchResult methods to obtain more information
about the text that matched the pattern and any of its subpatterns.

 Matcher also defines methods that perform
search-and-replace operations. replaceFirst()
searches the character sequence for the first subsequence that
matches the pattern. It then returns a string that is the character
sequence with the matched text replaced with the specified
replacement string. replaceAll() is similar, but
replaces all matching subsequences within the character sequence
instead of just replacing the first. The replacement string passed to
replaceFirst() and replaceAll(
) is not always replaced literally. If the replacement
contains a dollar sign followed by an integer that is a valid group
number, then the dollar sign and the number are replaced by the text
that matched the numbered group. If you want to include a literal
dollar sign in the replacement string, preceed it with a backslash.
In Java 5.0, you can use the static quoteReplacement(
) method to properly quote any special characters in a
replacement string so that the string will be interpreted literally.

 replaceFirst() and replaceAll(
) are convenience methods that cover the most common
search-and-replace cases. However, Matcher also
defines lower-level methods that you can use to do a custom
search-and-replace operation in conjunction with calls to find(),
and build up a modified string in a StringBuffer.
In order to understand this search-and-replace procedure, you must
know that a Matcher maintains a
“append position”, which starts at
zero when the Matcher is created, and is restored
to zero by the reset() method. The
appendReplacement() method is designed to be used
after a successful call to find(). It copies all
the text between the append position and the character before the
start() position for the last match into the
specified string buffer. Then it appends the specified replacement
text to that string buffer (performing the same substitutions that
replaceAll() does). Finally, it sets the append
position to the end() of the last match, so that
a subsequent call to appendReplacement() starts
at a new character. appendReplacement() is
intended for use after a call to find() that
returns true. When find()
cannot find another match and returns false, you
should complete the replacement operation by calling
appendTail(): this method copies all text between
the end() position of the last match and the end
of the character sequence into the specified
StringBuffer.
The reset() method has been mentioned several
times. It erases any saved information about the last match, and
restores the Matcher to its initial state so that
subsequent calls to find() and
appendReplacement() start at the begining of the
character sequence. The one-argument version of reset(
) also allows you to specify an entirely new character
sequence to match against. It is important to understand that several
other Matcher methods call reset(
) themselves before they perform their operation. They are:
matches(), lookingAt(), the
one-argument version of find(),
replaceAll(), and replaceFirst(
).
Prior to Java 5.0, the region of the input text that a
Matcher operates on is the entire character
sequence. In Java 5.0, you can define a different region with the
region() method, which specifies the position of
the first character in the region and the position of the first
character after the end of the region. regionStart(
) and regionEnd() return the current
value of these region bounds. By default, regions are
“anchoring” which means that the
start and end of the region match the ^ and
$ anchors. (See Pattern for
regular expression grammar details.) Call
useAnchoringBounds() to turn anchoring bounds on
or off in Java 5.0. The bounds of a region are
“opaque” by default, which means
that the Matcher will not look through the bounds
in an attempt to match look-ahead or look-behind assertions (see
Pattern). In Java 5.0, you can make the bounds
transparent with useTransparentBounds(true).

 Matcher is not threadsafe, and should not be used
by more than one thread concurrently.
[image: java.util.regex.Matcher]

Figure 16-131. java.util.regex.Matcher

public final class Matcher implements MatchResult {
// No Constructor
 // Public Class Methods
 5.0 public static String quoteReplacement(String s);
// Public Instance Methods
 public Matcher appendReplacement(StringBuffer sb, String replacement);
 public StringBuffer appendTail(StringBuffer sb);
 public int end(); Implements:MatchResult
 public int end(int group); Implements:MatchResult
 public boolean find();
 public boolean find(int start);
 public String group(); Implements:MatchResult
 public String group(int group); Implements:MatchResult
 public int groupCount(); Implements:MatchResult
5.0 public boolean hasAnchoringBounds();
5.0 public boolean hasTransparentBounds();
5.0 public boolean hitEnd();
 public boolean lookingAt();
 public boolean matches();
 public Pattern pattern();
5.0 public Matcher region(int start, int end);
5.0 public int regionEnd();
5.0 public int regionStart();
 public String replaceAll(String replacement);
 public String replaceFirst(String replacement);
5.0 public boolean requireEnd();
 public Matcher reset();
 public Matcher reset(CharSequence input);
 public int start(); Implements:MatchResult
 public int start(int group); Implements:MatchResult
5.0 public MatchResult toMatchResult();
5.0 public Matcher useAnchoringBounds(boolean b);
5.0 public Matcher usePattern(Pattern newPattern);
5.0 public Matcher useTransparentBounds(boolean b);
// Methods Implementing MatchResult
 public int end();
 public int end(int group);
 public String group();
 public String group(int group);
 public int groupCount();
 public int start();
 public int start(int group);
// Public Methods Overriding Object
 5.0 public String toString();
}

Returned By

 Pattern.matcher()

Name
MatchResult

Synopsis
This
 interface represents the results of
a regular expression matching operation performed by a
Matcher. Matcher implements
this interface directly, and you can use the methods defined here to
obtain the results of the most recent match performed by a
Matcher. You can also save those most recent match
results in a separate immutable MatchResult object
by calling the toMatchResult() method of the
Matcher.
The no-argument versions of the start() and
end() method return the index of the first
character that matched the pattern and the index of the last
character that matched plus one (the index of the first character
following the matched text), respectively. Some regular expressions
can match the empty string. If this occurs, end()
returns the same value as start(). The
no-argument version of group() returns the text
that matched the pattern.
If the matched Pattern includes capturing
subexpressions within parentheses, the other methods of this
interface provide details about the text that matched each of those
subexpressions. Pass a group number to start(),
end(), or group() to obtain
the start, end, or text that matched the specified group.
groupCount() returns the number of
subexpressions. Groups are numbered from 1, however, so legal group
numbers run from 1 to the value returned by groupCount(
). Groups are ordered from left-to-right within the regular
expression. When there are nested groups, their ordering is based on
the position of the opening left parenthesis that begins the group.
Group 0 represents the entire regular expression, so passing 0 to
start(), end(), or
group() is the same as calling the no-argument
version of the method.
public interface MatchResult {
// Public Instance Methods
 int end();
 int end(int group);
 String group();
 String group(int group);
 int groupCount();
 int start();
 int start(int group);
}

Implementations

 Matcher

Returned By

 java.util.Scanner.match(),
Matcher.toMatchResult()

Name
Pattern

Synopsis
This
 class represents a regular expression. It
has no public constructor: obtain a Pattern by
calling one of the static compile() methods,
passing the string representation of the regular expression, and an
optional bitmask of flags that modify the behavior of the regex.
pattern() and flags() return
the string form of the regular expression and the bitmask that were
passed to compile().
If you want to perform only a single match operation with a regular
expression, and don’t need to use any of the flags,
you don’t have to create a
Pattern object: simply pass the string
representation of the pattern and the CharSequence
to be matched to the static matches() method: the
method returns true if the specified pattern
matches the complete specified text, or returns
false otherwise.

 Pattern represents a regular expression, but does
not actually define any primitive methods for matching regular
expressions to text. To do that, you must create a
Matcher object that encapsulates a pattern and the
text it is to be compared with. Do this by calling the
matcher() method and specifying the
CharSequence you want to match against. See
Matcher for a description of what you can do with
it.
The split() methods are the exception to the rule
that you must obtain a Matcher in order to be able
to do anything with a Pattern (although they
create and use a Matcher internally). They take a
CharSequence as input, and split it into
substrings, using text that matches the regular expression as the
delimiter, returning the substrings as a String[
]. The two-argument version of split()
takes an integer argument that specifies the maximum number of
substrings to break the input into.
Pattern defines the following flags that control various aspects of
how regular expression matching is performed. The flags are the
following:
	
 CANON_EQ

	The Unicode standard sometimes allows more than one way to specify
the same character. If this flag is set, characters are compared by
comparing their full canonical decompositions, so that characters
will match even if expressed in different ways. Enabling this flag
typically slows down performance. Unlike all the other flags, there
is no way to temporarily enable this flag within a pattern.

	
 CASE_INSENSITIVE

	Match letters without regard to case. By default this flag only
affects the comparisons of ASCII letters. Also set the
UNICODE_CASE flag if you want to ignore the case
of all Unicode characters. You can enable this flag within a pattern
with (?i).

	
 COMMENTS

	If this flag is set, then whitespace and comments within a pattern
are ignored. Comments are all characters between a
and end of line. You can enable this flag within
a pattern with (?x)

	
 DOTALL

	If this flag is set, then the . expression matches
any character. If it is not set, then it does not match line
terminator characters. This is also known as
“single-line mode” and you can
enable it within a pattern with (?s).

	
 MULTILINE

	If this flag is set, then the ^ and
$ anchors match not only at the beginning and end
of the input string, but also at the beginning and end of any lines
within that string. Within a pattern you can enable this flag with
(?m).

	
 UNICODE_CASE

	If this flag is set along with the
CASE_INSENSITIVE flag, then case-insensitive
comparison is done for all Unicode letters, rather than just for
ASCII letters. You can enable both flags within a pattern with
(?iu).

	
 UNIX_LINES

	If this flag is set, then only the newline character is considered a
line terminator for the purposes of .,
^, and $. If the flag is not
set, then newlines (\n) carriage returns
(\r) and carriage return newline sequences
(\r\n) are all considered line terminators, as are
the Unicode characters \u0085
(“next line”)
\u2028 (“line
separator”) and \u2029
(“paragraph separator”). You can
turn this flag on within a pattern with (?d).

Although the API for the Pattern class is quite
simple, the syntax for the text representation of regular expressions
is fairly complex. A complete tutorial on regular expressions is
beyond the scope of this book. The table below, is a quick-reference
for regular expression syntax. It is very similar to the syntax used
in Perl. Note that many of the syntax elements of a regular
expression include a backslash character, such as
\d to match one of the digits 0-9. Because Java
strings also use the backslash character as an escape, you must
double the backslashes when expressing a regular expression as a
string literal: “\\d”. In Java 5.0,
the static quote() method quotes all special
characters in a string so that you can match arbitrary text literally
without worrying that punctuation in that text will be interpreted
specially. For complete details on regular expressions see a book
like Programming Perl by Larry Wall et. al., or
Mastering Regular Expressions by Jeffrey E. F.
Friedl.

Table 16-3. Java regular expression quick reference
	
 Syntax

 	
 Matches

	

 Single characters

 	
	

 x

 	
 The character x, as long as
x is not a punctuation character with
special meaning in the regular expression syntax.

	

 \
 p

 	
 The punctuation character p.

	

 \\

 	
 The backslash character

	

 \n

 	
 Newline character \u000A.

	

 \t

 	
 Tab character \u0009.

	

 \r

 	
 Carriage return character \u000D.

	

 \f

 	
 Form feed character \u000C.

	

 \e

 	
 Escape character \u001B.

	

 \a

 	
 Bell (alert) character \u0007.

	

 \u
 xxxx

 	
 Unicode character with hexadecimal code
xxxx.

	

 \x
 xx

 	
 Character with hexadecimal code xx.

	

 \0
 n

 	
 Character with octal code n.

	

 \0
 nn

 	
 Character with octal code nn.

	

 \0
 nnn

 	
 Character with octal code nnn, where
nnn <= 377.

	

 \c
 x

 	
 The control character
^
 x.

	

 Character classes

 	
	

 [...]

 	
 One of the characters between the brackets. Characters may be
specified literally, and the syntax also allows the specification of
character ranges, with intersection, union, and subtraction
operators. See specific examples below.

	

 [^...]

 	
 Any one character not between the brackets.

	

 [a-z0-9]

 	
 Character range: a character between (inclusive) a
and z or 0 and
9.

	

 [0-9[a-fA-F]]

 	
 Union of classes: same as [0-9a-fA-F]

	

 [a-z&&[aeiou]]

 	
 Intersection of classes: same as [aeiou].

	

 [a-z&&[^aeiou]]

 	
 Subtraction: the characters a through
z except for the vowels.

	
 .

 	
 Any character except a line terminator. If the
DOTALL flag is set, then it matches any character
including line terminators.

	

 \d

 	
 ASCII digit: [0-9].

	

 \D

 	
 Anything but an ASCII digit: [^\d].

	

 \s

 	
 ASCII whitespace: [\t\n\f\r\x0B]

	

 \S

 	
 Anything but ASCII whitespace: [^\s].

	

 \w

 	
 ASCII word character: [a-zA-Z0-9_].

	

 \W

 	
 Anything but ASCII word characters: [^\w].

	

 \p{
 group
 }

 	
 Any character in the named group. See group names below. Many of the
group names are from POSIX, which is why p is used for this character
class.

	

 \P{
 group
 }

 	
 Any character not in the named group.

	

 \p{Lower}

 	
 ASCII lowercase letter: [a-z].

	

 \p{Upper}

 	
 ASCII uppercase: [A-Z].

	

 \p{ASCII}

 	
 Any ASCII character: [\x00-\x7f].

	

 \p{Alpha}

 	
 ASCII letter: [a-zA-Z].

	

 \p{Digit}

 	
 ASCII digit: [0-9].

	

 \p{XDigit}

 	
 Hexadecimal digit: [0-9a-fA-F].

	

 \p{Alnum}

 	
 ASCII letter or digit: [\p{Alpha}\p{Digit}].

	

 \p{Punct}

 	
 ASCII punctuation: one of !"#$%& (
)*+,-./:;<=>?@[\]^_ {|}~].

	

 \p{Graph}

 	
 visible ASCII character: [\p{Alnum}\p{Punct}].

	

 \p{Print}

 	
 visible ASCII character: same as \p{Graph}.

	

 \p{Blank}

 	
 ASCII space or tab: [\t].

	

 \p{Space}

 	
 ASCII whitespace: [\t\n\f\r\x0b].

	

 \p{Cntrl}

 	
 ASCII control character: [\x00-\x1f\x7f].

	

 \p{
 category
 }

 	
 Any character in the named Unicode category. Category names are one
or two letter codes defined by the Unicode standard. One letter codes
include L for letter, N for
number, S for symbol, Z for
separator, and P for punctuation. Two letter codes
represent subcategories, such as Lu for uppercase
letter, Nd for decimal digit,
Sc for currency symbol, Sm for
math symbol, and Zs for space separator. See
java.lang.Character for a set of constants that
correspond to these subcategories; however, note that the full set of
one- and two-letter codes is not documented in this book.

	

 \p{
 block
 }

 	
 Any character in the named Unicode block. In Java regular
expressions, block names begin with
“In”, followed by mixed-case
capitalization of the Unicode block name, without spaces or
underscores. For example: \p{InOgham} or
\p{InMathematicalOperators}. See
java.lang.Character.UnicodeBlock for a list of
Unicode block names.

	

 Sequences, alternatives, groups, and references

 	
	

 xy

 	
 Match x followed by
y.

	

 x
 |
 y

 	
 Match x or y.

	

 (...)

 	
 Grouping. Group subexpression within parentheses into a single unit
that can be used with *, +,
?, |, and so on. Also
“capture” the characters that match
this group for use later.

	

 (?:...)

 	
 Grouping only. Group subexpression as with (),
but do not capture the text that matched.

	

 \
 n

 	
 Match the same characters that were matched when capturing group
number n was first matched. Be careful
when n is followed by another digit: the
largest number that is a valid group number will be used.

	

 Repetition[1]

 	
	

 x
 ?

 	
 zero or one occurrence of x; i.e.,
x is optional.

	

 x
 *

 	
 zero or more occurrences of x.

	

 x
 +

 	
 one or more occurrences of x.

	

 x
 {
 n
 }

 	
 exactly n occurrences of
x.

	

 x
 {
 n
 ,}

 	

 n or more occurrences of
x.

	

 x
 {
 n,m
 }

 	
 at least n, and at most
m occurrences of
x.

	

 Anchors[2]

 	
	

 ^

 	
 The beginning of the input string, or if the
MULTILINE flag is specified, the beginning of the
string or of any new line.

	

 $

 	
 The end of the input string, or if the MULTILINE
flag is specified, the end of the string or of line within the
string.

	

 \b

 	
 A word boundary: a position in the string between a word and a
nonword character.

	

 \B

 	
 A position in the string that is not a word boundary.

	

 \A

 	
 The beginning of the input string. Like ^, but
never matches the beginning of a new line, regardless of what flags
are set.

	

 \Z

 	
 The end of the input string, ignoring any trailing line terminator.

	

 \z

 	
 The end of the input string, including any line terminator.

	

 \G

 	
 The end of the previous match.

	

 (?=
 x
)

 	
 A positive look-ahead assertion. Require that the following
characters match x, but do not include
those characters in the match.

	

 (?!
 x
)

 	
 A negative look-ahead assertion. Require that the following
characters do not match the pattern x.

	

 (?<=
 x
)

 	
 A positive look-behind assertion. Require that the characters
immediately before the position match x,
but do not include those characters in the match.
x must be a pattern with a fixed number of
characters.

	

 (?<!
 x
)

 	
 A negative look-behind assertion. Require that the characters
immediately before the position do not match
x. x must be a
pattern with a fixed number of characters.

	

 Miscellaneous

 	
	

 (?>
 x
)

 	
 Match x independently of the rest of the
expression, without considering whether the match causes the rest of
the expression to fail to match. Useful to optimize certain complex
regular expressions. A group of this form does not capture the
matched text.

	

 (?
 onflags
 -
 offflags
)

 	
 Don t match anything, but turn on the flags specified by
onflags, and turn off the flags specified
by offflags. These two strings are
combinations in any order of the following letters and correspond to
the following Pattern constants:
i (CASE_INSENSITIVE),
d (UNIX_LINES),
m (MULTILINE),
s (DOTALL),
u (UNICODE_CASE), and
x (COMMENTS). Flag settings
specified in this way take effect at the point that they appear in
the expression and persist until the end of the expression, or until
the end of the parenthesized group of which they are a part, or until
overridden by another flag setting expression.

	

 (?
 onflags
 -
 offflags:x
)

 	
 Match x, applying the specified flags to
this subexpression only. This is a noncapturing group, like
(?:...), with the addition of flags.

	

 \Q

 	
 Don’t match anything, but quote all subsequent
pattern text until \E. All characters within such
a quoted section are interpreted as literal characters to match, and
none (except \E) have special meanings.

	

 \E

 	
 Don’t match anything; terminate a quote started with
\Q.

	

 #
 comment

 	
 If the COMMENT flag is set, pattern text between a
and the end of the line is considered a comment
and is ignored.

	[1] These repetition characters are
known as “greedy quantifiers,”
because they match as many occurrences of x as possible while still
allowing the rest of the regular expression to match. If you want a
“reluctant quantifier” which
matches as few occurrences as possible while still allowing the rest
of the regular expression to match, follow the quantifiers above with
a question mark. For example, use *? instead of *, and use {2,}?
instead of {2,}. Or, if you follow a quantifier with a plus sign
instead of a question mark, then you specify a
“possessive quantifier” which
matches as many occurrences as possible, even if it means that the
rest of the regular expression will not match. Possessive quantifiers
can be useful when you are sure that they will not adversely affect
the rest of the match, because they can be implemented more
efficiently than regular “greedy
quantifiers.”

[2] Anchors do not match characters but
instead match the zero-width positions between characters,
“anchoring” the match to a position
at which a specific condition holds.

[image: java.util.regex.Pattern]

Figure 16-132. java.util.regex.Pattern

public final class Pattern implements Serializable {
// No Constructor
 // Public Constants
 public static final int CANON_EQ; =128
 public static final int CASE_INSENSITIVE; =2
 public static final int COMMENTS; =4
 public static final int DOTALL; =32
 5.0 public static final int LITERAL; =16
 public static final int MULTILINE; =8
 public static final int UNICODE_CASE; =64
 public static final int UNIX_LINES; =1
 // Public Class Methods
 public static Pattern compile(String regex);
 public static Pattern compile(String regex, int flags);
 public static boolean matches(String regex, CharSequence input);
5.0 public static String quote(String s);
// Public Instance Methods
 public int flags();
 public Matcher matcher(CharSequence input);
 public String pattern();
 public String[] split(CharSequence input);
 public String[] split(CharSequence input, int limit);
// Public Methods Overriding Object
 5.0 public String toString();
}

Passed To

 java.util.Scanner.{findInLine(),
findWithinHorizon(), hasNext(
), next(), skip(),
useDelimiter()}, Matcher.usePattern(
)

Returned By

 java.util.Scanner.delimiter(),
Matcher.pattern()

Name
PatternSyntaxException

Synopsis
Signals
a

syntax error in the text representation of a regular expression. An
exception of this type may be thrown by the Pattern.compile(
) and Pattern.matches() methods, and
also by the String
 matches(),
replaceFirst(), replaceAll()
and split() methods which call those
Pattern methods.

 getPattern() returns the text that contained the
syntax error, and getIndex() returns the
approximate location of the error within that text, or -1, if the
location is not known. getDescription() returns
an error message that provides further detail about the error. The
inherited getMessage() method combines the
information provided by these other three methods into a single
multiline message.
[image: java.util.regex.PatternSyntaxException]

Figure 16-133. java.util.regex.PatternSyntaxException

public class PatternSyntaxException extends IllegalArgumentException {
// Public Constructors
 public PatternSyntaxException(String desc, String regex, int index);
// Public Instance Methods
 public String getDescription();
 public int getIndex();
 public String getPattern();
// Public Methods Overriding Throwable
 public String getMessage();
}

Name
Package java.util.zip

Synopsis

 The
java.util.zip package contains classes for data
compression and decompression. The Deflater and
Inflater classes perform data compression and
decompression. DeflaterOutputStream and
InflaterInputStream apply that functionality to
byte streams; the subclasses of these streams implement both the GZIP
and ZIP compression formats. The Adler32 and
CRC32 classes implement the
Checksum interface and compute the checksums
required for data compression.

Interfaces
public interface Checksum;

Classes
public class Adler32 implements Checksum;
public class CheckedInputStream extends java.io.FilterInputStream;
public class CheckedOutputStream extends java.io.FilterOutputStream;
public class CRC32 implements Checksum;
public class Deflater;
public class DeflaterOutputStream extends java.io.FilterOutputStream;
 public class GZIPOutputStream extends DeflaterOutputStream;
 public class ZipOutputStream extends DeflaterOutputStream implements ZipConstants;
public class Inflater;
public class InflaterInputStream extends java.io.FilterInputStream;
 public class GZIPInputStream extends InflaterInputStream;
 public class ZipInputStream extends InflaterInputStream implements ZipConstants;
public class ZipEntry implements Cloneable, ZipConstants;
public class ZipFile implements ZipConstants;

Exceptions
public class DataFormatException extends Exception;
public class ZipException extends java.io.IOException;

Name
Adler32

Synopsis

 This class
implements the Checksum interface and computes a
checksum on a stream of data using the Adler-32 algorithm. This
algorithm is significantly faster than the CRC-32 algorithm and is
almost as reliable. The CheckedInputStream and
CheckedOutputStream classes provide a higher-level
interface to computing checksums on streams of data.
[image: java.util.zip.Adler32]

Figure 16-134. java.util.zip.Adler32

public class Adler32 implements Checksum {
// Public Constructors
 public Adler32();
// Public Instance Methods
 public void update(byte[] b);
// Methods Implementing Checksum
 public long getValue(); default:1
 public void reset();
 public void update(int b);
 public void update(byte[] b, int off, int len);
}

Name
CheckedInputStream

Synopsis

 This class is a subclass of
java.io.FilterInputStream; it allows a stream to
be read and a checksum computed on its contents at the same time.
This is useful when you want to check the integrity of a stream of
data against a published checksum value. To create a
CheckedInputStream, you must specify both the
stream it should read and a Checksum object, such
as CRC32, that implements the particular checksum
algorithm you desire. The read() and
skip() methods are the same as those of other
input streams. As bytes are read, they are incorporated into the
checksum that is being computed. The getChecksum(
) method does not return the checksum value itself, but
rather the Checksum object. You must call the
getValue() method of this object to obtain the
checksum value.
[image: java.util.zip.CheckedInputStream]

Figure 16-135. java.util.zip.CheckedInputStream

public class CheckedInputStream extends java.io.FilterInputStream {
// Public Constructors
 public CheckedInputStream(java.io.InputStream in, Checksum cksum);
// Public Instance Methods
 public Checksum getChecksum();
// Public Methods Overriding FilterInputStream
 public int read() throws java.io.IOException;
 public int read(byte[] buf, int off, int len) throws java.io.IOException;
 public long skip(long n) throws java.io.IOException;
}

Name
CheckedOutputStream

Synopsis

 This class is a subclass of
java.io.FilterOutputStream that allows data to be
written to a stream and a checksum computed on that data at the same
time. To create a CheckedOutputStream, you must
specify both the output stream to write its data to and a
Checksum object, such as an instance of
Adler32, that implements the particular checksum
algorithm you desire. The write() methods are
similar to those of other OutputStream classes.
The getChecksum() method returns the
Checksum object. You must call getValue(
) on this object in order to obtain the actual checksum
value.
[image: java.util.zip.CheckedOutputStream]

Figure 16-136. java.util.zip.CheckedOutputStream

public class CheckedOutputStream extends java.io.FilterOutputStream {
// Public Constructors
 public CheckedOutputStream(java.io.OutputStream out, Checksum cksum);
// Public Instance Methods
 public Checksum getChecksum();
// Public Methods Overriding FilterOutputStream
 public void write(int b) throws java.io.IOException;
 public void write(byte[] b, int off, int len) throws java.io.IOException;
}

Name
Checksum

Synopsis

 This
interface defines the methods required to compute a checksum on a
stream of data. The checksum is computed based on the bytes of data
supplied by the update() methods; the current
value of the checksum can be obtained at any time with the
getValue() method. reset()
resets the checksum to its default value; use this method before
beginning a new stream of data. The checksum value computed by a
Checksum object and returned through the
getValue() method must fit into a
long value. Therefore, this interface is not
suitable for the cryptographic checksum algorithms used in
cryptography and security. The classes
CheckedInputStream and
CheckedOutputStream provide a higher-level API for
computing a checksum on a stream of data. See also
java.security.MessageDigest.
public interface Checksum {
// Public Instance Methods
 long getValue();
 void reset();
 void update(int b);
 void update(byte[] b, int off, int len);
}

Implementations

 Adler32, CRC32

Passed To

 CheckedInputStream.CheckedInputStream(),
CheckedOutputStream.CheckedOutputStream()

Returned By

 CheckedInputStream.getChecksum(),
CheckedOutputStream.getChecksum()

Name
CRC32

Synopsis

 This class
implements the Checksum interface and computes a
checksum on a stream of data using the CRC-32 algorithm. The
CheckedInputStream and
CheckedOutputStream classes provide a higher-level
interface to computing checksums on streams of data.
[image: java.util.zip.CRC32]

Figure 16-137. java.util.zip.CRC32

public class CRC32 implements Checksum {
// Public Constructors
 public CRC32();
// Public Instance Methods
 public void update(byte[] b);
// Methods Implementing Checksum
 public long getValue(); default:0
 public void reset();
 public void update(int b);
 public void update(byte[] b, int off, int len);
}

Type Of

 GZIPInputStream.crc,
GZIPOutputStream.crc

Name
DataFormatException

Synopsis

 Signals
that invalid or corrupt data has been encountered while uncompressing
data.
[image: java.util.zip.DataFormatException]

Figure 16-138. java.util.zip.DataFormatException

public class DataFormatException extends Exception {
// Public Constructors
 public DataFormatException();
 public DataFormatException(String s);
}

Thrown By

 Inflater.inflate()

Name
Deflater

Synopsis

 This class
implements the general ZLIB data-compression algorithm used by the
gzip and PKZip compression
programs. The constants defined by this class are used to specify the
compression strategy and the compression speed/strength tradeoff
level to be used. If you set the nowrap
argument to the constructor to true, the ZLIB
header and checksum data are omitted from the compressed output,
which is the format both gzip and
PKZip use.

 The important methods of this class
are setInput(), which specifies input data to be
compressed, and deflate(), which compresses the
data and returns the compressed output. The remaining methods exist
so that Deflater can be used for stream-based
compression, as it is in higher-level classes, such as
GZIPOutputStream and
ZipOutputStream. These stream classes are
sufficient in most cases. Most applications do not need to use
Deflater directly. The Inflater
class uncompresses data compressed with a Deflater
object.
public class Deflater {
// Public Constructors
 public Deflater();
 public Deflater(int level);
 public Deflater(int level, boolean nowrap);
// Public Constants
 public static final int BEST_COMPRESSION; =9
 public static final int BEST_SPEED; =1
 public static final int DEFAULT_COMPRESSION; =-1
 public static final int DEFAULT_STRATEGY; =0
 public static final int DEFLATED; =8
 public static final int FILTERED; =1
 public static final int HUFFMAN_ONLY; =2
 public static final int NO_COMPRESSION; =0
 // Public Instance Methods
 public int deflate(byte[] b);
 public int deflate(byte[] b, int off, int len); synchronized
 public void end(); synchronized
 public void finish(); synchronized
 public boolean finished(); synchronized
 public int getAdler(); synchronized default:1
5.0 public long getBytesRead(); synchronized default:0
5.0 public long getBytesWritten(); synchronized default:0
 public int getTotalIn(); default:0
 public int getTotalOut(); default:0
 public boolean needsInput();
 public void reset(); synchronized
 public void setDictionary(byte[] b);
 public void setDictionary(byte[] b, int off, int len); synchronized
 public void setInput(byte[] b);
 public void setInput(byte[] b, int off, int len); synchronized
 public void setLevel(int level); synchronized
 public void setStrategy(int strategy); synchronized
 // Protected Methods Overriding Object
 protected void finalize();
}

Passed To

 DeflaterOutputStream.DeflaterOutputStream()

Type Of

 DeflaterOutputStream.def

Name
DeflaterOutputStream

Synopsis

 This class is a subclass of
java.io.FilterOutputStream; it filters a stream of
data by compressing (deflating) it and then writing the compressed
data to another output stream. To create a
DeflaterOutputStream, you must specify both the
stream it is to write to and a Deflater object to
perform the compression. You can set various options on the
Deflater object to specify just what type of
compression is to be performed. Once a
DeflaterOutputStream is created, its
write() and close() methods
are the same as those of other output streams. The
InflaterInputStream class can read data written
with a DeflaterOutputStream. A
DeflaterOutputStream writes raw compressed data;
applications often prefer one of its subclasses,
GZIPOutputStream or
ZipOutputStream, that wraps the raw compressed
data within a standard file format.
[image: java.util.zip.DeflaterOutputStream]

Figure 16-139. java.util.zip.DeflaterOutputStream

public class DeflaterOutputStream extends java.io.FilterOutputStream {
// Public Constructors
 public DeflaterOutputStream(java.io.OutputStream out);
 public DeflaterOutputStream(java.io.OutputStream out, Deflater def);
 public DeflaterOutputStream(java.io.OutputStream out, Deflater def, int size);
// Public Instance Methods
 public void finish() throws java.io.IOException;
// Public Methods Overriding FilterOutputStream
 public void close() throws java.io.IOException;
 public void write(int b) throws java.io.IOException;
 public void write(byte[] b, int off, int len) throws java.io.IOException;
// Protected Instance Methods
 protected void deflate() throws java.io.IOException;
// Protected Instance Fields
 protected byte[] buf;
 protected Deflater def;
}

Subclasses

 GZIPOutputStream,
ZipOutputStream

Name
GZIPInputStream

Synopsis

 This class is a subclass of
InflaterInputStream that reads and uncompresses
data compressed in gzip format. To create a
GZIPInputStream, simply specify the
InputStream to read compressed data from and,
optionally, a buffer size for the internal decompression buffer. Once
a GZIPInputStream is created, you can use the
read() and close() methods as
you would with any input stream.
[image: java.util.zip.GZIPInputStream]

Figure 16-140. java.util.zip.GZIPInputStream

public class GZIPInputStream extends InflaterInputStream {
// Public Constructors
 public GZIPInputStream(java.io.InputStream in) throws java.io.IOException;
 public GZIPInputStream(java.io.InputStream in, int size) throws java.io.IOException;
// Public Constants
 public static final int GZIP_MAGIC; =35615
 // Public Methods Overriding InflaterInputStream
 public void close() throws java.io.IOException;
 public int read(byte[] buf, int off, int len) throws java.io.IOException;
// Protected Instance Fields
 protected CRC32 crc;
 protected boolean eos;
}

Name
GZIPOutputStream

Synopsis

 This class is a subclass of
DeflaterOutputStream that compresses and writes
data using the gzip file format. To create a
GZIPOutputStream, specify the
OutputStream to write to and, optionally, a size
for the internal compression buffer. Once the
GZIPOutputStream is created, you can use the
write() and close() methods
as you would any output stream.
[image: java.util.zip.GZIPOutputStream]

Figure 16-141. java.util.zip.GZIPOutputStream

public class GZIPOutputStream extends DeflaterOutputStream {
// Public Constructors
 public GZIPOutputStream(java.io.OutputStream out) throws java.io.IOException;
 public GZIPOutputStream(java.io.OutputStream out, int size) throws java.io.IOException;
// Public Methods Overriding DeflaterOutputStream
 public void finish() throws java.io.IOException;
 public void write(byte[] buf, int off, int len) throws java.io.IOException; synchronized
 // Protected Instance Fields
 protected CRC32 crc;
}

Name
Inflater

Synopsis

 This class
implements the general ZLIB data-decompression algorithm used by
gzip, PKZip, and other
data-compression applications. It decompresses or inflates data
compressed through the Deflater class. The
important methods of this class are setInput(),
which specifies input data to be decompressed, and inflate(
), which decompresses the input data into an output buffer.
A number of other methods exist so that this class can be used for
stream-based decompression, as it is in the higher-level classes,
such as GZIPInputStream and
ZipInputStream. These stream-based classes are
sufficient in most cases. Most applications do not need to use
Inflater directly.
public class Inflater {
// Public Constructors
 public Inflater();
 public Inflater(boolean nowrap);
// Public Instance Methods
 public void end(); synchronized
 public boolean finished(); synchronized
 public int getAdler(); synchronized default:1
5.0 public long getBytesRead(); synchronized default:0
5.0 public long getBytesWritten(); synchronized default:0
 public int getRemaining(); synchronized default:0
 public int getTotalIn(); default:0
 public int getTotalOut(); default:0
 public int inflate(byte[] b) throws DataFormatException;
 public int inflate(byte[] b, int off, int len) throws DataFormatException; synchronized
 public boolean needsDictionary(); synchronized
 public boolean needsInput(); synchronized
 public void reset(); synchronized
 public void setDictionary(byte[] b);
 public void setDictionary(byte[] b, int off, int len); synchronized
 public void setInput(byte[] b);
 public void setInput(byte[] b, int off, int len); synchronized
 // Protected Methods Overriding Object
 protected void finalize();
}

Passed To

 InflaterInputStream.InflaterInputStream()

Type Of

 InflaterInputStream.inf

Name
InflaterInputStream

Synopsis

 This class is a subclass of
java.io.FilterInputStream; it reads a specified
stream of compressed input data (typically one that was written with
DeflaterOutputStream or a subclass) and filters
that data by uncompressing (inflating) it. To create an
InflaterInputStream, specify both the input stream
to read from and an Inflater object to perform the
decompression. Once an InflaterInputStream is
created, the read() and skip(
) methods are the same as those of other input streams. The
InflaterInputStream uncompresses raw data.
Applications often prefer one of its subclasses,
GZIPInputStream or
ZipInputStream, that work with compressed data
written in the standard gzip and
PKZip file formats.
[image: java.util.zip.InflaterInputStream]

Figure 16-142. java.util.zip.InflaterInputStream

public class InflaterInputStream extends java.io.FilterInputStream {
// Public Constructors
 public InflaterInputStream(java.io.InputStream in);
 public InflaterInputStream(java.io.InputStream in, Inflater inf);
 public InflaterInputStream(java.io.InputStream in, Inflater inf, int size);
// Public Methods Overriding FilterInputStream
 1.2 public int available() throws java.io.IOException;
1.2 public void close() throws java.io.IOException;
5.0 public void mark(int readlimit); synchronized empty
5.0 public boolean markSupported(); constant
 public int read() throws java.io.IOException;
 public int read(byte[] b, int off, int len) throws java.io.IOException;
5.0 public void reset() throws java.io.IOException; synchronized
 public long skip(long n) throws java.io.IOException;
// Protected Instance Methods
 protected void fill() throws java.io.IOException;
// Protected Instance Fields
 protected byte[] buf;
 protected Inflater inf;
 protected int len;
}

Subclasses

 GZIPInputStream, ZipInputStream

Name
ZipEntry

Synopsis
This class describes a single entry (typically a compressed file)
stored within a ZIP file. The various methods get and set various
pieces of information about the entry. The
ZipEntry class is used by
ZipFile and ZipInputStream,
which read ZIP files, and by ZipOutputStream,
which writes ZIP files.
When you are reading a ZIP file, a ZipEntry object
returned by ZipFile or
ZipInputStream contains the name, size,
modification time, and other information about an entry in the file.
When writing a ZIP file, on the other hand, you must create your own
ZipEntry objects and initialize them to contain
the entry name and other appropriate information before writing the
contents of the entry.
[image: java.util.zip.ZipEntry]

Figure 16-143. java.util.zip.ZipEntry

public class ZipEntry implements Cloneable, ZipConstants {
// Public Constructors
 public ZipEntry(String name);
1.2 public ZipEntry(ZipEntry e);
// Public Constants
 public static final int DEFLATED; =8
 public static final int STORED; =0
 // Public Instance Methods
 public String getComment();
 public long getCompressedSize();
 public long getCrc();
 public byte[] getExtra();
 public int getMethod();
 public String getName();
 public long getSize();
 public long getTime();
 public boolean isDirectory();
 public void setComment(String comment);
1.2 public void setCompressedSize(long csize);
 public void setCrc(long crc);
 public void setExtra(byte[] extra);
 public void setMethod(int method);
 public void setSize(long size);
 public void setTime(long time);
// Public Methods Overriding Object
 1.2 public Object clone();
1.2 public int hashCode();
 public String toString();
}

Subclasses

 java.util.jar.JarEntry

Passed To

 java.util.jar.JarEntry.JarEntry(),
java.util.jar.JarFile.getInputStream(),
java.util.jar.JarOutputStream.putNextEntry(),
ZipFile.getInputStream(),
ZipOutputStream.putNextEntry()

Returned By

 java.util.jar.JarFile.getEntry(),
java.util.jar.JarInputStream.{createZipEntry(),
getNextEntry()}, ZipFile.getEntry(
), ZipInputStream.{createZipEntry(),
getNextEntry()}

Name
ZipException

Synopsis
Signals that an error has occurred in reading or writing a ZIP file.
[image: java.util.zip.ZipException]

Figure 16-144. java.util.zip.ZipException

public class ZipException extends java.io.IOException {
// Public Constructors
 public ZipException();
 public ZipException(String s);
}

Subclasses

 java.util.jar.JarException

Thrown By

 ZipFile.ZipFile()

Name
ZipFile

Synopsis

 This class reads the contents of ZIP
files. It uses a random-access file internally so that the entries of
the ZIP file do not have to be read sequentially, as they do with the
ZipInputStream class. A ZipFile
object can be created by specifying the ZIP file to be read either as
a String filename or as a File
object. In Java 1.3, temporary ZIP files can be marked for automatic
deletion when they are closed. To take advantage of this feature,
pass ZipFile.OPEN_READ|ZipFile.OPEN_DELETE as the
mode argument to the ZipFile(
) constructor.
Once a ZipFile is created, the

 getEntry() method
returns a ZipEntry object for a named entry, and
the entries() method returns an
Enumeration object that allows you to loop through
all the ZipEntry objects for the file. To read the
contents of a specific ZipEntry within the ZIP
file, pass the ZipEntry to
getInputStream(); this returns an
InputStream object from which you can read the
entry’s contents.
[image: java.util.zip.ZipFile]

Figure 16-145. java.util.zip.ZipFile

public class ZipFile implements ZipConstants {
// Public Constructors
 public ZipFile(String name) throws java.io.IOException;
 public ZipFile(java.io.File file) throws ZipException, java.io.IOException;
1.3 public ZipFile(java.io.File file, int mode) throws java.io.IOException;
// Public Constants
 1.3 public static final int OPEN_DELETE; =4
 1.3 public static final int OPEN_READ; =1
 // Public Instance Methods
 public void close() throws java.io.IOException;
 public java.util.Enumeration<? extends ZipEntry> entries();
 public ZipEntry getEntry(String name);
 public java.io.InputStream getInputStream(ZipEntry entry) throws java.io.IOException;
 public String getName();
1.2 public int size();
// Protected Methods Overriding Object
 1.3 protected void finalize() throws java.io.IOException;
}

Subclasses

 java.util.jar.JarFile

Name
ZipInputStream

Synopsis

 This class is a subclass of
InflaterInputStream that reads the entries of a
ZIP file in sequential order. Create a
ZipInputStream by specifying the
InputStream from which it is to read the contents
of the ZIP file. Once the ZipInputStream is
created, you can use getNextEntry() to begin
reading data from the next entry in the ZIP file. This method must be
called before read() is called to begin reading
the first entry. getNextEntry() returns a
ZipEntry object that describes the entry being
read, or null when there are no more entries to be
read from the ZIP file.
The read() methods of
ZipInputStream read until the end of the current
entry and then return -1, indicating that there is no more data to
read. To continue with the next entry in the ZIP file, you must call
getNextEntry() again. Similarly, the

 skip()
method only skips bytes within the current entry.
closeEntry() can be called to skip the remaining
data in the current entry, but it is usually easier simply to call
getNextEntry() to begin the next entry.
[image: java.util.zip.ZipInputStream]

Figure 16-146. java.util.zip.ZipInputStream

public class ZipInputStream extends InflaterInputStream implements ZipConstants {
// Public Constructors
 public ZipInputStream(java.io.InputStream in);
// Public Instance Methods
 public void closeEntry() throws java.io.IOException;
 public ZipEntry getNextEntry() throws java.io.IOException;
// Public Methods Overriding InflaterInputStream
 1.2 public int available() throws java.io.IOException;
 public void close() throws java.io.IOException;
 public int read(byte[] b, int off, int len) throws java.io.IOException;
 public long skip(long n) throws java.io.IOException;
// Protected Instance Methods
 1.2 protected ZipEntry createZipEntry(String name);
}

Subclasses

 java.util.jar.JarInputStream

Name
ZipOutputStream

Synopsis

 This class is a subclass of
DeflaterOutputStream that writes data in ZIP file
format to an output stream. Before writing any data to the
ZipOutputStream, you must begin an entry within
the ZIP file with putNextEntry(). The
ZipEntry object passed to this method should
specify at least a name for the entry. Once you have begun an entry
with putNextEntry(), you can write the contents
of that entry with the write() methods. When you
reach the end of an entry, you can begin a new one by calling
putNextEntry() again, you can close the current
entry with closeEntry(), or you can close the
stream itself with close().

 Before beginning an entry with
putNextEntry(), you can set the compression
method and level with setMethod() and
setLevel(). The constants
DEFLATED and STORED are the two
legal values for setMethod(). If you use
STORED, the entry is stored in the ZIP file
without any compression. If you use DEFLATED, you
can also specify the compression speed/strength tradeoff by passing a
number from 1 to 9 to setLevel(), where 9 gives
the strongest and slowest level of compression. You can also use the
constants Deflater.BEST_SPEED,
Deflater.BEST_COMPRESSION, and
Deflater.DEFAULT_COMPRESSION with the
setLevel() method.
If you are storing an entry without compression, the ZIP file format
requires that you specify, in advance, the entry size and CRC-32
checksum in the ZipEntry object for the entry. An
exception is thrown if these values are not specified or specified
incorrectly.
[image: java.util.zip.ZipOutputStream]

Figure 16-147. java.util.zip.ZipOutputStream

public class ZipOutputStream extends DeflaterOutputStream implements ZipConstants {
// Public Constructors
 public ZipOutputStream(java.io.OutputStream out);
// Public Constants
 public static final int DEFLATED; =8
 public static final int STORED; =0
 // Public Instance Methods
 public void closeEntry() throws java.io.IOException;
 public void putNextEntry(ZipEntry e) throws java.io.IOException;
 public void setComment(String comment);
 public void setLevel(int level);
 public void setMethod(int method);
// Public Methods Overriding DeflaterOutputStream
 public void close() throws java.io.IOException;
 public void finish() throws java.io.IOException;
 public void write(byte[] b, int off, int len) throws java.io.IOException; synchronized
}

Subclasses

 java.util.jar.JarOutput
 Stream

Chapter 17. javax.crypto and Subpackages

 This
chapter documents the cryptographic features (including encryption
and decryption) of the javax.crypto package and
its subpackages. These packages were originally part of the Java
Cryptography Extension (JCE) before being integrated into Java 1.4,
which is why they have the “javax”
extension prefix. All of the commonly-used cryptography classes are
in the javax.crypto package itself. The
javax.crypto.interfaces subpackage defines
algorithm-specific interfaces for certain type of cryptographic keys.
The javax.crypto.spec subpackage defines classes
that provide a transparent, portable, and provider-independent
representation of cryptographic keys and related objects.

Name
Package javax.crypto

Synopsis

 The javax.crypto
package defines classes and interfaces for various cryptographic
operations. The central class is Cipher, which is
used to encrypt and decrypt data.
CipherInputStream and
CipherOutputStream are utility classes that use a
Cipher object to encrypt or decrypt streaming
data. SealedObject is another important utility
class that uses a Cipher object to encrypt an
arbitrary serializable Java object.

 The
KeyGenerator class creates the
SecretKey objects used by
Cipher for encryption and decryption.
SecretKeyFactory encodes and decodes
SecretKey objects. The
KeyAgreement class enables two or more parties to
agree on a SecretKey in such a way that an
eavesdropper cannot determine the key. The Mac
class computes a message authentication code (MAC) that can ensure
the integrity of a transmission between two parties who share a
SecretKey. A MAC is akin to a digital signature,
except that it is based on a secret key instead of a public/private
key pair.

 Like the
java.security package, the
javax.crypto package is provider-based, so that
arbitrary cryptographic implementations may be plugged into any Java
installation. Various classes in this package have names that end in
Spi. These classes define a service-provider interface and must be
implemented by each cryptographic provider that wishes to provide an
implementation of a particular cryptographic service or algorithm.

 This package was
originally shipped as part of the Java Cryptography Extension (JCE),
but it has been added to the core platform in Java 1.4. A version of
the JCE is still available (see http://java.sun.com/security) as a standard
extension for Java 1.2 and Java 1.3. This package is distributed with
a cryptographic provider named
“SunJCE” that includes a robust set
of implementations for Cipher,
KeyAgreement, Mac, and other
classes. This provider is installed by the default
java.security properties in Java 1.4
distributions.

 A full tutorial on
cryptography is beyond the scope of this chapter and of this book. In
order to use this package, you need to have a basic understanding of
cryptographic algorithms such as DES. In order to take full advantage
of this package, you also need to have a detailed understanding of
things like feedback modes, padding schemes, the Diffie-Hellman
key-agreement protocol, and so on. For a good introduction to modern
cryptography in Java, see Java Cryptography by
Jonathan Knudsen (O’Reilly). For more in-depth
coverage, not specific to Java, see Applied
Cryptography by Bruce Schneier (Wiley).

Interfaces
public interface SecretKey extends java.security.Key;

Classes
public class Cipher;
 public class NullCipher extends Cipher;
public class CipherInputStream extends java.io.FilterInputStream;
public class CipherOutputStream extends java.io.FilterOutputStream;
public abstract class CipherSpi;
public class EncryptedPrivateKeyInfo;
public class ExemptionMechanism;
public abstract class ExemptionMechanismSpi;
public class KeyAgreement;
public abstract class KeyAgreementSpi;
public class KeyGenerator;
public abstract class KeyGeneratorSpi;
public class Mac implements Cloneable;
public abstract class MacSpi;
public class SealedObject implements Serializable;
public class SecretKeyFactory;
public abstract class SecretKeyFactorySpi;

Exceptions
public class BadPaddingException extends java.security.GeneralSecurityException;
public class ExemptionMechanismException extends java.security.GeneralSecurityException;
public class IllegalBlockSizeException extends java.security.GeneralSecurityException;
public class NoSuchPaddingException extends java.security.GeneralSecurityException;
public class ShortBufferException extends java.security.GeneralSecurityException;

Name
BadPaddingException

Synopsis

 Signals
that input data to a Cipher is not padded
correctly.
[image: javax.crypto.BadPaddingException]

Figure 17-1. javax.crypto.BadPaddingException

public class BadPaddingException extends java.security.GeneralSecurityException {
// Public Constructors
 public BadPaddingException();
 public BadPaddingException(String msg);
}

Thrown By

 Cipher.doFinal(),
CipherSpi.engineDoFinal(),
SealedObject.getObject()

Name
Cipher

Synopsis

 This class performs encryption and
decryption of byte arrays. Cipher is
provider-based, so to obtain a Cipher object, you
must call the static
 getInstance()
factory method. The arguments to getInstance() are a string that
describes the type of encryption desired and, optionally, the name of
the provider whose implementation should be used. To specify the
desired type of encryption, you can simply specify the name of an
encryption algorithm, such as
“DES”. In Java 5.0, the
“SunJCE” provider supports the
following algorithm names:
	
 AES

 	
 DES

 	
 RSA

	
 AESWrap

 	
 DESede

 	
 PBEWithMD5AndDES

	
 ARCFOUR

 	
 DESedeWrap

 	
 PBEWithMD5AndTripleDES

	
 Blowfish

 	
 RC2

 	
 PBEWithSHA1AndRC2_40

Advanced users may specify a three-part algorithm name that includes
the encryption algorithm, the algorithm operating mode, and the
padding scheme. These three parts are separated by slash characters,
as in “DES/CBC/PKCS5Padding”.
Finally, if you are requesting a block cipher algorithm in a stream
mode, you can specify the number of bits to be processed at a time by
following the name of the feedback mode with a number of bits. For
example: “DES/CFB8/NoPadding”.
Details of supported operating modes and padding schemes are beyond
the scope of this book. In Java 5.0, you can obtain details about the
services available through the SunJCE (or any other) provider through
the java.security.Provider.Services class.

 Once
you have obtained a Cipher object for the desired
cryptographic algorithm, mode, and padding scheme, you must
initialize it by calling one of the init()
methods. The first argument to init() is one of
the constants ENCRYPT_MODE or
DECRYPT_MODE. The second argument is a
java.security.Key object that performs the
encryption or decryption. If you use one of the symmetric (i.e.,
nonpublic key) encryption algorithms supported by the
“SunJCE” provider, this
Key object is a SecretKey
implementation. Note that some cryptographic providers restrict the
maximum allowed key length based on a jurisdiction policy file. In
Java 5.0 you can query the maximum
allowed key length for a named encryption algorithm with
getMaxAllowedKeyLength(
)
 . You can optionally pass a
java.security.SecureRandom object to
init() to provide a source of randomness. If you
do not, the Cipher implementation provides its own
pseudorandom number generator.

 Some cryptographic algorithms require
additional initialization parameters; these can be passed to
init() as a
java.security.AlgorithmParameters object or as a
java.security.spec.AlgorithmParameterSpec object.
When encrypting, you can omit these parameters, and the
Cipher implementation uses default values or
generates appropriate random parameters for you. In this case, you
should call getParameters() after performing
encryption to obtain the AlgorithmParameters used
to encrypt. These parameters are required in order to decrypt, and
must therefore be saved or transferred along with the encrypted data.
Of the algorithms supported by the
“SunJCE” provider, the block
ciphers “DES”,
“DESede”, and
“Blowfish” all require an
initialization vector when they are used in
“CBC”,
“CFB”,
“OFB”, or
“PCBC” mode. You can represent an
initialization vector with a
javax.crypto.spec.IvParameterSpec object and
obtain the raw bytes of the initialization vector used by a
Cipher with the getIV()
method. The “PBEWithMD5AndDES”
algorithm requires a salt and iteration count as parameters. These
can be specified with a
javax.crypto.spec.PBEParameterSpec object.

 Once you
have obtained and initialized a Cipher object, you
are ready to use it for encryption or decryption. If you have only a
single array of bytes to encrypt or decrypt, pass that input array to
one of the doFinal() methods. Some versions of
this method return the encrypted or decrypted bytes as the return
value of the function. Other versions store the encrypted or
decrypted bytes to another byte array you specify. If you choose to
use one of these latter methods, you should first call
getOutputSize() to determine the required size of
the output array. If you want to encrypt or decrypt data from a
streaming source or have more than one array of data, pass the data
to one of the update() methods, calling it as
many times as necessary. Then pass the last array of data to one of
the doFinal() methods. If you are working with
streaming data, consider using the
CipherInputStream and
CipherOutputStream classes instead.
Java 5.0 adds versions of the update() and
doFinal() that work with
ByteBuffer objects, which facilitates the use of
encryption and decryption with the New I/O API of
java.nio.
public class Cipher {
// Protected Constructors
 protected Cipher(CipherSpi cipherSpi, java.security.Provider provider,
 String transformation);
// Public Constants
 public static final int DECRYPT_MODE; =2
 public static final int ENCRYPT_MODE; =1
 public static final int PRIVATE_KEY; =2
 public static final int PUBLIC_KEY; =1
 public static final int SECRET_KEY; =3
 public static final int UNWRAP_MODE; =4
 public static final int WRAP_MODE; =3
 // Public Class Methods
 public static final Cipher getInstance(String transformation)
throws java.security.NoSuchAlgorithmException, NoSuchPaddingException;
 public static final Cipher getInstance(String transformation, String provider)
 throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException, NoSuchPaddingException;
 public static final Cipher getInstance(String transformation,
 java.security.Provider provider) throws java.security.NoSuchAlgorithmException,
 NoSuchPaddingException;
5.0 public static final int getMaxAllowedKeyLength(String transformation)
 throws java.security.NoSuchAlgorithmException;
5.0 public static final java.security.spec.AlgorithmParameterSpec
 getMaxAllowedParameterSpec(String transformation)
 throws java.security.NoSuchAlgorithmException;
// Public Instance Methods
 public final byte[] doFinal() throws IllegalBlockSizeException, BadPaddingException;
 public final byte[] doFinal(byte[] input)
 throws IllegalBlockSizeException, BadPaddingException;
 public final int doFinal(byte[] output, int outputOffset)
 throws IllegalBlockSizeException, ShortBufferException, BadPaddingException;
5.0 public final int doFinal(java.nio.ByteBuffer input, java.nio.ByteBuffer output)
 throws ShortBufferException, IllegalBlockSizeException, BadPaddingException;
 public final byte[] doFinal(byte[] input, int inputOffset, int inputLen)
 throws IllegalBlockSizeException, BadPaddingException;
 public final int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output)
 throws ShortBufferException, IllegalBlockSizeException, BadPaddingException;
 public final int doFinal(byte[] input, int inputOffset, int inputLen,
 byte[] output, int outputOffset)
 throws ShortBufferException, IllegalBlockSizeException, BadPaddingException;
 public final String getAlgorithm();
 public final int getBlockSize();
 public final ExemptionMechanism getExemptionMechanism();
 public final byte[] getIV();
 public final int getOutputSize(int inputLen);
 public final java.security.AlgorithmParameters getParameters();
 public final java.security.Provider getProvider();
 public final void init(int opmode, java.security.cert.Certificate certificate)
 throws java.security.InvalidKeyException;
 public final void init(int opmode, java.security.Key key)
 throws java.security.InvalidKeyException;
 public final void init(int opmode, java.security.Key key,
 java.security.AlgorithmParameters params)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException;
 public final void init(int opmode, java.security.cert.Certificate certificate,
 java.security.SecureRandom random)
 throws java.security.InvalidKeyException;
 public final void init(int opmode, java.security.Key key,
 java.security.SecureRandom random)
 throws java.security.InvalidKeyException;
 public final void init(int opmode, java.security.Key key,
 java.security.spec.AlgorithmParameterSpec params)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException;
 public final void init(int opmode, java.security.Key key,
 java.security.spec.AlgorithmParameterSpec params,
 java.security.SecureRandom random)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException;
 public final void init(int opmode, java.security.Key key,
 java.security.AlgorithmParameters params,
 java.security.SecureRandom random)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException;
 public final java.security.Key unwrap(byte[] wrappedKey, String wrappedKeyAlgorithm,
 int wrappedKeyType) throws java.security.InvalidKeyException,
 java.security.NoSuchAlgorithmException;
 public final byte[] update(byte[] input);
5.0 public final int update(java.nio.ByteBuffer input, java.nio.ByteBuffer output)
 throws ShortBufferException;
 public final byte[] update(byte[] input, int inputOffset, int inputLen);
 public final int update(byte[] input, int inputOffset, int inputLen, byte[] output)
 throws ShortBufferException;
 public final int update(byte[] input, int inputOffset, int inputLen, byte[] output,
 int outputOffset) throws ShortBufferException;
 public final byte[] wrap(java.security.Key key) throws IllegalBlockSizeException,
 java.security.InvalidKeyException;
}

Subclasses

 NullCipher

Passed To

 CipherInputStream.CipherInputStream(),
CipherOutputStream.CipherOutputStream(),
EncryptedPrivateKeyInfo.getKeySpec(),
SealedObject.{getObject(), SealedObject(
)}

Name
CipherInputStream

Synopsis

 This class is an input stream that uses
a Cipher object to encrypt or decrypt the bytes it
reads from another stream. You must initialize the
Cipher object before passing it to the
CipherInputStream() constructor.
[image: javax.crypto.CipherInputStream]

Figure 17-2. javax.crypto.CipherInputStream

public class CipherInputStream extends java.io.FilterInputStream {
// Public Constructors
 public CipherInputStream(java.io.InputStream is, Cipher c);
// Protected Constructors
 protected CipherInputStream(java.io.InputStream is);
// Public Methods Overriding FilterInputStream
 public int available() throws java.io.IOException;
 public void close() throws java.io.IOException;
 public boolean markSupported(); constant
 public int read() throws java.io.IOException;
 public int read(byte[] b) throws java.io.IOException;
 public int read(byte[] b, int off, int len) throws java.io.IOException;
 public long skip(long n) throws java.io.IOException;
}

Name
CipherOutputStream

Synopsis

 This class is an output stream that uses
a Cipher object to encrypt or decrypt bytes before
passing them to another output stream. You must initialize the
Cipher object before passing it to the
CipherOutputStream() constructor. If you are
using a Cipher with any kind of padding, you must
not call flush() until you are done writing all
data to the stream; otherwise decryption fails.
[image: javax.crypto.CipherOutputStream]

Figure 17-3. javax.crypto.CipherOutputStream

public class CipherOutputStream extends java.io.FilterOutputStream {
// Public Constructors
 public CipherOutputStream(java.io.OutputStream os, Cipher c);
// Protected Constructors
 protected CipherOutputStream(java.io.OutputStream os);
// Public Methods Overriding FilterOutputStream
 public void close() throws java.io.IOException;
 public void flush() throws java.io.IOException;
 public void write(int b) throws java.io.IOException;
 public void write(byte[] b) throws java.io.IOException;
 public void write(byte[] b, int off, int len) throws java.io.IOException;
}

Name
CipherSpi

Synopsis

 This abstract class defines the
service-provider interface for Cipher. A
cryptographic provider must implement a concrete subclass of this
class for each encryption algorithm it supports. A provider can
implement a separate class for each combination of algorithm, mode,
and padding scheme it supports or implement more general classes and
leave the mode and/or padding scheme to be specified in calls to
engineSetMode() and engineSetPadding(
). Applications never need to use or subclass this class.
public abstract class CipherSpi {
// Public Constructors
 public CipherSpi();
// Protected Instance Methods
 5.0 protected int engineDoFinal(java.nio.ByteBuffer input, java.nio.ByteBuffer output)
 throws ShortBufferException, IllegalBlockSizeException, BadPaddingException;
 protected abstract byte[] engineDoFinal(byte[] input, int inputOffset, int inputLen)
 throws IllegalBlockSizeException, BadPaddingException;
 protected abstract int engineDoFinal(byte[] input, int inputOffset, int inputLen,
 byte[] output, int outputOffset)
 throws ShortBufferException, IllegalBlockSizeException, BadPaddingException;
 protected abstract int engineGetBlockSize();
 protected abstract byte[] engineGetIV();
 protected int engineGetKeySize(java.security.Key key)
 throws java.security.InvalidKeyException;
 protected abstract int engineGetOutputSize(int inputLen);
 protected abstract java.security.AlgorithmParameters engineGetParameters();
 protected abstract void engineInit(int opmode, java.security.Key key,
 java.security.SecureRandom random)
 throws java.security.InvalidKeyException;
 protected abstract void engineInit(int opmode, java.security.Key key,
 java.security.AlgorithmParameters params,
 java.security.SecureRandom random)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException;
 protected abstract void engineInit(int opmode, java.security.Key key,
 java.security.spec.AlgorithmParameterSpec params,
 java.security.SecureRandom rando m)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException;
 protected abstract void engineSetMode(String mode)
 throws java.security.NoSuchAlgorithmException;
 protected abstract void engineSetPadding(String padding) throws NoSuchPaddingException;
 protected java.security.Key engineUnwrap(byte[] wrappedKey, String wrappedKeyAlgorithm,
 int wrappedKeyType)
 throws java.security.InvalidKeyException,
 java.security.NoSuchAlgorithmException;
5.0 protected int engineUpdate(java.nio.ByteBuffer input, java.nio.ByteBuffer output)
 throws ShortBufferException;
 protected abstract byte[] engineUpdate(byte[] input, int inputOffset, int inputLen);
 protected abstract int engineUpdate(byte[] input, int inputOffset, int inputLen,
 byte[] output, int outputOffset)
 throws ShortBufferException;
 protected byte[] engineWrap(java.security.Key key)
 throws IllegalBlockSizeException, java.security.InvalidKeyException;
}

Passed To

 Cipher.Cipher()

Name
EncryptedPrivateKeyInfo

Synopsis
This
 class represents an encrypted private
key. getEncryptedData() returns the encrypted
bytes. getAlgName() and
getAlgParameters() return the algorithm name and
parameters used to encrypt it. Pass a Cipher
object to getKeySpec() to decrypt the key.
public class EncryptedPrivateKeyInfo {
// Public Constructors
 public EncryptedPrivateKeyInfo(byte[] encoded) throws java.io.IOException;
 public EncryptedPrivateKeyInfo(java.security.AlgorithmParameters algParams,
 byte[] encryptedData) throws java.security.NoSuchAlgorithmException;
 public EncryptedPrivateKeyInfo(String algName, byte[] encryptedData)
 throws java.security.NoSuchAlgorithmException;
// Public Instance Methods
 public String getAlgName();
 public java.security.AlgorithmParameters getAlgParameters();
 public byte[] getEncoded() throws java.io.IOException;
 public byte[] getEncryptedData();
5.0 public java.security.spec.PKCS8EncodedKeySpec getKeySpec(java.security.Key decryptKey)
 throws java.security.NoSuchAlgorithmException,
 java.security.InvalidKeyException;
 public java.security.spec.PKCS8EncodedKeySpec getKeySpec(Cipher cipher)
 throws java.security.spec.InvalidKeySpecException;
5.0 public java.security.spec.PKCS8EncodedKeySpec getKeySpec(java.security.Key decryptKey,
 java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException,
 java.security.InvalidKeyException;
5.0 public java.security.spec.PKCS8EncodedKeySpec getKeySpec(java.security.Key decryptKey,
 String providerName) throws java.security.NoSuchProviderException,
 java.security.NoSuchAlgorithmException,
 java.security.InvalidKeyException;
}

Name
ExemptionMechanism

Synopsis
Some countries place legal restrictions on the
use of cryptographic algorithms. In some cases, a program may be
exempt from these restrictions if it implements an
“exemption mechanism” such as key
recovery, key escrow, or key weakening. This class defines a very
general API to such mechanism. This class is rarely used, and is not
supported in the default implementation provided by Sun. Using this
class successfully is quite complex, and is beyond the scope of this
reference. For details, see the discussion “How to
Make Applications `Exempt’ from
Cryptographic Restrictions” in the JCE
Reference Guide which is part of the standard bundle of
documentation shipped by Sun with the JDK.
public class ExemptionMechanism {
// Protected Constructors
 protected ExemptionMechanism(ExemptionMechanismSpi exmechSpi,
 java.security.Provider provider, String mechanism);
// Public Class Methods
 public static final ExemptionMechanism getInstance(String algorithm)
 throws java.security.NoSuchAlgorithmException;
 public static final ExemptionMechanism getInstance(String algorithm,
 String provider) throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
 public static final ExemptionMechanism getInstance(String algorithm,
 java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException;
// Public Instance Methods
 public final byte[] genExemptionBlob() throws IllegalStateException,
 ExemptionMechanismException;
 public final int genExemptionBlob(byte[] output)
 throws IllegalStateException, ShortBufferException,
 ExemptionMechanismException;
 public final int genExemptionBlob(byte[] output, int outputOffset)
 throws IllegalStateException, ShortBufferException,
 ExemptionMechanismException;
 public final String getName();
 public final int getOutputSize(int inputLen) throws IllegalStateException;
 public final java.security.Provider getProvider();
 public final void init(java.security.Key key)
 throws java.security.InvalidKeyException,
 ExemptionMechanismException;
 public final void init(java.security.Key key,
 java.security.spec.AlgorithmParameterSpec params)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException,
 ExemptionMechanismException;
 public final void init(java.security.Key key,
 java.security.AlgorithmParameters params)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException,
 ExemptionMechanismException;
 public final boolean isCryptoAllowed(java.security.Key key)
 throws ExemptionMechanismException;
// Protected Methods Overriding Object
 protected void finalize();
}

Returned By

 Cipher.getExemptionMechanism()

Name
ExemptionMechanismException

Synopsis

 Signals
a problem in one of the ExcemptionMechanism
methods.
[image: javax.crypto.ExemptionMechanismException]

Figure 17-4. javax.crypto.ExemptionMechanismException

public class ExemptionMechanismException extends java.security.GeneralSecurityException {
// Public Constructors
 public ExemptionMechanismException();
 public ExemptionMechanismException(String msg);
}

Thrown By

 ExemptionMechanism.{genExemptionBlob(),
init(), isCryptoAllowed()},
ExemptionMechanismSpi.{engineGenExemptionBlob(),
engineInit()}

Name
ExemptionMechanismSpi

Synopsis
This
 abstract
class defines the Service Provider Interface for
ExemptionMechanism. Security providers may
implement this interface, but applications never need to use it. Note
that the default “SunJCE” provider
does not provide an implementation.
public abstract class ExemptionMechanismSpi {
// Public Constructors
 public ExemptionMechanismSpi();
// Protected Instance Methods
 protected abstract byte[] engineGenExemptionBlob() throws ExemptionMechanismException;
 protected abstract int engineGenExemptionBlob(byte[] output, int outputOffset)
throws ShortBufferException, ExemptionMechanismException;
 protected abstract int engineGetOutputSize(int inputLen);
 protected abstract void engineInit(java.security.Key key)
throws java.security.InvalidKeyException, ExemptionMechanismException;
 protected abstract void engineInit(java.security.Key key,
 java.security.AlgorithmParameters params)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException,
 ExemptionMechanismException;
 protected abstract void engineInit(java.security.Key key,
 java.security.spec.AlgorithmParameterSpec params)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException,
 ExemptionMechanismException;
}

Passed To

 ExemptionMechanism.ExemptionMechanism()

Name
IllegalBlockSizeException

Synopsis

 Signals
that the length of data provided to a block cipher (as implemented,
for example, by Cipher and
SealedObject) does not match the block size for
the cipher.
[image: javax.crypto.IllegalBlockSizeException]

Figure 17-5. javax.crypto.IllegalBlockSizeException

public class IllegalBlockSizeException extends java.security.GeneralSecurityException {
// Public Constructors
 public IllegalBlockSizeException();
 public IllegalBlockSizeException(String msg);
}

Thrown By

 Cipher.{doFinal(), wrap()},
CipherSpi.{engineDoFinal(), engineWrap(
)}, SealedObject.{getObject(),
SealedObject()}

Name
KeyAgreement

Synopsis

 This class provides an
API to a key-agreement protocol that allows two or more parties to
agree on a secret key without exchanging any secrets and in such a
way that an eavesdropper listening in on the communication between
those parties cannot determine the secret key. The
KeyAgreement class is algorithm-independent and
provider-based, so you must obtain a KeyAgreement
object by calling one of the static getInstance()
factory methods and specifying the name of the desired key agreement
algorithm and, optionally, the name of the desired provider of that
algorithm. The “SunJCE” provider
implements a single key-agreement algorithm named
“DiffieHellman”.

 To
use a KeyAgreement object, each party first calls
the init() method and supplies a
Key object of its own. Then, each party obtains a
Key object from one of the other parties to the
agreement and calls doPhase(). Each party obtains
an intermediate Key object as the return value of
doPhase(), and these keys are again exchanged and
passed to doPhase(). This process typically
repeats n-1 times, where n is
the number of parties, but the actual number of repetitions is
algorithm-dependent. When doPhase() is called the
last time, the second argument must be true to
indicate that it is the last phase of the agreement. After all calls
to doPhase() have been made, each party calls
generateSecret() to obtain an array of bytes or a
SecretKey object for a named algorithm type. All
parties obtain the same bytes or SecretKey from
this method. The KeyAgreement class is not
responsible for the transfer of Key objects
between parties or for mutual authentication among the parties. These
tasks must be accomplished through some external mechanism.
The most common type of key agreement is
“DiffieHellman” key agreement
between two parties. It proceeds as follows. First, both parties
obtain a java.security.KeyPairGenerator for the
“DiffieHellman” algorithm and use
it to generate a java.security.KeyPair of
Diffie-Hellman public and private keys. Each party passes its private
key to the init() method of its
KeyAgreement object. (The init(
) method can be passed a
java.security.spec.AlgorithmParameterSpec object,
but the Diffie-Hellman protocol does not require any additional
parameters.) Next, the two parties exchange public keys, typically
through some kind of networking mechanism (the
KeyAgreement class is not responsible for the
actual exchange of keys). Each party passes the public key of the
other party to the doPhase() method of its
KeyAgreement object. There are only two parties to
this agreement, so only one phase is required, and the second
argument to doPhase() is true.
At this point, both parties call generateSecret()
to obtain the shared secret key.

 A three-party Diffie-Hellman key
agreement requires two phases and is slightly more complicated.
Let’s call the three parties Alice, Bob, and Carol.
Each generates a key pair and uses its private key to initialize its
KeyAgreement object, as before. Then Alice passes
her public key to Bob, Bob passes his to Carol, and Carol passes hers
to Alice. Each party passes this public key to doPhase(
). Since this is not the final doPhase(
), the second argument is false, and
doPhase() returns an intermediate
Key object. The three parties exchange these
intermediate keys again in the same way: Alice to Bob, Bob to Carol,
and Carol to Alice. Now each party passes the intermediate key it has
received to doPhase() a second time, passing
true to indicate that this is the final phase.
Finally, all three can call generateSecret() to
obtain a shared key to encrypt future communication.
public class KeyAgreement {
// Protected Constructors
 protected KeyAgreement(KeyAgreementSpi keyAgreeSpi, java.security.Provider provider,
 String algorithm);
// Public Class Methods
 public static final KeyAgreement getInstance(String algorithm)
 throws java.security.NoSuchAlgorithmException;
 public static final KeyAgreement getInstance(String algorithm, String provider)
 throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
 public static final KeyAgreement getInstance(String algorithm, java.security.
 Provider provider) throws java.security.NoSuchAlgorithmException;
// Public Instance Methods
 public final java.security.Key doPhase(java.security.Key key, boolean lastPhase)
 throws java.security.InvalidKeyException, IllegalStateException;
 public final byte[] generateSecret() throws IllegalStateException;
 public final SecretKey generateSecret(String algorithm)
 throws IllegalStateException, java.security.NoSuchAlgorithmException,
 java.security.InvalidKeyException;
 public final int generateSecret(byte[] sharedSecret, int offset)
 throws IllegalStateException, ShortBufferException;
 public final String getAlgorithm();
 public final java.security.Provider getProvider();
 public final void init(java.security.Key key) throws java.security.InvalidKeyException;
 public final void init(java.security.Key key, java.security.SecureRandom random)
 throws java.security.InvalidKeyException;
 public final void init(java.security.Key key, java.security.spec
 .AlgorithmParameterSpec params)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException;
 public final void init(java.security.Key key, java.security.spec
 .AlgorithmParameterSpec params,
 java.security.SecureRandom random)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException;
}

Name
KeyAgreementSpi

Synopsis

 This abstract class defines the
service-provider interface for KeyAgreement. A
cryptographic provider must implement a concrete subclass of this
class for each encryption algorithm it supports. Applications never
need to use or subclass this class.
public abstract class KeyAgreementSpi {
// Public Constructors
 public KeyAgreementSpi();
// Protected Instance Methods
 protected abstract java.security.Key engineDoPhase(java.security.Key key,
 boolean lastPhase) throws java.security.InvalidKeyException,
 IllegalStateException;
 protected abstract byte[] engineGenerateSecret() throws IllegalStateException;
 protected abstract SecretKey engineGenerateSecret(String algorithm)
 throws IllegalStateException,
 java.security.NoSuchAlgorithmException,
 java.security.InvalidKeyException;
 protected abstract int engineGenerateSecret(byte[] sharedSecret, int offset)
 throws IllegalStateException, ShortBufferException;
 protected abstract void engineInit(java.security.Key key,
 java.security.SecureRandom random)
 throws java.security.InvalidKeyException;
 protected abstract void engineInit(java.security.Key key,
 java.security.spec.AlgorithmParameterSpec params,
 java.security.SecureRandom random)
 throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException;
}

Passed To

 KeyAgreement.KeyAgreement()

Name
KeyGenerator

Synopsis

 This class provides an API for
generating secret keys for symmetric cryptography. It is similar to
java.security.KeyPairGenerator, which generates
public/private key pairs for asymmetric or public-key cryptography.
KeyGenerator is algorithm-independent and
provider-based, so you must obtain a KeyGenerator
instance by calling one of the static getInstance(
) factory methods and specifying the name of the
cryptographic algorithm for which a key is desired and, optionally,
the name of the security provider whose key-generation implementation
is to be used. In Java 5.0 the
“SunJCE” provider includes
KeyGenerator implementations algorithms with the
following names:
	
 AES

 	
 DESede

 	
 HmacSHA384

	
 ARCFOUR

 	
 HmacMD5

 	
 HmacSHA512

	
 Blowfish

 	
 HmacSHA1

 	
 RC2

	
 DES

 	
 HmacSHA256

 	

 Once you have obtained a
KeyGenerator, you initialize it with the
init() method. You can provide a
java.security.spec.AlgorithmParameterSpec object
to provide algorithm-specific initialization parameters or simply
specify the desired size (in bits) of the key to be generated. In
either case, you can also specify a source of randomness in the form
of a SecureRandom object. If you do not specify a
SecureRandom, the KeyGenerator
instantiates one of its own. None of the algorithms supported by the
“SunJCE” provider require
algorithm-specific parameters.

 After calling
getInstance() to obtain a
KeyGenerator and init() to
initialize it, simply call generateKey() to
create a new SecretKey. Remember that the
SecretKey must be kept secret. Take precautions
when storing or transmitting the key, so that it does not fall into
the wrong hands. You may want to use a
java.security.KeyStore object to store the key in
a password-protected form.
public class KeyGenerator {
// Protected Constructors
 protected KeyGenerator(KeyGeneratorSpi keyGenSpi, java.security.Provider provider,
 String algorithm);
// Public Class Methods
 public static final KeyGenerator getInstance(String algorithm)
 throws java.security.NoSuchAlgorithmException;
 public static final KeyGenerator getInstance(String algorithm,
 java.security.Provider provider) throws java.security.NoSuchAlgorithmException;
 public static final KeyGenerator getInstance(String algorithm,
 String provider) throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
// Public Instance Methods
 public final SecretKey generateKey();
 public final String getAlgorithm();
 public final java.security.Provider getProvider();
 public final void init(int keysize);
 public final void init(java.security.spec.AlgorithmParameterSpec params)
 throws java.security.InvalidAlgorithmParameterException;
 public final void init(java.security.SecureRandom random);
 public final void init(int keysize, java.security.SecureRandom random);
 public final void init(java.security.spec.AlgorithmParameterSpec params,
 java.security.SecureRandom random)
 throws java.security.InvalidAlgorithmParameterException;
}

Name
KeyGeneratorSpi

Synopsis

 This abstract class defines the
service-provider interface for KeyGenerator. A
cryptographic provider must implement a concrete subclass of this
class for each key-generation algorithm it supports. Applications
never need to use or subclass this class.
public abstract class KeyGeneratorSpi {
// Public Constructors
 public KeyGeneratorSpi();
// Protected Instance Methods
 protected abstract SecretKey engineGenerateKey();
 protected abstract void engineInit(java.security.SecureRandom random);
 protected abstract void engineInit(int keysize, java.security.SecureRandom random);
 protected abstract void engineInit(java.security.spec.AlgorithmParameterSpec params,
 java.security.SecureRandom random)
 throws java.security.InvalidAlgorithmParameterException;
}

Passed To

 KeyGenerator.KeyGenerator()

Name
Mac

Synopsis

 This class defines an API for
computing a message authentication
code

 (MAC) that can check the
integrity of information transmitted between two parties that share a
secret key. A MAC is similar to a digital signature, except that it
is generated with a secret key rather than with a public/private key
pair. The Mac class is algorithm-independent and
provider-based. Obtain a Mac object by calling one
of the static getInstance() factory methods and
specifying the name of the desired MAC algorithm and, optionally, the
name of the provider of the desired implementation. In
Java 5.0 The
“SunJCE” provider implement MAC
algorithms with the following names:
	
 HmacMD5

 	
 HmacSHA1

 	
 HmacSHA256

	
 HmacSHA384

 	
 HmacSHA512

 	
 HmacPBESHA1

 After obtaining a Mac
object, initialize it by calling the init()
method and specifying a SecretKey and, optionally,
a java.security.spec.AlgorithmParameterSpec
object. The “HmacMD5” and
“HmacSHA1” algorithms can use any
kind of SecretKey; they are not restricted to a
particular cryptographic algorithm. And neither algorithm requires an
AlgorithmParameterSpec object.

 After
obtaining and initializing a Mac object, specify
the data for which the MAC is to be computed. If the data is
contained in a single byte array, simply pass it to doFinal(
). If the data is streaming or is stored in various
locations, you can supply the data in multiple calls to
update(). In Java 5.0, you can pass a
ByteBuffer to update() which
facilities use with the java.nio New I/O API. End
the series of update() calls with a single call
to doFinal(). Note that some versions of
doFinal() return the MAC data as the function
return value. Another version stores the MAC data in a byte array you
supply. If you use this version of doFinal(), be
sure to call getMacLength() to instantiate an
array of the correct length.

 A call to doFinal()
resets the internal state of a Mac object. If you
want to compute a MAC for part of your data and then proceed to
compute the MAC for the full data, you should clone(
) the Mac object before calling
doFinal(). Note, however, that
Mac implementations are not required to implement
Cloneable.
[image: javax.crypto.Mac]

Figure 17-6. javax.crypto.Mac

public class Mac implements Cloneable {
// Protected Constructors
 protected Mac(MacSpi macSpi, java.security.Provider provider, String algorithm);
// Public Class Methods
 public static final Mac getInstance(String algorithm)
 throws java.security.NoSuchAlgorithmException;
 public static final Mac getInstance(String algorithm, String provider)
 throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
 public static final Mac getInstance(String algorithm, java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException;
// Public Instance Methods
 public final byte[] doFinal() throws IllegalStateException;
 public final byte[] doFinal(byte[] input) throws IllegalStateException;
 public final void doFinal(byte[] output, int outOffset)
 throws ShortBufferException, IllegalStateException;
 public final String getAlgorithm();
 public final int getMacLength();
 public final java.security.Provider getProvider();
 public final void init(java.security.Key key) throws java.security.InvalidKeyException;
 public final void init(java.security.Key key, java.security.spec
 .AlgorithmParameterSpec params) throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException;
 public final void reset();
 public final void update(byte input) throws IllegalStateException;
5.0 public final void update(java.nio.ByteBuffer input);
 public final void update(byte[] input) throws IllegalStateException;
 public final void update(byte[] input, int offset, int len) throws IllegalStateException;
// Public Methods Overriding Object
 public final Object clone() throws CloneNotSupportedException;
}

Name
MacSpi

Synopsis

 This abstract

 class defines the
service-provider interface for Mac. A
cryptographic provider must implement a concrete subclass of this
class for each MAC algorithm it supports. Applications never need to
use or subclass this class.
public abstract class MacSpi {
// Public Constructors
 public MacSpi();
// Public Methods Overriding Object
 public Object clone() throws CloneNotSupportedException;
// Protected Instance Methods
 protected abstract byte[] engineDoFinal();
 protected abstract int engineGetMacLength();
 protected abstract void engineInit(java.security.Key key, java.security.spec.
 AlgorithmParameterSpec params) throws java.security.InvalidKeyException,
 java.security.InvalidAlgorithmParameterException;
 protected abstract void engineReset();
5.0 protected void engineUpdate(java.nio.ByteBuffer input);
 protected abstract void engineUpdate(byte input);
 protected abstract void engineUpdate(byte[] input, int offset, int len);
}

Passed To

 Mac.Mac()

Name
NoSuchPaddingException

Synopsis

 Signals that no
implementation of the requested padding scheme can be found.
[image: javax.crypto.NoSuchPaddingException]

Figure 17-7. javax.crypto.NoSuchPaddingException

public class NoSuchPaddingException extends java.security.GeneralSecurityException {
// Public Constructors
 public NoSuchPaddingException();
 public NoSuchPaddingException(String msg);
}

Thrown By

 Cipher.getInstance(),
CipherSpi.engineSetPadding()

Name
NullCipher

Synopsis

 This trivial subclass of
Cipher implements an identity cipher that does not
transform plain text in any way. Unlike Cipher
objects returned by Cipher.getInstance(), a
NullCipher must be created with the
NullCipher() constructor.
[image: javax.crypto.NullCipher]

Figure 17-8. javax.crypto.NullCipher

public class NullCipher extends Cipher {
// Public Constructors
 public NullCipher();
}

Name
SealedObject

Synopsis

 This
class is a wrapper around a serializable object. It serializes the
object and encrypts the resulting data stream, thereby protecting the
confidentiality of the object. Create a
SealedObject by specifying the object to be sealed
and a Cipher object to perform the encryption.
Retrieve the sealed object by calling getObject()
and specifying the Cipher or
java.security.Key to use for decryption. The
SealedObject keeps track of the encryption
algorithm and parameters so that a Key object
alone can decrypt the object.
[image: javax.crypto.SealedObject]

Figure 17-9. javax.crypto.SealedObject

public class SealedObject implements Serializable {
// Public Constructors
 public SealedObject(Serializable object, Cipher c)
 throws java.io.IOException, IllegalBlockSizeException;
// Protected Constructors
 protected SealedObject(SealedObject so);
// Public Instance Methods
 public final String getAlgorithm();
 public final Object getObject(java.security.Key key)
 throws java.io.IOException, ClassNotFoundException,
 java.security.NoSuchAlgorithmException, java.security.InvalidKeyException;
 public final Object getObject(Cipher c)
 throws java.io.IOException, ClassNotFoundException,
 IllegalBlockSizeException, BadPaddingException;
 public final Object getObject(java.security.Key key, String provider)
 throws java.io.IOException, ClassNotFoundException,
 java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException,
 java.security.InvalidKeyException;
// Protected Instance Fields
 protected byte[] encodedParams;
}

Name
SecretKey

Synopsis

 This interface represents a secret
key used for symmetric cryptographic algorithms that depend on both
the sender and receiver knowing the same secret.
SecretKey extends the
java.security.Key interface, but does not add any
new methods. The interface exists in order to keep secret keys
distinct from the public and private keys used in public-key, or
asymmetric, cryptography. See also
java.security.PublicKey and
java.security.PrivateKey.

 A secret key is nothing more than
arrays of bytes and does not require a specialized encoding format.
Therefore, an implementation of this interface should return the
format name “RAW” from
getFormat() and should return the bytes of the
key from getEncoded(). (These two methods are
defined by the java.security.Key interface that
SecretKey extends.)
[image: javax.crypto.SecretKey]

Figure 17-10. javax.crypto.SecretKey

public interface SecretKey extends java.security.Key {
// Public Constants
 5.0 public static final long serialVersionUID; =-4795878709595146952
}

Implementations

 javax.crypto.interfaces.PBEKey,
javax.crypto.spec.SecretKeySpec,
javax.security.auth.kerberos.KerberosKey

Passed To

 java.security.KeyStore.SecretKeyEntry.SecretKeyEntry(
), SecretKeyFactory.{getKeySpec(),
translateKey()},
SecretKeyFactorySpi.{engineGetKeySpec(),
engineTranslateKey()}

Returned By

 java.security.KeyStore.SecretKeyEntry.getSecretKey(
), KeyAgreement.generateSecret(),
KeyAgreementSpi.engineGenerateSecret(),
KeyGenerator.generateKey(),
KeyGeneratorSpi.engineGenerateKey(),
SecretKeyFactory.{generateSecret(),
translateKey()},
SecretKeyFactorySpi.{engineGenerateSecret(),
engineTranslateKey()},
javax.security.auth.kerberos.KerberosTicket.getSessionKey(
)

Name
SecretKeyFactory

Synopsis

 This class defines an API for
translating a secret key between its opaque
SecretKey representation and its transparent
javax.crypto.SecretKeySpec representation. It is
much like java.security.KeyFactory, except that it
works with secret (or symmetric) keys rather than with public and
private (asymmetric) keys. SecretKeyFactory is
algorithm-independent and provider-based, so you must obtain a
SecretKeyFactory object by calling one of the
static getInstance() factory methods and
specifying the name of the desired secret-key algorithm and,
optionally, the name of the provider whose implementation is desired.
In Java
5.0, the “SunJCE” provider provides
SecretKeyFactory implementations for algorithms
with the following names:
	
 DES

 	
 DESede

 	
 PBE

	
 PBEWithMD5AndDES

 	
 PBEWithMD5AndTripleDES

 	
 PBEWithSHA1AndDESede

	
 PBEWithSHA1AndRC2

 	
	

 Once you have obtained a
SecretKeyFactory, use generateSecret(
) to create a SecretKey from a
java.security.spec.KeySpec (or its subclass,
javax.crypto.spec.SecretKeySpec). Or call
getKeySpec() to obtain a
KeySpec for a Key object.
Because there can be more than one suitable type of
KeySpec, getKeySpec() requires
a Class object to specify the type of the
KeySpec to be created. See also
DESKeySpec, DESedeKeySpec, and
PBEKeySpec in the
javax.crypto.spec package.
public class SecretKeyFactory {
// Protected Constructors
 protected SecretKeyFactory(SecretKeyFactorySpi keyFacSpi,
 java.security.Provider provider, String algorithm);
// Public Class Methods
 public static final SecretKeyFactory getInstance(String algorithm)
 throws java.security.NoSuchAlgorithmException;
 public static final SecretKeyFactory getInstance(String algorithm,
 java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException;
 public static final SecretKeyFactory getInstance(String algorithm,
 String provider) throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
// Public Instance Methods
 public final SecretKey generateSecret(java.security.spec.KeySpec keySpec)
 throws java.security.spec.InvalidKeySpecException;
 public final String getAlgorithm();
 public final java.security.spec.KeySpec getKeySpec(SecretKey key, Class keySpec)
 throws java.security.spec.InvalidKeySpecException;
 public final java.security.Provider getProvider();
 public final SecretKey translateKey(SecretKey key)
 throws java.security.InvalidKeyException;
}

Name
SecretKeyFactorySpi

Synopsis

 This abstract class defines the
service-provider interface for SecretKeyFactory. A
cryptographic provider must implement a concrete subclass of this
class for each type of secret key it supports. Applications never
need to use or subclass this class.
public abstract class SecretKeyFactorySpi {
// Public Constructors
 public SecretKeyFactorySpi();
// Protected Instance Methods
 protected abstract SecretKey engineGenerateSecret
 (java.security.spec.KeySpec keySpec)
 throws java.security.spec.InvalidKeySpecException;
 protected abstract java.security.spec.KeySpec engineGetKeySpec
 (SecretKey key, Class keySpec)
 throws java.security.spec.InvalidKeySpecException;
 protected abstract SecretKey engineTranslateKey
 (SecretKey key) throws java.security.InvalidKeyException;
}

Passed To

 SecretKeyFactory.SecretKeyFactory()

Name
ShortBufferException

Synopsis

 Signals
that an output buffer is too short to hold the results of an
operation.
[image: javax.crypto.ShortBufferException]

Figure 17-11. javax.crypto.ShortBufferException

public class ShortBufferException extends java.security.GeneralSecurityException {
// Public Constructors
 public ShortBufferException();
 public ShortBufferException(String msg);
}

Thrown By
Too many methods to list.

Name
Package javax.crypto.interfaces

Synopsis

 The interfaces in the
javax.crypto.interfaces package define the public
methods that must be supported by various types of encryption keys.
The “DH” interfaces respresent
Diffie-Hellman public/private key pairs used in the Diffie-Hellman
key-agreement protocol. The “PBE”
iterface is for Password-Based Encryption. These interfaces are
typically of interest only to programmers who are implementing a
cryptographic provider or who want to implement cryptographic
algorithms themselves. Use of this package requires basic familiarity
with the encryption algorithms and the mathematics that underlie
them. Note that the javax.crypto.spec package
contains classes that provide algorithm-specific details about
encryption keys.

Interfaces
public interface DHKey;
public interface DHPrivateKey extends DHKey, java.security.PrivateKey;
public interface DHPublicKey extends DHKey, java.security.PublicKey;
public interface PBEKey extends javax.crypto.SecretKey;

Name
DHKey

Synopsis

 This interface represents a
Diffie-Hellman key. The
javax.crypto.spec.DHParameterSpec returned by
getParams() specifies the parameters that
generate the key; they define a key family. See the subinterfaces
DHPublicKey and DHPrivateKey
for the actual key values.
public interface DHKey {
// Public Instance Methods
 javax.crypto.spec.DHParameterSpec getParams();
}

Implementations

 DHPrivateKey, DHPublicKey

Name
DHPrivateKey

Synopsis

 This interface represents a
Diffie-Hellman private key. Note that it extends two interfaces:
DHKey and
java.security.PrivateKey. getX(
) returns the private-key value. If you are working with a
PrivateKey you know is a Diffie-Hellman key, you
can cast your PrivateKey to a
DHPrivateKey.
[image: javax.crypto.interfaces.DHPrivateKey]

Figure 17-12. javax.crypto.interfaces.DHPrivateKey

public interface DHPrivateKey extends DHKeyjava.security.PrivateKey {
// Public Constants
 5.0 public static final long serialVersionUID; =2211791113380396553
 // Public Instance Methods
 java.math.BigInteger getX();
}

Name
DHPublicKey

Synopsis

 This interface represents a
Diffie-Hellman public key. Note that it extends two interfaces:
DHKey and
java.security.PublicKey. getY(
) returns the public-key value. If you are working with a
PublicKey you know is a Diffie-Hellman key, you
can cast your PublicKey to a
DHPublicKey.
[image: javax.crypto.interfaces.DHPublicKey]

Figure 17-13. javax.crypto.interfaces.DHPublicKey

public interface DHPublicKey extends DHKey, java.security.PublicKey {
// Public Constants
 5.0 public static final long serialVersionUID; =-6628103563352519193
 // Public Instance Methods
 java.math.BigInteger getY();
}

Name
PBEKey

Synopsis
This
 interface represents a key for
password-based encryption. If you are working with a
SecretKey that you know is a password-based key,
you can cast it to a PBEKey.
[image: javax.crypto.interfaces.PBEKey]

Figure 17-14. javax.crypto.interfaces.PBEKey

public interface PBEKey extends javax.crypto.SecretKey {
// Public Constants
 5.0 public static final long serialVersionUID; =-1430015993304333921
 // Public Instance Methods
 int getIterationCount();
 char[] getPassword();
 byte[] getSalt();
}

Name
Package javax.crypto.spec

Synopsis

 The javax.crypto.spec
package contains classes that define transparent
java.security.spec.KeySpec and
java.security.spec.AlgorithmParameterSpec
representations of secret keys, Diffie-Hellman public and private
keys, and parameters used by various cryptographic algorithms. The
classes in this package are used in conjunction with
java.security.KeyFactory,
javax.crypto.SecretKeyFactory and
java.security.AlgorithmParameters for converting
opaque Key, and
AlgorithmParameters objects to and from
transparent representations. In order to make good use of this
package, you must be familiar with the specifications of the various
cryptographic algorithms it supports and the basic mathematics that
underlie those algorithms.

