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Preface



This book provides a working guide to the Open Source Computer Vision Library (OpenCV) and
      also provides a general background to the field of computer vision sufficient to use OpenCV
      effectively.
Purpose



Computer vision is a rapidly growing field, partly as a result of both cheaper and more
        capable cameras, partly because of affordable processing power, and partly because vision
        algorithms are starting to mature. OpenCV itself has played a role in the growth of computer
        vision by enabling thousands of people to do more productive work in vision. With its focus
        on real-time vision, OpenCV helps students and professionals efficiently implement projects
        and jump-start research by providing them with a computer vision and machine learning
        infrastructure that was previously available only in a few mature research labs. The purpose
        of this text is to:
	Better document OpenCV—detail what function calling conventions really mean and how
            to use them correctly.

	Rapidly give the reader an intuitive understanding of how the vision algorithms
            work.

	Give the reader some sense of what algorithm to use and when to use it.

	Give the reader a boost in implementing computer vision and machine learning
            algorithms by providing many working coded examples to start from.

	Provide intuitions about how to fix some of the more advanced routines when
            something goes wrong.



Simply put, this is the text the authors wished we had in school and the coding
        reference book we wished we had at work.
This book documents a tool kit, OpenCV, that allows the reader to do interesting and fun
        things rapidly in computer vision. It gives an intuitive understanding as to how the
        algorithms work, which serves to guide the reader in designing and debugging vision
        applications and also to make the formal descriptions of computer vision and machine
        learning algorithms in other texts easier to comprehend and remember.
After all, it is easier to understand complex algorithms and their associated math when
        you start with an intuitive grasp of how those algorithms work.
Who This Book Is For



This book contains descriptions, working coded examples, and explanations of the
          computer vision tools contained in the OpenCV library. As such, it should be helpful to
          many different kinds of users.
	
              Professionals
            
	For those practicing professionals who need to rapidly implement computer vision
                systems, the sample code provides a quick framework with which to start. Our
                descriptions of the intuitions behind the algorithms can quickly teach or remind the
                reader how they work.

	
              Students
            
	As we said, this is the text we wish had back in school. The intuitive
                explanations, detailed documentation, and sample code will allow you to boot up
                faster in computer vision, work on more interesting class projects, and ultimately
                contribute new research to the field.

	
              Teachers
            
	Computer vision is a fast-moving field. We’ve found it effective to have the
                students rapidly cover an accessible text while the instructor fills in formal
                exposition where needed and supplements with current papers or guest lectures from
                experts. The students can meanwhile start class projects earlier and attempt more
                ambitious tasks.

	
              Hobbyists
            
	Computer vision is fun, here’s how to hack it.



We have a strong focus on giving readers enough intuition, documentation, and working
          code to enable rapid implementation of real-time vision applications.

What This Book Is Not



This book is not a formal text. We do go into mathematical detail at various
            points,[1] but it is all in the service of developing deeper intuitions behind the
          algorithms or to make clear the implications of any assumptions built into those
          algorithms. We have not attempted a formal mathematical exposition here and might even
          incur some wrath along the way from those who do write formal expositions.
This book is not for theoreticians because it has more of an “applied” nature. The
          book will certainly be of general help, but is not aimed at any of the specialized niches
          in computer vision (e.g., medical imaging or remote sensing analysis).
That said, it is the belief of the authors that having read the explanations here
          first, a student will not only learn the theory better but remember it longer. Therefore,
          this book would make a good adjunct text to a theoretical course and would be a great text
          for an introductory or project-centric course.


About the Programs in This Book



All the program examples in this book are based on OpenCV version 2.0. The code should
        definitely work under Linux or Windows and probably under OS-X, too. Source code for the
        examples in the book can be fetched from this book’s website (http://www.oreilly.com/catalog/9780596516130). OpenCV can be loaded from its
        source forge site (http://sourceforge.net/projects/opencvlibrary).
OpenCV is under ongoing development, with official releases occurring once or twice a
        year. As a rule of thumb, you should obtain your code updates from the source forge CVS
        server (http://sourceforge.net/cvs/?group_id=22870).

Prerequisites



For the most part, readers need only know how to program in C and perhaps some C++. Many
        of the math sections are optional and are labeled as such. The mathematics involves simple
        algebra and basic matrix algebra, and it assumes some familiarity with solution methods to
        least-squares optimization problems as well as some basic knowledge of Gaussian
        distributions, Bayes’ law, and derivatives of simple functions.
The math is in support of developing intuition for the algorithms. The reader may skip
        the math and the algorithm descriptions, using only the function
        definitions and code examples to get vision applications up and running.

How This Book Is Best Used



This text need not be read in order. It can serve as a kind of user manual: look up the
        function when you need it; read the function’s description if you want the gist of how it
        works “under the hood”. The intent of this book is more tutorial, however. It gives you a
        basic understanding of computer vision along with details of how and when to use selected
        algorithms.
This book was written to allow its use as an adjunct or as a primary textbook for an
        undergraduate or graduate course in computer vision. The basic strategy with this method is
        for students to read the book for a rapid overview and then supplement that reading with
        more formal sections in other textbooks and with papers in the field. There are exercises at
        the end of each chapter to help test the student’s knowledge and to develop further
        intuitions.
You could approach this text in any of the following ways.
	
            Grab Bag
          
	Go through Chapters Chapter 1–Chapter 3 in the first sitting, then just hit the
              appropriate chapters or sections as you need them. This book does not have to be read
              in sequence, except for Chapters Chapter 11 and
                Chapter 12 (Calibration and Stereo).

	
            Good Progress
          
	Read just two chapters a week until you’ve covered Chapters Chapter 1–Chapter 12 in six weeks (Chapter 13 is a special case, as discussed shortly). Start on
              projects and start in detail on selected areas in the field, using additional texts
              and papers as appropriate.

	
            The Sprint
          
	Just cruise through the book as fast as your comprehension allows, covering
              Chapters Chapter 1–Chapter 12. Then
              get started on projects and go into detail on selected areas in the field using
              additional texts and papers. This is probably the choice for professionals, but it
              might also suit a more advanced computer vision course.



Chapter 13 is a long chapter that gives a general background to
        machine learning in addition to details behind the machine learning algorithms implemented
        in OpenCV and how to use them. Of course, machine learning is integral to object recognition
        and a big part of computer vision, but it’s a field worthy of its own book. Professionals
        should find this text a suitable launching point for further explorations of the
        literature—or for just getting down to business with the code in that part of the library.
        This chapter should probably be considered optional for a typical computer vision
        class.
This is how the authors like to teach computer vision: Sprint through the course content
        at a level where the students get the gist of how things work; then get students started on
        meaningful class projects while the instructor supplies depth and formal rigor in selected
        areas by drawing from other texts or papers in the field. This same method works for
        quarter, semester, or two-term classes. Students can get quickly up and running with a
        general understanding of their vision task and working code to match. As they begin more
        challenging and time-consuming projects, the instructor helps them develop and debug complex
        systems. For longer courses, the projects themselves can become instructional in terms of
        project management. Build up working systems first; refine them with more knowledge, detail,
        and research later. The goal in such courses is for each project to aim at being worthy of a
        conference publication and with a few project papers being published subsequent to further
        (postcourse) work.

Conventions Used in This Book



The following typographical conventions are used in this book:
	
            Italic
          
	Indicates new terms, URLs, email addresses, filenames, file extensions, path
              names, directories, and Unix utilities.

	
            Constant width
          
	Indicates commands, options, switches, variables, attributes, keys, functions,
              types, classes, namespaces, methods, modules, properties, parameters, values, objects,
              events, event handlers, XMLtags, HTMLtags, the contents of files, or the output from
              commands.

	
            Constant width bold
          
	Shows commands or other text that should be typed literally by the user. Also used
              for emphasis in code samples.

	
            Constant width italic
          
	Shows text that should be replaced with user-supplied values.

	[…]
	Indicates a reference to the bibliography.



Tip
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.


Using Code Examples



OpenCV is free for commercial or research use, and we have the same policy on the code
        examples in the book. Use them at will for homework, for research, or for commercial
        products. We would very much appreciate referencing this book when you do, but it is not
        required. Other than how it helped with your homework projects (which is best kept a
        secret), we would like to hear how you are using computer vision for academic research,
        teaching courses, and in commercial products when you do use OpenCV to help you. Again, not
        required, but you are always invited to drop us a line.

Safari® Books Online



When you see a Safari® Books Online icon on the cover of your favorite technology book,
        that means the book is available online through the O’Reilly Network Safari
        Bookshelf.
Safari offers a solution that’s better than e-books. It’s virtual library that lets you
        easily search thousands of top tech books, cut and paste code samples, download chapters,
        and find quick answers when you need the most accurate, current information. Try it for free
        at http://safari.oreilly.com.

We’d Like to Hear from You



Please address comments and questions concerning this book to the publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list examples and any plans for future
        editions. You can access this information at:
	
          http://www.oreilly.com/catalog/9780596516130/
        

You can also send messages electronically. To be put on the mailing list or request a
        catalog, send an email to:
	
          info@oreilly.com
        

To comment on the book, send an email to:
	
          bookquestions@oreilly.com
        

For more information about our books, conferences, Resource Centers, and the O’Reilly
        Network, see our website at:
	
          http://www.oreilly.com
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[1] Always with a warning to more casual users that they may skip such
              sections.


Chapter 1. Overview



What Is OpenCV?



OpenCV [OpenCV] is an open source (see http://opensource.org) computer
        vision library available from http://SourceForge.net/projects/opencvlibrary.
        The library is written in C and C++ and runs under Linux, Windows and Mac OS X. There is active development on interfaces for
          Python, Ruby, Matlab, and other languages.
OpenCV was designed for computational efficiency and with a strong focus on real-time
          applications. OpenCV is written in optimized C and can take advantage of
        multicore processors. If you desire further automatic optimization on Intel architectures
        [Intel], you can buy Intel’s Integrated Performance Primitives (IPP) libraries [IPP], which consist of low-level optimized routines in many different
        algorithmic areas. OpenCV automatically uses the appropriate IPP library at runtime if that
        library is installed.
One of OpenCV’s goals is to provide a simple-to-use computer vision infrastructure that
        helps people build fairly sophisticated vision applications quickly. The OpenCV library
        contains over 500 functions that span many areas in vision, including factory product
        inspection, medical imaging, security, user interface, camera calibration, stereo vision,
        and robotics. Because computer vision and machine learning often go hand-in-hand, OpenCV
        also contains a full, general-purpose Machine Learning Library (MLL). This sublibrary is focused on statistical
        pattern recognition and clustering. The MLL is highly useful for the vision tasks that are at the core of OpenCV’s
        mission, but it is general enough to be used for any machine learning problem.

Who Uses OpenCV?



Most computer scientists and practical programmers are aware of some facet of the role
        that computer vision plays. But few people are aware of all the ways in which computer
        vision is used. For example, most people are somewhat aware of its use in surveillance, and
        many also know that it is increasingly being used for images and video on the Web. A few
        have seen some use of computer vision in game interfaces. Yet few people realize that most
        aerial and street-map images (such as in Google’s Street View) make heavy use of camera calibration and image stitching techniques. Some are aware of niche
          applications in safety monitoring, unmanned flying vehicles, or biomedical
        analysis. But few are aware how pervasive machine vision has become in manufacturing: virtually everything that is mass-produced
        has been automatically inspected at some point using computer vision.
The open source license for OpenCV has been structured such that you can build a commercial
        product using all or part of OpenCV. You are under no obligation to open-source your product
        or to return improvements to the public domain, though we hope you will. In part because of
        these liberal licensing terms, there is a large user community that includes people from major companies (IBM, Microsoft, Intel,
        SONY, Siemens, and Google, to name only a few) and research centers (such as Stanford, MIT,
        CMU, Cambridge, and INRIA). There is a Yahoo groups forum where users can post questions and discussion at http://groups.yahoo.com/group/OpenCV; it has about 20,000 members. OpenCV is
        popular around the world, with large user communities in China, Japan, Russia, Europe, and
        Israel.
Since its alpha release in January 1999, OpenCV has been used in many applications,
        products, and research efforts. These applications include stitching images together in
        satellite and web maps, image scan alignment, medical image noise reduction, object
        analysis, security and intrusion detection systems, automatic monitoring and safety systems,
        manufacturing inspection systems, camera calibration, military applications, and unmanned
        aerial, ground, and underwater vehicles. It has even been used in sound and music
        recognition, where vision recognition techniques are applied to sound spectrogram images.
        OpenCV was a key part of the vision system in the robot from Stanford, “Stanley”, which won the $2M DARPA Grand Challenge desert robot race [Thrun06].

What Is Computer Vision?



Computer vision [2] is the transformation of data from a still or video camera into either a
        decision or a new representation. All such transformations are done for achieving some
        particular goal. The input data may include some contextual information such as “the camera
        is mounted in a car” or “laser range finder indicates an object is 1 meter away”. The
        decision might be “there is a person in this scene” or “there are 14 tumor cells on this
        slide”. A new representation might mean turning a color image into a grayscale image or
        removing camera motion from an image sequence.
Because we are such visual creatures, it is easy to be fooled into thinking that
        computer vision tasks are easy. How hard can it be to find, say, a car when you are staring
        at it in an image? Your initial intuitions can be quite misleading. The human brain divides
        the vision signal into many channels that stream different kinds of information into your
        brain. Your brain has an attention system that identifies, in a task-dependent way,
        important parts of an image to examine while suppressing examination of other areas. There is massive feedback in the visual stream that is, as yet,
        little understood. There are widespread associative inputs from muscle control sensors and
        all of the other senses that allow the brain to draw on cross-associations made from years
        of living in the world. The feedback loops in the brain go back to all stages of processing
        including the hardware sensors themselves (the eyes), which mechanically control lighting
        via the iris and tune the reception on the surface of the retina.
In a machine vision system, however, a computer receives a grid of numbers from the camera or
        from disk, and that’s it. For the most part, there’s no built-in pattern recognition, no
        automatic control of focus and aperture, no cross-associations with years of experience. For
        the most part, vision systems are still fairly naïve. Figure 1-1 shows a picture of an automobile. In
        that picture we see a side mirror on the driver’s side of the car. What the
          computer “sees” is just a grid of numbers. Any given number within
        that grid has a rather large noise component and so by itself gives us little information,
        but this grid of numbers is all the computer “sees”. Our task then becomes to turn this
        noisy grid of numbers into the perception: “side mirror”. Figure 1-2 gives some more insight into why
        computer vision is so hard.
[image: To a computer, the car’s side mirror is just a grid of numbers]

Figure 1-1. To a computer, the car’s side mirror is just a grid of numbers

In fact, the problem, as we have posed it thus far, is worse than hard; it is formally
        impossible to solve. Given a two-dimensional (2D) view of a 3D world, there is no unique way
        to reconstruct the 3D signal. Formally, such an ill-posed problem has no unique or
        definitive solution. The same 2D image could represent any of an infinite combination of 3D
        scenes, even if the data were perfect. However, as already mentioned, the data is corrupted
        by noise and distortions. Such corruption stems from variations in the world (weather,
        lighting, reflections, movements), imperfections in the lens and mechanical setup, finite
        integration time on the sensor (motion blur), electrical noise in the sensor or other
        electronics, and compression artifacts after image capture. Given these daunting challenges, how can we make any progress?
[image: The ill-posed nature of vision: the 2D apperarance of objects can change radically with viewpoint]

Figure 1-2. The ill-posed nature of vision: the 2D apperarance of objects can change radically
          with viewpoint

In the design of a practical system, additional contextual knowledge can often be used
        to work around the limitations imposed on us by visual sensors. Consider the example of a
        mobile robot that must find and pick up staplers in a building. The robot might use the
        facts that a desk is an object found inside offices and that staplers are mostly found on
        desks. This gives an implicit size reference; staplers must be able to fit on desks. It also
        helps to eliminate falsely “recognizing” staplers in impossible places (e.g., on the ceiling
        or a window). The robot can safely ignore a 200-foot advertising blimp shaped like a stapler
        because the blimp lacks the prerequisite wood-grained background of a desk. In contrast,
        with tasks such as image retrieval, all stapler images in a database may be of real staplers and so large sizes and other unusual configurations may have been implicitly
        precluded by the assumptions of those who took the photographs. That is, the photographer probably took
        pictures only of real, normal-sized staplers. People also tend to center objects when taking
        pictures and tend to put them in characteristic orientations. Thus, there is often quite a
        bit of unintentional implicit information within photos taken by people.
Contextual information can also be modeled explicitly with machine learning techniques.
        Hidden variables such as size, orientation to gravity, and so on can then be correlated with
        their values in a labeled training set. Alternatively, one may attempt to measure hidden
        bias variables by using additional sensors. The use of a laser range finder to measure depth
        allows us to accurately measure the size of an object.
The next problem facing computer vision is noise. We typically deal with noise by using
        statistical methods. For example, it may be impossible to detect an edge in an image merely
        by comparing a point to its immediate neighbors. But if we look at the statistics over a
        local region, edge detection becomes much easier. A real edge should appear as a string of such
        immediate neighbor responses over a local region, each of whose orientation is consistent
        with its neighbors. It is also possible to compensate for noise by taking statistics over
        time. Still other techniques account for noise or distortions by building explicit models
        learned directly from the available data. For example, because lens distortions are well
        understood, one need only learn the parameters for a simple polynomial model in order to
        describe—and thus correct almost completely—such distortions.
The actions or decisions that computer vision attempts to make based on camera data are
        performed in the context of a specific purpose or task. We may want to remove noise or
        damage from an image so that our security system will issue an alert if someone tries to
        climb a fence or because we need a monitoring system that counts how many people cross through an area in an amusement park. Vision software for
        robots that wander through office buildings will employ different strategies than vision software for
        stationary security cameras because the two systems have significantly different contexts
        and objectives. As a general rule: the more constrained a computer vision context is, the
        more we can rely on those constraints to simplify the problem and the more reliable our
        final solution will be.
OpenCV is aimed at providing the basic tools needed to solve computer vision problems.
        In some cases, high-level functionalities in the library will be sufficient to solve the
        more complex problems in computer vision. Even when this is not the case, the basic
        components in the library are complete enough to enable creation of a complete solution of
        your own to almost any computer vision problem. In the latter case, there are several
        tried-and-true methods of using the library; all of them start with solving the problem
        using as many available library components as possible. Typically, after you’ve developed
        this first-draft solution, you can see where the solution has weaknesses and then fix those
        weaknesses using your own code and cleverness (better known as “solve the problem you
        actually have, not the one you imagine”). You can then use your draft solution as a
        benchmark to assess the improvements you have made. From that point, whatever weaknesses
        remain can be tackled by exploiting the context of the larger system in which your problem
        solution is embedded.

The Origin of OpenCV



OpenCV grew out of an Intel Research initiative to advance CPU-intensive applications. Toward this
        end, Intel launched many projects including real-time ray tracing and 3D display walls. One
        of the authors working for Intel at that time was visiting universities and noticed that
        some top university groups, such as the MIT Media Lab, had well-developed and internally open computer vision
        infrastructures—code that was passed from student to student and that gave each new student
        a valuable head start in developing his or her own vision application. Instead of
        reinventing the basic functions from scratch, a new student could begin by building on top
        of what came before.
Thus, OpenCV was conceived as a way to make computer vision infrastructure universally
        available. With the aid of Intel’s Performance Library Team,[3] OpenCV started with a core of implemented code and algorithmic specifications
        being sent to members of Intel’s Russian library team. This is the “where” of OpenCV: it
        started in Intel’s research lab with collaboration from the Software Performance Libraries group together with implementation and
        optimization expertise in Russia.
Chief among the Russian team members was Vadim Pisarevsky, who managed, coded, and optimized much of OpenCV and who is still at
        the center of much of the OpenCV effort. Along with him, Victor Eruhimov helped develop the early infrastructure, and Valery Kuriakin managed the Russian lab and greatly supported the effort. There were
        several goals for OpenCV at the outset:
	Advance vision research by providing not only open but also optimized code for basic
            vision infrastructure. No more reinventing the wheel.

	Disseminate vision knowledge by providing a common infrastructure that developers
            could build on, so that code would be more readily readable and transferable.

	Advance vision-based commercial applications by making portable,
            performance-optimized code available for free—with a license that did not require
            commercial applications to be open or free themselves.



Those goals constitute the “why” of OpenCV. Enabling computer vision applications would
        increase the need for fast processors. Driving upgrades to faster processors would generate
        more income for Intel than selling some extra software. Perhaps that is why this open and
        free code arose from a hardware vendor rather than a software company. In some sense, there
        is more room to be innovative at software within a hardware company.
In any open source effort, it’s important to reach a critical mass at which the project
        becomes self-sustaining. There have now been approximately two million downloads of OpenCV,
        and this number is growing by an average of 26,000 downloads a month. The user group now approaches 20,000 members. OpenCV receives many user
        contributions, and central development has largely moved outside of Intel.[4] OpenCV’s past timeline is shown in Figure 1-3. Along the
        way, OpenCV was affected by the dot-com boom and bust and also by numerous changes of
        management and direction. During these fluctuations, there were times when OpenCV had no one
        at Intel working on it at all. However, with the advent of multicore processors and the many
        new applications of computer vision, OpenCV’s value began to rise. Today, OpenCV is an
        active area of development at several institutions, so expect to see many updates in
        multicamera calibration, depth perception, methods for mixing vision with laser range
        finders, and better pattern recognition as well as a lot of support for robotic vision
        needs. For more information on the future of OpenCV, see Chapter 14.
[image: OpenCV timeline]

Figure 1-3. OpenCV timeline

Speeding Up OpenCV with IPP



Because OpenCV was “housed” within the Intel Performance Primitives team and several primary developers remain on friendly
          terms with that team, OpenCV exploits the hand-tuned, highly optimized code in IPP to
          speed itself up. The improvement in speed from using IPP can be substantial. Figure 1-4 compares two other vision
          libraries, LTI [LTI] and VXL [VXL], against OpenCV and OpenCV using IPP. Note that
          performance was a key goal of OpenCV; the library needed the ability to run vision code in
          real time.
OpenCV is written in performance-optimized C and C++ code. It does
            not depend in any way on IPP. If IPP is present, however, OpenCV
          will automatically take advantage of IPP by loading IPP’s dynamic link libraries to
          further enhance its speed.
[image: Two other vision libraries (LTI and VXL) compared with OpenCV (without and with IPP) on four different performance benchmarks: the four bars for each benchmark indicate scores proportional to run time for each of the given libraries; in all cases, OpenCV outperforms the other libraries and OpenCV with IPP outperforms OpenCV without IPP]

Figure 1-4. Two other vision libraries (LTI and VXL) compared with OpenCV (without and with
            IPP) on four different performance benchmarks: the four bars for each benchmark indicate
            scores proportional to run time for each of the given libraries; in all cases, OpenCV
            outperforms the other libraries and OpenCV with IPP outperforms OpenCV without
            IPP


Who Owns OpenCV?



Although Intel started OpenCV, the library is and always was intended to promote commercial and
          research use. It is therefore open and free, and the code itself may be used or embedded
          (in whole or in part) in other applications, whether commercial or research. It does not
          force your application code to be open or free. It does not require that you return
          improvements back to the library—but we hope that you will.


Downloading and Installing OpenCV



The main OpenCV site is on SourceForge at http://SourceForge.net/projects/opencvlibrary and
        the OpenCV Wiki [OpenCV Wiki] page is at http://opencvlibrary.SourceForge.net. For Linux, the source distribution is the file opencv-1.0.0.tar.gz; for Windows, you want OpenCV_1.0.exe. However, the most up-to-date version is always on the CVS
        server at SourceForge.
Install



Once you download the libraries, you must install them. For detailed installation instructions on Linux or Mac OS, see the text file named
            INSTALL directly under the …/opencv/ directory; this file also describes how to build
          and run the OpenCV testing routines. INSTALL lists
          the additional programs you’ll need in order to become an OpenCV developer, such as
            autoconf, automake, libtool, and swig.
Windows



Get the executable installation from SourceForge and run it. It will install OpenCV, register
            DirectShow filters, and perform various post-installation procedures. You are now ready
            to start using OpenCV. You can always go to the …/opencv/_make directory and open opencv.sln with MSVC++ or MSVC.NET 2005, or you can open opencv.dsw with lower versions of MSVC++ and build debug
            versions or rebuild release versions of the library.[5]
To add the commercial IPP performance optimizations to Windows, obtain and install IPP from the
              Intel site (http://www.intel.com/software/products/ipp/index.htm); use version 5.1 or
            later. Make sure the appropriate binary folder (e.g., c:/program files/intel/ipp/5.1/ia32/bin) is in the system path. IPP should
            now be automatically detected by OpenCV and loaded at runtime (more on this in Chapter 3).

Linux



Prebuilt binaries for Linux are not included with the Linux version of OpenCV owing
            to the large variety of versions of GCC and GLIBC in different distributions (SuSE,
            Debian, Ubuntu, etc.). If your distribution doesn’t offer OpenCV, you’ll have to build
            it from sources as detailed in the …/opencv/INSTALL
              file.
To build the libraries and demos, you’ll need GTK+ 2.x or higher, including headers.
            You’ll also need pkgconfig, libpng, zlib, libjpeg,
              libtiff, and libjasper with
            development files. You’ll need Python 2.3, 2.4, or 2.5 with headers installed (developer package). You will
            also need libavcodec and the other libav* libraries (including headers) from ffmpeg
            0.4.9-pre1 or later (svn
              checkout
            svn://svn.mplayerhq.hu/ffmpeg/trunk ffmpeg).
Download ffmpeg from http://ffmpeg.mplayerhq.hu/download.html.[6] The ffmpeg program has a lesser general public license (LGPL). To use it
            with non-GPL software (such as OpenCV), build and use a shared ffmpg library:
$> ./configure --enable-shared
$> make
$> sudo make install
You will end up with: /usr/local/lib/libavcodec.so.*,
              /usr/local/lib/libavformat.so.*, /usr/local/lib/libavutil.so.*, and include
            files under various /usr/local/include/libav*.
To build OpenCV once it is downloaded:[7]
$> ./configure
$> make
$> sudo make install
$> sudo ldconfig
After installation is complete, the default installation path is /usr/local/lib/
            and /usr/local/include/opencv/. Hence
            you need to add /usr/local/lib/ to /etc/ld.so.conf (and run ldconfig afterwards) or add it to the LD_LIBRARY_PATH environment variable; then you are done.
To add the commercial IPP performance optimizations to Linux, install IPP as described previously.
            Let’s assume it was installed in /opt/intel/ipp/5.1/ia32/. Add <your
              install_path>/bin/ and <your
              install_path>/bin/linux32
            LD_LIBRARY_PATH in your initialization script
              (.bashrc or similar):
LD_LIBRARY_PATH=/opt/intel/ipp/5.1/ia32/bin:/opt/intel/ipp/5.1
/ia32/bin/linux32:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH
Alternatively, you can add <your
              install_path>/bin and <your
              install_path>/bin/linux32, one per line, to /etc/ld.so.conf and then run ldconfig
            as root (or use sudo).
That’s it. Now OpenCV should be able to locate IPP shared libraries and make use of
            them on Linux. See …/opencv/INSTALL for more
            details.

MacOS X



As of this writing, full functionality on MacOS X is a priority but there are still
            some limitations (e.g., writing AVIs); these limitations are described in …/opencv/INSTALL.
The requirements and building instructions are similar to the Linux case, with the
            following exceptions:
	By default, Carbon is used instead of GTK+.

	By default, QuickTime is used instead of ffmpeg.

	pkg-config is optional (it is used explicitly only in the samples/c/build_all.sh script).

	RPM and ldconfig are not supported by default. Use configure+make+sudo make install to build and install OpenCV, update
                  DYLD_LIBRARY_PATH (unless ./configure --prefix=/usr is used).



For full functionality, you should install libpng,
              libtiff, libjpeg and libjasper from
              darwinports and/or fink and make them available to ./configure (see ./configure --help).
            For the most current information, see the OpenCV Wiki at http://opencvlibrary.SourceForge.net/ and the Mac-specific page http://opencvlibrary.SourceForge.net/Mac_OS_X_OpenCV_Port.



Getting the Latest OpenCV via CVS



OpenCV is under active development, and bugs are often fixed rapidly when bug reports
        contain accurate descriptions and code that demonstrates the bug. However, official
          OpenCV releases occur only once or twice a year. If you are seriously developing
        a project or product, you will probably want code fixes and updates as soon as they become available. To do this, you will need to access
        OpenCV’s Concurrent Versions System (CVS) on SourceForge.
This isn’t the place for a tutorial in CVS usage. If you’ve worked with other open source projects then you’re probably
        familiar with it already. If you haven’t, check out Essential CVS by
        Jennifer Vesperman (O’Reilly). A command-line CVS client ships with Linux, OS X, and most
        UNIX-like systems. For Windows users, we recommend TortoiseCVS (http://www.tortoisecvs.org/), which integrates nicely with Windows
        Explorer.
On Windows, if you want the latest OpenCV from the CVS repository then you’ll need to
        access the CVSROOT directory:
        :pserver:anonymous@opencvlibrary.cvs.sourceforge.net:2401/cvsroot/opencvlibrary
On Linux, you can just use the following two commands:
        cvs -d:pserver:anonymous@opencvlibrary.cvs.sourceforge.net:/cvsroot/opencvlibrary
        login
When asked for password, hit return. Then use:
        cvs -z3 -d:pserver:anonymous@opencvlibrary.cvs.sourceforge.net:/cvsroot/opencvlibrary
        co -P opencv

More OpenCV Documentation



The primary documentation for OpenCV is the HTML documentation that ships with the source
        code. In addition to this, the OpenCV Wiki and the older HTML documentation are available on
        the Web.
Documentation Available in HTML



OpenCV ships with html-based user documentation in the …/opencv/docs subdirectory. Load the index.htm file, which contains the following links.
	
              CXCORE
            
	Contains data structures, matrix algebra, data transforms, object persistence,
                memory management, error handling, and dynamic loading of code as well as drawing,
                text and basic math.

	
              CV
            
	Contains image processing, image structure analysis, motion and tracking,
                pattern recognition, and camera calibration.

	
              Machine Learning (ML)
            
	Contains many clustering, classification and data analysis functions.

	
              HighGUI
            
	Contains user interface GUI and image/video storage and recall.

	
              CVCAM
            
	Camera interface.

	
              Haartraining
            
	How to train the boosted cascade object detector. This is in the …/opencv/apps/HaarTraining/doc/haartraining.htm
                  file.



The …/opencv/docs directory also contains
            IPLMAN.pdf, which was the original manual for
          OpenCV. It is now defunct and should be used with caution, but it does include detailed
          descriptions of algorithms and of what image types may be used with a particular
          algorithm. Of course, the first stop for such image and algorithm details is the book you
          are reading now.

Documentation via the Wiki



OpenCV’s documentation Wiki is more up-to-date than the html pages that ship with
          OpenCV and it also features additional content as well. The Wiki is located at http://opencvlibrary.SourceForge.net. It includes information on:
	Instructions on compiling OpenCV using Eclipse IDE

	Face recognition with OpenCV

	Video surveillance library

	Tutorials

	Camera compatibility

	Links to the Chinese and the Korean user groups



Another Wiki, located at http://opencvlibrary.SourceForge.net/CvAux, is
          the only documentation of the auxiliary functions discussed in “OpenCV Structure and
          Content” (next section). CvAux includes the following functional areas:
	Stereo correspondence

	View point morphing of cameras

	3D tracking in stereo

	Eigen object (PCA) functions for object recognition

	Embedded hidden Markov models (HMMs)



This Wiki has been translated into Chinese at http://www.opencv.org.cn/index.php/%E9%A6%96%E9%A1%B5.
Regardless of your documentation source, it is often hard to know:
	Which image type (floating, integer, byte; 1–3 channels) works with which
              function

	Which functions work in place

	Details of how to call the more complex functions (e.g., contours)

	Details about running many of the examples in the …/opencv/samples/c/ directory 

	What to do, not just how

	How to set parameters of certain functions



One aim of this book is to address these problems.


OpenCV Structure and Content



OpenCV is broadly structured into five main components, four of which are shown in Figure 1-5. The CV component contains the basic image
        processing and higher-level computer vision algorithms; ML is the machine learning library, which includes many statistical classifiers and
        clustering tools. HighGUI contains I/O routines and functions for storing and loading video and
        images, and CXCore contains the basic data structures and content.
[image: The basic structure of OpenCV]

Figure 1-5. The basic structure of OpenCV

Figure 1-5 does not include CvAux, which contains both defunct areas (embedded HMM face recognition) and
        experimental algorithms (background/foreground segmentation). CvAux is not particularly well
        documented in the Wiki and is not documented at all in the …/opencv/docs subdirectory. CvAux covers:
	Eigen objects, a computationally efficient recognition technique that is, in
            essence, a template matching procedure

	1D and 2D hidden Markov models, a statistical recognition technique solved by
            dynamic programming

	Embedded HMMs (the observations of a parent HMM are themselves HMMs)

	Gesture recognition from stereo vision support

	Extensions to Delaunay triangulation, sequences, and so forth

	Stereo vision

	Shape matching with region contours

	Texture descriptors

	Eye and mouth tracking

	3D tracking

	Finding skeletons (central lines) of objects in a scene

	Warping intermediate views between two camera views

	Background-foreground segmentation

	Video surveillance (see Wiki FAQ for more documentation)

	Camera calibration C++ classes (the C functions and engine are in CV)



Some of these features may migrate to CV in the future; others probably never will.

Portability



OpenCV was designed to be portable. It was originally written to compile across Borland
        C++, MSVC++, and the Intel compilers. This meant that the C and C++ code had to be fairly standard in order
        to make cross-platform support easier. Figure 1-6 shows the platforms on which OpenCV
        is known to run. Support for 32-bit Intel architecture (IA32) on Windows is the most mature,
        followed by Linux on the same architecture. Mac OS X portability became a priority only
        after Apple started using Intel processors. (The OS X port isn’t as mature as the Windows or
        Linux versions, but this is changing rapidly.) These are followed by 64-bit support on
        extended memory (EM64T) and the 64-bit Intel architecture (IA64). The least mature
        portability is on Sun hardware and other operating systems.
If an architecture or OS doesn’t appear in Figure 1-6, this doesn’t mean there are no
        OpenCV ports to it. OpenCV has been ported to almost every commercial system, from PowerPC
        Macs to robotic dogs. OpenCV runs well on AMD’s line of processors, and even the further
        optimizations available in IPP will take advantage of multimedia extensions (MMX) in AMD
        processors that incorporate this technology.
[image: OpenCV portability guide for release 1.0: operating systems are shown on the left; computer architecture types across top]

Figure 1-6. OpenCV portability guide for release 1.0: operating systems are shown on the left;
          computer architecture types across top


Exercises



	Download and install the latest release of OpenCV. Compile it in debug and release
              mode.

	Download and build the latest CVS update of OpenCV.

	Describe at least three ambiguous aspects of converting 3D inputs into a 2D
            representation. How would you overcome these ambiguities?






[2] Computer vision is a vast field. This book will give you a basic grounding in the
            field, but we also recommend texts by Trucco [Trucco98] for a simple introduction,
            Forsyth [Forsyth03] as a comprehensive reference, and Hartley [Hartley06] and Faugeras
            [Faugeras93] for how 3D vision really works.

[3] Shinn Lee was of key help.

[4] As of this writing, Willow Garage [WG] (www.willowgarage.com, a robotics research institute and incubator, is actively supporting general
            OpenCV maintenance and new development in the area of robotics applications.

[5] It is important to know that, although the Windows distribution contains binary
                libraries for release builds, it does not contain the debug builds of these libraries. It is therefore likely that, before
                developing with OpenCV, you will want to open the solution file and build these
                libraries for yourself.

[6] You can check out ffmpeg by: svn checkout
                  svn://svn.mplayerhq.hu/ffmpeg/trunk ffmpeg.

[7] To build OpenCV using Red Hat Package Managers (RPMs), use rpmbuild -ta OpenCV-x.y.z.tar.gz (for RPM 4.x or
                later), or rpm -ta OpenCV-x.y.z.tar.gz (for
                earlier versions of RPM), where OpenCV-x.y.z.tar.gz should be put in /usr/src/redhat/SOURCES/ or a similar directory. Then install OpenCV
                using rpm -i OpenCV-x.y.z.*.rpm.


Chapter 2. Introduction to OpenCV



Getting Started



After installing the OpenCV library, our first task is, naturally, to get started
          and make something interesting happen. In order to do this, we will need to set
        up the programming environment.
In Visual Studio, it is necessary to create a project and to configure the
          setup so that (a) the libraries highgui.lib, cxcore.lib, ml.lib,
        and cv.lib are linked[8] and (b) the preprocessor will search the OpenCV …/opencv/*/include
        directories for header files. These “include” directories will typically be named something like C:/program files/opencv/cv/include,[9]
        …/opencv/cxcore/include, …/opencv/ml/include, and
          …/opencv/otherlibs/highgui. Once you’ve done this,
        you can create a new C file and start your first program.
Tip
Certain key header files can make your life much easier. Many useful macros are in the
          header files …/opencv/cxcore/include/cxtypes.h and
            cxmisc.h. These can do things like initialize
          structures and arrays in one line, sort lists, and so on. The most important headers for
          compiling are …/cv/include/cv.h and …/cxcore/include/cxcore.h for computer vision, …/otherlibs/highgui/highgui.h for I/O, and …/ml/include/ml.h for machine learning.


First Program—Display a Picture



OpenCV provides utilities for reading from a wide array of image file types as well as from video and cameras.
        These utilities are part of a toolkit called HighGUI, which is included in the OpenCV
        package. We will use some of these utilities to create a simple program that opens an image
        and displays it on the screen. See Example 2-1.
Example 2-1. A simple OpenCV program that loads an image from disk and displays it on the
          screen
#include "highgui.h"

int main( int argc, char** argv ) {
    IplImage* img = cvLoadImage( argv[1] );
    cvNamedWindow( "Example1", CV_WINDOW_AUTOSIZE );
    cvShowImage( "Example1", img );
    cvWaitKey(0);
    cvReleaseImage( &img );
    cvDestroyWindow( "Example1" );
}


When compiled and run from the command line with a single argument, this program loads
        an image into memory and displays it on the screen. It then waits until the user presses a key, at which time it closes the window and
        exits. Let’s go through the program line by line and take a moment to understand what each
        command is doing.
IplImage* img = cvLoadImage( argv[1] );
This line loads the image.[10] The function cvLoadImage() is a high-level
        routine that determines the file format to be loaded based on the file name; it also
        automatically allocates the memory needed for the image data structure. Note that cvLoadImage() can read a wide variety of image formats, including BMP, DIB, JPEG, JPE, PNG, PBM, PGM, PPM, SR, RAS, and TIFF. A
        pointer to an allocated image data structure is then returned. This structure, called
          IplImage, is the OpenCV construct with which you will
        deal the most. OpenCV uses this structure to handle all kinds of images: single-channel,
        multichannel, integer-valued, floating-point-valued, et cetera. We use the pointer that
          cvLoadImage()returns to manipulate the image and the
        image data.
cvNamedWindow( "Example1", CV_WINDOW_AUTOSIZE );
Another high-level function, cvNamedWindow(), opens a
        window on the screen that can contain and display an image. This function, provided by the
          HighGUI library, also assigns a name to the window (in this case, "Example1"). Future HighGUI calls that interact with this window
        will refer to it by this name.
The second argument to cvNamedWindow() defines window
          properties. It may be set either to 0 (the default value) or to CV_WINDOW_AUTOSIZE. In the former case, the size of the window
        will be the same regardless of the image size, and the image will be scaled to fit within
        the window. In the latter case, the window will expand or contract automatically when an
        image is loaded so as to accommodate the image’s true size.
cvShowImage( "Example1", img );
Whenever we have an image in the form of an IplImage*
        pointer, we can display it in an existing window with cvShowImage(). The cvShowImage() function
        requires that a named window already exist (created by cvNamedWindow()). On the call to cvShowImage(), the window will be redrawn with the appropriate image in it, and
        the window will resize itself as appropriate if it was created using the CV_WINDOW_AUTOSIZE flag.
cvWaitKey(0);
The cvWaitKey()
        function asks the program to stop and wait for a keystroke. If a positive argument is given, the program will wait for
        that number of milliseconds and then continue even if nothing is pressed. If the argument is
        set to 0 or to a negative number, the program will wait indefinitely for a
          keypress.
cvReleaseImage( &img );
Once we are through with an image, we can free the allocated memory. OpenCV expects a
        pointer to the IplImage* pointer for this operation.
        After the call is completed, the pointer img will be set
        to NULL.
cvDestroyWindow( "Example1" );
Finally, we can destroy the window itself. The function cvDestroyWindow() will close the window and de-allocate any associated memory
        usage (including the window’s internal image buffer, which is holding a copy of the pixel
        information from *img). For a simple program, you don’t
        really have to call cvDestroyWindow() or cvReleaseImage() because all the resources and windows of the
        application are closed automatically by the operating system upon exit, but it’s a good habit anyway.
Now that we have this simple program we can toy around with it in various ways, but we
        don’t want to get ahead of ourselves. Our next task will be to construct a very
        simple—almost as simple as this one—program to read in and display an AVI video file. After
        that, we will start to tinker a little more.

Second Program—AVI Video



Playing a video with OpenCV is almost as easy as displaying a single picture.
        The only new issue we face is that we need some kind of loop to read each frame in sequence;
        we may also need some way to get out of that loop if the movie is too boring. See Example 2-2.
Example 2-2. A simple OpenCV program for playing a video file from disk
#include "highgui.h"

int main( int argc, char** argv ) {
    cvNamedWindow( "Example2", CV_WINDOW_AUTOSIZE );
    CvCapture* capture = cvCreateFileCapture( argv[1] );
    IplImage* frame;
    while(1) {
        frame = cvQueryFrame( capture );
        if( !frame ) break;
        cvShowImage( "Example2", frame );
        char c = cvWaitKey(33);
        if( c == 27 ) break;
    }
    cvReleaseCapture( &capture );
    cvDestroyWindow( "Example2" );
}


Here we begin the function main() with the usual
        creation of a named window, in this case "Example2“.
        Things get a little more interesting after that.
CvCapture* capture = cvCreateFileCapture( argv[1] );
The function cvCreateFileCapture() takes as its
        argument the name of the AVI file to be loaded and then returns a pointer to a CvCapture structure. This structure contains all of the
          information about the AVI file being read, including state information. When
        created in this way, the CvCapture structure is
        initialized to the beginning of the AVI.
frame = cvQueryFrame( capture );
Once inside of the while(1) loop, we begin reading from the AVI file. cvQueryFrame()
        takes as its argument a pointer to a CvCapture structure.
        It then grabs the next video frame into memory (memory that is actually part of the CvCapture structure). A pointer is returned to that frame.
        Unlike cvLoadImage, which actually allocates memory for
        the image, cvQueryFrame uses memory already allocated in
        the CvCapture structure. Thus it will not be necessary
        (or wise) to call cvReleaseImage() for this “frame”
        pointer. Instead, the frame image memory will be freed when the CvCapture structure is released.
c = cvWaitKey(33);
if( c == 27 ) break;
Once we have displayed the frame, we then wait for 33 ms.[11] If the user hits a key, then c will be set to
        the ASCII value of that key; if not, then it will be set to –1. If the user hits the Esc key
        (ASCII 27), then we will exit the read loop. Otherwise, 33 ms will pass and we will just
        execute the loop again.
It is worth noting that, in this simple example, we are not explicitly controlling the
        speed of the video in any intelligent way. We are relying solely on the timer in cvWaitKey() to pace the loading of
        frames. In a more sophisticated application it would be wise to read the actual frame rate
        from the CvCapture structure (from the AVI) and behave
        accordingly!
cvReleaseCapture( &capture );
When we have exited the read loop—because there was no more video data or because the
        user hit the Esc key—we can free the memory associated with the CvCapture structure. This will also close any open file handles to the AVI
        file.

Moving Around



OK, that was great. Now it’s time to tinker around, enhance our toy programs, and
        explore a little more of the available functionality. The first thing we might notice about
        the AVI player of Example 2-2 is that it has
        no way to move around quickly within the video. Our next task will be to add a slider bar,
        which will give us this ability.
The HighGUI toolkit provides a number of simple instruments for working with images and video beyond the simple display functions we have
        just demonstrated. One especially useful mechanism is the slider, which enables us to jump easily from one part of a video to another. To
        create a slider, we call cvCreateTrackbar() and indicate
        which window we would like the trackbar to appear in. In order to obtain the desired
        functionality, we need only supply a callback that will perform the relocation. Example 2-3 gives the details.
Example 2-3. Program to add a trackbar slider to the basic viewer window: when the slider is
          moved, the function onTrackbarSlide() is called and then passed to the slider’s new
          value
#include "cv.h"
#include "highgui.h"

int        g_slider_position = 0;
CvCapture* g_capture         = NULL;

void onTrackbarSlide(int pos) {
    cvSetCaptureProperty(
        g_capture,
        CV_CAP_PROP_POS_FRAMES,
        pos
    );
}

int main( int argc, char** argv ) {
    cvNamedWindow( "Example3", CV_WINDOW_AUTOSIZE );
    g_capture = cvCreateFileCapture( argv[1] );
    int frames = (int) cvGetCaptureProperty(
        g_capture,
        CV_CAP_PROP_FRAME_COUNT
    );
    if( frames!= 0 ) {
      cvCreateTrackbar(
          "Position",
          "Example3",
          &g_slider_position,
          frames,
          onTrackbarSlide
     );
    }
    IplImage* frame;
    // While loop (as in Example 2) capture & show video
    ...
    // Release memory and destroy window
    ...
    return(0);
}


In essence, then, the strategy is to add a global variable to represent the slider
        position and then add a callback that updates this variable and relocates the read position
        in the video. One call creates the slider and attaches the callback, and we are off and running.[12] Let’s look at the details.
int g_slider_position = 0;
CvCapture* g_capture  = NULL;
First we define a global variable for the slider position. The callback will need access to the
        capture object, so we promote that to a global variable. Because we are nice people and like
        our code to be readable and easy to understand, we adopt the convention of adding a leading
          g_ to any global variable.

void onTrackbarSlide(int pos) {
    cvSetCaptureProperty(
    g_capture,
    CV_CAP_PROP_POS_FRAMES,
    pos
);
Now we define a callback routine to be used when the user pokes the slider. This routine
        will be passed to a 32-bit integer, which will be the slider position.
The call to cvSetCaptureProperty() is one we will see
        often in the future, along with its counterpart cvGetCaptureProperty(). These routines allow us to configure (or query in the
        latter case) various properties of the CvCapture object.
        In this case we pass the argument CV_CAP_PROP_POS_FRAMES,
        which indicates that we would like to set the read position in units of frames. (We can use
          AVI_RATIO instead of FRAMES if we want to set the position as a fraction of the overall video
        length). Finally, we pass in the new value of the position. Because HighGUI is highly civilized, it will automatically handle such issues as the
        possibility that the frame we have requested is not a key-frame; it will start at the previous key-frame and fast forward up to the
        requested frame without us having to fuss with such details.
int frames = (int) cvGetCaptureProperty(
    g_capture,
    CV_CAP_PROP_FRAME_COUNT
);
As promised, we use cvGetCaptureProperty()when we
        want to query some data from the CvCapture structure. In
        this case, we want to find out how many frames are in the video so that we can calibrate the
        slider (in the next step).
if( frames!= 0 ) {
  cvCreateTrackbar(
      "Position",
      "Example3",
      &g_slider_position,
      frames,
      onTrackbarSlide
  );
}
The last detail is to create the trackbar itself. The function cvCreateTrackbar() allows us to give the trackbar a label[13] (in this case Position) and to specify a
        window to put the trackbar in. We then provide a variable that will be bound to the
        trackbar, the maximum value of the trackbar, and a callback (or NULL if we don’t want one)
        for when the slider is moved. Observe that we do not create the trackbar if cvGetCaptureProperty() returned a zero frame count. This is
        because sometimes, depending on how the video was encoded, the total number of frames will
        not be available. In this case we will just play the movie without providing a
        trackbar.
It is worth noting that the slider created by HighGUI is not as full-featured as some
        sliders out there. Of course, there’s no reason you can’t use your favorite windowing
        toolkit instead of HighGUI, but the HighGUI tools are quick to implement and get us off the
        ground in a hurry.
Finally, we did not include the extra tidbit of code needed to make the slider move as
        the video plays. This is left as an exercise for the reader.

A Simple Transformation



Great, so now you can use OpenCV to create your own video player, which will not be much
        different from countless video players out there already. But we are interested in computer
        vision, and we want to do some of that. Many basic vision tasks involve the application of
        filters to a video stream. We will modify the program we already have to do a simple
        operation on every frame of the video as it plays.
One particularly simple operation is the smoothing of an image, which effectively reduces the information content of the
        image by convolving it with a Gaussian or other similar kernel function. OpenCV makes such convolutions
        exceptionally easy to do. We can start by creating a new window called "Example4-out",
        where we can display the results of the processing. Then, after we have called cvShowImage() to display the newly captured frame in the input
        window, we can compute and display the smoothed image in the output window. See Example 2-4.
Example 2-4. Loading and then smoothing an image before it is displayed on the screen
#include "cv.h"
#include "highgui.h"

void example2_4( IplImage* image )

    // Create some windows to show the input
    // and output images in.
    //
    cvNamedWindow( "Example4-in" );
    cvNamedWindow( "Example4-out" );

    // Create a window to show our input image
    //
    cvShowImage( "Example4-in", image );

    // Create an image to hold the smoothed output
    //
    IplImage* out = cvCreateImage(
        cvGetSize(image),
        IPL_DEPTH_8U,
        3
    );

    // Do the smoothing
    //
    cvSmooth( image, out, CV_GAUSSIAN, 3, 3 );

    // Show the smoothed image in the output window
    //
    cvShowImage( "Example4-out", out );

    // Be tidy
    //
    cvReleaseImage( &out );

    // Wait for the user to hit a key, then clean up the windows
    //
    cvWaitKey( 0 ); 
    cvDestroyWindow( "Example4-in" );
    cvDestroyWindow( "Example4-out" );

}


The first call to cvShowImage() is no different than
        in our previous example. In the next call, we allocate another image structure. Previously
        we relied on cvCreateFileCapture() to allocate the new
        frame for us. In fact, that routine actually allocated only one frame and then wrote over
        that data each time a capture call was made (so it actually returned the same pointer every
        time we called it). In this case, however, we want to allocate our own image structure to
        which we can write our smoothed image. The first argument is a CvSize structure, which we can conveniently create by calling cvGetSize(image); this gives us the size of the existing
        structure image. The second argument tells us what kind
        of data type is used for each channel on each pixel, and the last argument indicates the
        number of channels. So this image is three channels (with 8 bits per channel) and is the
        same size as image.
The smoothing operation is itself just a single call to the OpenCV library: we
        specify the input image, the output image, the smoothing method, and the parameters for the
        smooth. In this case we are requesting a Gaussian smooth over a 3 × 3 area centered on each
        pixel. It is actually allowed for the output to be the same as the input image, and this
        would work more efficiently in our current application, but we avoided doing this because it
        gave us a chance to introduce cvCreateImage()!
Now we can show the image in our new second window and then free it: cvReleaseImage() takes a pointer to the IplImage* pointer and then de-allocates all of the memory associated with that image.

A Not-So-Simple Transformation



That was pretty good, and we are learning to do more interesting things. In Example 2-4 we chose to allocate a new IplImage structure, and into this new structure we wrote the
        output of a single transformation. As mentioned, we could have applied the transformation in
        such a way that the output overwrites the original, but this is not always a good idea. In
        particular, some operators do not produce images with the same size, depth, and number of
        channels as the input image. Typically, we want to perform a sequence
        of operations on some initial image and so produce a chain of transformed images.
In such cases, it is often useful to introduce simple wrapper functions that both allocate the output image and perform the
        transformation we are interested in. Consider, for example, the reduction of an image by a
        factor of 2 [Rosenfeld80]. In OpenCV this is accomplished by the function cvPyrDown(), which performs a Gaussian smooth and then removes every other line from an image. This is useful
        in a wide variety of important vision algorithms. We can implement the simple function
        described in Example 2-5.
Example 2-5. Using cvPyrDown() to create a new image that is half the width and height of the
          input image
IplImage* doPyrDown(
  IplImage* in,
  int filter = IPL_GAUSSIAN_5x5
) {

    // Best to make sure input image is divisible by two.
    //
    assert( in->width%2 == 0 && in->height%2 == 0 );

    IplImage* out = cvCreateImage( 
        cvSize( in->width/2, in->height/2 ),
        in->depth,
        in->nChannels
    );
    cvPyrDown( in, out );
    return( out );
};


Notice that we allocate the new image by reading the needed parameters from the old
        image. In OpenCV, all of the important data types are implemented as structures and passed
        around as structure pointers. There is no such thing as private data in OpenCV! Let’s now
        look at a similar but slightly more involved example involving the Canny edge
          detector [Canny86] (see Example 2-6). In this case, the edge detector
        generates an image that is the full size of the input image but needs only a single channel
        image to write to.
Example 2-6. The Canny edge detector writes its output to a single channel (grayscale)
          image
IplImage* doCanny(
    IplImage* in,
    double    lowThresh,
    double    highThresh,
    double    aperture
) {
    If(in->nChannels != 1)
        return(0); //Canny only handles gray scale images

    IplImage* out = cvCreateImage(
        cvGetSize( in ),
        in->depth, //IPL_DEPTH_8U, 
        1);
    
    cvCanny( in, out, lowThresh, highThresh, aperture );
    return( out );
};


This allows us to string together various operators quite easily. For example, if we
        wanted to shrink the image twice and then look for lines that were present in the
        twice-reduced image, we could proceed as in Example 2-7.
Example 2-7. Combining the pyramid down operator (twice) and the Canny subroutine in a simple
          image pipeline
IplImage* img1 = doPyrDown( in, IPL_GAUSSIAN_5x5 );
IplImage* img2 = doPyrDown( img1, IPL_GAUSSIAN_5x5 );
IplImage* img3 = doCanny( img2, 10, 100, 3 );

// do whatever with 'img3'
//
...
cvReleaseImage( &img1 );
cvReleaseImage( &img2 );
cvReleaseImage( &img3 );


It is important to observe that nesting the calls to various stages of our filtering pipeline is not a good idea, because then we would have no way to free
        the images that we are allocating along the way. If we are too lazy to do this cleanup, we
        could opt to include the following line in each of the wrappers:
cvReleaseImage( &in );
This "self-cleaning” mechanism would be very tidy, but it would have the following
        disadvantage: if we actually did want to do something with one of the intermediate images,
        we would have no access to it. In order to solve that problem, the preceding code could be
        simplified as described in Example 2-8.
Example 2-8. Simplifying the image pipeline of Example 2-7 by making the individual stages release
          their intermediate memory allocations
IplImage* out;
out = doPyrDown( in, IPL_GAUSSIAN_5x5 );
out = doPyrDown( out, IPL_GAUSSIAN_5x5 );
out = doCanny( out, 10, 100, 3 );

// do whatever with 'out'
//
...
cvReleaseImage ( &out );


One final word of warning on the self-cleaning filter pipeline: in OpenCV we must always
        be certain that an image (or other structure) being de-allocated is one that was, in fact,
        explicitly allocated previously. Consider the case of the IplImage* pointer returned by cvCreateFileCapture(). Here the pointer points to a structure allocated as part
        of the CvCapture structure, and the target structure is
        allocated only once when the CvCapture is initialized and
        an AVI is loaded. De-allocating this structure with a call to cvReleaseImage() would result in some nasty surprises. The moral of this story
        is that, although it’s important to take care of garbage collection in OpenCV, we should
        only clean up the garbage that we have created.

Input from a Camera



Vision can mean many things in the world of computers. In some cases we are analyzing
        still frames loaded from elsewhere. In other cases we are analyzing video that is being read
        from disk. In still other cases, we want to work with real-time data streaming in from some
        kind of camera device.
OpenCV—more specifically, the HighGUI portion of the OpenCV library—provides us with an
        easy way to handle this situation. The method is analogous to how we read AVIs. Instead of
        calling cvCreateFileCapture(), we call cvCreateCameraCapture(). The latter routine does not take a file
        name but rather a camera ID number as its argument. Of course, this is important only when
        multiple cameras are available. The default value is –1, which means “just pick one”;
        naturally, this works quite well when there is only one camera to pick (see Chapter 4 for more details).
The cvCreateCameraCapture() function returns the same
          CvCapture* pointer, which we can hereafter use exactly
        as we did with the frames grabbed from a video stream. Of course, a lot of work is going on
        behind the scenes to make a sequence of camera images look like a video, but we are
        insulated from all of that. We can simply grab images from the camera whenever we are ready
        for them and proceed as if we did not know the difference. For development reasons, most
        applications that are intended to operate in real time will have a video-in mode as well,
        and the universality of the CvCapture structure makes
        this particularly easy to implement. See Example 2-9.
Example 2-9. After the capture structure is initialized, it no longer matters whether the image is
          from a camera or a file
CvCapture* capture;

if( argc==1 ) {
    capture = cvCreateCameraCapture(0);
} else {
    capture = cvCreateFileCapture( argv[1] );
}
assert( capture != NULL );

// Rest of program proceeds totally ignorant
...


As you can see, this arrangement is quite ideal.

Writing to an AVI File



In many applications we will want to record streaming input or even disparate captured
          images to an output video stream, and OpenCV provides a straightforward method for doing this. Just
        as we are able to create a capture device that allows us to grab frames one at a time from a
        video stream, we are able to create a writer device that allows us to place frames one by
        one into a video file. The routine that allows us to do this is cvCreateVideoWriter().
Once this call has been made, we may successively call cvWriteFrame(), once for each frame, and finally cvReleaseVideoWriter() when we are done. Example 2-10 describes a simple program that opens
        a video file, reads the contents, converts them to a log-polar format (something like what
        your eye actually sees, as described in Chapter 6), and writes out
        the log-polar image to a new video file.
Example 2-10. A complete program to read in a color video and write out the log-polar transformed
          video
// Convert a video to grayscale
 // argv[1]: input video file
 // argv[2]: name of new output file
 //
#include "cv.h"
#include "highgui.h"
main( int argc, char* argv[] ) {
    CvCapture* capture = 0;
    capture = cvCreateFileCapture( argv[1] );
    if(!capture){
         return -1;
    }
    IplImage *bgr_frame=cvQueryFrame(capture);//Init the video read
    double fps = cvGetCaptureProperty (
        capture,
        CV_CAP_PROP_FPS
    );
    CvSize size = cvSize(
       (int)cvGetCaptureProperty( capture, CV_CAP_PROP_FRAME_WIDTH),
       (int)cvGetCaptureProperty( capture, CV_CAP_PROP_FRAME_HEIGHT)
    );
    CvVideoWriter *writer = cvCreateVideoWriter(
        argv[2],
        CV_FOURCC('M','J','P','G'),
        fps,
        size
    );
    IplImage* logpolar_frame = cvCreateImage(
        size,
        IPL_DEPTH_8U,
        3
    );
    while( (bgr_frame=cvQueryFrame(capture)) != NULL ) {
        cvLogPolar( bgr_frame, logpolar_frame,
                    cvPoint2D32f(bgr_frame->width/2,
                    bgr_frame->height/2),
                    40,
                    CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS );
        cvWriteFrame( writer, logpolar_frame );
    }
    cvReleaseVideoWriter( &writer );
    cvReleaseImage( &logpolar_frame );
    cvReleaseCapture( &capture );
    return(0);
}


Looking over this program reveals mostly familiar elements. We open one video; start
        reading with cvQueryFrame(), which is necessary to read
        the video properties on some systems; and then use cvGetCaptureProperty() to ascertain various important properties of the video
        stream. We then open a video file for writing, convert the frame to log-polar format, and
        write the frames to this new file one at a time until there are none left. Then we close
          up.
The call to cvCreateVideoWriter() contains several
        parameters that we should understand. The first is just the filename for the new file. The
        second is the video codec with which the video stream will be
        compressed. There are countless such codecs in circulation, but whichever codec you choose must be available on your
        machine (codecs are installed separately from OpenCV). In our case we choose the relatively
        popular MJPG codec; this is indicated to OpenCV by using the macro
          CV_FOURCC(), which takes four characters as arguments.
        These characters constitute the “four-character code” of the codec, and every codec has such
        a code. The four-character code for motion jpeg is MJPG, so we specify
        that as CV_FOURCC('M','J','P','G').
The next two arguments are the replay frame rate, and the size of the images we will be
        using. In our case, we set these to the values we got from the original (color)
        video.

Onward



Before moving on to the next chapter, we should take a moment to take stock of where we
        are and look ahead to what is coming. We have seen that the OpenCV API provides us with a
        variety of easy-to-use tools for loading still images from files, reading video from disk,
        or capturing video from cameras. We have also seen that the library contains primitive
        functions for manipulating these images. What we have not yet seen are the powerful elements
        of the library, which allow for more sophisticated manipulation of the entire set of
        abstract data types that are important to practical vision problem solving.
In the next few chapters we will delve more deeply into the basics and come to
        understand in greater detail both the interface-related functions and the image data types.
        We will investigate the primitive image manipulation operators and, later, some much more
        advanced ones. Thereafter, we will be ready to explore the many specialized services that
        the API provides for tasks as diverse as camera calibration, tracking, and recognition.
        Ready? Let’s go!

Exercises



Download and install OpenCV if you have not already done so. Systematically go through
        the directory structure. Note in particular the docs
        directory; there you can load index.htm, which further
        links to the main documentation of the library. Further explore the main areas of the
        library. Cxcore contains the basic data structures and
        algorithms, cv contains the image processing and vision
        algorithms, ml includes algorithms for machine learning
        and clustering, and otherlibs/highgui contains the I/O
        functions. Check out the _make directory (containing
        the OpenCV build files) and also the samples directory, where example code is
          stored.
	Go to the …/opencv/_make directory. On Windows,
            open the solution file opencv.sln; on Linux, open
            the appropriate makefile. Build the library in both the debug and the release versions.
            This may take some time, but you will need the resulting library and dll files.

	Go to the …/opencv/samples/c/ directory. Create
            a project or make file and then import and build lkdemo.c (this is an example motion tracking program). Attach a camera to
            your system and run the code. With the display window selected, type “r” to initialize
            tracking. You can add points by clicking on video positions with the mouse. You can also
            switch to watching only the points (and not the image) by typing “n”. Typing “n” again
            will toggle between “night” and “day” views.

	Use the capture and store code in Example 2-10, together with the doPyrDown() code of Example 2-5 to create a program that reads
            from a camera and stores downsampled color images to disk.

	Modify the code in exercise 3 and combine it with the window display code in Example 2-1 to display the frames as they are
            processed.

	Modify the program of exercise 4 with a slider control from Example 2-3 so that the user can dynamically
            vary the pyramid downsampling reduction level by factors of between 2 and 8. You may
            skip writing this to disk, but you should display the results.






[8] For debug builds, you should link to the libraries highguid.lib, cxcored.lib, mld.lib, and cvd.lib

[9] C:/program files/ is the default installation of the OpenCV directory on Windows, although you can choose to
            install it elsewhere. To avoid confusion, from here on we’ll use "…/opencv/" to
            mean the path to the opencv directory on your system.

[10] A proper program would check for the existence of argv[1] and, in its absence, deliver an instructional error message for the
            user. We will abbreviate such necessities in this book and assume that the reader is
            cultured enough to understand the importance of error-handling code.

[11] You can wait any amount of time you like. In this case, we are simply assuming that
            it is correct to play the video at 30 frames per second and allow user input to interrupt between each frame (thus we pause for input 33 ms between
            each frame). In practice, it is better to check the CvCapture structure returned by cvCaptureFromCamera() in order to determine the actual frame rate (more on
            this in Chapter 4).

[12] This code does not update the slider position as the video plays; we leave that as
            an exercise for the reader. Also note that some mpeg encodings do not allow you to move
            backward in the video.

[13] Because HighGUI is a lightweight and easy-to-use toolkit, cvCreateTrackbar() does not distinguish between the name of the trackbar
            and the label that actually appears on the screen next to the trackbar. You may already
            have noticed that cvNamedWindow() likewise does not
            distinguish between the name of the window and the label that appears on the window in
            the GUI.


Chapter 3. Getting to Know OpenCV



OpenCV Primitive Data Types



OpenCV has several primitive data types. These data types are not primitive from the point of view of C, but they are all simple structures, and we will regard them as atomic. You can examine details of the structures
        described in what follows (as well as other structures) in the cxtypes.h
        header file, which is in the …/OpenCV/cxcore/include directory of the OpenCV install.
The simplest of these types is CvPoint. CvPoint is a
        simple structure with two integer members, x and y. CvPoint has two siblings: CvPoint2D32f and CvPoint3D32f. The former
        has the same two members x and y, which are both floating-point numbers. The latter also contains a third
        element, z.
CvSize is more like a cousin to CvPoint. Its members are width and height, which are both integers.
        If you want floating-point numbers, use CvSize’s cousin
          CvSize2D32f.
CvRect is another child of CvPoint and CvSize; it contains four
        members: x, y, width, and height. (In case you were worried, this child was adopted.)
Last but not least is CvScalar, which is a set of
        four double-precision numbers. When memory is not an issue, CvScalar is often used to represent one, two, or three real numbers (in these
        cases, the unneeded components are simply ignored). CvScalar has a single member val, which is a
        pointer to an array containing the four double-precision floating-point numbers.
All of these data types have constructor methods with names like cvSize()
          (generally[14] the constructor has the same name as the structure type but with the first
        character not capitalized). Remember that this is C and not C++, so these “constructors” are
        just inline functions that take a list of arguments and return the desired structure with
        the values set appropriately.
The inline constructors for the data types listed in Table 3-1—cvPointXXX(), cvSize(), cvRect(), and cvScalar()—are extremely useful because they make your code not
        only easier to write but also easier to read. Suppose you wanted to draw a white rectangle
        between (5, 10) and (20, 30); you could simply call:
cvRectangle(
  myImg,
  cvPoint(5,10),
  cvPoint(20,30),
  cvScalar(255,255,255)
);
Table 3-1. Structures for points, size, rectangles, and scalar tuples
	
                Structure

              	
                Contains

              	
                Represents

              
	
                
                  CvPoint
                

              	
                
                  int x, y
                

              	
                Point in image

              
	
                
                  CvPoint2D32f
                

              	
                
                  float x, y
                

              	
                Points in [image: ]

              
	
                
                  CvPoint3D32f
                

              	
                
                  float x, y, z
                

              	
                Points in [image: ]

              
	
                
                  CvSize
                

              	
                
                  int width, height
                

              	
                Size of image

              
	
                
                  CvRect
                

              	
                
                  int x, y, width, height
                

              	
                Portion of image

              
	
                
                  CvScalar
                

              	
                
                  double val[4]
                

              	
                RGBA value

              



cvScalar() is a special case: it has three
        constructors. The first, called cvScalar(), takes one,
        two, three, or four arguments and assigns those arguments to the corresponding elements of
          val[]. The second constructor is cvRealScalar(); it takes one argument, which it assigns to
          val[0] while setting the other entries to 0. The final
        variant is cvScalarAll(), which takes a single argument
        but sets all four elements of val[] to that same
          argument.
Matrix and Image Types



Figure 3-1 shows the class or
          structure hierarchy of the three image types. When using OpenCV, you will repeatedly
          encounter the IplImage data type. You have already seen
          it many times in the previous chapter. IplImage is the
          basic structure used to encode what we generally call “images”. These images may be
          grayscale, color, four-channel (RGB+alpha), and each channel may contain any of several
          types of integer or floating-point numbers. Hence, this type is more general than the
          ubiquitous three-channel 8-bit RGB image that immediately comes to mind.[15]
OpenCV provides a vast arsenal of useful operators that act on these images, including
          tools to resize images, extract individual channels, find the largest or smallest value of
          a particular channel, add two images, threshold an image, and so on. In this chapter we
          will examine these sorts of operators carefully.
[image: Even though OpenCV is implemented in C, the structures used in OpenCV have an object-oriented design; in effect, IplImage is derived from CvMat, which is derived from CvArr]

Figure 3-1. Even though OpenCV is implemented in C, the structures used in OpenCV have an
            object-oriented design; in effect, IplImage is derived from CvMat, which is derived from
            CvArr

Before we can discuss images in detail, we need to look at another data type: CvMat, the OpenCV matrix structure. Though OpenCV is implemented entirely in C, the relationship
          between CvMat and IplImage is akin to inheritance in C++. For all intents and purposes, an
            IplImage can be thought of as being derived from
            CvMat. Therefore, it is best to understand the
          (would-be) base class before attempting to understand the added complexities of the
          derived class. A third class, called CvArr, can be
          thought of as an abstract base class from which CvMat
          is itself derived. You will often see CvArr (or, more
          accurately, CvArr*) in function prototypes. When it
          appears, it is acceptable to pass CvMat* or IplImage* to the routine.


CvMat Matrix Structure



There are two things you need to know before we dive into the matrix business. First,
        there is no “vector” construct in OpenCV. Whenever we want a vector, we just use a matrix
        with one column (or one row, if we want a transpose or conjugate vector). Second, the
        concept of a matrix in OpenCV is somewhat more abstract than the concept you learned in your
        linear algebra class. In particular, the elements of a matrix need not themselves be simple numbers. For example, the
        routine that creates a new two-dimensional matrix has the following prototype:
CvMat* cvCreateMat ( int rows, int cols, int type );
Here type can be any of a long list of predefined
        types of the form: CV_<bit_depth>(S|U|F)
          C<number_of_channels>. Thus, the matrix could consist of 32-bit floats
          (CV_32FC1), of unsigned integer 8-bit triplets
          (CV_8UC3), or of countless other elements. An element
        of a CvMat is not necessarily a single number. Being able
        to represent multiple values for a single entry in the matrix allows us to do things like
        represent multiple color channels in an RGB image. For a simple image containing red, green
        and blue channels, most image operators will be applied to each channel separately (unless
        otherwise noted).
Internally, the structure of CvMat is relatively
        simple, as shown in Example 3-1 (you can see this
        for yourself by opening up …/opencv/cxcore/include/cxtypes.h). Matrices have a width, a height, a type, a
        step (the length of a row in bytes, not ints or floats), and a pointer to a data array (and some more stuff that we won’t talk about just yet). You can
        access these members directly by de-referencing a pointer to CvMat or, for some more popular elements, by using supplied accessor functions.
        For example, to obtain the size of a matrix, you can get the information you want either by calling cvGetSize(CvMat*), which returns a CvSize structure, or by accessing the height and width independently with such constructs as matrix->height and matrix->width.
Example 3-1. CvMat structure: the matrix “header”
typedef struct CvMat {
    int type;
    int step;
    int* refcount;    // for internal use only
    union {
        uchar*  ptr;
        short*  s;
        int*    i;
        float*  fl;
        double* db;
    } data;
    union {
        int rows;
        int height;
    };
    union {
        int cols;
        int width;
    };
} CvMat;


This information is generally referred to as the matrix header.
        Many routines distinguish between the header and the data, the latter being the memory that
        the data element points to.
Matrices can be created in one of several ways. The most common way is to use cvCreateMat(), which is essentially shorthand for the
        combination of the more atomic functions cvCreateMatHeader() and cvCreateData().
          cvCreateMatHeader() creates the CvMat structure without allocating memory for the data, while
          cvCreateData() handles the data allocation. Sometimes
        only cvCreateMatHeader() is required, either because you
        have already allocated the data for some other reason or because you are not yet ready to
        allocate it. The third method is to use the cvCloneMat(CvMat*), which creates a new matrix from an existing one.[16] When the matrix is no longer needed, it can be released by calling cvReleaseMat(CvMat**).
The list in Example 3-2 summarizes the functions we
        have just described as well as some others that are closely related.
Example 3-2. Matrix creation and release
// Create a new rows by cols matrix of type 'type'.
//
CvMat* cvCreateMat( int rows, int cols, int type );

// Create only matrix header without allocating data
//
CvMat* cvCreateMatHeader( int rows, int cols, int type );

// Initialize header on existing CvMat structure
//
CvMat* cvInitMatHeader(
  CvMat* mat,
  int   rows,
  int   cols,
  int   type,
  void* data = NULL,
  int   step = CV_AUTOSTEP
);

// Like cvInitMatHeader() but allocates CvMat as well.
//
CvMat cvMat(
  int   rows,
  int   cols,
  int   type,
  void* data = NULL
);

// Allocate a new matrix just like the matrix 'mat'.
//
CvMat* cvCloneMat( const cvMat* mat );

// Free the matrix 'mat', both header and data.
//
void cvReleaseMat( CvMat** mat );


Analogously to many OpenCV structures, there is a constructor called cvMat() that creates a CvMat
        structure. This routine does not actually allocate memory; it only creates the header (this
        is similar to cvInitMatHeader()). These methods are a
        good way to take some data you already have lying around, package it by pointing the matrix
        header to it as in Example 3-3, and run it
        through routines that process OpenCV matrices.
Example 3-3. Creating an OpenCV matrix with fixed data
// Create an OpenCV Matrix containing some fixed data.
//
float vals[] = { 0.866025, -0.500000, 0.500000, 0.866025 };

CvMat rotmat;

cvInitMatHeader(
  &rotmat,
  2,
  2,
  CV_32FC1,
  vals
);


Once we have a matrix, there are many things we can do with it. The simplest operations are
          querying aspects of the array definition and data access. To query the matrix, we have cvGetElemType( const CvArr* arr ), cvGetDims( const CvArr* arr, int* sizes=NULL
          ), and cvGetDimSize( const CvArr* arr, int index
          ). The first returns an integer constant representing the type of elements
        stored in the array (this will be equal to something like CV_8UC1,
          CV_64FC4, etc). The second takes the array and an optional pointer to an
        integer; it returns the number of dimensions (two for the cases we are considering, but
        later on we will encounter N-dimensional matrixlike objects). If the
        integer pointer is not null then it will store the height and width (or
          N dimensions) of the supplied array. The last function takes an
        integer indicating the dimension of interest and simply returns the extent of the matrix in
        that dimension.[17]
Accessing Data in Your Matrix



There are three ways to access the data in your matrix: the easy way, the hard way,
          and the right way.
The easy way



The easiest way to get at a member element of an array is with the CV_MAT_ELEM() macro. Thismacro (see Example 3-4) takes the matrix, the type of
            element to be retrieved, and the row and column numbers and then returns the
            element.
Example 3-4. Accessing a matrix with the CV_MAT_ELEM() macro
CvMat* mat = cvCreateMat( 5, 5, CV_32FC1 );
float element_3_2 = CV_MAT_ELEM( *mat, float, 3, 2 );


“Under the hood” this macro is just calling the macro CV_MAT_ELEM_PTR(). CV_MAT_ELEM_PTR() (see Example 3-5) takes as arguments the matrix
            and the row and column of the desired element and returns (not surprisingly) a pointer
            to the indicated element. One important difference between CV_MAT_ELEM() and CV_MAT_ELEM_PTR() is
            that CV_MAT_ELEM() actually casts the pointer to the
            indicated type before de-referencing it. If you would like to set a value rather than
            just read it, you can call CV_MAT_ELEM_PTR()
            directly; in this case, however, you must cast the returned pointer to the appropriate
            type yourself.
Example 3-5. Setting a single value in a matrix using the CV_MAT_ELEM_PTR() macro
CvMat* mat = cvCreateMat( 5, 5, CV_32FC1 );
float element_3_2 = 7.7;
*( (float*)CV_MAT_ELEM_PTR( *mat, 3, 2 ) ) = element_3_2;


Unfortunately, these macros recompute the pointer needed on every call. This means
            looking up the pointer to the base element of the data area of the matrix, computing an offset to get the address of the information you are
            interested in, and then adding that offset to the computed base. Thus, although these
            macros are easy to use, they may not be the best way to access a matrix. This is
            particularly true when you are planning to access all of the elements in a matrix
            sequentially. We will come momentarily to the best way to accomplish this important
            task.

The hard way



The two macros discussed in “The easy way” are suitable only for accessing one- and two-dimensional arrays (recall that one-dimensional
            arrays, or “vectors”, are really just n-by-1 matrices). OpenCV
            provides mechanisms for dealing with multidimensional arrays. In fact OpenCV allows for
            a general N-dimensional matrix that can have as many dimensions as
            you like.
For accessing data in a general matrix, we use the family of functions cvPtr*D and cvGet*D… listed in Examples Example 3-6 and Example 3-7. The cvPtr*D
            family contains cvPtr1D(), cvPtr2D(),
              cvPtr3D(), and cvPtrND() …. Each of the
            first three takes a CvArr* matrix pointer argument
            followed by the appropriate number of integers for the indices, and an optional argument
            indicating the type of the output parameter. The routines return a pointer to the
            element of interest. With cvPtrND(), the second
            argument is a pointer to an array of integers containing the appropriate number of
            indices. We will return to this function later. (In the prototypes that follow, you will
            also notice some optional arguments; we will address those when we need them.)
Example 3-6. Pointer access to matrix structures
uchar* cvPtr1D(
  const CvArr* arr,
  int          idx0,
  int*         type = NULL
);

uchar* cvPtr2D(
  const CvArr* arr,
  int          idx0,
  int          idx1,
  int*         type = NULL
);

uchar* cvPtr3D(
  const CvArr* arr,
  int          idx0,
  int          idx1,
  int          idx2,
  int*         type = NULL
);

uchar* cvPtrND(
  const CvArr* arr,
  int*         idx,
  int*         type            = NULL,
  int          create_node     = 1,
  unsigned*    precalc_hashval = NULL
);


For merely reading the data, there is another family of functions cvGet*D, listed in
              Example 3-7, that are analogous to those of
              Example 3-6 but return the actual value of
            the matrix element.
Example 3-7. CvMat and IplImage element functions
double cvGetReal1D( const CvArr* arr, int idx0 );
double cvGetReal2D( const CvArr* arr, int idx0, int idx1 );
double cvGetReal3D( const CvArr* arr, int idx0, int idx1, int idx2 );
double cvGetRealND( const CvArr* arr, int* idx );

CvScalar cvGet1D( const CvArr* arr, int idx0 );
CvScalar cvGet2D( const CvArr* arr, int idx0, int idx1 );
CvScalar cvGet3D( const CvArr* arr, int idx0, int idx1, int idx2 );
CvScalar cvGetND( const CvArr* arr, int* idx );


The return type of cvGet*D is double for four of the routines and CvScalar for the other four. This means that there can be some significant
            waste when using these functions. They should be used only where convenient and
            efficient; otherwise, it is better just to use cvPtr*D.
One reason it is better to use cvPtr*D() is that
            you can use these pointer functions to gain access to a particular point in the matrix
            and then use pointer arithmetic to move around in the matrix from there. It is important
            to remember that the channels are contiguous in a multichannel matrix. For example, in a
            three-channel two-dimensional matrix representing red, green, blue (RGB) bytes, the
            matrix data is stored: rgbrgbrgb . . . . Therefore, to move a pointer of the
            appropriate type to the next channel, we add 1. If we wanted to go to the next “pixel”
            or set of elements, we’d add and offset equal to the number of channels (in this case
              3).
The other trick to know is that the step element
            in the matrix array (see Examples Example 3-1
            and Example 3-2) is the length in bytes of a row in
            the matrix. In that structure, cols or width alone is not enough to move between matrix rows
            because, for machine efficiency, matrix or image allocation is done to the nearest
            four-byte boundary. Thus a matrix of width three bytes would be allocated four bytes
            with the last one ignored. For this reason, if we get a byte pointer to a data element
            then we add step to the pointer in order to step it
            to the next row directly below our point. If we have a matrix of integers or
            floating-point numbers and corresponding int or
              float pointers to a data element, we would step to
            the next row by adding step/4; for doubles, we’d add
              step/8 (this is just to take into account that C
            will automatically multiply the offsets we add by the data type’s byte size).
Somewhat analogous to cvGet*D is cvSet*D in Example 3-8, which sets a matrix or image element with a single call, and the functions cvSetReal*D() and cvSet*D(), which can be used to set the values of elements of a matrix or
            image.
Example 3-8. Set element functions for CvMat or IplImage.
void cvSetReal1D( CvArr* arr, int idx0, double value );
void cvSetReal2D( CvArr* arr, int idx0, int idx1, double value );
void cvSetReal3D(
  CvArr* arr,
  int idx0,
  int idx1,
  int idx2,
  double value
);
void cvSetRealND( CvArr* arr, int* idx, double value );

void cvSet1D( CvArr* arr, int idx0, CvScalar value );
void cvSet2D( CvArr* arr, int idx0, int idx1, CvScalar value );
void cvSet3D(
  CvArr* arr,
  int idx0,
  int idx1,
  int idx2,
  CvScalar value
);
void cvSetND( CvArr* arr, int* idx, CvScalar value );


As an added convenience, we also have cvmSet()
            and cvmGet(), which are used when dealing with
            single-channel floating-point matrices. They are very simple:
double cvmGet( const CvMat* mat, int row, int col )
void cvmSet( CvMat* mat, int row, int col, double value )
So the call to the convenience function cvmSet(),
cvmSet( mat, 2, 2, 0.5000 );
is the same as the call to the equivalent cvSetReal2D function,
cvSetReal2D( mat, 2, 2, 0.5000 );

The right way



With all of those accessor functions, you might think that there’s nothing more to
            say. In fact, you will rarely use any of the set and get functions. Most of the time,
            vision is a processor-intensive activity, and you will want to do things in the most
            efficient way possible. Needless to say, going through these interface functions is not
            efficient. Instead, you should do your own pointer arithmetic and simply de-reference your way into the matrix.
            Managing the pointers yourself is particularly important when you want to do something
            to every element in an array (assuming there is no OpenCV routine that can perform this
            task for you).
For direct access to the innards of a matrix, all you really need to know is that
            the data is stored sequentially in raster scan order, where columns (“x”) are
            the fastest-running variable. Channels are interleaved, which means that, in the case of
            a multichannel matrix, they are a still faster-running ordinal. Example 3-9 shows an example of how this can
            be done.
Example 3-9. Summing all of the elements in a three-channel matrix
float sum( const CvMat* mat ) {

  float s = 0.0f;
  for(int row=0; row<mat->rows; row++ ) {
    const float* ptr = (const float*)(mat->data.ptr + row * mat->step);
    for( col=0; col<mat->cols; col++ ) {
      s += *ptr++;
    }
  }
  return( s );
}


When computing the pointer into the matrix, remember that the matrix element
              data is a union. Therefore, when de-referencing
            this pointer, you must indicate the correct element of the union in order to obtain the
            correct pointer type. Then, to offset that pointer, you must use the step element of the matrix. As noted previously, the
              step element is in bytes. To be safe, it is best to
            do your pointer arithmetic in bytes and then cast to the appropriate type, in this
            case float. Although the CvMat structure has the concept of height and width for compatibility with
            the older IplImage structure, we use the more
            up-to-date rows and cols instead. Finally, note that we recompute ptr for every row rather than simply starting at the beginning and then
            incrementing that pointer every read. This might seem excessive, but because the CvMat
            data pointer could just point to an ROI within a larger array, there is no guarantee that the data will be contiguous across
              rows.