Classes
public class DESedeKeySpec implements java.security.spec.KeySpec;
public class DESKeySpec implements java.security.spec.KeySpec;
public class DHGenParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class DHParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class DHPrivateKeySpec implements java.security.spec.KeySpec;
public class DHPublicKeySpec implements java.security.spec.KeySpec;
public class IvParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class OAEPParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class PBEKeySpec implements java.security.spec.KeySpec;
public class PBEParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class PSource;
 public static final class PSource.PSpecified extends PSource;
public class RC2ParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class RC5ParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class SecretKeySpec implements java.security.spec.KeySpec, javax.crypto.SecretKey;

Name
DESedeKeySpec

Synopsis

 This class is a transparent
representation of a DESede (triple-DES) key. The key is 24 bytes
long.
[image: javax.crypto.spec.DESedeKeySpec]

Figure 17-15. javax.crypto.spec.DESedeKeySpec

public class DESedeKeySpec implements java.security.spec.KeySpec {
// Public Constructors
 public DESedeKeySpec(byte[] key) throws java.security.InvalidKeyException;
 public DESedeKeySpec(byte[] key, int offset) throws java.security.InvalidKeyException;
// Public Constants
 public static final int DES_EDE_KEY_LEN; =24
 // Public Class Methods
 public static boolean isParityAdjusted(byte[] key, int offset)
 throws java.security.InvalidKeyException;
// Public Instance Methods
 public byte[] getKey();
}

Name
DESKeySpec

Synopsis

 This
class is a transparent representation of a DES key. The key is eight
bytes long.
[image: javax.crypto.spec.DESKeySpec]

Figure 17-16. javax.crypto.spec.DESKeySpec

public class DESKeySpec implements java.security.spec.KeySpec {
// Public Constructors
 public DESKeySpec(byte[] key) throws java.security.InvalidKeyException;
 public DESKeySpec(byte[] key, int offset) throws java.security.InvalidKeyException;
// Public Constants
 public static final int DES_KEY_LEN; =8
 // Public Class Methods
 public static boolean isParityAdjusted(byte[] key, int offset)
 throws java.security.InvalidKeyException;
 public static boolean isWeak(byte[] key, int offset)
 throws java.security.InvalidKeyException;
// Public Instance Methods
 public byte[] getKey();
}

Name
DHGenParameterSpec

Synopsis

 This class is a transparent representation
of the values needed to generate a set of Diffie-Hellman parameters
(see DHParameterSpec). An instance of this class
can be passed to the init() method of a
java.security.AlgorithmParameterGenerator that
computes Diffie-Hellman parameters.
[image: javax.crypto.spec.DHGenParameterSpec]

Figure 17-17. javax.crypto.spec.DHGenParameterSpec

public class DHGenParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors
 public DHGenParameterSpec(int primeSize, int exponentSize);
// Public Instance Methods
 public int getExponentSize();
 public int getPrimeSize();
}

Name
DHParameterSpec

Synopsis

 This
class is a transparent representation of the set of parameters
required by the Diffie-Hellman key-agreement algorithm. All parties
to the key agreement must share these parameters and use them to
generate a Diffie-Hellman public/private key pair.
[image: javax.crypto.spec.DHParameterSpec]

Figure 17-18. javax.crypto.spec.DHParameterSpec

public class DHParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors
 public DHParameterSpec(java.math.BigInteger p, java.math.BigInteger g);
 public DHParameterSpec(java.math.BigInteger p, java.math.BigInteger g, int l);
// Public Instance Methods
 public java.math.BigInteger getG();
 public int getL();
 public java.math.BigInteger getP();
}

Returned By

 javax.crypto.interfaces.DHKey.getParams()

Name
DHPrivateKeySpec

Synopsis

 This
java.security.spec.KeySpec is a transparent
representation of a Diffie-Hellman private key.
[image: javax.crypto.spec.DHPrivateKeySpec]

Figure 17-19. javax.crypto.spec.DHPrivateKeySpec

public class DHPrivateKeySpec implements java.security.spec.KeySpec {
// Public Constructors
 public DHPrivateKeySpec(java.math.BigInteger x,
 java.math.BigInteger p,
 java.math.BigInteger g);
// Public Instance Methods
 public java.math.BigInteger getG();
 public java.math.BigInteger getP();
 public java.math.BigInteger getX();
}

Name
DHPublicKeySpec

Synopsis

 This
java.security.spec.KeySpec is a transparent
representation of a Diffie-Hellman public key.
[image: javax.crypto.spec.DHPublicKeySpec]

Figure 17-20. javax.crypto.spec.DHPublicKeySpec

public class DHPublicKeySpec implements java.security.spec.KeySpec {
// Public Constructors
 public DHPublicKeySpec(java.math.BigInteger y, java.math.BigInteger p,
 java.math.BigInteger g);
// Public Instance Methods
 public java.math.BigInteger getG();
 public java.math.BigInteger getP();
 public java.math.BigInteger getY();
}

Name
IvParameterSpec

Synopsis

 This
java.security.spec.AlgorithmParameterSpec is a
transparent representation of an initialization
vector or IV. An IV is required for block ciphers used in
feedback mode, such as DES in CBC mode.
[image: javax.crypto.spec.IvParameterSpec]

Figure 17-21. javax.crypto.spec.IvParameterSpec

public class IvParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors
 public IvParameterSpec(byte[] iv);
 public IvParameterSpec(byte[] iv, int offset, int len);
// Public Instance Methods
 public byte[] getIV();
}

Name
OAEPParameterSpec

Synopsis

 This
class specifies parameters for OAEP padding, defined by the
PKCS #1 standard.
[image: javax.crypto.spec.OAEPParameterSpec]

Figure 17-22. javax.crypto.spec.OAEPParameterSpec

public class OAEPParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors
 public OAEPParameterSpec(String mdName, String mgfName,
 java.security.spec.AlgorithmParameterSpec mgfSpec,
 PSource pSrc);
// Public Constants
 public static final OAEPParameterSpec DEFAULT;
// Public Instance Methods
 public String getDigestAlgorithm();
 public String getMGFAlgorithm();
 public java.security.spec.AlgorithmParameterSpec getMGFParameters();
 public PSource getPSource();
}

Name
PBEKeySpec

Synopsis

 This class is a
transparent representation of a password used in password-based
encryption (PBE). The password is stored as a char
array rather than as a String, so that the
characters of the password can be overwritten when they are no longer
needed (for increased security).
[image: javax.crypto.spec.PBEKeySpec]

Figure 17-23. javax.crypto.spec.PBEKeySpec

public class PBEKeySpec implements java.security.spec.KeySpec {
// Public Constructors
 public PBEKeySpec(char[] password);
 public PBEKeySpec(char[] password, byte[] salt, int iterationCount);
 public PBEKeySpec(char[] password, byte[] salt, int iterationCount, int keyLength);
// Public Instance Methods
 public final void clearPassword();
 public final int getIterationCount();
 public final int getKeyLength();
 public final char[] getPassword();
 public final byte[] getSalt();
}

Name
PBEParameterSpec

Synopsis

 This class is a
transparent representation of the parameters used with the
password-based encryption algorithm defined by PKCS#5.
[image: javax.crypto.spec.PBEParameterSpec]

Figure 17-24. javax.crypto.spec.PBEParameterSpec

public class PBEParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors
 public PBEParameterSpec(byte[] salt, int iterationCount);
// Public Instance Methods
 public int getIterationCount();
 public byte[] getSalt();
}

Name
PSource

Synopsis
This
 class
is a representation of the source of “encoding input
P” in
 OAEP padding, defined by the PKCS
#1 standard.
public class PSource {
// Protected Constructors
 protected PSource(String pSrcName);
// Nested Types
 public static final class PSpecified extends PSource;
// Public Instance Methods
 public String getAlgorithm();
}

Subclasses

 PSource.PSpecified

Passed To

 OAEPParameterSpec.OAEPParameterSpec()

Returned By

 OAEPParameterSpec.getPSource()

Name
PSource.PSpecified

Synopsis
This
 class
extends and is nested within PSource. It
explicitly specifies the bytes of “encoding input
P” for OAEP padding.
public static final class PSource.PSpecified extends PSource {
// Public Constructors
 public PSpecified(byte[]);
// Public Constants
 public static final PSource.PSpecified DEFAULT;
// Public Instance Methods
 public byte[] getValue();
}

Name
RC2ParameterSpec

Synopsis

 This class is a transparent
representation of the parameters used by the RC2 encryption
algorithm. An object of this class initializes a
Cipher object that implements RC2. Note that the
“SunJCE” provider supplied by Sun
does not implement RC2.
[image: javax.crypto.spec.RC2ParameterSpec]

Figure 17-25. javax.crypto.spec.RC2ParameterSpec

public class RC2ParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors
 public RC2ParameterSpec(int effectiveKeyBits);
 public RC2ParameterSpec(int effectiveKeyBits, byte[] iv);
 public RC2ParameterSpec(int effectiveKeyBits, byte[] iv, int offset);
// Public Instance Methods
 public int getEffectiveKeyBits();
 public byte[] getIV();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
}

Name
RC5ParameterSpec

Synopsis

 This class is a transparent
representation of the parameters used by the RC5 encryption
algorithm. An object of this class initializes a
Cipher object that implements RC5. Note that the
“SunJCE” provider supplied by Sun
does not implement RC5.
[image: javax.crypto.spec.RC5ParameterSpec]

Figure 17-26. javax.crypto.spec.RC5ParameterSpec

public class RC5ParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors
 public RC5ParameterSpec(int version, int rounds, int wordSize);
 public RC5ParameterSpec(int version, int rounds, int wordSize, byte[] iv);
 public RC5ParameterSpec(int version, int rounds, int wordSize, byte[] iv, int offset);
// Public Instance Methods
 public byte[] getIV();
 public int getRounds();
 public int getVersion();
 public int getWordSize();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
}

Name
SecretKeySpec

Synopsis

 This
class is a transparent and algorithm-independent representation of a
secret key. This class is useful only for encryption algorithms (such
as DES and DESede) whose secret keys can be represented as arbitrary
byte arrays and do not require auxiliary parameters. Note that
SecretKeySpec implements the
javax.crypto.SecretKey interface directly, so no
algorithm-specific javax.crypto.SecretKeyFactory
object is required.
[image: javax.crypto.spec.SecretKeySpec]

Figure 17-27. javax.crypto.spec.SecretKeySpec

public class SecretKeySpec implements java.security.spec.KeySpec, javax.crypto.SecretKey {
// Public Constructors
 public SecretKeySpec(byte[] key, String algorithm);
 public SecretKeySpec(byte[] key, int offset, int len, String algorithm);
// Methods Implementing Key
 public String getAlgorithm();
 public byte[] getEncoded();
 public String getFormat();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
}

Chapter 18. javax.net and javax.net.ssl

This
 chapter documents the
javax.net package and, more importantly, its
subpackage javax.net.ssl. These packages were
originally defined by the Java Secure Sockets Extension (JSSE) before
they were integrated into Java 1.4, which is why they have a
“javax” prefix.

 javax.net is a small package that simply defines
abstract factory classes for creating network sockets and servers
sockets. javax.net.ssl provides subclasses of
these factory classes that have the specific purpose of creating
sockets and server sockets that enable secure network communication
through the SSL protocol and the closely-related TLS protocol.

Name
Package javax.net

Synopsis
This small package defines factory classes for creating sockets and
server sockets. These factory classes can be used to create regular
java.net.Socket and
java.net.ServerSocket objects. More importantly,
however, these factory classes can be subclassed to serve as
factories for other types of sockets such as the SSL-enabled sockets
of the javax.net.ssl package.

Classes
public abstract class ServerSocketFactory;
public abstract class SocketFactory;

Name
ServerSocketFactory

Synopsis

 This abstract class defines a factory
API for creating server socket objects. Use the static
getDefault()
 method to obtain a default
ServerSocketFactory object that is suitable for
creating regular java.net.ServerSocket sockets.
Once you have a ServerSocketFactory object, call
one of the createServerSocket() methods to create
a new socket and optionally bind it to a local port and specify the
allowed backlog of queued connections. See
javax.net.ssl.SSLServerSocketFactory for a socket
factory that can create secure
javax.net.ssl.SSLServerSocket objects.
public abstract class ServerSocketFactory {
// Protected Constructors
 protected ServerSocketFactory();
// Public Class Methods
 public static ServerSocketFactory getDefault();
// Public Instance Methods
 public java.net.ServerSocket createServerSocket() throws java.io.IOException;
 public abstract java.net.ServerSocket createServerSocket(int port)
 throws java.io.IOException;
 public abstract java.net.ServerSocket createServerSocket(int port,
 int backlog) throws java.io.IOException;
 public abstract java.net.ServerSocket createServerSocket(int port,
 int backlog, java.net.InetAddress ifAddress) throws java.io.IOException;
}

Subclasses

 javax.net.ssl.SSLServerSocketFactory

Returned By

 javax.net.ssl.SSLServerSocketFactory.getDefault()

Name
SocketFactory

Synopsis

 This abstract class defines a factory
API for creating socket objects. Use the static getDefault(
)

method to obtain a default SocketFactory object
that is suitable for creating regular
java.net.Socket sockets. (This default
SocketFactory is the one used by the
Socket() constructor, which usually provides an
easier way to create normal sockets.) Once you have a
SocketFactory object, call one of the
createSocket()

methods to create a new socket and optionally connect it to a remote
host and optionally bind it to a local address and port. See
javax.net.ssl.SSLSocketFactory for a socket
factory that can create secure
javax.net.ssl.SSLSocket objects.
public abstract class SocketFactory {
// Protected Constructors
 protected SocketFactory();
// Public Class Methods
 public static SocketFactory getDefault();
// Public Instance Methods
 public java.net.Socket createSocket() throws java.io.IOException;
 public abstract java.net.Socket createSocket(String host, int port)
 throws java.io.IOException, java.net.UnknownHostException;
 public abstract java.net.Socket createSocket(java.net.InetAddress host,
 int port) throws java.io.IOException;
 public abstract java.net.Socket createSocket(java.net.InetAddress address,
 int port, java.net.InetAddress localAddress,
 int localPort)
 throws java.io.IOException;
 public abstract java.net.Socket createSocket(String host, int port,
 java.net.InetAddress localHost, int localPort)
 throws java.io.IOException, java.net.UnknownHostException;
}

Subclasses

 javax.net.ssl.SSLSocketFactory

Returned By

 javax.net.ssl.SSLSocketFactory.getDefault()

Name
Package javax.net.ssl

Synopsis

 This package defines an
API for secure network sockets using the SSL (Secure Sockets Layer)
protocol, or the closely related TLS (Transport Layer Security)
protocol. It defines the SSLSocket and
SSLServerSocket subclasses of the
java.net socket and server socket classes. And it
defines SSLSocketFactory and
SSLServerSocketFactory subclasses of the
javax.net factory classes to create those
SSL-enabled sockets and server sockets. Clients that want to perform
simple SSL-enabled networking can create an
SSLSocket with code like the following:
SSLSocketFactory factory = SSLSocketFactory.getDefault();
SSLSocket securesock = (SSLSocket)factory.getSocket(hostname,
 443); // https port
Once an SSLSocket has been created, it can be used
just like a normal java.net.Socket. Once a
connection is established over an SSLSocket, you
can use the getSession() method to obtain an
SSLSession object that provides information about
the connection. Note that despite the name of this package and of its
key classes, it supports the TLS protocol in addition to the SSL.
(The default provider in Sun’s implementation
supports SSL 3.0 and TLS 1.0.) The TLS protocol is closely related to
SSL, and we’ll simply use the term SSL here.
The SSLSocket class allows you to do arbitrary
networking with an SSL-enabled peer. The most common use of SSL today
is with the https: protocol on the web. The
addition of this package to the core Java platform enables support
for https:
 URLs in
the java.net.URL class, which allows you to
securely transfer data over the web without having to directly use
this package at all. When you call openConnection(
)
 on a
https: URL, the
URLConnection
 object that is returned can be cast to
an
HttpsURLConnection
 object, which defines some SSL-specific
methods. See java.net.URL and
java.net.URLConnection for more information about
networking with URLs.
Although the code shown above to create a
SSLSocket is quite simple, this package is much
more complex because it exposes a lot of SSL infrastructure so that
applications with advanced networking needs can configure it as
needed. Also, like all security-related packages, this one is
provider-based and algorithm-independent, which adds a layer of
complexity. If you want to explore this package beyond the two socket
classes, the two factory classes, and the
HttpsURLConnection class, start with
SSLContext
 . This class is a factory for socket
factories, and as such is the central class of the API. To customize
the way SSL networking is done, you create an
SSLContext optionally specifing the desired
provider of the implementation. Next, you initialize the
SSLContext by providing a custom
KeyManager as a source of authentication
information to be supplied to the remote host if required, a custom
TrustManager as a verifier for the authentication
information (if any) presented by the remote host, and a custom
java.security.SecureRandom object as a source of
randomness. Once the SSLContext is initialized in
this way, you can use it to create
SSLSocketFactory and
SSLServerSocketFactory objects that use the
KeyManager and TrustManager
objects you supplied.
In
 Java 5.0, the
SSLContext can also be used to create an
SSLEngine object, which performs
transport-independent SSL encryption of outbound packets and SSL
decryption of inbound packets. This enables the use of SSL with the
nonblocking networking facilities of the
java.nio.channels package, for example.

Interfaces
public interface HandshakeCompletedListener extends java.util.EventListener;
public interface HostnameVerifier;
public interface KeyManager;
public interface ManagerFactoryParameters;
public interface SSLSession;
public interface SSLSessionBindingListener extends java.util.EventListener;
public interface SSLSessionContext;
public interface TrustManager;
public interface X509KeyManager extends KeyManager;
public interface X509TrustManager extends TrustManager;

Enumerated Types
public enum SSLEngineResult.HandshakeStatus;
public enum SSLEngineResult.Status;

Events
public class HandshakeCompletedEvent extends java.util.EventObject;
public class SSLSessionBindingEvent extends java.util.EventObject;

Other Classes
public class CertPathTrustManagerParameters implements ManagerFactoryParameters;
public abstract class HttpsURLConnection extends java.net.HttpURLConnection;
public class KeyManagerFactory;
public abstract class KeyManagerFactorySpi;
public class KeyStoreBuilderParameters implements ManagerFactoryParameters;
public class SSLContext;
public abstract class SSLContextSpi;
public abstract class SSLEngine;
public class SSLEngineResult;
public final class SSLPermission extends java.security.BasicPermission;
public abstract class SSLServerSocket extends java.net.ServerSocket;
public abstract class SSLServerSocketFactory extends javax.net.ServerSocketFactory;
public abstract class SSLSocket extends java.net.Socket;
public abstract class SSLSocketFactory extends javax.net.SocketFactory;
public class TrustManagerFactory;
public abstract class TrustManagerFactorySpi;
public abstract class X509ExtendedKeyManager implements X509KeyManager;

Exceptions
public class SSLException extends java.io.IOException;
 public class SSLHandshakeException extends SSLException;
 public class SSLKeyException extends SSLException;
 public class SSLPeerUnverifiedException extends SSLException;
 public class SSLProtocolException extends SSLException;

Name
CertPathTrustManagerParameters

Synopsis

 This class implements the
ManagerFactoryParameters interface and wraps a
java.security.cert.CertPathParameters object used
to initialize a TrustManager based on a
certificate path. See the init() method of
TrustManagerFactory.
[image: javax.net.ssl.CertPathTrustManagerParameters]

Figure 18-1. javax.net.ssl.CertPathTrustManagerParameters

public class CertPathTrustManagerParameters implements ManagerFactoryParameters {
// Public Constructors
 public CertPathTrustManagerParameters(java.security.cert.CertPathParameters parameters);
// Public Instance Methods
 public java.security.cert.CertPathParameters getParameters();
}

Name
HandshakeCompletedEvent

Synopsis

 An instance of this class is passed to the
handshakeCompleted() method of any registered
HandshakeCompletedListener objects by an
SSLSocket when that socket completes the handshake
phase of establishing a connection. The various methods of a
HandshakeCompletedEvent return information (such
as the name of the cipher suite in use and the
certificate chain of the remote host) that was determined during that
handshake.
Note that the getPeerCertificateChain(
)
 method returns an object from the
javax.security.cert package, which is not
documented in this book. The method and package exist only for
backward compatibility with earlier versions of the JSSE API, and
should be considered deprecated. Use getPeerCertificates(
)
 , which uses
java.security.cert instead.
[image: javax.net.ssl.HandshakeCompletedEvent]

Figure 18-2. javax.net.ssl.HandshakeCompletedEvent

public class HandshakeCompletedEvent extends java.util.EventObject {
// Public Constructors
 public HandshakeCompletedEvent(SSLSocket sock, SSLSession s);
// Public Instance Methods
 public String getCipherSuite();
 public java.security.cert.Certificate[] getLocalCertificates();
5.0 public java.security.Principal getLocalPrincipal();
 public javax.security.cert.X509Certificate[] getPeerCertificateChain()
 throws SSLPeerUnverifiedException;
 public java.security.cert.Certificate[] getPeerCertificates()
 throws SSLPeerUnverifiedException;
5.0 public java.security.Principal getPeerPrincipal() throws SSLPeerUnverifiedException;
 public SSLSession getSession();
 public SSLSocket getSocket();
}

Passed To

 HandshakeCompletedListener.handshakeCompleted()

Name
HandshakeCompletedListener

Synopsis

 This interface is implemented by any
class that wants to receive notifications (in the form of a call to
handshakeCompleted(
)
 method) when an SSLSocket
completes the SSL handshake. Register a
HandshakeCompletedListener for an
SSLSocket by passing it to the
addHandshakeCompletedListener() method of the
socket. When the socket completes the handshake phase of connection,
it will call the handshakeCompleted() method of
all registered listeners, passing in a
HandshakeCompletedEvent object.
[image: javax.net.ssl.HandshakeCompletedListener]

Figure 18-3. javax.net.ssl.HandshakeCompletedListener

public interface HandshakeCompletedListener extends java.util.EventListener {
// Public Instance Methods
 void handshakeCompleted(HandshakeCompletedEvent event);
}

Passed To

 SSLSocket.{addHandshakeCompletedListener(),
removeHandshakeCompletedListener()}

Name
HostnameVerifier

Synopsis

 An
object that implements this interface may be used with an
HttpsURLConnection object to handle the case in
which the hostname that appears in the URL does not match the
hostname obtained during the SSL handshake with the server. This
occurs, for example, when a website uses the secure certificate of
its parent web hosting company, for example. In this situation, the
verify()

method of the HostnameVerifier is called to
determine whether the connection should proceed or not.
verify() should return true to
allow the connection to proceed, and should return
false to cause the connection to fail. The
hostname argument to verify(
) specifies the hostname that appeared in the URL. The
session argument specifies the
SSLSession object that was established during the
handshake. Call getPeerHost(
)

on this object to determine the hostname reported during server
authentication. If no HostnameVerifier is
registered with a HttpsURLConnection object, and
no default verifier is registered with the
HttpsURLConnection

class, then hostname mismatches will always cause the connection to
fail. In user-driven applications such as web browsers, a
HostnameVerifier can be used to ask the user
whether to proceed or not.
public interface HostnameVerifier {
// Public Instance Methods
 boolean verify(String hostname, SSLSession session);
}

Passed To

 HttpsURLConnection.{setDefaultHostnameVerifier(),
setHostnameVerifier()}

Returned By

 HttpsURLConnection.{getDefaultHostnameVerifier(),
getHostnameVerifier()}

Type Of

 HttpsURLConnection.hostnameVerifier

Name
HttpsURLConnection

Synopsis

 This class is a
java.net.URLConnection for a
URL
that uses the https: protocol. It extends
java.net.HttpURLConnection and, in addition to
inheriting the methods of its superclasses, it defines methods for
specifying the SSLSocketFactory and
HostnameVerifier to use when establishing the
connection. Static versions of these methods allow you to specify a
default factory and verifier objects for use with all
HttpsURLConnection objects. After the connection
has been established, several other methods exist to obtain
information (such as the cipher suite and the server certificates)
about the connection itself.
Obtain a HttpsURLConnection object by calling the
openConnection(
)
 method of a
URL that uses the https:// protocol specifier, and
casting the returned value to this type. The
HttpsURLConnection object is unconnected at this
point, and you can call setHostnameVerifier(
)
 and setSSLSocketFactory()
to customize the way the connection is made. (If you do not specify a
HostnameVerifier for the instance, or a default
one for the class, then hostname mismatches will always cause the
connection to fail. If you do not specify an
SSLSocketFactory for the instance or class, then a
default one will be used.) To connect, call the inherited
connect() method, and then call the inherited
getContent() to retrieve the content of the URL
as an object, or use the inherited getInputStream(
) to obtain a java.io.InputStream with
which you can read the content of the URL.
[image: javax.net.ssl.HttpsURLConnection]

Figure 18-4. javax.net.ssl.HttpsURLConnection

public abstract class HttpsURLConnection extends java.net.HttpURLConnection {
// Protected Constructors
 protected HttpsURLConnection(java.net.URL url);
// Public Class Methods
 public static HostnameVerifier getDefaultHostnameVerifier();
 public static SSLSocketFactory getDefaultSSLSocketFactory();
 public static void setDefaultHostnameVerifier(HostnameVerifier v);
 public static void setDefaultSSLSocketFactory(SSLSocketFactory sf);
// Public Instance Methods
 public abstract String getCipherSuite();
 public HostnameVerifier getHostnameVerifier();
 public abstract java.security.cert.Certificate[] getLocalCertificates();
5.0 public java.security.Principal getLocalPrincipal();
5.0 public java.security.Principal getPeerPrincipal()
 throws SSLPeerUnverifiedException;
 public abstract java.security.cert.Certificate[] getServerCertificates()
 throws SSLPeerUnverifiedException;
 public SSLSocketFactory getSSLSocketFactory();
 public void setHostnameVerifier(HostnameVerifier v);
 public void setSSLSocketFactory(SSLSocketFactory sf);
// Protected Instance Fields
 protected HostnameVerifier hostnameVerifier;
}

Name
KeyManager

Synopsis

 This is
a marker interface to identify key manager objects. A key manager is
responsible for obtaining and managing authentication credentials
(such as a certificate chain and an associated private key) that the
local host can use to authenticate itself to the remote host. It is
usually used on the server-side of an SSL connection, but can be used
on the client-side as well.
Use a KeyManagerFactory to obtain
KeyManager objects. KeyManager
objects returned by a KeyManagerFactory can always
be cast to a subinterface specific to a particular type of
authentication credentials. See X509KeyManager,
for example.
public interface KeyManager {
}

Implementations

 X509KeyManager

Passed To

 SSLContext.init(),
SSLContextSpi.engineInit()

Returned By

 KeyManagerFactory.getKeyManagers(),
KeyManagerFactorySpi.engineGetKeyManagers()

Name
KeyManagerFactory

Synopsis
A
KeyManagerFactory
 is responsible for creating
KeyManager objects for a specific key management
algorithm. Obtain a KeyManagerFactory object by
calling one of the getInstance(
)

methods and specifying the desired algorithm and, optionally, the
desired provider. In Java 1.4, the
"SunX509” algorithm is
the only one supported by the default
"SunJSSE” provider.
After calling getInstance(), you initialize the
factory object with init(). For the
“SunX509” algorithm, you always use
the two-argument version of init() passing in a
KeyStore object that contains the private keys and
certificates required by X509KeyManager objects,
and also specifying the password used to protect the private keys in
that KeyStore. Once a
KeyManagerFactory has been created and
initialized, use it to create a KeyManager by
calling getKeyManagers(
)
 . This method returns an array of
KeyManager objects because some key management
algorithms may handle more than one type of key. The
“SunX509” algorithm manages only
X509 keys, and always returns an array with an
X509KeyManager object as its single element. This
returned array is typically passed to the init()
method of an SSLContext object.
If a KeyStore and password are not passed to the
init()

method of the KeyManagerFactory for the
“SunX509” algorithm, then the
factory uses attempts to read a KeyStore from the
file specified by the javax.net.ssl.keyStore
system property using the password specified by the
javax.net.ssl.keyStorePassword. The type of the
keystore is specified by
javax.net.ssl.keyStoreType.
public class KeyManagerFactory {
// Protected Constructors
 protected KeyManagerFactory(KeyManagerFactorySpi factorySpi,
 java.security.Provider provider, String algorithm);
// Public Class Methods
 public static final String getDefaultAlgorithm();
 public static final KeyManagerFactory getInstance(String algorithm)
 throws java.security.NoSuchAlgorithmException;
 public static final KeyManagerFactory getInstance(String algorithm,
 java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException;
 public static final KeyManagerFactory getInstance(String algorithm,
 String provider) throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
// Public Instance Methods
 public final String getAlgorithm();
 public final KeyManager[] getKeyManagers();
 public final java.security.Provider getProvider();
 public final void init(ManagerFactoryParameters spec)
 throws java.security.InvalidAlgorithmParameterException;
 public final void init(java.security.KeyStore ks, char[] password)
 throws java.security.KeyStoreException,
 java.security.NoSuchAlgorithmException,
 java.security.UnrecoverableKeyException;
}

Name
KeyManagerFactorySpi

Synopsis
This
 abstract
class defines the Service Provider Interface for
KeyManagerFactory. Security providers must
implement this interface, but applications never need to use it.
public abstract class KeyManagerFactorySpi {
// Public Constructors
 public KeyManagerFactorySpi();
// Protected Instance Methods
 protected abstract KeyManager[] engineGetKeyManagers();
 protected abstract void engineInit(ManagerFactoryParameters spec)
 throws java.security.InvalidAlgorithmParameterException;
 protected abstract void engineInit(java.security.KeyStore ks, char[] password)
throws java.security.KeyStoreException, java.security.NoSuchAlgorithmException,
 java.security.UnrecoverableKeyException;
}

Passed To

 KeyManagerFactory.KeyManagerFactory()

Name
KeyStoreBuilderParameters

Synopsis

 This class implements the
ManagerFactoryParameters interface and
encapsulates a java.util.List of
java.security.KeyStore.Builder object for use by
an X509KeyManager. See the init(
) method of KeyManagerFactory.
[image: javax.net.ssl.KeyStoreBuilderParameters]

Figure 18-5. javax.net.ssl.KeyStoreBuilderParameters

public class KeyStoreBuilderParameters implements ManagerFactoryParameters {
// Public Constructors
 public KeyStoreBuilderParameters(java.util.List parameters);
 public KeyStoreBuilderParameters(java.security.KeyStore.Builder builder);
// Public Instance Methods
 public java.util.List getParameters();
}

Name
ManagerFactoryParameters

Synopsis

 This marker interface identifies
objects that provide algorithm-specific or provider-specific
initialization parameters for KeyManagerFactory
and TrustManagerFactory objects. In the default
“SunJSSE” provider shiped by Sun,
the only supported type for these factory classes is
“SunX509”. Factories of these types
need to be initialized with a KeyStore object but
do not require any specialized
ManagerFactoryParameters object. Therefore, the
javax.net.ssl package does not define any
subinterfaces of this interface, and it is never used with the
default provider. Third-party or future providers may use it,
however.
public interface ManagerFactoryParameters {
}

Implementations

 CertPathTrustManagerParameters,
KeyStoreBuilderParameters

Passed To

 KeyManagerFactory.init(),
KeyManagerFactorySpi.engineInit(),
TrustManagerFactory.init(),
TrustManagerFactorySpi.engineInit()

Name
SSLContext

Synopsis

 This class
is a factory for socket and server socket factories. Although most
applications do not need to use this class directly, it is the
central class of the javax.net.ssl package. Most
applications use the default SSLSocketFactory and
SSLServerSocketFactory objects returned by the
static getDefault() methods of those classes.
Applications that want to perform SSL networking using a security
provider other than the default provider, or that want to customize
key management or trust management for the SSL connection should use
custom socket factories created from a custom
SSLContext. In Java 5.0, this class also includes
createSSLEngine() factory methods for creating
SSLEngine objects.
Create an SSLContext by passing the name of the
desired secure socket protocol and, optionally, the desired provider
to getInstance(). The default
“SunJSSE” provider supports
protocol strings “SSL”,
“SSLv2”,
“SSLv3”,
“TLS”, and
“TLSv1”. Once you have created an
SSLContext object, call its init(
) method to supply the KeyManager,
TrustManager, and SecureRandom
objects it requires. If any of the init()
arguments is null, a default value will be used.
Finally, obtain a SSLSocketFactory and
SSLServerSocketFactory by calling
getSocketFactory(
)

 and getServerSocketFactory(
).
public class SSLContext {
// Protected Constructors
 protected SSLContext(SSLContextSpi contextSpi, java.security.Provider provider,
 String protocol);
// Public Class Methods
 public static SSLContext getInstance(String protocol)
 throws java.security.NoSuchAlgorithmException;
 public static SSLContext getInstance(String protocol, String provider)
 throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
 public static SSLContext getInstance(String protocol, java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException;
// Public Instance Methods
 5.0 public final SSLEngine createSSLEngine();
5.0 public final SSLEngine createSSLEngine(String peerHost, int peerPort);
 public final SSLSessionContext getClientSessionContext();
 public final String getProtocol();
 public final java.security.Provider getProvider();
 public final SSLSessionContext getServerSessionContext();
 public final SSLServerSocketFactory getServerSocketFactory();
 public final SSLSocketFactory getSocketFactory();
 public final void init(KeyManager[] km, TrustManager[] tm,
 java.security.SecureRandom random)
 throws java.security.KeyManagementException;
}

Name
SSLContextSpi

Synopsis
This
 abstract
class defines the Service Provider Interface for
SSLContext. Security providers must implement this
interface, but applications never need to use it.
public abstract class SSLContextSpi {
// Public Constructors
 public SSLContextSpi();
// Protected Instance Methods
 5.0 protected abstract SSLEngine engineCreateSSLEngine();
5.0 protected abstract SSLEngine engineCreateSSLEngine(String host, int port);
 protected abstract SSLSessionContext engineGetClientSessionContext();
 protected abstract SSLSessionContext engineGetServerSessionContext();
 protected abstract SSLServerSocketFactory engineGetServerSocketFactory();
 protected abstract SSLSocketFactory engineGetSocketFactory();
 protected abstract void engineInit(KeyManager[] km, TrustManager[] tm,
 java.security.SecureRandom sr)
 throws java.security.KeyManagementException;
}

Passed To

 SSLContext.SSLContext()

Name
SSLEngine

Synopsis

 This class performs SSL handshaking,
encryption and decryption, but does not send or receive messages over
the network. This leaves the network transport mechanism up to the
user of this class, and enables SSL communication using the

 nonblocking I/O mechanisms of the
java.nio package. The price of this flexibility is
that your code must follow a relatively complex protocol to use an
SSLEngine correctly.
Create an SSLEngine with
SSLContext.createSSLEngine(
)
 . Next, configure it with the
various setter methods to specify authentication requirements,
encryption algorithms, etc. After creating and configuring an engine,
you use it to encrypt outbound data from one
ByteBuffer to another with wrap(
)

 and to decrypt inbound data from
one byte buffer to another with unwrap(). (Note
that the wrap() and unwrap()
methods also come in gathering and scattering variants.) Both methods
return an SSLEngineResult.
The initial call or calls to wrap() produce
outbound handshaking data without consuming any of the source bytes
in the buffer you provide. Initial calls to unwrap(
) may consume inbound handshaking data without producing
any result bytes. Monitor the
SSLEngineResult.HandshakeStatus value to ensure
that handshaking is proceeding as needed. When handshaking is
complete, you can call getSession() to obtain the
SSLSession object that describes session details
negotiated during handshaking. Remember that either peer of an SSL
connection may request a new handshake at any time; this means that
you must monitor the HandshakeStatus after every
wrap() or unwrap() call in
case a new handshake has been requested. You can request a new
handshake yourself with beginHandshake().
As part of the handshaking protocol, the SSLEngine
typically needs to use the KeyManager or
TrustManager of the originating
SSLContext object. Rather than blocking a
wrap() or unwrap() method
while these operations are performed, it instead returns an
SSLResult.HandshakeStatus, indicating that a task
needs to be performed. When this happens, you must call
getDelegatedTask(
)

 repeatedly, calling the run(
) methods of the Runnable objects it
returns until it returns null to indicate that all
necessary tasks have been completed. (If it returns more than one
Runnable, it is safe to run them in parallel (with
a java.util.concurrent.ExecutorCompletionService,
for example). Once all such tasks have been run, the original call to
wrap() or unwrap() should be
repeated.
When you are done sending outbound data, call closeOutbound(
)
 , and then call wrap() one
or more times to flush any remaining data from the engine. Call
wrap() until the returned
SSLEngineResult.Status indicates that the
connection has closed. Similarly, if you are done reading inbound
data, call closeInbound(
)

and final calls to unwrap() until the connection
is closed.
It is safe for one thread to call wrap() while
another thread is calling unwrap(). It is not
safe, however, for either method to be called by two threads at once.
public abstract class SSLEngine {
// Protected Constructors
 protected SSLEngine();
 protected SSLEngine(String peerHost, int peerPort);
// Public Instance Methods
 public abstract void beginHandshake() throws SSLException;
 public abstract void closeInbound() throws SSLException;
 public abstract void closeOutbound();
 public abstract Runnable getDelegatedTask();
 public abstract String[] getEnabledCipherSuites();
 public abstract String[] getEnabledProtocols();
 public abstract boolean getEnableSessionCreation();
 public abstract SSLEngineResult.HandshakeStatus getHandshakeStatus();
 public abstract boolean getNeedClientAuth();
 public String getPeerHost();
 public int getPeerPort();
 public abstract SSLSession getSession();
 public abstract String[] getSupportedCipherSuites();
 public abstract String[] getSupportedProtocols();
 public abstract boolean getUseClientMode();
 public abstract boolean getWantClientAuth();
 public abstract boolean isInboundDone();
 public abstract boolean isOutboundDone();
 public abstract void setEnabledCipherSuites(String[] suites);
 public abstract void setEnabledProtocols(String[] protocols);
 public abstract void setEnableSessionCreation(boolean flag);
 public abstract void setNeedClientAuth(boolean need);
 public abstract void setUseClientMode(boolean mode);
 public abstract void setWantClientAuth(boolean want);
 public SSLEngineResult unwrap(java.nio.ByteBuffer src, java.nio.
 ByteBuffer dst) throws SSLException;
 public SSLEngineResult unwrap(java.nio.ByteBuffer src, java.nio.
 ByteBuffer[] dsts) throws SSLException;
 public abstract SSLEngineResult unwrap(java.nio.ByteBuffer src,
 java.nio.ByteBuffer[] dsts, int offset,
 int length) throws SSLException;
 public SSLEngineResult wrap(java.nio.ByteBuffer[] srcs, java.nio.
 ByteBuffer dst) throws SSLException;
 public SSLEngineResult wrap(java.nio.ByteBuffer src, java.nio.
 ByteBuffer dst) throws SSLException;
 public abstract SSLEngineResult wrap(java.nio.ByteBuffer[] srcs,
 int offset, int length,
 java.nio.ByteBuffer dst) throws SSLException;
}

Passed To

 X509ExtendedKeyManager.{chooseEngineClientAlias(
), chooseEngineServerAlias()}

Returned By

 SSLContext.createSSLEngine(),
SSLContextSpi.engineCreateSSLEngine()

Name
SSLEngineResult

Synopsis

 An
object of this type is returned by the wrap() and
unwrap() methods of an
SSLEngine. Use the methods of this object to
determine how much data was consumed and produced and to obtain the
Status of the operation and the
HandshakeStatus of the connection. These two
nested enumerated types return important values. Correct operation of
an SSLEngine requires that your code respond
correctly to the Status and
HandshakeStatus results.
public class SSLEngineResult {
// Public Constructors
 public SSLEngineResult(SSLEngineResult.Status status, SSLEngineResult.
 HandshakeStatus handshakeStatus,
 int bytesConsumed, int bytesProduced);
// Nested Types
 public enum HandshakeStatus;
 public enum Status;
// Public Instance Methods
 public final int bytesConsumed();
 public final int bytesProduced();
 public final SSLEngineResult.HandshakeStatus getHandshakeStatus();
 public final SSLEngineResult.Status getStatus();
// Public Methods Overriding Object
 public String toString();
}

Returned By

 SSLEngine.{unwrap(), wrap()}

Name
SSLEngineResult.HandshakeStatus

Synopsis

 The
constants
defined by this enumerated type specify the
handshake status of the
SSLEngine and often specify the action your code
must take next in order to ensure correct operation. The values are
the following:
	
 NOT_HANDSHAKING

	Handshaking is not currently in progress.

	
 FINISHED

	Handshaking just completed as a result of the wrap(
) or unwrap() call that generated this
value.

	
 NEED_WRAP

	The SSLEngine needs to send more handshake data,
so a call to wrap() is necessary.

	
 NEED_UNWRAP

	The SSLEngine needs to receive more handshake
data, so a call to unwrap() is necessary.

	
 NEED_TASK

	The SSLEngine needs to perform an authentication
or related task, so you must repeatedly call
getDelegatedTask() and run()
any Runnable objects it returns.

public enum SSLEngineResult.HandshakeStatus {
// Enumerated Constants
 NOT_HANDSHAKING,
 FINISHED,
 NEED_TASK,
 NEED_WRAP,
 NEED_UNWRAP;
// Public Class Methods
 public static SSLEngineResult.HandshakeStatus valueOf(String name);
 public static final SSLEngineResult.HandshakeStatus[] values();
}

Passed To

 SSLEngineResult.SSLEngineResult()

Returned By

 SSLEngine.getHandshakeStatus(),
SSLEngineResult.getHandshakeStatus()

Name
SSLEngineResult.Status

Synopsis
The constants of this

 enumerated type indicate the
status of a wrap()

 or
unwrap() operation:
	
 OK

	The operation completed normally.

	
 CLOSED

	The most recent call to wrap() or
unwrap() completed the closing handshake and
closed the outbound or inbound connection. Or, that connection is
already closed, and so the wrap() or
unwrap() call could not proceed.

	
 BUFFER_OVERFLOW

	There were not enough bytes in the destination buffer to hold the
results. Drain the buffer and try again.

	
 BUFFER_UNDERFLOW

	There were not enough incoming bytes in the source buffer to produce
a complete output packet. Fill the buffer with more bytes from the
network and call unwrap() again.

public enum SSLEngineResult.Status {
// Enumerated Constants
 BUFFER_UNDERFLOW,
 BUFFER_OVERFLOW,
 OK,
 CLOSED;
// Public Class Methods
 public static SSLEngineResult.Status valueOf(String name);
 public static final SSLEngineResult.Status[] values();
}

Passed To

 SSLEngineResult.SSLEngineResult()

Returned By

 SSLEngineResult.getStatus()

Name
SSLException

Synopsis

 Signals an
SSL-related problem. This class serves as the common superclass of
more specific SSL exception subclasses.
[image: javax.net.ssl.SSLException]

Figure 18-6. javax.net.ssl.SSLException

public class SSLException extends java.io.IOException {
// Public Constructors
 5.0 public SSLException(Throwable cause);
 public SSLException(String reason);
5.0 public SSLException(String message, Throwable cause);
}

Subclasses

 SSLHandshakeException,
SSLKeyException,
SSLPeerUnverifiedException,
SSLProtocolException

Thrown By

 SSLEngine.{beginHandshake(),
closeInbound(), unwrap(),
wrap()}

Name
SSLHandshakeException

Synopsis

 Signals
that the SSL handshake failed for some reason other than failed
authentication (see SSLPeerUnverifiedException).
For example, it may be thrown because the client and server count not
agree on a mutually-acceptable cipher suite. When this exception is
thrown, the SSLSocket object is no longer usable.
[image: javax.net.ssl.SSLHandshakeException]

Figure 18-7. javax.net.ssl.SSLHandshakeException

public class SSLHandshakeException extends SSLException {
// Public Constructors
 public SSLHandshakeException(String reason);
}

Name
SSLKeyException

Synopsis

 Signals
a problem with the public key certificate and private key used by a
server (or client) for authentication.
[image: javax.net.ssl.SSLKeyException]

Figure 18-8. javax.net.ssl.SSLKeyException

public class SSLKeyException extends SSLException {
// Public Constructors
 public SSLKeyException(String reason);
}

Name
SSLPeerUnverifiedException

Synopsis

 Signals
that authentication of the remote host was not successfully
completed.
[image: javax.net.ssl.SSLPeerUnverifiedException]

Figure 18-9. javax.net.ssl.SSLPeerUnverifiedException

public class SSLPeerUnverifiedException extends SSLException {
// Public Constructors
 public SSLPeerUnverifiedException(String reason);
}

Thrown By

 java.net.SecureCacheResponse.{getPeerPrincipal(),
getServerCertificateChain()},
HandshakeCompletedEvent.{getPeerCertificateChain(
), getPeerCertificates(),
getPeerPrincipal()},
HttpsURLConnection.{getPeerPrincipal(),
getServerCertificates()},
SSLSession.{getPeerCertificateChain(),
getPeerCertificates(), getPeerPrincipal(
)}

Name
SSLPermission

Synopsis

 This Permission class
controls access to sensitive methods in the
javax.net.ssl package. The two defined
target
names are “setHostnameVerifier” and
“getSSLSessionContext”. The first
is required in order to call
HttpURLConnection.setHostnameVerifier() and
HttpURLConnection.setDefaultHostnameVerifier().
The second permission target is required in order to call
SSLSession.getSessionContext().
[image: javax.net.ssl.SSLPermission]

Figure 18-10. javax.net.ssl.SSLPermission

public final class SSLPermission extends java.security.BasicPermission {
// Public Constructors
 public SSLPermission(String name);
 public SSLPermission(String name, String actions);
}

Name
SSLProtocolException

Synopsis
Signals a problem at the SSL protocol level. An exception of this
type usually indicates that there is a bug in the SSL implementation
being used locally or on the remote host.
[image: javax.net.ssl.SSLProtocolException]

Figure 18-11. javax.net.ssl.SSLProtocolException

public class SSLProtocolException extends SSLException {
// Public Constructors
 public SSLProtocolException(String reason);
}

Name
SSLServerSocket

Synopsis
This class is an SSL-enabled subclass of
java.net.ServerSocket that is used to listen for
and accept connections from clients and to create
SSLSocket objects for communicating with those
clients. Create an SSLServerSocket and bind it to
a local port by calling one of the inherited
getServerSocket(
)
 methods of an
SSLServerSocketFactory. Once a
SSLServerSocket is created, use it as you would a
regular ServerSocket: call the inherited
accept() method to wait for and accept a
connection from a client, returning a Socket
object. With SSLServerSocket, the
Socket returned by accept()
can always be cast to an instance of SSLSocket.

 SSLServerSocket defines methods for setting the
enabled protocols and cipher
suites, and for querying the full set of supported protocols and
suites. See SSLSocket
 , which has methods with the same names,
for details. If your server desires or requires authentication by its
clients, call setWantClientAuth(
)

 or setNeedClientAuth().
These methods cause the SSLSocket objects returned
by accept() to be configured to request or
require client authentication.
In typical SSL networking scenarios, the client requires the server
to provide authentication information. When you create an
SSLServerSocket using the default
SSLServerSocketFactory, the authentication
information required is an X.509 public key certificate and the
corresponding private key. The default
SSLServerSocketFactory uses an
X509KeyManager to obtain this information. The
default X509KeyManager attempts to read this
information from the java.security.KeyStore file
specified by the system property
javax.net.ssl.keyStore. It uses the value of the
the javax.net.ssl.keyStorePassword as the keystore
password, and uses the value of the
javax.net.ssl.keyStoreType system property to
specify the keystore type. The key store should only contain valid
keys and certificate chains that identify the server; the
X509KeyManager automatically chooses a key and
certificat chain that are appropriate for the client.
[image: javax.net.ssl.SSLServerSocket]

Figure 18-12. javax.net.ssl.SSLServerSocket

public abstract class SSLServerSocket extends java.net.ServerSocket {
// Protected Constructors
 protected SSLServerSocket() throws java.io.IOException;
 protected SSLServerSocket(int port) throws java.io.IOException;
 protected SSLServerSocket(int port, int backlog) throws java.io.IOException;
 protected SSLServerSocket(int port, int backlog, java.net.InetAddress address)
 throws java.io.IOException;
// Public Instance Methods
 public abstract String[] getEnabledCipherSuites();
 public abstract String[] getEnabledProtocols();
 public abstract boolean getEnableSessionCreation();
 public abstract boolean getNeedClientAuth();
 public abstract String[] getSupportedCipherSuites();
 public abstract String[] getSupportedProtocols();
 public abstract boolean getUseClientMode();
 public abstract boolean getWantClientAuth();
 public abstract void setEnabledCipherSuites(String[] suites);
 public abstract void setEnabledProtocols(String[] protocols);
 public abstract void setEnableSessionCreation(boolean flag);
 public abstract void setNeedClientAuth(boolean need);
 public abstract void setUseClientMode(boolean mode);
 public abstract void setWantClientAuth(boolean want);
}

Name
SSLServerSocketFactory

Synopsis
This class is a
javax.net.ServerSocketFactory

for creating SSLServerSocket objects. Most
applications use the default
SSLServerSocketFactory returned by the static
getDefault()
 method. Once this
SSLServerSocketFactory has been obtained, they use
one of the inherited createServerSocket(
)
 methods to create and optionally bind a new
SSLServerSocket. The return value of the
createServerSocket() methods is a
java.net.ServerSocket object, but you can safely
cast this object to a SSLServerSocket if you need
to.
Applications that need to customize the SSL configuration and cannot
use the default server socket factory may obtain a custom
SSLServerSocketFactory from an
SSLContext, which is essentially a factory for
socket factories. See SSLContext for details.
[image: javax.net.ssl.SSLServerSocketFactory]

Figure 18-13. javax.net.ssl.SSLServerSocketFactory

public abstract class SSLServerSocketFactory extends javax.net.ServerSocketFactory {
// Protected Constructors
 protected SSLServerSocketFactory();
// Public Class Methods
 public static javax.net.ServerSocketFactory getDefault(); synchronized
 // Public Instance Methods
 public abstract String[] getDefaultCipherSuites();
 public abstract String[] getSupportedCipherSuites();
}

Returned By

 SSLContext.getServerSocketFactory(),
SSLContextSpi.engineGetServerSocketFactory()

Name
SSLSession

Synopsis

 A
SSLSession object contains information about the
SSL connection established through an SSLSocket.
Use the the getSession() method of a
SSLSocket to obtain the
SSLSession object for that socket. Many of the
SSLSession methods return information that was
obtained during the handshake phase of the connection.
getProtocol()

returns the specific version of the SSL or TLS protocol in use.
getCipherSuite(
)

 returns the name of the cipher suite
negotiated for the connection. getPeerHost(
)

returns the name of the remote host, and
getPeerCertificates() returns the certificate
chain, if any, that was received from the remote host during
authentication. In Java 5.0 and later the peer’s
identity can also be queried with getPeerPrincipal(
)

The invalidate()
 method ends the session. It does
not affect any current connections, but all future connections and
any re-negotiations of existing connections will need to establish a
new SSLSession. isValid(
)

determines whether a session is still valid.
Multiple SSL connections between two hosts may share the same
SSLSession as long as they are using the same
protocol version and cipher suite. There is no way to enumerate the
SSLSocket objects that share a session, but these
sockets can exchange information by using putValue(
)
 to bind a shared object to some
well-known name that can be looked up by other sockets with
getValue()

 .
removeValue() removes such a binding, and
getValueNames() returns an array of all names
that have objects bound to them in this session. Objects bound and
unbound with putValue() and removeValue(
) may implement
SSLSessionBindingListener to be notified when they
are bound and unbound.
Note that the getPeerCertificateChain() method
returns an object from the javax.security.cert
package, which is not documented in this book. The method and package
exist only for backward compatibility with earlier versions of the
JSSE API, and should be considered deprecated. Use
getPeerCertificates(), which uses
java.security.cert instead.
public interface SSLSession {
// Public Instance Methods
 5.0 int getApplicationBufferSize();
 String getCipherSuite();
 long getCreationTime();
 byte[] getId();
 long getLastAccessedTime();
 java.security.cert.Certificate[] getLocalCertificates();
5.0 java.security.Principal getLocalPrincipal();
5.0 int getPacketBufferSize();
 javax.security.cert.X509Certificate[] getPeerCertificateChain()
 throws SSLPeerUnverifiedException;
 java.security.cert.Certificate[] getPeerCertificates()
 throws SSLPeerUnverifiedException;
 String getPeerHost();
5.0 int getPeerPort();
5.0 java.security.Principal getPeerPrincipal() throws SSLPeerUnverifiedException;
 String getProtocol();
 SSLSessionContext getSessionContext();
 Object getValue(String name);
 String[] getValueNames();
 void invalidate();
5.0 boolean isValid();
 void putValue(String name, Object value);
 void removeValue(String name);
}

Passed To

 HandshakeCompletedEvent.HandshakeCompletedEvent(
), HostnameVerifier.verify(),
SSLSessionBindingEvent.SSLSessionBindingEvent()

Returned By

 HandshakeCompletedEvent.getSession(),
SSLEngine.getSession(),
SSLSessionBindingEvent.getSession(),
SSLSessionContext.getSession(),
SSLSocket.getSession()

Name
SSLSessionBindingEvent

Synopsis

 An
object of this type is passed to the valueBound()
and valueUnbound() methods of and object that
implements SSLSessionBindingListener when that
object is bound or unbound in a SSLSession with
the putValue() or removeValue(
) methods of SSLSession.
getName() returns the name to which the object
was bound or unbound, and getSession() returns
the SSLSession object in which the binding was
created or removed.
[image: javax.net.ssl.SSLSessionBindingEvent]

Figure 18-14. javax.net.ssl.SSLSessionBindingEvent

public class SSLSessionBindingEvent extends java.util.EventObject {
// Public Constructors
 public SSLSessionBindingEvent(SSLSession session, String name);
// Public Instance Methods
 public String getName();
 public SSLSession getSession();
}

Passed To

 SSLSessionBindingListener.{valueBound(),
valueUnbound()}

Name
SSLSessionBindingListener

Synopsis
This
interface
is implemented by an object that want to be notified when it is bound
or unbound in an SSLSession object. If the object
passed to the putValue() method of a
SSLSession implements this interface, then its
valueBound() method will be called by
putValue(), and its valueUnbound(
)

 method will
be called when that object is removed from the
SSLSession with removeValue()
or when it is replaced with a new object by putValue(
). The argument to both methods of this interface is a
SSLSessionBindingEvent, which specifies both the
name to which the object was bound or unbound, and the
SSLSession within which it was bound or unbound.
[image: javax.net.ssl.SSLSessionBindingListener]

Figure 18-15. javax.net.ssl.SSLSessionBindingListener

public interface SSLSessionBindingListener extends java.util.EventListener {
// Public Instance Methods
 void valueBound(SSLSessionBindingEvent event);
 void valueUnbound(SSLSessionBindingEvent event);
}

Name
SSLSessionContext

Synopsis
A

 SSLSessionContext
groups and controls SSLSession objects. It is a
low-level interface and is not commonly used in application code.
getIds()

returns an Enumeration of
session
IDs, and getSession() returns the
SSLSession object associated with one of those
IDs. setSessionCacheSize(
)

 specifies the total number of
concurrent sessions allowed in the group, and
setSessionTimeout() specifies the
timeout length for those sessions. An
SSLSessionContext can serve as a cache for
SSLSession objects, facilitating reuse of those
objects for multiple connections between the same two hosts.
Providers are not required to support this interface. Those that do
return an implementing object from the getSessionContext(
) method of an SSLSession object, and
also return implementing objects from the
getClientSessionContext(
)

 and getServerSessionContext(
) methods of an SSLContext object,
providing separate control over client and server SSL connections.
public interface SSLSessionContext {
// Public Instance Methods
 java.util.Enumeration getIds();
 SSLSession getSession(byte[] sessionId);
 int getSessionCacheSize();
 int getSessionTimeout();
 void setSessionCacheSize(int size) throws IllegalArgumentException;
 void setSessionTimeout(int seconds) throws IllegalArgumentException;
}

Returned By

 SSLContext.{getClientSessionContext(),
getServerSessionContext()},
SSLContextSpi.{engineGetClientSessionContext(),
engineGetServerSessionContext()},
SSLSession.getSessionContext()

Name
SSLSocket

Synopsis

 An
SSLSocket is a “secure
socket” subclass of
java.net.Socket that implements the SSL or TLS
protocols, which are commonly used to authenticate a server to a
client and to encrypt the data transferred between the two. Create a
SSLSocket for connecting to a SSL-enabled server
by calling one of the createSocket() methods of a
SSLSocketFactory object. See
SSLSocketFactory for details. If you are writing
server code, then you will obtain a SSLSocket for
communicating with an SSL-enabled client from the inherited
accept() method of an
SSLServerSocket. See
SSLServerSocket for details.

 SSLSocket
 inherits all of the standard socket
method of its superclass, and can be used for networking just like an
ordinary java.net.Socket object. In addition,
however, it also defines methods that control how the secure
connection is established. These methods may be called before the SSL
“handshake” occurs. The handshake
does not occur when the socket is first created and connected, so
that you can configure various SSL parameters that control how the
handshake occurs. Calling startHandshake(),
getSession(), or reading or writing data on the
socket trigger a handshake, so you must configure the socket before
doing any of these things. If you want to be notified when the
handshake occurs, call addHandshakeCompletedListener(
) to register a listener object to receive the
notification.

 getSupportedProtocols(
)
 returns a list of secure socket protocols
that are supported by the socket implementation.
setEnabledProtocols(
)
 allows you to specify the name or
names of the supported protocols that you are willing to use for this
socket. getSupportedCipherSuite(
)
 returns the full set of
cipher suites supported by the underlying
security provider. setEnabledCipherSuites()
specifies a list of one or more cipher suites that you are willing to
use for the connection. Note that not all supported cipher suites are
enabled by default: only suites that provide encryption and require
the server to authenticate itself to the client are enabled. If you
want to allow the server to remain anonymous, you can use
setEnabledCipherSuites() to enable a
nonauthenticating suite. Specific protocols and cipher suites are not
described here because using them correctly requires a detailed
understanding of cryptography, which is beyond the scope of this
reference. Most applications can simply rely on the default set of
enabled protocols and cipher suites.
If you are writing a server and have obtained an
SSLSocket by accepting a connection on an
SSLServerSocket, then you may call
setWantClientAuth(
)
 to request that the
client authenticate itself to you, and
you may call setNeedClientAuth(
)
 to require that the client authenticate
itself during the handshake. Note, however, that it is usually more
efficient to request or require client authentication on the server
socket than it is to call these methods on each
SSLSocket it creates.
The configuration methods described above must be called before the
SSL handshake occurs. Call getSession() to obtain
an SSLSession object that you can query for for
information about the handshake, such as the protocol and cipher
suite in use, and the identity of the server. Note that a call to
getSession() will cause the handshake to occur if
it has not already occurred, so you can call this method at any time.
[image: javax.net.ssl.SSLSocket]

Figure 18-16. javax.net.ssl.SSLSocket

public abstract class SSLSocket extends java.net.Socket {
// Protected Constructors
 protected SSLSocket();
 protected SSLSocket(String host, int port)
 throws java.io.IOException, java.net.UnknownHostException;
 protected SSLSocket(java.net.InetAddress address, int port)
 throws java.io.IOException;
 protected SSLSocket(String host, int port, java.net.InetAddress clientAddress,
 int clientPort) throws java.io.IOException,
 java.net.UnknownHostException;
 protected SSLSocket(java.net.InetAddress address, int port, java.net.InetAddress clientAddress,
 int clientPort) throws java.io.IOException;
// Event Registration Methods (by event name)
 public abstract void addHandshakeCompletedListener(HandshakeCompletedListener listener);
 public abstract void removeHandshakeCompletedListener(HandshakeCompletedListener listener);
// Public Instance Methods
 public abstract String[] getEnabledCipherSuites();
 public abstract String[] getEnabledProtocols();
 public abstract boolean getEnableSessionCreation();
 public abstract boolean getNeedClientAuth();
 public abstract SSLSession getSession();
 public abstract String[] getSupportedCipherSuites();
 public abstract String[] getSupportedProtocols();
 public abstract boolean getUseClientMode();
 public abstract boolean getWantClientAuth();
 public abstract void setEnabledCipherSuites(String[] suites);
 public abstract void setEnabledProtocols(String[] protocols);
 public abstract void setEnableSessionCreation(boolean flag);
 public abstract void setNeedClientAuth(boolean need);
 public abstract void setUseClientMode(boolean mode);
 public abstract void setWantClientAuth(boolean want);
 public abstract void startHandshake() throws java.io.IOException;
}

Passed To

 HandshakeCompletedEvent.HandshakeCompletedEvent()

Returned By

 HandshakeCompletedEvent.getSocket()

Name
SSLSocketFactory

Synopsis
This class is a javax.net.SocketFactory for
creating SSLSocket objects. Most applications use
the default
SSLSocketFactory

returned by the static getDefault() method. Once
this SSLSocketFactory has been obtained, they use
one of the inherited createSocket(
)

methods to create, and optionally connect and bind, a new
SSLSocket. The return value of the
createSocket() methods is a
java.net.Socket object, but you can safely cast
this object to a SSLSocket if you need to.
SSLSocketFactory defines one new version of
createSocket() in addition to the ones it
inherits from its superclass. This version of the method creates an
SSLSocket that is layered over an existing
Socket object rather than creating a new socket
entirely from scratch.
Applications that need to customize the SSL configuration and cannot
use the default socket factory may obtain a custom
SSLSocketFactory from an
SSLContext, which is essentially a factory for
socket factories. See SSLContext for details.
[image: javax.net.ssl.SSLSocketFactory]

Figure 18-17. javax.net.ssl.SSLSocketFactory

public abstract class SSLSocketFactory extends javax.net.SocketFactory {
// Public Constructors
 public SSLSocketFactory();
// Public Class Methods
 public static javax.net.SocketFactory getDefault(); synchronized
 // Public Instance Methods
 public abstract java.net.Socket createSocket(java.net.Socket s, String host,
 int port, boolean autoClose)
 throws java.io.IOException;
 public abstract String[] getDefaultCipherSuites();
 public abstract String[] getSupportedCipherSuites();
}

Passed To

 HttpsURLConnection.{setDefaultSSLSocketFactory(),
setSSLSocketFactory()}

Returned By

 HttpsURLConnection.{getDefaultSSLSocketFactory(),
getSSLSocketFactory()},
SSLContext.getSocketFactory(),
SSLContextSpi.engineGetSocketFactory()

Name
TrustManager

Synopsis

 This
is a marker interface to identify trust manager objects. A trust
manager is responsible for examining the authentication credentials
(such as a certificate chain) presented by the remote host and
deciding whether to trust those credentials and accept them. A
TrustManager is usually used an SSL client to
decide whether the SSL server is authentic, but may also be used by
an SSL server when client authentication is also required.
Use a TrustManagerFactory to obtain
TrustManager objects.
TrustManager objects returned by a
TrustManagerFactory can always be cast to a
subinterface specific to a specific type of keys. See
X509TrustManager, for exmaple.
public interface TrustManager {
}

Implementations

 X509TrustManager

Passed To

 SSLContext.init(),
SSLContextSpi.engineInit()

Returned By

 TrustManagerFactory.getTrustManagers(),
TrustManagerFactorySpi.engineGetTrustManagers()

Name
TrustManagerFactory

Synopsis
A
 TrustManagerFactory is responsible for creating
TrustManager objects for a specific trust
management algorithm. Obtain a TrustManagerFactory
object by calling one of the getInstance()
methods and specifying the desired algorithm and, optionally, the
desired provider. In Java 1.4, the
“SunX509” algorithm is the only one
supported by the default “SunJSSE”
provider. After calling getInstance(), you
initialize the factory object with init(). For
the “SunX509” algorithm, you pass a
KeyStore object to init().
This KeyStore should contain the public keys of
trusted CAs (certification authorities). Once a
TrustManagerFactory has been created and
initialized, use it to create a TrustManager by
calling getTrustManagers(). This method returns
an array of TrustManager objects because some
trust management algorithms may handle more than one type of key or
certificate. The “SunX509”
algorithm manages only X.509 keys, and always returns an array with
an X509TrustManager object as its single element.
This returned array is typically passed to the init(
) method of an SSLContext object.
If no KeyStore is passed to the init(
) method of the TrustManagerFactory for
the “SunX509” algorithm, then the
factory uses a KeyStore created from the file
named by the system property
javax.net.ssl.trustStore if that property is
defined. (It also uses the key store type and password specified by
the properties javax.net.ssl.trustStoreType and
javax.net.ssl.trustStorePassword.) Otherwise, it
uses the file jre/lib/security/jssecacerts in
the Java distribution, if it exists. Otherwise it uses the file
jre/lib/security/cacerts which is part of
Sun’s Java distribution. Sun ships a default
cacerts file that contains certificates for
several well-known and reputable CAs. You can use the
keytool program to edit the
cacerts keystore (the default password is
“changeit”).
public class TrustManagerFactory {
// Protected Constructors
 protected TrustManagerFactory(TrustManagerFactorySpi factorySpi, java.security.
 Provider provider, String algorithm);
// Public Class Methods
 public static final String getDefaultAlgorithm();
 public static final TrustManagerFactory getInstance(String algorithm)
 throws java.security.NoSuchAlgorithmException;
 public static final TrustManagerFactory getInstance(String algorithm,
 java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException;
 public static final TrustManagerFactory getInstance(String algorithm,
 String provider) throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
// Public Instance Methods
 public final String getAlgorithm();
 public final java.security.Provider getProvider();
 public final TrustManager[] getTrustManagers();
 public final void init(ManagerFactoryParameters spec)
 throws java.security.InvalidAlgorithmParameterException;
 public final void init(java.security.KeyStore ks)
 throws java.security.KeyStoreException;
}

Name
TrustManagerFactorySpi

Synopsis
This
 abstract
class defines the Service Provider Interface for
TrustManagerFactory. Security providers must
implement this interface, but applications never need to use it.
public abstract class TrustManagerFactorySpi {
// Public Constructors
 public TrustManagerFactorySpi();
// Protected Instance Methods
 protected abstract TrustManager[] engineGetTrustManagers();
 protected abstract void engineInit(ManagerFactoryParameters spec)
 throws java.security.InvalidAlgorithmParameterException;
 protected abstract void engineInit(java.security.KeyStore ks)
 throws java.security.KeyStoreException;
}

Passed To

 TrustManagerFactory.TrustManagerFactory()

Name
X509ExtendedKeyManager

Synopsis
This class implements the
X509KeyManager
 interface and extends it with two
methods.
[image: javax.net.ssl.X509ExtendedKeyManager]

Figure 18-18. javax.net.ssl.X509ExtendedKeyManager

public abstract class X509ExtendedKeyManager implements X509KeyManager {
// Protected Constructors
 protected X509ExtendedKeyManager();
// Public Instance Methods
 public String chooseEngineClientAlias(String[] keyType,
 java.security.Principal[] issuers,
 SSLEngine engine); constant
 public String chooseEngineServerAlias(String keyType,
 java.security.Principal[] issuers,
 SSLEngine engine); constant
}

Name
X509KeyManager

Synopsis
This interface is a
KeyManager for working with X.509 certificates. An
X509KeyManager is used during the SSL handshake by
a peer that authenticates itself by providing an X.509 certificate
chain to the remote host. This is usually done on the server side of
the SSL connection, and can be done on the client-side as well,
although that is uncommon. Obtain an
X509KeyManager object either by implementing your
own or from a KeyManagerFactory created with an
algorithm of “SunX509”.
Applications do not call the methods of an
X509KeyManager themselves. Instead, they simply
supply an appropriate X509KeyManager object to the
SSLContext object that is responsible for setting
up SSL connections. When the system needs to authenticate itself
during an SSL handshake, it calls various methods of the key manager
object to obtain the information in needs.
An X509KeyManager retrieves keys and certificae
chains from the KeyStore object that was passed to
the init() method of the
KeyManagerFactory object from which it was
created. getPrivateKey() and
getCertificateChain() return the private key and
the certificate chain for a specified alias. The other methods are
called to list all aliases in the keystore or to choose one alias
from the keystore that matches the specified keytype and certificate
authority criteria. In this way, a X509KeyManager
can choose a certificate chain (and it corresponding key) based on
the types of keys and the list of certificate authorities recognized
by the remote host.
[image: javax.net.ssl.X509KeyManager]

Figure 18-19. javax.net.ssl.X509KeyManager

public interface X509KeyManager extends KeyManager {
// Public Instance Methods
 String chooseClientAlias(String[] keyType, java.security.Principal[] issuers,
 java.net.Socket socket);
 String chooseServerAlias(String keyType, java.security.Principal[] issuers,
 java.net.Socket socket);
 java.security.cert.X509Certificate[] getCertificateChain(String alias);
 String[] getClientAliases(String keyType, java.security.Principal[] issuers);
 java.security.PrivateKey getPrivateKey(String alias);
 String[] getServerAliases(String keyType, java.security.Principal[] issuers);
}

Implementations

 X509ExtendedKeyManager

Name
X509TrustManager

Synopsis
This
 interface is a
TrustManager for working with X.509 certificates.
Trust managers are used during the handshake phase of SSL connection
to determine whether the authentication credentials presented by the
remote host are trusted. This is usually done on the client-side of
an SSL connection, but may also be done on the server side. Obtain an
X509TrustManager either by implementing your own
or from a TrustManagerFactory that was created to
use the “SunX509” algorithm.
Applications do call the methods of this interface themselves;
instead, they simply provide an appropriate
X509TrustManager object to the
SSLContext object that is responsible for setting
up SSL connections. When the system needs to determine whether the
authentication credentials presented by the remote host are trusted,
it calls the methods of the trust manager.
[image: javax.net.ssl.X509TrustManager]

Figure 18-20. javax.net.ssl.X509TrustManager

public interface X509TrustManager extends TrustManager {
// Public Instance Methods
 void checkClientTrusted(java.security.cert.X509Certificate[] chain,
 String authType) throws java.security.cert.CertificateException;
 void checkServerTrusted(java.security.cert.X509Certificate[] chain,
 String authType) throws java.security.cert.CertificateException;
 java.security.cert.X509Certificate[] getAcceptedIssuers();
}

Chapter 19. javax.security.auth and Subpackages

This

 chapter documents the
javax.security.auth package and its subpackages,
which, together, form the Java
Authentication and Authorization Service, or JAAS. Before being
integrated into Java 1.4, JAAS was available as a standard extension,
which is why these packages have the
“javax” prefix. The individual
packages are the following:
	
 javax.security.auth

	This top-level package defines the Subject class
that is central to JAAS.

	
 javax.security.auth.callback

	This package defines a
callback
API to enable communication (such as the exchange of a username and
password) between a low-level login module and the end-user.

	
 javax.security.auth.kerberos

	This package contains JAAS classes related to the Kerberos network
authentication protocol.

	
 javax.security.auth.login

	This package defines the LoginContext class and
related classes used by applications to perform a JAAS login.

	
 javax.security.auth.spi

	This package defines the “service provider
interface” for JAAS.

	
 javax.security.auth.x500

	This package includes JAAS classes related
to

X.500 principals.

Name
Package javax.security.auth

Synopsis
This is the top-level package of the Java Authentication and Authorization
Service (JAAS). The key class is Subject, which
represents an authenticated user, and defines static methods that
allow Java code be run as (i.e., using the permissions of) a
specified Subject. The remaining classes and
interfaces in this package are important parts of the JAAS
infrastructure, but are not commonly used in application code.
Applications do not create Subject objects
directly, but typically obtain them from a
javax.security.auth.login.LoginContext constructed
with a
javax.security.auth.callback.CallbackHandler.

Interfaces
public interface Destroyable;
public interface Refreshable;

Classes
public final class AuthPermission extends java.security.BasicPermission;
public abstract class Policy;
public final class PrivateCredentialPermission extends java.security.Permission;
public final class Subject implements Serializable;
public class SubjectDomainCombiner implements java.security.DomainCombiner;

Exceptions
public class DestroyFailedException extends Exception;
public class RefreshFailedException extends Exception;

Name
AuthPermission

Synopsis
This java.security.Permission

 class governs the use of various methods
in this package and its subpackages. The target name of the
permission specifies which methods are allowed;
AuthPermission objects have no actions list.
Application programmers never need to use this class directly. System
implementors may need to use it, and system administrators who
configure security policies may need to be familiar with the
following table of target names and the permissions they represent:
	
 Target name

 	
 Gives permission to

	
 doAs

 	
 Invoke Subject.doAs() methods.

	
 doAsPrivileged

 	
 Invoke Subject.doAsPriviliged() methods.

	
 getSubject

 	
 Invoke Subject.getSubject().

	
 getSubjectFromDomainCombiner

 	
 Invoke SubjectDomainCombiner.getSubject().

	
 setReadOnly

 	
 Invoke Subject.setReadOnly().

	
 modifyPrincipals

 	
 Modify the Set of principals associated with a
Subject.

	
 modifyPublicCredentials

 	
 Modify the Set of public credentials associated
with a Subject.

	
 modifyPrivateCredentials

 	
 Modify the Set of private credentials associated
with a Subject.

	
 refreshCredential

 	
 Invoke the refresh() method of a
Refreshable credential class.

	
 destroyCredential

 	
 Invoke the destroy() method of a
Destroyable credential class.

	
 createLoginContext.name

 	
 Instantiate a LoginContext with the specified
name. If name
is * , it allows a LoginContext of any name to be
created.

	
 getLoginConfiguration

 	
 Invoke the getConfiguration() method of
javax.security.auth.login.Configuration.

	
 setLoginConfiguration

 	
 Invoke the setConfiguration() method of
javax.security.auth.login.Configuration.

	
 refreshLoginConfiguration

 	
 Invoke the refresh() method of
javax.security.auth.login.Configuration.

[image: javax.security.auth.AuthPermission]

Figure 19-1. javax.security.auth.AuthPermission

public final class AuthPermission extends java.security.BasicPermission {
// Public Constructors
 public AuthPermission(String name);
 public AuthPermission(String name, String actions);
}

Name
Destroyable

Synopsis
Classes that encapsulate sensitive
information, such as security
credentials, may implement this
interface to provide an API that allows the sensitive information to
be destroyed or erased. The destroy(
)

method erases or clears the sensitive information. It may throw a
DestroyFailedException if the information cannot
be erased for any reason. It may also throw a
SecurityException if the caller does not have
whatever permissions are required. Once destroy()
has been called on an object, the isDestroyed(
)
 method returns
true. Once an object has been destroyed, any other
methods it defines may throw an
IllegalStateException.
public interface Destroyable {
// Public Instance Methods
 void destroy() throws DestroyFailedException;
 boolean isDestroyed();
}

Implementations

 java.security.KeyStore.PasswordProtection,
javax.security.auth.kerberos.KerberosKey,
javax.security.auth.kerberos.KerberosTicket,
javax.security.auth.x500.X500PrivateCredential

Name
DestroyFailedException

Synopsis
Signals
that
the destroy() method of a
Destroyable object did not succeed.
[image: javax.security.auth.DestroyFailedException]

Figure 19-1. javax.security.auth.DestroyFailedException

public class DestroyFailedException extends Exception {
// Public Constructors
 public DestroyFailedException();
 public DestroyFailedException(String msg);
}

Thrown By

 java.security.KeyStore.PasswordProtection.destroy(
), Destroyable.destroy(),
javax.security.auth.kerberos.KerberosKey.destroy(
),
javax.security.auth.kerberos.KerberosTicket.destroy(
)

Name
Policy

Synopsis
This
 deprecated class represents a
Subject-based security policy. Because the JAAS API (this package and
its subpackages) were introduced as an extension to the core Java
platform, this class was required to augment the
java.security.Policy class which, prior to Java
1.4, had no provisions for Subject-based authorization. In Java 1.4,
however, java.security.Policy has been extended to
represent security policies based on code origin, code signers, and
subjects. Thus, this class is no longer required and has been
deprecated.
public abstract class Policy {
// Protected Constructors
 protected Policy();
// Public Class Methods
 public static javax.security.auth.Policy getPolicy();
 public static void setPolicy(javax.security.auth.Policy policy);
// Public Instance Methods
 public abstract java.security.PermissionCollection getPermissions(Subject subject,
 java.security.CodeSource cs);
 public abstract void refresh();
}

Name
PrivateCredentialPermission

Synopsis
This

 Permission class
protects access to private
credential
objects belonging to a Subject (as specified by a
set of one or more Principal objects). Application
programmers rarely need to use it. System programmers implementing
new private credentials classes may need to use it, and system
administrators configuring security policy files should be familiar
with it.
The only defined action for
PrivateCredentialPermssion is
“read”. The target name for this
permission has a complex syntax and specifies the name of the
credential class and a list of one or more principals. Each principal
is specified as the name of the Principal class
followed by the principal name in quotes. For example, a security
policy file might contain a statement like the following to allow
permission to read the private KerberosKey
credentials of a KerberosPrincipal named
“david”.
permission javax.security.auth.PrivateCredentialPermission
 "javax.security.auth.kerberos.KerberosKey \
 javax.security.auth.kerberos.KerberosPrincipal \"david\"",
 "read";
The target name syntax for
PrivateCredentialPermission also allows the use of
the “*” wildcard in place of the
credential class name or in place of the Principal
class name and/or name.
[image: javax.security.auth.PrivateCredentialPermission]

Figure 19-2. javax.security.auth.PrivateCredentialPermission

public final class PrivateCredentialPermission extends java.security.Permission {
// Public Constructors
 public PrivateCredentialPermission(String name, String actions);
// Public Instance Methods
 public String getCredentialClass();
 public String[][] getPrincipals();
// Public Methods Overriding Permission
 public boolean equals(Object obj);
 public String getActions();
 public int hashCode();
 public boolean implies(java.security.Permission p);
 public java.security.PermissionCollection newPermissionCollection(); constant
}

Name
Refreshable

Synopsis
A class implements this interface if its
instances that have a limited period of validity (as some security
credentials
do) and need to be periodically
“refreshed” in order to remain
valid. isCurrent()

returns true if the object is currently valid, and
false if it has expired and needs to be refreshed.
refresh() attempts to revalidate or extend the
validity of the object. It throws a
RefreshFailedException if it does not succeed.
(And may also throw a SecurityException if the
caller does not have the requisite permissions.)
public interface Refreshable {
// Public Instance Methods
 boolean isCurrent();
 void refresh() throws RefreshFailedException;
}

Implementations

 javax.security.auth.kerberos.KerberosTicket

Name
RefreshFailedException

Synopsis
Signals
that
the refresh() method of a
Refreshable object failed.
[image: javax.security.auth.RefreshFailedException]

Figure 19-3. javax.security.auth.RefreshFailedException

public class RefreshFailedException extends Exception {
// Public Constructors
 public RefreshFailedException();
 public RefreshFailedException(String msg);
}

Thrown By

 Refreshable.refresh(),
javax.security.auth.kerberos.KerberosTicket.refresh(
)

Name
Subject

Synopsis
The
 Subject class is the
key abstraction of the JAAS API. It represents a person or other
entity, and consists of:
	a java.util.Set of Principal
objects that specify the identity (or identities) of the
Subject.

	a Set of objects that specify the public
credentials, such as the public key certificates of the
Subject.

	a Set of objects that specify the private
credentials, such as the private keys and Kerberos tickets of the
Subject.

 Subject defines methods that allow you to retreive
each of these three sets, or to retreive a subset of each set that
contains only objects of a specified Class. Unless
the Subject is read-only, you can use the methods
of java.util.Set to modify each of the three sets.
Once setReadOnly() has been called, however, the
sets become immutable and their contents may not be modified.
Application code does not typically create Subject
objects itself. Instead, it obtains a Subject that
represents the authenticated user of the application by calling the
login()

 and getSubject(
) methods of a
javax.security.auth.login.LoginContext object.
Once an authenticated Subject has been obtained
from a LoginContext, an application can call the
doAs() method to run code using the permissions
granted to that Subject combined with the
permissions granted to the code itself. doAs()
runs the code defined in the run() method of a
PrivilegedAction or
PrivilegedExceptionAction object.
doAsPrivileged() is a similar method but executes
the specified run() method using the
Subject’s permissions only, unconstrained by
unprivileged code in the call stack.
Note that many of the methods of this class throw a
SecurityException if the caller has not been
granted the requisite AuthPermission.
[image: javax.security.auth.Subject]

Figure 19-4. javax.security.auth.Subject

public final class Subject implements Serializable {
// Public Constructors
 public Subject();
 public Subject(boolean readOnly, java.util.Set<? extends java.security.Principal>
 principals, java.util.Set<?> pubCredentials,
 java.util.Set<?> privCredentials);
// Public Class Methods
 public static Object doAs(Subject subject, java.security.PrivilegedExceptionAction
 action) throws java.security.PrivilegedActionException;
 public static Object doAs(Subject subject, java.security.PrivilegedAction action);
 public static Object doAsPrivileged(Subject subject, java.security.
 PrivilegedExceptionAction action, java.security.AccessControlContext acc)
 throws java.security.PrivilegedActionException;
 public static Object doAsPrivileged(Subject subject, java.security.PrivilegedAction
 action, java.security.AccessControlContext acc);
 public static Subject getSubject(java.security.AccessControlContext acc);
// Public Instance Methods
 public java.util.Set<java.security.Principal> getPrincipals();
 public <T extends java.security.Principal> java.util.Set<T> getPrincipals(Class<T> c);
 public java.util.Set<Object> getPrivateCredentials();
 public <T> java.util.Set<T> getPrivateCredentials(Class<T> c);
 public java.util.Set<Object> getPublicCredentials();
 public <T> java.util.Set<T> getPublicCredentials(Class<T> c);
 public boolean isReadOnly(); default:false
 public void setReadOnly();
// Public Methods Overriding Object
 public boolean equals(Object o);
 public int hashCode();
 public String toString();
}

Passed To

 java.security.AuthProvider.login(),
javax.security.auth.Policy.getPermissions(),
SubjectDomainCombiner.SubjectDomainCombiner(),
javax.security.auth.login.LoginContext.LoginContext(
), javax.security.auth.spi.LoginModule.initialize(
)

Returned By

 SubjectDomainCombiner.getSubject(),
javax.security.auth.login.LoginContext.getSubject(
)

Name
SubjectDomainCombiner

Synopsis
This
 class implements the
DomainCombiner interface. It is used to merge
permissions based on code source and code signers with permissions
granted to the specified Subject. A
SubjectDomainCombiner is created by the
Subject.doAs()

 and Subject.doAsPrivileged(
) methods for use in by the
AccessControlContext.
[image: javax.security.auth.SubjectDomainCombiner]

Figure 19-5. javax.security.auth.SubjectDomainCombiner

public class SubjectDomainCombiner implements java.security.DomainCombiner {
// Public Constructors
 public SubjectDomainCombiner(Subject subject);
// Public Instance Methods
 public Subject getSubject();
// Methods Implementing DomainCombiner
 public java.security.ProtectionDomain[] combine(java.security.ProtectionDomain[]
 currentDomains,
 java.security.ProtectionDomain[] assignedDomains);
}

Name
Package javax.security.auth.callback

Synopsis
This
 package
defines a mechanism that allows the low-level code of a
javax.security.auth.spi.LoginModule to interact
with the end-user of an application to obtain a username, password,
or other authentication-related information. The
LoginModule sends messages and requests for
information in the form of objects that implement the
Callback interface. An application that wants to
authenticate a user provides (via a
javax.security.auth.login.LoginContext) a
CallbackHandler object to convert these
Callback objects into text or GUI-based
interactions with the user. An application that want to provide a
customized login interface must implement its own
CallbackHandler. The
CallbackHandler API consists of only a single
method, but the implementation of that method can require a
substantial amount of code. See the various
Callback classes for directions on how a
CallbackHandler should handle them.
Sun’s J2SE SDK for Java 1.4 ships with two
implementations of CallbackHandler, both in the
package com.sun.security.auth.callback. Although
these classes are not guaranteed to exist in all distributions,
text-based applications may use the
TextCallbackHandler, and GUI-based applications
may use the DialogCallbackHandler. Programmers
wanting to write a custom CallbackHandler may also
find it useful to study the source code of these two existing
handlers.

Interfaces
public interface Callback;
public interface CallbackHandler;

Classes
public class ChoiceCallback implements Callback, Serializable;
public class ConfirmationCallback implements Callback, Serializable;
public class LanguageCallback implements Callback, Serializable;
public class NameCallback implements Callback, Serializable;
public class PasswordCallback implements Callback, Serializable;
public class TextInputCallback implements Callback, Serializable;
public class TextOutputCallback implements Callback, Serializable;

Exceptions
public class UnsupportedCallbackException extends Exception;

Name
Callback

Synopsis
This interface defines no methods but
serves as a “marker interface” to
identify the type of objects that can be passed to the
handle() method of a
CallbackHandler. All of the classes in this
package, with the exception of
UnsupportedCallbackException implement this
interface.
public interface Callback {
}

Implementations

 ChoiceCallback,
ConfirmationCallback,
LanguageCallback, NameCallback,
PasswordCallback,
TextInputCallback,
TextOutputCallback

Passed To

 CallbackHandler.handle(),
UnsupportedCallbackException.UnsupportedCallbackException(
)

Returned By

 UnsupportedCallbackException.getCallback()

Name
CallbackHandler

Synopsis
A
 CallbackHandler
is responsible for communication between the end-user of an
application and the
javax.security.auth.spi.LoginModule that is
performing authentication of that user on behalf of the
javax.security.auth.login.LoginContext
instantiated by the application. When an application needs to
authenticate a user, it creates a LoginContext and
specifies a CallbackHandler object for that
context. The underlying LoginModule uses the
CallbackHandler to communicate with the end
user—for example prompting them to enter a name and password.
The LoginModule passes an array of objects that
implement the Callback interface to the
handle()
 method of
CallbackHandler. The handle()
method must determine the type of Callback object,
and display the information and/or prompt for the input it
represents. Different Callback classes have
different purposes and must be handled differently.
NameCallback and
PasswordCallback are two of the most commonly
used: they represent requests for the user’s name
and password. TextOutputCallback is also common:
it represents a request to display a message (such as
“Authentication Failed”) to the
user. See the descriptions of the individual
Callback classes for information on how a
CallbackHandler should handle them.
CallbackHandler implementations are not required
to support every type of Callback and my throw an
UnsupportedCallbackException if passed a
Callback object of a type they do not recognize or
do not support.
The handle() method is passed an array of
Callback objects. A
CallbackHandler (such as a typical console-based
handler) may choose to handle the Callback objects
one at a time, prompting for and returning the
user’s input before moving on to the next. Or (for
example in GUI-based handlers) it may choose to present all of the
callbacks in a single unified “login dialog
box”. LoginModule implementations
may, of course, call the handle() method more
than once. Note, finally, that if a
CallbackHandler implementation has knowledge of
the user from some other source, it is allowed to handle certain
callbacks automatically, such as automatically providing the
user’s name for a NameCallback.
Java installations may have a default
CallbackHandler registered by setting the
auth.login.defaultCallbackHandler security
property to the name of the implementing class. No such default is
defined by the default security policy that ships with
Sun’s distribution of Java 1.4.
Sun’s Java 1.4 SDK does include
CallbackHandler implementations to perform
text-based and GUI-based communication in the classes
TextCallbackHandler and
DialogCallbackHandler in the
com.sun.security.auth.callback package. Note that
these are part of Sun’s implementation, and are not
part of the specification; they are not guaranteed to exist in all
releases.
public interface CallbackHandler {
// Public Instance Methods
 void handle(Callback[] callbacks)
 throws java.io.IOException, UnsupportedCallbackException;
}

Passed To

 java.security.AuthProvider.{login(),
setCallbackHandler()},
java.security.KeyStore.CallbackHandlerProtection.CallbackHandlerProtection(
),
javax.security.auth.login.LoginContext.LoginContext(
), javax.security.auth.spi.LoginModule.initialize(
)

Returned By

 java.security.KeyStore.CallbackHandlerProtection.getCallbackHandler(
)

Name
ChoiceCallback

Synopsis
A
 Callback of this type represents a
request to display set of text choices and allow the user to select
one or more of them. A CallbackHandler, should
display the prompt returned by getPrompt() and
also the strings returned by getChoices(). If
allowMultipleSelections() is
true, then it should allow the user to select zero
or more; otherwise, it should only allow the user to select a single
one. In either case, the CallbackHandler should
also call getDefaultChoice() and make the choice
at the returned index the default choice. When the user has made her
selection, the CallbackHandler should pass the
index of a single selection to setSelectedIndex(
), or the indexes of multiple selections to
setSelectedIndexes().
[image: javax.security.auth.callback.ChoiceCallback]

Figure 19-6. javax.security.auth.callback.ChoiceCallback

public class ChoiceCallback implements Callback, Serializable {
// Public Constructors
 public ChoiceCallback(String prompt, String[] choices, int defaultChoice,
 boolean multipleSelectionsAllowed);
// Public Instance Methods
 public boolean allowMultipleSelections();
 public String[] getChoices();
 public int getDefaultChoice();
 public String getPrompt();
 public int[] getSelectedIndexes();
 public void setSelectedIndex(int selection);
 public void setSelectedIndexes(int[] selections);
}

Name
ConfirmationCallback

Synopsis
A

 Callback of this type
represents a request to ask the user a yes/no or multiple-choice
question. A CallbackHandler should first call
getPrompt()

to obtain the text of the question. It should also call
getMessageType(
)
 to determine the message type
(INFORMATION, WARNING, or
ERROR) and present the question to the user in a
suitable manner based on that type.
Next, the CallbackHandler must determine the
appropriate set of responses to the question. It does this by calling
getOptionType(). The return values have the
following meanings:
	
 YES_NO_OPTION

	The CallbackHandler should allow the user to
respond to the question with a
“yes” or a
“no” (or their localized
equivalents).