Arrays of Points



One issue that will come up often—and that is important to understand—is the
          difference between a multidimensional array (or matrix) of multidimensional objects and an
          array of one higher dimension that contains only one-dimensional objects. Suppose, for
          example, that you have n points in three dimensions which you want to
          pass to some OpenCV function that takes an argument of type CvMat* (or, more likely, CvArr*). There
          are four obvious ways you could do this, and it is absolutely critical to remember that
          they are not necessarily equivalent. One method would be to use a two-dimensional array of
          type CV32FC1 with n rows and three
          columns (n-by-3). Similarly, you could use a two-dimensional array
          with three rows and n columns (3-by-n). You
          could also use an array with n rows and one column
            (n-by-1) of type CV32FC3. Some
          of these cases can be freely converted from one to the other (meaning you can just pass
          one where the other is expected) but others cannot. To understand why, consider the memory
            layout shown in Figure 3-2.
As you can see in the figure, the points are mapped into memory in the same way for
          three of the four cases just described above but differently for the last. The situation
          is even more complicated for the case of an N-dimensional array of
          c-dimensional points. The key thing to remember is that the location
          of any given point is given by the formula:
[image: A set of ten points, each represented by three floating-point numbers, placed in four arrays that each use a slightly different structure; in three cases the resulting memory layout is identical, but one case is different]

Figure 3-2. A set of ten points, each represented by three floating-point numbers, placed in
            four arrays that each use a slightly different structure; in three cases the resulting
            memory layout is identical, but one case is different

[image: image with no caption]

where Ncols and
            Nchannels are the number of columns and channels, respectively.[18] From this formula one can see that, in general, an
          N-dimensional array of c-dimensional objects is
          not the same as an (N + c)-dimensional array of one-dimensional
          objects. In the special case of N = 1 (i.e., vectors represented
          either as n-by-1 or 1-by-n arrays), there is a
          special degeneracy (specifically, the equivalences shown in Figure 3-2) that can sometimes be taken
          advantage of for performance.
The last detail concerns the OpenCV data types such as CvPoint2D and CvPoint2D32f. These data types are defined as C structures and
          therefore have a strictly defined memory layout. In particular, the integers or
          floating-point numbers that these structures comprise are “channel” sequential. As a
          result, a one-dimensional C-style array of these objects has the same memory layout as an
            n-by-1 or a 1-by-n array of type CV32FC2. Similar reasoning applies for arrays of structures of
          the type CvPoint3D32f.


IplImage Data Structure



With all of that in hand, it is now easy to discuss the IplImage data structure. In essence this object is a CvMat but with some extra goodies buried in it to make the matrix interpretable
        as an image. This structure was originally defined as part of Intel’s Image Processing Library (IPL).[19] The exact definition of the IplImage
        structure is shown in Example 3-10.
Example 3-10. IplImage header structure
typedef struct _IplImage {
  int                  nSize;
  int                  ID;
  int                  nChannels;
  int                  alphaChannel;
  int                  depth;
  char                 colorModel[4];
  char                 channelSeq[4];
  int                  dataOrder;
  int                  origin;
  int                  align;
  int                  width;
  int                  height;
  struct _IplROI*      roi;
  struct _IplImage*    maskROI;
  void*                imageId;
  struct _IplTileInfo* tileInfo;
  int                  imageSize;
  char*                imageData;
  int                  widthStep;
  int                  BorderMode[4];
  int                  BorderConst[4];
  char*                imageDataOrigin;
} IplImage;


As crazy as it sounds, we want to discuss the function of several of these variables. Some are trivial, but many are very important to understanding how
        OpenCV interprets and works with images.
After the ubiquitous width and height, depth and nChannels
        are the next most crucial. The depth variable takes one
        of a set of values defined in ipl.h, which are
        (unfortunately) not exactly the values we encountered when looking at matrices. This is
        because for images we tend to deal with the depth and the number of channels separately
        (whereas in the matrix routines we tended to refer to them simultaneously). The possible
        depths are listed in Table 3-2.
Table 3-2. OpenCV image types
	
                Macro

              	
                Image pixel type

              
	
                
                  IPL_DEPTH_8U
                

              	
                Unsigned 8-bit integer (8u)

              
	
                
                  IPL_DEPTH_8S
                

              	
                Signed 8-bit integer (8s)

              
	
                
                  IPL_DEPTH_16S
                

              	
                Signed 16-bit integer (16s)

              
	
                
                  IPL_DEPTH_32S
                

              	
                Signed 32-bit integer (32s)

              
	
                
                  IPL_DEPTH_32F
                

              	
                32-bit floating-point single-precision (32f)

              
	
                
                  IPL_DEPTH_64F
                

              	
                64-bit floating-point double-precision (64f)

              



The possible values for nChannels are 1, 2, 3, or
        4.
The next two important members are origin and
          dataOrder. The origin variable can take one of two values: IPL_ORIGIN_TL or IPL_ORIGIN_BL,
        corresponding to the origin of coordinates being located in either the upper-left or
        lower-left corners of the image, respectively. The lack of a standard origin (upper versus
        lower) is an important source of error in computer vision routines. In particular, depending
        on where an image came from, the operating system, codec, storage format, and so forth can
        all affect the location of the origin of the coordinates of a particular image. For example,
        you may think you are sampling pixels from a face in the top quadrant of an image when you
        are really sampling from a shirt in the bottom quadrant. It is best to check the system the
        first time through by drawing where you think you are operating on an image patch.
The dataOrder may be either IPL_DATA_ORDER_PIXEL or IPL_DATA_ORDER_PLANE.[20] This value indicates whether the data should be packed with multiple channels
        one after the other for each pixel (interleaved, the usual case), or
        rather all of the channels clustered into image planes with the planes placed one after
        another.
The parameter widthStep contains the number of bytes
        between points in the same column and successive rows (similar to the “step” parameter of
          CvMat discussed earlier). The variable width is not sufficient to calculate the distance because each
        row may be aligned with a certain number of bytes to achieve faster processing of the image;
        hence there may be some gaps between the end of ith row and the start of
          (i + 1) row. The parameter imageData contains a pointer to the first row of image data. If there are
        several separate planes in the image (as when dataOrder =
          IPL_DATA_ORDER_PLANE) then they are placed consecutively as separate images with
          height*nChannels rows in total, but normally they are
        interleaved so that the number of rows is equal to height and with each row containing the
        interleaved channels in order.
Finally there is the practical and important region of interest
          (ROI), which is actually an instance of another IPL/IPP
        structure, IplROI. An IplROI contains an xOffset, a yOffset, a height, a width, and a coi, where COI
        stands for channel of interest.[21] The idea behind the ROI is that, once it is set, functions that would normally
        operate on the entire image will instead act only on the subset of the image indicated by the ROI. All
        OpenCV functions will use ROI if set. If the COI is set to a nonzero value then some
        operators will act only on the indicated channel.[22] Unfortunately, many OpenCV functions ignore this parameter.
Accessing Image Data



When working with image data we usually need to do so quickly and efficiently. This
          suggests that we should not subject ourselves to the overhead of calling accessor
          functions like cvSet*D or their equivalent. Indeed, we
          would like to access the data inside of the image in the most direct way possible. With
          our knowledge of the internals of the IplImage structure, we can now understand how best
          to do this.
Even though there are often well-optimized routines in OpenCV that accomplish many of
          the tasks we need to perform on images, there will always be tasks for which there is no
          prepackaged routine in the library. Consider the case of a three-channel HSV [Smith78]
            image[23] in which we want to set the saturation and value to 255 (their maximal values
          for an 8-bit image) while leaving the hue unmodified. We can do this best by handling the
            pointers into the image ourselves, much as we did with matrices in Example 3-9. However, there are a few minor
          differences that stem from the difference between the IplImage and CvMat structures. Example 3-11 shows the fastest way.
Example 3-11. Maxing out (saturating) only the “S” and “V” parts of an HSV image
void saturate_sv( IplImage* img ) {

  for( int y=0; y<img->height; y++ ) {
    uchar* ptr = (uchar*) (
      img->imageData + y * img->widthStep
    );
    for( int x=0; x<img->width; x++ ) {
      ptr[3*x+1] = 255;
      ptr[3*x+2] = 255;
    }
  }
}


We simply compute the pointer ptr directly as the
          head of the relevant row y. From there, we de-reference
          the saturation and value of the x column. Because this
          is a three-channel image, the location of channel c in
          column x is 3*x+c.
One important difference between the IplImage case
          and the CvMat case is the behavior of imageData, compared to the element data of CvMat. The data element of CvMat is a
          union, so you must indicate which pointer type you want to use. The imageData pointer is a byte pointer (uchar*). We already know that the data pointed to is not necessarily of type
            uchar, which means that—when doing pointer arithmetic
          on images—you can simply add widthStep (also measured
          in bytes) without worrying about the actual data type until after the addition, when you
          cast the resultant pointer to the data type you need. To recap: when working with
          matrices, you must scale down the offset because the data pointer may be of nonbyte type;
          when working with images, you can use the offset “as is” because the data pointer is
          always of a byte type, so you can just cast the whole thing when you are ready to use
          it.

More on ROI and widthStep



ROI and widthStep have great practical importance,
          since in many situations they speed up computer vision operations by allowing the code to
          process only a small subregion of the image. Support for ROI and widthStep is universal in OpenCV:[24] every function allows operation to be limited to a subregion. To turn ROI on
          or off, use the cvSetImageROI() and cvResetImageROI() functions. Given a rectangular subregion of interest in the form of a CvRect, you may pass an image pointer and the rectangle to cvSetImageROI() to “turn on” ROI; “turn off” ROI by passing
          the image pointer to cvResetImageROI().
void cvSetImageROI( IplImage* image, CvRect rect );
void cvResetImageROI( IplImage* image );
To see how ROI is used, let’s suppose we want to load an image and modify some region
          of that image. The code in Example 3-12
          reads an image and then sets the x, y, width, and
            height of the intended ROI and finally an integer
          value add to increment the ROI region with. The program
          then sets the ROI using the convenience of the inline cvRect() constructor. It’s important to release the ROI with cvResetImageROI(), for otherwise the display will observe the
          ROI and dutifully display only the ROI region.
Example 3-12. Using ImageROI to increment all of the pixels in a region
// roi_add <image> <x> <y> <width> <height> <add>
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv)
{
    IplImage* src;
    if( argc == 7 && ((src=cvLoadImage(argv[1],1)) != 0 ))
    {
        int x = atoi(argv[2]);
        int y = atoi(argv[3]);
        int width = atoi(argv[4]);
        int height = atoi(argv[5]);
        int add = atoi(argv[6]);
        cvSetImage ROI(src, cvRect(x,y,width,height));
        cvAddS(src, cvScalar(add),src);
        cvResetImageROI(src);
        cvNamedWindow( "Roi_Add", 1 );
        cvShowImage( "Roi_Add", src );
        cvWaitKey();
    }
    return 0;
}


Figure 3-3 shows the result of adding 150 to the blue channel of the image of a cat with an ROI centered
          over its face, using the code from Example 3-12.
[image: Result of adding 150 to the face ROI of a cat]

Figure 3-3. Result of adding 150 to the face ROI of a cat

We can achieve the same effect by clever use of widthStep. To do this, we create another image header and set its width and
          height equal to the interest_rect width and height. We
          also need to set the image origin (upper left or lower left) to be the same as the
            interest_img. Next we set the widthStep of this subimage to be the widthStep of the larger interest_img; this
          way, stepping by rows in the subimage steps you to the appropriate place at the start of
          the next line of the subregion within the larger image. We finally set the subimage
            imageData pointer the start of the interest
          subregion, as shown in Example 3-13.
Example 3-13. Using alternate widthStep method to increment all of the pixels of interest_img by
            1
// Assuming IplImage *interest_img; and
 //  CvRect interest_rect;
 //  Use widthStep to get a region of interest
 //
 // (Alternate method)
 //
 IplImage *sub_img = cvCreateImageHeader(
   cvSize(
      interest_rect.width,
      interest_rect.height
   ),
   interest_img->depth,
   interest_img->nChannels
 );

 sub_img->origin = interest_img->origin;

 sub_img->widthStep = interest_img->widthStep;

 sub_img->imageData = interest_img->imageData +
   interest_rect.y * interest_img->widthStep   +
   interest_rect.x * interest_img->nChannels;

 cvAddS( sub_img, cvScalar(1), sub_img );

 cvReleaseImageHeader(&sub_img);


So, why would you want to use the widthStep trick
          when setting and resetting ROI seem to be more convenient? The reason is that there are
          times when you want to set and perhaps keep multiple subregions of an image active during
          processing, but ROI can only be done serially and must be set and reset
            constantly.
Finally, a word should be said here about masks. The cvAddS() function used in the
          code examples allows the use of a fourth argument that defaults to NULL: const CvArr* mask=NULL. This is an 8-bit single-channel array
          that allows you to restrict processing to an arbitrarily shaped mask region indicated by
          nonzero pixels in the mask. If ROI is set along with a mask, processing will be restricted
          to the intersection of the ROI and the mask. Masks can be used only in functions that
          specify their use.


Matrix and Image Operators



Table 3-3 lists a variety of routines for
        matrix manipulation, most of which work equally well for images. They do all of the “usual”
        things, such as diagonalizing or transposing a matrix, as well as some more complicated
        operations, such as computing image statistics.
Table 3-3. Basic matrix and image operators
	
                Function

              	
                Description

              
	
                
                  cvAbs
                

              	
                Absolute value of all elements in an array

              
	
                
                  cvAbsDiff
                

              	
                Absolute value of differences between two arrays

              
	
                
                  cvAbsDiffS
                

              	
                Absolute value of differences between an array and a scalar

              
	
                
                  cvAdd
                

              	
                Elementwise addition of two arrays

              
	
                
                  cvAddS
                

              	
                Elementwise addition of an array and a scalar

              
	
                
                  cvAddWeighted
                

              	
                Elementwise weighted addition of two arrays (alpha blending)

              
	
                
                  cvAvg
                

              	
                Average value of all elements in an array

              
	
                
                  cvAvgSdv
                

              	
                Average value and standard deviation of all elements in an array

              
	
                
                  cvCalcCovarMatrix
                

              	
                Compute covariance of a set of n-dimensional vectors

              
	
                
                  cvCmp
                

              	
                Apply selected comparison operator to all elements in two arrays

              
	
                
                  cvCmpS
                

              	
                Apply selected comparison operator to an array relative to a scalar

              
	
                
                  cvConvertScale
                

              	
                Convert array type with optional rescaling of the value

              
	
                
                  cvConvertScaleAbs
                

              	
                Convert array type after absolute value with optional rescaling

              
	
                
                  cvCopy
                

              	
                Copy elements of one array to another

              
	
                
                  cvCountNonZero
                

              	
                Count nonzero elements in an array

              
	
                
                  cvCrossProduct
                

              	
                Compute cross product of two three-dimensional vectors

              
	
                
                  cvCvtColor
                

              	
                Convert channels of an array from one color space to another

              
	
                
                  cvDet
                

              	
                Compute determinant of a square matrix

              
	
                
                  cvDiv
                

              	
                Elementwise division of one array by another

              
	
                
                  cvDotProduct
                

              	
                Compute dot product of two vectors

              
	
                
                  cvEigenVV
                

              	
                Compute eigenvalues and eigenvectors of a square matrix

              
	
                
                  cvFlip
                

              	
                Flip an array about a selected axis

              
	
                
                  cvGEMM
                

              	
                Generalized matrix multiplication

              
	
                
                  cvGetCol
                

              	
                Copy elements from column slice of an array

              
	
                
                  cvGetCols
                

              	
                Copy elements from multiple adjacent columns of an array

              
	
                
                  cvGetDiag
                

              	
                Copy elements from an array diagonal

              
	
                
                  cvGetDims
                

              	
                Return the number of dimensions of an array

              
	
                
                  cvGetDimSize
                

              	
                Return the sizes of all dimensions of an array

              
	
                
                  cvGetRow
                

              	
                Copy elements from row slice of an array

              
	
                
                  cvGetRows
                

              	
                Copy elements from multiple adjacent rows of an array

              
	
                
                  cvGetSize
                

              	
                Get size of a two-dimensional array and return as CvSize

              
	
                
                  cvGetSubRect
                

              	
                Copy elements from subregion of an array

              
	
                
                  cvInRange
                

              	
                Test if elements of an array are within values of two other arrays

              
	
                
                  cvInRangeS
                

              	
                Test if elements of an array are in range between two scalars

              
	
                
                  cvInvert
                

              	
                Invert a square matrix

              
	
                
                  cvMahalonobis
                

              	
                Compute Mahalonobis distance between two vectors

              
	
                
                  cvMax
                

              	
                Elementwise max operation on two arrays

              
	
                
                  cvMaxS
                

              	
                Elementwise max operation between an array and a scalar

              
	
                
                  cvMerge
                

              	
                Merge several single-channel images into one multichannel image

              
	
                
                  cvMin
                

              	
                Elementwise min operation on two arrays

              
	
                
                  cvMinS
                

              	
                Elementwise min operation between an array and a scalar

              
	
                
                  cvMinMaxLoc
                

              	
                Find minimum and maximum values in an array

              
	
                
                  cvMul
                

              	
                Elementwise multiplication of two arrays

              
	
                
                  cvNot
                

              	
                Bitwise inversion of every element of an array

              
	
                
                  cvNorm
                

              	
                Compute normalized correlations between two arrays

              
	
                
                  cvNormalize
                

              	
                Normalize elements in an array to some value

              
	
                
                  cvOr
                

              	
                Elementwise bit-level OR of two arrays

              
	
                
                  cvOrS
                

              	
                Elementwise bit-level OR of an array and a scalar

              
	
                
                  cvReduce
                

              	
                Reduce a two-dimensional array to a vector by a given operation

              
	
                
                  cvRepeat
                

              	
                Tile the contents of one array into another

              
	
                
                  cvSet
                

              	
                Set all elements of an array to a given value

              
	
                
                  cvSetZero
                

              	
                Set all elements of an array to 0

              
	
                
                  cvSetIdentity
                

              	
                Set all elements of an array to 1 for the diagonal and 0 otherwise

              
	
                
                  cvSolve
                

              	
                Solve a system of linear equations

              
	
                
                  cvSplit
                

              	
                Split a multichannel array into multiple single-channel arrays

              
	
                
                  cvSub
                

              	
                Elementwise subtraction of one array from another

              
	
                
                  cvSubS
                

              	
                Elementwise subtraction of a scalar from an array

              
	
                
                  cvSubRS
                

              	
                Elementwise subtraction of an array from a scalar

              
	
                
                  cvSum
                

              	
                Sum all elements of an array

              
	
                
                  cvSVD
                

              	
                Compute singular value decomposition of a two-dimensional array

              
	
                
                  cvSVBkSb
                

              	
                Compute singular value back-substitution

              
	
                
                  cvTrace
                

              	
                Compute the trace of an array

              
	
                
                  cvTranspose
                

              	
                Transpose all elements of an array across the diagonal

              
	
                
                  cvXor
                

              	
                Elementwise bit-level XOR between two arrays

              
	
                
                  cvXorS
                

              	
                Elementwise bit-level XOR between an array and a scalar

              
	
                
                  cvZero
                

              	
                Set all elements of an array to 0

              



Matrix and Image Operators



cvAbs, cvAbsDiff, and cvAbsDiffS



void cvAbs(
    const CvArr* src1,
    CvArr*        dst
);
void cvAbsDiff(
   const CvArr* src1,
   const CvArr* src2,
   CvArr*        dst
);
void cvAbsDiffS(
    const CvArr* src,
    CvArr*       dst,
    CvScalar     value,
);
These functions compute the absolute value of an array or of the difference between the array and some
            reference. The cvAbs() function simply computes the
            absolute value of the elements in src and writes the
            result to dst; cvAbsDiff() first subtracts src2 from
              src1 and then writes the absolute value of the
            difference to dst. Note that cvAbsDiffS() is essentially the same as cvAbsDiff() except that the value subtracted from all of the elements of src is the
            constant scalar value.

cvAdd, cvAddS, cvAddWeighted, and alpha blending



void cvAdd(
    const CvArr* src1,
    const CvArr* src2,
    CvArr*       dst,
    const CvArr* mask = NULL
);
void cvAddS(
    const CvArr* src,
    CvScalar     value,
    CvArr*       dst,
    const CvArr* mask = NULL
);
void cvAddWeighted(
    const CvArr* src1,
    double       alpha,
    const CvArr* src2,
    double       beta,
    double       gamma,
    CvArr*       dst
);
cvAdd() is a simple addition function: it adds
            all of the elements in src1 to the corresponding
            elements in src2 and puts the results in dst. If mask is not set
            to NULL, then any element of dst that corresponds to a zero element of mask remains unaltered by this operation. The closely related function
              cvAddS() does the same thing except that the
            constant scalar value is added to every element of
              src.
The function cvAddWeighted() is similar to
              cvAdd() except that the result written to dst is computed according to the following formula:
[image: image with no caption]

This function can be used to implement alpha blending [Smith79;
            Porter84]; that is, it can be used to blend one image with another. The form of this
            function is:
void  cvAddWeighted(
    const CvArr* src1,
    double       alpha,
    const CvArr* src2,
    double       beta,
    double       gamma,
    CvArr*       dst
);
In cvAddWeighted() we have two source images,
              src1 and src2.
            These images may be of any pixel type so long as both are of the same type. They may
            also be one or three channels (grayscale or color), again as long as they agree. The
            destination result image, dst, must also have the
            same pixel type as src1 and src2. These images may be of different sizes, but their ROIs must agree in
            size or else OpenCV will issue an error. The parameter alpha is the blending strength of src1,
            and beta is the blending strength of src2. The alpha blending equation is:
[image: image with no caption]

You can convert to the standard alpha blend equation by choosing
              α between 0 and 1, setting β = 1 −
              α, and setting γ to 0; this yields:
[image: image with no caption]

However, cvAddWeighted() gives us a little more
            flexibility—both in how we weight the blended images and in the additional parameter γ,
            which allows for an additive offset to the resulting destination image. For the general
            form, you will probably want to keep alpha and
              beta at no less than 0 and their sum at no more
            than 1; gamma may be set depending on average or max
            image value to scale the pixels up. A program showing the use of alpha blending is shown
            in Example 3-14.
Example 3-14. Complete program to alpha blend the ROI starting at (0,0) in src2 with the ROI
              starting at (x,y) in src1
// alphablend <imageA> <image B> <x> <y> <width> <height>
//            <alpha> <beta>
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv)
{
    IplImage *src1, *src2;
    if( argc == 9 && ((src1=cvLoadImage(argv[1],1)) != 0
        )&&((src2=cvLoadImage(argv[2],1)) != 0 ))
    {
        int x = atoi(argv[3]);
        int y = atoi(argv[4]);
        int width = atoi(argv[5]);
        int height = atoi(argv[6]);
        double alpha = (double)atof(argv[7]);
        double beta  = (double)atof(argv[8]);
        cvSetImage ROI(src1, cvRect(x,y,width,height));
        cvSetImageROI(src2, cvRect(0,0,width,height));
        cvAddWeighted(src1, alpha, src2, beta,0.0,src1);
        cvResetImageROI(src1);
        cvNamedWindow( "Alpha_blend", 1 );
        cvShowImage( "Alpha_blend", src1 );
        cvWaitKey();
    }
    return 0;
}


The code in Example 3-14 takes two
            source images: the primary one (src1) and the one to
            blend (src2). It reads in a rectangle ROI for
              src1 and applies an ROI of the same size to
              src2, this time located at the origin. It reads in
              alpha and beta
            levels but sets gamma to 0.Alpha blending is applied using cvAddWeighted(), and the results are put into src1 and displayed. Example output is shown in Figure 3-4, where the face of a child is
            blended onto the face and body of a cat. Note that the code took the same ROI as in the
            ROI addition example in Figure 3-3. This
            time we used the ROI as the target blending region.

cvAnd and cvAndS



void cvAnd(
    const CvArr* src1,
    const CvArr* src2,
    CvArr*       dst,
    const CvArr* mask = NULL
);
void cvAndS(
    const CvArr* src1,
    CvScalar     value,
    CvArr*       dst,
    const CvArr* mask = NULL
);
These two functions compute a bitwise AND operation on the array src1.
            In the case of cvAnd(), each element of dst is computed as the bitwise AND of the corresponding two
            elements of src1 and src2. In the case of cvAndS(), the
            bitwise AND is computed with the constant scalar value. As always, if mask is
              non-NULL then only the elements of dst corresponding to nonzero entries in mask are computed.
Though all data types are supported, src1 and
              src2 must have the same data type for cvAnd(). If the elements are of a floating-point type, then
            the bitwise representation of that floating-point number is used.
[image: The face of a child is alpha blended onto the face of a cat]

Figure 3-4. The face of a child is alpha blended onto the face of a cat


cvAvg



CvScalar cvAvg(
    const CvArr* arr,
    const CvArr* mask = NULL
);
cvAvg() computes the average value of the pixels
            in arr. If mask is
              non-NULL then the average will be computed only
            over those pixels for which the corresponding value of mask is nonzero.
This function has the now deprecated alias cvMean().

cvAvgSdv



cvAvgSdv(
    const CvArr* arr,
    CvScalar*    mean,
    CvScalar*    std_dev,
    const CvArr* mask     = NULL
);
This function is like cvAvg(), but in addition to
            the average it also computes the standard deviation of the pixels.
This function has the now deprecated alias cvMean_StdDev().

cvCalcCovarMatrix



void cvCalcCovarMatrix(
    const CvArr** vects,
    int           count,
    CvArr*        cov_mat,
    CvArr*        avg,
    int           flags
);
Given any number of vectors, cvCalcCovarMatrix()
            will compute the mean and covariance matrix for the Gaussian
            approximation to the distribution of those points. This can be used in many ways, of
            course, and OpenCV has some additional flags that will help in particular contexts (see
              Table 3-4). These flags may be
            combined by the standard use of the Boolean OR operator.
Table 3-4. Possible components of flags argument to cvCalcCovarMatrix()
	
                    Flag in flags argument

                  	
                    Meaning

                  
	
                    
                      CV_COVAR_NORMAL
                    

                  	
                    Compute mean and covariance

                  
	
                    
                      CV_COVAR_SCRAMBLED
                    

                  	
                    Fast PCA “scrambled” covariance

                  
	
                    
                      CV_COVAR_USE_AVERAGE
                    

                  	
                    Use avg as input instead of computing it

                  
	
                    
                      CV_COVAR_SCALE
                    

                  	
                    Rescale output covariance matrix

                  



In all cases, the vectors are supplied in vects
            as an array of OpenCV arrays (i.e., a pointer to a list of pointers to arrays), with the argument
              count indicating how many arrays are being
            supplied. The results will be placed in cov_mat in
            all cases, but the exact meaning of avg depends on
            the flag values (see Table 3-4).
The flags CV_COVAR_NORMAL and CV_COVAR_SCRAMBLED are mutually exclusive; you should use
            one or the other but not both. In the case of CV_COVAR_NORMAL, the function will simply compute the mean and covariance
            of the points provided.
[image: image with no caption]

Thus the normal covariance [image: ] is computed from the m vectors of length
              n, where [image: ] is defined as the nth element of the average
            vector [image: ]. The resulting covariance matrix is an
              n-by-n matrix. The factor
              z is an optional scale factor; it will be set to 1 unless the
              CV_COVAR_SCALE flag is used.
In the case of CV_COVAR_SCRAMBLED,
              cvCalcCovarMatrix() will compute the following:
[image: image with no caption]

This matrix is not the usual covariance matrix (note the location of the transpose
            operator). This matrix is computed from the same m vectors of
            length n, but the resulting scrambled
              covariance matrix is an m-by-m
            matrix. This matrix is used in some specific algorithms such as fast PCA for very large vectors (as in the eigenfaces
            technique for face recognition).
The flag CV_COVAR_USE_AVG is used when the mean
            of the input vectors is already known. In this case, the argument avg is used as an input rather than an output, which reduces
            computation time.
Finally, the flag CV_COVAR_SCALE is used to apply
            a uniform scale to the covariance matrix calculated. This is the factor
              z in the preceding equations. When used in conjunction with the
              CV_COVAR_NORMAL flag, the applied scale factor will
            be 1.0/m (or, equivalently,
              1.0/count). If instead CV_COVAR_SCRAMBLED is used, then the value of z will
            be 1.0/n (the inverse of the
            length of the vectors).
The input and output arrays to cvCalcCovarMatrix() should all be of the same floating-point type. The size
            of the resulting matrix cov_mat should be either
              n-by-n or
              m-by-m depending on whether the standard or
            scrambled covariance is being computed. It should be noted that the “vectors” input in
              vects do not actually have to be one-dimensional;
            they can be two-dimensional objects (e.g., images) as well.

cvCmp and cvCmpS



void cvCmp(
    const CvArr* src1,
    const CvArr* src2,
    CvArr*       dst,
    int          cmp_op
);
void cvCmpS(
    const CvArr* src,
    double       value,
    CvArr*       dst,
    int          cmp_op
);
Both of these functions make comparisons, either between corresponding pixels in two
            images or between pixels in one image and a constant scalar value. Both cvCmp() and cvCmpS() take
            as their last argument a comparison operator, which may be any of the types listed in
              Table 3-5.
Table 3-5. Values of cmp_op used by cvCmp() and cvCmpS() and the resulting comparison
              operation performed
	
                    Value of cmp_op

                  	
                    Comparison

                  
	
                    
                      CV_CMP_EQ
                    

                  	
                    
                      (src1i == src2i)
                    

                  
	
                    
                      CV_CMP_GT
                    

                  	
                    
                      (src1i > src2i)
                    

                  
	
                    
                      CV_CMP_GE
                    

                  	
                    
                      (src1i >= src2i)
                    

                  
	
                    
                      CV_CMP_LT
                    

                  	
                    
                      (src1i < src2i)
                    

                  
	
                    
                      CV_CMP_LE
                    

                  	
                    
                      (src1i <= src2i)
                    

                  
	
                    
                      CV_CMP_NE
                    

                  	
                    
                      (src1i != src2i)
                    

                  



All the listed comparisons are done with the same functions; you just pass in the
            appropriate argument to indicate what you would like done. These particular functions
            operate only on single-channel images.
These comparison functions are useful in applications where you employ some version
            of background subtraction and want to mask the results (e.g., looking at a video stream
            from a security camera) such that only novel information is pulled out of the image.

cvConvertScale



The cvConvertScale() function is actually several
            functions rolled into one; it will perform any of several functions or, if desired, all
            of them together. The first function is to convert the data type in the source image to the data type of the destination image. For
            example, if we have an 8-bit RGB grayscale image and would like to convert it to a
            16-bit signed image, we can do that by calling cvConvertScale().
The second function of cvConvertScale() is to
            perform a linear transformation on the image data. Each pixel value will be multiplied
            by the value scale and then have added to it the
            value shift. It is critical to remember that, even
            though “Convert” precedes “Scale” in the function name, the actual order in which these
            operations is performed is the opposite (i.e. multiplication by scale and the addition of shift occurs
            before the type conversion takes place).
When you simply pass the default values (scale =
              1.0 and shift = 0.0), you need not have
            performance fears; OpenCV is smart enough to recognize this case and not waste processor
            time on useless operations. For clarity (if you think it adds any), OpenCV also provides
            the macro cvConvert(), which is the same as cvConvertScale() but is conventionally used when the
              scale and shift
            arguments will be left at their default values.
cvConvertScale() will work on all data types and
            any number of channels, but the number of channels in the source and destination images
            must be the same. (If you want to, say, convert from color to grayscale or vice versa,
            see cvCvtColor(), which is coming up shortly.)

cvConvertScaleAbs



void cvConvertScaleAbs(
    const CvArr* src,
    CvArr*       dst,
    double       scale = 1.0,
    double       shift = 0.0
);
cvConvertScaleAbs() is essentially identical to
              cvConvertScale() except that the dst image contains the absolute value of the resulting data. Specifically, cvConvertScaleAbs() first scales and shifts, then computes the absolute
            value, and finally performs the data-type conversion.

cvCopy



void cvCopy(
    const CvArr* src,
    CvArr*       dst,
    const CvArr* mask = NULL
);
This is how you copy one image to another. The cvCopy() function expects both arrays to have the same type, the same size,
            and the same number of dimensions. You can use it to copy sparse arrays as well, but for
            this the use of mask is not supported. For nonsparse
            arrays and images, the effect of mask (if
              non-NULL) is that only the pixels in dst that correspond to nonzero entries in mask will be altered.

cvCountNonZero



int cvCountNonZero( const CvArr* arr );
cvCountNonZero() returns the number of nonzero
            pixels in the array arr.

cvCrossProduct



void cvCrossProduct(
    const CvArr* src1,
    const CvArr* src2,
    CvArr*       dst
);
This function computes the vector cross product [Lagrange1773] of two
            three-dimensional vectors. It does not matter if the vectors are in row or column form
            (a little reflection reveals that, for single-channel objects, these two are really the
            same internally). Both src1 and src2 should be single-channel arrays, and dst should be single-channel and of length exactly 3.All
            three arrays should be of the same data type.

cvCvtColor



void cvCvtColor(
    const CvArr* src,
    CvArr*       dst,
    int          code
);
The previous functions were for converting from one data type to another, and they
            expected the number of channels to be the same in both source and destination images.
            The complementary function is cvCvtColor(), which
            converts from one color space (number of channels) to another [Wharton71] while expecting the
            data type to be the same. The exact conversion operation to be done is specified by the
            argument code, whose possible values are listed in
              Table 3-6.[25]
Table 3-6. Conversions available by means of cvCvtColor()
	
                    Conversion code

                  	
                    Meaning

                  
	
                    
                      
CV_BGR2RGB
CV_RGB2BGR
CV_RGBA2BGRA
CV_BGRA2RGBA

                    

                  	
                    Convert between RGB and BGR color spaces (with or without alpha
                      channel)

                  
	
                    
                      
CV_RGB2RGBA
CV_BGR2BGRA

                    

                  	
                    Add alpha channel to RGB or BGR image

                  
	
                    
                      
CV_RGBA2RGB
CV_BGRA2BGR

                    

                  	
                    Remove alpha channel from RGB or BGR image

                  
	
                    
                      
CV_RGB2BGRA
CV_RGBA2BGR
CV_BGRA2RGB
CV_BGR2RGBA

                    

                  	
                    Convert RGB to BGR color spaces while adding or removing alpha
                      channel

                  
	
                    
                      
CV_RGB2GRAY
CV_BGR2GRAY

                    

                  	
                    Convert RGB or BGR color spaces to grayscale

                  
	
                    
                      
CV_GRAY2RGB
CV_GRAY2BGR
CV_RGBA2GRAY
CV_BGRA2GRAY

                    

                  	
                    Convert grayscale to RGB or BGR color spaces (optionally removing alpha
                      channel in the process)

                  
	
                    
                      
CV_GRAY2RGBA
CV_GRAY2BGRA

                    

                  	
                    Convert grayscale to RGB or BGR color spaces and add alpha channel

                  
	
                    
                      
CV_RGB2BGR565
CV_BGR2BGR565
CV_BGR5652RGB
CV_BGR5652BGR
CV_RGBA2BGR565
CV_BGRA2BGR565
CV_BGR5652RGBA
CV_BGR5652BGRA

                    

                  	
                    Convert from RGB or BGR color space to BGR565 color representation with
                      optional addition or removal of alpha channel (16-bit images)

                  
	
                    
                      
CV_GRAY2BGR565
CV_BGR5652GRAY

                    

                  	
                    Convert grayscale to BGR565 color representation or vice versa (16-bit
                      images)

                  
	
                    
                      
CV_RGB2BGR555
CV_BGR2BGR555
CV_BGR5552RGB
CV_BGR5552BGR
CV_RGBA2BGR555
CV_BGRA2BGR555
CV_BGR5552RGBA
CV_BGR5552BGRA

                    

                  	
                    Convert from RGB or BGR color space to BGR555 color representation with optional addition
                      or removal of alpha channel (16-bit images)

                  
	
                    
                      
CV_GRAY2BGR555
CV_BGR5552GRAY

                    

                  	
                    Convert grayscale to BGR555 color representation or vice versa (16-bit
                      images)

                  
	
                    
                      
CV_RGB2XYZ
CV_BGR2XYZ
CV_XYZ2RGB
CV_XYZ2BGR

                    

                  	
                    Convert RGB or BGR image to CIE XYZ representation or vice versa (Rec 709
                      with D65 white point)

                  
	
                    
                      
CV_RGB2YCrCb
CV_BGR2YCrCb
CV_YCrCb2RGB
CV_YCrCb2BGR

                    

                  	
                    Convert RGB or BGR image to luma-chroma (aka YCC) color
                      representation

                  
	
                    
                      
CV_RGB2HSV
CV_BGR2HSV
CV_HSV2RGB
CV_HSV2BGR

                    

                  	
                    Convert RGB or BGR image to HSV (hue saturation value) color
                      representation or vice versa

                  
	
                    
                      
CV_RGB2HLS
CV_BGR2HLS
CV_HLS2RGB
CV_HLS2BGR

                    

                  	
                    Convert RGB or BGR image to HLS (hue lightness saturation) color
                      representation or vice versa

                  
	
                    
                      
CV_RGB2Lab
CV_BGR2Lab
CV_Lab2RGB
CV_Lab2BGR

                    

                  	
                    Convert RGB or BGR image to CIE Lab color representation or vice
                      versa

                  
	
                    
                      
CV_RGB2Luv
CV_BGR2Luv
CV_Luv2RGB
CV_Luv2BGR

                    

                  	
                    Convert RGB or BGR image to CIE Luv color representation

                  
	
                    
                      
CV_BayerBG2RGB
CV_BayerGB2RGB
CV_BayerRG2RGB
CV_BayerGR2RGB
CV_BayerBG2BGR
CV_BayerGB2BGR
CV_BayerRG2BGR
CV_BayerGR2BGR

                    

                  	
                    Convert from Bayer pattern (single-channel) to RGB or BGR image

                  



The details of many of these conversions are nontrivial, and we will not go into the
            subtleties of Bayer representations and the CIE color spaces here. For our purposes, it is sufficient to note that OpenCV
            contains tools to convert to and from these various color spaces, which are of
            importance to various classes of users.
The color-space conversions all use the conventions: 8-bit images are in the range
            0–255, 16-bit images are in the range 0–65536, and floating-point numbers are in the
            range 0.0–1.0. When grayscale images are converted to color images, all components of the resulting image are taken to be equal;
            but for the reverse transformation (e.g., RGB or BGR to grayscale), the gray value is
            computed using the perceptually weighted formula:
[image: image with no caption]

In the case of HSV or HLS representations, hue is normally represented as a value
            from 0 to 360.[26] This can cause trouble in 8-bit representations and so, when converting to
            HSV, the hue is divided by 2 when the output image is an 8-bit image.

cvDet



double cvDet(
    const CvArr* mat
);
cvDet() computes the determinant (Det) of a
              square array. The array can be of any data type, but it must be
            single-channel. If the matrix is small then the determinant is directly computed by the
            standard formula. For large matrices, this is not particularly efficient and so the
            determinant is computed by Gaussian elimination.
It is worth noting that if you already know that a matrix is symmetric and has a
            positive determinant, you can also use the trick of solving via singular value
              decomposition (SVD). For more information see the section “cvSVD” to follow, but the trick
            is to set both U and V to
              NULL and then just take the products of the matrix
              W to obtain the determinant.

cvDiv



void cvDiv(
    const CvArr* src1,
    const CvArr* src2,
    CvArr*       dst,
    double       scale = 1
);
cvDiv() is a simple division function; it divides
            all of the elements in src1 by the corresponding
            elements in src2 and puts the results in dst. If mask is
              non-NULL, then any element of dst that corresponds to a zero element of mask is not altered by this operation. If you only want to
            invert all the elements in an array, you can pass NULL in the place of src1; the routine
            will treat this as an array full of 1s.

cvDotProduct



double cvDotProduct(
    const CvArr* src1,
    const CvArr* src2
);
This function computes the vector dot product [Lagrange1773] of two
              N-dimensional vectors.[27] As with the cross product (and for the same reason), it does not matter if
            the vectors are in row or column form. Both src1 and
              src2 should be single-channel arrays, and both
            arrays should be of the same data type.

cvEigenVV



double cvEigenVV(
    CvArr* mat,
    CvArr* evects,
    CvArr* evals,
    double eps    = 0
);
Given a symmetric matrix mat, cvEigenVV() will
            compute the eigenvectors and the corresponding
              eigenvalues of that matrix. This is done using Jacobi’s
              method [Bronshtein97], so it is efficient for smaller matrices.[28] Jacobi’s method requires a stopping parameter, which is the maximum size of
            the off-diagonal elements in the final matrix.[29] The optional argument eps sets this
            termination value. In the process of computation, the supplied matrix mat is used for the computation, so its values will be
            altered by the function. When the function returns, you will find your eigenvectors in
              evects in the form of subsequent rows. The
            corresponding eigenvalues are stored in evals. The
            order of the eigenvectors will always be in descending order of the magnitudes of the
            corresponding eigenvalues. The cvEigenVV() function
            requires all three arrays to be of floating-point type.
As with cvDet() (described previously), if the
            matrix in question is known to be symmetric and positive definite[30] then it is better to use SVD to find the eigenvalues and eigenvectors of mat.

cvFlip



void cvFlip(
    const CvArr* src,
    CvArr*       dst       = NULL,
    int          flip_mode = 0
);
This function flips an image around the x-axis, the
              y-axis, or both. In particular, if the argument flip_mode is set to 0 then the image will be flipped around
            the x-axis.
If flip_mode is set to a positive value (e.g.,
              +1) the image will be flipped around the
              y-axis, and if set to a negative value (e.g., –1) the image will be flipped about both axes.
When video processing on Win32 systems, you will find yourself using this function often to switch
            between image formats with their origins at the upper-left and lower-left of the
            image.

cvGEMM



double cvGEMM(
    const CvArr* src1,
    const CvArr* src2,
    double       alpha,
    const CvArr* src3,
    double       beta,
    CvArr*       dst,
    int          tABC = 0
);
Generalized matrix multiplication (GEMM) in OpenCV is performed by cvGEMM(), which performs matrix multiplication, multiplication by a transpose, scaled multiplication, et
            cetera. In its most general form, cvGEMM() computes
            the following:
[image: image with no caption]

Where A, B, and C are
            (respectively) the matrices src1, src2, and src3, α and β are
            numerical coefficients, and op() is an optional transposition of the matrix enclosed.
            The argument src3 may be set to NULL, in which case it will not be added. The transpositions
            are controlled by the optional argument tABC, which
            may be 0 or any combination (by means of Boolean OR) of CV_GEMM_A_T, CV_GEMM_B_T, and CV_GEMM_C_T (with each flag indicating a transposition of the corresponding
            matrix).
In the distant past OpenCV contained the methods cvMatMul() and cvMatMulAdd(), but these
            were too often confused with cvMul(), which does
            something entirely different (i.e., element-by-element multiplication of two arrays).
            These functions continue to exist as macros for calls to cvGEMM(). In particular, we have the equivalences listed in Table 3-7.
Table 3-7. Macro aliases for common usages of cvGEMM()
	
                    
                      cvMatMul(A, B, D)
                    

                  	
                    
                      cvGEMM(A, B, 1, NULL, 0, D, 0)
                    

                  
	
                    
                      cvMatMulAdd(A, B, C, D)
                    

                  	
                    
                      cvGEMM(A, B, 1, C, 1, D, 0)
                    

                  



All matrices must be of the appropriate size for the multiplication, and all should
            be of floating-point type. The cvGEMM() function
            supports two-channel matrices, in which case it will treat the two channels as the two
            components of a single complex number.

cvGetCol and cvGetCols



CvMat* cvGetCol(
    const CvArr* arr,
    CvMat*       submat,
    int          col
);
CvMat* cvGetCols(
    const CvArr* arr,
    CvMat*       submat,
    int          start_col,
    int          end_col
);
The function cvGetCol() is used to pick a single
            column out of a matrix and return it as a vector (i.e., as a matrix with only one
            column). In this case the matrix header submat will
            be modified to point to a particular column in arr.
            It is important to note that such header modification does not include the allocation of
            memory or the copying of data. The contents of submat
            will simply be altered so that it correctly indicates the selected column in arr. All data types are supported.
cvGetCols() works precisely the same way, except
            that all columns from start_col to end_col are selected. With both functions, the return value
            is a pointer to a header corresponding to the particular specified column or column span
            (i.e., submat) selected by the caller.

cvGetDiag



CvMat* cvGetDiag(
    const CvArr* arr,
    CvMat*       submat,
    int          diag    = 0
);
cvGetDiag() is analogous to cvGetCol(); it is used to pick a single
              diagonal from a matrix and return it as a vector. The argument
              submat is a matrix header. The function cvGetDiag() will fill the components of this header so that
            it points to the correct information in arr. Note
            that the result of calling cvGetDiag() is that the
            header you supplied is correctly configured to point at the diagonal data in arr, but the data from arr is not copied. The optional argument diag specifies which diagonal is to be pointed to by submat. If diag is set to
            the default value of 0, the main diagonal will be selected. If diag is greater than 0, then the diagonal starting at (diag,0) will be selected; if diag is less than 0, then the diagonal starting at (0,-diag) will be selected instead. The cvGetDiag() function does not require the matrix arr to be square, but the array submat
            must have the correct length for the size of the input array. The final returned value
            is the same as the value of submat passed in when the
            function was called.

cvGetDims and cvGetDimSize



int cvGetDims(
    const CvArr* arr,
    int*         sizes=NULL
);
int cvGetDimSize(
    const CvArr* arr,
    int          index
);
Recall that arrays in OpenCV can be of dimension much greater than two. The function
              cvGetDims() returns the number of array dimensions
            of a particular array and (optionally) the sizes of each of those dimensions. The sizes
            will be reported if the array sizes is non-NULL. If sizes is used,
            it should be a pointer to n integers, where n
            is the number of dimensions. If you do not know the number of dimensions in advance, you
            can allocate sizes to CV_MAX_DIM integers just to be safe.
If the array passed to cvGetDims() is either a matrix or an
            image, the number of dimensions returned will always be two.[31] For matrices and images, the order of sizes returned by cvGetDims() will
            always be the number of rows first followed by the number of columns. The function
              cvGetDimSize() returns the size of a single
            dimension specified by index.

cvGetRow and cvGetRows



CvMat* cvGetRow(
    const CvArr* arr,
    CvMat*       submat,
    int          row
);
CvMat* cvGetRows(
    const CvArr* arr,
    CvMat*       submat,
    int          start_row,
    int          end_row
);
cvGetRow() picks a single row out of a matrix and
            returns it as a vector (a matrix with only one row). As with cvGetCol(), the matrix header submat
            will be modified to point to a particular row in arr,
            and the modification of this header does not include the allocation of memory or the
            copying of data; the contents of submat will simply
            be altered such that it correctly indicates the selected row in arr. All data types are supported.
The function cvGetRows() works precisely the same
            way, except that all rows from start_row to end_row are selected. With both functions, the return value
            is a pointer to a header corresponding to the particular specified row or row span
            selected by the caller.

cvGetSize



CvSize cvGetSize( const CvArr* arr );
Closely related to cvGetDims(), cvGetSize()
            returns the size of an array. The primary difference is that cvGetSize() is designed to be used on matrices and images, which always
            have dimension two. The size can then be returned in the form of a CvSize structure, which is suitable to use when (for
            example) constructing a new matrix or image of the same size.

cvGetSubRect



CvMat* cvGetSubRect(
    const CvArr* arr,
    CvMat*       submat,
    CvRect       rect
);
cvGetSubRect() is similar to cvGetCols() or cvGetRows() except that it selects some arbitrary subrectangle in the array
            specified by the argument rect. As with other
            routines that select subsections of arrays, submat is
            simply a header that will be filled by cvGetSubRect()
            in such a way that it correctly points to the desired submatrix (i.e., no memory is
            allocated and no data is copied).

cvInRange and cvInRangeS



void cvInRange(
    const CvArr* src,
    const CvArr* lower,
    const CvArr* upper,
    CvArr*       dst
);
void cvInRangeS(
    const CvArr* src,
    CvScalar     lower,
    CvScalar     upper,
    CvArr*       dst
);
These two functions can be used to check if the pixels in an image fall within a
            particular specified range. In the case of cvInRange(), each pixel of src is
            compared with the corresponding value in the images lower and upper. If the value in
              src is greater than or equal to the value in
              lower and also less than the value in upper, then the corresponding value in dst will be set to 0xff;
            otherwise, the value in dst will be set to
              0.
The function cvInRangeS() works precisely the
            same way except that the image src is compared to the
            constant (CvScalar) values in lower and upper. For both
            functions, the image src may be of any type; if it
            has multiple channels then each channel will be handled separately. Note that dst must be of the same size and number of channels and also
            must be an 8-bit image.

cvInvert



double cvInvert(
    const CvArr* src,
    CvArr*       dst,
    int          method = CV_LU
);
cvInvert() inverts the matrix in src and places the result in dst. This function supports several methods of computing the inverse matrix
            (see Table 3-8), but the default is
              Gaussian elimination. The return value depends on the method used.
Table 3-8. Possible values of method argument to cvInvert()
	
                    Value of method argument

                  	
                    Meaning

                  
	
                    
                      CV_LU
                    

                  	
                    Gaussian elimination (LU Decomposition)

                  
	
                    
                      CV_SVD
                    

                  	
                    Singular value decomposition (SVD)

                  
	
                    
                      CV_SVD_SYM
                    

                  	
                    SVD for symmetric matrices

                  



In the case of Gaussian elimination (method=CV_LU), the determinant of src is
            returned when the function is complete. If the determinant is 0, then the inversion is
            not actually performed and the array dst is simply
            set to all 0s.
In the case of CV_SVD or CV_SVD_SYM, the return value is the inverse condition number for the matrix
            (the ratio of the smallest to the largest eigenvalue). If the matrix src is singular, then cvInvert() in SVD mode will instead compute the pseudo-inverse.

cvMahalanobis



CvSize cvMahalanobis(
    const CvArr* vec1,
    const CvArr* vec2,
    CvArr*       mat
);
The Mahalanobis distance is defined as the vector distance
            measured between a point and the center of a Gaussian distribution; it is computed using
            the inverse covariance of that distribution as a metric. See Figure 3-5. Intuitively, this is analogous
            to the z-score in basic statistics, where the distance from the
            center of a distribution is measured in units of the variance of that distribution. The
            Mahalanobis distance is just a multivariable generalization of the same idea.
cvMahalanobis() computes the value:
[image: image with no caption]

The vector vec1 is presumed to be the point
              x, and the vector vec2 is taken to be the distribution’s mean.[32] That matrix mat is the inverse
            covariance.
In practice, this covariance matrix will usually have been computed with cvCalcCovarMatrix() (described previously) and then inverted
            with cvInvert(). It is good programming practice to
            use the SV_SVD method for this inversion because
            someday you will encounter a distribution for which one of the eigenvalues is 0!

cvMax and cvMaxS



void cvMax(
    const CvArr* src1,
    const CvArr* src2,
    CvArr*       dst
);
void cvMaxS(
    const CvArr* src,
    double       value,
    CvArr*       dst
);
[image: A distribution of points in two dimensions with superimposed ellipsoids representing Mahalonobis distances of 1.0, 2.0, and 3.0 from the distribution’s mean]

Figure 3-5. A distribution of points in two dimensions with superimposed ellipsoids
              representing Mahalonobis distances of 1.0, 2.0, and 3.0 from the distribution’s
              mean

cvMax() computes the maximum value of each
            corresponding pair of pixels in the arrays src1 and
              src2. With cvMaxS(), the src array is compared with
            the constant scalar value. As always, if mask is non-NULL then
            only the elements of dst corresponding to nonzero
            entries in mask are computed.

cvMerge



void cvMerge(
    const CvArr* src0,
    const CvArr* src1,
    const CvArr* src2,
    const CvArr* src3,
    CvArr* dst
);
cvMerge() is the inverse operation of cvSplit(). The arrays in src0,
              src1, src2, and src3 are combined into
            the array dst. Of course, dst should have the same data type and size as all of the source arrays,
            but it can have two, three, or four channels. The unused source images can be left set
            to NULL.

cvMin and cvMinS



void cvMin(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst
);
void cvMinS(
    const CvArr* src,
    double value,
    CvArr* dst
);
cvMin() computes the minimum value of each
            corresponding pair of pixels in the arrays src1 and
              src2. With cvMinS(), the src arrays are compared
            with the constant scalar value. Again, if mask is non-NULL then
            only the elements of dst corresponding to nonzero
            entries in mask are computed.

cvMinMaxLoc



void cvMinMaxLoc(
    const CvArr* arr,
    double*      min_val,
    double*      max_val,
    CvPoint*     min_loc = NULL,
    CvPoint*     max_loc = NULL,
    const CvArr* mask    = NULL
);
This routine finds the minimal and maximal values in the array arr and (optionally) returns their locations. The computed
            minimum and maximum values are placed in min_val and
              max_val. Optionally, the locations of those extrema
            will also be written to the addresses given by min_loc and max_loc if those values are
              non-NULL.
As usual, if mask is non-NULL then only those portions of the image arr that correspond to nonzero pixels in mask are considered. The cvMinMaxLoc()
            routine handles only single-channel arrays, however, so if you have a multichannel array
            then you should use cvSetCOI() to set a particular
            channel for consideration.

cvMul



void cvMul(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    double scale=1
);
cvMul() is a simple multiplication function. It multiplies all of the elements in src1 by the corresponding elements in src2 and then puts the results in dst. If mask is non-NULL, then any element of dst that corresponds to a zero element of mask is not altered by this operation. There is no function cvMulS() because that functionality is already provided by
              cvScale() or cvConvertScale().
One further thing to keep in mind: cvMul()
            performs element-by-element multiplication. Someday, when you are multiplying some
            matrices, you may be tempted to reach for cvMul().
            This will not work; remember that matrix multiplication is done with cvGEMM(), not cvMul().

cvNot



cvNot(
    const CvArr* src,
    CvArr*       dst
);
The function cvNot() inverts every bit in every
            element of src and then places the result in dst. Thus, for an 8-bit image the value 0x00 would be mapped
            to 0xff and the value 0x83 would be mapped to 0x7c.

cvNorm



double cvNorm(
    const CvArr* arr1,
    const CvArr* arr2      = NULL,
    int          norm_type = CV_L2,
    const CvArr* mask      = NULL
);
This function can be used to compute the total norm of an array and also a variety
            of relative distance norms if two arrays are provided. In the former case, the norm
            computed is shown in Table 3-9.
Table 3-9. Norm computed by cvNorm() for different values of norm_type when
              arr2=NULL
	
                    norm_type

                  	
                    Result

                  
	
                    
                      CV_C
                    

                  	
                    
                      
[image: image with no caption]


                    

                  
	
                    
                      CV_L1
                    

                  	
                    
                      
[image: image with no caption]


                    

                  
	
                    
                      CV_L2
                    

                  	
                    
                      
[image: image with no caption]


                    

                  



If the second array argument arr2 is non-NULL, then the norm computed is a difference norm—that is,
            something like the distance between the two arrays.[33] In the first three cases shown in Table 3-10, the norm is absolute; in the
            latter three cases it is rescaled by the magnitude of the second array arr2.
Table 3-10. Norm computed by cvNorm() for different values of norm_type when arr2 is
              non-NULL
	
                    norm_type

                  	
                    Result

                  
	
                    
                      CV_C
                    

                  	
                    
                      
[image: image with no caption]


                    

                  
	
                    
                      CV_L1
                    

                  	
                    
                      
[image: image with no caption]


                    

                  
	
                    
                      CV_L2
                    

                  	
                    
                      
[image: image with no caption]


                    

                  
	
                    
                      CV_RELATIVE_C
                    

                  	
                    
                      
[image: image with no caption]


                    

                  
	
                    
                      CV_ RELATIVE_L1
                    

                  	
                    
                      
[image: image with no caption]


                    

                  
	
                    
                      CV_ RELATIVE_L2
                    

                  	
                    
                      
[image: image with no caption]


                    

                  



In all cases, arr1 and arr2 must have the same size and number of channels. When there is more
            than one channel, the norm is computed over all of the channels together (i.e., the sums
            in Tables Table 3-9 and Table 3-10 are not only over
              x and y but also over the
              channels).

cvNormalize



cvNormalize(
    const CvArr* src,
    CvArr*       dst,
    double       a         = 1.0,
    double       b         = 0.0,
    int          norm_type = CV_L2,
    const CvArr* mask      = NULL
);
As with so many OpenCV functions, cvNormalize()
            does more than it might at first appear. Depending on the value of norm_type, image src is
            normalized or otherwise mapped into a particular range in dst. The possible values of norm_type
            are shown in Table 3-11.
Table 3-11. Possible values of norm_type argument to cvNormalize()
	
                    norm_type

                  	
                    Result

                  
	
                    
                      CV_C
                    

                  	
                    
                      
[image: image with no caption]


                    

                  
	
                    
                      CV_L1
                    

                  	
                    
                      
[image: image with no caption]


                    

                  
	
                    
                      CV_L2
                    

                  	
                    
                      
[image: image with no caption]


                    

                  
	
                    
                      CV_MINMAX
                    

                  	
                    Map into range [a, b]

                  



In the case of the C norm, the array src is
            rescaled such that the magnitude of the absolute value of the largest entry is equal to
              a. In the case of the L1 or L2 norm, the array is
            rescaled so that the given norm is equal to the value of a. If norm_type is set to CV_MINMAX, then the values of the array are rescaled and
            translated so that they are linearly mapped into the interval between a and b
            (inclusive).
As before, if mask is non-NULL then only those pixels corresponding to nonzero values
            of the mask image will contribute to the computation of the norm—and only those pixels
            will be altered by cvNormalize().

cvOr and cvOrS



void cvOr(
    const CvArr* src1,
    const CvArr* src2,
    CvArr*       dst,
    const CvArr* mask=NULL
);
void cvOrS(
    const CvArr* src,
    CvScalar     value,
    CvArr*       dst,
    const CvArr* mask  = NULL
);
These two functions compute a bitwise OR operation on the array src1.
            In the case of cvOr(), each element of dst is computed as the bitwise OR of the corresponding two
            elements of src1 and src2. In the case of cvOrS(), the
            bitwise OR is computed with the constant scalar value. As usual, if mask is non-NULL then only the elements of dst corresponding to nonzero entries in mask are computed.
All data types are supported, but src1 and
              src2 must have the same data type for cvOr(). If the elements are of floating-point type, then the
            bitwise representation of that floating-point number is used.

cvReduce



CvSize cvReduce(
    const CvArr* src,
    CvArr*       dst,
    int          dim,
    int          op = CV_REDUCE_SUM
);
Reduction is the systematic transformation of the input matrix src into a vector dst by
            applying some combination rule op on each row (or
            column) and its neighbor until only one row (or column) remains (see Table 3-12).[34] The argument dim controls how the
            reduction is done, as summarized in Table 3-13.
Table 3-12. Argument op in cvReduce() selects the reduction operator
	
                    Value of op

                  	
                    Result

                  
	
                    
                      CV_REDUCE_SUM
                    

                  	
                    Compute sum across vectors

                  
	
                    
                      CV_REDUCE_AVG
                    

                  	
                    Compute average across vectors

                  
	
                    
                      CV_REDUCE_MAX
                    

                  	
                    Compute maximum across vectors

                  
	
                    
                      CV_REDUCE_MIN
                    

                  	
                    Compute minimum across vectors

                  



Table 3-13. Argument dim in cvReduce() controls the direction of the reduction
	
                    Value of dim

                  	
                    Result

                  
	
                    
                      +1
                    

                  	
                    Collapse to a single row

                  
	
                    
                      0
                    

                  	
                    Collapse to a single column

                  
	
                    
                      −1
                    

                  	
                    Collapse as appropriate for dst

                  



cvReduce() supports multichannel arrays of
            floating-point type. It is also allowable to use a higher precision type in dst than appears in src.
            This is primarily relevant for CV_REDUCE_SUM and
              CV_REDUCE_AVG, where overflows and summation
            problems are possible.

cvRepeat



void cvRepeat(
    const CvArr* src,
    CvArr*       dst
);
This function copies the contents of src into
              dst, repeating as many times as necessary to fill
              dst. In particular, dst can be of any size relative to src.
            It may be larger or smaller, and it need not have an integer relationship between any of
            its dimensions and the corresponding dimensions of src.

cvScale



void cvScale(
    const CvArr* src,
    CvArr*       dst,
    double       scale
);
The function cvScale() is actually a macro for
              cvConvertScale() that sets the shift argument to 0.0.
            Thus, it can be used to rescale the contents of an array and to convert from one kind of
            data type to another.

cvSet and cvSetZero



void cvSet(
    CvArr*       arr,
    CvScalar     value,
    const CvArr* mask   = NULL
);
These functions set all values in all channels of the array to a specified value. The cvSet()
            function accepts an optional mask argument: if a mask
            is provided, then only those pixels in the image arr
            that correspond to nonzero values of the mask image
            will be set to the specified value. The function
              cvSetZero() is just a synonym for cvSet(0.0).

cvSetIdentity



void cvSetIdentity( CvArr* arr );
cvSetIdentity() sets all elements of the array to 0 except for elements whose row and column are
            equal; those elements are set to 1. cvSetIdentity()
            supports all data types and does not even require the array to be square.

cvSolve



int cvSolve(
    const CvArr* src1,
    const CvArr* src2,
    CvArr*       dst,
    int          method = CV_LU
);
The function cvSolve() provides a fast way to
            solve linear systems based on cvInvert(). It computes
            the solution to
[image: image with no caption]


where A is a square matrix given by src1, B is the vector
              src2, and C is the solution
            computed by cvSolve() for the best vector X it could find. That best vector X is returned in dst. The same methods
            are supported as by cvInvert() (described
            previously); only floating-point data types are supported. The function returns an
            integer value where a nonzero return indicates that it could find a solution.
It should be noted that cvSolve() can be used to
            solve overdetermined linear systems. Overdetermined systems will be solved using
            something called the pseudo-inverse, which uses SVD methods to find
            the least-squares solution for the system of equations.

cvSplit



void cvSplit(
    const CvArr* src,
    CvArr*       dst0,
    CvArr*       dst1,
    CvArr*       dst2,
    CvArr*       dst3
);
There are times when it is not convenient to work with a multichannel image. In such
            cases, we can use cvSplit() to copy each channel
            separately into one of several supplied single-channel images. The cvSplit() function will copy the channels in src into the images dst0, dst1,
              dst2, and dst3 as needed. The destination
            images must match the source image in size and data type but, of course, should be
            single-channel images.
If the source image has fewer than four channels (as it often will), then the
            unneeded destination arguments to cvSplit() can be
            set to NULL.

cvSub, cvSubS, and cvSubRS



void cvSub(
    const CvArr* src1,
    const CvArr* src2,
    CvArr*       dst,
    const CvArr* mask  = NULL
);
void cvSubS(
    const CvArr* src,
    CvScalar     value,
    CvArr*       dst,
    const CvArr* mask  = NULL
);
void cvSubRS(
    const CvArr* src,
    CvScalar     value,
    CvArr*       dst,
    const CvArr* mask  = NULL
);
The closely related function cvSubS() does the
            same thing except that the constant scalar value is
            suntracted to every element of src. The function
              cvSubRS() is the same as cvSubS() except that, rather than subtracting a constant from every element
            of src, it subtracts every element of src from the constant value.

cvSum



CvScalar cvSum(
    CvArr* arr
);
cvSum() sums all of the pixels in all of the
            channels of the array arr. Observe that the return
            value is of type CvScalar, which means that cvSum() can accommodate multichannel arrays. In that case,
            the sum for each channel is placed in the corresponding component of the CvScalar return value.

cvSVD



void cvSVD(
    CvArr* A,
    CvArr* W,
    CvArr* U     = NULL,
    CvArr* V     = NULL,
    int    flags = 0
);
Singular value decomposition (SVD) is the decomposing of an
              m-by-n matrix A into the form:
[image: image with no caption]


where W is a diagonal matrix and U and V are
              m-by-m and
              n-by-n unitary matrices. Of course the
            matrix W is also an
              m-by-n matrix, so here “diagonal” means that
            any element whose row and column numbers are not equal is necessarily 0. Because W is necessarily diagonal, OpenCV allows it to be represented
            either by an m-by-n matrix or by an
              n-by-1 vector (in which case that vector will contain only the
            diagonal “singular” values).
The matrices U and V are optional to cvSVD(), and if they
            are left set to NULL then no value will be returned.
            The final argument flags can be any or all of the three options described in Table 3-14 (combined as appropriate with the
            Boolean OR operator).
Table 3-14. Possible flags for flags argument to cvSVD()
	
                    Flag

                  	
                    Result

                  
	
                    
                      CV_SVD_MODIFY_A
                    

                  	
                    Allows modification of matrix A

                  
	
                    
                      CV_SVD_U_T
                    

                  	
                    Return UT instead of U

                  
	
                    
                      CV_SVD_V_T
                    

                  	
                    Return VT instead of V

                  




cvSVBkSb



void cvSVBkSb(
    const CvArr* W,
    const CvArr* U,
    const CvArr* V,
    const CvArr* B,
    CvArr* X,
    int    flags = 0
);
This is a function that you are unlikely to call directly. In conjunction with
              cvSVD() (just described), it underlies the
            SVD-based methods of cvInvert() and cvSolve(). That being said, you may want to cut out the
            middleman and do your own matrix inversions (depending on the data source, this could
            save you from making a bunch of memory allocations for temporary matrices inside of
              cvInvert() or cvSolve()).
The function cvSVBkSb() computes the
            back-substitution for a matrix A that is represented in
            the form of a decomposition of matrices U, W, and V (e.g., an SVD). The result matrix X is given by the formula:
[image: image with no caption]


The matrix B is optional, and if set to NULL it will be ignored. The matrix W* is a matrix whose diagonal elements are defined by 
[image: image with no caption]

 for [image: ]. This value ε is the singularity threshold, a very small number that is
            typically proportional to the sum of the diagonal elements of W (i.e., 
[image: image with no caption]

).

cvTrace



CvScalar cvTrace( const CvArr* mat );
The trace of a matrix (Trace) is the sum of all of the diagonal elements. The trace
            in OpenCV is implemented on top of the cvGetDiag()
            function, so it does not require the array passed in to be square. Multichannel arrays
            are supported, but the array mat should be of
            floating-point type.

cvTranspose and cvT



void cvTranspose(
    const CvArr* src,
    CvArr*       dst
);
cvTranspose() copies every element of src into the location in dst indicated by reversing the row and column index. This function does
            support multichannel arrays; however, if you are using multiple channels to represent
            complex numbers, remember that cvTranspose() does not
            perform complex conjugation (a fast way to accomplish this task is by means of the
              cvXorS() function, which can be used to directly
            flip the sign bits in the imaginary part of the array). The macro cvT() is simply shorthand for cvTranspose().

cvXor and cvXorS



void cvXor(
    const CvArr* src1,
    const CvArr* src2,
    CvArr* dst,
    const CvArr* mask=NULL
);
void cvXorS(
    const CvArr* src,
    CvScalar value,
    CvArr* dst,
    const CvArr* mask=NULL
);
These two functions compute a bitwise XOR operation on the array src1.
            In the case of cvXor(), each element of dst is computed as the bitwise XOR of the corresponding two
              elements of src1 and src2. In the case of cvXorS(), the bitwise XOR is computed with the constant scalar value. Once again, if mask is non-NULL then only the elements
            of dst corresponding to nonzero entries in mask are computed.
All data types are supported, but src1 and
              src2 must be of the same data type for cvXor(). For floating-point elements, the bitwise
            representation of that floating-point number is used.

cvZero



void cvZero( CvArr* arr );
This function sets all values in all channels of the array to 0.



Drawing Things



Something that frequently occurs is the need to draw some kind of picture or to draw
        something on top of an image obtained from somewhere else. Toward this end, OpenCV provides
        a menagerie of functions that will allow us to make lines, squares, circles, and the
          like.
Lines



The simplest of these routines just draws a line by the Bresenham algorithm [Bresenham65]:
void  cvLine(
  CvArr*   array,
  CvPoint  pt1,
  CvPoint  pt2,
  CvScalar color,
  int      thickness    = 1,
  int      connectivity = 8
);
The first argument to cvLine() is the usual
            CvArr*, which in this context typically means an
            IplImage* image pointer. The next two arguments are
            CvPoints. As a quick reminder, CvPoint is a simple structure containing only the integer
          members x and y. We
          can create a CvPoint “on the fly” with the routine
            cvPoint(int x, int y), which conveniently packs the
          two integers into a CvPoint structure for us.
The next argument, color, is of type CvScalar. CvScalars are
          also structures, which (you may recall) are defined as follows:
typdef struct {
  double val[4];
} CvScalar;
As you can see, this structure is just a collection of four doubles. In this case, the
          first three represent the red, green, and blue channels; the fourth is not used (it can be
          used for an alpha channel when appropriate). One typically makes use of the handy macro
            CV_RGB(r, g, b). This macro takes three numbers and
          packs them up into a CvScalar.
The next two arguments are optional. The thickness
          is the thickness of the line (in pixels), and connectivity sets the anti-aliasing mode. The default is “8 connected”, which
          will give a nice, smooth, anti-aliased line. You can also set this to a “4 connected”
          line; diagonals will be blocky and chunky, but they will be drawn a lot faster.
At least as handy as cvLine() is cvRectangle(). It is probably unnecessary to tell you that
            cvRectangle() draws a rectangle. It has the same
          arguments as cvLine() except that there is no connectivity argument. This is because the resulting
          rectangles are always oriented with their sides parallel to the x-
          and y-axes. With cvRectangle(), we
          simply give two points for the opposite corners and OpenCV will draw a
            rectangle.
void  cvRectangle(
  CvArr*   array,
  CvPoint  pt1,
  CvPoint  pt2,
  CvScalar color,
  int      thickness = 1
);

Circles and Ellipses



Similarly straightforward is the method for drawing circles, which pretty much has the same arguments.
void  cvCircle (
  CvArr*   array,
  CvPoint  center,
  int      radius,
  CvScalar color,
  int      thickness    = 1,
  int      connectivity = 8
);
For circles, rectangles, and all of the other closed shapes to come, the thickness argument can also be set to CV_FILL, which is just an alias for −1; the result is that the drawn figure
          will be filled in the same color as the edges.
Only slightly more complicated than cvCircle() is
          the routine for drawing generalized ellipses:
void cvEllipse(
  CvArr*   img,
  CvPoint  center,
  CvSize   axes,
  double   angle,
  double   start_angle,
  double   end_angle,
  CvScalar color,
  int      thickness = 1,
  int      line_type = 8
);
In this case, the major new ingredient is the axes
          argument, which is of type CvSize. The structure
            CvSize is very much like CvPoint and CvScalar; it is a simple
          structure, in this case containing only the members width and height. Like CvPoint and CvScalar, there
          is a convenient helper function cvSize(int height, int
            width) that will return a CvSize structure
          when we need one. In this case, the height and width arguments represent the length of the ellipse’s major
          and minor axes.
The angle is the angle (in degrees) of the major
          axis, which is measured counterclockwise from horizontal (i.e., from the
            x-axis). Similarly the start_angle and end_angle indicate (also
          in degrees) the angle for the arc to start and for it to finish. Thus, for a complete
          ellipse you must set these values to 0 and 360, respectively.
An alternate way to specify the drawing of an ellipse is to use a bounding box:
void cvEllipseBox(
  CvArr*   img,
  CvBox2D  box,
  CvScalar color,
  int      thickness = 1,
  int      line_type = 8,
  int      shift     = 0
);
Here again we see another of OpenCV’s helper structures, CvBox2D:
typdef struct {
  CvPoint2D32f center;
  CvSize2D32f  size;
  float        angle;
} CvBox2D;
CvPoint2D32f is the floating-point analogue of
            CvPoint, and CvSize2D32f is the floating-point analog of CvSize. These, along with the tilt angle, effectively specify the bounding
          box for the ellipse.

Polygons



Finally, we have a set of functions for drawing polygons:
void cvFillPoly(
  CvArr*    img,
  CvPoint** pts,
  int*      npts,
  int       contours,
  CvScalar  color,
  int       line_type = 8
);

void cvFillConvexPoly(
  CvArr*   img,
  CvPoint* pts,
  int      npts,
  CvScalar color,
  int      line_type = 8
);

void cvPolyLine(
  CvArr*    img,
  CvPoint** pts,
  int*      npts,
  int       contours,
  int       is_closed,
  CvScalar  color,
  int       thickness = 1,
  int       line_type = 8
);
All three of these are slight variants on the same idea, with the main difference
          being how the points are specified.
In cvFillPoly(), the points are provided as an
          array of CvPoint arrays. This allows cvFillPoly() to draw many polygons in a single call. Similarly npts
          is an array of point counts, one for each polygon to be drawn. If the is_closed variable is set to true, then an additional segment will be drawn from the last to the first
          point for each polygon. cvFillPoly() is quite robust
          and will handle self-intersecting polygons, polygons with holes, and other such
          complexities. Unfortunately, this means the routine is comparatively slow.
cvFillConvexPoly() works like cvFillPoly() except that it draws only one polygon at a time
          and can draw only convex polygons.[35] The upside is that cvFillConvexPoly() runs
          much faster.
The third function, cvPolyLine(), takes the same
          arguments as cvFillPoly(); however, since only the
          polygon edges are drawn, self-intersection presents no particular complexity. Hence this
          function is much faster than cvFillPoly().

Fonts and Text



One last form of drawing that one may well need is to draw text. Of course, text
          creates its own set of complexities, but—as always with this sort of thing—OpenCV is more
          concerned with providing a simple “down and dirty” solution that will work for simple
          cases than a robust, complex solution (which would be redundant anyway given the
          capabilities of other libraries).
OpenCV has one main routine, called cvPutText()
          that just throws some text onto an image. The text indicated by text is printed with its lower-left corner of the text box at origin and in the color indicated by color.
void cvPutText(
  CvArr*        img,
  const char*   text,
  CvPoint       origin,
  const CvFont* font,
  CvScalar      color
);
There is always some little thing that makes our job a bit more complicated than we’d
          like, and in this case it’s the appearance of the pointer to CvFont.
In a nutshell, the way to get a valid CvFont*
          pointer is to call the function cvInitFont(). This
          function takes a group of arguments that configure some particular font for use on the
          screen. Those of you familiar with GUI programming in other environments will find
            cvInitFont() to be reminiscent of similar devices but
          with many fewer options.
In order to create a CvFont that we can pass to
            cvPutText(), we must first declare a CvFont variable; then we can pass it to cvInitFont().
void cvInitFont(
  CvFont* font,
  int     font_face,
  double  hscale,
  double  vscale,
  double  shear     = 0,
  int     thickness = 1,
  int     line_type = 8
);
Observe that this is a little different than how seemingly similar functions, such as
            cvCreateImage(), work in OpenCV. The call to cvInitFont() initializes an existing CvFont structure (which means that you create the variable and pass cvInitFont() a pointer to the variable you created). This is
          unlike cvCreateImage(), which creates the structure for
          you and returns a pointer.
The argument font_face is one of those listed in
            Table 3-15 (and pictured in Figure 3-6), and it may optionally be combined
          (by Boolean OR) with CV_FONT_ITALIC.
Table 3-15. Available fonts (all are variations of Hershey)
	
                  Identifier

                	
                  Description

                
	
                  
                    CV_FONT_HERSHEY_SIMPLEX
                  

                	
                  Normal size sanserif

                
	
                  
                    CV_FONT_HERSHEY_PLAIN
                  

                	
                  Small size sanserif

                
	
                  
                    CV_FONT_HERSHEY_DUPLEX
                  

                	
                  Normal size sanserif, more complex than CV_FONT_HERSHEY_SIMPLEX

                
	
                  
                    CV_FONT_HERSHEY_COMPLEX
                  

                	
                  Normal size serif, more complex than CV_FONT_HERSHEY_DUPLEX

                
	
                  
                    CV_FONT_HERSHEY_TRIPLEX
                  

                	
                  Normal size serif, more complex than CV_FONT_HERSHEY_COMPLEX

                
	
                  
                    CV_FONT_HERSHEY_COMPLEX_SMALL
                  

                	
                  Smaller version of CV_FONT_HERSHEY_COMPLEX

                
	
                  
                    CV_FONT_HERSHEY_SCRIPT_SIMPLEX
                  

                	
                  Handwriting style

                
	
                  
                    CV_FONT_HERSHEY_SCRIPT_COMPLEX
                  

                	
                  More complex variant of CV_FONT_HERSHEY_SCRIPT_SIMPLEX

                



[image: The eight fonts of drawn with hscale = vscale = 1.0, with the origin of each line separated from the vertical by 30 pixels]

Figure 3-6. The eight fonts of Table 3-15 drawn
            with hscale = vscale = 1.0, with the origin of each line separated from the vertical by
            30 pixels

Both hscale and vscale can be set to either 1.0 or
            0.5 only. This causes the font to be rendered at full
          or half height (and width) relative to the basic definition of the particular
            font.
The shear function creates an italicized slant to
          the font; if set to 0.0, the font is not slanted. It
          can be set as large as 1.0, which sets the slope of the
          characters to approximately 45 degrees.
Both thickness and line_type are the same as defined for all the other drawing functions.


Data Persistence



OpenCV provides a mechanism for serializing and de-serializing its various data types to and from disk in either
        YAML or XML format. In the chapter on HighGUI, which addresses user interface functions, we
        will cover specific functions that store and recall our most common object: IplImages (these functions are cvSaveImage() and cvLoadImage()).
In addition, the HighGUI chapter will discuss read and write functions specific to
        movies: cvGrabFrame(), which reads from file or from
        camera; and cvCreateVideoWriter() and cvWriteFrame(). In this section, we will focus on general object
        persistence: reading and writing matrices, OpenCV structures, and configuration and log files.
First we start with specific and convenient functions that save and load OpenCV
        matrices. These functions are cvSave() and cvLoad(). Suppose you had a 5-by-5 identity matrix (0 everywhere
        except for 1s on the diagonal). Example 3-15 shows how to
        accomplish this.
Example 3-15. Saving and loading a CvMat
CvMat A = cvMat( 5, 5, CV_32F, the_matrix_data );

cvSave( "my_matrix.xml", &A );
. . .
// to load it then in some other program use ...
CvMat* A1 = (CvMat*) cvLoad( "my_matrix.xml" );


The CxCore reference manual contains an entire section on data persistence. What you really need to know is that general data persistence
        in OpenCV consists of creating a CvFileStorage structure,
        as in Example 3-16, that stores memory objects
        in a tree structure. You can create and fill this structure by reading from disk via
          cvOpenFileStorage() with CV_STORAGE_READ, or you can create and open CvFileStorage via cvOpenFileStorage() with
          CV_STORAGE_WRITE for writing and then fill it using the
        appropriate data persistence functions. On disk, the data is stored in an XML or YAML
          format.
Example 3-16. CvFileStorage structure; data is accessed by CxCore data persistence
          functions
typedef struct CvFileStorage
{
    ...      // hidden fields
} CvFileStorage;


The internal data inside the CvFileStorage tree may
        consist of a hierarchical collection of scalars, CxCore objects (matrices, sequences, and
        graphs) and/or user-defined objects.
Let’s say you have a configuration or logging file. For example, consider the case of a movie
        configuration file that tells us how many frames we want (10), what their size is (320 by
        240) and a 3-by-3 color conversion matrix that should be applied. We want to call the file
        “cfg.xml” on disk. Example 3-17 shows how to
        do this.
Example 3-17. Writing a configuration file “cfg.xml” to disk
CvFileStorage* fs = cvOpenFileStorage(
  "cfg.xml",
  0,
  CV_STORAGE_WRITE
);
cvWriteInt( fs, "frame_count", 10 );
cvStartWriteStruct( fs, "frame_size", CV_NODE_SEQ );
cvWriteInt( fs, 0, 320 );
cvWriteInt( fs, 0, 200 );
cvEndWriteStruct(fs);
cvWrite( fs, "color_cvt_matrix", cmatrix );
cvReleaseFileStorage( &fs );


Note some of the key functions in this example. We can give a name to integers that we
        write to the structure using cvWriteInt(). We can create
        an arbitrary structure, using cvStartWriteStruct(), which
        is also given an optional name (pass a 0 or NULL if there is no name). This structure has
        two ints that have no name and so we pass a 0 for them in
        the name field, after which we use cvEndWriteStruct() to
        end the writing of that structure. If there were more structures, we’d Start and End each of
        them similarly; the structures may be nested to arbitrary depth. We then use cvWrite() to write out the color conversion matrix. Contrast
        this fairly complex matrix write procedure with the simpler cvSave() in Example 3-15. The cvSave() function is just a convenient shortcut for cvWrite() when you have only one matrix to write. When we are
        finished writing the data, the CvFileStorage handle is released in
          cvReleaseFileStorage(). The output (here, in XML form)
        would look like Example 3-18.
Example 3-18. XML version of cfg.xml on disk
<?xml version="1.0"?>
<opencv_storage>
<frame_count>10</frame_count>
<frame_size>320 200</frame_size>
<color_cvt_matrix type_id="opencv-matrix">
  <rows>3</rows> <cols>3</cols>
  <dt>f</dt>
  <data>...</data></color_cvt_matrix>
</opencv_storage>


We may then read this configuration file as shown in Example 3-19.
Example 3-19. Reading cfg.xml from disk
CvFileStorage* fs = cvOpenFileStorage(
  "cfg.xml",
  0,
  CV_STORAGE_READ
);

int frame_count = cvReadIntByName(
  fs,
  0,
  "frame_count",
  5 /* default value */
);

CvSeq* s = cvGetFileNodeByName(fs,0,"frame_size")->data.seq;

int frame_width = cvReadInt(
  (CvFileNode*)cvGetSeqElem(s,0)
);

int frame_height = cvReadInt(
  (CvFileNode*)cvGetSeqElem(s,1)
);

CvMat* color_cvt_matrix = (CvMat*) cvReadByName(
  fs,
  0,
  "color_cvt_matrix"
);

cvReleaseFileStorage( &fs );


When reading, we open the XML configuration file with cvOpenFileStorage() as in Example 3-19. We then
        read the frame_count using cvReadIntByName(), which allows for a default value to be given if no number is
        read. In this case the default is 5. We then get the
        structure that we named "frame_size" using cvGetFileNodeByName(). From here, we read our two unnamed
        integers using cvReadInt(). Next we read our named color
        conversion matrix using cvReadByName().[36] Again, contrast this with the short form cvLoad() in Example 3-15. We can use cvLoad() if we only have one matrix to read, but we must use
          cvRead() if the matrix is embedded within a larger
        structure. Finally, we release the CvFileStorage
          structure.
The list of relevant data persistence functions associated with the CvFileStorage structure is shown in Table 3-16. See the CxCore manual for more details.
Table 3-16. Data persistence functions
	
                Function

              	
                Description

              
	
                
                  Open and Release
                

              	
                

              
	
                
                  cvOpenFileStorage
                

              	
                Opens file storage for reading or writing

              
	
                
                  cvReleaseFileStorage
                

              	
                Releases data storage

              
	
                
                  Writing
                

              	
                

              
	
                
                  cvStartWriteStruct
                

              	
                Starts writing a new structure

              
	
                
                  cvEndWriteStruct
                

              	
                Ends writing a structure

              
	
                
                  cvWriteInt
                

              	
                Writes integer

              
	
                
                  cvWriteReal
                

              	
                Writes float

              
	
                
                  cvWriteString
                

              	
                Writes text string

              
	
                
                  cvWriteComment
                

              	
                Writes an XML or YAML comment string

              
	
                
                  cvWrite
                

              	
                Writes an object such as a CvMat

              
	
                
                  cvWriteRawData
                

              	
                Writes multiple numbers

              
	
                
                  cvWriteFileNode
                

              	
                Writes file node to another file storage

              
	
                
                  Reading
                

              	
                

              
	
                
                  cvGetRootFileNode
                

              	
                Gets the top-level nodes of the file storage

              
	
                
                  cvGetFileNodeByName
                

              	
                Finds node in the map or file storage

              
	
                
                  cvGetHashedKey
                

              	
                Returns a unique pointer for given name

              
	
                
                  cvGetFileNode
                

              	
                Finds node in the map or file storage

              
	
                
                  cvGetFileNodeName
                

              	
                Returns name of file node

              
	
                
                  cvReadInt
                

              	
                Reads unnamed int

              
	
                
                  cvReadIntByName
                

              	
                Reads named int

              
	
                
                  cvReadReal
                

              	
                Reads unnamed float

              
	
                
                  cvReadRealByName
                

              	
                Reads named float

              
	
                
                  cvReadString
                

              	
                Retrieves text string from file node

              
	
                
                  cvReadStringByName
                

              	
                Finds named file node and returns its value

              
	
                
                  cvRead
                

              	
                Decodes object and returns pointer to it

              
	
                
                  cvReadByName
                

              	
                Finds object and decodes it

              
	
                
                  cvReadRawData
                

              	
                Reads multiple numbers

              
	
                
                  cvStartReadRawData
                

              	
                Initializes file node sequence reader

              
	
                
                  cvReadRawDataSlice
                

              	
                Reads data from sequence reader above

              




Integrated Performance Primitives



Intel has a product called the Integrated Performance Primitives (IPP) library (IPP). This library is essentially a toolbox of high-performance kernels for
        handling multimedia and other processor-intensive operations in a manner that makes
        extensive use of the detailed architecture of their processors (and, to a lesser degree,
        other manufacturers’ processors that have a similar architecture).
As discussed in Chapter 1, OpenCV enjoys a close relationship
          with IPP, both at a software level and at an organizational level inside of the
        company. As a result, OpenCV is designed to automatically[37] recognize the presence of the IPP library and to automatically “swap out” the
        lower-performance implementations of many core functionalities for their higher-performance
        counterparts in IPP. The IPP library allows OpenCV to take advantage of performance
        opportunities that arrive from SIMD instructions in a single processor as well as from
        modern multicore architectures.
With these basics in hand, we can perform a wide variety of basic tasks. Moving onward
        through the text, we will look at many more sophisticated capabilities of OpenCV, almost all
        of which are built on these routines. It should be no surprise that image processing—which
        often requires doing the same thing to a whole lot of data, much of which is completely
        parallel—would realize a great benefit from any code that allows it to take advantage of
        parallel execution units of any form (MMX, SSE, SSE2, etc.).
Verifying Installation



The way to check and make sure that IPP is installed and working correctly is with the function
            cvGetModuleInfo(), shown in Example 3-20. This function will identify both the
          version of OpenCV you are currently running and the version and identity of any add-in
            modules.
Example 3-20. Using cvGetModuleInfo() to check for IPP
char* libraries;
char* modules;
cvGetModuleInfo( 0, (const char**) &libraries, (const char**) &modules );
printf(“Libraries: %s\nModules: %s\n”, libraries, modules );


The code in Example 3-20 will generate
          text strings which describe the installed libraries and modules. The output might look
          like this:
Libraries cxcore: 1.0.0
Modules: ippcv20.dll, ippi20.dll, ipps20.dll, ippvm20.dll
The modules listed in this output are the IPP modules used by OpenCV. Those modules
          are themselves actually proxies for even lower-level CPU-specific libraries. The details
          of how it all works are well beyond the scope of this book, but if you see the IPP
          libraries in the Modules string then you can be pretty
          confident that everything is working as expected. Of course, you could use this
          information to verify that IPP is running correctly on your own system. You might also use
          it to check for IPP on a machine on which your finished software is installed, perhaps
          then making some dynamic adjustments depending on whether IPP is available.


Summary



In this chapter we introduced some basic data structures that we will often encounter.
        In particular, we met the OpenCV matrix structure and the all-important OpenCV image
        structure, IplImage. We considered both in some detail
        and found that the matrix and image structures are very similar: the functions used for
        primitive manipulations in one work equally well in the other.

Exercises



In the following exercises, you may need to refer to the CxCore manual that ships with
        OpenCV or to the OpenCV Wiki on the Web for details of the functions outlined in this
        chapter.
	Find and open …/opencv/cxcore/include/cxtypes.h. Read through and find the many conversion
            helper functions.
	Choose a negative floating-point number. Take its absolute value, round it, and
                then take its ceiling and floor.

	Generate some random numbers.

	Create a floating point CvPoint2D32f and
                convert it to an integer CvPoint.

	Convert a CvPoint to a CvPoint2D32f.




	This exercise will accustom you to the idea of many functions taking matrix types.
            Create a two-dimensional matrix with three channels of type byte with data size
            100-by-100. Set all the values to 0.
	Draw a circle in the matrix using void cvCircle(CvArr*
                  img, CvPoint center, intradius, CvScalar color, int thickness=1, int line_type=8,
                  int shift=0).
              

	Display this image using methods described in Chapter 2.




	Create a two-dimensional matrix with three channels of type byte with data size
            100-by-100, and set all the values to 0. Use the pointer element access function
              cvPtr2D to point to the middle (“green”) channel.
            Draw a green rectangle between (20, 5) and (40, 20).

	Create a three-channel RGB image of size 100-by-100. Clear it. Use pointer
            arithmetic to draw a green square between (20, 5) and (40, 20).

	Practice using region of interest (ROI). Create a 210-by-210 single-channel byte
            image and zero it. Within the image, build a pyramid of increasing values using ROI and
              cvSet(). That is: the outer border should be 0, the
            next inner border should be 20, the next inner border should be 40, and so on until the
            final innermost square is set to value 200; all borders should be 10 pixels wide.
            Display the image.

	Use multiple image headers for one image. Load an image that is at least 100-by-100.
            Create two additional image headers and set their origin,
              depth, number of channels, and widthstep
            to be the same as the loaded image. In the new image headers, set the width at 20 and the height at 30. Finally, set their imageData pointers to point to the pixel at (5, 10) and (50, 60),
            respectively. Pass these new image subheaders to cvNot(). Display the loaded image, which should have two inverted
            rectangles within the larger image.

	Create a mask using cvCmp(). Load a real image.
            Use cvSplit() to split the image into red, green, and
            blue images.
	Find and display the green image.

	Clone this green plane image twice (call these clone1 and clone2).

	Find the green plane’s minimum and maximum value.

	Set clone1’s values to thresh = (unsigned char)((maximum -
                  minimum)/2.0).

	Set clone2 to 0 and use cvCmp(green_image, clone1, clone2, CV_CMP_GE). Now
                  clone2 will have a mask of where the value
                exceeds thresh in the green image.

	Finally, use cvSubS(green_image,thresh/2, green_image,
                  clone2) and display the results.




	Create a structure of an integer, a CvPoint and a
              CvRect; call it “my_struct”.
	Write two functions: void write_my_struct(CvFileStorage
                  * fs, const char * name, my_struct *ms) and void read_my_struct(CvFileStorage* fs, CvFileNode* ms_node, my_struct*
                  ms). Use them to write and read my_struct.

	Write and read an array of 10 my_struct
                structures.









[14] We say “generally” here because there are a few oddballs. In particular, we have
              cvScalarAll(double) and cvRealScalar(double); the former returns a CvScalar with all four values set to the argument, while the latter returns
            a CvScalar with the first value set and the other
            values 0.

[15] If you are especially picky, you can say that OpenCV is a design, implemented in
              C, that is not only object-oriented but also template-oriented.

[16] cvCloneMat() and other OpenCV functions
            containing the word “clone” not only create a new header that is identical to the input
            header, they also allocate a separate data area and copy the data from the source to the
            new object.

[17] For the regular two-dimensional matrices discussed here, dimension zero (0) is
            always the “width” and dimension one (1) is always the height.

[18] In this context we use the term “channel” to refer to the fastest-running index.
              This index is the one associated with the C3 part
              of CV32FC3. Shortly, when we talk about images, the
              “channel” there will be exactly equivalent to our use of “channel” here.

[19] IPL was the predecessor to the more modern Intel Performance Primitives (IPP),
            discussed in Chapter 1. Many of the OpenCV functions are actually
            relatively thin wrappers around the corresponding IPL or IPP routines. This is why it is
            so easy for OpenCV to swap in the high-performance IPP library routines when
            available.

[20] We say that dataOrder may be either IPL_DATA_ORDER_PIXEL or IPL_DATA_ORDER_PLANE, but in fact only IPL_DATA_ORDER_PIXEL is supported by OpenCV. Both values are generally
            supported by IPL/IPP, but OpenCV always uses interleaved images.

[21] Unlike other parts of the ROI, the COI is not respected by all OpenCV functions. More on this later,
            but for now you should keep in mind that COI is not as universally applied as the rest
            of the ROI.

[22] For the COI, the terminology is to indicate the channel as 1, 2, 3, or 4 and to
            reserve 0 for deactivating the COI all together (something like a “don’t care”).

[23] In OpenCV, an HSV image does not differ from an RGB image except in terms of how the channels are interpreted. As a
              result, constructing an HSV image from an RGB image actually occurs entirely within
              the “data” area; there is no representation in the header of what meaning is
              “intended” for the data channels.

[24] Well, in theory at least. Any nonadherence to widthStep or ROI is considered a bug and may be posted as such to
              SourceForge, where it will go on a “to fix” list. This is in contrast with color
                channel of interest, "COI”, which is supported only where explicitly stated.

[25] Long-time users of IPL should note that the function cvCvtColor() ignores the colorModel
                and channelSeq fields of the IplImage header. The conversions are done exactly as
                implied by the code argument.

[26] Excluding 360, of course.

[27] Actually, the behavior of cvDotProduct() is a
                little more general than described here. Given any pair of
                  n-by-m matrices, cvDotProduct() will return the sum of the products of
                the corresponding elements.

[28] A good rule of thumb would be that matrices 10-by-10 or smaller are small enough
                for Jacobi’s method to be efficient. If the matrix is larger than 20-by-20 then you
                are in a domain where this method is probably not the way to go.

[29] In principle, once the Jacobi method is complete then the original matrix is
                transformed into one that is diagonal and contains only the eigenvalues; however,
                the method can be terminated before the off-diagonal elements are all the way to
                zero in order to save on computation. In practice is it usually sufficient to set
                this value to DBL_EPSILON, or about
                  10−15.

[30] This is, for example, always the case for covariance matrices. See cvCalcCovarMatrix().

[31] Remember that OpenCV regards a “vector” as a matrix of size
                  n-by-1 or 1-by-n.

[32] Actually, the Mahalanobis distance is more generally defined as the distance
                between any two vectors; in any case, the vector vec2 is subtracted from the vector vec1. Neither is there any fundamental connection between mat in
                  cvMahalanobis() and the inverse covariance; any
                metric can be imposed here as appropriate.

[33] At least in the case of the L2 norm, there is an intuitive interpretation of the
                difference norm as a Euclidean distance in a space of dimension equal to the number
                of pixels in the images.

[34] Purists will note that averaging is not technically a proper
                  fold in the sense implied here. OpenCV has a more practical
                view of reductions and so includes this useful operation in cvReduce.

[35] Strictly speaking, this is not quite true; it can actually draw and fill any
                monotone polygon, which is a slightly larger class of
              polygons.

[36] One could also use cvRead() to read in the
            matrix, but it can only be called after the appropriate CvFileNode{} is located, e.g., using cvGetFileNodeByName().

[37] The one prerequisite to this automatic recognition is that the binary directory of
            IPP must be in the system path. So on a Windows system, for example, if you have IPP in
              C:/Program Files/Intel/IPP then you want to
            ensure that C:/Program Files/Intel/IPP/bin is in
            your system path.


Chapter 4. HighGUI



A Portable Graphics Toolkit



The OpenCV functions that allow us to interact with the operating system, the file
        system, and hardware such as cameras are collected into a library called HighGUI (which stands for “high-level graphical user interface”). HighGUI allows
        us to open windows, to display images, to read and write graphics-related files (both images
        and video), and to handle simple mouse, pointer, and keyboard events. We can also use it to
        create other useful doodads like sliders and then add them to our windows. If you are a GUI
        guru in your window environment of choice, then you might find that much of what HighGUI
        offers is redundant. Yet even so you might find that the benefit of cross-platform
        portability is itself a tempting morsel.
From our initial perspective, the HighGUI library in OpenCV can be divided into three
        parts: the hardware part, the file system part, and the GUI part. [38] We will take a moment to overview what is in each part before we really dive
        in.
The hardware part is primarily concerned with the operation of cameras. In most
        operating systems, interaction with a camera is a tedious and painful task. HighGUI allows
        an easy way to query a camera and retrieve the latest image from the camera. It hides all of
        the nasty stuff, and that keeps us happy.
The file system part is concerned primarily with loading and saving images. One nice
        feature of the library is that it allows us to read video using the same methods we would
        use to read a camera. We can therefore abstract ourselves away from the particular device
        we’re using and get on with writing interesting code. In a similar spirit, HighGUI provides
        us with a (relatively) universal pair of functions to load and save still images. These
        functions simply rely on the filename extension and automatically handle all of the decoding
        or encoding that is necessary.
The third part of HighGUI is the window system (or GUI). The library provides some simple functions that will
        allow us to open a window and throw an image into that window. It also allows us to register
        and respond to mouse and keyboard events on that window. These features are most useful when
        trying to get off of the ground with a simple application. Tossing in some slider bars,
        which we can also use as switches,[39] we find ourselves able to prototype a surprising variety of applications using
        only the HighGUI library.
As we proceed in this chapter, we will not treat these three segments separately;
        rather, we will start with some functions of highest immediate utility and work our way to
        the subtler points thereafter. In this way you will learn what you need to get going as soon
        as possible.

Creating a Window



First, we want to show an image on the screen using HighGUI. The function that does this
        for us is cvNamedWindow(). The function expects a name
        for the new window and one flag. The name appears at the top of the window, and the name is
        also used as a handle for the window that can be passed to other HighGUI functions. The flag
        indicates if the window should autosize itself to fit an image we put into it. Here is the
        full prototype:
int cvNamedWindow(
    const char* name,
    int         flags = CV_WINDOW_AUTOSIZE
);
Notice the parameter flags. For now, the only valid
        options available are to set flags to 0 or to use the
        default setting, CV_WINDOW_AUTOSIZE. If CV_WINDOW_AUTOSIZE is set, then HighGUI resizes the window to
        fit the image. Thereafter, the window will automatically resize itself if a new image is
        loaded into the window but cannot be resized by the user. If you don’t want autosizing, you
        can set this argument to 0; then users can resize the window as they wish.
Once we create a window, we usually want to put something into it. But before we do
        that, let’s see how to get rid of the window when it is no longer needed. For this we use
          cvDestroyWindow(), a function whose argument is a
        string: the name given to the window when it was created. In OpenCV, windows are referenced
        by name instead of by some unfriendly (and invariably OS-dependent) “handle”. Conversion
        between handles and names happens under the hood of HighGUI, so you needn’t worry about
          it.
Having said that, some people do worry about it, and that’s OK, too. For those people,
        HighGUI provides the following functions:
void*       cvGetWindowHandle( const char* name );
const char* cvGetWindowName( void* window_handle );
These functions allow us to convert back and forth between the human-readable names preferred by OpenCV and the “handle” style of reference used by different
        window systems.[40]
To resize a window, call (not surprisingly) cvResizeWindow():
void cvResizeWindow(
    const char* name,
    int         width,
    int         height
);
Here the width and height are in pixels and give the size of the drawable part of the
        window (which are probably the dimensions you actually care about).

Loading an Image



Before we can display an image in our window, we’ll need to know how to load an image
        from disk. The function for this is cvLoadImage():
IplImage* cvLoadImage(
    const char* filename,
    int         iscolor = CV_LOAD_IMAGE_COLOR
);
When opening an image, cvLoadImage() does not look at
        the file extension. Instead, cvLoadImage() analyzes the
        first few bytes of the file (aka its signature or
        “magic sequence”) and determines the appropriate codec using that. The second argument
          iscolor can be set to one of several values. By
        default, images are loaded as three-channel images with 8 bits per channel; the optional
        flag CV_LOAD_IMAGE_ANYDEPTH can be added to allow loading
        of non-8-bit images. By default, the number of channels will be three because the iscolor flag has the default value of CV_LOAD_IMAGE_COLOR. This means that, regardless of the number of channels in
        the image file, the image will be converted to three channels if needed. The alternatives to
          CV_LOAD_IMAGE_COLOR are CV_LOAD_IMAGE_GRAYSCALE and CV_LOAD_IMAGE_ANYCOLOR. Just as CV_LOAD_IMAGE_COLOR forces any image into a three-channel image, CV_LOAD_IMAGE_GRAYSCALE automatically converts any image into a
        single-channel image. CV_LOAD_IMAGE_ANYCOLOR will simply
        load the image as it is stored in the file. Thus, to load a 16-bit color image you would use
          CV_LOAD_IMAGE_COLOR | CV_LOAD_IMAGE_ANYDEPTH. If you
        want both the color and depth to be loaded exactly “as is”, you could instead use the
        all-purpose flag CV_LOAD_IMAGE_UNCHANGED. Note that
          cvLoadImage() does not signal a runtime error when it
        fails to load an image; it simply returns a null pointer.
The obvious complementary function to cvLoadImage()
        is cvSaveImage(), which takes two arguments:
int cvSaveImage(
  const char*   filename,
  const CvArr*  image
);
The first argument gives the filename, whose extension is used to determine the format
        in which the file will be stored. The second argument is the name of the image to be stored.
        Recall that CvArr is kind of a C-style way of creating
        something equivalent to a base-class in an object-oriented language; wherever you see
          CvArr*, you can use an IplImage*. The cvSaveImage() function will
        store only 8-bit single- or three-channel images for most file formats. Newer back ends for
        flexible image formats like PNG, TIFF or JPEG2000 allow storing 16-bit or even float formats
        and some allow four-channel images (BGR plus alpha) as well. The return value will be
          1 if the save was successful and should be 0 if the save was not.[41]

Displaying Images



Now we are ready for what we really want to do, and that is to load an image and to put
        it into the window where we can view it and appreciate its profundity. We do this via one
        simple function, cvShowImage():
void cvShowImage(
  const char*  name,
  const CvArr* image
);
The first argument here is the name of the window within which we intend to draw. The
        second argument is the image to be drawn.
Let’s now put together a simple program that will display an image on the screen. We can
        read a filename from the command line, create a window, and put our image in the window in
        25 lines, including comments and tidily cleaning up our memory allocations!
int main(int argc, char** argv)
{

  // Create a named window with the name of the file.
  cvNamedWindow( argv[1], 1 );

  // Load the image from the given file name.
  IplImage* img = cvLoadImage( argv[1] );

  // Show the image in the named window
  cvShowImage( argv[1], img );

  // Idle until the user hits the "Esc" key.
  while( 1 ) {
    if( cvWaitKey( 100 ) == 27 ) break;
  }

  // Clean up and don't be piggies
  cvDestroyWindow( argv[1] );
  cvReleaseImage( &img );
  exit(0);
}
For convenience we have used the filename as the window name. This is nice because
        OpenCV automatically puts the window name at the top of the window, so we can tell which
        file we are viewing (see Figure 4-1). Easy
        as cake.
[image: A simple image displayed with cvShowImage()]

Figure 4-1. A simple image displayed with cvShowImage()

Before we move on, there are a few other window-related functions you ought to know
        about. They are:
void cvMoveWindow( const char* name, int x, int y );
void cvDestroyAllWindows( void );
int  cvStartWindowThread( void );
cvMoveWindow() simply moves a window on the screen so
        that its upper left corner is positioned at x,y.
cvDestroyAllWindows() is a useful cleanup function that closes all of the windows and de-allocates the associated
          memory.
On Linux and MacOS, cvStartWindowThread() tries to start a
        thread that updates the window automatically and handles resizing and so forth. A return
        value of indicates that no thread could be started—for example, because there is no support
        for this feature in the version of OpenCV that you are using. Note that, if you do not start
        a separate window thread, OpenCV can react to user interface actions only when it is
        explicitly given time to do so (this happens when your program invokes cvWaitKey(), as described next).
WaitKey



Observe that inside the while loop in our window
          creation example there is a new function we have not seen before: cvWaitKey(). This function causes OpenCV to wait for a specified number of milliseconds for a user keystroke. If the key
          is pressed within the allotted time, the function returns the key pressed;[42] otherwise, it returns 0. With the
            construction:
while( 1 ) {
  if( cvWaitKey(100)==27 ) break;
}
we tell OpenCV to wait 100 ms for a key stroke. If there is no keystroke, then repeat
          ad infinitum. If there is a keystroke and it happens to have ASCII value 27 (the Escape
          key), then break out of that loop. This allows our user to leisurely peruse the image
          before ultimately exiting the program by hitting Escape.
As long as we’re introducing cvWaitKey(), it is
          worth mentioning that cvWaitKey() can also be called
          with 0 as an argument. In this case, cvWaitKey() will wait indefinitely until a keystroke is
          received and then return that key. Thus, in our example we could just as easily have used
            cvWaitKey(0). The difference between these two
          options would be more apparent if we were displaying a video, in which case we would want
          to take an action (i.e., display the next frame) if the user supplied no keystroke.

Mouse Events



Now that we can display an image to a user, we might also want to allow the user to
          interact with the image we have created. Since we are working in a window environment and
          since we already learned how to capture single keystrokes with cvWaitKey(), the next logical thing to consider is how to “listen to” and
          respond to mouse events.
Unlike keyboard events, mouse events are handled by a more typical callback mechanism. This means that, to enable response to mouse clicks, we
          must first write a callback routine that OpenCV can call whenever a mouse event occurs.
          Once we have done that, we must register the callback with OpenCV, thereby informing
          OpenCV that this is the correct function to use whenever the user does something with the
          mouse over a particular window.
Let’s start with the callback. For those of you who are a little rusty on your
          event-driven program lingo, the callback can be any
          function that takes the correct set of arguments and returns the correct type. Here, we
          must be able to tell the function to be used as a callback exactly what kind of event occurred and where it occurred. The
          function must also be told if the user was pressing such keys as Shift or Alt when the
            mouse event occurred. Here is the exact prototype that your callback function
          must match:

void CvMouseCallback(
  int   event,
  int   x,
  int   y,
  int   flags,
  void* param
);
Now, whenever your function is called, OpenCV will fill in the arguments with their
          appropriate values. The first argument, called the event, will have one of the values
          shown in Table 4-1.
Table 4-1. Mouse event types
	
                  Event

                	
                  Numerical value

                
	
                  
                    CV_EVENT_MOUSEMOVE
                  

                	
                  0

                
	
                  
                    CV_EVENT_LBUTTONDOWN
                  

                	
                  1

                
	
                  
                    CV_EVENT_RBUTTONDOWN
                  

                	
                  2

                
	
                  
                    CV_EVENT_MBUTTONDOWN
                  

                	
                  3

                
	
                  
                    CV_EVENT_LBUTTONUP
                  

                	
                  4

                
	
                  
                    CV_EVENT_RBUTTONUP
                  

                	
                  5

                
	
                  
                    CV_EVENT_MBUTTONUP
                  

                	
                  6

                
	
                  
                    CV_EVENT_LBUTTONDBLCLK
                  

                	
                  7

                
	
                  
                    CV_EVENT_RBUTTONDBLCLK
                  

                	
                  8

                
	
                  
                    CV_EVENT_MBUTTONDBLCLK
                  

                	
                  9

                



The second and third arguments will be set to the x and y coordinates of the mouse
          event. It is worth noting that these coordinates represent the pixel in the image
          independent of the size of the window (in general, this is not the same as the pixel
          coordinates of the event).
The fourth argument, called flags, is a bit field
          in which individual bits indicate special conditions present at the time of the event. For
          example, CV_EVENT_FLAG_SHIFTKEY has a numerical value
          of 16 (i.e., the fifth bit) and so, if we wanted to test whether the shift key were down,
          we could AND the flags variable with the bit mask (1<<4). Table 4-2 shows a complete list of the
          flags.
Table 4-2. Mouse event flags
	
                  Flag

                	
                  Numericalvalue

                
	
                  
                    CV_EVENT_FLAG_LBUTTON
                  

                	
                  1

                
	
                  
                    CV_EVENT_FLAG_RBUTTON
                  

                	
                  2

                
	
                  
                    CV_EVENT_FLAG_MBUTTON
                  

                	
                  4

                
	
                  
                    CV_EVENT_FLAG_CTRLKEY
                  

                	
                  8

                
	
                  
                    CV_EVENT_FLAG_SHIFTKEY
                  

                	
                  16

                
	
                  
                    CV_EVENT_FLAG_ALTKEY
                  

                	
                  32

                



The final argument is a void pointer that can be used to have OpenCV pass in any
          additional information in the form of a pointer to whatever kind of structure you need. A
          common situation in which you will want to use the param argument is when the callback itself is a static member function of a
          class. In this case, you will probably find yourself wanting to pass the this pointer and so indicate which class object instance the
          callback is intended to affect.
Next we need the function that registers the callback. That function is called
            cvSetMouseCallback(), and it requires three
            arguments.

void cvSetMouseCallback(
  const char*     window_name,
  CvMouseCallback on_mouse,
  void*           param      = NULL
);
The first argument is the name of the window to which the callback will be attached.
          Only events in that particular window will trigger this specific callback. The second
          argument is your callback function. Finally, the third param argument allows us to specify the param information that should be given to the callback whenever it is
          executed. This is, of course, the same param we were
          just discussing in regard to the callback prototype.
In Example 4-1 we write a small program
          to draw boxes on the screen with the mouse. The function my_mouse_callback() is installed to respond to mouse events, and it uses the event to determine what to do when it is
            called.
Example 4-1. Toy program for using a mouse to draw boxes on the screen
// An example program in which the
// user can draw boxes on the screen.
//
#include <cv.h>
#include <highgui.h>

// Define our callback which we will install for
// mouse events.
//
void my_mouse_callback(
   int event, int x, int y, int flags, void* param
);

CvRect box;
bool drawing_box = false;

// A litte subroutine to draw a box onto an image
//
void draw_box( IplImage* img, CvRect rect ) {
  cvRectangle (
    img,
    cvPoint(rect.x,rect.y),
    cvPoint(rect.x+rect.width,rect.y+rect.height),
    CV_RGB(0xff,0x00,0x00) /* red */
 );
}

int main( int argc, char* argv[] ) {

  box = cvRect(-1,-1,0,0);

  IplImage* image = cvCreateImage(
    cvSize(200,200),
    IPL_DEPTH_8U,
    3
  );
  cvZero( image );
  IplImage* temp = cvCloneImage( image );

  cvNamedWindow( "Box Example" );

  // Here is the crucial moment that we actually install
  // the callback. Note that we set the value 'param' to
  // be the image we are working with so that the callback
  // will have the image to edit.
  //

  cvSetMouseCallback(
    "Box Example",
    my_mouse_callback,
    (void*) image
 );

 // The main program loop. Here we copy the working image
 // to the 'temp' image, and if the user is drawing, then
 // put the currently contemplated box onto that temp image.
 // display the temp image, and wait 15ms for a keystroke,
 // then repeat...
 //
 while( 1 ) {

   cvCopyImage( image, temp );
   if( drawing_box ) draw_box( temp, box );
   cvShowImage( "Box Example", temp );

   if( cvWaitKey( 15 )==27 ) break;
 }

 // Be tidy
 //
 cvReleaseImage( &image );
 cvReleaseImage( &temp );
 cvDestroyWindow( "Box Example" );
}

// This is our mouse callback. If the user
// presses the left button, we start a box.
// when the user releases that button, then we
// add the box to the current image. When the
// mouse is dragged (with the button down) we
// resize the box.
//
void my_mouse_callback(
  int event, int x, int y, int flags, void* param
) {

  IplImage* image = (IplImage*) param;

  switch( event ) {
    case CV_EVENT_MOUSEMOVE: {
      if( drawing_box ) {
        box.width = x-box.x;
        box.height = y-box.y;
      }
    }
    break;
    case CV_EVENT_LBUTTONDOWN: {
      drawing_box = true;
      box = cvRect(x, y, 0, 0);
    }
    break;
    case CV_EVENT_LBUTTONUP: {
      drawing_box = false;
      if(box.width<0) {
        box.x+=box.width;
        box.width *=-1;
      }
      if(box.height<0) {
        box.y+=box.height;
        box.height*=-1;
      }
      draw_box(image, box);
    }
    break;
  }
}



Sliders, Trackbars, and Switches



HighGUI provides a convenient slider element. In HighGUI, sliders are called trackbars. This is because their original (historical) intent
          was for selecting a particular frame in the playback of a video. Of course, once added to
          HighGUI, people began to use trackbars for all of the usual things one might do with a slider as well as many unusual ones (see the next section, “No
            Buttons”)!
As with the parent window, the slider is given a unique name (in the form of a
          character string) and is thereafter always referred to by that name. The HighGUI routine
          for creating a trackbar is:
int cvCreateTrackbar(
  const char*        trackbar_name,
  const char*        window_name,
  int*               value,
  int                count,
  CvTrackbarCallback on_change
);
The first two arguments are the name for the trackbar itself and the name of the
          parent window to which the trackbar will be attached. When the trackbar is created it is
          added to either the top or the bottom of the parent window;[43] it will not occlude any image that is already in the window.
The next two arguments are value, a pointer to an
          integer that will be set automatically to the value to which the slider has been moved,
          and count, a numerical value for the maximum value of
          the slider.
The last argument is a pointer to a callback function that will be automatically
          called whenever the slider is moved. This is exactly analogous to the callback for mouse
          events. If used, the callback function must have the form CvTrackbarCallback, which is defined as:
void (*callback)( int position )
This callback is not actually required, so if you don’t want a callback then you can
          simply set this value to NULL. Without a callback, the
          only effect of the user moving the slider will be the value of *value being changed.
Finally, here are two more routines that will allow you to programmatically set or
          read the value of a trackbar if you know its name:
int cvGetTrackbarPos(
  const char* trackbar_name,
  const char* window_name
);

void cvSetTrackbarPos(
  const char* trackbar_name,
  const char* window_name,
  int         pos
);
These functions allow you to set or read the value of a trackbar from anywhere in your
          program.

No Buttons



Unfortunately, HighGUI does not provide any explicit support for buttons. It is thus common practice, among the particularly lazy,[44] to instead use sliders with only two positions. Another option that occurs often in the
          OpenCV samples in …/opencv/samples/c/ is to use
          keyboard shortcuts instead of buttons (see, e.g., the floodfill demo in the OpenCV source-code bundle).
Switches are just sliders (trackbars) that have only two positions, “on” (1) and “off” (0) (i.e.,
            count has been set to 1). You can see how this is an easy way to obtain the functionality of a
          button using only the available trackbar tools. Depending on exactly how you want the switch to behave, you
          can use the trackbar callback to automatically reset the button back to 0 (as in Example 4-2; this is something like the
          standard behavior of most GUI “buttons”) or to automatically set other switches to 0
          (which gives the effect of a “radio button”).
Example 4-2. Using a trackbar to create a “switch” that the user can turn on and off
// We make this value global so everyone can see it.
//
int g_switch_value = 0;

// This will be the callback that we give to the
// trackbar.
//
void switch_callback( int position ) {
  if( position == 0 ) {
    switch_off_function();
  } else {
    switch_on_function();
  }
}

int main( int argc, char* argv[] ) {

  // Name the main window
  //
  cvNamedWindow( "Demo Window", 1 );

  // Create the trackbar. We give it a name,
  // and tell it the name of the parent window.
  //
  cvCreateTrackbar(
    "Switch",
    "Demo Window",
    &g_switch_value,
    1,
    switch_callback
 );

 // This will just cause OpenCV to idle until
 // someone hits the "Escape" key.
 //
 while( 1 ) {
   if( cvWaitKey(15)==27 ) break;
 }

}


You can see that this will turn on and off just like a light switch. In our example,
          whenever the trackbar “switch” is set to 0, the callback executes the function switch_off_function(), and whenever it is switched on, the
            switch_on_function() is called.


Working with Video



When working with video we must consider several functions, including (of course) how to
        read and write video files. We must also think about how to actually play back such files on
        the screen.
The first thing we need is the CvCapture device. This
        structure contains the information needed for reading frames from a camera or video file. Depending on the source, we use one of two
        different calls to create and initialize a CvCapture
        structure.
CvCapture* cvCreateFileCapture( const char* filename );
CvCapture* cvCreateCameraCapture( int index );
In the case of cvCreateFileCapture(), we can simply
        give a filename for an MPG or AVI file and OpenCV will open the file and prepare to read it.
        If the open is successful and we are able to start reading frames, a pointer to an
        initialized CvCapture structure will be
          returned.
A lot of people don’t always check these sorts of things, thinking that nothing will go
        wrong. Don’t do that here. The returned pointer will be NULL if for some reason the file could not be opened (e.g., if the file does
        not exist), but cvCreateFileCapture() will also return a
          NULL pointer if the codec with which the video is
        compressed is not known. The subtleties of compression codecs are beyond the scope of this book, but in general you will need to have
        the appropriate library already resident on your computer in order to successfully read the
        video file. For example, if you want to read a file encoded with DIVX or MPG4 compression on
        a Windows machine, there are specific DLLs that provide the necessary resources to decode
        the video. This is why it is always important to check the return value of cvCreateFileCapture(), because even if it works on one machine
        (where the needed DLL is available) it might not work on another machine (where that codec
        DLL is missing). Once we have the CvCapture structure, we
        can begin reading frames and do a number of other things. But before we get into that, let’s
        take a look at how to capture images from a camera.
The routine cvCreateCameraCapture() works very much
        like cvCreateFileCapture() except without the headache
          from the codecs.[45] In this case we give an identifier that
        indicates which camera we would like to access and how we expect the operating system to
        talk to that camera. For the former, this is just an identification number that is zero (0)
        when we only have one camera, and increments upward when there are multiple cameras on the
        same system. The other part of the identifier is called the domain of the camera and indicates (in essence) what type of camera we have.
        The domain can be any of the predefined constants shown in Table 4-3.
Table 4-3. Camera “domain” indicates where HighGUI should look for your camera
	
                Camera capture constan

              	
                Numerical value

              
	
                
                  CV_CAP_ANY
                

              	
                0

              
	
                
                  CV_CAP_MIL
                

              	
                100

              
	
                
                  CV_CAP_VFW
                

              	
                200

              
	
                
                  CV_CAP_V4L
                

              	
                200

              
	
                
                  CV_CAP_V4L2
                

              	
                200

              
	
                
                  CV_CAP_FIREWIRE
                

              	
                300

              
	
                
                  CV_CAP_IEEE1394
                

              	
                300

              
	
                
                  CV_CAP_DC1394
                

              	
                300

              
	
                
                  CV_CAP_CMU1394
                

              	
                300

              



When we call cvCreateCameraCapture(), we pass in an
        identifier that is just the sum of the domain index and the camera index. For
        example:
CvCapture* capture = cvCreateCameraCapture( CV_CAP_FIREWIRE );
In this example, cvCreateCameraCapture() will attempt
        to open the first (i.e., number-zero) Firewire camera. In most cases, the domain is
        unnecessary when we have only one camera; it is sufficient to use CV_CAP_ANY (which is conveniently equal to 0, so we don’t even have to type
        that in). One last useful hint before we move on: you can pass -1 to cvCreateCameraCapture(), which will
        cause OpenCV to open a window that allows you to select the desired camera.
Reading Video



int        cvGrabFrame( CvCapture* capture );
IplImage*  cvRetrieveFrame( CvCapture* capture );
IplImage*  cvQueryFrame( CvCapture* capture );
Once you have a valid CvCapture object, you can
          start grabbing frames. There are two ways to do this. One way is to call cvGrabFrame(), which takes the CvCapture* pointer and returns an integer. This integer will be 1 if the grab
          was successful and 0 if the grab failed. The cvGrabFrame() function copies the captured image to an internal buffer that
          is invisible to the user. Why would you want OpenCV to put the frame somewhere you can’t
          access it? The answer is that this grabbed frame is unprocessed, and cvGrabFrame() is designed simply to get it onto the computer
          as quickly as possible.
Once you have called cvGrabFrame(), you can then
          call cvRetrieveFrame(). This function will do any
          necessary processing on the frame (such as the decompression stage in the codec) and then
          return an IplImage* pointer that points to another
          internal buffer (so do not rely on this image, because it will be overwritten the next
          time you call cvGrabFrame()). If you want to do
          anything in particular with this image, copy it elsewhere first. Because this pointer
          points to a structure maintained by OpenCV itself, you are not required to release the
          image and can expect trouble if you do so.
Having said all that, there is a somewhat simpler method called cvQueryFrame(). This is, in effect, a combination of cvGrabFrame() and cvRetrieveFrame(); it also returns the same IplImage* pointer as cvRetrieveFrame()
            did.
It should be noted that, with a video file, the frame is automatically advanced
          whenever a cvGrabFrame() call is made. Hence a
          subsequent call will retrieve the next frame automatically.
Once you are done with the CvCapture device, you
          can release it with a call to cvReleaseCapture(). As
          with most other de-allocators in OpenCV, this routine takes a pointer to the CvCapture* pointer:
void cvReleaseCapture( CvCapture** capture );
There are many other things we can do with the CvCapture structure. In particular, we can check and set various properties of the video source:
double cvGetCaptureProperty(
  CvCapture* capture,
  int property_id
);

int cvSetCaptureProperty(
  CvCapture* capture,
  int        property_id,
  double     value
);
The routine cvGetCaptureProperty() accepts any of
          the property IDs shown in Table 4-4.
Table 4-4. Video capture properties used by cvGetCaptureProperty() and
            cvSetCaptureProperty()
	
                  Video capture property

                	
                  Numerical value

                
	
                  
                    CV_CAP_PROP_POS_MSEC
                  

                	
                  0

                
	
                  
                    CV_CAP_PROP_POS_FRAME
                  

                	
                  1

                
	
                  
                    CV_CAP_PROP_POS_AVI_RATIO
                  

                	
                  2

                
	
                  
                    CV_CAP_PROP_FRAME_WIDTH
                  

                	
                  3

                
	
                  
                    CV_CAP_PROP_FRAME_HEIGHT
                  

                	
                  4

                
	
                  
                    CV_CAP_PROP_FPS
                  

                	
                  5

                
	
                  
                    CV_CAP_PROP_FOURCC
                  

                	
                  6

                
	
                  
                    CV_CAP_PROP_FRAME_COUNT
                  

                	
                  7

                



Most of these properties are self explanatory. POS_MSEC is the current position in a video file, measured in milliseconds. POS_FRAME is the current position in frame number. POS_AVI_RATIO is the position given as a number between 0 and 1 (this is
          actually quite useful when you want to position a trackbar to allow folks to navigate around your video). FRAME_WIDTH and FRAME_HEIGHT are the dimensions of the individual frames of the video to be
          read (or to be captured at the camera’s current settings). FPS is specific to video files and indicates the number of frames per second
          at which the video was captured; you will need to know this if you want to play back your
          video and have it come out at the right speed. FOURCC
          is the four-character code for the compression codec to be used for the video you are currently reading. FRAME_COUNT should be the total
          number of frames in the video, but this figure is not entirely reliable.
All of these values are returned as type double,
          which is perfectly reasonable except for the case of FOURCC (FourCC) [FourCC85]. Here you will have to recast the result in order
          to interpret it, as described in Example 4-3.
Example 4-3. Unpacking a four-character code to identify a video codec
double f = cvGetCaptureProperty(
  capture,
  CV_CAP_PROP_FOURCC
);

char* fourcc = (char*) (&f);


For each of these video capture properties, there is a corresponding cvSetCapture Property() function that will attempt to set the
          property. These are not all entirely meaningful; for example, you should not be setting
          the FOURCC of a video you are currently reading.
          Attempting to move around the video by setting one of the position properties will work,
          but only for some video codecs (we’ll have more to say about video codecs in the next section).

Writing Video



The other thing we might want to do with video is writing it out to disk. OpenCV makes this easy; it is essentially the same as reading video but
          with a few extra details.
First we must create a CvVideoWriter device, which
          is the video writing analogue of CvCapture. This device
          will incorporate the following functions.
CvVideoWriter* cvCreateVideoWriter(
  const char* filename,
  int         fourcc,
  double      fps,
  CvSize      frame_size,
  int         is_color = 1
);
int cvWriteFrame(
  CvVideoWriter*  writer,
  const IplImage* image
);
void cvReleaseVideoWriter(
  CvVideoWriter** writer
);
You will notice that the video writer requires a few extra arguments. In addition to
          the filename, we have to tell the writer what codec to use, what the frame rate is, and
          how big the frames will be. Optionally we can tell OpenCV if the frames are black and
          white or color (the default is color).
Here, the codec is indicated by its four-character code. (For those of you who are not
          experts in compression codecs, they all have a unique four-character identifier associated with
          them). In this case the int that is named fourcc in the argument list for cvCreateVideoWriter() is actually the four characters of the fourcc packed together. Since this comes up relatively often,
          OpenCV provides a convenient macro CV_FOURCC(c0,c1,c2,c3) that will do the bit packing for you.
Once you have a video writer, all you have to do is call cvWriteFrame() and pass in the CvVideoWriter* pointer and the IplImage*
          pointer for the image you want to write out.
Once you are finished, you must call CvReleaseVideoWriter() in order to close the writer and the file you were
          writing to. Even if you are normally a bit sloppy about de-allocating things at the end of
          a program, do not be sloppy about this. Unless you explicitly release the video writer,
          the video file to which you are writing may be corrupted.


ConvertImage



For purely historical reasons, there is one orphan routine in the HighGUI that fits into
        none of the categories described above. It is so tremendously useful, however, that you
        should know about it and what it does. The function is called cvConvertImage().
void cvConvertImage(
  const CvArr* src,
  CvArr*       dst,
  int          flags = 0
);
cvConvertImage() is used to perform common
        conversions between image formats. The formats are specified in the headers of the src and dst images or arrays
        (the function prototype allows the more general CvArr
        type that works with IplImage).
The source image may be one, three, or four channels with either 8-bit or floating-point
        pixels. The destination must be 8 bits with one or three channels. This function can also
        convert color to grayscale or one-channel grayscale to three-channel grayscale (color). Finally,
        the flag (if set) will flip the image vertically. This is
        useful because sometimes camera formats and display formats are reversed. Setting this flag actually flips the
        pixels in memory.

Exercises



	This chapter completes our introduction to basic I/O programming and data structures
            in OpenCV. The following exercises build on this knowledge and create useful utilities
            for later use.
	Create a program that (1) reads frames from a video, (2) turns the result to
                grayscale, and (3) performs Canny edge detection on the image. Display all three
                stages of processing in three different windows, with each window appropriately
                named for its function.

	Display all three stages of processing in one image.
Hint: Create another image of the same height but three times the width as the
                  video frame. Copy the images into this, either by using pointers or (more
                  cleverly) by creating three new image headers that point to the beginning of and
                  to one-third and two-thirds of the way into the imageData. Then use cvCopy().



	Write appropriate text labels describing the processing in each of the three
                slots.




	Create a program that reads in and displays an image. When the user’s mouse clicks
            on the image, read in the corresponding pixel (blue, green, red) values and write those
            values as text to the screen at the mouse location.
	For the program of exercise 1b, display the mouse coordinates of the individual
                image when clicking anywhere within the three-image display.




	Create a program that reads in and displays an image.
	Allow the user to select a rectangular region in the image by drawing a rectangle with the mouse button held down, and highlight the
                region when the mouse button is released. Be careful to save an image copy in memory
                so that your drawing into the image does not destroy the original values there. The
                next mouse click should start the process all over again from the original
                image.

	In a separate window, use the drawing functions to draw a graph in blue, green,
                and red for how many pixels of each value were found in the selected box. This is
                the color histogram of that color region. The
                  x-axis should be eight bins that represent
                pixel values falling within the ranges 0–31, 32–63,…, 223–255. The y-axis should be counts of the number of pixels that
                were found in that bin range. Do this for each color channel, BGR.




	Make an application that reads and displays a video and is controlled by sliders.
            One slider will control the position within the video from start to end in 10
            increments; another binary slider should control pause/unpause. Label both sliders
            appropriately.

	Create your own simple paint program.
	Write a program that creates an image, sets it to 0, and then displays it. Allow
                the user to draw lines, circles, ellipses, and polygons on the image using the left
                mouse button. Create an eraser function when the right mouse button is held
                down.

	Allow “logical drawing” by allowing the user to set a slider setting to AND, OR,
                and XOR. That is, if the setting is AND then the drawing will appear only when it
                crosses pixels greater than 0 (and so on for the other logical functions).




	Write a program that creates an image, sets it to 0, and then displays it. When the
            user clicks on a location, he or she can type in a label there. Allow Backspace to edit
            and provide for an abort key. Hitting Enter should fix the label at the spot it was
            typed.

	Perspective transform.
	Write a program that reads in an image and uses the numbers 1–9 on the keypad to
                control a perspective transformation matrix (refer to our discussion of the cvWarpPerspective() in the Dense Perspective Transform
                section of Chapter 6). Tapping any number should increment
                the corresponding cell in the perspective transform matrix; tapping with the Shift
                key depressed should decrement the number associated with that cell (stopping at 0).
                Each time a number is changed, display the results in two images: the raw image and
                the transformed image.

	Add functionality to zoom in or out?

	Add functionality to rotate the image?




	Face fun. Go to the /samples/c/ directory and
            build the facedetect.c code. Draw a skull image (or
            find one on the Web) and store it to disk. Modify the facedetect program to load in the image of the skull.
	When a face rectangle is detected, draw the skull in that rectangle.
Hint: cvConvertImage() can convert the size
                  of the image, or you could look up the cvResize
                  function. One may then set the ROI to the rectangle and use cvCopy() to copy the properly resized image
                  there.



	Add a slider with 10 settings corresponding to 0.0 to 1.0. Use this slider to
                alpha blend the skull over the face rectangle using the cvAddWeighted function.




	Image stabilization. Go to the /samples/c/
            directory and build the lkdemo code (the motion
            tracking or optical flow code). Create and display
            a video image in a much larger window image. Move the camera slightly but use the
            optical flow vectors to display the image in the same place within the larger window.
            This is a rudimentary image stabilization technique.






[38] Under the hood, the architectural organization is a bit different from what we
            described, but the breakdown into hardware, file system, and GUI is an easier way to
            organize things conceptually. The actual HighGUI functions are divided into “video IO”,
            “image IO”, and “GUI tools”. These categories are represented by the cvcap*, grfmt*, and window* source files, respectively.

[39] OpenCV HighGUI does not provide anything like a button. The common trick is to use a
            two-position slider to achieve this functionality (more on this later).

[40] For those who know what this means: the window handle returned is a HWND on Win32 systems, a Carbon WindowRef on Mac
            OS X, and a Widget* pointer on systems (e.g.,
              GtkWidget) of X Window type.

[41] The reason we say “should” is that, in some OS environments, it is possible to issue
            save commands that will actually cause the operating system to throw an exception.
            Normally, however, a zero value will be returned to indicate failure.

[42] The careful reader might legitimately ask exactly what this means. The short
              answer is “an ASCII value”, but the long answer depends on the operating system. In
                Win32 environments, cvWaitKey() is
              actually waiting for a message of type WM_CHAR and,
              after receiving that message, returns the wParam
              field from the message (wParam is not actually type
              char at all!). On Unix-like systems, cvWaitKey() is using
              GTK; the return value is (event->keyval |
                (event->state<<16)), where event is a GdkEventKey structure.
              Again, this is not really a char. That state information is essentially the state of
              the Shift, Control, etc. keys at the time of the key press. This means that, if you
              are expecting (say) a capital Q, then you should either cast the return of cvWaitKey() to type char or AND with 0xff, because the shift key will appear in the upper bits
              (e.g., Shift-Q will return 0x10051).

[43] Whether it is added to the top or bottom depends on the operating system, but it
              will always appear in the same place on any given platform.

[44] For the less lazy, another common practice is to compose the image you are
              displaying with a “control panel” you have drawn and then use the mouse event callback
              to test for the mouse’s location when the event occurs. When the (x, y) location is
              within the area of a button you have drawn on your control panel, the callback is set
              to perform the button action. In this way, all “buttons” are internal to the mouse
              event callback routine associated with the parent window.

[45] Of course, to be completely fair, we should probably confess that the headache
            caused by different codecs has been replaced by the analogous headache of determining
            which cameras are (or are not) supported on our system.


Chapter 5. Image Processing



Overview



At this point we have all of the basics at our disposal. We understand the structure of
        the library as well as the basic data structures it uses to represent images. We understand
        the HighGUI interface and can actually run a program and display our results on the screen.
        Now that we understand these primitive methods required to manipulate image structures, we
        are ready to learn some more sophisticated operations.
We will now move on to higher-level methods that treat the images as images, and not
        just as arrays of colored (or grayscale) values. When we say “image processing”, we mean
        just that: using higher-level operators that are defined on image structures in order to
        accomplish tasks whose meaning is naturally defined in the context of graphical, visual
        images.

Smoothing



Smoothing, also called blurring, is a simple and frequently used image processing operation. There
        are many reasons for smoothing, but it is usually done to reduce noise or camera artifacts. Smoothing is also important when we wish to reduce the resolution of
        an image in a principled way (we will discuss this in more detail in the “Image Pyramids”
        section of this chapter).
OpenCV offers five different smoothing operations at this time. All of them are
        supported through one function, cvSmooth(),[46] which takes our desired form of smoothing as an argument.
void cvSmooth(
  const CvArr*  src,
  CvArr*        dst,
  int           smoothtype = CV_GAUSSIAN,
  int           param1     = 3,
  int           param2     = 0,
  double        param3     = 0,
  double        param4     = 0
);
The src and dst
        arguments are the usual source and destination for the smooth operation. The cvSmooth() function has four parameters with the particularly
        uninformative names of param1, param2, param3, and param4. The meaning of these parameters
        depends on the value of smoothtype, which may take any of
        the five values listed in Table 5-1.[47] (Please notice that for some values of smoothtype, “in place operation”, in
        which src and dst
        indicate the same image, is not allowed.)
Table 5-1. Types of smoothing operations, meaning of their parameters, and the depth and number
          of channels (Nc) supported by each operation.
	
                Smooth type

              	
                Name

              	
                In place

              	
                Nc

              	
                src depth

              	
                dst depth

              	
                Brief description

              
	
                
                  CV_BLUR
                

              	
                Simple blur

              	
                Yes

              	
                Any

              	
                8u, 32f

              	
                8u, 32f

              	
                Sum over a param1xparam2 neighborhood with
                  subsequent scaling by 1/(param1xparam2).

              
	
                
                  CV_BLUR_NO_SCALE
                

              	
                Simple blur with no scaling

              	
                No

              	
                Any

              	
                8u

              	
                16s (for 8u source) or 32f (for 32f source)

              	
                Sum over a param1xparam2
                  neighborhood.

              
	
                
                  CV_MEDIAN
                

              	
                Median blur

              	
                No

              	
                1,3, 4

              	
                8u

              	
                8u

              	
                Find median over a param1xparam1 square
                  neighborhood.

              
	
                
                  CV_GAUSSIAN
                

              	
                Gaussian blur

              	
                Yes

              	
                1,3

              	
                8u, 32f

              	
                8u (for 8u source) or 32f (for 32f source)

              	
                Sum over a param1xparam2
                  neighborhood.

              
	
                
                  CV_BILATERAL
                

              	
                Bilateral filter

              	
                No

              	
                1,3

              	
                8u

              	
                8u

              	
                Apply bilateral param1xparam1 filtering with color sigma=param3 and space sigma=param4.

              



The simple blur operation, as exemplified by
          CV_BLUR in Figure 5-1, is the simplest case. Each pixel in
        the output is the simple mean of all of the pixels in a window around the corresponding
        pixel in the input. Simple blur supports any number of channels and works on 8-bit images or
        32-bit floating-point images.
Not all of the smoothing operators act on the same sorts of images. CV_BLUR_NO_SCALE (simple blur without
          scaling) is essentially the same as simple blur except that there is no
        division performed to create an average. Hence the source and destination images must have
        different numerical precision so that the blurring operation will not result in an overflow.
        Simple blur without scaling may be performed on 8-bit images, in which case the destination
        image should have IPL_DEPTH_16S (CV_16S) or IPL_DEPTH_32S (CV_32S) data types. The same operation may also
        be performed on 32-bit floating-point images, in which case the destination image may also
        be a 32-bit floating-point image. Simple blur without scaling cannot be done in place: the
        source and destination images must be different. (This requirement is obvious in the case of
        8 bits to 16 bits, but it applies even when you are using a 32-bit image). Simple blur
        without scaling is sometimes chosen because it is a little faster than blurring with
        scaling.
[image: Image smoothing by block averaging: on the left are the input images; on the right, the output images]

Figure 5-1. Image smoothing by block averaging: on the left are the input images; on the right,
          the output images

The median filter (CV_MEDIAN) [Bardyn84] replaces each pixel by the median or “middle” pixel (as
        opposed to the mean pixel) value in a square neighborhood around the center pixel.
          Median filter will work on single-channel or three-channel or four-channel 8-bit
        images, but it cannot be done in place. Results of median filtering are shown in Figure 5-2. Simple blurring by averaging can be
        sensitive to noisy images, especially images with large isolated outlier points (sometimes
        called “shot noise”). Large differences in even a small number of points can cause a
        noticeable movement in the average value. Median filtering is able to ignore the outliers by
        selecting the middle points.
The next smoothing filter, the Gaussian filter
          (CV_GAUSSIAN), is probably the most useful though not
        the fastest. Gaussian filtering is done by convolving each point in the input array with a
        Gaussian kernel and then summing to produce the output array.
[image: Image blurring by taking the median of surrounding pixels]

Figure 5-2. Image blurring by taking the median of surrounding pixels

For the Gaussian blur (Figure 5-3), the first two
        parameters give the width and height of the filter window; the (optional) third parameter indicates the sigma value (half
        width at half max) of the Gaussian kernel. If the third parameter is not specified, then the
        Gaussian will be automatically determined from the window size using the following
        formulae:
[image: image with no caption]

[image: image with no caption]

If you wish the kernel to be asymmetric, then you may also (optionally) supply a fourth
        parameter; in this case, the third and fourth parameters will be the values of sigma in the
        horizontal and vertical directions, respectively.
If the third and fourth parameters are given but the first two are set to 0, then the
        size of the window will be automatically determined from the value of sigma.
The OpenCV implementation of Gaussian smoothing also provides a higher performance optimization for several common
        kernels. 3-by-3, 5-by-5 and 7-by-7 with the “standard” sigma (i.e., param3 = 0.0) give
        better performance than other kernels. Gaussian blur supports single- or three-channel images in either 8-bit or 32-bit
        floating-point formats, and it can be done in place. Results of Gaussian blurring are shown
        in Figure 5-4.
[image: Gaussian blur on 1D pixel array]

Figure 5-3. Gaussian blur on 1D pixel array

The fifth and final form of smoothing supported by OpenCV is called bilateral
          filtering [Tomasi98], an example of which is shown in Figure 5-5. Bilateral filtering is one operation from a
        somewhat larger class of image analysis operators known as edge-preserving smoothing. Bilateral filtering is most easily understood when
        contrasted to Gaussian smoothing. A typical motivation for Gaussian smoothing is that pixels
        in a real image should vary slowly over space and thus be correlated to their neighbors,
        whereas random noise can be expected to vary greatly from one pixel to the next (i.e., noise
        is not spatially correlated). It is in this sense that Gaussian smoothing reduces noise
        while preserving signal. Unfortunately, this method breaks down near edges, where you do
        expect pixels to be uncorrelated with their neighbors. Thus Gaussian smoothing smoothes away
        the edges. At the cost of a little more processing time, bilateral filtering provides us a
        means of smoothing an image without smoothing away the edges.
Like Gaussian smoothing, bilateral filtering constructs a weighted average of each pixel
        and its neighboring components. The weighting has two components, the first of which is the
        same weighting used by Gaussian smoothing. The second component is also a Gaussian weighting
        but is based not on the spatial distance from the center pixel but rather on the difference
        in intensity[48] from the center pixel.[49]You can think of bilateral filtering as Gaussian smoothing that weights more similar pixels more highly than less similar ones.
        The effect of this filter is typically to turn an image into what appears to be a watercolor painting of the same scene.[50] This can be useful as an aid to segmenting the image.
[image: Gaussian blurring]

Figure 5-4. Gaussian blurring

Bilateral filtering takes two parameters. The first is the width of the Gaussian kernel
        used in the spatial domain, which is analogous to the sigma parameters in the Gaussian filter. The second is the width of the Gaussian kernel in the color
        domain. The larger this second parameter is, the broader is the range of intensities (or
        colors) that will be included in the smoothing (and thus the more extreme a discontinuity
        must be in order to be preserved).
[image: Results of bilateral smoothing]

Figure 5-5. Results of bilateral smoothing


Image Morphology



OpenCV provides a fast, convenient interface for doing morphological transformations [Serra83] on an image. The basic morphological
        transformations are called dilation and erosion, and they arise in a wide variety of contexts such as
        removing noise, isolating individual elements, and joining disparate elements in an image.
        Morphology can also be used to find intensity bumps or holes in an image and to find image gradients.
Dilation and Erosion



Dilation is a convolution of some image (or region of an image), which we will call A,
          with some kernel, which we will call B. The kernel,
          which can be any shape or size, has a single defined anchor point. Most often, the
          kernel is a small solid square or disk with the anchor point at the center. The kernel can
          be thought of as a template or mask, and its effect for dilation is that of a local maximum operator. As the kernel B is scanned over the
          image, we compute the maximal pixel value overlapped by B and replace the image pixel
          under the anchor point with that maximal value. This causes bright regions within an image
          to grow as diagrammed in Figure 5-6. This
          growth is the origin of the term “dilation operator”.
[image: Morphological dilation: take the maximum under the kernel B]

Figure 5-6. Morphological dilation: take the maximum under the kernel B

Erosion is the converse operation. The action of the erosion operator is equivalent to computing a local
            minimum over the area of the kernel. Erosion generates a new image from the
          original using the following algorithm: as the kernel B is scanned over the image, we
          compute the minimal pixel value overlapped by B and replace the image pixel under the
          anchor point with that minimal value.[51] Erosion is diagrammed in Figure 5-7.
Tip
Image morphology is often done on Boolean images that result from thresholding.
            However, because dilation is just a max operator and erosion is just a min operator,
            morphology may be used on intensity images as well.

In general, whereas dilation expands region A, erosion reduces region A. Moreover, dilation will
          tend to smooth concavities and erosion will tend to smooth away protrusions. Of course,
          the exact result will depend on the kernel, but these statements are generally true so
          long as the kernel is both convex and filled.
In OpenCV, we effect these transformations using the cvErode() and cvDilate()
            functions:
void cvErode(
   IplImage*       src,
   IplImage*       dst,
   IplConvKernel*  B          = NULL,
   int             iterations = 1
);
[image: Morphological erosion: take the minimum under the kernel B]

Figure 5-7. Morphological erosion: take the minimum under the kernel B

void cvDilate(
   IplImage*       src,
   IplImage*       dst,
   IplConvKernel*  B          = NULL,
   int             iterations = 1
);
Both cvErode() and cvDilate() take a source and destination image, and both support “in place”
          calls (in which the source and destination are the same image). The third argument is the
          kernel, which defaults to NULL. In the NULL case, the kernel used is a 3-by-3 kernel with the anchor
          at its center (we will discuss shortly how to create your own kernels). Finally, the
          fourth argument is the number of iterations. If not set to the default value of 1, the
          operation will be applied multiple times during the single call to the function. The
          results of an erode operation are shown in Figure 5-8 and those of a dilation operation in Figure 5-9. The erode operation is often used to eliminate "speckle” noise in an image. The idea here is that the speckles are eroded to
          nothing while larger regions that contain visually significant content are not affected.
          The dilate operation is often used when attempting to find connected components (i.e., large discrete regions of similar pixel color or
          intensity). The utility of dilation arises because in many cases a large region might otherwise be broken
          apart into multiple components as a result of noise, shadows, or some other similar
          effect. A small dilation will cause such components to “melt” together into one.
To recap: when OpenCV processes the cvErode()
          function, what happens beneath the hood is that the value of some point p is set to the minimum value of all of the points covered by
          the kernel when aligned at p; for the dilation
          operator, the equation is the same except that max is considered rather than min:
[image: Results of the erosion, or “min”, operator: bright regions are isolated and shrunk]

Figure 5-8. Results of the erosion, or “min”, operator: bright regions are isolated and
            shrunk

[image: image with no caption]

You might be wondering why we need a complicated formula when the earlier heuristic
          description was perfectly sufficient. Some readers actually prefer such formulas but, more
          importantly, the formulas capture some generality that isn’t apparent in the qualitative
          description. Observe that if the image is not Boolean then the min and max operators play
          a less trivial role. Take another look at Figures Figure 5-8 and Figure 5-9, which show the erosion and dilation operators applied to two real images.

Making Your Own Kernel



You are not limited to the simple 3-by-3 square kernel. You can make your own
            custom morphological kernels (our previous “kernel B”) using IplConvKernel. Such kernels are allocated using cvCreateStructuringElementEx() and are released using cvReleaseStructuringElement().
IplConvKernel* cvCreateStructuringElementEx(
   int          cols,
   int          rows,
   int          anchor_x,
   int          anchor_y,
   int          shape,
   int*         values=NULL
);

void cvReleaseStructuringElement( IplConvKernel** element );
[image: Results of the dilation, or “max”, operator: bright regions are expanded and often joined]

Figure 5-9. Results of the dilation, or “max”, operator: bright regions are expanded and often
            joined

A morphological kernel, unlike a convolution kernel, doesn’t require any
          numerical values. The elements of the kernel simply indicate where the max or min
          computations take place as the kernel moves around the image. The anchor point indicates
          how the kernel is to be aligned with the source image and also where the result of the
          computation is to be placed in the destination image. When creating the kernel, cols and rows indicate the
          size of the rectangle that holds the structuring element. The next parameters, anchor_x and anchor_y, are
          the (x, y) coordinates of the anchor point within the
          enclosing rectangle of the kernel. The fifth parameter, shape, can take on values listed in Table 5-2. If CV_SHAPE_CUSTOM is used, then the integer vector values is used to define a custom shape of the kernel within the rows-by-cols enclosing rectangle. This
          vector is read in raster scan order with each entry representing a different pixel in the
          enclosing rectangle. Any nonzero value is taken to indicate that the corresponding pixel
          should be included in the kernel. If values is NULL then the custom shape is interpreted to be all nonzero, resulting in a rectangular
            kernel.[52]
Table 5-2. Possible IplConvKernel shape values
	
                  Shape value

                	
                  Meaning

                
	
                  
                    CV_SHAPE_RECT
                  

                	
                  The kernel is rectangular

                
	
                  
                    CV_SHAPE_CROSS
                  

                	
                  The kernel is cross shaped

                
	
                  
                    CV_SHAPE_ELLIPSE
                  

                	
                  The kernel is elliptical

                
	
                  
                    CV_SHAPE_CUSTOM
                  

                	
                  The kernel is user-defined via values

                




More General Morphology



When working with Boolean images and image masks, the basic erode and dilate operations are usually sufficient. When
          working with grayscale or color images, however, a number of additional operations are
          often helpful. Several of the more useful operations can be handled by the multi-purpose
            cvMorphologyEx() function.
void cvMorphologyEx(
   const CvArr*   src,
   CvArr*         dst,
   CvArr*         temp,
   IplConvKernel* element,
   int            operation,
   int            iterations  = 1
);
In addition to the arguments src, dst, element, and
            iterations, which we used with previous operators,
            cvMorphologyEx() has two new parameters. The first is
          the temp array, which is required for some of the
          operations (see Table 5-3). When required, this
          array should be the same size as the source image. The second new argument—the really
          interesting one—is operation, which selects the
            morphological operation that we will do.
Table 5-3. cvMorphologyEx() operation options
	
                  Value of operation

                	
                  Morphological operator

                	
                  Requires temp image?

                
	
                  
                    CV_MOP_OPEN
                  

                	
                  Opening

                	
                  No

                
	
                  
                    CV_MOP_CLOSE
                  

                	
                  Closing

                	
                  No

                
	
                  
                    CV_MOP_GRADIENT
                  

                	
                  Morphological gradient

                	
                  Always

                
	
                  
                    CV_MOP_TOPHAT
                  

                	
                  Top Hat

                	
                  For in-place only (src = dst)

                
	
                  
                    CV_MOP_BLACKHAT
                  

                	
                  Black Hat

                	
                  For in-place only (src = dst)

                



Opening and closing



The first two operations in Table 5-3,
              opening and closing, are combinations of the erosion and dilation operators. In the case of opening, we erode first and then dilate
              (Figure 5-10). Opening is often used to count regions in a Boolean image. For example, if we have
            thresholded an image of cells on a microscope slide, we might use opening to separate out cells that are near
            each other before counting the regions. In the case of closing, we dilate first and then erode (Figure 5-12). Closing is used in most of the
            more sophisticated connected-component algorithms to reduce unwanted or noise-driven
            segments. For connected components, usually an erosion or closing operation is performed first to eliminate elements that arise purely
            from noise and then an opening operation is used to connect nearby large regions. (Notice that,
            although the end result of using open or close is similar to using erode or dilate,
            these new operations tend to preserve the area of connected regions more
              accurately.)
[image: Morphological opening operation: the upward outliers are eliminated as a result]

Figure 5-10. Morphological opening operation: the upward outliers are eliminated as a
              result

Both the opening and closing operations are approximately area-preserving: the most
            prominent effect of closing is to eliminate lone outliers that are lower than their
            neighbors whereas the effect of opening is to eliminate lone outliers that are higher
            than their neighbors. Results of using the opening operator are shown in Figure 5-11, and of the closing operator in
              Figure 5-13.
One last note on the opening and closing operators concerns how the iterations argument is interpreted. You might expect that
            asking for two iterations of closing would yield something like
            dilate-erode-dilate-erode. It turns out that this would not be particularly useful. What
            you really want (and what you get) is dilate-dilate-erode-erode. In this way, not only
            the single outliers but also neighboring pairs of outliers will disappear.

Morphological gradient



Our next available operator is the morphological
              gradient. For this one it is probably easier to start with a formula and
            then figure out what it means:
	gradient(src) = dilate(src)–erode(src)

The effect of this operation on a Boolean image would be simply to isolate perimeters of existing blobs. The
            process is diagrammed in Figure 5-14, and
            the effect of this operator on our test images is shown in Figure 5-15.
[image: Results of morphological opening on an image: small bright regions are removed, and the remaining bright regions are isolated but retain their size]

Figure 5-11. Results of morphological opening on an image: small bright regions are removed,
              and the remaining bright regions are isolated but retain their size

[image: Morphological closing operation: the downward outliers are eliminated as a result]

Figure 5-12. Morphological closing operation: the downward outliers are eliminated as a
              result

With a grayscale image we see that the value of the operator is telling us something
            about how fast the image brightness is changing; this is why the name "morphological gradient” is justified. Morphological gradient is often used when we want to isolate the perimeters
            of bright regions so we can treat them as whole objects (or as whole parts of objects).
            The complete perimeter of a region tends to be found because an expanded version is
            subtracted from a contracted version of the region, leaving a complete perimeter edge.
            This differs from calculating a gradient, which is much less likely to work around the full perimeter of an
              object.[53]
[image: Results of morphological closing on an image: bright regions are joined but retain their basic size]

Figure 5-13. Results of morphological closing on an image: bright regions are joined but
              retain their basic size


Top Hat and Black Hat



The last two operators are called Top Hat and
              Black Hat [Meyer78]. These operators are used to
            isolate patches that are, respectively, brighter or dimmer than their immediate
            neighbors. You would use these when trying to isolate parts of an object that exhibit
            brightness changes relative only to the object to which they are attached. This often
            occurs with microscope images of organisms or cells, for example. Both operations are
            defined in terms of the more primitive operators, as follows:
	TopHat(src) = src–open(src)
	BlackHat(src) = close(src)–src

As you can see, the Top Hat operator subtracts the opened form of A from A. Recall
            that the effect of the open operation was to exaggerate small cracks or local drops.
            Thus, subtracting open(A) from A should reveal areas that are lighter than the
            surrounding region of A, relative to the size of the kernel (see Figure 5-16); conversely, the Black Hat operator reveals areas that are darker than the surrounding region
            of A (Figure 5-17). Summary results for
            all the morphological operators discussed in this chapter are assembled in Figure 5-18.[54]
[image: Morphological gradient applied to a grayscale image: as expected, the operator has its highest values where the grayscale image is changing most rapidly]

Figure 5-14. Morphological gradient applied to a grayscale image: as expected, the operator
              has its highest values where the grayscale image is changing most rapidly




Flood Fill



Flood fill [Heckbert00; Shaw04; Vandevenne04] is an extremely useful function that is
        often used to mark or isolate portions of an image for further processing or analysis. Flood
        fill can also be used to derive, from an input image, masks that can be used for subsequent routines to speed or restrict processing
        to only those pixels indicated by the mask. The function cvFloodFill() itself takes an optional mask that can be further used to control
        where filling is done (e.g., when doing multiple fills of the same image).
In OpenCV, flood fill is a more general version of the sort of fill functionality which
        you probably already associate with typical computer painting programs. For both, a
          seed point is selected from an image and then all
        similar neighboring points are colored with a uniform color. The difference here is that the
        neighboring pixels need not all be identical in color.[55] The result of a flood fill operation will always be a single contiguous region. The cvFloodFill() function will color a neighboring pixel if it is
        within a specified range (lo Diff to up Diff) of either the current pixel or if (depending on the
        settings of flags) the neighboring pixel is within a
        specified range of the original seedPoint value. Flood
        filling can also be constrained by an optional mask argument. The prototype for the flood
        fill routine is:
[image: Results of the morphological gradient operator: bright perimeter edges are identified]

Figure 5-15. Results of the morphological gradient operator: bright perimeter edges are
          identified

void cvFloodFill(
   IplImage*         img,
   CvPoint           seedPoint,
   CvScalar          newVal,
   CvScalar          lo Diff    = cvScalarAll(0),
   CvScalar          up Diff    = cvScalarAll(0),
   CvConnectedComp*  comp      = NULL,
   int               flags     = 4,
   CvArr*            mask      = NULL
);
The parameter img is the input image, which can be
        8-bit or floating-point and one-channel or three-channel. We start the flood filling from
          seedPoint, and newVal is the value to which colorized pixels are set. A pixel will be
        colorized if its intensity is not less than a colorized neighbor’s intensity minus lo Diff and not greater than the colorized neighbor’s intensity
        plus up Diff. If the flags argument includes CV_FLOODFILL_FIXED_RANGE, then a pixel will be compared to the original seed
        point rather than to its neighbors. If non-NULL, comp is
        a CvConnectedComp structure that will hold statistics
        about the areas filled.[56] The flags argument (to be discussed shortly)
        is a little tricky; it controls the connectivity of the fill, what the fill is relative to,
        whether we are filling only a mask, and what values are used to fill the mask. Our first
        example of flood fill is shown in Figure 5-19.
[image: Results of morphological Top Hat operation: bright local peaks are isolated]

Figure 5-16. Results of morphological Top Hat operation: bright local peaks are isolated

The argument mask indicates a mask that can function
        both as input to cvFloodFill() (in which case it
        constrains the regions that can be filled) and as output from cvFloodFill() (in which case it will indicate the regions that actually were
        filled). If set to a non-NULL value, then mask must be a one-channel, 8-bit image whose size is exactly
        two pixels larger in width and height than the source image (this is to make processing
        easier and faster for the internal algorithm). Pixel (x + 1,
          y + 1) in the mask image corresponds to image pixel (x,
          y) in the source image. Note that cvFloodFill() will not flood across nonzero pixels in the mask, so you should
        be careful to zero it before use if you don’t want masking to block the flooding operation.
          Flood fill can be set to colorize either the source image img or the mask image mask.
[image: Results of morphological Black Hat operation: dark holes are isolated]

Figure 5-17. Results of morphological Black Hat operation: dark holes are isolated

[image: Summary results for all morphology operators]

Figure 5-18. Summary results for all morphology operators

[image: Results of flood fill (top image is filled with gray, bottom image with white) from the dark circle located just off center in both images; in this case, the up diff and lo diff parameters were each set to 7.0]

Figure 5-19. Results of flood fill (top image is filled with gray, bottom image with white) from
          the dark circle located just off center in both images; in this case, the up diff and lo
          diff parameters were each set to 7.0

Tip
If the flood-fill mask is passed by the user, then the mask pixels, corresponding to
          the repainted image pixels, are set to the value encoded in the middle bits (8-15) of the
            flags value (see text).. If these bits are not set then the mask is
          set to 1 as the default value. Don’t be confused if you fill the mask and see nothing but
          black upon display; the filled values (if the middle bits of the flag weren’t set) are 1s,
          so the mask image needs to be rescaled if you want to display it visually.