	
 YES_NO_CANCEL_OPTION

	The CallbackHandler should allow
“yes”,
“no”, and
“cancel” (or their localized
equivalents) responses.

	
 OK_CANCEL_OPTION

	The CallbackHandler should allow
“ok” and
“cancel” (or their localized
equivalents) responses.

	
 UNSPECIFIED_OPTION

	The CallbackHandler should call
getOptions() and use present all strings it
returns as possible responses.

In each of these cases, the CallbackHandler should
also call getDefaultOption() to determine which
response should be presented as the default response. If
getOptionType() returned
UNSPECIFIED_TYPE, then getDefaultOption(
) returns an index into the array of options returned by
getOptions(). Otherwise
getDefaultOption() returns one of the constants
YES, NO, OK,
or CANCEL.
When the user has selected a response to the callback, the
CallbackHandler should pass that response to
setSelectedIndex(). The response value should be
one of the constants YES, NO,
OK, or CANCEL, or an index into
the array of options returned by getOptions().
[image: javax.security.auth.callback.ConfirmationCallback]

Figure 19-7. javax.security.auth.callback.ConfirmationCallback

public class ConfirmationCallback implements Callback, Serializable {
// Public Constructors
 public ConfirmationCallback(int messageType, String[] options, int defaultOption);
 public ConfirmationCallback(int messageType, int optionType, int defaultOption);
 public ConfirmationCallback(String prompt, int messageType, String[] options,
 int defaultOption);
 public ConfirmationCallback(String prompt, int messageType, int optionType,
 int defaultOption);
// Public Constants
 public static final int CANCEL; =2
 public static final int ERROR; =2
 public static final int INFORMATION; =0
 public static final int NO; =1
 public static final int OK; =3
 public static final int OK_CANCEL_OPTION; =2
 public static final int UNSPECIFIED_OPTION; =-1
 public static final int WARNING; =1
 public static final int YES; =0
 public static final int YES_NO_CANCEL_OPTION; =1
 public static final int YES_NO_OPTION; =0
 // Public Instance Methods
 public int getDefaultOption();
 public int getMessageType();
 public String[] getOptions();
 public int getOptionType();
 public String getPrompt();
 public int getSelectedIndex();
 public void setSelectedIndex(int selection);
}

Name
LanguageCallback

Synopsis
This

 Callback class
represents a request for the
user’s preferred language (as represented by a
Locale object), which a
LoginModule can use to localize things such as
prompts and error messages in subsequent Callback
objects. If a CallbackHandler already has
knowledge of the user’s preferred langauge, it is
not required to prompt the user for this information and can simply
pass an appropriate Locale object to
setLocale().
[image: javax.security.auth.callback.LanguageCallback]

Figure 19-8. javax.security.auth.callback.LanguageCallback

public class LanguageCallback implements Callback, Serializable {
// Public Constructors
 public LanguageCallback();
// Public Instance Methods
 public java.util.Locale getLocale(); default:null
 public void setLocale(java.util.Locale locale);
}

Name
NameCallback

Synopsis
This

 Callback class
represents a request for the username or other text that identifies
the user to be authenticated. An interactive
CallbackHandler should call getPrompt(
)
 and
getDefaultName() and should display the returned
prompt and optionally, the returned default name to the user. When
the user has entered a name (or accepted the default name) the
handler should pass the user’s input to
setName()
 .
[image: javax.security.auth.callback.NameCallback]

Figure 19-9. javax.security.auth.callback.NameCallback

public class NameCallback implements Callback, Serializable {
// Public Constructors
 public NameCallback(String prompt);
 public NameCallback(String prompt, String defaultName);
// Public Instance Methods
 public String getDefaultName();
 public String getName();
 public String getPrompt();
 public void setName(String name);
}

Name
PasswordCallback

Synopsis
This

 Callback class
represents a request for a password. A
CallbackHandler should handle it by displaying the
prompt returned by getPrompt() and then allowing
the user the enter a password. When the user has entered the
password, it should pass the entered text to setPassword(
)

 . If isEchoOn(
) returns true, then the Handler should
display the password as the user types it.
[image: javax.security.auth.callback.PasswordCallback]

Figure 19-10. javax.security.auth.callback.PasswordCallback

public class PasswordCallback implements Callback, Serializable {
// Public Constructors
 public PasswordCallback(String prompt, boolean echoOn);
// Public Instance Methods
 public void clearPassword();
 public char[] getPassword();
 public String getPrompt();
 public boolean isEchoOn();
 public void setPassword(char[] password);
}

Name
TextInputCallback

Synopsis
A

 Callback of this type
is a request to prompt the user for text input; it is essentially a
generic version of NameCallback. A
CallbackHandler should call getPrompt(
)

and should display the returned prompt text to the user. It should
then allow the user to enter text, and provide the option of
selecting the default text returned by getDefaultText(
)
 . When the user has entered text (or selected
the default text) it should pass the user’s input to
setText().
[image: javax.security.auth.callback.TextInputCallback]

Figure 19-11. javax.security.auth.callback.TextInputCallback

public class TextInputCallback implements Callback, Serializable {
// Public Constructors
 public TextInputCallback(String prompt);
 public TextInputCallback(String prompt, String defaultText);
// Public Instance Methods
 public String getDefaultText();
 public String getPrompt();
 public String getText();
 public void setText(String text);
}

Name
TextOutputCallback

Synopsis
A

 Callback of this type
represents a request to display text to the user. A callback handler
should call getMessage(
)
 and
display the returned string to the user. It should also call
getMessageType() and use the returned value
(which is one of the constants defined by the class) to indicate the
type or severity of the information.
[image: javax.security.auth.callback.TextOutputCallback]

Figure 19-12. javax.security.auth.callback.TextOutputCallback

public class TextOutputCallback implements Callback, Serializable {
// Public Constructors
 public TextOutputCallback(int messageType, String message);
// Public Constants
 public static final int ERROR; =2
 public static final int INFORMATION; =0
 public static final int WARNING; =1
 // Public Instance Methods
 public String getMessage();
 public int getMessageType();
}

Name
UnsupportedCallbackException

Synopsis

 CallbackHandler
 implementations
may throw
exceptions
of this type from their handle(
)
 method if a
Callback object passed to that method is of an
unrecognized or unsupported type. Note that the offending
Callback object must be passed to the constructor
method.
[image: javax.security.auth.callback.UnsupportedCallbackException]

Figure 19-13. javax.security.auth.callback.UnsupportedCallbackException

public class UnsupportedCallbackException extends Exception {
// Public Constructors
 public UnsupportedCallbackException(Callback callback);
 public UnsupportedCallbackException(Callback callback, String msg);
// Public Instance Methods
 public Callback getCallback();
}

Thrown By

 CallbackHandler.handle()

Name
Package javax.security.auth.kerberos

Synopsis
This package defines classes for use with

 Kerberos: a secure network
authentication protocol. They are primarily of interest to
system-level programmers writing Kerberos-based
javax.security.auth.spi.LoginModule
implementations. Developers writing Kerberos-enabled applications
should use the
org.ietf.jgss
 package. A full description of Kerberos
is beyond the scope of this book; so it is assumed that the reader is
familar with Kerberos authentication.

Classes
public final class DelegationPermission extends java.security.BasicPermission
 implements Serializable;
public class KerberosKey implements javax.security.auth.Destroyable,
 javax.crypto.SecretKey;
public final class KerberosPrincipal implements java.security.Principal,
 Serializable;
public class KerberosTicket implements javax.security.auth.Destroyable,
 javax.security.auth.Refreshable, Serializable;
public final class ServicePermission extends java.security.Permission
 implements Serializable;

Name
DelegationPermission

Synopsis

 This
java.security.Permission class governs the
delegation of Kerberos tickets from a Kerberos principal to a
Kerberos service for use on behalf of the original principal. The
target name of a DelegationPermission consists of
the principal names of two Kerberos services. The first specifies the
service that is being delegated to, and the second specifies the
service that is to be used by the first on behalf of the original
Kerberos principal.
[image: javax.security.auth.kerberos.DelegationPermission]

Figure 19-14. javax.security.auth.kerberos.DelegationPermission

public final class DelegationPermission extends java.security.BasicPermission
 implements Serializable {
// Public Constructors
 public DelegationPermission(String principals);
 public DelegationPermission(String principals, String actions);
// Public Methods Overriding BasicPermission
 public boolean equals(Object obj);
 public int hashCode();
 public boolean implies(java.security.Permission p);
 public java.security.PermissionCollection newPermissionCollection();
}

Name
KerberosKey

Synopsis
This class is a
javax.crypto.SecretKey
 implementation
that represents the secret key of a Kerberos principal. A
Kerberos-based javax.security.auth.spi.LoginModule
implementation instantiates a KerberosKey object
and stores it in the private
credential
set of the authenticated Subject it creates.
[image: javax.security.auth.kerberos.KerberosKey]

Figure 19-15. javax.security.auth.kerberos.KerberosKey

public class KerberosKey implements javax.security.auth.Destroyable,
 javax.crypto.SecretKey {
// Public Constructors
 public KerberosKey(KerberosPrincipal principal, char[] password,
 String algorithm);
 public KerberosKey(KerberosPrincipal principal, byte[] keyBytes, int keyType,
 int versionNum);
// Public Instance Methods
 public final int getKeyType();
 public final KerberosPrincipal getPrincipal();
 public final int getVersionNumber();
// Methods Implementing Destroyable
 public void destroy() throws javax.security.auth.DestroyFailedException;
 public boolean isDestroyed();
// Methods Implementing Key
 public final String getAlgorithm();
 public final byte[] getEncoded();
 public final String getFormat();
// Public Methods Overriding Object
 public String toString();
}

Name
KerberosPrincipal

Synopsis
This
 class
represents a Kerberos principal, specified as a principal name with
an optional realm. If no realm is specified in the name, the default
realm (from the krb5.conf configuration file or
from the java.security.krb5.realm system property)
is used.
[image: javax.security.auth.kerberos.KerberosPrincipal]

Figure 19-16. javax.security.auth.kerberos.KerberosPrincipal

public final class KerberosPrincipal implements java.security.Principal, Serializable {
// Public Constructors
 public KerberosPrincipal(String name);
 public KerberosPrincipal(String name, int nameType);
// Public Constants
 public static final int KRB_NT_PRINCIPAL; =1
 public static final int KRB_NT_SRV_HST; =3
 public static final int KRB_NT_SRV_INST; =2
 public static final int KRB_NT_SRV_XHST; =4
 public static final int KRB_NT_UID; =5
 public static final int KRB_NT_UNKNOWN; =0
 // Public Instance Methods
 public int getNameType();
 public String getRealm();
// Methods Implementing Principal
 public boolean equals(Object other);
 public String getName();
 public int hashCode();
 public String toString();
}

Passed To

 KerberosKey.KerberosKey(),
KerberosTicket.KerberosTicket()

Returned By

 KerberosKey.getPrincipal(),
KerberosTicket.{getClient(), getServer(
)}

Name
KerberosTicket

Synopsis
This
 class represents a Kerberos ticket: a
credential
used to authenticate a Kerberos principal to some Kerberos-enabled
network service. A Kerberos-based
javax.security.auth.spi.LoginModule implementation
will instantiate a KerberosTicket object and store
it in the private credential set of the authenticated
Subject it creates.
[image: javax.security.auth.kerberos.KerberosTicket]

Figure 19-17. javax.security.auth.kerberos.KerberosTicket

public class KerberosTicket implements javax.security.auth.Destroyable,
 javax.security.auth.Refreshable, Serializable {
// Public Constructors
 public KerberosTicket(byte[] asn1Encoding, KerberosPrincipal client,
 KerberosPrincipal server, byte[] sessionKey,
 int keyType, boolean[] flags,
 java.util.Date authTime, java.util.Date startTime,
 java.util.Date endTime, java.util.Date renewTill,
 java.net.InetAddress[] clientAddresses);
// Public Instance Methods
 public final java.util.Date getAuthTime();
 public final KerberosPrincipal getClient();
 public final java.net.InetAddress[] getClientAddresses();
 public final byte[] getEncoded();
 public final java.util.Date getEndTime();
 public final boolean[] getFlags();
 public final java.util.Date getRenewTill();
 public final KerberosPrincipal getServer();
 public final javax.crypto.SecretKey getSessionKey();
 public final int getSessionKeyType();
 public final java.util.Date getStartTime();
 public final boolean isForwardable();
 public final boolean isForwarded();
 public final boolean isInitial();
 public final boolean isPostdated();
 public final boolean isProxiable();
 public final boolean isProxy();
 public final boolean isRenewable();
// Methods Implementing Destroyable
 public void destroy() throws javax.security.auth.DestroyFailedException;
 public boolean isDestroyed();
// Methods Implementing Refreshable
 public boolean isCurrent();
 public void refresh() throws javax.security.auth.RefreshFailedException;
// Public Methods Overriding Object
 public String toString();
}

Name
ServicePermission

Synopsis
This java.security.Permission

 class protects access to the Kerberos
tickets used to access a specified service. The target name of of a
ServicePermission is the Kerberos principal name
of the service. The action for the
ServicePermission is either
“initiate” for clients or
“accept” for servers.
[image: javax.security.auth.kerberos.ServicePermission]

Figure 19-18. javax.security.auth.kerberos.ServicePermission

public final class ServicePermission extends java.security.Permission implements Serializable {
// Public Constructors
 public ServicePermission(String servicePrincipal, String action);
// Public Methods Overriding Permission
 public boolean equals(Object obj);
 public String getActions();
 public int hashCode();
 public boolean implies(java.security.Permission p);
 public java.security.PermissionCollection newPermissionCollection();
}

Name
Package javax.security.auth.login

Synopsis
This
 package
defines the
LoginContext
 class which is one of the primary JAAS
classes used by application programmers. To authenticate a user, an
application creates a LoginContext object,
specifying the application name (used to lookup the type of
authentication required for that application in the
Configuration) and usually specifying a
javax.security.auth.callback.CallbackHandler for
communication between the user and the underlying login modules.
Next, the application calls the login(
)

method of the LoginContext to perform the actual
login. If this method returns without throwing a
LoginException, then the user was sucessfully
authenticated, and the getSubject(
)
 method of
LoginContext returns a
javax.security.auth.Subject representing the user.
The code might look like this:
import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
// Get a default GUI-based CallbackHandler
CallbackHandler h = new com.sun.security.auth.callback.DialogCallbackHandler();
// Try to create a LoginContext for use with this application
LoginContext context;
try {
 context = new LoginContext("MyAppName", h);
}
catch(LoginException e) {
 System.err.println("LoginContext configuration error: " + e.getMessage());
 System.exit(-1);
}
// Now use that context to authenticate the user
try {
 context.login();
}
catch(LoginException e) {
 System.err.println("Authentication failed: " + e.getMessage());
 System.exit(-1); // Or we could allow them to try again.
}
// If we get here, authentication was successful, so get the Subject that
// represents the authenticated user.
Subject subject = context.getSubject();
In order to make this kind of authentication work correctly, a fair
bit of configuration is required in various files in the
jre/lib/security directory of the Java
installation and possibly elsewhere. In particular, a login
configuration file is required to specify which login modules are
required to authenticate users for a particular application (some
applications may require more than one). A description of how to do
this is beyond the scope of this reference. See the
Configuration class for a run-time representation
of the login configuration information, however.

Classes
public class AppConfigurationEntry;
public static class AppConfigurationEntry.LoginModuleControlFlag;
public abstract class Configuration;
public class LoginContext;

Exceptions
public class LoginException extends java.security.GeneralSecurityException;
 public class AccountException extends LoginException;
 public class AccountExpiredException extends AccountException;
 public class AccountLockedException extends AccountException;
 public class AccountNotFoundException extends AccountException;
 public class CredentialException extends LoginException;
 public class CredentialExpiredException extends CredentialException;
 public class CredentialNotFoundException extends CredentialException;
 public class FailedLoginException extends LoginException;

Name
AccountException

Synopsis
A

 LoginException
exception of this type signals a problem logging in to the specified
account. Subclasses provide more detail.
[image: javax.security.auth.login.AccountException]

Figure 19-19. javax.security.auth.login.AccountException

public class AccountException extends LoginException {
// Public Constructors
 public AccountException();
 public AccountException(String msg);
}

Subclasses

 AccountExpiredException,
AccountLockedException,
AccountNotFoundException

Name
AccountExpiredException

Synopsis
Signals

 that
login failed because the user’s account has expired.
Prior to Java 5.0, this exception was a direct subclass of
LoginException.
[image: javax.security.auth.login.AccountExpiredException]

Figure 19-20. javax.security.auth.login.AccountExpiredException

public class AccountExpiredException extends AccountException {
// Public Constructors
 public AccountExpiredException();
 public AccountExpiredException(String msg);
}

Name
AccountLockedException

Synopsis
An

 exception
of this type indicates that the account for which login was attempted
has been “locked” or otherwise made
unavailable. See also AccountExpiredException.
[image: javax.security.auth.login.AccountLockedException]

Figure 19-21. javax.security.auth.login.AccountLockedException

public class AccountLockedException extends AccountException {
// Public Constructors
 public AccountLockedException();
 public AccountLockedException(String msg);
}

Name
AccountNotFoundException

Synopsis
An

 exception
of this type indicates that the account specified in a login attempt
does not exist.
[image: javax.security.auth.login.AccountNotFoundException]

Figure 19-22. javax.security.auth.login.AccountNotFoundException

public class AccountNotFoundException extends AccountException {
// Public Constructors
 public AccountNotFoundException();
 public AccountNotFoundException(String msg);
}

Name
AppConfigurationEntry

Synopsis
An

 instance of this class represents a login
module to be used for user authentication for a particular
application. It encapsulates three pieces of information: the class
name of the javax.security.auth.spi.LoginModule
implementation that is to be used, a “control
flag” that specifies whether authentication by that
module is required or optional, and a
java.util.Map of arbitrary string name/value pairs
of options for the login module.
public class AppConfigurationEntry {
// Public Constructors
 public AppConfigurationEntry(String loginModuleName, AppConfigurationEntry.
 LoginModuleControlFlag controlFlag, java.util.Map<String,?> options);
// Nested Types
 public static class LoginModuleControlFlag;
// Public Instance Methods
 public AppConfigurationEntry.LoginModuleControlFlag getControlFlag();
 public String getLoginModuleName();
 public java.util.Map<String,?> getOptions();
}

Returned By

 Configuration.getAppConfigurationEntry()

Name
AppConfigurationEntry.LoginModuleControlFlag

Synopsis
This
inner

 class defines a
“control flag”
type
and four specific instances of that type. The constants defined by
this class specify whether a login module is required or optional,
and have the following meanings:
	
 REQUIRED

	Authentication by this module must be successful, or the overall
login process will fail. However, even if authentication fails for
this module, the LoginContext continues to attempt
authentication with any other modules in the list. (This can server
to disguise the source of the authentication failure from an
attacker)

	
 REQUSITE

	Authentication by this module must be successful, or the overall
login process will fail. If authentication fails for this module, the
LoginContext does not try any further login
modules.

	
 SUFFICIENT

	Authentication by this module is not required, and the overall login
process can still succeed if all REQUIRED and
REQUISITE modules successfully authenticate the
user. However, if authentication by this module does succeed, the
LoginContext does not try any further login
modules, but instead returns immediately.

	
 OPTIONAL

	Authentication by this module is not required. Whether or not it
succeeds, the LoginContext continues to with any
other modules on the list.

public static class AppConfigurationEntry.LoginModuleControlFlag {
// No Constructor
 // Public Constants
 public static final AppConfigurationEntry.LoginModuleControlFlag OPTIONAL;
 public static final AppConfigurationEntry.LoginModuleControlFlag REQUIRED;
 public static final AppConfigurationEntry.LoginModuleControlFlag REQUISITE;
 public static final AppConfigurationEntry.LoginModuleControlFlag SUFFICIENT;
// Public Methods Overriding Object
 public String toString();
}

Passed To

 AppConfigurationEntry.AppConfigurationEntry()

Returned By

 AppConfigurationEntry.getControlFlag()

Name
Configuration

Synopsis
This
 abstract class is a representation of the
system and user login configuration files. The static
getConfiguration() method returns the global
Configuration object, and the static
setConfiguration() allows that global object to
be replaced with some other implementation. The instance method
refresh() causes a
Configuration to re-read the underlying
configuration files. getAppConfigurationEntry()
is the key method: it returns an array of
AppConfigurationEntry objects that represent the
set of login modules to be used for applications with the specified
name. LoginContext uses this class to determine
which login modules to use to authenticate a user of the named
application. Application programmers do not typically need to use
this class themselves. See the documentation for your Java
implementation for the syntax of the underlying login configuration
files.
public abstract class Configuration {
// Protected Constructors
 protected Configuration();
// Public Class Methods
 public static Configuration getConfiguration(); synchronized
 public static void setConfiguration(Configuration configuration);
// Public Instance Methods
 public abstract AppConfigurationEntry[] getAppConfigurationEntry(String name);
 public abstract void refresh();
}

Passed To

 LoginContext.LoginContext()

Name
CredentialException

Synopsis
An

 exception
of this type indicates a problem with the credential (e.g., the
password) presented during the login attempt. Subclasses provide more
detail.
[image: javax.security.auth.login.CredentialException]

Figure 19-23. javax.security.auth.login.CredentialException

public class CredentialException extends LoginException {
// Public Constructors
 public CredentialException();
 public CredentialException(String msg);
}

Subclasses

 CredentialExpiredException,
CredentialNotFoundException

Name
CredentialExpiredException

Synopsis
Signals

 that
a login failed because a credential (such as a password) has
expired
and is no longer valid. Prior to Java 5.0, this is a direct subclass
of LoginException.
[image: javax.security.auth.login.CredentialExpiredException]

Figure 19-24. javax.security.auth.login.CredentialExpiredException

public class CredentialExpiredException extends CredentialException {
// Public Constructors
 public CredentialExpiredException();
 public CredentialExpiredException(String msg);
}

Name
CredentialNotFoundException

Synopsis
An

 exception
of this type indicates that a credential (such as a Kerberos ticket)
necessary for login could not be found. This is not the same as
presenting an invalid credential, which results in a
FailedLoginException.
[image: javax.security.auth.login.CredentialNotFoundException]

Figure 19-25. javax.security.auth.login.CredentialNotFoundException

public class CredentialNotFoundException extends CredentialException {
// Public Constructors
 public CredentialNotFoundException();
 public CredentialNotFoundException(String msg);
}

Name
FailedLoginException

Synopsis
Signals

 that
login failed. Typically this is because an incorrect username,
password,
or other information was presented. Login modules that throw this
exception may provide human-readable details through the
getMessage() method.
[image: javax.security.auth.login.FailedLoginException]

Figure 19-26. javax.security.auth.login.FailedLoginException

public class FailedLoginException extends LoginException {
// Public Constructors
 public FailedLoginException();
 public FailedLoginException(String msg);
}

Name
LoginContext

Synopsis
This is one of the most important classes in
the JAAS API for application programmers: it defines the
login()

method (and the corresponding logout() method)
that allows an application to authenticate a user. Create a
LoginContext object using one of the public
constructors. The constructor expects to be passed the name of the
application, and, optionally, the
javax.security.auth.Subject

 that is to be authenticated and a
javax.security.auth.callback.CallbackHandler that
is to be used for communication between the underlying login module
(or modules) and the user. If no Subject is
specified, then the LoginContext will instantiate
a new one to represent the authenticated user. If a
Subject is supplied, then the
LoginContext adds new entries to its sets of
principals and credentials. If no CallbackHandler
is specified, then the LoginContext attempts to instantiate one using
the class name specified by the
auth.login.defaultCallbackHandler property in the
system’s security properties file.
Once a LoginContext is successfully created, you
can authenticate a user simply by calling the login(
) method, and then calling getSubject(
)
 to obtain the
Subject object that represents the authenticated
user. When this Subject is no longer required, you
can log them out by calling the logout() method.
public class LoginContext {
// Public Constructors
 public LoginContext(String name) throws LoginException;
 public LoginContext(String name, javax.security.auth.Subject subject)
 throws LoginException;
 public LoginContext(String name, javax.security.auth.callback.
 CallbackHandler callbackHandler) throws LoginException;
 public LoginContext(String name, javax.security.auth.Subject subject,
 javax.security.auth.callback.CallbackHandler callbackHandler)
 throws LoginException;
5.0 public LoginContext(String name, javax.security.auth.Subject subject,
 javax.security.auth.callback.CallbackHandler callbackHandler,
 Configuration config) throws LoginException;
// Public Instance Methods
 public javax.security.auth.Subject getSubject();
 public void login() throws LoginException;
 public void logout() throws LoginException;
}

Name
LoginException

Synopsis
Signals
that
something went wrong while creating a LoginContext
or during the login or logout process.
The subclasses of this
class represent more specific exception types.
[image: javax.security.auth.login.LoginException]

Figure 19-27. javax.security.auth.login.LoginException

public class LoginException extends java.security.GeneralSecurityException {
// Public Constructors
 public LoginException();
 public LoginException(String msg);
}

Subclasses

 AccountException,
CredentialException,
FailedLoginException

Thrown By

 java.security.AuthProvider.{login(),
logout()}, LoginContext.{login(
), LoginContext(), logout(
)}, javax.security.auth.spi.LoginModule.{abort(
), commit(), login(
), logout()}

Name
Package javax.security.auth.spi

Synopsis
This package defines the “service
provider interface” for JAAS: it
defines a single
LoginModule interface that must be implemented by
developers of login modules.

Interfaces
public interface LoginModule;

Name
LoginModule

Synopsis
Developers of login modules to be used with the JAAS authentication
API must implement this interface. Because this interface is not
typically used by application developers, its methods are not
documented here.
public interface LoginModule {
// Public Instance Methods
 boolean abort() throws javax.security.auth.login.LoginException;
 boolean commit() throws javax.security.auth.login.LoginException;
 void initialize(javax.security.auth.Subject subject, javax.security.
 auth.callback.CallbackHandler callbackHandler, java.util.Map<String,?>
 sharedState, java.util.Map<String,?> options);
 boolean login() throws javax.security.auth.login.LoginException;
 boolean logout() throws javax.security.auth.login.LoginException;
}

Name
Package javax.security.auth.x500

Synopsis
This package

 defines
classes for use with authentication schemes for on X.500 principals.
Instances of these classes are designed to be stored in the
principals and private credentials sets of Subject
objects, and although application programmers may occasionally find
the X500Principal class useful, they are primarily
of interest to system-level programmers writing X.500-based
javax.security.auth.spi.LoginModule
implementations See also the java.security.cert
package which contains a class representing an X.509 certificate.

Classes
public final class X500Principal implements java.security.Principal, Serializable;
public final class X500PrivateCredential implements javax.security.auth.Destroyable;

Name
X500Principal

Synopsis
This class implements the
java.security.Principal interface for entities
represented by X.500 distinguished names (such as
“CN=David,O=davidflanagan.com,C=US”).
The constructor methods can accept the distinguished name in string
form or in binary encoded form. getName() returns
the name in string form, using the format defined by one of the three
consant values. The no-argument version of getName(
) (the one defined by the Principal
interface) returns the distinguished name formatted as specified by
RFC 2253. Finally, getEncoded() returns a
binary-encoded form of the name.
[image: javax.security.auth.x500.X500Principal]

Figure 19-28. javax.security.auth.x500.X500Principal

public final class X500Principal implements java.security.Principal, Serializable {
// Public Constructors
 public X500Principal(java.io.InputStream is);
 public X500Principal(String name);
 public X500Principal(byte[] name);
// Public Constants
 public static final String CANONICAL; ="CANONICAL"
 public static final String RFC1779; ="RFC1779"
 public static final String RFC2253; ="RFC2253"
// Public Instance Methods
 public byte[] getEncoded();
 public String getName(String format);
// Methods Implementing Principal
 public boolean equals(Object o);
 public String getName();
 public int hashCode();
 public String toString();
}

Passed To

 java.security.cert.TrustAnchor.TrustAnchor(),
java.security.cert.X509CertSelector.{setIssuer(),
setSubject()},
java.security.cert.X509CRLSelector.addIssuer()

Returned By

 java.security.cert.TrustAnchor.getCA(),
java.security.cert.X509Certificate.{getIssuerX500Principal(
), getSubjectX500Principal()},
java.security.cert.X509CertSelector.{getIssuer(),
getSubject()},
java.security.cert.X509CRL.getIssuerX500Principal(
),
java.security.cert.X509CRLEntry.getCertificateIssuer(
)

Name
X500PrivateCredential

Synopsis
This class associates a
java.security.cert.X509Certificate
 with a
java.security.PrivateKey for that certificate,
and, optionally, the keystore alias used to retrieve the certificate
and key from a java.security.KeyStore. The class
defines methods to retreive the certificate, key, and alias, and also
implements the methods of the
javax.security.cert.Destroyable
 interface.
[image: javax.security.auth.x500.X500PrivateCredential]

Figure 19-29. javax.security.auth.x500.X500PrivateCredential

public final class X500PrivateCredential implements javax.security.auth.Destroyable {
// Public Constructors
 public X500PrivateCredential(java.security.cert.X509Certificate cert,
 java.security.PrivateKey key);
 public X500PrivateCredential(java.security.cert.X509Certificate cert,
 java.security.PrivateKey key, String alias);
// Public Instance Methods
 public String getAlias();
 public java.security.cert.X509Certificate getCertificate();
 public java.security.PrivateKey getPrivateKey();
// Methods Implementing Destroyable
 public void destroy();
 public boolean isDestroyed();
}

Chapter 20. javax.xml and Subpackages

This chapter documents javax.xml and its
subpackages:

	
 java.xml

	This simple package simply defines constants for use by its
subpackages. Added in Java 5.0.

	
 javax.xml.datatype

	This package contains Java types corresponding to types defined by
XML standards such as W3C XML Schema, XQuery, and XPath.

	
 javax.xml.namespace

	This package defines types for working with XML namespaces.

	
 javax.xml.parsers

	This package defines parser classes that serve as a wrapper around
underlying DOM and SAX XML parsers, and also defines factory classes
that are used to obtain instances of those parser classes.

	
 javax.xml.transform

	This package defines classes and interfaces for transforming the
representation and content of an XML document with XSLT. It defines
Source and Result interfaces to
represent a source document and a result document. subpackages
provide implementations of these classes that represent documents in
different ways.

	
 javax.xml.transform.dom

	This package implements the Source and
Result interfaces that represent documents as DOM
document trees.

	
 javax.xml.transform.sax

	This package implements the Source and
Result interfaces to represent documents as
sequences of SAX parser events. It also defines other SAX-related
transformation classes.

	
 javax.xml.transform.stream

	This package implements the Source and
Result interfaces that represent documents as
streams of text.

	
 javax.xml.validation

	This package contains classes for validating XML documents against a
schema.

	
 javax.xml.xpath

	This package defines types for the evaluation of XPath expressions in
the context of an XML document.

Name
Package javax.xml

Synopsis

 This

 package
has many important subpackages but defines only a single class
XMLConstants, which, as its name implies, provides
symbolic names for constants defined by various XML specifications.

Classes
public final class XMLConstants;

Name
XMLConstants

Synopsis
This class is a repository for constants defined by various XML
standards. Most are
 URIs that identify XML namespaces.
public final class XMLConstants {
// No Constructor
 // Public Constants
 public static final String DEFAULT_NS_PREFIX; =" "
 public static final String FEATURE_SECURE_PROCESSING;
 ="http://javax.xml.XMLConstants/feature/secure-processing"
 public static final String NULL_NS_URI; =" "
 public static final String RELAXNG_NS_URI; ="http://relaxng.org/ns/structure/1.0"
 public static final String W3C_XML_SCHEMA_INSTANCE_NS_URI;
 ="http://www.w3.org/2001/XMLSchema-instance"
 public static final String W3C_XML_SCHEMA_NS_URI; ="http://www.w3.org/2001/XMLSchema"
 public static final String W3C_XPATH_DATATYPE_NS_URI;
 ="http://www.w3.org/2003/11/xpath-datatypes"
 public static final String XML_DTD_NS_URI; ="http://www.w3.org/TR/REC-xml"
 public static final String XML_NS_PREFIX; ="xml"
 public static final String XML_NS_URI; ="http://www.w3.org/XML/1998/namespace"
 public static final String XMLNS_ATTRIBUTE; ="xmlns"
 public static final String XMLNS_ATTRIBUTE_NS_URI; ="http://www.w3.org/2000/xmlns/"
}

Name
Package javax.xml.datatype

Synopsis

 This
package defines Java data types that correspond to certain time,
date, and duration data types required by the W3C XML Schema, XQuery,
and XPath standards. This package is of primary interest to those
implementing schema validators and XPath evaluators and should not be
required by applications that use schemas or XPath expressions.

Classes
public final class DatatypeConstants;
public static final class DatatypeConstants.Field;
public abstract class DatatypeFactory;
public abstract class Duration;
public abstract class XMLGregorianCalendar implements Cloneable;

Exceptions
public class DatatypeConfigurationException extends Exception;

Name
DatatypeConfigurationException

Synopsis

 An
exception of this type is thrown by
DatatypeFactory.newInstance(
)

to indicate a factory configuration error.
[image: javax.xml.datatype.DatatypeConfigurationException]

Figure 20-1. javax.xml.datatype.DatatypeConfigurationException

public class DatatypeConfigurationException extends Exception {
// Public Constructors
 public DatatypeConfigurationException();
 public DatatypeConfigurationException(Throwable cause);
 public DatatypeConfigurationException(String message);
 public DatatypeConfigurationException(String message, Throwable cause);
}

Thrown By

 DatatypeFactory.newInstance()

Name
DatatypeConstants

Synopsis

 This
class defines constants used in this package. Most of the constants
are int values, but some are qualified names and
some are instances of the DatatypeConstants.Field
type.
public final class DatatypeConstants {
// No Constructor
 // Public Constants
 public static final int APRIL; =4
 public static final int AUGUST; =8
 public static final javax.xml.namespace.QName DATE;
 public static final javax.xml.namespace.QName DATETIME;
 public static final DatatypeConstants.Field DAYS;
 public static final int DECEMBER; =12
 public static final javax.xml.namespace.QName DURATION;
 public static final javax.xml.namespace.QName DURATION_DAYTIME;
 public static final javax.xml.namespace.QName DURATION_YEARMONTH;
 public static final int EQUAL; =0
 public static final int FEBRUARY; =2
 public static final int FIELD_UNDEFINED; =-2147483648
 public static final javax.xml.namespace.QName GDAY;
 public static final javax.xml.namespace.QName GMONTH;
 public static final javax.xml.namespace.QName GMONTHDAY;
 public static final int GREATER; =1
 public static final javax.xml.namespace.QName GYEAR;
 public static final javax.xml.namespace.QName GYEARMONTH;
 public static final DatatypeConstants.Field HOURS;
 public static final int INDETERMINATE; =2
 public static final int JANUARY; =1
 public static final int JULY; =7
 public static final int JUNE; =6
 public static final int LESSER; =-1
 public static final int MARCH; =3
 public static final int MAX_TIMEZONE_OFFSET; =-840
 public static final int MAY; =5
 public static final int MIN_TIMEZONE_OFFSET; =840
 public static final DatatypeConstants.Field MINUTES;
 public static final DatatypeConstants.Field MONTHS;
 public static final int NOVEMBER; =11
 public static final int OCTOBER; =10
 public static final DatatypeConstants.Field SECONDS;
 public static final int SEPTEMBER; =9
 public static final javax.xml.namespace.QName TIME;
 public static final DatatypeConstants.Field YEARS;
// Nested Types
 public static final class Field;
}

Name
DatatypeConstants.Field

Synopsis

 This class defines a typesafe
enumeration
for some of the constants in DatatypeConstants.
Note that it is a class, not a Java 5.0 enum type.
public static final class DatatypeConstants.Field {
// No Constructor
 // Public Instance Methods
 public int getId();
// Public Methods Overriding Object
 public String toString();
}

Passed To

 Duration.{getField(), isSet(
)}

Type Of

 DatatypeConstants.{DAYS, HOURS,
MINUTES, MONTHS,
SECONDS, YEARS}

Name
DatatypeFactory

Synopsis

 This
class defines factory methods for creating
Duration and
XMLGregorianCalendar objects.
public abstract class DatatypeFactory {
// Protected Constructors
 protected DatatypeFactory();
// Public Constants
 public static final String DATATYPEFACTORY_IMPLEMENTATION_CLASS;
 ="com.sun.org.apache.xerces.internal.jaxp.datatype.DatatypeFactoryImpl"
 public static final String DATATYPEFACTORY_PROPERTY;
 ="javax.xml.datatype.DatatypeFactory"
// Public Class Methods
 public static DatatypeFactory newInstance() throws DatatypeConfigurationException;
// Public Instance Methods
 public abstract Duration newDuration(String lexicalRepresentation);
 public abstract Duration newDuration(long durationInMilliSeconds);
 public Duration newDuration(boolean isPositive, int years, int months,
 int days, int hours,
 int minutes, int seconds);
 public abstract Duration newDuration(boolean isPositive,
 java.math.BigInteger years, java.math.BigInteger months,
 java.math.BigInteger days, java.math.BigInteger hours,
 java.math.BigInteger minutes, java.math.BigDecimal seconds);
 public Duration newDurationDayTime(long durationInMilliseconds);
 public Duration newDurationDayTime(String lexicalRepresentation);
 public Duration newDurationDayTime(boolean isPositive, int day, int hour,
 int minute, int second);
 public Duration newDurationDayTime(boolean isPositive,
 java.math.BigInteger day, java.math.BigInteger hour,
 java.math.BigInteger minute, java.math.BigInteger second);
 public Duration newDurationYearMonth(long durationInMilliseconds);
 public Duration newDurationYearMonth(String lexicalRepresentation);
 public Duration newDurationYearMonth(boolean isPositive, int year, int month);
 public Duration newDurationYearMonth(boolean isPositive,
 java.math.BigInteger year, java.math.BigInteger month);
 public abstract XMLGregorianCalendar newXMLGregorianCalendar();
 public abstract XMLGregorianCalendar newXMLGregorianCalendar
 (java.util.GregorianCalendar cal);
 public abstract XMLGregorianCalendar newXMLGregorianCalendar(String lexicalRepresentation);
 public XMLGregorianCalendar newXMLGregorianCalendar(int year, int month,
 int day, int hour,
 int minute, int second,
 int millisecond, int timezone);
 public abstract XMLGregorianCalendar newXMLGregorianCalendar
 (java.math.BigInteger year, int month,
 int day, int hour, int minute,
 int second,
 java.math.BigDecimal fractionalSecond,
 int timezone);
 public XMLGregorianCalendar newXMLGregorianCalendarDate(int year, int month,
 int day, int timezone);
 public XMLGregorianCalendar newXMLGregorianCalendarTime(int hours, int minutes,
 int seconds, int timezone);
 public XMLGregorianCalendar newXMLGregorianCalendarTime(int hours, int minutes,
 int seconds, int milliseconds,
 int timezone);
 public XMLGregorianCalendar newXMLGregorianCalendarTime(int hours, int minutes,
 int seconds, java.math.BigDecimal fractionalSecond,
 int timezone);
}

Name
Duration

Synopsis
An

 instance of this class represents a
length of time. Create Duration objects with
DatatypeFactory.
public abstract class Duration {
// Public Constructors
 public Duration();
// Public Instance Methods
 public abstract Duration add(Duration rhs);
 public abstract void addTo(java.util.Calendar calendar);
 public void addTo(java.util.Date date);
 public abstract int compare(Duration duration);
 public int getDays();
 public abstract Number getField(DatatypeConstants.Field field);
 public int getHours();
 public int getMinutes();
 public int getMonths();
 public int getSeconds();
 public abstract int getSign();
 public long getTimeInMillis(java.util.Date startInstant);
 public long getTimeInMillis(java.util.Calendar startInstant);
 public javax.xml.namespace.QName getXMLSchemaType();
 public int getYears();
 public boolean isLongerThan(Duration duration);
 public abstract boolean isSet(DatatypeConstants.Field field);
 public boolean isShorterThan(Duration duration);
 public Duration multiply(int factor);
 public abstract Duration multiply(java.math.BigDecimal factor);
 public abstract Duration negate();
 public abstract Duration normalizeWith(java.util.Calendar startTimeInstant);
 public Duration subtract(Duration rhs);
// Public Methods Overriding Object
 public boolean equals(Object duration);
 public abstract int hashCode();
 public String toString();
}

Passed To

 XMLGregorianCalendar.add()

Returned By

 DatatypeFactory.{newDuration(),
newDurationDayTime(),
newDurationYearMonth()}

Name
XMLGregorianCalendar

Synopsis

 Instances of this class represent a date
or time. Create XMLGregorianCalendar objects with
a DatatypeFactory.
[image: javax.xml.datatype.XMLGregorianCalendar]

Figure 20-2. javax.xml.datatype.XMLGregorianCalendar

public abstract class XMLGregorianCalendar implements Cloneable {
// Public Constructors
 public XMLGregorianCalendar();
// Public Instance Methods
 public abstract void add(Duration duration);
 public abstract void clear();
 public abstract int compare(XMLGregorianCalendar xmlGregorianCalendar);
 public abstract int getDay();
 public abstract java.math.BigInteger getEon();
 public abstract java.math.BigInteger getEonAndYear();
 public abstract java.math.BigDecimal getFractionalSecond();
 public abstract int getHour();
 public int getMillisecond();
 public abstract int getMinute();
 public abstract int getMonth();
 public abstract int getSecond();
 public abstract int getTimezone();
 public abstract java.util.TimeZone getTimeZone(int defaultZoneoffset);
 public abstract javax.xml.namespace.QName getXMLSchemaType();
 public abstract int getYear();
 public abstract boolean isValid();
 public abstract XMLGregorianCalendar normalize();
 public abstract void reset();
 public abstract void setDay(int day);
 public abstract void setFractionalSecond(java.math.BigDecimal fractional);
 public abstract void setHour(int hour);
 public abstract void setMillisecond(int millisecond);
 public abstract void setMinute(int minute);
 public abstract void setMonth(int month);
 public abstract void setSecond(int second);
 public void setTime(int hour, int minute, int second);
 public void setTime(int hour, int minute, int second, int millisecond);
 public void setTime(int hour, int minute, int second,
 java.math.BigDecimal fractional);
 public abstract void setTimezone(int offset);
 public abstract void setYear(int year);
 public abstract void setYear(java.math.BigInteger year);
 public abstract java.util.GregorianCalendar toGregorianCalendar();
 public abstract java.util.GregorianCalendar toGregorianCalendar
 (java.util.TimeZone timezone, java.util.Locale aLocale,
 XMLGregorianCalendar defaults);
 public abstract String toXMLFormat();
// Public Methods Overriding Object
 public abstract Object clone();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Returned By

 DatatypeFactory.{newXMLGregorianCalendar(),
newXMLGregorianCalendarDate(),
newXMLGregorianCalendarTime()}

Name
Package javax.xml.namespace

Synopsis
This

 small
package defines types for working with XML namespaces.
NamespaceContext represents a mapping between
namespace URIs and namespace prefixes. QName
represents a qualified name consisting of a local part and a
namespace.

Interfaces
public interface NamespaceContext;

Classes
public class QName implements Serializable;

Name
NamespaceContext

Synopsis

 This
interface represents a mapping between namespace URIs and the local
prefixes that are bound to them. Use getNamepaceURI(
) to obtain the URI that a prefix is bound to. Use
getPrefix() to do the reverse. More than one
prefix can be bound to the same URI, and the getPrefixes(
) method returns an Iterator that you
can use to loop through all prefixes that have been associated with a
given URI.
public interface NamespaceContext {
// Public Instance Methods
 String getNamespaceURI(String prefix);
 String getPrefix(String namespaceURI);
 java.util.Iterator getPrefixes(String namespaceURI);
}

Passed To

 javax.xml.xpath.XPath.setNamespaceContext()

Returned By

 javax.xml.xpath.XPath.getNamespaceContext()

Name
QName

Synopsis
A QName

 represents an XML
“qualified name,” such as an XML
element name that has both a local name and a namespace.
getLocalPart()

 returns the unqualified local part of
the name. getNamespaceURI() returns the canonical
URI that formally identifies the namespace. getPrefix(
)
 returns the locally declared namespace
prefix. Note that a QName does not always have a
prefix and that the prefix, if it exists, is ignored for the purposes
of the equals(), hashCode(),
and toString() methods. The static
valueOf()
 method
parses a QName from a string in the format of
toString():
{namespaceURI}localPart

[image: javax.xml.namespace.QName]

Figure 20-3. javax.xml.namespace.QName

public class QName implements Serializable {
// Public Constructors
 public QName(String localPart);
 public QName(String namespaceURI, String localPart);
 public QName(String namespaceURI, String localPart, String prefix);
// Public Class Methods
 public static QName valueOf(String qNameAsString);
// Public Instance Methods
 public String getLocalPart();
 public String getNamespaceURI();
 public String getPrefix();
// Public Methods Overriding Object
 public final boolean equals(Object objectToTest);
 public final int hashCode();
 public String toString();
}

Passed To

 javax.xml.xpath.XPath.evaluate(),
javax.xml.xpath.XPathExpression.evaluate(),
javax.xml.xpath.XPathFunctionResolver.resolveFunction(
),
javax.xml.xpath.XPathVariableResolver.resolveVariable(
)

Returned By

 javax.xml.datatype.Duration.getXMLSchemaType(),
javax.xml.datatype.XMLGregorianCalendar.getXMLSchemaType(
)

Type Of
Too many fields to list.

Name
Package javax.xml.parsers

Synopsis
This

 package defines classes that represent
XML parsers and factory classes for obtaining instances of those
parser classes. DocumentBuilder is a DOM-based XML
parser created from a DocumentBuilderFactory.
SAXParser is a SAX-based XML parser created from a
SAXParserFactory. In Java 5.0, you can configure
either of the factory classes to create parsers that validate against
a W3C XML Schema specified with a
javax.xml.validation.Schema object. Note that this
package does not include parser implementations. Instead, it is an
implementation-independent layer that supports
“pluggable” XML parsers.
Furthermore, this package does not define a DOM or SAX API for
working with XML documents. The DOM API is defined in
org.w3c.dom, and the SAX API is defined in
org.xml.sax and its subpackages.

Classes
public abstract class DocumentBuilder;
public abstract class DocumentBuilderFactory;
public abstract class SAXParser;
public abstract class SAXParserFactory;

Exceptions
public class ParserConfigurationException extends Exception;

Errors
public class FactoryConfigurationError extends Error;

Name
DocumentBuilder

Synopsis

 This class defines a high-level API to
an underlying DOM parser implementation. Obtain a
DocumentBuilder from a
DocumentBuilderFactory. After obtaining a
DocumentBuilder, you can provide
org.xml.sax.ErrorHandler and
org.xml.sax.EntityResolver objects, if desired.
(These classes are defined by the SAX API but are useful for DOM
parsers as well.) You may also want to call
isNamespaceAware(), isXIncludeAware(
) and isValidating() to ensure that the
parser is configured with the features your application requires.
Finally, use one of the parse() methods to read
an XML document from a stream, file, URL, or
org.xml.sax.InputSource object, parse that
document, and convert it into a
org.w3c.dom.Document tree. Note that
DocumentBuilder objects are not typically
threadsafe. In Java 5.0, you can call reset() to
restore the parser to its original state for reuse. Another Java 5.0
method, getSchema() returns the
Schema object, if any, registered with the
DocumentBuilderFactory that created this parser.
If you want to obtain an empty Document object (so
that you can build the document tree from scratch, for example) call
newDocument(). Or use
getDOMImplementation() to obtain a the
org.w3c.dom.DOMImplementation object of the
underlying DOM implementation from which you can also create an empty
Document.
See the org.w3c.dom package for information on
what you can do with a Document object once you
have used a DocumentBuilder to create it.
public abstract class DocumentBuilder {
// Protected Constructors
 protected DocumentBuilder();
// Public Instance Methods
 public abstract org.w3c.dom.DOMImplementation getDOMImplementation();
5.0 public javax.xml.validation.Schema getSchema();
 public abstract boolean isNamespaceAware();
 public abstract boolean isValidating();
5.0 public boolean isXIncludeAware();
 public abstract org.w3c.dom.Document newDocument();
 public org.w3c.dom.Document parse(java.io.InputStream is)
 throws org.xml.sax.SAXException, java.io.IOException;
 public org.w3c.dom.Document parse(String uri)
 throws org.xml.sax.SAXException, java.io.IOException;
 public abstract org.w3c.dom.Document parse(org.xml.sax.InputSource is)
throws org.xml.sax.SAXException, java.io.IOException;
 public org.w3c.dom.Document parse(java.io.File f)
 throws org.xml.sax.SAXException, java.io.IOException;
 public org.w3c.dom.Document parse(java.io.InputStream is, String systemId)
throws org.xml.sax.SAXException, java.io.IOException;
5.0 public void reset();
 public abstract void setEntityResolver(org.xml.sax.EntityResolver er);
 public abstract void setErrorHandler(org.xml.sax.ErrorHandler eh);
}

Returned By

 DocumentBuilderFactory.newDocumentBuilder()

Name
DocumentBuilderFactory

Synopsis
A
DocumentBuilderFactory

 is a factory class for creating
DocumentBuilder objects. You can obtain a
DocumentBuilderFactory by instantiating an
implementation-specific subclass provided by a parser vendor, but it
is much more common to simply call newInstance()
to obtain an instance of the factory that has been configured as the
default for the system. Once you have obtained a factory object, you
can use the various set methods to configure the
properties of the DocumentBuilder objects it will
create. These methods allow you to specify whether the parsers
created by the factory will:
	coalesce CDATA sections with adjacent text nodes;

	expand entity references or leave them unexpanded in the document
tree;

	omit XML comments from the document tree;

	omit ignorable whitespace from the document tree;

	handle XML namespaces correctly; and

	validate XML documents against a DTD or other schema.

In Java 5.0, you can use setSchema() to specify
the javax.xml.vaidation.Schema object against
which parsers should validate their documents. And you can use
setXIncludeAware() to indicate that parsers
should process XInclude markup.
In addition to the various implementation-independent
set methods, you can also use
setAttribute() pass an implementation-dependent
named attribute to the underlying parser implementation. Once you
have configured the factory object as desired, simply call
newDocumentBuilder() to create a
DocumentBuilder object with the all of the
attributes you have specified. Note that
DocumentBuilderFactory objects are not typically
threadsafe.
The javax.xml.parsers package allows parser
implementations to be “plugged in.”
This pluggability is provided by the getInstance(
) method, which follows the following steps to determine
which DocumentBuilderFactory implementation to
use:
	If the javax.xml.parsers.DocumentBuilderFactory
system property is defined, then the class specified by that property
is used.

	Otherwise, if the jre/lib/jaxp.properties file
exists in the Java distribution and contains a definition for the
javax.xml.parsers.DocumentBuilderFactory property,
then the class specified by that property is used.

	Otherwise, if any of the JAR files on the classpath includes a file
named
META-INF/services/javax.xml.parsers.DocumentBuilderFactory,
then the class named in that file will be used.

	Otherwise, a default implementation provided by the Java
implementation will be used.

public abstract class DocumentBuilderFactory {
// Protected Constructors
 protected DocumentBuilderFactory();
// Public Class Methods
 public static DocumentBuilderFactory newInstance();
// Public Instance Methods
 public abstract Object getAttribute(String name)
 throws IllegalArgumentException;
5.0 public abstract boolean getFeature(String name)
 throws ParserConfigurationException;
5.0 public javax.xml.validation.Schema getSchema();
 public boolean isCoalescing();
 public boolean isExpandEntityReferences();
 public boolean isIgnoringComments();
 public boolean isIgnoringElementContentWhitespace();
 public boolean isNamespaceAware();
 public boolean isValidating();
5.0 public boolean isXIncludeAware();
 public abstract DocumentBuilder newDocumentBuilder()
 throws ParserConfigurationException;
 public abstract void setAttribute(String name, Object value)
 throws IllegalArgumentException;
 public void setCoalescing(boolean coalescing);
 public void setExpandEntityReferences(boolean expandEntityRef);
5.0 public abstract void setFeature(String name, boolean value)
 throws ParserConfigurationException;
 public void setIgnoringComments(boolean ignoreComments);
 public void setIgnoringElementContentWhitespace(boolean whitespace);
 public void setNamespaceAware(boolean awareness);
5.0 public void setSchema(javax.xml.validation.Schema schema);
 public void setValidating(boolean validating);
5.0 public void setXIncludeAware(boolean state);
}

Name
FactoryConfigurationError

Synopsis
Signals a

 nonrecoverable
problem instantiating a parser factory. This usually means that a
pluggable parser implementation has been incorrectly plugged in and
the getInstance() method cannot locate the
specified factory implementation class.
[image: javax.xml.parsers.FactoryConfigurationError]

Figure 20-3. javax.xml.parsers.FactoryConfigurationError

public class FactoryConfigurationError extends Error {
// Public Constructors
 public FactoryConfigurationError();
 public FactoryConfigurationError(Exception e);
 public FactoryConfigurationError(String msg);
 public FactoryConfigurationError(Exception e, String msg);
// Public Instance Methods
 public Exception getException(); default:null
 // Public Methods Overriding Throwable
 public String getMessage(); default:null
}

Name
ParserConfigurationException

Synopsis
Signals a
parser
configuration problem that prevents a parser factory object from
creating a parser object.
[image: javax.xml.parsers.ParserConfigurationException]

Figure 20-4. javax.xml.parsers.ParserConfigurationException

public class ParserConfigurationException extends Exception {
// Public Constructors
 public ParserConfigurationException();
 public ParserConfigurationException(String msg);
}

Thrown By

 DocumentBuilderFactory.{getFeature(),
newDocumentBuilder(), setFeature(
)}, SAXParserFactory.{getFeature(),
newSAXParser(), setFeature()}

Name
SAXParser

Synopsis

 The SAXParser class is
a wrapper around an org.xml.sax.XMLReader class
and is used to parse XML documents using the SAX version 2 API.
Obtain a SAXParser from a
SAXParserFactory. Call setProperty(
)
 if
desired to set a property on the underlying parser. (See http://www.saxproject.org for a description of
standard SAX properties and their values. Finally, call one of the
parse() methods to parse an XML document from a
stream, file, URL, or org.xml.sax.InputSource. The
SAX API is an event-driven one. A SAX parser does not build a
document tree to describe an XML document like a DOM parser does.
Instead, it describes the XML document to your application by
invoking methods on an object the application provides. This is the
purpose of the org.xml.sax.helpers.DefaultHandler
object that is passed to the parse() method: you
subclass this class to implement the methods you care about, and the
parser will invoke those methods at appropriate times. For example,
when the parser encounters an XML tag in a document, it parses the
tag, and calls the startElement(
)
 method to tell you about it. And
when it finds a run of plain text, it passes that text to the
characters() method. In Java 5.0, the
reset()
 method
restores a SAXParser to its original state so that
it can be reused.
Instead of using one of the parse() methods of
this class, you can also call getXMLReader(
)
 to obtain the underlying
XMLReader object and work with it directly to
parse the desired document. SAXParser objects are
not typically threadsafe.
Note that the getParser() method as well as the
parse() methods that take an
org.xml.sax.HandlerBase object are based on the
SAX version 1 API, and should be avoided.
public abstract class SAXParser {
// Protected Constructors
 protected SAXParser();
// Public Instance Methods
 public abstract org.xml.sax.Parser getParser() throws org.xml.sax.SAXException;
 public abstract Object getProperty(String name)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
5.0 public javax.xml.validation.Schema getSchema();
 public abstract org.xml.sax.XMLReader getXMLReader() throws org.xml.sax.SAXException;
 public abstract boolean isNamespaceAware();
 public abstract boolean isValidating();
5.0 public boolean isXIncludeAware();
 public void parse(org.xml.sax.InputSource is, org.xml.sax.HandlerBase hb)
 throws org.xml.sax.SAXException, java.io.IOException;
 public void parse(org.xml.sax.InputSource is, org.xml.sax.helpers.DefaultHandler dh)
 throws org.xml.sax.SAXException, java.io.IOException;
 public void parse(java.io.File f, org.xml.sax.helpers.DefaultHandler dh)
 throws org.xml.sax.SAXException, java.io.IOException;
 public void parse(java.io.InputStream is, org.xml.sax.helpers.DefaultHandler dh)
 throws org.xml.sax.SAXException, java.io.IOException;
 public void parse(java.io.InputStream is, org.xml.sax.HandlerBase hb)
 throws org.xml.sax.SAXException, java.io.IOException;
 public void parse(String uri, org.xml.sax.HandlerBase hb) throws org.xml.sax.SAXException, java.io.IOException;
 public void parse(String uri, org.xml.sax.helpers.DefaultHandler dh)
 throws org.xml.sax.SAXException, java.io.IOException;
 public void parse(java.io.File f, org.xml.sax.HandlerBase hb) throws org.xml.sax.SAXException, java.io.IOException;
 public void parse(java.io.InputStream is, org.xml.sax.HandlerBase hb, String systemId)
 throws org.xml.sax.SAXException, java.io.IOException;
 public void parse(java.io.InputStream is, org.xml.sax.helpers.DefaultHandler dh, String systemId) throws org.xml.sax.SAXException, java.io.IOException;
5.0 public void reset();
 public abstract void setProperty(String name, Object value)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
}

Returned By

 SAXParserFactory.newSAXParser()

Name
SAXParserFactory

Synopsis
This

 class
is a factory for SAXParser objects. Obtain a
SAXParserFactory by calling the
newInstance() method which instantiates the
default SAXParserFactory subclass provided with
your Java implementation, or instantiates some other
SAXParserFactory that has been
“plugged in”.
Once you have a SAXParserFactory object, you can
use setValidating() and
setNamespaceAware() to specify whether the
parsers it creates will be validating parsers or not and whether they
will know how to handle XML namespaces. You may also call
setFeature()

to set a feature of the underlying parser implementation. See
http://www.saxproject.org for the
names of standard parser features that can be enabled and disabled
with this method. In Java 5.0, call setXIncludeAware(
)

 to specify that created parsers will
recognize XInclude markup. Use setSchema(
)

 to specify a W3C XML Schema against
which parsers should validate the document.
Once you have created and configured your factory object, simply call
newSAXParser()
 to create a SAXParser
object. Note that SAXParserFactory implementations
are not typically threadsafe.
The javax.xml.parsers package allows parser
implementations to be “plugged in”.
This pluggability is provided by the getInstance(
) method, which follows the following steps to determine
which SAXBuilderFactory subclass to use:
	If the javax.xml.parsers.SAXParserFactory system
property is defined, then the class specified by that property is
used.

	Otherwise, if the jre/lib/jaxp.properties file
exists in the Java distribution and contains a definition for the
javax.xml.parsers.SAXParserFactory property, then
the class specified by that property is used.

	Otherwise, if any of the JAR files on the classpath includes a file
named
META-INF/services/javax.xml.parsers.SAXParserFactory,
then the class named in that file will be used.

	Otherwise, a default implementation provided by the Java platform
will be used.

public abstract class SAXParserFactory {
// Protected Constructors
 protected SAXParserFactory();
// Public Class Methods
 public static SAXParserFactory newInstance();
// Public Instance Methods
 public abstract boolean getFeature(String name)
 throws ParserConfigurationException,
 org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
5.0 public javax.xml.validation.Schema getSchema();
 public boolean isNamespaceAware();
 public boolean isValidating();
5.0 public boolean isXIncludeAware();
 public abstract SAXParser newSAXParser()
 throws ParserConfigurationException,
 org.xml.sax.SAXException;
 public abstract void setFeature(String name, boolean value)
 throws ParserConfigurationException,
 org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
 public void setNamespaceAware(boolean awareness);
5.0 public void setSchema(javax.xml.validation.Schema schema);
 public void setValidating(boolean validating);
5.0 public void setXIncludeAware(boolean state);
}

Name
Package javax.xml.transform

Synopsis
This
 package
defines an high-level implementation-independent API for using an
XSLT engine or other document transformation system for transforming
XML document content, and also for transforming XML documents from
one form (such as a stream of text in a file) to anther form (such as
a tree of DOM nodes). The Source interface is a
very generic description of a document source. Three concrete
implementations that represent documents in text form, as DOM trees,
and as sequences of SAX parser events are defined in the three
subpackages of this package. The Result interface
is a similarly high-level description of what form the source
document should be transformed into. The three subpackages define
three Result implementations that represent XML
documents as streams or files, as DOM trees, and as sequnces of SAX
parser events.
The TransformerFactory class represents the
document transformation engine. The implementation provides a default
factory that represents an XSLT engine. A
TransformerFactory can be used to produce
Templates objects that represent compiled XSL
stylesheets (or other implementation-dependent forms of
transformation instructions). Documents are actually transfomed from
Soruce to Result with a
Transformer object, which is obtained from a
Templates object, or directly from a
TransformerFactory.

Interfaces
public interface ErrorListener;
public interface Result;
public interface Source;
public interface SourceLocator;
public interface Templates;
public interface URIResolver;

Classes
public class OutputKeys;
public abstract class Transformer;
public abstract class TransformerFactory;

Exceptions
public class TransformerException extends Exception;
 public class TransformerConfigurationException extends TransformerException;

Errors
public class TransformerFactoryConfigurationError extends Error;

Name
ErrorListener

Synopsis
This interface defines methods that
Transformer and
TransformerFactory use for reporting warnings,
errors, and fatal errors to an application. To use an
ErrorListener, an application must implement this
interface and pass an implementing object to the
setErrorListener() method of
Transformer or
TransformerFactory. The argument to each method of
this interface is a TransformerException object,
and the implementation of these methods can throw that exception if
it chooses, or it can simply log the warning or error in some way and
return. A Transformer or
TransformerFactory is not required to continue
processing after reporting a nonrecoverable error with an invocation
of the fatalError() method.
If you are familiar with the SAX API for parsing XML documents,
you’ll recognize that this interface is very similar
to org.xml.sax.ErrorHandler.
public interface ErrorListener {
// Public Instance Methods
 void error(TransformerException exception) throws TransformerException;
 void fatalError(TransformerException exception) throws TransformerException;
 void warning(TransformerException exception) throws TransformerException;
}

Passed To

 Transformer.setErrorListener(),
TransformerFactory.setErrorListener()

Returned By

 Transformer.getErrorListener(),
TransformerFactory.getErrorListener()

Name
OutputKeys

Synopsis
This class defines string constants that hold the
names of the attributes of an
<xsl:output>
 tag in an XSLT stylesheet. These are also
legal key values for the Properties object
returned by Templates.getOutputProperties() and
passed to Transformer.setOutputProperties().
public class OutputKeys {
// No Constructor
 // Public Constants
 public static final String CDATA_SECTION_ELEMENTS; ="cdata-section-elements"
 public static final String DOCTYPE_PUBLIC; ="doctype-public"
 public static final String DOCTYPE_SYSTEM; ="doctype-system"
 public static final String ENCODING; ="encoding"
 public static final String INDENT; ="indent"
 public static final String MEDIA_TYPE; ="media-type"
 public static final String METHOD; ="method"
 public static final String OMIT_XML_DECLARATION; ="omit-xml-declaration"
 public static final String STANDALONE; ="standalone"
 public static final String VERSION; ="version"
}

Name
Result

Synopsis
This interface
represents,
in a very general way, the result of an XML transformation.
setSystemId() specifies a the system identifier
of the result as a URL. This is useful when the result is to be
written as a file, but it can also be useful for error reporting and
for resolution of relative URLs even when the
Result object does not represent a file. All other
methods related to the result are the responsibility of the concrete
implementation of this interface. See the
DOMResult, SAXResult and
StreamResult implementations in the three
subpackages of this package.
public interface Result {
// Public Constants
 public static final String PI_DISABLE_OUTPUT_ESCAPING;
 ="javax.xml.transform.disable-output-escaping"
 public static final String PI_ENABLE_OUTPUT_ESCAPING;
 ="javax.xml.transform.enable-output-escaping"
// Public Instance Methods
 String getSystemId();
 void setSystemId(String systemId);
}

Implementations

 javax.xml.transform.dom.DOMResult,
javax.xml.transform.sax.SAXResult,
javax.xml.transform.stream.StreamResult

Passed To

 Transformer.transform(),
javax.xml.transform.sax.TransformerHandler.setResult(
), javax.xml.validation.Validator.validate(
)

Name
Source

Synopsis
This interface represents, in a very
general way, the source of an XML document. setSystemId(
) specifies a the system identifier of the document in the
form of a URL. This is useful for resolving relative URLs and for
error reporting even when the document is not read directly from a
URL. All other methods related to the document source are the
responsibility of the concrete implementation of this interface. See
the DOMSource, SAXSource and
StreamSource implementations in the three
subpackages of this package.
public interface Source {
// Public Instance Methods
 String getSystemId();
 void setSystemId(String systemId);
}

Implementations

 javax.xml.transform.dom.DOMSource,
javax.xml.transform.sax.SAXSource,
javax.xml.transform.stream.StreamSource

Passed To

 Transformer.transform(),
TransformerFactory.{getAssociatedStylesheet(),
newTemplates(), newTransformer(
)},
javax.xml.transform.sax.SAXSource.sourceToInputSource(
),
javax.xml.transform.sax.SAXTransformerFactory.{newTransformerHandler(
), newXMLFilter()},
javax.xml.validation.SchemaFactory.newSchema(),
javax.xml.validation.Validator.validate()

Returned By

 TransformerFactory.getAssociatedStylesheet(),
URIResolver.resolve()

Name
SourceLocator

Synopsis
This interface defines methods that return
the system and public identifiers of an XML document, and return a
line number and column number within that document.
SourceLocator objects are used with
TransformerException and
TransformerConfigurationException objects to
specify the location in an XML file at which the exception occurred.
Note, however that system and public identifiers are not always
available for a document, and so getSystemId(
)

 and getPublicId(
) may return null. Also, a
Tranformer is not required to track line and
column numbers precisely, or at all, so getLineNumber(
)

 and
getColumnNumber() may return -1 to indicate that
line and column number information is not available. If they return a
value other than -1, it should be considered an approximation to the
actual value. Note that lines and columns within a document are
numbered starting with 1, not with 0.
If you are familiar with the SAX API for parsing XML,
you’ll recognize this interface as a renamed version
of org.xml.sax.Locator.
public interface SourceLocator {
// Public Instance Methods
 int getColumnNumber();
 int getLineNumber();
 String getPublicId();
 String getSystemId();
}

Implementations

 javax.xml.transform.dom.DOMLocator

Passed To

 TransformerConfigurationException.TransformerConfigurationException(
), TransformerException.{setLocator(),
TransformerException()}

Returned By

 TransformerException.getLocator()

Name
Templates

Synopsis
This interface represents a set of
transformation instructions for transforming a
Source document into a Result
document. The javax.xml.transform package is
nominally independent of type of transformation, but in practice, an
object of this type always represents the compiled form of an
XSLT
stylesheet. Obtain a Templates object from a
TransformerFactory object, or with a
javax.xml.transform.sax.TemplatesHandler. Once you
have a Templates object, you can use the
newTransformer() method to create a
Transformer object for applying the templates to a
Source to produce a Result
document.

 getOutputProperties(
)
 returns a
java.util.Properties
 object that defines name/value pairs
specifying details about how a textual version of the
Result document should be produced. These
properties are specified in an XSLT stylesheet with the
<xsl:output> element. The constants defined
by the OutputKeys are legal output property names.
The returned Properties object contains explicitly
properties directly, and contains default values in a parent
Properties object. This means that if you query a
property value with getProperty(),
you’ll get an explicitly specified value of a
default value. On the other hand, if you query a property with the
get() method (inherited by
Properties from its superclass)
you’ll get a property value if it was explictly
specified in the stylesheet, or null if it was not
specified. The returned Properties object is a
clone of the internal value, so you can modify it (before passing it
to the setOutputProperties(
)
 method of a
Transformer object, for example) without affecting
the Templates object.

 Templates implementations are required to be
threadsafe. A Templates object can be used to
create any number of Transformer objects.
public interface Templates {
// Public Instance Methods
 java.util.Properties getOutputProperties();
 Transformer newTransformer() throws TransformerConfigurationException;
}

Passed To

 javax.xml.transform.sax.SAXTransformerFactory.{newTransformerHandler(
), newXMLFilter()}

Returned By

 TransformerFactory.newTemplates(),
javax.xml.transform.sax.TemplatesHandler.getTemplates(
)

Name
Transformer

Synopsis
Objects of
this type are used to transform a Source document
into a Result document. Obtain a
Transformer object from a
TransformerFactory object, from a
Templates object created by a
TransformerFactory, or from a
TransformerHandler object created by a
SAXTransformerFactory (these last two types are
from the javax.xml.transform.sax package).
Once you have a Transformer object, you may need
to configure it before using it to transform documents.
setErrorListener(
)

 and setURIResolver(
) allow you to specify ErrorListener and
URLResolver object that the
Transformer can use. setOutputProperty(
)
 and setOutputProperties(
) allow you to specify name/value pairs that affect the
text formatting of the Result document (if that
document is written out in text format).
OutputKeys defines constants that represent the
set of standard output property names. The output properties you
specify with these methods override any output properties specified
(with an
<xsl:output>
 tag) in the Templates
object. Use setParameter(
)

 to supply values for any top-level
parameters defined (with <xsl:param> tags)
in the stylesheet. Note that if the name of any such parameter is a
qualified name, then it appears in the stylesheet with a namespace
prefix. You can’t use the prefix with the
setParameter() method, however, and you must
instead specify the parameter name using the URI of the namespace
within curly braces followed by the local name. If no namespace is
involved, then you can just use the simple name of the parameter with
no curly braces or URIs.
Once you have created and configured a Transformer
object, use the transform(
)

method to perform a document transformation. This method transforms
the specified Source document and creates the
transformed document specified by the Result
object. In Java 5.0, you can reset(
)
 a
Transformer to restore it to its original state
and prepare it for reuse.

 Transformer implementations are not typically
threadsafe. You can reuse a Transformer object and
call transform() any number of times (just not
concurrently). The output properties and parameters you specify are
not changed by calling the transform() method,
and can be reused.
public abstract class Transformer {
// Protected Constructors
 protected Transformer();
// Public Instance Methods
 public abstract void clearParameters();
 public abstract ErrorListener getErrorListener();
 public abstract java.util.Properties getOutputProperties();
 public abstract String getOutputProperty(String name)
 throws IllegalArgumentException;
 public abstract Object getParameter(String name);
 public abstract URIResolver getURIResolver();
5.0 public void reset();
 public abstract void setErrorListener(ErrorListener listener)
 throws IllegalArgumentException;
 public abstract void setOutputProperties(java.util.Properties oformat);
 public abstract void setOutputProperty(String name, String value)
 throws IllegalArgumentException;
 public abstract void setParameter(String name, Object value);
 public abstract void setURIResolver(URIResolver resolver);
 public abstract void transform(Source xmlSource, Result outputTarget)
 throws TransformerException;
}

Returned By

 Templates.newTransformer(),
TransformerFactory.newTransformer(),
javax.xml.transform.sax.TransformerHandler.getTransformer(
)

Name
TransformerConfigurationException

Synopsis
Signals
a
problem creating a Transformer object. This may
occur, for exmaple, if there is a syntax error in the XSL stylesheet
that contains the transformation instructions. Use the inherited
getLocator() method to obtain a
SourceLocator that describes the document location
at which the exception occurred.
[image: javax.xml.transform.TransformerConfigurationException]

Figure 20-5. javax.xml.transform.TransformerConfigurationException

public class TransformerConfigurationException extends TransformerException {
// Public Constructors
 public TransformerConfigurationException();
 public TransformerConfigurationException(Throwable e);
 public TransformerConfigurationException(String msg);
 public TransformerConfigurationException(String message, SourceLocator locator);
 public TransformerConfigurationException(String msg, Throwable e);
 public TransformerConfigurationException(String message, SourceLocator locator,
 Throwable e);
}

Thrown By

 Templates.newTransformer(),
TransformerFactory.{getAssociatedStylesheet(),
newTemplates(), newTransformer(
), setFeature()},
javax.xml.transform.sax.SAXTransformerFactory.{newTemplatesHandler(
), newTransformerHandler(),
newXMLFilter()}

Name
TransformerException

Synopsis
Signals
a
problem while reading or transforming a document. Call
getLocator() to obtain a
SourceLocator object that describes the document
location at which the exception occured.
[image: javax.xml.transform.TransformerException]

Figure 20-6. javax.xml.transform.TransformerException

public class TransformerException extends Exception {
// Public Constructors
 public TransformerException(String message);
 public TransformerException(Throwable e);
 public TransformerException(String message, Throwable e);
 public TransformerException(String message, SourceLocator locator);
 public TransformerException(String message, SourceLocator locator, Throwable e);
// Public Instance Methods
 public Throwable getException();
 public String getLocationAsString();
 public SourceLocator getLocator();
 public String getMessageAndLocation();
 public void setLocator(SourceLocator location);
// Public Methods Overriding Throwable
 public Throwable getCause();
 public Throwable initCause(Throwable cause); synchronized
 public void printStackTrace();
 public void printStackTrace(java.io.PrintStream s);
 public void printStackTrace(java.io.PrintWriter s);
}

Subclasses

 TransformerConfigurationException

Passed To

 ErrorListener.{error(), fatalError(
), warning()}

Thrown By

 ErrorListener.{error(), fatalError(
), warning()},
Transformer.transform(),
URIResolver.resolve()

Name
TransformerFactory

Synopsis
An instance of this abstract class represents
a document “transformation engine”
such as an XSLT processor. A TransformerFactory is
used to create Transformer objects that perform
document transformations, and can also be used to process
transformation instructions (such as XSLT stylesheets) into compiled
Templates objects.
Obtain a TransformerFactory instance by calling
the static newInstance() method.
newInstance() returns an instance of the default
implementation for your Java installation, or, if the system property
javax.xml.transform.TransformerFactory is set,
then it returns an instance of the implementation class named by that
property. The default TransformerFactory
implementation provided with the Java distribution transforms XML
documents using
XSL
stylesheets.
You can configure a TransformerFactory instance by
calling setErrorListener(
)

 and setURIResolver(
) to specify an ErrorListener object and
a URIResolver object to be used by the factory
when reading and parsing XSL stylesheets. The setAttribute(
)

 and getAttribute()
methods can be used to set and query implementation-dependent
attributes of the transformation engine. The default engine supplied
by Sun does not define any attributes. The getFeature(
) method is used to test whether the factory supports a
given feature. For uniqueness, feature names are expressed as URIs,
and each of the Source and
Result implementations defined in the three
subpackages of this package define a FEATURE
constant that specifies a URL that you can use to test whether a
TransformerFactory supports that particular
Source or Result type.
Once you have obtained and configured your
TransformerFactory object, you can use it in
several ways. If you call the newTransformer(
)
 method that takes no
arguments, you’ll obtain a
Transformer object that transforms the format or
representation of an XML document without transforming its content.
For example, you could use a Transformer created
in this way to transform a DOM tree (represented by a
javax.xml.transform.dom.DOMSource object) to a
stream of XML text stored in a file named by a
javax.xml.transform.stream.StreamResult.
Another way to use a TransformerFactory is to call
the newTemplates(
)
 method, passing in a
Source object that represents an XSL stylesheet.
This produces a
Templates
 object, which you can use to obtain a
Transformer object that applies the stylesheet to
transform document content. Alternatively, if you do not plan to
create more than one Transformer object from the
Templates object, you can combine the two steps
and simply pass the Source object representing the
stylesheet to the one-argument version of newTransformer(
).
XML documents may include references to
XSL stylesheets in the form
of an xml-stylesheet processing instruction. The
getAssociatedStylesheet() method reads the XML
document represented by a Source object and
returns a new Source object that represents the
stylesheet (or the concatenation of all the stylesheets) contained in
that document that match the media, title, and charset constraints
defined by the other three parameters (which may be null). If you
want to process an XML document using the stylesheet that it defines
itself, use this method to obtain a Source object
that you can pass to newTransformer() to create
the Transformer object that you can use to
transform the document.

 TransformerFactory implementations are not
typically threadsafe.
public abstract class TransformerFactory {
// Protected Constructors
 protected TransformerFactory();
// Public Class Methods
 public static TransformerFactory newInstance()
 throws TransformerFactoryConfigurationError;
// Public Instance Methods
 public abstract Source getAssociatedStylesheet(Source source, String media,
 String title, String charset)
 throws TransformerConfigurationException;
 public abstract Object getAttribute(String name);
 public abstract ErrorListener getErrorListener();
 public abstract boolean getFeature(String name);
 public abstract URIResolver getURIResolver();
 public abstract Templates newTemplates(Source source)
 throws TransformerConfigurationException;
 public abstract Transformer newTransformer() throws TransformerConfigurationException;
 public abstract Transformer newTransformer(Source source)
 throws TransformerConfigurationException;
 public abstract void setAttribute(String name, Object value);
 public abstract void setErrorListener(ErrorListener listener);
5.0 public abstract void setFeature(String name, boolean value)
 throws TransformerConfigurationException;
 public abstract void setURIResolver(URIResolver resolver);
}

Subclasses

 javax.xml.transform.sax.SAXTransformerFactory

Name
TransformerFactoryConfigurationError

Synopsis
This
error
class signals a fatal problem while creating a
TransformerFactory. It usually signals a
configuration problem, such as the system property
javax.xml.transform.TransformerFactory has a value
that is not a valid classname, or that the class path does not
contain the specified factory implementation class.
[image: javax.xml.transform.TransformerFactoryConfigurationError]

Figure 20-7. javax.xml.transform.TransformerFactoryConfigurationError

public class TransformerFactoryConfigurationError extends Error {
// Public Constructors
 public TransformerFactoryConfigurationError();
 public TransformerFactoryConfigurationError(String msg);
 public TransformerFactoryConfigurationError(Exception e);
 public TransformerFactoryConfigurationError(Exception e, String msg);
// Public Instance Methods
 public Exception getException(); default:null
 // Public Methods Overriding Throwable
 public String getMessage(); default:null
}

Thrown By

 TransformerFactory.newInstance()

Name
URIResolver

Synopsis
This interface allows an application to
tell a Transformer how to resolve the URIs that
appear in an XSLT stylesheet. If you pass a
URIResolver to the setURIResolver(
)

method of a Transformer or
TransformerFactory then when the
Transformer or
TransformerFactory encounters a URI, it first
passes that URI, along with the base URI to the resolve(
) method of the URIResolver. If
resolve() returns a Source
object, then the Transformer will use that
Source. If a Transformer or
TransformerFactory has no URIResolver registered,
or if the resolve() method returns
null, then the tranformer or factory will attempt
to resolve the URI itself.
public interface URIResolver {
// Public Instance Methods
 Source resolve(String href, String base) throws TransformerException;
}

Passed To

 Transformer.setURIResolver(),
TransformerFactory.setURIResolver()

Returned By

 Transformer.getURIResolver(),
TransformerFactory.getURIResolver()

Name
Package javax.xml.transform.dom

Synopsis
This

 package
contains Source and Result
implementations that work with DOM document trees and subtrees.

Interfaces
public interface DOMLocator extends javax.xml.transform.SourceLocator;

Classes
public class DOMResult implements javax.xml.transform.Result;
public class DOMSource implements javax.xml.transform.Source;

Name
DOMLocator

Synopsis
This class extends
SourceLocator to define a method for retrieving a
DOM Node
 object, which is typically used to
indicate the source of an error in the transformation process. See
SourceLocator and
TransformerException.
[image: javax.xml.transform.dom.DOMLocator]

Figure 20-8. javax.xml.transform.dom.DOMLocator

public interface DOMLocator extends javax.xml.transform.SourceLocator {
// Public Instance Methods
 org.w3c.dom.Node getOriginatingNode();
}

Name
DOMResult

Synopsis
This class
is a Result implementation that writes XML content
by generating a DOM tree to represent that content. If you pass an
org.w3c.dom.Node to the constructor or to
setNode()
 , the DOMResult
will create the result tree as a child of the specified node (which
should typically be a Document or
Element node). If you do not specify a node, the
DOMResult will create a new
Document node when it creates the result tree. You
can retrieve this Document with getNode(
). In Java 5.0, you can also pass two
Node objects to the constructor: these specify the
parent node of the result tree and the child of that parent before
which the result tree should be inserted. See also
setNextSibling().
[image: javax.xml.transform.dom.DOMResult]

Figure 20-9. javax.xml.transform.dom.DOMResult

public class DOMResult implements javax.xml.transform.Result {
// Public Constructors
 public DOMResult();
 public DOMResult(org.w3c.dom.Node node);
5.0 public DOMResult(org.w3c.dom.Node node, org.w3c.dom.Node nextSibling);
 public DOMResult(org.w3c.dom.Node node, String systemId);
5.0 public DOMResult(org.w3c.dom.Node node, org.w3c.dom.Node nextSibling,
 String systemId);
// Public Constants
 public static final String FEATURE; ="http://javax.xml.transform.dom.DOMResult/feature"
// Public Instance Methods
 5.0 public org.w3c.dom.Node getNextSibling(); default:null
 public org.w3c.dom.Node getNode(); default:null
 5.0 public void setNextSibling(org.w3c.dom.Node nextSibling);
 public void setNode(org.w3c.dom.Node node);
// Methods Implementing Result
 public String getSystemId(); default:null
 public void setSystemId(String systemId);
}

Name
DOMSource

Synopsis
This class
is a Source implementation that reads an XML
document from a DOM document tree or subtree. Pass the
org.w3c.dom.Node object that represents the root
of the tree or subtree to the constructor or to setNode(
). When possible, it is also useful to provide a system id
(a filename or URL) for use in error messages and for resolving
relative URLs contained in the document.
[image: javax.xml.transform.dom.DOMSource]

Figure 20-10. javax.xml.transform.dom.DOMSource

public class DOMSource implements javax.xml.transform.Source {
// Public Constructors
 public DOMSource();
 public DOMSource(org.w3c.dom.Node n);
 public DOMSource(org.w3c.dom.Node node, String systemID);
// Public Constants
 public static final String FEATURE; ="http://javax.xml.transform.dom.DOMSource/feature"
 // Public Instance Methods
 public org.w3c.dom.Node getNode(); default:null
 public void setNode(org.w3c.dom.Node node);
// Methods Implementing Source
 public String getSystemId(); default:null
 public void setSystemId(String systemID);
}

Name
Package javax.xml.transform.sax

Synopsis
This
 package defines
Source and Result
implementations that work with SAX events. In addition, it includes
an extension to the TransformerFactory class that
has additional methods for returning
TemplatesHandler and
TransformerHandler objects. These objects
implement SAX handler interfaces and are able to work with a SAX
parser object to turn a series of SAX parse events into a
Templates object or into a
Result document. SAXSource and
SAXResult adapt the org.xml.sax
framework for use in the javax.xml.transform
framework. By contrast, SAXTransformerFactory,
TemplatesHandler, and
TransfomerHandler adapt the
javax.xml.transform framework for use within the
org.xml.sax parsing framework.

Interfaces
public interface TemplatesHandler extends org.xml.sax.ContentHandler;
public interface TransformerHandler extends org.xml.sax.ContentHandler,
 org.xml.sax.DTDHandler, org.xml.sax.ext.LexicalHandler;

Classes
public class SAXResult implements javax.xml.transform.Result;
public class SAXSource implements javax.xml.transform.Source;
public abstract class SAXTransformerFactory
 extends javax.xml.transform.TransformerFactory;

Name
SAXResult

Synopsis
This class
is a Result implementation that describes the
content of a transformed document by triggering the methods of the
specified ContentHandler. That is, a
SAXResult acts like a
org.xml.sax.SAXReader object, invoking the methods
of the specified org.xml.sax.ContentHandler object
as it parses the transformed document. You may also provide a
org.xml.sax.ext.LexicalHandler object whose
methods will be invoked by the SAXResult by
calling setLexicalHandler, or by suppling a
ContentHandler object that also implements the
LexicalHandler interface.
[image: javax.xml.transform.sax.SAXResult]

Figure 20-11. javax.xml.transform.sax.SAXResult

public class SAXResult implements javax.xml.transform.Result {
// Public Constructors
 public SAXResult();
 public SAXResult(org.xml.sax.ContentHandler handler);
// Public Constants
 public static final String FEATURE; ="http://javax.xml.transform.sax.SAXResult/feature"
// Public Instance Methods
 public org.xml.sax.ContentHandler getHandler(); default:null
 public org.xml.sax.ext.LexicalHandler getLexicalHandler(); default:null
 public void setHandler(org.xml.sax.ContentHandler handler);
 public void setLexicalHandler(org.xml.sax.ext.LexicalHandler handler);
// Methods Implementing Result
 public String getSystemId(); default:null
 public void setSystemId(String systemId);
}

Name
SAXSource

Synopsis
This class
is a Source implementation that describes a
document represented as a series of SAX event method calls. A
SAXSource requires an
org.xml.sax.InputSource object that describes the
stream to parse, and may optionally specify the
org.xml.sax.XMLReader or
org.xml.sax.XMLFilter that generates the SAX
events. (If no XMLReader or
XMLFilter is specified, then the
Transformer object will a default
XMLReader.) Note that since an
InputSource is required, a
SAXSource does not behave significantly
differently than a StreamSource unless an
XMLFilter is used.

 SAXSource also has one static method,
sourceToInputSource() which returns a SAX
InputSource method derived from the specified
Source object, or null if the
specified Source cannot be converted to an
InputSource.
[image: javax.xml.transform.sax.SAXSource]

Figure 20-12. javax.xml.transform.sax.SAXSource

public class SAXSource implements javax.xml.transform.Source {
// Public Constructors
 public SAXSource();
 public SAXSource(org.xml.sax.InputSource inputSource);
 public SAXSource(org.xml.sax.XMLReader reader, org.xml.sax.InputSource inputSource);
// Public Constants
 public static final String FEATURE; ="http://javax.xml.transform.sax.SAXSource/feature"
 // Public Class Methods
 public static org.xml.sax.InputSource sourceToInputSource(javax.xml.transform.Source source);
// Public Instance Methods
 public org.xml.sax.InputSource getInputSource(); default:null
 public org.xml.sax.XMLReader getXMLReader(); default:null
 public void setInputSource(org.xml.sax.InputSource inputSource);
 public void setXMLReader(org.xml.sax.XMLReader reader);
// Methods Implementing Source
 public String getSystemId(); default:null
 public void setSystemId(String systemId);
}

Name
SAXTransformerFactory

Synopsis
This class extends
TransformerFactory to define additional factory
methods that are useful when working with documents that are
represented as sequences of SAX events. Pass the
FEATURE constant to the getFeature(
) method of your TransformerFactory
object to determine whether the newTemplatesHandler(
) and newTransformerHandler() methods
are supported and whether it is safe to cast your
TransformerFactory object to a
SAXTransformerFactory. Use the
FEATURE_XMLFILTER constant with
getFeature() to determine if the
newXMLFilter() methods are also supported.

 newTemplatesHandler() returns a
TemplatesHandler object that you can use as an
org.xml.sax.ContentHandler object to receive SAX
events generated by a SAX parser and transform those events into a
Templates object.
The newTransformerHandler() methods are similar:
they return a TransformerHandler object that can
receive SAX events and representing a source document and transform
them into a Result document. The no-argument
version of newTransformerHandler() creates a
TransformerHandler that simply modifies the form
of the document without applying a stylesheet to its content. The
other two versions of newTransformerHandler() use
a stylesheet specified either as a Source or
Templates object.
The newXMLFilter() methods, if supported, return
an org.xml.sax.XMLFilter object that can acts as
both a sink and a source of SAX events and filters those events by
applying the transformation instructions specified by the
Templates or Source objects.
[image: javax.xml.transform.sax.SAXTransformerFactory]

Figure 20-13. javax.xml.transform.sax.SAXTransformerFactory

public abstract class SAXTransformerFactory extends javax.xml.transform.TransformerFactory {
// Protected Constructors
 protected SAXTransformerFactory();
// Public Constants
 public static final String FEATURE; ="http://javax.xml.transform.sax.SAXTransformerFactory/feature"
 public static final String FEATURE_XMLFILTER;
 ="http://javax.xml.transform.sax.SAXTransformerFactory/feature/xmlfilter"
 // Public Instance Methods
 public abstract TemplatesHandler newTemplatesHandler()
 throws javax.xml.transform.TransformerConfigurationException;
 public abstract TransformerHandler newTransformerHandler()
 throws javax.xml.transform.TransformerConfigurationException;
 public abstract TransformerHandler newTransformerHandler
 (javax.xml.transform.Source src)
 throws javax.xml.transform.TransformerConfigurationException;
 public abstract TransformerHandler newTransformerHandler
 (javax.xml.transform.Templates templates)
 throws javax.xml.transform.TransformerConfigurationException;
 public abstract org.xml.sax.XMLFilter newXMLFilter
 (javax.xml.transform.Source src)
 throws javax.xml.transform.TransformerConfigurationException;
 public abstract org.xml.sax.XMLFilter newXMLFilter
 (javax.xml.transform.Templates templates)
 throws javax.xml.transform.TransformerConfigurationException;
}

Name
TemplatesHandler

Synopsis
This interface extends
org.xml.sax.ContentHandler and adds a
getTemplates() method. An object that implements
this interface can be used to receive method calls from some source
of SAX events and process those events (as a XSL stylesheet) into a
Templates object. Obtain a
TemplatesHandler from a
SAXTransformerFactory. Register it with the
setContentHandler() method of an
org.xml.sax.XMLReader and invoke the
parse() method of the reader. When
parse() returns, call the getTemplates(
) method to obtain the Templates object.
[image: javax.xml.transform.sax.TemplatesHandler]

Figure 20-14. javax.xml.transform.sax.TemplatesHandler

public interface TemplatesHandler extends org.xml.sax.ContentHandler {
// Public Instance Methods
 String getSystemId();
 javax.xml.transform.Templates getTemplates();
 void setSystemId(String systemID);
}

Returned By

 SAXTransformerFactory.newTemplatesHandler()

Name
TransformerHandler

Synopsis
This interface extends
org.xml.sax.ContentHandler and related interfaces
so that it can consume SAX events generated by a
org.xml.sax.SAXReader or
org.xml.sax.SAXFilter. Create a
TransformerHandler by calling one of the
newTransformerHandler() methods of a
SAXTransformerFactory.
Next, call the setResult() method to specify a
Result object that describes the result document
you’d like the transformation to produce. You may
also call getTransformer() to get the
Transformer object associated with this
TransformerHandler if you need to set output
properties or parameter values for the transformation.
Now, register the TransformerHandler with the
SAXReader or SAXFilter object
by calling setContentHandler(
)

 , setDTDHandler(
), and setProperty().
`Then you use the property name
“http://www.xml.org/sax/properties/lexical-handler”
in the call to setProperties(
)
 to register the
TransformerHandler as a
org.xml.sax.ext.LexicalHandler for the parser or
filter.
Finally, invoke one of the parse() methods on
your XMLReader or XMLFilter
object. This will cause the reader or filter to start parsing the
source document and translating it into method calls on the
TransformerHandler. The
TransformerHandler will transform those calls as
specified in the Templates or
Source object (if any) that was passed to the
original call to newTransformerHandler() and
generate a result document as directed by the
Result object that was passed to
setResult().
[image: javax.xml.transform.sax.TransformerHandler]

Figure 20-15. javax.xml.transform.sax.TransformerHandler

public interface TransformerHandler extends org.xml.sax.ContentHandler,
 org.xml.sax.DTDHandler, org.xml.sax.ext.LexicalHandler {
// Public Instance Methods
 String getSystemId();
 javax.xml.transform.Transformer getTransformer();
 void setResult(javax.xml.transform.Result result)
 throws IllegalArgumentException;
 void setSystemId(String systemID);
}

Returned By

 SAXTransformerFactory.newTransformerHandler()

Name
Package javax.xml.transform.stream

Synopsis
This

 package contains
Source and Result
implementations that work with files and streams.