It’s time to clarify the flags argument, which is
        tricky because it has three parts. The low 8 bits (0–7)
        can be set to 4 or 8. This controls the connectivity considered by the filling algorithm. If
        set to 4, only horizontal and vertical neighbors to the current pixel are considered in the
        filling process; if set to 8, flood fill will additionally include diagonal neighbors. The high 8 bits (16–23) can be set with the flags CV_FLOODFILL_FIXED_RANGE (fill relative to the seed point pixel
        value; otherwise, fill relative to the neighbor’s value), and/or CV_FLOODFILL_MASK_ONLY (fill the mask location instead of the source image
        location). Obviously, you must supply an appropriate mask if CV_FLOODFILL_MASK_ONLY is set. The middle
        bits (8–15) of flags can be set to the value with which
        you want the mask to be filled. If the middle bits of flags are 0s, the mask will be filled with 1s. All these flags may be linked
        together via OR. For example, if you want an 8-way connectivity fill, filling only a fixed
        range, filling the mask not the image, and filling using a value of 47, then the parameter
        to pass in would be:
flags = 8
      | CV_FLOODFILL_MASK_ONLY
      | CV_FLOODFILL_FIXED_RANGE
      | (47<<8);
Figure 5-20 shows flood fill in action on a sample image. Using CV_FLOODFILL_FIXED_RANGE with a wide range resulted in most of the image being
        filled (starting at the center). We should note that newVal, lo
          diff, and up diff are prototyped as type
          CvScalar so they can be set for three channels at once
        (i.e., to encompass the RGB colors specified via CV_RGB()). For example, lowDiff =
          CV_RGB(20,30,40) will set lowDiff thresholds
        of 20 for red, 30 for green, and 40 for blue.
[image: Results of flood fill (top image is filled with gray, bottom image with white) from the dark circle located just off center in both images; in this case, flood fill was done with a fixed range and with a high and low difference of 25.0]

Figure 5-20. Results of flood fill (top image is filled with gray, bottom image with white) from
          the dark circle located just off center in both images; in this case, flood fill was done
          with a fixed range and with a high and low difference of 25.0


Resize



We often encounter an image of some size that we would like to convert to an image of
        some other size. We may want to upsize (zoom in) or downsize (zoom out) the image; we can
        accomplish either task by using cvResize(). This function
        will fit the source image exactly to the destination image size. If the ROI is set in the
        source image then that ROI will be resized to fit in the destination image. Likewise, if an
        ROI is set in the destination image then the source will be resized to fit into the
          ROI.
void cvResize(
   const CvArr* src,
   CvArr*       dst,
   int          interpolation = CV_INTER_LINEAR
);
The last argument is the interpolation method, which defaults to linear interpolation.
        The other available options are shown in Table 5-4.
Table 5-4. cvResize() interpolation options
	
                Interpolation

              	
                Meaning

              
	
                
                  CV_INTER_NN
                

              	
                Nearest neighbor

              
	
                
                  CV_INTER_LINEAR
                

              	
                Bilinear

              
	
                
                  CV_INTER_AREA
                

              	
                Pixel area re-sampling

              
	
                
                  CV_INTER_CUBIC
                

              	
                Bicubic interpolation

              



In general, we would like the mapping from the source image to the resized destination
        image to be as smooth as possible. The argument interpolation controls exactly how this will be handled. Interpolation arises
        when we are shrinking an image and a pixel in the destination image falls in between pixels
        in the source image. It can also occur when we are expanding an image and need to compute
        values of pixels that do not directly correspond to any pixel in the source image. In either
        case, there are several options for computing the values of such pixels. The easiest
        approach is to take the resized pixel’s value from its closest pixel in the source image;
        this is the effect of choosing the interpolation value
          CV_INTER_NN. Alternatively, we can linearly weight the
        2-by-2 surrounding source pixel values according to how close they are to the destination
        pixel, which is what CV_INTER_LINEAR does. We can also
        virtually place the new resized pixel over the old pixels and then average the covered pixel
        values, as done with CV_INTER_AREA.[57] Finally, we have the option of fitting a cubic spline between the 4-by-4
        surrounding pixels in the source image and then reading off the corresponding destination
        value from the fitted spline; this is the result of choosing the CV_INTER_CUBIC interpolation method.

Image Pyramids



Image pyramids [Adelson84] are heavily used in a wide variety of vision applications.
        An image pyramid is a collection of images—all arising from a single original image—that are
        successively downsampled until some desired stopping point is reached. (Of course, this
        stopping point could be a single-pixel image!)
There are two kinds of image pyramids that arise often in the literature and in application: the
        Gaussian [Rosenfeld80] and Laplacian [Burt83] pyramids [Adelson84]. The Gaussian pyramid
        is used to downsample images, and the Laplacian pyramid (to be discussed shortly) is required when we want to
        reconstruct an upsampled image from an image lower in the pyramid.
To produce layer (i+1) in the Gaussian pyramid (we
        denote this layer Gi+1) from layer
            Gi of the pyramid, we first convolve
            Gi with a Gaussian kernel and then remove
        every even-numbered row and column. Of course, from this it follows immediately that each
        image is exactly one-quarter the area of its predecessor. Iterating this process on the
        input image G0 produces the entire pyramid.
        OpenCV provides us with a method for generating each pyramid stage from its
        predecessor:
void cvPyrDown(
   IplImage*   src,
   IplImage*   dst,
   int         filter = IPL_GAUSSIAN_5x5
);
Currently, the last argument filter supports only the
        single (default) option of a 5-by-5 Gaussian kernel.
Similarly, we can convert an existing image to an image that is twice as large in each
        direction by the following analogous (but not inverse!) operation:
void cvPyrUp(
   IplImage*   src,
   IplImage*   dst,
   int         filter = IPL_GAUSSIAN_5x5
);
In this case the image is first upsized to twice the original in each dimension, with
        the new (even) rows filled with 0s. Thereafter, a convolution is performed with the given
        filter (actually, a filter twice as large in each dimension than that specified)[58] to approximate the values of the “missing” pixels.
We noted previously that the operator PyrUp() is not
        the inverse of PyrDown(). This should be evident because
          PyrDown() is an operator that loses information. In
        order to restore the original (higher-resolution) image, we would require access to the
        information that was discarded by the downsampling. This data forms the Laplacian pyramid. The ith layer of the
        Laplacian pyramid is defined by the relation:
[image: image with no caption]

Here the operator UP() upsizes by mapping each pixel
        in location (x, y) in the original image to pixel
          (2x + 1, 2y + 1) in the destination image; the
          [image: ] symbol denotes convolution; and
          G5x5 is a 5-by-5 Gaussian kernel. Of course,
            Gi —
            UP(Gi+1) [image: ]
        G5x5 is the definition of the PyrUp() operator provided by OpenCv. Hence, we can use OpenCv to
        compute the Laplacian operator directly as:
[image: image with no caption]

The Gaussian and Laplacian pyramids are shown diagrammatically in Figure 5-21, which also shows the inverse process
        for recovering the original image from the subimages. Note how the Laplacian is really an
        approximation that uses the difference of Gaussians, as revealed in the preceding equation
        and diagrammed in the figure.
[image: The Gaussian pyramid and its inverse, the Laplacian pyramid]

Figure 5-21. The Gaussian pyramid and its inverse, the Laplacian pyramid

There are many operations that can make extensive use of the Gaussian and Laplacian
          pyramids, but a particularly important one is image segmentation (see Figure 5-22). In this case, one builds an image
        pyramid and then associates to it a system of parent–child relations between pixels at level
            Gi+1 and the corresponding reduced pixel at
        level Gi. In this way, a fast initial
        segmentation can be done on the low-resolution images high in the pyramid and then can be
        refined and further differentiated level by level.
This algorithm (due to B. Jaehne [Jaehne95; Antonisse82]) is implemented in OpenCV as cvPyrSegmentation():
void cvPyrSegmentation(
   IplImage*     src,
   IplImage*     dst,
   CvMemStorage* storage,
   CvSeq**       comp,
   int           level,
   double        threshold1,
   double        threshold2
);
[image: Pyramid segmentation with threshold1 set to 150 and threshold2 set to 30; the images on the right contain only a subsection of the images on the left because pyramid segmentation requires images that are N-times divisible by 2, where N is the number of pyramid layers to be computed (these are 512-by-512 areas from the original images)]

Figure 5-22. Pyramid segmentation with threshold1 set to 150 and threshold2 set to 30; the images
          on the right contain only a subsection of the images on the left because pyramid
          segmentation requires images that are N-times divisible by 2, where N is the number of
          pyramid layers to be computed (these are 512-by-512 areas from the original
          images)

As usual, src and dst are the source and destination images, which must both be 8-bit, of the
        same size, and of the same number of channels (one or three). You might be wondering, “What
        destination image?” Not an unreasonable question, actually. The destination image dst is used as scratch space for the algorithm and also as a
        return visualization of the segmentation. If you view this image, you will see that each
        segment is colored in a single color (the color of some pixel in that segment). Because this
        image is the algorithm’s scratch space, you cannot simply set it to NULL. Even if you do not want the result, you must provide an image. One
        important word of warning about src and dst: because all levels of the image pyramid must have integer
        sizes in both dimensions, the starting images must be divisible by two as many times as
        there are levels in the pyramid. For example, for a four-level pyramid, a height or width of
        80 (2 x 2 x 2 x 5) would be acceptable, but a value of 90 (2 x 3 x 3 x 5) would
          not.[59]
The pointer storage is for an OpenCV memory storage
        area. In Chapter 8 we will discuss such areas in more detail, but for now
        you should know that such a storage area is allocated with a command like[60]
CvMemStorage* storage = cvCreateMemStorage();
The argument comp is a location for storing further
        information about the resulting segmentation: a sequence of connected components is
        allocated from this memory storage. Exactly how this works will be detailed in Chapter 8, but for convenience here we briefly summarize what you’ll need in
        the context of cvPyrSegmentation().
First of all, a sequence is essentially a list of
        structures of a particular kind. Given a sequence, you can obtain the number of elements as
        well as a particular element if you know both its type and its number in the sequence. Take
        a look at the Example 5-1 approach to
          accessing a sequence.
Example 5-1. Doing something with each element in the sequence of connected components returned by
          cvPyrSegmentation()
void f(

   IplImage* src,
   IplImage* dst
) {
   CvMemStorage* storage = cvCreateMemStorage(0);
   CvSeq* comp = NULL;
   cvPyrSegmentation( src, dst, storage, &comp, 4, 200, 50 );
   int n_comp = comp->total;
   for( int i=0; i<n_comp; i++ ) {
     CvConnectedComp* cc = (CvConnectedComp*) cvGetSeqElem( comp, i );
     do_something_with( cc );
   }
   cvReleaseMemStorage( &storage );
}


There are several things you should notice in this example. First, observe the
        allocation of a memory storage; this is where cvPyrSegmentation() will get the memory it needs for the
        connected components it will have to create. Then the pointer comp is allocated as type CvSeq*. It is
        initialized to NULL because its current value means
        nothing. We will pass to cvPyrSegmentation() a pointer to
          comp so that comp
        can be set to the location of the sequence created by cvPyrSegmentation(). Once we have called the segmentation, we can figure out
        how many elements there are in the sequence with the member element total. Thereafter we can use the generic cvGetSeqElem() to obtain the ith element of comp; however, because cvGetSeqElem() is
        generic and returns only a void pointer, we must cast the return pointer to the appropriate
        type (in this case, CvConnectedComp*).
Finally, we need to know that a connected component is one of the basic structure
          types in OpenCV. You can think of it as a way of describing a “blob” in an
          image. It has the following definition:
typedef struct CvConnectedComponent {
  double area;
  CvScalar value;
  CvRect rect;
  CvSeq* contour;
};
The area is the area of the component. The value is the average color[61] over the area of the component and rect is a
        bounding box for the component (defined in the coordinates of the parent image). The final element, contour, is a pointer to another sequence. This sequence can be
        used to store a representation of the boundary of the component, typically as a sequence of
        points (type CvPoint).
In the specific case of cvPyrSegmentation(), the
        contour member is not set. Thus, if you want some specific representation of the component’s
        pixels then you will have to compute it yourself. The method to use depends, of course, on
        the representation you have in mind. Often you will want a Boolean mask with nonzero elements wherever the component was located. You can
        easily generate this by using the rect portion of the
        connected component as a mask and then using cvFloodFill() to select the desired pixels inside of that rectangle.

Threshold



Frequently we have done many layers of processing steps and want either to make a final
        decision about the pixels in an image or to categorically reject those pixels below or above
        some value while keeping the others. The OpenCV function cvThreshold() accomplishes these tasks (see survey [Sezgin04]). The basic idea
        is that an array is given, along with a threshold, and then something happens to every
        element of the array depending on whether it is below or above the threshold.
double cvThreshold(
   CvArr* src,
   CvArr* dst,
   double threshold,
   double max_value,
   int threshold_type
);
As shown in Table 5-5, each threshold type
        corresponds to a particular comparison operation between the ith source
        pixel (srci) and the threshold
        (denoted in the table by T). Depending on the
        relationship between the source pixel and the threshold, the destination pixel dsti may be set to 0, the srci, or the max_value (denoted in the table by M).
Table 5-5. cvThreshold() threshold_type options
	
                Threshold type

              	
                Operation

              
	
                
                  CV_THRESH_BINARY
                

              	
                
                  
[image: image with no caption]


                

              
	
                
                  CV_THRESH_BINARY_INV
                

              	
                
                  
[image: image with no caption]


                

              
	
                
                  CV_THRESH_TRUNC
                

              	
                
                  
[image: image with no caption]


                

              
	
                
                  CV_THRESH_TOZERO_INV
                

              	
                
                  
[image: image with no caption]


                

              
	
                
                  CV_THRESH_TOZERO
                

              	
                
                  
[image: image with no caption]


                

              



Figure 5-23 should help to clarify the
        exact implications of each threshold type.
[image: Results of varying the threshold type in cvThreshold(). The horizontal line through each chart represents a particular threshold level applied to the top chart and its effect for each of the five types of threshold operations below]

Figure 5-23. Results of varying the threshold type in cvThreshold(). The horizontal line through
          each chart represents a particular threshold level applied to the top chart and its effect
          for each of the five types of threshold operations below

Let’s look at a simple example. In Example 5-2 we sum all three channels of an image
        and then clip the result at 100.
Example 5-2. Example code making use of cvThreshold()
#include <stdio.h>
#include <cv.h>
#include <highgui.h>
void sum_rgb( IplImage* src, IplImage* dst ) {

  // Allocate individual image planes.
  IplImage* r = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1 );
  IplImage* g = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1 );
  IplImage* b = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1 );

  // Split image onto the color planes.
  cvSplit( src, r, g, b, NULL );

  // Temporary storage.
  IplImage* s = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1 );

  // Add equally weighted rgb values.
  cvAddWeighted( r, 1./3., g, 1./3., 0.0, s );
  cvAddWeighted( s, 2./3., b, 1./3., 0.0, s );

  // Truncate values above 100.
  cvThreshold( s, dst, 100, 100, CV_THRESH_TRUNC );

  cvReleaseImage( &r );
  cvReleaseImage( &g );
  cvReleaseImage( &b );
  cvReleaseImage( &s );
}

int main(int argc, char** argv)
{
  // Create a named window with the name of the file.
  cvNamedWindow( argv[1], 1 );

  // Load the image from the given file name.
  IplImage* src = cvLoadImage( argv[1] );
  IplImage* dst = cvCreateImage( cvGetSize(src), src->depth, 1);
  sum_rgb( src, dst);

  // Show the image in the named window
  cvShowImage( argv[1], dst );

  // Idle until the user hits the "Esc" key.
  while( 1 ) { if( (cvWaitKey( 10 )&0x7f) == 27 ) break; }

  // Clean up and don't be piggies
  cvDestroyWindow( argv[1] );
  cvReleaseImage( &src );
  cvReleaseImage( &dst );

}


Some important ideas are shown here. One thing is that we don’t want to add into an
        8-bit array because the higher bits will overflow. Instead, we use equally weighted addition
        of the three color channels (cvAddWeighted()); then the
        results are truncated to saturate at the value of 100 for the return. The cvThreshold() function handles only 8-bit or floating-point
        grayscale source images. The destination image must either match the source image or be an
        8-bit image. In fact, cvThreshold() also allows the
        source and destination images to be the same image. Had we used a floating-point temporary
        image s in Example 5-2, we could have substituted the code
        shown in Example 5-3. Note that cvAcc() can accumulate 8-bit integer image types into a
        floating-point image; however, cdADD() cannot add integer
        bytes into floats.
Example 5-3. Alternative method to combine and threshold image planes
IplImage* s = cvCreateImage(cvGetSize(src), IPL_DEPTH_32F, 1);
cvZero(s);
cvAcc(b,s);
cvAcc(g,s);
cvAcc(r,s);
cvThreshold( s, s, 100, 100, CV_THRESH_TRUNC );
cvConvertScale( s, dst, 1, 0 );


Adaptive Threshold



There is a modified threshold technique in which the threshold level is itself
          variable. In OpenCV, this method is implemented in the cvAdaptiveThreshold() [Jain86] function:
void cvAdaptiveThreshold(
   CvArr*         src,
   CvArr*         dst,
   double         max_val,
   int            adaptive_method = CV_ADAPTIVE_THRESH_MEAN_C
   int            threshold_type  = CV_THRESH_BINARY,
   int            block_size      = 3,
   double         param1          = 5
);
cvAdaptiveThreshold() allows for two different
          adaptive threshold types depending on the settings of adaptive_method. In both cases the adaptive
            thresholdT(x, y) is set on a pixel-by-pixel basis by
          computing a weighted average of the b-by-b
          region around each pixel location minus a constant, where b is given
          by block_size and the constant is given by param1. If the method is set to CV_ADAPTIVE_THRESH_MEAN_C, then all pixels in the area are weighted equally.
          If it is set to CV_ADAPTIVE_THRESH_GAUSSIAN_C, then the
          pixels in the region around (x, y) are weighted according to a
          Gaussian function of their distance from that center point.
Finally, the parameter threshold_type is the same
          as for cvThreshold() shown in Table 5-5.
The adaptive threshold technique is useful when there are strong illumination or
          reflectance gradients that you need to threshold relative to the general intensity
          gradient. This function handles only single-channel 8-bit or floating-point images, and it
          requires that the source and destination images be distinct.
Source code for comparing cvAdaptiveThreshold() and
            cvThreshold() is shown in Example 5-4. Figure 5-24 displays the result of processing
          an image that has a strong lighting gradient across it. The lower-left portion of the
          figure shows the result of using a single global threshold as in cvThreshold(); the lower-right portion shows the result of adaptive local
          threshold using cvAdaptiveThreshold(). We get the whole
          checkerboard via adaptive threshold, a result that is impossible to achieve when using a
          single threshold. Note the calling-convention comments at the top of the code in Example 5-4; the parameters used for Figure 5-24 were:
./adaptThresh 15 1 1 71 15 ../Data/cal3-L.bmp
[image: Binary threshold versus adaptive binary threshold: the input image (top) was turned into a Boolean image using a global threshold (lower left ) and an adaptive threshold (lower right); raw image courtesy of Kurt Konolidge]

Figure 5-24. Binary threshold versus adaptive binary threshold: the input image (top) was turned
            into a Boolean image using a global threshold (lower left ) and an adaptive threshold
            (lower right); raw image courtesy of Kurt Konolidge

Example 5-4. Threshold versus adaptive threshold
// Compare thresholding with adaptive thresholding
// CALL:
// ./adaptThreshold Threshold 1binary 1adaptivemean \
//                  blocksize offset filename
#include "cv.h"
#include "highgui.h"
#include "math.h"
IplImage *Igray=0, *It = 0, *Iat;
int main( int argc, char** argv )
{
    if(argc != 7){return -1; }

    //Command line
    double threshold = (double)atof(argv[1]);
    int threshold_type = atoi(argv[2]) ?
            CV_THRESH_BINARY : CV_THRESH_BINARY_INV;
    int adaptive_method = atoi(argv[3]) ?
            CV_ADAPTIVE_THRESH_MEAN_C : CV_ADAPTIVE_THRESH_GAUSSIAN_C;
    int block_size = atoi(argv[4]);
    double offset = (double)atof(argv[5]);

    //Read in gray image
    if((Igray = cvLoadImage( argv[6], CV_LOAD_IMAGE_GRAYSCALE)) == 0){
        return -1;}

    // Create the grayscale output images
    It = cvCreateImage(cvSize(Igray->width,Igray->height),
                       IPL_DEPTH_8U, 1);
    Iat = cvCreateImage(cvSize(Igray->width,Igray->height),
                       IPL_DEPTH_8U, 1);
                       //Threshold
    cvThreshold(Igray,It,threshold,255,threshold_type);
    cvAdaptiveThreshold(Igray, Iat, 255, adaptive_method,
                        threshold_type, block_size, offset);
    //PUT UP 2 WINDOWS
    cvNamedWindow("Raw",1);
    cvNamedWindow("Threshold",1);
    cvNamedWindow("Adaptive Threshold",1);

    //Show the results
    cvShowImage("Raw",Igray);
    cvShowImage("Threshold",It);
    cvShowImage("Adaptive Threshold",Iat);

    cvWaitKey(0);

    //Clean up
    cvReleaseImage(&Igray);
    cvReleaseImage(&It);
    cvReleaseImage(&Iat);
    cvDestroyWindow("Raw");
    cvDestroyWindow("Threshold");
    cvDestroyWindow("Adaptive Threshold");
    return(0);
}




Exercises



	Load an image with interesting textures. Smooth the image in several ways using
              cvSmooth() with smoothtype=CV_GAUSSIAN.
	Use a symmetric 3-by-3, 5-by-5, 9-by-9 and 11-by-11 smoothing window size and
                display the results.

	Are the output results nearly the same by smoothing the image twice with a
                5-by-5 Gaussian filter as when you smooth once with two 11-by-11 filters? Why or why
                not?




	Display the filter, creating a 100-by-100 single-channel image. Clear it and set the
            center pixel equal to 255.
	Smooth this image with a 5-by-5 Gaussian filter and display the results. What
                did you find?

	Do this again but now with a 9-by-9 Gaussian filter.

	What does it look like if you start over and smooth the image twice with the
                5-by-5 filter? Compare this with the 9-by-9 results. Are they nearly the same? Why
                or why not?




	Load an interesting image. Again, blur it with cvSmooth() using a Gaussian filter.
	Set param1=param2=9. Try several settings of
                  param3 (e.g., 1, 4, and 6). Display the
                results.

	This time, set param1=param2=0 before setting
                  param3 to 1, 4, and 6. Display the results. Are
                they different? Why?

	Again use param1=param2=0 but now set
                  param3=1 and param4=9. Smooth the picture and display the results.

	Repeat part c but with param3=9 and param4=1. Display the results.

	Now smooth the image once with the settings of part c and once with the settings
                of part d. Display the results.

	Compare the results in part e with smoothings that use param3=param4=9 and param3=param4=0
                (i.e., a 9-by-9 filter). Are the results the same? Why or why not?




	Use a camera to take two pictures of the same scene while moving the camera as
            little as possible. Load these images into the computer as src1 and src1.
	Take the absolute value of src1 minus
                  src1 (subtract the images); call it diff12 and display. If this were done perfectly,
                  diff12 would be black. Why isn’t it?

	Create cleandiff by using cvErode() and then cvDilate() on diff12. Display the
                results.

	Create dirtydiff by using cvDilate() and then cvErode() on diff12 and then
                display.

	Explain the difference between cleandiff and
                  dirtydiff.




	Take a picture of a scene. Then, without moving the camera, put a coffee cup in the
            scene and take a second picture. Load these images and convert both to 8-bit grayscale
            images.
	Take the absolute value of their difference. Display the result, which should
                look like a noisy mask of a coffee mug.

	Do a binary threshold of the resulting image using a level that preserves most
                of the coffee mug but removes some of the noise. Display the result. The “on” values
                should be set to 255.

	Do a CV_MOP_OPEN on the image to further
                clean up noise.




	Create a clean mask from noise. After completing exercise 5, continue by keeping
            only the largest remaining shape in the image. Set a pointer to the upper left of the
            image and then traverse the image. When you find a pixel of value 255 (“on”), store the
            location and then flood fill it using a value of 100. Read the connected component
            returned from flood fill and record the area of filled region. If there is another
            larger region in the image, then flood fill the smaller region using a value of 0 and
            delete its recorded area. If the new region is larger than the previous region, then
            flood fill the previous region using the value 0 and delete its location. Finally, fill
            the remaining largest region with 255. Display the results. We now have a single, solid
            mask for the coffee mug.

	For this exercise, use the mask created in exercise 6 or create another mask of your
            own (perhaps by drawing a digital picture, or simply use a square). Load an outdoor
            scene. Now use this mask with cvCopy(), to copy an
            image of a mug into the scene.

	Create a low-variance random image (use a random number call such that the numbers
            don’t differ by much more than 3 and most numbers are near 0). Load the image into a
            drawing program such as PowerPoint and then draw a wheel of lines meeting at a single
            point. Use bilateral filtering on the resulting image and explain the results.

	Load an image of a scene and convert it to grayscale.
	Run the morphological Top Hat operation on your image and display the
                results.

	Convert the resulting image into an 8-bit mask.

	Copy a grayscale value into the Top Hat pieces and display the results.




	Load an image with many details.
	Use cvResize() to reduce the image by a
                factor of 2 in each dimension (hence the image will be reduced by a factor of 4). Do
                this three times and display the results.

	Now take the original image and use cvPyrDown() to reduce it three times and then display the
                results.

	How are the two results different? Why are the approaches different?




	Load an image of a scene. Use cvPyrSegmentation()
            and display the results.

	Load an image of an interesting or sufficiently “rich” scene. Using cvThreshold(), set the threshold to 128. Use each setting
            type in Table 5-5 on the image and display
            the results. You should familiarize yourself with thresholding functions because they
            will prove quite useful.
	Repeat the exercise but use cvAdaptiveThreshold() instead. Set param1=5.

	Repeat part a using param1=0 and then
                  param1=-5.









[46] Note that—unlike in, say, Matlab—the filtering operations in OpenCV (e.g., cvSmooth(), cvErode(), cvDilate()) produce output images of the same size
            as the input. To achieve that result, OpenCV creates "virtual” pixels outside of the image at the borders. By default, this is done by
            replication at the border, i.e., input(-dx,y)=input(0,y),
              input(w+dx,y)=input(w-1,y), and so forth.

[47] Here and elsewhere we sometimes use 8u as shorthand for 8-bit unsigned image depth
              (IPL_DEPTH_8U). See Table 3-2 for other shorthand notation.

[48] In the case of multichannel (i.e., color) images, the difference in intensity is
            replaced with a weighted sum over colors. This weighting is chosen to enforce a
            Euclidean distance in the CIE color space.

[49] Technically, the use of Gaussian distribution functions is not a necessary feature
            of bilateral filtering. The implementation in OpenCV uses Gaussian weighting
            even though the method is general to many possible weighting functions.

[50] This effect is particularly pronounced after multiple iterations of bilateral
            filtering.

[51] To be precise, the pixel in the destination image is set to the value equal to the
              minimal value of the pixels under the kernel in the source image.

[52] If the use of this strange integer vector strikes you as being incongruous with
              other OpenCV functions, you are not alone. The origin of this syntax is the same as
              the origin of the IPL prefix to this function—another instance of archeological code
              relics.

[53] We will return to the topic of gradients when we introduce the Sobel and Scharr
                operators in the next chapter.

[54] Both of these operations (Top Hat and Black Hat) make more sense in grayscale morphology, where the structuring element is a matrix of real
                numbers (not just a Boolean mask) and the matrix is added to the current pixel
                neighborhood before taking a minimum or maximum. Unfortunately, this is not yet
                implemented in OpenCV.

[55] Users of contemporary painting and drawing programs should note that most now employ
            a filling algorithm very much like cvFloodFill().

[56] We will address the specifics of a “connected component” in the section “Image
            Pyramids”. For now, just think of it as being similar to a mask that identifies some
            subsection of an image.

[57] At least that’s what happens when cvResize()
            shrinks an image. When it expands an image, CV_INTER_AREA amounts to the same thing as CV_INTER_NN.

[58] This filter is also normalized to four, rather than to one. This is appropriate
            because the inserted rows have 0s in all of their pixels before the convolution.

[59] Heed this warning! Otherwise, you will get a totally useless error message and
            probably waste hours trying to figure out what’s going on.

[60] Actually, the current implementation of cvPyrSegmentation() is a bit incomplete in that it returns not the computed
            segments but only the bounding rectangles (as CvSeq<CvConnectedComp>).

[61] Actually the meaning of value is context
            dependant and could be just about anything, but it is typically a color associated with
            the component. In the case of cvPyrSegmentation(),
              value is the average color over the segment.


Chapter 6. Image Transforms



Overview



In the previous chapter we covered a lot of different things you could do with an image. The majority of the operators
        presented thus far are used to enhance, modify, or otherwise “process” one image into a
        similar but new image.
In this chapter we will look at image transforms, which are methods
        for changing an image into an alternate representation of the data entirely. Perhaps the
        most common example of a transform would be a something like a Fourier
          transform, in which the image is converted to an alternate representation of
        the data in the original image. The result of this operation is still stored in an OpenCV
        “image” structure, but the individual “pixels” in this new image represent spectral
        components of the original input rather than the spatial components we are used to thinking
          about.
There are a number of useful transforms that arise repeatedly in computer vision. OpenCV
        provides complete implementations of some of the more common ones as well as building blocks
        to help you implement your own image transforms.

Convolution



Convolution is the basis of many of the transformations that we
        discuss in this chapter. In the abstract, this term means something we do to every part of
        an image. In this sense, many of the operations we looked at in Chapter 5 can also be understood as special cases of the more general
        process of convolution. What a particular convolution “does” is determined by the form of
        the Convolution kernel being used. This kernel is essentially just a
        fixed size array of numerical coefficients along with an anchor point
        in that array, which is typically located at the center. The size of the array [62] is called the support of the kernel.
Figure 6-1 depicts a 3-by-3 convolution
        kernel with the anchor located at the center of the array. The value of the convolution at a
        particular point is computed by first placing the kernel anchor on top of a pixel on the image with the rest of the kernel overlaying the
        corresponding local pixels in the image. For each kernel point, we now have a value for the
        kernel at that point and a value for the image at the corresponding image point. We multiply
        these together and sum the result; this result is then placed in the resulting image at the
        location corresponding to the location of the anchor in the input image. This process is
        repeated for every point in the image by scanning the kernel over the entire image.
[image: A 3-by-3 kernel for a Sobel derivative; note that the anchor point is in the center of the kernel]

Figure 6-1. A 3-by-3 kernel for a Sobel derivative; note that the anchor point is in the center
          of the kernel

We can, of course, express this procedure in the form of an equation. If we define the
        image to be I(x, y), the kernel to be G(i, j)
        (where 0 ≤ i < Mi –1 and
        0 ≤ j ≤ Mj –1), with
          Mi, Mj being the extent of the kernel in the
        x- and y-dimensions respectively), and the anchor point to be located at
            (ai, aj) in the
        coordinates of the kernel, then the convolution H(x, y) is defined by
        the following expression:
[image: image with no caption]

Observe that the number of operations, at least at first glance, seems to be the number
        of pixels in the image multiplied by the number of pixels in the kernel. [63] This can be a lot of computation and so is not something you want to do with
        some “for” loop and a lot of pointer de-referencing. In situations like this, it is better
        to let OpenCV do the work for you and take advantage of the optimizations already programmed
        into OpenCV. The OpenCV way to do this is with cvFilter2D():
void cvFilter2D(
   const CvArr*    src,
   CvArr*          dst,
   const CvMat*    kernel,
   CvPoint         anchor = cvPoint(-1,-1)
);
Here we create a matrix of the appropriate size, fill it with the coefficients, and then
        pass it together with the source and destination images into cvFilter2D(). We can also optionally pass in a CvPoint to indicate the location of the center of the kernel, but the default
        value (equal to cvPoint(-1,-1)) is interpreted as
        indicating the center of the kernel. The kernel can be of even size if its anchor point is
        defined; otherwise, it should be of odd size.
The src and dst
        images should be the same size. One might think that the src image should be larger than the dst
        image in order to allow for the extra width and length of the convolution kernel. But the sizes of the src
        and dst can be the same in OpenCV because, by default,
        prior to convolution OpenCV creates virtual pixels via replication past the border of the src image so that the border pixels in dst
        can be filled in. The replication is done as input(–dx, y) = input(0,
          y), input(w + dx, y) =
          input(w – 1, y), and so forth. There are some
        alternatives to this default behavior; we will discuss them in the next section.
We remark that the coefficients of the convolution kernel should always be
        floating-point numbers. This means that you should use CV_32FC1 when allocating that matrix.
Convolution Boundaries



One problem that naturally arises with convolutions is how to handle the boundaries. For example, when using the
          convolution kernel just described, what happens when the point being convolved is at the
          edge of the image? Most of OpenCV’s built-in functions that make use of cvFilter2D() must handle this in one way or another.
          Similarly, when doing your own convolutions, you will need to know how to deal with this
          efficiently.
The solution comes in the form of the cvCopyMakeBorder() function, which copies a given image onto another slightly
          larger image and then automatically pads the boundary in one way or another:
void cvCopyMakeBorder(
   const CvArr*   src,
   CvArr*         dst,
   CvPoint        offset,
   int            bordertype,
   CvScalar       value     = cvScalarAll(0)
);
The offset argument tells cvCopyMakeBorder() where to place the copy of the original image within the
          destination image. Typically, if the kernel is
            N-by-N (for odd N) then
          you will want a boundary that is (N – 1)/2 wide on all sides or,
          equivalently, an image that is N – 1 wider and taller than the
          original. In this case you would set the offset to cvPoint((N-1)/2,(N-1)/2) so that the boundary would be even on all sides.
            [64]
The bordertype can be either IPL_BORDER_CONSTANT or IPL_BORDER_REPLICATE (see Figure 6-2). In the first case, the value argument will be interpreted as the value to which all
          pixels in the boundary should be set. In the second case, the row or column at the very
          edge of the original is replicated out to the edge of the larger image. Note that the
          border of the test pattern image is somewhat subtle (examine the upper left image in Figure 6-2); in the test pattern image,
          there’s a one-pixel-wide dark border except where the circle patterns come near the border
          where it turns white. There are two other border types defined, IPL_BORDER_REFLECT and IPL_BORDER_WRAP,
          which are not implemented at this time in OpenCV but may be supported in the
          future.
[image: Expanding the image border. The left column shows IPL_BORDER_CONSTANT where a zero value is used to fill out the borders. The right column shows IPL_BORDER_REPLICATE where the border pixels are replicated in the horizontal and vertical directions]

Figure 6-2. Expanding the image border. The left column shows IPL_BORDER_CONSTANT where a zero
            value is used to fill out the borders. The right column shows IPL_BORDER_REPLICATE where
            the border pixels are replicated in the horizontal and vertical directions

We mentioned previously that, when you make calls to OpenCV library functions that
          employ convolution, those library functions call cvCopyMakeBorder() to get their work done. In most cases the border type
          called is IPL_BORDER_REPLICATE, but sometimes you will
          not want it to be done that way. This is another occasion where you might want to use
            cvCopyMakeBorder(). You can create a slightly larger
          image with the border you want, call whatever routine on that image, and then clip back
          out the part you were originally interested in. This way, OpenCV’s automatic bordering
          will not affect the pixels you care about.


Gradients and Sobel Derivatives



One of the most basic and important convolutions is the computation of derivatives (or
        approximations to them). There are many ways to do this, but only a few are well suited to a
        given situation.
In general, the most common operator used to represent differentiation is the
          Sobel derivative [Sobel68] operator (see Figures Figure 6-3 and Figure 6-4). Sobel operators exist for any order
        of derivative as well as for mixed partial derivatives (e.g., 
[image: image with no caption]

).
[image: The effect of the Sobel operator when used to approximate a first derivative in the x-dimension]

Figure 6-3. The effect of the Sobel operator when used to approximate a first derivative in the
          x-dimension

cvSobel(
      const CvArr*  src,
      CvArr*        dst,
      int           xorder,
      int           yorder,
      int           aperture_size = 3
);
Here, src and dst
        are your image input and output, and xorder and yorder are the orders of the derivative. Typically you’ll use 0,
        1, or at most 2; a 0 value indicates no derivative in that direction. [65] The aperture_size parameter should be odd and
        is the width (and the height) of the square filter. Currently, aperture sizes of 1, 3, 5,
        and 7 are supported. If src is 8-bit then the dst must be of depth IPL_DEPTH_16S to avoid overflow.
[image: The effect of the Sobel operator when used to approximate a first derivative in the y-dimension]

Figure 6-4. The effect of the Sobel operator when used to approximate a first derivative in the
          y-dimension

Sobel derivatives have the nice property that they can be defined for kernels of
        any size, and those kernels can be constructed quickly and iteratively. The larger kernels
        give a better approximation to the derivative because the smaller kernels are very sensitive
        to noise.
To understand this more exactly, we must realize that a Sobel derivative is not really a
        derivative at all. This is because the Sobel operator is defined on a discrete space. What
        the Sobel operator actually represents is a fit to a polynomial. That is, the Sobel
        derivative of second order in the x-direction is not really a second
        derivative; it is a local fit to a parabolic function. This explains why one might want to
        use a larger kernel: that larger kernel is computing the fit over a larger number of
        pixels.
Scharr Filter



In fact, there are many ways to approximate a derivative in the case of a discrete
          grid. The downside of the approximation used for the Sobel operator is that it is less accurate for small kernels. For large
          kernels, where more points are used in the approximation, this problem is less
          significant. This inaccuracy does not show up directly for the X and
            Y filters used in cvSobel(),
          because they are exactly aligned with the x- and
            y-axes. The difficulty arises when you want to make image
          measurements that are approximations of directional derivatives
          (i.e., direction of the image gradient by using the arctangent of the
            y/x filter responses).
To put this in context, a concrete example of where you may want image measurements of
          this kind would be in the process of collecting shape information from an object by
            assembling a histogram of gradient angles around the object. Such a histogram
          is the basis on which many common shape classifiers are trained and operated. In this
          case, inaccurate measures of gradient angle will decrease the recognition performance of
          the classifier.
For a 3-by-3 Sobel filter, the inaccuracies are more apparent the further the gradient
          angle is from horizontal or vertical. OpenCV addresses this inaccuracy for small (but
          fast) 3-by-3 Sobel derivative filters by a somewhat obscure use of the special aperture_size value CV_SCHARR in the cvSobel() function. The
            Scharr filter is just as fast but more accurate than the Sobel filter, so it
          should always be used if you want to make image measurements using a 3-by-3 filter. The
          filter coefficients for the Scharr filter are shown in Figure 6-5 [Scharr00].
[image: The 3-by-3 Scharr filter using flag CV_SHARR]

Figure 6-5. The 3-by-3 Scharr filter using flag CV_SHARR



Laplace



The OpenCV Laplacian function (first used in vision by Marr
        [Marr82]) implements a discrete approximation to the Laplacian operator: [66]
[image: image with no caption]

Because the Laplacian operator can be defined in terms of second derivatives, you might well
        suppose that the discrete implementation works something like the second-order Sobel
        derivative. Indeed it does, and in fact the OpenCV implementation of the Laplacian operator
        uses the Sobel operators directly in its computation.
void cvLaplace(
  const CvArr*  src,
  CvArr*        dst,
  int           apertureSize = 3
);
The cvLaplace() function takes the usual source and
        destination images as arguments as well as an aperture size. The source can be either an
        8-bit (unsigned) image or a 32-bit (floating-point) image. The destination must be a 16-bit
        (signed) image or a 32-bit (floating-point) image. This aperture is precisely the same as
        the aperture appearing in the Sobel derivatives and, in effect, gives the size of the region over which the
        pixels are sampled in the computation of the second derivatives.
The Laplace operator can be used in a variety of contexts. A common application is to
        detect “blobs.” Recall that the form of the Laplacian operator is a sum of second
        derivatives along the x-axis and y-axis. This
        means that a single point or any small blob (smaller than the aperture) that is surrounded
        by higher values will tend to maximize this function. Conversely, a point or small blob that
        is surrounded by lower values will tend to maximize the negative of this function.
With this in mind, the Laplace operator can also be used as a kind of edge detector. To
        see how this is done, consider the first derivative of a function, which will (of course) be
        large wherever the function is changing rapidly. Equally important, it will grow rapidly as
        we approach an edge-like discontinuity and shrink rapidly as we move past the discontinuity.
        Hence the derivative will be at a local maximum somewhere within this range. Therefore we
        can look to the 0s of the second derivative for locations of such local maxima. Got that?
        Edges in the original image will be 0s of the Laplacian. Unfortunately, both substantial and
        less meaningful edges will be 0s of the Laplacian, but this is not a problem because we can
        simply filter out those pixels that also have larger values of the first (Sobel) derivative.
          Figure 6-6 shows an example of using a
        Laplacian on an image together with details of the first and second derivatives and their
        zero crossings.

Canny



The method just described for finding edges was further refined by J. Canny in 1986 into
        what is now commonly called the Canny edge detector [Canny86]. One of
        the differences between the Canny algorithm and the simpler, Laplace-based algorithm from
        the previous section is that, in the Canny algorithm, the first derivatives are computed in
          x and y and then combined into four directional
        derivatives. The points where these directional derivatives are local maxima are then
        candidates for assembling into edges.
[image: Laplace transform (upper right) of the racecar image: zooming in on the tire (circled in white) and considering only the x-dimension, we show a (qualitative) representation of the brightness as well as the first and second derivative (lower three cells); the 0s in the second derivative correspond to edges, and the 0 corresponding to a large first derivative is a strong edge]

Figure 6-6. Laplace transform (upper right) of the racecar image: zooming in on the tire (circled
          in white) and considering only the x-dimension, we show a (qualitative) representation of
          the brightness as well as the first and second derivative (lower three cells); the 0s in
          the second derivative correspond to edges, and the 0 corresponding to a large first
          derivative is a strong edge

However, the most significant new dimension to the Canny algorithm is that it tries to assemble the individual edge candidate
        pixels into contours. [67] These contours are formed by applying an hysteresis
          threshold to the pixels. This means that there are two thresholds, an upper and
        a lower. If a pixel has a gradient larger than the upper threshold, then it is accepted as
        an edge pixel; if a pixel is below the lower threshold, it is rejected. If the pixel’s
        gradient is between the thresholds, then it will be accepted only if it is connected to a
        pixel that is above the high threshold. Canny recommended a ratio of high:low threshold
        between 2:1 and 3:1. Figures Figure 6-7 and
          Figure 6-8 show the results of applying
          cvCanny() to a test pattern and a photograph using
        high:low hysteresis threshold ratios of 5:1 and 3:2, respectively.
void cvCanny(
   const CvArr*  img,
   CvArr*        edges,
   double        lowThresh,
   double        highThresh,
   int           apertureSize = 3
);
[image: Results of Canny edge detection for two different images when the high and low thresholds are set to 50 and 10, respectively]

Figure 6-7. Results of Canny edge detection for two different images when the high and low
          thresholds are set to 50 and 10, respectively

The cvCanny() function expects an input image, which
        must be grayscale, and an output image, which must also be grayscale (but which will
        actually be a Boolean image). The next two arguments are the low and high thresholds, and the
        last argument is another aperture. As usual, this is the aperture used by the Sobel
        derivative operators that are called inside of the implementation of cvCanny().

Hough Transforms



The Hough transform[68] is a method for finding lines, circles, or other simple forms in an image. The original Hough
        transform was a line transform, which is a relatively fast way of searching a binary image
        for straight lines. The transform can be further generalized to cases other than just simple
          lines.
Hough Line Transform



The basic theory of the Hough line transform is that any point in a binary image could
          be part of some set of possible lines. If we parameterize each line by, for example, a
          slope a and an intercept b, then a point in the
          original image is transformed to a locus of points in the (a, b)
          plane corresponding to all of the lines passing through that point (see Figure 6-9). If we convert every nonzero pixel
          in the input image into such a set of points in the output image and sum over all such
          contributions, then lines that appear in the input (i.e., (x, y)
          plane) image will appear as local maxima in the output (i.e., (a, b)
          plane) image. Because we are summing the contributions from each point, the (a,
            b) plane is commonly called the accumulator plane.
            
[image: Results of Canny edge detection for two different images when the high and low thresholds are set to 150 and 100, respectively]

Figure 6-8. Results of Canny edge detection for two different images when the high and low
            thresholds are set to 150 and 100, respectively

It might occur to you that the slope-intercept form is not really the best way to
          represent all of the lines passing through a point (because of the considerably different
          density of lines as a function of the slope, and the related fact that the interval of
          possible slopes goes from –∞ to +∞). It is for this reason that the actual
          parameterization of the transform image used in numerical computation is somewhat
          different. The preferred parameterization represents each line as a point in polar
          coordinates (ρ, θ), with the implied line being the line passing
          through the indicated point but perpendicular to the radial from the origin to that point
          (see Figure 6-10). The equation for such a
          line is:
[image: image with no caption]

[image: The Hough line transform finds many lines in each image; some of the lines found are expected, but others may not be]

Figure 6-9. The Hough line transform finds many lines in each image; some of the lines found
            are expected, but others may not be

[image: A point (x0, y0) in the image plane (panel a) implies many lines each parameterized by a different ρ and θ (panel b); these lines each imply points in the (ρ, θ) plane, which taken together form a curve of characteristic shape (panel c)]

Figure 6-10. A point (x0, y0) in the image plane
            (panel a) implies many lines each parameterized by a different ρ and θ (panel b); these
            lines each imply points in the (ρ, θ) plane, which taken together form a curve of
            characteristic shape (panel c)

The OpenCV Hough transform algorithm does not make this computation explicit to the user.
          Instead, it simply returns the local maxima in the (ρ,
            θ) plane. However, you will need to understand this process in
          order to understand the arguments to the OpenCV Hough line transform function.
OpenCV supports two different kinds of Hough line transform: the standard
            Hough transform (SHT) [Duda72] and the progressive probabilistic Hough
            transform (PPHT). [69] The SHT is the algorithm we just looked at. The PPHT is a variation of this
          algorithm that, among other things, computes an extent for individual lines in addition to
          the orientation (as shown in Figure 6-11).
          It is “probabilistic” because, rather than accumulating every possible point in the
            accumulator plane, it accumulates only a fraction of them. The idea is that if
          the peak is going to be high enough anyhow, then hitting it only a fraction of the time
          will be enough to find it; the result of this conjecture can be a substantial reduction in
          computation time. Both of these algorithms are accessed with the same OpenCV function,
          though the meanings of some of the arguments depend on which method is being
            used.
CvSeq* cvHoughLines2(
  CvArr* image,
  void*  line_storage,
  int    method,
  double rho,
  double theta,
  int    threshold,
  double param1      = 0,
  double param2      = 0
);
The first argument is the input image. It must be an 8-bit image, but the input is
          treated as binary information (i.e., all nonzero pixels are considered to be equivalent).
          The second argument is a pointer to a place where the results can be stored, which can be
          either a memory storage (see CvMemoryStorage in Chapter 8) or a plain N-by-1 matrix array (the number of
          rows, N, will serve to limit the maximum number of lines returned).
          The next argument, method, can be CV_HOUGH_STANDARD, CV_HOUGH_PROBABILISTIC, or CV_HOUGH_MULTI_SCALE for (respectively) SHT, PPHT, or a
          multiscale variant of SHT.
The next two arguments, rho and theta, set the resolution desired for the lines (i.e., the
          resolution of the accumulator plane). The units of rho
          are pixels and the units of theta are radians; thus,
          the accumulator plane can be thought of as a two-dimensional histogram with cells of
          dimension rho pixels by theta radians. The threshold value is the
          value in the accumulator plane that must be reached for the routine to report a line. This
          last argument is a bit tricky in practice; it is not normalized, so you should expect to
          scale it up with the image size for SHT. Remember that this argument is, in effect,
          indicating the number of points (in the edge image) that must support the line for the
          line to be returned.
[image: The Canny edge detector (param1=50, param2=150) is run first, with the results shown in gray, and the progressive probabilistic Hough transform (param1=50, param2=10) is run next, with the results overlayed in white; you can see that the strong lines are generally picked up by the Hough transform]

Figure 6-11. The Canny edge detector (param1=50, param2=150) is run first, with the results
            shown in gray, and the progressive probabilistic Hough transform (param1=50, param2=10)
            is run next, with the results overlayed in white; you can see that the strong lines are
            generally picked up by the Hough transform

The param1 and param2 arguments are not used by the SHT. For the PPHT, param1 sets the minimum length of a line segment that will be
          returned, and param2 sets the separation between
          collinear segments required for the algorithm not to join them into a single longer
          segment. For the multiscale HT, the two parameters are used to indicate higher resolutions
          to which the parameters for the lines should be computed. The multiscale HT first computes
          the locations of the lines to the accuracy given by the rho and theta parameters and then goes on
          to refine those results by a factor of param1 and
            param2, respectively (i.e., the final resolution in
            rho is rho divided
          by param1 and the final resolution in theta is theta divided by
            param2).
What the function returns depends on how it was called. If the line_storage value was a matrix array, then the actual return
          value will be NULL. In this case, the matrix should be
          of type CV_32FC2 if the SHT or multi-scale HT is being
          used and should be CV_32SC4 if the PPHT is being used.
          In the first two cases, the ρ- and θ-values for
          each line will be placed in the two channels of the array. In the case of the PPHT, the
          four channels will hold the x- and y-values of
          the start and endpoints of the returned segments. In all of these cases, the number of
          rows in the array will be updated by cvHoughLines2() to
          correctly reflect the number of lines returned.
If the line_storage value was a pointer to a memory
          store, [70] then the return value will be a pointer to a CvSeq sequence structure. In that case, you can get each line or line segment
          from the sequence with a command like
float* line = (float*) cvGetSeqElem( lines , i );
where lines is the return value from cvHoughLines2() and i is
          index of the line of interest. In this case, line will
          be a pointer to the data for that line, with line[0]
          and line[1] being the floating-point values
            ρ and θ (for SHT and MSHT) or CvPoint structures for the endpoints of the segments (for
          PPHT).

Hough Circle Transform



The Hough circle transform [Kimme75] (see Figure 6-12) works in a manner roughly
          analogous to the Hough line transforms just described. The reason it is only “roughly” is
          that—if one were to try doing the exactly analogous thing—the accumulator
            plane would have to be replaced with an accumulator
            volume with three dimensions: one for x, one
          for y, and another for the circle radius r. This
          would mean far greater memory requirements and much slower speed. The implementation of
          the circle transform in OpenCV avoids this problem by using a somewhat more tricky method
          called the Hough gradient method.
The Hough gradient method works as follows. First the image is passed through an edge
          detection phase (in this case, cvCanny()). Next, for
          every nonzero point in the edge image, the local gradient is considered (the gradient is
          computed by first computing the first-order Sobel x- and y-derivatives via
            cvSobel()). Using this gradient, every point along
          the line indicated by this slope—from a specified minimum to a specified maximum
          distance—is incremented in the accumulator. At the same time, the location of every one of
          these nonzero pixels in the edge image is noted. The candidate centers are then selected
          from those points in this (two-dimensional) accumulator that are both above some given
          threshold and larger than all of their immediate neighbors. These candidate centers are
          sorted in descending order of their accumulator values, so that the centers with the most
          supporting pixels appear first. Next, for each center, all of the nonzero pixels (recall
          that this list was built earlier) are considered. These pixels are sorted according to
          their distance from the center. Working out from the smallest distances to the maximum
          radius, a single radius is selected that is best supported by the nonzero pixels. A center
          is kept if it has sufficient support from the nonzero pixels in the edge image
            and if it is a sufficient distance from any previously selected
          center.
This implementation enables the algorithm to run much faster and, perhaps more
          importantly, helps overcome the problem of the otherwise sparse population of a
          three-dimensional accumulator, which would lead to a lot of noise and render the results
          unstable. On the other hand, this algorithm has several shortcomings that you should be
          aware of.
[image: The Hough circle transform finds some of the circles in the test pattern and (correctly) finds none in the photograph]

Figure 6-12. The Hough circle transform finds some of the circles in the test pattern and
            (correctly) finds none in the photograph

First, the use of the Sobel derivatives to compute the local gradient—and the
          attendant assumption that this can be considered equivalent to a local tangent—is not a
          numerically stable proposition. It might be true “most of the time,” but you should expect
          this to generate some noise in the output.
Second, the entire set of nonzero pixels in the edge image is considered for every candidate center; hence, if you make the
          accumulator threshold too low, the algorithm will take a long time to run. Third, because
          only one circle is selected for every center, if there are concentric circles then you
          will get only one of them.
Finally, because centers are considered in ascending order of their associated
          accumulator value and because new centers are not kept if they are too close to previously
          accepted centers, there is a bias toward keeping the larger circles when multiple circles
          are concentric or approximately concentric. (It is only a “bias” because of the noise
          arising from the Sobel derivatives; in a smooth image at infinite resolution, it would be
          a certainty.)
With all of that in mind, let’s move on to the OpenCV routine that does all this for
          us:
CvSeq* cv HoughCircles(
  CvArr* image,
  void*  circle_storage,
  int    method,
  double dp,
  double min_dist,
  double param1     = 100,
  double param2     = 300,
  int    min_radius = 0,
  int    max_radius = 0
);
The Hough circle transform function cvHoughCircles()
          has similar arguments to the line transform. The input image is again an 8-bit image. One significant difference between cvHoughCircles() and cvHoughLines2() is that the latter requires a binary image. The cvHoughCircles() function will internally (automatically) call
            cvSobel()
          [71] for you, so you can provide a more general grayscale image.
The circle_storage can be either an array or memory
          storage, depending on how you would like the results returned. If an array is used, it
          should be a single column of type CV_32FC3; the three
          channels will be used to encode the location of the circle and its radius. If memory
          storage is used, then the circles will be made into an OpenCV sequence and a pointer to
          that sequence will be returned by cvHoughCircles().
          (Given an array pointer value for circle_storage, the
          return value of cvHoughCircles() is NULL.) The method argument
          must always be set to CV_HOUGH_GRADIENT.
The parameter dp is the resolution of the
          accumulator image used. This parameter allows us to create an accumulator of a lower
          resolution than the input image. (It makes sense to do this because there is no reason to
          expect the circles that exist in the image to fall naturally into the same number of bins
          as the width or height of the image itself.) If dp is
          set to 1 then the resolutions will be the same; if set to a larger number (e.g., 2), then
          the accumulator resolution will be smaller by that factor (in this case, half). The value
          of dp cannot be less than 1.
The parameter min_dist is the minimum distance that
          must exist between two circles in order for the algorithm to consider them distinct
          circles.
For the (currently required) case of the method being set to CV_HOUGH_GRADIENT, the next two arguments, param1 and param2, are the edge (Canny)
          threshold and the accumulator threshold, respectively. You may recall that the Canny edge detector actually takes two different thresholds itself. When
            cvCanny() is called internally, the first (higher)
          threshold is set to the value of param1 passed into
            cvHoughCircles(), and the second (lower) threshold is
          set to exactly half that value. The parameter param2 is
          the one used to threshold the accumulator and is exactly analogous to the threshold argument of cvHoughLines().
The final two parameters are the minimum and maximum radius of circles that can be
          found. This means that these are the radii of circles for which the accumulator has a
          representation. Example 6-1 shows an
          example program using cvHoughCircles().
Example 6-1. Using cvHoughCircles to return a sequence of circles found in a grayscale
            image
#include <cv.h>
#include <highgui.h>
#include <math.h>

int main(int argc, char** argv) {
  IplImage* image = cvLoadImage(
    argv[1],
    CV_LOAD_IMAGE_GRAYSCALE
  );

  CvMemStorage* storage = cvCreateMemStorage(0);
  cvSmooth(image, image, CV_GAUSSIAN, 5, 5 );

  CvSeq* results = cvHoughCircles(
    image,
    storage,
    CV_HOUGH_GRADIENT,
    2,
    image->width/10
  );

  for( int i = 0; i < results->total; i++ ) {
    float* p = (float*) cvGetSeqElem( results, i );
    CvPoint pt = cvPoint( cvRound( p[0] ), cvRound( p[1] ) );
    cvCircle(
      image,
      pt,
      cvRound( p[2] ),
      CV_RGB(0xff,0xff,0xff)
   );
  }
  cvNamedWindow( "cvHoughCircles", 1 );
  cvShowImage( "cvHoughCircles", image);
  cvWaitKey(0);
}


It is worth reflecting momentarily on the fact that, no matter what tricks we employ,
          there is no getting around the requirement that circles be described by three degrees of
          freedom (x, y, and r), in contrast to only two
          degrees of freedom (ρ and θ) for lines. The
          result will invariably be that any circle-finding algorithm requires more memory and
          computation time than the line-finding algorithms we looked at previously. With this in
          mind, it’s a good idea to bound the radius parameter as tightly as circumstances allow in
          order to keep these costs under control. [72] The Hough transform was extended to arbitrary shapes by Ballard in 1981
          [Ballard81] basically by considering objects as collections of gradient edges.


Remap



Under the hood, many of the transformations to follow have a certain common element. In
        particular, they will be taking pixels from one place in the image and mapping them to
        another place. In this case, there will always be some smooth mapping, which will do what we
        need, but it will not always be a one-to-one pixel correspondence.
We sometimes want to accomplish this interpolation programmatically; that is, we’d like to apply some known algorithm
        that will determine the mapping. In other cases, however, we’d like to do this mapping
        ourselves. Before diving into some methods that will compute (and apply) these mappings for
        us, let’s take a moment to look at the function responsible for applying the mappings that
        these other methods rely upon. The OpenCV function we want is called cvRemap():
void cvRemap(
  const CvArr* src,
  CvArr*       dst,
  const CvArr* mapx,
  const CvArr* mapy,
  int          flags   = CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS,
  CvScalar     fillval = cvScalarAll(0)
);
The first two arguments of cvRemap() are the source
        and destination images, respectively. Obviously, these should be of the same size and number
        of channels, but they can have any data type. It is important to note that the two may not
        be the same image. [73] The next two arguments, mapx and mapy, indicate where any particular pixel is to be relocated.
        These should be the same size as the source and destination images, but they are
        single-channel and usually of data type float
          (IPL_DEPTH_32F). Noninteger mappings are OK, and cvRemap() will do the interpolation calculations for you automatically. One
        common use of cvRemap() is to rectify (correct
        distortions in) calibrated and stereo images. We will see functions in Chapters Chapter 11 and Chapter 12
        that convert calculated camera distortions and alignments into mapx and mapy parameters. The next argument
        contains flags that tell cvRemap() exactly how that
        interpolation is to be done. Any one of the values listed in Table 6-1 will work.
Table 6-1. cvWarpAffine() additional flags values
	
                flags values

              	
                Meaning

              
	
                
                  CV_INTER_NN
                

              	
                Nearest neighbor

              
	
                
                  CV_INTER_LINEAR
                

              	
                Bilinear (default)

              
	
                
                  CV_INTER_AREA
                

              	
                Pixel area resampling

              
	
                
                  CV_INTER_CUBIC
                

              	
                Bicubic interpolation

              



Interpolation is an important issue here. Pixels in the source image sit on an
        integer grid; for example, we can refer to a pixel at location (20, 17). When these integer
        locations are mapped to a new image, there can be gaps—either because the integer source
        pixel locations are mapped to float locations in the destination image and must be rounded
        to the nearest integer pixel location or because there are some locations to which no pixels
        at all are mapped (think about doubling the image size by stretching it; then every other
        destination pixel would be left blank). These problems are generally referred to as
          forward projection problems. To deal with such rounding problems and
        destination gaps, we actually solve the problem backwards: we step through each pixel of the
        destination image and ask, “Which pixels in the source are needed to fill in this
        destination pixel?” These source pixels will almost always be on fractional pixel locations
        so we must interpolate the source pixels to derive the correct value for our destination
        value. The default method is bilinear interpolation, but you may choose other methods (as
        shown in Table 6-1).
You may also add (using the OR operator) the flag CV_WARP_FILL_OUTLIERS, whose effect is to fill pixels in the destination image
        that are not the destination of any pixel in the input image with the value indicated by the
        final argument fillval. In this way, if you map all of
        your image to a circle in the center then the outside of that circle would automatically be
        filled with black (or any other color that you fancy).

Stretch, Shrink, Warp, and Rotate



In this section we turn to geometric manipulations of images. [74] Such manipulations include stretching in various ways, which includes both
        uniform and nonuniform resizing (the latter is known as warping). There are many
        reasons to perform these operations: for example, warping and rotating an image so that it
        can be superimposed on a wall in an existing scene, or artificially enlarging a set of
        training images used for object recognition. [75] The functions that can stretch, shrink, warp, and/or rotate an image are called
          geometric transforms (for an early exposition, see [Semple79]). For
        planar areas, there are two flavors of geometric transforms: transforms that use a 2-by-3
        matrix, which are called affine transforms; and transforms based on a
        3-by-3 matrix, which are called perspective transforms or
          homographies. You can think of the latter transformation as a method
        for computing the way in which a plane in three dimensions is perceived by a particular
        observer, who might not be looking straight on at that plane.
An affine transformation is any transformation that can be expressed in the form of a
        matrix multiplication followed by a vector addition. In OpenCV the standard style of
        representing such a transformation is as a 2-by-3 matrix. We define:
[image: image with no caption]

It is easily seen that the effect of the affine transformation A · X + B is exactly
        equivalent to extending the vector X into the vector X´ and simply left-multiplying X´ by
        T.
Affine transformations can be visualized as follows. Any parallelogram ABCD in a plane can be mapped to any other
        parallelogram A’B'C’D’ by some affine transformation. If the areas of
        these parallelograms are nonzero, then the implied affine transformation is defined uniquely
        by (three vertices of) the two parallelograms. If you like, you can think of an affine
        transformation as drawing your image into a big rubber sheet and then deforming the sheet by
        pushing or pulling[76] on the corners to make different kinds of parallelograms.
When we have multiple images that we know to be slightly different views of the same
        object, we might want to compute the actual transforms that relate the different views. In
        this case, affine transformations are often used to model the views because, having fewer
        parameters, they are easier to solve for. The downside is that true perspective distortions
        can only be modeled by a homography, [77] so affine transforms yield a representation that cannot accommodate all possible
        relationships between the views. On the other hand, for small changes in viewpoint the
        resulting distortion is affine, so in some circumstances an affine transformation may be
        sufficient.
Affine transforms can convert rectangles to parallelograms. They can squash the shape
        but must keep the sides parallel; they can rotate it and/or scale it. Perspective
        transformations offer more flexibility; a perspective transform can turn a rectangle into a trapezoid. Of course, since parallelograms are also trapezoids, affine
        transformations are a subset of perspective transformations. Figure 6-13 shows examples of various affine and
        perspective transformations.
Affine Transform



There are two situations that arise when working with affine transformations. In the
          first case, we have an image (or a region of interest) we’d like to transform; in the
          second case, we have a list of points for which we’d like to compute the result of a
          transformation.
Dense affine transformations



In the first case, the obvious input and output formats are images, and the implicit
            requirement is that the warping assumes the pixels are a dense representation
            of the underlying image. This means that image warping must necessarily handle interpolations so that the output images are
            smooth and look natural. The affine transformation function provided by OpenCV for dense transformations
            is cvWarpAffine().
[image: Affine and perspective transformations]

Figure 6-13. Affine and perspective transformations

void cvWarpAffine(
   const CvArr* src,
   CvArr*       dst,
   const CvMat* map_matrix,
   int          flags      = CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS,
   CvScalar     fillval    = cvScalarAll(0)
);
Here src and dst refer to an array or image, which can be either one or three channels
            and of any type (provided they are the same type and size).
              [78] The map_matrix is the 2-by-3 matrix we
            introduced earlier that quantifies the desired transformation. The next-to-last
            argument, flags, controls the interpolation method as
            well as either or both of the following additional options (as usual, combine with
            Boolean OR).
	
                CV_WARP_FILL_OUTLIERS
              
	Often, the transformed src image does not
                  fit neatly into the dst image—there are pixels
                  “mapped” there from the source file that don’t actually exist. If this flag is
                  set, then those missing values are filled with fillval (described previously).

	
                CV_WARP_INVERSE_MAP
              
	This flag is for convenience to allow inverse warping from dst to src instead
                  of from src to dst.




cvWarpAffine performance



It is worth knowing that cvWarpAffine() involves
            substantial associated overhead. An alternative is to use cvGetQuadrangleSubPix(). This function has fewer options but several
            advantages. In particular, it has less overhead and can handle the special case of when
            the source image is 8-bit and the destination image is a 32-bit floating-point image. It
            will also handle multichannel images.
void cvGetQuadrangleSubPix(
    const CvArr* src,
    CvArr*       dst,
    const CvMat* map_matrix
);
What cvGetQuadrangleSubPix() does is compute all
            the points in dst by mapping them (with
            interpolation) from the points in src that were
            computed by applying the affine transformation implied by multiplication by the 2-by-3
              map_matrix. (Conversion of the locations in
              dst to homogeneous coordinates for the
            multiplication is done automatically.)
One idiosyncrasy of cvGetQuadrangleSubPix() is
            that there is an additional mapping applied by the function. In particular, the result
            points in dst are computed according to the
            formula:
[image: image with no caption]

where:
[image: image with no caption]

Observe that the mapping from (x, y) to (x”,
              y”) has the effect that—even if the mapping M is an
            identity mapping—the points in the destination image at the center will be taken from
            the source image at the origin. If cvGetQuadrangleSubPix() needs points from outside the image, it uses
            replication to reconstruct those values.

Computing the affine map matrix



OpenCV provides two functions to help you generate the map_matrix. The first is used when you already have two images that you
            know to be related by an affine transformation or that you’d like to approximate in that
              way:
CvMat* cvGetAffineTransform(
   const CvPoint2D32f* pts_src,
   const CvPoint2D32f* pts_dst,
   CvMat*              map_matrix
);
Here src and dst are arrays containing three two-dimensional (x, y)
            points, and the map_matrix is the affine transform computed from those points.
The pts_src and pts_dst in cvGetAffineTransform() are
            just arrays of three points defining two parallelograms. The simplest way to define an
            affine transform is thus to set pts_src to
              three[79] corners in the source image—for example, the upper and lower left together
            with the upper right of the source image. The mapping from the source to destination
            image is then entirely defined by specifying pts_dst,
            the locations to which these three points will be mapped in that destination image. Once
            the mapping of these three independent corners (which, in effect, specify a
            “representative” parallelogram) is established, all the other points can be warped
              accordingly.
Example 6-2 shows some code that uses these
            functions. In the example we obtain the cvWarpAffine() matrix parameters by first constructing two three-component
            arrays of points (the corners of our representative parallelogram) and then convert that
            to the actual transformation matrix using cvGetAffineTransform(). We then do an affine warp followed by a rotation of
            the image. For our array of representative points in the source image, called srcTri[], we take the three points: (0,0), (0,height-1), and (width-1,0). We
            then specify the locations to which these points will be mapped in the corresponding
            array dstTri[].
Example 6-2. An affine transformation
// Usage: warp_affine <image>
//
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv)
{
  CvPoint2D32f srcTri[3], dstTri[3];
  CvMat*       rot_mat = cvCreateMat(2,3,CV_32FC1);
  CvMat*       warp_mat = cvCreateMat(2,3,CV_32FC1);
  IplImage     *src, *dst;

  if( argc == 2 && ((src=cvLoadImage(argv[1],1)) != 0 )) {

    dst = cvCloneImage( src );
    dst->origin = src->origin;
    cvZero( dst );

    // Compute warp matrix
    //
    srcTri[0].x = 0;                            //src Top left
    srcTri[0].y = 0;
    srcTri[1].x = src->width - 1;               //src Top right
    srcTri[1].y = 0;
    srcTri[2].x = 0;                            //src Bottom left offset
    srcTri[2].y = src->height - 1;
    dstTri[0].x = src->width*0.0;               //dst Top left
    dstTri[0].y = src->height*0.33;
    dstTri[1].x = src->width*0.85;              //dst Top right
    dstTri[1].y = src->height*0.25;
    dstTri[2].x = src->width*0.15;              //dst Bottom left offset
    dstTri[2].y = src->height*0.7;


    cvGetAffineTransform( srcTri, dstTri, warp_mat );
    cvWarpAffine( src, dst, warp_mat );
    cvCopy( dst, src );

    // Compute rotation matrix
    //
    CvPoint2D32f center = cvPoint2D32f(
      src->width/2,
      src->height/2
    );
    double angle = -50.0;
    double scale = 0.6;
    cv2DRotationMatrix( center, angle, scale, rot_mat );

    // Do the transformation
    //
    cvWarpAffine( src, dst, rot_mat );

    cvNamedWindow( "Affine_Transform", 1 );
      cvShowImage( "Affine_Transform", dst );
      cvWaitKey();
    }
    cvReleaseImage( &dst );
    cvReleaseMat( &rot_mat );
    cvReleaseMat( &warp_mat );
    return 0;
  }
 


The second way to compute the map_matrix is to
            use cv2DRotationMatrix(), which computes the map
            matrix for a rotation around some arbitrary point, combined with an optional rescaling.
            This is just one possible kind of affine transformation, but it represents an important
            subset that has an alternative (and more intuitive) representation that’s easier to work
            with in your head:
CvMat* cv2DRotationMatrix(
   CvPoint2D32f center,
   double       angle,
   double       scale,
   CvMat*       map_matrix
);
The first argument, center, is the center point
            of the rotation. The next two arguments give the magnitude of the rotation and the
            overall rescaling. The final argument is the output map_matrix, which (as always) is a 2-by-3 matrix of floating-point
            numbers).
If we define α=scale.cos(angle) and
            β=scale.sin(angle) then this function computes the map_matrix to be:
[image: image with no caption]

You can combine these methods of setting the map_matrix to obtain, for example, an image that is rotated, scaled,
              and warped.

Sparse affine transformations



We have explained that cvWarpAffine() is the
            right way to handle dense mappings. For sparse mappings (i.e., mappings of lists of
            individual points), it is best to use cvTransform():
void cvTransform(
    const CvArr* src,
    CvArr*       dst,
    const CvMat* transmat,
    const CvMat* shiftvec = NULL
);
In general, src is an N-by-1
            array with Ds channels, where
              N is the number of points to be transformed and
                Ds is the dimension of those source
            points. The output array dst must be the same size
            but may have a different number of channels,
              Dd. The transformation matrix transmat is a
                Ds-by-Dd
            matrix that is then applied to every element of src,
            after which the results are placed into dst. The
            optional vector shiftvec, if non-NULL, must be a Dd-by-1 array,
            which is added to each result before the result is placed in dst.
In our case of an affine transformation, there are two ways to use cvTransform() that depend on how we’d like to represent our
            transformation. In the first method, we decompose our transformation into the 2-by-2
            part (which does rotation, scaling, and warping) and the 2-by-1 part (which does the
            translation). Here our input is an N-by-1 array with two channels,
              transmat is our local homogeneous transformation,
            and shiftvec contains any needed displacement. The
            second method is to use our usual 2-by-3 representation of the affine transformation. In
            this case the input array src is a three-channel
            array within which we must set all third-channel entries to 1 (i.e., the points must be
            supplied in homogeneous coordinates). Of course, the output array will still be a
            two-channel array.


Perspective Transform



To gain the greater flexibility offered by perspective transforms (homographies), we need a new
          function that will allow us to express this broader class of transformations. First we
          remark that, even though a perspective projection is specified completely by a single
          matrix, the projection is not actually a linear transformation. This is because the
          transformation requires division by the final dimension (usually Z;
          see Chapter 11) and thus loses a dimension in the
          process.
As with affine transformations, image operations (dense transformations) are handled by different functions than transformations
          on point sets (sparse transformations).
Dense perspective transform



The dense perspective transform uses an OpenCV function that is analogous to the one
            provided for dense affine transformations. Specifically, cvWarpPerspective() has all of the same arguments as cvWarpAffine() but with the small, but crucial, distinction
            that the map matrix must now be 3-by-3.
void cvWarpPerspective(
   const CvArr* src,
   CvArr*       dst,
   const CvMat* map_matrix,
   int          flags     = CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS,
   CvScalar     fillval   = cvScalarAll(0)
);
The flags are the same here as for the affine case.

Computing the perspective map matrix



As with the affine transformation, for filling the map_matrix in the preceding code we have a convenience function that can
            compute the transformation matrix from a list of point correspondences:
CvMat* cvGetPerspectiveTransform(
   const CvPoint2D32f* pts_src,
   const CvPoint2D32f* pts_dst,
   CvMat*              map_matrix
);
The pts_src and pts_dst are now arrays of four (not three) points, so we can independently
            control how the corners of (typically) a rectangle in pts_src are mapped to (generally) some rhombus in pts_dst. Our transformation is completely defined by the specified
            destinations of the four source points. As mentioned earlier, for perspective
            transformations we must allocate a 3-by-3 array for map_matrix; see Example 6-3 for
            sample code. Other than the 3-by-3 matrix and the shift from three to four control
            points, the perspective transformation is otherwise exactly analogous to the affine
            transformation we already introduced.
Example 6-3. Code for perspective transformation
// Usage: warp <image>
//
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv) {

  CvPoint2D32f srcQuad[4], dstQuad[4];
  CvMat*       warp_matrix  = cvCreateMat(3,3,CV_32FC1);
  IplImage     *src, *dst;
if( argc == 2 && ((src=cvLoadImage(argv[1],1)) != 0 )) {

  dst = cvCloneImage(src);
  dst->origin = src->origin;
  cvZero(dst);

  srcQuad[0].x = 0;                  //src Top left
  srcQuad[0].y = 0;
  srcQuad[1].x = src->width - 1;     //src Top right
  srcQuad[1].y = 0;
  srcQuad[2].x = 0;                  //src Bottom left
  srcQuad[2].y = src->height - 1;
  srcQuad[3].x = src->width - 1;     //src Bot right
  srcQuad[3].y = src->height - 1;

  dstQuad[0].x = src->width*0.05;    //dst Top left
  dstQuad[0].y = src->height*0.33;
  dstQuad[1].x = src->width*0.9;     //dst Top right
  dstQuad[1].y = src->height*0.25;
  dstQuad[2].x = src->width*0.2;     //dst Bottom left
  dstQuad[2].y = src->height*0.7;
  dstQuad[3].x = src->width*0.8;     //dst Bot right
  dstQuad[3].y = src->height*0.9;

  cvGetPerspectiveTransform(
    srcQuad,
    dstQuad,
    warp_matrix
  );
  cvWarpPerspective( src, dst, warp_matrix );
  cvNamedWindow( "Perspective_Warp", 1 );
    cvShowImage( "Perspective_Warp", dst );
    cvWaitKey();
  }
  cvReleaseImage(&dst);
  cvReleaseMat(&warp_matrix);
  return 0;
 }
}



Sparse perspective transformations



There is a special function, cvPerspectiveTransform(), that performs perspective transformations on
            lists of points; we cannot use cvTransform(), which
            is limited to linear operations. As such, it does not conveniently handle perspective
            transforms because they require division by the third coordinate of the homogeneous
            representation (x = f *X/Z, y = f *Y/Z). The special function
              cvPerspectiveTransform() takes care of this for
              us.
void cvPerspectiveTransform(
    const CvArr* src,
    CvArr*       dst,
    const CvMat* mat
);
As usual, the src and dst arguments are (respectively) the array of source points to be
            transformed and the array of destination points; these arrays should be of three-channel
            floating-point type. The matrix mat can be either a
            3-by-3 or a 4-by-4 matrix. If it is 3-by-3 then the projection is from two dimensions to
            two; if the matrix is 4-by-4, then the projection is from three dimensions to
            three.
In the current context we are transforming a set of points in an image to another
            set of points in an image, which sounds like a mapping from two dimensions to two
            dimensions. But this is not exactly correct, because the perspective transformation is
            actually mapping points on a two-dimensional plane embedded in a three-dimensional space
            back down to a (different) two-dimensional subspace. Think of this as being just what a
            camera does (we will return to this topic in greater detail when discussing cameras in
            later chapters). The camera takes points in three dimensions and maps them to the two
            dimensions of the camera imager. This is essentially what is meant when the source
            points are taken to be in "homogeneous coordinates”. We are adding an additional dimension to those
            points by introducing the Z dimension and then setting all of the
              Z values to 1. The projective transformation is then projecting back out of that space onto the
            two-dimensional space of our output. This is a rather long-winded way of explaining why,
            when mapping points in one image to points in another, you will need a 3-by-3
            matrix.
Output of the code in Example 6-3 and in
              Example 6-4 are shown in Figure 6-14 for affine and perspective
            transformations. Compare this with the diagrams of Figure 6-13 to see how this works with real
            images. In Figure 6-14, we transformed
            the whole image. 



CartToPolar and PolarToCart



The functions cvCartToPolar() and cvPolarToCart() are employed by more complex routines such as
          cvLogPolar() (described later) but are also useful in
        their own right. These functions map numbers back and forth between a Cartesian (x, y) space and a polar or radial (r,
          θ) space (i.e., from Cartesian to
          polar coordinates and vice versa). The function formats are as
          follows:
void cvCartToPolar(
  const CvArr* x,
  const CvArr* y,
  CvArr*       magnitude,
  CvArr*       angle            = NULL,
  int          angle_in_degrees = 0
);
void cvPolarToCart(
  const CvArr* magnitude,
  const CvArr* angle,
  CvArr*       x,
  CvArr*       y,
  int angle_in_degrees = 0
);
[image: Perspective and affine mapping of an image]

Figure 6-14. Perspective and affine mapping of an image

In each of these functions, the first two two-dimensional arrays or images are the input
        and the second two are the outputs. If an output pointer is set to NULL then it will not be computed. The
        requirements on these arrays are that they be float or doubles and matching (size, number of
        channels, and type). The last parameter specifies whether we are working with angles in
        degrees (0, 360) or in radians (0, 2π).
For an example of where you might use this function, suppose you have already taken the
          x- and y-derivatives of an image, either by
        using cvSobel() or by using convolution functions via
          cvDFT() or cvFilter2D(). If you stored the x-derivatives in an image
          dx_img and the y-derivatives in
          dy_img, you could now create an edge-angle recognition
        histogram. That is, you could then collect all the angles provided the magnitude or strength
        of the edge pixel to some desired threshold. To calculate this, we create two destination
        images of the same type (integer or float) as the derivative images and call them img_mag and img_angle. If you
        want the result to be given in degrees, then you would use the function cvCartToPolar( dx_img, dy_img, img_mag, img_angle, 1 ). We would
        then fill the histogram from img_angle as long as the
        corresponding “pixel” in img_mag is above our desired
          threshold.