Classes
public class StreamResult implements javax.xml.transform.Result;
public class StreamSource implements javax.xml.transform.Source;

Name
StreamResult

Synopsis
This class is a Result implementation that writes
a textual representation of a transformed document to stream or file.
Because XML documents define their own encoding, it is usually
preferable to construct a StreamResult using a
File or OutputStream instead of
a character-based Writer which may use a different
encoding than that specified within the document.
[image: javax.xml.transform.stream.StreamResult]

Figure 20-16. javax.xml.transform.stream.StreamResult

public class StreamResult implements javax.xml.transform.Result {
// Public Constructors
 public StreamResult();
 public StreamResult(java.io.File f);
 public StreamResult(String systemId);
 public StreamResult(java.io.Writer writer);
 public StreamResult(java.io.OutputStream outputStream);
// Public Constants
 public static final String FEATURE;
 ="http://javax.xml.transform.stream.StreamResult/feature"
// Public Instance Methods
 public java.io.OutputStream getOutputStream(); default:null
 public java.io.Writer getWriter(); default:null
 public void setOutputStream(java.io.OutputStream outputStream);
 public void setSystemId(java.io.File f);
 public void setWriter(java.io.Writer writer);
// Methods Implementing Result
 public String getSystemId(); default:null
 public void setSystemId(String systemId);
}

Name
StreamSource

Synopsis
This class is a Source implementation that reads
the textual format of an XML document from a file, byte stream, or
character stream. Because XML documents declare their own encoding,
it is preferable to create a StreamSource object
from an InputStream instead of from a
Reader, so that the XML processor can correctly
handle the declared encoding. When creating a
StreamSource from a byte stream or character
stream, you should provide the “system
id” (i.e. the filename or URL) by using one of the
two-argument constructors or by caling setSystemId(
). The system id is required if the XML file to be
processed includes relative URLs to be resolved.
[image: javax.xml.transform.stream.StreamSource]

Figure 20-17. javax.xml.transform.stream.StreamSource

public class StreamSource implements javax.xml.transform.Source {
// Public Constructors
 public StreamSource();
 public StreamSource(java.io.InputStream inputStream);
 public StreamSource(java.io.Reader reader);
 public StreamSource(java.io.File f);
 public StreamSource(String systemId);
 public StreamSource(java.io.Reader reader, String systemId);
 public StreamSource(java.io.InputStream inputStream, String systemId);
// Public Constants
 public static final String FEATURE;
 ="http://javax.xml.transform.stream.StreamSource/feature"
// Public Instance Methods
 public java.io.InputStream getInputStream(); default:null
 public String getPublicId(); default:null
 public java.io.Reader getReader(); default:null
 public void setInputStream(java.io.InputStream inputStream);
 public void setPublicId(String publicId);
 public void setReader(java.io.Reader reader);
 public void setSystemId(java.io.File f);
// Methods Implementing Source
 public String getSystemId(); default:null
 public void setSystemId(String systemId);
}

Name
Package javax.xml.validation

Synopsis

 This

 package
contains classes for validating XML documents against W3C XML Schema
definitions. Implementations may also support additional schema
types, such as RELAX NG. Typical usage begins with the
SchemaFactory class, which parses schema
specifications into immutable Schema objects.
Next, the Schema object is used to create a
Validator with which a document may be validated.

Classes
public abstract class Schema;
public abstract class SchemaFactory;
public abstract class SchemaFactoryLoader;
public abstract class TypeInfoProvider;
public abstract class Validator;
public abstract class ValidatorHandler implements org.xml.sax.ContentHandler;

Name
Schema

Synopsis
A Schema

 is
an immutable opaque parsed representation of a schema.
Schema objects don’t perform
validation themselves; instead, they are factories for
Validator and ValidatorHandler
objects that can be used to validate individual documents.
public abstract class Schema {
// Protected Constructors
 protected Schema();
// Public Instance Methods
 public abstract Validator newValidator();
 public abstract ValidatorHandler newValidatorHandler();
}

Passed To

 javax.xml.parsers.DocumentBuilderFactory.setSchema(
), javax.xml.parsers.SAXParserFactory.setSchema(
)

Returned By

 javax.xml.parsers.DocumentBuilder.getSchema(),
javax.xml.parsers.DocumentBuilderFactory.getSchema(
), javax.xml.parsers.SAXParser.getSchema(
), javax.xml.parsers.SAXParserFactory.getSchema(
), SchemaFactory.newSchema()

Name
SchemaFactory

Synopsis
A SchemaFactory

 parses the textual representation of a
schema into a Schema object. Obtain a
SchemaFactory with the newInstance(
)

method, passing a string that identifies the type of schema you want
to parse. All implementations are required to support the
W3C XML
Schema language, which is identified by
XMLConstants.W3C_XML_SCHEMA_NS_URI. Other schema
types may also be supported, such as RELAX NG schemas, identified by
XMLConstants.RELAXNG_NS_URI.
To parse a schema, call the newSchema(
)
 method, passing the
File or
javax.xml.transform.Source object that identifies
the schema contents. For schemas in the W3C XML Schema language, you
may also specify an array of Source objects that
contain the schema definition. If you call newSchema(
) with no arguments, a special Schema
object is returned that expects the document to specify the location
of its own W3C XML Schema.
You can configure a SchemaFactory before calling
newSchema() with setErrorHandler(
)

 ,
setResourceResolver(), setProperty(
), and setFeature(
)
 .
public abstract class SchemaFactory {
// Protected Constructors
 protected SchemaFactory();
// Public Class Methods
 public static final SchemaFactory newInstance(String schemaLanguage);
// Public Instance Methods
 public abstract org.xml.sax.ErrorHandler getErrorHandler();
 public boolean getFeature(String name)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
 public Object getProperty(String name)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
 public abstract org.w3c.dom.ls.LSResourceResolver getResourceResolver();
 public abstract boolean isSchemaLanguageSupported(String schemaLanguage);
 public abstract Schema newSchema() throws org.xml.sax.SAXException;
 public Schema newSchema(javax.xml.transform.Source schema)
 throws org.xml.sax.SAXException;
 public Schema newSchema(java.io.File schema) throws org.xml.sax.SAXException;
 public abstract Schema newSchema(javax.xml.transform.Source[] schemas)
 throws org.xml.sax.SAXException;
 public Schema newSchema(java.net.URL schema) throws org.xml.sax.SAXException;
 public abstract void setErrorHandler(org.xml.sax.ErrorHandler errorHandler);
 public void setFeature(String name, boolean value)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
 public void setProperty(String name, Object object)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
 public abstract void setResourceResolver(org.w3c.dom.ls.LSResourceResolver
 resourceResolver);
}

Returned By

 SchemaFactoryLoader.newFactory()

Name
SchemaFactoryLoader

Synopsis
This
 class is used by implementations of the
validation API to produce a SchemaFactory object
for a specified schema type. Applications that use the
javax.xml.validation package do not need to use
this class.
public abstract class SchemaFactoryLoader {
// Protected Constructors
 protected SchemaFactoryLoader();
// Public Instance Methods
 public abstract SchemaFactory newFactory(String schemaLanguage);
}

Name
TypeInfoProvider

Synopsis
A

 TypeInfoProvider
provides information about the type of the element or attribute
currently being processed by a ValidatorHandler.
This type information is obtained by validating document content
against a schema and may be useful to the
ContentHandler to which the
ValidatorHandler dispatches its method calls.
public abstract class TypeInfoProvider {
// Protected Constructors
 protected TypeInfoProvider();
// Public Instance Methods
 public abstract org.w3c.dom.TypeInfo getAttributeTypeInfo(int index);
 public abstract org.w3c.dom.TypeInfo getElementTypeInfo();
 public abstract boolean isIdAttribute(int index);
 public abstract boolean isSpecified(int index);
}

Returned By

 ValidatorHandler.getTypeInfoProvider()

Name
Validator

Synopsis
A
 Validator object
validates an XML document against the Schema from
which the Validator was created. The
validate()
 method
performs validation. Specify the document to be validated with a
DOMSource

 or SAXSource
object (from the javax.xml.transform.dom or
javax.xml.transform.sax packages). The
validate() method accepts any
javax.xml.transform.Source object as an argument,
but SAXSource and DOMSource are
the only two supported implementations.
The document validation process can also be used to augment the
source document by adding the default values of unspecified
attributes. If you want to capture this augmented form of the
document, pass a Result object to the two-argument
version of validate(). If the source is a
SAXSource, the result must be a
SAXResult, and if the source is a
DOMSource, the result must be a
DOMResult object.
If the document is valid, the validate() method
returns normally. If the document is not valid, validate(
) throws an org.xml.sax.SAXException.
You can alter this somewhat by passing a custom
org.xml.sax.ErrorHandler to
setErrorHandler(). Validation exceptions are
first passed to the error handler methods, which may throw the
exception or handle them in some other way, such as printing a
message. If the error handler does not throw an exception, the
validate() method attempts to continue
validation. The default error handler ignores exceptions passed to
its warn() method but throws exceptions passed to
its error()

 and fatalError(
) methods.
Before calling validate(), a
Validator may also be configured with
setResourceResolver(
)
 ,
setFeature()
 , and
setProperty()
 .
public abstract class Validator {
// Protected Constructors
 protected Validator();
// Public Instance Methods
 public abstract org.xml.sax.ErrorHandler getErrorHandler();
 public boolean getFeature(String name)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
 public Object getProperty(String name)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
 public abstract org.w3c.dom.ls.LSResourceResolver getResourceResolver();
 public abstract void reset();
 public abstract void setErrorHandler(org.xml.sax.ErrorHandler errorHandler);
 public void setFeature(String name, boolean value)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
 public void setProperty(String name, Object object)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
 public abstract void setResourceResolver(org.w3c.dom.ls.LSResourceResolver
 resourceResolver);
 public void validate(javax.xml.transform.Source source)
 throws org.xml.sax.SAXException, java.io.IOException;
 public abstract void validate(javax.xml.transform.Source source,
 javax.xml.transform.Result result)
 throws org.xml.sax.SAXException, java.io.IOException;
}

Returned By

 Schema.newValidator()

Name
ValidatorHandler

Synopsis
A

 ValidatorHandler is
an org.xml.sax.ContentHandler that uses the
streaming SAX API to validate an XML document against the
Schema from which the
ValidatorHandler was derived. The
Validator class can be used to validate a
SAXSource, but ValidatorHandler
provides lower-level access to the SAX API.
If the document is not valid, one of the
ContentHandler methods throws a
SAXException that propagates up to your code. As
with the Validator class, you can alter this by
specifying a custom org.xml.sax.ErrorHandler
class.

 ValidatorHandler can be used as a filter for SAX
parsing events. If you pass a ContentHandler to
setContentHandler(), the
ValidatorHandler augments the source document with
attribute defaults from the schema and invokes the appropriate
callback methods on the ContentHandler you supply.
If you are interested in attribute and element type information
provided by the schema, your ContentHandler can
use the TypeInfoProvider obtained from the
ValidatorHandler
 getTypeInfoProvider(
).
[image: javax.xml.validation.ValidatorHandler]

Figure 20-18. javax.xml.validation.ValidatorHandler

public abstract class ValidatorHandler implements org.xml.sax.ContentHandler {
// Protected Constructors
 protected ValidatorHandler();
// Public Instance Methods
 public abstract org.xml.sax.ContentHandler getContentHandler();
 public abstract org.xml.sax.ErrorHandler getErrorHandler();
 public boolean getFeature(String name)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
 public Object getProperty(String name)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
 public abstract org.w3c.dom.ls.LSResourceResolver getResourceResolver();
 public abstract TypeInfoProvider getTypeInfoProvider();
 public abstract void setContentHandler(org.xml.sax.ContentHandler receiver);
 public abstract void setErrorHandler(org.xml.sax.ErrorHandler errorHandler);
 public void setFeature(String name, boolean value)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
 public void setProperty(String name, Object object)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
 public abstract void setResourceResolver(org.w3c.dom.ls.LSResourceResolver
 resourceResolver);
}

Returned By

 Schema.newValidatorHandler()

Name
Package javax.xml.xpath

Synopsis
This

 package defines types for the evaluation
of XPath expressions in the context of an XML document. XPath is a
language for describing a “path” to
a node or set of nodes within an XML document. Details of the XPath
grammar are beyond the scope of this reference.
A typical use of this package begins with the
XPathFactory, an instance of which is used to
create an XPath object. After configuring the
XPath object as desired, you can use it to
evaluate XPath expressions directly or to compile XPath expressions
into XPathExpression objects for later use.

Interfaces
public interface XPath;
public interface XPathExpression;
public interface XPathFunction;
public interface XPathFunctionResolver;
public interface XPathVariableResolver;

Classes
public class XPathConstants;
public abstract class XPathFactory;

Exceptions
public class XPathException extends Exception;
 public class XPathExpressionException extends XPathException;
 public class XPathFunctionException extends XPathExpressionException;
 public class XPathFactoryConfigurationException extends XPathException;

Name
XPath

Synopsis

 An XPath object is
used to compile or evaluate an XPath expression. Create an
XPath object through an
XPathFactory. Configuration methods of
XPath allow you to specify an
XPathVariableResolver and an
XPathFunctionResolver to resolve variable and
function references in XPath expressions. You may also specify the
javax.xml.namespace.NamespaceContext with which
the XPath can resolve qualified names.
After creating and configuring an XPath object,
you can use the compile(
)
 method to compile an XPath expression
for later evaluation, or you can use one of the evaluate(
) methods to compile and evaluate an expression directly.
There are four versions of evaluate(). All expect
a String containing an XPath expression as their
first argument. The second argument is the document or portion of a
document to evaluate the expression against. Two versions of
evaluate()
 expect an
org.xml.sax.InputSource for this second argument.
These versions of the method first parse the document and build a DOM
(or other object model) tree. The other two versions of
evaluate() expect an Object as
the second argument. The object passed should be a DOM (or other
object model) object representing the document or some portion of it.
For the org.w3c.dom object model, this might be a
Document, DocumentFragment,
Node, or NodeList object.
The final difference between evaluate() methods
is the presence or absence of a third argument. The two-argument
versions of evaluate() return the result of the
expression evaluation as a String. The
three-argument versions expect a third argument that specifies the
desired return type and return an Object of an
appropriate type. The valid types are the QName
objects defined in the XPathConstants class, such
as XPathConstants.NODE and
XPathConstants.NODESET. With the DOM object model,
evaluate() returns
org.w3c.dom.Node and
org.w3c.dom.NodeList objects for these types.
public interface XPath {
// Public Instance Methods
 XPathExpression compile(String expression) throws XPathExpressionException;
 String evaluate(String expression, Object item) throws XPathExpressionException;
 String evaluate(String expression, org.xml.sax.InputSource source)
 throws XPathExpressionException;
 Object evaluate(String expression, org.xml.sax.InputSource source,
 javax.xml.namespace.QName returnType)
 throws XPathExpressionException;
 Object evaluate(String expression, Object item, javax.xml.namespace.
 QName returnType) throws XPathExpressionException;
 javax.xml.namespace.NamespaceContext getNamespaceContext();
 XPathFunctionResolver getXPathFunctionResolver();
 XPathVariableResolver getXPathVariableResolver();
 void reset();
 void setNamespaceContext(javax.xml.namespace.NamespaceContext nsContext);
 void setXPathFunctionResolver(XPathFunctionResolver resolver);
 void setXPathVariableResolver(XPathVariableResolver resolver);
}

Returned By

 XPathFactory.newXPath()

Name
XPathConstants

Synopsis
This class defines
javax.xml.namespace.QName constants that represent
the possible return types of the evaluate()
methods of XPath and
XPathExpression. It also defines the
DOM_OBJECT_MODEL constant that can be passed to
XPathFactory.newInstance() to specify that the
resulting XPathFactory should be for the
org.w3c.dom object model.
public class XPathConstants {
// No Constructor
 // Public Constants
 public static final javax.xml.namespace.QName BOOLEAN;
 public static final String DOM_OBJECT_MODEL;
 ="http://java.sun.com/jaxp/xpath/dom"
 public static final javax.xml.namespace.QName NODE;
 public static final javax.xml.namespace.QName NODESET;
 public static final javax.xml.namespace.QName NUMBER;
 public static final javax.xml.namespace.QName STRING;
}

Name
XPathException

Synopsis
This is the
common
superclass of all XPath-related exception types.
[image: javax.xml.xpath.XPathException]

Figure 20-19. javax.xml.xpath.XPathException

public class XPathException extends Exception {
// Public Constructors
 public XPathException(Throwable cause);
 public XPathException(String message);
// Public Methods Overriding Throwable
 public Throwable getCause();
 public void printStackTrace();
 public void printStackTrace(java.io.PrintWriter s);
 public void printStackTrace(java.io.PrintStream s);
}

Subclasses

 XPathExpressionException,
XPathFactoryConfigurationException

Name
XPathExpression

Synopsis
If an XPath expression is to be evaluated more
than once, it is not efficient to call the XPath.evaluate(
) method repeatedly. Instead, compile the expression to an
XPathExpression using the XPath.compile(
) method and then evaluate it using one of the
evaluate() methods of
XPathExpression. The evaluate(
) methods of XPathExpression behave just
like the corresponding methods of XPath. See
XPath for details.
public interface XPathExpression {
// Public Instance Methods
 String evaluate(org.xml.sax.InputSource source)
 throws XPathExpressionException;
 String evaluate(Object item) throws XPathExpressionException;
 Object evaluate(Object item, javax.xml.namespace.QName returnType)
 throws XPathExpressionException;
 Object evaluate(org.xml.sax.InputSource source, javax.xml.namespace.
 QName returnType) throws XPathExpressionException;
}

Returned By

 XPath.compile()

Name
XPathExpressionException

Synopsis
Exceptions
of
this type indicate an error while compiling or evaluating an XPath
expression. See the compile() and
evaluate() methods of XPath
and XPathExpression.
[image: javax.xml.xpath.XPathExpressionException]

Figure 20-20. javax.xml.xpath.XPathExpressionException

public class XPathExpressionException extends XPathException {
// Public Constructors
 public XPathExpressionException(Throwable cause);
 public XPathExpressionException(String message);
}

Subclasses

 XPathFunctionException

Thrown By

 XPath.{compile(), evaluate(
)}, XPathExpression.evaluate()

Name
XPathFactory

Synopsis
The
 XPathFactory class is
a factory for creating XPath expression
evaluators. Call the no-argument version of newInstance(
) to obtain an XPathFactory object that
creates XPath object to work with DOM documents.
The javax.xml.xpath package is nominally
object-model independent, however, and you can specify the name of a
different object model by calling the one-argument version of
newInstance().
Once you have created an XPathFactory object, you
can set default function and variable resolvers with
setXPathFunctionResolver(
)

 and setXPathVariableResolver(
). You can configure implementation-dependent features of
an XPathFactory with setFeature(
)
 . All
implementations are required to support the
XMLConstants.FEATURE_SECURE_PROCESSING feature.
When this feature is set to true, external functions are not allowed
in XPath expressions, and the
XPathFunctionResolver is not used.
After creating and configuring an XPathFactory
object, use the newXPath() method to create one
or more XPath objects for actually evaluating
XPath expressions.
public abstract class XPathFactory {
// Protected Constructors
 protected XPathFactory();
// Public Constants
 public static final String DEFAULT_OBJECT_MODEL_URI; ="http://java.sun.com/jaxp/xpath/dom"
 public static final String DEFAULT_PROPERTY_NAME; ="javax.xml.xpath.XPathFactory"
// Public Class Methods
 public static final XPathFactory newInstance();
 public static final XPathFactory newInstance(String uri)
 throws XPathFactoryConfigurationException;
// Public Instance Methods
 public abstract boolean getFeature(String name)
 throws XPathFactoryConfigurationException;
 public abstract boolean isObjectModelSupported(String objectModel);
 public abstract XPath newXPath();
 public abstract void setFeature(String name, boolean value)
 throws XPathFactoryConfigurationException;
 public abstract void setXPathFunctionResolver(XPathFunctionResolver resolver);
 public abstract void setXPathVariableResolver(XPathVariableResolver resolver);
}

Name
XPathFactoryConfigurationException

Synopsis
This exception
is
thrown by methods of XPathFactory to indicate that
a specified object model or feature is not supported.
[image: javax.xml.xpath.XPathFactoryConfigurationException]

Figure 20-21. javax.xml.xpath.XPathFactoryConfigurationException

public class XPathFactoryConfigurationException extends XPathException {
// Public Constructors
 public XPathFactoryConfigurationException(Throwable cause);
 public XPathFactoryConfigurationException(String message);
}

Thrown By

 XPathFactory.{getFeature(), newInstance(
), setFeature()}

Name
XPathFunction

Synopsis
This interface defines the invocation API
for user-defined XPath
functions.
Arguments are passed to the evaluate() method as
a java.util.List and the return value should be an
Object. evaluate() may throw
an XPathFunctionException. See also
XPathFunctionResolver.
public interface XPathFunction {
// Public Instance Methods
 Object evaluate(java.util.List args) throws XPathFunctionException;
}

Returned By

 XPathFunctionResolver.resolveFunction()

Name
XPathFunctionException

Synopsis
Exceptions
of
this type may be thrown by user-defined
XPathFunction implementations. Note that this is a
subclass of XPathExpressionException.
[image: javax.xml.xpath.XPathFunctionException]

Figure 20-22. javax.xml.xpath.XPathFunctionException

public class XPathFunctionException extends XPathExpressionException {
// Public Constructors
 public XPathFunctionException(Throwable cause);
 public XPathFunctionException(String message);
}

Thrown By

 XPathFunction.evaluate()

Name
XPathFunctionResolver

Synopsis
This
interface defines a single method to
return the XPathFunction with the specified
qualified name and specified arity (number of arguments). Objects
that implement this interface may be passed to the
setXPathFunctionResolver() methods of
XPath or XPathFactory.
Note that the function resolvers are invoked only for functions
defined in an external namespace, so they cannot be used to override
the meaning of XPath’s built-in functions or to add
new core functions to the XPath language. Also, if the
XMLConstants.FEATURE_SECURE_PROCESSING feature has
been enabled on an XPathFactory, user-defined
functions are not allowed in XPath expressions, and the
XPathFunctionResolver is never called.
public interface XPathFunctionResolver {
// Public Instance Methods
 XPathFunction resolveFunction(javax.xml.namespace.QName functionName, int arity);
}

Passed To

 XPath.setXPathFunctionResolver(),
XPathFactory.setXPathFunctionResolver()

Returned By

 XPath.getXPathFunctionResolver()

Name
XPathVariableResolver

Synopsis
This

 interface
defines a single method to return the Object value
of a variable identified by a qualified name. The value of a named
variable is allowed to change between XPath evaluations, but
implementations of this interface must ensure that no variable
changes during the evaluation of an expression.
Objects that implement this interface may be passed to the
setXPathVariableResolver() methods of
XPath or XPathFactory.
public interface XPathVariableResolver {
// Public Instance Methods
 Object resolveVariable(javax.xml.namespace.QName variableName);
}

Passed To

 XPath.setXPathVariableResolver(),
XPathFactory.setXPathVariableResolver()

Returned By

 XPath.getXPathVariableResolver()

Chapter 21. org.w3c.dom

Name
Package org.w3c.dom

Synopsis
This
 package defines the Java binding to the
core and XML modules of the
DOM API defined by the World
Wide Web Consortium (W3C). DOM stands for Document Object Model, and
the DOM API defines a way to represent an XML document as a tree of
nodes. Java 1.4 supports the Level 2 DOM, and
Java 5.0 adds support for Level 3.
This package includes methods that allow document trees to be
traversed, examined, modified, and built from scratch.
Node is the central interface of the package. All
nodes in a document tree implement this interface, and it defines the
basic methods for traversing and modifying the tree of nodes. Most of
the other interfaces in the package are extensions of
Node that represent specific types of XML content.
The most important and commonly used of these subinterfaces are
Document, Element, and
Text. A Document object serves
as the root of the document tree and defines methods for searching
the tree for elements with a specified tag name or
ID attribute. The Element
interface represents an XML element or tag and has methods for
manipulating the element’s attributes. The
Text interface represents a run of plain text
within an Element and has methods for querying or
altering that text. NodeList and
DOMImplementation do not extend
Node but are also important interfaces.
This package is an endorsed standard, which means that it is defined
outside of Sun Microsystems and the Java Community Process but has
been adopted as part of the Java platform. Full
documentation
is available at
http://www.w3.org/TR/DOM-Level-3-Core/. Note
that Java 5.0 also adopts the
bootstrap, events, and
ls (load/save) subpackages. Those subpackages are
not documented in this book because they are only tangentially used
by the rest of the Java platform.

Interfaces
public interface Attr extends Node;
public interface CDATASection extends Text;
public interface CharacterData extends Node;
public interface Comment extends CharacterData;
public interface Document extends Node;
public interface DocumentFragment extends Node;
public interface DocumentType extends Node;
public interface DOMConfiguration;
public interface DOMError;
public interface DOMErrorHandler;
public interface DOMImplementation;
public interface DOMImplementationList;
public interface DOMImplementationSource;
public interface DOMLocator;
public interface DOMStringList;
public interface Element extends Node;
public interface Entity extends Node;
public interface EntityReference extends Node;
public interface NamedNodeMap;
public interface NameList;
public interface Node;
public interface NodeList;
public interface Notation extends Node;
public interface ProcessingInstruction extends Node;
public interface Text extends CharacterData;
public interface TypeInfo;
public interface UserDataHandler;

Exceptions
public class DOMException extends RuntimeException;

Name
Attr

Synopsis

 An
Attr object represents an
attribute of an Element
node. Attr objects are associated with
Element nodes, but are not directly part of the
document tree: the getParentNode() method of an
Attr object always returns
null. Use getOwnerElement() to
deterine which Element an Attr
is part of. You can obtain an Attr object by
calling the getAttributeNode() method of
Element, or you can obtain a
NamedNodeMap of all Attr
objects for an element with the getAttributes()
method of Node.

 getName() returns the name of the attribute.
getValue() returns the attribute value as a
string. getSpecified() returns
true if the attribute was explicitly specified in
the source document through a call to setValue(),
and returns false if the attribute represents a
default obtained from a DTD or other schema.
XML allows attributes to contain text and entity references. The
getValue() method returns the attribute value as
a single string. If you want to know the precise composition of the
attribute however, you can examine the children of the
Attr node: they may consist of
Text and/or EntityReference
nodes.
In most cases the easiest way to work with attributes is with the
getAttribute() and setAttribute(
) methods of the Element interface. These methods avoid the
use of Attr nodes altogether.
[image: org.w3c.dom.Attr]

Figure 21-1. org.w3c.dom.Attr

public interface Attr extends Node {
// Public Instance Methods
 String getName();
 Element getOwnerElement();
5.0 TypeInfo getSchemaTypeInfo();
 boolean getSpecified();
 String getValue();
5.0 boolean isId();
 void setValue(String value) throws DOMException;
}

Passed To

 Element.{removeAttributeNode(),
setAttributeNode(), setAttributeNodeNS(
), setIdAttributeNode()}

Returned By

 Document.{createAttribute(),
createAttributeNS()},
Element.{getAttributeNode(),
getAttributeNodeNS(),
removeAttributeNode(), setAttributeNode(
), setAttributeNodeNS()}

Name
CDATASection

Synopsis
This interface represents a CDATA section in an XML
document. CDATASection is a subinterface of
Text and does not define any methods of its own.
The content of the CDATA section is available through the
getNodeValue() method inherited from Node, or
through the getData() method inherited from
CharacterData. Although
CDATASection nodes can often be treated in the
same way as Text nodes, note that the
Node.normalize() method does not merge adjacent
CDATA sections.
[image: org.w3c.dom.CDATASection]

Figure 21-2. org.w3c.dom.CDATASection

public interface CDATASection extends Text {
}

Returned By

 Document.createCDATASection()

Name
CharacterData

Synopsis
This interface is a generic one that is
extended by Text, CDATASection
(which extends Text) and
Comment. Any node in a document tree that
implements CharacterData also implements one of
these more specific types. This interface exists simply to group the
string manipulation methods that these text-related node types all
share.
The CharacterData interface defines a mutable
string. getData() returns the
“character data” as a
String object, and setData()
allows it to be set from a String object.
getLength() returns the number of characters of
character data, and substringData() returns just
the specified portion of the data as a string. The
appendData(), deleteData(),
insertData(), and replaceData(
) methods mutate the data by appending a string to the end,
deleting region, inserting a string at the specified location, and
replacing a region with a specified string.
[image: org.w3c.dom.CharacterData]

Figure 21-3. org.w3c.dom.CharacterData

public interface CharacterData extends Node {
// Public Instance Methods
 void appendData(String arg) throws DOMException;
 void deleteData(int offset, int count) throws DOMException;
 String getData() throws DOMException;
 int getLength();
 void insertData(int offset, String arg) throws DOMException;
 void replaceData(int offset, int count, String arg) throws DOMException;
 void setData(String data) throws DOMException;
 String substringData(int offset, int count) throws DOMException;
}

Implementations

 Comment, Text

Name
Comment

Synopsis
A Comment
 node represents a comment in an XML
document. The content of the comment (i.e. the text between
<!-- and -->) is
available with the getData() method inherited
from CharacterData, or through the
getNodeValue() method inherited from
Node. This content may be manipulated using the
various methods inherited from CharacterData

[image: org.w3c.dom.Comment]

Figure 21-4. org.w3c.dom.Comment

public interface Comment extends CharacterData {
}

Returned By

 Document.createComment()

Name
Document

Synopsis
This interface represents a DOM document, and
an object that implements this interface serves as the root of a DOM
document tree. Most of the methods defined by the Document interface
are “factory methods” that are used
to create various types of nodes that can be inserted into this
document. Note that there are two versions of the methods for
creating attributes and elements. The methods with
“NS” in their name are
namespace-aware and require the attribute or element name to be
specified as a combination of a namespace URI and a local name.
You’ll notice that throughout the
DOM API, methods with
“NS” in their names are
namespace-aware. Other important methods include the following:

 getElementsByTagName() and its namespace-aware
variant getElementsByTagNameNS() search the
document tree for Element nodes that have the
specified tag name and return a NodeList
containing those matching nodes. The Element
interface defines methods by the same names that search only within
the subtree defined by an Element.

 getElementById() is a related method that
searches the document tree for a single element with the specified
unique value for an ID attribute. This is useful
when you use an ID attribute to uniquely identify
certain tags within an XML document. Note that this method does not
search for attributes that are named
“id” or
“ID”. It searches for attributes
whose XML type (as declared in the document’s DTD)
is ID. Such attributes are often named
“id”, but this is not required.
An XML document must have a single root element.
getDocumentElement() returns this
Element object. Note, however that this does not
mean that a Document node has only one child. It
must have exactly one child that is an Element,
but it can also have other children such as
Comment and
ProcessingInstruction nodes. The
getDoctype() method returns the
DocumentType object (or null if
there isn’t one) that represents the
document’s DTD. getImplementation(
) returns the the DOMImplementation
object that represents the DOM implementation that created this
document tree.
[image: org.w3c.dom.Document]

Figure 21-5. org.w3c.dom.Document

public interface Document extends Node {
// Public Instance Methods
 5.0 Node adoptNode(Node source) throws DOMException;
 Attr createAttribute(String name) throws DOMException;
 Attr createAttributeNS(String namespaceURI, String qualifiedName)
 throws DOMException;
 CDATASection createCDATASection(String data) throws DOMException;
 Comment createComment(String data);
 DocumentFragment createDocumentFragment();
 Element createElement(String tagName) throws DOMException;
 Element createElementNS(String namespaceURI, String qualifiedName)
 throws DOMException;
 EntityReference createEntityReference(String name) throws DOMException;
 ProcessingInstruction createProcessingInstruction(String target,
 String data) throws DOMException;
 Text createTextNode(String data);
 DocumentType getDoctype();
 Element getDocumentElement();
5.0 String getDocumentURI();
5.0 DOMConfiguration getDomConfig();
 Element getElementById(String elementId);
 NodeList getElementsByTagName(String tagname);
 NodeList getElementsByTagNameNS(String namespaceURI, String localName);
 DOMImplementation getImplementation();
5.0 String getInputEncoding();
5.0 boolean getStrictErrorChecking();
5.0 String getXmlEncoding();
5.0 boolean getXmlStandalone();
5.0 String getXmlVersion();
 Node importNode(Node importedNode, boolean deep) throws DOMException;
5.0 void normalizeDocument();
5.0 Node renameNode(Node n, String namespaceURI, String qualifiedName)
 throws DOMException;
5.0 void setDocumentURI(String documentURI);
5.0 void setStrictErrorChecking(boolean strictErrorChecking);
5.0 void setXmlStandalone(boolean xmlStandalone) throws DOMException;
5.0 void setXmlVersion(String xmlVersion) throws DOMException;
}

Returned By

 javax.xml.parsers.DocumentBuilder.{newDocument(),
parse()},
DOMImplementation.createDocument(),
Node.getOwnerDocument()

Name
DocumentFragment

Synopsis
The
 DocumentFragment
interface represents a portion—or fragment—of a document.
More specifically, it represents one or more adjacent document nodes,
and all of the descendants of each.
DocumentFragment nodes are never part of a
document tree, and getParentNode() always returns
null. Although a
DocumentFragment does not have a parent, it can
have children, and you can use the inherited Node
methods to add child nodes (or delete or replace them) to a
DocumentFragment.

 DocumentFragment nodes exhibit a special behavior
that makes them quite useful: when a request is made to insert a
DocumentFragment into a document tree, it is not
the DocumentFragment node itself that is inserted,
but each of the children of the DocumentFragment
instead. This makes DocumentFragment useful as a
temporary placeholder for a sequence of nodes that you wish to
insert, all at once, into a document.
You can create a new, empty, DocumentFragment to
work with by calling the createDocumentFragment()
method of the desired Document.
[image: org.w3c.dom.DocumentFragment]

Figure 21-6. org.w3c.dom.DocumentFragment

public interface DocumentFragment extends Node {
}

Returned By

 Document.createDocumentFragment()

Name
DocumentType

Synopsis
This interface represents the

 Document Type Declaration, or DTD
of a document. Because the DTD is not part of the document itself, a
DocumentType object is not part of DOM document
tree, even though it extends the Node interface.
If a Document has a DTD, then you may obtain the
DocumentType object that represents it by calling
the getDoctype() method of the
Document object.

 getName(), getPublicId(),
getSystemId(), and getInternalSubset(
) all return strings (or null) that
contain the name, public identifier, system identifier, and internal
subset of the document type. getEntities()
returns a read-only NamedNodeMap that represents
the name-to-value mapping for all internal and external general
entities declared by the DTD. You can use this
NamedNodeMap to lookup an
Entity object by name. Similarly,
getNotations() returns a read-only
NamedNodeMap that allows you to look up a
Notation object declared in the DTD by name.

 DocumentType does not provide access to the bulk
of a DTD, which usually consists of element and attribute
delcarations. Future versions of the DOM API may provide more
details.
[image: org.w3c.dom.DocumentType]

Figure 21-7. org.w3c.dom.DocumentType

public interface DocumentType extends Node {
// Public Instance Methods
 NamedNodeMap getEntities();
 String getInternalSubset();
 String getName();
 NamedNodeMap getNotations();
 String getPublicId();
 String getSystemId();
}

Passed To

 DOMImplementation.createDocument()

Returned By

 Document.getDoctype(),
DOMImplementation.createDocumentType()

Name
DOMConfiguration

Synopsis
This
 Level 3 interface defines methods
for querying and setting the values of named parameters. The
DOMConfiguration object obtained with the
Document.getDomConfig() method allows you to
specify parameters that affect the behavior of the
Document.normalizeDocument() method. You can also
obtain a DOMConfiguration object from the
LSParser and LSSerializer
interfaces of the org.w3c.dom.ls package. Those
configuration objects affect the way documents are loaded and saved,
but the package is beyond the scope of this book. See the DOM
specification for details on the available parameters.
public interface DOMConfiguration {
// Public Instance Methods
 boolean canSetParameter(String name, Object value);
 Object getParameter(String name) throws DOMException;
 DOMStringList getParameterNames();
 void setParameter(String name, Object value) throws DOMException;
}

Returned By

 Document.getDomConfig()

Name
DOMError

Synopsis
This
 Level 3 interface describes an error
that occurs while processing a document (such as when loading,
saving, validating or normalizing it). An object that implements this
interface is passed to the registered
DOMErrorHandler, if any. The constants defined by
this interface represent error severity levels.
Note that this interface is unrelated to
DOMException class or to the
java.lang.Error and
java.lang.Exception classes.
public interface DOMError {
// Public Constants
 public static final short SEVERITY_ERROR; =2
 public static final short SEVERITY_FATAL_ERROR; =3
 public static final short SEVERITY_WARNING; =1
 // Public Instance Methods
 org.w3c.dom.DOMLocator getLocation();
 String getMessage();
 Object getRelatedData();
 Object getRelatedException();
 short getSeverity();
 String getType();
}

Passed To

 DOMErrorHandler.handleError()

Name
DOMErrorHandler

Synopsis
This
 Level 3
interface
defines a handler for DOMError objects that
represent errors while processing an XML document. Register an object
that implements this interface by setting it as the value of the
“error-handler” property through
the DOMConfiguration interface.
public interface DOMErrorHandler {
// Public Instance Methods
 boolean handleError(DOMError error);
}

Name
DOMException

Synopsis
An instance of this class is thrown whenever
an exception is raised by the DOM API. Unlike many Java APIs, the DOM
API does not define specialized subclasses to define different
categories of exceptions. Instead, a more specific exception type is
specified by the public field code. The value of
this field will be one of the constants defined by this class, which
have the following meanings:
	
 INDEX_SIZE_ERR

	Indicates an out-of-bounds error for an array or string index.

	
 DOMSTRING_SIZE_ERR

	Indicates that a requested text is too big to fit into a
String object. Exceptions of this type are
intended for DOM implementations for other languages and should not
occur in Java.

	
 HIERARCHY_REQUEST_ERR

	Indicates that an attempt was made to place a node somewhere illegal
in the document tree hierarchy.

	
 WRONG_DOCUMENT_ERR

	Indicates an attempt to use a node with a document that is different
than the document that created the node.

	
 INVALID_CHARACTER_ERR

	Indicates that an illegal character is used (in an element name, for
example) .

	
 NO_DATA_ALLOWED_ERR

	Not currently used.

	
 NO_MODIFICATION_ALLOWED_ERR

	Indicates that an attempt was made to modify a node that is read-only
and does not allow modifications. Entity, EntityReference, and
Notation nodes, and all of their descendants are read-only.

	
 NOT_FOUND_ERR

	Indicates that a node was not found where it was expected.

	
 NOT_SUPPORTED_ERR

	Indicates that a method or property is not supported in the current
DOM implementation.

	
 INUSE_ATTRIBUTE_ERR

	Indicates that an attempt was made to associate an Attr with an
Element when that Attr node was already associated with a different
Element node.

	
 INVALID_STATE_ERR

	Indicates an attempt to use an object that is not yet, or is no
longer, in a state that allows such use.

	
 SYNTAX_ERR

	Indicates that a specified string contains a syntax error. Exceptions
of this type are not raised by the core module of the DOM API
described here.

	
 INVALID_MODIFICATION_ERR

	Exceptions of this type are not raised by the core module of the DOM
API described here.

	
 NAMESPACE_ERR

	Indicates an error involving element or attribute namespaces.

	
 INVALID_ACCESS_ERR

	Indicates an attempt to access an object in a way that is not
supported by the implementation.

[image: org.w3c.dom.DOMException]

Figure 21-8. org.w3c.dom.DOMException

public class DOMException extends RuntimeException {
// Public Constructors
 public DOMException(short code, String message);
// Public Constants
 public static final short DOMSTRING_SIZE_ERR; =2
 public static final short HIERARCHY_REQUEST_ERR; =3
 public static final short INDEX_SIZE_ERR; =1
 public static final short INUSE_ATTRIBUTE_ERR; =10
 public static final short INVALID_ACCESS_ERR; =15
 public static final short INVALID_CHARACTER_ERR; =5
 public static final short INVALID_MODIFICATION_ERR; =13
 public static final short INVALID_STATE_ERR; =11
 public static final short NAMESPACE_ERR; =14
 public static final short NO_DATA_ALLOWED_ERR; =6
 public static final short NO_MODIFICATION_ALLOWED_ERR; =7
 public static final short NOT_FOUND_ERR; =8
 public static final short NOT_SUPPORTED_ERR; =9
 public static final short SYNTAX_ERR; =12
 5.0 public static final short TYPE_MISMATCH_ERR; =17
 5.0 public static final short VALIDATION_ERR; =16
 public static final short WRONG_DOCUMENT_ERR; =4
 // Public Instance Fields
 public short code;
}

Thrown By
Too many methods to list.

Name
DOMImplementation

Synopsis
This interface defines methods that are
global to an implementation of the DOM rather than specific to a
particular Document object. Obtain a reference to
the DOMImplementation object that represents your
implementation by calling the getImplementation()
method of any Document object.
createDocument() returns a new, empty
Document object which you can populate with nodes
that you create using the create methods defined
by the Document interface.

 hasFeature() allows you to test whether your DOM
implementation supports a specified version of a named feature, or
module, of the DOM standard. This method should return
true when you pass the feature name
“core” and the version
“1.0”, or when you pass the feature
names “core” or
“xml” and the version
“2.0”. The DOM standard includes a
number of optional modules, but the Java platform has not adopted the
subpackages of this package that define the API for those optional
modules, and therefore the DOM implementation bundled with a Java
implementation is not likely to support those modules.
The javax.xml.parsers.DocumentBuilder class
provides another way to obtain the
DOMImplementation object by calling its
getDOMImplementation() method. It also defines a
shortcut newDocument() method for creating empty
Document objects to populate.
public interface DOMImplementation {
// Public Instance Methods
 Document createDocument(String namespaceURI, String qualifiedName,
 DocumentType doctype) throws DOMException;
 DocumentType createDocumentType(String qualifiedName, String publicId,
 String systemId) throws DOMException;
5.0 Object getFeature(String feature, String version);
 boolean hasFeature(String feature, String version);
}

Returned By

 javax.xml.parsers.DocumentBuilder.getDOMImplementation(
), Document.getImplementation(),
DOMImplementationList.item(),
DOMImplementationSource.getDOMImplementation()

Name
DOMImplementationList

Synopsis
This Level 3 interface represents a fixed-size,
read-only list (or array) of DOMImplementation
objects. getLength() returns the list length, and
item() returns the
DOMImplementation at the specified index.
public interface DOMImplementationList {
// Public Instance Methods
 int getLength();
 DOMImplementation item(int index);
}

Returned By

 DOMImplementationSource.getDOMImplementationList(
)

Name
DOMImplementationSource

Synopsis
This Level 3 interface is designed for use
by DOM implementors. It is also used in the
org.w3c.dom.bootstrap package, which is beyond the
scope of this book.
public interface DOMImplementationSource {
// Public Instance Methods
 DOMImplementation getDOMImplementation(String features);
 DOMImplementationList getDOMImplementationList(String features);
}

Name
DOMLocator

Synopsis
This
 Level 3 interface represents the
location at which a DOMError occurred. The methods
return the location of the error as measured by various metrics (byte
offset, line and column number, etc.) and return
-1 or null if location
information is not available.
public interface DOMLocator {
// Public Instance Methods
 int getByteOffset();
 int getColumnNumber();
 int getLineNumber();
 Node getRelatedNode();
 String getUri();
 int getUtf16Offset();
}

Returned By

 DOMError.getLocation()

Name
DOMStringList

Synopsis
This
 Level 3 interface represents a
fixed-size, read-only list of
strings.
getLength() returns the length of the list, and
item() returns the String at
the specified index. contains() tests whether the
specified String is contained in the list. An
object of this type is returned by
DOMConfiguration.getParameterNames().
public interface DOMStringList {
// Public Instance Methods
 boolean contains(String str);
 int getLength();
 String item(int index);
}

Returned By

 DOMConfiguration.getParameterNames()

Name
Element

Synopsis
This interface represents an element (or tag)
in an XML document. getTagName() returns the
tagname of the element, including the namespace prefix if there is
one. When working with namespaces, you will probably prefer to use
the namespace-aware methods defined by the Node
interface. Use getNamespaceURI() to get the
namespace URI of the element, and use getLocalName(
) to the local name of the element within that namespace.
You can also use getPrefix() to query the
namespace prefix, or setPrefix() to change the
namespace prefix (this does not change the namespace URI).

 Element defines a getElementsByTagName(
) method and a corresponding namespace-aware
getElementsByTagNameNS() method, which behave
just like the methods of the same names on the
Document object, except that they search for named
elements only within the subtree rooted at this
Element.
The remaining methods of the Element interface are
for querying and setting attribute values, testing the existence of
an attribute, and removing an attribute from the
Element. There are a confusing number of methods
to perform these four basic attribute operations. If an
attribute-related method has “NS”
in its name, then it is namespace-aware. If it has
“Node” in its name, then it works
with Attr objects rather than with the simpler
string representation of the attribute value. Attributes in XML
documents may contain entity references. If your document may include
entity references in attribute values, then you may need to use the
Attr interface because the expansion of such an
entity reference can result in a subtree of nodes beneath the
Attr object. Whenver possible, however, it is much
easier to work with the methods that treat attribute values as plain
strings. Note also that in addition to the attribute methods defined
by the Element interface you can also obtain a
NamedNodeMap of Attr objects
with the getAttributes() method of the
Node interface.
Finally, note also that getAttribute() and
related methods and hasAttribute() and related
methods return the value of or test for the existance of both
explicitly specified attributes, and also attributes for which a
default value is specified in the document DTD. If you need to
determine whether an attribute was explicitly specified in the
document, obtain its Attr object, and use its
getSpecified() method.
[image: org.w3c.dom.Element]

Figure 21-9. org.w3c.dom.Element

public interface Element extends Node {
// Public Instance Methods
 String getAttribute(String name);
 Attr getAttributeNode(String name);
 Attr getAttributeNodeNS(String namespaceURI, String localName)
 throws DOMException;
 String getAttributeNS(String namespaceURI, String localName)
 throws DOMException;
 NodeList getElementsByTagName(String name);
 NodeList getElementsByTagNameNS(String namespaceURI, String localName)
 throws DOMException;
5.0 TypeInfo getSchemaTypeInfo();
 String getTagName();
 boolean hasAttribute(String name);
 boolean hasAttributeNS(String namespaceURI, String localName)
 throws DOMException;
 void removeAttribute(String name) throws DOMException;
 Attr removeAttributeNode(Attr oldAttr) throws DOMException;
 void removeAttributeNS(String namespaceURI, String localName)
 throws DOMException;
 void setAttribute(String name, String value) throws DOMException;
 Attr setAttributeNode(Attr newAttr) throws DOMException;
 Attr setAttributeNodeNS(Attr newAttr) throws DOMException;
 void setAttributeNS(String namespaceURI, String qualifiedName, String value)
 throws DOMException;
5.0 void setIdAttribute(String name, boolean isId) throws DOMException;
5.0 void setIdAttributeNode(Attr idAttr, boolean isId) throws DOMException;
5.0 void setIdAttributeNS(String namespaceURI, String localName, boolean isId)
 throws DOMException;
}

Returned By

 Attr.getOwnerElement(),
Document.{createElement(),
createElementNS(), getDocumentElement(
), getElementById()}

Name
Entity

Synopsis
This interface represents an entity defined in
an XML DTD. The name of the entity is specified by the
getNodeName() method inherited from the Node
interface. The entity content is represented by the child nodes of
the Entity node. The methods defined by this
interface return the public identifier and system identifier for
external entities, and the notation name for unparsed entities. Note
that Entity nodes and their children are not part
of the document tree (and the getParentNode()
method of an Entity always returns
null). Instead a document may contain one or more
references to an entity: see the EntityReference
interface.
Entities are defined in the DTD (document type definition) of a
document, either as part of an external DTD file, or as part of an
“internal subset” that defines
local entities that are specific to the current document. The
DocumentType interface has a getEntities(
) method that returns a NamedNodeMap
mapping entity names to Entity nodes. This is the
only way to obtain an Entity object: because they
are part of the DTD, Entity nodes never appear
within the document tree itself. Entity nodes and
all descendants of an Entity node are read-only
and cannot be edited or modified in any way.
[image: org.w3c.dom.Entity]

Figure 21-10. org.w3c.dom.Entity

public interface Entity extends Node {
// Public Instance Methods
 5.0 String getInputEncoding();
 String getNotationName();
 String getPublicId();
 String getSystemId();
5.0 String getXmlEncoding();
5.0 String getXmlVersion();
}

Name
EntityReference

Synopsis
This interface represents a reference from an
XML document to an entity defined in the document’s
DTD. Character entities and predefined entities such as
< are always expanded in XML documents and
do not create EntityReference nodes. Note also
that some XML parsers expand all entity references. Documents created
by such parsers do not contain EntityReference
nodes.
This interface defines no methods of its own. The
getNodeName() method of the
Node interface provides the name of the referenced
entity. The getEntities() method of the
DocumentType interface provides a way to look up
the Entity object associated with that name. Note
however, that the DocumentType may not contain an
Entity with the specified name (because, for
example, nonvalidating XML parsers are not required to parse the
external subset of the DTD.) In this case, the
EntityReference is a reference to a named entity
whose content is not known, and it has no children. On the other
hand, if the DocumentType does contain an
Entity node with the specified name, then the
child nodes of the EntityReference are a copy of
the child nodes of the Entity, and represent the
expansion of the entity. (The children of an
EntityReference may not be an exact copy of the
children of an Entity if the
entity’s expansion includes namespace prefixes that
are not bound to namespace URIs.)
Like Entity nodes,
EntityReference nodes and their descendants are
read-only and cannot be edited or modified.
[image: org.w3c.dom.EntityReference]

Figure 21-11. org.w3c.dom.EntityReference

public interface EntityReference extends Node {
}

Returned By

 Document.createEntityReference()

Name
NamedNodeMap

Synopsis
The NamedNodeMap
 interface defines a collection
of nodes that may be looked up by name or by namespace URI and local
name. It is unrelated to the java.util.Map
interface. Use getNamedItem() to look for and
return a node whose getNodeName() method returns
the specified value. Use getNamedItemNS() to look
for and return a node whose getNamespaceURI() and
getLocalName() methods return the specified
values. A NamedNodeMap is a mapping from names to
nodes, and does not order the nodes in any particular way.
Nevertheless, it does impose an arbitrary ordering on the nodes and
allow them to be looked up by index. Use getLength(
) to find out how many nodes are contained in the
NamedNodeMap, and use item()
to obtain the Node object at a specified index.
If a NamedNodeMap is not read-only, you can use
removeNamedItem() and removeNamedItemNS(
) to remove a named node from the map, and you can use
setNamedItem() and setNamedItemNS(
) to add a node to the map, mapping to it from its name or
its namespace URI and local name.

 NamedNodeMap objects are
“live,” which means that they
immediately reflect any changes to the document tree. For example, if
you obtain a NamedNodeMap that represents the
attributes of an element, and then add a new attribute to that
element, the new attribute is automatically available through the
NamedNodeMap: you do not need to obtain a new
NamedNodeMap to get the modified set of
attributes.

 NamedNodeMap is returned only by relatively
obscure methods of the DOM API. The most notable use is as the return
value of the getAttributes() method of
Node. It is usually easier to work with attributes
through the methods of the Element interface,
however. Two methods of DocumentType also return
read-only NamedNodeMap objects.
public interface NamedNodeMap {
// Public Instance Methods
 int getLength();
 Node getNamedItem(String name);
 Node getNamedItemNS(String namespaceURI, String localName) throws DOMException;
 Node item(int index);
 Node removeNamedItem(String name) throws DOMException;
 Node removeNamedItemNS(String namespaceURI, String localName) throws DOMException;
 Node setNamedItem(Node arg) throws DOMException;
 Node setNamedItemNS(Node arg) throws DOMException;
}

Returned By

 DocumentType.{getEntities(),
getNotations()}, Node.getAttributes(
)

Name
NameList

Synopsis
This
 Level 3 interface represnts a
fixed-size, read-only
list of element or attribute names
and their namespace URI. getLength() returns the
length of the list. getName() and
getNamespaceURI() return the name and namespace
at the specified index. contains() and
containsNS() test for membership in the list.
This interface is unused within the org.w3c.dom
package.
public interface NameList {
// Public Instance Methods
 boolean contains(String str);
 boolean containsNS(String namespaceURI, String name);
 int getLength();
 String getName(int index);
 String getNamespaceURI(int index);
}

Name
Node

Synopsis
All objects in a DOM document tree (including
the Document object itself) implement the
Node interface, which provides basic methods for
traversing and manipulating the tree.

 getParentNode() and getChildNodes(
) allow you to traverse up and down the document tree. You
can enumerate the children of a given node by looping through the
elements of the NodeList returned by
getChildNodes(), or by using
getFirstChild() and getNextSibling(
) (or getLastChild() and
getPreviousSibling() to loop backwards). It is
sometimes useful to call hasChildNodes() to
determine whether a node has children or not.
getOwnerDocument() returns the
Document node of which the node is a descendant or
with which it is associated. It provides a quick way to jump to the
root of the document tree.
Several methods allow you to add children to a tree or alter the list
of children. appendChild() adds a new child node
at the end of this nodes list of children. insertChild(
) inserts a node into this nodes list of children, placing
it immediately before a specified child node. removeChild(
) removes the specified node from this
node’s list of children. replaceChild(
) replaces one child node of this node with another node.
For all of these methods, if the node to be appended or inserted is
already part of the document tree, it is first removed from its
current parent. Use cloneNode() to produce a copy
of this node. Pass true if you want all
descendants of this node to be cloned as well.
Every object in a document tree implements the
Node interface, but also implements a more
specialized subinterface, such as Element or
Text. The getNodeType() method
provides an easy way to determine which subinterface a node
implements: the return value is one of the _NODE
constants defined by this class. You might use the return value of
getNodeType() in a switch
statement, for exmaple, to determine how to process a node of unknown
type.

 getNodeName() and getNodeValue(
) provide additional information about a node, but the
interpretation of the strings they return depends on the node type as
shown in the table below. Note that subinterfaces typically define
specialized methods (such as the getTagName()
method of Element and the getData(
) method of Text) for obtaining this
same information. Note also that unless a node is read-only, you can
use setNodeValue() to alter the value associated
with the node.
	
 Node type

 	
 Node name

 	
 Node value

	

 ELEMENT_NODE

 	
 The element s tag name

 	

 null

	

 ATTRIBUTE_NODE

 	
 The attribute name

 	
 The attribute value

	

 TEXT_NODE

 	
 #text

 	
 The text of the node

	

 CDATA_SECTION_NODE

 	
 #cdata-section

 	
 The text of the node

	

 ENTITY_REFERENCE_NODE

 	
 The name of the referenced entity

 	

 null

	

 ENTITY_NODE

 	
 The entity name

 	

 null

	

 PROCESSING_INSTRUCTION_NODE

 	
 The target of the PI

 	
 The remainder of the PI

	

 COMMENT_NODE

 	
 #comment

 	
 The text of the comment

	

 DOCUMENT_NODE

 	
 #document

 	

 null

	

 DOCUMENT_TYPE_NODE

 	
 The document type name

 	

 null

	

 DOCUMENT_FRAGMENT_NODE

 	
 #document-fragment

 	

 null

	

 NOTATION_NODE

 	
 The notation name

 	

 null

In documents that use namespaces, the getNodeName(
) method of a Element or
Attr node returns the qualified node name, which
may include a namespace prefix. In documents that use namespaces, you
may prefer to use the namespace-aware methods
getNamespaceURI(), getLocalName(
) and getPrefix().

 Element nodes may have a list of attributes, and
the Element interface defines a number of methods
for working with these attributes. In addition, however,
Node defines the hasAttributes(
) method to determine if a node has any attributes. If it
does, they can be retrieved with getAttributes().
Text content in an XML document is represented by
Text nodes, which have methods for manipulating
that textual content. The Node interface defines a
normalize() method which has the specialized
purpose of normalizing all descendants of a node by deleting empty
Text nodes and coalescing adjacent
Text nodes into a single combined node. Document
trees usually start off in this normalized form, but modifications to
the tree may result in non-normalized documents.
Most of the other interfaces in this package extend
Node. Document,
Element and Text are the most
commonly used.
public interface Node {
// Public Constants
 public static final short ATTRIBUTE_NODE; =2
 public static final short CDATA_SECTION_NODE; =4
 public static final short COMMENT_NODE; =8
 public static final short DOCUMENT_FRAGMENT_NODE; =11
 public static final short DOCUMENT_NODE; =9
 5.0 public static final short DOCUMENT_POSITION_CONTAINED_BY; =16
 5.0 public static final short DOCUMENT_POSITION_CONTAINS; =8
 5.0 public static final short DOCUMENT_POSITION_DISCONNECTED; =1
 5.0 public static final short DOCUMENT_POSITION_FOLLOWING; =4
 5.0 public static final short DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC; =32
 5.0 public static final short DOCUMENT_POSITION_PRECEDING; =2
 public static final short DOCUMENT_TYPE_NODE; =10
 public static final short ELEMENT_NODE; =1
 public static final short ENTITY_NODE; =6
 public static final short ENTITY_REFERENCE_NODE; =5
 public static final short NOTATION_NODE; =12
 public static final short PROCESSING_INSTRUCTION_NODE; =7
 public static final short TEXT_NODE; =3
 // Public Instance Methods
 Node appendChild(Node newChild) throws DOMException;
 Node cloneNode(boolean deep);
5.0 short compareDocumentPosition(Node other) throws DOMException;
 NamedNodeMap getAttributes();
5.0 String getBaseURI();
 NodeList getChildNodes();
5.0 Object getFeature(String feature, String version);
 Node getFirstChild();
 Node getLastChild();
 String getLocalName();
 String getNamespaceURI();
 Node getNextSibling();
 String getNodeName();
 short getNodeType();
 String getNodeValue() throws DOMException;
 Document getOwnerDocument();
 Node getParentNode();
 String getPrefix();
 Node getPreviousSibling();
5.0 String getTextContent() throws DOMException;
5.0 Object getUserData(String key);
 boolean hasAttributes();
 boolean hasChildNodes();
 Node insertBefore(Node newChild, Node refChild) throws DOMException;
5.0 boolean isDefaultNamespace(String namespaceURI);
5.0 boolean isEqualNode(Node arg);
5.0 boolean isSameNode(Node other);
 boolean isSupported(String feature, String version);
5.0 String lookupNamespaceURI(String prefix);
5.0 String lookupPrefix(String namespaceURI);
 void normalize();
 Node removeChild(Node oldChild) throws DOMException;
 Node replaceChild(Node newChild, Node oldChild) throws DOMException;
 void setNodeValue(String nodeValue) throws DOMException;
 void setPrefix(String prefix) throws DOMException;
5.0 void setTextContent(String textContent) throws DOMException;
5.0 Object setUserData(String key, Object data, UserDataHandler handler);
}

Implementations

 Attr, CharacterData,
Document, DocumentFragment,
DocumentType, Element,
Entity, EntityReference,
Notation, ProcessingInstruction

Passed To
Too many methods to list.

Returned By
Too many methods to list.

Name
NodeList

Synopsis
This interface represents a read-only ordered
collection of nodes that can be interated through.
getLength() returns the number of nodes in the
list, and item() returns the
Node at a specified index in the list (the index
of the first node is 0). The elements of a
NodeList are always valid Node
objects: a NodeList never contains
null elements.
Note that NodeList objects are
“live”—they are not static but immediately
reflect changes to the document tree. For example, if you have a
NodeList that represents the children of a
specific node, and you then delete one of those children, the child
will be removed from your NodeList. Be careful
when looping through the elements of a NodeList if
the body of your loop makes changes to the document tree (such as
deleting nodes) that may affect the contents of the
NodeList!
public interface NodeList {
// Public Instance Methods
 int getLength();
 Node item(int index);
}

Returned By

 Document.{getElementsByTagName(),
getElementsByTagNameNS()},
Element.{getElementsByTagName(),
getElementsByTagNameNS()},
Node.getChildNodes()

Name
Notation

Synopsis
This interface represents a notation declared
in the DTD of an XML document. In XML notations are used to specify
the format of an unparsed entity or to formally declare a processing
instruction target.
The getNodeName() method of the
Node interface returns the name of the notation.
getSystemId() and getPublicId(
) return the system identifier and the public identifier
specified in the notation declaration. The getNotations(
) method of the DocumentType interface
returns a NamedNodeMap of
Notation objects declared in the DTD and provides
a way to look up Notation objects by notation
name.
Because notations appear in the DTD and not the document itself,
Notation nodes are never part of the document
tree, and the getParentNode() method always
returns null. Similarly, since XML notation
declarations never have any content, a Notation
node never has children and getChildNodes()
always returns null. Notation objects are
read-only and cannot be modified in any way.
[image: org.w3c.dom.Notation]

Figure 21-12. org.w3c.dom.Notation

public interface Notation extends Node {
// Public Instance Methods
 String getPublicId();
 String getSystemId();
}

Name
ProcessingInstruction

Synopsis
This interface represents an XML processing
instruction (or PI) which specifies an arbitrary string of data to a
named target processor. The getTarget() and
getData() methods return the target and data
portions of a PI, and these values can also be obtained using the
getNodeName() and getNodeValue(
) methods of the Node interface. You can
alter the data portion of a PI with setData() or
with the setNodeValue() method of
Node. ProcessingInstruction
nodes never have children.
[image: org.w3c.dom.ProcessingInstruction]

Figure 21-13. org.w3c.dom.ProcessingInstruction

public interface ProcessingInstruction extends Node {
// Public Instance Methods
 String getData();
 String getTarget();
 void setData(String data) throws DOMException;
}

Returned By

 Document.createProcessingInstruction()

Name
Text

Synopsis
A Text node represents a run of plain text that does
not contain any XML markup. Plain text appears within XML elements
and attributes, and Text nodes typically appear as
children of Element and Attr
nodes. Text nodes inherit from
CharacterData, and the textual content of a
Text node is available through the
getData() method inherited from
CharacterData or through the
getNodeValue() method inherited from
Node.

 Text nodes may be manipulated using any of the
methods inherited from CharacterData. The
Text interface defines one method of its own:
splitText() splits a Text node
at the specified character position. The method changes the original
node so that it contains only the text up to the specified position.
Then it creates a new Text node that contains the
text from the specified position on and inserts that new node into
the document tree immediately after the original one. The
Node.normalize() method reverses this process by
deleting emty Text nodes and merging adjacent
Text nodes into a single node.
Text nodes never have children.
[image: org.w3c.dom.Text]

Figure 21-14. org.w3c.dom.Text

public interface Text extends CharacterData {
// Public Instance Methods
 5.0 String getWholeText();
5.0 boolean isElementContentWhitespace();
5.0 Text replaceWholeText(String content) throws DOMException;
 Text splitText(int offset) throws DOMException;
}

Implementations

 CDATASection

Returned By

 Document.createTextNode()

Name
TypeInfo

Synopsis
This
 Level 3 interface represents
information about the type of an Element or
Attr node. Obtain a TypeInfo
object by calling the getSchemaTypeInfo() method
of an Element or Attr. Note
that TypeInfo information is only available if the
document has been validated against a W3C XML Schema.
The methods of TypeInfo return the name and
namespace of the element or attribute type. isDerivedFrom(
) determines if the type is a derivative of another named
type. The constants defined by the interface specify different
derivation techniques for types.
See also java.xml.validation.TypeInfoProvider.
public interface TypeInfo {
// Public Constants
 public static final int DERIVATION_EXTENSION; =2
 public static final int DERIVATION_LIST; =8
 public static final int DERIVATION_RESTRICTION; =1
 public static final int DERIVATION_UNION; =4
 // Public Instance Methods
 String getTypeName();
 String getTypeNamespace();
 boolean isDerivedFrom(String typeNamespaceArg, String typeNameArg, int derivationMethod);
}

Returned By

 javax.xml.validation.TypeInfoProvider.{getAttributeTypeInfo(
), getElementTypeInfo()},
Attr.getSchemaTypeInfo(),
Element.getSchemaTypeInfo()

Name
UserDataHandler

Synopsis
This
 Level 3 interface defines a handler
that is invoked when a node on which user-specified data has been
registered is adopted, cloned, deleted, imported or renamed. Register
an object that implements this interface in the call to
Node.setUserData().
public interface UserDataHandler {
// Public Constants
 public static final short NODE_ADOPTED; =5
 public static final short NODE_CLONED; =1
 public static final short NODE_DELETED; =3
 public static final short NODE_IMPORTED; =2
 public static final short NODE_RENAMED; =4
 // Public Instance Methods
 void handle(short operation, String key, Object data, Node src, Node dst);
}

Passed To

 Node.setUserData()

Chapter 22. org.xml.sax and Subpackages

 This chapter documents the
org.xml.sax package and its subpackages.
org.xml.sax defines the Simplified API for XML, or
SAX, a de facto standard for parsing XML documents. The
org.xml.sax.ext package defines optional
extensions to the SAX API, and the
org.xml.sax.helpers package defines helper classes
that are often useful with SAX.
These packages were added in Java 1.4 as “endorsed
standards.” This means that they are part of the
Java platform, but are not defined by Sun, which is why they have the
“org.xml” prefix.

Name
Package org.xml.sax

Synopsis
This
 is the core package for SAX (Simple API
for XML) parsing of XML documents. SAX is an
“event-driven” API: a SAX parser
reads an XML document and generates a stream of “SAX
events” to describe the content of the document.
These “events” are actually method
calls made on one or more handler objects that the application has
registered with the parser. The XMLReader
interface defines the API that must be implemented by a SAX parser.
ContentHandler, ErrorHandler,
EntityResolver, and DTDHandler
are interfaces that define handler objects. An application registers
objects that implement one or more of these interfaces with the
XMLReader.
This package defines both the SAX1 and SAX2 interfaces. The
AttributesList, DocumentHandler
and Parser interfaces, as well as the
HandlerBase class are part of the SAX1 API and are
now deprecated in favor of Attributes,
ContentHandler, XMLReader, and
org.xml.sax.helpers.DefaultHandler.

Interfaces
public interface AttributeList;
public interface Attributes;
public interface ContentHandler;
public interface DocumentHandler;
public interface DTDHandler;
public interface EntityResolver;
public interface ErrorHandler;
public interface Locator;
public interface Parser;
public interface XMLFilter extends XMLReader;
public interface XMLReader;

Classes
public class HandlerBase implements DocumentHandler, DTDHandler, EntityResolver, ErrorHandler;
public class InputSource;

Exceptions
public class SAXException extends Exception;
 public class SAXNotRecognizedException extends SAXException;
 public class SAXNotSupportedException extends SAXException;
 public class SAXParseException extends SAXException;

Name
AttributeList

Synopsis
This interface is part of the SAX1 API and has
been deprecated in favor of the SAX2 Attributes
interface, which supports XML namespaces.
public interface AttributeList {
// Public Instance Methods
 int getLength();
 String getName(int i);
 String getType(String name);
 String getType(int i);
 String getValue(String name);
 String getValue(int i);
}

Implementations

 org.xml.sax.helpers.AttributeListImpl

Passed To

 DocumentHandler.startElement(),
HandlerBase.startElement(),
org.xml.sax.helpers.AttributeListImpl.{AttributeListImpl(
), setAttributeList()},
org.xml.sax.helpers.ParserAdapter.startElement()

Name
Attributes

Synopsis
This interface represents a list of attributes
of an XML element and includes information about the attribute names,
types, and values. If the SAX parser has read a DTD or schema for the
document, this list of attributes will include attributes that are
not explicitly specified in the document but which have a default
value specified in the DTD or schema.
The most commonly used method is getValue() which
returns the value of a named attribute (there is also a version of
this method that returns the value of a numbered attribute; it is
discussed later). If the SAX parser is not processing namespaces, you
can use the one-argument version of getValue().
Otherwise, use the two argument version to specify the URI that
uniquely identifies the namespace, and the “local
name” of the desired attribute within that namespace
. The getType() methods are similar, except that
they return the type of the named attribute, rather than its value.
Note that getType() can only return useful
information if the parser has read a DTD or schema for the document
and knows the type of each attribute.
In XML documents the attributes of a tag can appear in any order.
Attributes objects make no attempt to preserve the
document source order of the tags. Nevertheless, it does impose an
ordering on the attributes so that you can loop through them.
getLength() returns the number of elements in the
list. There are versions of getValue() and
getType() that return the value and type of the
attribute at a specified position in the list. You can also query the
name of the attribute at a specified position, although the way you
do this depends on whether the parser handles namespaces or not. If
it does not process namespaces, use getQName() to
get the name at a specified position. Otherwise, use getURI(
) and getLocalName() to obtain the URI
and local name pair for the numbered attribute. Note that
getQName() may return the empty string when
namespace processing is on, and getLocalName()
may return the empty string if namespace processing is off.
public interface Attributes {
// Public Instance Methods
 int getIndex(String qName);
 int getIndex(String uri, String localName);
 int getLength();
 String getLocalName(int index);
 String getQName(int index);
 String getType(String qName);
 String getType(int index);
 String getType(String uri, String localName);
 String getURI(int index);
 String getValue(String qName);
 String getValue(int index);
 String getValue(String uri, String localName);
}

Implementations

 org.xml.sax.ext.Attributes2,
org.xml.sax.helpers.AttributesImpl

Passed To

 org.xml.sax.ContentHandler.startElement(),
org.xml.sax.ext.Attributes2Impl.{Attributes2Impl(
), setAttributes()},
org.xml.sax.helpers.AttributesImpl.{AttributesImpl(
), setAttributes()},
org.xml.sax.helpers.DefaultHandler.startElement(
), org.xml.sax.helpers.XMLFilterImpl.startElement(
),
org.xml.sax.helpers.XMLReaderAdapter.startElement(
)

Name
ContentHandler

Synopsis
This interface is the key one for XML
parsing with the SAX API. An XMLReader tells your
application about the content of the XML document it is parsing by
invoking the various methods of the ContentHandler
interface. In order to parse documents with SAX, you must implement
this interface to define methods that take whatever actions are
necessary when they are invoked by the parser. Because this interface
is so critical to the SAX API, the methods are explained individually
below:
	
 setDocumentLocator()

	The parser usually calls this method (but is not required to do so)
before calling any others to pass a Locator object
to the ContentHandler. Locator
defines methods that return the current line and column number of the
document being parsed, and if the parser supplies a
Locator object, it guarantees that its methods
will return valid values during any other
ContentHandler invocations that follow. A
ContentHandler can call the methods of this object
when printing error messages, for example.

	
 startDocument(), endDocument()

	The parser calls these methods once, at the beginning and end of
parsing. startDocument() is the first method
called except for the optional setDocumentLocator(
) call, and endDocument() is always the
last method call on a ContentHandler.

	
 startElement(), endElement()

	The parser calls these methods for each start tag and end tag it
encounters. Both are passed three arguments describing the name of
the tag: if the parser is doing namespace processing, then the first
two arguments of both methods return the URI that uniquely identifies
the namespace, and the local name of the tag within that namespace.
If the parser is not doing namespace parsing, then the third argument
provides the full name of the tag. In addition to these tag name
arguments, startElement() is also passed an
Attributes object that describes the attributes of
the tag.

	
 characters()

	This method is invoked to tell the application that the parser has
found a string of text in the XML document. The text is contained
within the specified character array, at the specified start
position, and continuing for the specified number of characters.

	
 ignorableWhitespace()

	This method is like characters(), but parsers may
use it to tell the application about “ignorable
whitespace” in XML element content.

	
 processingInstruction()

	The parser calls this method to tell the application that it has
encountered an XML Processing Instruction (or PI) with the specified
target and data strings.

	
 skippedEntity()

	If the XML parser does encounters an entity in the document, but does
not expand and parse its content, then it tells the application about
it by passing the name of the entity to this method.

	
 startPrefixMapping(), endPrefixMapping()

	These methods to tell the application about a namespace mapping from
the specified prefix to the specified namespace URI.

 DTDHandler is another interface like
ContentHandler. An application can implement this
interface to receive notification of DTD-related events from the
parser. Similarly, the org.xml.sax.ext package
defines two “extension” interfaces
that can be used (if the parser supports these extensions) to obtain
even more information about the document (such as comments and CDATA
sections) and about the DTD (including the full set of element,
attribute and entity declarations). The
org.xml.sax.helpers.DefaultHandler class is a
useful one. It implements ContentHandler and three
other interfaces that are commonly used with the
XMLReader class and provides empty implementations
of all their methods. Applications can subclass
DefaultHandler only need to override the methods
they care about. This is usually more convenient that implementing
the interfaces directly.
public interface ContentHandler {
// Public Instance Methods
 void characters(char[] ch, int start, int length)
 throws SAXException;
 void endDocument() throws SAXException;
 void endElement(String uri, String localName, String qName)
 throws SAXException;
 void endPrefixMapping(String prefix) throws SAXException;
 void ignorableWhitespace(char[] ch, int start, int length)
 throws SAXException;
 void processingInstruction(String target, String data)
 throws SAXException;
 void setDocumentLocator(Locator locator);
 void skippedEntity(String name) throws SAXException;
 void startDocument() throws SAXException;
 void startElement(String uri, String localName, String qName,
 org.xml.sax.Attributes atts) throws SAXException;
 void startPrefixMapping(String prefix, String uri)
 throws SAXException;
}

Implementations

 javax.xml.transform.sax.TemplatesHandler,
javax.xml.transform.sax.TransformerHandler,
javax.xml.validation.ValidatorHandler,
org.xml.sax.helpers.DefaultHandler,
org.xml.sax.helpers.XMLFilterImpl,
org.xml.sax.helpers.XMLReaderAdapter

Passed To

 javax.xml.transform.sax.SAXResult.{SAXResult(),
setHandler()},
javax.xml.validation.ValidatorHandler.setContentHandler(
), XMLReader.setContentHandler(),
org.xml.sax.helpers.ParserAdapter.setContentHandler(
),
org.xml.sax.helpers.XMLFilterImpl.setContentHandler(
)

Returned By

 javax.xml.transform.sax.SAXResult.getHandler(),
javax.xml.validation.ValidatorHandler.getContentHandler(
), XMLReader.getContentHandler(),
org.xml.sax.helpers.ParserAdapter.getContentHandler(
),
org.xml.sax.helpers.XMLFilterImpl.getContentHandler(
)

Name
DocumentHandler

Synopsis
This interface is part of the SAX1 API and has
been deprecated in favor of the SAX2
ContentHandler interface, which supports XML
namespaces.
public interface DocumentHandler {
// Public Instance Methods
 void characters(char[] ch, int start, int length) throws SAXException;
 void endDocument() throws SAXException;
 void endElement(String name) throws SAXException;
 void ignorableWhitespace(char[] ch, int start, int length) throws SAXException;
 void processingInstruction(String target, String data) throws SAXException;
 void setDocumentLocator(Locator locator);
 void startDocument() throws SAXException;
 void startElement(String name, AttributeList atts) throws SAXException;
}

Implementations

 HandlerBase,
org.xml.sax.helpers.ParserAdapter

Passed To

 Parser.setDocumentHandler(),
org.xml.sax.helpers.XMLReaderAdapter.setDocumentHandler(
)

Name
DTDHandler

Synopsis

 This interface defines methods that an
application can implement in order to receive notification from a
XMLReader about notation and unparsed entity
declarations in the DTD of an XML document. Notations and unparsed
entities are two of the most obscure features of XML, and they (and
this interface) are not frequently used. To use a
DTDHandler, define a class that implements the
interface, (or simply subclass the helper class
org.xml.sax.helpers.DefaultHandler) and pass an
instance of that class to the setDTDHandler()
method of an XMLReader. Then, if the parser
encounters any notation or unparsed entity declarations in the DTD of
the document, it will invoke the notationDecl()
or unparsedEntityDecl() method that you have
supplied. Unparsed entities can appear later in a document as the
value of an attribute, so if your application cares about them, it
should somehow make a note of the entity name and system id for use
later.
public interface DTDHandler {
// Public Instance Methods
 void notationDecl(String name, String publicId, String systemId)
 throws SAXException;
 void unparsedEntityDecl(String name, String publicId, String systemId,
 String notationName) throws SAXException;
}

Implementations

 javax.xml.transform.sax.TransformerHandler,
HandlerBase,
org.xml.sax.helpers.DefaultHandler,
org.xml.sax.helpers.XMLFilterImpl

Passed To

 Parser.setDTDHandler(),
XMLReader.setDTDHandler(),
org.xml.sax.helpers.ParserAdapter.setDTDHandler(
),
org.xml.sax.helpers.XMLFilterImpl.setDTDHandler(
),
org.xml.sax.helpers.XMLReaderAdapter.setDTDHandler(
)

Returned By

 XMLReader.getDTDHandler(),
org.xml.sax.helpers.ParserAdapter.getDTDHandler(
),
org.xml.sax.helpers.XMLFilterImpl.getDTDHandler()

Name
EntityResolver

Synopsis
An application can implement this interface
to help the parser resolve external entities, if required. If you
pass an EntityResolver instance to the
setEntityResolver() method of an
XMLReader, then the parser will call the
resolveEntity() method whenever it needs to read
an external entity. This method should use the public identifier or
system identifier to return an InputSource that
the parser can use to read the content of the external entity. If the
external entity includes a valid system identifier, then the parser
can read it directly without the need for an
EntityResolver, but this interface is still useful
for mapping network URLs to locally cached copies, or for mapping
public identifiers to local files, for example. The helper class
org.xml.sax.helpers.DefaultHandler includes a stub
implementation of this interface, so if you subclass
DefaultHandler you can override its
resolveEntity() method.
public interface EntityResolver {
// Public Instance Methods
 InputSource resolveEntity(String publicId, String systemId)
 throws SAXException, java.io.IOException;
}

Implementations

 HandlerBase,
org.xml.sax.ext.EntityResolver2,
org.xml.sax.helpers.DefaultHandler,
org.xml.sax.helpers.XMLFilterImpl

Passed To

 javax.xml.parsers.DocumentBuilder.setEntityResolver(
), Parser.setEntityResolver(),
XMLReader.setEntityResolver(),
org.xml.sax.helpers.ParserAdapter.setEntityResolver(
),
org.xml.sax.helpers.XMLFilterImpl.setEntityResolver(
),
org.xml.sax.helpers.XMLReaderAdapter.setEntityResolver(
)

Returned By

 XMLReader.getEntityResolver(),
org.xml.sax.helpers.ParserAdapter.getEntityResolver(
),
org.xml.sax.helpers.XMLFilterImpl.getEntityResolver(
)

Name
ErrorHandler

Synopsis
Before parsing an XML document, an application
should provide an implementation of this interface to the
XMLReader by calling the setErrorHandler(
) method of the XMLReader. If the reader
needs to issue a warning or report an error or fatal error, it will
call the appropriate method of the ErrorHandler
object you supplied. The error() method is used
to report recoverable errors, such as document validity problems. The
parser continues parsing after calling error().
The fatalError() method is used to report
nonrecoverable errors, such as well-formedness problems. The parser
may not continue parsing after calling fatalError(
). An ErrorHandler object may respond to
warnings, errors, and fatal errors however it likes, and may throw
exceptions from these methods.
Instead of implementing this interface directly, you may also
subclass the helper class
org.xml.sax.helpers.DefaultHandler and override
the error reporting methods it provides. The warning(
) and error() methods of a
DefaultHandler do nothing, and the
fatalError() method throws the
SAXParseException object that was passed to it.
public interface ErrorHandler {
// Public Instance Methods
 void error(SAXParseException exception) throws SAXException;
 void fatalError(SAXParseException exception) throws SAXException;
 void warning(SAXParseException exception) throws SAXException;
}

Implementations

 HandlerBase,
org.xml.sax.helpers.DefaultHandler,
org.xml.sax.helpers.XMLFilterImpl

Passed To

 javax.xml.parsers.DocumentBuilder.setErrorHandler(
),
javax.xml.validation.SchemaFactory.setErrorHandler(
), javax.xml.validation.Validator.setErrorHandler(
),
javax.xml.validation.ValidatorHandler.setErrorHandler(
), Parser.setErrorHandler(),
XMLReader.setErrorHandler(),
org.xml.sax.helpers.ParserAdapter.setErrorHandler(
),
org.xml.sax.helpers.XMLFilterImpl.setErrorHandler(
),
org.xml.sax.helpers.XMLReaderAdapter.setErrorHandler(
)

Returned By

 javax.xml.validation.SchemaFactory.getErrorHandler(
), javax.xml.validation.Validator.getErrorHandler(
),
javax.xml.validation.ValidatorHandler.getErrorHandler(
), XMLReader.getErrorHandler(),
org.xml.sax.helpers.ParserAdapter.getErrorHandler(
),
org.xml.sax.helpers.XMLFilterImpl.getErrorHandler(
)

Name
HandlerBase

Synopsis
This class is part of the SAX1 API and has been
deprecated in favor of the SAX2
org.xml.sax.helpers.DefaultHandler class.
[image: org.xml.sax.HandlerBase]

Figure 22-1. org.xml.sax.HandlerBase

public class HandlerBase implements DocumentHandler, DTDHandler, EntityResolver, ErrorHandler {
// Public Constructors
 public HandlerBase();
// Methods Implementing DocumentHandler
 public void characters(char[] ch, int start, int length)
 throws SAXException; empty
 public void endDocument() throws SAXException; empty
 public void endElement(String name) throws SAXException; empty
 public void ignorableWhitespace(char[] ch, int start, int length)
 throws SAXException; empty
 public void processingInstruction(String target, String data)
 throws SAXException; empty
 public void setDocumentLocator(Locator locator); empty
 public void startDocument() throws SAXException; empty
 public void startElement(String name, AttributeList attributes)
 throws SAXException; empty
 // Methods Implementing DTDHandler
 public void notationDecl(String name, String publicId, String systemId); empty
 public void unparsedEntityDecl(String name, String publicId, String systemId,
 String notationName); empty
 // Methods Implementing EntityResolver
 public InputSource resolveEntity(String publicId, String systemId)
 throws SAXException; constant
 // Methods Implementing ErrorHandler
 public void error(SAXParseException e) throws SAXException; empty
 public void fatalError(SAXParseException e) throws SAXException;
 public void warning(SAXParseException e) throws SAXException; empty
}

Passed To

 javax.xml.parsers.SAXParser.parse()

Name
InputSource

Synopsis
This simple class describes a source of input
for an XMLReader. An
InputSource object can be passed to the
parse() method of XMLReader,
and is also the return value of the
EntityResolver.resolveEntity() method.
Create an InputSource() with one of the
constructor methods, specifying the system identifier (a URL) of the
file to be parsed, or specifying a byte or character stream that the
parser should read the document from. In addition to calling the
constructor, you may also want to call setSystemId(
) to specify and/or setPublicId() to
provide identifiers for the document being parsed. Having a filename
or URL is useful if an error arises, and your
ErrorHandler object needs to print an error
message, for example. If you specify the document to parse as a URL
or as a byte stream, you can also call setEncoding(
) to specify the character encoding of the document. The
parser will use this encoding value if you supply it, but XML
documents are supposed to describe their own encoding in the
<?xml?> declaration, so the parser ought to
be able to determine the encoding of the document even if you do not
call setEncoding().
This class allows you to specify more than one input source. The
XMLReader will first call
getCharacterStream() and use the returned
Reader if there is one. If that method returns
false, then it calls getByteStream(
) and uses the InputStream it returns.
Finally, if no character or byte stream is found, then the parser
will call getSystemId() and will attempt to read
an XML document from the returned URL.
An XMLReader will never use any of the
set() methods to modify the state of an
InputSource object.
public class InputSource {
// Public Constructors
 public InputSource();
 public InputSource(java.io.Reader characterStream);
 public InputSource(java.io.InputStream byteStream);
 public InputSource(String systemId);
// Public Instance Methods
 public java.io.InputStream getByteStream(); default:null
 public java.io.Reader getCharacterStream(); default:null
 public String getEncoding(); default:null
 public String getPublicId(); default:null
 public String getSystemId(); default:null
 public void setByteStream(java.io.InputStream byteStream);
 public void setCharacterStream(java.io.Reader characterStream);
 public void setEncoding(String encoding);
 public void setPublicId(String publicId);
 public void setSystemId(String systemId);
}

Passed To

 javax.xml.parsers.DocumentBuilder.parse(),
javax.xml.parsers.SAXParser.parse(),
javax.xml.transform.sax.SAXSource.{SAXSource(),
setInputSource()},
javax.xml.xpath.XPath.evaluate(),
javax.xml.xpath.XPathExpression.evaluate(),
Parser.parse(), XMLReader.parse(
), org.xml.sax.helpers.ParserAdapter.parse(
), org.xml.sax.helpers.XMLFilterImpl.parse(
), org.xml.sax.helpers.XMLReaderAdapter.parse(
)

Returned By

 javax.xml.transform.sax.SAXSource.{getInputSource(
), sourceToInputSource()},
EntityResolver.resolveEntity(),
HandlerBase.resolveEntity(),
org.xml.sax.ext.DefaultHandler2.{getExternalSubset(
), resolveEntity()},
org.xml.sax.ext.EntityResolver2.{getExternalSubset(
), resolveEntity()},
org.xml.sax.helpers.DefaultHandler.resolveEntity(
),
org.xml.sax.helpers.XMLFilterImpl.resolveEntity()

Name
Locator

Synopsis
A XMLReader
 may pass an object that implements this
interface to the application by calling the
setDocumentLocator() method of the
application’s ContentHandler
object before it invokes any other methods of that
ContentHandler. The
ContentHandler can use methods of this
Locator object from within any of the other
methods called by the parser in order to determine what document the
parser is parsing and what line number and column number it is
parsing at. This information is particularly useful when displaying
error or warning messages, for example. getSystemId(
) and getPublicId() return the system
and public identifiers of the document being parsed, if this
information is available to the parser, and otherwise return
null. getLineNumber() and
getColumnNumber() return the line number and
column number of the next character that the parser will read (line
and column numbers are numbered starting at 1, not at 0). The parser
is allowed to return an approximate value from these methods, or to
return -1 if it does not track line and column numbers.
public interface Locator {
// Public Instance Methods
 int getColumnNumber();
 int getLineNumber();
 String getPublicId();
 String getSystemId();
}

Implementations

 org.xml.sax.ext.Locator2,
org.xml.sax.helpers.LocatorImpl

Passed To

 org.xml.sax.ContentHandler.setDocumentLocator(),
DocumentHandler.setDocumentLocator(),
HandlerBase.setDocumentLocator(),
SAXParseException.SAXParseException(),
org.xml.sax.ext.Locator2Impl.Locator2Impl(),
org.xml.sax.helpers.DefaultHandler.setDocumentLocator(
), org.xml.sax.helpers.LocatorImpl.LocatorImpl(
),
org.xml.sax.helpers.ParserAdapter.setDocumentLocator(
),
org.xml.sax.helpers.XMLFilterImpl.setDocumentLocator(
),
org.xml.sax.helpers.XMLReaderAdapter.setDocumentLocator(
)

Name
Parser

Synopsis
This interface is part of the SAX1 API and has
been deprecated in favor of the SAX2 XMLReader
interface, which supports XML namespaces.
public interface Parser {
// Public Instance Methods
 void parse(InputSource source) throws SAXException, java.io.IOException;
 void parse(String systemId) throws SAXException, java.io.IOException;
 void setDocumentHandler(DocumentHandler handler);
 void setDTDHandler(DTDHandler handler);
 void setEntityResolver(EntityResolver resolver);
 void setErrorHandler(ErrorHandler handler);
 void setLocale(java.util.Locale locale) throws SAXException;
}

Implementations

 org.xml.sax.helpers.XMLReaderAdapter

Passed To

 org.xml.sax.helpers.ParserAdapter.ParserAdapter()

Returned By

 javax.xml.parsers.SAXParser.getParser(),
org.xml.sax.helpers.ParserFactory.makeParser()

Name
SAXException

Synopsis
Signals a
problem while parsing an XML document. This class serves as the
general superclass for more specific types of SAX exceptions. The
parse() method of an XMLReader
can throw an exception of this type. The application can also throw a
SAXException from any of the handler methods (of
ContentHandler and ErrorHandler
for example) invoked by the parser.
[image: org.xml.sax.SAXException]

Figure 22-2. org.xml.sax.SAXException

public class SAXException extends Exception {
// Public Constructors
 5.0 public SAXException();
 public SAXException(String message);
 public SAXException(Exception e);
 public SAXException(String message, Exception e);
// Public Instance Methods
 public Exception getException(); default:null
 // Public Methods Overriding Throwable
 public String getMessage(); default:null
 public String toString();
}

Subclasses

 SAXNotRecognizedException,
SAXNotSupportedException,
SAXParseException

Thrown By
Too many methods to list.

Name
SAXNotRecognizedException

Synopsis
Signals
that
the parser does not recognize a feature or property name. See the
setFeature() and setProperty(
) methods of XMLReader.
[image: org.xml.sax.SAXNotRecognizedException]

Figure 22-3. org.xml.sax.SAXNotRecognizedException

public class SAXNotRecognizedException extends SAXException {
// Public Constructors
 5.0 public SAXNotRecognizedException();
 public SAXNotRecognizedException(String message);
}

Thrown By
Too many methods to list.

Name
SAXNotSupportedException

Synopsis
Signals
that
the parser does recognizes, but does not support a named feature or
property. The property or feature may be entirely unsupported, or it
may be read-only, in which case this exception will be thrown by the
setFeature() or setProperty()
method, but not by the corresponding getFeature()
or getProperty() method of
XMLReader.
[image: org.xml.sax.SAXNotSupportedException]

Figure 22-4. org.xml.sax.SAXNotSupportedException

public class SAXNotSupportedException extends SAXException {
// Public Constructors
 5.0 public SAXNotSupportedException();
 public SAXNotSupportedException(String message);
}

Thrown By
Too many methods to list.

Name
SAXParseException

Synopsis
An
exception
of this type signals an XML parsing error or warning.
SAXParseException includes methods to return the
system and public identifiers of the document in which the error or
warning occurred, as well as methods to return the approximate line
number and column number at which it occurred. A parser is not
required to obtain or track all of this information, and the methods
may return null or -1 if the information is not
available. (See Locator for more information.)
Exceptions of this type are usually thrown by the application from
the methods of the ErrorHandler interface. The
parser never throws a SAXParseException itself,
but does pass an appropriately initialized instance of this class to
each of the ErrorHandler methods. It is up to the
application’s ErrorHandler object
to decide whether to actually throw the exception, however.
[image: org.xml.sax.SAXParseException]

Figure 22-5. org.xml.sax.SAXParseException

public class SAXParseException extends SAXException {
// Public Constructors
 public SAXParseException(String message, Locator locator);
 public SAXParseException(String message, Locator locator, Exception e);
 public SAXParseException(String message, String publicId, String systemId,
 int lineNumber, int columnNumber);
 public SAXParseException(String message, String publicId, String systemId,
 int lineNumber, int columnNumber,
 Exception e);
// Public Instance Methods
 public int getColumnNumber();
 public int getLineNumber();
 public String getPublicId();
 public String getSystemId();
}

Passed To

 ErrorHandler.{error(), fatalError(
), warning()},
HandlerBase.{error(), fatalError(
), warning()},
org.xml.sax.helpers.DefaultHandler.{error(),
fatalError(), warning()},
org.xml.sax.helpers.XMLFilterImpl.{error(),
fatalError(), warning()}

Name
XMLFilter

Synopsis
An XMLFilter
 extends
XMLReader and behaves like an
XMLReader except that instead of parsing a
document itself, it filters the SAX events provided by a
“parent”
XMLReader object. Use the setParent(
) method to link an XMLFilter object to
the XMLReader that it is to serve as a filter for.
An XMLFilter serves as both a source of SAX
events, and also as a receipient of those events, so an
implementation must implement ContentHandler and
related interfaces so that it can obtain events from the parent
object, filter them, and then pass the filtered events on to the
ContentHandler object that was registered on the
filter. See the helper class
org.xml.sax.helpers.XMLFilterImpl for a bare-bones
implementation of an XMLFilter that implements the
XMLReader interface and the
ContentHandler and related handler interfaces.
XMLFilterImpl does no filtering—it simply
passes passes all of its method invocations through. You can subclass
it and override only the methods that need filtering.
[image: org.xml.sax.XMLFilter]

Figure 22-6. org.xml.sax.XMLFilter

public interface XMLFilter extends XMLReader {
// Public Instance Methods
 XMLReader getParent();
 void setParent(XMLReader parent);
}

Implementations

 org.xml.sax.helpers.XMLFilterImpl

Returned By

 javax.xml.transform.sax.SAXTransformerFactory.newXMLFilter(
)

Name
XMLReader

Synopsis
This interface defines the methods that must be
implemented by a SAX2 XML parser. Since it is an interface,
XMLReader cannot define a constructor for creating
an XMLReader. To obtain an
XMLReader, object, you can instantiate some
implementation-specific class that implements this interface.
Alternatively, you can keep your code independent of any specific
parser implementation by using the
SAXParserFactory and SAXParser
classes of the javax.xml.parsers package. See
those classes for more details. Note that the
XMLReader interface has no relationship to the
java.io.Reader class or any other character stream
classes.
Once you have obtained an XMLReader instance, you
must register handler objects on it, so that it can invoke methods on
those handlers to notify your application of the results of its
parsing. All applications should register a
ContentHandler and an
ErrorHandler with setContentHandler(
) and setErrorHandler(). Some
applications may also want to register an
EntityResolver and/or a
DTDHandler. Applications can also register
DeclHandler and LexicalHandler
objects from the org.xml.sax.ext package, if the
parser implementation supports these extension handler interfaces.
DeclHandler and LexicalHandler
objects are registered with setProperty(), as
explained below.
In addition to registering handler objects for an XMLReader, you may
also want to configure the behavior of the parser using
setFeature() and setProperty(
). Features and properties are both name/value pairs. For
uniqueness, the names of features and properties are expressed as
URLs (the URLs usually do not have any web content associated with
them: they are merely unique identifiers). Features have boolean
values, and properties have arbitrary object values. Features and
properties are an extension mechanism, allowing an application to
specify implementation-specific details about how the parser should
behave. But there are also several
“standard” features and properties
that are supported by many (or all) SAX parsers. They are listed
below. If a parser does not recognize the name of a feature or
property, the setFeature() and
setProperty() methods (as well as the
corresponding getFeature() and
getProperty() query methods) throw a
SAXNotRecognizedException. If the parser
recognizes the name of a feature or property, but does not support
the feature or property, the methods instead throw a
SAXNotSupportedException. This exception is also
thrown by the set methods when the parser allows
the feature or property to be queried but not set.
The standard features are the following. Their names are all URLs
that begin with the prefix
“http://www.xml.org/sax/features/”.
For brevity, this prefix has been omitted below. Note that only two
of these features must be supported by all parsers. The others may or
may not be supported in any given implementation:
	
 namespaces

	If true (the default), then the parser supports
namespaces and provides the namespace URI and localname for element
and attribute names. Support for this feature is required in all
parser implementations .

	
 namespace-prefixes

	If true, then the parser provides the qualified
name (or “qName”) that for element
and attribute names. A qName consists of a namespace prefix, a colon,
and the local name. The default value of this feature is
false, and support for the feature is required in
all parser implementations.

	
 validation

	If true, then the parser will validate XML
documents, and will read all external entities.

	
 external-general-entities

	If true, then the parser handles external general
entities. This is always true if the
validation feature is true.

	
 external-parameter-entities

	If true, then the parser handles external
parameter entities. This is always true if the
validation feature is true.

	
 lexical-handler/parameter-entities

	If true, then the parser will report the begining
and end of parameter entities to the
LexicalHandler extension interface.

	
 string-interning

	If true, then the parser will use the
String.intern() method for all strings (element,
attribute, entity and notation names, and namespace prefixes and
URIs) it returns. If the application does the same, it can use
= = equality testing for these strings rather than
using the more expensive equals() method.

The standard properties are the following. Like the features, their
names are all URLs that begin with the prefix (omitted below)
“http://www.xml.org/sax/properties/”.
Note that support for all of these properties is optional.
	
 declaration-handler

	An org.xml.sax.ext.DeclHandler object to which the
parser will report the contents of the DTD.

	
 lexical-handler

	An org.xml.sax.ext.LexicalHandler object on which
the parser will make method calls to describe the lexical structure
(such as comments and CDATA sections) of the XML document.

	
 xml-string

	This is a read-only property, and can only be queried from within a
handler method invoked by the parser. The value of this property is a
String that contains the document content that
triggered the current handler invocation.

	
 dom-node

	An XMLReader that
“parses” a DOM tree rather than the
textual form of an XML document uses the value of this property as
the org.w3c.dom.Node object at which it should
begin parsing.

Finally, after you have obtained an XMLReader
object, have queried and configured its features and properties, and
have set a ContentHandler,
ErrorHandler, and any other required handler
objects, you are ready to parse an XML document. Do this by calling
one of the parse() methods, specifying the
document to parse either as a system identifier (a URL) or as an
InputSource object (which allows the use of
streams as well).
public interface XMLReader {
// Public Instance Methods
 org.xml.sax.ContentHandler getContentHandler();
 DTDHandler getDTDHandler();
 EntityResolver getEntityResolver();
 ErrorHandler getErrorHandler();
 boolean getFeature(String name) throws SAXNotRecognizedException,
 SAXNotSupportedException;
 Object getProperty(String name) throws SAXNotRecognizedException,
 SAXNotSupportedException;
 void parse(String systemId) throws java.io.IOException, SAXException;
 void parse(InputSource input) throws java.io.IOException, SAXException;
 void setContentHandler(org.xml.sax.ContentHandler handler);
 void setDTDHandler(DTDHandler handler);
 void setEntityResolver(EntityResolver resolver);
 void setErrorHandler(ErrorHandler handler);
 void setFeature(String name, boolean value)
 throws SAXNotRecognizedException, SAXNotSupportedException;
 void setProperty(String name, Object value)
 throws SAXNotRecognizedException, SAXNotSupportedException;
}

Implementations

 XMLFilter,
org.xml.sax.helpers.ParserAdapter

Passed To

 javax.xml.transform.sax.SAXSource.{SAXSource(),
setXMLReader()}, XMLFilter.setParent(
), org.xml.sax.helpers.XMLFilterImpl.{setParent(
), XMLFilterImpl()},
org.xml.sax.helpers.XMLReaderAdapter.XMLReaderAdapter(
)

Returned By

 javax.xml.parsers.SAXParser.getXMLReader(),
javax.xml.transform.sax.SAXSource.getXMLReader(),
XMLFilter.getParent(),
org.xml.sax.helpers.XMLFilterImpl.getParent(),
org.xml.sax.helpers.XMLReaderFactory.createXMLReader(
)

Name
Package org.xml.sax.ext

Synopsis
This
 package defines extensions to the basic
SAX2 API. Neither SAX parsers nor SAX applications are required to
support these extensions, but when they do, the interfaces defined
here provide a standard way for the parser to provide additional
information about an XML document to the application.
DeclHandler defines methods for reporting the
content of a DTD, and LexicalHandler defines
methods for reporting the lexical structure of an XML document.
In Java 5.0 adopts
“SAX2 Extensions 1.1” and adds
three new interfaces to this package: Attributes2,
EntityResolver2, and Locator2.
Each extends a similarly named interface from the core
org.xml.sax package.

Interfaces
public interface Attributes2 extends org.xml.sax.Attributes;
public interface DeclHandler;
public interface EntityResolver2 extends org.xml.sax.EntityResolver;
public interface LexicalHandler;
public interface Locator2 extends org.xml.sax.Locator;

Classes
public class Attributes2Impl extends org.xml.sax.helpers.AttributesImpl
 implements Attributes2;
public class DefaultHandler2 extends org.xml.sax.helpers.DefaultHandler
 implements DeclHandler, EntityResolver2, LexicalHandler;
public class Locator2Impl extends org.xml.sax.helpers.LocatorImpl
 implements Locator2;

Name
Attributes2

Synopsis
This
 interface
extends org.xml.sax.Attributes and adds methods
for determining if an attribute was declared in the DTD and whether
an attribute value was explicitly specified in the document or
whether a default value from the DTD was used. If the SAX
implementation supports this interface, the
Attributes object passed to the
startElement() method of the
ContentHandler implements this interface. You can
also test for support by querying the feature named
“http://xml.org/sax/features/use-attributes2”
with XMLReader.getFeature().
[image: org.xml.sax.ext.Attributes2]

Figure 22-7. org.xml.sax.ext.Attributes2

public interface Attributes2 extends org.xml.sax.Attributes {
// Public Instance Methods
 boolean isDeclared(String qName);
 boolean isDeclared(int index);
 boolean isDeclared(String uri, String localName);
 boolean isSpecified(String qName);
 boolean isSpecified(int index);
 boolean isSpecified(String uri, String localName);
}

Implementations

 Attributes2Impl

Name
Attributes2Impl

Synopsis
This
 extension
helper class extends the
org.xml.sax.helpers.AttributesImpl class to make
it implement the Attributes2 interface.
[image: org.xml.sax.ext.Attributes2Impl]

Figure 22-8. org.xml.sax.ext.Attributes2Impl

public class Attributes2Impl extends org.xml.sax.helpers.AttributesImpl
 implements Attributes2 {
// Public Constructors
 public Attributes2Impl();
 public Attributes2Impl(org.xml.sax.Attributes atts);
// Public Instance Methods
 public void setDeclared(int index, boolean value);
 public void setSpecified(int index, boolean value);
// Methods Implementing Attributes2
 public boolean isDeclared(String qName);
 public boolean isDeclared(int index);
 public boolean isDeclared(String uri, String localName);
 public boolean isSpecified(String qName);
 public boolean isSpecified(int index);
 public boolean isSpecified(String uri, String localName);
// Public Methods Overriding AttributesImpl
 public void addAttribute(String uri, String localName, String qName, String type,
 String value);
 public void removeAttribute(int index);
 public void setAttributes(org.xml.sax.Attributes atts);
}

Name
DeclHandler

Synopsis
This extension interface defines methods that a
SAX parser can call to notify an application about element,
attribute, and entity declarations in a DTD. If your application
requires this information about a DTD, then pass an object that
implements this interface to the setProperty()
method of an XMLReader, using the property name
“http://www.xml.org/sax/properties/declaration-handler”.
Because this is an extension handler, SAX parsers are not required to
support it, and may throw a
SAXNotRecognizedException or a
SAXNotSupportedException when you attempt to
register a DeclHandler.
public interface DeclHandler {
// Public Instance Methods
 void attributeDecl(String eName, String aName, String type,
 String mode, String value) throws org.xml.sax.SAXException;
 void elementDecl(String name, String model)
 throws org.xml.sax.SAXException;
 void externalEntityDecl(String name, String publicId,
 String systemId) throws org.xml.sax.SAXException;
 void internalEntityDecl(String name, String value)
 throws org.xml.sax.SAXException;
}

Implementations

 DefaultHandler2

Name
DefaultHandler2

Synopsis
This
 class
extends org.xml.sax.helpers.DefaultHandler to add
no-op methods that implement the LexicalHandler,
DeclHandler, and
EntityResolver2 methods. It overrides the
two-argument version of resolveEntity from the
core EntityResolver interface to invoke the
four-argument version from the EntityResolver2
interface.
[image: org.xml.sax.ext.DefaultHandler2]

Figure 22-9. org.xml.sax.ext.DefaultHandler2

public class DefaultHandler2 extends org.xml.sax.helpers.DefaultHandler
 implements DeclHandler, EntityResolver2, LexicalHandler {
// Public Constructors
 public DefaultHandler2();
// Methods Implementing DeclHandler
 public void attributeDecl(String eName, String aName, String type,
 String mode, String value)
 throws org.xml.sax.SAXException; emDpty
 public void elementDecl(String name, String model)
 throws org.xml.sax.SAXException; empty
 public void externalEntityDecl(String name, String publicId, String systemId)
 throws org.xml.sax.SAXException; empty
 public void internalEntityDecl(String name, String value)
 throws org.xml.sax.SAXException; empty
 // Methods Implementing EntityResolver
 public org.xml.sax.InputSource resolveEntity(String publicId, String systemId)
 throws org.xml.sax.SAXException, java.io.IOException;
// Methods Implementing EntityResolver2
 public org.xml.sax.InputSource getExternalSubset(String name, String baseURI)
 throws org.xml.sax.SAXException, java.io.IOException; constant
 public org.xml.sax.InputSource resolveEntity(String name, String publicId,
 String baseURI, String systemId)
 throws org.xml.sax.SAXException,
 java.io.IOException; constant
 // Methods Implementing LexicalHandler
 public void comment(char[] ch, int start, int length)
 throws org.xml.sax.SAXException; empty
 public void endCDATA() throws org.xml.sax.SAXException; empty
 public void endDTD() throws org.xml.sax.SAXException; empty
 public void endEntity(String name) throws org.xml.sax.SAXException; empty
 public void startCDATA() throws org.xml.sax.SAXException; empty
 public void startDTD(String name, String publicId, String systemId)
 throws org.xml.sax.SAXException; empty
 public void startEntity(String name) throws org.xml.sax.SAXException; empty
}

Name
EntityResolver2

Synopsis
This
 extension
interface provides alternative entity resolver methods. If you
register an entity resolver that implements this interface, if the
SAX implementation supports this interface, and you set the feature
“http://xml.org/sax/features/use-entity-resolver2”
to true, then the implementation will use the
methods defined by this interface instead of the method defined by
the super-interface.
[image: org.xml.sax.ext.EntityResolver2]

Figure 22-10. org.xml.sax.ext.EntityResolver2

public interface EntityResolver2 extends org.xml.sax.EntityResolver {
// Public Instance Methods
 org.xml.sax.InputSource getExternalSubset(String name, String baseURI)
throws org.xml.sax.SAXException, java.io.IOException;
 org.xml.sax.InputSource resolveEntity(String name, String publicId,
 String baseURI, String systemId)
 throws org.xml.sax.SAXException, java.io.IOException;
}

Implementations

 DefaultHandler2

Name
LexicalHandler

Synopsis
This extension interface defines methods that a
SAX parser can call to notify an application about the lexical
structure of an XML document. If your application requires this kind
of information (for example if it wants to create a new document that
has a similar structure to the one it reads), then pass an object
that implements this interface to the setProperty(
) method of an XMLReader, using the
property name
“http://www.xml.org/sax/properties/lexical-handler”.
Because this is an extension handler, SAX parsers are not required to
support it, and may throw a
SAXNotRecognizedException or a
SAXNotSupportedException when you attempt to
register a DeclHandler.
If a LexicalHandler is successfully registered on
an XMLReader, then the parser will call
startDTD() and endDTD() to
report the beginning and end of the document’s DTD.
It will call startCDATA() and endCDATA(
) to report the start and end of a CDATA
section. The content of the CDATA section will be
reported through the characters() method of the
ContentHandler interface. When the parser expands
an entity, it first calls startEntity() to
specify the name of the entity it is about to expand, and then calls
endEntity() when the entity expansion is
complete. Finally, whenever the parser encounters an XML comment, it
calls the comment() method.
public interface LexicalHandler {
// Public Instance Methods
 void comment(char[] ch, int start, int length)
 throws org.xml.sax.SAXException;
 void endCDATA() throws org.xml.sax.SAXException;
 void endDTD() throws org.xml.sax.SAXException;
 void endEntity(String name) throws org.xml.sax.SAXException;
 void startCDATA() throws org.xml.sax.SAXException;
 void startDTD(String name, String publicId, String systemId)
 throws org.xml.sax.SAXException;
 void startEntity(String name) throws org.xml.sax.SAXException;
}

Implementations

 javax.xml.transform.sax.TransformerHandler,
DefaultHandler2

Passed To

 javax.xml.transform.sax.SAXResult.setLexicalHandler(
)

Returned By

 javax.xml.transform.sax.SAXResult.getLexicalHandler(
)

Name
Locator2

Synopsis
This
 interface
defines an extension to the core Locator
interface. If the implementation supports it, then the
Locator object passed to
ContentHandler.setDocumentLocator() will
implement this interface. You can also test for support by querying
the feature named
“http://xml.org/sax/features/use-locator2”.
[image: org.xml.sax.ext.Locator2]

Figure 22-11. org.xml.sax.ext.Locator2

public interface Locator2 extends org.xml.sax.Locator {
// Public Instance Methods
 String getEncoding();
 String getXMLVersion();
}

Implementations

 Locator2Impl

Name
Locator2Impl

Synopsis
This
 class extends the
org.xml.sax.helpers.LocatorImpl class to make it
implement the Locator2 interface.
[image: org.xml.sax.ext.Locator2Impl]

Figure 22-12. org.xml.sax.ext.Locator2Impl

public class Locator2Impl extends org.xml.sax.helpers.LocatorImpl implements Locator2 {
// Public Constructors
 public Locator2Impl();
 public Locator2Impl(org.xml.sax.Locator locator);
// Public Instance Methods
 public void setEncoding(String encoding);
 public void setXMLVersion(String version);
// Methods Implementing Locator2
 public String getEncoding(); default:null
 public String getXMLVersion(); default:null
}

Name
Package org.xml.sax.helpers

Synopsis
This
 package contains utility classes that
are useful for programmers working with SAX parsers.
DefaultHandler is the most commonly used: it is a
default implementation of the four standard handler interfaces,
suitable for easy subclassing by an application.
XMLReaderFactory provides a layer
implementation-independence, allowing an application to use an
XMLReader implementation specified in a system
property. XMLFilterImpl is a no-op implementation
of the XMLFilter interface that also implements
the various handler interfaces necessary to connect the filter to its
“parent”
XMLReader. It does no filtering of its own, but is
easy to subclass to add filtering. If you need to work with legacy
APIs that expect or return SAX1 Parser objects,
you can use ParserAdapter to make a
Parser object behave like a SAX2
XMLReader object, or use an
XMLReaderAdapter to make an
XMLReader behave like a Parser.

Classes
public class AttributeListImpl implements org.xml.sax.AttributeList;
public class AttributesImpl implements org.xml.sax.Attributes;
public class DefaultHandler implements org.xml.sax.ContentHandler,
 org.xml.sax.DTDHandler, org.xml.sax.EntityResolver, org.xml.sax.ErrorHandler;
public class LocatorImpl implements org.xml.sax.Locator;
public class NamespaceSupport;
public class ParserAdapter implements org.xml.sax.DocumentHandler,
 org.xml.sax.XMLReader;
public class ParserFactory;
public class XMLFilterImpl implements org.xml.sax.ContentHandler,
 org.xml.sax.DTDHandler, org.xml.sax.EntityResolver, org.xml.sax.ErrorHandler,
 org.xml.sax.XMLFilter;
public class XMLReaderAdapter implements org.xml.sax.ContentHandler, org.xml.sax.Parser;
public final class XMLReaderFactory;

Name
AttributeListImpl

Synopsis
This deprecated class is an implementation of
the deprecated SAX1 org.xml.sax.AttributeList
interface. They have been deprecated in favor of the
AttributesImpl implementation of the SAX2
org.xml.sax.Attributes interface.
[image: org.xml.sax.helpers.AttributeListImpl]

Figure 22-13. org.xml.sax.helpers.AttributeListImpl

public class AttributeListImpl implements org.xml.sax.AttributeList {
// Public Constructors
 public AttributeListImpl();
 public AttributeListImpl(org.xml.sax.AttributeList atts);
// Public Instance Methods
 public void addAttribute(String name, String type, String value);
 public void clear();
 public void removeAttribute(String name);
 public void setAttributeList(org.xml.sax.AttributeList atts);
// Methods Implementing AttributeList
 public int getLength(); default:0
 public String getName(int i);
 public String getType(int i);
 public String getType(String name);
 public String getValue(String name);
 public String getValue(int i);
}

Name
AttributesImpl

Synopsis
This utility class is a general-purpose
implementation of the Attributes interface. In
addition to implementing all the methods of
Attributes, it also defines various
set methods for setting attribute names, values,
and types, an addAttribute() method for adding a
new attribute to the end of the list, a removeAttribute(
) method for removing an attribute from the list, and a
clear() method for removing all attributes. Also,
there is an AttributesImpl() constructor that
initializes the new AttributesImpl object with a
copy of a specified Attributes object. This class
is useful for XMLFilter implementations that want
to filter the attributes of an element, or for
ContentHandler implementations that need to make
and save a copy of an Attributes object for later
use.
[image: org.xml.sax.helpers.AttributesImpl]

Figure 22-14. org.xml.sax.helpers.AttributesImpl

public class AttributesImpl implements org.xml.sax.Attributes {
// Public Constructors
 public AttributesImpl();
 public AttributesImpl(org.xml.sax.Attributes atts);
// Public Instance Methods
 public void addAttribute(String uri, String localName, String qName,
 String type, String value);
 public void clear();
 public void removeAttribute(int index);
 public void setAttribute(int index, String uri, String localName,
 String qName, String type, String value);
 public void setAttributes(org.xml.sax.Attributes atts);
 public void setLocalName(int index, String localName);
 public void setQName(int index, String qName);
 public void setType(int index, String type);
 public void setURI(int index, String uri);
 public void setValue(int index, String value);
// Methods Implementing Attributes
 public int getIndex(String qName);
 public int getIndex(String uri, String localName);
 public int getLength(); default:0
 public String getLocalName(int index);
 public String getQName(int index);
 public String getType(String qName);
 public String getType(int index);
 public String getType(String uri, String localName);
 public String getURI(int index);
 public String getValue(int index);
 public String getValue(String qName);
 public String getValue(String uri, String localName);
}

Subclasses

 org.xml.sax.ext.Attributes2Impl

Name
DefaultHandler

Synopsis
This helper class implements the four commonly-used
SAX handler interfaces from the org.xml.sax
package and defines stub implementations for all of their methods. It
is usually easier to subclass DefaultHandler and
override the desired methods than it is to implement all of the
interfaces (and all of their methods) from scratch.
DefaultHandler implements
ContentHandler, ErrorHandler,
EntityResolver and DTDHandler,
so you can pass an instance of this class, (or of a subclass you
define) to the setContentHandler(),
setErrorHandler(), setEntityResolver(
), and setDTDHandler() methods of an
XMLReader. You can also pass an instance of a
DefaultHandler subclass directly to one of the
parse() methods of a
javax.xml.parsers.SAXParser. The
SAXParser will take care of calling the four
relevant methods of its internal XMLReader.
All but two of the methods of DefaultHandler have
empty bodies and do nothing. The exceptions are
resolveEntity() which simply returns
null to tell the parser to resolve the entity
itself, and fatalError() which throws the
SAXParseException object that is passed to it.
[image: org.xml.sax.helpers.DefaultHandler]

Figure 22-15. org.xml.sax.helpers.DefaultHandler

public class DefaultHandler implements org.xml.sax.ContentHandler,
 org.xml.sax.DTDHandler, org.xml.sax.EntityResolver,
 org.xml.sax.ErrorHandler {
// Public Constructors
 public DefaultHandler();
// Methods Implementing ContentHandler
 public void characters(char[] ch, int start, int length)
 throws org.xml.sax.SAXException; empty
 public void endDocument() throws org.xml.sax.SAXException; empty
 public void endElement(String uri, String localName, String qName)
 throws org.xml.sax.SAXException; empty
 public void endPrefixMapping(String prefix) throws org.xml.sax.SAXException; empty
 public void ignorableWhitespace(char[] ch, int start, int length)
 throws org.xml.sax.SAXException; empty
 public void processingInstruction(String target, String data)
 throws org.xml.sax.SAXException; empty
 public void setDocumentLocator(org.xml.sax.Locator locator); empty
 public void skippedEntity(String name) throws org.xml.sax.SAXException; empty
 public void startDocument() throws org.xml.sax.SAXException; empty
 public void startElement(String uri, String localName, String qName,
 org.xml.sax.Attributes attributes)
 throws org.xml.sax.SAXException; empty
 public void startPrefixMapping(String prefix, String uri)
 throws org.xml.sax.SAXException; empty
 // Methods Implementing DTDHandler
 public void notationDecl(String name, String publicId, String systemId)
 throws org.xml.sax.SAXException; empty
 public void unparsedEntityDecl(String name, String publicId, String systemId,
 String notationName)
 throws org.xml.sax.SAXException; empty
 // Methods Implementing EntityResolver
 public org.xml.sax.InputSource resolveEntity(String publicId, String systemId)
throws java.io.IOException, org.xml.sax.SAXException; constant
 // Methods Implementing ErrorHandler
 public void error(org.xml.sax.SAXParseException e)
 throws org.xml.sax.SAXException; empty
 public void fatalError(org.xml.sax.SAXParseException e)
 throws org.xml.sax.SAXException;
 public void warning(org.xml.sax.SAXParseException e)
 throws org.xml.sax.SAXException; empty
}

Subclasses

 org.xml.sax.ext.DefaultHandler2

Passed To

 javax.xml.parsers.SAXParser.parse()

Name
LocatorImpl

Synopsis
This helper class is a very simple
implementation of the Locator interface. It
defines a copy constructor that create a new
LocatorImpl object that copies the state of a
specified Locator object. This constructor is
useful because it allows applications to copy the state of a
Locator and save it for later use.
[image: org.xml.sax.helpers.LocatorImpl]

Figure 22-16. org.xml.sax.helpers.LocatorImpl

public class LocatorImpl implements org.xml.sax.Locator {
// Public Constructors
 public LocatorImpl();
 public LocatorImpl(org.xml.sax.Locator locator);
// Public Instance Methods
 public void setColumnNumber(int columnNumber);
 public void setLineNumber(int lineNumber);
 public void setPublicId(String publicId);
 public void setSystemId(String systemId);
// Methods Implementing Locator
 public int getColumnNumber(); default:0
 public int getLineNumber(); default:0
 public String getPublicId(); default:null
 public String getSystemId(); default:null
}

Subclasses

 org.xml.sax.ext.Locator2Impl

Name
NamespaceSupport

Synopsis
This utility class exists to help SAX parser
implementors handle XML namespaces. It is not commonly used by SAX
applications.
public class NamespaceSupport {
// Public Constructors
 public NamespaceSupport();
// Public Constants
 5.0 public static final String NSDECL; ="http://www.w3.org/xmlns/2000/"
 public static final String XMLNS; ="http://www.w3.org/XML/1998/namespace"
// Public Instance Methods
 public boolean declarePrefix(String prefix, String uri);
 public java.util.Enumeration getDeclaredPrefixes();
 public String getPrefix(String uri);
 public java.util.Enumeration getPrefixes();
 public java.util.Enumeration getPrefixes(String uri);
 public String getURI(String prefix);
5.0 public boolean isNamespaceDeclUris(); default:false
 public void popContext();
 public String[] processName(String qName, String[] parts, boolean isAttribute);
 public void pushContext();
 public void reset();
5.0 public void setNamespaceDeclUris(boolean value);
}

Name
ParserAdapter

Synopsis
This adapter class behaves like a SAX2
XMLReader object, but gets its input from the SAX1
Parser object that is passed to the constructor.
In order to make this work, it implements the deprecated SAX1
DocumentHandler interface so that it can receive
events from the Parser.
ParserAdapter provides its own layer of namespace
processing to convert a namespace-unaware Parser
into a namespace-aware XMLReader. This class is
useful when working you are working with a legacy API that supplies a
SAX1 Parser object, but want to work with that
parser using the SAX2 XMLReader API: to use it,
simply pass the Parser object to the
ParserAdapter() constructor and use the resulting
object as you would use any other XMLReader
object.
There is not perfect congruence between the SAX1 and SAX2 APIs, and a
Parser cannot be perfectly adapted to a
XMLReader. In particular, a
ParserAdapter will never call the
skippedEntity() handler method because the SAX1
Parser API does not provide notification of
skipped entities. Also, it does not attempt to determine whether two
namespace-prefixed attributes of an element actually resolve to the
same attribute.
See also XMLReaderAdapter, an adapter that works
in the reverse direction to make a SAX2 parser behave like a SAX1
parser.
[image: org.xml.sax.helpers.ParserAdapter]

Figure 22-17. org.xml.sax.helpers.ParserAdapter

public class ParserAdapter implements org.xml.sax.DocumentHandler,
 org.xml.sax.XMLReader {
// Public Constructors
 public ParserAdapter() throws org.xml.sax.SAXException;
 public ParserAdapter(org.xml.sax.Parser parser);
// Methods Implementing DocumentHandler
 public void characters(char[] ch, int start, int length) throws org.xml.sax.SAXException;
 public void endDocument()
 throws org.xml.sax.SAXException;
 public void endElement(String qName) throws org.xml.sax.SAXException;
 public void ignorableWhitespace(char[] ch, int start, int length)
 throws org.xml.sax.SAXException;
 public void processingInstruction(String target, String data)
 throws org.xml.sax.SAXException;
 public void setDocumentLocator(org.xml.sax.Locator locator);
 public void startDocument() throws org.xml.sax.SAXException;
 public void startElement(String qName, org.xml.sax.AttributeList qAtts)
 throws org.xml.sax.SAXException;
// Methods Implementing XMLReader
 public org.xml.sax.ContentHandler getContentHandler();
 public org.xml.sax.DTDHandler getDTDHandler();
 public org.xml.sax.EntityResolver getEntityResolver();
 public org.xml.sax.ErrorHandler getErrorHandler();
 public boolean getFeature(String name)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
 public Object getProperty(String name)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
 public void parse(String systemId) throws java.io.IOException,
 org.xml.sax.SAXException;
 public void parse(org.xml.sax.InputSource input) throws java.io.IOException,
 org.xml.sax.SAXException;
 public void setContentHandler(org.xml.sax.ContentHandler handler);
 public void setDTDHandler(org.xml.sax.DTDHandler handler);
 public void setEntityResolver(org.xml.sax.EntityResolver resolver);
 public void setErrorHandler(org.xml.sax.ErrorHandler handler);
 public void setFeature(String name, boolean value)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
 public void setProperty(String name, Object value)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
}

Name
ParserFactory

Synopsis
This deprecated SAX1 class is a factory for
deprecated SAX1 Parser objects. New applications
should use the SAX2 XMLReaderFactory as a factory
for SAX2 XMLReader objects.
public class ParserFactory {
// No Constructor
 // Public Class Methods
 public static org.xml.sax.Parser makeParser()
 throws ClassNotFoundException, IllegalAccessException,
 InstantiationException,
NullPointerException, ClassCastException;
 public static org.xml.sax.Parser makeParser(String className)
 throws ClassNotFoundException, IllegalAccessException,
 InstantiationException, ClassCastException;
}

Name
XMLFilterImpl

Synopsis
This class is implements an
XMLFilter that does no filtering. You can subclass
it to override whatever methods are required to perform the type of
filtering you desire.

 XMLFilterImpl implements
ContentHandler, ErrorHandler,
EntityResolver, and DTDHandler
so that it can receive SAX events from the
“parent”
XMLReader object. But it also implements the
XMLFilter interface, which is an extension of
XMLReader, so that it acts as an
XMLReader itself, and can send SAX events to the
handler objects that are registered on it. Each of the handler
methods of this class simply invoke the corresponding method of the
corresponding handler that was registered on the filter. The
XMLReader methods for getting and setting features
and properties simply invoke the corresponding method of the parent
XMLReader object. The parse()
methods do the same thing: they pass their argument to the
corresponding parse() method of the parent reader
to start the parsing process.
[image: org.xml.sax.helpers.XMLFilterImpl]

Figure 22-18. org.xml.sax.helpers.XMLFilterImpl

public class XMLFilterImpl
implements org.xml.sax.ContentHandler, org.xml.sax.DTDHandler,
 org.xml.sax.EntityResolver, org.xml.sax.ErrorHandler, org.xml.sax.XMLFilter {
// Public Constructors
 public XMLFilterImpl();
 public XMLFilterImpl(org.xml.sax.XMLReader parent);
// Methods Implementing ContentHandler
 public void characters(char[] ch, int start, int length)
 throws org.xml.sax.SAXException;
 public void endDocument() throws org.xml.sax.SAXException;
 public void endElement(String uri, String localName, String qName)
 throws org.xml.sax.SAXException;
 public void endPrefixMapping(String prefix) throws org.xml.sax.SAXException;
 public void ignorableWhitespace(char[] ch, int start, int length)
 throws org.xml.sax.SAXException;
 public void processingInstruction(String target, String data)
 throws org.xml.sax.SAXException;
 public void setDocumentLocator(org.xml.sax.Locator locator);
 public void skippedEntity(String name) throws org.xml.sax.SAXException;
 public void startDocument() throws org.xml.sax.SAXException;
 public void startElement(String uri, String localName, String qName,
 org.xml.sax.Attributes atts) throws org.xml.sax.SAXException;
 public void startPrefixMapping(String prefix, String uri)
 throws org.xml.sax.SAXException;
// Methods Implementing DTDHandler
 public void notationDecl(String name, String publicId, String systemId)
 throws org.xml.sax.SAXException;
 public void unparsedEntityDecl(String name, String publicId, String systemId,
 String notationName) throws org.xml.sax.SAXException;
// Methods Implementing EntityResolver
 public org.xml.sax.InputSource resolveEntity(String publicId, String systemId)
 throws org.xml.sax.SAXException, java.io.IOException;
// Methods Implementing ErrorHandler
 public void error(org.xml.sax.SAXParseException e)
 throws org.xml.sax.SAXException;
 public void fatalError(org.xml.sax.SAXParseException e)
 throws org.xml.sax.SAXException;
 public void warning(org.xml.sax.SAXParseException e) throws org.xml.sax.SAXException;
// Methods Implementing XMLFilter
 public org.xml.sax.XMLReader getParent(); default:null
 public void setParent(org.xml.sax.XMLReader parent);
// Methods Implementing XMLReader
 public org.xml.sax.ContentHandler getContentHandler(); default:null
 public org.xml.sax.DTDHandler getDTDHandler(); default:null
 public org.xml.sax.EntityResolver getEntityResolver(); default:null
 public org.xml.sax.ErrorHandler getErrorHandler(); default:null
 public boolean getFeature(String name)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
 public Object getProperty(String name)
 throws org.xml.sax.SAXNotRecognizedException,
 org.xml.sax.SAXNotSupportedException;
 public void parse(String systemId) throws org.xml.sax.SAXException,
 java.io.IOException;
 public void parse(org.xml.sax.InputSource input) throws org.xml.sax.SAXException,
 java.io.IOException;
 public void setContentHandler(org.xml.sax.ContentHandler handler);
 public void setDTDHandler(org.xml.sax.DTDHandler handler);
 public void setEntityResolver(org.xml.sax.EntityResolver resolver);
 public void setErrorHandler(org.xml.sax.ErrorHandler handler);
 public void setFeature(String name, boolean value)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
 public void setProperty(String name, Object value)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
}

Name
XMLReaderAdapter

Synopsis
This adapter class wraps a SAX2
XMLReader object and makes it behave like a SAX1
Parser object. It is useful when working with a
legacy API that requires a deprecated Parser
object. Create an XMLReaderAdapter by passing an
XMLReader to the XMLReaderAdapter(
) constructor. Then use the resulting object exactly as you
would use any other SAX1 Parser object. This class
implements ContentHandler so that it can receive
SAX events from the XMLReader. But it also
implements the Parser interface so that it can
have a SAX1 DocumentHandler registered on it. The
methods of ContentHandler are implemented to
invoke the corresponding methods of the registered
DocumentHandler.
[image: org.xml.sax.helpers.XMLReaderAdapter]

Figure 22-19. org.xml.sax.helpers.XMLReaderAdapter

public class XMLReaderAdapter implements org.xml.sax.ContentHandler, org.xml.sax.Parser {
// Public Constructors
 public XMLReaderAdapter() throws org.xml.sax.SAXException;
 public XMLReaderAdapter(org.xml.sax.XMLReader xmlReader);
// Methods Implementing ContentHandler
 public void characters(char[] ch, int start, int length)
 throws org.xml.sax.SAXException;
 public void endDocument() throws org.xml.sax.SAXException;
 public void endElement(String uri, String localName, String qName)
 throws org.xml.sax.SAXException;
 public void endPrefixMapping(String prefix); empty
 public void ignorableWhitespace(char[] ch, int start, int length)
 throws org.xml.sax.SAXException;
 public void processingInstruction(String target, String data)
 throws org.xml.sax.SAXException;
 public void setDocumentLocator(org.xml.sax.Locator locator);
 public void skippedEntity(String name) throws org.xml.sax.SAXException; empty
 public void startDocument() throws org.xml.sax.SAXException;
 public void startElement(String uri, String localName, String qName,
 org.xml.sax.Attributes atts)
 throws org.xml.sax.SAXException;
 public void startPrefixMapping(String prefix, String uri); empty
 // Methods Implementing Parser
 public void parse(String systemId) throws java.io.IOException, org.xml.sax.SAXException;
 public void parse(org.xml.sax.InputSource input) throws java.io.IOException,
 org.xml.sax.SAXException;
 public void setDocumentHandler(org.xml.sax.DocumentHandler handler);
 public void setDTDHandler(org.xml.sax.DTDHandler handler);
 public void setEntityResolver(org.xml.sax.EntityResolver resolver);
 public void setErrorHandler(org.xml.sax.ErrorHandler handler);
 public void setLocale(java.util.Locale locale) throws org.xml.sax.SAXException;
}

Name
XMLReaderFactory

Synopsis
This factory class defines two static factory
methods for creating XMLReader objects. One method
takes the name of a class as its argument. It dynamically loads and
instantiates the class, then casts it to an
XMLReader object. The second factory method takes
no arguments; it reads the system property named
"org.xml.sax.driver" and uses the
value of that property as the name of the class
XMLReader implementation class to load and
instantiate. An application that instantiates its SAX parser using
the no-argument method of XMLReaderFactory gains a
layer of independence from the underlying parser implementation. The
end user or system administrator of the system on which the
application is deployed can change the parser implementation simply
by setting a system property. Note that the
javax.xml.parsers package provides a similar, but
somewhat more useful
SAXParserFactory.
public final class XMLReaderFactory {
// No Constructor
 // Public Class Methods
 public static org.xml.sax.XMLReader createXMLReader()
 throws org.xml.sax.SAXException;
 public static org.xml.sax.XMLReader createXMLReader(String className)
 throws org.xml.sax.SAXException;
}

Chapter 23. Class, Method, and Field Index

A

	abort():
	CacheRequest, LoginModule

	AbortPolicy:
	java.util.concurrent.ThreadPoolExecutor

	abs():
	BigDecimal, BigInteger, Math, StrictMath

	absolutePath():
	AbstractPreferences, Preferences

	ABSTRACT:
	Modifier

	AbstractCollection:
	java.util

	AbstractExecutorService:
	java.util.concurrent

	AbstractInterruptibleChannel:
	java.nio.channels.spi

	AbstractList:
	java.util

	AbstractMap:
	java.util

	AbstractMethodError:
	java.lang

	AbstractPreferences:
	java.util.prefs

	AbstractQueue:
	java.util

	AbstractQueuedSynchronizer:
	java.util.concurrent.locks

	AbstractQueuedSynchronizer.ConditionObject:
	java.util.concurrent.locks

	AbstractSelectableChannel:
	java.nio.channels.spi

	AbstractSelectionKey:
	java.nio.channels.spi

	AbstractSelector:
	java.nio.channels.spi

	AbstractSequentialList:
	java.util

	AbstractSet:
	java.util

	accept():
	FileFilter, FilenameFilter, ServerSocket, ServerSocketChannel,
SocketImpl

	AccessControlContext:
	java.security

	AccessControlException:
	java.security

	AccessController:
	java.security

	AccessibleObject:
	java.lang.reflect

	AccountException:
	javax.security.auth.login

	AccountExpiredException:
	javax.security.auth.login

	AccountLockedException:
	javax.security.auth.login

	AccountNotFoundException:
	javax.security.auth.login

	acos():
	Math, StrictMath

	acquire():
	AbstractQueuedSynchronizer, Semaphore

	acquireInterruptibly():
	AbstractQueuedSynchronizer

	acquireShared():
	AbstractQueuedSynchronizer

	acquireSharedInterruptibly():
	AbstractQueuedSynchronizer

	acquireUninterruptibly():
	Semaphore

	activeCount():
	Thread, ThreadGroup

	activeGroupCount():
	ThreadGroup

	AD:
	GregorianCalendar

	add():
	AbstractCollection, AbstractList, AbstractQueue,
AbstractSequentialList, ArrayList, BigDecimal, BigInteger,
BlockingQueue, Calendar, Collection, ConcurrentLinkedQueue,
CopyOnWriteArrayList, CopyOnWriteArraySet, DelayQueue, Duration,
GregorianCalendar, HashSet, LinkedList, List, ListIterator,
PermissionCollection, Permissions, PriorityBlockingQueue,
PriorityQueue, Set, TreeSet, Vector, XMLGregorianCalendar

	addAll():
	AbstractCollection, AbstractList, AbstractQueue,
AbstractSequentialList, ArrayList, Collection, Collections,
CopyOnWriteArrayList, CopyOnWriteArraySet, LinkedList, List, Set,
TreeSet, Vector

	addAllAbsent():
	CopyOnWriteArrayList

	addAndGet():
	AtomicInteger, AtomicIntegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLongFieldUpdater

	addAttribute():
	AttributedString, AttributeListImpl, Attributes2Impl, AttributesImpl

	addAttributes():
	AttributedString

	addCertificate():
	Identity

	addCertPathChecker():
	PKIXParameters

	addCertStore():
	PKIXParameters

	addElement():
	Vector

	addFirst():
	LinkedList

	addHandler():
	Logger

	addHandshakeCompletedListener():
	SSLSocket

	addIdentity():
	IdentityScope

	addIfAbsent():
	CopyOnWriteArrayList

	addIssuer():
	X509CRLSelector

	addIssuerName():
	X509CRLSelector

	addLast():
	LinkedList

	addLogger():
	LogManager

	addNodeChangeListener():
	AbstractPreferences, Preferences

	addObserver():
	Observable

	addPathToName():
	X509CertSelector

	addPreferenceChangeListener():
	AbstractPreferences, Preferences

	addPropertyChangeListener():
	LogManager, Packer, Unpacker

	addProvider():
	Security

	addRequestProperty():
	URLConnection

	address:
	SocketImpl

	address():
	Proxy

	addShutdownHook():
	Runtime

	addSubjectAlternativeName():
	X509CertSelector

	addTo():
	Duration

	addTransformer():
	Instrumentation

	addURL():
	URLClassLoader

	Adler32:
	java.util.zip

	adoptNode():
	Document

	AEGEAN_NUMBERS:
	UnicodeBlock

	after():
	Calendar, Date

	afterExecute():
	ThreadPoolExecutor

	AlgorithmParameterGenerator:
	java.security

	AlgorithmParameterGeneratorSpi:
	java.security

	AlgorithmParameters:
	java.security

	AlgorithmParameterSpec:
	java.security.spec

	AlgorithmParametersSpi:
	java.security

	aliases():
	Charset, KeyStore

	ALL:
	Level

	allocate():
	ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer

	allocateDirect():
	ByteBuffer

	allOf():
	EnumSet

	allowMultipleSelections():
	ChoiceCallback

	allowThreadSuspension():
	ThreadGroup

	allowUserInteraction:
	URLConnection

	AllPermission:
	java.security

	ALPHABETIC_PRESENTATION_FORMS:
	UnicodeBlock

	AlreadyConnectedException:
	java.nio.channels

	ALTERNATE:
	FormattableFlags

	AM:
	Calendar

	AM_PM:
	Calendar, Field

	AM_PM_FIELD:
	DateFormat

	and():
	BigInteger, BitSet

	andNot():
	BigInteger, BitSet

	annotateClass():
	ObjectOutputStream

	AnnotatedElement:
	java.lang.reflect

	annotateProxyClass():
	ObjectOutputStream

	Annotation:
	java.lang.annotation, java.text

	ANNOTATION_TYPE:
	ElementType

	AnnotationFormatError:
	java.lang.annotation

	annotationType():
	Annotation, IncompleteAnnotationException

	AnnotationTypeMismatchException:
	java.lang.annotation

	AppConfigurationEntry:
	javax.security.auth.login

	AppConfigurationEntry.LoginModuleControlFlag:
	javax.security.auth.login

	append():
	Appendable, CharArrayWriter, CharBuffer, PrintStream, PrintWriter,
StringBuffer, StringBuilder, StringWriter, Writer

	Appendable:
	java.lang

	appendChild():
	Node

	appendCodePoint():
	StringBuffer, StringBuilder

	appendData():
	CharacterData

	appendReplacement():
	Matcher

	appendTail():
	Matcher

	applyLocalizedPattern():
	DecimalFormat, SimpleDateFormat

	applyPattern():
	ChoiceFormat, DecimalFormat, MessageFormat, SimpleDateFormat

	appRandom:
	SignatureSpi

	APRIL:
	Calendar, DatatypeConstants

	ARABIC:
	UnicodeBlock

	ARABIC_PRESENTATION_FORMS_A:
	UnicodeBlock

	ARABIC_PRESENTATION_FORMS_B:
	UnicodeBlock

	areFieldsSet:
	Calendar

	ARGUMENT:
	Field

	ArithmeticException:
	java.lang

	ARMENIAN:
	UnicodeBlock

	Array:
	java.lang.reflect

	array():
	ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer

	ArrayBlockingQueue:
	java.util.concurrent

	arraycopy():
	System

	ArrayIndexOutOfBoundsException:
	java.lang

	ArrayList:
	java.util

	arrayOffset():
	ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer

	Arrays:
	java.util

	ArrayStoreException:
	java.lang

	ARROWS:
	UnicodeBlock

	asCharBuffer():
	ByteBuffer

	asDoubleBuffer():
	ByteBuffer

	asFloatBuffer():
	ByteBuffer

	asin():
	Math, StrictMath

	asIntBuffer():
	ByteBuffer

	asList():
	Arrays

	asLongBuffer():
	ByteBuffer

	asReadOnlyBuffer():
	ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer

	AssertionError:
	java.lang

	asShortBuffer():
	ByteBuffer

	asSubclass():
	Class

	AsynchronousCloseException:
	java.nio.channels

	atan():
	Math, StrictMath

	atan2():
	Math, StrictMath

	AtomicBoolean:
	java.util.concurrent.atomic

	AtomicInteger:
	java.util.concurrent.atomic

	AtomicIntegerArray:
	java.util.concurrent.atomic

	AtomicIntegerFieldUpdater:
	java.util.concurrent.atomic

	AtomicLong:
	java.util.concurrent.atomic

	AtomicLongArray:
	java.util.concurrent.atomic

	AtomicLongFieldUpdater:
	java.util.concurrent.atomic

	AtomicMarkableReference:
	java.util.concurrent.atomic

	AtomicReference:
	java.util.concurrent.atomic

	AtomicReferenceArray:
	java.util.concurrent.atomic

	AtomicReferenceFieldUpdater:
	java.util.concurrent.atomic

	AtomicStampedReference:
	java.util.concurrent.atomic

	attach():
	SelectionKey

	attachment():
	SelectionKey

	attemptMark():
	AtomicMarkableReference

	attemptStamp():
	AtomicStampedReference

	Attr:
	org.w3c.dom

	Attribute:
	java.text.AttributedCharacterIterator

	ATTRIBUTE_NODE:
	Node

	AttributedCharacterIterator:
	java.text

	AttributedCharacterIterator.Attribute:
	java.text

	attributeDecl():
	DeclHandler, DefaultHandler2

	AttributedString:
	java.text

	AttributeList:
	org.xml.sax

	AttributeListImpl:
	org.xml.sax.helpers

	Attributes:
	java.util.jar, org.xml.sax

	Attributes.Name:
	java.util.jar

	Attributes2:
	org.xml.sax.ext

	Attributes2Impl:
	org.xml.sax.ext

	AttributesImpl:
	org.xml.sax.helpers

	AUGUST:
	Calendar, DatatypeConstants

	Authenticator:
	java.net

	Authenticator.RequestorType:
	java.net

	AuthPermission:
	javax.security.auth

	AuthProvider:
	java.security

	available():
	BufferedInputStream, ByteArrayInputStream, CipherInputStream,
FileInputStream, FilterInputStream, InflaterInputStream, InputStream,
LineNumberInputStream, ObjectInput, ObjectInputStream,
PipedInputStream, PushbackInputStream, SequenceInputStream,
SocketImpl, StringBufferInputStream, ZipInputStream

	availableCharsets():
	Charset

	availablePermits():
	Semaphore

	availableProcessors():
	Runtime

	averageBytesPerChar():
	CharsetEncoder

	averageCharsPerByte():
	CharsetDecoder

	await():
	Condition, ConditionObject, CountDownLatch, CyclicBarrier

	awaitNanos():
	Condition, ConditionObject

	awaitTermination():
	ExecutorService, ThreadPoolExecutor

	awaitUninterruptibly():
	Condition, ConditionObject

	awaitUntil():
	Condition, ConditionObject

B

	BackingStoreException:
	java.util.prefs

	BadPaddingException:
	javax.crypto

	baseIsLeftToRight():
	Bidi

	baseWireHandle:
	ObjectStreamConstants

	BASIC_LATIN:
	UnicodeBlock

	BasicPermission:
	java.security

	BC:
	GregorianCalendar

	before():
	Calendar, Date

	beforeExecute():
	ThreadPoolExecutor

	begin():
	AbstractInterruptibleChannel, AbstractSelector

	beginHandshake():
	SSLEngine

	BENGALI:
	UnicodeBlock

	BEST_COMPRESSION:
	Deflater

	BEST_SPEED:
	Deflater

	Bidi:
	java.text

	BIG_ENDIAN:
	ByteOrder

	BigDecimal:
	java.math

	BigDecimalLayoutForm:
	java.util.Formatter

	BigInteger:
	java.math

	binarySearch():
	Arrays, Collections

	bind():
	DatagramSocket, DatagramSocketImpl, ServerSocket, Socket, SocketImpl

	BindException:
	java.net

	bitCount():
	BigInteger, Integer, Long

	bitLength():
	BigInteger

	BitSet:
	java.util

	BLOCK_ELEMENTS:
	UnicodeBlock

	BLOCKED:
	State

	blockingLock():
	AbstractSelectableChannel, SelectableChannel

	BlockingQueue:
	java.util.concurrent

	BOOLEAN:
	XPathConstants

	Boolean:
	java.lang

	booleanValue():
	Boolean

	BOPOMOFO:
	UnicodeBlock

	BOPOMOFO_EXTENDED:
	UnicodeBlock

	BOX_DRAWING:
	UnicodeBlock

	BRAILLE_PATTERNS:
	UnicodeBlock

	BreakIterator:
	java.text

	BrokenBarrierException:
	java.util.concurrent

	buf:
	BufferedInputStream, BufferedOutputStream, ByteArrayInputStream,
ByteArrayOutputStream, CharArrayReader, CharArrayWriter,
DeflaterOutputStream, InflaterInputStream, PushbackInputStream

	Buffer:
	java.nio

	buffer:
	PipedInputStream, StringBufferInputStream

	BUFFER_OVERFLOW:
	Status

	BUFFER_UNDERFLOW:
	Status

	BufferedInputStream:
	java.io

	BufferedOutputStream:
	java.io

	BufferedReader:
	java.io

	BufferedWriter:
	java.io

	BufferOverflowException:
	java.nio

	BufferUnderflowException:
	java.nio

	BUHID:
	UnicodeBlock

	build():
	CertPathBuilder

	Builder:
	java.security.KeyStore

	Byte:
	java.lang

	ByteArrayInputStream:
	java.io

	ByteArrayOutputStream:
	java.io

	ByteBuffer:
	java.nio

	ByteChannel:
	java.nio.channels

	ByteOrder:
	java.nio

	bytesConsumed():
	SSLEngineResult

	bytesProduced():
	SSLEngineResult

	bytesTransferred:
	InterruptedIOException

	byteValue():
	Byte, Double, Float, Integer, Long, Number, Short

	byteValueExact():
	BigDecimal

	BYZANTINE_MUSICAL_SYMBOLS:
	UnicodeBlock

C

	cachedChildren():
	AbstractPreferences

	CacheRequest:
	java.net

	CacheResponse:
	java.net

	Calendar:
	java.util

	calendar:
	DateFormat

	call():
	Callable

	Callable:
	java.util.concurrent

	callable():
	Executors

	Callback:
	javax.security.auth.callback

	CallbackHandler:
	javax.security.auth.callback

	CallbackHandlerProtection:
	java.security.KeyStore

	CallerRunsPolicy:
	java.util.concurrent.ThreadPoolExecutor

	CANADA:
	Locale

	CANADA_FRENCH:
	Locale

	CANCEL:
	ConfirmationCallback

	cancel():
	AbstractSelectionKey, Future, FutureTask, SelectionKey, Timer,
TimerTask

	CancellationException:
	java.util.concurrent

	CancelledKeyException:
	java.nio.channels

	cancelledKeys():
	AbstractSelector

	canEncode():
	Charset, CharsetEncoder

	CANON_EQ:
	Pattern

	CANONICAL:
	X500Principal

	CANONICAL_DECOMPOSITION:
	Collator

	canRead():
	File

	canSetParameter():
	DOMConfiguration

	canWrite():
	File

	capacity():
	Buffer, StringBuffer, Vector

	capacityIncrement:
	Vector

	cardinality():
	BitSet

	CASE_INSENSITIVE:
	Pattern

	CASE_INSENSITIVE_ORDER:
	String

	cast():
	Class

	cbrt():
	Math, StrictMath

	CDATA_SECTION_ELEMENTS:
	OutputKeys

	CDATA_SECTION_NODE:
	Node

	CDATASection:
	org.w3c.dom

	ceil():
	Math, StrictMath

	CEILING:
	RoundingMode

	Certificate:
	java.security, java.security.cert

	Certificate.CertificateRep:
	java.security.cert

	CertificateEncodingException:
	java.security.cert

	CertificateException:
	java.security.cert

	CertificateExpiredException:
	java.security.cert

	CertificateFactory:
	java.security.cert

	CertificateFactorySpi:
	java.security.cert

	CertificateNotYetValidException:
	java.security.cert

	CertificateParsingException:
	java.security.cert

	CertificateRep:
	java.security.cert.Certificate

	certificates():
	Identity

	CertPath:
	java.security.cert

	CertPath.CertPathRep:
	java.security.cert

	CertPathBuilder:
	java.security.cert

	CertPathBuilderException:
	java.security.cert

	CertPathBuilderResult:
	java.security.cert

	CertPathBuilderSpi:
	java.security.cert

	CertPathParameters:
	java.security.cert

	CertPathRep:
	java.security.cert.CertPath

	CertPathTrustManagerParameters:
	javax.net.ssl

	CertPathValidator:
	java.security.cert

	CertPathValidatorException:
	java.security.cert

	CertPathValidatorResult:
	java.security.cert

	CertPathValidatorSpi:
	java.security.cert

	CertSelector:
	java.security.cert

	CertStore:
	java.security.cert

	CertStoreException:
	java.security.cert

	CertStoreParameters:
	java.security.cert

	CertStoreSpi:
	java.security.cert

	Channel:
	java.nio.channels

	channel():
	FileLock, SelectionKey

	Channels:
	java.nio.channels

	Character:
	java.lang

	Character.Subset:
	java.lang

	Character.UnicodeBlock:
	java.lang

	CharacterCodingException:
	java.nio.charset

	CharacterData:
	org.w3c.dom

	CharacterIterator:
	java.text

	characters():
	ContentHandler, DefaultHandler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReaderAdapter

	CharArrayReader:
	java.io

	CharArrayWriter:
	java.io

	charAt():
	CharBuffer, CharSequence, String, StringBuffer

	CharBuffer:
	java.nio

	CharConversionException:
	java.io

	charCount():
	Character

	CharSequence:
	java.lang

	Charset:
	java.nio.charset

	charset():
	CharsetDecoder, CharsetEncoder

	CharsetDecoder:
	java.nio.charset

	CharsetEncoder:
	java.nio.charset

	charsetForName():
	CharsetProvider

	CharsetProvider:
	java.nio.charset.spi

	charsets():
	CharsetProvider

	charValue():
	Character

	check():
	PKIXCertPathChecker

	checkAccept():
	SecurityManager

	checkAccess():
	LogManager, SecurityManager, Thread, ThreadGroup

	checkAwtEventQueueAccess():
	SecurityManager

	checkClientTrusted():
	X509TrustManager

	checkConnect():
	SecurityManager

	checkCreateClassLoader():
	SecurityManager

	checkDelete():
	SecurityManager

	checkedCollection():
	Collections

	CheckedInputStream:
	java.util.zip

	checkedList():
	Collections

	checkedMap():
	Collections

	CheckedOutputStream:
	java.util.zip

	checkedSet():
	Collections

	checkedSortedMap():
	Collections

	checkedSortedSet():
	Collections

	checkError():
	PrintStream, PrintWriter

	checkExec():
	SecurityManager

	checkExit():
	SecurityManager

	checkGuard():
	Guard, Permission

	checkLink():
	SecurityManager

	checkListen():
	SecurityManager

	checkMemberAccess():
	SecurityManager

	checkMulticast():
	SecurityManager

	checkPackageAccess():
	SecurityManager

	checkPackageDefinition():
	SecurityManager

	checkPermission():
	AccessControlContext, AccessController, SecurityManager

	checkPrintJobAccess():
	SecurityManager

	checkPropertiesAccess():
	SecurityManager

	checkPropertyAccess():
	SecurityManager

	checkRead():
	SecurityManager

	checkSecurityAccess():
	SecurityManager

	checkServerTrusted():
	X509TrustManager

	checkSetFactory():
	SecurityManager

	Checksum:
	java.util.zip

	checkSystemClipboardAccess():
	SecurityManager

	checkTopLevelWindow():
	SecurityManager

	checkValidity():
	X509Certificate

	checkWrite():
	SecurityManager

	CHEROKEE:
	UnicodeBlock

	childAdded():
	NodeChangeListener

	childRemoved():
	NodeChangeListener

	childrenNames():
	AbstractPreferences, Preferences

	childrenNamesSpi():
	AbstractPreferences

	childSpi():
	AbstractPreferences

	childValue():
	InheritableThreadLocal

	CHINA:
	Locale

	CHINESE:
	Locale

	ChoiceCallback:
	javax.security.auth.callback

	ChoiceFormat:
	java.text

	chooseClientAlias():
	X509KeyManager

	chooseEngineClientAlias():
	X509ExtendedKeyManager

	chooseEngineServerAlias():
	X509ExtendedKeyManager

	chooseServerAlias():
	X509KeyManager

	chunkLength:
	HttpURLConnection

	Cipher:
	javax.crypto

	CipherInputStream:
	javax.crypto

	CipherOutputStream:
	javax.crypto

	CipherSpi:
	javax.crypto

	CJK_COMPATIBILITY:
	UnicodeBlock

	CJK_COMPATIBILITY_FORMS:
	UnicodeBlock

	CJK_COMPATIBILITY_IDEOGRAPHS:
	UnicodeBlock

	CJK_COMPATIBILITY_IDEOGRAPHS_SUPPLEMENT:
	UnicodeBlock

	CJK_RADICALS_SUPPLEMENT:
	UnicodeBlock

	CJK_SYMBOLS_AND_PUNCTUATION:
	UnicodeBlock

	CJK_UNIFIED_IDEOGRAPHS:
	UnicodeBlock

	CJK_UNIFIED_IDEOGRAPHS_EXTENSION_A:
	UnicodeBlock

	CJK_UNIFIED_IDEOGRAPHS_EXTENSION_B:
	UnicodeBlock

	Class:
	java.lang

	CLASS:
	RetentionPolicy

	CLASS_ATTRIBUTE_PFX:
	Packer

	CLASS_LOADING_MXBEAN_NAME:
	ManagementFactory

	CLASS_PATH:
	Name

	ClassCastException:
	java.lang

	ClassCircularityError:
	java.lang

	ClassDefinition:
	java.lang.instrument

	classDepth():
	SecurityManager

	ClassFileTransformer:
	java.lang.instrument

	ClassFormatError:
	java.lang

	ClassLoader:
	java.lang

	classLoaderDepth():
	SecurityManager

	ClassLoadingMXBean:
	java.lang.management

	classname:
	InvalidClassException

	ClassNotFoundException:
	java.lang

	clear():
	AbstractCollection, AbstractList, AbstractMap, AbstractPreferences,
AbstractQueue, ArrayBlockingQueue, ArrayList, AttributeListImpl,
Attributes, AttributesImpl, BitSet, Buffer, Calendar, Collection,
ConcurrentHashMap, CopyOnWriteArrayList, CopyOnWriteArraySet,
DelayQueue, EnumMap, HashMap, HashSet, Hashtable, IdentityHashMap,
LinkedBlockingQueue, LinkedHashMap, LinkedList, List, Manifest, Map,
Preferences, PriorityBlockingQueue, PriorityQueue, Provider,
Reference, Set, SynchronousQueue, TreeMap, TreeSet, Vector,
WeakHashMap, XMLGregorianCalendar

	clearAssertionStatus():
	ClassLoader

	clearBit():
	BigInteger

	clearChanged():
	Observable

	clearParameters():
	Transformer

	clearPassword():
	PasswordCallback, PBEKeySpec

	clearProperty():
	System

	clockSequence():
	UUID

	clone():
	AbstractMap, ArrayList, Attributes, BitSet, BreakIterator, Calendar,
CertPathBuilderResult, CertPathParameters, CertPathValidatorResult,
CertSelector, CertStoreParameters, CharacterIterator, ChoiceFormat,
Collator, CollectionCertStoreParameters, CopyOnWriteArrayList,
CRLSelector, Date, DateFormat, DateFormatSymbols, DecimalFormat,
DecimalFormatSymbols, Enum, EnumMap, EnumSet, Format,
GregorianCalendar, HashMap, HashSet, Hashtable, IdentityHashMap,
LDAPCertStoreParameters, LinkedList, Locale, Mac, MacSpi, Manifest,
MessageDigest, MessageDigestSpi, MessageFormat, NumberFormat, Object,
PKIXCertPathChecker, PKIXCertPathValidatorResult, PKIXParameters,
RuleBasedCollator, Signature, SignatureSpi, SimpleDateFormat,
SimpleTimeZone, StringCharacterIterator, TimeZone, TreeMap, TreeSet,
Vector, X509CertSelector, X509CRLSelector, XMLGregorianCalendar,
ZipEntry

	Cloneable:
	java.lang

	cloneNode():
	Node

	CloneNotSupportedException:
	java.lang

	close():
	AbstractInterruptibleChannel, AbstractSelector, BufferedInputStream,
BufferedReader, BufferedWriter, ByteArrayInputStream,
ByteArrayOutputStream, Channel, CharArrayReader, CharArrayWriter,
CipherInputStream, CipherOutputStream, Closeable, ConsoleHandler,
DatagramSocket, DatagramSocketImpl, DeflaterOutputStream,
FileHandler, FileInputStream, FileOutputStream, FilterInputStream,
FilterOutputStream, FilterReader, FilterWriter, Formatter,
GZIPInputStream, Handler, InflaterInputStream, InputStream,
InputStreamReader, InterruptibleChannel, MemoryHandler, ObjectInput,
ObjectInputStream, ObjectOutput, ObjectOutputStream, OutputStream,
OutputStreamWriter, PipedInputStream, PipedOutputStream, PipedReader,
PipedWriter, PrintStream, PrintWriter, PushbackInputStream,
PushbackReader, RandomAccessFile, Reader, Scanner, Selector,
SequenceInputStream, ServerSocket, Socket, SocketHandler, SocketImpl,
StreamHandler, StringReader, StringWriter, Writer, ZipFile,
ZipInputStream, ZipOutputStream

	CLOSE_FAILURE:
	ErrorManager

	Closeable:
	java.io

	CLOSED:
	Status

	ClosedByInterruptException:
	java.nio.channels

	ClosedChannelException:
	java.nio.channels

	ClosedSelectorException:
	java.nio.channels

	closeEntry():
	ZipInputStream, ZipOutputStream

	closeInbound():
	SSLEngine

	closeOutbound():
	SSLEngine

	code:
	DOMException

	CODE_ATTRIBUTE_PFX:
	Packer

	codePointAt():
	Character, String, StringBuffer

	codePointBefore():
	Character, String, StringBuffer

	codePointCount():
	Character, String, StringBuffer

	CoderMalfunctionError:
	java.nio.charset

	CoderResult:
	java.nio.charset

	CodeSigner:
	java.security

	CodeSource:
	java.security

	CodingErrorAction:
	java.nio.charset

	CollationElementIterator:
	java.text

	CollationKey:
	java.text

	Collator:
	java.text

	Collection:
	java.util

	CollectionCertStoreParameters:
	java.security.cert

	Collections:
	java.util

	combine():
	DomainCombiner, SubjectDomainCombiner

	COMBINING_DIACRITICAL_MARKS:
	UnicodeBlock

	COMBINING_HALF_MARKS:
	UnicodeBlock

	COMBINING_MARKS_FOR_SYMBOLS:
	UnicodeBlock

	COMBINING_SPACING_MARK:
	Character

	command():
	Compiler, ProcessBuilder

	Comment:
	org.w3c.dom

	comment():
	DefaultHandler2, LexicalHandler

	COMMENT_NODE:
	Node

	commentChar():
	StreamTokenizer

	COMMENTS:
	Pattern

	commit():
	LoginModule

	compact():
	ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer

	Comparable:
	java.lang

	Comparator:
	java.util

	comparator():
	PriorityBlockingQueue, PriorityQueue, SortedMap, SortedSet, TreeMap,
TreeSet

	compare():
	Collator, Comparator, Double, Duration, Float, RuleBasedCollator,
XMLGregorianCalendar

	compareAndSet():
	AtomicBoolean, AtomicInteger, AtomicIntegerArray,
AtomicIntegerFieldUpdater, AtomicLong, AtomicLongArray,
AtomicLongFieldUpdater, AtomicMarkableReference, AtomicReference,
AtomicReferenceArray, AtomicReferenceFieldUpdater,
AtomicStampedReference

	compareAndSetState():
	AbstractQueuedSynchronizer

	compareDocumentPosition():
	Node

	compareTo():
	BigDecimal, BigInteger, Boolean, Byte, ByteBuffer, Calendar,
Character, CharBuffer, Charset, CollationKey, Comparable, Date,
Double, DoubleBuffer, Enum, File, Float, FloatBuffer, IntBuffer,
Integer, Long, LongBuffer, ObjectStreamField, Short, ShortBuffer,
String, URI, UUID

	compareToIgnoreCase():
	String

	COMPILATION_MXBEAN_NAME:
	ManagementFactory

	CompilationMXBean:
	java.lang.management

	compile():
	Pattern, XPath

	compileClass():
	Compiler

	compileClasses():
	Compiler

	Compiler:
	java.lang

	complementOf():
	EnumSet

	complete():
	Calendar

	CompletionService:
	java.util.concurrent

	computeFields():
	Calendar, GregorianCalendar

	computeTime():
	Calendar, GregorianCalendar

	concat():
	String

	ConcurrentHashMap:
	java.util.concurrent

	ConcurrentLinkedQueue:
	java.util.concurrent

	ConcurrentMap:
	java.util.concurrent

	ConcurrentModificationException:
	java.util

	Condition:
	java.util.concurrent.locks

	ConditionObject:
	java.util.concurrent.locks.AbstractQueuedSynchronizer

	CONFIG:
	Level

	config():
	Logger

	Configuration:
	javax.security.auth.login

	configureBlocking():
	AbstractSelectableChannel, SelectableChannel

	ConfirmationCallback:
	javax.security.auth.callback

	connect():
	DatagramChannel, DatagramSocket, DatagramSocketImpl,
PipedInputStream, PipedOutputStream, PipedReader, PipedWriter,
Socket, SocketChannel, SocketImpl, URLConnection

	connected:
	URLConnection

	ConnectException:
	java.net

	connectFailed():
	ProxySelector

	ConnectionPendingException:
	java.nio.channels

	CONNECTOR_PUNCTUATION:
	Character

	ConsoleHandler:
	java.util.logging

	constantName():
	EnumConstantNotPresentException

	Constructor:
	java.lang.reflect

	CONSTRUCTOR:
	ElementType

	contains():
	AbstractCollection, ArrayBlockingQueue, ArrayList, Charset,
Collection, ConcurrentHashMap, ConcurrentLinkedQueue,
CopyOnWriteArrayList, CopyOnWriteArraySet, DOMStringList, HashSet,
Hashtable, LinkedList, List, NameList, PriorityBlockingQueue, Set,
String, SynchronousQueue, TreeSet, Vector

	containsAlias():
	KeyStore

	containsAll():
	AbstractCollection, Collection, CopyOnWriteArrayList,
CopyOnWriteArraySet, List, Set, SynchronousQueue, Vector

	containsKey():
	AbstractMap, Attributes, ConcurrentHashMap, EnumMap, HashMap,
Hashtable, IdentityHashMap, Map, TreeMap, WeakHashMap

	containsNS():
	NameList

	containsValue():
	AbstractMap, Attributes, ConcurrentHashMap, EnumMap, HashMap,
Hashtable, IdentityHashMap, LinkedHashMap, Map, TreeMap, WeakHashMap

	CONTENT_TYPE:
	Name

	contentEquals():
	String

	ContentHandler:
	java.net, org.xml.sax

	ContentHandlerFactory:
	java.net

	CONTROL:
	Character

	CONTROL_PICTURES:
	UnicodeBlock

	convert():
	TimeUnit

	CookieHandler:
	java.net

	copy():
	Collections

	copyInto():
	Vector

	copyOf():
	EnumSet

	CopyOnWriteArrayList:
	java.util.concurrent

	CopyOnWriteArraySet:
	java.util.concurrent

	copyValueOf():
	String

	cos():
	Math, StrictMath

	cosh():
	Math, StrictMath

	count:
	BufferedInputStream, BufferedOutputStream, ByteArrayInputStream,
ByteArrayOutputStream, CharArrayReader, CharArrayWriter,
StringBufferInputStream

	countDown():
	CountDownLatch

	CountDownLatch:
	java.util.concurrent

	countObservers():
	Observable

	countStackFrames():
	Thread

	countTokens():
	StringTokenizer

	crc:
	GZIPInputStream, GZIPOutputStream

	CRC32:
	java.util.zip

	create():
	DatagramSocketImpl, SocketImpl, URI

	createAttribute():
	Document

	createAttributeNS():
	Document

	createCDATASection():
	Document

	createComment():
	Document

	createContentHandler():
	ContentHandlerFactory

	createDatagramSocketImpl():
	DatagramSocketImplFactory

	createDocument():
	DOMImplementation

	createDocumentFragment():
	Document

	createDocumentType():
	DOMImplementation

	createElement():
	Document

	createElementNS():
	Document

	createEntityReference():
	Document

	createLineBidi():
	Bidi

	createNewFile():
	File

	createProcessingInstruction():
	Document

	createServerSocket():
	ServerSocketFactory

	createSocket():
	SocketFactory, SSLSocketFactory

	createSocketImpl():
	SocketImplFactory

	createSSLEngine():
	SSLContext

	createTempFile():
	File

	createTextNode():
	Document

	createUnresolved():
	InetSocketAddress

	createURLStreamHandler():
	URLStreamHandlerFactory

	createXMLReader():
	XMLReaderFactory

	createZipEntry():
	JarInputStream, ZipInputStream

	CredentialException:
	javax.security.auth.login

	CredentialExpiredException:
	javax.security.auth.login

	CredentialNotFoundException:
	javax.security.auth.login

	CRL:
	java.security.cert

	CRLException:
	java.security.cert

	CRLSelector:
	java.security.cert

	Currency:
	java.util

	CURRENCY:
	Field

	CURRENCY_SYMBOL:
	Character

	CURRENCY_SYMBOLS:
	UnicodeBlock

	current():
	BreakIterator, CharacterIterator, StringCharacterIterator

	currentClassLoader():
	SecurityManager

	currentLoadedClass():
	SecurityManager

	currentThread():
	Thread

	currentTimeMillis():
	System

	CyclicBarrier:
	java.util.concurrent

	CYPRIOT_SYLLABARY:
	UnicodeBlock

	CYRILLIC:
	UnicodeBlock

	CYRILLIC_SUPPLEMENTARY:
	UnicodeBlock

D

	DASH_PUNCTUATION:
	Character

	DataFormatException:
	java.util.zip

	DatagramChannel:
	java.nio.channels

	DatagramPacket:
	java.net

	DatagramSocket:
	java.net

	DatagramSocketImpl:
	java.net

	DatagramSocketImplFactory:
	java.net

	DataInput:
	java.io

	DataInputStream:
	java.io

	DataOutput:
	java.io

	DataOutputStream:
	java.io

	DatatypeConfigurationException:
	javax.xml.datatype

	DatatypeConstants:
	javax.xml.datatype

	DatatypeConstants.Field:
	javax.xml.datatype

	DatatypeFactory:
	javax.xml.datatype

	DATATYPEFACTORY_IMPLEMENTATION_CLASS:
	DatatypeFactory

	DATATYPEFACTORY_PROPERTY:
	DatatypeFactory

	DATE:
	Calendar, DatatypeConstants

	Date:
	java.util

	DATE_FIELD:
	DateFormat

	DateFormat:
	java.text

	DateFormat.Field:
	java.text

	DateFormatSymbols:
	java.text

	DATETIME:
	DatatypeConstants

	DAY_OF_MONTH:
	Calendar, Field

	DAY_OF_WEEK:
	Calendar, Field

	DAY_OF_WEEK_FIELD:
	DateFormat

	DAY_OF_WEEK_IN_MONTH:
	Calendar, Field

	DAY_OF_WEEK_IN_MONTH_FIELD:
	DateFormat

	DAY_OF_YEAR:
	Calendar, Field

	DAY_OF_YEAR_FIELD:
	DateFormat

	DAYS:
	DatatypeConstants

	DECEMBER:
	Calendar, DatatypeConstants

	DECIMAL128:
	MathContext

	DECIMAL32:
	MathContext

	DECIMAL64:
	MathContext

	DECIMAL_DIGIT_NUMBER:
	Character

	DECIMAL_FLOAT:
	BigDecimalLayoutForm

	DECIMAL_SEPARATOR:
	Field

	DecimalFormat:
	java.text

	DecimalFormatSymbols:
	java.text

	DECLARED:
	Member

	declarePrefix():
	NamespaceSupport

	DeclHandler:
	org.xml.sax.ext

	decode():
	Byte, Certificate, Charset, CharsetDecoder, Integer, Long, Short,
URLDecoder

	decodeLoop():
	CharsetDecoder

	decrementAndGet():
	AtomicInteger, AtomicIntegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLongFieldUpdater

	DECRYPT_MODE:
	Cipher

	deepEquals():
	Arrays

	deepHashCode():
	Arrays

	deepToString():
	Arrays

	def:
	DeflaterOutputStream

	DEFAULT:
	DateFormat, OAEPParameterSpec, PSpecified, PSSParameterSpec

	DEFAULT_COMPRESSION:
	Deflater

	DEFAULT_NS_PREFIX:
	XMLConstants

	DEFAULT_OBJECT_MODEL_URI:
	XPathFactory

	DEFAULT_PROPERTY_NAME:
	XPathFactory

	DEFAULT_STRATEGY:
	Deflater

	defaultCharset():
	Charset

	defaulted():
	GetField

	DefaultHandler:
	org.xml.sax.helpers

	DefaultHandler2:
	org.xml.sax.ext

	defaultReadObject():
	ObjectInputStream

	defaults:
	Properties

	defaultThreadFactory():
	Executors

	defaultWriteObject():
	ObjectOutputStream

	defineClass():
	ClassLoader, SecureClassLoader

	definePackage():
	ClassLoader, URLClassLoader

	deflate():
	Deflater, DeflaterOutputStream

	DEFLATE_HINT:
	Packer, Unpacker

	DEFLATED:
	Deflater, ZipEntry, ZipOutputStream

	Deflater:
	java.util.zip

	DeflaterOutputStream:
	java.util.zip

	Delayed:
	java.util.concurrent

	DelayQueue:
	java.util.concurrent

	DelegationPermission:
	javax.security.auth.kerberos

	delete():
	File, StringBuffer, StringBuilder

	deleteCharAt():
	StringBuffer, StringBuilder

	deleteData():
	CharacterData

	deleteEntry():
	KeyStore

	deleteObserver():
	Observable

	deleteObservers():
	Observable

	deleteOnExit():
	File

	delimiter():
	Scanner

	Deprecated:
	java.lang

	deregister():
	AbstractSelector

	DERIVATION_EXTENSION:
	TypeInfo

	DERIVATION_LIST:
	TypeInfo

	DERIVATION_RESTRICTION:
	TypeInfo

	DERIVATION_UNION:
	TypeInfo

	DES_EDE_KEY_LEN:
	DESedeKeySpec

	DES_KEY_LEN:
	DESKeySpec

	DESedeKeySpec:
	javax.crypto.spec

	DESERET:
	UnicodeBlock

	desiredAssertionStatus():
	Class

	DESKeySpec:
	javax.crypto.spec

	destroy():
	Destroyable, KerberosKey, KerberosTicket, PasswordProtection,
Process, Thread, ThreadGroup, X500PrivateCredential

	Destroyable:
	javax.security.auth

	DestroyFailedException:
	javax.security.auth

	detail:
	WriteAbortedException

	detectedCharset():
	CharsetDecoder

	DEVANAGARI:
	UnicodeBlock

	DHGenParameterSpec:
	javax.crypto.spec

	DHKey:
	javax.crypto.interfaces

	DHParameterSpec:
	javax.crypto.spec

	DHPrivateKey:
	javax.crypto.interfaces

	DHPrivateKeySpec:
	javax.crypto.spec

	DHPublicKey:
	javax.crypto.interfaces

	DHPublicKeySpec:
	javax.crypto.spec

	Dictionary:
	java.util

	digest:
	DigestInputStream, DigestOutputStream

	digest():
	MessageDigest

	DigestException:
	java.security

	DigestInputStream:
	java.security

	DigestOutputStream:
	java.security

	digit():
	Character

	DINGBATS:
	UnicodeBlock

	DIRECT:
	Type

	DIRECTION_DEFAULT_LEFT_TO_RIGHT:
	Bidi

	DIRECTION_DEFAULT_RIGHT_TO_LEFT:
	Bidi

	DIRECTION_LEFT_TO_RIGHT:
	Bidi

	DIRECTION_RIGHT_TO_LEFT:
	Bidi

	DIRECTIONALITY_ARABIC_NUMBER:
	Character

	DIRECTIONALITY_BOUNDARY_NEUTRAL:
	Character

	DIRECTIONALITY_COMMON_NUMBER_SEPARATOR:
	Character

	DIRECTIONALITY_EUROPEAN_NUMBER:
	Character

	DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR:
	Character

	DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR:
	Character

	DIRECTIONALITY_LEFT_TO_RIGHT:
	Character

	DIRECTIONALITY_LEFT_TO_RIGHT_EMBEDDING:
	Character

	DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE:
	Character

	DIRECTIONALITY_NONSPACING_MARK:
	Character

	DIRECTIONALITY_OTHER_NEUTRALS:
	Character

	DIRECTIONALITY_PARAGRAPH_SEPARATOR:
	Character

	DIRECTIONALITY_POP_DIRECTIONAL_FORMAT:
	Character

	DIRECTIONALITY_RIGHT_TO_LEFT:
	Character

	DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC:
	Character

	DIRECTIONALITY_RIGHT_TO_LEFT_EMBEDDING:
	Character

	DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE:
	Character

	DIRECTIONALITY_SEGMENT_SEPARATOR:
	Character

	DIRECTIONALITY_UNDEFINED:
	Character

	DIRECTIONALITY_WHITESPACE:
	Character

	directory():
	ProcessBuilder

	disable():
	Compiler

	DiscardOldestPolicy:
	java.util.concurrent.ThreadPoolExecutor

	DiscardPolicy:
	java.util.concurrent.ThreadPoolExecutor

	disconnect():
	DatagramChannel, DatagramSocket, DatagramSocketImpl,
HttpURLConnection

	disjoint():
	Collections

	displayName():
	Charset

	divide():
	BigDecimal, BigInteger

	divideAndRemainder():
	BigDecimal, BigInteger

	divideToIntegralValue():
	BigDecimal

	doAs():
	Subject

	doAsPrivileged():
	Subject

	DOCTYPE_PUBLIC:
	OutputKeys

	DOCTYPE_SYSTEM:
	OutputKeys

	Document:
	org.w3c.dom

	DOCUMENT_FRAGMENT_NODE:
	Node

	DOCUMENT_NODE:
	Node

	DOCUMENT_POSITION_CONTAINED_BY:
	Node

	DOCUMENT_POSITION_CONTAINS:
	Node

	DOCUMENT_POSITION_DISCONNECTED:
	Node

	DOCUMENT_POSITION_FOLLOWING:
	Node

	DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC:
	Node

	DOCUMENT_POSITION_PRECEDING:
	Node

	DOCUMENT_TYPE_NODE:
	Node

	DocumentBuilder:
	javax.xml.parsers

	DocumentBuilderFactory:
	javax.xml.parsers

	Documented:
	java.lang.annotation

	DocumentFragment:
	org.w3c.dom

	DocumentHandler:
	org.xml.sax

	DocumentType:
	org.w3c.dom

	doFinal():
	Cipher, Mac

	doInput:
	URLConnection

	DOM_OBJECT_MODEL:
	XPathConstants

	DomainCombiner:
	java.security

	DOMConfiguration:
	org.w3c.dom

	DOMError:
	org.w3c.dom

	DOMErrorHandler:
	org.w3c.dom

	DOMException:
	org.w3c.dom

	DOMImplementation:
	org.w3c.dom

	DOMImplementationList:
	org.w3c.dom

	DOMImplementationSource:
	org.w3c.dom

	DOMLocator:
	javax.xml.transform.dom, org.w3c.dom

	DOMResult:
	javax.xml.transform.dom

	DOMSource:
	javax.xml.transform.dom

	DOMSTRING_SIZE_ERR:
	DOMException

	DOMStringList:
	org.w3c.dom

	DONE:
	BreakIterator, CharacterIterator

	done():
	FutureTask

	doOutput:
	URLConnection

	doPhase():
	KeyAgreement

	doPrivileged():
	AccessController

	DOTALL:
	Pattern

	Double:
	java.lang

	DoubleBuffer:
	java.nio

	doubleToLongBits():
	Double

	doubleToRawLongBits():
	Double

	doubleValue():
	AtomicInteger, AtomicLong, BigDecimal, BigInteger, Byte, Double,
Float, Integer, Long, Number, Short

	DOWN:
	RoundingMode

	drain():
	ObjectOutputStream

	drainPermits():
	Semaphore

	drainTo():
	ArrayBlockingQueue, BlockingQueue, DelayQueue, LinkedBlockingQueue,
PriorityBlockingQueue, SynchronousQueue

	DSAKey:
	java.security.interfaces

	DSAKeyPairGenerator:
	java.security.interfaces

	DSAParameterSpec:
	java.security.spec

	DSAParams:
	java.security.interfaces

	DSAPrivateKey:
	java.security.interfaces

	DSAPrivateKeySpec:
	java.security.spec

	DSAPublicKey:
	java.security.interfaces

	DSAPublicKeySpec:
	java.security.spec

	DST_OFFSET:
	Calendar

	DTDHandler:
	org.xml.sax

	dumpStack():
	Thread

	duplicate():
	ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer

	DuplicateFormatFlagsException:
	java.util

	DURATION:
	DatatypeConstants

	Duration:
	javax.xml.datatype

	DURATION_DAYTIME:
	DatatypeConstants

	DURATION_YEARMONTH:
	DatatypeConstants

E

	E:
	Math, StrictMath

	ECField:
	java.security.spec

	ECFieldF2m:
	java.security.spec

	ECFieldFp:
	java.security.spec

	ECGenParameterSpec:
	java.security.spec

	ECKey:
	java.security.interfaces

	ECParameterSpec:
	java.security.spec

	ECPoint:
	java.security.spec

	ECPrivateKey:
	java.security.interfaces

	ECPrivateKeySpec:
	java.security.spec

	ECPublicKey:
	java.security.interfaces

	ECPublicKeySpec:
	java.security.spec

	EFFORT:
	Packer

	Element:
	org.w3c.dom

	element():
	AbstractQueue, AnnotationTypeMismatchException, LinkedList, Queue

	ELEMENT_NODE:
	Node

	elementAt():
	Vector

	elementCount:
	Vector

	elementData:
	Vector

	elementDecl():
	DeclHandler, DefaultHandler2

	elementName():
	IncompleteAnnotationException

	elements():
	ConcurrentHashMap, Dictionary, Hashtable, PermissionCollection,
Permissions, Vector

	ElementType:
	java.lang.annotation

	EllipticCurve:
	java.security.spec

	empty():
	Stack

	EMPTY_LIST:
	Collections

	EMPTY_MAP:
	Collections

	EMPTY_SET:
	Collections

	emptyList():
	Collections

	emptyMap():
	Collections

	emptySet():
	Collections

	EmptyStackException:
	java.util

	enable():
	Compiler

	enableReplaceObject():
	ObjectOutputStream

	enableResolveObject():
	ObjectInputStream

	ENCLOSED_ALPHANUMERICS:
	UnicodeBlock

	ENCLOSED_CJK_LETTERS_AND_MONTHS:
	UnicodeBlock

	ENCLOSING_MARK:
	Character

	encode():
	Certificate, Charset, CharsetEncoder, URLEncoder

	EncodedKeySpec:
	java.security.spec

	encodedParams:
	SealedObject

	encodeLoop():
	CharsetEncoder

	ENCODING:
	OutputKeys

	ENCRYPT_MODE:
	Cipher

	EncryptedPrivateKeyInfo:
	javax.crypto

	end():
	AbstractInterruptibleChannel, AbstractSelector, Deflater, Inflater,
Matcher, MatchResult

	END_PUNCTUATION:
	Character

	endCDATA():
	DefaultHandler2, LexicalHandler

	endDocument():
	ContentHandler, DefaultHandler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReaderAdapter

	endDTD():
	DefaultHandler2, LexicalHandler

	endElement():
	ContentHandler, DefaultHandler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReaderAdapter

	endEntity():
	DefaultHandler2, LexicalHandler

	endPrefixMapping():
	ContentHandler, DefaultHandler, XMLFilterImpl, XMLReaderAdapter

	endsWith():
	String

	engineAliases():
	KeyStoreSpi

	engineBuild():
	CertPathBuilderSpi

	engineContainsAlias():
	KeyStoreSpi

	engineCreateSSLEngine():
	SSLContextSpi

	engineDeleteEntry():
	KeyStoreSpi

	engineDigest():
	MessageDigestSpi

	engineDoFinal():
	CipherSpi, MacSpi

	engineDoPhase():
	KeyAgreementSpi

	engineEntryInstanceOf():
	KeyStoreSpi

	engineGenerateCertificate():
	CertificateFactorySpi

	engineGenerateCertificates():
	CertificateFactorySpi

	engineGenerateCertPath():
	CertificateFactorySpi

	engineGenerateCRL():
	CertificateFactorySpi

	engineGenerateCRLs():
	CertificateFactorySpi

	engineGenerateKey():
	KeyGeneratorSpi

	engineGenerateParameters():
	AlgorithmParameterGeneratorSpi

	engineGeneratePrivate():
	KeyFactorySpi

	engineGeneratePublic():
	KeyFactorySpi

	engineGenerateSecret():
	KeyAgreementSpi, SecretKeyFactorySpi

	engineGenerateSeed():
	SecureRandomSpi

	engineGenExemptionBlob():
	ExemptionMechanismSpi

	engineGetBlockSize():
	CipherSpi

	engineGetCertificate():
	KeyStoreSpi

	engineGetCertificateAlias():
	KeyStoreSpi

	engineGetCertificateChain():
	KeyStoreSpi

	engineGetCertificates():
	CertStoreSpi

	engineGetCertPathEncodings():
	CertificateFactorySpi

	engineGetClientSessionContext():
	SSLContextSpi

	engineGetCreationDate():
	KeyStoreSpi

	engineGetCRLs():
	CertStoreSpi

	engineGetDigestLength():
	MessageDigestSpi

	engineGetEncoded():
	AlgorithmParametersSpi

	engineGetEntry():
	KeyStoreSpi

	engineGetIV():
	CipherSpi

	engineGetKey():
	KeyStoreSpi

	engineGetKeyManagers():
	KeyManagerFactorySpi

	engineGetKeySize():
	CipherSpi

	engineGetKeySpec():
	KeyFactorySpi, SecretKeyFactorySpi

	engineGetMacLength():
	MacSpi

	engineGetOutputSize():
	CipherSpi, ExemptionMechanismSpi

	engineGetParameter():
	SignatureSpi

	engineGetParameters():
	CipherSpi, SignatureSpi

	engineGetParameterSpec():
	AlgorithmParametersSpi

	engineGetServerSessionContext():
	SSLContextSpi

	engineGetServerSocketFactory():
	SSLContextSpi

	engineGetSocketFactory():
	SSLContextSpi

	engineGetTrustManagers():
	TrustManagerFactorySpi

	engineInit():
	AlgorithmParameterGeneratorSpi, AlgorithmParametersSpi, CipherSpi,
ExemptionMechanismSpi, KeyAgreementSpi, KeyGeneratorSpi,
KeyManagerFactorySpi, MacSpi, SSLContextSpi, TrustManagerFactorySpi

	engineInitSign():
	SignatureSpi

	engineInitVerify():
	SignatureSpi

	engineIsCertificateEntry():
	KeyStoreSpi

	engineIsKeyEntry():
	KeyStoreSpi

	engineLoad():
	KeyStoreSpi

	engineNextBytes():
	SecureRandomSpi

	engineReset():
	MacSpi, MessageDigestSpi

	engineSetCertificateEntry():
	KeyStoreSpi

	engineSetEntry():
	KeyStoreSpi

	engineSetKeyEntry():
	KeyStoreSpi

	engineSetMode():
	CipherSpi

	engineSetPadding():
	CipherSpi

	engineSetParameter():
	SignatureSpi

	engineSetSeed():
	SecureRandomSpi

	engineSign():
	SignatureSpi

	engineSize():
	KeyStoreSpi

	engineStore():
	KeyStoreSpi

	engineToString():
	AlgorithmParametersSpi

	engineTranslateKey():
	KeyFactorySpi, SecretKeyFactorySpi

	engineUnwrap():
	CipherSpi

	engineUpdate():
	CipherSpi, MacSpi, MessageDigestSpi, SignatureSpi

	engineValidate():
	CertPathValidatorSpi

	engineVerify():
	SignatureSpi

	engineWrap():
	CipherSpi

	ENGLISH:
	Locale

	enqueue():
	Reference

	ensureCapacity():
	ArrayList, StringBuffer, Vector

	entering():
	Logger

	Entity:
	org.w3c.dom

	ENTITY_NODE:
	Node

	ENTITY_REFERENCE_NODE:
	Node

	EntityReference:
	org.w3c.dom

	EntityResolver:
	org.xml.sax

	EntityResolver2:
	org.xml.sax.ext

	entries():
	JarFile, ZipFile

	Entry:
	java.security.KeyStore, java.util.Map

	entryInstanceOf():
	KeyStore

	entrySet():
	AbstractMap, Attributes, ConcurrentHashMap, EnumMap, HashMap,
Hashtable, IdentityHashMap, Map, Provider, TreeMap, WeakHashMap