LogPolar



For two-dimensional images, the log-polar transform [Schwartz80] is a change from Cartesian to polar coordinates: 
[image: image with no caption]

, where 
[image: image with no caption]

 and 
[image: image with no caption]

. Next, to separate out the polar coordinates into a
          (ρ, θ) space that is relative to some center
        point (xc, yc), we take
        the log so that 
[image: image with no caption]

 and 
[image: image with no caption]

 . For image purposes—when we need to “fit” the interesting stuff into the
        available image memory—we typically apply a scaling factor m to ρ.
          Figure 6-15 shows a square object on the
        left and its encoding in log-polar space.
[image: The log-polar transform maps (x, y) into (log(r),θ); here, a square is displayed in the log-polar coordinate system]

Figure 6-15. The log-polar transform maps (x, y) into (log(r),θ); here, a square is displayed in
          the log-polar coordinate system

The next question is, of course, “Why bother?” The log-polar transform takes its
        inspiration from the human visual system. Your eye has a small but dense center of
        photoreceptors in its center (the fovea), and the density of receptors
        fall off rapidly (exponentially) from there. Try staring at a spot on the wall and holding
        your finger at arm’s length in your line of sight. Then, keep staring at the spot and move
        your finger slowly away; note how the detail rapidly decreases as the image of your finger
        moves away from your fovea. This structure also has certain nice mathematical properties
        (beyond the scope of this book) that concern preserving the angles of line
          intersections.
More important for us is that the log-polar transform can be used to create
        two-dimensional invariant representations of object views by shifting the transformed
        image’s center of mass to a fixed point in the log-polar plane; see Figure 6-16. On the left are three shapes that we
        want to recognize as “square”. The problem is, they look very different. One is much larger
        than the others and another is rotated. The log-polar transform appears on the right in
          Figure 6-16. Observe that size differences
        in the (x, y) plane are converted to shifts along the
          log(r) axis of the log-polar plane and that the rotation differences
        are converted to shifts along the θ-axis in the log-polar plane. If we
        take the transformed center of each transformed square in the log-polar plane and then
        recenter that point to a certain fixed position, then all the squares will show up
        identically in the log-polar plane. This yields a type of invariance to two-dimensional
        rotation and scaling. [80]
[image: Log-polar transform of rotated and scaled squares: size goes to a shift on the log(r) axis and rotation to a shift on the θ-axis]

Figure 6-16. Log-polar transform of rotated and scaled squares: size goes to a shift on the log(r)
          axis and rotation to a shift on the θ-axis

The OpenCV function for a log-polar transform is cvLogPolar():
void cvLogPolar(
  const CvArr* src,
  CvArr*       dst,
  CvPoint2D32f center,
  double       m,
  int          flags = CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS
);
The src and dst
        are one- or three-channel color or grayscale images. The parameter center is the center point (xc,
            yc) of the log-polar transform; m is the scale factor, which should be set so that the features
        of interest dominate the available image area. The flags
        parameter allows for different interpolation methods. The interpolation methods are the same set of standard
        interpolations available in OpenCV (Table 6-1).
        The interpolation methods can be combined with either or both of the flags CV_WARP_FILL_OUTLIERS (to fill points that would otherwise be
        undefined) or CV_WARP_INVERSE_MAP (to compute the reverse
        mapping from log-polar to Cartesian coordinates).
Sample log-polar coding is given in Example 6-4, which
        demonstrates the forward and backward (inverse) log-polar transform. The results on a
        photographic image are shown in Figure 6-17.
[image: Log-polar example on an elk with transform centered at the white circle on the left; the output is on the right]

Figure 6-17. Log-polar example on an elk with transform centered at the white circle on the left;
          the output is on the right

Example 6-4. Log-polar transform example
// logPolar.cpp : Defines the entry point for the console application.
//
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv) {
  IplImage* src;
  double M;
  if( argc == 3 && ((src=cvLoadImage(argv[1],1)) != 0 )) {
    M = atof(argv[2]);
    IplImage* dst = cvCreateImage( cvGetSize(src), 8, 3 );
    IplImage* src2 = cvCreateImage( cvGetSize(src), 8, 3 );
    cvLogPolar(
      src, 
      dst,
      cvPoint2D32f(src->width/4,src->height/2), 
      M,
      CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS
      );
      cvLogPolar(
        dst, 
        src2,
        cvPoint2D32f(src->width/4, src->height/2),
        M,
        CV_INTER_LINEAR | CV_WARP_INVERSE_MAP
      );
      cvNamedWindow( "log-polar", 1 );
      cvShowImage( "log-polar", dst );
      cvNamedWindow( "inverse log-polar", 1 );
      cvShowImage( "inverse log-polar", src2 );
      cvWaitKey();
   }
   return 0;
  }



Discrete Fourier Transform (DFT)



For any set of values that are indexed by a discrete (integer) parameter, it is possible
        to define a discrete Fourier transform (DFT)[81] in a manner analogous to the Fourier transform of a continuous function. For
          N complex numbers 
[image: image with no caption]

, the one-dimensional DFT is defined by the following formula (where
          
[image: image with no caption]

 ): 
[image: image with no caption]

A similar transform can be defined for a two-dimensional array of numbers (of course
        higher-dimensional analogues exist also):
[image: image with no caption]

In general, one might expect that the computation of the N
        different terms fk would require
          O(N2) operations. In
        fact, there are a number of fast Fourier transform (FFT) algorithms
        capable of computing these values in O(N log
          N) time. The OpenCV function cvDFT() implements one such FFT algorithm. The function cvDFT() can compute FFTs for one- and two-dimensional arrays of
        inputs. In the latter case, the two-dimensional transform can be computed or, if desired,
        only the one-dimensional transforms of each individual row can be computed (this operation
        is much faster than calling cvDFT() many separate
          times).
void cvDFT(
  const CvArr* src,
  CvArr*       dst,
  int          flags,
  int          nonzero_rows = 0
);
The input and the output arrays must be floating-point types and may be single- or
        double-channel arrays. In the single-channel case, the entries are assumed to be real
        numbers and the output will be packed in a special space-saving format (inherited from the
        same older IPL library as the IplImage structure). If the
        source and channel are two-channel matrices or images, then the two channels will be
        interpreted as the real and imaginary components of the input data. In this case, there will
        be no special packing of the results, and some space will be wasted with a lot of 0s in both
        the input and output arrays. [82]
The special packing of result values that is used with single-channel output is as
        follows.
For a one-dimensional array:
[image: image with no caption]

For a two-dimensional array:
[image: image with no caption]

It is worth taking a moment to look closely at the indices on these arrays. The issue
        here is that certain values are guaranteed to be 0 (more accurately, certain values of
            fk are guaranteed to be real). It should
        also be noted that the last row listed in the table will be present only if
            Ny is even and that the last column will be
        present only if Nx is even. (In the case of the
        2D array being treated as Ny 1D arrays rather
        than a full 2D transform, all of the result rows will be analogous to the single row listed
        for the output of the 1D array).
The third argument, called flags, indicates exactly
        what operation is to be done. The transformation we started with is known as a
          forward transform and is selected with the flag CV_DXT_FORWARD. The inverse transform[83] is defined in exactly the same way except for a change of sign in the
        exponential and a scale factor. To perform the inverse transform without the scale factor,
        use the flag CV_DXT_INVERSE. The flag for the scale
        factor is CV_DXT_SCALE, and this results in all of the
        output being scaled by a factor of 1/N (or
            1/Nx Ny for a 2D
        transform). This scaling is necessary if the sequential application of the forward transform
        and the inverse transform is to bring us back to where we started. Because one often wants
        to combine CV_DXT_INVERSE with CV_DXT_SCALE, there are several shorthand notations for this kind of operation.
        In addition to just combining the two operations with OR, you can use CV_DXT_INV_SCALE (or CV_DXT_INVERSE_SCALE if you’re not into that brevity thing). The last flag you
        may want to have handy is CV_DXT_ROWS, which allows you
        to tell cvDFT() to treat a two-dimensional array as a
        collection of one-dimensional arrays that should each be transformed separately as if they
        were Ny distinct vectors of length
            Nx. This significantly reduces overhead when
        doing many transformations at a time (especially when using Intel’s optimized IPP libraries). By using CV_DXT_ROWS it is
        also possible to implement three-dimensional (and higher) DFT.
In order to understand the last argument, nonzero_rows, we must digress for a moment to explain that in general, DFT
        algorithms will strongly prefer vectors of some lengths over other lengths, or arrays of
        some sizes over other sizes. In most DFT algorithms, the preferred sizes are powers of 2
        (i.e., 2
          n
         for some integer n). In the case of the algorithm used by OpenCV, the
        preference is that the vector lengths, or array dimensions, be 2
          p
        3
          q
        5
          r
        , for some integers p, q, and
          r. Hence the usual procedure is to create a somewhat larger array and
        then use cvGetSubRect() to copy your array into the
        somewhat roomier zero-padded array. For convenience, there is a handy utility function,
          cvGetOptimalDFTSize(), which takes the (integer) length of your vector
        and returns the first equal or larger size which can be expressed in the form given (i.e.
            2p3q5r).
Spectrum Multiplication



In many applications that involve computing DFTs, one must also compute the
          per-element multiplication of two spectra. Because such results are typically packed in
          their special high-density format and are usually complex numbers, it would be tedious to
          unpack them and handle the multiplication via the “usual” matrix operations. Fortunately,
          OpenCV provides the handy cvMulSpectrums() routine,
          which performs exactly this function as well as a few other handy things.
void cvMulSpectrums(
   const CvArr* src1,
   const CvArr* src2,
   CvArr*       dst,
   int          flags
);
Note that the first two arguments are the usual input arrays, though in this case they
          are spectra from calls to cvDFT(). The third argument
          must be a pointer to an array—of the same type and size as the first two—that will be used
          for the results. The final argument, flags, tells
            cvMulSpectrums() exactly what you want done. In
          particular, it may be set to 0 (CV_DXT_FORWARD) for
          implementing the above pair multiplication or set to CV_DXT_MUL_CONJ if the element from the first array is to be multiplied by
          the complex conjugate of the corresponding element of the second array. The flags may also
          be combined with CV_DXT_ROWS in the two-dimensional
          case if each array row 0 is to be treated as a separate spectrum (remember, if you created
          the spectrum arrays with CV_DXT_ROWS then the data
          packing is slightly different than if you created them without that function, so you must
          be consistent in the way you call cvMulSpectrums).

Convolution and DFT



It is possible to greatly increase the speed of a convolution by using DFT via the
            convolution theorem [Titchmarsh26] that relates convolution in the spatial
          domain to multiplication in the Fourier domain [Morse53; Bracewell65; Arfken85]. [84] To accomplish this, one first computes the Fourier transform of the image and
          then the Fourier transform of the convolution filter. Once this is done, the convolution
          can be performed in the transform space in linear time with respect to the number of
          pixels in the image. It is worthwhile to look at the source code for computing such a
          convolution, as it also will provide us with many good examples of using cvDFT(). The code is shown in Example 6-5, which is taken directly from the
          OpenCV reference.
Example 6-5. Use of cvDFT() to accelerate the computation of convolutions
// Use DFT to accelerate the convolution of array A by kernel B.
// Place the result in array V.
//
void speedy_conv olution(
  const CvMat* A, // Size: M1xN1
  const CvMat* B,  // Size: M2xN2
  CvMat*       C   // Size:(A->rows+B->rows-1)x(A->cols+B->cols-1)
) {

  int dft_M = cvGetOptimalDFTSize( A->rows+B->rows-1 );
  int dft_N = cvGetOptimalDFTSize( A->cols+B->cols-1 );

  CvMat* dft_A = cvCreateMat( dft_M, dft_N, A->type );
  CvMat* dft_B = cvCreateMat( dft_M, dft_N, B->type );
  CvMat tmp;

  // copy A to dft_A and pad dft_A with zeros
  //
  cvGetSubRect( dft_A, &tmp, cvRect(0,0,A->cols,A->rows));
  cvCopy( A, &tmp );
  cvGetSubRect(
    dft_A,
    &tmp,
    cvRect( A->cols, 0, dft_A->cols-A->cols, A->rows )
  );
  cvZero( &tmp );

  // no need to pad bottom part of dft_A with zeros because of
  // use nonzero_rows parameter in cvDFT() call below
  //
  cvDFT( dft_A, dft_A, CV_DXT_FORWARD, A->rows );

  // repeat the same with the second array
  //
  cvGetSubRect( dft_B, &tmp, cvRect(0,0,B->cols,B->rows) );
  cvCopy( B, &tmp );
  cvGetSubRect(
    dft_B,
    &tmp,
    cvRect( B->cols, 0, dft_B->cols-B->cols, B->rows )
  );
  cvZero( &tmp );

  // no need to pad bottom part of dft_B with zeros because of
  // use nonzero_rows parameter in cvDFT() call below
  //
  cvDFT( dft_B, dft_B, CV_DXT_FORWARD, B->rows );

  // or CV_DXT_MUL_CONJ to get correlation rather than convolution
  //
  cvMulSpectrums( dft_A, dft_B, dft_A, 0 );

  // calculate only the top part
  //
  cvDFT( dft_A, dft_A, CV_DXT_INV_SCALE, C->rows );
  cvGetSubRect( dft_A, &tmp, cvRect(0,0,conv->cols,C->rows) );

  cvCopy( &tmp, C );

  cvReleaseMat( dft_A );
  cvReleaseMat( dft_B );
}


In Example 6-5 we can see that the
          input arrays are first created and then initialized. Next, two new arrays are created
          whose dimensions are optimal for the DFT algorithm. The original arrays are copied into
          these new arrays and then the transforms are computed. Finally, the spectra are multiplied together and the
          inverse transform is applied to the product. The transforms are the slowest[85] part of this operation; an N-by-N
          image takes O(N2 log
            N) time and so the entire process is also completed in that time
          (assuming that N >
          M for an M-by-M convolution
          kernel). This time is much faster than
              O(N2M2),
          the non-DFT convolution time required by the more naïve method.


Discrete Cosine Transform (DCT)



For real-valued data it is often sufficient to compute what is, in effect, only half of
        the discrete Fourier transform. The discrete cosine transform (DCT)
        [Ahmed74; Jain77] is defined analogously to the full DFT by the following formula:
[image: image with no caption]

Observe that, by convention, the normalization factor is applied to both the cosine
        transform and its inverse. Of course, there is a similar transform for higher
        dimensions.
The basic ideas of the DFT apply also to the DCT, but now all the coefficients are
        real-valued. Astute readers might object that the cosine transform is being applied to a
        vector that is not a manifestly even function. However, with cvDCT() the algorithm simply treats the vector as if it were extended to
        negative indices in a mirrored manner.
The actual OpenCV call is:
void cvDCT(
  const CvArr* src,
  CvArr*       dst,
  int          flags
);
The cvDCT() function expects arguments like those for
          cvDFT() except that, because the results are
        real-valued, there is no need for any special packing of the result array (or of the input
        array in the case of an inverse transform). The flags
        argument can be set to CV_DXT_FORWARD or CV_DXT_INVERSE, and either may be combined with CV_DXT_ROWS with the same effect as with cvDFT(). Because of the different normalization convention, both
        the forward and inverse cosine transforms always contain their respective contribution to
        the overall normalization of the transform; hence CV_DXT_SCALE plays no role in cvDCT.

Integral Images



OpenCV allows you to calculate an integral image easily with the appropriately named
          cvIntegral() function. An integral
          image [Viola04] is a data structure that allows rapid summing of subregions.
        Such summations are useful in many applications; a notable one is the computation of
          Haar wavelets, which are used in some face recognition and similar
          algorithms.
void cvIntegral(
   const CvArr* image,
   CvArr*       sum,
   CvArr*       sqsum      = NULL,
   CvArr*       tilted_sum = NULL
);
The arguments to cvIntegral() are the original image
        as well as pointers to destination images for the results. The argument sum is required; the others, sqsum and tilted_sum, may be provided if
        desired. (Actually, the arguments need not be images; they could be matrices, but in
        practice, they are usually images.) When the input image is 8-bit unsigned, the sum or tilted_sum may be
        32-bit integer or floating-point arrays. For all other cases, the sum or tilted_sum must be floating-point
        valued (either 32- or 64-bit). The result “images” must always be floating-point. If the
        input image is of size W-by-H, then the output
        images must be of size (W + 1)-by-(H + 1).
          [86]
An integral image sum has the form:
[image: image with no caption]

The optional sqsum image is the sum of
        squares:
[image: image with no caption]

and the tilted_sum is like the sum except that it is
        for the image rotated by 45 degrees:
[image: image with no caption]

Using these integral images, one may calculate sums, means, and standard deviations over
        arbitrary upright or “tilted” rectangular regions of the image. As a simple example, to sum
        over a simple rectangular region described by the corner points (x1,
          y1) and (x2, y2), where
          x2 >
        x1 and y2 >
        y1, we’d compute:
[image: image with no caption]

In this way, it is possible to do fast blurring, approximate gradients, compute means
        and standard deviations, and perform fast block correlations even for variable window
        sizes.
To make this all a little more clear, consider the 7-by-5 image shown in Figure 6-18; the region is shown as a bar chart
        in which the height associated with the pixels represents the brightness of those pixel
        values. The same information is shown in Figure 6-19, numerically on the left and in
        integral form on the right. Integral images (I') are computed by going across rows,
        proceeding row by row using the previously computed integral image values together with the
        current raw image (I) pixel value I(x,
          y) to calculate the next integral image value as follows:
[image: image with no caption]

[image: Simple 7-by-5 image shown as a bar chart with x, y, and height equal to pixel value]

Figure 6-18. Simple 7-by-5 image shown as a bar chart with x, y, and height equal to pixel
          value

The last term is subtracted off because this value is double-counted when adding the
        second and third terms. You can verify that this works by testing some values in Figure 6-19.
When using the integral image to compute a region, we can see by Figure 6-19 that, in order to compute the central
        rectangular area bounded by the 20s in the original image, we’d calculate 398 – 9 – 10 + 1 =
        380. Thus, a rectangle of any size can be computed using four measurements (resulting in
          O(1) computational complexity).
[image: The 7-by-5 image of shown numerically at left (with the origin assumed to be the upper-left ) and converted to an integral image at right]

Figure 6-19. The 7-by-5 image of Figure 6-18 shown
          numerically at left (with the origin assumed to be the upper-left ) and converted to an
          integral image at right


Distance Transform



The distance transform of an image is defined as a new image in
        which every output pixel is set to a value equal to the distance to the nearest zero pixel
        in the input image. It should be immediately obvious that the typical input to a distance
        transform should be some kind of edge image. In most applications the input to the distance
        transform is an output of an edge detector such as the Canny edge detector that has been
        inverted (so that the edges have value zero and the non-edges are nonzero).
In practice, the distance transform is carried out by using a mask that is typically a
        3-by-3 or 5-by-5 array. Each point in the array defines the “distance” to be associated with
        a point in that particular position relative to the center of the mask. Larger distances are
        built up (and thus approximated) as sequences of “moves” defined by the entries in the mask.
        This means that using a larger mask will yield more accurate distances.
Depending on the desired distance metric, the appropriate mask is automatically selected
        from a set known to OpenCV. It is also possible to tell OpenCV to compute “exact” distances
        according to some formula appropriate to the selected metric, but of course this is much
        slower.
The distance metric can be any of several different types, including the classic L2
        (Cartesian) distance metric; see Table 6-2
        for a listing. In addition to these you may define a custom metric and associate it with
        your own custom mask.
Table 6-2. Possible values for distance_type argument to cvDistTransform()
	
                Value of distance_type

              	
                Metric

              
	
                
                  CV_DIST_L2
                

              	
                
                  
[image: image with no caption]


                

              
	
                
                  CV_DIST_L1
                

              	
                
                  
[image: image with no caption]


                

              
	
                
                  CV_DIST_L12
                

              	
                
                  
[image: image with no caption]


                

              
	
                
                  CV_DIST_FAIR
                

              	
                
                  
[image: image with no caption]


                

              
	
                
                  CV_DIST_WELSCH
                

              	
                
                  
[image: image with no caption]


                

              
	
                
                  CV_DIST_USER
                

              	
                User-defined distance

              



When calling the OpenCV distance transform function, the output image should be a 32-bit
        floating-point image (i.e., IPL_DEPTH_32F).
Void cvDistTransform(
   const CvArr* src,
   CvArr*       dst,
   int          distance_type = CV_DIST_L2,
   int          mask_size     = 3,
   const float* kernel        = NULL,
   CvArr*       labels        = NULL
);
There are several optional parameters when calling cvDistTransform(). The first is distance_type, which indicates the distance metric to be used. The available
        values for this argument are defined in Borgefors (1986) [Borgefors86].
After the distance type is the mask_size, which may
        be 3 (choose CV_DIST_MASK_3) or 5 (choose CV_DIST_MASK_5); alternatively, distance computations can be
        made without a kernel[87] (choose CV_DIST_MASK_PRECISE). The kernel argument to cvDistanceTransform() is the distance mask to be used in the case of custom
        metric. These kernels are constructed according to the method of Gunilla Borgefors, two
        examples of which are shown in Figure 6-20. The
        last argument, labels, indicates that associations should
        be made between individual points and the nearest connected component consisting of zero
        pixels. When labels is non-NULL, it must be a pointer to an array of integer values the same size as the
        input and output images. When the function returns, this image can be read to determine
        which object was closest to the particular pixel under consideration. Figure 6-21 shows the outputs of distance
        transforms on a test pattern and a photographic image.

Histogram Equalization



Cameras and image sensors must usually deal not only with the contrast in a scene but
        also with the image sensors’ exposure to the resulting light in that scene. In a standard
        camera, the shutter and lens aperture settings juggle between exposing the sensors to too
        much or too little light. Often the range of contrasts is too much for the sensors to deal
        with; hence there is a trade-off between capturing the dark areas (e.g., shadows), which
        requires a longer exposure time, and the bright areas, which require shorter exposure to
        avoid saturating "whiteouts.”
[image: Two custom distance transform masks]

Figure 6-20. Two custom distance transform masks

[image: First a Canny edge detector was run with param1=100 and param2=200; then the distance transform was run with the output scaled by a factor of 5 to increase visibility]

Figure 6-21. First a Canny edge detector was run with param1=100 and param2=200; then the distance
          transform was run with the output scaled by a factor of 5 to increase visibility

After the picture has been taken, there’s nothing we can do about what the sensor
        recorded; however, we can still take what’s there and try to expand the dynamic range of the
        image. The most commonly used technique for this is histogram equalization. [88][89] In Figure 6-22 we can see that
        the image on the left is poor because there’s not much variation of the range of values.
        This is evident from the histogram of its intensity values on the right. Because we are
        dealing with an 8-bit image, its intensity values can range from 0 to 255, but the histogram
        shows that the actual intensity values are all clustered near the middle of the available
        range. Histogram equalization is a method for stretching this range out.
[image: The image on the left has poor contrast, as is confirmed by the histogram of its intensity values on the right]

Figure 6-22. The image on the left has poor contrast, as is confirmed by the histogram of its
          intensity values on the right

The underlying math behind histogram equalization involves mapping one distribution (the
        given histogram of intensity values) to another distribution (a wider and, ideally, uniform
        distribution of intensity values). That is, we want to spread out the
        y-values of the original distribution as evenly as possible in the new
        distribution. It turns out that there is a good answer to the problem of spreading out
        distribution values: the remapping function should be the cumulative distribution
          function. An example of the cumulative density function is shown in Figure 6-23 for the somewhat idealized case of a
        distribution that was originally pure Gaussian. However, cumulative density can be applied
        to any distribution; it is just the running sum of the original distribution from its
        negative to its positive bounds.
We may use the cumulative distribution function to remap the original distribution as an
        equally spread distribution (see Figure 6-24)
        simply by looking up each y-value in the original distribution and
        seeing where it should go in the equalized distribution.
[image: Result of cumulative distribution function (left ) on a Gaussian distribution (right)]

Figure 6-23. Result of cumulative distribution function (left ) on a Gaussian distribution
          (right)

[image: Using the cumulative density function to equalize a Gaussian distribution]

Figure 6-24. Using the cumulative density function to equalize a Gaussian distribution

For continuous distributions the result will be an exact equalization, but for digitized/discrete distributions the results may be far
        from uniform.
Applying this equalization process to Figure 6-22 yields the equalized intensity
        distribution histogram and resulting image in Figure 6-25. This whole process is wrapped up in
        one neat function:
void cvEqualizeHist(
  const CvArr* src,
  CvArr*       dst
);
[image: Histogram equalized results: the spectrum has been spread out]

Figure 6-25. Histogram equalized results: the spectrum has been spread out

In cvEqualizeHist(), the source and destination must
        be single-channel, 8-bit images of the same size. For color images you will have to separate
        the channels and process them one by one.

Exercises



	Use cvFilter2D() to create a filter that detects
            only 60 degree lines in an image. Display the results on a sufficiently interesting
            image scene.

	Separable kernels. Create a 3-by-3 Gaussian kernel using rows [(1/16, 2/16, 1/16),
            (2/16, 4/16, 2/16), (1/16, 2/16, 1/16)] and with anchor point in the middle.
	Run this kernel on an image and display the results.

	Now create two one-dimensional kernels with anchors in the center: one going
                “across” (1/4, 2/4, 1/4), and one going down (1/4, 2/4, 1/4). Load the same original
                image and use cvFilter2D() to convolve the image
                twice, once with the first 1D kernel and once with the second 1D kernel. Describe
                the results.

	Describe the order of complexity (number of operations) for the kernel in part a
                and for the kernels in part b. The difference is the advantage of being able to use
                separable kernels and the entire Gaussian class of filters—or any linearly
                decomposable filter that is separable, since convolution is a linear
                operation.




	Can you make a separable kernel from the filter shown in Figure 6-5? If so, show what it looks
            like.

	In a drawing program such as PowerPoint, draw a series of concentric circles forming
            a bull’s-eye.
	Make a series of lines going into the bull’s-eye. Save the image.

	Using a 3-by-3 aperture size, take and display the first-order
                  x- and y-derivatives of your picture.
                Then increase the aperture size to 5-by-5, 9-by-9, and 13-by-13. Describe the
                results.




	Create a new image that is just a 45 degree line, white on black. For a given series
            of aperture sizes, we will take the image’s first-order
            x-derivative (dx) and first-order
              y-derivative (dy). We will then take
            measurements of this line as follows. The (dx) and
              (dy) images constitute the gradient of the input image. The
            magnitude at location (i, j) is 
[image: image with no caption]

 and the angle is 
[image: image with no caption]

. Scan across the image and find places where the magnitude is at or
            near maximum. Record the angle at these places. Average the angles and report that as
            the measured line angle.
	Do this for a 3-by-3 aperture Sobel filter.

	Do this for a 5-by-5 filter.

	Do this for a 9-by-9 filter.

	Do the results change? If so, why?




	Find and load a picture of a face where the face is frontal, has eyes open, and
            takes up most or all of the image area. Write code to find the pupils of the
            eyes.
A Laplacian “likes” a bright central point surrounded by dark. Pupils are just the
              opposite. Invert and convolve with a sufficiently large Laplacian.



	In this exercise we learn to experiment with parameters by setting good lowThresh and highThresh
            values in cvCanny(). Load an image with suitably
            interesting line structures. We’ll use three different high:low threshold settings of
            1.5:1, 2.75:1, and 4:1.
	Report what you see with a high setting of less than 50.

	Report what you see with high settings between 50 and 100.

	Report what you see with high settings between 100 and 150.

	Report what you see with high settings between 150 and 200.

	Report what you see with high settings between 200 and 250.

	Summarize your results and explain what happens as best you can.




	Load an image containing clear lines and circles such as a side view of a bicycle.
            Use the Hough line and Hough circle calls and see how they respond to your image.

	Can you think of a way to use the Hough transform to identify any kind of shape with
            a distinct perimeter? Explain how.

	Look at the diagrams of how the log-polar function transforms a square into a wavy
            line.
	Draw the log-polar results if the log-polar center point were sitting on one of
                the corners of the square.

	What would a circle look like in a log-polar transform if the center point were
                inside the circle and close to the edge?

	Draw what the transform would look like if the center point were sitting just
                outside of the circle.




	A log-polar transform takes shapes of different rotations and sizes into a space
            where these correspond to shifts in the θ-axis and
              log(r) axis. The Fourier transform is translation invariant. How
            can we use these facts to force shapes of different sizes and rotations to automatically
            give equivalent representations in the log-polar domain?

	Draw separate pictures of large, small, large rotated, and small rotated squares.
            Take the log-polar transform of these each separately. Code up a two-dimensional shifter
            that takes the center point in the resulting log-polar domain and shifts the shapes to
            be as identical as possible.

	Take the Fourier transform of a small Gaussian distribution and the Fourier
            transform of an image. Multiply them and take the inverse Fourier transform of the
            results. What have you achieved? As the filters get bigger, you will find that working
            in the Fourier space is much faster than in the normal space.

	Load an interesting image, convert it to grayscale, and then take an integral image
            of it. Now find vertical and horizontal edges in the image by using the properties of an
            integral image.
Use long skinny rectangles; subtract and add them in place.



	Explain how you could use the distance transform to automatically align a known
            shape with a test shape when the scale is known and held fixed. How would this be done
            over multiple scales?

	Practice histogram equalization on images that you load in, and report the
            results.

	Load an image, take a perspective transform, and then rotate it. Can this transform
            be done in one step?






[62] For technical purists, the support of the kernel actually consists of only the nonzero portion of the
            kernel array.

[63] We say “at first glance” because it is also possible to perform convolutions in the frequency domain. In this case, for an
              N-by-N image and an
              M-by-M kernel with N >
              M, the computational time will be proportional to
              N2 log(N) and not
            to the N2M2
            that is expected for computations in the spatial domain. Because the frequency domain
            computation is independent of the size of the kernel, it is more efficient for large
            kernels. OpenCV automatically decides whether to do the convolution in the frequency
            domain based on the size of the kernel.

[64] Of course, the case of N-by-N with
                N odd and the anchor located at the center is the simplest
              case. In general, if the kernel is N-by-M
              and the anchor is located at (ax,
                  ay), then the destination image will have to be
              N – 1 pixels wider and M – 1 pixels taller than the source image. The offset will
              simply be (ax,
              ay).

[65] Either xorder or yorder must be nonzero.

[66] Note that the Laplacian operator is completely distinct from the Laplacian pyramid
            of Chapter 5.

[67] We’ll have much more to say about contours later. As you await those revelations,
            though, keep in mind that the cvCanny() routine does
            not actually return objects of type CvContour; we
            will have to build those from the output of cvCanny()
            if we want them by using cvFindContours(). Everything
            you ever wanted to know about contours will be covered in Chapter 8.

[68] Hough developed the transform for use in physics experiments [Hough59]; its use in
            vision was introduced by Duda and Hart [Duda72].

[69] The “probablistic Hough transform” (PHT) was introduced by Kiryati, Eldar, and
              Bruckshtein in 1991 [Kiryati91]; the PPHT was introduced by Matas, Galambosy, and
              Kittler in 1999 [Matas00].

[70] We have not yet introduced the concept of a memory store or a sequence, but Chapter 8 is devoted to this topic.

[71] The function cvSobel(), not cvCanny(), is called internally. The reason is that
                cvHoughCircles() needs to estimate the
              orientation of a gradient at each pixel, and this is difficult to do with binary edge
              map.

[72] Although cvHoughCircles() catches centers of
              the circles quite well, it sometimes fails to find the correct radius. Therefore, in
              an application where only a center must be found (or where some different technique
              can be used to find the actual radius), the radius returned by cvHoughCircles() can be ignored.

[73] A moment’s thought will make it clear why the most efficient remapping strategy is incompatible with writing onto the source image. After
            all, if you move pixel A to location B then, when you get to location B and want to move
            it to location C, you will find that you’ve already written over the original value of B
            with A!

[74] We will cover these transformations in detail here; we will return to them when we
            discuss (in Chapter 11) how they can be used in the
            context of three-dimensional vision techniques.

[75] This activity might seem a bit dodgy; after all, wouldn’t it be better just to use a
            recognition method that’s invariant to local affine distortions? Nonetheless, this
            method has a long history and still can be quite useful in practice.

[76] One can even pull in such a manner as to invert the parallelogram.

[77] “Homography” is the mathematical term for mapping points on one surface to points on
            another. In this sense it is a more general term than as used here. In the context of
            computer vision, homography almost always refers to mapping between points on two image
            planes that correspond to the same location on a planar object in the real world. It can
            be shown that such a mapping is representable by a single 3-by-3 orthogonal matrix (more
            on this in Chapter 11).

[78] Since rotating an image will usually make its bounding box larger, the result
                will be a clipped image. You can circumvent this either by shrinking the image (as
                in the example code) or by copying the first image to a central ROI within a larger
                source image prior to transformation.

[79] We need just three points because, for an affine transformation, we are only
                representing a parallelogram. We will need four points to represent a general
                trapezoid when we address perspective transformations.

[80] In Chapter 13 we’ll learn about recognition. For now simply
            note that it wouldn’t be a good idea to derive a log-polar transform for a whole
              object because such transforms are quite sensitive to the exact location of
            their center points. What is more likely to work for object recognition is to detect a
            collection of key points (such as corners or blob locations) around an object, truncate
            the extent of such views, and then use the centers of those key points as log-polar
            centers. These local log-polar transforms could then be used to create local features that are
            (partially) scale- and rotation-invariant and that can be associated with a visual
            object.

[81]  Joseph Fourier [Fourier] was the first to find that some functions can be
            decomposed into an infinite series of other functions, and doing so became a field known
            as Fourier analysis. Some key text on methods of decomposing functions into their
            Fourier series are Morse for physics [Morse53] and Papoulis in general [Papoulis62]. The
            fast Fourier transform was invented by Cooley and Tukeye in 1965 [Cooley65] though Carl
              Gauss worked out the key steps as early as 1805 [Johnson84]. Early use in
            computer vision is described by Ballard and Brown [Ballard82].

[82] When using this method, you must be sure to explicitly set the imaginary components
            to 0 in the twochannel representation. An easy way to do this is to create a matrix full
            of 0s using cvZero() for the imaginary part and then
            to call cvMerge() with a real-valued matrix to form a
            temporary complex array on which to run cvDFT()
            (possibly in-place). This procedure will result in full-size, unpacked, complex matrix
            of the spectrum.

[83]  With the inverse transform, the input is packed in the special format described
            previously. This makes sense because, if we first called the forward DFT and then ran
            the inverse DFT on the results, we would expect to wind up with the original data—that
            is, of course, if we remember to use the CV_DXT_SCALE
            flag!

[84] Recall that OpenCV’s DFT algorithm implements the FFT whenever the data size makes
              the FFT faster.

[85]  By “slowest” we mean “asymptotically slowest”—in other words, that this portion
              of the algorithm takes the most time for very large N. This is an
              important distinction. In practice, as we saw in the earlier section on convolutions, it is not always optimal to pay the overhead for conversion
              to Fourier space. In general, when convolving with a small kernel it will not
              be worth the trouble to make this transformation.

[86] This is because we need to put in a buffer of zero values along the x-axis and
            y-axis in order to make computation efficient.

[87] The exact method comes from Pedro F. Felzenszwalb and Daniel P. Huttenlocher
            [Felzenszwalb63].

[88] If you are wondering why histogram equalization is not in the chapter on histograms
              (Chapter 7), the reason is that histogram equalization
            makes no explicit use of any histogram data types. Although histograms are used
            internally, the function (from the user’s perspective) requires no histograms at
            all.

[89] Histogram equalization is an old mathematical technique; its use in image processing
            is described in various textbooks [Jain86; Russ02; Acharya05], conference papers
            [Schwarz78], and even in biological vision [Laughlin81].


Chapter 7. Histograms and Matching



In the course of analyzing images, objects, and video information, we frequently want to
      represent what we are looking at as a histogram.
        Histograms can be used to represent such diverse things as the color distribution
      of an object, an edge gradient template of an object [Freeman95], and the distribution of
      probabilities representing our current hypothesis about an object’s location. Figure 7-1 shows the use of histograms for rapid
        gesture recognition. Edge gradients were collected from “up”, “right”, “left”,
      “stop” and “OK” hand gestures. A webcam was then set up to watch a person who used these gestures to
      control web videos. In each frame, color interest regions were detected from the incoming
      video; then edge gradient directions were computed around these interest regions, and these
      directions were collected into orientation bins within a histogram. The histograms were then
      matched against the gesture models to recognize the gesture. The vertical bars in Figure 7-1 show the match levels of the different
      gestures. The gray horizontal line represents the threshold for acceptance of the “winning”
      vertical bar corresponding to a gesture model.
Histograms find uses in many computer vision applications. Histograms are used to detect
        scene transitions in videos by marking when the edge and color statistics markedly
      change from frame to frame. They are used to identify interest points in images by assigning
      each interest point a “tag” consisting of histograms of nearby features. Histograms of edges,
      colors, corners, and so on form a general feature type that is passed to classifiers for
      object recognition. Sequences of color or edge histograms are used to identify whether videos
      have been copied on the web, and the list goes on. Histograms are one of the classic tools of
      computer vision.
Histograms are simply collected counts of the
      underlying data organized into a set of predefined bins. They can be populated by
      counts of features computed from the data, such as gradient magnitudes and directions, color,
      or just about any other characteristic. In any case, they are used to obtain a statistical
      picture of the underlying distribution of data. The histogram usually has fewer dimensions
      than the source data. Figure 7-2 depicts a
      typical situation. The figure shows a two-dimensional distribution of points (upper left); we
      impose a grid (upper right) and count the data points in each grid
        cell, yielding a one-dimensional histogram (lower right). Because the raw data
      points can represent just about anything, the histogram is a handy way of representing
      whatever it is that you have learned from your image.
[image: Local histograms of gradient orientations are used to find the hand and its gesture; here the “winning” gesture (longest vertical bar) is a correct recognition of “L” (move left)]

Figure 7-1. Local histograms of gradient orientations are used to find the hand and its gesture;
        here the “winning” gesture (longest vertical bar) is a correct recognition of “L” (move
        left)

Histograms that represent continuous distributions do so by implicitly averaging the
      number of points in each grid cell. [90] This is where problems can arise, as shown in Figure 7-3. If the grid is too wide (upper left),
      then there is too much averaging and we lose the structure of the distribution. If the grid is
      too narrow (upper right), then there is not enough averaging to represent the distribution
      accurately and we get small, “spiky” cells.
OpenCV has a data type for representing histograms. The histogram data structure is capable of representing histograms in one or many dimensions,
      and it contains all the data necessary to track bins of both uniform and nonuniform sizes.
      And, as you might expect, it comes equipped with a variety of useful functions which will
      allow us to easily perform common operations on our histograms.
[image: Typical histogram example: starting with a cloud of points (upper left), a counting grid is imposed (upper right) that yields a one-dimensional histogram of point counts (lower right)]

Figure 7-2. Typical histogram example: starting with a cloud of points (upper left), a counting
        grid is imposed (upper right) that yields a one-dimensional histogram of point counts (lower
        right)

Basic Histogram Data Structure



Let’s start out by looking directly at the CvHistogram
        data structure.
typedef struct CvHistogram
{
    int     type;
    CvArr*  bins;
    float   thresh[CV_MAX_DIM][2]; // for uniform histograms
    float** thresh2;                // for nonuniform histograms
    CvMatND mat;                    // embedded matrix header
                                    // for array histograms
}
CvHistogram;
This definition is deceptively simple, because much of the internal data of the
        histogram is stored inside of the CvMatND structure. We
        create new histograms with the following routine:
CvHistogram* cvCreateHist(
    int     dims,
    int*    sizes,
    int     type,
    float** ranges = NULL,
    int     uniform = 1
);
[image: A histogram’s accuracy depends on its grid size: a grid that is too wide yields too much spatial averaging in the histogram counts (left); a grid that is too small yields “spiky” and singleton results from too little averaging (right)]

Figure 7-3. A histogram’s accuracy depends on its grid size: a grid that is too wide yields too
          much spatial averaging in the histogram counts (left); a grid that is too small yields
          “spiky” and singleton results from too little averaging (right)

The argument dims indicates how many dimensions we
        want the histogram to have. The sizes argument must be an
        array of integers whose length is equal to dims. Each
        integer in this array indicates how many bins are to be assigned to the corresponding
        dimension. The type can be either CV_HIST_ARRAY, which is used for multidimensional histograms to be stored using the dense multidimensional matrix structure (i.e.,
          CvMatND), or CV_HIST_SPARSE[91] if the data is to be stored using the sparse matrix representation (CvSparseMat). The argument ranges can have one of two forms. For a uniform histogram, ranges is an array of floating-point value pairs, [92] where the number of value pairs is equal to the number of dimensions. For a
        nonuniform histogram, the pairs used by the uniform histogram are replaced by arrays
        containing the values by which the nonuniform bins are separated. If there are N bins, then there will be N + 1 entries in each of these subarrays. Each array of values starts with the
        bottom edge of the lowest bin and ends with the top edge of the highest bin. [93] The Boolean argument uniform indicates if the
        histogram is to have uniform bins and thus how the ranges
        value is interpreted;[94] if set to a nonzero value, the bins are uniform. It is possible to set ranges to NULL, in which case
        the ranges are simply “unknown” (they can be set later using the specialized function
          cvSetHistBinRanges()). Clearly, you had better set the
        value of ranges before you start using the
          histogram.
void cvSetHistBinRanges(
    CvHistogram* hist,
    float**      ranges,
    int          uniform = 1
);
The arguments to cvSetHistRanges() are exactly the
        same as the corresponding arguments for cvCreateHist().
        Once you are done with a histogram, you can clear it
        (i.e., reset all of the bins to 0) if you plan to reuse it or you can de-allocate it with
        the usual release-type function.
void cvClearHist(
  CvHistogram* hist
);
void cvReleaseHist(
  CvHistogram** hist
);
As usual, the release function is called with a pointer to the histogram pointer you
        obtained from the create function. The histogram pointer is set to NULL once the histogram is de-allocated.
Another useful function helps create a histogram from data we already have lying
        around:
CvHistogram*  cvMakeHistHeaderForArray(
    int          dims,
    int*         sizes,
    CvHistogram* hist,
    float*       data,
    float**      ranges = NULL,
    int          uniform = 1
);
In this case, hist is a pointer to a CvHistogram data structure and data is a pointer to an area of size sizes[0]*sizes[1]*…*sizes[dims-1] for storing the histogram bins. Notice that
          data is a pointer to float because the internal data representation for the histogram is always of
        type float. The return value is just the same as the
          hist value we passed in. Unlike the cvCreateHist() routine, there is no type argument. All histograms created by cvMakeHistHeaderForArray() are dense histograms. One last point before we move
        on: since you (presumably) allocated the data storage
        area for the histogram bins yourself, there is no reason to call cvReleaseHist() on your CvHistogram
        structure. You will have to clean up the header structure (if you did not allocate it on the
        stack) and, of course, clean up your data as well; but since these are “your” variables, you
        are assumed to be taking care of this in your own way.

Accessing Histograms



There are several ways to access a histogram’s data. The most straightforward method is
        to use OpenCV’s accessor functions.
double cvQueryHistValue_1D(
  CvHistogram* hist,
  int          idx0
);
double cvQueryHistValue_2D(
  CvHistogram* hist,
  int          idx0,
  int          idx1
);
double cvQueryHistValue_3D(
  CvHistogram* hist,
  int          idx0,
  int          idx1,
  int          idx2
);
double cvQueryHistValue_nD(
  CvHistogram* hist,
  int*         idxN
);
Each of these functions returns a floating-point number for the value in the appropriate
        bin. Similarly, you can set (or get) histogram bin values with the functions that return a
        pointer to a bin (not to a bin’s value):
float* cvGetHistValue_1D(
  CvHistogram* hist,
  int          idx0
);
float* cvGetHistValue_2D(
  CvHistogram* hist,
  int          idx0,
  int          idx1
);
float* cvGetHistValue_3D(
  CvHistogram* hist,
  int          idx0,
  int          idx1,
  int          idx2
);
float* cvGetHistValue_nD(
  CvHistogram* hist,
  int*         idxN
);
These functions look a lot like the cvGetReal*D and
          cvPtr*D families of functions, and in fact they are
        pretty much the same thing. Inside of these calls are essentially those same matrix
        accessors called with the matrix hist->bins passed on
        to them. Similarly, the functions for sparse histograms inherit the behavior of the corresponding sparse matrix functions. If
        you attempt to access a nonexistent bin using a GetHist*() function in a sparse histogram, then that bin is automatically
        created and its value set to 0. Note that QueryHist*()
        functions do not create missing bins.
This leads us to the more general topic of accessing the histogram. In many cases, for
          dense histograms we will want to access the bins member of the histogram directly. Of course, we might do
        this just as part of data access. For example, we might want to access all of the elements
        in a dense histogram sequentially, or we might want to access bins directly for performance reasons, in which case we might use hist->mat.data.fl (again, for dense histograms). Other
        reasons for accessing histograms include finding how many dimensions it has or what regions
        are represented by its individual bins. For this information we can use the following tricks
        to access either the actual data in the CvHistogram
        structure or the information imbedded in the CvMatND
        structure known as mat.
int n_dimension             = histogram->mat.dims;
int dim_i_nbins             = histogram->mat.dim[ i ].size;

// uniform histograms
int dim_i_bin_lower_bound   = histogram->thresh[ i ][ 0 ]; 
int dim_i_bin_upper_bound   = histogram->thresh[ i ][ 1 ];

// nonuniform histograms
int dim_i_bin_j_lower_bound = histogram->thresh2[ i ][ j ];
int dim_i_bin_j_upper_bound = histogram->thresh2[ i ][ j+1 ];
As you can see, there’s a lot going on inside the histogram data structure.

Basic Manipulations with Histograms



Now that we have this great data structure, we will naturally want to do some fun stuff
        with it. First let’s hit some of the basics that will be used over and over; then we’ll move
        on to some more complicated features that are used for more specialized tasks.
When dealing with a histogram, we typically just want to accumulate information into its
        various bins. Once we have done this, however, it is often desirable to work with the
        histogram in normalized form, so that individual bins
        will then represent the fraction of the total number of events assigned to the entire
        histogram:
cvNormalizeHist( CvHistogram* hist, double factor );
Here hist is your histogram and factor is the number to which you would like to normalize the
        histogram (which will usually be 1). If you are following closely then you may have noticed
        that the argument factor is a double although the internal data type of CvHistogram is always float—further evidence
        that OpenCV is a work in progress!
The next handy function is the threshold function:
cvThreshHist( CvHistogram* hist, double factor );
The argument factor is the cutoff for the threshold.
        The result of thresholding a histogram is that all bins whose value is below the threshold
        factor are set to 0. Recalling the image thresholding function cvThreshold(), we might say that the histogram thresholding function is
        analogous to calling the image threshold function with the argument threshold_type set to CV_THRESH_TOZERO.
        Unfortunately, there are no convenient histogram thresholding functions that provide
        operations analogous to the other threshold types. In practice, however, cvThreshHist() is the one you’ll probably want because with real
        data we often end up with some bins that contain just a few data points. Such bins are
        mostly noise and thus should usually be zeroed out.
Another useful function is cvCopyHist(), which (as
        you might guess) copies the information from one histogram into another.
void cvCopyHist(const CvHistogram* src, CvHistogram** dst );
This function can be used in two ways. If the destination histogram *dst is a histogram of the same size as src, then both the data and the bin ranges from src will be copied into *dst. The other way
        of using cvCopyHist() is to set *dst to NULL. In this case, a new histogram
        will be allocated that has the same size as src and then
        the data and bin ranges will be copied (this is analogous to the image function cvCloneImage()). It is to allow this kind of cloning that the
        second argument dst is a pointer to a pointer to a
        histogram—unlike the src, which is just a pointer to a
        histogram. If *dst is NULL when cvCopyHist() is called, then
          *dst will be set to the pointer to the newly allocated
        histogram when the function returns.
Proceeding on our tour of useful histogram functions, our next new friend is cvGetMinMaxHistValue(), which reports the minimal and maximal
        values found in the histogram.
void cvGetMinMaxHistValue(
    const CvHistogram* hist,
    float*             min_value,
    float*             max_value,
    int*               min_idx = NULL,
    int*               max_idx = NULL
);
Thus, given a histogram hist, cvGetMinMaxHistValue()
        will compute its largest and smallest values. When the function returns, *min_value and *max_value
        will be set to those respective values. If you don’t need one (or both) of these results,
        then you may set the corresponding argument to NULL. The
        next two arguments are optional; if you leave them set to their default value (NULL), they will do nothing. However, if they are non-NULL pointers to int then the
        integer values indicated will be filled with the location index of the minimal and maximal
        values. In the case of multi-dimensional histograms, the arguments min_idx and
          max_idx (if not NULL) are assumed to point to an array of integers whose length is equal to the
        dimensionality of the histogram. If more than one bin in the histogram has the same minimal
        (or maximal) value, then the bin that will be returned is the one with the smallest index
        (in lexicographic order for multidimensional histograms).
After collecting data in a histogram, we often use cvGetMinMaxHistValue() to find the minimum value and then “threshold away” bins
        with values near this minimum using cvThreshHist() before
        finally normalizing the histogram via cvNormalizeHist().
Last, but certainly not least, is the automatic computation of histograms from images.
        The function cvCalcHist() performs this crucial
          task:
void cvCalcHist(
    IplImage**   image,
    CvHistogram* hist,
    int          accumulate = 0,
    const CvArr* mask       = NULL
);
The first argument, image, is a pointer to an array
        of IplImage* pointers. [95] This allows us to pass in many image planes. In the case of a multi-channel
        image (e.g., HSV or RGB) we will have to cvSplit() (see
          Chapter 3 or Chapter 5) that image
        into planes before calling cvCalcHist(). Admittedly
        that’s a bit of a pain, but consider that frequently you’ll also want to pass in multiple
        image planes that contain different filtered versions of an image’for example, a plane of
        gradients or the U- and V-planes of YUV. Then what a mess it
        would be when you tried to pass in several images with various numbers of channels (and you
        can be sure that someone, somewhere, would want just some of those channels in those
        images!). To avoid this confusion, all images passed to cvCalcHist() are assumed (read “required”) to be single-channel images. When
        the histogram is populated, the bins will be identified by the tuples formed across
        these multiple images. The argument hist must be a
        histogram of the appropriate dimensionality (i.e., of dimension equal to the number of image
        planes passed in through image). The last two arguments
        are optional. The accumulate argument, if nonzero,
        indicates that the histogram hist should not be cleared
        before the images are read; note that accumulation allows cvCalcHist() to be called multiple times in a data collection loop. The final
        argument, mask, is the usual optional Boolean mask; if
          non-NULL, only pixels corresponding to nonzero entries
        in the mask image will be included in the computed histogram.
Comparing Two Histograms



Yet another indispensable tool for working with histograms, first introduced by Swain
          and Ballard [Swain91] and further generalized by Schiele and Crowley [Schiele96], is the
          ability to compare two histograms in terms of some specific criteria for similarity. The
          function cvCompareHist() does just this.
double cvCompareHist(
    const CvHistogram* hist1,
    const CvHistogram* hist2,
    int                method
);
The first two arguments are the histograms to be compared, which should be of the same
          size. The third argument is where we select our desired distance metric. The four
          available options are as follows.
Correlation (method = CV_COMP_CORREL)



[image: image with no caption]

where 
[image: image with no caption]

 and N equals the number of bins
            in the histogram.
For correlation, a high score represents a
            better match than a low score. A perfect match is 1 and a maximal mismatch is –1; a
            value of 0 indicates no correlation (random association).

Chi-square (method = CV_COMP_CHISQR)



[image: image with no caption]

For chi-square, [96]a low score represents a better match than a high score. A perfect match is 0
            and a total mismatch is unbounded (depending on the size of the histogram).

Intersection (method = CV_COMP_INTERSECT)



[image: image with no caption]

For histogram intersection, high scores
            indicate good matches and low scores indicate bad matches. If both histograms are normalized to 1, then a perfect match is 1 and a total
            mismatch is 0.

Bhattacharyya distance (method = CV_COMP_BHATTACHARYYA)



[image: image with no caption]

For Bhattacharyya matching [Bhattacharyya43],
            low scores indicate good matches and high scores indicate bad matches. A perfect match
            is 0 and a total mismatch is a 1.
With CV_COMP_BHATTACHARYYA, a special factor in
            the code is used to normalize the input histograms. In general, however, you should
            normalize histograms before
            comparing them because concepts like histogram intersection make little
            sense (even if allowed) without normalization.
The simple case depicted in Figure 7-4 should
            clarify matters. In fact, this is about the simplest case that could be imagined: a
            one-dimensional histogram with only two bins. The model histogram has a 1.0 value in the
            left bin and a 0.0 value in the right bin. The last three rows show the comparison
            histograms and the values generated for them by the various metrics (the EMD metric will
            be explained shortly).
[image: Histogram matching measures]

Figure 7-4. Histogram matching measures

Figure 7-4 provides a quick reference for the
            behavior of different matching types, but there is something disconcerting here, too. If
              histogram bins shift by just one slot—as with the chart—s first and third
            comparison histograms’then all these matching methods (except EMD) yield a maximal mismatch even though these two histograms have a
            similar “shape”. The rightmost column in Figure 7-4
            reports values returned by EMD, a type of distance measure. In comparing the third to the model histogram, the EMD measure quantifies the
            situation precisely: the third histogram has moved to the right by one unit. We shall
            explore this measure further in the "Earth Mover’s Distance” section to follow.
In the authors’ experience, intersection works well for quick-and-dirty matching and
            chi-square or Bhattacharyya work best for slower but more accurate matches. The EMD
            measure gives the most intuitive matches but is much slower.


Histogram Usage Examples



It’s probably time for some helpful examples. The program in Example 7-1 (adapted from the OpenCV code bundle)
          shows how we can use some of the functions just discussed. This program computes a
            hue-saturation histogram from an incoming image and then draws that histogram
          as an illuminated grid.
Example 7-1. Histogram computation and display
#include <cv.h>
#include <highgui.h>

int main( int argc, char** argv ) {
    IplImage* src;

    if( argc == 2 && (src=cvLoadImage(argv[1], 1))!= 0) {

        // Compute the HSV image and decompose it into separate planes.
        //
        IplImage* hsv = cvCreateImage( cvGetSize(src), 8, 3 );
        cvCvtColor( src, hsv, CV_BGR2HSV );

        IplImage* h_plane  = cvCreateImage( cvGetSize(src), 8, 1 );
        IplImage* s_plane  = cvCreateImage( cvGetSize(src), 8, 1 );
        IplImage* v_plane  = cvCreateImage( cvGetSize(src), 8, 1 );
        IplImage* planes[] = { h_plane, s_plane };
        cvCvtPixToPlane( hsv, h_plane, s_plane, v_plane, 0 );

        // Build the histogram and compute its contents.
        //
        int h_bins = 30, s_bins = 32;
        CvHistogram* hist;
        {
          int    hist_size[]  = { h_bins, s_bins };
          float  h_ranges[]   = { 0, 180 };         // hue is [0,180]
          float  s_ranges[]   = { 0, 255 };
          float* ranges[]     = { h_ranges, s_ranges };
          hist = cvCreateHist(
            2,
            hist_size,
            CV_HIST_ARRAY,
            ranges,
            1
          );
        }
        cvCalcHist( planes, hist, 0, 0 ); //Compute histogram
        cvNormalizeHist( hist[i], 1.0 );  //Normalize it

        // Create an image to use to visualize our histogram.
        //
        int scale = 10;
        IplImage* hist_img = cvCreateImage( 
          cvSize( h_bins * scale, s_bins * scale ),
          8,
          3
        );
        cvZero( hist_img );

        // populate our visualization with little gray squares.
        //
        float max_value = 0;
        cvGetMinMaxHistValue( hist, 0, &max_value, 0, 0 );

        for( int h = 0; h < h_bins; h++ ) {
            for( int s = 0; s < s_bins; s++ ) {
                 float bin_val = cvQueryHistValue_2D( hist, h, s );
                 int intensity = cvRound( bin_val * 255 / max_value );
                 cvRectangle(
                   hist_img,
                   cvPoint( h*scale, s*scale ),
                   cvPoint( (h+1)*scale - 1, (s+1)*scale - 1),
                   CV_RGB(intensity,intensity,intensity),
                   CV_FILLED
                  );

               }

          }

          cvNamedWindow( "Source", 1 );
          cvShowImage( "Source", src );

          cvNamedWindow( "H-S Histogram", 1 );
          cvShowImage( "H-S Histogram", hist_img );

          cvWaitKey(0);
   }
}


In this example we have spent a fair amount of time preparing the arguments for
            cvCalcHist(), which is not uncommon. We also chose to
          normalize the colors in the visualization rather than normalizing the histogram itself,
          although the reverse order might be better for some applications. In this case it gave us
          an excuse to call cvGetMinMaxHistValue(), which was
          reason enough not to reverse the order.
Let’s look at a more practical example: color histograms taken from a human hand under various lighting conditions.
          The left column of Figure 7-5 shows images
          of a hand in an indoor environment, a shaded outdoor environment, and a sunlit outdoor
          environment. In the middle column are the blue, green, and red (BGR) histograms corresponding to the observed flesh tone of the hand. In the right
          column are the corresponding HSV histograms, where the vertical axis is V (value), the
          radius is S (saturation) and the angle is H (hue). Notice that indoors is darkest, outdoors in the shade brighter, and
          outdoors in the sun brightest. Observe also that the colors shift around somewhat as a
          result of the changing color of the illuminating light.
As a test of histogram comparison, we could take a portion of one palm (e.g., the top
          half of the indoor palm), and compare the histogram representation of the colors in that
          image either with the histogram representation of the colors in the remainder of that
          image or with the histogram representations of the other two hand images. Flesh tones are
          often easier to pick out after conversion to an HSV color space. It turns out that
          restricting ourselves to the hue and saturation planes is not only sufficient but also
          helps with recognition of flesh tones across ethnic groups. The matching results for our
          experiment are shown in Table 7-1, which
          confirms that lighting can cause severe mismatches in color. Sometimes normalized BGR
          works better than HSV in the context of lighting changes.
[image: Histogram of flesh colors under indoor (upper left), sunlit outdoor (middle left), and shaded outdoor (lower left) lighting conditions; the middle and right-hand columns display the associated BGR and HSV histograms, respectively]

Figure 7-5. Histogram of flesh colors under indoor (upper left), sunlit outdoor (middle left),
            and shaded outdoor (lower left) lighting conditions; the middle and right-hand columns
            display the associated BGR and HSV histograms, respectively

Table 7-1. Histogram comparison, via four matching methods, of palm-flesh colors in upper half
            of indoor palm with listed variant palm-flesh color
	
                  Comparison

                	
                  CORREL

                	
                  CHISQR

                	
                  INTERSECT

                	
                  BHATTACHARYYA

                
	
                  Indoor lower half

                	
                  0.96

                	
                  0.14

                	
                  0.82

                	
                  0.2

                
	
                  Outdoor shade

                	
                  0.09

                	
                  1.57

                	
                  0.13

                	
                  0.8

                
	
                  Outdoor sun

                	
                  –0.0

                	
                  1.98

                	
                  0.01

                	
                  0.99

                





Some More Complicated Stuff



Everything we’ve discussed so far was reasonably basic. Each of the functions provided
        for a relatively obvious need. Collectively, they form a good foundation for much of what
        you might want to do with histograms in the context of computer vision (and probably in other contexts as
        well). At this point we want to look at some more complicated routines available within
        OpenCV that are extremely useful in certain applications. These routines include a more
        sophisticated method of comparing two histograms as well as tools for computing and/or visualizing which portions of
        an image contribute to a given portion of a histogram.
Earth Mover’s Distance



Lighting changes can cause shifts in color values (see Figure 7-5), although such shifts tend not to
          change the shape of the histogram of color values, but shift the color value locations and
          thus cause the histogram-matching schemes we’ve learned about to fail. The difficulty with
          histogram match measures is that they can return a
          large difference in the case where two histograms are similarly shaped, but only displaced
          relative to one another. It is often desirable to have a distance measure which performs like a match, except which is less sensitive to such displacements. Earth mover’s distance (EMD) [Rubner00] is such a metric; it essentially
          measures how much work it would take to “shovel” one histogram shape into another,
          including moving part (or all) of the histogram to a new location. It works in any number
          of dimensions.
Return again to Figure 7-4; we see the
          “earthshoveling” nature of EMD’s distance measure in the rightmost column. An exact match is a distance
          of 0. Half a match is half a “shovel full”, the amount it would take to spread half of the
          left histogram into the next slot. Finally, moving the entire histogram one step to the
          right would require an entire unit of distance (i.e., to change the model histogram into
          the “totally mismatched” histogram).
The EMD algorithm itself is quite general; it allows users to set their own distance
          metric or their own cost-of-moving matrix. One can record where the histogram “material”
          flowed from one histogram to another, and one can employ nonlinear distance metrics
          derived from prior information about the data. The EMD function in OpenCV is cvCalcEMD2():
float cvCalcEMD2(
    const CvArr*       signature1,
    const CvArr*       signature2,
    int                distance_type,
    CvDistanceFunction distance_func  = NULL,
    const CvArr*       cost_matrix    = NULL,
    CvArr*             flow           = NULL,
    float*             lower_bound    = NULL,
    void*              userdata       = NULL
);
The cvCalcEMD2() function has enough parameters to
          make one dizzy. This may seem rather complex for such an intuitive function, but the
          complexity stems from all the subtle configurable dimensions of the algorithm. [97] Fortunately, the function can be used in its more basic and intuitive form and
          without most of the arguments (note all the "=NULL"
          defaults in the preceding code). Example 7-2 shows the
          simplified version.
Example 7-2. Simple EMD interface
float cvCalcEMD2(
    const CvArr* signature1,
    const CvArr* signature2,
    int          distance_type
);


The parameter distance_type for the simpler version
          of cvCalcEMD2() is either Manhattan distance (CV_DIST_L1) or
            Euclidean distance (CV_DIST_L2). Although we’re applying the EMD to histograms, the interface prefers that we talk to it in terms of signatures for the first two array parameters.
These signature arrays are always of type float and
          consist of rows containing the histogram bin count followed by its coordinates. For the
          one-dimensional histogram of Figure 7-4, the signatures
          (listed array rows) for the lefthand column of histograms (skipping the model) would be as
          follows: top, [1, 0; 0, 1]; middle, [0.5, 0; 0.5, 1]; bottom, [0, 0; 1, 1]. If we had a
          bin in a three-dimensional histogram with a bin count of 537 at (x, y,
            z) index (7, 43, 11), then the signature row for that bin would be [537, 7,
          43, 11]. This is how we perform the necessary step of converting histograms into signatures.
As an example, suppose we have two histograms, hist1 and hist2, that we want to convert
          to two signatures, sig1 and sig2. Just to make things more difficult, let’s suppose that these are
          two-dimensional histograms (as in the preceding code examples) of dimension h_bins by s_bins. Example 7-3 shows how to convert these two
          histograms into two signatures.
Example 7-3. Creating signatures from histograms for EMD
//Convert histograms into signatures for EMD matching
//assume we already have 2D histograms hist1 and hist2
//that are both of dimension h_bins by s_bins (though for EMD,
// histograms don't have to match in size).
//
CvMat* sig1,sig2;
int numrows = h_bins*s_bins;

//Create matrices to store the signature in
//
sig1 = cvCreateMat(numrows, 3, CV_32FC1); //1 count + 2 coords = 3
sig2 = cvCreateMat(numrows, 3, CV_32FC1); //sigs are of type float.

//Fill signatures for the two histograms
//
for( int h = 0; h < h_bins; h++ ) {
    for( int s = 0; s < s_bins; s++ ) {
        float bin_val = cvQueryHistValue_2D( hist1, h, s );
        cvSet2D(sig1,h*s_bins + s,0,cvScalar(bin_val)); //bin value
        cvSet2D(sig1,h*s_bins + s,1,cvScalar(h));       //Coord 1
        cvSet2D(sig1,h*s_bins + s,2,cvScalar(s));       //Coord 2
        bin_val = cvQueryHistValue_2D( hist2, h, s );
        cvSet2D(sig2,h*s_bins + s,0,cvScalar(bin_val)); //bin value
        cvSet2D(sig2,h*s_bins + s,1,cvScalar(h));       //Coord 1
        cvSet2D(sig2,h*s_bins + s,2,cvScalar(s));       //Coord 2
    }
}


Notice in this example [98] that the function cvSet2D() takes a
            CvScalar() array to set its value even though each
          entry in this particular matrix is a single float. We use the inline convenience macro
            cvScalar() to accomplish this task. Once we have our
            histograms converted into signatures, we are ready to get the distance
          measure. Choosing to measure by Euclidean distance, we now add the code of Example 7-4.
Example 7-4. Using EMD to measure the similarity between distributions
// Do EMD AND REPORT
//
float emd = cvCalcEMD2(sig1,sig2,CV_DIST_L2);
printf("%f; ",emd);



Back Projection



Back projection is a way of recording how well the pixels (for cvCalcBackProject()) or patches of pixels (for cvCalcBackProjectPatch()) fit the distribution of pixels in a
          histogram model. For example, if we have a histogram of flesh color then we can use back projection to find flesh color areas in an
          image. The function call for doing this kind of lookup is:
void cvCalcBackProject(
  IplImage**         image,
  CvArr*             back_project,
  const CvHistogram* hist
);
We have already seen the array of single channel images IplImage** image in the function cvCalcHist() (see the section “Basic Manipulations with Histograms”). The
          number of images in this array is exactly the same—and in the same order—as used to
          construct the histogram model hist. Example 7-1 showed how to convert an image into
          single-channel planes and then make an array of them. The image or array back_project is a single-channel 8-bit or floating-point image
          of the same size as the input images in the array. The values in back_project are set to the values in the associated bin in hist. If the histogram is normalized, then this value can be
          associated with a conditional probability value (i.e., the probability that a pixel in
            image is a member of the type characterized by the
          histogram in hist). [99] In Figure 7-6, we use a
            flesh-color histogram to derive a probability of flesh image.
[image: Back projection of histogram values onto each pixel based on its color: the HSV flesh-color histogram (upper left ) is used to convert the hand image (upper right) into the flesh-color probability image (lower right); the lower left panel is the histogram of the hand image]

Figure 7-6. Back projection of histogram values onto each pixel based on its color: the HSV
            flesh-color histogram (upper left ) is used to convert the hand image (upper right) into
            the flesh-color probability image (lower right); the lower left panel is the histogram
            of the hand image

Tip
When back_project is a byte image rather than a
            float image, you should either not normalize the histogram or else scale it up before
            use. The reason is that the highest possible value in a normalized histogram is 1, so
            anything less than that will be rounded down to 0 in the 8-bit image. You might also
            need to scale back_project in order to see the values
            with your eyes, depending on how high the values are in your histogram.

Patch-based back projection



We can use the basic back-projection method to model whether or not a particular
            pixel is likely to be a member of a particular object type (when that object type was
            modeled by a histogram). This is not exactly the same as computing the probability of
            the presence of a particular object. An alternative method would be to consider
            subregions of an image and the feature (e.g., color) histogram of that subregion and to
            ask whether the histogram of features for the subregion matches the model histogram; we
            could then associate with each such subregion a probability that the modeled object is,
            in fact, present in that subregion.
Thus, just as cvCalcBackProject() allows us to
            compute if a pixel might be part of a known object, cvCalcBackProjectPatch() allows us to compute if a patch might contain a
            known object. The cvCalcBackProjectPatch() function
            uses a sliding window over the entire input image, as shown in Figure 7-7. At each location in the input
            array of images, all the pixels in the patch are used to set one pixel in the
            destination image corresponding to the center of the patch. This is important because
            many properties of images such as textures cannot be determined at the level of
            individual pixels, but instead arise from groups of pixels.
For simplicity in these examples, we’ve been sampling color to create our histogram
            models. Thus in Figure 7-6 the whole
            hand “lights up” because pixels there match the flesh color histogram model well. Using patches, we can detect statistical
            properties that occur over local regions, such as the variations in local intensity that
            make up a texture on up to the configuration of properties that make up a whole object.
            Using local patches, there are two ways one might consider applying cvCalcBackProjectPatch(): as a region detector when the
            sampling window is smaller than the object and as an object detector when the sampling
            window is the size of the object. Figure 7-8 shows the use of cvCalcBackProjectPatch() as a region detector. We start with
            a histogram model of palm-flesh color and a small window is moved over the image such
            that each pixel in the back projection image records the probability of palm-flesh at
            that pixel given all the pixels in the surrounding window in the original image. In
              Figure 7-8 the hand is much larger
            than the scanning window and the palm region is preferentially detected. Figure 7-9 starts with a histogram model
            collected from blue mugs. In contrast to Figure 7-8 where regions were detected,
              Figure 7-9 shows how cvCalcBackProjectPatch() can be used as an object detector.
            When the window size is roughly the same size as the objects we are hoping to find in an
            image, the whole object “lights up” in the back projection image. Finding peaks in the
            back projection image then corresponds to finding the location of objects (in Figure 7-9, a mug) that we are looking
            for.
[image: Back projection: a sliding patch over the input image planes is used to set the corresponding pixel (at the center of the patch) in the destination image; for normalized histogram models, the resulting image can be interpreted as a probability map indicating the possible presence of the object (this figure is taken from the OpenCV reference manual)]

Figure 7-7. Back projection: a sliding patch over the input image planes is used to set the
              corresponding pixel (at the center of the patch) in the destination image; for
              normalized histogram models, the resulting image can be interpreted as a probability
              map indicating the possible presence of the object (this figure is taken from the
              OpenCV reference manual)

The function provided by OpenCV for back projection by patches is:
void cvCalcBackProjectPatch(
    IplImage**   images,
    CvArr*       dst,
    CvSize       patch_size,
    CvHistogram* hist,
    int          method,
    float        factor
);
Here we have the same array of single-channel images that was used to create the
            histogram using cvCalcHist(). However, the
            destination image dst is different: it can only be a
            single-channel, floating-point image with size (images[0][0].width – patch_size.x + 1, images[0][0].height – patch_size.y +
              1). The explanation for this size (see Figure 7-7) is that the center pixel in the
            patch is used to set the corresponding location in dst, so we lose half a patch dimension along the edges of the image on
            every side. The parameter patch_size is exactly what
            you would expect (the size of the patch) and may be set using the convenience macro
              cvSize(width, height). We are already familiar with
            the histogram parameter; as with cvCalcBackProject(),
            this is the model histogram to which individual windows will be compared. The parameter
            for comparison method takes as arguments exactly the same method types as used in
              cvCompareHist() (see the “Comparing Two Histograms” section).[100] The final parameter, factor, is the
            normalization level; this parameter is the same as discussed previously in connection
            with cvNormalizeHist(). You can set it to 1 or, as a
            visualization aid, to some larger number. Because of this flexibility, you are always
            free to normalize your hist model before using
              cvCalcBackProjectPatch().
[image: Back projection used for histogram object model of flesh tone where the window (small white box in upper right frame) is much smaller than the hand; here, the histogram model was of palm-color distribution and the peak locations tend to be at the center of the hand]

Figure 7-8. Back projection used for histogram object model of flesh tone where the window
              (small white box in upper right frame) is much smaller than the hand; here, the
              histogram model was of palm-color distribution and the peak locations tend to be at
              the center of the hand

A final question comes up: Once we have a probability of object image, how do we use
            that image to find the object that we are searching for? For search, we can use the
              cvMinMaxLoc() discussed in Chapter 3. The maximum location (assuming you smooth a bit
            first) is the most likely location of the object in an image. This leads us to a slight
            digression, template matching.
[image: Using cvCalcBackProjectPatch() to locate an object (here, a coffee cup) whose size approximately matches the patch size (white box in upper right panel): the sought object is modeled by a hue-saturation histogram (upper left), which can be compared with an HS histogram for the image as a whole (lower left); the result of cvCalcBackProjectPatch() (lower right) is that the object is easily picked out from the scene by virtue of its color]

Figure 7-9. Using cvCalcBackProjectPatch() to locate an object (here, a coffee cup) whose
              size approximately matches the patch size (white box in upper right panel): the sought
              object is modeled by a hue-saturation histogram (upper left), which can be compared
              with an HS histogram for the image as a whole (lower left); the result of
              cvCalcBackProjectPatch() (lower right) is that the object is easily picked out from
              the scene by virtue of its color



Template Matching



Template matching via cvMatchTemplate() is
          not based on histograms; rather, the function matches an actual image patch against an
          input image by “sliding” the patch over the input image using one of the matching methods
          described in this section.
If, as in Figure 7-10, we have an image
          patch containing a face, then we can slide that face over an input image looking for
          strong matches that would indicate another face is present. The function call is similar
          to that of cvCalcBackProjectPatch():

void cvMatchTemplate(
    const CvArr* image,
    const CvArr* templ,
    CvArr*       result,
    int          method
);
Instead of the array of input image planes that we saw in cvCalcBackProjectPatch(), here we have a single 8-bit or floating-point plane
          or color image as input. The matching model in templ is just a patch from a similar image containing the
            object for which you are searching. The output object image will be put in the
            result image, which is a single-channel byte or
          floating-point image of size (images->width – patch_size.x +
            1, images->height – patch_size.y + 1), as we saw previously in cvCalcBackProjectPatch(). The matching method is somewhat more complex, as we now explain. We use
            I to denote the input image, T the template, and R
          the result.
[image: cvMatchTemplate() sweeps a template image patch across another image looking for matches]

Figure 7-10. cvMatchTemplate() sweeps a template image patch across another image looking for
            matches

Square difference matching method (method = CV_TM_SQDIFF)



These methods match the squared difference, so a perfect match will be 0 and bad matches will be
            large:
[image: image with no caption]


Correlation matching methods (method = CV_TM_CCORR)



These methods multiplicatively match the template against the image, so a perfect match will be large and bad matches
            will be small or 0.
[image: image with no caption]


Correlation coefficient matching methods (method = CV_TM_CCOEFF)



These methods match a template relative to its mean against the image relative to its mean, so a
            perfect match will be 1 and a perfect mismatch will be –1; a value of 0 simply means
            that there is no correlation (random alignments).
[image: image with no caption]
[image: image with no caption]
[image: image with no caption]


Normalized methods



For each of the three methods just described, there are also normalized versions
            first developed by Galton [Galton] as described by Rodgers [Rodgers88]. The normalized methods
            are useful because, as mentioned previously, they can help reduce the effects of
            lighting differences between the template and the image. In each case, the normalization
            coefficient is the same:
[image: image with no caption]

The values for method that give the normalized
            computations are listed in Table 7-2.
Table 7-2. Values of the method parameter for normalized template matching
	
                    Value of method parameter

                  	
                    Computed result

                  
	
                    
                      CV_TM_SQDIFF_NORMED
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As usual, we obtain more accurate matches (at the cost of more computations) as we
            move from simpler measures (square difference) to the more sophisticated ones
            (correlation coefficient). It’s best to do some test trials of all these settings and
            then choose the one that best trades off accuracy for speed in your
              application.
Tip
Again, be careful when interpreting your results. The square-difference methods
              show best matches with a minimum, whereas the correlation and correlation-coefficient methods show best matches at
              maximum points.

As in the case of cvCalcBackProjectPatch(), once
            we use cvMatchTemplate() to obtain a matching
              result image we can then use cvMinMaxLoc() to find the location of the best match. Again,
            we want to ensure there’s an area of good match around that point in order to avoid
            random template alignments that just happen to work well. A good match should have good
            matches nearby, because slight misalignments of the template shouldn’t vary the results
            too much for real matches. Looking for the best matching “hill” can be done by slightly
            smoothing the result image before seeking the maximum
            (for correlation or correlation-coefficient) or minimum (for square-difference matching
            methods). The morphological operators can also be helpful in this context.
Example 7-5 should give you a good idea of how the
            different template matching techniques behave. This program first reads in a template
            and image to be matched and then performs the matching via the methods we’ve discussed
            here.
Example 7-5. Template matching
// Template matching.
// Usage: matchTemplate image template
//
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <stdio.h>
int main( int argc, char** argv ) {
    IplImage *src, *templ,*ftmp[6]; //ftmp will hold results
    int i;
    if( argc == 3){
        //Read in the source image to be searched:
        if((src=cvLoadImage(argv[1], 1))== 0) {
             printf("Error on reading src image %s\n",argv[i]);
             return(-1);
        }
        //Read in the template to be used for matching:
        if((templ=cvLoadImage(argv[2], 1))== 0) {
             printf("Error on reading template %s\n",argv[2]);
                 return(-1);
        }
        //ALLOCATE OUTPUT IMAGES:
        int iwidth = src->width - templ->width + 1;
        int iheight = src->height - templ->height + 1;
        for(i=0; i<6; ++i){
            ftmp[i] = cvCreateImage(
                              cvSize(iwidth,iheight),32,1);
        }
        //DO THE MATCHING OF THE TEMPLATE WITH THE IMAGE:
        for(i=0; i<6; ++i){
            cvMatch Template( src, templ, ftmp[i], i);
            cvNormalize(ftmp[i],ftmp[i],1,0,CV_MINMAX)[101];
        }
        //DISPLAY
        cvNamedWindow( "Template", 0 );
        cvShowImage(   "Template", templ );
        cvNamedWindow( "Image", 0 );
        cvShowImage(   "Image", src );
        cvNamedWindow( "SQDIFF", 0 );
        cvShowImage(   "SQDIFF", ftmp[0] );
        cvNamedWindow( "SQDIFF_NORMED", 0 );
        cvShowImage(   "SQDIFF_NORMED", ftmp[1] );
        cvNamedWindow( "CCORR", 0 );
        cvShowImage(   "CCORR", ftmp[2] );
        cvNamedWindow( "CCORR_NORMED", 0 );
        cvShowImage(   "CCORR_NORMED", ftmp[3] );
        cvNamedWindow( "CCOEFF", 0 );
        cvShowImage(   "CCOEFF", ftmp[4] );
        cvNamedWindow( "CCOEFF_NORMED", 0 );
        cvShowImage(   "CCOEFF_NORMED", ftmp[5] );
        //LET USER VIEW RESULTS:
        cvWaitKey(0);
   }
   else { printf("Call should be: "
              "matchTemplate image template \n");}
}


Note the use of cvNormalize() in this code, which
            allows us to display the results in a consistent way. Recall that some of the matching
            methods can return negative-valued results. We use the CV_MINMAX flag when normalizing; this tells the function to shift and scale
            the floating-point images so that all returned values are between 0 and 1. Figure 7-11 shows the results of sweeping the
            face template over the source image (shown in Figure 7-10) using each of cvMatchTemplate()’s available matching methods. In outdoor
            imagery especially, it’s almost always better to use one of the normalized methods.
            Among those, correlation coefficient gives the most clearly delineated match—but, as
            expected, at a greater computational cost. For a specific application, such as automatic
            parts inspection or tracking features in a video, you should try all the methods
            and find the speed and accuracy trade-off that best serves your needs.
[image: Match results of six matching methods for the template search depicted in : the best match for square difference is 0 and for the other methods it’s the maximum point; thus, matches are indicated by dark areas in the left column and by bright spots in the other two columns]

Figure 7-11. Match results of six matching methods for the template search depicted in Figure 7-10: the best match for square
              difference is 0 and for the other methods it’s the maximum point; thus, matches are
              indicated by dark areas in the left column and by bright spots in the other two
              columns




Exercises



	Generate 1,000 random numbers ri between
            0 and 1. Decide on a bin size and then take a histogram of
                1/ri.
	Are there similar numbers of entries (i.e., within a factor of ±10) in each
                histogram bin?

	Propose a way of dealing with distributions that are highly nonlinear so that
                each bin has, within a factor of 10, the same amount of data.




	Take three images of a hand in each of the three lighting conditions discussed in
            the text. Use cvCalcHist() to make an RGB histogram
            of the flesh color of one of the hands photographed indoors.
	Try using just a few large bins (e.g., 2 per dimension), a medium number of bins
                (16 per dimension) and many bins (256 per dimension). Then run a matching routine
                (using all histogram matching methods) against the other indoor lighting images of hands. Describe
                what you find.

	Now add 8 and then 32 bins per dimension and try matching across lighting
                conditions (train on indoor, test on outdoor). Describe the results.




	As in exercise 2, gather RGB histograms of hand flesh color. Take one of the indoor
            histogram samples as your model and measure EMD (earth mover’s distance) against the
            second indoor histogram and against the first outdoor shaded and first outdoor sunlit
            histograms. Use these measurements to set a distance threshold.
	Using this EMD threshold, see how well you detect the flesh histogram of the
                third indoor histogram, the second outdoor shaded, and the second outdoor sunlit
                histograms. Report your results.

	Take histograms of randomly chosen nonflesh background patches to see how well
                your EMD discriminates. Can it reject the background while matching the true flesh
                histograms?




	Using your collection of hand images, design a histogram that can determine under
            which of the three lighting conditions a given image was captured. Toward this end, you
            should create features—perhaps sampling from parts of the whole scene, sampling
            brightness values, and/or sampling relative brightness (e.g., from top to bottom patches
            in the frame) or gradients from center to edges.

	Assemble three histograms of flesh models from each of our three lighting
            conditions.
	Use the first histograms from indoor, outdoor shaded, and outdoor sunlit as your
                models. Test each one of these against the second images in each respective class to
                see how well the flesh-matching score works. Report matches.

	Use the “scene detector” you devised in part a, to create a “switching
                histogram” model. First use the scene detector to determine which histogram model to
                use: indoor, outdoor shaded, or outdoor sunlit. Then use the corresponding flesh
                model to accept or reject the second flesh patch under all three conditions. How
                well does this switching model work?




	Create a flesh-region interest (or “attention”) detector.
	Just indoors for now, use several samples of hand and face flesh to create an
                RGB histogram.

	Use cvCalcBackProject() to find areas of
                flesh.

	Use cvErode() from Chapter 5 to clean up noise and then cvFloodFill() (from the same chapter) to find large areas of flesh in
                an image. These are your “attention” regions.




	Try some hand-gesture recognition. Photograph a hand about 2 feet from the camera,
            create some (nonmoving) hand gestures: thumb up, thumb left, thumb right.
	Using your attention detector from exercise 6, take image gradients in the area
                of detected flesh around the hand and create a histogram model for each of the three
                gestures. Also create a histogram of the face (if there’s a face in the image) so
                that you’ll have a (nongesture) model of that large flesh region. You might also
                take histograms of some similar but nongesture hand positions, just so they won’t be
                confused with the actual gestures.

	Test for recognition using a webcam: use the flesh interest regions to find
                “potential hands”; take gradients in each flesh region; use histogram matching above
                a threshold to detect the gesture. If two models are above threshold, take the
                better match as the winner.

	Move your hand 1–2 feet further back and see if the gradient histogram can still
                recognize the gestures. Report.




	Repeat exercise 7 but with EMD for the matching. What happens to EMD as you move
            your hand back?

	With the same images as before but with captured image patches instead of histograms
            of the flesh around the hand, use cvMatchTemplate()
            instead of histogram matching. What happens to template matching when you move your hand
            backwards so that its size is smaller in the image?






[90] This is also true of histograms representing information that falls naturally into
          discrete groups when the histogram uses fewer bins than the natural description would
          suggest or require. An example of this is representing 8-bit intensity values in a 10-bin
          histogram: each bin would then combine the points associated with approximately 25
          different intensities, (erroneously) treating them all as equivalent.

[91] For you old timers, the value CV_HIST_TREE is
            still supported, but it is identical to CV_HIST_SPARSE.

[92] These “pairs” are just C-arrays with only two entries.

[93] To clarify: in the case of a uniform histogram, if the lower and upper ranges are
            set to 0 and 10, respectively, and if there are two bins, then the bins will be assigned
            to the respective intervals [0, 5) and [5, 10]. In the case of a nonuniform histogram,
            if the size dimension i is 4 and if the
            corresponding ranges are set to (0, 2, 4, 9, 10), then the resulting bins will be
            assigned to the following (nonuniform) intervals: [0, 2), [2,4), [4, 9), and [9,
            10].

[94] Have no fear that this argument is type int,
            because the only meaningful distinction is between zero and nonzero.

[95] Actually, you could also use CvMat* matrix
            pointers here.

[96] The chi-square test was invented by Karl Pearson [Pearson] who founded the field of mathematical
                statistics.

[97] If you want all of the gory details, we recommend that you read the 1989 paper by
              S. Peleg, M. Werman, and H. Rom, “A Unified Approach to the Change of Resolution: Space
              and Gray-Level,” and then take a look at the relevant entries in the OpenCV user
              manual that are included in the release …\opencv\docs\ref\opencvref_cv.htm.

[98] Using cvSetReal2D() or cvmSet() would have been more compact and efficient here, but the example
              is clearer this way and the extra overhead is small compared to the actual distance
              calculation in EMD.

[99] Specifically, in the case of our flesh-tone H-S histogram, if
                C is the color of the pixel and F is the
              probability that a pixel is flesh, then this probability map gives us
                p(C|F), the probability of drawing that color if the pixel
              actually is flesh. This is not quite the same as p(F|C), the
              probability that the pixel is flesh given its color. However, these two probabilities
              are related by Bayes’ theorem [Bayes1763] and so, if we know the overall probability
              of encountering a flesh-colored object in a scene as well as the total probability of
              encountering of the range of flesh colors, then we can compute
                p(F|C) from p(C|F). Specifically, Bayes’
              theorem establishes the following relation: [image: ]

[100] You must be careful when choosing a method, because some indicate best match
                with a return value of 1 and others with a value of 0.

[101] You can often get more pronounced match results by raising the matches to a power (e.g., cvPow(ftmp[i], ftmp[i], 5); ). In the case of a result which is normalized between 0.0 and 1.0, then you can immediately see that a good match of 0.99 taken to the fifth power is not much reduced (0.995=0.95) while a poorer score of 0.50 is reduced substantially (0.505=0.03).


Chapter 8. Contours



Although algorithms like the Canny edge detector can be used to find the edge pixels that
      separate different segments in an image, they do not tell you anything about those edges as
      entities in themselves. The next step is to be able to assemble those edge pixels into
      contours. By now you have probably come to expect that there is a convenient function in
      OpenCV that will do exactly this for you, and indeed there is: cvFindContours(). We will start out this chapter with some basics that we will
      need in order to use this function. Specifically, we will introduce memory storages, which are how OpenCV functions gain access to memory when they need to
      construct new objects dynamically; then we will learn some basics about sequences, which are
      the objects used to represent contours generally. With those concepts in hand, we will get
      into contour finding in some detail. Thereafter we will move on to the many things we can do
      with contours after they’ve been computed.
Memory Storage



OpenCV uses an entity called a memory storage as its method of
        handling memory allocation for dynamic objects. Memory storages are linked lists of memory blocks that allow for fast allocation and de-allocation of continuous sets of blocks. OpenCV functions that require the
        ability to allocate memory as part of their normal functionality will require access to a
        memory storage from which to get the memory they require (typically this includes any
        function whose output is of variable size).
Memory storages are handled with the following four routines:
CvMemStorage* cvCreateMemStorage(
  int            block_size = 0
);
void cvReleaseMemStorage(
  CvMemStorage** storage
);
void cvClearMemStorage(
  CvMemStorage*  storage
);
void* cvMemStorageAlloc(
  CvMemStorage*  storage,
  size_t         size
);
To create a memory storage, the function cvCreateMemStorage() is
        used. This function takes as an argument a block size, which gives the size of memory blocks
        inside the store. If this argument is set to 0 then the default block size (64kB) will be
        used. The function returns a pointer to a new memory store.
The cvReleaseMemStorage() function takes a pointer to
        a valid memory storage and then de-allocates the storage. This is essentially equivalent to
        the OpenCV de-allocations of images, matrices, and other structures.
You can empty a memory storage by calling cvClearMemStorage(), which also takes a pointer to a valid storage. You must be
        aware of an important feature of this function: other than cvReleaseMemStorage(), it is the
        only way to reuse the memory allocated to a memory storage. This might not seem like much,
        but there will be other routines that delete objects inside of memory storages (we will
        introduce one of these momentarily) but do not return the memory they
        were using. In short, only cvClearMemStorage() (and, of
        course, cvReleaseMemStorage()) recycle the storage
          memory.[102] Deletion of any dynamic structure (CvSeq,
          CvSet, etc.) never returns any memory back to storage (although the structures
        are able to reuse some memory once taken from the storage for their own data).
You can also allocate your own continuous blocks from a memory storage—in a manner
        analogous to the way malloc() allocates memory from the
        heap—with the function cvMemStorageAlloc(). In this case
        you simply provide a pointer to the storage and the number of bytes you need. The return is
        a pointer of type void* (again, similar to malloc()).

Sequences



One kind of object that can be stored inside a memory storage is a
          sequence. Sequences are themselves linked lists of other structures.
        OpenCV can make sequences out of many different kinds of objects. In this sense you can
        think of the sequence as something similar to the generic container classes (or container
        class templates) that exist in various other programming languages. The sequence construct
        in OpenCV is actually a deque, so it is very fast for random access and
        for additions and deletions from either end but a little slow for adding and deleting
        objects in the middle.
The sequence structure itself (see Example 8-1) has some important elements that you
        should be aware of. The first, and one you will use often, is total. This is the total number of points or objects in the sequence. The next
        four important elements are pointers to other sequences: h_prev,
          h_next, v_prev, and v_next. These four
        pointers are part of what are called CV_TREE_NODE_FIELDS;
        they are used not to indicate elements inside of the sequence but rather to connect
        different sequences to one another. Other objects in the OpenCV universe also contain these
        tree node fields. Any such objects can be assembled, by means of these pointers, into more
        complicated superstructures such as lists, trees, or other graphs. The variables h_prev and h_next can be used
        alone to create a simple linked list. The other two, v_prev and v_next, can be used to create
        more complex topologies that relate nodes to one another. It is by means of these four
        pointers that cvFindContours() will be able to represent
        all of the contours it finds in the form of rich structures such as contour trees.
Example 8-1. Internal organization of CvSeq sequence structure
typedef struct CvSeq {
  int       flags;              // miscellaneous flags
  int       header_size;        // size of sequence header
  CvSeq*    h_prev;             // previous sequence
  CvSeq*    h_next;             // next sequence
  CvSeq*    v_prev;             // 2nd previous sequence
  CvSeq*    v_next              // 2nd next sequence
  int       total;              // total number of elements
  int       elem_size;          // size of sequence element in byte
  char*     block_max;          // maximal bound of the last block
  char*     ptr;                // current write pointer
  int       delta_elems;        // how many elements allocated
                                // when the sequence grows
  CvMem Storage* storage;        // where the sequence is stored
  CvSeqBlock* free_blocks;      // free blocks list
  CvSeqBlock* first;            // pointer to the first sequence block
}


Creating a Sequence



As we have alluded to already, sequences can be returned from various OpenCV functions. In addition to this,
          you can, of course, create sequences yourself. Like many objects in OpenCV, there is an
          allocator function that will create a sequence for you and return a pointer to the
          resulting data structure. This function is called cvCreateSeq().
CvSeq* cvCreateSeq(
  int           seq_flags,
  int           header_size,
  int           elem_size,
  CvMemStorage* storage
);
This function requires some additional flags, which will further specify exactly what
          sort of sequence we are creating. In addition it needs to be told the size of the sequence
          header itself (which will always be sizeof(CvSeq))[103] and the size of the objects that the sequence will contain. Finally, a memory
          storage is needed from which the sequence can allocate memory when new elements are added
          to the sequence.
These flags are of three different categories and
          can be combined using the bitwise OR operator. The first category determines the type of
            objects[104] from which the sequence is to be constructed. Many of these types might look a
          bit alien to you, and some are primarily for internal use by other OpenCV functions. Also,
          some of the flags are meaningful only for certain kinds of sequences (e.g., CV_SEQ_FLAG_CLOSED is
          meaningful only for sequences that in some way represent a polygon).
	
              CV_SEQ_ELTYPE_POINT
            
	(x,y)

	
              CV_SEQ_ELTYPE_CODE
            
	Freeman code: 0..7

	
              CV_SEQ_ELTYPE_POINT
            
	Pointer to a point: &(x,y)

	
              CV_SEQ_ELTYPE_INDEX
            
	Integer index of a point: #(x,y)

	
              CV_SEQ_ELTYPE_GRAPH_EDGE
            
	&next_o,&next_d,&vtx_o,&vtx_d

	
              CV_SEQ_ELTYPE_GRAPH_VERTEX
            
	first_edge, &(x,y)

	
              CV_SEQ_ELTYPE_TRIAN_ATR
            
	Vertex of the binary tree

	
              CV_SEQ_ELTYPE_CONNECTED_COMP
            
	Connected component

	
              CV_SEQ_ELTYPE_POINT3D
            
	(x,y,z)



The second category indicates the nature of the sequence, which can be any of the
          following.
	
              CV_SEQ_KIND_SET
            
	A set of objects

	
              CV_SEQ_KIND_CURVE
            
	A curve defined by the objects

	
              CV_SEQ_KIND_BIN_TREE
            
	A binary tree of the objects

	
              CV_SEQ_KIND_GRAPH
            
	A graph with the objects as nodes



The third category consists of additional feature flags that indicate some other
          property of the sequence.
	
              CV_SEQ_FLAG_CLOSED
            
	Sequence is closed (polygons)

	
              CV_SEQ_FLAG_SIMPLE
            
	Sequence is simple (polygons)

	
              CV_SEQ_FLAG_CONVEX
            
	Sequence is convex (polygons)

	
              CV_SEQ_FLAG_HOLE
            
	Sequence is a hole (polygons)




Deleting a Sequence



void cvClearSeq(
  CvSeq* seq
);
When you want to delete a sequence, you can use cvClearSeq(), a routine that clears all elements of the sequence. However,
          this function does not return allocated blocks in the memory store either to the store or
          to the system; the memory allocated by the sequence can be reused only by the same
          sequence. If you want to retrieve that memory for some other purpose, you must clear the
          memory store via cvClearMemStorage().

Direct Access to Sequence Elements



Often you will find yourself wanting to directly access a particular member of a
          sequence. Though there are several ways to do this, the most direct way—and the correct
          way to access a randomly chosen element (as opposed to one that you happen to know is at
          the ends)—is to use cvGetSeqElem().
char* cvGetSeqElem( seq, index )
More often than not, you will have to cast the return pointer to whatever type you
          know the sequence to be. Here is an example usage of cvGetSeqElem() to print the elements in a sequence of points (such as might
          be returned by cvFindContours(), which we will get to
          shortly):
for( int i=0; i<seq->total; ++i ) {
  CvPoint* p = (CvPoint*)cvGetSeqElem ( seq, i );
  printf("(%d,%d)\n", p->x, p->y );
}
You can also check to see where a particular element is located in a sequence. The
          function cvSeqElemIdx() does this for you:
int cvSeqElemIdx(
  const CvSeq* seq,
  const void*  element,
  CvSeqBlock** block = NULL
);
This check takes a bit of time, so it is not a particularly efficient thing to do (the
          time for the search is proportional to the size of the sequence). Note that cvSeqElemIdx() takes as arguments a pointer to your sequence
          and a pointer to the element for which you are searching.[105] Optionally, you may also supply a pointer to a sequence memory block pointer.
          If this is non-NULL, then the location of the block in
          which the sequence element was found will be returned.

Slices, Copying, and Moving Data



Sequences are copied with cvCloneSeq(),
          which does a deep copy of a sequence and creates another entirely separate sequence
            structure.
CvSeq* cvCloneSeq(
  const CvSeq*  seq,
  CvMem Storage* storage = NULL
)
This routine is actually just a wrapper for the somewhat more general routine cvSeqSlice(). This latter routine can pull out just a
          subsection of an array; it can also do either a deep copy or just build a new header to
          create an alternate “view” on the same data elements.
CvSeq* cvSeqSlice(
  const CvSeq*  seq,
  CvSlice       slice,
  CvMemStorage* storage   = NULL,
  int           copy_data = 0
);
You will notice that the argument slice to cvSeqSlice() is of type CvSlice. A slice can be defined using either the convenience function
            cvSlice(a,b) or the macro CV_WHOLE_SEQ. In the former case, only those elements starting at a and continuing through b
          are included in the copy (b may also be set to CV_WHOLE_SEQ_END_INDEX to indicate the end of the array). The
          argument copy_data is how we decide if we want a “deep”
          copy (i.e., if we want the data elements themselves to be copied and for those new copies
          to be the elements of the new sequence).
Slices can be used to specify elements to remove from a sequence using cvSeqRemoveSlice() or to insert into a sequence using cvSeqInsertSlice().
void cvSeqRemoveSlice(
  CvSeq*        seq,
  CvSlice       slice
);
void  cvSeqInsertSlice(
  CvSeq *       seq,
  int           before_index,
  const         CvArr* from_arr
);
With the introduction of a comparison function, it is also possible to sort or search
          a (sorted) sequence. The comparison function must have the following prototype:
typedef int (*CvCmpFunc)(const void* a, const void* b, void* userdata );
Here a and b are
          pointers to elements of the type being sorted, and userdata is just a pointer to any additional data structure that the caller
          doing the sorting or searching can provide at the time of execution. The comparison
          function should return -1 if a is greater than b, +1 if a is less than b, and
            0 if a and
            b are equal.
With such a comparison function defined, a sequence can be sorted by cvSeqSort(). The sequence can also be searched for an element
          (or for a pointer to an element) elem using cvSeqSearch(). This searching is done in order
            O(log n) time if the sequence is already
          sorted (is_sorted=1). If the sequence is unsorted, then
          the comparison function is not needed and the search will take O(n)
          time. On completion, the search will set *elem_idx to
          the index of the found element (if it was found at all) and return a pointer to that
          element. If the element was not found, then NULL is
            returned.
void cvSeqSort(
  CvSeq*        seq,
  CvCmpFunc     func,
  void*         userdata = NULL
);
char* cvSeqSearch(
  CvSeq*        seq,
  const void*   elem,
  CvCmpFunc     func,
  int           is_sorted,
  int*          elem_idx,
  void*         userdata = NULL
);
A sequence can be inverted (reversed) in a single call with the function cvSeqInvert(). This function does not change the data in any
          way, but it reorganizes the sequence so that the elements appear in the opposite
            order.
void cvSeqInvert(
  CvSeq*        seq
);
OpenCV also supports a method of partitioning a sequence[106] based on a user-supplied criterion via the function cvSeqPartition(). This partitioning uses the same sort of comparison function
          as described previously but with the expectation that the function will return a nonzero
          value if the two arguments are equal and zero if they are not (i.e., the opposite
          convention as is used for searching and sorting).
int cvSeqPartition(
  const CvSeq*  seq,
  CvMem Storage* storage,
  CvSeq**       labels,
  CvCmpFunc     is_equal,
  void*         userdata
);
The partitioning requires a memory storage so that it can allocate memory to
          express the output of the partitioning. The argument labels should be a pointer to a sequence pointer. When cvSeqPartition() returns, the result will be that labels will now indicate a sequence of integers that have a
          one-to-one correspondence with the elements of the partitioned sequence seq. The values of these integers will be, starting at 0 and
          incrementing from there, the “names” of the partitions that the points in seq were to be assigned. The pointer userdata is the usual pointer that is just transparently passed to the
          comparison function.
In Figure 8-1, a group of 100 points
          are randomly distributed on 100-by-100 canvas. Then cvSeqPartition() is called on these points, where the comparison function is
          based on Euclidean distance. The comparison function is set to return true (1) if the
          distance is less than or equal to 5 and to return false (0) otherwise. The resulting
          clusters are labeled with their integer ordinal from labels.

Using a Sequence As a Stack



As stated earlier, a sequence in OpenCV is really a linked list. This means, among
          other things, that it can be accessed efficiently from either end. As a result, it is
          natural to use a sequence of this kind as a stack when circumstances call for one. The following six functions, when used
          in conjunction with the CvSeq structure, implement the behavior required to use the
          sequence as a stack (more properly, a deque, because these functions allow access to both
          ends of the list).
char*  cvSeqPush(
  CvSeq* seq,
  void*  element = NULL
);
char*  cvSeqPushFront(
  CvSeq* seq,
  void*  element = NULL
);
void   cvSeqPop(
  CvSeq* seq,
  void*  element = NULL
);
void   cvSeqPopFront(
  CvSeq* seq,
  void*  element = NULL
);
void cvSeqPushMulti(
  CvSeq* seq,
  void*  elements,
  int    count,
  int    in_front = 0
);
void cvSeqPopMulti(
  CvSeq* seq,
  void*  elements,
  int    count,
  int    in_front = 0
);
[image: A sequence of 100 points on a 100-by-100 canvas, partitioned by distance D ≤ 5]

Figure 8-1. A sequence of 100 points on a 100-by-100 canvas, partitioned by distance D ≤
            5

The primary modes of accessing the sequence are cvSeqPush(),
            cvSeqPushFront(), cvSeqPop(), and cvSeqPopFront(). Because these routines act on the ends of the sequence, all
          of them operate in O(1) time (i.e., independent of the size of the
          sequence). The Push functions return a pointer to the
          element pushed into the sequence, and the Pop functions
          will optionally save the popped element if a pointer is provided to a location where the
          object can be copied. The cvSeqPushMulti() and cvSeqPopMulti() variants will push or pop several items at a
          time. Both take a separate argument to distinguish the front from the back; you can set
            in_front to either CV_FRONT
            (1) or to CV_BACK (0) and so determine from
          where you’ll be pushing or popping.

Inserting and Removing Elements



char* cvSeqInsert(
  CvSeq* seq,
  int    before_index,
  void*  element  = NULL
);
void cvSeqRemove(
  CvSeq* seq,
  int    index
);
Objects can be inserted into and removed from the middle of a sequence by using cvSeqInsert() and cvSeqRemove(),
          respectively, but remember that these are not very fast. On average, they take time
          proportional to the total size of the sequence.

Sequence Block Size



One function whose purpose may not be obvious at first glance is cvSetSeqBlockSize(). This routine takes as arguments a
          sequence and a new block size, which is the size of blocks that will be allocated out of
          the memory store when new elements are needed in the sequence. By making this size big you
          are less likely to fragment your sequence across disconnected memory blocks; by making it
          small you are less likely to waste memory. The default value is 1,000 bytes, but this can
          be changed at any time.[107]
void   cvSetSeqBlockSize(
  CvSeq* seq,
  Int    delta_elems
);

Sequence Readers and Sequence Writers



When you are working with sequences and you want the highest performance, there are some special methods
          for accessing and modifying them that (although they require a bit of special care to use)
          will let you do what you want to do with a minimum of overhead. These functions make use
          of special structures to keep track of the state of what they are doing; this allows many
          actions to be done in sequence and the necessary final bookkeeping to be done only after
          the last action.
For writing, this control structure is called CvSeqWriter. The writer is initialized with the function cvStartWriteSeq() and is “closed” with cvEndWriteSeq(). While the sequence writing is “open”, new
          elements can be added to the sequence with the macro CV_WRITE_SEQ(). Notice that the writing is done with a macro and not a
          function call, which saves even the overhead of entering and exiting that code. Using the
          writer is faster than using cvSeqPush(); however, not
          all the sequence headers are updated immediately by this macro, so the added element will
          be essentially invisible until you are done writing. It will become visible when the
          structure is completely updated by cvEndWriteSeq().
If necessary, the structure can be brought up-to-date (without actually closing the
          writer) by calling cvFlushSeqWriter().
void    cvStartWriteSeq(
  int           seq_flags,
  int           header_size,
  int           elem_size,
  CvMem Storage* storage,
  CvSeqWriter*  writer
);
void    cvStartAppendToSeq(
  CvSeq*        seq,
  CvSeqWriter*  writer
);
CvSeq*  cvEndWriteSeq(
  CvSeqWriter*  writer
);
void     cvFlushSeqWriter(
  CvSeqWriter*  writer
);

CV_WRITE_SEQ_ELEM( elem, writer )
CV_WRITE_SEQ_ELEM_VAR( elem_ptr, writer )
The arguments to these functions are largely self-explanatory. The seq_flags, header_size, and elem_size arguments to cvStartWriteSeq()
          are identical to the corresponding arguments to cvCreateSeq(). The function cvStartAppendToSeq() initializes the writer to begin adding new elements to
          the end of the existing sequence seq. The macro
            CV_WRITE_SEQ_ELEM() requires the element to be
          written (e.g., a CvPoint) and a pointer to the writer;
          a new element is added to the sequence and the element elem is copied into that new element.
Putting these all together into a simple example, we will create a writer and append a
          hundred random points drawn from a 320-by-240 rectangle to the new sequence.
CvSeqWriter writer;
cvStartWriteSeq( CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage, &writer );
for( i = 0; i < 100; i++ )
{
    CvPoint pt; pt.x = rand()%320; pt.y = rand()%240;
    CV_WRITE_SEQ_ELEM( pt, writer );
}
CvSeq* seq = cvEndWriteSeq( &writer );
For reading, there is a similar set of functions and a few more associated
          macros.
void  cvStartReadSeq(
  const CvSeq* seq,
  CvSeqReader* reader,
  int          reverse = 0
);
int   cvGetSeqReaderPos(
  CvSeqReader* reader
);
void  cvSetSeqReaderPos(
  CvSeqReader* reader,
  int          index,
  int          is_relative = 0
);

CV_NEXT_SEQ_ELEM( elem_size, reader )
CV_PREV_SEQ_ELEM( elem_size, reader )
CV_READ_SEQ_ELEM( elem, reader )
CV_REV_READ_SEQ_ELEM( elem, reader )
The structure CvSeqReader, which is analogous
            to CvSeqWriter, is initialized with the
          function cvStartReadSeq(). The argument reverse allows for the sequence to be read either in “normal”
          order (reverse=0) or backwards (reverse=1). The function cvGetSeqReaderPos() returns an integer indicating the current location of the
          reader in the sequence. Finally, cvSetSeqReaderPos()
          allows the reader to “seek” to an arbitrary location in the sequence. If the argument
            is_relative is nonzero, then the index will be
          interpreted as a relative offset to the current reader position. In this case, the index
          may be positive or negative.
The two macros CV_NEXT_SEQ_ELEM() and CV_PREV_SEQ_ELEM() simply move the reader forward or backward
          one step in the sequence. They do no error checking and thus cannot help you if you
          unintentionally step off the end of the sequence. The macros CV_READ_SEQ_ELEM() and CV_REV_READ_SEQ_ELEM() are used to read from the sequence. They will both
          copy the “current” element at which the reader is pointed onto the variable elem and then step the reader one step (forward or backward,
          respectively). These latter two macros expect just the name of the variable to be copied
          to; the address of that variable will be computed inside of the macro.

Sequences and Arrays



You may often find yourself wanting to convert a sequence, usually full of points,
          into an array.
void*  cvCvtSeqToArray(
  const CvSeq* seq,
  void*        elements,
  CvSlice      slice   = CV_WHOLE_SEQ
);
CvSeq* cvMakeSeqHeaderForArray(
  int          seq_type,
  int          header_size,
  int          elem_size,
  void*        elements,
  int          total,
  CvSeq*       seq,
  CvSeqBlock*  block
);
The function cvCvtSeqToArray() copies the content
          of the sequence into a continuous memory array. This means that if you have a sequence of
          20 elements of type CvPoint then the function will
          require a pointer, elements, to enough space for 40
          integers. The third (optional) argument is slice, which
          can be either an object of type CvSlice or the macro
            CV_WHOLE_SEQ (the latter is the default value). If
            CV_WHOLE_SEQ is selected, then the entire sequence is
            copied.The return value of cvCvtSeqToArray() is a void* pointer which is equal to the elements pointer
          provided when the function was called.
The opposite functionality to cvCvtSeqToArray() is
          implemented by cvMakeSeqHeaderForArray(). In this case,
          you can build a sequence from an existing array of data. The function’s first few
          arguments are identical to those of cvCreateSeq(). In
          addition to requiring the data (elements) to copy in
          and the number (total) of data items, you must provide
          a sequence header (seq) and a sequence memory block
          structure (block). Sequences created in this way are not exactly the same as sequences created by
          other methods. In particular, you will not be able to subsequently alter the data in the
          created sequence.


Contour Finding



We are finally ready to start talking about contours. To start
        with, we should define exactly what a contour is. A contour is a list of points that
        represent, in one way or another, a curve in an image. This representation can be different
        depending on the circumstance at hand. There are many ways to represent a curve. Contours
        are represented in OpenCV by sequences in which every entry in the sequence encodes
        information about the location of the next point on the curve. We will dig into the details
        of such sequences in a moment, but for now just keep in mind that a contour is represented
        in OpenCV by a CvSeq sequence that is, one way or
        another, a sequence of points.
The function cvFindContours() computes contours from
        binary images. It can take images created by cvCanny(),
        which have edge pixels in them, or images created by functions like cvThreshold() or cvAdaptiveThreshold(), in
        which the edges are implicit as boundaries between positive and negative regions.[108]
Before getting to the function prototype, it is worth taking a moment to understand
        exactly what a contour is. Along the way, we will encounter the concept of a contour tree,
        which is important for understanding how cvFindContours()
        (retrieval methods derive from Suzuki [Suzuki85]) will communicate its results to us.
Take a moment to look at Figure 8-2,
        which depicts the functionality of cvFindContours(). The
        upper part of the figure shows a test image containing a number of white regions (labeled A
        through E) on a dark background.[109] The lower portion of the figure depicts the same image along with the contours
        that will be located by cvFindContours(). Those contours
        are labeled cX or hX, where “c” stands for “contour”, “h” stands for “hole”, and “X” is some
        number. Some of those contours are dashed lines; they represent exterior
          boundaries of the white regions (i.e., nonzero regions). OpenCV and cvFindContours() distinguish between these exterior boundaries
        and the dotted lines, which you may think of either as interior
          boundaries or as the exterior boundaries of holes (i.e.,
        zero regions).
[image: A test image (above) passed to cvFindContours() (below): the found contours may be either of two types, exterior “contours” (dashed lines) or “holes” (dotted lines)]

Figure 8-2. A test image (above) passed to cvFindContours() (below): the found contours may be
          either of two types, exterior “contours” (dashed lines) or “holes” (dotted lines)

The concept of containment here is important in many applications. For this reason, OpenCV can
        be asked to assemble the found contours into a contour tree[110] that encodes the containment relationships in its structure. A contour tree
        corresponding to this test image would have the contour called c0 at the root node, with the
        holes h00 and h01 as its children. Those would in turn have as children the contours that
        they directly contain, and so on.
Tip
It is interesting to note the consequences of using cvFindContours() on an image generated by cvCanny() or a similar edge detector relative to what happens with a binary
          image such as the test image shown in Figure 8-2. Deep down, cvFindContours() does not really know anything about edge
          images. This means that, to cvFindContours(), an “edge”
          is just a very thin “white” area. As a result, for every exterior contour there will be a
          hole contour that almost exactly coincides with it. This hole is actually just inside of
          the exterior boundary. You can think of it as the white-to-black transition that marks the
          interior edge of the edge.

Now it’s time to look at the cvFindContours()
        function itself: to clarify exactly how we tell it what we want and how we interpret its
        response.
int cvFindContours(
  IplImage*              img,
  CvMemStorage*          storage,
  CvSeq**                firstContour,
  int                    headerSize  = sizeof(CvContour),
  CvContourRetrievalMode mode        = CV_RETR_LIST,
  CvChainApproxMethod    method      = CV_CHAIN_APPROX_SIMPLE
);
The first argument is the input image; this image should be an 8-bit single-channel
        image and will be interpreted as binary (i.e., as if all nonzero pixels are equivalent to
        one another). When it runs, cvFindContours() will
        actually use this image as scratch space for computation, so if you need that image for
        anything later you should make a copy and pass that to cvFindContours(). The next argument, storage, indicates a place where cvFindContours() can find memory in which to record the contours. This storage
        area should have been allocated with cvCreateMemStorage(), which we covered earlier in the chapter. Next is firstContour, which is a pointer to a CvSeq*. The function cvFindContours() will
        allocate this pointer for you, so you shouldn’t allocate it yourself. Instead, just pass in
        a pointer to that pointer so that it can be set by the function. No allocation/de-allocation
        (new/delete or malloc/free) is needed. It is at this location (i.e., *firstContour) that you will find a pointer to the head of the
        constructed contour tree.[111] The return value of cvFindContours() is the
        total number of contours found.
CvSeq* firstContour = NULL;
cvFindContours( ..., &firstContour, ... );
The headerSize is just telling cvFindContours() more about the objects that it will be
        allocating; it can be set to sizeof(CvContour) or to
          sizeof(CvChain) (the latter is used when the
        approximation method is set to CV_CHAIN_CODE).[112] Finally, we have the mode and method, which (respectively) further clarify exactly
          what is to be computed and how it is to be
        computed.
The mode variable can be set to any of four options:
          CV_RETR_EXTERNAL, CV_RETR_LIST, CV_RETR_CCOMP, or
          CV_RETR_TREE. The value of mode indicates to cvFindContours() exactly
        what contours we would like found and how we would like the result presented to us. In
        particular, the manner in which the tree node variables (h_prev,
          h_next, v_prev, and v_next) are used to “hook
        up” the found contours is determined by the value of mode. In Figure 8-3, the
        resulting topologies are shown for all four possible values of mode. In every case, the structures can be thought of as “levels” which are
        related by the “horizontal” links (h_next and h_prev), and those levels are separated from one another by the
        “vertical” links (v_next and v_prev).
[image: The way in which the tree node variables are used to “hook up” all of the contours located by cvFindContours()]

Figure 8-3. The way in which the tree node variables are used to “hook up” all of the contours
          located by cvFindContours()

	
            CV_RETR_EXTERNAL
          
	Retrieves only the extreme outer contours. In Figure 8-2, there is only one exterior
              contour, so Figure 8-3 indicates the
              first contour points to that outermost sequence and that there are no further
              connections.

	
            CV_RETR_LIST
          
	Retrieves all the contours and puts them in the list. Figure 8-3 depicts the list resulting from
              the test image in Figure 8-2. In this
              case, eight contours are found and they are all connected to one another by h_prev and h_next
                (v_prev and v_next are not used
              here.)

	
            CV_RETR_CCOMP
          
	Retrieves all the contours and organizes them into a two-level hierarchy, where
              the top-level boundaries are external boundaries of the components and the
              second-level boundaries are boundaries of the holes. Referring to Figure 8-3, we can see that there are five
              exterior boundaries, of which three contain holes. The holes are connected to their
              corresponding exterior boundaries by v_next and
                v_prev. The outermost boundary c0 contains two
              holes. Because v_next can contain only one value,
              the node can only have one child. All of the holes inside of c0 are connected to one
              another by the h_prev and h_next pointers.

	
            CV_RETR_TREE
          
	Retrieves all the contours and reconstructs the full hierarchy of nested contours.
              In our example (Figures Figure 8-2 and
                Figure 8-3), this means that the
              root node is the outermost contour c0. Below c0 is the hole h00, which is connected to
              the other hole h01 at the same level. Each of those holes in turn has children (the
              contours c000 and c010, respectively), which are connected to their parents by
              vertical links. This continues down to the most-interior contours in the image, which
              become the leaf nodes in the tree.



The next five values pertain to the method (i.e., how
        the contours are approximated).
	
            CV_CHAIN_CODE
          
	Outputs contours in the Freeman chain code;[113] all other methods output polygons (sequences of vertices).[114]

	
            CV_CHAIN_APPROX_NONE
          
	Translates all the points from the chain code into points.

	
            CV_CHAIN_APPROX_SIMPLE
          
	Compresses horizontal, vertical, and diagonal segments, leaving only their ending
              points.

	CV_CHAIN_APPROX_TC89_L1 or CV_CHAIN_APPROX_TC89_KCOS
	Applies one of the flavors of the Teh-Chin chain approximation algorithm.

	
            CV_LINK_RUNS
          
	Completely different algorithm (from those listed above) that links horizontal
              segments of 1s; the only retrieval mode allowed by this method is CV_RETR_LIST.



Contours Are Sequences



As you can see, there is a lot to sequences and contours. The good news is that, for
          our current purpose, we need only a small amount of what’s available. When cvFindContours() is called, it will give us a bunch of
          sequences. These sequences are all of one specific type; as we saw, which particular type
          depends on the arguments passed to cvFindContours().
          Recall that the default mode is CV_RETR_LIST and the
          default method is CV_CHAIN_APPROX_SIMPLE.
These sequences are sequences of points; more precisely, they are contours’the actual
          topic of this chapter. The key thing to remember about contours is that they are just a
          special case of sequences.[115] In particular, they are sequences of points representing some kind of curve in
          (image) space. Such a chain of points comes up often enough that we might expect special
          functions to help us manipulate them. Here is a list of these functions.
int cvFindContours(
  CvArr*        image,
  CvMemStorage* storage,
  CvSeq**       first_contour,
  int           header_size   = sizeof(CvContour),
  int           mode          = CV_RETR_LIST,
  int           method        = CV_CHAIN_APPROX_SIMPLE,
  CvPoint       offset        = cvPoint(0,0)
);
CvContourScanner cvStartFindContours(
  CvArr*        image,
  CvMemStorage* storage,
  int           header_size   = sizeof(CvContour),
  int           mode          = CV_RETR_LIST,
  int           method        = CV_CHAIN_APPROX_SIMPLE,
  CvPoint       offset        = cvPoint(0,0)
);
CvSeq* cvFindNextContour(
  CvContourScanner scanner
);
void cvSubstituteContour(
  CvContourScanner scanner,
  CvSeq*           new_contour
);
CvSeq* cvEndFindContour(
  CvContourScanner* scanner
);
CvSeq* cvApproxChains(
  CvSeq*        src_seq,
  CvMemStorage* storage,
  int           method            = CV_CHAIN_APPROX_SIMPLE,
  double        parameter         = 0,
  int           minimal_perimeter = 0,
  int           recursive         = 0
);
First is the cvFindContours() function, which we
          encountered earlier. The second function, cvStartFindContours(), is closely related to cvFindContours() except that it is used when you want the contours one at a
          time rather than all packed up into a higher-level structure (in the manner of cvFindContours()). A call to cvStartFindContours() returns a CvSequenceScanner. The scanner contains some simple state information about
          what has and what has not been read out.[116] You can then call cvFindNextContour() on
          the scanner to successively retrieve all of the contours found. A NULL return means that no more contours are left.
cvSubstituteContour() allows the contour to which a
          scanner is currently pointing to be replaced by some other contour. A useful
          characteristic of this function is that, if the new_contour argument is set to NULL, then
          the current contour will be deleted from the chain or tree to which the scanner is
          pointing (and the appropriate updates will be made to the internals of the affected
          sequence, so there will be no pointers to nonexistent objects).
Finally, cvEndFindContour() ends the scanning and
          sets the scanner to a “done” state. Note that the sequence the scanner was scanning is not
          deleted; in fact, the return value of cvEndFindContour() is a pointer to the first element in the
            sequence.
The final function is cvApproxChains(). This
          function converts Freeman chains to polygonal representations (precisely or with some
          approximation). We will discuss cvApproxPoly() in
          detail later in this chapter (see the section “Polygon Approximations”).

Freeman Chain Codes



Normally, the contours created by cvFindContours()
          are sequences of vertices (i.e., points). An alternative representation can be generated
          by setting the method to CV_CHAIN_CODE. In this case,
          the resulting contours are stored internally as Freeman chains
          [Freeman67] (Figure 8-4). With a Freeman
          chain, a polygon is represented as a sequence of steps in one of eight directions; each
          step is designated by an integer from 0 to 7. Freeman chains have useful applications in
          recognition and other contexts. When working with Freeman chains, you can read out their
          contents via two “helper” functions:
void cvStartReadChainPoints(
   CvChain*         chain,
   CvChainPtReader* reader
);
CvPoint cvReadChainPoint(
   CvChainPtReader* reader
);
[image: Panel a, Freeman chain moves are numbered 0-7; panel b, contour converted to a Freeman chain-code representation starting from the back bumper]

Figure 8-4. Panel a, Freeman chain moves are numbered 0-7; panel b, contour converted to a
            Freeman chain-code representation starting from the back bumper

The first function takes a chain as its argument and the second function is a chain
          reader. The CvChain structure is a form of CvSeq.[117] Just as CvContourScanner iterates through
          different contours, CvChainPtReader iterates through a
          single contour represented by a chain. In this respect, CvChainPtReader is similar to the more general CvSeqReader, and cvStartReadChainPoints
          plays the role of cvStartReadSeq. As you might expect,
            CvChainPtReader returns NULL when there’s nothing left to read.

Drawing Contours



One of our most basic tasks is drawing a contour on the screen. For this we have
            cvDrawContours():
void  cvDrawContours(
   CvArr*   img,
   CvSeq*   contour,
   CvScalar external_color,
   CvScalar hole_color,
   int      max_level,
   int      thickness     = 1,
   int      line_type     = 8,
   CvPoint  offset        = cvPoint(0,0)
);
The first argument is simple: it is the image on which to draw the contours. The next
          argument, contour, is not quite as simple as it looks.
          In particular, it is really treated as the root node of a contour tree. Other arguments
          (primarily max_level) will determine what is to be done
          with the rest of the tree. The next argument is pretty straightforward: the color with
          which to draw the contour. But what about hole_color?
          Recall that OpenCV distinguishes between contours that are exterior contours and those
          that are hole contours (the dashed and dotted lines, respectively, in Figure 8-2). When drawing either a single
          contour or all contours in a tree, any contour that is marked as a “hole” will be drawn in
          this alternative color.
The max_level tells cvDrawContours() how to handle any contours that might be attached to
            contour by means of the node tree variables. This
          argument can be set to indicate the maximum depth to traverse in the drawing. Thus,
            max_level=0 means that all the contours on the same
          level as the input level (more exactly, the input contour and the contours next to it) are
          drawn, max_level=1 means that all the contours on the
          same level as the input and their children are drawn, and so forth. If the contours in
          question were produced by cvFindContours() using either
            CV_RETR_CCOMP or CV_RETR_TREE mode, then the additional idiom of negative values for max_level is also supported. In this case, max_level=-1 is interpreted to mean that only the input
          contour will be drawn, max_level=-2 means that the
          input contour and its direct children will the drawn, and so on. The
          sample code in …/opencv/samples/c/contours.c
          illustrates this point.
The parameters thickness and line_type have their usual meanings.[118] Finally, we can give an offset to the draw
          routine so that the contour will be drawn elsewhere than at the absolute coordinates by
          which it was defined. This feature is particularly useful when the contour has already
          been converted to center-of-mass or other local coordinates.
More specifically, offset would be helpful if we
          ran cvFindContours() one or more times in different
          image subregions (ROIs) and thereafter wanted to display all the results within the
          original large image. Conversely, we could use offset
          if we’d extracted a contour from a large image and then wanted to form a small mask for
          this contour.

A Contour Example



Our Example 8-2 is drawn from the
          OpenCV package. Here we create a window with an image in it. A trackbar sets a simple threshold, and the contours in the thresholded image
          are drawn. The image is updated whenever the trackbar is adjusted.
Example 8-2. Finding contours based on a trackbar’s location; the contours are updated whenever
            the trackbar is moved
#include <cv.h>
#include <highgui.h>

IplImage*      g_image    = NULL;
IplImage*      g_gray    = NULL;
int            g_thresh  = 100;
CvMemStorage*  g_storage  = NULL;

void on_trackbar(int) {
  if( g_storage==NULL ) {
    g_gray = cvCreateImage( cvGetSize(g_image), 8, 1 );
    g_storage = cvCreateMemStorage(0);
  } else {
    cvClearMemStorage( g_storage );
  }
  CvSeq* contours = 0;
  cvCvtColor( g_image, g_gray, CV_BGR2GRAY );
  cvThreshold( g_gray, g_gray, g_thresh, 255, CV_THRESH_BINARY );
  cvFindContours( g_gray, g_storage, &contours );
  cvZero( g_gray );
  if( contours )
    cvDrawContours(
      g_gray,
      contours,
      cvScalarAll(255),
      cvScalarAll(255),
      100
    );
  cvShowImage( "Contours", g_gray );
}

int main( int argc, char** argv )
{
  if( argc != 2 || !(g_image = cvLoadImage(argv[1])) )
  return -1;
  cvNamedWindow( "Contours", 1 );
  cvCreateTrackbar(
    "Threshold",
    "Contours",
    &g_thresh,
    255,
    on_trackbar
  );
  on_trackbar(0);
  cvWaitKey();
  return 0;
}


Here, everything of interest to us is happening inside of the function on_trackbar(). If the global variable g_storage is still at its (NULL) initial
          value, then cvCreateMemStorage(0) creates the memory
          storage and g_gray is initialized to a blank image the
          same size as g_image but with only a single channel. If
            g_storage is non-NULL, then we’ve been here before and thus need only empty the storage so it
          can be reused. On the next line, a CvSeq* pointer is
          created; it is used to point to the sequence that we will create via cvFindContours().
Next, the image g_image is converted to grayscale
          and thresholded such that only those pixels brighter than g_thresh are retained as nonzero. The cvFindContours() function is then called on this thresholded image. If any
          contours were found (i.e., if contours is non-NULL), then cvDrawContours() is called and the contours are drawn (in white) onto the
          grayscale image. 


Another Contour Example



In this example, we find contours on an input image and then proceed to draw them one by
        one. This is a good example to tinker with on your own to explore the effects of changing
        either the contour finding mode (CV_RETR_LIST in the code) or
        the max_depth that is used to draw the contours (0 in the code). If you set max_depth to a larger number, notice that the example code steps through the
        contours returned by cvFindContours() by means of
          h_next. Thus, for some topologies (CV_RETR_TREE, CV_RETR_CCOMP, etc.), you may see the same contour
        more than once as you step through. See Example 8-3.
Example 8-3. Finding and drawing contours on an input image
int main(int argc, char* argv[]) {

  cvNamedWindow( argv[0], 1 );

  IplImage* img_8uc1 = cvLoadImage( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
  IplImage* img_edge = cvCreateImage( cvGetSize(img_8uc1), 8, 1 );
  IplImage* img_8uc3 = cvCreateImage( cvGetSize(img_8uc1), 8, 3 );

  cvThreshold( img_8uc1, img_edge, 128, 255, CV_THRESH_BINARY );

  CvMemStorage* storage = cvCreateMemStorage();
  CvSeq* first_contour  = NULL;
  int Nc = cvFindContours(
    img_edge,
    storage,
    &first_contour,
    sizeof(CvContour),
    CV_RETR_LIST // Try all four values and see what happens
 );

 int n=0;
 printf( "Total Contours Detected: %d\n", Nc );
 for( CvSeq* c=first_contour; c!=NULL; c=c->h_next ) {
   cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR );
   cvDrawContours(
     img_8uc3,
     c,
     CVX_RED,
     CVX_BLUE,
     0,        // Try different values of max_level, and see what happens
     2,
     8
   );
   printf("Contour #%d\n", n );
   cvShowImage( argv[0], img_8uc3 );
   printf(" %d elements:\n", c->total );
   for( int i=0; i<c->total; ++i ) {
   CvPoint* p = CV_GET_SEQ_ELEM( CvPoint, c, i );
     printf(" (%d,%d)\n", p->x, p->y );
   }
   cvWaitKey(0);
   n++;
  }

  printf("Finished all contours.\n");
  cvCvtColor( img_8uc1, img_8uc3, CV_GRAY2BGR );
  cvShowImage( argv[0], img_8uc3 );
  cvWaitKey(0);

  cvDestroyWindow( argv[0] );
 
  cvReleaseImage( &img_8uc1 );
  cvReleaseImage( &img_8uc3 );
  cvReleaseImage( &img_edge );

  return 0;
 }



More to Do with Contours



When analyzing an image, there are many different things we might want to do with
        contours. After all, most contours are—or are candidates to be—things that we are interested
        in identifying or manipulating. The various relevant tasks include characterizing the
        contours in various ways, simplifying or approximating them, matching them to templates, and
        so on.
In this section we will examine some of these common tasks and visit the various
        functions built into OpenCV that will either do these things for us or at least make it
        easier for us to perform our own tasks.
Polygon Approximations



If we are drawing a contour or are engaged in shape analysis, it is common to
          approximate a contour representing a polygon with another contour having fewer vertices.
          There are many different ways to do this; OpenCV offers an implementation of one of
            them.[119] The routine cvApproxPoly() is an
          implementation of this algorithm that will act on a sequence of contours:
CvSeq*  cvApproxPoly(
   const void*   src_seq,
   int           header_size,
   CvMemStorage* storage,
   int           method,
   double        parameter,
   int           recursive  = 0
);
We can pass a list or a tree sequence containing contours to cvApproxPoly(), which will then act on all of the contained contours. The
          return value of cvApproxPoly() is actually just the
          first contour, but you can move to the others by using the h_next (and v_next, as appropriate)
          elements of the returned sequence.
Because cvApproxPoly() needs to create the objects
          that it will return a pointer to, it requires the usual CvMemStorage* pointer and header size (which, as usual, is set to sizeof(CvContour)).
The method argument is always set to CV_POLY_APPROX_DP (though other algorithms could be selected
          if they become available). The next two arguments are specific to the method (of which,
          for now, there is but one). The parameter argument is
          the precision parameter for the algorithm. To understand how this parameter works, we must
          take a moment to review the actual algorithm.[120] The last argument indicates whether the algorithm should (as mentioned
          previously) be applied to every contour that can be reached via the h_next and v_next pointers.
          If this argument is 0, then only the contour directly pointed to by src_seq will be approximated.
So here is the promised explanation of how the algorithm works. In Figure 8-5, starting with a contour (panel b),
          the algorithm begins by picking two extremal points and connecting them with a line (panel
          c). Then the original polygon is searched to find the point farthest from the line just
          drawn, and that point is added to the approximation.
The process is iterated (panel d), adding the next most distant point to the accumulated approximation, until all of the points are less than the distance indicated by
          the precision parameter (panel f). This means that good candidates for the parameter are
          some fraction of the contour’s length, or of the length of its bounding box, or a similar
          measure of the contour’s overall size.
[image: Visualization of the DP algorithm used by cvApproxPoly(): the original image (a) is approximated by a contour (b) and then, starting from the first two maximally separated vertices (c), the additional vertices are iteratively selected from that contour (d)-(f)]

Figure 8-5. Visualization of the DP algorithm used by cvApproxPoly(): the original image (a) is
            approximated by a contour (b) and then, starting from the first two maximally separated
            vertices (c), the additional vertices are iteratively selected from that contour
            (d)-(f)

Closely related to the approximation just described is the process of finding
            dominant points. A dominant point is defined as a point
          that has more information about the curve than do other points. Dominant points are used
          in many of the same contexts as polygon approximations. The routine cvFindDominantPoints() implements what is known as the
            IPAN[121] [Chetverikov99] algorithm.
CvSeq* cvFindDominantPoints(
   CvSeq*        contour,
   CvMemStorage* storage,
   int           method      = CV_DOMINANT_IPAN,
   double        parameter1  = 0,
   double        parameter2  = 0,
   double        parameter3  = 0,
   double        parameter4  = 0
);
In essence, the IPAN algorithm works by scanning along the contour and trying to construct
          triangles on the interior of the curve using the available vertices. That triangle is
          characterized by its size and the opening angle (see Figure 8-6). The points with large opening
          angles are retained provided that their angles are smaller than a specified global
          threshold and smaller than their neighbors.
[image: The IPAN algorithm uses triangle abp to characterize point p]

Figure 8-6. The IPAN algorithm uses triangle abp to characterize point p

The routine cvFindDominantPoints() takes the usual
            CvSeq* and CvMemStorage* arguments. It also requires a method, which (as with cvApproxPoly()) can
          take only one argument at this time: CV_DOMINANT_IPAN.
The next four arguments are: a minimal distance
            dmin, a maximal distance
            dmax, a neighborhood
            distance
          dn, and a maximum angle
            θmax. As shown in Figure 8-6, the algorithm first constructs all
          triangles for which rpa and
              rpb fall between
            dmin and
            dmax and for which
              θab < θmax. This
          is followed by a second pass in which only those points p with the
          smallest associated value of θab in the
          neighborhood dn are retained (the value of
              dn should never exceed
            dmax). Typical values for
            dmin,
            dmax,
            dn, and
            θmax are 7, 9, 9, and 150 (the last argument
          is an angle and is measured in degrees).

Summary Characteristics



Another task that one often faces with contours is computing their various
            summary characteristics. These might include length or some other form of size measure of the overall contour. Other useful
          characteristics are the contour moments, which can be used to
          summarize the gross shape characteristics of a contour (we will address these in the next
            section).
Length



The subroutine cvContourPerimeter() will take a
            contour and return its length. In fact, this function is actually a macro for the
            somewhat more general cvArcLength().
double  cvArcLength(
   const void* curve,
   CvSlice     slice     = CV_WHOLE_SEQ,
   int         is_closed = -1
);
#define cvContourPerimeter( contour )             \
  cvArcLength( contour, CV_WHOLE_SEQ, 1 )
The first argument of cvArcLength() is the
            contour itself, whose form may be either a sequence of points (CvContour* or CvSeq*) or an
              n-by-1 two-channel matrix (CvMat*) of points.
            Next are the slice argument and is_closed indicating whether the contour should be treated as closed. The
            possible values of is_closed are: “true” (any value greater than
            zero), “false” (a value of zero), or a negative value. A negative value (which is the
            default) indicates that the function should check the special CV_SEQ_FLAG_CLOSED bit in the sequence header to determine if the sequence
            is closed or not. The slice argument allows us to select only some
            subset of the points in the curve.[122]
Closely related to cvArcLegth() is cvContourArea(), which (as its name suggests) computes the
            area of a contour. It takes the contour as an argument and the same slice argument as
              cvArcLength().
double  cvContourArea(
   const CvArr* contour,
   CvSlice      slice  = CV_WHOLE_SEQ
);

Bounding boxes



Of course the length and area are simple characterizations of a contour. The next
            level of detail might be to summarize them with a bounding box or bounding circle or ellipse. There are two ways to do the
            former, and there is a single method for doing each of the latter.
CvRect  cvBoundingRect(
  CvArr* points,
  int update              = 0
);
CvBox2D  cvMinAreaRect2(
   const CvArr* points,
   CvMemStorage* storage  = NULL
);
The simplest technique is to call cvBoundingRect(); it will return a CvRect that bounds the contour. The points used for the first argument can
            be either a contour (CvContour*) or an
              n-by-1, two-channel matrix (CvMat*) containing the points in the sequence. To understand the second
            argument, update, we must harken back to one of the
            earlier footnotes in this chapter. Remember that CvContour is not exactly the same as CvSeq; it does everything CvSeq does but
            also a little bit more. One of those CvContour extras
            is a CvRect member for referring to its own bounding
            box. If you call cvBoundingRect() with update set to 0 then you will just get the contents of that
            data member; but if you call with update set to 1,
            the bounding box will be computed (and the associated data member will also be
              updated).
One problem with the bounding rectangle from cvBoundingRect() is that it is a CvRect
            and so can only represent a rectangle whose sides are oriented horizontally and
            vertically. In contrast, the routine cvMinAreaRect2()
            returns the minimal rectangle that will bound your contour, and this rectangle may be
            inclined relative to the vertical; see Figure 8-7. The arguments are otherwise
            similar to cvBoundingRect(). The OpenCV data type
              CvBox2D is just what is needed to represent such a
              rectangle.
typedef struct  CvBox2D {
  CvPoint2D32f center;
  CvSize2D32f  size;
  float         angle;
} CvBox2D;
[image: CvRect can represent only upright rectangles, but CvBox2D can handle rectangles of any inclination]

Figure 8-7. CvRect can represent only upright rectangles, but CvBox2D can handle rectangles
              of any inclination


Enclosing circles and ellipses



Next we have cvMinEnclosingCircle().[123] This routine works pretty much the same as the bounding box routines, with the same flexibility of being able to set
              points to be either a sequence or an array of
            two-dimensional points.
int  cvMinEnclosingCircle(
   const CvArr*  points,
   CvPoint2D32f* center,
   float*        radius
);
There is no special structure in OpenCV for representing circles, so we need to pass
            in pointers for a center point and a floating-point
            variable radius that can be used by cvMinEnclosingCircle() to report the results of its
            computations.
As with the minimal enclosing circle, OpenCV also provides a method for fitting an
            ellipse to a set of points:
CvBox2D cvFitEllipse2(
  const CvArr* points
);
The subtle difference between cvMinEnclosingCircle() and cvFitEllipse2() is that the former simply computes the smallest circle that
            completely encloses the given contour, whereas the latter uses a fitting function and
            returns the ellipse that is the best approximation to the contour. This means that not
            all points in the contour will be enclosed in the ellipse returned by cvFitEllipse2(). The fitting is done using a least-squares
            fitness function.
The results of the fit are returned in a CvBox2D
            structure. The indicated box exactly encloses the ellipse. See Figure 8-8.
[image: Ten-point contour with the minimal enclosing circle superimposed (a) and with the bestfitting ellipsoid (b); a box (c) is used by OpenCV to represent that ellipsoid]

Figure 8-8. Ten-point contour with the minimal enclosing circle superimposed (a) and with the
              bestfitting ellipsoid (b); a box (c) is used by OpenCV to represent that
              ellipsoid



Geometry



When dealing with bounding boxes and other summary representations of polygon
          contours, it is often desirable to perform such simple geometrical checks as polygon
          overlap or a fast overlap check between bounding boxes. OpenCV provides a small but handy
          set of routines for this sort of geometrical checking.
CvRect cvMaxRect(
    const CvRect* rect1,
    const CvRect* rect2
);
void cvBoxPoints(
    CvBox2D       box,
    CvPoint2D32f  pt[4]
);
CvSeq* cvPointSeqFromMat(
    int           seq_kind,
    const CvArr*  mat,
    CvContour*    contour_header,
    CvSeqBlock*   block
);
double cvPointPolygonTest(
    const CvArr*  contour,
    CvPoint2D32f  pt,
    int           measure_dist
);
The first of these functions, cvMaxRect(), computes
          a new rectangle from two input rectangles. The new rectangle is the smallest rectangle
          that will bound both inputs.
Next, the utility function cvBoxPoints() simply
          computes the points at the corners of a CvBox2D
          structure. You could do this yourself with a bit of trigonometry, but you would soon grow
          tired of that. This function does this simple pencil pushing for you.
The third utility function, cvPointSeqFromMat(),
          generates a sequence structure from a matrix. This is useful when you want to use a
          contour function that does not also take matrix arguments. The input to cvPointSeqFromMat() first requires you to indicate what sort
          of sequence you would like. The variable seq_kind may
          be set to any of the following: zero (0), indicating
          just a point set; CV_SEQ_KIND_CURVE, indicating that
          the sequence is a curve; or CV_SEQ_KIND_CURVE |
            CV_SEQ_FLAG_CLOSED, indicating that the sequence is a closed curve. Next you
          pass in the array of points, which should be an n-by-1 array of
          points. The points should be of type CV_32SC2 or
            CV_32FC2 (i.e., they should be single-column,
          two-channel arrays). The next two arguments are pointers to values that will be computed
          by cvPointSeqFromMat(), and contour_header is a contour structure that you should already have created
          but whose internals will be filled by the function call. This is similarly the case for
            block, which will also be filled for you.[124] Finally the return value is a CvSeq*
          pointer, which actually points to the very contour structure you passed in yourself. This
          is a convenience, because you will generally need the sequence address when calling the
          sequence-oriented functions that motivated you to perform this conversion in the first
            place.
The last geometrical tool-kit function to be presented here is cvPointPolygonTest(), a function that allows you to test
          whether a point is inside a polygon (indicated by a sequence). In particular, if the
          argument measure_dist is nonzero then the function
          returns the distance to the nearest contour edge; that distance is 0 if the point is
          inside the contour and positive if the point is outside. If the measure_dist argument is 0 then the return values are simply + 1, – 1, or 0
          depending on whether the point is inside, outside, or on an edge (or vertex),
          respectively. The contour itself can be either a sequence or an
          n-by-1 two-channel matrix of points.


Matching Contours



Now that we have a pretty good idea of what a contour is and of how to work with
        contours as objects in OpenCV, we would like to take a moment to understand how to use them
        for some practical purposes. The most common task associated with contours is matching them
        in some way with one another. We may have two computed contours that we’d like to compare or
        a computed contour and some abstract template with which we’d like to compare our contour.
        We will discuss both of these cases.
Moments



One of the simplest ways to compare two contours is to compute contour moments. This is a good
          time for a short digression into precisely what a moment is. Loosely speaking, a moment is
          a gross characteristic of the contour computed by integrating (or summing, if you like)
          over all of the pixels of the contour. In general, we define the (p,
            q) moment of a contour as
[image: image with no caption]

Here p is the x-order and
            q is the y-order, whereby
            order means the power to which the corresponding component is taken
          in the sum just displayed. The summation is over all of the pixels of the contour boundary
          (denoted by n in the equation). It then follows immediately that if
            p and q are both equal to 0, then the
            m00 moment is actually just the length in
          pixels of the contour.[125]
The function that computes these moments for us is
void cvContourMoments(
    CvSeq*     contour,
    CvMoments* moments
)
The first argument is the contour we are interested in and the second is a pointer to
          a structure that we must allocate to hold the return data. The CvMoments structure is defined as follows:
typedef struct CvMoments {

   // spatial moments
   double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;

   // central moments
   double mu20, mu11, mu02, mu30, mu21, mu12, mu03;

   // m00 != 0 ? 1/sqrt(m00) : 0
   double inv_sqrt_m00;

} CvMoments;
The cvContourMoments() function uses only the
            m00, m01, …, m03 elements; the elements with names
            mu00, … are used by other routines.
When working with the CvMoments structure, there is a friendly helper function that
          will return any particular moment out of the structure:
double cvGetSpatialMoment(
  Cv Moments* moments,
  Int        x_order,
  int        y_order
);
A single call to cvContourMoments() will instigate
          computation of all the moments through third order (i.e.,
            m30 and
            m03 will be computed, as will
            m21 and
            m12, but
            m22 will not be).

More About Moments



The moment computation just described gives some rudimentary characteristics of a
          contour that can be used to compare two contours. However, the moments resulting from that computation are not the
          best parameters for such comparisons in most practical cases. In particular, one would
          often like to use normalized moments (so that objects of the same
          shape but dissimilar sizes give similar values). Similarly, the simple moments of the
          previous section depend on the coordinate system chosen, which means that objects are not
          matched correctly if they are rotated.
OpenCV provides routines to compute normalized moments as well as Hu
            invariant moments [Hu62]. The CvMoments structure can be
          computed either with cvMoments or with cvContourMoments. Moreover, cvContourMoments is now just an alias for cvMoments.
A useful trick is to use cvDrawContours() to
          “paint” an image of the contour and then call one of the moment functions on the resulting
          drawing. This allows you to control whether or not the contour is filled.
Here are the four functions at your disposal:
void cvMoments(
   const CvArr* image,
   CvMoments*   moments,
   int          isBinary = 0
)
double cvGetCentralMoment(
   CvMoments* moments,
   int          x_order,
   int          y_order
)
double cvGetNormalizedCentralMoment(
   CvMoments*   moments,
   int          x_order,
   int          y_order
);
void cvGetHuMoments(
   CvMoments*   moments,
   CvHuMoments* HuMoments
);
The first function is essentially analogous to cvContourMoments() except that it takes an image (instead of a contour) and
          has one extra argument. That extra argument, if set to CV_TRUE, tells cvMoments() to treat all
          pixels as either 1 or 0, where 1 is assigned to any pixel with a nonzero value. When this
          function is called, all of the moments’including the central moments (see next paragraph)'are computed at once.
A central moment is basically the same as the moments just
          described except that the values of x and y used
          in the formulas are displaced by the mean values:
[image: image with no caption]

where 
[image: image with no caption]

 and 
[image: image with no caption]

.
The normalized moments are the same as the central moments except
          that they are all divided by an appropriate power of
            m00:[126]
[image: image with no caption]

Finally, the Hu invariant moments are linear combinations of the
          central moments. The idea here is that, by combining the different normalized central
          moments, it is possible to create invariant functions representing different aspects of
          the image in a way that is invariant to scale, rotation, and (for all but the one called
            h1) reflection.
The cvGetHuMoments() function computes the
            Hu moments from the central moments. For the sake of completeness, we show
          here the actual definitions of the Hu moments:
[image: image with no caption]

Looking at Figure 8-9 and Table 8-1, we can gain a sense of how the Hu
          moments behave. Observe first that the moments tend to be smaller as we move to higher
          orders. This should be no surprise in that, by their definition, higher Hu moments have
          more powers of various normalized factors. Since each of those factors is less than 1, the
          products of more and more of them will tend to be smaller numbers.
[image: Images of five simple characters; looking at their Hu moments yields some intuition concerning their behavior]

Figure 8-9. Images of five simple characters; looking at their Hu moments yields some intuition
            concerning their behavior

Table 8-1. Values of the Hu moments for the five simple characters of Figure 8-9
	
                  

                	
                  h1

                	
                  h2

                	
                  h3

                	
                  h4

                	
                  h5

                	
                  h6

                	
                  h7

                
	
                  A

                	
                  2.837e–1

                	
                  1.961e–3

                	
                  1.484e–2

                	
                  2.265e–4

                	
                  –4.152e–7

                	
                  1.003e–5

                	
                  –7.941e–9

                
	
                  I

                	
                  4.578e–1

                	
                  1.820e–1

                	
                  0.000

                	
                  0.000

                	
                  0.000

                	
                  0.000

                	
                  0.000

                
	
                  O

                	
                  3.791e–1

                	
                  2.623e–4

                	
                  4.501e–7

                	
                  5.858e–7

                	
                  1.529e–13

                	
                  7.775e–9

                	
                  –2.591e–13

                
	
                  M

                	
                  2.465e–1

                	
                  4.775e–4

                	
                  7.263e–5

                	
                  2.617e–6

                	
                  –3.607e–11

                	
                  –5.718e–8

                	
                  –7.218e–24

                
	
                  F

                	
                  3.186e–1

                	
                  2.914e–2

                	
                  9.397e–3

                	
                  8.221e–4

                	
                  3.872e–8

                	
                  2.019e–5

                	
                  2.285e–6

                



Other factors of particular interest are that the “I”, which is symmetric under 180
          degree rotations and reflection, has a value of exactly 0 for
            h3 through
            h7; and that the “O”, which has similar
          symmetries, has all nonzero moments. We leave it to the reader to look at the figures,
          compare the various moments, and so build a basic intuition for what those moments
            represent.

Matching with Hu Moments



double  cvMatchShapes(
  const void* object1,
  const void* object2,
  int         method,
  double      parameter = 0
);
Naturally, with Hu moments we’d like to compare two objects and determine whether they
          are similar. Of course, there are many possible definitions of “similar”. To make this
          process somewhat easier, the OpenCV function cvMatchShapes() allows us to simply provide two objects and have their
          moments computed and compared according to a criterion that we provide.
These objects can be either grayscale images or contours. If you provide images, cvMatchShapes() will compute the moments for you before proceeding with the
          comparison. The method used in cvMatchShapes() is one of the three listed in Table 8-2.
Table 8-2. Matching methods used by cvMatchShapes()
	
                  Value of method

                	
                  cvMatchShapes() return value

                
	
                  CV_CONTOURS_MATCH_I1

                	
                  
                    
[image: image with no caption]


                  

                
	
                  CV_CONTOURS_MATCH_I2

                	
                  
                    
[image: image with no caption]


                  

                
	
                  CV_CONTOURS_MATCH_I3

                	
                  
                    
[image: image with no caption]


                  

                



In the table, 
[image: image with no caption]

 and 
[image: image with no caption]

 are defined as:
[image: image with no caption]

where 
[image: image with no caption]

 and 
[image: image with no caption]

 are the Hu moments of A and B,
          respectively.
Each of the three defined constants in Table 8-2 has a different meaning in terms of
          how the comparison metric is computed. This metric determines the value ultimately
          returned by cvMatchShapes(). The final parameter argument is not currently used, so we can safely
          leave it at the default value of 0.

Hierarchical Matching



We’d often like to match two contours and come up with a similarity measure that takes
          into account the entire structure of the contours being matched. Methods using summary
          parameters (such as moments) are fairly quick, but there is only so much information they can
            capture.
For a more accurate measure of similarity, it will be useful first to consider a
          structure known as a contour tree. Contour trees should not be confused with the hierarchical representations of contours
          that are returned by such functions as cvFindContours(). Instead, they are hierarchical representations of the shape
          of one particular contour.
Understanding a contour tree will be easier if we first understand how it is
          constructed. Constructing a contour tree from a contour works from bottom (leaf nodes) to
          top (the root node). The process begins by searching the perimeter of the shape for
          triangular protrusions or indentations (every point on the contour that is not exactly
          collinear with its neighbors). Each such triangle is replaced with the line connecting its
          two nonadjacent points on the curve;thus, in effect the triangle is either cut off (e.g., triangle D in
            Figure 8-10), or filled in (triangle C).
          Each such alteration reduces the contour’s number of vertices by 1 and creates a new node
          in the tree. If such a triangle has original edges on two of its sides, then it is a leaf
          in the resulting tree; if one of its sides is part of an existing triangle, then it is a
          parent of that triangle. Iteration of this process ultimately reduces the shape to a
          quadrangle, which is then cut in half; both resulting triangles are children of the root
          node.
[image: Constructing a contour tree: in the first round, the contour around the car produces leaf nodes A, B, C, and D; in the second round, X and Y are produced (X is the parent of A and B, and Y is the parent of C and D)]

Figure 8-10. Constructing a contour tree: in the first round, the contour around the car
            produces leaf nodes A, B, C, and D; in the second round, X and Y are produced (X is the
            parent of A and B, and Y is the parent of C and D)

The resulting binary tree (Figure 8-11)
          ultimately encodes the shape information about the original contour. Each node is
          annotated with information about the triangle to which it is associated (information such
          as the size of the triangle and whether it was created by cutting off or filling
            in).
Once these trees are constructed, they can be used to effectively compare two contours.[127] This process begins by attempting to define correspondences between nodes in
          the two trees and then comparing the characteristics of the corresponding nodes. The end
          result is a similarity measure between the two trees.
In practice, we need to understand very little about this process. OpenCV provides us
          with routines to generate contour trees automatically from normal CvContour objects and to
          convert them back; it also provides the method for comparing the two trees. Unfortunately,
          the constructed trees are not quite robust (i.e., minor changes in the contour may change
          the resultant tree significantly). Also, the initial triangle (root of the tree) is chosen
          somewhat arbitrarily. Thus, to obtain a better representation requires that we first apply
            cvApproxPoly() and then align the contour (perform a
          cyclic shift) such that the initial triangle is pretty much rotation-independent.
CvContourTree*  cvCreateContourTree(
  const CvSeq*  contour,
  CvMemStorage* storage,
  double        threshold
);
CvSeq*  cvContourFromContourTree(
  const CvContourTree* tree,
  CvMemStorage*        storage,
  CvTermCriteria       criteria
);
double  cvMatchContourTrees(
  const CvContourTree* tree1,
  const CvContourTree* tree2,
  int                  method,
  double               threshold
);
[image: A binary tree representation that might correspond to a contour like that of]

Figure 8-11. A binary tree representation that might correspond to a contour like that of Figure 8-10

This code references CvTermCriteria, the details of
          which are given in Chapter 9. For now, you can simply
          construct a structure using cvTermCriteria() with the
          following (or similar) defaults:
CvTermCriteria termcrit = cvTermCriteria(
  CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 5, 1 )
);

Contour Convexity and Convexity Defects



Another useful way of comprehending the shape of an object or contour is to compute a
          convex hull for the object and then compute its convexity defects
          [Homma85]. The shapes of many complex objects are well characterized by such
            defects.
Figure 8-12 illustrates the concept of
          a convexity defect using an image of a human hand. The convex hull is pictured as a dark
          line around the hand, and the regions labeled A through H are each “defects” relative to
          that hull. As you can see, these convexity defects offer a means of characterizing not
          only the hand itself but also the state of the hand.
#define CV_CLOCKWISE         1
#define CV_COUNTER_CLOCKWISE 2
CvSeq* cvConvexHull2(
  const CvArr* input,
  void*        hull_storage  = NULL,
  int          orientation   = CV_CLOCKWISE,
  int          return_points = 0
);
int  cvCheckContour Convexity(
   const CvArr* contour
);
CvSeq*  cvConvexityDefects(
   const CvArr*  contour,
   const CvArr*  convexhull,
   CvMemStorage* storage    = NULL
);
[image: Convexity defects: the dark contour line is a convex hull around the hand; the gridded regions (A-H) are convexity defects in the hand contour relative to the convex hull]

Figure 8-12. Convexity defects: the dark contour line is a convex hull around the hand; the
            gridded regions (A-H) are convexity defects in the hand contour relative to the convex
            hull

There are three important OpenCV methods that relate to convex hulls and convexity
          defects. The first simply computes the hull of a contour that we have already identified,
          and the second allows us to check whether an identified contour is already convex. The
          third computes convexity defects in a contour for which the convex hull is
            known.
The cvConvexHull2() routine takes an array of
          points as its first argument. This array is typically a matrix with two columns and
            n rows (i.e., n-by-2), or it can be a contour.
          The points should be 32-bit integers (CV_32SC1) or
          floating-point numbers (CV_32FC1). The next argument is
          the now familiar pointer to a memory storage where space for the result can be allocated.
          The next argument can be either CV_CLOCKWISE or
            CV_COUNTERCLOCKWISE, which will determine the
          orientation of the points when they are returned by the routine. The final argument,
            returnPoints, can be either zero (0) or one (1). If set to
            1 then the points themselves will be stored in the
          return array. If it is set to 0, then only
            indices[128] will be stored in the return array, indices that refer to the entries in the
          original array passed to cvConvexHull2().
At this point the astute reader might ask: “If the hull_storage argument is a memory storage, then why is it prototyped as
            void*?” Good question. The reason is because, in many
          cases, it is more useful to have the points of the hull returned in the form of an array
          rather than a sequence. With this in mind, there is another possibility for the hull_storage argument, which is to pass in a CvMat* pointer to a matrix. In this case, the matrix should be
          one-dimensional and have the same number of entries as there are input points. When
            cvConvexHull2() is called, it will actually modify
          the header for the matrix so that the correct number of columns are indicated.[129]
Sometimes we already have the contour but do not know if it is convex. In this case we
          can call cvCheckContourConvexity(). This test is simple
          and fast,[130] but it will not work correctly if the contour passed contains
            self-intersections.
The third routine, cvConvexityDefects(), actually
          computes the defects and returns a sequence of the defects. In order to do this, cvConvexityDefects() requires the contour itself, the convex
          hull, and a memory storage from which to get the memory needed to allocate the result
          sequence. The first two arguments are CvArr* and are
          the same form as the input argument to cvConvexHull2().
typedef struct CvConvexityDefect {
   // point of the contour where the defect begins
   CvPoint* start;
   // point of the contour where the defect ends
   CvPoint* end;
   // point within the defect farthest from the convex hull
   CvPoint* depth_point;
   // distance between the farthest point and the convex hull
   float depth;
} CvConvexityDefect;
The cvConvexityDefects() routine returns a sequence
          of CvConvexityDefect structures containing some simple
          parameters that can be used to characterize the defects. The start and end members are points on the
          hull at which the defect begins and ends. The depth_point indicates the point on the defect that is the farthest from the
          edge of the hull from which the defect is a deflection. The final parameter, depth, is the distance between the farthest point and the hull
            edge.

Pairwise Geometrical Histograms



Earlier we briefly visited the Freeman chain codes (FCCs). Recall that a Freeman chain
          is a representation of a polygon in terms of a sequence of “moves”, where each move is of
          a fixed length and in a particular direction. However, we did not linger on why one might
          actually want to use such a representation.
There are many uses for Freeman chains, but the most popular one is worth a longer look because the
          idea underlies the pairwise geometrical histogram (PGH).[131]
The PGH is actually a generalization or extension of what is known as a chain code
          histogram (CCH). The CCH is a histogram made by counting the number of each kind of step
          in the Freeman chain code representation of a contour. This histogram has a number of nice
          properties. Most notably, rotations of the object by 45 degree increments become cyclic
          transformations on the histogram (see Figure 8-13). This provides a method of shape
          recognition that is not affected by such rotations.
[image: Freeman chain code representations of a contour (top) and their associated chain code histograms (bottom); when the original contour (panel a) is rotated 45 degrees clockwise (panel b), the resulting chain code histogram is the same as the original except shifted to the right by one unit]

Figure 8-13. Freeman chain code representations of a contour (top) and their associated chain
            code histograms (bottom); when the original contour (panel a) is rotated 45 degrees
            clockwise (panel b), the resulting chain code histogram is the same as the original
            except shifted to the right by one unit

The PGH is constructed as follows (see Figure 8-14). Each of the edges of the polygon
          is successively chosen to be the “base edge”. Then each of the other edges is considered
          relative to that base edge and three values are computed:
            dmin,
            dmax, and θ. The
            dmin value is the smallest distance between
          the two edges, dmax is the largest, and
            θ is the angle between them. The PGH is a two-dimensional histogram
          whose dimensions are the angle and the distance. In particular: for every edge pair, there
          is a bin corresponding to (dmin,
            θ) and a bin corresponding to
            (dmax, θ). For each
          such pair of edges, those two bins are incremented—as are all bins for intermediate values
          of d (i.e., values between
            dmin and
            dmax).
[image: Pairwise geometric histogram: every two edge segments of the enclosing polygon have an angle and a minimum and maximum distance (panel a); these numbers are encoded into a two-dimensional histogram (panel b), which is rotation-invariant and can be matched against other objects]

Figure 8-14. Pairwise geometric histogram: every two edge segments of the enclosing polygon have
            an angle and a minimum and maximum distance (panel a); these numbers are encoded into a
            two-dimensional histogram (panel b), which is rotation-invariant and can be matched
            against other objects

The utility of the PGH is similar to that of the FCC. One important difference is that
          the discriminating power of the PGH is higher, so it is more useful when attempting to
          solve complex problems involving a greater number of shapes to be recognized and/or a greater variability of background noise. The
          function used to compute the PGH is 
void cvCalcPGH(
    const CvSeq* contour,
    CvHistogram* hist
);
Here contour can contain integer point coordinates;
          of course, hist must be two-dimensional.


Exercises



	Neglecting image noise, does the IPAN algorithm return the same “dominant points” as
            we zoom in on an object? As we rotate the object?
	Give the reasons for your answer.

	Try it! Use PowerPoint or a similar program to draw an “interesting” white shape
                on a black background. Turn it into an image and save. Resize the object several
                times, saving each time, and reposition it via several different rotations. Read it
                in to OpenCV, turn it into grayscale, threshold, and find the contour. Then use
                  cvFindDominantPoints() to find the dominant
                points of the rotated and scaled versions of the object. Are the same points found
                or not?




	Finding the extremal points (i.e., the two points that are farthest apart) in a
            closed contour of N points can be accomplished by comparing the
            distance of each point to every other point.
	What is the complexity of such an algorithm?

	Explain how you can do this faster.




	Create a circular image queue using CvSeq
            functions.

	What is the maximal closed contour length that could fit into a 4-by-4 image? What
            is its contour area?

	Using PowerPoint or a similar program, draw a white circle of radius 20 on a black
            background (the circle’s circumference will thus be 2 π 20 ≈ 125.7. Save your drawing as
            an image.
	Read the image in, turn it into grayscale, threshold, and find the contour. What
                is the contour length? Is it the same (within rounding) or different from the
                calculated length?

	Using 125.7 as a base length of the contour, run cvApproxPoly() using as parameters the following fractions of the base
                length: 90, 66, 33, 10. Find the contour length and draw the results.




	Using the circle drawn in exercise 5, explore the results of cvFindDominantPoints()as follows.
	Vary the dmin and
                  dmax distances and draw the
                results.

	Then vary the neighborhood distance and describe the resulting changes.

	Finally, vary the maximal angle threshold and describe the results.




	Subpixel corner finding. Create a white-on-black corner in PowerPoint (or similar
            drawing program) such that the corner sits on exact integer coordinates. Save this as an
            image and load into OpenCV.
	Find and print out the exact coordinates of the corner.

	Alter the original image: delete the actual corner by drawing a small black
                circle over its intersection. Save and load this image, and find the subpixel
                location of this corner. Is it the same? Why or why not?




	Suppose we are building a bottle detector and wish to create a “bottle” feature. We
            have many images of bottles that are easy to segment and find the contours of, but the
            bottles are rotated and come in various sizes. We can draw the contours and then find
            the Hu moments to yield an invariant bottle-feature vector. So far, so good’but should
            we draw filled-in contours or just line contours? Explain your answer.

	When using cvMoments() to extract bottle contour
            moments in exercise 8, how should we set isBinary?
            Explain your answer.

	Take the letter shapes used in the discussion of Hu moments. Produce variant images
            of the shapes by rotating to several different angles, scaling larger and smaller, and
            combining these transformations. Describe which Hu features respond to rotation, which
            to scale, and which to both.

	Make a shape in PowerPoint (or another drawing program) and save it as an image.
            Make a scaled, a rotated, and a rotated and scaled version of the object and then store
            these as images. Compare them using cvMatchContourTrees() and cvConvexityDefects(). Which is better for matching the shape? Why?






[102] Actually, one other function, called cvRestoreMemStoragePos(), can restore memory to the storage. But this
            function is primarily for the library’s internal use and is beyond the scope of this
            book.

[103] Obviously, there must be some other value to which you can set this argument or it
              would not exist. This argument is needed because sometimes we want to extend the
                CvSeq “class”. To extend CvSeq, you create your own struct
              using the CV_SEQUENCE_FIELDS() macro in the
              structure definition of the new type; note that, when using an extended structure, the
              size of that structure must be passed. This is a pretty esoteric activity in which
              only serious gurus are likely to participate.

[104] The types in this first listing are used only rarely. To create a sequence whose
              elements are tuples of numbers, use CV_32SC2,
                CV_32FC4, etc. To create a sequence of elements of your own type, simply
              pass 0 and specify the correct elem_size.

[105] Actually, it would be more accurate to say that cvSeqElemIdx() takes the pointer being searched for.
              This is because cvSeqElemIdx() is not searching for
              an element in the sequence that is equal to *element; rather, it is searching for the element that is at the location
              given by element.

[106] For more on partitioning, see Hastie, Tibshirani, and Friedman [Hastie01].

[107] Effective with the beta 5 version of OpenCV, this size is automatically increased
              if the sequence becomes big; hence you’ll not need to worry about it under normal
              circumstances.

[108] There are some subtle differences between passing edge images and binary images to
              cvFindContours(); we will discuss those
            shortly.

[109] For clarity, the dark areas are depicted as gray in the figure, so simply imagine
            that this image is thresholded such that the gray areas are set to black before passing
            to cvFindContours().

[110] Contour trees first appeared in Reeb [Reeb46] and were further developed by
            [Bajaj97], [Kreveld97], [Pascucci02], and [Carr04].

[111] As we will see momentarily, contour trees are just one way that cvFindContours() can organize the contours it finds. In any case, they will
            be organized using the CV_TREE_NODE_FIELDS elements
            of the contours that we introduced when we first started talking about sequences.

[112] In fact, headerSize can be an arbitrary number
            equal to or greater than the values listed.

[113] Freeman chain codes will be discussed in the section entitled “Contours Are
                  Sequences”.

[114] Here “vertices” means points of type CvPoint. The sequences created by cvFindContours() are the same as those created with cvCreateSeq() with the flag CV_SEQ_ELTYPE_POINT. (That function and flag will be described in
                  detail later in this chapter.)

[115] OK, there’s a little more to it than this, but we did not want to be sidetracked
              by technicalities and so will clarify in this footnote. The type CvContour is not identical to CvSeq. In the way such things are handled in OpenCV, CvContour is, in effect, derived from CvSeq. The CvContour
              type has a few extra data members, including a color and a CvRect for stashing its bounding box.

[116] It is important not to confuse a CvSequenceScanner with the similarly named CvSeqReader. The latter is for reading the elements in a sequence,
              whereas the former is used to read from what is, in effect, a list of
              sequences.

[117] You may recall a previous mention of “extensions” of the CvSeq structure; CvChain is such an
              extension. It is defined using the CV_SEQUENCE_FIELDS() macro and has one extra element in it, a CvPoint representing the origin. You can think of CvChain as being “derived from” CvSeq. In this sense, even though the return type of cvApproxChains() is indicated as CvSeq*, it is really a pointer to a chain and is not a normal
              sequence.