	Enum:
	java.lang

	EnumConstantNotPresentException:
	java.lang

	enumerate():
	Thread, ThreadGroup

	Enumeration:
	java.util

	enumeration():
	Collections

	EnumMap:
	java.util

	EnumSet:
	java.util

	enumType():
	EnumConstantNotPresentException

	environment():
	ProcessBuilder

	eof:
	OptionalDataException

	EOFException:
	java.io

	eolIsSignificant():
	StreamTokenizer

	eos:
	GZIPInputStream

	EQUAL:
	DatatypeConstants

	equals():
	AbstractList, AbstractMap, AbstractSet, AccessControlContext,
AllPermission, Annotation, Arrays, Attribute, Attributes,
BasicPermission, BigDecimal, BigInteger, BitSet, Boolean, Byte,
ByteBuffer, Calendar, Certificate, CertPath, Character, CharBuffer,
Charset, ChoiceFormat, CodeSigner, CodeSource, CollationKey,
Collator, Collection, Comparator, Constructor, CopyOnWriteArrayList,
Date, DateFormat, DateFormatSymbols, DecimalFormat,
DecimalFormatSymbols, DelegationPermission, Double, DoubleBuffer,
Duration, ECFieldF2m, ECFieldFp, ECPoint, EllipticCurve, Entry, Enum,
EnumMap, Field, FieldPosition, File, FilePermission, Float,
FloatBuffer, GregorianCalendar, Hashtable, Identity, IdentityHashMap,
Inet4Address, Inet6Address, InetAddress, InetSocketAddress,
IntBuffer, Integer, KerberosPrincipal, Level, List, Locale, Long,
LongBuffer, Manifest, Map, MathContext, MessageFormat, Method, Name,
NetworkInterface, NumberFormat, Object, ParsePosition, Permission,
Principal, PrivateCredentialPermission, PropertyPermission, Proxy,
QName, RC2ParameterSpec, RC5ParameterSpec, RuleBasedCollator,
SecretKeySpec, ServicePermission, Set, Short, ShortBuffer,
SimpleDateFormat, SimpleTimeZone, SocketPermission,
StackTraceElement, String, StringCharacterIterator, Subject, Subset,
Timestamp, UnresolvedPermission, URI, URL, URLStreamHandler, UUID,
Vector, X500Principal, X509CRL, X509CRLEntry, XMLGregorianCalendar

	equalsIgnoreCase():
	String

	ERA:
	Calendar, Field

	ERA_FIELD:
	DateFormat

	err:
	FileDescriptor, System

	Error:
	java.lang

	ERROR:
	ConfirmationCallback, Packer, TextOutputCallback

	error():
	DefaultHandler, ErrorHandler, ErrorListener, ErrorManager,
HandlerBase, XMLFilterImpl

	ErrorHandler:
	org.xml.sax

	ErrorListener:
	javax.xml.transform

	ErrorManager:
	java.util.logging

	ETHIOPIC:
	UnicodeBlock

	evaluate():
	XPath, XPathExpression, XPathFunction

	EventListener:
	java.util

	EventListenerProxy:
	java.util

	EventObject:
	java.util

	Exception:
	java.lang

	ExceptionInInitializerError:
	java.lang

	exchange():
	Exchanger

	Exchanger:
	java.util.concurrent

	exec():
	Runtime

	execute():
	Executor, ScheduledThreadPoolExecutor, ThreadPoolExecutor

	ExecutionException:
	java.util.concurrent

	Executor:
	java.util.concurrent

	ExecutorCompletionService:
	java.util.concurrent

	Executors:
	java.util.concurrent

	ExecutorService:
	java.util.concurrent

	ExemptionMechanism:
	javax.crypto

	ExemptionMechanismException:
	javax.crypto

	ExemptionMechanismSpi:
	javax.crypto

	exists():
	File

	exit():
	Runtime, System

	exiting():
	Logger

	exitValue():
	Process

	exp():
	Math, StrictMath

	expm1():
	Math, StrictMath

	EXPONENT:
	Field

	EXPONENT_SIGN:
	Field

	EXPONENT_SYMBOL:
	Field

	exportNode():
	AbstractPreferences, Preferences

	exportSubtree():
	AbstractPreferences, Preferences

	EXTENSION_INSTALLATION:
	Name

	EXTENSION_LIST:
	Name

	EXTENSION_NAME:
	Name

	externalEntityDecl():
	DeclHandler, DefaultHandler2

	Externalizable:
	java.io

F

	F0:
	RSAKeyGenParameterSpec

	F4:
	RSAKeyGenParameterSpec

	FactoryConfigurationError:
	javax.xml.parsers

	FailedLoginException:
	javax.security.auth.login

	FALSE:
	Boolean, Packer, Unpacker

	fatalError():
	DefaultHandler, ErrorHandler, ErrorListener, HandlerBase,
XMLFilterImpl

	fd:
	DatagramSocketImpl, SocketImpl

	FEATURE:
	DOMResult, DOMSource, SAXResult, SAXSource, SAXTransformerFactory,
StreamResult, StreamSource

	FEATURE_SECURE_PROCESSING:
	XMLConstants

	FEATURE_XMLFILTER:
	SAXTransformerFactory

	FEBRUARY:
	Calendar, DatatypeConstants

	Field:
	java.lang.reflect, java.text.DateFormat, java.text.Format,
java.text.MessageFormat, java.text.NumberFormat,
javax.xml.datatype.DatatypeConstants

	FIELD:
	ElementType

	FIELD_ATTRIBUTE_PFX:
	Packer

	FIELD_COUNT:
	Calendar

	FIELD_UNDEFINED:
	DatatypeConstants

	FieldPosition:
	java.text

	fields:
	Calendar

	File:
	java.io

	FileChannel:
	java.nio.channels

	FileChannel.MapMode:
	java.nio.channels

	FileDescriptor:
	java.io

	FileFilter:
	java.io

	FileHandler:
	java.util.logging

	FileInputStream:
	java.io

	FileLock:
	java.nio.channels

	FileLockInterruptionException:
	java.nio.channels

	FilenameFilter:
	java.io

	FileNameMap:
	java.net

	FileNotFoundException:
	java.io

	FileOutputStream:
	java.io

	FilePermission:
	java.io

	FileReader:
	java.io

	FileWriter:
	java.io

	fill():
	Arrays, Collections, InflaterInputStream

	fillInStackTrace():
	Throwable

	Filter:
	java.util.logging

	FILTERED:
	Deflater

	FilterInputStream:
	java.io

	FilterOutputStream:
	java.io

	FilterReader:
	java.io

	FilterWriter:
	java.io

	FINAL:
	Modifier

	FINAL_QUOTE_PUNCTUATION:
	Character

	finalize():
	Deflater, ExemptionMechanism, FileInputStream, FileOutputStream,
Inflater, Object, ThreadPoolExecutor, ZipFile

	find():
	Matcher

	findClass():
	ClassLoader, URLClassLoader

	findInLine():
	Scanner

	findLibrary():
	ClassLoader

	findLoadedClass():
	ClassLoader

	findMonitorDeadlockedThreads():
	ThreadMXBean

	findResource():
	ClassLoader, URLClassLoader

	findResources():
	ClassLoader, URLClassLoader

	findSystemClass():
	ClassLoader

	findWithinHorizon():
	Scanner

	FINE:
	Level

	fine():
	Logger

	FINER:
	Level

	finer():
	Logger

	FINEST:
	Level

	finest():
	Logger

	finish():
	Deflater, DeflaterOutputStream, GZIPOutputStream, ZipOutputStream

	finishConnect():
	SocketChannel

	FINISHED:
	HandshakeStatus

	finished():
	Deflater, Inflater

	first():
	BreakIterator, CharacterIterator, SortedSet, StringCharacterIterator,
TreeSet

	firstElement():
	Vector

	firstKey():
	SortedMap, TreeMap

	fixedContentLength:
	HttpURLConnection

	flags():
	Pattern

	flip():
	BitSet, Buffer

	flipBit():
	BigInteger

	Float:
	java.lang

	FloatBuffer:
	java.nio

	floatToIntBits():
	Float

	floatToRawIntBits():
	Float

	floatValue():
	AtomicInteger, AtomicLong, BigDecimal, BigInteger, Byte, Double,
Float, Integer, Long, Number, Short

	FLOOR:
	RoundingMode

	floor():
	Math, StrictMath

	flush():
	AbstractPreferences, BufferedOutputStream, BufferedWriter,
CharArrayWriter, CharsetDecoder, CharsetEncoder, CipherOutputStream,
DataOutputStream, FilterOutputStream, FilterWriter, Flushable,
Formatter, Handler, MemoryHandler, ObjectOutput, ObjectOutputStream,
OutputStream, OutputStreamWriter, PipedOutputStream, PipedWriter,
Preferences, PrintStream, PrintWriter, StreamHandler, StringWriter,
Writer

	FLUSH_FAILURE:
	ErrorManager

	Flushable:
	java.io

	flushSpi():
	AbstractPreferences

	following():
	BreakIterator

	force():
	FileChannel, MappedByteBuffer

	forClass():
	ObjectStreamClass

	forDigit():
	Character

	Format:
	java.text

	FORMAT:
	Character

	format():
	ChoiceFormat, DateFormat, DecimalFormat, Format, Formatter,
MessageFormat, NumberFormat, PrintStream, PrintWriter,
SimpleDateFormat, SimpleFormatter, String, XMLFormatter

	Format.Field:
	java.text

	FORMAT_FAILURE:
	ErrorManager

	FormatFlagsConversionMismatchException:
	java.util

	formatMessage():
	Formatter

	Formattable:
	java.util

	FormattableFlags:
	java.util

	Formatter:
	java.util, java.util.logging

	Formatter.BigDecimalLayoutForm:
	java.util

	FormatterClosedException:
	java.util

	formatTo():
	Formattable

	formatToCharacterIterator():
	DecimalFormat, Format, MessageFormat, SimpleDateFormat

	forName():
	Charset, Class, UnicodeBlock

	foundType():
	AnnotationTypeMismatchException

	FRACTION:
	Field

	FRACTION_FIELD:
	NumberFormat

	FRANCE:
	Locale

	freeMemory():
	Runtime

	FRENCH:
	Locale

	frequency():
	Collections

	FRIDAY:
	Calendar

	from():
	MemoryNotificationInfo, MemoryUsage, ThreadInfo

	fromString():
	UUID

	FULL:
	DateFormat

	FULL_DECOMPOSITION:
	Collator

	Future:
	java.util.concurrent

	FutureTask:
	java.util.concurrent

G

	GARBAGE_COLLECTOR_MXBEAN_DOMAIN_TYPE:
	ManagementFactory

	GarbageCollectorMXBean:
	java.lang.management

	GatheringByteChannel:
	java.nio.channels

	gc():
	MemoryMXBean, Runtime, System

	gcd():
	BigInteger

	GDAY:
	DatatypeConstants

	GENERAL_PUNCTUATION:
	UnicodeBlock

	GeneralSecurityException:
	java.security

	generateCertificate():
	CertificateFactory

	generateCertificates():
	CertificateFactory

	generateCertPath():
	CertificateFactory

	generateCRL():
	CertificateFactory

	generateCRLs():
	CertificateFactory

	generateKey():
	KeyGenerator

	generateKeyPair():
	KeyPairGenerator, KeyPairGeneratorSpi

	generateParameters():
	AlgorithmParameterGenerator

	generatePrivate():
	KeyFactory

	generatePublic():
	KeyFactory

	generateSecret():
	KeyAgreement, SecretKeyFactory

	generateSeed():
	SecureRandom

	GENERIC_FAILURE:
	ErrorManager

	GenericArrayType:
	java.lang.reflect

	GenericDeclaration:
	java.lang.reflect

	GenericSignatureFormatError:
	java.lang.reflect

	genExemptionBlob():
	ExemptionMechanism

	genKeyPair():
	KeyPairGenerator

	GEOMETRIC_SHAPES:
	UnicodeBlock

	GEORGIAN:
	UnicodeBlock

	GERMAN:
	Locale

	GERMANY:
	Locale

	get():
	AbstractList, AbstractMap, AbstractPreferences,
AbstractSequentialList, Array, ArrayList, AtomicBoolean,
AtomicInteger, AtomicIntegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLongFieldUpdater,
AtomicMarkableReference, AtomicReference, AtomicReferenceArray,
AtomicReferenceFieldUpdater, AtomicStampedReference, Attributes,
BitSet, ByteBuffer, Calendar, CharBuffer, ConcurrentHashMap,
CookieHandler, CopyOnWriteArrayList, Dictionary, DoubleBuffer,
EnumMap, Field, FloatBuffer, Future, FutureTask, GetField, HashMap,
Hashtable, IdentityHashMap, IntBuffer, LinkedHashMap, LinkedList,
List, LongBuffer, Map, PhantomReference, Preferences, Reference,
ResponseCache, ShortBuffer, SoftReference, ThreadLocal, TreeMap,
Vector, WeakHashMap

	get2DigitYearStart():
	SimpleDateFormat

	getA():
	EllipticCurve

	getAbsoluteFile():
	File

	getAbsolutePath():
	File

	getAcceptedIssuers():
	X509TrustManager

	getActions():
	AllPermission, BasicPermission, FilePermission, Permission,
PrivateCredentialPermission, PropertyPermission, ServicePermission,
SocketPermission, UnresolvedPermission

	getActiveCount():
	ThreadPoolExecutor

	getActualMaximum():
	Calendar, GregorianCalendar

	getActualMinimum():
	Calendar, GregorianCalendar

	getActualTypeArguments():
	ParameterizedType

	getAddress():
	DatagramPacket, Inet4Address, Inet6Address, InetAddress,
InetSocketAddress

	getAdler():
	Deflater, Inflater

	getAffineX():
	ECPoint

	getAffineY():
	ECPoint

	getAlgName():
	EncryptedPrivateKeyInfo

	getAlgorithm():
	AlgorithmParameterGenerator, AlgorithmParameters, CertPathBuilder,
CertPathValidator, Cipher, KerberosKey, Key, KeyAgreement,
KeyFactory, KeyGenerator, KeyManagerFactory, KeyPairGenerator, Mac,
MessageDigest, PSource, SealedObject, SecretKeyFactory,
SecretKeySpec, SecureRandom, Service, Signature, SignedObject,
TrustManagerFactory

	getAlgorithmProperty():
	Security

	getAlgorithms():
	Security

	getAlgParameters():
	EncryptedPrivateKeyInfo

	getAlias():
	X500PrivateCredential

	getAllAttributeKeys():
	AttributedCharacterIterator

	getAllByName():
	InetAddress

	getAllLoadedClasses():
	Instrumentation

	getAllowUserInteraction():
	URLConnection

	getAllStackTraces():
	Thread

	getAllThreadIds():
	ThreadMXBean

	getAmPmStrings():
	DateFormatSymbols

	getAndAdd():
	AtomicInteger, AtomicIntegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLongFieldUpdater

	getAndDecrement():
	AtomicInteger, AtomicIntegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLongFieldUpdater

	getAndIncrement():
	AtomicInteger, AtomicIntegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLongFieldUpdater

	getAndSet():
	AtomicBoolean, AtomicInteger, AtomicIntegerArray,
AtomicIntegerFieldUpdater, AtomicLong, AtomicLongArray,
AtomicLongFieldUpdater, AtomicReference, AtomicReferenceArray,
AtomicReferenceFieldUpdater

	getAnnotation():
	AccessibleObject, AnnotatedElement, Class, Constructor, Field,
Method, Package

	getAnnotations():
	AccessibleObject, AnnotatedElement, Class, Package

	getAnonymousLogger():
	Logger

	getAppConfigurationEntry():
	Configuration

	getApplicationBufferSize():
	SSLSession

	getArch():
	OperatingSystemMXBean

	getArgumentClass():
	IllegalFormatConversionException

	getAssociatedStylesheet():
	TransformerFactory

	getAttribute():
	AttributedCharacterIterator, DocumentBuilderFactory, Element,
Service, TransformerFactory

	getAttributeNode():
	Element

	getAttributeNodeNS():
	Element

	getAttributeNS():
	Element

	getAttributes():
	AttributedCharacterIterator, JarEntry, JarURLConnection, Manifest,
Node

	getAttributeTypeInfo():
	TypeInfoProvider

	getAuthority():
	URI, URL

	getAuthorityKeyIdentifier():
	X509CertSelector

	getAuthTime():
	KerberosTicket

	getAvailableIDs():
	TimeZone

	getAvailableLocales():
	BreakIterator, Calendar, Collator, DateFormat, Locale, NumberFormat

	getAvailableProcessors():
	OperatingSystemMXBean

	getB():
	EllipticCurve

	getBaseLevel():
	Bidi

	getBaseURI():
	Node

	getBasicConstraints():
	X509Certificate, X509CertSelector

	getBeginIndex():
	CharacterIterator, FieldPosition, StringCharacterIterator

	getBlockedCount():
	ThreadInfo

	getBlockedTime():
	ThreadInfo

	getBlockSize():
	Cipher

	getBody():
	CacheRequest, CacheResponse

	getBoolean():
	AbstractPreferences, Array, Boolean, Field, Preferences

	getBootClassPath():
	RuntimeMXBean

	getBounds():
	TypeVariable

	getBroadcast():
	DatagramSocket

	getBuffer():
	StringWriter

	getBundle():
	ResourceBundle

	getByAddress():
	Inet6Address, InetAddress

	getByInetAddress():
	NetworkInterface

	getByName():
	InetAddress, NetworkInterface

	getByte():
	Array, Field

	getByteArray():
	AbstractPreferences, Preferences

	getByteOffset():
	DOMLocator

	getBytes():
	String

	getBytesRead():
	Deflater, Inflater

	getByteStream():
	InputSource

	getBytesWritten():
	Deflater, Inflater

	getCA():
	TrustAnchor

	getCalendar():
	DateFormat

	getCalendarField():
	Field

	getCallback():
	UnsupportedCallbackException

	getCallbackHandler():
	CallbackHandlerProtection

	getCAName():
	TrustAnchor

	getCanonicalFile():
	File

	getCanonicalHostName():
	InetAddress

	getCanonicalName():
	Class

	getCanonicalPath():
	File

	getCAPublicKey():
	TrustAnchor

	getCause():
	ClassNotFoundException, ExceptionInInitializerError,
InvocationTargetException, PrivilegedActionException, Throwable,
TransformerException, UndeclaredThrowableException,
WriteAbortedException, XPathException

	getCertificate():
	KeyStore, PrivateKeyEntry, X500PrivateCredential, X509CertSelector

	getCertificateAlias():
	KeyStore

	getCertificateChain():
	KeyStore, PrivateKeyEntry, X509KeyManager

	getCertificateChecking():
	X509CRLSelector

	getCertificateIssuer():
	X509CRLEntry

	getCertificates():
	CertPath, CertStore, CodeSource, JarEntry, JarURLConnection

	getCertificateValid():
	X509CertSelector

	getCertPath():
	CertPathBuilderResult, CertPathValidatorException,
PKIXCertPathBuilderResult

	getCertPathCheckers():
	PKIXParameters

	getCertPathEncodings():
	CertificateFactory

	getCertStoreParameters():
	CertStore

	getCertStores():
	PKIXParameters

	getChannel():
	DatagramSocket, FileInputStream, FileOutputStream, RandomAccessFile,
ServerSocket, Socket

	getChar():
	Array, ByteBuffer, Field

	getCharacterInstance():
	BreakIterator

	getCharacterStream():
	InputSource

	getChars():
	String, StringBuffer

	getCharsetName():
	IllegalCharsetNameException, UnsupportedCharsetException

	getChecksum():
	CheckedInputStream, CheckedOutputStream

	getChild():
	AbstractPreferences, NodeChangeEvent

	getChildNodes():
	Node

	getChildren():
	PolicyNode

	getChoices():
	ChoiceCallback

	getCipherSuite():
	HandshakeCompletedEvent, HttpsURLConnection, SecureCacheResponse,
SSLSession

	getClass():
	Object

	getClassContext():
	SecurityManager

	getClasses():
	Class

	getClassLoader():
	Class, ProtectionDomain

	getClassLoadingMXBean():
	ManagementFactory

	getClassName():
	MissingResourceException, Service, StackTraceElement

	getClassPath():
	RuntimeMXBean

	getClient():
	KerberosTicket

	getClientAddresses():
	KerberosTicket

	getClientAliases():
	X509KeyManager

	getClientSessionContext():
	SSLContext

	getCodePoint():
	IllegalFormatCodePointException

	getCodeSigners():
	CodeSource, JarEntry

	getCodeSource():
	ProtectionDomain

	getCofactor():
	ECParameterSpec

	getCollationElementIterator():
	RuleBasedCollator

	getCollationKey():
	Collator, RuleBasedCollator

	getCollection():
	CollectionCertStoreParameters

	getCollectionCount():
	GarbageCollectorMXBean

	getCollectionTime():
	GarbageCollectorMXBean

	getCollectionUsage():
	MemoryPoolMXBean

	getCollectionUsageThreshold():
	MemoryPoolMXBean

	getCollectionUsageThresholdCount():
	MemoryPoolMXBean

	getColumnNumber():
	DOMLocator, Locator, LocatorImpl, SAXParseException, SourceLocator

	getComment():
	ZipEntry

	getCommitted():
	MemoryUsage

	getCompilationMXBean():
	ManagementFactory

	getCompletedTaskCount():
	ThreadPoolExecutor

	getComponentType():
	Class

	getCompressedSize():
	ZipEntry

	getConfiguration():
	Configuration

	getConnectTimeout():
	URLConnection

	getConstructor():
	Class

	getConstructors():
	Class

	getContent():
	ContentHandler, URL, URLConnection

	getContentEncoding():
	URLConnection

	getContentHandler():
	ParserAdapter, ValidatorHandler, XMLFilterImpl, XMLReader

	getContentLength():
	URLConnection

	getContents():
	ListResourceBundle

	getContentType():
	URLConnection

	getContentTypeFor():
	FileNameMap

	getContext():
	AccessController

	getContextClassLoader():
	Thread

	getContinueExistingPeriodicTasksAfterShutdownPolicy():
	ScheduledThreadPoolExecutor

	getControlFlag():
	AppConfigurationEntry

	getConversion():
	FormatFlagsConversionMismatchException,
IllegalFormatConversionException, UnknownFormatConversionException

	getCorePoolSize():
	ThreadPoolExecutor

	getCount():
	CountDownLatch, MemoryNotificationInfo

	getCountry():
	Locale

	getCrc():
	ZipEntry

	getCreationDate():
	KeyStore

	getCreationTime():
	SSLSession

	getCredentialClass():
	PrivateCredentialPermission

	getCriticalExtensionOIDs():
	X509Extension

	getCRLs():
	CertStore

	getCrtCoefficient():
	RSAMultiPrimePrivateCrtKey, RSAMultiPrimePrivateCrtKeySpec,
RSAOtherPrimeInfo, RSAPrivateCrtKey, RSAPrivateCrtKeySpec

	getCurrency():
	DecimalFormat, DecimalFormatSymbols, NumberFormat

	getCurrencyCode():
	Currency

	getCurrencyInstance():
	NumberFormat

	getCurrencySymbol():
	DecimalFormatSymbols

	getCurrentThreadCpuTime():
	ThreadMXBean

	getCurrentThreadUserTime():
	ThreadMXBean

	getCurve():
	ECParameterSpec

	getDaemonThreadCount():
	ThreadMXBean

	getData():
	CharacterData, DatagramPacket, ProcessingInstruction

	getDate():
	Date, PKIXParameters, URLConnection

	getDateAndTime():
	X509CRLSelector

	getDateFormatSymbols():
	SimpleDateFormat

	getDateInstance():
	DateFormat

	getDateTimeInstance():
	DateFormat

	getDay():
	Date, XMLGregorianCalendar

	getDays():
	Duration

	getDecimalFormatSymbols():
	DecimalFormat

	getDecimalSeparator():
	DecimalFormatSymbols

	getDeclaredAnnotations():
	AccessibleObject, AnnotatedElement, Class, Constructor, Field,
Method, Package

	getDeclaredClasses():
	Class

	getDeclaredConstructor():
	Class

	getDeclaredConstructors():
	Class

	getDeclaredField():
	Class

	getDeclaredFields():
	Class

	getDeclaredMethod():
	Class

	getDeclaredMethods():
	Class

	getDeclaredPrefixes():
	NamespaceSupport

	getDeclaringClass():
	Class, Constructor, Enum, Field, Member, Method

	getDecomposition():
	Collator

	getDefault():
	CookieHandler, Locale, ProxySelector, ResponseCache,
ServerSocketFactory, SocketFactory, SSLServerSocketFactory,
SSLSocketFactory, TimeZone

	getDefaultAlgorithm():
	KeyManagerFactory, TrustManagerFactory

	getDefaultAllowUserInteraction():
	URLConnection

	getDefaultChoice():
	ChoiceCallback

	getDefaultCipherSuites():
	SSLServerSocketFactory, SSLSocketFactory

	getDefaultFractionDigits():
	Currency

	getDefaultHostnameVerifier():
	HttpsURLConnection

	getDefaultName():
	NameCallback

	getDefaultOption():
	ConfirmationCallback

	getDefaultPort():
	URL, URLStreamHandler

	getDefaultRequestProperty():
	URLConnection

	getDefaultSSLSocketFactory():
	HttpsURLConnection

	getDefaultText():
	TextInputCallback

	getDefaultType():
	CertPathBuilder, CertPathValidator, CertStore, KeyStore

	getDefaultUncaughtExceptionHandler():
	Thread

	getDefaultUseCaches():
	URLConnection

	getDefaultValue():
	Method

	getDefinitionClass():
	ClassDefinition

	getDefinitionClassFile():
	ClassDefinition

	getDelay():
	Delayed

	getDelegatedTask():
	SSLEngine

	getDepth():
	PolicyNode

	getDescription():
	PatternSyntaxException

	getDigestAlgorithm():
	MGF1ParameterSpec, OAEPParameterSpec, PSSParameterSpec

	getDigestLength():
	MessageDigest

	getDigit():
	DecimalFormatSymbols

	getDirectionality():
	Character

	getDisplayCountry():
	Locale

	getDisplayLanguage():
	Locale

	getDisplayName():
	Locale, NetworkInterface, TimeZone

	getDisplayVariant():
	Locale

	getDoctype():
	Document

	getDocumentElement():
	Document

	getDocumentURI():
	Document

	getDoInput():
	URLConnection

	getDomainCombiner():
	AccessControlContext

	getDomConfig():
	Document

	getDOMImplementation():
	DocumentBuilder, DOMImplementationSource

	getDOMImplementationList():
	DOMImplementationSource

	getDoOutput():
	URLConnection

	getDouble():
	AbstractPreferences, Array, ByteBuffer, Field, Preferences

	getDSTSavings():
	SimpleTimeZone, TimeZone

	getDTDHandler():
	ParserAdapter, XMLFilterImpl, XMLReader

	getEffectiveKeyBits():
	RC2ParameterSpec

	getElementById():
	Document

	getElementsByTagName():
	Document, Element

	getElementsByTagNameNS():
	Document, Element

	getElementTypeInfo():
	TypeInfoProvider

	getEnabledCipherSuites():
	SSLEngine, SSLServerSocket, SSLSocket

	getEnabledProtocols():
	SSLEngine, SSLServerSocket, SSLSocket

	getEnableSessionCreation():
	SSLEngine, SSLServerSocket, SSLSocket

	getEnclosingClass():
	Class

	getEnclosingConstructor():
	Class

	getEnclosingMethod():
	Class

	getEncoded():
	AlgorithmParameters, Certificate, CertPath, EncodedKeySpec,
EncryptedPrivateKeyInfo, KerberosKey, KerberosTicket, Key,
PKCS8EncodedKeySpec, PolicyQualifierInfo, SecretKeySpec,
X500Principal, X509CRL, X509CRLEntry, X509EncodedKeySpec

	getEncoding():
	Handler, InputSource, InputStreamReader, Locator2, Locator2Impl,
OutputStreamWriter

	getEncodings():
	CertPath

	getEncryptedData():
	EncryptedPrivateKeyInfo

	getEndIndex():
	CharacterIterator, FieldPosition, StringCharacterIterator

	getEndTime():
	KerberosTicket

	getEntities():
	DocumentType

	getEntityResolver():
	ParserAdapter, XMLFilterImpl, XMLReader

	getEntries():
	Manifest

	getEntry():
	JarFile, KeyStore, ZipFile

	getEntryName():
	JarURLConnection

	getEnumConstants():
	Class

	getenv():
	System

	getEon():
	XMLGregorianCalendar

	getEonAndYear():
	XMLGregorianCalendar

	getEras():
	DateFormatSymbols

	getErrorHandler():
	ParserAdapter, SchemaFactory, Validator, ValidatorHandler,
XMLFilterImpl, XMLReader

	getErrorIndex():
	ParsePosition

	getErrorListener():
	Transformer, TransformerFactory

	getErrorManager():
	Handler

	getErrorOffset():
	ParseException

	getErrorStream():
	HttpURLConnection, Process

	getException():
	ClassNotFoundException, ExceptionInInitializerError,
FactoryConfigurationError, PrivilegedActionException, SAXException,
TransformerException, TransformerFactoryConfigurationError

	getExceptionTypes():
	Constructor, Method

	getExclusiveQueuedThreads():
	AbstractQueuedSynchronizer

	getExecuteExistingDelayedTasksAfterShutdownPolicy():
	ScheduledThreadPoolExecutor

	getExemptionMechanism():
	Cipher

	getExpectedPolicies():
	PolicyNode

	getExpiration():
	URLConnection

	getExponent():
	RSAOtherPrimeInfo

	getExponentSize():
	DHGenParameterSpec

	getExtendedKeyUsage():
	X509Certificate, X509CertSelector

	getExtensionValue():
	X509Extension

	getExternalSubset():
	DefaultHandler2, EntityResolver2

	getExtra():
	ZipEntry

	getFD():
	FileInputStream, FileOutputStream, RandomAccessFile

	getFeature():
	DocumentBuilderFactory, DOMImplementation, Node, ParserAdapter,
SAXParserFactory, SchemaFactory, TransformerFactory, Validator,
ValidatorHandler, XMLFilterImpl, XMLReader, XPathFactory

	GetField:
	java.io.ObjectInputStream

	getField():
	Class, Duration, EllipticCurve, FieldPosition, ObjectStreamClass

	getFieldAttribute():
	FieldPosition

	getFields():
	Class, ObjectStreamClass

	getFieldSize():
	ECField, ECFieldF2m, ECFieldFp

	getFile():
	URL

	getFileDescriptor():
	DatagramSocketImpl, SocketImpl

	getFileName():
	StackTraceElement

	getFileNameMap():
	URLConnection

	getFilePointer():
	RandomAccessFile

	getFilter():
	Handler, Logger

	getFirst():
	LinkedList

	getFirstChild():
	Node

	getFirstDayOfWeek():
	Calendar

	getFirstQueuedThread():
	AbstractQueuedSynchronizer

	getFlags():
	DuplicateFormatFlagsException,
FormatFlagsConversionMismatchException, IllegalFormatFlagsException,
KerberosTicket, UnknownFormatFlagsException

	getFloat():
	AbstractPreferences, Array, ByteBuffer, Field, Preferences

	getFollowRedirects():
	HttpURLConnection

	getFormat():
	Certificate, EncodedKeySpec, KerberosKey, Key, PKCS8EncodedKeySpec,
SecretKeySpec, X509EncodedKeySpec

	getFormats():
	ChoiceFormat, MessageFormat

	getFormatsByArgumentIndex():
	MessageFormat

	getFormatSpecifier():
	MissingFormatArgumentException, MissingFormatWidthException

	getFormatter():
	Handler

	getFractionalSecond():
	XMLGregorianCalendar

	getFragment():
	URI

	getG():
	DHParameterSpec, DHPrivateKeySpec, DHPublicKeySpec, DSAParameterSpec,
DSAParams, DSAPrivateKeySpec, DSAPublicKeySpec

	getGarbageCollectorMXBeans():
	ManagementFactory

	getGenerator():
	ECParameterSpec

	getGenericComponentType():
	GenericArrayType

	getGenericDeclaration():
	TypeVariable

	getGenericExceptionTypes():
	Constructor, Method

	getGenericInterfaces():
	Class

	getGenericParameterTypes():
	Constructor, Method

	getGenericReturnType():
	Method

	getGenericSuperclass():
	Class

	getGenericType():
	Field

	getGreatestMinimum():
	Calendar, GregorianCalendar

	getGregorianChange():
	GregorianCalendar

	getGroupingSeparator():
	DecimalFormatSymbols

	getGroupingSize():
	DecimalFormat

	getGuarantor():
	Certificate

	getHandler():
	SAXResult

	getHandlers():
	Logger

	getHandshakeStatus():
	SSLEngine, SSLEngineResult

	getHead():
	Formatter, XMLFormatter

	getHeaderField():
	HttpURLConnection, URLConnection

	getHeaderFieldDate():
	HttpURLConnection, URLConnection

	getHeaderFieldInt():
	URLConnection

	getHeaderFieldKey():
	HttpURLConnection, URLConnection

	getHeaderFields():
	URLConnection

	getHeaders():
	CacheResponse

	getHeapMemoryUsage():
	MemoryMXBean

	getHoldCount():
	ReentrantLock

	getHost():
	URI, URL

	getHostAddress():
	Inet4Address, Inet6Address, InetAddress, URLStreamHandler

	getHostName():
	InetAddress, InetSocketAddress

	getHostnameVerifier():
	HttpsURLConnection

	getHour():
	XMLGregorianCalendar

	getHours():
	Date, Duration

	getID():
	TimeZone

	getId():
	Field, SSLSession, Thread

	getIdentity():
	IdentityScope

	getIds():
	SSLSessionContext

	getIfModifiedSince():
	URLConnection

	getImplementation():
	Document

	getImplementationTitle():
	Package

	getImplementationVendor():
	Package

	getImplementationVersion():
	Package

	getInCheck():
	SecurityManager

	getIndex():
	Attributes, AttributesImpl, CertPathValidatorException,
CharacterIterator, ParsePosition, PatternSyntaxException,
StringCharacterIterator, URISyntaxException

	getInetAddress():
	DatagramSocket, ServerSocket, Socket, SocketImpl

	getInetAddresses():
	NetworkInterface

	getInfinity():
	DecimalFormatSymbols

	getInfo():
	Identity, Provider

	getInit():
	MemoryUsage

	getInitialPolicies():
	PKIXParameters

	getInitiatedClasses():
	Instrumentation

	getInput():
	URISyntaxException

	getInputArguments():
	RuntimeMXBean

	getInputEncoding():
	Document, Entity

	getInputLength():
	MalformedInputException, UnmappableCharacterException

	getInputSource():
	SAXSource

	getInputStream():
	JarFile, Process, Socket, SocketImpl, StreamSource, URLConnection,
ZipFile

	getInstance():
	AlgorithmParameterGenerator, AlgorithmParameters, Calendar,
CertificateFactory, CertPathBuilder, CertPathValidator, CertStore,
Cipher, Collator, Currency, DateFormat, ExemptionMechanism,
KeyAgreement, KeyFactory, KeyGenerator, KeyManagerFactory,
KeyPairGenerator, KeyStore, Mac, MessageDigest, NumberFormat,
SecretKeyFactory, SecureRandom, Signature, SSLContext,
TrustManagerFactory

	getInstanceFollowRedirects():
	HttpURLConnection

	getInt():
	AbstractPreferences, Array, BreakIterator, ByteBuffer, Field,
Preferences

	getInteger():
	Integer

	getIntegerInstance():
	NumberFormat

	getInterface():
	MulticastSocket

	getInterfaces():
	Class

	getInternalSubset():
	DocumentType

	getInternationalCurrencySymbol():
	DecimalFormatSymbols

	getInvocationHandler():
	Proxy

	getISO3Country():
	Locale

	getISO3Language():
	Locale

	getISOCountries():
	Locale

	getISOLanguages():
	Locale

	getIssuer():
	X509CertSelector

	getIssuerAlternativeNames():
	X509Certificate

	getIssuerAsBytes():
	X509CertSelector

	getIssuerAsString():
	X509CertSelector

	getIssuerDN():
	X509Certificate, X509CRL

	getIssuerNames():
	X509CRLSelector

	getIssuers():
	X509CRLSelector

	getIssuerUniqueID():
	X509Certificate

	getIssuerX500Principal():
	X509Certificate, X509CRL

	getIterationCount():
	PBEKey, PBEKeySpec, PBEParameterSpec

	getIterator():
	AttributedString

	getIV():
	Cipher, IvParameterSpec, RC2ParameterSpec, RC5ParameterSpec

	getJarEntry():
	JarFile, JarURLConnection

	getJarFile():
	JarURLConnection

	getJarFileURL():
	JarURLConnection

	getKeepAlive():
	Socket

	getKeepAliveTime():
	ThreadPoolExecutor

	getKey():
	DESedeKeySpec, DESKeySpec, Entry, KeyStore, MissingResourceException,
PreferenceChangeEvent

	getKeyLength():
	PBEKeySpec

	getKeyManagers():
	KeyManagerFactory

	getKeys():
	ListResourceBundle, PropertyResourceBundle, ResourceBundle

	getKeysize():
	RSAKeyGenParameterSpec

	getKeySpec():
	EncryptedPrivateKeyInfo, KeyFactory, SecretKeyFactory

	getKeyStore():
	Builder

	getKeyType():
	KerberosKey

	getKeyUsage():
	X509Certificate, X509CertSelector

	getL():
	DHParameterSpec

	getLanguage():
	Locale

	getLargestPoolSize():
	ThreadPoolExecutor

	getLast():
	LinkedList

	getLastAccessedTime():
	SSLSession

	getLastChild():
	Node

	getLastModified():
	URLConnection

	getLeastMaximum():
	Calendar, GregorianCalendar

	getLeastSignificantBits():
	UUID

	getLength():
	Array, AttributeList, AttributeListImpl, Attributes, AttributesImpl,
Bidi, CharacterData, DatagramPacket, DOMImplementationList,
DOMStringList, NamedNodeMap, NameList, NodeList

	getLevel():
	Handler, Logger, LogRecord

	getLevelAt():
	Bidi

	getLexicalHandler():
	SAXResult

	getLibraryPath():
	RuntimeMXBean

	getLimits():
	ChoiceFormat

	getLineInstance():
	BreakIterator

	getLineNumber():
	DOMLocator, LineNumberInputStream, LineNumberReader, Locator,
LocatorImpl, SAXParseException, SourceLocator, StackTraceElement

	getListener():
	EventListenerProxy

	getLoadedClassCount():
	ClassLoadingMXBean

	getLocalAddress():
	DatagramSocket, Socket

	getLocalCertificateChain():
	SecureCacheResponse

	getLocalCertificates():
	HandshakeCompletedEvent, HttpsURLConnection, SSLSession

	getLocale():
	LanguageCallback, MessageFormat, ResourceBundle

	getLocalHost():
	InetAddress

	getLocalizedInputStream():
	Runtime

	getLocalizedMessage():
	Throwable

	getLocalizedName():
	Level

	getLocalizedOutputStream():
	Runtime

	getLocalName():
	Attributes, AttributesImpl, Node

	getLocalPart():
	QName

	getLocalPatternChars():
	DateFormatSymbols

	getLocalPort():
	DatagramSocket, DatagramSocketImpl, ServerSocket, Socket, SocketImpl

	getLocalPrincipal():
	HandshakeCompletedEvent, HttpsURLConnection, SecureCacheResponse,
SSLSession

	getLocalSocketAddress():
	DatagramSocket, ServerSocket, Socket

	getLocation():
	CodeSource, DOMError, HttpRetryException

	getLocationAsString():
	TransformerException

	getLocator():
	TransformerException

	getLockName():
	ThreadInfo

	getLockOwnerId():
	ThreadInfo

	getLockOwnerName():
	ThreadInfo

	getLogger():
	Logger, LogManager

	getLoggerLevel():
	LoggingMXBean

	getLoggerName():
	LogRecord

	getLoggerNames():
	LoggingMXBean, LogManager

	getLoggingMXBean():
	LogManager

	getLoginModuleName():
	AppConfigurationEntry

	getLogManager():
	LogManager

	getLong():
	AbstractPreferences, Array, BreakIterator, ByteBuffer, Field, Long,
Preferences

	getLoopbackMode():
	MulticastSocket

	getLowerBounds():
	WildcardType

	getLowestSetBit():
	BigInteger

	getM():
	ECFieldF2m

	getMacLength():
	Mac

	getMainAttributes():
	JarURLConnection, Manifest

	getManagementSpecVersion():
	RuntimeMXBean

	getManifest():
	JarFile, JarInputStream, JarURLConnection

	getMatchAllSubjectAltNames():
	X509CertSelector

	getMax():
	MemoryUsage

	getMaxAllowedKeyLength():
	Cipher

	getMaxAllowedParameterSpec():
	Cipher

	getMaxCRL():
	X509CRLSelector

	getMaxExpansion():
	CollationElementIterator

	getMaximum():
	Calendar, GregorianCalendar

	getMaximumFractionDigits():
	DecimalFormat, NumberFormat

	getMaximumIntegerDigits():
	DecimalFormat, NumberFormat

	getMaximumPoolSize():
	ThreadPoolExecutor

	getMaxPathLength():
	PKIXBuilderParameters

	getMaxPriority():
	ThreadGroup

	getMemoryManagerMXBeans():
	ManagementFactory

	getMemoryManagerNames():
	MemoryPoolMXBean

	getMemoryMXBean():
	ManagementFactory

	getMemoryPoolMXBeans():
	ManagementFactory

	getMemoryPoolNames():
	MemoryManagerMXBean

	getMessage():
	DOMError, DuplicateFormatFlagsException, FactoryConfigurationError,
FormatFlagsConversionMismatchException,
IllegalFormatCodePointException, IllegalFormatConversionException,
IllegalFormatFlagsException, IllegalFormatPrecisionException,
IllegalFormatWidthException, InvalidClassException, LogRecord,
MalformedInputException, MissingFormatArgumentException,
MissingFormatWidthException, PatternSyntaxException, SAXException,
TextOutputCallback, Throwable, TransformerFactoryConfigurationError,
UnknownFormatConversionException, UnknownFormatFlagsException,
UnmappableCharacterException, URISyntaxException,
WriteAbortedException

	getMessageAndLocation():
	TransformerException

	getMessageDigest():
	DigestInputStream, DigestOutputStream

	getMessageType():
	ConfirmationCallback, TextOutputCallback

	getMethod():
	Class, ZipEntry

	getMethodName():
	StackTraceElement

	getMethods():
	Class

	getMGFAlgorithm():
	OAEPParameterSpec, PSSParameterSpec

	getMGFParameters():
	OAEPParameterSpec, PSSParameterSpec

	getMidTermsOfReductionPolynomial():
	ECFieldF2m

	getMillis():
	LogRecord

	getMillisecond():
	XMLGregorianCalendar

	getMinCRL():
	X509CRLSelector

	getMinimalDaysInFirstWeek():
	Calendar

	getMinimum():
	Calendar, GregorianCalendar

	getMinimumFractionDigits():
	DecimalFormat, NumberFormat

	getMinimumIntegerDigits():
	DecimalFormat, NumberFormat

	getMinusSign():
	DecimalFormatSymbols

	getMinute():
	XMLGregorianCalendar

	getMinutes():
	Date, Duration

	getModifiers():
	Class, Constructor, Field, Member, Method

	getModulus():
	RSAKey, RSAPrivateKeySpec, RSAPublicKeySpec

	getMonetaryDecimalSeparator():
	DecimalFormatSymbols

	getMonth():
	Date, XMLGregorianCalendar

	getMonths():
	DateFormatSymbols, Duration

	getMostSignificantBits():
	UUID

	getMultiplier():
	DecimalFormat

	getName():
	Attr, Attribute, AttributeList, AttributeListImpl, Class,
CompilationMXBean, Constructor, DocumentType, ECGenParameterSpec,
ExemptionMechanism, Field, File, Identity, KerberosPrincipal, Level,
Logger, Member, MemoryManagerMXBean, MemoryPoolMXBean, Method,
NameCallback, NameList, NetworkInterface, ObjectStreamClass,
ObjectStreamField, OperatingSystemMXBean, Package, Permission,
Principal, Provider, RuntimeMXBean, SSLSessionBindingEvent, Thread,
ThreadGroup, TypeVariable, X500Principal, ZipEntry, ZipFile

	getNameConstraints():
	TrustAnchor, X509CertSelector

	getNamedItem():
	NamedNodeMap

	getNamedItemNS():
	NamedNodeMap

	getNamespaceContext():
	XPath

	getNamespaceURI():
	NameList, NamespaceContext, Node, QName

	getNameType():
	KerberosPrincipal

	getNaN():
	DecimalFormatSymbols

	getNeedClientAuth():
	SSLEngine, SSLServerSocket, SSLSocket

	getNegativePrefix():
	DecimalFormat

	getNegativeSuffix():
	DecimalFormat

	getNetworkInterface():
	MulticastSocket

	getNetworkInterfaces():
	NetworkInterface

	getNewValue():
	PreferenceChangeEvent

	getNextEntry():
	JarInputStream, ZipInputStream

	getNextJarEntry():
	JarInputStream

	getNextSibling():
	DOMResult, Node

	getNextUpdate():
	X509CRL

	getNode():
	DOMResult, DOMSource, PreferenceChangeEvent

	getNodeName():
	Node

	getNodeType():
	Node

	getNodeValue():
	Node

	getNonCriticalExtensionOIDs():
	X509Extension

	getNonHeapMemoryUsage():
	MemoryMXBean

	getNotAfter():
	X509Certificate

	getNotationName():
	Entity

	getNotations():
	DocumentType

	getNotBefore():
	X509Certificate

	getNumberFormat():
	DateFormat

	getNumberInstance():
	NumberFormat

	getNumberWaiting():
	CyclicBarrier

	getNumericValue():
	Character

	getObject():
	GuardedObject, ResourceBundle, SealedObject, SignedObject

	getObjectPendingFinalizationCount():
	MemoryMXBean

	getObjectSize():
	Instrumentation

	getObjectStreamClass():
	GetField

	getOffset():
	CollationElementIterator, DatagramPacket, ObjectStreamField,
SimpleTimeZone, TimeZone

	getOOBInline():
	Socket

	getOperatingSystemMXBean():
	ManagementFactory

	getOption():
	SocketOptions

	getOptions():
	AppConfigurationEntry, ConfirmationCallback

	getOptionType():
	ConfirmationCallback

	getOrder():
	ECParameterSpec

	getOriginatingNode():
	DOMLocator

	getOtherPrimeInfo():
	RSAMultiPrimePrivateCrtKey, RSAMultiPrimePrivateCrtKeySpec

	getOutputProperties():
	Templates, Transformer

	getOutputProperty():
	Transformer

	getOutputSize():
	Cipher, ExemptionMechanism

	getOutputStream():
	Process, Socket, SocketImpl, StreamResult, URLConnection

	getOwner():
	ReentrantLock, ReentrantReadWriteLock

	getOwnerDocument():
	Node

	getOwnerElement():
	Attr

	getOwnerType():
	ParameterizedType

	getP():
	DHParameterSpec, DHPrivateKeySpec, DHPublicKeySpec, DSAParameterSpec,
DSAParams, DSAPrivateKeySpec, DSAPublicKeySpec, ECFieldFp

	getPackage():
	Class, ClassLoader, Package

	getPackages():
	ClassLoader, Package

	getPacketBufferSize():
	SSLSession

	getParameter():
	DOMConfiguration, Signature, Transformer

	getParameterAnnotations():
	Constructor, Method

	getParameterNames():
	DOMConfiguration

	getParameters():
	CertPathTrustManagerParameters, Cipher, KeyStoreBuilderParameters,
LogRecord, Signature

	getParameterSpec():
	AlgorithmParameters

	getParameterTypes():
	Constructor, Method

	getParams():
	DHKey, DSAKey, ECKey, ECPrivateKeySpec, ECPublicKeySpec

	getParent():
	ClassLoader, File, Logger, NodeChangeEvent, PolicyNode, ThreadGroup,
XMLFilter, XMLFilterImpl

	getParentFile():
	File

	getParentLoggerName():
	LoggingMXBean

	getParentNode():
	Node

	getParser():
	SAXParser

	getParties():
	CyclicBarrier

	getPassword():
	PasswordAuthentication, PasswordCallback, PasswordProtection, PBEKey,
PBEKeySpec

	getPasswordAuthentication():
	Authenticator

	getPath():
	File, URI, URL

	getPathToNames():
	X509CertSelector

	getPattern():
	PatternSyntaxException

	getPatternSeparator():
	DecimalFormatSymbols

	getPeakThreadCount():
	ThreadMXBean

	getPeakUsage():
	MemoryPoolMXBean

	getPeerCertificateChain():
	HandshakeCompletedEvent, SSLSession

	getPeerCertificates():
	HandshakeCompletedEvent, SSLSession

	getPeerHost():
	SSLEngine, SSLSession

	getPeerPort():
	SSLEngine, SSLSession

	getPeerPrincipal():
	HandshakeCompletedEvent, HttpsURLConnection, SecureCacheResponse,
SSLSession

	getPercent():
	DecimalFormatSymbols

	getPercentInstance():
	NumberFormat

	getPerMill():
	DecimalFormatSymbols

	getPermission():
	AccessControlException, HttpURLConnection, URLConnection

	getPermissions():
	Policy, ProtectionDomain, SecureClassLoader, URLClassLoader

	getPlatformMBeanServer():
	ManagementFactory

	getPolicy():
	Policy, X509CertSelector

	getPolicyQualifier():
	PolicyQualifierInfo

	getPolicyQualifierId():
	PolicyQualifierInfo

	getPolicyQualifiers():
	PolicyNode

	getPolicyQualifiersRejected():
	PKIXParameters

	getPolicyTree():
	PKIXCertPathValidatorResult

	getPoolName():
	MemoryNotificationInfo

	getPoolSize():
	ThreadPoolExecutor

	getPort():
	DatagramPacket, DatagramSocket, InetSocketAddress,
LDAPCertStoreParameters, Socket, SocketImpl, URI, URL

	getPositivePrefix():
	DecimalFormat

	getPositiveSuffix():
	DecimalFormat

	getPrecision():
	IllegalFormatPrecisionException, MathContext

	getPrefix():
	NamespaceContext, NamespaceSupport, Node, QName

	getPrefixes():
	NamespaceContext, NamespaceSupport

	getPreviousSibling():
	Node

	getPrime():
	RSAOtherPrimeInfo

	getPrimeExponentP():
	RSAMultiPrimePrivateCrtKey, RSAMultiPrimePrivateCrtKeySpec,
RSAPrivateCrtKey, RSAPrivateCrtKeySpec

	getPrimeExponentQ():
	RSAMultiPrimePrivateCrtKey, RSAMultiPrimePrivateCrtKeySpec,
RSAPrivateCrtKey, RSAPrivateCrtKeySpec

	getPrimeP():
	RSAMultiPrimePrivateCrtKey, RSAMultiPrimePrivateCrtKeySpec,
RSAPrivateCrtKey, RSAPrivateCrtKeySpec

	getPrimeQ():
	RSAMultiPrimePrivateCrtKey, RSAMultiPrimePrivateCrtKeySpec,
RSAPrivateCrtKey, RSAPrivateCrtKeySpec

	getPrimeSize():
	DHGenParameterSpec

	getPrincipal():
	Certificate, KerberosKey

	getPrincipals():
	PrivateCredentialPermission, ProtectionDomain, Subject

	getPriority():
	Thread

	getPrivate():
	KeyPair

	getPrivateCredentials():
	Subject

	getPrivateExponent():
	RSAPrivateKey, RSAPrivateKeySpec

	getPrivateKey():
	PrivateKeyEntry, Signer, X500PrivateCredential, X509KeyManager

	getPrivateKeyValid():
	X509CertSelector

	getPrompt():
	ChoiceCallback, ConfirmationCallback, NameCallback, PasswordCallback,
TextInputCallback

	getProperties():
	System

	getProperty():
	LogManager, ParserAdapter, Properties, SAXParser, SchemaFactory,
Security, System, Validator, ValidatorHandler, XMLFilterImpl,
XMLReader

	getProtectionDomain():
	Class

	getProtectionParameter():
	Builder, LoadStoreParameter

	getProtocol():
	SSLContext, SSLSession, URL

	getProvider():
	AlgorithmParameterGenerator, AlgorithmParameters, CertificateFactory,
CertPathBuilder, CertPathValidator, CertStore, Cipher,
ExemptionMechanism, KeyAgreement, KeyFactory, KeyGenerator,
KeyManagerFactory, KeyPairGenerator, KeyStore, Mac, MessageDigest,
SecretKeyFactory, SecureRandom, Security, Service, Signature,
SSLContext, TrustManagerFactory

	getProviders():
	Security

	getProxyClass():
	Proxy

	getPSource():
	OAEPParameterSpec

	getPublic():
	KeyPair

	getPublicCredentials():
	Subject

	getPublicExponent():
	RSAKeyGenParameterSpec, RSAMultiPrimePrivateCrtKey,
RSAMultiPrimePrivateCrtKeySpec, RSAPrivateCrtKey,
RSAPrivateCrtKeySpec, RSAPublicKey, RSAPublicKeySpec

	getPublicId():
	DocumentType, Entity, InputSource, Locator, LocatorImpl, Notation,
SAXParseException, SourceLocator, StreamSource

	getPublicKey():
	Certificate, Identity, PKIXCertPathValidatorResult

	getPushLevel():
	MemoryHandler

	getQ():
	DSAParameterSpec, DSAParams, DSAPrivateKeySpec, DSAPublicKeySpec

	getQName():
	Attributes, AttributesImpl

	getQuery():
	URI, URL

	getQueue():
	ScheduledThreadPoolExecutor, ThreadPoolExecutor

	getQueuedReaderThreads():
	ReentrantReadWriteLock

	getQueuedThreads():
	AbstractQueuedSynchronizer, ReentrantLock, ReentrantReadWriteLock,
Semaphore

	getQueuedWriterThreads():
	ReentrantReadWriteLock

	getQueueLength():
	AbstractQueuedSynchronizer, ReentrantLock, ReentrantReadWriteLock,
Semaphore

	getRawAuthority():
	URI

	getRawFragment():
	URI

	getRawOffset():
	SimpleTimeZone, TimeZone

	getRawPath():
	URI

	getRawQuery():
	URI

	getRawSchemeSpecificPart():
	URI

	getRawType():
	ParameterizedType

	getRawUserInfo():
	URI

	getReader():
	StreamSource

	getReadLockCount():
	ReentrantReadWriteLock

	getReadTimeout():
	URLConnection

	getRealm():
	KerberosPrincipal

	getReason():
	HttpRetryException, URISyntaxException

	getReceiveBufferSize():
	DatagramSocket, ServerSocket, Socket

	getReductionPolynomial():
	ECFieldF2m

	getRef():
	URL

	getReference():
	AtomicMarkableReference, AtomicStampedReference

	getRejectedExecutionHandler():
	ThreadPoolExecutor

	getRelatedData():
	DOMError

	getRelatedException():
	DOMError

	getRelatedNode():
	DOMLocator

	getRemaining():
	Inflater

	getRemoteSocketAddress():
	DatagramSocket, Socket

	getRenewTill():
	KerberosTicket

	getRequestingHost():
	Authenticator

	getRequestingPort():
	Authenticator

	getRequestingPrompt():
	Authenticator

	getRequestingProtocol():
	Authenticator

	getRequestingScheme():
	Authenticator

	getRequestingSite():
	Authenticator

	getRequestingURL():
	Authenticator

	getRequestMethod():
	HttpURLConnection

	getRequestorType():
	Authenticator

	getRequestProperties():
	URLConnection

	getRequestProperty():
	URLConnection

	getResource():
	Class, ClassLoader

	getResourceAsStream():
	Class, ClassLoader

	getResourceBundle():
	Logger, LogRecord

	getResourceBundleName():
	Level, Logger, LogRecord

	getResourceResolver():
	SchemaFactory, Validator, ValidatorHandler

	getResources():
	ClassLoader

	getResponseCode():
	HttpURLConnection

	getResponseMessage():
	HttpURLConnection

	getReturnType():
	Method

	getReuseAddress():
	DatagramSocket, ServerSocket, Socket

	getRevocationDate():
	X509CRLEntry

	getRevokedCertificate():
	X509CRL

	getRevokedCertificates():
	X509CRL

	getRoundingMode():
	MathContext

	getRounds():
	RC5ParameterSpec

	getRules():
	RuleBasedCollator

	getRunCount():
	Bidi

	getRunLevel():
	Bidi

	getRunLimit():
	AttributedCharacterIterator, Bidi

	getRunStart():
	AttributedCharacterIterator, Bidi

	getRuntime():
	Runtime

	getRuntimeMXBean():
	ManagementFactory

	getS():
	ECPrivateKey, ECPrivateKeySpec

	getSalt():
	PBEKey, PBEKeySpec, PBEParameterSpec

	getSaltLength():
	PSSParameterSpec

	getSchema():
	DocumentBuilder, DocumentBuilderFactory, SAXParser, SAXParserFactory

	getSchemaTypeInfo():
	Attr, Element

	getScheme():
	URI

	getSchemeSpecificPart():
	URI

	getScope():
	Identity

	getScopedInterface():
	Inet6Address

	getScopeId():
	Inet6Address

	getSecond():
	XMLGregorianCalendar

	getSeconds():
	Date, Duration

	getSecretKey():
	SecretKeyEntry

	getSecurityContext():
	SecurityManager

	getSecurityManager():
	System

	getSeed():
	EllipticCurve, SecureRandom

	getSelectedIndex():
	ConfirmationCallback

	getSelectedIndexes():
	ChoiceCallback

	getSendBufferSize():
	DatagramSocket, Socket

	getSentenceInstance():
	BreakIterator

	getSequenceNumber():
	LogRecord

	getSerialNumber():
	X509Certificate, X509CertSelector, X509CRLEntry

	getSerialVersionUID():
	ObjectStreamClass

	getServer():
	KerberosTicket

	getServerAliases():
	X509KeyManager

	getServerCertificateChain():
	SecureCacheResponse

	getServerCertificates():
	HttpsURLConnection

	getServerName():
	LDAPCertStoreParameters

	getServerSessionContext():
	SSLContext

	getServerSocketFactory():
	SSLContext

	getService():
	Provider

	getServices():
	Provider

	getSession():
	HandshakeCompletedEvent, SSLEngine, SSLSessionBindingEvent,
SSLSessionContext, SSLSocket

	getSessionCacheSize():
	SSLSessionContext

	getSessionContext():
	SSLSession

	getSessionKey():
	KerberosTicket

	getSessionKeyType():
	KerberosTicket

	getSessionTimeout():
	SSLSessionContext

	getSeverity():
	DOMError

	getSharedQueuedThreads():
	AbstractQueuedSynchronizer

	getShort():
	Array, BreakIterator, ByteBuffer, Field

	getShortMonths():
	DateFormatSymbols

	getShortWeekdays():
	DateFormatSymbols

	getSigAlgName():
	X509Certificate, X509CRL

	getSigAlgOID():
	X509Certificate, X509CRL

	getSigAlgParams():
	X509Certificate, X509CRL

	getSign():
	Duration

	getSignature():
	SignedObject, X509Certificate, X509CRL

	getSignerCertPath():
	CodeSigner, Timestamp

	getSigners():
	Class

	getSigProvider():
	PKIXParameters

	getSimpleName():
	Class

	getSize():
	ZipEntry

	getSocket():
	HandshakeCompletedEvent

	getSocketAddress():
	DatagramPacket

	getSocketFactory():
	SSLContext

	getSoLinger():
	Socket

	getSoTimeout():
	DatagramSocket, ServerSocket, Socket

	getSource():
	EventObject

	getSourceClassName():
	LogRecord

	getSourceMethodName():
	LogRecord

	getSourceString():
	CollationKey

	getSpecificationTitle():
	Package

	getSpecificationVendor():
	Package

	getSpecificationVersion():
	Package

	getSpecified():
	Attr

	getSpecName():
	RuntimeMXBean

	getSpecVendor():
	RuntimeMXBean

	getSpecVersion():
	RuntimeMXBean

	getSpi():
	AbstractPreferences

	getSSLSocketFactory():
	HttpsURLConnection

	getStackTrace():
	Thread, ThreadInfo, Throwable

	getStamp():
	AtomicStampedReference

	getStartTime():
	KerberosTicket, RuntimeMXBean

	getState():
	AbstractQueuedSynchronizer, Thread

	getStatus():
	SSLEngineResult

	getStrength():
	Collator

	getStrictErrorChecking():
	Document

	getString():
	ResourceBundle

	getStringArray():
	ResourceBundle

	getSubject():
	LoginContext, Subject, SubjectDomainCombiner, X509CertSelector

	getSubjectAlternativeNames():
	X509Certificate, X509CertSelector

	getSubjectAsBytes():
	X509CertSelector

	getSubjectAsString():
	X509CertSelector

	getSubjectDN():
	X509Certificate

	getSubjectKeyIdentifier():
	X509CertSelector

	getSubjectPublicKey():
	X509CertSelector

	getSubjectPublicKeyAlgID():
	X509CertSelector

	getSubjectUniqueID():
	X509Certificate

	getSubjectX500Principal():
	X509Certificate

	getSuperclass():
	Class

	getSupportedCipherSuites():
	SSLEngine, SSLServerSocket, SSLServerSocketFactory, SSLSocket,
SSLSocketFactory

	getSupportedExtensions():
	PKIXCertPathChecker

	getSupportedProtocols():
	SSLEngine, SSLServerSocket, SSLSocket

	getSymbol():
	Currency

	getSystemClassLoader():
	ClassLoader

	getSystemId():
	DocumentType, DOMResult, DOMSource, Entity, InputSource, Locator,
LocatorImpl, Notation, Result, SAXParseException, SAXResult,
SAXSource, Source, SourceLocator, StreamResult, StreamSource,
TemplatesHandler, TransformerHandler

	getSystemProperties():
	RuntimeMXBean

	getSystemResource():
	ClassLoader

	getSystemResourceAsStream():
	ClassLoader

	getSystemResources():
	ClassLoader

	getSystemScope():
	IdentityScope

	getTagName():
	Element

	getTail():
	Formatter, XMLFormatter

	getTarget():
	ProcessingInstruction

	getTargetCertConstraints():
	PKIXParameters

	getTargetException():
	InvocationTargetException

	getTaskCount():
	ThreadPoolExecutor

	getTBSCertificate():
	X509Certificate

	getTBSCertList():
	X509CRL

	getTcpNoDelay():
	Socket

	getTemplates():
	TemplatesHandler

	getText():
	BreakIterator, TextInputCallback

	getTextContent():
	Node

	getThisUpdate():
	X509CRL

	getThreadCount():
	ThreadMXBean

	getThreadCpuTime():
	ThreadMXBean

	getThreadFactory():
	ThreadPoolExecutor

	getThreadGroup():
	SecurityManager, Thread

	getThreadId():
	ThreadInfo

	getThreadID():
	LogRecord

	getThreadInfo():
	ThreadMXBean

	getThreadMXBean():
	ManagementFactory

	getThreadName():
	ThreadInfo

	getThreadState():
	ThreadInfo

	getThreadUserTime():
	ThreadMXBean

	getThrown():
	LogRecord

	getTime():
	Calendar, Date, ZipEntry

	getTimeInMillis():
	Calendar, Duration

	getTimeInstance():
	DateFormat

	getTimestamp():
	CodeSigner, Timestamp

	getTimeToLive():
	DatagramSocketImpl, MulticastSocket

	getTimeZone():
	Calendar, DateFormat, GregorianCalendar, TimeZone,
XMLGregorianCalendar

	getTimezone():
	XMLGregorianCalendar

	getTimezoneOffset():
	Date

	getTotalCompilationTime():
	CompilationMXBean

	getTotalIn():
	Deflater, Inflater

	getTotalLoadedClassCount():
	ClassLoadingMXBean

	getTotalOut():
	Deflater, Inflater

	getTotalStartedThreadCount():
	ThreadMXBean

	getTrafficClass():
	DatagramSocket, Socket

	getTrailerField():
	PSSParameterSpec

	getTransformer():
	TransformerHandler

	getTrustAnchor():
	PKIXCertPathValidatorResult

	getTrustAnchors():
	PKIXParameters

	getTrustedCert():
	TrustAnchor

	getTrustedCertificate():
	TrustedCertificateEntry

	getTrustManagers():
	TrustManagerFactory

	getTTL():
	DatagramSocketImpl, MulticastSocket

	getType():
	AttributeList, AttributeListImpl, Attributes, AttributesImpl,
Certificate, CertificateFactory, CertPath, CertStore, Character, CRL,
DOMError, Field, KeyStore, MemoryPoolMXBean, ObjectStreamField,
Service

	getTypeCode():
	ObjectStreamField

	getTypeInfoProvider():
	ValidatorHandler

	getTypeName():
	TypeInfo

	getTypeNamespace():
	TypeInfo

	getTypeParameters():
	Class, Constructor, GenericDeclaration, Method

	getTypeString():
	ObjectStreamField

	getUncaughtExceptionHandler():
	Thread

	getUndeclaredThrowable():
	UndeclaredThrowableException

	getUnloadedClassCount():
	ClassLoadingMXBean

	getUnresolvedActions():
	UnresolvedPermission

	getUnresolvedCerts():
	UnresolvedPermission

	getUnresolvedName():
	UnresolvedPermission

	getUnresolvedType():
	UnresolvedPermission

	getUpperBounds():
	WildcardType

	getUptime():
	RuntimeMXBean

	getURI():
	Attributes, AttributesImpl, NamespaceSupport

	getUri():
	DOMLocator

	getURIResolver():
	Transformer, TransformerFactory

	getURL():
	URLConnection

	getURLs():
	URLClassLoader

	getUsage():
	MemoryNotificationInfo, MemoryPoolMXBean

	getUsageThreshold():
	MemoryPoolMXBean

	getUsageThresholdCount():
	MemoryPoolMXBean

	getUseCaches():
	URLConnection

	getUseClientMode():
	SSLEngine, SSLServerSocket, SSLSocket

	getUsed():
	MemoryUsage

	getUseParentHandlers():
	Logger

	getUserData():
	Node

	getUserInfo():
	URI, URL

	getUserName():
	PasswordAuthentication

	getUtf16Offset():
	DOMLocator

	getValidPolicy():
	PolicyNode

	getValue():
	Adler32, Annotation, Attr, AttributeList, AttributeListImpl,
Attributes, AttributesImpl, Checksum, CRC32, Entry, PSpecified,
SSLSession

	getValueNames():
	SSLSession

	getVariant():
	Locale

	getVersion():
	OperatingSystemMXBean, Provider, RC5ParameterSpec, X509Certificate,
X509CRL

	getVersionNumber():
	KerberosKey

	getVmName():
	RuntimeMXBean

	getVmVendor():
	RuntimeMXBean

	getVmVersion():
	RuntimeMXBean

	getW():
	ECPublicKey, ECPublicKeySpec

	getWaitedCount():
	ThreadInfo

	getWaitedTime():
	ThreadInfo

	getWaitingThreads():
	AbstractQueuedSynchronizer, ConditionObject, ReentrantLock,
ReentrantReadWriteLock

	getWaitQueueLength():
	AbstractQueuedSynchronizer, ConditionObject, ReentrantLock,
ReentrantReadWriteLock

	getWantClientAuth():
	SSLEngine, SSLServerSocket, SSLSocket

	getWeekdays():
	DateFormatSymbols

	getWholeText():
	Text

	getWidth():
	IllegalFormatWidthException

	getWordInstance():
	BreakIterator

	getWordSize():
	RC5ParameterSpec

	getWriteHoldCount():
	ReentrantReadWriteLock

	getWriter():
	StreamResult

	getX():
	DHPrivateKey, DHPrivateKeySpec, DSAPrivateKey, DSAPrivateKeySpec

	getXmlEncoding():
	Document, Entity

	getXMLReader():
	SAXParser, SAXSource

	getXMLSchemaType():
	Duration, XMLGregorianCalendar

	getXmlStandalone():
	Document

	getXmlVersion():
	Document, Entity

	getXMLVersion():
	Locator2, Locator2Impl

	getXPathFunctionResolver():
	XPath

	getXPathVariableResolver():
	XPath

	getY():
	DHPublicKey, DHPublicKeySpec, DSAPublicKey, DSAPublicKeySpec

	getYear():
	Date, XMLGregorianCalendar

	getYears():
	Duration

	getZeroDigit():
	DecimalFormatSymbols

	getZoneStrings():
	DateFormatSymbols

	global:
	Logger

	GMONTH:
	DatatypeConstants

	GMONTHDAY:
	DatatypeConstants

	GOTHIC:
	UnicodeBlock

	GREATER:
	DatatypeConstants

	GREEK:
	UnicodeBlock

	GREEK_EXTENDED:
	UnicodeBlock

	GregorianCalendar:
	java.util

	group():
	Matcher, MatchResult

	groupCount():
	Matcher, MatchResult

	GROUPING_SEPARATOR:
	Field

	Guard:
	java.security

	GuardedObject:
	java.security

	guessContentTypeFromName():
	URLConnection

	guessContentTypeFromStream():
	URLConnection

	GUJARATI:
	UnicodeBlock

	GURMUKHI:
	UnicodeBlock

	GYEAR:
	DatatypeConstants

	GYEARMONTH:
	DatatypeConstants

	GZIP_MAGIC:
	GZIPInputStream

	GZIPInputStream:
	java.util.zip

	GZIPOutputStream:
	java.util.zip

H

	h:
	Proxy

	HALF_DOWN:
	RoundingMode

	HALF_EVEN:
	RoundingMode

	HALF_UP:
	RoundingMode

	HALFWIDTH_AND_FULLWIDTH_FORMS:
	UnicodeBlock

	halt():
	Runtime

	handle():
	CallbackHandler, UserDataHandler

	handleError():
	DOMErrorHandler

	handleGetObject():
	ListResourceBundle, PropertyResourceBundle, ResourceBundle

	Handler:
	java.util.logging

	HandlerBase:
	org.xml.sax

	handshakeCompleted():
	HandshakeCompletedListener

	HandshakeCompletedEvent:
	javax.net.ssl

	HandshakeCompletedListener:
	javax.net.ssl

	HandshakeStatus:
	javax.net.ssl.SSLEngineResult

	HANGUL_COMPATIBILITY_JAMO:
	UnicodeBlock

	HANGUL_JAMO:
	UnicodeBlock

	HANGUL_SYLLABLES:
	UnicodeBlock

	HANUNOO:
	UnicodeBlock

	hasAnchoringBounds():
	Matcher

	hasArray():
	ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer

	hasAttribute():
	Element

	hasAttributeNS():
	Element

	hasAttributes():
	Node

	hasChanged():
	Observable

	hasChildNodes():
	Node

	hasContended():
	AbstractQueuedSynchronizer

	hasExtensions():
	X509CRLEntry

	hasFeature():
	DOMImplementation

	hashCode():
	AbstractList, AbstractMap, AbstractSet, AccessControlContext,
AllPermission, Annotation, Arrays, Attribute, Attributes,
BasicPermission, BigDecimal, BigInteger, BitSet, Boolean, Byte,
ByteBuffer, Calendar, Certificate, CertPath, Character, CharBuffer,
Charset, ChoiceFormat, CodeSigner, CodeSource, CollationKey,
Collator, Collection, Constructor, CopyOnWriteArrayList, Date,
DateFormat, DateFormatSymbols, DecimalFormat, DecimalFormatSymbols,
DelegationPermission, Double, DoubleBuffer, Duration, ECFieldF2m,
ECFieldFp, ECPoint, EllipticCurve, Entry, Enum, Field, FieldPosition,
File, FilePermission, Float, FloatBuffer, GregorianCalendar,
Hashtable, Identity, IdentityHashMap, Inet4Address, Inet6Address,
InetAddress, InetSocketAddress, IntBuffer, Integer,
KerberosPrincipal, Level, List, Locale, Long, LongBuffer, Manifest,
Map, MathContext, MessageFormat, Method, Name, NetworkInterface,
NumberFormat, Object, Package, ParsePosition, Permission, Principal,
PrivateCredentialPermission, PropertyPermission, Proxy, QName,
RC2ParameterSpec, RC5ParameterSpec, RuleBasedCollator, SecretKeySpec,
ServicePermission, Set, Short, ShortBuffer, SimpleDateFormat,
SimpleTimeZone, SocketPermission, StackTraceElement, String,
StringCharacterIterator, Subject, Subset, Timestamp,
UnresolvedPermission, URI, URL, URLStreamHandler, UUID, Vector,
X500Principal, X509CRL, X509CRLEntry, XMLGregorianCalendar, ZipEntry

	HashMap:
	java.util

	HashSet:
	java.util

	Hashtable:
	java.util

	hasMoreElements():
	Enumeration, StringTokenizer

	hasMoreTokens():
	StringTokenizer

	hasNext():
	Iterator, ListIterator, Scanner

	hasNextBigDecimal():
	Scanner

	hasNextBigInteger():
	Scanner

	hasNextBoolean():
	Scanner

	hasNextByte():
	Scanner

	hasNextDouble():
	Scanner

	hasNextFloat():
	Scanner

	hasNextInt():
	Scanner

	hasNextLine():
	Scanner

	hasNextLong():
	Scanner

	hasNextShort():
	Scanner

	hasPrevious():
	ListIterator

	hasQueuedThread():
	ReentrantLock, ReentrantReadWriteLock

	hasQueuedThreads():
	AbstractQueuedSynchronizer, ReentrantLock, ReentrantReadWriteLock,
Semaphore

	hasRemaining():
	Buffer

	hasSameRules():
	SimpleTimeZone, TimeZone

	hasTransparentBounds():
	Matcher

	hasUnsupportedCriticalExtension():
	X509Extension

	hasWaiters():
	AbstractQueuedSynchronizer, ConditionObject, ReentrantLock,
ReentrantReadWriteLock

	headMap():
	SortedMap, TreeMap

	headSet():
	SortedSet, TreeSet

	HEAP:
	MemoryType

	HEBREW:
	UnicodeBlock

	HIERARCHY_REQUEST_ERR:
	DOMException

	HIGH_PRIVATE_USE_SURROGATES:
	UnicodeBlock

	HIGH_SURROGATES:
	UnicodeBlock

	highestOneBit():
	Integer, Long

	HIRAGANA:
	UnicodeBlock

	hitEnd():
	Matcher

	holdsLock():
	Thread

	hostnameVerifier:
	HttpsURLConnection

	HostnameVerifier:
	javax.net.ssl

	hostsEqual():
	URLStreamHandler

	HOUR:
	Calendar

	HOUR0:
	Field

	HOUR0_FIELD:
	DateFormat

	HOUR1:
	Field

	HOUR1_FIELD:
	DateFormat

	HOUR_OF_DAY:
	Calendar

	HOUR_OF_DAY0:
	Field

	HOUR_OF_DAY0_FIELD:
	DateFormat

	HOUR_OF_DAY1:
	Field

	HOUR_OF_DAY1_FIELD:
	DateFormat

	HOURS:
	DatatypeConstants

	HTTP:
	Type

	HTTP_ACCEPTED:
	HttpURLConnection

	HTTP_BAD_GATEWAY:
	HttpURLConnection

	HTTP_BAD_METHOD:
	HttpURLConnection

	HTTP_BAD_REQUEST:
	HttpURLConnection

	HTTP_CLIENT_TIMEOUT:
	HttpURLConnection

	HTTP_CONFLICT:
	HttpURLConnection

	HTTP_CREATED:
	HttpURLConnection

	HTTP_ENTITY_TOO_LARGE:
	HttpURLConnection

	HTTP_FORBIDDEN:
	HttpURLConnection

	HTTP_GATEWAY_TIMEOUT:
	HttpURLConnection

	HTTP_GONE:
	HttpURLConnection

	HTTP_INTERNAL_ERROR:
	HttpURLConnection

	HTTP_LENGTH_REQUIRED:
	HttpURLConnection

	HTTP_MOVED_PERM:
	HttpURLConnection

	HTTP_MOVED_TEMP:
	HttpURLConnection

	HTTP_MULT_CHOICE:
	HttpURLConnection

	HTTP_NO_CONTENT:
	HttpURLConnection

	HTTP_NOT_ACCEPTABLE:
	HttpURLConnection

	HTTP_NOT_AUTHORITATIVE:
	HttpURLConnection

	HTTP_NOT_FOUND:
	HttpURLConnection

	HTTP_NOT_IMPLEMENTED:
	HttpURLConnection

	HTTP_NOT_MODIFIED:
	HttpURLConnection

	HTTP_OK:
	HttpURLConnection

	HTTP_PARTIAL:
	HttpURLConnection

	HTTP_PAYMENT_REQUIRED:
	HttpURLConnection

	HTTP_PRECON_FAILED:
	HttpURLConnection

	HTTP_PROXY_AUTH:
	HttpURLConnection

	HTTP_REQ_TOO_LONG:
	HttpURLConnection

	HTTP_RESET:
	HttpURLConnection

	HTTP_SEE_OTHER:
	HttpURLConnection

	HTTP_SERVER_ERROR:
	HttpURLConnection

	HTTP_UNAUTHORIZED:
	HttpURLConnection

	HTTP_UNAVAILABLE:
	HttpURLConnection

	HTTP_UNSUPPORTED_TYPE:
	HttpURLConnection

	HTTP_USE_PROXY:
	HttpURLConnection

	HTTP_VERSION:
	HttpURLConnection

	HttpRetryException:
	java.net

	HttpsURLConnection:
	javax.net.ssl

	HttpURLConnection:
	java.net

	HUFFMAN_ONLY:
	Deflater

	hypot():
	Math, StrictMath

I

	IDENTICAL:
	Collator

	identities():
	IdentityScope

	Identity:
	java.security

	identityEquals():
	Identity

	identityHashCode():
	System

	IdentityHashMap:
	java.util

	IdentityScope:
	java.security

	IDEOGRAPHIC_DESCRIPTION_CHARACTERS:
	UnicodeBlock

	IEEEremainder():
	Math, StrictMath

	ifModifiedSince:
	URLConnection

	ignorableWhitespace():
	ContentHandler, DefaultHandler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReaderAdapter

	IGNORE:
	CodingErrorAction

	IllegalAccessError:
	java.lang

	IllegalAccessException:
	java.lang

	IllegalArgumentException:
	java.lang

	IllegalBlockingModeException:
	java.nio.channels

	IllegalBlockSizeException:
	javax.crypto

	IllegalCharsetNameException:
	java.nio.charset

	IllegalClassFormatException:
	java.lang.instrument

	IllegalFormatCodePointException:
	java.util

	IllegalFormatConversionException:
	java.util

	IllegalFormatException:
	java.util

	IllegalFormatFlagsException:
	java.util

	IllegalFormatPrecisionException:
	java.util

	IllegalFormatWidthException:
	java.util

	IllegalMonitorStateException:
	java.lang

	IllegalSelectorException:
	java.nio.channels

	IllegalStateException:
	java.lang

	IllegalThreadStateException:
	java.lang

	implAccept():
	ServerSocket

	implCloseChannel():
	AbstractInterruptibleChannel, AbstractSelectableChannel

	implCloseSelectableChannel():
	AbstractSelectableChannel

	implCloseSelector():
	AbstractSelector

	implConfigureBlocking():
	AbstractSelectableChannel

	IMPLEMENTATION_TITLE:
	Name

	IMPLEMENTATION_URL:
	Name

	IMPLEMENTATION_VENDOR:
	Name

	IMPLEMENTATION_VENDOR_ID:
	Name

	IMPLEMENTATION_VERSION:
	Name

	implFlush():
	CharsetDecoder, CharsetEncoder

	implies():
	AllPermission, BasicPermission, CodeSource, DelegationPermission,
FilePermission, Permission, PermissionCollection, Permissions,
Policy, PrivateCredentialPermission, PropertyPermission,
ProtectionDomain, ServicePermission, SocketPermission,
UnresolvedPermission

	implOnMalformedInput():
	CharsetDecoder, CharsetEncoder

	implOnUnmappableCharacter():
	CharsetDecoder, CharsetEncoder

	implReplaceWith():
	CharsetDecoder, CharsetEncoder

	implReset():
	CharsetDecoder, CharsetEncoder

	importNode():
	Document

	importPreferences():
	Preferences

	in:
	FileDescriptor, FilterInputStream, FilterReader, PipedInputStream,
System

	inCheck:
	SecurityManager

	inClass():
	SecurityManager

	inClassLoader():
	SecurityManager

	IncompatibleClassChangeError:
	java.lang

	IncompleteAnnotationException:
	java.lang.annotation

	incrementAndGet():
	AtomicInteger, AtomicIntegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLongFieldUpdater

	inDaylightTime():
	SimpleTimeZone, TimeZone

	INDENT:
	OutputKeys

	INDETERMINATE:
	DatatypeConstants

	INDEX_SIZE_ERR:
	DOMException

	indexOf():
	AbstractList, ArrayList, CopyOnWriteArrayList, LinkedList, List,
String, StringBuffer, StringBuilder, Vector

	indexOfSubList():
	Collections

	IndexOutOfBoundsException:
	java.lang

	Inet4Address:
	java.net

	Inet6Address:
	java.net

	InetAddress:
	java.net

	InetSocketAddress:
	java.net

	inf:
	InflaterInputStream

	inflate():
	Inflater

	Inflater:
	java.util.zip

	InflaterInputStream:
	java.util.zip

	INFO:
	Level

	info():
	Logger

	INFORMATION:
	ConfirmationCallback, TextOutputCallback

	InheritableThreadLocal:
	java.lang

	Inherited:
	java.lang.annotation

	inheritedChannel():
	SelectorProvider, System

	init():
	AlgorithmParameterGenerator, AlgorithmParameters, Cipher,
ExemptionMechanism, KeyAgreement, KeyGenerator, KeyManagerFactory,
Mac, PKIXCertPathChecker, SSLContext, TrustManagerFactory

	initCause():
	Throwable, TransformerException

	INITIAL_QUOTE_PUNCTUATION:
	Character

	initialize():
	DSAKeyPairGenerator, KeyPairGenerator, KeyPairGeneratorSpi,
LoginModule

	initialValue():
	ThreadLocal

	initSign():
	Signature

	initVerify():
	Signature

	INPUT_METHOD_SEGMENT:
	Attribute

	InputMismatchException:
	java.util

	InputSource:
	org.xml.sax

	InputStream:
	java.io

	InputStreamReader:
	java.io

	insert():
	StringBuffer, StringBuilder

	insertBefore():
	Node

	insertData():
	CharacterData

	insertElementAt():
	Vector

	insertProviderAt():
	Security

	instanceFollowRedirects:
	HttpURLConnection

	InstantiationError:
	java.lang

	InstantiationException:
	java.lang

	Instrumentation:
	java.lang.instrument

	intBitsToFloat():
	Float

	IntBuffer:
	java.nio

	INTEGER:
	Field

	Integer:
	java.lang

	INTEGER_FIELD:
	NumberFormat

	interestOps():
	SelectionKey

	INTERFACE:
	Modifier

	intern():
	String

	internalEntityDecl():
	DeclHandler, DefaultHandler2

	InternalError:
	java.lang

	internalGet():
	Calendar

	interrupt():
	Thread, ThreadGroup

	interrupted():
	Thread

	InterruptedException:
	java.lang

	InterruptedIOException:
	java.io

	InterruptibleChannel:
	java.nio.channels

	intersects():
	BitSet

	intValue():
	AtomicInteger, AtomicLong, BigDecimal, BigInteger, Byte, Double,
Float, Integer, Level, Long, Number, Short

	intValueExact():
	BigDecimal

	INUSE_ATTRIBUTE_ERR:
	DOMException

	INVALID_ACCESS_ERR:
	DOMException

	INVALID_CHARACTER_ERR:
	DOMException

	INVALID_MODIFICATION_ERR:
	DOMException

	INVALID_STATE_ERR:
	DOMException

	InvalidAlgorithmParameterException:
	java.security

	invalidate():
	SSLSession

	InvalidClassException:
	java.io

	InvalidKeyException:
	java.security

	InvalidKeySpecException:
	java.security.spec

	InvalidMarkException:
	java.nio

	InvalidObjectException:
	java.io

	InvalidParameterException:
	java.security

	InvalidParameterSpecException:
	java.security.spec

	InvalidPreferencesFormatException:
	java.util.prefs

	InvalidPropertiesFormatException:
	java.util

	InvocationHandler:
	java.lang.reflect

	InvocationTargetException:
	java.lang.reflect

	invoke():
	InvocationHandler, Method

	invokeAll():
	AbstractExecutorService, ExecutorService

	invokeAny():
	AbstractExecutorService, ExecutorService

	IOException:
	java.io

	ioException():
	Formatter, Scanner

	IP_MULTICAST_IF:
	SocketOptions

	IP_MULTICAST_IF2:
	SocketOptions

	IP_MULTICAST_LOOP:
	SocketOptions

	IP_TOS:
	SocketOptions

	IPA_EXTENSIONS:
	UnicodeBlock

	isAbsolute():
	File, URI

	isAbstract():
	Modifier

	isAcceptable():
	SelectionKey

	isAccessible():
	AccessibleObject

	isAlive():
	Thread

	isAnnotation():
	Class

	isAnnotationPresent():
	AccessibleObject, AnnotatedElement, Class, Package

	isAnonymousClass():
	Class

	isAnyLocalAddress():
	Inet4Address, Inet6Address, InetAddress

	isAnyPolicyInhibited():
	PKIXParameters

	isArray():
	Class

	isAssignableFrom():
	Class

	isAutoDetecting():
	CharsetDecoder

	isBlocking():
	AbstractSelectableChannel, SelectableChannel

	isBootClassPathSupported():
	RuntimeMXBean

	isBound():
	DatagramSocket, ServerSocket, Socket

	isBoundary():
	BreakIterator

	isBridge():
	Method

	isBroken():
	CyclicBarrier

	isCancelled():
	Future, FutureTask

	isCertificateEntry():
	KeyStore

	isCharsetDetected():
	CharsetDecoder

	isClosed():
	DatagramSocket, ServerSocket, Socket

	isCoalescing():
	DocumentBuilderFactory

	isCollectionUsageThresholdExceeded():
	MemoryPoolMXBean

	isCollectionUsageThresholdSupported():
	MemoryPoolMXBean

	isCompatibleWith():
	Package

	isCompilationTimeMonitoringSupported():
	CompilationMXBean

	isConnectable():
	SelectionKey

	isConnected():
	DatagramChannel, DatagramSocket, Socket, SocketChannel

	isConnectionPending():
	SocketChannel

	isCritical():
	PolicyNode

	isCryptoAllowed():
	ExemptionMechanism

	isCurrent():
	KerberosTicket, Refreshable

	isCurrentThreadCpuTimeSupported():
	ThreadMXBean

	isDaemon():
	Thread, ThreadGroup

	isDecimalSeparatorAlwaysShown():
	DecimalFormat

	isDeclared():
	Attributes2, Attributes2Impl

	isDefaultNamespace():
	Node

	isDefined():
	Character

	isDerivedFrom():
	TypeInfo

	isDestroyed():
	Destroyable, KerberosKey, KerberosTicket, PasswordProtection,
ThreadGroup, X500PrivateCredential

	isDigit():
	Character

	isDirect():
	ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer

	isDirectory():
	File, ZipEntry

	isDone():
	Future, FutureTask

	isEchoOn():
	PasswordCallback

	isElementContentWhitespace():
	Text

	isEmpty():
	AbstractCollection, AbstractMap, ArrayList, Attributes, BitSet,
Collection, ConcurrentHashMap, ConcurrentLinkedQueue,
CopyOnWriteArrayList, CopyOnWriteArraySet, Dictionary, HashMap,
HashSet, Hashtable, IdentityHashMap, List, Map, Set,
SynchronousQueue, TreeSet, Vector, WeakHashMap

	isEnqueued():
	Reference

	isEnum():
	Class

	isEnumConstant():
	Field

	isEqual():
	MessageDigest

	isEqualNode():
	Node

	isError():
	CoderResult

	isExpandEntityReferences():
	DocumentBuilderFactory

	isExplicitPolicyRequired():
	PKIXParameters

	isFair():
	ReentrantLock, ReentrantReadWriteLock, Semaphore

	isFile():
	File

	isFinal():
	Modifier

	isForwardable():
	KerberosTicket

	isForwardCheckingSupported():
	PKIXCertPathChecker

	isForwarded():
	KerberosTicket

	isGroupingUsed():
	NumberFormat

	isHeldByCurrentThread():
	ReentrantLock

	isHeldExclusively():
	AbstractQueuedSynchronizer

	isHidden():
	File

	isHighSurrogate():
	Character

	isId():
	Attr

	isIdAttribute():
	TypeInfoProvider

	isIdentifierIgnorable():
	Character

	isIgnoringComments():
	DocumentBuilderFactory

	isIgnoringElementContentWhitespace():
	DocumentBuilderFactory

	isInboundDone():
	SSLEngine

	isInfinite():
	Double, Float

	isInitial():
	KerberosTicket

	isInNative():
	ThreadInfo

	isInputShutdown():
	Socket

	isInstance():
	Class

	isInterface():
	Class, Modifier

	isInterrupted():
	Thread

	isIPv4CompatibleAddress():
	Inet6Address

	isISOControl():
	Character

	isJavaIdentifierPart():
	Character

	isJavaIdentifierStart():
	Character

	isJavaLetter():
	Character

	isJavaLetterOrDigit():
	Character

	isKeyEntry():
	KeyStore

	isLeapYear():
	GregorianCalendar

	isLeftToRight():
	Bidi

	isLegalReplacement():
	CharsetEncoder

	isLenient():
	Calendar, DateFormat

	isLetter():
	Character

	isLetterOrDigit():
	Character

	isLinkLocalAddress():
	Inet4Address, Inet6Address, InetAddress

	isLoaded():
	MappedByteBuffer

	isLocalClass():
	Class

	isLocked():
	ReentrantLock

	isLoggable():
	Filter, Handler, Logger, MemoryHandler, StreamHandler

	isLongerThan():
	Duration

	isLoopbackAddress():
	Inet4Address, Inet6Address, InetAddress

	isLowerCase():
	Character

	isLowSurrogate():
	Character

	isMalformed():
	CoderResult

	isMarked():
	AtomicMarkableReference

	isMCGlobal():
	Inet4Address, Inet6Address, InetAddress

	isMCLinkLocal():
	Inet4Address, Inet6Address, InetAddress

	isMCNodeLocal():
	Inet4Address, Inet6Address, InetAddress

	isMCOrgLocal():
	Inet4Address, Inet6Address, InetAddress

	isMCSiteLocal():
	Inet4Address, Inet6Address, InetAddress

	isMemberClass():
	Class

	isMirrored():
	Character

	isMixed():
	Bidi

	isMulticastAddress():
	Inet4Address, Inet6Address, InetAddress

	isNamespaceAware():
	DocumentBuilder, DocumentBuilderFactory, SAXParser, SAXParserFactory

	isNamespaceDeclUris():
	NamespaceSupport

	isNaN():
	Double, Float

	isNative():
	Modifier

	isNativeMethod():
	StackTraceElement

	isObjectModelSupported():
	XPathFactory

	isOpaque():
	URI

	isOpen():
	AbstractInterruptibleChannel, AbstractSelector, Channel, Selector

	isOutboundDone():
	SSLEngine

	isOutputShutdown():
	Socket

	isOverflow():
	CoderResult

	isParityAdjusted():
	DESedeKeySpec, DESKeySpec

	isParseBigDecimal():
	DecimalFormat

	isParseIntegerOnly():
	NumberFormat

	isPolicyMappingInhibited():
	PKIXParameters

	isPostdated():
	KerberosTicket

	isPrimitive():
	Class, ObjectStreamField

	isPrivate():
	Modifier

	isProbablePrime():
	BigInteger

	isProtected():
	Modifier

	isProxiable():
	KerberosTicket

	isProxy():
	KerberosTicket

	isProxyClass():
	Proxy

	isPublic():
	Modifier

	isQueued():
	AbstractQueuedSynchronizer

	isReachable():
	InetAddress

	isReadable():
	SelectionKey

	isReadOnly():
	Buffer, PermissionCollection, Subject

	isRedefineClassesSupported():
	Instrumentation

	isRegistered():
	AbstractSelectableChannel, Charset, SelectableChannel

	isRemoved():
	AbstractPreferences

	isRenewable():
	KerberosTicket

	isRevocationEnabled():
	PKIXParameters

	isRevoked():
	CRL

	isRightToLeft():
	Bidi

	isSameNode():
	Node

	isSchemaLanguageSupported():
	SchemaFactory

	isSealed():
	Package

	isSet:
	Calendar

	isSet():
	Calendar, Duration

	isShared():
	FileLock

	isShorterThan():
	Duration

	isShutdown():
	ExecutorService, ThreadPoolExecutor

	isSiteLocalAddress():
	Inet4Address, Inet6Address, InetAddress

	isSpace():
	Character

	isSpaceChar():
	Character

	isSpecified():
	Attributes2, Attributes2Impl, TypeInfoProvider

	isStatic():
	Modifier

	isStrict():
	Modifier

	isSupplementaryCodePoint():
	Character

	isSupported():
	Charset, Node

	isSurrogatePair():
	Character

	isSuspended():
	ThreadInfo

	isSynchronized():
	Modifier

	isSynthetic():
	Class, Constructor, Field, Member, Method

	isTerminated():
	ExecutorService, ThreadPoolExecutor

	isTerminating():
	ThreadPoolExecutor

	isThreadContentionMonitoringEnabled():
	ThreadMXBean

	isThreadContentionMonitoringSupported():
	ThreadMXBean

	isThreadCpuTimeEnabled():
	ThreadMXBean

	isThreadCpuTimeSupported():
	ThreadMXBean

	isTimeSet:
	Calendar

	isTitleCase():
	Character

	isTransient():
	Modifier

	isUnderflow():
	CoderResult

	isUnicodeIdentifierPart():
	Character

	isUnicodeIdentifierStart():
	Character

	isUnmappable():
	CoderResult

	isUnresolved():
	InetSocketAddress

	isUnshared():
	ObjectStreamField

	isUpperCase():
	Character

	isUsageThresholdExceeded():
	MemoryPoolMXBean

	isUsageThresholdSupported():
	MemoryPoolMXBean

	isUserNode():
	AbstractPreferences, Preferences

	isValid():
	AbstractSelectionKey, FileLock, MemoryManagerMXBean,
MemoryPoolMXBean, SelectionKey, SSLSession, XMLGregorianCalendar

	isValidating():
	DocumentBuilder, DocumentBuilderFactory, SAXParser, SAXParserFactory

	isValidCodePoint():
	Character

	isVarArgs():
	Constructor, Method

	isVerbose():
	ClassLoadingMXBean, MemoryMXBean

	isVolatile():
	Modifier

	isWeak():
	DESKeySpec

	isWhitespace():
	Character

	isWritable():
	SelectionKey

	isWriteLocked():
	ReentrantReadWriteLock

	isWriteLockedByCurrentThread():
	ReentrantReadWriteLock

	isXIncludeAware():
	DocumentBuilder, DocumentBuilderFactory, SAXParser, SAXParserFactory

	ITALIAN:
	Locale

	ITALY:
	Locale

	item():
	DOMImplementationList, DOMStringList, NamedNodeMap, NodeList

	Iterable:
	java.lang

	Iterator:
	java.util

	iterator():
	AbstractCollection, AbstractList, AbstractSequentialList,
ArrayBlockingQueue, Collection, ConcurrentLinkedQueue,
CopyOnWriteArrayList, CopyOnWriteArraySet, DelayQueue, HashSet,
Iterable, LinkedBlockingQueue, List, PriorityBlockingQueue,
PriorityQueue, Set, SynchronousQueue, TreeSet

	IvParameterSpec:
	javax.crypto.spec

J

	JANUARY:
	Calendar, DatatypeConstants

	JAPAN:
	Locale

	JAPANESE:
	Locale

	JarEntry:
	java.util.jar

	JarException:
	java.util.jar

	JarFile:
	java.util.jar

	jarFileURLConnection:
	JarURLConnection

	JarInputStream:
	java.util.jar

	JarOutputStream:
	java.util.jar

	JarURLConnection:
	java.net

	join():
	DatagramSocketImpl, Thread

	joinGroup():
	DatagramSocketImpl, MulticastSocket

	JULY:
	Calendar, DatatypeConstants

	JUNE:
	Calendar, DatatypeConstants

K

	KANBUN:
	UnicodeBlock

	KANGXI_RADICALS:
	UnicodeBlock

	KANNADA:
	UnicodeBlock

	KATAKANA:
	UnicodeBlock

	KATAKANA_PHONETIC_EXTENSIONS:
	UnicodeBlock

	KEEP:
	Packer, Unpacker

	KEEP_FILE_ORDER:
	Packer

	KerberosKey:
	javax.security.auth.kerberos

	KerberosPrincipal:
	javax.security.auth.kerberos

	KerberosTicket:
	javax.security.auth.kerberos

	Key:
	java.security

	KeyAgreement:
	javax.crypto

	KeyAgreementSpi:
	javax.crypto

	KeyException:
	java.security

	KeyFactory:
	java.security

	KeyFactorySpi:
	java.security

	keyFor():
	AbstractSelectableChannel, SelectableChannel

	KeyGenerator:
	javax.crypto

	KeyGeneratorSpi:
	javax.crypto

	KeyManagementException:
	java.security

	KeyManager:
	javax.net.ssl

	KeyManagerFactory:
	javax.net.ssl

	KeyManagerFactorySpi:
	javax.net.ssl

	KeyPair:
	java.security

	KeyPairGenerator:
	java.security

	KeyPairGeneratorSpi:
	java.security

	KeyRep:
	java.security

	KeyRep.Type:
	java.security

	keys():
	AbstractPreferences, ConcurrentHashMap, Dictionary, Hashtable,
Preferences, Selector

	keySet():
	AbstractMap, Attributes, ConcurrentHashMap, EnumMap, HashMap,
Hashtable, IdentityHashMap, Map, Provider, TreeMap, WeakHashMap

	KeySpec:
	java.security.spec

	keysSpi():
	AbstractPreferences

	KeyStore:
	java.security

	KeyStore.Builder:
	java.security

	KeyStore.CallbackHandlerProtection:
	java.security

	KeyStore.Entry:
	java.security

	KeyStore.LoadStoreParameter:
	java.security

	KeyStore.PasswordProtection:
	java.security

	KeyStore.PrivateKeyEntry:
	java.security

	KeyStore.ProtectionParameter:
	java.security

	KeyStore.SecretKeyEntry:
	java.security

	KeyStore.TrustedCertificateEntry:
	java.security

	KeyStoreBuilderParameters:
	javax.net.ssl

	KeyStoreException:
	java.security

	KeyStoreSpi:
	java.security

	KHMER:
	UnicodeBlock

	KHMER_SYMBOLS:
	UnicodeBlock

	KOREA:
	Locale

	KOREAN:
	Locale

	KRB_NT_PRINCIPAL:
	KerberosPrincipal

	KRB_NT_SRV_HST:
	KerberosPrincipal

	KRB_NT_SRV_INST:
	KerberosPrincipal

	KRB_NT_SRV_XHST:
	KerberosPrincipal

	KRB_NT_UID:
	KerberosPrincipal

	KRB_NT_UNKNOWN:
	KerberosPrincipal

L

	LANGUAGE:
	Attribute

	LanguageCallback:
	javax.security.auth.callback

	LAO:
	UnicodeBlock

	last():
	BreakIterator, CharacterIterator, SortedSet, StringCharacterIterator,
TreeSet

	lastElement():
	Vector

	lastIndexOf():
	AbstractList, ArrayList, CopyOnWriteArrayList, LinkedList, List,
String, StringBuffer, StringBuilder, Vector

	lastIndexOfSubList():
	Collections

	lastKey():
	SortedMap, TreeMap

	lastModified():
	File

	LATEST:
	Packer

	LATIN_1_SUPPLEMENT:
	UnicodeBlock

	LATIN_EXTENDED_A:
	UnicodeBlock

	LATIN_EXTENDED_ADDITIONAL:
	UnicodeBlock

	LATIN_EXTENDED_B:
	UnicodeBlock

	LDAPCertStoreParameters:
	java.security.cert

	leave():
	DatagramSocketImpl

	leaveGroup():
	DatagramSocketImpl, MulticastSocket

	LEFT_JUSTIFY:
	FormattableFlags

	len:
	InflaterInputStream

	length:
	OptionalDataException

	length():
	AtomicIntegerArray, AtomicLongArray, AtomicReferenceArray, BitSet,
CharBuffer, CharSequence, CoderResult, File, RandomAccessFile,
String, StringBuffer

	LESSER:
	DatatypeConstants

	LETTER_NUMBER:
	Character

	LETTERLIKE_SYMBOLS:
	UnicodeBlock

	Level:
	java.util.logging

	LexicalHandler:
	org.xml.sax.ext

	LIMBU:
	UnicodeBlock

	limit():
	Buffer

	LINE_SEPARATOR:
	Character

	LINEAR_B_IDEOGRAMS:
	UnicodeBlock

	LINEAR_B_SYLLABARY:
	UnicodeBlock

	lineno():
	StreamTokenizer

	LineNumberInputStream:
	java.io

	LineNumberReader:
	java.io

	LinkageError:
	java.lang

	LinkedBlockingQueue:
	java.util.concurrent

	LinkedHashMap:
	java.util

	LinkedHashSet:
	java.util

	LinkedList:
	java.util

	List:
	java.util

	list():
	Collections, File, Properties, ThreadGroup

	listen():
	SocketImpl

	listFiles():
	File

	ListIterator:
	java.util

	listIterator():
	AbstractList, AbstractSequentialList, CopyOnWriteArrayList,
LinkedList, List

	ListResourceBundle:
	java.util

	listRoots():
	File

	LITERAL:
	Pattern

	LITTLE_ENDIAN:
	ByteOrder

	load():
	KeyStore, MappedByteBuffer, Properties, Provider, Runtime, System

	loadClass():
	ClassLoader

	loadFromXML():
	Properties

	loadLibrary():
	Runtime, System

	LoadStoreParameter:
	java.security.KeyStore

	LOCAL_VARIABLE:
	ElementType

	Locale:
	java.util

	locale():
	Formatter, Scanner

	localPort:
	DatagramSocketImpl

	localport:
	SocketImpl

	Locator:
	org.xml.sax

	Locator2:
	org.xml.sax.ext

	Locator2Impl:
	org.xml.sax.ext

	LocatorImpl:
	org.xml.sax.helpers

	Lock:
	java.util.concurrent.locks

	lock:
	AbstractPreferences, Reader, Writer

	lock():
	FileChannel, Lock, ReadLock, ReentrantLock, WriteLock

	lockInterruptibly():
	Lock, ReadLock, ReentrantLock, WriteLock

	LockSupport:
	java.util.concurrent.locks

	log():
	Logger, Math, StrictMath

	log10():
	Math, StrictMath

	log1p():
	Math, StrictMath

	Logger:
	java.util.logging

	LOGGING_MXBEAN_NAME:
	LogManager

	LoggingMXBean:
	java.util.logging

	LoggingPermission:
	java.util.logging

	login():
	AuthProvider, LoginContext, LoginModule

	LoginContext:
	javax.security.auth.login

	LoginException:
	javax.security.auth.login

	LoginModule:
	javax.security.auth.spi

	LoginModuleControlFlag:
	javax.security.auth.login.AppConfigurationEntry

	LogManager:
	java.util.logging

	logout():
	AuthProvider, LoginContext, LoginModule

	logp():
	Logger

	logrb():
	Logger

	LogRecord:
	java.util.logging

	Long:
	java.lang

	LONG:
	DateFormat, TimeZone

	longBitsToDouble():
	Double

	LongBuffer:
	java.nio

	longValue():
	AtomicInteger, AtomicLong, BigDecimal, BigInteger, Byte, Double,
Float, Integer, Long, Number, Short

	longValueExact():
	BigDecimal

	lookingAt():
	Matcher

	lookup():
	ObjectStreamClass

	lookupNamespaceURI():
	Node

	lookupPrefix():
	Node

	LOW_SURROGATES:
	UnicodeBlock

	LOWERCASE_LETTER:
	Character

	lowerCaseMode():
	StreamTokenizer

	lowestOneBit():
	Integer, Long

M

	Mac:
	javax.crypto

	MacSpi:
	javax.crypto

	MAIN_CLASS:
	Name

	makeParser():
	ParserFactory

	MALAYALAM:
	UnicodeBlock

	malformedForLength():
	CoderResult

	malformedInputAction():
	CharsetDecoder, CharsetEncoder

	MalformedInputException:
	java.nio.charset

	MalformedParameterizedTypeException:
	java.lang.reflect

	MalformedURLException:
	java.net

	ManagementFactory:
	java.lang.management

	ManagementPermission:
	java.lang.management

	ManagerFactoryParameters:
	javax.net.ssl

	Manifest:
	java.util.jar

	MANIFEST_NAME:
	JarFile

	MANIFEST_VERSION:
	Name

	map:
	Attributes

	Map:
	java.util

	map():
	FileChannel

	Map.Entry:
	java.util

	mapLibraryName():
	System

	MapMode:
	java.nio.channels.FileChannel

	MappedByteBuffer:
	java.nio

	MARCH:
	Calendar, DatatypeConstants

	mark:
	ByteArrayInputStream

	mark():
	Buffer, BufferedInputStream, BufferedReader, ByteArrayInputStream,
CharArrayReader, FilterInputStream, FilterReader,
InflaterInputStream, InputStream, LineNumberInputStream,
LineNumberReader, PushbackInputStream, PushbackReader, Reader,
StringReader

	markedPos:
	CharArrayReader

	marklimit:
	BufferedInputStream

	markpos:
	BufferedInputStream

	markSupported():
	BufferedInputStream, BufferedReader, ByteArrayInputStream,
CharArrayReader, CipherInputStream, FilterInputStream, FilterReader,
InflaterInputStream, InputStream, PushbackInputStream,
PushbackReader, Reader, StringReader

	match():
	CertSelector, CRLSelector, Scanner, X509CertSelector, X509CRLSelector

	Matcher:
	java.util.regex

	matcher():
	Pattern

	matches():
	Matcher, Pattern, String

	MatchResult:
	java.util.regex

	Math:
	java.lang

	MATH_SYMBOL:
	Character

	MathContext:
	java.math

	MATHEMATICAL_ALPHANUMERIC_SYMBOLS:
	UnicodeBlock

	MATHEMATICAL_OPERATORS:
	UnicodeBlock

	max():
	BigDecimal, BigInteger, Collections, Math, StrictMath

	MAX_CODE_POINT:
	Character

	MAX_HIGH_SURROGATE:
	Character

	MAX_KEY_LENGTH:
	Preferences

	MAX_LOW_SURROGATE:
	Character

	MAX_NAME_LENGTH:
	Preferences

	MAX_PRIORITY:
	Thread

	MAX_RADIX:
	Character

	MAX_SURROGATE:
	Character

	MAX_TIMEZONE_OFFSET:
	DatatypeConstants

	MAX_VALUE:
	Byte, Character, Double, Float, Integer, Long, Short

	MAX_VALUE_LENGTH:
	Preferences

	maxBytesPerChar():
	CharsetEncoder

	maxCharsPerByte():
	CharsetDecoder

	maxMemory():
	Runtime

	MAY:
	Calendar, DatatypeConstants

	MEDIA_TYPE:
	OutputKeys

	MEDIUM:
	DateFormat

	Member:
	java.lang.reflect

	MEMORY_COLLECTION_THRESHOLD_EXCEEDED:
	MemoryNotificationInfo

	MEMORY_MANAGER_MXBEAN_DOMAIN_TYPE:
	ManagementFactory

	MEMORY_MXBEAN_NAME:
	ManagementFactory

	MEMORY_POOL_MXBEAN_DOMAIN_TYPE:
	ManagementFactory

	MEMORY_THRESHOLD_EXCEEDED:
	MemoryNotificationInfo

	MemoryHandler:
	java.util.logging

	MemoryManagerMXBean:
	java.lang.management

	MemoryMXBean:
	java.lang.management

	MemoryNotificationInfo:
	java.lang.management

	MemoryPoolMXBean:
	java.lang.management

	MemoryType:
	java.lang.management

	MemoryUsage:
	java.lang.management

	MessageDigest:
	java.security

	MessageDigestSpi:
	java.security

	MessageFormat:
	java.text

	MessageFormat.Field:
	java.text

	method:
	HttpURLConnection

	METHOD:
	ElementType, OutputKeys

	Method:
	java.lang.reflect

	METHOD_ATTRIBUTE_PFX:
	Packer

	MGF1ParameterSpec:
	java.security.spec

	MICROSECONDS:
	TimeUnit

	MILLISECOND:
	Calendar, Field

	MILLISECOND_FIELD:
	DateFormat

	MILLISECONDS:
	TimeUnit

	min():
	BigDecimal, BigInteger, Collections, Math, StrictMath

	MIN_CODE_POINT:
	Character

	MIN_HIGH_SURROGATE:
	Character

	MIN_LOW_SURROGATE:
	Character

	MIN_PRIORITY:
	Thread

	MIN_RADIX:
	Character

	MIN_SUPPLEMENTARY_CODE_POINT:
	Character

	MIN_SURROGATE:
	Character

	MIN_TIMEZONE_OFFSET:
	DatatypeConstants

	MIN_VALUE:
	Byte, Character, Double, Float, Integer, Long, Short

	MINUTE:
	Calendar, Field

	MINUTE_FIELD:
	DateFormat

	MINUTES:
	DatatypeConstants

	MISCELLANEOUS_MATHEMATICAL_SYMBOLS_A:
	UnicodeBlock

	MISCELLANEOUS_MATHEMATICAL_SYMBOLS_B:
	UnicodeBlock

	MISCELLANEOUS_SYMBOLS:
	UnicodeBlock

	MISCELLANEOUS_SYMBOLS_AND_ARROWS:
	UnicodeBlock

	MISCELLANEOUS_TECHNICAL:
	UnicodeBlock

	MissingFormatArgumentException:
	java.util

	MissingFormatWidthException:
	java.util

	MissingResourceException:
	java.util

	mkdir():
	File

	mkdirs():
	File

	mod():
	BigInteger

	modCount:
	AbstractList

	MODIFICATION_TIME:
	Packer

	Modifier:
	java.lang.reflect

	MODIFIER_LETTER:
	Character

	MODIFIER_SYMBOL:
	Character

	modInverse():
	BigInteger

	modPow():
	BigInteger

	MONDAY:
	Calendar

	MONGOLIAN:
	UnicodeBlock

	MONTH:
	Calendar, Field

	MONTH_FIELD:
	DateFormat

	MONTHS:
	DatatypeConstants

	movePointLeft():
	BigDecimal

	movePointRight():
	BigDecimal

	MulticastSocket:
	java.net

	MULTILINE:
	Pattern

	multiply():
	BigDecimal, BigInteger, Duration

	MUSICAL_SYMBOLS:
	UnicodeBlock

	MYANMAR:
	UnicodeBlock

N

	Name:
	java.util.jar.Attributes

	name():
	AbstractPreferences, Charset, Enum, Preferences

	NameCallback:
	javax.security.auth.callback

	NamedNodeMap:
	org.w3c.dom

	NameList:
	org.w3c.dom

	NAMESPACE_ERR:
	DOMException

	NamespaceContext:
	javax.xml.namespace

	NamespaceSupport:
	org.xml.sax.helpers

	nameUUIDFromBytes():
	UUID

	NaN:
	Double, Float

	NANOSECONDS:
	TimeUnit

	nanoTime():
	System

	NATIVE:
	Modifier

	nativeOrder():
	ByteOrder

	nCopies():
	Collections

	NEED_TASK:
	HandshakeStatus

	NEED_UNWRAP:
	HandshakeStatus

	NEED_WRAP:
	HandshakeStatus

	needsDictionary():
	Inflater

	needsInput():
	Deflater, Inflater

	negate():
	BigDecimal, BigInteger, Duration

	NEGATIVE_INFINITY:
	Double, Float

	NegativeArraySizeException:
	java.lang

	NetPermission:
	java.net

	NetworkInterface:
	java.net

	NEW:
	State

	newCachedThreadPool():
	Executors

	newChannel():
	Channels

	newCondition():
	Lock, ReadLock, ReentrantLock, WriteLock

	newDecoder():
	Charset

	newDocument():
	DocumentBuilder

	newDocumentBuilder():
	DocumentBuilderFactory

	newDuration():
	DatatypeFactory

	newDurationDayTime():
	DatatypeFactory

	newDurationYearMonth():
	DatatypeFactory

	newEncoder():
	Charset

	newFactory():
	SchemaFactoryLoader

	newFixedThreadPool():
	Executors

	newInputStream():
	Channels

	newInstance():
	Array, Builder, Class, Constructor, DatatypeFactory,
DocumentBuilderFactory, SAXParserFactory, SchemaFactory, Service,
TransformerFactory, URLClassLoader, XPathFactory

	newLine():
	BufferedWriter

	newNode:
	AbstractPreferences

	newOutputStream():
	Channels

	newPacker():
	Pack200

	newPermissionCollection():
	AllPermission, BasicPermission, DelegationPermission, FilePermission,
Permission, PrivateCredentialPermission, PropertyPermission,
ServicePermission, SocketPermission, UnresolvedPermission

	newPlatformMXBeanProxy():
	ManagementFactory

	newProxyInstance():
	Proxy

	newReader():
	Channels

	newSAXParser():
	SAXParserFactory

	newScheduledThreadPool():
	Executors

	newSchema():
	SchemaFactory

	newSingleThreadExecutor():
	Executors

	newSingleThreadScheduledExecutor():
	Executors

	newTemplates():
	TransformerFactory

	newTemplatesHandler():
	SAXTransformerFactory

	newThread():
	ThreadFactory

	newTransformer():
	Templates, TransformerFactory

	newTransformerHandler():
	SAXTransformerFactory

	newUnpacker():
	Pack200

	newUpdater():
	AtomicIntegerFieldUpdater, AtomicLongFieldUpdater,
AtomicReferenceFieldUpdater

	newValidator():
	Schema

	newValidatorHandler():
	Schema

	newWriter():
	Channels

	newXMLFilter():
	SAXTransformerFactory

	newXMLGregorianCalendar():
	DatatypeFactory

	newXMLGregorianCalendarDate():
	DatatypeFactory

	newXMLGregorianCalendarTime():
	DatatypeFactory

	newXPath():
	XPathFactory

	next():
	BreakIterator, CharacterIterator, CollationElementIterator, Iterator,
ListIterator, Random, Scanner, SecureRandom, StringCharacterIterator

	nextBigDecimal():
	Scanner

	nextBigInteger():
	Scanner

	nextBoolean():
	Random, Scanner

	nextByte():
	Scanner

	nextBytes():
	Random, SecureRandom

	nextClearBit():
	BitSet

	nextDouble():
	ChoiceFormat, Random, Scanner

	nextElement():
	Enumeration, StringTokenizer

	nextFloat():
	Random, Scanner

	nextGaussian():
	Random

	nextIndex():
	ListIterator

	nextInt():
	Random, Scanner

	nextLine():
	Scanner

	nextLong():
	Random, Scanner

	nextProbablePrime():
	BigInteger

	nextSetBit():
	BitSet

	nextShort():
	Scanner

	nextToken():
	StreamTokenizer, StringTokenizer

	NO:
	ConfirmationCallback

	NO_COMPRESSION:
	Deflater

	NO_DATA_ALLOWED_ERR:
	DOMException

	NO_DECOMPOSITION:
	Collator

	NO_FIELDS:
	ObjectStreamClass

	NO_MODIFICATION_ALLOWED_ERR:
	DOMException

	NO_PROXY:
	Proxy

	NoClassDefFoundError:
	java.lang

	NoConnectionPendingException:
	java.nio.channels

	Node:
	org.w3c.dom

	NODE:
	XPathConstants

	node():
	AbstractPreferences, Preferences, UUID

	NODE_ADOPTED:
	UserDataHandler

	NODE_CLONED:
	UserDataHandler

	NODE_DELETED:
	UserDataHandler

	NODE_IMPORTED:
	UserDataHandler

	NODE_RENAMED:
	UserDataHandler

	NodeChangeEvent:
	java.util.prefs

	NodeChangeListener:
	java.util.prefs

	nodeExists():
	AbstractPreferences, Preferences

	NodeList:
	org.w3c.dom

	NODESET:
	XPathConstants

	NON_HEAP:
	MemoryType

	NON_SPACING_MARK:
	Character

	noneOf():
	EnumSet

	NonReadableChannelException:
	java.nio.channels

	NonWritableChannelException:
	java.nio.channels

	NORM_PRIORITY:
	Thread

	normalize():
	Node, URI, XMLGregorianCalendar

	normalizeDocument():
	Document

	normalizeWith():
	Duration

	NoRouteToHostException:
	java.net

	NoSuchAlgorithmException:
	java.security

	NoSuchElementException:
	java.util

	NoSuchFieldError:
	java.lang

	NoSuchFieldException:
	java.lang

	NoSuchMethodError:
	java.lang

	NoSuchMethodException:
	java.lang

	NoSuchPaddingException:
	javax.crypto

	NoSuchProviderException:
	java.security

	not():
	BigInteger

	NOT_FOUND_ERR:
	DOMException

	NOT_HANDSHAKING:
	HandshakeStatus

	NOT_SUPPORTED_ERR:
	DOMException

	NotActiveException:
	java.io

	Notation:
	org.w3c.dom

	NOTATION_NODE:
	Node

	notationDecl():
	DefaultHandler, DTDHandler, HandlerBase, XMLFilterImpl

	notify():
	Object

	notifyAll():
	Object

	notifyObservers():
	Observable

	NotSerializableException:
	java.io

	NotYetBoundException:
	java.nio.channels

	NotYetConnectedException:
	java.nio.channels

	NOVEMBER:
	Calendar, DatatypeConstants

	NSDECL:
	NamespaceSupport

	NULL_NS_URI:
	XMLConstants

	NullCipher:
	javax.crypto

	NULLORDER:
	CollationElementIterator

	NullPointerException:
	java.lang

	Number:
	java.lang

	NUMBER:
	XPathConstants

	NUMBER_FORMS:
	UnicodeBlock

	NumberFormat:
	java.text

	numberFormat:
	DateFormat

	NumberFormat.Field:
	java.text

	NumberFormatException:
	java.lang

	numberOfLeadingZeros():
	Integer, Long

	numberOfTrailingZeros():
	Integer, Long

	nval:
	StreamTokenizer

O

	OAEPParameterSpec:
	javax.crypto.spec

	Object:
	java.lang

	ObjectInput:
	java.io

	ObjectInputStream:
	java.io

	ObjectInputStream.GetField:
	java.io

	ObjectInputValidation:
	java.io

	ObjectOutput:
	java.io

	ObjectOutputStream:
	java.io

	ObjectOutputStream.PutField:
	java.io

	ObjectStreamClass:
	java.io

	ObjectStreamConstants:
	java.io

	ObjectStreamException:
	java.io

	ObjectStreamField:
	java.io

	Observable:
	java.util

	Observer:
	java.util

	OCTOBER:
	Calendar, DatatypeConstants

	of():
	EnumSet, UnicodeBlock

	ofCalendarField():
	Field

	OFF:
	Level

	offer():
	ArrayBlockingQueue, BlockingQueue, ConcurrentLinkedQueue, DelayQueue,
LinkedBlockingQueue, LinkedList, PriorityBlockingQueue,
PriorityQueue, Queue, SynchronousQueue

	offsetByCodePoints():
	Character, String, StringBuffer

	OGHAM:
	UnicodeBlock

	OK:
	ConfirmationCallback, Status

	OK_CANCEL_OPTION:
	ConfirmationCallback

	OLD_ITALIC:
	UnicodeBlock

	OMIT_XML_DECLARATION:
	OutputKeys

	on():
	DigestInputStream, DigestOutputStream

	ONE:
	BigDecimal, BigInteger

	onMalformedInput():
	CharsetDecoder, CharsetEncoder

	onUnmappableCharacter():
	CharsetDecoder, CharsetEncoder

	OP_ACCEPT:
	SelectionKey

	OP_CONNECT:
	SelectionKey

	OP_READ:
	SelectionKey

	OP_WRITE:
	SelectionKey

	open():
	DatagramChannel, Pipe, Selector, ServerSocketChannel, SocketChannel

	OPEN_DELETE:
	ZipFile

	OPEN_FAILURE:
	ErrorManager

	OPEN_READ:
	ZipFile

	openConnection():
	URL, URLStreamHandler

	openDatagramChannel():
	SelectorProvider

	openPipe():
	SelectorProvider

	openSelector():
	SelectorProvider

	openServerSocketChannel():
	SelectorProvider

	openSocketChannel():
	SelectorProvider

	openStream():
	URL

	OPERATING_SYSTEM_MXBEAN_NAME:
	ManagementFactory

	OperatingSystemMXBean:
	java.lang.management

	OPTICAL_CHARACTER_RECOGNITION:
	UnicodeBlock

	OPTIONAL:
	LoginModuleControlFlag

	OptionalDataException:
	java.io

	or():
	BigInteger, BitSet

	order():
	ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer

	ordinal():
	Enum

	ordinaryChar():
	StreamTokenizer

	ordinaryChars():
	StreamTokenizer

	ORIYA:
	UnicodeBlock

	OSMANYA:
	UnicodeBlock

	OTHER_LETTER:
	Character

	OTHER_NUMBER:
	Character

	OTHER_PUNCTUATION:
	Character

	OTHER_SYMBOL:
	Character

	out:
	FileDescriptor, FilterOutputStream, FilterWriter, PipedInputStream,
PrintWriter, System

	out():
	Formatter

	OutOfMemoryError:
	java.lang

	OutputKeys:
	javax.xml.transform

	OutputStream:
	java.io

	OutputStreamWriter:
	java.io

	OVERFLOW:
	CoderResult

	OverlappingFileLockException:
	java.nio.channels

	overlaps():
	FileLock

	Override:
	java.lang

	owns():
	AbstractQueuedSynchronizer

P

	pack():
	Packer

	Pack200:
	java.util.jar

	Pack200.Packer:
	java.util.jar

	Pack200.Unpacker:
	java.util.jar

	PACKAGE:
	ElementType

	Package:
	java.lang

	Packer:
	java.util.jar.Pack200

	PARAGRAPH_SEPARATOR:
	Character

	PARAMETER:
	ElementType

	ParameterizedType:
	java.lang.reflect

	parent:
	ResourceBundle

	parent():
	AbstractPreferences, Preferences

	parentOf():
	ThreadGroup

	park():
	LockSupport

	parkNanos():
	LockSupport

	parkUntil():
	LockSupport

	parse():
	ChoiceFormat, Date, DateFormat, DecimalFormat, DocumentBuilder,
Level, MessageFormat, NumberFormat, Parser, ParserAdapter, SAXParser,
SimpleDateFormat, XMLFilterImpl, XMLReader, XMLReaderAdapter

	parseBoolean():
	Boolean

	parseByte():
	Byte

	parseDouble():
	Double

	ParseException:
	java.text

	parseFloat():
	Float

	parseInt():
	Integer

	parseLong():
	Long

	parseNumbers():
	StreamTokenizer

	parseObject():
	DateFormat, Format, MessageFormat, NumberFormat

	ParsePosition:
	java.text

	Parser:
	org.xml.sax

	ParserAdapter:
	org.xml.sax.helpers

	ParserConfigurationException:
	javax.xml.parsers

	ParserFactory:
	org.xml.sax.helpers

	parseServerAuthority():
	URI

	parseShort():
	Short

	parseURL():
	URLStreamHandler

	PASS:
	Packer

	PASS_FILE_PFX:
	Packer

	PasswordAuthentication:
	java.net

	PasswordCallback:
	javax.security.auth.callback

	PasswordProtection:
	java.security.KeyStore

	pathSeparator:
	File

	pathSeparatorChar:
	File

	Pattern:
	java.util.regex

	pattern():
	Matcher, Pattern

	PatternSyntaxException:
	java.util.regex

	PBEKey:
	javax.crypto.interfaces

	PBEKeySpec:
	javax.crypto.spec

	PBEParameterSpec:
	javax.crypto.spec

	peek():
	ArrayBlockingQueue, ConcurrentLinkedQueue, DatagramSocketImpl,
DelayQueue, LinkedBlockingQueue, LinkedList, PriorityBlockingQueue,
PriorityQueue, Queue, Stack, SynchronousQueue

	peekData():
	DatagramSocketImpl

	PERCENT:
	Field

	PERMILLE:
	Field

	Permission:
	java.security

	PermissionCollection:
	java.security

	Permissions:
	java.security

	PhantomReference:
	java.lang.ref

	PHONETIC_EXTENSIONS:
	UnicodeBlock

	PI:
	Math, StrictMath

	PI_DISABLE_OUTPUT_ESCAPING:
	Result

	PI_ENABLE_OUTPUT_ESCAPING:
	Result

	Pipe:
	java.nio.channels

	Pipe.SinkChannel:
	java.nio.channels

	Pipe.SourceChannel:
	java.nio.channels

	PIPE_SIZE:
	PipedInputStream

	PipedInputStream:
	java.io

	PipedOutputStream:
	java.io

	PipedReader:
	java.io

	PipedWriter:
	java.io

	PKCS8EncodedKeySpec:
	java.security.spec

	PKIXBuilderParameters:
	java.security.cert

	PKIXCertPathBuilderResult:
	java.security.cert

	PKIXCertPathChecker:
	java.security.cert

	PKIXCertPathValidatorResult:
	java.security.cert

	PKIXParameters:
	java.security.cert

	plus():
	BigDecimal

	PM:
	Calendar

	POINT_INFINITY:
	ECPoint

	Policy:
	java.security, javax.security.auth

	PolicyNode:
	java.security.cert

	PolicyQualifierInfo:
	java.security.cert

	poll():
	ArrayBlockingQueue, BlockingQueue, CompletionService,
ConcurrentLinkedQueue, DelayQueue, ExecutorCompletionService,
LinkedBlockingQueue, LinkedList, PriorityBlockingQueue,
PriorityQueue, Queue, ReferenceQueue, SynchronousQueue

	pop():
	Stack

	popContext():
	NamespaceSupport

	port:
	SocketImpl

	PortUnreachableException:
	java.net

	pos:
	BufferedInputStream, ByteArrayInputStream, CharArrayReader,
PushbackInputStream, StringBufferInputStream

	position():
	Buffer, FileChannel, FileLock

	POSITIVE_INFINITY:
	Double, Float

	pow():
	BigDecimal, BigInteger, Math, StrictMath

	PRC:
	Locale

	preceding():
	BreakIterator

	precision():
	BigDecimal

	preferenceChange():
	PreferenceChangeListener

	PreferenceChangeEvent:
	java.util.prefs

	PreferenceChangeListener:
	java.util.prefs

	Preferences:
	java.util.prefs

	PreferencesFactory:
	java.util.prefs

	prestartAllCoreThreads():
	ThreadPoolExecutor

	prestartCoreThread():
	ThreadPoolExecutor

	previous():
	BreakIterator, CharacterIterator, CollationElementIterator,
ListIterator, StringCharacterIterator

	previousDouble():
	ChoiceFormat

	previousIndex():
	ListIterator

	PRIMARY:
	Collator

	primaryOrder():
	CollationElementIterator

	Principal:
	java.security

	print():
	PrintStream, PrintWriter

	printf():
	PrintStream, PrintWriter

	println():
	PrintStream, PrintWriter

	printStackTrace():
	Throwable, TransformerException, XPathException

	PrintStream:
	java.io

	PrintWriter:
	java.io

	PriorityBlockingQueue:
	java.util.concurrent

	PriorityQueue:
	java.util

	PRIVATE:
	MapMode, Modifier, Type

	PRIVATE_KEY:
	Cipher

	PRIVATE_USE:
	Character

	PRIVATE_USE_AREA:
	UnicodeBlock

	PrivateCredentialPermission:
	javax.security.auth

	PrivateKey:
	java.security

	PrivateKeyEntry:
	java.security.KeyStore

	PrivilegedAction:
	java.security

	PrivilegedActionException:
	java.security

	privilegedCallable():
	Executors

	privilegedCallableUsingCurrentClassLoader():
	Executors

	PrivilegedExceptionAction:
	java.security

	privilegedThreadFactory():
	Executors

	probablePrime():
	BigInteger

	Process:
	java.lang

	ProcessBuilder:
	java.lang

	PROCESSING_INSTRUCTION_NODE:
	Node

	ProcessingInstruction:
	org.w3c.dom

	processingInstruction():
	ContentHandler, DefaultHandler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReaderAdapter

	processName():
	NamespaceSupport

	PROGRESS:
	Packer, Unpacker

	Properties:
	java.util

	properties():
	Packer, Unpacker

	propertyNames():
	Properties

	PropertyPermission:
	java.util

	PropertyResourceBundle:
	java.util

	PROTECTED:
	Modifier

	ProtectionDomain:
	java.security

	ProtectionParameter:
	java.security.KeyStore

	PROTOCOL_VERSION_1:
	ObjectStreamConstants

	PROTOCOL_VERSION_2:
	ObjectStreamConstants

	ProtocolException:
	java.net

	Provider:
	java.security

	provider():
	AbstractSelectableChannel, AbstractSelector, SelectableChannel,
Selector, SelectorProvider

	Provider.Service:
	java.security

	ProviderException:
	java.security

	PROXY:
	RequestorType

	Proxy:
	java.lang.reflect, java.net

	Proxy.Type:
	java.net

	ProxySelector:
	java.net

	PSource:
	javax.crypto.spec

	PSource.PSpecified:
	javax.crypto.spec

	PSpecified:
	javax.crypto.spec.PSource

	PSSParameterSpec:
	java.security.spec

	PUBLIC:
	Member, Modifier, Type

	PUBLIC_KEY:
	Cipher

	PublicKey:
	java.security

	publish():
	ConsoleHandler, FileHandler, Handler, MemoryHandler, SocketHandler,
StreamHandler

	purge():
	ThreadPoolExecutor, Timer

	push():
	MemoryHandler, Stack

	pushBack():
	StreamTokenizer

	PushbackInputStream:
	java.io

	PushbackReader:
	java.io

	pushContext():
	NamespaceSupport

	put():
	AbstractMap, AbstractPreferences, ArrayBlockingQueue, Attributes,
BlockingQueue, ByteBuffer, CharBuffer, ConcurrentHashMap,
CookieHandler, DelayQueue, Dictionary, DoubleBuffer, EnumMap,
FloatBuffer, HashMap, Hashtable, IdentityHashMap, IntBuffer,
LinkedBlockingQueue, LongBuffer, Map, Preferences,
PriorityBlockingQueue, Provider, PutField, ResponseCache,
ShortBuffer, SynchronousQueue, TreeMap, WeakHashMap

	putAll():
	AbstractMap, Attributes, ConcurrentHashMap, EnumMap, HashMap,
Hashtable, IdentityHashMap, Map, Provider, TreeMap, WeakHashMap

	putBoolean():
	AbstractPreferences, Preferences

	putByteArray():
	AbstractPreferences, Preferences

	putChar():
	ByteBuffer

	putDouble():
	AbstractPreferences, ByteBuffer, Preferences

	PutField:
	java.io.ObjectOutputStream

	putFields():
	ObjectOutputStream

	putFloat():
	AbstractPreferences, ByteBuffer, Preferences

	putIfAbsent():
	ConcurrentHashMap, ConcurrentMap

	putInt():
	AbstractPreferences, ByteBuffer, Preferences

	putLong():
	AbstractPreferences, ByteBuffer, Preferences

	putNextEntry():
	JarOutputStream, ZipOutputStream

	putService():
	Provider

	putShort():
	ByteBuffer

	putSpi():
	AbstractPreferences

	putValue():
	Attributes, SSLSession

Q

	QName:
	javax.xml.namespace

	Queue:
	java.util

	quote():
	Pattern

	quoteChar():
	StreamTokenizer

	quoteReplacement():
	Matcher

R

	radix():
	Scanner

	Random:
	java.util

	random():
	Math, StrictMath

	RandomAccess:
	java.util

	RandomAccessFile:
	java.io

	randomUUID():
	UUID

	range():
	EnumSet

	RC2ParameterSpec:
	javax.crypto.spec

	RC5ParameterSpec:
	javax.crypto.spec

	read():
	BufferedInputStream, BufferedReader, ByteArrayInputStream,
CharArrayReader, CharBuffer, CheckedInputStream, CipherInputStream,
DatagramChannel, DataInputStream, DigestInputStream, FileChannel,
FileInputStream, FilterInputStream, FilterReader, GZIPInputStream,
InflaterInputStream, InputStream, InputStreamReader, JarInputStream,
LineNumberInputStream, LineNumberReader, Manifest, ObjectInput,
ObjectInputStream, PipedInputStream, PipedReader,
PushbackInputStream, PushbackReader, RandomAccessFile, Readable,
ReadableByteChannel, Reader, ScatteringByteChannel,
SequenceInputStream, SocketChannel, StringBufferInputStream,
StringReader, ZipInputStream

	READ_ONLY:
	MapMode

	READ_WRITE:
	MapMode

	Readable:
	java.lang

	ReadableByteChannel:
	java.nio.channels

	readBoolean():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	readByte():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	readChar():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	readClassDescriptor():
	ObjectInputStream

	readConfiguration():
	LogManager

	readDouble():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	Reader:
	java.io

	readExternal():
	Externalizable

	readFields():
	ObjectInputStream

	readFloat():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	readFully():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	READING:
	Attribute

	readInt():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	readLine():
	BufferedReader, DataInput, DataInputStream, LineNumberReader,
ObjectInputStream, RandomAccessFile

	ReadLock:
	java.util.concurrent.locks.ReentrantReadWriteLock

	readLock():
	ReadWriteLock, ReentrantReadWriteLock

	readLong():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	readObject():
	ObjectInput, ObjectInputStream

	readObjectOverride():
	ObjectInputStream

	ReadOnlyBufferException:
	java.nio

	readResolve():
	Attribute, CertificateRep, CertPathRep, Field, KeyRep

	readShort():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	readStreamHeader():
	ObjectInputStream

	readUnshared():
	ObjectInputStream

	readUnsignedByte():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	readUnsignedShort():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	readUTF():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	ReadWriteLock:
	java.util.concurrent.locks

	ready():
	BufferedReader, CharArrayReader, FilterReader, InputStreamReader,
PipedReader, PushbackReader, Reader, StringReader

	readyOps():
	SelectionKey

	receive():
	DatagramChannel, DatagramSocket, DatagramSocketImpl, PipedInputStream

	redefineClasses():
	Instrumentation

	redirectErrorStream():
	ProcessBuilder

	reducePermits():
	Semaphore

	ReentrantLock:
	java.util.concurrent.locks

	ReentrantReadWriteLock:
	java.util.concurrent.locks

	ReentrantReadWriteLock.ReadLock:
	java.util.concurrent.locks

	ReentrantReadWriteLock.WriteLock:
	java.util.concurrent.locks

	Reference:
	java.lang.ref

	ReferenceQueue:
	java.lang.ref

	ReflectPermission:
	java.lang.reflect

	refresh():
	Configuration, KerberosTicket, Policy, Refreshable

	Refreshable:
	javax.security.auth

	RefreshFailedException:
	javax.security.auth

	region():
	Matcher

	regionEnd():
	Matcher

	regionMatches():
	String

	regionStart():
	Matcher

	register():
	AbstractSelectableChannel, AbstractSelector, SelectableChannel

	registerValidation():
	ObjectInputStream

	rehash():
	Hashtable

	rejectedExecution():
	AbortPolicy, CallerRunsPolicy, DiscardOldestPolicy, DiscardPolicy,
RejectedExecutionHandler

	RejectedExecutionException:
	java.util.concurrent

	RejectedExecutionHandler:
	java.util.concurrent

	relativize():
	URI

	RELAXNG_NS_URI:
	XMLConstants

	release():
	AbstractQueuedSynchronizer, FileLock, Semaphore

	releaseShared():
	AbstractQueuedSynchronizer

	remainder():
	BigDecimal, BigInteger

	remaining():
	Buffer

	remainingCapacity():
	ArrayBlockingQueue, BlockingQueue, DelayQueue, LinkedBlockingQueue,
PriorityBlockingQueue, SynchronousQueue

	remove():
	AbstractCollection, AbstractList, AbstractMap, AbstractPreferences,
AbstractQueue, AbstractSequentialList, ArrayBlockingQueue, ArrayList,
Attributes, Collection, ConcurrentHashMap, ConcurrentLinkedQueue,
ConcurrentMap, CopyOnWriteArrayList, CopyOnWriteArraySet, DelayQueue,
Dictionary, EnumMap, HashMap, HashSet, Hashtable, IdentityHashMap,
Iterator, LinkedBlockingQueue, LinkedList, List, ListIterator, Map,
Preferences, PriorityBlockingQueue, PriorityQueue, Provider, Queue,
ReferenceQueue, Scanner, ScheduledThreadPoolExecutor, Set,
SynchronousQueue, ThreadLocal, ThreadPoolExecutor, TreeMap, TreeSet,
Vector, WeakHashMap

	removeAll():
	AbstractCollection, AbstractSet, Collection, CopyOnWriteArrayList,
CopyOnWriteArraySet, List, Set, SynchronousQueue, Vector

	removeAllElements():
	Vector

	removeAttribute():
	AttributeListImpl, Attributes2Impl, AttributesImpl, Element

	removeAttributeNode():
	Element

	removeAttributeNS():
	Element

	removeCertificate():
	Identity

	removeChild():
	Node

	removeEldestEntry():
	LinkedHashMap

	removeElement():
	Vector

	removeElementAt():
	Vector

	removeFirst():
	LinkedList

	removeHandler():
	Logger

	removeHandshakeCompletedListener():
	SSLSocket

	removeIdentity():
	IdentityScope

	removeLast():
	LinkedList

	removeNamedItem():
	NamedNodeMap

	removeNamedItemNS():
	NamedNodeMap

	removeNode():
	AbstractPreferences, Preferences

	removeNodeChangeListener():
	AbstractPreferences, Preferences

	removeNodeSpi():
	AbstractPreferences

	removePreferenceChangeListener():
	AbstractPreferences, Preferences

	removePropertyChangeListener():
	LogManager, Packer, Unpacker

	removeProvider():
	Security

	removeRange():
	AbstractList, ArrayList, Vector

	removeService():
	Provider

	removeShutdownHook():
	Runtime

	removeSpi():
	AbstractPreferences

	removeTransformer():
	Instrumentation

	removeValue():
	SSLSession

	renameNode():
	Document

	renameTo():
	File

	reorderVisually():
	Bidi

	REPLACE:
	CodingErrorAction

	replace():
	ConcurrentHashMap, ConcurrentMap, String, StringBuffer, StringBuilder

	replaceAll():
	Collections, Matcher, String

	replaceChild():
	Node

	replaceData():
	CharacterData

	replaceFirst():
	Matcher, String

	replacement():
	CharsetDecoder, CharsetEncoder

	replaceObject():
	ObjectOutputStream

	replaceWholeText():
	Text

	replaceWith():
	CharsetDecoder, CharsetEncoder

	REPORT:
	CodingErrorAction

	reportError():
	Handler

	RequestorType:
	java.net.Authenticator

	requestPasswordAuthentication():
	Authenticator

	REQUIRED:
	LoginModuleControlFlag

	requireEnd():
	Matcher

	requiresBidi():
	Bidi

	REQUISITE:
	LoginModuleControlFlag

	reset():
	Adler32, Buffer, BufferedInputStream, BufferedReader,
ByteArrayInputStream, ByteArrayOutputStream, CharArrayReader,
CharArrayWriter, CharsetDecoder, CharsetEncoder, Checksum,
CollationElementIterator, CRC32, CyclicBarrier, Deflater,
DocumentBuilder, FilterInputStream, FilterReader, Inflater,
InflaterInputStream, InputStream, LineNumberInputStream,
LineNumberReader, LogManager, Mac, Matcher, MessageDigest,
NamespaceSupport, ObjectOutputStream, PushbackInputStream,
PushbackReader, Reader, SAXParser, StringBufferInputStream,
StringReader, Transformer, Validator, XMLGregorianCalendar, XPath

	resetPeakThreadCount():
	ThreadMXBean

	resetPeakUsage():
	MemoryPoolMXBean

	resetSyntax():
	StreamTokenizer

	resolve():
	URI, URIResolver

	resolveClass():
	ClassLoader, ObjectInputStream

	resolveEntity():
	DefaultHandler, DefaultHandler2, EntityResolver, EntityResolver2,
HandlerBase, XMLFilterImpl

	resolveFunction():
	XPathFunctionResolver

	resolveObject():
	ObjectInputStream

	resolveProxyClass():
	ObjectInputStream

	resolveVariable():
	XPathVariableResolver

	ResourceBundle:
	java.util

	ResponseCache:
	java.net

	responseCode:
	HttpURLConnection

	responseCode():
	HttpRetryException

	responseMessage:
	HttpURLConnection

	Result:
	javax.xml.transform

	resume():
	Thread, ThreadGroup

	retainAll():
	AbstractCollection, Collection, CopyOnWriteArrayList,
CopyOnWriteArraySet, List, Set, SynchronousQueue, Vector

	Retention:
	java.lang.annotation

	RetentionPolicy:
	java.lang.annotation

	reverse():
	Collections, Integer, Long, StringBuffer, StringBuilder

	reverseBytes():
	Character, Integer, Long, Short

	reverseOrder():
	Collections

	rewind():
	Buffer

	RFC1779:
	X500Principal

	RFC2253:
	X500Principal

	rint():
	Math, StrictMath

	roll():
	Calendar, GregorianCalendar

	rotate():
	Collections

	rotateLeft():
	Integer, Long

	rotateRight():
	Integer, Long

	round():
	BigDecimal, Math, StrictMath

	ROUND_CEILING:
	BigDecimal

	ROUND_DOWN:
	BigDecimal

	ROUND_FLOOR:
	BigDecimal

	ROUND_HALF_DOWN:
	BigDecimal

	ROUND_HALF_EVEN:
	BigDecimal

	ROUND_HALF_UP:
	BigDecimal

	ROUND_UNNECESSARY:
	BigDecimal

	ROUND_UP:
	BigDecimal

	RoundingMode:
	java.math

	RSAKey:
	java.security.interfaces

	RSAKeyGenParameterSpec:
	java.security.spec

	RSAMultiPrimePrivateCrtKey:
	java.security.interfaces

	RSAMultiPrimePrivateCrtKeySpec:
	java.security.spec

	RSAOtherPrimeInfo:
	java.security.spec

	RSAPrivateCrtKey:
	java.security.interfaces

	RSAPrivateCrtKeySpec:
	java.security.spec

	RSAPrivateKey:
	java.security.interfaces

	RSAPrivateKeySpec:
	java.security.spec

	RSAPublicKey:
	java.security.interfaces

	RSAPublicKeySpec:
	java.security.spec

	RuleBasedCollator:
	java.text

	run():
	FutureTask, PrivilegedAction, PrivilegedExceptionAction, Runnable,
Thread, TimerTask

	runAndReset():
	FutureTask

	runFinalization():
	Runtime, System

	runFinalizersOnExit():
	Runtime, System

	RUNIC:
	UnicodeBlock

	Runnable:
	java.lang

	RUNNABLE:
	State

	Runtime:
	java.lang

	RUNTIME:
	RetentionPolicy

	RUNTIME_MXBEAN_NAME:
	ManagementFactory

	RuntimeException:
	java.lang

	RuntimeMXBean:
	java.lang.management

	RuntimePermission:
	java.lang

S

	sameFile():
	URL, URLStreamHandler

	SATURDAY:
	Calendar

	save():
	Properties

	SAXException:
	org.xml.sax

	SAXNotRecognizedException:
	org.xml.sax

	SAXNotSupportedException:
	org.xml.sax

	SAXParseException:
	org.xml.sax

	SAXParser:
	javax.xml.parsers

	SAXParserFactory:
	javax.xml.parsers

	SAXResult:
	javax.xml.transform.sax

	SAXSource:
	javax.xml.transform.sax

	SAXTransformerFactory:
	javax.xml.transform.sax

	SC_BLOCK_DATA:
	ObjectStreamConstants

	SC_ENUM:
	ObjectStreamConstants

	SC_EXTERNALIZABLE:
	ObjectStreamConstants

	SC_SERIALIZABLE:
	ObjectStreamConstants

	SC_WRITE_METHOD:
	ObjectStreamConstants

	scale():
	BigDecimal

	scaleByPowerOfTen():
	BigDecimal

	Scanner:
	java.util

	ScatteringByteChannel:
	java.nio.channels

	schedule():
	ScheduledExecutorService, ScheduledThreadPoolExecutor, Timer

	scheduleAtFixedRate():
	ScheduledExecutorService, ScheduledThreadPoolExecutor, Timer

	scheduledExecutionTime():
	TimerTask

	ScheduledExecutorService:
	java.util.concurrent

	ScheduledFuture:
	java.util.concurrent

	ScheduledThreadPoolExecutor:
	java.util.concurrent

	scheduleWithFixedDelay():
	ScheduledExecutorService, ScheduledThreadPoolExecutor

	Schema:
	javax.xml.validation

	SchemaFactory:
	javax.xml.validation

	SchemaFactoryLoader:
	javax.xml.validation

	SCIENTIFIC:
	BigDecimalLayoutForm

	SEALED:
	Name

	SealedObject:
	javax.crypto

	search():
	Stack

	SECOND:
	Calendar, Field

	SECOND_FIELD:
	DateFormat

	SECONDARY:
	Collator

	secondaryOrder():
	CollationElementIterator

	SECONDS:
	DatatypeConstants, TimeUnit

	SECRET:
	Type

	SECRET_KEY:
	Cipher

	SecretKey:
	javax.crypto

	SecretKeyEntry:
	java.security.KeyStore

	SecretKeyFactory:
	javax.crypto

	SecretKeyFactorySpi:
	javax.crypto

	SecretKeySpec:
	javax.crypto.spec

	SecureCacheResponse:
	java.net

	SecureClassLoader:
	java.security

	SecureRandom:
	java.security

	SecureRandomSpi:
	java.security

	Security:
	java.security

	SecurityException:
	java.lang

	SecurityManager:
	java.lang

	SecurityPermission:
	java.security

	seek():
	RandomAccessFile

	SEGMENT_LIMIT:
	Packer

	select():
	ProxySelector, Selector

	SelectableChannel:
	java.nio.channels

	selectedKeys():
	Selector

	SelectionKey:
	java.nio.channels

	selectNow():
	Selector

	Selector:
	java.nio.channels

	selector():
	SelectionKey

	SelectorProvider:
	java.nio.channels.spi

	Semaphore:
	java.util.concurrent

	send():
	DatagramChannel, DatagramSocket, DatagramSocketImpl, MulticastSocket

	sendUrgentData():
	Socket, SocketImpl

	separator:
	File

	separatorChar:
	File

	SEPTEMBER:
	Calendar, DatatypeConstants

	SequenceInputStream:
	java.io

	Serializable:
	java.io

	SerializablePermission:
	java.io

	serialVersionUID:
	DHPrivateKey, DHPublicKey, DSAPrivateKey, DSAPublicKey, ECPrivateKey,
ECPublicKey, Key, PBEKey, PrivateKey, PublicKey,
RSAMultiPrimePrivateCrtKey, RSAPrivateCrtKey, RSAPrivateKey,
RSAPublicKey, SecretKey

	SERVER:
	RequestorType

	ServerSocket:
	java.net

	ServerSocketChannel:
	java.nio.channels

	ServerSocketFactory:
	javax.net

	Service:
	java.security.Provider

	ServicePermission:
	javax.security.auth.kerberos

	Set:
	java.util

	set():
	AbstractList, AbstractSequentialList, Array, ArrayList,
AtomicBoolean, AtomicInteger, AtomicIntegerArray,
AtomicIntegerFieldUpdater, AtomicLong, AtomicLongArray,
AtomicLongFieldUpdater, AtomicMarkableReference, AtomicReference,
AtomicReferenceArray, AtomicReferenceFieldUpdater,
AtomicStampedReference, BitSet, Calendar, CopyOnWriteArrayList,
Field, FutureTask, LinkedList, List, ListIterator, ThreadLocal, URL,
Vector

	set2DigitYearStart():
	SimpleDateFormat

	setAccessible():
	AccessibleObject

	setAddress():
	DatagramPacket

	setAllowUserInteraction():
	URLConnection

	setAmPmStrings():
	DateFormatSymbols

	setAnyPolicyInhibited():
	PKIXParameters

	setAttribute():
	AttributesImpl, DocumentBuilderFactory, Element, TransformerFactory

	setAttributeList():
	AttributeListImpl

	setAttributeNode():
	Element

	setAttributeNodeNS():
	Element

	setAttributeNS():
	Element

	setAttributes():
	Attributes2Impl, AttributesImpl

	setAuthorityKeyIdentifier():
	X509CertSelector

	setBasicConstraints():
	X509CertSelector

	setBeginIndex():
	FieldPosition

	setBit():
	BigInteger

	setBoolean():
	Array, Field

	setBroadcast():
	DatagramSocket

	setByte():
	Array, Field

	setByteStream():
	InputSource

	setCalendar():
	DateFormat

	setCallbackHandler():
	AuthProvider

	setCertificate():
	X509CertSelector

	setCertificateChecking():
	X509CRLSelector

	setCertificateEntry():
	KeyStore

	setCertificateValid():
	X509CertSelector

	setCertPathCheckers():
	PKIXParameters

	setCertStores():
	PKIXParameters

	setChanged():
	Observable

	setChar():
	Array, Field

	setCharacterStream():
	InputSource

	setCharAt():
	StringBuffer

	setChoices():
	ChoiceFormat

	setChunkedStreamingMode():
	HttpURLConnection

	setClassAssertionStatus():
	ClassLoader

	setCoalescing():
	DocumentBuilderFactory

	setCollectionUsageThreshold():
	MemoryPoolMXBean

	setColumnNumber():
	LocatorImpl

	setComment():
	ZipEntry, ZipOutputStream

	setCompressedSize():
	ZipEntry

	setConfiguration():
	Configuration

	setConnectTimeout():
	URLConnection

	setContentHandler():
	ParserAdapter, ValidatorHandler, XMLFilterImpl, XMLReader

	setContentHandlerFactory():
	URLConnection

	setContextClassLoader():
	Thread

	setContinueExistingPeriodicTasksAfterShutdownPolicy():
	ScheduledThreadPoolExecutor

	setCorePoolSize():
	ThreadPoolExecutor

	setCrc():
	ZipEntry

	setCurrency():
	DecimalFormat, DecimalFormatSymbols, NumberFormat

	setCurrencySymbol():
	DecimalFormatSymbols

	setDaemon():
	Thread, ThreadGroup

	setData():
	CharacterData, DatagramPacket, ProcessingInstruction

	setDatagramSocketImplFactory():
	DatagramSocket

	setDate():
	Date, PKIXParameters

	setDateAndTime():
	X509CRLSelector

	setDateFormatSymbols():
	SimpleDateFormat

	setDay():
	XMLGregorianCalendar

	setDecimalFormatSymbols():
	DecimalFormat

	setDecimalSeparator():
	DecimalFormatSymbols

	setDecimalSeparatorAlwaysShown():
	DecimalFormat

	setDeclared():
	Attributes2Impl

	setDecomposition():
	Collator

	setDefault():
	Authenticator, CookieHandler, Locale, ProxySelector, ResponseCache,
TimeZone

	setDefaultAllowUserInteraction():
	URLConnection

	setDefaultAssertionStatus():
	ClassLoader

	setDefaultHostnameVerifier():
	HttpsURLConnection

	setDefaultRequestProperty():
	URLConnection

	setDefaultSSLSocketFactory():
	HttpsURLConnection

	setDefaultUncaughtExceptionHandler():
	Thread

	setDefaultUseCaches():
	URLConnection

	setDictionary():
	Deflater, Inflater

	setDigit():
	DecimalFormatSymbols

	setDocumentHandler():
	Parser, XMLReaderAdapter

	setDocumentLocator():
	ContentHandler, DefaultHandler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReaderAdapter

	setDocumentURI():
	Document

	setDoInput():
	URLConnection

	setDoOutput():
	URLConnection

	setDouble():
	Array, Field

	setDSTSavings():
	SimpleTimeZone

	setDTDHandler():
	Parser, ParserAdapter, XMLFilterImpl, XMLReader, XMLReaderAdapter

	setElementAt():
	Vector

	setEnabledCipherSuites():
	SSLEngine, SSLServerSocket, SSLSocket

	setEnabledProtocols():
	SSLEngine, SSLServerSocket, SSLSocket

	setEnableSessionCreation():
	SSLEngine, SSLServerSocket, SSLSocket

	setEncoding():
	Handler, InputSource, Locator2Impl, StreamHandler

	setEndIndex():
	FieldPosition

	setEndRule():
	SimpleTimeZone

	setEntityResolver():
	DocumentBuilder, Parser, ParserAdapter, XMLFilterImpl, XMLReader,
XMLReaderAdapter

	setEntry():
	KeyStore

	setEras():
	DateFormatSymbols

	setErr():
	System

	setError():
	PrintStream, PrintWriter

	setErrorHandler():
	DocumentBuilder, Parser, ParserAdapter, SchemaFactory, Validator,
ValidatorHandler, XMLFilterImpl, XMLReader, XMLReaderAdapter

	setErrorIndex():
	ParsePosition

	setErrorListener():
	Transformer, TransformerFactory

	setErrorManager():
	Handler

	setException():
	FutureTask

	setExecuteExistingDelayedTasksAfterShutdownPolicy():
	ScheduledThreadPoolExecutor

	setExpandEntityReferences():
	DocumentBuilderFactory

	setExplicitPolicyRequired():
	PKIXParameters

	setExtendedKeyUsage():
	X509CertSelector

	setExtra():
	ZipEntry

	setFeature():
	DocumentBuilderFactory, ParserAdapter, SAXParserFactory,
SchemaFactory, TransformerFactory, Validator, ValidatorHandler,
XMLFilterImpl, XMLReader, XPathFactory

	setFileNameMap():
	URLConnection

	setFilter():
	Handler, Logger

	setFirstDayOfWeek():
	Calendar

	setFixedLengthStreamingMode():
	HttpURLConnection

	setFloat():
	Array, Field

	setFollowRedirects():
	HttpURLConnection

	setFormat():
	MessageFormat

	setFormatByArgumentIndex():
	MessageFormat

	setFormats():
	MessageFormat

	setFormatsByArgumentIndex():
	MessageFormat

	setFormatter():
	Handler

	setFractionalSecond():
	XMLGregorianCalendar

	setGregorianChange():
	GregorianCalendar

	setGroupingSeparator():
	DecimalFormatSymbols

	setGroupingSize():
	DecimalFormat

	setGroupingUsed():
	NumberFormat

	setHandler():
	SAXResult

	setHostnameVerifier():
	HttpsURLConnection

	setHour():
	XMLGregorianCalendar

	setHours():
	Date

	setID():
	TimeZone

	setIdAttribute():
	Element

	setIdAttributeNode():
	Element

	setIdAttributeNS():
	Element

	setIfModifiedSince():
	URLConnection

	setIgnoringComments():
	DocumentBuilderFactory

	setIgnoringElementContentWhitespace():
	DocumentBuilderFactory

	setIn():
	System

	setIndex():
	CharacterIterator, ParsePosition, StringCharacterIterator

	setInfinity():
	DecimalFormatSymbols

	setInfo():
	Identity

	setInitialPolicies():
	PKIXParameters

	setInput():
	Deflater, Inflater

	setInputSource():
	SAXSource

	setInputStream():
	StreamSource

	setInstanceFollowRedirects():
	HttpURLConnection

	setInt():
	Array, Field

	setInterface():
	MulticastSocket

	setInternationalCurrencySymbol():
	DecimalFormatSymbols

	setIssuer():
	X509CertSelector

	setIssuerNames():
	X509CRLSelector

	setIssuers():
	X509CRLSelector

	setKeepAlive():
	Socket

	setKeepAliveTime():
	ThreadPoolExecutor

	setKeyEntry():
	KeyStore

	setKeyPair():
	Signer

	setKeyUsage():
	X509CertSelector

	setLastModified():
	File

	setLength():
	DatagramPacket, RandomAccessFile, StringBuffer

	setLenient():
	Calendar, DateFormat

	setLevel():
	Deflater, Handler, Logger, LogRecord, ZipOutputStream

	setLexicalHandler():
	SAXResult

	setLineNumber():
	LineNumberInputStream, LineNumberReader, LocatorImpl

	setLocale():
	LanguageCallback, MessageFormat, Parser, XMLReaderAdapter

	setLocalName():
	AttributesImpl

	setLocalPatternChars():
	DateFormatSymbols

	setLocator():
	TransformerException

	setLoggerLevel():
	LoggingMXBean

	setLoggerName():
	LogRecord

	setLong():
	Array, Field

	setLoopbackMode():
	MulticastSocket

	setMatchAllSubjectAltNames():
	X509CertSelector

	setMaxCRLNumber():
	X509CRLSelector

	setMaximumFractionDigits():
	DecimalFormat, NumberFormat

	setMaximumIntegerDigits():
	DecimalFormat, NumberFormat

	setMaximumPoolSize():
	ThreadPoolExecutor

	setMaxPathLength():
	PKIXBuilderParameters

	setMaxPriority():
	ThreadGroup

	setMessage():
	LogRecord

	setMessageDigest():
	DigestInputStream, DigestOutputStream

	setMethod():
	ZipEntry, ZipOutputStream

	setMillis():
	LogRecord

	setMillisecond():
	XMLGregorianCalendar

	setMinCRLNumber():
	X509CRLSelector

	setMinimalDaysInFirstWeek():
	Calendar

	setMinimumFractionDigits():
	DecimalFormat, NumberFormat

	setMinimumIntegerDigits():
	DecimalFormat, NumberFormat

	setMinusSign():
	DecimalFormatSymbols

	setMinute():
	XMLGregorianCalendar

	setMinutes():
	Date

	setMonetaryDecimalSeparator():
	DecimalFormatSymbols

	setMonth():
	Date, XMLGregorianCalendar

	setMonths():
	DateFormatSymbols

	setMultiplier():
	DecimalFormat

	setName():
	NameCallback, Thread

	setNameConstraints():
	X509CertSelector

	setNamedItem():
	NamedNodeMap

	setNamedItemNS():
	NamedNodeMap

	setNamespaceAware():
	DocumentBuilderFactory, SAXParserFactory

	setNamespaceContext():
	XPath

	setNamespaceDeclUris():
	NamespaceSupport

	setNaN():
	DecimalFormatSymbols

	setNeedClientAuth():
	SSLEngine, SSLServerSocket, SSLSocket

	setNegativePrefix():
	DecimalFormat

	setNegativeSuffix():
	DecimalFormat

	setNetworkInterface():
	MulticastSocket

	setNextSibling():
	DOMResult

	setNode():
	DOMResult, DOMSource

	setNodeValue():
	Node

	setNumberFormat():
	DateFormat

	setOffset():
	CollationElementIterator, ObjectStreamField

	setOOBInline():
	Socket

	setOption():
	SocketOptions

	setOut():
	System

	setOutputProperties():
	Transformer

	setOutputProperty():
	Transformer

	setOutputStream():
	StreamHandler, StreamResult

	setPackageAssertionStatus():
	ClassLoader

	setParameter():
	DOMConfiguration, Signature, Transformer

	setParameters():
	LogRecord

	setParent():
	Logger, ResourceBundle, XMLFilter, XMLFilterImpl

	setParseBigDecimal():
	DecimalFormat

	setParseIntegerOnly():
	NumberFormat

	setPassword():
	PasswordCallback

	setPathToNames():
	X509CertSelector

	setPatternSeparator():
	DecimalFormatSymbols

	setPercent():
	DecimalFormatSymbols

	setPerformancePreferences():
	ServerSocket, Socket, SocketImpl

	setPerMill():
	DecimalFormatSymbols

	setPolicy():
	Policy, X509CertSelector

	setPolicyMappingInhibited():
	PKIXParameters

	setPolicyQualifiersRejected():
	PKIXParameters

	setPort():
	DatagramPacket

	setPositivePrefix():
	DecimalFormat

	setPositiveSuffix():
	DecimalFormat

	setPrefix():
	Node

	setPriority():
	Thread

	setPrivateKeyValid():
	X509CertSelector

	setProperties():
	System

	setProperty():
	ParserAdapter, Properties, SAXParser, SchemaFactory, Security,
System, Validator, ValidatorHandler, XMLFilterImpl, XMLReader

	setPublicId():
	InputSource, LocatorImpl, StreamSource

	setPublicKey():
	Identity

	setPushLevel():
	MemoryHandler

	setQName():
	AttributesImpl

	setRawOffset():
	SimpleTimeZone, TimeZone

	setReader():
	StreamSource

	setReadOnly():
	File, PermissionCollection, Subject

	setReadTimeout():
	URLConnection

	setReceiveBufferSize():
	DatagramSocket, ServerSocket, Socket

	setRejectedExecutionHandler():
	ThreadPoolExecutor

	setRequestMethod():
	HttpURLConnection

	setRequestProperty():
	URLConnection

	setResourceBundle():
	LogRecord

	setResourceBundleName():
	LogRecord

	setResourceResolver():
	SchemaFactory, Validator, ValidatorHandler

	setResult():
	TransformerHandler

	setReuseAddress():
	DatagramSocket, ServerSocket, Socket

	setRevocationEnabled():
	PKIXParameters

	setScale():
	BigDecimal

	setSchema():
	DocumentBuilderFactory, SAXParserFactory

	setSecond():
	XMLGregorianCalendar

	setSeconds():
	Date

	setSecurityManager():
	System

	setSeed():
	Random, SecureRandom

	setSelectedIndex():
	ChoiceCallback, ConfirmationCallback

	setSelectedIndexes():
	ChoiceCallback

	setSendBufferSize():
	DatagramSocket, Socket

	setSequenceNumber():
	LogRecord

	setSerialNumber():
	X509CertSelector

	setSessionCacheSize():
	SSLSessionContext

	setSessionTimeout():
	SSLSessionContext

	setShort():
	Array, Field

	setShortMonths():
	DateFormatSymbols

	setShortWeekdays():
	DateFormatSymbols

	setSigners():
	ClassLoader

	setSigProvider():
	PKIXParameters

	setSize():
	Vector, ZipEntry

	setSocketAddress():
	DatagramPacket

	setSocketFactory():
	ServerSocket

	setSocketImplFactory():
	Socket

	setSoLinger():
	Socket

	setSoTimeout():
	DatagramSocket, ServerSocket, Socket

	setSourceClassName():
	LogRecord

	setSourceMethodName():
	LogRecord

	setSpecified():
	Attributes2Impl

	setSSLSocketFactory():
	HttpsURLConnection

	setStackTrace():
	Throwable

	setStartRule():
	SimpleTimeZone

	setStartYear():
	SimpleTimeZone

	setState():
	AbstractQueuedSynchronizer

	setStrategy():
	Deflater

	setStrength():
	Collator

	setStrictErrorChecking():
	Document

	setSubject():
	X509CertSelector

	setSubjectAlternativeNames():
	X509CertSelector

	setSubjectKeyIdentifier():
	X509CertSelector

	setSubjectPublicKey():
	X509CertSelector

	setSubjectPublicKeyAlgID():
	X509CertSelector

	setSystemId():
	DOMResult, DOMSource, InputSource, LocatorImpl, Result, SAXResult,
SAXSource, Source, StreamResult, StreamSource, TemplatesHandler,
TransformerHandler

	setSystemScope():
	IdentityScope

	setTargetCertConstraints():
	PKIXParameters

	setTcpNoDelay():
	Socket

	setText():
	BreakIterator, CollationElementIterator, StringCharacterIterator,
TextInputCallback

	setTextContent():
	Node

	setThreadContentionMonitoringEnabled():
	ThreadMXBean

	setThreadCpuTimeEnabled():
	ThreadMXBean

	setThreadFactory():
	ThreadPoolExecutor

	setThreadID():
	LogRecord

	setThrown():
	LogRecord

	setTime():
	Calendar, Date, XMLGregorianCalendar, ZipEntry

	setTimeInMillis():
	Calendar

	setTimeToLive():
	DatagramSocketImpl, MulticastSocket

	setTimeZone():
	Calendar, DateFormat, GregorianCalendar

	setTimezone():
	XMLGregorianCalendar

	setTrafficClass():
	DatagramSocket, Socket

	setTrustAnchors():
	PKIXParameters

	setTTL():
	DatagramSocketImpl, MulticastSocket

	setType():
	AttributesImpl

	setUncaughtExceptionHandler():
	Thread

	setURI():
	AttributesImpl

	setURIResolver():
	Transformer, TransformerFactory

	setURL():
	URLStreamHandler

	setURLStreamHandlerFactory():
	URL

	setUsageThreshold():
	MemoryPoolMXBean

	setUseCaches():
	URLConnection

	setUseClientMode():
	SSLEngine, SSLServerSocket, SSLSocket

	setUseParentHandlers():
	Logger

	setUserData():
	Node

	setValidating():
	DocumentBuilderFactory, SAXParserFactory

	setValue():
	Attr, AttributesImpl, Entry

	setVerbose():
	ClassLoadingMXBean, MemoryMXBean

	setWantClientAuth():
	SSLEngine, SSLServerSocket, SSLSocket

	setWeekdays():
	DateFormatSymbols

	setWriter():
	StreamResult

	setXIncludeAware():
	DocumentBuilderFactory, SAXParserFactory

	setXMLReader():
	SAXSource

	setXmlStandalone():
	Document

	setXmlVersion():
	Document

	setXMLVersion():
	Locator2Impl

	setXPathFunctionResolver():
	XPath, XPathFactory

	setXPathVariableResolver():
	XPath, XPathFactory

	setYear():
	Date, XMLGregorianCalendar

	setZeroDigit():
	DecimalFormatSymbols

	setZoneStrings():
	DateFormatSymbols

	SEVERE:
	Level

	severe():
	Logger

	SEVERITY_ERROR:
	DOMError

	SEVERITY_FATAL_ERROR:
	DOMError

	SEVERITY_WARNING:
	DOMError

	SHA1:
	MGF1ParameterSpec

	SHA256:
	MGF1ParameterSpec

	SHA384:
	MGF1ParameterSpec

	SHA512:
	MGF1ParameterSpec

	SHAVIAN:
	UnicodeBlock

	shiftLeft():
	BigInteger

	shiftRight():
	BigInteger

	Short:
	java.lang

	SHORT:
	DateFormat, TimeZone

	ShortBuffer:
	java.nio

	ShortBufferException:
	javax.crypto

	shortValue():
	Byte, Double, Float, Integer, Long, Number, Short

	shortValueExact():
	BigDecimal

	shuffle():
	Collections

	shutdown():
	ExecutorService, ScheduledThreadPoolExecutor, ThreadPoolExecutor

	shutdownInput():
	Socket, SocketImpl

	shutdownNow():
	ExecutorService, ScheduledThreadPoolExecutor, ThreadPoolExecutor

	shutdownOutput():
	Socket, SocketImpl

	SIGN:
	Field, Signature

	sign():
	Signature

	signal():
	Condition, ConditionObject

	signalAll():
	Condition, ConditionObject

	Signature:
	java.security

	SIGNATURE_VERSION:
	Name

	SignatureException:
	java.security

	SignatureSpi:
	java.security

	SignedObject:
	java.security

	Signer:
	java.security

	signum():
	BigDecimal, BigInteger, Integer, Long, Math, StrictMath

	SimpleDateFormat:
	java.text

	SimpleFormatter:
	java.util.logging

	SimpleTimeZone:
	java.util

	SIMPLIFIED_CHINESE:
	Locale

	sin():
	Math, StrictMath

	singleton():
	Collections

	singletonList():
	Collections

	singletonMap():
	Collections

	sinh():
	Math, StrictMath

	SINHALA:
	UnicodeBlock

	sink():
	Pipe

	SinkChannel:
	java.nio.channels.Pipe

	SIZE:
	Byte, Character, Double, Float, Integer, Long, Short

	size():
	AbstractCollection, AbstractMap, ArrayBlockingQueue, ArrayList,
Attributes, BitSet, ByteArrayOutputStream, CharArrayWriter,
Collection, ConcurrentHashMap, ConcurrentLinkedQueue,
CopyOnWriteArrayList, CopyOnWriteArraySet, DataOutputStream,
DelayQueue, Dictionary, EnumMap, FileChannel, FileLock, HashMap,
HashSet, Hashtable, IdentityHashMap, IdentityScope, KeyStore,
LinkedBlockingQueue, LinkedList, List, Map, PriorityBlockingQueue,
PriorityQueue, Set, SynchronousQueue, TreeMap, TreeSet, Vector,
WeakHashMap, ZipFile

	skip():
	BufferedInputStream, BufferedReader, ByteArrayInputStream,
CharArrayReader, CheckedInputStream, CipherInputStream,
FileInputStream, FilterInputStream, FilterReader,
InflaterInputStream, InputStream, LineNumberInputStream,
LineNumberReader, ObjectInput, PushbackInputStream, PushbackReader,
Reader, Scanner, StringBufferInputStream, StringReader,
ZipInputStream

	skipBytes():
	DataInput, DataInputStream, ObjectInputStream, RandomAccessFile

	skippedEntity():
	ContentHandler, DefaultHandler, XMLFilterImpl, XMLReaderAdapter

	slashSlashComments():
	StreamTokenizer

	slashStarComments():
	StreamTokenizer

	sleep():
	Thread, TimeUnit

	slice():
	ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer

	SMALL_FORM_VARIANTS:
	UnicodeBlock

	SO_BINDADDR:
	SocketOptions

	SO_BROADCAST:
	SocketOptions

	SO_KEEPALIVE:
	SocketOptions

	SO_LINGER:
	SocketOptions

	SO_OOBINLINE:
	SocketOptions

	SO_RCVBUF:
	SocketOptions

	SO_REUSEADDR:
	SocketOptions

	SO_SNDBUF:
	SocketOptions

	SO_TIMEOUT:
	SocketOptions

	Socket:
	java.net

	socket():
	DatagramChannel, ServerSocketChannel, SocketChannel

	SocketAddress:
	java.net

	SocketChannel:
	java.nio.channels

	SocketException:
	java.net

	SocketFactory:
	javax.net

	SocketHandler:
	java.util.logging

	SocketImpl:
	java.net

	SocketImplFactory:
	java.net

	SocketOptions:
	java.net

	SocketPermission:
	java.net

	SocketTimeoutException:
	java.net

	SOCKS:
	Type

	SoftReference:
	java.lang.ref

	sort():
	Arrays, Collections

	SortedMap:
	java.util

	SortedSet:
	java.util

	source:
	EventObject

	Source:
	javax.xml.transform

	SOURCE:
	RetentionPolicy

	source():
	Pipe

	SourceChannel:
	java.nio.channels.Pipe

	SourceLocator:
	javax.xml.transform

	sourceToInputSource():
	SAXSource

	SPACE_SEPARATOR:
	Character

	SPACING_MODIFIER_LETTERS:
	UnicodeBlock

	SPECIALS:
	UnicodeBlock

	SPECIFICATION_TITLE:
	Name

	SPECIFICATION_VENDOR:
	Name

	SPECIFICATION_VERSION:
	Name

	split():
	Pattern, String

	splitText():
	Text

	sqrt():
	Math, StrictMath

	SSLContext:
	javax.net.ssl

	SSLContextSpi:
	javax.net.ssl

	SSLEngine:
	javax.net.ssl

	SSLEngineResult:
	javax.net.ssl

	SSLEngineResult.HandshakeStatus:
	javax.net.ssl

	SSLEngineResult.Status:
	javax.net.ssl

	SSLException:
	javax.net.ssl

	SSLHandshakeException:
	javax.net.ssl

	SSLKeyException:
	javax.net.ssl

	SSLPeerUnverifiedException:
	javax.net.ssl

	SSLPermission:
	javax.net.ssl

	SSLProtocolException:
	javax.net.ssl

	SSLServerSocket:
	javax.net.ssl

	SSLServerSocketFactory:
	javax.net.ssl

	SSLSession:
	javax.net.ssl

	SSLSessionBindingEvent:
	javax.net.ssl

	SSLSessionBindingListener:
	javax.net.ssl

	SSLSessionContext:
	javax.net.ssl

	SSLSocket:
	javax.net.ssl

	SSLSocketFactory:
	javax.net.ssl

	Stack:
	java.util

	StackOverflowError:
	java.lang

	StackTraceElement:
	java.lang

	STANDALONE:
	OutputKeys

	STANDARD_TIME:
	SimpleTimeZone

	start():
	Matcher, MatchResult, ProcessBuilder, Thread

	START_PUNCTUATION:
	Character

	startCDATA():
	DefaultHandler2, LexicalHandler

	startDocument():
	ContentHandler, DefaultHandler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReaderAdapter

	startDTD():
	DefaultHandler2, LexicalHandler

	startElement():
	ContentHandler, DefaultHandler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReaderAdapter

	startEntity():
	DefaultHandler2, LexicalHandler

	startHandshake():
	SSLSocket

	startPrefixMapping():
	ContentHandler, DefaultHandler, XMLFilterImpl, XMLReaderAdapter

	startsWith():
	String

	state:
	Signature

	State:
	java.lang.Thread

	STATIC:
	Modifier

	Status:
	javax.net.ssl.SSLEngineResult

	stop():
	Thread, ThreadGroup

	store():
	KeyStore, Properties

	STORED:
	ZipEntry, ZipOutputStream

	storeToXML():
	Properties

	STREAM_MAGIC:
	ObjectStreamConstants

	STREAM_VERSION:
	ObjectStreamConstants

	StreamCorruptedException:
	java.io

	StreamHandler:
	java.util.logging

	StreamResult:
	javax.xml.transform.stream

	StreamSource:
	javax.xml.transform.stream

	StreamTokenizer:
	java.io

	STRICT:
	Modifier

	StrictMath:
	java.lang

	STRING:
	XPathConstants

	String:
	java.lang

	StringBuffer:
	java.lang

	StringBufferInputStream:
	java.io

	StringBuilder:
	java.lang

	StringCharacterIterator:
	java.text

	StringIndexOutOfBoundsException:
	java.lang

	StringReader:
	java.io

	StringTokenizer:
	java.util

	StringWriter:
	java.io

	STRIP:
	Packer

	stripTrailingZeros():
	BigDecimal

	SUBCLASS_IMPLEMENTATION_PERMISSION:
	ObjectStreamConstants

	Subject:
	javax.security.auth

	SubjectDomainCombiner:
	javax.security.auth

	subList():
	AbstractList, CopyOnWriteArrayList, List, Vector

	subMap():
	SortedMap, TreeMap

	submit():
	AbstractExecutorService, CompletionService,
ExecutorCompletionService, ExecutorService,
ScheduledThreadPoolExecutor

	subSequence():
	CharBuffer, CharSequence, String, StringBuffer

	Subset:
	java.lang.Character

	subSet():
	SortedSet, TreeSet

	SUBSTITUTION_PERMISSION:
	ObjectStreamConstants

	substring():
	String, StringBuffer

	substringData():
	CharacterData

	subtract():
	BigDecimal, BigInteger, Duration

	SUFFICIENT:
	LoginModuleControlFlag

	SUNDAY:
	Calendar

	SUPERSCRIPTS_AND_SUBSCRIPTS:
	UnicodeBlock

	SUPPLEMENTAL_ARROWS_A:
	UnicodeBlock

	SUPPLEMENTAL_ARROWS_B:
	UnicodeBlock

	SUPPLEMENTAL_MATHEMATICAL_OPERATORS:
	UnicodeBlock

	SUPPLEMENTARY_PRIVATE_USE_AREA_A:
	UnicodeBlock

	SUPPLEMENTARY_PRIVATE_USE_AREA_B:
	UnicodeBlock

	supportsParameter():
	Service

	supportsUrgentData():
	SocketImpl

	SuppressWarnings:
	java.lang

	SURROGATE:
	Character

	SURROGATES_AREA:
	UnicodeBlock

	suspend():
	Thread, ThreadGroup

	sval:
	StreamTokenizer

	swap():
	Collections

	sync():
	AbstractPreferences, FileDescriptor, Preferences

	SyncFailedException:
	java.io

	SYNCHRONIZED:
	Modifier

	synchronizedCollection():
	Collections

	synchronizedList():
	Collections

	synchronizedMap():
	Collections

	synchronizedSet():
	Collections

	synchronizedSortedMap():
	Collections

	synchronizedSortedSet():
	Collections

	SynchronousQueue:
	java.util.concurrent

	syncSpi():
	AbstractPreferences

	SYNTAX_ERR:
	DOMException

	SYRIAC:
	UnicodeBlock

	System:
	java.lang

	systemNodeForPackage():
	Preferences

	systemRoot():
	Preferences, PreferencesFactory

T

	TAGALOG:
	UnicodeBlock

	TAGBANWA:
	UnicodeBlock

	TAGS:
	UnicodeBlock

	TAI_LE:
	UnicodeBlock

	TAI_XUAN_JING_SYMBOLS:
	UnicodeBlock

	tailMap():
	SortedMap, TreeMap

	tailSet():
	SortedSet, TreeSet

	TAIWAN:
	Locale

	take():
	ArrayBlockingQueue, BlockingQueue, CompletionService, DelayQueue,
ExecutorCompletionService, LinkedBlockingQueue,
PriorityBlockingQueue, SynchronousQueue