[118] In particular, thickness=-1 (aka CV_FILLED) is useful for converting the contour tree (or
              an individual contour) back to the black-and-white image from which it was extracted.
              This feature, together with the offset parameter,
              can be used to do some quite complex things with contours: intersect and merge
              contours, test points quickly against the contours, perform morphological operations
                (erode/dilate), etc.

[119] For aficionados, the method used by OpenCV is the Douglas-Peucker (DP) approximation [Douglas73]. Other popular methods are
              the Rosenfeld-Johnson [Rosenfeld73] and Teh-Chin [Teh89] algorithms.

[120] If that’s too much trouble, then just set this parameter to a small fraction of
              the total curve length.

[121] For “Image and Pattern Analysis Group,” Hungarian Academy of Sciences. The
              algorithm is often referred to as “IPAN99” because it was first published in
              1999.

[122] Almost always, the default value CV_WHOLE_SEQ
                is used. The structure CvSlice contains only two
                elements: start_index and end_index. You can create your own slice to put here
                using the helper constructor function cvSlice (int start,
                  int end). Note that CV_WHOLE_SEQ is
                just shorthand for a slice starting at 0 and ending at some very large
                number.

[123] For more information on the inner workings of these fitting techniques, see
                Fitzgibbon and Fisher [Fitzgibbon95] and Zhang [Zhang96].

[124] You will probably never use block. It exists
              because no actual memory is copied when you call cvPoint
                SeqFromMat(); instead, a “virtual” memory block is created that actually
              points to the matrix you yourself provided. The variable block is used to create a
              reference to that memory of the kind expected by internal sequence or contour
              calculations.

[125] Mathematical purists might object that
                m00 should be not the contour’s length
              but rather its area. But because we are looking here at a contour and not a filled
              polygon, the length and the area are actually the same in a discrete pixel space (at
              least for the relevant distance measure in our pixel space). There are also functions
              for computing moments of IplImage images; in that
              case, m00 would actually be the area of
              nonzero pixels.

[126] Here, “appropriate” means that the moment is scaled by some power of
                m00 such that the resulting normalized
              moment is independent of the overall scale of the object. In the same sense that an
              average is the sum of N numbers divided by
              N, the higher-order moments also require a corresponding
              normalization factor.

[127] Some early work in hierarchical matching of contours is described in [Mokhtarian86] and [Neveu86] and to
              3D in [Mokhtarian88].

[128] If the input is CvSeq* or CvContour* then what will be stored are pointers to the
              points.

[129] You should know that the memory allocated for the data part of the matrix is not
              re-allocated in any way, so don’t expect a rebate on your memory. In any case, since
              these are C-arrays, the correct memory will be de-allocated when the matrix itself is
              released.

[130] It actually runs in O(N) time, which is only marginally
              faster than the O(N log N) time required to
              construct a convex hull.

[131] OpenCV implements the method of Iivarinen, Peura, Särelä, and Visa
              [Iivarinen97].


Chapter 9. Image Parts and Segmentation



Parts and Segments



This chapter focuses on how to isolate objects or parts of objects from the rest of the
        image. The reasons for doing this should be obvious. In video security, for example, the
        camera mostly looks out on the same boring background, which really isn’t of interest. What
        is of interest is when people or vehicles enter the scene, or when something is left in the
        scene that wasn’t there before. We want to isolate those events and to be able to ignore the
        endless hours when nothing is changing.
Beyond separating foreground objects from the rest of the image, there are many
        situations where we want to separate out parts of objects, such as isolating just the face
        or the hands of a person. We might also want to preprocess an image into meaningful
          super pixels, which are segments of an image that contain things like
        limbs, hair, face, torso, tree leaves, lake, path, lawn and so on. Using super pixels saves
        on computation; for example, when running an object classifier over the image, we only need
        search a box around each super pixel. We might only track the motion of these larger patches
        and not every point inside.
We saw several image segmentation algorithms when we discussed image processing in Chapter 5. The routines covered in that chapter included image
        morphology, flood fill, threshold, and pyramid segmentation. This chapter examines other
        algorithms that deal with finding, filling and isolating objects and object parts in an
        image. We start with separating foreground objects from learned background scenes. These
        background modeling functions are not built-in OpenCV functions; rather, they are examples
        of how we can leverage OpenCV functions to implement more complex algorithms.

Background Subtraction



Because of its simplicity and because camera locations are fixed in many contexts,
          background subtraction (aka background
          differencing) is probably the most fundamental image processing operation for
        video security applications. Toyama, Krumm, Brumitt, and Meyers give a good overview and comparison of many techniques [Toyama99]. In order to perform
        background subtraction, we first must “learn” a model of the background.
Once learned, this background model is compared against the current
        image and then the known background parts are subtracted away. The objects left after
          subtraction are presumably new foreground objects.
Of course “background” is an ill-defined concept that varies by application. For example, if you are watching a
        highway, perhaps average traffic flow should be considered background. Normally, background
        is considered to be any static or periodically moving parts of a scene that remain static or
        periodic over the period of interest. The whole ensemble may have time-varying components,
        such as trees waving in morning and evening wind but standing still at noon. Two common
        but substantially distinct environment categories that are likely to be encountered are
        indoor and outdoor scenes. We are interested in tools that will help us in both of these
        environments. First we will discuss the weaknesses of typical background models and then
        will move on to discuss higher-level scene models. Next we present a quick method that is
        mostly good for indoor static background scenes whose lighting doesn’t change much. We will
        follow this by a "codebook” method that is slightly slower but can work in both outdoor and indoor
        scenes; it allows for periodic movements (such as trees waving in the wind) and for lighting
        to change slowly or periodically. This method is also tolerant to learning the background
        even when there are occasional foreground objects moving by. We’ll top this off by another
        discussion of connected components (first seen in Chapter 5) in the
        context of cleaning up foreground object detection. Finally, we’ll compare the quick
        background method against the codebook background method.
Weaknesses of Background Subtraction



Although the background modeling methods mentioned here work fairly well for simple
          scenes, they suffer from an assumption that is often violated: that all the pixels are
          independent. The methods we describe learn a model for the variations a pixel experiences
          without considering neighboring pixels. In order to take surrounding pixels into account,
          we could learn a multipart model, a simple example of which would be an extension of our
          basic independent pixel model to include a rudimentary sense of the brightness of
          neighboring pixels. In this case, we use the brightness of neighboring pixels to
          distinguish when neighboring pixel values are relatively bright or dim. We then learn
          effectively two models for the individual pixel: one for when the surrounding pixels are
          bright and one for when the surrounding pixels are dim. In this way, we have a model that
          takes into account the surrounding context. But this comes at the
          cost of twice as much memory use and more computation, since we now need different values
          for when the surrounding pixels are bright or dim. We also need twice as much data to fill
          out this two-state model. We can generalize the idea of “high” and “low” contexts to a
          multidimensional histogram of single and surrounding pixel intensities as well as make it
          even more complex by doing all this over a few time steps. Of course, this richer model
          over space and time would require still more memory, more collected data samples, and more
          computational resources.
Because of these extra costs, the more complex models are usually avoided. We can
          often more efficiently invest our resources in cleaning up the false
            positive pixels that result when the independent pixel assumption is
          violated. The cleanup takes the form of image processing operations (cvErode(),
            cvDilate(), and cvFloodFill(), mostly) that
          eliminate stray patches of pixels. We’ve discussed these routines previously (Chapter 5) in the context of finding large and compact[132]
          connected components within noisy data. We will employ connected
          components again in this chapter and so, for now, will restrict our discussion to
          approaches that assume pixels vary independently.

Scene Modeling



How do we define background and foreground? If we’re watching a parking lot and a car comes in to park, then
          this car is a new foreground object. But should it stay foreground forever? How about a
          trash can that was moved? It will show up as foreground in two places: the place it was
          moved to and the “hole” it was moved from. How do we tell the difference? And again, how
          long should the trash can (and its hole) remain foreground? If we are modeling a dark room
          and suddenly someone turns on a light, should the whole room become foreground? To answer
          these questions, we need a higher-level “scene” model, in which we define multiple levels
          between foreground and background states, and a timing-based method of slowly relegating
          unmoving foreground patches to background patches. We will also have to detect and create
          a new model when there is a global change in a scene.
In general, a scene model might contain multiple layers, from “new foreground” to
          older foreground on down to background. There might also be some motion detection so that,
          when an object is moved, we can identify both its “positive” aspect (its new location) and
          its “negative” aspect (its old location, the “hole”).
In this way, a new foreground object would be put in the “new foreground” object level
          and marked as a positive object or a hole. In areas where there was no foreground object,
          we could continue updating our background model. If a foreground object does not move for
          a given time, it is demoted to “older foreground,” where its pixel statistics are
          provisionally learned until its learned model joins the learned background model.
For global change detection such as turning on a light in a room, we might use global
          frame differencing. For example, if many pixels change at once then we could classify it
          as a global rather than local change and then switch to using a model for the new
          situation.

A Slice of Pixels



Before we go on to modeling pixel changes, let’s get an idea of what pixels in an
          image can look like over time. Consider a camera looking out a window to a scene of a
            tree blowing in the wind. Figure 9-1 shows what the pixels in a given
          line segment of the image look like over 60 frames. We wish to model these kinds of
          fluctuations. Before doing so, however, we make a small digression to discuss how we
          sampled this line because it’s a generally useful trick for creating features and for
            debugging.
[image: Fluctuations of a line of pixels in a scene of a tree moving in the wind over 60 frames: some dark areas (upper left) are quite stable, whereas moving branches (upper center) can vary widely]

Figure 9-1. Fluctuations of a line of pixels in a scene of a tree moving in the wind over 60
            frames: some dark areas (upper left) are quite stable, whereas moving branches (upper
            center) can vary widely

OpenCV has functions that make it easy to sample an arbitrary line of pixels. The line
          sampling functions are cvInitLineIterator() and
            CV_NEXT_LINE_POINT(). The function prototype for
            cvInitLineIterator() is:
int cvInitLineIterator(
    const CvArr*    image,
    CvPoint         pt1,
    CvPoint         pt2,
    CvLineIterator* line_iterator,
    int             connectivity =  8,
    int             left_to_right = 0
);
The cvInitLineIterator() function returns the
          number of points that will be iterated over for that line. A companion macro, CV_NEXT_LINE_POINT(line_iterator), steps the iterator from one
          pixel to another. The input image may be of any type or
          number of channels. Points pt1 and pt2 are the ends of the line segment. The iterator line_iterator just steps through, pointing to the pixels along
          the line between the points. In the case of multichannel images, each call to CV_NEXT_LINE_POINT() moves the line_iterator to the next pixel. All the channels are available at once as
            line_iterator.ptr[0], line_iterator.ptr[1], and so
          forth. The connectivity can be 4 (the line can step right, left, up, or down) or 8 (the line can additionally step along the diagonals). Finally if left_to_right is set to 0
          (false), then line_iterator scans from pt1 to pt2; otherwise, it
          will go from the leftmost to the rightmost point. [133] Let’s take a second to look at how this method can be used to extract some
          data from a file (Example 9-1). Then we can
          re-examine Figure 9-1 in terms of the
          resulting data from that movie file.
Example 9-1. Reading out the RGB values of all pixels in one row of a video and accumulating
            those values into three separate files
 // STORE TO DISK A LINE SEGMENT OF BGR PIXELS FROM pt1 to pt2.
 //
 CvCapture*     capture = cvCreateFileCapture( argv[1] );
 int            max_buffer;
 IplImage*      rawImage;
 int            r[10000],g[10000],b[10000];
 CvLineIterator iterator;

 FILE *fptrb = fopen("blines.csv","w");   // Store the data here
 FILE *fptrg = fopen("glines.csv","w");   // for each color channel
 FILE *fptrr = fopen("rlines.csv","w");

 // MAIN PROCESSING LOOP:
 //
 for(;;){
     if( !cvGrabFrame(  capture ))
           break;
     rawImage = cvRetrieveFrame(  capture );
     max_buffer = cvInitLineIterator(rawImage,pt1,pt2,&iterator,8,0);
     for(int j=0; j<max_buffer; j++){

         fprintf(fptrb,"%d,", iterator.ptr[0]); //Write blue value
         fprintf(fptrg,"%d,", iterator.ptr[1]); //green
         fprintf(fptrr,"%d,", iterator.ptr[2]); //red

         iterator.ptr[2] = 255;   //Mark this sample in red

         CV_NEXT_LINE_POINT(iterator);  //Step to the next pixel
     }
     // OUTPUT THE DATA IN ROWS:
     //
     fprintf(fptrb,"\n");fprintf(fptrg,"\n");fprintf(fptrr,"\n");
}
// CLEAN UP:
//
fclose(fptrb); fclose(fptrg); fclose(fptrr);
cvReleaseCapture( &capture );


We could have made the line sampling even easier, as follows:
int cvSampleLine(
    const CvArr* image,
    CvPoint      pt1,
    CvPoint      pt2,
    void*        buffer,
    int          connectivity = 8
);
This function simply wraps the function cvInitLineIterator() together with the macro CV_NEXT_LINE_POINT(line_iterator) from before. It samples from pt1 to pt2; then you pass
          it a pointer to a buffer of the right type and of
          length Nchannels X max(|pt2
            x
           – pt1
            x
          | + 1, |pt2
            y
           – pt1
            y
          | + 1). Just like the line iterator, cvSampleLine() steps through each channel of each pixel in a multichannel
          image before moving to the next pixel. The function returns the number of actual elements
          it filled in the buffer.
We are now ready to move on to some methods for modeling the kinds of pixel
          fluctuations seen in Figure 9-1. As we
          move from simple to increasingly complex models, we shall restrict our attention to those
          models that will run in real time and within reasonable memory constraints.

Frame Differencing



The very simplest background subtraction method is to subtract one frame from another (possibly several
          frames later) and then label any difference that is “big enough” the foreground. This
          process tends to catch the edges of moving objects. For simplicity, let’s say we have
          three single-channel images: frameTime1, frameTime2,
          and frameForeground. The image frameTime1 is filled with an older grayscale image, and frameTime2 is filled with the current grayscale image. We
          could then use the following code to detect the magnitude (absolute value) of foreground
          differences in frameForeground:
cvAbsDiff(
    frameTime1,
    frameTime2,
    frameForeground
);
Because pixel values always exhibit noise and fluctuations, we should ignore (set to
          0) small differences (say, less than 15), and mark the rest as big differences (set to
          255):
cvThreshold(
    frameForeground,
    frameForeground,
    15,
    255,
    CV_THRESH_BINARY
);
The image frameForeground then marks candidate
          foreground objects as 255 and background pixels as 0. We need to clean up small noise
          areas as discussed earlier; we might do this with cvErode() or by using connected components. For color images, we could use
          the same code for each color channel and then combine the channels with cvOr(). This method is much too simple for most applications
          other than merely indicating regions of motion. For a more effective background model we
          need to keep some statistics about the means and average differences of pixels in the
          scene. You can look ahead to the section entitled “A quick test” to see examples of frame
          differencing in Figures Figure 9-5 and
            Figure 9-6.

Averaging Background Method



The averaging method basically learns the average and standard deviation (or
          similarly, but computationally faster, the average difference) of each pixel as its model
          of the background.
Consider the pixel line from Figure 9-1. Instead of plotting one sequence of values for each frame (as we did in that figure),
          we can represent the variations of each pixel throughout the video in terms of an average
          and average differences (Figure 9-2). In
          the same video, a foreground object (which is, in fact, a hand) passes in front of the camera. That foreground object is not nearly as
          bright as the sky and tree in the background. The brightness of the hand is also shown in
          the figure.
[image: Data from presented in terms of average differences: an object (a hand) that passes in front of the camera is somewhat darker, and the brightness of that object is reflected in the graph]

Figure 9-2. Data from Figure 9-1 presented in
            terms of average differences: an object (a hand) that passes in front of the camera is
            somewhat darker, and the brightness of that object is reflected in the graph

The averaging method makes use of four OpenCV routines: cvAcc(), to accumulate images over time; cvAbsDiff(), to accumulate frame-to-frame image differences over time;
            cvInRange(), to segment the image (once a background
          model has been learned) into foreground and background regions; and cvOr(), to compile segmentations from different color channels
          into a single mask image. Because this is a rather long code example, we will break it
          into pieces and discuss each piece in turn.
First, we create pointers for the various scratch and statistics-keeping images we
          will need along the way. It will prove helpful to sort these pointers according to the
          type of images they will later hold.
//Global storage
//
//Float, 3-channel images
//
IplImage *IavgF,*IdiffF, *IprevF, *IhiF, *IlowF;

IplImage *Iscratch,*Iscratch2;

//Float, 1-channel images
//
IplImage *Igray1,*Igray2, *Igray3;
IplImage *Ilow1,  *Ilow2, *Ilow3;
IplImage *Ihi1,   *Ihi2,  *Ihi3;

// Byte, 1-channel image
//
IplImage *Imaskt;

//Counts number of images learned for averaging later.
//
float Icount;
Next we create a single call to allocate all the necessary intermediate images. For
          convenience we pass in a single image (from our video) that can be used as a reference for
          sizing the intermediate images.
// I is just a sample image for allocation purposes
// (passed in for sizing)
//
void AllocateImages( IplImage* I ){

  CvSize sz = cvGetSize( I );

  IavgF     = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  IdiffF    = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  IprevF    = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  IhiF      = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  IlowF     = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  Ilow1     = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Ilow2     = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Ilow3     = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Ihi1      = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Ihi2      = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Ihi3      = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  cvZero( IavgF );
  cvZero( IdiffF );
  cvZero( IprevF );
  cvZero( IhiF );
  cvZero( IlowF );
  Icount    = 0.00001; //Protect against divide by zero

  Iscratch  = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  Iscratch2 = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  Igray1    = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Igray2    = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Igray3    = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Imaskt    = cvCreateImage( sz, IPL_DEPTH_8U,  1 );
  cvZero( Iscratch );
  cvZero( Iscratch2 );
}
In the next piece of code, we learn the accumulated background image and the
          accumulated absolute value of frame-to-frame image differences (a computationally quicker
          proxy [134] for learning the standard deviation of the image pixels). This is typically
          called for 30 to 1,000 frames, sometimes taking just a few frames from each second or
          sometimes taking all available frames. The routine will be called with a three-color
          channel image of depth 8 bits.
// Learn the background statistics for one more frame
// I is a color sample of the background, 3-channel, 8u
//
void accumulateBackground( IplImage *I ){

   static int first = 1;                 // nb. Not thread safe
   cvCvtScale( I, Iscratch, 1, 0 );    // convert to float
   if( !first ){
       cvAcc( Iscratch, IavgF );
       cvAbsDiff( Iscratch, IprevF, Iscratch2 );
       cvAcc( Iscratch2, IdiffF );
       Icount += 1.0;
   }
   first = 0;
   cvCopy( Iscratch, IprevF );

}
We first use cvCvtScale() to turn the raw
          background 8-bit-per-channel, three-color-channel image into a floating-point
          three-channel image. We then accumulate the raw floating-point images into IavgF. Next, we calculate the frame-to-frame absolute
          difference image using cvAbsDiff() and accumulate that
          into image IdiffF. Each time we accumulate these
          images, we increment the image count Icount, a global,
          to use for averaging later.
Once we have accumulated enough frames, we convert them into a statistical model of the background. That is, we compute the means and
          deviation measures (the average absolute differences) of each pixel:
void createModelsfromStats() {

    cvConvertScale( IavgF, IavgF,( double)(1.0/Icount) );
    cvConvertScale( IdiffF, IdiffF,(double)(1.0/Icount) );

    //Make sure diff is always something
    //
    cvAddS(  IdiffF, cvScalar( 1.0, 1.0, 1.0), IdiffF );
    setHighThreshold( 7.0 );
    setLowThreshold( 6.0 );
}
In this code, cvConvertScale() calculates the
          average raw and absolute difference images by dividing by the number of input images
          accumulated. As a precaution, we ensure that the average difference image is at least 1;
          we’ll need to scale this factor when calculating a foreground-background threshold and would like to avoid the degenerate case in which these two thresholds could become equal.
Both setHighThreshold() and setLowThreshold() are utility functions that set a threshold
          based on the frame-to-frame average absolute differences. The call setHighThreshold(7.0) fixes a threshold such that any value
          that is 7 times the average frame-to-frame absolute difference above the average value for
          that pixel is considered foreground; likewise, setLowThreshold(6.0) sets a threshold bound that is 6 times the average
          frame-to-frame absolute difference below the average value for that pixel. Within this
          range around the pixel’s average value, objects are considered to be background. These
          threshold functions are:
void setHighThreshold( float scale )
{
   cvConvertScale( IdiffF, Iscratch, scale );
   cvAdd( Iscratch, IavgF, IhiF );
   cvSplit( IhiF, Ihi1, Ihi2, Ihi3, 0 );
}

void setLowThreshold( float scale )
{
   cvConvertScale( IdiffF, Iscratch, scale );
   cvSub( IavgF, Iscratch, IlowF );
   cvSplit( IlowF, Ilow1, Ilow2, Ilow3, 0 );
}
Again, in setLowThreshold() and setHighThreshold() we use cvConvertScale() to multiply the values prior to adding or subtracting these
          ranges relative to IavgF. This action sets the IhiF and IlowF range for
          each channel in the image via cvSplit().
Once we have our background model, complete with high and low thresholds, we use it to
          segment the image into foreground (things not “explained” by the background image) and the
          background (anything that fits within the high and low thresholds of our background
          model). Segmentation is done by calling:
// Create a binary: 0,255 mask where 255 means foreground pixel
// I      Input image, 3-channel, 8u
// Imask  Mask image to be created, 1-channel 8u
//
void backgroundDiff(
  IplImage *I,
  IplImage *Imask
) {
  cvCvtScale(I,Iscratch,1,0); // To float;
  cvSplit( Iscratch, Igray1,Igray2,Igray3, 0 );

  //Channel 1
  //
  cvInRange(Igray1,Ilow1,Ihi1,Imask);

  //Channel 2
  //
 cvInRange(Igray2,Ilow2,Ihi2,Imaskt);
 cvOr(Imask,Imaskt,Imask);

 //Channel 3
 //
 cvInRange(Igray3,Ilow3,Ihi3,Imaskt);
 cvOr(Imask,Imaskt,Imask)

 //Finally, invert the results
 //
 cvSubRS( Imask, 255, Imask);
}
This function first converts the input image I (the
          image to be segmented) into a floating-point image by calling cvCvtScale(). We then convert the three-channel image into separate
          one-channel image planes using cvSplit(). These color
          channel planes are then checked to see if they are within the high and low range of the
          average background pixel via the cvInRange()
          function, which sets the grayscale 8-bit depth image Imaskt to max (255) when it’s in range and to 0 otherwise. For each color
          channel we logically OR the segmentation results into a mask image Imask, since strong differences in any color channel are
          considered evidence of a foreground pixel here. Finally, we invert Imask using cvSubRS(),
          because foreground should be the values out of range, not in range. The mask image is the
          output result.
For completeness, we need to release the image memory once we’re finished using the
          background model:
void DeallocateImages()
{
   cvReleaseImage( &IavgF);
   cvReleaseImage( &IdiffF );
   cvReleaseImage( &IprevF );
   cvReleaseImage( &IhiF );
   cvReleaseImage( &IlowF );
   cvReleaseImage( &Ilow1 );
   cvReleaseImage( &Ilow2 );
   cvReleaseImage( &Ilow3 );
   cvReleaseImage( &Ihi1 );
   cvReleaseImage( &Ihi2 );
   cvReleaseImage( &Ihi3 );
   cvReleaseImage( &Iscratch );
   cvReleaseImage( &Iscratch2 );
   cvReleaseImage( &Igray1 );
   cvReleaseImage( &Igray2 );
   cvReleaseImage( &Igray3 );
   cvReleaseImage( &Imaskt);
}
We’ve just seen a simple method of learning background scenes and segmenting foreground objects. It will work
          well only with scenes that do not contain moving background components (like a waving
          curtain or waving trees). It also assumes that the lighting remains fairly constant (as in
          indoor static scenes). You can look ahead to Figure 9-5 to check the performance of this
          averaging method.

Accumulating means, variances, and covariances



The averaging background method just described made use of one accumulation
          function, cvAcc(). It is one of a group of helper
          functions for accumulating sums of images, squared images, multiplied images, or average
          images from which we can compute basic statistics (means, variances, covariances) for all
          or part of a scene. In this section, we’ll look at the other functions in this
          group.
The images in any given function must all have the same width and height. In each
          function, the input images named image, image1, or
            image2 can be one- or three-channel byte (8-bit) or
          floating-point (32F) image arrays. The output accumulation images named sum, sqsum, or acc can be
          either single-precision (32F) or double-precision (64F) arrays. In the accumulation functions, the mask image (if
          present) restricts processing to only those locations where the mask pixels are
          nonzero.
Finding the mean. To compute a mean value for each
          pixel across a large set of images, the easiest method is to add them all up using
            cvAcc() and then divide by the total number of images
          to obtain the mean.
void cvAcc(
  const Cvrr*  image,
  CvArr*       sum,
  const CvArr* mask = NULL
);
An alternative that is often useful is to use a running
            average.
void cvRunningAvg(
  const CvArr* image,
  CvArr*       acc,
  double       alpha,
  const CvArr* mask = NULL
);
The running average is given by the following formula:
[image: image with no caption]

For a constant value of α, running averages are not equivalent to
          the result of summing with cvAcc(). To see this, simply
          consider adding three numbers (2, 3, and 4) with α set to 0.5. If we were to accumulate
          them with cvAcc(), then the sum would be 9 and the
          average 3. If we were to accumulate them with cvRunningAverage(), the first sum would give 0.5 X 2 + 0.5 X 3 = 2.5 and then
          adding the third term would give 0.5 X 2.5 + 0.5 X 4 = 3.25. The reason the second number
          is larger is that the most recent contributions are given more weight than those from
          farther in the past. Such a running average is thus also called a
            tracker. The parameter α essentially sets the amount of time
          necessary for the influence of a previous frame to fade.
Finding the variance. We can also accumulate squared images, which will allow
          us to compute quickly the variance of individual pixels.
void cvSquareAcc(
  const CvArr* image,
  CvArr*       sqsum,
  const CvArr* mask = NULL
);
You may recall from your last class in statistics that the variance of a finite
          population is defined by the formula:
[image: image with no caption]

where [image: ] is the mean of x for all N
          samples. The problem with this formula is that it entails making one pass through the
          images to compute [image: ] and then a second pass to compute σ2. A
          little algebra should allow you to convince yourself that the following formula will work
          just as well:
[image: image with no caption]

Using this form, we can accumulate both the pixel values and their squares in a single
          pass. Then, the variance of a single pixel is just the average of the square minus the
          square of the average.
Finding the covariance. We can also see how images vary
          over time by selecting a specific lag and then multiplying the
          current image by the image from the past that corresponds to the given lag. The function
            cvMultiplyAcc() will perform a pixelwise
          multiplication of the two images and then add the result to the “running total” in
            acc:
void cvMultiplyAcc(
  const CvArr* image1,
  const CvArr* image2,
  CvArr*       acc,
  const CvArr* mask = NULL
);
For covariance, there is a formula analogous to the one we just gave for variance.
          This formula is also a single-pass formula in that it has been manipulated algebraically
          from the standard form so as not to require two trips through the list of images:
[image: image with no caption]

In our context, x is the image at time t and
            y is the image at time t –
            d, where d is the lag.
We can use the accumulation functions described here to create a variety of statistics-based
          background models. The literature is full of variations on the basic model used as our
          example. You will probably find that, in your own applications, you will tend to extend
          this simplest model into slightly more specialized versions. A common enhancement, for
          example, is for the thresholds to be adaptive to some observed global state
          changes.

Advanced Background Method



Many background scenes contain complicated moving objects such as trees waving in the
          wind, fans turning, curtains fluttering, et cetera. Often such scenes also contain varying
          lighting, such as clouds passing by or doors and windows letting in different
            light.
A nice method to deal with this would be to fit a time-series model to each pixel or
          group of pixels. This kind of model deals with the temporal fluctuations well, but its
          disadvantage is the need for a great deal of memory [Toyama99]. If we use 2 seconds of
          previous input at 30 Hz, this means we need 60 samples for each pixel. The resulting model
          for each pixel would then encode what it had learned in the form of 60 different adapted
            weights. Often we’d need to gather background statistics for much
          longer than 2 seconds, which means that such methods are typically impractical on
          present-day hardware.
To get fairly close to the performance of adaptive filtering, we take inspiration from
          the techniques of video compression and attempt to form a
            codebook[135]to represent significant states in the background. [136] The simplest way to do this would be to compare a new value observed for a
          pixel with prior observed values. If the value is close to a prior value, then it is
          modeled as a perturbation on that color. If it is not close, then it can seed a new group
          of colors to be associated with that pixel. The result could be envisioned as a bunch of
          blobs floating in RGB space, each blob representing a separate volume considered likely to
          be background.
In practice, the choice of RGB is not particularly optimal. It is almost always better
          to use a color space whose axis is aligned with brightness, such as the YUV color
          space. (YUV is the most common choice, but spaces such as HSV, where V is essentially
          brightness, would work as well.) The reason for this is that, empirically, most of the
          variation in background tends to be along the brightness axis, not the color
            axis.
The next detail is how to model the “blobs.” We have essentially the same choices as
          before with our simpler model. We could, for example, choose to model the blobs as
          Gaussian clusters with a mean and a covariance. It turns out that the simplest case, in
          which the “blobs” are simply boxes with a learned extent in each of the three axes of our color space,
          works out quite well. It is the simplest in terms of memory required and in terms of the
          computational cost of determining whether a newly observed pixel is inside any of the
          learned boxes.
Let’s explain what a codebook is by using a simple example (Figure 9-3). A codebook is made up of boxes
          that grow to cover the common values seen over time. The upper panel of Figure 9-3 shows a waveform over time. In the
          lower panel, boxes form to cover a new value and then slowly grow to cover nearby values.
          If a value is too far away, then a new box forms to cover it and likewise grows slowly
          toward new values.
[image: Codebooks are just “boxes” delimiting intensity values: a box is formed to cover a new value and slowly grows to cover nearby values; if values are too far away then a new box is formed (see text)]

Figure 9-3. Codebooks are just “boxes” delimiting intensity values: a box is formed to cover a
            new value and slowly grows to cover nearby values; if values are too far away then a new
            box is formed (see text)

In the case of our background model, we will learn a codebook of boxes that cover
          three dimensions: the three channels that make up our image at each pixel. Figure 9-4 visualizes the (intensity dimension
          of the) codebooks for six different pixels learned from the data in Figure 9-1. [137] This codebook method can deal with pixels that change levels dramatically (e.g.,
          pixels in a windblown tree, which might alternately be one of many colors of leaves, or
          the blue sky beyond that tree). With this more precise method of modeling, we can detect a
          foreground object that has values between the pixel values. Compare this with Figure 9-2, where the averaging method cannot
          distinguish the hand value (shown as a dotted line) from the pixel fluctuations. Peeking
          ahead to the next section, we see the better performance of the codebook method versus the
          averaging method shown later in Figure 9-7.
[image: Intensity portion of learned codebook entries for fluctuations of six chosen pixels (shown as vertical boxes): codebook boxes accommodate pixels that take on multiple discrete values and so can better model discontinuous distributions; thus they can detect a foreground hand (value at dotted line) whose average value is between the values that background pixels can assume. In this case the codebooks are one dimensional and only represent variations in intensity]

Figure 9-4. Intensity portion of learned codebook entries for fluctuations of six chosen pixels
            (shown as vertical boxes): codebook boxes accommodate pixels that take on multiple
            discrete values and so can better model discontinuous distributions; thus they can
            detect a foreground hand (value at dotted line) whose average value is between the
            values that background pixels can assume. In this case the codebooks are one dimensional
            and only represent variations in intensity

In the codebook method of learning a background model, each box is defined by two
          thresholds (max and min) over each of the three color axes. These box boundary thresholds will
          expand (max getting larger, min getting smaller) if new background samples fall within a learning
          threshold (learnHigh and learnLow) above max or below min, respectively. If new background samples fall outside of
          the box and its learning thresholds, then a new box will be started. In the
            background difference mode there are acceptance thresholds maxMod and minMod; using
          these threshold values, we say that if a pixel is “close enough” to a max or a min box boundary
          then we count it as if it were inside the box. At runtime, the threshold for inclusion in
          a “box” can be set to a different value than was used in the construction of the boxes;
          often this threshold is simply set to zero in all three dimensions.
Tip
A situation we will not cover is a pan-tilt camera surveying a large scene. When
            working with a large scene, it is necessary to stitch together learned models indexed by
            the pan and tilt angles.

Structures



It’s time to look at all of this in more detail, so let’s create an implementation
            of the codebook algorithm. First, we need our codebook structure, which will simply
            point to a bunch of boxes in YUV space:
typedef struct code_book {
   code_element **cb;
   int numEntries;
   int t;         //count every access
} codeBook;
We track how many codebook entries we have in numEntries. The variable t counts the
            number of points we’ve accumulated since the start or the last clear operation. Here’s
            how the actual codebook elements are described:
#define CHANNELS 3
typedef struct ce {
   uchar learnHigh[CHANNELS]; //High side threshold for learning
   uchar learnLow[CHANNELS];  //Low side threshold for learning
   uchar max[CHANNELS];       //High side of box boundary
   uchar min[CHANNELS];       //Low side of box boundary
   int t_last_update;         //Allow us to kill stale entries
   int stale;                 //max negative run (longest period of inactivity)
} code_element;
Each codebook entry consumes four bytes per channel plus two integers, or CHANNELS X 4 + 4 + 4 bytes (20 bytes when we use three
            channels). We may set CHANNELS to any positive number
            equal to or less than the number of color channels in an image, but it is usually set to
            either 1 (“Y”, or brightness only) or 3 (YUV, HSV). In this structure, for each channel,
              max and min are
            the boundaries of the codebook box. The parameters learnHigh[] and learnLow[] are the
            thresholds that trigger generation of a new code element. Specifically, a new code
            element will be generated if a new pixel is encountered whose values do not lie between
              min – learnLow and max +
              learnHigh in each of the channels. The time to last update (t_last_update) and stale
            are used to enable the deletion of seldom-used codebook entries created during learning.
            Now we can proceed to investigate the functions that use this structure to learn dynamic
            backgrounds.

Learning the background



We will have one codeBook of code_elements for each pixel. We will need an array of such
            codebooks that is equal in length to the number of pixels in the images we’ll be
            learning. For each pixel, update_codebook() is called
            for as many images as are sufficient to capture the relevant changes in the background.
            Learning may be updated periodically throughout, and clear_stale_entries() can be used to learn the background in the presence
            of (small numbers of) moving foreground objects. This is possible because the
            seldom-used “stale” entries induced by a moving foreground will be deleted. The
            interface to update_codebook() is as follows.
  //////////////////////////////////////////////////////////////
  // int update_codebook(uchar *p, codeBook &c, unsigned cbBounds)
  // Updates the codebook entry with a new data point
  //
  // p            Pointer to a YUV pixel
  // c            Codebook for this pixel
  // cbBounds     Learning bounds for codebook (Rule of thumb: 10)
  // numChannels  Number of color channels we're learning
  //
  // NOTES:
  //      cvBounds must be of length equal to numChannels
  //
  // RETURN
  //   codebook index
  //
  int update_codebook(
    uchar*    p,
    codeBook& c,
    unsigned* cbBounds,
    int       numChannels
  ){
     unsigned int high[3],low[3];
     for(n=0; n<numChannels; n++)
     {
        high[n] = *(p+n)+*(cbBounds+n);
        if(high[n] > 255) high[n] = 255;
        low[n] = *(p+n)-*(cbBounds+n);
        if(low[n] < 0) low[n] = 0;
     }
     int matchChannel;

     // SEE IF THIS FITS AN EXISTING CODEWORD
     //
     for(int i=0; i<c.numEntries; i++){
        matchChannel = 0;
        for(n=0; n<numChannels; n++){
           if((c.cb[i]->learnLow[n] <= *(p+n)) &&
          //Found an entry for this channel
          (*(p+n) <= c.cb[i]->learnHigh[n]))
            {
                matchChannel++;
            }
         }
         if(matchChannel == numChannels) //If an entry was found
         {
            c.cb[i]->t_last_update = c.t;
            //adjust this codeword for the first channel
            for(n=0; n<numChannels; n++){
               if(c.cb[i]->max[n] < *(p+n))
               {
                  c.cb[i]->max[n] = *(p+n);
               }
               else if(c.cb[i]->min[n] > *(p+n))
               {
                  c.cb[i]->min[n] = *(p+n);
               }
         }
         break;
   }
 }
. . .continued below
This function grows or adds a codebook entry when the pixel p falls
            outside the existing codebook boxes. Boxes grow when the pixel is within cbBounds of an existing box. If a pixel is outside the
              cbBounds distance from a box, a new codebook box is
            created. The routine first sets high and low levels to be used later. It then goes through each
            codebook entry to check whether the pixel value *p is
            inside the learning bounds of the codebook “box”. If the pixel is within the learning
            bounds for all channels, then the appropriate max or
              min level is adjusted to include this pixel and the
            time of last update is set to the current timed count c.t. Next, the update_codebook() routine
            keeps statistics on how often each codebook entry is hit:
. . . continued from above

   // OVERHEAD TO TRACK POTENTIAL STALE ENTRIES
   //
   for(int s=0; s<c.numEntries; s++){

       // Track which codebook entries are going stale:
       //
       int negRun = c.t - c.cb[s]->t_last_update;
       if(c.cb[s]->stale < negRun) c.cb[s]->stale = negRun;

 }

. . .continued below
Here, the variable stale contains the largest
              negative runtime (i.e., the longest span of time during which
            that code was not accessed by the data). Tracking stale entries allows us to delete
            codebooks that were formed from noise or moving foreground objects and hence tend to
            become stale over time. In the next stage of learning the background, update_codebook() adds a new codebook if needed:
. . . continued from above

   // ENTER A NEW CODEWORD IF NEEDED
   //
   if(i == c.numEntries) //if no existing codeword found, make one
   {
      code_element **foo = new code_element* [c.numEntries+1];
      for(int ii=0; ii<c.numEntries; ii++) {
        foo[ii] = c.cb[ii];
      }
      foo[c.numEntries] = new code_element;
      if(c.numEntries) delete [] c.cb;
      c.cb = foo;
      for(n=0; n<numChannels; n++) {
         c.cb[c.numEntries]->learnHigh[n] = high[n];
         c.cb[c.numEntries]->learnLow[n] = low[n];
         c.cb[c.numEntries]->max[n] = *(p+n);
         c.cb[c.numEntries]->min[n] = *(p+n);
      }
         c.cb[c.numEntries]->t_last_update = c.t;
         c.cb[c.numEntries]->stale = 0;
         c.numEntries += 1;
  }
. . .continued below
Finally, update_codebook() slowly adjusts (by
            adding 1) the learnHigh and learnLow learning boundaries if pixels were found outside of the box
            thresholds but still within the high and low bounds:
. . . continued from above

   // SLOWLY ADJUST LEARNING BOUNDS
   //
   for(n=0; n<numChannels; n++)
   {
      if(c.cb[i]->learnHigh[n] < high[n]) c.cb[i]->learnHigh[n] += 1;
      if(c.cb[i]->learnLow[n] > low[n]) c.cb[i]->learnLow[n] -= 1;
   }
   return(i);
}
The routine concludes by returning the index of the modified codebook. We’ve now
            seen how codebooks are learned. In order to learn in the presence of moving foreground
            objects and to avoid learning codes for spurious noise, we need a way to delete entries
            that were accessed only rarely during learning.

Learning with moving foreground objects



The following routine, clear_stale_entries(),
            allows us to learn the background even if there are moving foreground objects.
///////////////////////////////////////////////////////////////////
//int clear_stale_entries(codeBook &c)
// During learning, after you've learned for some period of time,
// periodically call this to clear out stale codebook entries
//
// c   Codebook to clean up
//
// Return
// number of entries cleared
//
int clear_stale_entries(codeBook &c){
  int staleThresh = c.t>>1;
  int *keep = new int [c.numEntries];
  int keepCnt = 0;
  // SEE WHICH CODEBOOK ENTRIES ARE TOO STALE
  //
  for(int i=0; i<c.numEntries; i++){
     if(c.cb[i]->stale > staleThresh)
        keep[i] = 0; //Mark for destruction
     else
     {
        keep[i] = 1; //Mark to keep
        keepCnt += 1;
     }
  }
  // KEEP ONLY THE GOOD
  //
  c.t = 0;          //Full reset on stale tracking
  code_element **foo =   new code_element* [keepCnt];
  int k=0;
  for(int ii=0; ii<c.numEntries; ii++){
     if(keep[ii])
     {
        foo[k] = c.cb[ii];
        //We have to refresh these entries for next clearStale
        foo[k]->t_last_update = 0;
        k++;
     }
  }
  // CLEAN UP
  //
  delete [] keep;
  delete [] c.cb;
  c.cb = foo;
  int numCleared = c.numEntries - keepCnt;
  c.numEntries = keepCnt;
  return(numCleared);
}
The routine begins by defining the parameter staleThresh, which is hardcoded (by a rule of thumb) to be half the total
            running time count, c.t. This means that, during
            background learning, if codebook entry i is not accessed for a
            period of time equal to half the total learning time, then i is marked for deletion (keep[i] = 0).
            The vector keep[] is allocated so that we can mark
            each codebook entry; hence it is c.numEntries long.
            The variable keepCnt counts how many entries we will
            keep. After recording which codebook entries to keep, we create a new pointer, foo, to a vector of code_element pointers that is keepCnt
            long, and then the nonstale entries are copied into it. Finally, we delete the old
            pointer to the codebook vector and replace it with the new, nonstale vector.

Background differencing: Finding foreground objects



We’ve seen how to create a background codebook model and how to clear it of
            seldom-used entries. Next we turn to background_diff(), where we use the learned model to segment foreground
            pixels from the previously learned background:
////////////////////////////////////////////////////////////
// uchar background_diff( uchar *p, codeBook &c,
//                         int minMod, int maxMod)
// Given a pixel and a codebook, determine if the pixel is
// covered by the codebook
//
// p            Pixel pointer (YUV interleaved)
// c            Codebook reference
// numChannels  Number of channels we are testing
// maxMod       Add this (possibly negative) number onto
//              max level when determining if new pixel is foreground
// minMod       Subract this (possibly negative) number from
//              min level when determining if new pixel is foreground
//
// NOTES:
// minMod and maxMod must have length numChannels,
// e.g. 3 channels => minMod[3], maxMod[3]. There is one min and
//      one max threshold per channel.
//
// Return
// 0 => background, 255 => foreground
//
uchar background_diff(
  uchar*    p,
  codeBook& c,
  int           numChannels,
  int*          minMod,
  int*          maxMod
) {
  int matchChannel;

  // SEE IF THIS FITS AN EXISTING CODEWORD
  //
  for(int i=0; i<c.numEntries; i++) {
     matchChannel = 0;
     for(int n=0; n<numChannels; n++) {
        if((c.cb[i]->min[n] - minMod[n] <= *(p+n)) &&
           (*(p+n) <= c.cb[i]->max[n] + maxMod[n])) {
           matchChannel++; //Found an entry for this channel
        } else {
           break;
        }
     }
     if(matchChannel == numChannels) {
        break; //Found an entry that matched all channels
     }
  }
  if(i >= c.numEntries) return(0);
  return(255);
}
The background differencing function has an inner loop similar to the learning
            routine update_codebook, except here we look within
            the learned max and min bounds plus an offset threshold, maxMod and minMod, of each codebook box.
            If the pixel is within the box plus maxMod on the
            high side or minus minMod on the low side for each
            channel, then the matchChannel count is incremented.
            When matchChannel equals the number of channels,
            we’ve searched each dimension and know that we have a match. If the pixel is within a
            learned box, 255 is returned (a positive detection of foreground); otherwise, 0 is
            returned (background).
The three functions update_codebook(),
              clear_stale_entries(), and background_diff() constitute a codebook method of segmenting foreground from learned background.

Using the codebook background model



To use the codebook background segmentation technique, typically we take the
            following steps.
	Learn a basic model of the background over a few seconds or minutes using
                  update_codebook().

	Clean out stale entries with clear_stale_entries().

	Adjust the thresholds minMod and maxMod to best segment the known foreground.

	Maintain a higher-level scene model (as discussed previously).

	Use the learned model to segment the foreground from the background via background_diff().

	Periodically update the learned background pixels.

	At a much slower frequency, periodically clean out stale codebook entries with
                  clear_stale_entries().




A few more thoughts on codebook models



In general, the codebook method works quite well across a wide number of conditions, and it
            is relatively quick to train and to run. It doesn’t deal well with varying patterns of
            light—such as morning, noon, and evening sunshine—or with someone turning lights on or
            off indoors. This type of global variability can be taken into account by using several
            different codebook models, one for each condition, and then allowing the condition to
            control which model is active.


Connected Components for Foreground Cleanup



Before comparing the averaging method to the codebook method, we should pause to
          discuss ways to clean up the raw segmented image using connected-components analysis. This
          form of analysis takes in a noisy input mask image; it then uses the morphological
          operation open to shrink areas of small noise to 0 followed by the
          morphological operation close to rebuild the area of surviving
          components that was lost in opening. Thereafter, we can find the “large enough” contours
          of the surviving segments and can optionally proceed to take statistics of all such
          segments. We can then retrieve either the largest contour or all contours of size above
          some threshold. In the routine that follows, we implement most of the functions that you
          could want in connected components:
	Whether to approximate the surviving component contours by polygons or by convex
              hulls

	Setting how large a component contour must be in order not to be deleted

	Setting the maximum number of component contours to return

	Optionally returning the bounding boxes of the surviving component contours

	Optionally returning the centers of the surviving component contours



The connected components header that implements these operations is as follows.
///////////////////////////////////////////////////////////////////
// void find_connected_components(IplImage *mask, int poly1_hull0,
//                            float perimScale, int *num,
//                            CvRect *bbs, CvPoint *centers)
// This cleans up the foreground segmentation mask derived from calls
// to backgroundDiff
//
// mask          Is a grayscale (8-bit depth) "raw" mask image that
//               will be cleaned up
//
// OPTIONAL PARAMETERS:
// poly1_hull0   If set, approximate connected component by
//                  (DEFAULT) polygon, or else convex hull (0)
// perimScale    Len = image (width+height)/perimScale. If contour
//                 len < this, delete that contour (DEFAULT: 4)
// num           Maximum number of rectangles and/or centers to
//                 return; on return, will contain number filled
//                 (DEFAULT: NULL)
// bbs           Pointer to bounding box rectangle vector of
//                 length num. (DEFAULT SETTING: NULL)
// centers       Pointer to contour centers vector of length
//                  num (DEFAULT: NULL)
//
void find_connected_components(
  IplImage* mask,
  int       poly1_hull0 = 1,
  float     perimScale  = 4,
  int*      num         = NULL,
  CvRect*   bbs         = NULL,
  CvPoint*  centers     = NULL
 );
The function body is listed below. First we declare memory storage for the connected
          components contour. We then do morphological opening and closing in order to clear out
          small pixel noise, after which we rebuild the eroded areas that survive the erosion of the
          opening operation. The routine takes two additional parameters, which here are hardcoded
          via #define. The defined values work well, and you are
          unlikely to want to change them. These additional parameters control how simple the
          boundary of a foreground region should be (higher numbers are more simple) and how many
          iterations the morphological operators should perform; the higher the number of
          iterations, the more erosion takes place in opening before dilation in closing. [138] More erosion eliminates larger regions of blotchy noise at the cost of eroding
          the boundaries of larger regions. Again, the parameters used in this sample code work
          well, but there’s no harm in experimenting with them if you like.
// For connected components:
// Approx.threshold - the bigger it is, the simpler is the boundary
//
#define CVCONTOUR_APPROX_LEVEL 2

// How many iterations of erosion and/or dilation there should be
//
#define CVCLOSE_ITR 1
We now discuss the connected-component algorithm itself. The first part of the routine
          performs the morphological open and closing operations:
void find_connected_components(
  IplImage *mask,
  int poly1_hull0,
  float perimScale,
  int *num,
  CvRect *bbs,
  CvPoint *centers
) {

  static CvMemStorage*   mem_storage = NULL;
  static CvSeq*          contours    = NULL;

  //CLEAN UP RAW MASK
  //
  cvMorphologyEx( mask, mask, 0, 0, CV_MOP_OPEN, CVCLOSE_ITR );
  cvMorphologyEx( mask, mask, 0, 0, CV_MOP_CLOSE, CVCLOSE_ITR );
Now that the noise has been removed from the mask, we find all contours:
//FIND CONTOURS AROUND ONLY BIGGER REGIONS
//
if( mem_storage==NULL ) {
   mem_storage = cvCreateMemStorage(0);
}  else {
   cvClearMemStorage(mem_storage);
}

CvContourScanner scanner = cvStartFindContours(
  mask,
  mem_storage,
  sizeof(CvContour),
  CV_RETR_EXTERNAL,
  CV_CHAIN_APPROX_SIMPLE
);
Next, we toss out contours that are too small and approximate the rest with polygons
          or convex hulls (whose complexity has already been set by CVCONTOUR_APPROX_LEVEL):
CvSeq* c;
int numCont = 0;
while( (c = cvFindNextContour( scanner )) != NULL ) {

  double len = cvContourPerimeter( c );

  // calculate perimeter len threshold:
  //
  double q = (mask->height + mask->width)/perimScale;

  //Get rid of blob if its perimeter is too small:
  //
  if( len < q ) {
     cvSubstituteContour( scanner, NULL );
  } else {

    // Smooth its edges if its large enough
    //
    CvSeq* c_new;
    if( poly1_hull0 ) {

      // Polygonal approximation
      //
      c_new = cvApproxPoly(
        c,
        sizeof(CvContour),
        mem_storage,
        CV_POLY_APPROX_DP,
        CVCONTOUR_APPROX_LEVEL,
        0
      );

    } else {

       // Convex Hull of the segmentation
       //
       c_new = cvConvexHull2(
         c,
         mem_storage,
         CV_CLOCKWISE,
         1
      );
   }
   cvSubstituteContour( scanner, c_new );
   numCont++;
  }
}
contours = cvEndFindContours( &scanner );
In the preceding code, CV_POLY_APPROX_DP causes the
            Douglas-Peucker approximation algorithm to be used, and CV_CLOCKWISE is the default direction of the convex hull
          contour. All this processing yields a list of contours. Before drawing the contours back
          into the mask, we define some simple colors to draw:
// Just some convenience variables
const CvScalar CVX_WHITE   = CV_RGB(0xff,0xff,0xff)
const CvScalar CVX_BLACK   = CV_RGB(0x00,0x00,0x00)
We use these definitions in the following code, where we first zero out the mask and
          then draw the clean contours back into the mask. We also check whether the user wanted to
          collect statistics on the contours (bounding boxes and centers):
// PAINT THE FOUND REGIONS BACK INTO THE IMAGE
//
cvZero( mask );
IplImage *maskTemp;
// CALC CENTER OF MASS AND/OR BOUNDING RECTANGLES
//
if(num != NULL) {

   //User wants to collect statistics
   //
   int N = *num, numFilled = 0, i=0;
   CvMoments moments;
   double M00, M01, M10;
   maskTemp = cvCloneImage(mask);
   for(i=0, c=contours; c != NULL; c = c->h_next,i++ ) {

     if(i < N) {
        // Only process up to *num of them
        //
        cvDrawContours(
          maskTemp,
          c,
          CVX_WHITE,
          CVX_WHITE,
          -1,
          CV_FILLED,
          8
        );

        // Find the center of each contour
        //
        if(centers != NULL) {

            cvMoments(maskTemp,&moments,1);
            M00 = cvGetSpatialMoment(&moments,0,0);
            M10 = cvGetSpatialMoment(&moments,1,0);
            M01 = cvGetSpatialMoment(&moments,0,1);
            centers[i].x = (int)(M10/M00);
            centers[i].y = (int)(M01/M00);
        }

        //Bounding rectangles around blobs
        //
        if(bbs != NULL) {
           bbs[i] = cvBoundingRect(c);
        }
        cvZero(maskTemp);
        numFilled++;
      }
      // Draw filled contours into mask
      //
      cvDrawContours(
        mask,
        c,
        CVX_WHITE,
        CVX_WHITE,
        -1,
        CV_FILLED,
        8
      );
   }                          //end looping over contours
   *num = numFilled;
   cvReleaseImage( &maskTemp);
}
If the user doesn’t need the bounding boxes and centers of the resulting regions in
          the mask, we just draw back into the mask those cleaned-up contours representing large
          enough connected components of the background.
 // ELSE JUST DRAW PROCESSED CONTOURS INTO THE MASK
 //
 else {
   // The user doesn't want statistics, just draw the contours
   //
   for( c=contours; c != NULL; c = c->h_next ) {
     cvDrawContours(
     mask,
     c,
     CVX_WHITE,
     CVX_BLACK,
     -1,
     CV_FILLED,
     8
   );
 }
}
That concludes a useful routine for creating clean masks out of noisy raw masks. Now
          let’s look at a short comparison of the background subtraction methods.
A quick test



We start with an example to see how this really works in an actual video. Let’s
            stick with our video of the tree outside of the window. Recall (Figure 9-1) that at some point a hand passes
            through the scene. One might expect that we could find this hand relatively easily with
            a technique such as frame differencing (discussed previously in its own section). The basic idea
            of frame differencing was to subtract the current frame from a “lagged” frame and then
            threshold the difference.
Sequential frames in a video tend to be quite similar. Hence one might expect that,
            if we take a simple difference of the original frame and the lagged frame, we’ll not see
            too much unless there is some foreground object moving through the scene. [139] But what does “not see too much” mean in this context? Really, it means
            “just noise.” Of course, in practice the problem is sorting out that noise from the
            signal when a foreground object does come along.
To understand this noise a little better, we will first look at a pair of frames
            from the video in which there is no foreground object—just the background and the resulting noise. Figure 9-5 shows a typical frame from the
            video (upper left) and the previous frame (upper right). The figure also shows the
            results of frame differencing with a threshold value of 15 (lower left). You can see
            substantial noise from the moving leaves of the tree. Nevertheless, the method of
            connected components is able to clean up this scattered noise quite well[140] (lower right). This is not surprising, because there is no reason to expect
            much spatial correlation in this noise and so its signal is characterized by a large
            number of very small regions.
[image: Frame differencing: a tree is waving in the background in the current (upper left ) and previous (upper right) frame images; the difference image (lower left ) is completely cleaned up (lower right) by the connected-components method]

Figure 9-5. Frame differencing: a tree is waving in the background in the current (upper left
              ) and previous (upper right) frame images; the difference image (lower left ) is
              completely cleaned up (lower right) by the connected-components method

Now consider the situation in which a foreground object (our ubiquitous hand) passes
            through the view of the imager. Figure 9-6 shows two frames that are similar to those in Figure 9-5 except that now the hand is
            moving across from left to right. As before, the current frame (upper left) and the
            previous frame (upper right) are shown along with the response to frame differencing (lower left) and the fairly good results of the
            connected-component cleanup (lower right).
[image: Frame difference method of detecting a hand, which is moving left to right as the foreground object (upper two panels); the difference image (lower left ) shows the “hole” (where the hand used to be) toward the left and its leading edge toward the right, and the connected-component image (lower right) shows the cleaned-up difference]

Figure 9-6. Frame difference method of detecting a hand, which is moving left to right as the
              foreground object (upper two panels); the difference image (lower left ) shows the
              “hole” (where the hand used to be) toward the left and its leading edge toward the
              right, and the connected-component image (lower right) shows the cleaned-up
              difference

We can also clearly see one of the deficiencies of frame differencing: it cannot
            distinguish between the region from where the object moved (the “hole”) and where the
            object is now. Furthermore, in the overlap region there is often a gap because “flesh
            minus flesh” is 0 (or at least below threshold).
Thus we see that using connected components for cleanup is a powerful technique for
            rejecting noise in background subtraction. As a bonus, we were also able to glimpse some
            of the strengths and weaknesses of frame differencing.


Comparing Background Methods



We have discussed two background modeling techniques in this chapter: the average
          distance method and the codebook method. You might be wondering which method is better,
          or, at least, when you can get away with using the easy one. In these situations, it’s
          always best to just do a straight bake off[141] between the available methods.
We will continue with the same tree video that we’ve been discussing all chapter. In
          addition to the moving tree, this film has a lot of glare coming off a building to the
          right and off portions of the inside wall on the left. It is a fairly challenging
          background to model.
In Figure 9-7 we compare the average
          difference method at top against the codebook method at bottom; on the left are the raw
          foreground images and on the right are the cleaned-up connected components. You can see
          that the average difference method leaves behind a sloppier mask and breaks the hand into
          two components. This is not so surprising; in Figure 9-2, we saw that using the average
          difference from the mean as a background model often included pixel values associated with
          the hand value (shown as a dotted line in that figure). Compare this with Figure 9-4, where codebooks can more
          accurately model the fluctuations of the leaves and branches and so more precisely
          identify foreground hand pixels (dotted line) from background pixels. Figure 9-7 confirms not only that the
          background model yields less noise but also that connected components can generate a
          fairly accurate object outline.


Watershed Algorithm



In many practical contexts, we would like to segment an image but do not have the
        benefit of a separate background image. One technique that is often effective in this
        context is the watershed algorithm [Meyer92]. This algorithm converts
        lines in an image into “mountains” and uniform regions into “valleys” that can be used to
        help segment objects. The watershed algorithm first takes the gradient of the intensity
        image; this has the effect of forming valleys or basins (the low
        points) where there is no texture and of forming mountains or ranges
        (high ridges corresponding to edges) where there are dominant lines in the image. It then
        successively floods basins starting from user-specified (or algorithm-specified) points
        until these regions meet. Regions that merge across the marks so generated are segmented as
        belonging together as the image “fills up”. In this way, the basins connected to the marker
        point become “owned” by that marker. We then segment the image into the corresponding marked
          regions.
More specifically, the watershed algorithm allows a user (or another algorithm!) to mark
        parts of an object or background that are known to be part of the object or background. The
        user or algorithm can draw a simple line that effectively tells the watershed algorithm to
        “group points like these together”. The watershed algorithm then segments the image by
        allowing marked regions to “own” the edge-defined valleys in the gradient image that are
        connected with the segments. Figure 9-8
        clarifies this process.
The function specification of the watershed segmentation algorithm is:
void cvWatershed(
  const CvArr* image,
  CvArr* markers
);
[image: With the averaging method (top row), the connected-components cleanup knocks out the fingers (upper right); the codebook method (bottom row) does much better at segmentation and creates a clean connected-component mask (lower right)]

Figure 9-7. With the averaging method (top row), the connected-components cleanup knocks out the
          fingers (upper right); the codebook method (bottom row) does much better at segmentation
          and creates a clean connected-component mask (lower right)

[image: Watershed algorithm: after a user has marked objects that belong together (left panel), the algorithm then merges the marked area into segments (right panel)]

Figure 9-8. Watershed algorithm: after a user has marked objects that belong together (left
          panel), the algorithm then merges the marked area into segments (right panel)

Here, image is an 8-bit color (three-channel) image
        and markers is a single-channel integer (IPL_DEPTH_32S) image of the same (x, y)
        dimensions; the value of markers is 0
          except where the user (or an algorithm) has indicated by using positive numbers that some regions belong
        together. For example, in the left panel of Figure 9-8, the orange might have been marked
        with a “1”, the lemon with a “2”, the lime with “3”, the upper background with “4” and so
        on. This produces the segmentation you see in the same figure on the right.

Image Repair by Inpainting



Images are often corrupted by noise. There may be dust or water spots on the lens,
        scratches on the older images, or parts of an image that were vandalized.
          Inpainting [Telea04] is a method for removing such damage by taking
        the color and texture at the border of the damaged area and propagating and mixing it inside
        the damaged area. See Figure 9-9 for an
        application that involves the removal of writing from an image.
[image: Inpainting: an image damaged by overwritten text (left panel) is restored by inpainting (right panel)]

Figure 9-9. Inpainting: an image damaged by overwritten text (left panel) is restored by
          inpainting (right panel)

Inpainting works provided the damaged area is not too “thick” and enough of the original
        texture and color remains around the boundaries of the damage. Figure 9-10 shows what happens when the damaged
        area is too large.
The prototype for cvInpaint() is 
 void cvInpaint(
   const  CvArr* src,
   const  CvArr* mask,
   CvArr*        dst,
   double        inpaintRadius,
   int           flags
);
[image: Inpainting cannot magically restore textures that are completely removed: the navel of the orange has been completely blotted out (left panel); inpainting fills it back in with mostly orangelike texture (right panel)]

Figure 9-10. Inpainting cannot magically restore textures that are completely removed: the navel
          of the orange has been completely blotted out (left panel); inpainting fills it back in
          with mostly orangelike texture (right panel)

Here src is an 8-bit single-channel grayscale image
        or a three-channel color image to be repaired, and mask
        is an 8-bit single-channel image of the same size as src
        in which the damaged areas (e.g., the writing seen in the left panel of Figure 9-9) have been marked by nonzero pixels;
        all other pixels are set to 0 in mask. The output image
        will be written to dst, which must be the same size and
        number of channels as src. The inpaintRadius is the area around each inpainted pixel that will be factored
        into the resulting output color of that pixel. As in Figure 9-10, interior pixels within a thick
        enough inpainted region may take their color entirely from other inpainted pixels closer to
        the boundaries. Almost always, one uses a small radius such as 3 because too large a radius will result in a noticeable blur. Finally, the
          flags parameter allows you to experiment with two
        different methods of inpainting: CV_INPAINT_NS
        (Navier-Stokes method), and CV_INPAINT_TELEA (A. Telea’s
        method).

Mean-Shift Segmentation



In Chapter 5 we introduced the function cvPyrSegmentation(). Pyramid segmentation uses a color merge
        (over a scale that depends on the similarity of the colors to one another) in order to
        segment images. This approach is based on minimizing the total energy
        in the image; here energy is defined by a link strength, which is
        further defined by color similarity. In this section we introduce
          cvPyrMeanShiftFiltering(), a similar algorithm that is
        based on mean-shift clustering over color [Comaniciu99]. We’ll see the details of the
        mean-shift algorithm cvMeanShift() in Chapter 10, when we discuss tracking and motion. For now, what we
        need to know is that mean shift finds the peak of a color-spatial (or other feature)
        distribution over time. Here, mean-shift segmentation finds the peaks of color distributions
        over space. The common theme is that both the motion tracking and the color segmentation
        algorithms rely on the ability of mean shift to find the modes (peaks) of a
          distribution.
Given a set of multidimensional data points whose dimensions are (x,
          y, blue, green, red), mean shift can find the highest density “clumps” of data
        in this space by scanning a window over the space. Notice, however,
        that the spatial variables (x, y) can have very different ranges from
        the color magnitude ranges (blue, green, red). Therefore, mean shift needs to allow for
        different window radii in different dimensions. In this case we should have one radius for
        the spatial variables (spatialRadius) and one radius for
        the color magnitudes (colorRadius). As mean-shift windows move, all the points traversed by the windows that converge
        at a peak in the data become connected or “owned” by that peak. This ownership, radiating
        out from the densest peaks, forms the segmentation of the image. The segmentation is
        actually done over a scale pyramid (cvPyrUp(),
          cvPyrDown()), as described in Chapter 5, so that color
        clusters at a high level in the pyramid (shrunken image) have their boundaries refined at
        lower pyramid levels in the pyramid. The function call for cvPyrMeanShiftFiltering() looks like this:
void cvPyrMeanShiftFiltering(
  const CvArr*   src,
  CvArr*         dst,
  double         spatialRadius,
  double         colorRadius,
  int            max_level    = 1,
  CvTermCriteria termcrit     = cvTermCriteria(
      CV_TERMCRIT_ITER | CV_TERMCRIT_EPS,
      5,
      1
   )
  );
In cvPyrMeanShiftFiltering() we have an input image
          src and an output image dst. Both must be 8-bit, three-channel color images of the same width and
        height. The spatialRadius and colorRadius define how the mean-shift algorithm averages color and space
        together to form a segmentation. For a 640-by-480 color image, it works well to set spatialRadius equal to 2 and colorRadius equal to 40. The next parameter of this algorithm is max_level, which describes how many levels of scale pyramid you
        want used for segmentation. A max_level of 2 or 3 works
        well for a 640-by-480 color image.
The final parameter is CvTermCriteria, which we saw
        in Chapter 8. CvTermCriteria is used for
        all iterative algorithms in OpenCV. The mean-shift segmentation function comes with good
        defaults if you just want to leave this parameter blank. Otherwise, cvTermCriteria has the following constructor:
cvTermCriteria(
    int    type; // CV_TERMCRIT_ITER, CV_TERMCRIT_EPS,
    int    max_iter,
    double epsilon
);
Typically we use the cvTermCriteria() function to
        generate the CvTermCriteria structure that we need. The
        first argument is either CV_TERMCRIT_ITER or CV_TERMCRIT_EPS, which tells the algorithm that we want to
        terminate either after some fixed number of iterations or when the convergence metric
        reaches some small value (respectively). The next two arguments set the values at which one,
        the other, or both of these criteria should terminate the algorithm. The reason we have both
        options is because we can set the type to CV_TERMCRIT_ITER |
          CV_TERMCRIT_EPS to stop when either limit is reached. The parameter max_iter limits the number of iterations if CV_TERMCRIT_ITER is set, whereas epsilon sets the error limit if CV_TERMCRIT_EPS is set. Of course the exact meaning of epsilon depends on the algorithm.
Figure 9-11 shows an example of
          mean-shift segmentation using the following values:
cvPyrMeanShiftFiltering( src, dst, 20, 40, 2);
[image: Mean-shift segmentation over scale using cvPyrMeanShiftFiltering() with parameters max_level=2, spatialRadius=20, and colorRadius=40; similar areas now have similar values and so can be treated as super pixels, which can speed up subsequent processing significantly]

Figure 9-11. Mean-shift segmentation over scale using cvPyrMeanShiftFiltering() with parameters
          max_level=2, spatialRadius=20, and colorRadius=40; similar areas now have similar values
          and so can be treated as super pixels, which can speed up subsequent processing
          significantly


Delaunay Triangulation, Voronoi Tesselation



Delaunay triangulation is a technique invented in 1934 [Delaunay34]
        for connecting points in a space into triangular groups such that the minimum angle of all
        the angles in the triangulation is a maximum. This means that Delaunay triangulation tries
        to avoid long skinny triangles when triangulating points. See Figure 9-12 to get the gist of triangulation,
        which is done in such a way that any circle that is fit to the points at the vertices of any
        given triangle contains no other vertices. This is called the circum-circle
          property (panel c in the figure).
For computational efficiency, the Delaunay algorithm invents a far-away outer bounding
        triangle from which the algorithm starts. Figure 9-12(b) represents the fictitious outer
        triangle by dotted lines going out to its vertex. Figure 9-12(c) shows some examples of the
        circum-circle property, including one of the circles linking two outer points of the real
        data to one of the vertices of the fictitious external triangle.
[image: Delaunay triangulation: (a) set of points; (b) Delaunay triangulation of the point set with trailers to the outer bounding triangle; (c) example circles showing the circum-circle property]

Figure 9-12. Delaunay triangulation: (a) set of points; (b) Delaunay triangulation of the point
          set with trailers to the outer bounding triangle; (c) example circles showing the
          circum-circle property

There are now many algorithms to compute Delaunay triangulation; some are very efficient but with difficult internal
        details. The gist of one of the more simple algorithms is as follows:
	Add the external triangle.

	Add an internal point; then search over all the triangles’ circum-circles containing
            that point and remove those triangulations.

	Re-triangulate the graph, including the new point in the circum-circles of the just
            removed triangulations.

	Return to step 2 until there are no more points to add.



The order of complexity of this algorithm is
          O(n2) in the number of data points. The best
        algorithms are (on average) as low as O(n log log n).
Great—but what is it good for? For one thing, remember that this algorithm started with
        a fictitious outer triangle and so all the real outside points are actually connected to two
        of that triangle’s vertices. Now recall the circum-circle property: circles that are fit
        through any two of the real outside points and to an external fictitious vertex contain no
        other inside points. This means that a computer may directly look up exactly which real
        points form the outside of a set of points by looking at which points are connected to the
        three outer fictitious vertices. In other words, we can find the convex hull of a set of
        points almost instantly after a Delaunay triangulation has been done.
We can also find who “owns” the space between points, that is, which coordinates are
        nearest neighbors to each of the Delaunay vertex points. Thus, using Delaunay triangulation
        of the original points, you can immediately find the nearest neighbor to a new point. Such a
        partition is called a Voronoi tessellation (see Figure 9-13). This tessellation is the dual image
        of the Delaunay triangulation, because the Delaunay lines define the distance between
        existing points and so the Voronoi lines “know” where they must intersect the Delaunay lines
        in order to keep equal distance between points. These two methods, calculating the convex
        hull and nearest neighbor, are important basic operations for clustering and classifying
        points and point sets.
[image: Voronoi tessellation, whereby all points within a given Voronoi cell are closer to their Delaunay point than to any other Delaunay point: (a) the Delaunay triangulation in bold with the corresponding Voronoi tessellation in fine lines; (b) the Voronoi cells around each Delaunay point]

Figure 9-13. Voronoi tessellation, whereby all points within a given Voronoi cell are closer to
          their Delaunay point than to any other Delaunay point: (a) the Delaunay triangulation in
          bold with the corresponding Voronoi tessellation in fine lines; (b) the Voronoi cells
          around each Delaunay point

If you’re familiar with 3D computer graphics, you may recognize that Delaunay
        triangulation is often the basis for representing 3D shapes. If we render an object in three
        dimensions, we can create a 2D view of that object by its image projection and then use the
        2D Delaunay triangulation to analyze and identify this object and/or compare it with a real
        object. Delaunay triangulation is thus a bridge between computer vision and computer
        graphics. However, one deficiency of OpenCV (soon to be rectified, we hope; see Chapter 14) is that OpenCV performs Delaunay triangulation only in two
        dimensions. If we could triangulate point clouds in three dimensions—say, from stereo vision
        (see Chapter 11)—then we could move seamlessly between
        3D computer graphics and computer vision. Nevertheless, 2D Delaunay triangulation is often
        used in computer vision to register the spatial arrangement of features on an object or a
        scene for motion tracking, object recognition, or matching views between two different
        cameras (as in deriving depth from stereo images). Figure 9-14 shows a tracking and recognition
        application of Delaunay triangulation [Gokturk01; Gokturk02] wherein key facial feature
        points are spatially arranged according to their triangulation.
Now that we’ve established the potential usefulness of Delaunay triangulation once given
        a set of points, how do we derive the triangulation? OpenCV ships with example code for this
        in the …/opencv/samples/c/delaunay.c file. OpenCV
        refers to Delaunay triangulation as a Delaunay subdivision, whose
        critical and reusable pieces we discuss next.
[image: Delaunay points can be used in tracking objects; here, a face is tracked using points that are significant in expressions so that emotions may be detected]

Figure 9-14. Delaunay points can be used in tracking objects; here, a face is tracked using points
          that are significant in expressions so that emotions may be detected

Creating a Delaunay or Voronoi Subdivision



First we’ll need some place to store the Delaunay subdivision in memory. We’ll also need an outer bounding box
          (remember, to speed computations, the algorithm works with a fictitious outer triangle
          positioned outside a rectangular bounding box). To set this up, suppose the points must be
          inside a 600-by-600 image:
// STORAGE AND STRUCTURE FOR DELAUNAY SUBDIVISION
//
CvRect        rect = { 0, 0, 600, 600 };  //Our outer bounding box
CvMemStorage* storage;                    //Storage for the Delaunay subdivsion
storage  = cvCreateMemStorage(0);         //Initialize the storage
CvSubdiv2D*    subdiv;                    //The subdivision itself
subdiv = init_delaunay( storage, rect);   //See this function below
The code calls init_delaunay(), which is not an
          OpenCV function but rather a convenient packaging of a few OpenCV routines:
//INITIALIZATION CONVENIENCE FUNCTION FOR DELAUNAY SUBDIVISION
//
CvSubdiv2D* init_delaunay(
  CvMemStorage* storage,
  CvRect rect
) {
  CvSubdiv2D* subdiv;
  subdiv = cvCreateSubdiv2D(
    CV_SEQ_KIND_SUBDIV2D,
    sizeof(*subdiv),
    sizeof(CvSubdiv2DPoint),
    sizeof(CvQuadEdge2D),
    storage
  );
  cvInitSubdiv Delaunay2D( subdiv, rect ); //rect sets the bounds
  return subdiv;
}
Next we’ll need to know how to insert points. These points must be of type float,
          32f:
CvPoint2D32f fp;    //This is our point holder

for( i = 0; i < as_many_points_as_you_want; i++ ) {

     // However you want to set points
     //
     fp = your_32f_point_list[i];

     cvSubdivDelaunay2DInsert( subdiv, fp );
}
You can convert integer points to 32f points using the convenience macro cvPoint2D32f(double x, double y) or cvPointTo32f(CvPoint point) located in cxtypes.h. Now that we can enter points to obtain a Delaunay triangulation, we set and clear the associated Voronoi tessellation with the following two commands:
cvCalcSubdiv Voronoi2D( subdiv );  // Fill out Voronoi data in subdiv
cvClearSubdivVoronoi2D( subdiv ); // Clear the Voronoi from subdiv
In both functions, subdiv is of type CvSubdiv2D*. We can now create Delaunay subdivisions of
          two-dimensional point sets and then add and clear Voronoi tessellations to them. But how
          do we get at the good stuff inside these structures? We can do this by stepping from edge
          to point or from edge to edge in subdiv; see Figure 9-15 for the basic maneuvers starting
          from a given edge and its point of origin. We next find the first edges or points in the
          subdivision in one of two different ways: (1) by using an external point to locate an edge
          or a vertex; or (2) by stepping through a sequence of points or edges. We’ll first
          describe how to step around edges and points in the graph and then how to step through the
          graph.

Navigating Delaunay Subdivisions



Figure 9-15 combines two data
          structures that we’ll use to move around on a subdivision graph. The structure cvQuadEdge2D contains a set of two Delaunay and two Voronoi
          points and their associated edges (assuming the Voronoi points and edges have been
          calculated with a prior call to cvCalcSubdivVoronoi2D()); see Figure 9-16. The structure CvSubdiv2DPoint contains the Delaunay edge with its associated
          vertex point, as shown in Figure 9-17. The
          quad-edge structure is defined in the code following the figure.
[image: Edges relative to a given edge, labeled “e”, and its vertex point (marked by a square)]

Figure 9-15. Edges relative to a given edge, labeled “e”, and its vertex point (marked by a
            square)

// Edges themselves are encoded in long integers. The lower two bits
// are its index (0..3) and upper bits are the quad-edge pointer.
//
typedef long CvSubdiv2DEdge;

// quad-edge structure fields:
//
#define CV_QUADEDGE2D_FIELDS()         /
    int flags;                         /
    struct CvSubdiv2DPoint* pt[4];     /
    CvSubdiv2DEdge  next[4];

typedef struct CvQuadEdge2D {
    CV_QUADEDGE2D_FIELDS()
} CvQuadEdge2D;
The Delaunay subdivision point and the associated edge structure is given
          by:
#define CV_SUBDIV2D_POINT_FIELDS() /
    int                  flags;    /
     CvSubdiv2DEdge      first;    //*The edge "e" in the figures.*/
     CvPoint2D32f        pt;
     #define CV_SUBDIV2D_VIRTUAL_POINT_FLAG (1 << 30)

     typedef struct CvSubdiv2DPoint
     {
         CV_SUBDIV2D_POINT_FIELDS()
     }
     CvSubdiv2DPoint;
[image: Quad edges that may be accessed by cvSubdiv2DRotateEdge() include the Delaunay edge and its reverse (along with their associated vertex points) as well as the related Voronoi edges and points]

Figure 9-16. Quad edges that may be accessed by cvSubdiv2DRotateEdge() include the Delaunay edge
            and its reverse (along with their associated vertex points) as well as the related
            Voronoi edges and points

With these structures in mind, we can now examine the different ways of moving
            around.
Walking on edges



As indicated by Figure 9-16, we can
            step around quad edges by using 
CvSubdiv2DEdge cvSubdiv2DRotateEdge(
  CvSubdiv2DEdge edge,
  int            type
);
[image: A CvSubdiv2DPoint vertex and its associated edge e along with other associated edges that may be accessed via cvSubdiv2DGetEdge()]

Figure 9-17. A CvSubdiv2DPoint vertex and its associated edge e along with other associated
              edges that may be accessed via cvSubdiv2DGetEdge()

Given an edge, we can get to the next edge by
            using the type parameter, which takes one of the
            following arguments:
	0, the input edge (e in the figure if e is the input
                edge)

	1, the rotated edge (eRot)

	2, the reversed edge (reversed e)

	3, the reversed rotated edge
                  (reversed eRot)



Referencing Figure 9-17, we can also
            get around the Delaunay graph using
CvSubdiv2DEdge cvSubdiv2DGetEdge(
  CvSubdiv2DEdge edge,
  CvNextEdgeType type
);
#define cvSubdiv2DNextEdge( edge ) /
  cvSubdiv2DGetEdge(               /
    edge,                          /
    CV_NEXT_AROUND_ORG             /
  )
Here type specifies one of the following
            moves:
	
                CV_NEXT_AROUND_ORG
              
	Next around the edge origin (eOnext in
                    Figure 9-17 if e is the input edge)

	
                CV_NEXT_AROUND_DST
              
	Next around the edge vertex (eDnext)

	
                CV_PREV_AROUND_ORG
              
	Previous around the edge origin (reversed eRnext)

	
                CV_PREV_AROUND_DST
              
	Previous around the edge destination (reversed
                    eLnext)

	
                CV_NEXT_AROUND_LEFT
              
	Next around the left facet (eLnext)

	
                CV_NEXT_AROUND_RIGHT
              
	Next around the right facet (eRnext)

	
                CV_PREV_AROUND_LEFT
              
	Previous around the left facet (reversed eOnext)

	
                CV_PREV_AROUND_RIGHT
              
	Previous around the right facet (reversed eDnext)



Note that, given an edge associated with a vertex, we can use the convenience macro
              cvSubdiv2DNextEdge( edge ) to find all other edges
            from that vertex. This is helpful for finding things like the convex hull starting from
            the vertices of the (fictitious) outer bounding triangle.
The other important movement types are CV_NEXT_AROUND_LEFT and CV_NEXT_AROUND_RIGHT. We can use these to step around a Delaunay triangle if we’re on a Delaunay edge or to step around a Voronoi cell if we’re on a Voronoi edge.

Points from edges



We’ll also need to know how to retrieve the actual points from Delaunay or Voronoi
            edges. Each Delaunay or Voronoi edge has two points associated with it: org, its origin point, and dst, its destination point. You may easily obtain these points by
            using
CvSubdiv2DPoint* cvSubdiv2DEdgeOrg( CvSubdiv2DEdge edge );
CvSubdiv2DPoint* cvSubdiv2DEdgeDst( CvSubdiv2DEdge edge );
Here are methods to convert CvSubdiv2DPoint to
            more familiar forms:
CvSubdiv2DPoint ptSub;                          //Subdivision vertex point
CvPoint2D32f    pt32f = ptSub->pt;              // to 32f point
CvPoint         pt    = cvPointFrom32f(pt32f);  // to an integer point
We now know what the subdivision structures look like and how to walk around its
            points and edges. Let’s return to the two methods for getting the first edges or points
            from the Delaunay/Voronoi subdivision.

Method 1: Use an external point to locate an edge or vertex



The first method is to start with an arbitrary point and then locate that point in
            the subdivision. This need not be a point that has already been triangulated; it can be
            any point. The function cvSubdiv2DLocate() fills in
            one edge and vertex (if desired) of the triangle or Voronoi facet into which that point fell.
CvSubdiv2DPointLocation cvSubdiv2DLocate(
  CvSubdiv2D*       subdiv,
  CvPoint2D32f      pt,
  CvSubdiv2DEdge*   edge,
  CvSubdiv2DPoint** vertex = NULL
);
Note that these are not necessarily the closest edge or vertex; they just have to be in
            the triangle or facet. This function’s return value tells us where the point landed, as
            follows.
	
                CV_PTLOC_INSIDE
              
	The point falls into some facet; *edge will
                  contain one of edges of the facet.