	TAMIL:
	UnicodeBlock

	tan():
	Math, StrictMath

	tanh():
	Math, StrictMath

	Target:
	java.lang.annotation

	TC_ARRAY:
	ObjectStreamConstants

	TC_BASE:
	ObjectStreamConstants

	TC_BLOCKDATA:
	ObjectStreamConstants

	TC_BLOCKDATALONG:
	ObjectStreamConstants

	TC_CLASS:
	ObjectStreamConstants

	TC_CLASSDESC:
	ObjectStreamConstants

	TC_ENDBLOCKDATA:
	ObjectStreamConstants

	TC_ENUM:
	ObjectStreamConstants

	TC_EXCEPTION:
	ObjectStreamConstants

	TC_LONGSTRING:
	ObjectStreamConstants

	TC_MAX:
	ObjectStreamConstants

	TC_NULL:
	ObjectStreamConstants

	TC_OBJECT:
	ObjectStreamConstants

	TC_PROXYCLASSDESC:
	ObjectStreamConstants

	TC_REFERENCE:
	ObjectStreamConstants

	TC_RESET:
	ObjectStreamConstants

	TC_STRING:
	ObjectStreamConstants

	TCP_NODELAY:
	SocketOptions

	TELUGU:
	UnicodeBlock

	Templates:
	javax.xml.transform

	TemplatesHandler:
	javax.xml.transform.sax

	TEN:
	BigDecimal, BigInteger

	TERMINATED:
	State

	terminated():
	ThreadPoolExecutor

	TERTIARY:
	Collator

	tertiaryOrder():
	CollationElementIterator

	testBit():
	BigInteger

	Text:
	org.w3c.dom

	TEXT_NODE:
	Node

	TextInputCallback:
	javax.security.auth.callback

	TextOutputCallback:
	javax.security.auth.callback

	THAANA:
	UnicodeBlock

	THAI:
	UnicodeBlock

	Thread:
	java.lang

	Thread.State:
	java.lang

	Thread.UncaughtExceptionHandler:
	java.lang

	THREAD_MXBEAN_NAME:
	ManagementFactory

	ThreadDeath:
	java.lang

	ThreadFactory:
	java.util.concurrent

	ThreadGroup:
	java.lang

	ThreadInfo:
	java.lang.management

	ThreadLocal:
	java.lang

	ThreadMXBean:
	java.lang.management

	ThreadPoolExecutor:
	java.util.concurrent

	ThreadPoolExecutor.AbortPolicy:
	java.util.concurrent

	ThreadPoolExecutor.CallerRunsPolicy:
	java.util.concurrent

	ThreadPoolExecutor.DiscardOldestPolicy:
	java.util.concurrent

	ThreadPoolExecutor.DiscardPolicy:
	java.util.concurrent

	Throwable:
	java.lang

	throwException():
	CoderResult

	throwing():
	Logger

	THURSDAY:
	Calendar

	TIBETAN:
	UnicodeBlock

	time:
	Calendar

	TIME:
	DatatypeConstants

	TIME_ZONE:
	Field

	TIMED_WAITING:
	State

	timedJoin():
	TimeUnit

	timedWait():
	TimeUnit

	TimeoutException:
	java.util.concurrent

	Timer:
	java.util

	TimerTask:
	java.util

	Timestamp:
	java.security

	timestamp():
	UUID

	TimeUnit:
	java.util.concurrent

	TimeZone:
	java.util

	TIMEZONE_FIELD:
	DateFormat

	TITLECASE_LETTER:
	Character

	toArray():
	AbstractCollection, ArrayBlockingQueue, ArrayList, Collection,
ConcurrentLinkedQueue, CopyOnWriteArrayList, CopyOnWriteArraySet,
DelayQueue, LinkedBlockingQueue, LinkedList, List,
PriorityBlockingQueue, Set, SynchronousQueue, Vector

	toASCIIString():
	URI

	toBigInteger():
	BigDecimal

	toBigIntegerExact():
	BigDecimal

	toBinaryString():
	Integer, Long

	toByteArray():
	BigInteger, ByteArrayOutputStream, CollationKey

	toCharArray():
	CharArrayWriter, String

	toChars():
	Character

	toCodePoint():
	Character

	toDegrees():
	Math, StrictMath

	toEngineeringString():
	BigDecimal

	toExternalForm():
	URL, URLStreamHandler

	toGenericString():
	Constructor, Field, Method

	toGMTString():
	Date

	toGregorianCalendar():
	XMLGregorianCalendar

	toHexString():
	Double, Float, Integer, Long

	toLocaleString():
	Date

	toLocalizedPattern():
	DecimalFormat, SimpleDateFormat

	toLowerCase():
	Character, String

	toMatchResult():
	Matcher

	toMicros():
	TimeUnit

	toMillis():
	TimeUnit

	toNanos():
	TimeUnit

	toOctalString():
	Integer, Long

	TooManyListenersException:
	java.util

	toPattern():
	ChoiceFormat, DecimalFormat, MessageFormat, SimpleDateFormat

	toPlainString():
	BigDecimal

	toRadians():
	Math, StrictMath

	toSeconds():
	TimeUnit

	toString():
	AbstractCollection, AbstractMap, AbstractPreferences,
AbstractQueuedSynchronizer, AlgorithmParameters, Annotation,
ArrayBlockingQueue, Arrays, AtomicBoolean, AtomicInteger,
AtomicIntegerArray, AtomicLong, AtomicLongArray, AtomicReference,
AtomicReferenceArray, Attribute, Bidi, BigDecimal, BigInteger,
BitSet, Boolean, Byte, ByteArrayOutputStream, ByteBuffer, ByteOrder,
Calendar, Certificate, CertPath, Character, CharArrayWriter,
CharBuffer, CharSequence, Charset, Class, CoderResult, CodeSigner,
CodeSource, CodingErrorAction, CollectionCertStoreParameters,
Constructor, CopyOnWriteArrayList, CountDownLatch, CRL, Currency,
Date, DigestInputStream, DigestOutputStream, Double, DoubleBuffer,
Duration, Enum, EventObject, Field, FieldPosition, File, FileLock,
Float, FloatBuffer, Formatter, Hashtable, Identity, IdentityScope,
InetAddress, InetSocketAddress, IntBuffer, Integer, KerberosKey,
KerberosPrincipal, KerberosTicket, LDAPCertStoreParameters, Level,
LinkedBlockingQueue, Locale, LoginModuleControlFlag, Long,
LongBuffer, MapMode, Matcher, MathContext, MemoryType, MemoryUsage,
MessageDigest, Method, Modifier, Name, NetworkInterface, Object,
ObjectStreamClass, ObjectStreamField, Package, ParsePosition,
Pattern, Permission, PermissionCollection, PKIXBuilderParameters,
PKIXCertPathBuilderResult, PKIXCertPathValidatorResult,
PKIXParameters, PolicyQualifierInfo, Preferences, Principal,
PriorityBlockingQueue, PrivateKeyEntry, PrivilegedActionException,
ProtectionDomain, Provider, Proxy, QName, ReadLock, ReentrantLock,
ReentrantReadWriteLock, SAXException, Scanner, SecretKeyEntry,
Semaphore, ServerSocket, Service, Short, ShortBuffer, Signature,
Signer, SimpleTimeZone, Socket, SocketImpl, SSLEngineResult,
StackTraceElement, StreamTokenizer, String, StringBuffer,
StringBuilder, StringWriter, Subject, Subset, Thread, ThreadGroup,
ThreadInfo, Throwable, Timestamp, TrustAnchor,
TrustedCertificateEntry, UnresolvedPermission, URI, URL,
URLConnection, UUID, Vector, WriteLock, X500Principal,
X509CertSelector, X509CRLEntry, X509CRLSelector,
XMLGregorianCalendar, ZipEntry

	totalMemory():
	Runtime

	toTitleCase():
	Character

	toUpperCase():
	Character, String

	toURI():
	File, URL

	toURL():
	File, URI

	toXMLFormat():
	XMLGregorianCalendar

	traceInstructions():
	Runtime

	traceMethodCalls():
	Runtime

	TRADITIONAL_CHINESE:
	Locale

	transferFrom():
	FileChannel

	transferTo():
	FileChannel

	transform():
	ClassFileTransformer, Transformer

	Transformer:
	javax.xml.transform

	TransformerConfigurationException:
	javax.xml.transform

	TransformerException:
	javax.xml.transform

	TransformerFactory:
	javax.xml.transform

	TransformerFactoryConfigurationError:
	javax.xml.transform

	TransformerHandler:
	javax.xml.transform.sax

	TRANSIENT:
	Modifier

	translateKey():
	KeyFactory, SecretKeyFactory

	TreeMap:
	java.util

	TreeSet:
	java.util

	trim():
	String

	trimToSize():
	ArrayList, StringBuffer, Vector

	TRUE:
	Boolean, Packer, Unpacker

	truncate():
	FileChannel

	TrustAnchor:
	java.security.cert

	TrustedCertificateEntry:
	java.security.KeyStore

	TrustManager:
	javax.net.ssl

	TrustManagerFactory:
	javax.net.ssl

	TrustManagerFactorySpi:
	javax.net.ssl

	tryAcquire():
	AbstractQueuedSynchronizer, Semaphore

	tryAcquireNanos():
	AbstractQueuedSynchronizer

	tryAcquireShared():
	AbstractQueuedSynchronizer

	tryAcquireSharedNanos():
	AbstractQueuedSynchronizer

	tryLock():
	FileChannel, Lock, ReadLock, ReentrantLock, WriteLock

	tryRelease():
	AbstractQueuedSynchronizer

	tryReleaseShared():
	AbstractQueuedSynchronizer

	TT_EOF:
	StreamTokenizer

	TT_EOL:
	StreamTokenizer

	TT_NUMBER:
	StreamTokenizer

	TT_WORD:
	StreamTokenizer

	ttype:
	StreamTokenizer

	TUESDAY:
	Calendar

	TYPE:
	Boolean, Byte, Character, Double, ElementType, Float, Integer, Long,
Short, Void

	Type:
	java.lang.reflect, java.net.Proxy, java.security.KeyRep

	type():
	Proxy

	TYPE_MISMATCH_ERR:
	DOMException

	TypeInfo:
	org.w3c.dom

	TypeInfoProvider:
	javax.xml.validation

	typeName():
	TypeNotPresentException

	TypeNotPresentException:
	java.lang

	TypeVariable:
	java.lang.reflect

U

	UGARITIC:
	UnicodeBlock

	UK:
	Locale

	ulp():
	BigDecimal, Math, StrictMath

	UNASSIGNED:
	Character

	uncaughtException():
	ThreadGroup, UncaughtExceptionHandler

	UncaughtExceptionHandler:
	java.lang.Thread

	unconfigurableExecutorService():
	Executors

	unconfigurableScheduledExecutorService():
	Executors

	UNDECIMBER:
	Calendar

	UndeclaredThrowableException:
	java.lang.reflect

	UNDERFLOW:
	CoderResult

	UNICODE_CASE:
	Pattern

	UnicodeBlock:
	java.lang.Character

	UNIFIED_CANADIAN_ABORIGINAL_SYLLABICS:
	UnicodeBlock

	UNINITIALIZED:
	Signature

	UNIX_LINES:
	Pattern

	UNKNOWN_ATTRIBUTE:
	Packer

	UnknownError:
	java.lang

	UnknownFormatConversionException:
	java.util

	UnknownFormatFlagsException:
	java.util

	UnknownHostException:
	java.net

	UnknownServiceException:
	java.net

	UNLIMITED:
	MathContext

	unlock():
	Lock, ReadLock, ReentrantLock, WriteLock

	unmappableCharacterAction():
	CharsetDecoder, CharsetEncoder

	UnmappableCharacterException:
	java.nio.charset

	unmappableForLength():
	CoderResult

	UnmodifiableClassException:
	java.lang.instrument

	unmodifiableCollection():
	Collections

	unmodifiableList():
	Collections

	unmodifiableMap():
	Collections

	unmodifiableSet():
	Collections

	unmodifiableSortedMap():
	Collections

	unmodifiableSortedSet():
	Collections

	UNNECESSARY:
	RoundingMode

	unpack():
	Unpacker

	Unpacker:
	java.util.jar.Pack200

	unpark():
	LockSupport

	unparsedEntityDecl():
	DefaultHandler, DTDHandler, HandlerBase, XMLFilterImpl

	unread():
	PushbackInputStream, PushbackReader

	UnrecoverableEntryException:
	java.security

	UnrecoverableKeyException:
	java.security

	UnresolvedAddressException:
	java.nio.channels

	UnresolvedPermission:
	java.security

	UnsatisfiedLinkError:
	java.lang

	unscaledValue():
	BigDecimal

	UNSPECIFIED_OPTION:
	ConfirmationCallback

	UnsupportedAddressTypeException:
	java.nio.channels

	UnsupportedCallbackException:
	javax.security.auth.callback

	UnsupportedCharsetException:
	java.nio.charset

	UnsupportedClassVersionError:
	java.lang

	UnsupportedEncodingException:
	java.io

	UnsupportedOperationException:
	java.lang

	unwrap():
	Cipher, SSLEngine

	UNWRAP_MODE:
	Cipher

	UP:
	RoundingMode

	update():
	Adler32, Checksum, Cipher, CRC32, Mac, MessageDigest, Observer,
Signature

	UPPERCASE:
	FormattableFlags

	UPPERCASE_LETTER:
	Character

	URI:
	java.net

	URIResolver:
	javax.xml.transform

	URISyntaxException:
	java.net

	URL:
	java.net

	url:
	URLConnection

	URLClassLoader:
	java.net

	URLConnection:
	java.net

	URLDecoder:
	java.net

	URLEncoder:
	java.net

	URLStreamHandler:
	java.net

	URLStreamHandlerFactory:
	java.net

	US:
	Locale

	useAnchoringBounds():
	Matcher

	useCaches:
	URLConnection

	useDaylightTime():
	SimpleTimeZone, TimeZone

	useDelimiter():
	Scanner

	useLocale():
	Scanner

	usePattern():
	Matcher

	useProtocolVersion():
	ObjectOutputStream

	useRadix():
	Scanner

	UserDataHandler:
	org.w3c.dom

	userNodeForPackage():
	Preferences

	userRoot():
	Preferences, PreferencesFactory

	useTransparentBounds():
	Matcher

	usingProxy():
	HttpURLConnection

	UTC():
	Date

	UTC_TIME:
	SimpleTimeZone

	UTFDataFormatException:
	java.io

	UUID:
	java.util

V

	valid():
	FileDescriptor

	validate():
	CertPathValidator, Validator

	validateObject():
	ObjectInputValidation

	VALIDATION_ERR:
	DOMException

	Validator:
	javax.xml.validation

	ValidatorHandler:
	javax.xml.validation

	validOps():
	DatagramChannel, SelectableChannel, ServerSocketChannel, SinkChannel,
SocketChannel, SourceChannel

	value():
	Retention, SuppressWarnings, Target

	valueBound():
	SSLSessionBindingListener

	valueOf():
	BigDecimal, BigDecimalLayoutForm, BigInteger, Boolean, Byte,
Character, Double, ElementType, Enum, Float, HandshakeStatus,
Integer, Long, MemoryType, QName, RequestorType, RetentionPolicy,
RoundingMode, Short, State, Status, String, TimeUnit, Type

	values():
	AbstractMap, Attributes, BigDecimalLayoutForm, ConcurrentHashMap,
ElementType, EnumMap, HandshakeStatus, HashMap, Hashtable,
IdentityHashMap, Map, MemoryType, Provider, RequestorType,
RetentionPolicy, RoundingMode, State, Status, TimeUnit, TreeMap,
Type, WeakHashMap

	valueUnbound():
	SSLSessionBindingListener

	variant():
	UUID

	VARIATION_SELECTORS:
	UnicodeBlock

	VARIATION_SELECTORS_SUPPLEMENT:
	UnicodeBlock

	Vector:
	java.util

	VERIFY:
	Signature

	verify():
	Certificate, HostnameVerifier, Signature, SignedObject, X509CRL

	VerifyError:
	java.lang

	VERSION:
	OutputKeys

	version():
	UUID

	VirtualMachineError:
	java.lang

	Void:
	java.lang

	VOLATILE:
	Modifier

W

	W3C_XML_SCHEMA_INSTANCE_NS_URI:
	XMLConstants

	W3C_XML_SCHEMA_NS_URI:
	XMLConstants

	W3C_XPATH_DATATYPE_NS_URI:
	XMLConstants

	wait():
	Object

	waitFor():
	Process

	WAITING:
	State

	wakeup():
	Selector

	WALL_TIME:
	SimpleTimeZone

	WARNING:
	ConfirmationCallback, Level, TextOutputCallback

	warning():
	DefaultHandler, ErrorHandler, ErrorListener, HandlerBase, Logger,
XMLFilterImpl

	weakCompareAndSet():
	AtomicBoolean, AtomicInteger, AtomicIntegerArray,
AtomicIntegerFieldUpdater, AtomicLong, AtomicLongArray,
AtomicLongFieldUpdater, AtomicMarkableReference, AtomicReference,
AtomicReferenceArray, AtomicReferenceFieldUpdater,
AtomicStampedReference

	WeakHashMap:
	java.util

	WeakReference:
	java.lang.ref

	WEDNESDAY:
	Calendar

	WEEK_OF_MONTH:
	Calendar, Field

	WEEK_OF_MONTH_FIELD:
	DateFormat

	WEEK_OF_YEAR:
	Calendar, Field

	WEEK_OF_YEAR_FIELD:
	DateFormat

	whitespaceChars():
	StreamTokenizer

	WildcardType:
	java.lang.reflect

	wordChars():
	StreamTokenizer

	wrap():
	ByteBuffer, CharBuffer, Cipher, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer, SSLEngine

	WRAP_MODE:
	Cipher

	WritableByteChannel:
	java.nio.channels

	write():
	BufferedOutputStream, BufferedWriter, ByteArrayOutputStream,
CharArrayWriter, CheckedOutputStream, CipherOutputStream,
DatagramChannel, DataOutput, DataOutputStream, DeflaterOutputStream,
DigestOutputStream, FileChannel, FileOutputStream,
FilterOutputStream, FilterWriter, GatheringByteChannel,
GZIPOutputStream, Manifest, ObjectOutput, ObjectOutputStream,
OutputStream, OutputStreamWriter, PipedOutputStream, PipedWriter,
PrintStream, PrintWriter, PutField, RandomAccessFile, SocketChannel,
StringWriter, WritableByteChannel, Writer, ZipOutputStream

	WRITE_FAILURE:
	ErrorManager

	WriteAbortedException:
	java.io

	writeBoolean():
	DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

	writeByte():
	DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

	writeBytes():
	DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

	writeChar():
	DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

	writeChars():
	DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

	writeClassDescriptor():
	ObjectOutputStream

	writeDouble():
	DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

	writeExternal():
	Externalizable

	writeFields():
	ObjectOutputStream

	writeFloat():
	DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

	writeInt():
	DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

	WriteLock:
	java.util.concurrent.locks.ReentrantReadWriteLock

	writeLock():
	ReadWriteLock, ReentrantReadWriteLock

	writeLong():
	DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

	writeObject():
	ObjectOutput, ObjectOutputStream

	writeObjectOverride():
	ObjectOutputStream

	Writer:
	java.io

	writeReplace():
	Certificate, CertPath

	writeShort():
	DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

	writeStreamHeader():
	ObjectOutputStream

	writeTo():
	ByteArrayOutputStream, CharArrayWriter

	writeUnshared():
	ObjectOutputStream

	writeUTF():
	DataOutput, DataOutputStream, ObjectOutputStream, RandomAccessFile

	written:
	DataOutputStream

	WRONG_DOCUMENT_ERR:
	DOMException

X

	X500Principal:
	javax.security.auth.x500

	X500PrivateCredential:
	javax.security.auth.x500

	X509Certificate:
	java.security.cert

	X509CertSelector:
	java.security.cert

	X509CRL:
	java.security.cert

	X509CRLEntry:
	java.security.cert

	X509CRLSelector:
	java.security.cert

	X509EncodedKeySpec:
	java.security.spec

	X509ExtendedKeyManager:
	javax.net.ssl

	X509Extension:
	java.security.cert

	X509KeyManager:
	javax.net.ssl

	X509TrustManager:
	javax.net.ssl

	XML_DTD_NS_URI:
	XMLConstants

	XML_NS_PREFIX:
	XMLConstants

	XML_NS_URI:
	XMLConstants

	XMLConstants:
	javax.xml

	XMLFilter:
	org.xml.sax

	XMLFilterImpl:
	org.xml.sax.helpers

	XMLFormatter:
	java.util.logging

	XMLGregorianCalendar:
	javax.xml.datatype

	XMLNS:
	NamespaceSupport

	XMLNS_ATTRIBUTE:
	XMLConstants

	XMLNS_ATTRIBUTE_NS_URI:
	XMLConstants

	XMLReader:
	org.xml.sax

	XMLReaderAdapter:
	org.xml.sax.helpers

	XMLReaderFactory:
	org.xml.sax.helpers

	xor():
	BigInteger, BitSet

	XPath:
	javax.xml.xpath

	XPathConstants:
	javax.xml.xpath

	XPathException:
	javax.xml.xpath

	XPathExpression:
	javax.xml.xpath

	XPathExpressionException:
	javax.xml.xpath

	XPathFactory:
	javax.xml.xpath

	XPathFactoryConfigurationException:
	javax.xml.xpath

	XPathFunction:
	javax.xml.xpath

	XPathFunctionException:
	javax.xml.xpath

	XPathFunctionResolver:
	javax.xml.xpath

	XPathVariableResolver:
	javax.xml.xpath

Y

	YEAR:
	Calendar, Field

	YEAR_FIELD:
	DateFormat

	YEARS:
	DatatypeConstants

	YES:
	ConfirmationCallback

	YES_NO_CANCEL_OPTION:
	ConfirmationCallback

	YES_NO_OPTION:
	ConfirmationCallback

	YI_RADICALS:
	UnicodeBlock

	YI_SYLLABLES:
	UnicodeBlock

	yield():
	Thread

	YIJING_HEXAGRAM_SYMBOLS:
	UnicodeBlock

Z

	ZERO:
	BigDecimal, BigInteger

	ZipEntry:
	java.util.zip

	ZipException:
	java.util.zip

	ZipFile:
	java.util.zip

	ZipInputStream:
	java.util.zip

	ZipOutputStream:
	java.util.zip

	ZONE_OFFSET:
	Calendar

About the Author
David Flanagan is a computer programmer who spends most of his time writing about JavaScript and Java. His books with O'Reilly include Java in a Nutshell, Java Examples in a Nutshell, Java Foundation Classes in a Nutshell, JavaScript: The Definitive Guide, and JavaScript Pocket Reference. David has a degree in computer science and engineering from the Massachusetts Institute of Technology. He lives with his wife and children in the U.S. Pacific Northwest bewteen the cities of Seattle, Washington and Vancouver, British Columbia. David has a blog at www.davidflanagan.com.

Colophon
Our look is the result of reader comments, our own
experimentation, and feedback from distribution channels. Distinctive
covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.
The animal on the cover of Java in a Nutshell, Fifth Edition is
a Javan tiger, a subspecies unique to the island of Java. Although
this tiger once offered unrivaled research opportunities due to its
genetic isolation, these opportunities have been permanently lost due
to human encroachment on the Javan tiger’s habitat: in a worst-case
scenario for the tiger, Java developed into the most densely populated
island on earth, and awareness of the subspecies’ precarious position
came too late to secure the animals’ survival even in captivity. The
last known sighting of the tiger was in 1972, and it is now presumed
extinct.
Jamie Peppard was the production editor and proofreader for Java
in a Nutshell, Fifth Edition. Sarah Sherman, Darren Kelly, and Claire
Cloutier provided quality control. Ellen Troutman Zaig wrote the
index.
Edie Freedman designed the cover of this book. The cover image
is a 19th-century engraving from the Dover Pictorial Archive. Emma
Colby produced the cover layout with Adobe InDesign CS using Adobe’s
ITC Garamond font.
David Futato designed the interior layout. This book was
converted by Andrew Savikas, Joe Wizda, and Ryan Grimm to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason
McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is
Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed. The illustrations that appear in the book were produced by
Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe
PhotoShop 6. Jamie Peppard wrote this colophon.
The online edition of this book was created by the Safari
production group (John Chodacki, Becki Maisch, and Madeleine Newell)
using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff
Liggett.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

Java in a Nutshell, 5th Edition

David Flanagan

Editor
Mike Loukides

Editor
Deb Cameron

Copyright © 2009 O’Reilly Media, Inc.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-03-30T18:52:08-07:00

OEBPS/httpatomoreillycomsourceoreillyimages21339.png
- { st H{oizpion{inebceior { egphgmentoepion H Teaoatooeon Hgamatbamernooeson]

OEBPS/httpatomoreillycomsourceoreillyimages21125.png
[GsectHTimesin]

OEBPS/httpatomoreillycomsourceoreillyimages21363.png
[g e e

oeBunde]

OEBPS/httpatomoreillycomsourceoreillyimages20869.png

OEBPS/httpatomoreillycomsourceoreillyimages20785.png

OEBPS/httpatomoreillycomsourceoreillyimages20613.png
(Ot H{Tbseonren)

OEBPS/httpatomoreillycomsourceoreillyimages20567.png

OEBPS/httpatomoreillycomsourceoreillyimages21561.png
[GbfstHfirsSteen H{Fteapatteam Hsteinpsiesm Hezoputiean]

OEBPS/httpatomoreillycomsourceoreillyimages20955.png
[GbietH{ Trwnable H{beepionHRurtingeropton Hupporteddpesionbrepton H Resdbnyaateroeston]

OEBPS/httpatomoreillycomsourceoreillyimages20811.png
[GbketH{ Tronable HbeepionHurtinegseepion Hpnotatonpensntcrtiaeston]

OEBPS/httpatomoreillycomsourceoreillyimages21763.png
[OseetH{Sveammesat] (Resr)

OEBPS/httpatomoreillycomsourceoreillyimages20891.png

OEBPS/httpatomoreillycomsourceoreillyimages21547.png
[GbketH Trwonable H{bepionH furtingerpton HegahgumentErcepion HPatersyarboepion]

OEBPS/httpatomoreillycomsourceoreillyimages21229.png
(@bt Tronable HeepionH GereraesurboestionHmamaParaneiesoecessepion]

OEBPS/httpatomoreillycomsourceoreillyimages21029.png

OEBPS/httpatomoreillycomsourceoreillyimages21319.png
[e

OEBPS/httpatomoreillycomsourceoreillyimages21503.png
[GbkstHfvmsSteenH{Ftetopatteam Hsteinosiesm H zpnpusuean Jonowtiesn]

OEBPS/httpatomoreillycomsourceoreillyimages20653.png
Sncharederepton]

OEBPS/httpatomoreillycomsourceoreillyimages21521.png

OEBPS/httpatomoreillycomsourceoreillyimages21007.png
(Ot ——————{smctanpibebume}

{Ssacabighanme]

(Gt} (came) (Save] {chowel} (__eruathitiomsl) (Gisesi)

o

OEBPS/httpatomoreillycomsourceoreillyimages21539.png

OEBPS/httpatomoreillycomsourceoreillyimages21683.png
(i Hetosstatb]

OEBPS/httpatomoreillycomsourceoreillyimages20981.png
FrelocemirEazston

OEBPS/httpatomoreillycomsourceoreillyimages21231.png
(Ot H{GrParnetesyes] (Rgormmponneresoes)

OEBPS/httpatomoreillycomsourceoreillyimages21713.png
(Gt Towabie H{pcepion H{Geneasectysegton - {gabcegion Hcoontceston | Becootiooedtoeston]

OEBPS/httpatomoreillycomsourceoreillyimages21117.png

OEBPS/httpatomoreillycomsourceoreillyimages20983.png

OEBPS/httpatomoreillycomsourceoreillyimages20731.png

OEBPS/httpatomoreillycomsourceoreillyimages21081.png
(G5t Heortenertosn]Hierareero]

OEBPS/httpatomoreillycomsourceoreillyimages21347.png
- {Tcnae H{Bipton Furinefczpion {Regsbrpmentostion egiFomatsoesin Heplomiidbbuegion]

OEBPS/httpatomoreillycomsourceoreillyimages20723.png
[GbketH{ Tonable HeepionH furtmesiopton Hincex0uiTBovnibrcepive]

OEBPS/httpatomoreillycomsourceoreillyimages21099.png

OEBPS/httpatomoreillycomsourceoreillyimages21377.png

OEBPS/httpatomoreillycomsourceoreillyimages21491.png

OEBPS/httpatomoreillycomsourceoreillyimages21415.png

OEBPS/httpatomoreillycomsourceoreillyimages20585.png

OEBPS/httpatomoreillycomsourceoreillyimages20907.png
[GbietH{ Tronable HeepionH Gscton HSactetbceston HPoriesenobebcepion]

OEBPS/httpatomoreillycomsourceoreillyimages21275.png

OEBPS/httpatomoreillycomsourceoreillyimages20813.png

OEBPS/httpatomoreillycomsourceoreillyimages21169.png

OEBPS/httpatomoreillycomsourceoreillyimages21811.png
[Siliousportedtcepion

OEBPS/httpatomoreillycomsourceoreillyimages21175.png
[]

OEBPS/httpatomoreillycomsourceoreillyimages20697.png

OEBPS/httpatomoreillycomsourceoreillyimages21419.png

OEBPS/httpatomoreillycomsourceoreillyimages21597.png
(@bt Tronable HepionH GereraecurbcestionH{Shotbitecepion]

OEBPS/httpatomoreillycomsourceoreillyimages21021.png
([t Hvbsiactitempibiechamel-HSsesamiechonme Hesarseamectone]
e

Thsase

OEBPS/httpatomoreillycomsourceoreillyimages21615.png
[e

OEBPS/httpatomoreillycomsourceoreillyimages21167.png

OEBPS/httpatomoreillycomsourceoreillyimages21407.png

OEBPS/httpatomoreillycomsourceoreillyimages20669.png
[Gbiet{ Trowabie HEsetion HFumtimeboeption HingestadiBasdsceson HAraynses0uioBovdsiscston]

OEBPS/httpatomoreillycomsourceoreillyimages21315.png
[Obft Hesactotestion }———————{stacsal} {eonset |

(e} Cotecton) (rarabe)- {Cotecton) {__ser) (Caneave) (seraizaic)

OEBPS/httpatomoreillycomsourceoreillyimages21025.png

OEBPS/httpatomoreillycomsourceoreillyimages21515.png

OEBPS/httpatomoreillycomsourceoreillyimages20809.png
{Frorabl Hera Himsatrormotro]

OEBPS/httpatomoreillycomsourceoreillyimages21795.png

OEBPS/httpatomoreillycomsourceoreillyimages20765.png

OEBPS/httpatomoreillycomsourceoreillyimages21151.png
(Cesiparnees)

OEBPS/httpatomoreillycomsourceoreillyimages21141.png
[GbketH{ Tronable HbeepionHGenerascurtybreston H CercteboestonH Coeeioneteiaeeston]

OEBPS/httpatomoreillycomsourceoreillyimages21669.png

OEBPS/httpatomoreillycomsourceoreillyimages21537.png

OEBPS/httpatomoreillycomsourceoreillyimages21583.png
(@bt Tronable HeepionH GereraesurboestionH Benptanechansnéscesior]

OEBPS/httpatomoreillycomsourceoreillyimages21827.png

OEBPS/httpatomoreillycomsourceoreillyimages21693.png
[vect Hestnoutcarbac]
Seqmiaate

OEBPS/httpatomoreillycomsourceoreillyimages21387.png
(Ot H{Seomer] (eatr)

OEBPS/httpatomoreillycomsourceoreillyimages21083.png

OEBPS/httpatomoreillycomsourceoreillyimages20587.png
[OEectH Tonable H{Eception i 0bceptioe-{ObiedSteamcetonH sidbasrceion]

OEBPS/httpatomoreillycomsourceoreillyimages21607.png
[)

OEBPS/httpatomoreillycomsourceoreillyimages20883.png
(Ot Hetgmnsocizingl] (Socetapions)

OEBPS/httpatomoreillycomsourceoreillyimages20673.png
{Puonsle Hera Hserivtro]

OEBPS/httpatomoreillycomsourceoreillyimages20655.png
[GbketH{ Tronable HbeepionH0beption Hursvsporedncomngbreston]

OEBPS/httpatomoreillycomsourceoreillyimages20973.png
(@bt Tronable HepionH Aurtineeiopton H gaSttebrcestion H Casedseectorbreaton]

OEBPS/httpatomoreillycomsourceoreillyimages20897.png
[oejstHURLConmectionH{rRLonvection]

OEBPS/httpatomoreillycomsourceoreillyimages21401.png
(Ot HfTmeras] (fonorie)

OEBPS/httpatomoreillycomsourceoreillyimages21417.png
(ot) () Conenl) (L) (rndoniores) (sl

(lewbe) (o)

OEBPS/httpatomoreillycomsourceoreillyimages21727.png

OEBPS/httpatomoreillycomsourceoreillyimages21761.png
(farsomeriander)
edcaHardr

OEBPS/httpatomoreillycomsourceoreillyimages21037.png
(06t} onable | BrceptionH{Obcestior [Charctorbodivgtcegtion H Unmaposbiehiracibception]

OEBPS/httpatomoreillycomsourceoreillyimages20967.png

OEBPS/httpatomoreillycomsourceoreillyimages21131.png
[Dsavecernisson]
Seralate

OEBPS/httpatomoreillycomsourceoreillyimages21603.png

OEBPS/httpatomoreillycomsourceoreillyimages21353.png

OEBPS/httpatomoreillycomsourceoreillyimages20583.png

OEBPS/httpatomoreillycomsourceoreillyimages21119.png
[GbketH{ Tronable HeepionHGeneraeourvboestonH[Sgnatreboepion]

OEBPS/httpatomoreillycomsourceoreillyimages20895.png

OEBPS/httpatomoreillycomsourceoreillyimages21421.png
(st Hibsmteiognce]

OEBPS/httpatomoreillycomsourceoreillyimages20755.png

OEBPS/httpatomoreillycomsourceoreillyimages21015.png
[GbketH{ Tronabte HbepionHRurtinggseepion Hegohvgumentscepton H rsuppirtechdaesspebeeton]

OEBPS/httpatomoreillycomsourceoreillyimages21589.png
[GbietH Tronable HeepionH Gererecurboestion H asuePasangocepion]

OEBPS/httpatomoreillycomsourceoreillyimages20677.png

OEBPS/httpatomoreillycomsourceoreillyimages20949.png
(@bt Trwonable H{beepionH Rurtingeropton HgSttebcestion H lsaiboeston]

OEBPS/httpatomoreillycomsourceoreillyimages21395.png

OEBPS/httpatomoreillycomsourceoreillyimages20609.png
[Gsect TS eantiss]

OEBPS/httpatomoreillycomsourceoreillyimages20959.png
[GbketH{ Trwonable H{beepionH Rurtingeipton HgaSttebcestion Aresd connetecboepion]

OEBPS/httpatomoreillycomsourceoreillyimages21367.png
- {Touse H{Boston e wegtion - WegunentEcegtion - ReglFmatcston-{sngmatepmerntn]

OEBPS/httpatomoreillycomsourceoreillyimages21289.png

OEBPS/httpatomoreillycomsourceoreillyimages21451.png
et H{Fowretes]

OEBPS/httpatomoreillycomsourceoreillyimages21429.png
[OEectH{ onable H{Bcepton{FustimeEspton{ g Sttsrsption {Coneltorccsption]

OEBPS/httpatomoreillycomsourceoreillyimages20771.png

OEBPS/httpatomoreillycomsourceoreillyimages20995.png
[Gbiet{ Tronable H{Bcepion HRurtingesoeption H egttebcestion H onfabiChanneEepton]

OEBPS/httpatomoreillycomsourceoreillyimages21787.png

OEBPS/httpatomoreillycomsourceoreillyimages21105.png

OEBPS/httpatomoreillycomsourceoreillyimages21053.png
[Conealseoutybepton Hogestbeeston]

OEBPS/httpatomoreillycomsourceoreillyimages21215.png

OEBPS/httpatomoreillycomsourceoreillyimages21013.png
[GBketH Trwnable HbeepionH Rurtingeicton HegshgumentErcepion Hinrsoveaharesbroeston]

OEBPS/httpatomoreillycomsourceoreillyimages21187.png

OEBPS/httpatomoreillycomsourceoreillyimages20623.png
[COviect HowtgusteanHPpedtutoiSieon]

OEBPS/httpatomoreillycomsourceoreillyimages21233.png
[PRCSErcncedteron]

OEBPS/httpatomoreillycomsourceoreillyimages20997.png
[GbketH{ Tronable H{bepionRurtineesception H gittebcestionH ToietBamdbiepton]

OEBPS/httpatomoreillycomsourceoreillyimages21287.png
(O Hosiocves](es)

OEBPS/httpatomoreillycomsourceoreillyimages21343.png
- {Troe Heostion {mstneooestonTgaivpmentoceston Hiegformabpion {lepomatregemstin)

OEBPS/httpatomoreillycomsourceoreillyimages21579.png

OEBPS/httpatomoreillycomsourceoreillyimages20905.png
(@bt Tronable HeepionH Gsston HSotetbcestor HioRoneioroscepion]

OEBPS/httpatomoreillycomsourceoreillyimages20695.png

OEBPS/httpatomoreillycomsourceoreillyimages21193.png

OEBPS/httpatomoreillycomsourceoreillyimages21759.png

OEBPS/httpatomoreillycomsourceoreillyimages21599.png

OEBPS/httpatomoreillycomsourceoreillyimages21301.png

OEBPS/httpatomoreillycomsourceoreillyimages20999.png
[GbietH{ Trwonable HeepionH Aurtineeioption H egaSttebcestion HoriComecidbregin]

OEBPS/httpatomoreillycomsourceoreillyimages20985.png
[GbietH{ Tronable H{beepionH Aurtingeiopton H gaSttebcestion H egaBicingodeescepion]

OEBPS/httpatomoreillycomsourceoreillyimages21629.png

OEBPS/httpatomoreillycomsourceoreillyimages20751.png

OEBPS/httpatomoreillycomsourceoreillyimages21785.png

OEBPS/httpatomoreillycomsourceoreillyimages20691.png
[Chreioupporedbretin]

OEBPS/httpatomoreillycomsourceoreillyimages21121.png
(Ot H{Sipedtien]

OEBPS/httpatomoreillycomsourceoreillyimages21191.png

OEBPS/httpatomoreillycomsourceoreillyimages21839.png
(Comtionda) (DHander) (o) (Eroiondir) (iRener} it)

OEBPS/httpatomoreillycomsourceoreillyimages21217.png
(Ot H{EGenParaneteses] (RgorthmPoroneresoes)

OEBPS/httpatomoreillycomsourceoreillyimages21733.png
(G5t HGregorancaeniar

OEBPS/httpatomoreillycomsourceoreillyimages20991.png
[GbketH{ Tronable H{bepionH Rurtinggscston H{gaSttebcestionHTotomestonPensngbiegin]

OEBPS/httpatomoreillycomsourceoreillyimages20725.png

OEBPS/httpatomoreillycomsourceoreillyimages20597.png
(05t} honable H{BceptonHi0bceptoeHObeaSteamcetionH{Hoticnebcstion]

OEBPS/httpatomoreillycomsourceoreillyimages21749.png
[OsectH{powResr] (esur)

OEBPS/httpatomoreillycomsourceoreillyimages20733.png
{Puonsle HEra{itablochodro o]

OEBPS/httpatomoreillycomsourceoreillyimages21689.png
[0t H{Nametateart]

OEBPS/httpatomoreillycomsourceoreillyimages21239.png

OEBPS/httpatomoreillycomsourceoreillyimages20851.png
[GbietH{ Tronable HEnor HTniagetror H{GssFomternorHGeneresgramrerornetrr]

OEBPS/httpatomoreillycomsourceoreillyimages21265.png
{ Fomat_HiumsefomaHBesnsroma]

OEBPS/httpatomoreillycomsourceoreillyimages20769.png

OEBPS/httpatomoreillycomsourceoreillyimages21581.png
[COviect HowtpustearnH{Fertutgustesn HCpherdtputtean]

OEBPS/httpatomoreillycomsourceoreillyimages20761.png

OEBPS/httpatomoreillycomsourceoreillyimages21591.png

OEBPS/httpatomoreillycomsourceoreillyimages21155.png
(Cestaasutea]

OEBPS/httpatomoreillycomsourceoreillyimages21205.png

OEBPS/httpatomoreillycomsourceoreillyimages20539.png

OEBPS/httpatomoreillycomsourceoreillyimages20575.png
[COviect HowtusteanHFettuiSieon]

OEBPS/httpatomoreillycomsourceoreillyimages21641.png

OEBPS/httpatomoreillycomsourceoreillyimages21103.png

OEBPS/httpatomoreillycomsourceoreillyimages21643.png
(06t honable | {EceptonHiObceptioe /Sl Eoeption H{SSonhavebcepion]

OEBPS/httpatomoreillycomsourceoreillyimages21267.png

OEBPS/httpatomoreillycomsourceoreillyimages21659.png

OEBPS/httpatomoreillycomsourceoreillyimages21445.png
[Eectionbregi]

OEBPS/httpatomoreillycomsourceoreillyimages21563.png
(et HowaveonHFetvipuSiean Hoetotetdusveon HiZPowpssteen]

OEBPS/httpatomoreillycomsourceoreillyimages21619.png
[ccitH{OAEFParsmeteSpee]

OEBPS/httpatomoreillycomsourceoreillyimages21189.png

OEBPS/httpatomoreillycomsourceoreillyimages21545.png
[GsetHpaten]

OEBPS/httpatomoreillycomsourceoreillyimages21331.png
[Gbiestesrantotestion}-strocten———————{ Fasser |

OEBPS/httpatomoreillycomsourceoreillyimages20805.png

OEBPS/httpatomoreillycomsourceoreillyimages21063.png

OEBPS/httpatomoreillycomsourceoreillyimages21373.png
(@bt Thonable H{beepionRurtinegsoepton Hosuchlrmenteston]

OEBPS/httpatomoreillycomsourceoreillyimages20937.png
[GbketH{ Tronable HeepionH fustimesiopton Hetngeriontoepion]

OEBPS/httpatomoreillycomsourceoreillyimages21671.png

OEBPS/httpatomoreillycomsourceoreillyimages20633.png

OEBPS/httpatomoreillycomsourceoreillyimages20885.png
[Feetyfcsston]

OEBPS/httpatomoreillycomsourceoreillyimages20827.png
gy o Formacepn]

OEBPS/httpatomoreillycomsourceoreillyimages21765.png
[GsectHesnsovee]

OEBPS/httpatomoreillycomsourceoreillyimages21837.png
(O Hpsoadase]

OEBPS/httpatomoreillycomsourceoreillyimages21519.png
[GsectH{fenderH{ermonncir]

OEBPS/httpatomoreillycomsourceoreillyimages21807.png

OEBPS/httpatomoreillycomsourceoreillyimages21495.png

OEBPS/httpatomoreillycomsourceoreillyimages21035.png
[GbketH{ Tronable H{beepion Hi0bception H CrracerCodngiscstion HWaomednputceston]

OEBPS/httpatomoreillycomsourceoreillyimages21047.png

OEBPS/httpatomoreillycomsourceoreillyimages21285.png
[esiacColecton]

OEBPS/httpatomoreillycomsourceoreillyimages20925.png

OEBPS/httpatomoreillycomsourceoreillyimages21383.png

OEBPS/httpatomoreillycomsourceoreillyimages20701.png

OEBPS/httpatomoreillycomsourceoreillyimages21303.png
[GbketH{ Tonable HbeepionHurtinggseepton Heoasomertiodicatontseepion]

OEBPS/httpatomoreillycomsourceoreillyimages21109.png

OEBPS/httpatomoreillycomsourceoreillyimages21211.png
[OsectHoSPumiotese]

OEBPS/httpatomoreillycomsourceoreillyimages20617.png
(Ot Houputeon]

OEBPS/httpatomoreillycomsourceoreillyimages21235.png
[OseetHPsSParametrspec] (Rgarinmparanetesoe

OEBPS/httpatomoreillycomsourceoreillyimages21017.png

OEBPS/httpatomoreillycomsourceoreillyimages21705.png

OEBPS/httpatomoreillycomsourceoreillyimages21435.png
(var) (Carcorentiz)

OEBPS/httpatomoreillycomsourceoreillyimages20783.png
[Gba{ Tvowaoie H{Ecestion - Runtinetsction nedtBouodseaepion HStigndestuuonesbceso

OEBPS/httpatomoreillycomsourceoreillyimages20961.png
[GbketH Tronable H{beepionH Gsczton H{Goseahomerception Hsmeonmstiosebrestioe]

OEBPS/httpatomoreillycomsourceoreillyimages21185.png

OEBPS/httpatomoreillycomsourceoreillyimages21209.png
[OsectHoSHPrtenesspec)

OEBPS/httpatomoreillycomsourceoreillyimages21691.png
[Oiect HPasworatbas]

OEBPS/httpatomoreillycomsourceoreillyimages21323.png

OEBPS/httpatomoreillycomsourceoreillyimages21637.png
[0t HURLCommection-{tpURLComnstionitgsURiComesion)

OEBPS/httpatomoreillycomsourceoreillyimages20545.png

OEBPS/httpatomoreillycomsourceoreillyimages20635.png
Fustbacifeads]

OEBPS/httpatomoreillycomsourceoreillyimages20839.png

OEBPS/httpatomoreillycomsourceoreillyimages21005.png
SoaterngreChone]

OEBPS/httpatomoreillycomsourceoreillyimages21715.png
[ietH Toowabe {Eesion GeneraSsroesion HLoieoepion HstbizpionHesomtotrncorepton]

OEBPS/httpatomoreillycomsourceoreillyimages20843.png
[OsectHcoessore] (otsedsener)

OEBPS/httpatomoreillycomsourceoreillyimages21091.png
[GbietH Tronable HeepionH Gereresurboestion HasueProneboepion]

OEBPS/httpatomoreillycomsourceoreillyimages21219.png
[e | e |

OEBPS/httpatomoreillycomsourceoreillyimages21089.png
(@bt Tronable HepionH Gereraeurtboeston Hasuemigorthabiepto]

OEBPS/httpatomoreillycomsourceoreillyimages21487.png
(Bt Homicterncoira)

OEBPS/httpatomoreillycomsourceoreillyimages20531.png
Objct '—

[

OEBPS/httpatomoreillycomsourceoreillyimages20801.png
[Gbfet{ Trwnable H{ror HTniagetror H{GossFornetrorH{unsportedtasrsoreror]

OEBPS/httpatomoreillycomsourceoreillyimages21739.png
[Faretogaioeepton

OEBPS/httpatomoreillycomsourceoreillyimages21731.png
Dot peortpoiocesin]

OEBPS/httpatomoreillycomsourceoreillyimages21661.png

OEBPS/httpatomoreillycomsourceoreillyimages21093.png

OEBPS/httpatomoreillycomsourceoreillyimages20607.png
(ot Hosbusiean

(Gmave) (st) () (zsoto) (Oopasieonturtrs)

OEBPS/httpatomoreillycomsourceoreillyimages21385.png
[g)

OEBPS/httpatomoreillycomsourceoreillyimages20721.png
(rcompabeOessChangeo]

OEBPS/httpatomoreillycomsourceoreillyimages21773.png
[GbketH{ Tronable HbeepionHatbieptonHirateacionCortgratintceston]

OEBPS/httpatomoreillycomsourceoreillyimages20737.png

OEBPS/httpatomoreillycomsourceoreillyimages21625.png
[OsectHCzPamnerzspec] (RgpimPoonereroes)

OEBPS/httpatomoreillycomsourceoreillyimages20919.png

OEBPS/httpatomoreillycomsourceoreillyimages20923.png
[DioomPosEcepion

OEBPS/httpatomoreillycomsourceoreillyimages20657.png
[(oatFamsibepton

OEBPS/httpatomoreillycomsourceoreillyimages21801.png

OEBPS/httpatomoreillycomsourceoreillyimages21281.png

OEBPS/httpatomoreillycomsourceoreillyimages21259.png

OEBPS/httpatomoreillycomsourceoreillyimages20933.png
[

OEBPS/httpatomoreillycomsourceoreillyimages20639.png

OEBPS/httpatomoreillycomsourceoreillyimages21675.png
[rvselecertarermisso]

OEBPS/httpatomoreillycomsourceoreillyimages20865.png

OEBPS/httpatomoreillycomsourceoreillyimages21723.png
[GbketH{ Tonable HeepionH GereraecurboestonHlagebaestion H Faredlognessepion]

OEBPS/httpatomoreillycomsourceoreillyimages21369.png
- { ouae | e st Begabune Exptonlerormecapton Hlssegromaizpion]

OEBPS/httpatomoreillycomsourceoreillyimages20817.png
[GbketH{ Tronable HbeepionHurtinggseston Hincompetehmatabareiepion]

OEBPS/httpatomoreillycomsourceoreillyimages21389.png

OEBPS/httpatomoreillycomsourceoreillyimages21065.png

OEBPS/httpatomoreillycomsourceoreillyimages21665.png
[o0cendeertianage]
JErE

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages21741.png
[GbketH{ Tronable HbeepionH Torsiomerboepionarsomerartgratintsceptor]

OEBPS/httpatomoreillycomsourceoreillyimages21517.png
(Bt Hioggesor]

OEBPS/httpatomoreillycomsourceoreillyimages20861.png
[ocitHPoo])

OEBPS/httpatomoreillycomsourceoreillyimages21841.png

OEBPS/httpatomoreillycomsourceoreillyimages21071.png
[GbketH{ Tronable Hbeepion HRurtinegsopton Hegohgumentscepion Hmaicroometerzston]

OEBPS/httpatomoreillycomsourceoreillyimages21687.png
[t Hiorgagettor]

OEBPS/httpatomoreillycomsourceoreillyimages21069.png
[GbketH{ Tronable HeepionH GereresurboestonReyeepton{mcheybeepion]

OEBPS/httpatomoreillycomsourceoreillyimages21297.png
ot H e]

OEBPS/httpatomoreillycomsourceoreillyimages21457.png
(@bt Tronable Hbeepion HRurtinegrospton Hreetesbenortepton]

OEBPS/httpatomoreillycomsourceoreillyimages21565.png
Fiterputtean Hieeputsvean)]

OEBPS/httpatomoreillycomsourceoreillyimages21569.png

OEBPS/httpatomoreillycomsourceoreillyimages20779.png
o Histoctiiaiii}

OEBPS/httpatomoreillycomsourceoreillyimages20643.png

OEBPS/httpatomoreillycomsourceoreillyimages21179.png
ot H_obonees |

OEBPS/httpatomoreillycomsourceoreillyimages21097.png

OEBPS/httpatomoreillycomsourceoreillyimages21031.png
{Frorabl Hera Hossematncitro)

OEBPS/httpatomoreillycomsourceoreillyimages21529.png

OEBPS/httpatomoreillycomsourceoreillyimages21403.png

OEBPS/httpatomoreillycomsourceoreillyimages21223.png
[BsectHEcroiciesoes)

OEBPS/httpatomoreillycomsourceoreillyimages20563.png
[Flenofondesepton]

OEBPS/httpatomoreillycomsourceoreillyimages21051.png
[e

OEBPS/httpatomoreillycomsourceoreillyimages20977.png
(5}ttt st ooz} [oot |
(o) et) (o) (s) (vunggedoms] (asnepetams)
() o) (e) (i) (nuusyebane) (oihatons) (redasen)

[T I | | |

OEBPS/httpatomoreillycomsourceoreillyimages20533.png

OEBPS/httpatomoreillycomsourceoreillyimages20541.png

OEBPS/httpatomoreillycomsourceoreillyimages21277.png
{ ool bt

OEBPS/httpatomoreillycomsourceoreillyimages21087.png
[ocjstHessageDigetsnHesogebiges]

OEBPS/httpatomoreillycomsourceoreillyimages21523.png
[obistHenderH{SvesmanderH{Soshetiander]

OEBPS/httpatomoreillycomsourceoreillyimages21601.png

OEBPS/httpatomoreillycomsourceoreillyimages21147.png
[GbketH Trwnable HeepinHGeneraecuryboestonHCerPatinaercesion]

OEBPS/httpatomoreillycomsourceoreillyimages20687.png

OEBPS/httpatomoreillycomsourceoreillyimages21735.png

OEBPS/httpatomoreillycomsourceoreillyimages20917.png
[ocistHSscteting] (Sotetoptions)

OEBPS/httpatomoreillycomsourceoreillyimages21783.png

OEBPS/httpatomoreillycomsourceoreillyimages21157.png

OEBPS/httpatomoreillycomsourceoreillyimages21483.png
[BsectHomictongirey}

OEBPS/httpatomoreillycomsourceoreillyimages21813.png

OEBPS/httpatomoreillycomsourceoreillyimages21241.png
[FoAPratecrtersoee]

OEBPS/httpatomoreillycomsourceoreillyimages21527.png

OEBPS/httpatomoreillycomsourceoreillyimages20603.png

OEBPS/httpatomoreillycomsourceoreillyimages21655.png
Ot} [SiSeveueoton]

OEBPS/httpatomoreillycomsourceoreillyimages20825.png

OEBPS/httpatomoreillycomsourceoreillyimages21803.png

OEBPS/httpatomoreillycomsourceoreillyimages20879.png
(@bt Tronable HeepionH sctionHSoctetbceston HBnceseston]

OEBPS/httpatomoreillycomsourceoreillyimages21717.png
[GbketH{ Tronable HbeepionHGenerascurybreston HiogrtasstonH Geceniaoepion]

OEBPS/httpatomoreillycomsourceoreillyimages20683.png

OEBPS/httpatomoreillycomsourceoreillyimages20939.png

OEBPS/httpatomoreillycomsourceoreillyimages21279.png
[inpineForna]

OEBPS/httpatomoreillycomsourceoreillyimages21755.png
[OsectH{5wGoee]

OEBPS/httpatomoreillycomsourceoreillyimages21777.png

OEBPS/httpatomoreillycomsourceoreillyimages21797.png

OEBPS/httpatomoreillycomsourceoreillyimages20823.png

OEBPS/httpatomoreillycomsourceoreillyimages21341.png
[GbietH{ Tronable HeepionH furtimeeioption H egahgumentscepion Hegs Fomatbeepion]

OEBPS/httpatomoreillycomsourceoreillyimages20741.png
[GbketH{ Trwonable HbeepionH Rurtngeicpton Hegsiverersaebresto]

OEBPS/httpatomoreillycomsourceoreillyimages20821.png

OEBPS/httpatomoreillycomsourceoreillyimages21041.png
[OEectH{ hronable H{Ecepton{FustimeEspton{Secutception H iecessontocastion]

OEBPS/httpatomoreillycomsourceoreillyimages21201.png

OEBPS/httpatomoreillycomsourceoreillyimages21181.png
oG]

bt

OEBPS/httpatomoreillycomsourceoreillyimages20927.png

OEBPS/httpatomoreillycomsourceoreillyimages20989.png

OEBPS/httpatomoreillycomsourceoreillyimages20867.png
[GbketH{ Trwnable HbeepionH Furtingeropton Hunsedredmowanieesepton]

OEBPS/httpatomoreillycomsourceoreillyimages21309.png
- { ot oetion Hatmebcpton{Tegabepmerbreston{egafomsteczpion {pwicsefomatragaosion]

OEBPS/httpatomoreillycomsourceoreillyimages21393.png

OEBPS/httpatomoreillycomsourceoreillyimages20589.png
[GbketH Trwonable HbeepionH0ction Hbsteombcestion Himoreateston]

OEBPS/httpatomoreillycomsourceoreillyimages21459.png

OEBPS/httpatomoreillycomsourceoreillyimages20703.png

OEBPS/httpatomoreillycomsourceoreillyimages20599.png
[GbfetH{ Trwonable H{Beepion {0 ception HGoatteambcestionH TotSeaizsbebesin]

OEBPS/httpatomoreillycomsourceoreillyimages20627.png

OEBPS/httpatomoreillycomsourceoreillyimages21405.png
oty tevescepto]

OEBPS/httpatomoreillycomsourceoreillyimages21577.png
(@bt Tronable HeepionH GereraesurboestionHBacrodsngorepion]

OEBPS/httpatomoreillycomsourceoreillyimages21543.png

OEBPS/httpatomoreillycomsourceoreillyimages21079.png

OEBPS/httpatomoreillycomsourceoreillyimages21823.png

OEBPS/httpatomoreillycomsourceoreillyimages21249.png

OEBPS/httpatomoreillycomsourceoreillyimages21399.png
[OsectHngirencr]

OEBPS/httpatomoreillycomsourceoreillyimages21027.png
[CiacteCotingoceston

OEBPS/httpatomoreillycomsourceoreillyimages21009.png
[Comiect HAnsvamnmmphm;cnanmHseeﬂanmnanne\Hﬁmvan&deﬁahmnanne\Hva&mwﬁhaMe\l
(ol) (_Imevotetoaret

OEBPS/httpatomoreillycomsourceoreillyimages21113.png
(Ot HSeooeandoriso]

OEBPS/httpatomoreillycomsourceoreillyimages21437.png
(Conbe) (b} (Cacton]-{Gt) andonooess) (_Seimastie)

OEBPS/httpatomoreillycomsourceoreillyimages21697.png
[UusporedCalbackbcenion]

OEBPS/httpatomoreillycomsourceoreillyimages21137.png
[GbketH{ Tronable HeepionHGeneraeouryboestonHeretebeston]

OEBPS/httpatomoreillycomsourceoreillyimages20957.png

OEBPS/httpatomoreillycomsourceoreillyimages21159.png
(@bt Tronable HeepionHGeneraouryboestonHerioeteption]

OEBPS/httpatomoreillycomsourceoreillyimages21831.png
[BsectHbuesmal)

OEBPS/httpatomoreillycomsourceoreillyimages21489.png
[ObjectHpbstrasRuenedSynchronze]

OEBPS/httpatomoreillycomsourceoreillyimages20689.png
[CastiaroundEseptor]

OEBPS/httpatomoreillycomsourceoreillyimages20787.png
[GsectHiead] (roneoie)

OEBPS/httpatomoreillycomsourceoreillyimages21237.png
(Ot H{sAve Genparametersyes] (Rgarimmparsnetesoes)

OEBPS/httpatomoreillycomsourceoreillyimages20965.png
[GbietH{ Tronable HeepionH Aurtimeeioption H egaSttebrcestion H Crceeoterceston]

OEBPS/httpatomoreillycomsourceoreillyimages20975.png
[GbketH{ Trwonable H{eepionH Rurtingeiopton HgSttebcestion H CovectorPencngbrepto]

OEBPS/httpatomoreillycomsourceoreillyimages21273.png
{ Fomat_Hitmerima]

OEBPS/httpatomoreillycomsourceoreillyimages20829.png
(Uonodibiissbeestion

OEBPS/httpatomoreillycomsourceoreillyimages21045.png
[Gbkat}orcionsy }——{ Fashtabe Hrropries HrordeHautrovde]

OEBPS/httpatomoreillycomsourceoreillyimages21269.png
(o H Tomat

OEBPS/httpatomoreillycomsourceoreillyimages21791.png

OEBPS/httpatomoreillycomsourceoreillyimages21321.png
oot} Gt} oo gpmentotonH giameisto | Fmafbplomesorfiasdooson]

OEBPS/httpatomoreillycomsourceoreillyimages20671.png

OEBPS/httpatomoreillycomsourceoreillyimages20571.png
(ot} [HovtSismnierHFrenee]

OEBPS/httpatomoreillycomsourceoreillyimages20993.png
[GbketH{ Tronable H{beepionH Rurtingeropton H gaSttebcestion HonresdoseChannesoepion]

OEBPS/httpatomoreillycomsourceoreillyimages21679.png
[oeictH{Suec]

OEBPS/httpatomoreillycomsourceoreillyimages21573.png
[GbfatHfirmsSteen H{Ftetopatteam Hnteinosiesm zpnpustean]

OEBPS/httpatomoreillycomsourceoreillyimages20837.png

OEBPS/httpatomoreillycomsourceoreillyimages21345.png
~{ Tivnable H{Excegion urtimebcesvon - Begapmentsepton | ega Fomatecepion H Tegaromatrecsonesston]

OEBPS/httpatomoreillycomsourceoreillyimages21513.png
[ooictHieve)

OEBPS/httpatomoreillycomsourceoreillyimages20665.png
(0t Husocttmgutia]

OEBPS/httpatomoreillycomsourceoreillyimages20935.png
[GbketH Tronable HeepionH fustimesiosption Heeverantscepion]

OEBPS/httpatomoreillycomsourceoreillyimages21011.png
(5}ttt st ooz} T
(o) et) (o) (s) (vunggedoms] (asnepetams)
() o) (e) (i) (nuusyebane) (oihatons) (redasen)

[T I | | |

OEBPS/httpatomoreillycomsourceoreillyimages20913.png
[y s

OEBPS/httpatomoreillycomsourceoreillyimages21645.png
[GbketH{ Tronable HeepionH Gscton HSSUbeeption H5SRegrcepion]

OEBPS/httpatomoreillycomsourceoreillyimages20953.png

OEBPS/httpatomoreillycomsourceoreillyimages21043.png

OEBPS/httpatomoreillycomsourceoreillyimages21719.png
GherH{ Towabe {Brpion{ Gererasevaoneston Hlogrrepton H Gedeniaossion {Goderinepredaoesio]

OEBPS/httpatomoreillycomsourceoreillyimages21701.png

OEBPS/httpatomoreillycomsourceoreillyimages21449.png

OEBPS/httpatomoreillycomsourceoreillyimages20553.png
[COvect HowgusteanHFreutpuieam HDwtaOuoutSiean]

OEBPS/httpatomoreillycomsourceoreillyimages21817.png

OEBPS/httpatomoreillycomsourceoreillyimages21365.png

OEBPS/httpatomoreillycomsourceoreillyimages21379.png

OEBPS/httpatomoreillycomsourceoreillyimages21505.png
([t HowaveomHFtetputSieanH DeftetutSvean Hzwoutpusieon - Ftpasiean]

o

OEBPS/httpatomoreillycomsourceoreillyimages21431.png

OEBPS/httpatomoreillycomsourceoreillyimages21623.png
[e

OEBPS/httpatomoreillycomsourceoreillyimages20943.png
I

OEBPS/httpatomoreillycomsourceoreillyimages21247.png
[F0Encodederspe]

OEBPS/httpatomoreillycomsourceoreillyimages21425.png

OEBPS/httpatomoreillycomsourceoreillyimages20547.png

OEBPS/httpatomoreillycomsourceoreillyimages21511.png

OEBPS/httpatomoreillycomsourceoreillyimages20593.png
Fiteroputtear HCelubernputean]

OEBPS/httpatomoreillycomsourceoreillyimages21789.png

OEBPS/httpatomoreillycomsourceoreillyimages21617.png
(G5t H{vormmetersoec] (AgorimmParanetesyes)

OEBPS/httpatomoreillycomsourceoreillyimages21769.png
[atbepton]

OEBPS/httpatomoreillycomsourceoreillyimages20555.png

OEBPS/httpatomoreillycomsourceoreillyimages21173.png
(ke HPCetPoteriatomeat} [PRiCerpanuioe et
(Corbie} (e) (Coneoi} {_CoPatundeest)

OEBPS/httpatomoreillycomsourceoreillyimages20807.png
{Frorabl Hera Hivuaosogera]

OEBPS/httpatomoreillycomsourceoreillyimages21375.png
(Dbt HResacsotestion |————————[fstoctiooveHFrotQeve]

(e} (Cotecion) (frab} {otetion) (i) (Sefmntie)

OEBPS/httpatomoreillycomsourceoreillyimages20963.png
(Gave) (Cromal (Faiobibynos) Coseois] (G} (rtobiacioms)

OEBPS/httpatomoreillycomsourceoreillyimages21541.png

OEBPS/httpatomoreillycomsourceoreillyimages21747.png

OEBPS/httpatomoreillycomsourceoreillyimages21409.png
[Gbfst-{esrantotestion-strocten————————{ et |

OEBPS/httpatomoreillycomsourceoreillyimages20739.png

OEBPS/httpatomoreillycomsourceoreillyimages20859.png

OEBPS/httpatomoreillycomsourceoreillyimages21479.png
[g e

OEBPS/httpatomoreillycomsourceoreillyimages21549.png
(ot Hper7)

OEBPS/httpatomoreillycomsourceoreillyimages21587.png

OEBPS/httpatomoreillycomsourceoreillyimages21751.png
(Gt H{oOwSouree] (Soree)

OEBPS/httpatomoreillycomsourceoreillyimages21793.png

OEBPS/httpatomoreillycomsourceoreillyimages21571.png

OEBPS/httpatomoreillycomsourceoreillyimages21709.png
[GbketH Tronable HeepinHGereraeouryboestonHlagrbaestonHhasmueaeston]

OEBPS/httpatomoreillycomsourceoreillyimages20549.png
[CiarComeriorbeston]

OEBPS/httpatomoreillycomsourceoreillyimages20537.png
bifesdiencs]

OEBPS/httpatomoreillycomsourceoreillyimages20595.png
bifesdienc]

OEBPS/httpatomoreillycomsourceoreillyimages20685.png

OEBPS/httpatomoreillycomsourceoreillyimages20945.png

OEBPS/httpatomoreillycomsourceoreillyimages21161.png

OEBPS/httpatomoreillycomsourceoreillyimages20619.png
(oo} [irter HOuowsweaminier

OEBPS/httpatomoreillycomsourceoreillyimages21307.png

OEBPS/httpatomoreillycomsourceoreillyimages21721.png
- {Teowsie H{Buepion{GeneriScrtoepton H ageston H bederinoreptonH Gednmanoramdooepion]

OEBPS/httpatomoreillycomsourceoreillyimages21313.png

OEBPS/httpatomoreillycomsourceoreillyimages20915.png
Sotwebeston

OEBPS/httpatomoreillycomsourceoreillyimages20551.png
Fiterputtean Hoatuion]

OEBPS/httpatomoreillycomsourceoreillyimages20543.png
[COviect HowtuStesnHBrihraOuputSiean]

OEBPS/httpatomoreillycomsourceoreillyimages20747.png
[FoSueiscepion

OEBPS/httpatomoreillycomsourceoreillyimages20781.png
Coie } Srogaice]

OEBPS/httpatomoreillycomsourceoreillyimages21299.png

OEBPS/httpatomoreillycomsourceoreillyimages20819.png

OEBPS/httpatomoreillycomsourceoreillyimages20743.png
[Fofissbaoundiro]

OEBPS/httpatomoreillycomsourceoreillyimages21647.png
[GbietH{ Trwnable H{beepion 0scztion HSSbcesion HEStPeerimertedbepto]

OEBPS/httpatomoreillycomsourceoreillyimages21203.png

OEBPS/httpatomoreillycomsourceoreillyimages21805.png

OEBPS/httpatomoreillycomsourceoreillyimages20641.png

OEBPS/httpatomoreillycomsourceoreillyimages21499.png

OEBPS/httpatomoreillycomsourceoreillyimages21391.png

OEBPS/httpatomoreillycomsourceoreillyimages21255.png
{Foma_HiumsefomaiH-{oira]

OEBPS/httpatomoreillycomsourceoreillyimages21757.png
(Gt Hforsiome orton HSMTarsiomerocon]

OEBPS/httpatomoreillycomsourceoreillyimages20911.png
(Ot H{EsceesporseHSecreEscneessonse]

OEBPS/httpatomoreillycomsourceoreillyimages20849.png
Geneichrarioe)

OEBPS/httpatomoreillycomsourceoreillyimages21225.png
(Gt HEosetterives]

OEBPS/httpatomoreillycomsourceoreillyimages21555.png

OEBPS/httpatomoreillycomsourceoreillyimages21333.png

OEBPS/httpatomoreillycomsourceoreillyimages21337.png
- {Tonatke HEostin H{ontmebriston Hegig mentooeson H TegsFomatcepion | iegaFomatiseFontoeston]

OEBPS/httpatomoreillycomsourceoreillyimages20833.png

OEBPS/httpatomoreillycomsourceoreillyimages20951.png

OEBPS/httpatomoreillycomsourceoreillyimages21463.png
[(Otest Hibsntbecstorenice}-[Teadrooecor [Eatediedmesdruobeio]
(Bt} (GeemSavie) (o) {Basioseven){ Somidbemioenis)

OEBPS/httpatomoreillycomsourceoreillyimages20625.png

OEBPS/httpatomoreillycomsourceoreillyimages21129.png
[GbketH Tronable HeepionHGeneraecurbrestonHUecomrabererpieston]

OEBPS/httpatomoreillycomsourceoreillyimages21057.png
[COviect HowgusteanHFertutgstesn HDigestuttStean

OEBPS/httpatomoreillycomsourceoreillyimages21833.png

OEBPS/httpatomoreillycomsourceoreillyimages20921.png
[GbfetH{ Tronable H{beepion Hi0bcetion HisemptedOescstion Hosettmeontocestor]

OEBPS/httpatomoreillycomsourceoreillyimages21605.png
(Ot H{oESedetepspes]

OEBPS/httpatomoreillycomsourceoreillyimages20717.png
[TegaSitebcestion]

OEBPS/httpatomoreillycomsourceoreillyimages21327.png

OEBPS/httpatomoreillycomsourceoreillyimages20871.png

OEBPS/httpatomoreillycomsourceoreillyimages21371.png
(@bt Tronable HbeepionHRurtinggscsption Hissnghesacetcepton]

OEBPS/httpatomoreillycomsourceoreillyimages20663.png
(05t hvonable |- {EvorH kg conpatiebesstranetror-{Rbsoctietiodtr]

OEBPS/httpatomoreillycomsourceoreillyimages21123.png

OEBPS/httpatomoreillycomsourceoreillyimages21149.png

OEBPS/httpatomoreillycomsourceoreillyimages21475.png
[g e

OEBPS/httpatomoreillycomsourceoreillyimages20615.png
[GbketH{ Tronable HbeepionH0czption HTbsieambcestion H tonabaaessepion]

OEBPS/httpatomoreillycomsourceoreillyimages21107.png

OEBPS/httpatomoreillycomsourceoreillyimages20729.png
itavEscepton]

OEBPS/httpatomoreillycomsourceoreillyimages21467.png
[OBiectHaestractCotestion H{RbstractQueve}—————{Symchror

ueve]
T)

OEBPS/httpatomoreillycomsourceoreillyimages20903.png

OEBPS/httpatomoreillycomsourceoreillyimages21411.png
- (Pt et Rsinecepin - BplepmenteetionH e Fanaostor {wonFmaCone oo

OEBPS/httpatomoreillycomsourceoreillyimages20713.png
(@bt Tronable HeepionH furtngsipton Hegohgomentrcepion]

OEBPS/httpatomoreillycomsourceoreillyimages21263.png
TbiecHDatromatsmbos]

OEBPS/httpatomoreillycomsourceoreillyimages20649.png

OEBPS/httpatomoreillycomsourceoreillyimages20757.png
[GbfetH{ Trwnable H{bepionH Rurtingeropton HlegahgumentrcepionH{omberromatbreston]

OEBPS/httpatomoreillycomsourceoreillyimages21681.png
[ocist{Subectbomincombine] (Domsincombiner)

OEBPS/httpatomoreillycomsourceoreillyimages20863.png

OEBPS/httpatomoreillycomsourceoreillyimages21621.png
(o5t HPsotesec)

OEBPS/httpatomoreillycomsourceoreillyimages21177.png
[FGePyiaicsores]

OEBPS/httpatomoreillycomsourceoreillyimages20799.png
[rsistedinér]

OEBPS/httpatomoreillycomsourceoreillyimages21819.png

OEBPS/httpatomoreillycomsourceoreillyimages21695.png
[(Obect HiextOutputCaibaci]

OEBPS/httpatomoreillycomsourceoreillyimages21197.png

OEBPS/httpatomoreillycomsourceoreillyimages21427.png
[Bolentarebrepton

OEBPS/httpatomoreillycomsourceoreillyimages21095.png
[O8jectHpemisiontalectin]

OEBPS/httpatomoreillycomsourceoreillyimages20841.png

OEBPS/httpatomoreillycomsourceoreillyimages21199.png

OEBPS/httpatomoreillycomsourceoreillyimages20929.png
[(Sobceston

OEBPS/httpatomoreillycomsourceoreillyimages20573.png

OEBPS/httpatomoreillycomsourceoreillyimages20931.png

OEBPS/httpatomoreillycomsourceoreillyimages21465.png
[GsectHenaptore]

OEBPS/httpatomoreillycomsourceoreillyimages20791.png
[ocistH{Tivesdbrons] (s tncangEceptontiander)

OEBPS/httpatomoreillycomsourceoreillyimages21357.png
[eH{smstoiation st HsaSeetatis}———{ e |
(Coemon) (i) (o) () (e] cin)
(ewe) (o) (o) (Geeon)

OEBPS/httpatomoreillycomsourceoreillyimages21649.png

OEBPS/httpatomoreillycomsourceoreillyimages20581.png
(G5t Himpustean)

OEBPS/httpatomoreillycomsourceoreillyimages20601.png

OEBPS/httpatomoreillycomsourceoreillyimages21829.png
[BsectHoreting]

OEBPS/httpatomoreillycomsourceoreillyimages21439.png
[Obfat }HResacsotestion | {Rasacet - Copfonieonragor]

(e} (Coteeion) (frab) {otetion) (5) (_Seiluabic)

OEBPS/httpatomoreillycomsourceoreillyimages21111.png
{ordon Hsoudhndon]

OEBPS/httpatomoreillycomsourceoreillyimages20699.png
[GbietH Tronable HeepionH fustimesiosption HEmmtonsantiopeerescepion]

OEBPS/httpatomoreillycomsourceoreillyimages20535.png
[Cobit HoutSiean]

OEBPS/httpatomoreillycomsourceoreillyimages21073.png

OEBPS/httpatomoreillycomsourceoreillyimages20611.png
[CectSeanteeston]

OEBPS/httpatomoreillycomsourceoreillyimages21525.png
(G5t HfenderH{Seononde]

OEBPS/httpatomoreillycomsourceoreillyimages20987.png
[GbketH{ Trwonable H{bepionH Rurtingescspton Hegohgumentscepion H{Tegosecioboepion]

OEBPS/httpatomoreillycomsourceoreillyimages21295.png
(ot) () Conenl) (L) (rndoniores) (sl

(lewbe) (o)

OEBPS/httpatomoreillycomsourceoreillyimages20877.png

OEBPS/httpatomoreillycomsourceoreillyimages20647.png
Srngbferpitien]

OEBPS/httpatomoreillycomsourceoreillyimages21443.png
{essaeCotecton}-{RosoctuereH Do |

oo] (o) ()

OEBPS/httpatomoreillycomsourceoreillyimages21213.png

OEBPS/httpatomoreillycomsourceoreillyimages21639.png
[OsectHestoreburceraronetes] (ManagefaonPoanees)

OEBPS/httpatomoreillycomsourceoreillyimages20675.png

OEBPS/httpatomoreillycomsourceoreillyimages21127.png
[GbketH{ Tonable HeepinH GereraeouryboestonHUecomrabetriybrestion]

OEBPS/httpatomoreillycomsourceoreillyimages20793.png

OEBPS/httpatomoreillycomsourceoreillyimages21143.png
[GbketH{ Tonable HeepionH GerereourboestonHeretebestionH Certeatepomngiscepion]

OEBPS/httpatomoreillycomsourceoreillyimages21317.png
(Ot HEentseneron] {Eentsene))

OEBPS/httpatomoreillycomsourceoreillyimages21195.png

OEBPS/httpatomoreillycomsourceoreillyimages21631.png
[OsectHerpatiusonageorsnets] {arageraconoramters)

OEBPS/httpatomoreillycomsourceoreillyimages20873.png

OEBPS/httpatomoreillycomsourceoreillyimages21061.png
(Gt H{Guardedtviet]

OEBPS/httpatomoreillycomsourceoreillyimages20707.png

OEBPS/httpatomoreillycomsourceoreillyimages20847.png
{leesietiot H P]

OEBPS/httpatomoreillycomsourceoreillyimages20767.png

OEBPS/httpatomoreillycomsourceoreillyimages20763.png
(G5t Htoge] (noateeenen)

OEBPS/httpatomoreillycomsourceoreillyimages21531.png
[FackingStoreepton]

OEBPS/httpatomoreillycomsourceoreillyimages21799.png

OEBPS/httpatomoreillycomsourceoreillyimages21809.png
[SiioRecapraedcesio]

OEBPS/httpatomoreillycomsourceoreillyimages21633.png

OEBPS/httpatomoreillycomsourceoreillyimages21613.png
(Ot Horiveteroec)

OEBPS/httpatomoreillycomsourceoreillyimages21635.png

OEBPS/httpatomoreillycomsourceoreillyimages20561.png

OEBPS/httpatomoreillycomsourceoreillyimages21609.png
(Gt H{orGenParanetesyee) (Rgorimmponeresoes)

OEBPS/httpatomoreillycomsourceoreillyimages21049.png
[

OEBPS/httpatomoreillycomsourceoreillyimages21835.png

OEBPS/httpatomoreillycomsourceoreillyimages21595.png

OEBPS/httpatomoreillycomsourceoreillyimages21471.png
e Excpton]

OEBPS/httpatomoreillycomsourceoreillyimages21423.png
[Gbfest}-{esantCotestion}AstroctQueve |————{Araygoshnglueve]

OEBPS/httpatomoreillycomsourceoreillyimages20559.png

OEBPS/httpatomoreillycomsourceoreillyimages20845.png

OEBPS/httpatomoreillycomsourceoreillyimages21039.png
[GbietH{ Tronable HeepionH Aurtimeeiopton H egahgumentscepion Humwappontecthonatbregion]

OEBPS/httpatomoreillycomsourceoreillyimages20579.png

OEBPS/httpatomoreillycomsourceoreillyimages21227.png
[GbketH{ Tronable H{bepionHGenerascurtybrestion [mdbeyspecbcestion]

OEBPS/httpatomoreillycomsourceoreillyimages21291.png
[Ooeet H{RestmceGotecton}—————————{Rostict st HAbstacsementalst]

OEBPS/httpatomoreillycomsourceoreillyimages21381.png
[OsectHFesoucesonte}-[Foperyesoucetinde]

OEBPS/httpatomoreillycomsourceoreillyimages20947.png

OEBPS/httpatomoreillycomsourceoreillyimages20893.png
(Ot H{venhices

OEBPS/httpatomoreillycomsourceoreillyimages21085.png
[GbketH Tronable HbeepionH GereraeouryboestonHFepstoecestor]

OEBPS/httpatomoreillycomsourceoreillyimages21253.png

OEBPS/httpatomoreillycomsourceoreillyimages20857.png

OEBPS/httpatomoreillycomsourceoreillyimages21627.png
[OsectHPamnetzspec] (igpimPooneesoe)

OEBPS/httpatomoreillycomsourceoreillyimages21133.png
[y e

OEBPS/httpatomoreillycomsourceoreillyimages21771.png
[atbsepionHPambpessorboesion

OEBPS/httpatomoreillycomsourceoreillyimages21261.png

OEBPS/httpatomoreillycomsourceoreillyimages21171.png
[Pomnnees Hpiuiseroandes)
(CPatransss)

OEBPS/httpatomoreillycomsourceoreillyimages20775.png
(G5t H{Secimocetenent]

OEBPS/httpatomoreillycomsourceoreillyimages21335.png

OEBPS/httpatomoreillycomsourceoreillyimages20909.png
[Fotocolbetin]

OEBPS/httpatomoreillycomsourceoreillyimages21221.png
(Ot Hrimekere)

OEBPS/httpatomoreillycomsourceoreillyimages21507.png

OEBPS/httpatomoreillycomsourceoreillyimages21477.png
[Turber Hptomcrege]

OEBPS/httpatomoreillycomsourceoreillyimages21153.png
[GbketH{ Tonable HbeepionHGenerascurtbreston HcerPatamdaorbioesion]

OEBPS/httpatomoreillycomsourceoreillyimages20773.png
{Thwonsble e HiaiashoetrorHSocortoner]

OEBPS/httpatomoreillycomsourceoreillyimages20887.png
[obistHURLCommection H{tpURiComestion]

OEBPS/httpatomoreillycomsourceoreillyimages21653.png

OEBPS/httpatomoreillycomsourceoreillyimages21657.png

OEBPS/httpatomoreillycomsourceoreillyimages20749.png
[GbietH{ Tronable }{ror HTniagetor Hincompatbedss rangeeror Hwsucnwemoderor]

OEBPS/httpatomoreillycomsourceoreillyimages21677.png

OEBPS/httpatomoreillycomsourceoreillyimages20735.png
teuptedEcepion]

OEBPS/httpatomoreillycomsourceoreillyimages21667.png

OEBPS/httpatomoreillycomsourceoreillyimages20899.png

OEBPS/httpatomoreillycomsourceoreillyimages20835.png

OEBPS/httpatomoreillycomsourceoreillyimages21207.png
et OSHFarmetarspe]
(gpioonsetyer]

OEBPS/httpatomoreillycomsourceoreillyimages21493.png
[§ |

OEBPS/httpatomoreillycomsourceoreillyimages20715.png
[GbketH Tronable HeepionH furtnggicpton Hlegahoniomiatetstin]

OEBPS/httpatomoreillycomsourceoreillyimages21433.png
[O8iect]HestractCotestion HAbstractQueve}————{ Concurentmkecuene]

OEBPS/httpatomoreillycomsourceoreillyimages20711.png
epphesbres |

OEBPS/httpatomoreillycomsourceoreillyimages21115.png

OEBPS/httpatomoreillycomsourceoreillyimages21575.png
(Ot HowaeonHFetvipuSvean Hoetatetdpusiean Hzousvteon]

st

OEBPS/httpatomoreillycomsourceoreillyimages21703.png

OEBPS/httpatomoreillycomsourceoreillyimages21351.png
[GbketH Trwonable HeepionH0tinn Himmipogertesromatbesto]

OEBPS/httpatomoreillycomsourceoreillyimages21663.png
[ocistHSsctetFatonHSStSorkerarion]

OEBPS/httpatomoreillycomsourceoreillyimages21257.png
[y

OEBPS/httpatomoreillycomsourceoreillyimages21559.png
[Cobit HoutSiean]

OEBPS/httpatomoreillycomsourceoreillyimages21325.png
[GbietH{ Tronable H{BepionH Aurtineeropton H gaSttebcestion HFomatetoedtrcepion]

OEBPS/httpatomoreillycomsourceoreillyimages21481.png

OEBPS/httpatomoreillycomsourceoreillyimages21243.png
(Ot Hswrotetesrec]

OEBPS/httpatomoreillycomsourceoreillyimages20631.png

OEBPS/httpatomoreillycomsourceoreillyimages20667.png
[Fostmessoepion H Athmetcixcepion]

OEBPS/httpatomoreillycomsourceoreillyimages21509.png
[ocistHenderH SvesmfanderHCorsoeondier]

OEBPS/httpatomoreillycomsourceoreillyimages20651.png

OEBPS/httpatomoreillycomsourceoreillyimages20969.png
~{Toovable }{Eesgion {06t Oseihameleceptor{tehostissEoegion {Deedtrenptspin]

OEBPS/httpatomoreillycomsourceoreillyimages20709.png
[Gbiet{ Tronabte }{EvorH{Tnagetrs Hincompariebessangeéror Hegsboceserr]

OEBPS/httpatomoreillycomsourceoreillyimages21729.png
[BsectHiG00Prateedenia]

OEBPS/httpatomoreillycomsourceoreillyimages21775.png
[GbietH{ Tronable H{Bcepion HestEropton Hiratbressonboepion HiFsirusciarbieston]

OEBPS/httpatomoreillycomsourceoreillyimages21163.png
[Colectioecersueraranetes)

OEBPS/httpatomoreillycomsourceoreillyimages21003.png

OEBPS/httpatomoreillycomsourceoreillyimages20621.png

OEBPS/httpatomoreillycomsourceoreillyimages21453.png
[Gbkeat}esranCotestionAestrtQueve }—————| UvecBosingoese]

T)

OEBPS/httpatomoreillycomsourceoreillyimages20629.png
[0t HovtuiconHFeisuSieanFrsien]

OEBPS/httpatomoreillycomsourceoreillyimages21139.png
[GbketH{ Tronable HeepionH GereraeourboestonHerctebestionH Certeateboredessepion]

OEBPS/httpatomoreillycomsourceoreillyimages21019.png
= [esiasttpibeCone]
gt

OEBPS/httpatomoreillycomsourceoreillyimages21825.png

OEBPS/httpatomoreillycomsourceoreillyimages20941.png

OEBPS/httpatomoreillycomsourceoreillyimages20831.png
(GorvageColcioniisea]

OEBPS/httpatomoreillycomsourceoreillyimages21685.png
(bt HCorfmionateas]

OEBPS/httpatomoreillycomsourceoreillyimages21305.png
(G5t Hurens]

OEBPS/httpatomoreillycomsourceoreillyimages21293.png
[esiacColecton]

OEBPS/httpatomoreillycomsourceoreillyimages20591.png

OEBPS/httpatomoreillycomsourceoreillyimages21821.png
[T, {oebutionde {oehutienden]

(Cotetiondr) (bHonder) () (oot) (SesHaniter) (Ettfesove) (Lecabionder)

OEBPS/httpatomoreillycomsourceoreillyimages21329.png

OEBPS/httpatomoreillycomsourceoreillyimages21551.png

OEBPS/httpatomoreillycomsourceoreillyimages21183.png

OEBPS/httpatomoreillycomsourceoreillyimages20881.png
(06t} onable - {Brcepton - Obcestion{ocketEcestion | coneccaption]

OEBPS/httpatomoreillycomsourceoreillyimages20719.png
[GbietH{ Tronable HeepionH Aurtinesiopton H egahgumentrcepion Hegahes itebaeption]

OEBPS/httpatomoreillycomsourceoreillyimages20681.png

OEBPS/httpatomoreillycomsourceoreillyimages21779.png

OEBPS/httpatomoreillycomsourceoreillyimages20569.png

OEBPS/httpatomoreillycomsourceoreillyimages20637.png

OEBPS/httpatomoreillycomsourceoreillyimages21651.png
[GbketH{ Tronable HbeepionH0scepton HSSbcestion HESPraicobrestion]

OEBPS/httpatomoreillycomsourceoreillyimages20789.png
{Puonsle HerarH{Treschst]

OEBPS/httpatomoreillycomsourceoreillyimages20797.png
{Puonsle HEraH{itablohocerorH{bromer]

OEBPS/httpatomoreillycomsourceoreillyimages20777.png
(CuaSequence

OEBPS/httpatomoreillycomsourceoreillyimages20605.png

OEBPS/httpatomoreillycomsourceoreillyimages21075.png

OEBPS/httpatomoreillycomsourceoreillyimages20855.png
[GBketH{ Tronable HbeepionHurtinggspton HiolormedParanetiedoeteston]

OEBPS/httpatomoreillycomsourceoreillyimages20705.png
[oestonnintaiuztno]

OEBPS/httpatomoreillycomsourceoreillyimages21745.png
{Frorabl Hera HTaslomesnotgrataero]

OEBPS/httpatomoreillycomsourceoreillyimages21251.png
(Gt Heamrerto]

OEBPS/httpatomoreillycomsourceoreillyimages21441.png

OEBPS/httpatomoreillycomsourceoreillyimages21059.png

OEBPS/httpatomoreillycomsourceoreillyimages21557.png

OEBPS/httpatomoreillycomsourceoreillyimages20753.png
[FustinscepionH NoPortebioepion]

OEBPS/httpatomoreillycomsourceoreillyimages21055.png

OEBPS/httpatomoreillycomsourceoreillyimages21699.png

OEBPS/httpatomoreillycomsourceoreillyimages21413.png
| Towas {ction et WegvumetEeegtion egaFomatsgton {Uieomapegntan]

OEBPS/httpatomoreillycomsourceoreillyimages20803.png
[GbketH{ Trwnable HeepionH Aurtingsropton Hupporteabpesinbrestion]

OEBPS/httpatomoreillycomsourceoreillyimages21593.png
[|

OEBPS/httpatomoreillycomsourceoreillyimages20795.png
(@bt Tronable HeepionHfurtnesipton Hipeopesertrcepioe]

OEBPS/httpatomoreillycomsourceoreillyimages20661.png

OEBPS/httpatomoreillycomsourceoreillyimages20889.png

OEBPS/httpatomoreillycomsourceoreillyimages21585.png
[GbketH Trwonable HeepionHGereraecuryboestonHegabicisistssepion]

OEBPS/httpatomoreillycomsourceoreillyimages21725.png

OEBPS/httpatomoreillycomsourceoreillyimages21501.png
[

OEBPS/httpatomoreillycomsourceoreillyimages21497.png

OEBPS/httpatomoreillycomsourceoreillyimages21135.png
[GbketH{ Tronable HepionHGenerasourybceston Hercatebuestion H Centeatebncodngiepton]

OEBPS/httpatomoreillycomsourceoreillyimages21553.png
[Cobit HoutSiean]

OEBPS/httpatomoreillycomsourceoreillyimages21355.png
(O {Rantaion-fbsace}————— oo | ————{neiaiel]
(oo) (o) (Goat) vzt (5o) (Gt () (5]
(o) (@ew) [Ezm) ()

(ot) (=) (oo)

OEBPS/httpatomoreillycomsourceoreillyimages20645.png
[GbketH{ Trwnable HeepionH0czton Hbpsteambcestion HSieomtorstceriepion]

OEBPS/httpatomoreillycomsourceoreillyimages21311.png
[Fostmesseepton H Enptysackbicepto]

OEBPS/httpatomoreillycomsourceoreillyimages20565.png
[(Ovect HowgusteanHFieOuoutSean]

OEBPS/httpatomoreillycomsourceoreillyimages21767.png
(Ot Hiatoinder} (Gotentiender)

OEBPS/httpatomoreillycomsourceoreillyimages21815.png

OEBPS/httpatomoreillycomsourceoreillyimages21455.png
(Dot H{ResrctConectonH{betreeve}————{ProntyBocknglueee]

OEBPS/httpatomoreillycomsourceoreillyimages21145.png
[ocistHoerpan]

OEBPS/httpatomoreillycomsourceoreillyimages21033.png
(@bt Tronable H{beepion HRurtingesceton Hsgohvgumentscepion H{Tegohametaneeeston]

OEBPS/httpatomoreillycomsourceoreillyimages20727.png
[GbfetH{ Tronable }{Eror HTniagetrr HincompatbedssCrangeerorHnstattor]

OEBPS/httpatomoreillycomsourceoreillyimages21001.png
[GbietH{ Tronable H{BeepionH Aurtingeicpton H gaSttebrcestion H verapongraeloereetion]

OEBPS/httpatomoreillycomsourceoreillyimages20529.png

OEBPS/httpatomoreillycomsourceoreillyimages21469.png
[(Obiect HRbstractExecutorSeniceH{TreadPoolbrecutor]

OEBPS/httpatomoreillycomsourceoreillyimages21447.png
[OsectH{pesortonsieiorsence] {Camviinnsenee)

OEBPS/httpatomoreillycomsourceoreillyimages21283.png
Objet Hpbsiacotecton]

OEBPS/httpatomoreillycomsourceoreillyimages21359.png

OEBPS/orm_front_cover.jpg
A Desktop Quick Reference

O REILLY® David Flanagan

OEBPS/httpatomoreillycomsourceoreillyimages21361.png

OEBPS/httpatomoreillycomsourceoreillyimages21461.png

OEBPS/httpatomoreillycomsourceoreillyimages21673.png

OEBPS/httpatomoreillycomsourceoreillyimages20875.png
[GsectHancares}

OEBPS/httpatomoreillycomsourceoreillyimages20557.png

OEBPS/httpatomoreillycomsourceoreillyimages21397.png
(ot) () Coreni) (L) (rnonors) (st

(Cherabie)

OEBPS/httpatomoreillycomsourceoreillyimages21485.png
(Ot Homiceeence]

OEBPS/httpatomoreillycomsourceoreillyimages21067.png
[GbketH{ Tronable HbeepionHGenerascurtbreston o goibmparneteboeptoa]

OEBPS/httpatomoreillycomsourceoreillyimages21743.png
[orsomeiestion]

OEBPS/httpatomoreillycomsourceoreillyimages20971.png

OEBPS/httpatomoreillycomsourceoreillyimages21567.png

OEBPS/httpatomoreillycomsourceoreillyimages21077.png
(@bt Tronable HepionH GereraecuryboestonHReyeepionHRertaragemeneeston]

OEBPS/httpatomoreillycomsourceoreillyimages20815.png

OEBPS/httpatomoreillycomsourceoreillyimages21349.png
[GbketH{ Tronable HeepionH Aurtimesioption HuSucheementcestionHimpusmateessepion]

OEBPS/httpatomoreillycomsourceoreillyimages21781.png

OEBPS/httpatomoreillycomsourceoreillyimages20979.png
(Gower) [enpvin) (ettane) (csbemngyecione) (satengisane)|
D — | | e e | e | e |
D D 0 | T | |

[T | e | [|

OEBPS/httpatomoreillycomsourceoreillyimages21473.png

OEBPS/httpatomoreillycomsourceoreillyimages21753.png
[OsectH{5wmeor] (Fesur)

OEBPS/httpatomoreillycomsourceoreillyimages20659.png
[Gbfet{ Tronable H{Bepion Hi0bception Hbictteambcestion {Wsiboredbiepton]

OEBPS/httpatomoreillycomsourceoreillyimages21737.png
{Frorabl Hera Hpadantorgratuero]

OEBPS/httpatomoreillycomsourceoreillyimages21165.png
[Cenealseoutybeptin HCboepion]

OEBPS/httpatomoreillycomsourceoreillyimages20577.png

OEBPS/httpatomoreillycomsourceoreillyimages20759.png
{Tuonsle Heww} OsOMeron o]

OEBPS/httpatomoreillycomsourceoreillyimages20693.png

OEBPS/httpatomoreillycomsourceoreillyimages21533.png
lPeencesm SO

OEBPS/httpatomoreillycomsourceoreillyimages21535.png

OEBPS/httpatomoreillycomsourceoreillyimages21711.png
[P Teosae H Ecepon{GenaSeatossptionH{Lgissptin hsottion ReutEpredEoegicn]

OEBPS/httpatomoreillycomsourceoreillyimages20679.png

OEBPS/httpatomoreillycomsourceoreillyimages21245.png
[|

OEBPS/httpatomoreillycomsourceoreillyimages20853.png
octorTrgEsceson]

OEBPS/httpatomoreillycomsourceoreillyimages21271.png
{ Fumal_Hesogsrora]

OEBPS/httpatomoreillycomsourceoreillyimages20745.png
[GbketH{ Trwnable }{Eror HTniagefr HincompatbedsstrangeerorHosuenrcerer]

OEBPS/httpatomoreillycomsourceoreillyimages21707.png

OEBPS/httpatomoreillycomsourceoreillyimages20901.png
[ocist}{petagamSocket HNulicasSoske]

OEBPS/httpatomoreillycomsourceoreillyimages21023.png

OEBPS/httpatomoreillycomsourceoreillyimages21611.png
[ocistH{DAPrametrspec] (NgortimPranetetpes)

OEBPS/httpatomoreillycomsourceoreillyimages21101.png
[Frotegedicioescepion]