	
                CV_PTLOC_ON_EDGE
              
	The point falls onto the edge; *edge will
                  contain this edge.

	
                CV_PTLOC_VERTEX
              
	The point coincides with one of subdivision vertices; *vertex will contain a pointer to the vertex.

	
                CV_PTLOC_OUTSIDE_RECT
              
	The point is outside the subdivision reference rectangle; the function returns
                  and no pointers are filled.

	
                CV_PTLOC_ERROR
              
	One of input arguments is invalid.




Method 2: Step through a sequence of points or edges



Conveniently for us, when we create a Delaunay subdivision of a set of points, the first three points and edges
            form the vertices and sides of the fictitious outer bounding triangle. From there, we
            may directly access the outer points and edges that form the convex hull of the actual
            data points. Once we have formed a Delaunay subdivision (call it subdiv), we’ll also need to call cvCalcSubdivVoronoi2D( subdiv ) in order to calculate the associated
              Voronoi tessellation. We can then access the three vertices of the outer
            bounding triangle using
CvSubdiv2DPoint* outer_vtx[3];
for( i = 0; i < 3; i++ ) {
  outer_vtx[i] =
    (CvSubdiv2DPoint*)cvGetSeqElem( (CvSeq*)subdiv, i );
}
We can similarly obtain the three sides of the outer bounding triangle:
CvQuadEdge2D* outer_qedges[3];
for( i = 0; i < 3; i++ ) {
  outer_qedges[i] =
    (CvQuadEdge2D*)cvGetSeqElem( (CvSeq*)(my_subdiv->edges), i );
}
Now that we know how to get on the graph and move around, we’ll want to know when
            we’re on the outer edge or boundary of the points.

Identifying the bounding triangle or edges on the convex hull and walking the
            hull



Recall that we used a bounding rectangle rect to
            initialize the Delaunay triangulation with the call cvInitSubdivDelaunay2D( subdiv, rect ). In this case, the following
            statements hold.
	If you are on an edge where both the origin and destination points are out of
                the rect bounds, then that edge is on the
                fictitious bounding triangle of the subdivision.

	If you are on an edge with one point inside and one point outside the rect bounds, then the point in bounds is on the convex
                hull of the set; each point on the convex hull is connected to two vertices of the
                fictitious outer bounding triangle, and these two edges occur one after
                another.



From the second condition, you can use the cvSubdiv2DNextEdge() macro to step onto the first edge whose dst point is within bounds. That first edge with both ends
            in bounds is on the convex hull of the point set, so remember that point or edge. Once
            on the convex hull, you can then move around the convex hull as follows.
	Until you have circumnavigated the convex hull, go to the next edge on the hull
                via cvSubdiv2DRotateEdge(CvSubdiv2DEdge edge,
                2).

	From there, another two calls to the cvSubdiv2DNextEdge() macro will get you on the next edge of the convex
                hull. Return to step 1.



We now know how to initialize Delaunay and Voronoi subdivisions, how to find the initial edges, and also how to step
            through the edges and points of the graph. In the next section we present some practical
            applications.


Usage Examples



We can use cvSubdiv2DLocate() to step around the
          edges of a Delaunay triangle:
void locate_point(
  CvSubdiv2D*  subdiv,
  CvPoint2D32f fp,
  IplImage*  img,
  CvScalar  active_color
) {
  CvSubdiv2DEdge e;
  CvSubdiv2DEdge e0 = 0;
  CvSubdiv2DPoint* p = 0;
  cvSubdiv2DLocate( subdiv, fp, &e0, &p );
  if( e0 ) {
    e = e0;
    do // Always 3 edges -- this is a triangulation, after all.
    {
      // [Insert your code here]
      //
      // Do something with e ...
       e = cvSubdiv2DGetEdge(e,CV_NEXT_AROUND_LEFT);
    }
    while( e != e0 );
  }
}
We can also find the closest point to an input point by using
CvSubdiv2DPoint* cvFindNearestPoint2D(
  CvSubdiv2D*  subdiv,
  CvPoint2D32f pt
);
Unlike cvSubdiv2DLocate(), cvFindNearestPoint2D()
          will return the nearest vertex point in the Delaunay subdivision. This point is not necessarily on the facet or triangle
          that the point lands on.
Similarly, we could step around a Voronoi facet (here we draw it) using
 void draw_subdiv_facet(
   IplImage *img,
   CvSubdiv2DEdge edge
 ) {

   CvSubdiv2DEdge t = edge;
   int i, count = 0;
   CvPoint* buf = 0;

   // Count number of edges in facet
   do{
       count++;
       t = cvSubdiv2DGetEdge( t, CV_NEXT_AROUND_LEFT );
   } while (t != edge );

   // Gather points
   //
   buf = (CvPoint*)malloc( count * sizeof(buf[0]))
   t = edge;
   for( i = 0; i < count; i++ ) {
       CvSubdiv2DPoint* pt = cvSubdiv2DEdgeOrg( t );
       if( !pt ) break;
       buf[i] = cvPoint( cvRound(pt->pt.x), cvRound(pt->pt.y));
       t = cvSubdiv2DGetEdge( t, CV_NEXT_AROUND_LEFT );
   }

   // Around we go
   //
   if( i == count ){
       CvSubdiv2DPoint* pt = cvSubdiv2DEdgeDst(
                             cvSubdiv2DRotateEdge( edge, 1 ));
      cvFillConvexPoly( img, buf, count,
         CV_RGB(rand()&255,rand()&255,rand()&255), CV_AA, 0 );
        cvPolyLine( img, &buf, &count, 1, 1, CV_RGB(0,0,0),
                  1, CV_AA, 0);
      draw_subdiv_point( img, pt->pt, CV_RGB(0,0,0));
  }
  free( buf );
}
Finally, another way to access the subdivision structure is by using a CvSeqReader to step though a sequence of edges. Here’s how to
          step through all Delaunay or Voronoi edges:
 void visit_edges( CvSubdiv2D* subdiv){
   CvSeqReader reader;                             //Sequence reader
   int i, total = subdiv->edges->total;            //edge count
   int elem_size = subdiv->edges->elem_size;       //edge size

   cvStartReadSeq( (CvSeq*)(subdiv->edges), &reader, 0 );

   cvCalcSubdiv Voronoi2D( subdiv ); //Make sure Voronoi exists

   for( i = 0; i < total; i++ ) {

     CvQuadEdge2D* edge = (CvQuadEdge2D*)(reader.ptr);

     if( CV_IS_SET_ELEM( edge )) {

       // Do something with Voronoi and Delaunay edges ...
       //
       CvSubdiv2DEdge voronoi_edge = (CvSubdiv2DEdge)edge + 1;
       CvSubdiv2DEdge delaunay_edge = (CvSubdiv2DEdge)edge;

       // ...OR WE COULD FOCUS EXCLUSIVELY ON VORONOI...

       // left
       //
       voronoi_edge = cvSubdiv2DRotateEdge( edge, 1 );

       // right
       //
       voronoi_edge = cvSubdiv2DRotateEdge( edge, 3 );
     }
     CV_NEXT_SEQ_ELEM( elem_size, reader );
  }
}
Finally, we end with an inline convenience macro: once we find the vertices of a
          Delaunay triangle, we can find its area by using 
double cvTriangleArea(
  CvPoint2D32f a,
  CvPoint2D32f b,
  CvPoint2D32f c
)


Exercises



	Using cvRunningAvg(), re-implement the averaging
            method of background subtraction. In order to do so, learn the running average of the
            pixel values in the scene to find the mean and the running average of the absolute
            difference (cvAbsDiff()) as a proxy for the standard
            deviation of the image.

	Shadows are often a problem in background subtraction because they can show up as a
            foreground object. Use the averaging or codebook method of background subtraction to
            learn the background. Have a person then walk in the foreground. Shadows will “emanate”
            from the bottom of the foreground object.
	Outdoors, shadows are darker and bluer than their surround; use this fact to
                eliminate them.

	Indoors, shadows are darker than their surround; use this fact to eliminate
                them.




	The simple background models presented in this chapter are often quite sensitive to
            their threshold parameters. In Chapter 10 we’ll see how to
            track motion, and this can be used as a “reality” check on the background model and its
            thresholds. You can also use it when a known person is doing a “calibration walk” in
            front of the camera: find the moving object and adjust the parameters until the
            foreground object corresponds to the motion boundaries. We can also use distinct
            patterns on a calibration object itself (or on the background) for a reality check and
            tuning guide when we know that a portion of the background has been occluded.
	Modify the code to include an autocalibration mode. Learn a background model and
                then put a brightly colored object in the scene. Use color to find the colored
                object and then use that object to automatically set the thresholds in the
                background routine so that it segments the object. Note that you can leave this
                object in the scene for continuous tuning.

	Use your revised code to address the shadow-removal problem of exercise
                2.




	Use background segmentation to segment a person with arms held out. Investigate the
            effects of the different parameters and defaults in the find_connected_components() routine. Show your results for different
            settings of:
	
                poly1_hull0
              

	
                perimScale
              

	
                CVCONTOUR_APPROX_LEVEL
              

	
                CVCLOSE_ITR
              




	In the 2005 DARPA Grand Challenge robot race, the authors on the Stanford team used a
            kind of color clustering algorithm to separate road from nonroad. The colors were
            sampled from a laser-defined trapezoid of road patch in front of the car. Other colors
            in the scene that were close in color to this patch—and whose connected component
            connected to the original trapezoid—were labeled as road. See Figure 9-18, where the watershed algorithm
            was used to segment the road after using a trapezoid mark inside the road and an
            inverted “U” mark outside the road. Suppose we could automatically generate these marks.
            What could go wrong with this method of segmenting the road?
Hint: Look carefully at Figure 9-8
              and then consider that we are trying to extend the road trapezoid by using things that
              look like what’s in the trapezoid.


[image: Using the watershed algorithm to identify a road: markers are put in the original image (left), and the algorithm yields the segmented road (right)]

Figure 9-18. Using the watershed algorithm to identify a road: markers are put in the original
              image (left), and the algorithm yields the segmented road (right)


	Inpainting works pretty well for the repair of writing over textured regions. What
            would happen if the writing obscured a real object edge in a picture? Try it.

	Although it might be a little slow, try running background segmentation when the
            video input is first pre-segmented by using cvPyrMeanShiftFiltering(). That is, the input stream is first mean-shift
            segmented and then passed for background learning—and later testing for foreground—by
            the codebook background segmentation routine.
	Show the results compared to not running the mean-shift segmentation.

	Try systematically varying the max_level,
                  spatialRadius, and colorRadius of the
                mean-shift segmentation. Compare those results.




	How well does inpainting work at fixing up writing drawn over a mean-shift segmented
            image? Try it for various settings and show the results.

	Modify the …/opencv/samples/delaunay.c code to
            allow mouse-click point entry (instead of via the existing method where points are
            selected at a random). Experiment with triangulations on the results.

	Modify the delaunay.c code again so that you
            can use a keyboard to draw the convex hull of the point set.

	Do three points in a line have a Delaunay triangulation?

	Is the triangulation shown in Figure 9-19(a) a
            Delaunay triangulation? If so, explain your answer. If not, how would you alter the
            figure so that it is a Delaunay triangulation?

	Perform a Delaunay triangulation by hand on the points in Figure 9-19(b). For this exercise, you need not add an
            outer fictitious bounding triangle.
[image: Exercise 12 and Exercise 13]

Figure 9-19. Exercise 12 and Exercise 13







[132] Here we are using mathematician’s definition of “compact,” which has nothing to do
              with size.

[133] The left_to_right flag was introduced because a
              discrete line drawn from pt1 to pt2 does not always match the line from pt2 to pt1. Therefore,
              setting this flag gives the user a consistent rasterization regardless of the pt1, pt2 order.

[134] Notice our use of the word “proxy.” Average difference is not mathematically
              equivalent to standard deviation, but in this context it is close enough to yield
              results of similar quality. The advantage of average difference is that it is slightly
              faster to compute than standard deviation. With only a tiny modification of the code
              example you can use standard deviations instead and compare the quality of the final
              results for yourself; we’ll discuss this more explicitly later in this section.

[135]  The method OpenCV implements is derived from Kim, Chalidabhongse, Harwood, and
              Davis [Kim05], but rather than learning oriented cylinders in RGB space, for speed,
              the authors use axis-aligned boxes in YUV space. Fast methods for cleaning up the
              resulting background image can be found in Martins [Martins99].

[136] There is a large literature for background modeling and segmentation. OpenCV’s
              implementation is intended to be fast and robust enough that you can use it to collect
              foreground objects mainly for the purposes of collecting data sets to train
              classifiers on. Recent work in background subtraction allows arbitrary camera motion [Farin04; Colombari07] and
              dynamic background models using the mean-shift algorithm [Liu07].

[137] In this case we have chosen several pixels at random from the scan line to avoid
              excessive clutter. Of course, there is actually a codebook for every pixel.

[138] Observe that the value CVCLOSE_ITR is actually
              dependent on the resolution. For images of extremely high resolution, leaving this
              value set to 1 is not likely to yield satisfactory results.

[139] In the context of frame differencing, an object is identified as “foreground”
                mainly by its velocity. This is reasonable in scenes that are generally static or in
                which foreground objects are expected to be much closer to the camera than
                background objects (and thus appear to move faster by virtue of the projective
                geometry of cameras).

[140]  The size threshold for the connected components has been tuned to give zero
                response in these empty frames. The real question then is whether or not the
                foreground object of interest (the hand) survives pruning at this size threshold. We
                will see (Figure 9-6) that it does
                so nicely.

[141] For the uninitiated, “bake off " is actually a bona fide term used to describe any
              challenge or comparison of multiple algorithms on a predetermined data set.


Chapter 10. Tracking and Motion



The Basics of Tracking



When we are dealing with a video source, as opposed to individual still images, we often
        have a particular object or objects that we would like to follow through the visual field.
        In the previous chapter, we saw how to isolate a particular shape, such as a person or an
        automobile, on a frame-by-frame basis. Now what we’d like to do is understand the motion of
        this object, a task that has two main components: identification and modeling.
Identification amounts to finding the object of interest from one frame in a subsequent
        frame of the video stream. Techniques such as moments or color histograms from previous
        chapters will help us identify the object we seek. Tracking things that we have not yet
        identified is a related problem. Tracking unidentified objects is important when we wish to
        determine what is interesting based on its motion—or when an object’s motion is precisely
        what makes it interesting. Techniques for tracking unidentified objects typically involve
        tracking visually significant key points (more soon on what constitutes “significance”),
        rather than extended objects. OpenCV provides two methods for achieving this: the Lucas-Kanade [142] [Lucas81] and Horn-Schunck [Horn81] techniques, which represent what are often
        referred to as sparse or dense optical flow
          respectively.
The second component, modeling, helps us address the fact that these techniques are
        really just providing us with noisy measurement of the object’s actual position. Many
        powerful mathematical techniques have been developed for estimating the trajectory of an
        object measured in such a noisy manner. These methods are applicable to two- or
        three-dimensional models of objects and their locations.

Corner Finding



There are many kinds of local features that one can track. It is worth taking a moment
        to consider what exactly constitutes such a feature. Obviously, if we pick a point on a
        large blank wall then it won’t be easy to find that same point in the next frame of a
          video.
If all points on the wall are identical or even very similar, then we won’t have much
        luck tracking that point in subsequent frames. On the other hand, if we choose a point that
        is unique then we have a pretty good chance of finding that point again. In practice, the
        point or feature we select should be unique, or nearly unique, and should be parameterizable
        in such a way that it can be compared to other points in another image. See Figure 10-1.
[image: The points in circles are good points to track, whereas those in boxes—even sharply defined edges—are poor choices]

Figure 10-1. The points in circles are good points to track, whereas those in boxes—even sharply
          defined edges—are poor choices

Returning to our intuition from the large blank wall, we might be tempted to look for
        points that have some significant change in them—for example, a strong derivative. It turns
        out that this is not enough, but it’s a start. A point to which a strong derivative is
        associated may be on an edge of some kind, but it could look like all of the other points
        along the same edge (see the aperture problem diagrammed in Figure 10-8 and discussed in the section titled
          "Lucas-Kanade Technique”).
However, if strong derivatives are observed in two orthogonal directions then we can
        hope that this point is more likely to be unique. For this reason, many trackable features
        are called corners. Intuitively, corners—not edges—are the points that
        contain enough information to be picked out from one frame to the next.
The most commonly used definition of a corner was provided by Harris [Harris88]. This definition relies on the matrix of the second-order
        derivatives 
[image: image with no caption]

 of the image intensities. We can think of the second-order derivatives of
        images, taken at all points in the image, as forming new “second-derivative images” or, when
        combined together, a new Hessian image. This terminology comes from the
        Hessian matrix around a point, which is defined in two dimensions by:
[image: image with no caption]

For the Harris corner, we consider the autocorrelation matrix of the
        second derivative images over a small window around each point. Such a matrix is defined as
        follows:
[image: image with no caption]

(Here wi,j is a weighting term that can be
        uniform but is often used to create an effectively non-square window, by setting some
        entries to zero, or Gaussian or other weighting) Corners, by Harris’s definition, are places
        in the image where the autocorrelation matrix of the second derivatives has two large
        eigenvalues. In essence this means that there is texture (or edges) going in at least two
        separate directions centered around such a point, just as real corners have at least two
        edges meeting in a point. Second derivatives are useful because they do not respond to
        uniform gradients.[143] This definition has the further advantage that, when we consider only the
        eigenvalues of the autocorrelation matrix, we are considering quantities that are invariant
        also to rotation, which is important because objects that we are tracking might rotate as
        well as move. Observe also that these two eigenvalues do more than determine if a point is a
        good feature to track; they also provide an identifying signature for the point.
Harris’s original definition involved taking the determinant of
          H(p), subtracting the trace of
          H(p) (with some weighting coefficient), and then
        comparing this difference to a predetermined threshold. It was later found by Shi and Tomasi [Shi94] that good corners resulted as long as the smaller of the
        two eigenvalues was greater than a minimum threshold. Shi and Tomasi’s method was not only
        sufficient but in many cases gave more satisfactory results than Harris’s method.
The cvGoodFeaturesToTrack() routine implements the
        Shi and Tomasi definition. This function conveniently computes the second derivatives (using
        the Sobel operators) that are needed and from those computes the needed eigenvalues.
        It then returns a list of the points that meet our definition of being good for
          tracking.
void cvGoodFeaturesToTrack(
    const CvArr*   image,
    CvArr*         eigImage,
    CvArr*         tempImage,
    CvPoint2D32f*  corners,
    int*           corner_count,
    double         quality_level,
    double         min_distance,
    const CvArr*   mask          = NULL,
    int            block_size    = 3,
    int            use_harris    = 0,
    double         k             = 0.4
);
In this case, the input image should be an 8-bit or
        32-bit (i.e., IPL_DEPTH_8U or IPL_DEPTH_32F) single-channel image. The next two arguments are single-channel
        32-bit images of the same size. Both tempImage and
          eigImage are used as scratch by the algorithm, but the
        resulting contents of eigImage are meaningful. In
        particular, each entry there contains the minimal eigenvalue for the corresponding point in
        the input image. Here corners is an array of 32-bit
        points (CvPoint2D32f) that contain the result points
        after the algorithm has run; you must allocate this array before calling cvGoodFeatures ToTrack(). Naturally, since you allocated that
        array, you only allocated a finite amount of memory. The corner_count indicates the maximum number of points for which there is space to
        return. After the routine exits, corner_count is
        overwritten by the number of points that were actually found. The parameter quality_level indicates the minimal acceptable lower eigenvalue
        for a point to be included as a corner. The actual minimal eigenvalue used for the cutoff is
        the product of the quality_level and the largest lower
        eigenvalue observed in the image. Hence, the quality_level should not exceed 1 (a typical value might be 0.10 or 0.01). Once
        these candidates are selected, a further culling is applied so that multiple points within a
        small region need not be included in the response. In particular, the min_distance guarantees that no two returned points are within
        the indicated number of pixels.
The optional mask is the usual image, interpreted as
        Boolean values, indicating which points should and which points should not be considered as
        possible corners. If set to NULL, no mask is used. The
          block_size is the region around a given pixel that is
        considered when computing the autocorrelation matrix of derivatives. It turns out that it is
        better to sum these derivatives over a small window than to compute their value at only a
        single point (i.e., at a block_size of 1). If use_harris is nonzero, then the Harris corner definition is used
        rather than the Shi-Tomasi definition. If you set use_harris to a nonzero value, then the value k is the weighting coefficient used to set the relative weight given to the
        trace of the autocorrelation matrix Hessian compared to the determinant of the same
          matrix.
Once you have called cvGoodFeaturesToTrack(), the
        result is an array of pixel locations that you hope to find in another similar image. For
        our current context, we are interested in looking for these features in subsequent frames of
        video, but there are many other applications as well. A similar technique can be used when
        attempting to relate multiple images taken from slightly different viewpoints. We will
        re-encounter this issue when we discuss stereo vision in later chapters.

Subpixel Corners



If you are processing images for the purpose of extracting geometric measurements, as
        opposed to extracting features for recognition, then you will normally need more resolution
        than the simple pixel values supplied by cvGoodFeaturesToTrack(). Another way of saying this is that such pixels come
        with integer coordinates whereas we sometimes require real-valued coordinates—for example,
        pixel (8.25, 117.16).
One might imagine needing to look for a sharp peak in image values, only to be
        frustrated by the fact that the peak’s location will almost never be in the exact center of
        a camera pixel element. To overcome this, you might fit a curve (say, a parabola) to the
        image values and then use a little math to find where the peak occurred between the pixels.
          Subpixel detection techniques are all about tricks like this (for a review and
        newer techniques, see Lucchese [Lucchese02] and Chen [Chen05]). Common uses of image
        measurements are tracking for three-dimensional reconstruction, calibrating a camera,
        warping partially overlapping views of a scene to stitch them together in the most natural
        way, and finding an external signal such as precise location of a building in a satellite
        image.
Subpixel corner locations are a common measurement used in camera calibration or when tracking to reconstruct the camera’s path or the three-dimensional structure of a tracked object. Now that we know
        how to find corner locations on the integer grid of pixels, here’s the trick for refining
        those locations to subpixel accuracy: We use the mathematical fact that the dot product
        between a vector and an orthogonal vector is 0; this situation occurs at corner locations,
        as shown in Figure 10-2.
[image: Finding corners to subpixel accuracy: (a) the image area around the point p is uniform and so its gradient is 0; (b) the gradient at the edge is orthogonal to the vector q-p along the edge; in either case, the dot product between the gradient at p and the vector q-p is 0 (see text)]

Figure 10-2. Finding corners to subpixel accuracy: (a) the image area around the point p is
          uniform and so its gradient is 0; (b) the gradient at the edge is orthogonal to the vector
          q-p along the edge; in either case, the dot product between the gradient at p and the
          vector q-p is 0 (see text)

In the figure, we assume a starting corner location q that is near
        the actual subpixel corner location. We examine vectors starting at point
          q and ending at p. When p
        is in a nearby uniform or “flat” region, the gradient there is 0. On the other hand, if the
        vector q-p aligns with an edge then the gradient at
          p on that edge is orthogonal to the vector q-p.
        In either case, the dot product between the gradient at p and the
        vector q-p is 0. We can assemble many such pairs of the gradient at a
        nearby point p and the associated vector q-p, set
        their dot product to 0, and solve this assemblage as a system of equations; the solution
        will yield a more accurate subpixel location for q, the exact location
        of the corner.
The function that does subpixel corner finding is cvFindCornerSubPix():
void cvFindCornerSubPix(
    const CvArr*    image,
    CvPoint2D32f*   corners,
    int             count,
    CvSize          win,
    CvSize          zero_zone,
    CvTermCriteria  criteria
);
The input image is a single-channel, 8-bit, grayscale
        image. The corners structure contains integer pixel
        locations, such as those obtained from routines like cvGoodFeatures
          ToTrack(), which are taken as the initial guesses for the corner locations;
          count holds how many points there are to
        compute.
The actual computation of the subpixel location uses a system of dot-product expressions
        that all equal 0 (see Figure 10-2), where
        each equation arises from considering a single pixel in the region around
          p. The parameter win specifies the
        size of window from which these equations will be generated. This window is centered on the
        original integer corner location and extends outward in each direction by the number of
        pixels specified in win (e.g., if win.width = 4 then the search area is actually 4 + 1 + 4 = 9
        pixels wide). These equations form a linear system that can be solved by the inversion of a
        single autocorrelation matrix (not related to the autocorrelation matrix encountered in our
        previous discussion of Harris corners). In practice, this matrix is not always invertible owing to
        small eigenvalues arising from the pixels very close to p. To protect
        against this, it is common to simply reject from consideration those pixels in the immediate
        neighborhood of p. The parameter zero_zone defines a window (analogously to win, but always with a smaller extent) that will not be
        considered in the system of constraining equations and thus the autocorrelation matrix. If
        no such zero zone is desired then this parameter should be set to cvSize(-1,-1).
Once a new location is found for q, the algorithm will iterate
        using that value as a starting point and will continue until the user-specified termination
        criterion is reached. Recall that this criterion can be of type CV_TERMCRIT_ITER or of type CV_TERMCRIT_EPS
        (or both) and is usually constructed with the cvTermCriteria() function. Using CV_TERMCRIT_EPS will effectively indicate the accuracy you require of the
        subpixel values. Thus, if you specify 0.10 then you are
        asking for subpixel accuracy down to one tenth of a pixel.

Invariant Features



Since the time of Harris’s original paper and the subsequent work by Shi and Tomasi, a great many other types of corners and related local features
        have been proposed. One widely used type is the SIFT (”scale-invariant feature transform”) feature [Lowe04]. Such features are, as
        their name suggests, scale-invariant. Because SIFT detects the dominant gradient orientation
        at its location and records its local gradient histogram results with respect to this
        orientation, SIFT is also rotationally invariant. As a result, SIFT features are relatively
        well behaved under small affine transformations. Although the SIFT algorithm is not yet
        implemented as part of the OpenCV library (but see Chapter 14), it is
        possible to create such an implementation using OpenCV primitives. We will not spend more
        time on this topic, but it is worth keeping in mind that, given the OpenCV functions we’ve
        already discussed, it is possible (albeit less convenient) to create most of the features
        reported in the computer vision literature (see Chapter 14 for a
        feature tool kit in development).

Optical Flow



As already mentioned, you may often want to assess motion between two frames (or a
        sequence of frames) without any other prior knowledge about the content of those frames.
        Typically, the motion itself is what indicates that something interesting is going on.
        Optical flow is illustrated in Figure 10-3.
[image: Optical flow: target features (upper left) are tracked over time and their movement is converted into velocity vectors (upper right); lower panels show a single image of the hallway (left) and flow vectors (right) as the camera moves down the hall (original images courtesy of Jean-Yves Bouguet)]

Figure 10-3. Optical flow: target features (upper left) are tracked over time and their movement
          is converted into velocity vectors (upper right); lower panels show a single image of the
          hallway (left) and flow vectors (right) as the camera moves down the hall (original images
          courtesy of Jean-Yves Bouguet)

We can associate some kind of velocity with each pixel in the frame or, equivalently,
        some displacement that represents the distance a pixel has moved between the previous frame
        and the current frame. Such a construction is usually referred to as a dense
          optical flow, which associates a velocity with every pixel in an image. The
          Horn-Schunck method [Horn81] attempts to compute just such a velocity
        field. One seemingly straightforward method—simply attempting to match windows around each
        pixel from one frame to the next—is also implemented in OpenCV; this is known as
          block matching. Both of these routines will be discussed in the
        “Dense Tracking Techniques” section.
In practice, calculating dense optical flow is not easy. Consider the motion of a white sheet of paper. Many of
        the white pixels in the previous frame will simply remain white in the next. Only the edges
        may change, and even then only those perpendicular to the direction of motion. The result is
        that dense methods must have some method of interpolating between points that are more
        easily tracked so as to solve for those points that are more ambiguous. These difficulties
        manifest themselves most clearly in the high computational costs of dense optical
        flow.
This leads us to the alternative option, sparse optical flow.
        Algorithms of this nature rely on some means of specifying beforehand the subset of points
        that are to be tracked. If these points have certain desirable properties, such as the
        “corners” discussed earlier, then the tracking will be relatively robust and reliable. We
        know that OpenCV can help us by providing routines for identifying the best features to
        track. For many practical applications, the computational cost of sparse tracking is so much
        less than dense tracking that the latter is relegated to only academic interest. [144]
The next few sections present some different methods of tracking. We begin by
        considering the most popular sparse tracking technique, Lucas-Kanade
        (LK) optical flow; this method also has an implementation that works with image pyramids,
        allowing us to track faster motions. We’ll then move on to two dense techniques, the
        Horn-Schunck method and the block matching method.
Lucas-Kanade Method



The Lucas-Kanade (LK) algorithm [Lucas81], as originally proposed in 1981, was an
          attempt to produce dense results. Yet because the method is easily applied to a subset of
          the points in the input image, it has become an important sparse technique. The LK
          algorithm can be applied in a sparse context because it relies only on local information
          that is derived from some small window surrounding each of the points of interest. This is
          in contrast to the intrinsically global nature of the Horn and Schunck algorithm (more on
          this shortly). The disadvantage of using small local windows in Lucas-Kanade is that large
          motions can move points outside of the local window and thus become impossible for the
          algorithm to find. This problem led to development of the “pyramidal” LK algorithm, which
          tracks starting from highest level of an image pyramid (lowest detail) and working down to
          lower levels (finer detail). Tracking over image pyramids allows large motions to be
          caught by local windows.
Because this is an important and effective technique, we shall go into some
          mathematical detail; readers who prefer to forgo such details can skip to the function
          description and code. However, it is recommended that you at least scan the intervening
          text and figures, which describe the assumptions behind Lucas-Kanade optical flow, so that you’ll have some intuition about what to do if tracking
          isn’t working well.
How Lucas-Kanade works



The basic idea of the LK algorithm rests on three assumptions.
	Brightness constancy. A pixel from the image of an object
                in the scene does not change in appearance as it (possibly) moves from frame to
                frame. For grayscale images (LK can also be done in color), this means we assume
                that the brightness of a pixel does not change as it is tracked from frame to
                  frame.

	Temporal persistence or “small movements”. The image motion
                of a surface patch changes slowly in time. In practice, this means the temporal
                increments are fast enough relative to the scale of motion in the image that the
                object does not move much from frame to frame.

	Spatial coherence. Neighboring points in a scene belong to
                the same surface, have similar motion, and project to nearby points on the image
                  plane.



We now look at how these assumptions, which are illustrated in Figure 10-4, lead us to an effective tracking
            algorithm. The first requirement, brightness constancy, is just the requirement that
            pixels in one tracked patch look the same over time:
[image: image with no caption]

[image: Assumptions behind Lucas-Kanade optical flow: for a patch being tracked on an object in a scene, the patch’s brightness doesn’t change (top); motion is slow relative to the frame rate (lower left); and neighboring points stay neighbors (lower right) (component images courtesy of Michael Black [Black92])]

Figure 10-4. Assumptions behind Lucas-Kanade optical flow: for a patch being tracked on an
              object in a scene, the patch’s brightness doesn’t change (top); motion is slow
              relative to the frame rate (lower left); and neighboring points stay neighbors (lower
              right) (component images courtesy of Michael Black [Black92])

That’s simple enough, and it means that our tracked pixel intensity exhibits no
            change over time:
[image: image with no caption]

The second assumption, temporal persistence, essentially means that motions are
            small from frame to frame. In other words, we can view this change as approximating a
            derivative of the intensity with respect to time (i.e., we assert that the change
            between one frame and the next in a sequence is differentially
              small). To understand the implications of this assumption, first consider
            the case of a single spatial dimension.
In this case we can start with our brightness consistency equation, substitute the
            definition of the brightness f(x, t) while taking into account the
            implicit dependence of x on t, I
              (x(t), t), and then apply the chain rule for partial
            differentiation. This yields:
[image: image with no caption]

where Ix is the spatial derivative
            across the first image, It is the derivative
            between images over time, and v is the velocity we are looking for. We thus arrive at
            the simple equation for optical flow velocity in the simple one-dimensional case:
[image: image with no caption]

Let’s now try to develop some intuition for the one-dimensional tracking problem.
            Consider Figure 10-5, which shows an
            “edge”—consisting of a high value on the left and a low value on the right—that is
            moving to the right along the x-axis. Our goal is to identify the
            velocity v at which the edge is moving, as plotted in the upper part of Figure 10-5. In the lower part of the figure
            we can see that our measurement of this velocity is just “rise over run,” where the rise
            is over time and the run is the slope (spatial derivative). The negative sign corrects
            for the slope of x.
Figure 10-5 reveals another aspect to
            our optical flow formulation: our assumptions are probably not quite true. That is,
            image brightness is not really stable; and our time steps (which are set by the camera)
            are often not as fast relative to the motion as we’d like. Thus, our solution for the
            velocity is not exact. However, if we are “close enough” then we can iterate to a
            solution. Iteration is shown in Figure 10-6, where we use our first (inaccurate) estimate of velocity as the starting point for
            our next iteration and then repeat. Note that we can keep the same spatial derivative in
              x as computed on the first frame because of the brightness constancy assumption—pixels moving in x do
            not change. This reuse of the spatial derivative already calculated yields significant
            computational savings. The time derivative must still be recomputed each iteration and
            each frame, but if we are close enough to start with then these iterations will converge
            to near exactitude within about five iterations. This is known as Newton’s
              method. If our first estimate was not close enough, then Newton’s method
            will actually diverge.
[image: Lucas-Kanade optical flow in one dimension: we can estimate the velocity of the moving edge (upper panel) by measuring the ratio of the derivative of the intensity over time divided by the derivative of the intensity over space]

Figure 10-5. Lucas-Kanade optical flow in one dimension: we can estimate the velocity of the
              moving edge (upper panel) by measuring the ratio of the derivative of the intensity
              over time divided by the derivative of the intensity over space

[image: Iterating to refine the optical flow solution (Newton’s method): using the same two images and the same spatial derivative (slope) we solve again for the time derivative; convergence to a stable solution usually occurs within a few iterations]

Figure 10-6. Iterating to refine the optical flow solution (Newton’s method): using the same
              two images and the same spatial derivative (slope) we solve again for the time
              derivative; convergence to a stable solution usually occurs within a few
              iterations

Now that we’ve seen the one-dimensional solution, let’s generalize it to images in
            two dimensions. At first glance, this seems simple: just add in the
              y coordinate. Slightly changing notation, we’ll call the
              y component of velocity v and the
              x component of velocity u; then we
              have:
[image: image with no caption]

Unfortunately, for this single equation there are two unknowns for any given pixel.
            This means that measurements at the single-pixel level are underconstrained and cannot
            be used to obtain a unique solution for the two-dimensional motion at that point.
            Instead, we can only solve for the motion component that is perpendicular or “normal” to
            the line described by our flow equation. Figure 10-7 presents the mathematical and
            geometric details.
[image: Two-dimensional optical flow at a single pixel: optical flow at one pixel is underdetermined and so can yield at most motion, which is perpendicular (“normal”) to the line described by the flow equation (figure courtesy of Michael Black)]

Figure 10-7. Two-dimensional optical flow at a single pixel: optical flow at one pixel is
              underdetermined and so can yield at most motion, which is perpendicular (“normal”) to
              the line described by the flow equation (figure courtesy of Michael Black)

Normal optical flow results from the aperture problem, which
            arises when you have a small aperture or window in which to measure motion. When motion
            is detected with a small aperture, you often see only an edge, not a corner. But an edge
            alone is insufficient to determine exactly how (i.e., in what direction) the entire
            object is moving; see Figure 10-8.
So then how do we get around this problem that, at one pixel, we cannot resolve the
            full motion? We turn to the last optical flow assumption for help. If a local patch of
            pixels moves coherently, then we can easily solve for the motion of the central pixel by
            using the surrounding pixels to set up a system of equations. For example, if we use a
            5-by-5 [145] window of brightness values (you can simply triple this for color-based
            optical flow) around the current pixel to compute its motion, we can then set up 25
            equations as follows.
[image: image with no caption]

[image: Aperture problem: through the aperture window (upper row) we see an edge moving to the right but cannot detect the downward part of the motion (lower row)]

Figure 10-8. Aperture problem: through the aperture window (upper row) we see an edge moving
              to the right but cannot detect the downward part of the motion (lower row)

We now have an overconstrained system for which we can solve provided it contains
            more than just an edge in that 5-by-5 window. To solve for this system, we set up a
            least-squares minimization of the equation, whereby 
[image: image with no caption]

 is solved in standard form as:
[image: image with no caption]

From this relation we obtain our u and v
            motion components. Writing this out in more detail yields:
[image: image with no caption]

The solution to this equation is then:
[image: image with no caption]

When can this be solved?—when
              (ATA) is
            invertible. And
              (ATA) is
            invertible when it has full rank (2), which occurs when it has two large eigenvectors.
            This will happen in image regions that include texture running in at least two
            directions. In this case,
              (ATA) will have
            the best properties then when the tracking window is centered over a corner region in an
            image. This ties us back to our earlier discussion of the Harris corner detector. In fact, those corners were “good features to track”
            (see our previous remarks concerning cvGoodFeaturesToTrack()) for precisely the reason that
              (ATA) had two
            large eigenvectors there! We’ll see shortly how all this computation is done for us by
            the cvCalcOpticalFlowLK() function.
The reader who understands the implications of our assuming small and coherent
            motions will now be bothered by the fact that, for most video cameras running at 30 Hz,
            large and noncoherent motions are commonplace. In fact, Lucas-Kanade optical flow by itself does not work very well for exactly this reason: we
            want a large window to catch large motions, but a large window too often breaks the
            coherent motion assumption! To circumvent this problem, we can track first over larger
            spatial scales using an image pyramid and then refine the initial motion velocity
            assumptions by working our way down the levels of the image pyramid until we arrive at
            the raw image pixels.
Hence, the recommended technique is first to solve for optical flow at the top layer
            and then to use the resulting motion estimates as the starting point for the next layer
            down. We continue going down the pyramid in this manner until we reach the lowest level.
            Thus we minimize the violations of our motion assumptions and so can track faster and
            longer motions. This more elaborate function is known as pyramid Lucas-Kanade
              optical flow and is illustrated in Figure 10-9. The OpenCV function that
            implements Pyramid Lucas-Kanade optical flow is cvCalcOpticalFlowPyrLK(), which we examine next.

Lucas-Kanade code



The routine that implements the nonpyramidal Lucas-Kanade dense optical flow algorithm is:
void cvCalcOpticalFlowLK(
  const CvArr* imgA,
  const CvArr* imgB,
  CvSize       winSize,
  CvArr*       velx,
  CvArr*       vely
);
The result arrays for this OpenCV routine are populated only by those pixels for
            which it is able to compute the minimum error. For the pixels for which this error (and
            thus the displacement) cannot be reliably computed, the associated velocity will be set
            to 0. In most cases, you will not want to use this routine. The following pyramid-based
            method is better for most situations most of the time.

Pyramid Lucas-Kanade code



We come now to OpenCV’s algorithm that computes Lucas-Kanade optical flow in a
            pyramid, cvCalcOpticalFlowPyrLK(). As we will see,
            this optical flow function makes use of “good features to track” and also returns
            indications of how well the tracking of each point is proceeding.
[image: Pyramid Lucas-Kanade optical flow: running optical flow at the top of the pyramid first mitigates the problems caused by violating our assumptions of small and coherent motion; the motion estimate from the preceding level is taken as the starting point for estimating motion at the next layer down]

Figure 10-9. Pyramid Lucas-Kanade optical flow: running optical flow at the top of the pyramid
              first mitigates the problems caused by violating our assumptions of small and coherent
              motion; the motion estimate from the preceding level is taken as the starting point
              for estimating motion at the next layer down

void cvCalcOpticalFlowPyrLK(
  const CvArr*    imgA,
  const CvArr*    imgB,
  CvArr*          pyrA,
  CvArr*          pyrB,
  CvPoint2D32f*   featuresA,
  CvPoint2D32f*   featuresB,
  int             count,
  CvSize          winSize,
  int             level,
  char*           status,
  float*          track_error,
  CvTermCriteria  criteria,
  int             flags
);
This function has a lot of inputs, so let’s take a moment to figure out what they
            all do. Once we have a handle on this routine, we can move on to the problem of which
            points to track and how to compute them.
The first two arguments of cvCalcOpticalFlowPyrLK() are the initial and final images; both should be
            single-channel, 8-bit images. The next two arguments are buffers allocated to store the
            pyramid images. The size of these buffers should be at least (img.width + 8)*img.height/3 bytes, [146] with one such buffer for each of the two input images (pyrA and pyrB). (If these
            two pointers are set to NULL then the routine will
            allocate, use, and free the appropriate memory when called, but this is not so good for
            performance.) The array featuresA contains the points
            for which the motion is to be found, and featuresB is
            a similar array into which the computed new locations of the points from featuresA are to be placed; count is the number of points in the featuresA list. The window used for computing the local coherent motion is
            given by winSize. Because we are constructing an
            image pyramid, the argument level is used to set the
            depth of the stack of images. If level is set to 0
            then the pyramids are not used. The array status is
            of length count; on completion of the routine, each
            entry in status will be either 1 (if the
            corresponding point was found in the second image) or 0 (if it was not). The track_error parameter is optional and can be turned off by
            setting it to NULL. If track_error is active then it is an array of numbers, one for each tracked
            point, equal to the difference between the patch around a tracked point in the first
            image and the patch around the location to which that point was tracked in the second
            image. You can use track_error to prune away points
            whose local appearance patch changes too much as the points move.
The next thing we need is the termination criteria. This is a structure used by many OpenCV algorithms that iterate
            to a solution:
cvTermCriteria(
    int    type,      // CV_TERMCRIT_ITER, CV_TERMCRIT_EPS, or both
    int    max_iter,
    double epsilon
);
Typically we use the cvTermCriteria() function to
            generate the structure we need. The first argument of this function is either CV_TERMCRIT_ITER or CV_TERMCRIT_EPS, which tells the algorithm that we want to terminate either
            after some number of iterations or when the convergence metric reaches some small value
            (respectively). The next two arguments set the values at which one, the other, or both
            of these criteria should terminate the algorithm. The reason we have both options is so
            we can set the type to CV_TERMCRIT_ITER |
              CV_TERMCRIT_EPS and thus stop when either limit is reached (this is what is
            done in most real code).
Finally, flags allows for some fine control of
            the routine’s internal bookkeeping; it may be set to any or all (using bitwise OR) of
            the following.
	
                CV_LKFLOW_PYR_A_READY
              
	The image pyramid for the first frame is calculated before the call and stored
                  in pyrA.

	
                CV_LKFLOW_PYR_B_READY
              
	The image pyramid for the second frame is calculated before the call and
                  stored in pyrB.

	
                CV_LKFLOW_INITIAL_GUESSES
              
	The array B already contains an initial guess for the feature’s coordinates
                  when the routine is called.



These flags are particularly useful when handling sequential video. The image
            pyramids are somewhat costly to compute, so recomputing them should be avoided whenever
            possible. The final frame for the frame pair you just computed will be the initial frame
            for the pair that you will compute next. If you allocated those buffers yourself
            (instead of asking the routine to do it for you), then the pyramids for each image will
            be sitting in those buffers when the routine returns. If you tell the routine that this
            information is already computed then it will not be recomputed. Similarly, if you
            computed the motion of points from the previous frame then you are in a good position to
            make good initial guesses for where they will be in the next frame.
So the basic plan is simple: you supply the images, list the points you want to
            track in featuresA, and call the routine. When the
            routine returns, you check the status array to see
            which points were successfully tracked and then check featuresB to find the new locations of those points.
This leads us back to that issue we put aside earlier: how to decide which features
            are good ones to track. Earlier we encountered the OpenCV routine cvGoodFeatures ToTrack(), which uses the method originally
            proposed by Shi and Tomasi to solve this problem in a reliable way. In most cases, good
            results are obtained by using the combination of cvGoodFeaturesToTrack() and cvCalcOpticalFlowPyrLK(). Of course, you can also use your own criteria to
            determine which points to track.
Let’s now look at a simple example (Example 10-1) that uses both cvGoodFeaturesToTrack() and cvCalcOpticalFlowPyrLK(); see also Figure 10-10.
Example 10-1. Pyramid Lucas-Kanade optical flow code
// Pyramid L-K optical flow example
//
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>

const int MAX_CORNERS = 500;

int main(int argc, char** argv) {

  // Initialize, load two images from the file system, and
  // allocate the images and other structures we will need for
  // results.
  //
  IplImage* imgA = cvLoadImage("image0.jpg",CV_LOAD_IMAGE_GRAYSCALE);
  IplImage* imgB = cvLoadImage("image1.jpg",CV_LOAD_IMAGE_GRAYSCALE);

  CvSize    img_sz = cvGetSize( imgA );
  int       win_size = 10;

  IplImage* imgC = cvLoadImage(
    "../Data/OpticalFlow1.jpg",
    CV_LOAD_IMAGE_UNCHANGED
  );

  // The first thing we need to do is get the features
  // we want to track.
  //
  IplImage* eig_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );
  IplImage* tmp_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );
  
  int           corner_count = MAX_CORNERS;
  CvPoint2D32f* cornersA     = new CvPoint2D32f[ MAX_CORNERS ];
  
  cvGoodFeaturesToTrack(
    imgA,
    eig_image,
    tmp_image,
    cornersA,
    &corner_count,
    0.01,
    5.0,
    0,
    3,
    0,
    0.04
  );
  
  cvFindCornerSubPix(
    imgA,
    cornersA,
    corner_count,
    cvSize(win_size,win_size),
    cvSize(-1,-1),
    cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03)
  );
  
  // Call the Lucas Kanade algorithm
  //
  char features_found[ MAX_CORNERS ];
  float feature_errors[ MAX_CORNERS ];
  
  CvSize pyr_sz = cvSize( imgA->width+8, imgB->height/3 );
  
  IplImage* pyrA = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );
  IplImage* pyrB = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );
  
  CvPoint2D32f* cornersB = new CvPoint2D32f[ MAX_CORNERS ];
  
  cvCalc OpticalFlowPyrLK(
    imgA,
    imgB,
    pyrA,
    pyrB,
    cornersA,
    cornersB,
    corner_count,
    cvSize( win_size,win_size ),
    5,
    features_found,
    feature_errors,
    cvTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3 ),
    0
  );
  
  // Now make some image of what we are looking at:
  //
  for( int i=0; i<corner_count; i++ ) {
    if( features_found[i]==0|| feature_errors[i]>550 ) {
      printf("Error is %f/n",feature_errors[i]);
      continue;
    }
    printf("Got it/n");
    CvPoint p0 = cvPoint(
      cvRound( cornersA[i].x ),
      cvRound( cornersA[i].y )
    );
    CvPoint p1 = cvPoint(
      cvRound( cornersB[i].x ),
      cvRound( cornersB[i].y )
    );
    cvLine( imgC, p0, p1, CV_RGB(255,0,0),2 );
  }
  
  cvNamedWindow("ImageA",0);
  cvNamedWindow("ImageB",0);
  cvNamedWindow("LKpyr_OpticalFlow",0);
  
  cvShowImage("ImageA",imgA);
  cvShowImage("ImageB",imgB);
  cvShowImage("LKpyr_OpticalFlow",imgC);
  
  cvWaitKey(0);
  
  return 0;
}




Dense Tracking Techniques



OpenCV contains two other optical flow techniques that are now seldom used. These routines are typically
          much slower than Lucas-Kanade; moreover, they (could, but) do not support matching within an
          image scale pyramid and so cannot track large motions. We will discuss them briefly in
          this section.
[image: Sparse optical flow from pyramid Lucas-Kanade: the center image is one video frame after the left image; the right image illustrates the computed motion of the “good features to track” (lower right shows flow vectors against a dark background for increased visibility)]

Figure 10-10. Sparse optical flow from pyramid Lucas-Kanade: the center image is one video frame
            after the left image; the right image illustrates the computed motion of the “good
            features to track” (lower right shows flow vectors against a dark background for
            increased visibility)

Horn-Schunck method



The method of Horn and Schunck was developed in 1981 [Horn81]. This technique was
            one of the first to make use of the brightness constancy assumption and to derive the basic brightness constancy
            equations. The solution of these equations devised by Horn and Schunck was by
            hypothesizing a smoothness constraint on the velocities vx and
              vy. This constraint was derived by minimizing the regularized
            Laplacian of the optical flow velocity components:
[image: image with no caption]

[image: image with no caption]

Here α is a constant weighting coefficient known as the regularization
              constant. Larger values of α lead to smoother (i.e., more locally
            consistent) vectors of motion flow. This is a relatively simple constraint for enforcing
            smoothness, and its effect is to penalize regions in which the flow is changing in
            magnitude. As with Lucas-Kanade, the Horn-Schunck technique relies on iterations to solve the
            differential equations. The function that computes this is:
void cvCalcOpticalFlowHS(
    const CvArr*      imgA,
    const CvArr*      imgB,
    int               usePrevious,
    CvArr*            velx,
    CvArr*            vely,
    double            lambda,
    CvTermCriteria    criteria
);
Here imgA and imgB must be 8-bit, single-channel images. The x and
              y velocity results will be stored in velx and vely, which must be 32-bit,
            floating-point, single-channel images. The usePrevious parameter tells the algorithm to use the velx and vely velocities
            computed from a previous frame as the initial starting point for computing the new
            velocities. The parameter lambda is a weight related
            to the Lagrange multiplier. You are probably asking yourself: “What
            Lagrange multiplier?” [147] The Lagrange multiplier arises when we attempt to minimize (simultaneously)
            both the motion-brightness equation and the smoothness equations; it represents the
            relative weight given to the errors in each as we minimize.

Block matching method



You might be thinking: “What’s the big deal with optical flow? Just match where
            pixels in one frame went to in the next frame.” This is exactly what others have done.
            The term "block matching” is a catchall for a whole class of similar algorithms in
            which the image is divided into small regions called blocks [Huang95;
              Beauchemin95]. Blocks are typically square and contain some number of
            pixels. These blocks may overlap and, in practice, often do. Block-matching algorithms
            attempt to divide both the previous and current images into such blocks and then compute
            the motion of these blocks. Algorithms of this kind play an important role in many video
            compression algorithms as well as in optical flow for computer vision.
Because block-matching algorithms operate on aggregates of pixels, not on individual
            pixels, the returned “velocity images” are typically of lower resolution than the input
            images. This is not always the case; it depends on the severity of the overlap between
            the blocks. The size of the result images is given by the following formula:
[image: image with no caption]

[image: image with no caption]

The implementation in OpenCV uses a spiral search that works out from the location
            of the original block (in the previous frame) and compares the candidate new blocks with
            the original. This comparison is a sum of absolute differences of the pixels (i.e., an
            L1 distance). If a good enough match is found, the search is terminated. Here’s the
            function prototype:
void cvCalcOpticalFlowBM(
    const CvArr* prev,
    const CvArr* curr,
    CvSize       block_size,
    CvSize       shift_size,
    CvSize       max_range,
    int          use_previous,
    CvArr*       velx,
    CvArr*       vely
);
The arguments are straightforward. The prev and
              curr parameters are the previous and current
            images; both should be 8-bit, single-channel images. The block_size is the size of the block to be used, and shift_size is the step size between blocks (this parameter
            controls whether—and, if so, by how much—the blocks will overlap). The max_range parameter is the size of the region around a given
            block that will be searched for a corresponding block in the subsequent frame. If set,
              use_previous indicates that the values in velx and vely should be
            taken as starting points for the block searches. [148] Finally, velx and vely are themselves 32-bit single-channel images that will
            store the computed motions of the blocks. As mentioned previously, motion is computed at
            a block-by-block level and so the coordinates of the result images are for the blocks
            (i.e., aggregates of pixels), not for the individual pixels of the original
            image.



Mean-Shift and Camshift Tracking



In this section we will look at two techniques, mean-shift and
          camshift (where “camshift” stands for “continuously adaptive
        mean-shift”). The former is a general technique for data analysis (discussed in Chapter 9 in the context of segmentation) in many
        applications, of which computer vision is only one. After introducing the general theory of
        mean-shift, we’ll describe how OpenCV allows you to apply it to tracking in images. The
        latter technique, camshift, builds on mean-shift to allow for the tracking of objects whose
        size may change during a video sequence.
Mean-Shift and Camshift Tracking



Mean-Shift



The mean-shift algorithm [149] is a robust method of finding local extrema in the density distribution of a
            data set. This is an easy process for continuous distributions; in that context, it is
            essentially just hill climbing applied to a density histogram of
            the data. [150] For discrete data sets, however, this is a somewhat less trivial
              problem.
The descriptor “robust” is used here in its formal statistical sense; that is,
              mean-shift ignores outliers in the data. This means that it ignores data
            points that are far away from peaks in the data. It does so by processing only those
            points within a local window of the data and then moving that window.
The mean-shift algorithm runs as follows.
	Choose a search window:
	its initial location;

	its type (uniform, polynomial, exponential, or Gaussian);

	its shape (symmetric or skewed, possibly rotated, rounded or
                    rectangular);

	its size (extent at which it rolls off or is cut off).




	Compute the window’s (possibly weighted) center of mass.

	Center the window at the center of mass.

	Return to step 2 until the window stops moving (it always will). [151]



To give a little more formal sense of what the mean-shift algorithm is: it is
            related to the discipline of kernel density estimation, where by
            “kernel” we refer to a function that has mostly local focus (e.g., a Gaussian
            distribution). With enough appropriately weighted and sized kernels located at enough
            points, one can express a distribution of data entirely in terms of those kernels.
            Mean-shift diverges from kernel density estimation in that it seeks only to estimate the
            gradient (direction of change) of the data distribution. When this change is 0, we are
            at a stable (though perhaps local) peak of the distribution. There might be other peaks
            nearby or at other scales.
Figure 10-11 shows the equations
            involved in the mean-shift algorithm. These equations can be simplified by considering a
              rectangular kernel, [152] which reduces the mean-shift vector equation to calculating the center of
            mass of the image pixel distribution:
[image: image with no caption]

Here the zeroth moment is calculated as:
[image: image with no caption]

and the first moments are:
[image: image with no caption]

[image: Mean-shift equations and their meaning]

Figure 10-11. Mean-shift equations and their meaning

The mean-shift vector in this case tells us to recenter the mean-shift window
            over the calculated center of mass within that window. This movement will, of course,
            change what is “under” the window and so we iterate this recentering process. Such
            recentering will always converge to a mean-shift vector of 0 (i.e., where no more
            centering movement is possible). The location of convergence is at a local maximum
            (peak) of the distribution under the window. Different window sizes will find different
            peaks because “peak” is fundamentally a scale-sensitive construct.
In Figure 10-12 we see an example of a
            two-dimensional distribution of data and an initial (in this case, rectangular) window.
            The arrows indicate the process of convergence on a local mode (peak) in the
            distribution. Observe that, as promised, this peak finder is statistically robust in the
            sense that points outside the mean-shift window do not affect convergence—the algorithm
            is not “distracted” by far-away points.
In 1998, it was realized that this mode-finding algorithm could be used to track
            moving objects in video [Bradski98a; Bradski98b], and the algorithm has since been
            greatly extended [Comaniciu03]. The OpenCV function that performs mean-shift is
            implemented in the context of image analysis. This means in particular that, rather than
            taking some arbitrary set of data points (possibly in some arbitrary number of
            dimensions), the OpenCV implementation of mean-shift expects as input an image representing the density distribution
            being analyzed. You could think of this image as a two-dimensional histogram measuring
            the density of points in some two-dimensional space. It turns out that, for vision, this
            is precisely what you want to do most of the time: it’s how you can track the motion of
            a cluster of interesting features.
[image: Mean-shift algorithm in action: an initial window is placed over a two-dimensional array of data points and is successively recentered over the mode (or local peak) of its data distribution until convergence]

Figure 10-12. Mean-shift algorithm in action: an initial window is placed over a
              two-dimensional array of data points and is successively recentered over the mode (or
              local peak) of its data distribution until convergence

int cvMeanShift(
    const CvArr*      prob_image,
    CvRect            window,
    CvTermCriteria    criteria,
    CvConnectedComp*  comp
);
In cvMeanShift(), the prob_image, which represents the density of probable locations, may be only
            one channel but of either type (byte or float). The window is set at the initial desired location and size of the kernel
            window. The termination criteria has been described
            elsewhere and consists mainly of a maximum limit on number of mean-shift movement
            iterations and a minimal movement for which we consider the window locations to have
            converged. [153] The connected component comp contains the
            converged search window location in comp->rect,
            and the sum of all pixels under the window is kept in the comp->area field.
The function cvMeanShift() is one expression of
            the mean-shift algorithm for rectangular windows, but it may also be used for tracking.
            In this case, you first choose the feature distribution to represent an object (e.g.,
            color + texture), then start the mean-shift window over the feature distribution
            generated by the object, and finally compute the chosen feature distribution over the
            next video frame. Starting from the current window location, the mean-shift algorithm
            will find the new peak or mode of the feature distribution, which (presumably) is
            centered over the object that produced the color and texture in the first place. In this
            way, the mean-shift window tracks the movement of the object frame by frame.


Camshift



A related algorithm is the Camshift tracker. It differs from the meanshift in that the
          search window adjusts itself in size. If you have well-segmented distributions (say face
          features that stay compact), then this algorithm will automatically adjust itself for the
          size of face as the person moves closer to and further from the camera. The form of the
          Camshift algorithm is:
int cvCamShift(
    const CvArr*     prob_image,
    CvRect           window,
    CvTermCriteria   criteria,
    CvConnectedComp* comp,
    CvBox2D*         box         = NULL
);
The first four parameters are the same as for the cvMeanShift() algorithm. The box
          parameter, if present, will contain the newly resized box, which also includes the
          orientation of the object as computed via second-order moments. For tracking applications,
          we would use the resulting resized box found on the
          previous frame as the window in the next frame.
Tip
Many people think of mean-shift and camshift as tracking using color features, but
            this is not entirely correct. Both of these algorithms track the distribution of any
            kind of feature that is expressed in the prob_image;
            hence they make for very lightweight, robust, and efficient trackers.



Motion Templates



Motion templates were invented in the MIT Media Lab by Bobick and Davis [Bobick96; Davis97] and were further developed
        jointly with one of the authors [Davis99; Bradski00]. This more recent work forms the basis
        for the implementation in OpenCV.
Motion templates are an effective way to track general movement and are
        especially applicable to gesture recognition. Using motion templates requires a silhouette (or part of a
        silhouette) of an object. Object silhouettes can be obtained in a number of ways.
	The simplest method of obtaining object silhouettes is to use a reasonably stationary camera and then employ
            frame-to-frame differencing (as discussed in Chapter 9). This will give you the moving edges of
            objects, which is enough to make motion templates work.

	You can use chroma keying. For example, if you have a known background color such as
            bright green, you can simply take as foreground anything that is not bright
            green.

	Another way (also discussed in Chapter 9) is to
            learn a background model from which you can isolate new foreground objects/people as
            silhouettes.

	You can use active silhouetting techniques—for example, creating a wall of
            near-infrared light and having a near-infrared-sensitive camera look at the wall. Any
            intervening object will show up as a silhouette.

	You can use thermal imagers; then any hot object (such as a face) can be taken as
            foreground.

	Finally, you can generate silhouettes by using the segmentation techniques (e.g.,
            pyramid segmentation or mean-shift segmentation) described in Chapter 9.



For now, assume that we have a good, segmented object silhouette as represented by the
        white rectangle of Figure 10-13(A). Here we
        use white to indicate that all the pixels are set to the floating-point value of the most
        recent system time stamp. As the rectangle moves, new silhouettes are captured and overlaid
        with the (new) current time stamp; the new silhouette is the white rectangle of Figure 10-13(B) and Figure 10-13(C). Older motions are shown in Figure 10-13 as successively darker rectangles.
        These sequentially fading silhouettes record the history of previous movement and thus are
        referred to as the “motion history image”.
[image: Motion template diagram: (A) a segmented object at the current time stamp (white); (B) at the next time step, the object moves and is marked with the (new) current time stamp, leaving the older segmentation boundary behind; (C) at the next time step, the object moves further, leaving older segmentations as successively darker rectangles whose sequence of encoded motion yields the motion history image]

Figure 10-13. Motion template diagram: (A) a segmented object at the current time stamp (white);
          (B) at the next time step, the object moves and is marked with the (new) current time
          stamp, leaving the older segmentation boundary behind; (C) at the next time step, the
          object moves further, leaving older segmentations as successively darker rectangles whose
          sequence of encoded motion yields the motion history image

Silhouettes whose time stamp is more than a specified duration older than the current system time stamp are set to 0, as shown in
          Figure 10-14. The OpenCV function that
        accomplishes this motion template construction is cvUpdateMotionHistory():
void cvUpdateMotionHistory(
   const CvArr* silhouette,
   CvArr*       mhi,
   double       timestamp,
   double       duration
);
[image: Motion template silhouettes for two moving objects (left); silhouettes older than a specified duration are set to 0 (right)]

Figure 10-14. Motion template silhouettes for two moving objects (left); silhouettes older than a
          specified duration are set to 0 (right)

In cvUpdateMotionHistory(), all image arrays consist
        of single-channel images. The silhouette image is a byte
        image in which nonzero pixels represent the most recent segmentation silhouette of the
        foreground object. The mhi image is a floating-point
        image that represents the motion template (aka motion history image). Here timestamp is the current system time (typically a millisecond
        count) and duration, as just described, sets how long
        motion history pixels are allowed to remain in the mhi.
        In other words, any mhi pixels that are older (less) than
          timestamp minus duration are set to 0.
Once the motion template has a collection of object silhouettes overlaid in time, we can derive an indication of overall
        motion by taking the gradient of the mhi image. When we
        take these gradients (e.g., by using the Scharr or Sobel gradient functions discussed in Chapter 6), some
        gradients will be large and invalid. Gradients are invalid when older or inactive parts of
        the mhi image are set to 0, which produces artificially
        large gradients around the outer edges of the silhouettes; see Figure 10-15(A). Because we know the time-step
        duration with which we’ve been introducing new silhouettes into the mhi via cvUpdateMotionHistory(), we know how
        large our gradients (which are just dx and dy step
        derivatives) should be. We can therefore use the gradient magnitude to eliminate gradients
        that are too large, as in Figure 10-15(B).
        Finally, we can collect a measure of global motion; see Figure 10-15(C). The function that effects parts
        (A) and (B) of the figure is cvCalcMotionGradient():
void cvCalcMotionGradient(
   const CvArr* mhi,
   CvArr* mask,
   CvArr* orientation,
   double delta1,
   double delta2,
   int aperture_size=3
);
[image: Motion gradients of the mhi image: (A) gradient magnitudes and directions; (B) large gradients are eliminated; (C) overall direction of motion is found]

Figure 10-15. Motion gradients of the mhi image: (A) gradient magnitudes and directions; (B) large
          gradients are eliminated; (C) overall direction of motion is found

In cvCalcMotionGradient(), all image arrays are
        single-channel. The function input mhi is a
        floating-point motion history image, and the input variables delta1 and delta2 are (respectively) the
        minimal and maximal gradient magnitudes allowed. Here, the expected gradient magnitude will
        be just the average number of milliseconds in the time-stamp between each silhouette in
        successive calls to cvUpdateMotionHistory(); setting
          delta1 halfway below and delta2 halfway above this average value should work well. The variable aperture_size sets the size in width and height of the gradient
        operator. These values can be set to -1 (the 3-by-3
          CV_SCHARR gradient filter), 3 (the default 3-by-3 Sobel filter), 5 (for
        the 5-by-5 Sobel filter), or 7 (for the 7-by-7 filter).
        The function outputs are mask, a single-channel 8-bit
        image in which nonzero entries indicate where valid gradients were found, and orientation, a floating-point image that gives the gradient
        direction’s angle at each point.
The function cvCalcGlobalOrientation() finds the
        overall direction of motion as the vector sum of the valid gradient directions.
double cvCalcGlobalOrientation(
   const CvArr* orientation,
   const CvArr* mask,
   const CvArr* mhi,
   double       timestamp,
   double       duration
);
When using cvCalcGlobalOrientation(), we pass in the
          orientation and mask
        image computed in cvCalcMotionGradient() along with the
          timestamp, duration,
        and resulting mhi from cvUpdateMotionHistory(); what’s returned is the vector-sum global orientation,
        as in Figure 10-15(C). The timestamp together with duration tells the routine how much motion to consider from the mhi and motion
          orientation images. One could compute the global motion
        from the center of mass of each of the mhi
        silhouettes, but summing up the precomputed motion vectors is much
        faster.
We can also isolate regions of the motion template mhi image and determine the local motion within that region, as shown in Figure 10-16. In the figure, the mhi image is scanned for current silhouette regions. When a
        region marked with the most current time stamp is found, the region’s perimeter is searched
        for sufficiently recent motion (recent silhouettes) just outside its perimeter. When such
        motion is found, a downward-stepping flood fill is performed to isolate the local region of
        motion that “spilled off” the current location of the object of interest. Once found, we can calculate local motion gradient direction
        in the spill-off region, then remove that region, and repeat the process until all regions
        are found (as diagrammed in Figure 10-16).
[image: Segmenting local regions of motion in the mhi image: (A) scan the mhi image for current silhouettes (a) and, when found, go around the perimeter looking for other recent silhouettes (b); when a recent silhouette is found, perform downward-stepping flood fills (c) to isolate local motion; (B) use the gradients found within the isolated local motion region to compute local motion; (C) remove the previously found region and search for the next current silhouette region (d), scan along it (e), and perform downward-stepping flood fill on it (f); (D) compute motion within the newly isolated region and continue the process (A)-(C) until no current silhouette remains]

Figure 10-16. Segmenting local regions of motion in the mhi image: (A) scan the mhi image for
          current silhouettes (a) and, when found, go around the perimeter looking for other recent
          silhouettes (b); when a recent silhouette is found, perform downward-stepping flood fills
          (c) to isolate local motion; (B) use the gradients found within the isolated local motion
          region to compute local motion; (C) remove the previously found region and search for the
          next current silhouette region (d), scan along it (e), and perform downward-stepping flood
          fill on it (f); (D) compute motion within the newly isolated region and continue the
          process (A)-(C) until no current silhouette remains

The function that isolates and computes local motion is cvSegmentMotion():
CvSeq* cvSegmentMotion(
   const CvArr*  mhi,
   CvArr*        seg_mask,
   CvMemStorage* storage,
   double        timestamp,
   double        seg_thresh
);
In cvSegmentMotion(), the mhi is the single-channel floating-point input. We also pass in storage, a CvMemoryStorage
        structure allocated via cvCreateMemStorage(). Another
        input is timestamp, the value of the most current
          silhouettes in the mhi from which you want to
        segment local motions. Finally, you must pass in seg_thresh, which is the maximum downward step (from current time to previous
        motion) that you’ll accept as attached motion. This parameter is provided because there
        might be overlapping silhouettes from recent and much older motion that you don’t want to connect
        together.
It’s generally best to set seg_thresh to something
        like 1.5 times the average difference in silhouette time stamps. This function returns a
          CvSeq of CvConnectedComp structures, one for each separate motion found, which
        delineates the local motion regions; it also returns seg_mask, a single-channel, floating-point image in which each region of
        isolated motion is marked a distinct nonzero number (a zero pixel in seg_mask indicates no motion). To compute these local motions
        one at a time we call cvCalcGlobalOrientation(), using
        the appropriate mask region selected from the appropriate CvConnectedComp or from a particular value in the seg_mask; for example,
cvCmpS(
  seg_mask,
//  [value_wanted_in_seg_mask],
//  [your_destination_mask],
   CV_CMP_EQ
)
Given the discussion so far, you should now be able to understand the motempl.c example that ships with OpenCV in the …/opencv/samples/c/ directory. We will now extract and explain
        some key points from the update_mhi() function in
          motempl.c. The update_mhi() function extracts templates by thresholding frame differences and
        then passing the resulting silhouette to cvUpdateMotionHistory():
...
cvAbsDiff( buf[idx1], buf[idx2], silh );
cvThreshold( silh, silh, diff_threshold, 1, CV_THRESH_BINARY );
cvUpdateMotionHistory( silh, mhi, timestamp, MHI_DURATION );
...
The gradients of the resulting mhi image are then
        taken, and a mask of valid gradients is produced using cvCalcMotionGradient(). Then CvMemStorage is
        allocated (or, if it already exists, it is cleared), and the resulting local motions are
        segmented into CvConnectedComp structures in the CvSeq containing structure seq:
...
cvCalcMotionGradient(
  mhi,
  mask,
  orient,
  MAX_TIME_DELTA,
  MIN_TIME_DELTA,
  3
);

if( !storage )
  storage = cvCreateMemStorage(0);
else
  cvClearMemStorage(storage);

seq = cvSegment Motion(
  mhi,
  segmask,
  storage,
  timestamp,
  MAX_TIME_DELTA
);
A “for” loop then iterates through the seq->total
        CvConnectedComp structures extracting bounding rectangles
        for each motion. The iteration starts at -1, which has
        been designated as a special case for finding the global motion of the whole image. For the
        local motion segments, small segmentation areas are first rejected and then the orientation
        is calculated using cvCalcGlobalOrientation(). Instead of
        using exact masks, this routine restricts motion calculations to regions of interest (ROIs)
        that bound the local motions; it then calculates where valid motion within the local ROIs
        was actually found. Any such motion area that is too small is rejected. Finally, the routine
        draws the motion. Examples of the output for a person flapping their arms is shown in Figure 10-17, where the output is drawn above the
        raw image for four sequential frames going across in two rows. (For the full code, see
          …/opencv/samples/c/motempl.c.) In the same sequence,
        “Y” postures were recognized by the shape descriptors (Hu moments) discussed in Chapter 8, although the shape
        recognition is not included in the samples
          code.
for( i = -1; i < seq->total; i++ ) {
    if( i < 0 ) { // case of the whole image
//       ...[does the whole image]...
    else { // i-th motion component
        comp_rect = ((CvConnectedComp*)cvGetSeqElem( seq, i ))->rect;
//           [reject very small components]...
    }
    ...[set component ROI regions]...
    angle  = cvCalcGlobalOrientation( orient, mask, mhi,
                                      timestamp, MHI_DURATION);
    ...[find regions of valid motion]...
    ...[reset ROI regions]...
    ...[skip small valid motion regions]...
    ...[draw the motions]...
    }
[image: Results of motion template routine: going across and top to bottom, a person moving and the resulting global motions indicated in large octagons and local motions indicated in small octagons; also, the “Y” pose can be recognized via shape descriptors (Hu moments)]

Figure 10-17. Results of motion template routine: going across and top to bottom, a person moving
          and the resulting global motions indicated in large octagons and local motions indicated
          in small octagons; also, the “Y” pose can be recognized via shape descriptors (Hu
          moments)


Estimators



Suppose we are tracking a person who is walking across the view of a video camera. At each frame we make a
        determination of the location of this person. This could be done any number of ways, as we
        have seen, but in each case we find ourselves with an estimate of the position of the person
        at each frame. This estimation is not likely to be extremely accurate. The reasons for this
        are many. They may include inaccuracies in the sensor, approximations in earlier processing
        stages, issues arising from occlusion or shadows, or the apparent changing of shape when a
          person is walking due to their legs and arms swinging as they move. Whatever the
        source, we expect that these measurements will vary, perhaps somewhat randomly, about the
        “actual” values that might be received from an idealized sensor. We can think of all these
        inaccuracies, taken together, as simply adding noise to our tracking process.
We’d like to have the capability of estimating the motion of this person in a way that
        makes maximal use of the measurements we’ve made. Thus, the cumulative effect of our many
        measurements could allow us to detect the part of the person’s observed trajectory that does
        not arise from noise. The key additional ingredient is a model for the
        person’s motion. For example, we might model the person’s motion with the following
        statement: “A person enters the frame at one side and walks across the frame at constant
        velocity.” Given this model, we can ask not only where the person is but also what
        parameters of the model are supported by our observations.
This task is divided into two phases (see Figure 10-18). In the first phase, typically
        called the prediction phase, we use information learned in the past to
        further refine our model for what the next location of the person (or object) will be. In
        the second phase, the correction phase, we make a measurement and then
        reconcile that measurement with the predictions based on our previous measurements (i.e.,
        our model).
[image: Two-phase estimator cycle: prediction based on prior data followed by reconciliation of the newest measurement]

Figure 10-18. Two-phase estimator cycle: prediction based on prior data followed by reconciliation
          of the newest measurement

The machinery for accomplishing the two-phase estimation task falls generally under the
        heading of estimators, with the Kalman filter
        [Kalman60] being the most widely used technique. In addition to the Kalman filter, another
        important method is the condensation algorithm, which is a
        computer-vision implementation of a broader class of methods known as particle
          filters. The primary difference between the Kalman filter and the condensation algorithm is how the state probability density is described. We
        will explore the meaning of this distinction in the following sections.
The Kalman Filter



First introduced in 1960, the Kalman filter has risen to great prominence in a wide
          variety of signal processing contexts. The basic idea behind the Kalman filter is that,
          under a strong but reasonable [154] set of assumptions, it will be possible—given a history of measurements of a
          system—to build a model for the state of the system that maximizes the a posteriori
            [155] probability of those previous measurements. For a good introduction, see Welsh
          and Bishop [Welsh95]. In addition, we can maximize the a posteriori probability without
          keeping a long history of the previous measurements themselves. Instead, we iteratively
          update our model of a system’s state and keep only that model for the next iteration. This
          greatly simplifies the computational implications of this method.
Before we go into the details of what this all means in practice, let’s take a moment
          to look at the assumptions we mentioned. There are three important assumptions required in
          the theoretical construction of the Kalman filter: (1) the system being modeled is linear,
          (2) the noise that measurements are subject to is “white”, and (3) this noise is also
          Gaussian in nature. The first assumption means (in effect) that the state of the system at
          time k can be modeled as some matrix multiplied by the state at time
            k–1. The additional assumptions that the noise is both white and
          Gaussian means that the noise is not correlated in time and that its amplitude can be
          accurately modeled using only an average and a covariance (i.e., the noise is completely
          described by its first and second moments). Although these assumptions may seem
          restrictive, they actually apply to a surprisingly general set of circumstances. [156]
What does it mean to “maximize the a posteriori probability of those previous
          measurements”? It means that the new model we construct after making a measurement—taking
          into account both our previous model with its uncertainty and the new measurement with its
          uncertainty—is the model that has the highest probability of being correct. For our
          purposes, this means that the Kalman filter is, given the three assumptions, the best way
          to combine data from different sources or from the same source at different times. We
          start with what we know, we obtain new information, and then we decide to change what we
          know based on how certain we are about the old and new information using a weighted
          combination of the old and the new.
Let’s work all this out with a little math for the case of one-dimensional motion. You
          can skip the next section if you want, but linear systems and Gaussians are so friendly
          that Dr. Kalman might be upset if you didn’t at least give it a try.
Some Kalman math



So what’s the gist of the Kalman filter?—information fusion. Suppose you want to
            know where some point is on a line (our one-dimensional scenario). [157] As a result of noise, you have two unreliable (in a Gaussian sense) reports
            about where the object is: locations x1 and
              x2. Because there is Gaussian uncertainty
            in these measurements, they have means of[image: ] and [image: ] together with standard deviations
              σ1 and
              σ2. The standard deviations are, in fact,
            expressions of our uncertainty regarding how good our measurements are. The probability
            distribution as a function of location is the Gaussian
            distribution:
[image: image with no caption]

given two such measurements, each with a Gaussian probability distribution, we would
            expect that the probability density for some value of x given both
            measurements would be proportional to p(x) =
              p1(x)
              p2(x). It turns out that this
            product is another Gaussian distribution, and we can compute the mean and standard
            deviation of this new distribution as follows. Given that
[image: image with no caption]

Given also that a Gaussian distribution is maximal at the average value, we can find
            that average value simply by computing the derivative of
              p(x) with respect to x.
            Where a function is maximal its derivative is 0, so
[image: image with no caption]

Since the probability distribution function p(x) is never 0, it
            follows that the term in brackets must be 0. Solving that equation for
              x gives us this very important relation:
[image: image with no caption]

Thus, the new mean value [image: ] is just a weighted combination of the two measured means, where the weighting is determined by the relative
            uncertainties of the two measurements. Observe, for example, that if the uncertainty
              σ2 of the second measurement is
            particularly large, then the new mean will be essentially the same as the mean
              x1 for the more certain previous
            measurement.
With the new mean [image: ] in hand, we can substitute this value into our expression for
              P12(x) and, after
            substantial rearranging, [158] identify the uncertainty 
[image: image with no caption]

 as:
[image: image with no caption]

At this point, you are probably wondering what this tells us. Actually, it tells us
            a lot. It says that when we make a new measurement with a new mean and uncertainty, we
            can combine that measurement with the mean and uncertainty we already have to obtain a
            new state that is characterized by a still newer mean and uncertainty. (We also now have
            numerical expressions for these things, which will come in handy momentarily.)
This property that two Gaussian measurements, when combined, are equivalent to a
            single Gaussian measurement (with a computable mean and uncertainty) will be the most
            important feature for us. It means that when we have M
            measurements, we can combine the first two, then the third with the combination of the
            first two, then the fourth with the combination of the first three, and so on. This is
            what happens with tracking in computer vision; we obtain one measure followed by another
            followed by another.
Thinking of our measurements (xi,
                σi) as time steps, we can compute the current
            state of our estimation 
[image: image with no caption]

 as follows. At time step 1, we have only our first measure
              
[image: image with no caption]

 and its uncertainty 
[image: image with no caption]

. Substituting this in our optimal estimation equations yields an
            iteration equation:
[image: image with no caption]

Rearranging this equation gives us the following useful form:
[image: image with no caption]

Before we worry about just what this is useful for, we should also compute the
            analogous equation for 
[image: image with no caption]

. First, after substituting 
[image: image with no caption]

 we have:
[image: image with no caption]

A rearrangement similar to what we did for 
[image: image with no caption]

 yields an iterative equation for estimating variance given a new
            measurement:
[image: image with no caption]

In their current form, these equations allow us to separate clearly the “old”
            information (what we knew before a new measurement was made) from the “new” information
            (what our latest measurement told us). The new information 
[image: image with no caption]

, seen at time step 2, is called the innovation.
            We can also see that our optimal iterative update factor is now:
[image: image with no caption]

This factor is known as the update gain. Using this definition
            for K, we obtain the following convenient recursion form:
[image: image with no caption]

[image: image with no caption]

In the Kalman filter literature, if the discussion is about a general series
              of measurements then our second time step “2” is usually denoted
              k and the first time step is thus k–
            1.

Systems with dynamics



In our simple one-dimensional example, we considered the case of an object being
            located at some point x, and a series of successive measurements of
            that point. In that case we did not specifically consider the case in which the object
            might actually be moving in between measurements. In this new case we will have what is
            called the prediction phase. During the prediction phase, we use
            what we know to figure out where we expect the system to be before we attempt to
            integrate a new measurement.
In practice, the prediction phase is done immediately after a new measurement is
            made, but before the new measurement is incorporated into our estimation of the state of
            the system. An example of this might be when we measure the position of a car at time
              t, then again at time t +
              dt. If the car has some velocity v, then we
            do not just incorporate the second measurement directly. We first
              fast-forward our model based on what we knew at time
              t so that we have a model not only of the system at time
              t but also of the system at time t +
              dt, the instant before the new information is incorporated. In
            this way, the new information, acquired at time t + dt, is fused
            not with the old model of the system, but with the old model of the system projected
            forward to time t + dt. This is the meaning of the cycle depicted
            in Figure 10-18. In the context of
              Kalman filters, there are three kinds of motion that we would like to
            consider.
The first is dynamical motion. This is motion that we expect as
            a direct result of the state of the system when last we measured it. If we measured the
            system to be at position x with some velocity
              v at time t, then at time t +
              dt we would expect the system to be located at position x + v *
              dt, possibly still with velocity.
The second form of motion is called control motion. Control motion is motion that we expect because of some external influence
            applied to the system of which, for whatever reason, we happen to be aware. As the name
            implies, the most common example of control motion is when we are estimating the state
            of a system that we ourselves have some control over, and we know what we did to bring
            about the motion. This is particularly the case for robotic systems where the control is
            the system telling the robot to (for example) accelerate or go forward. Clearly, in this
            case, if the robot was at x and moving with velocity
              v at time t, then at time t +
              dt we expect it to have moved not only to x + v * dt
            (as it would have done without the control), but also a little farther, since we did
            tell it to accelerate.
The final important class of motion is random motion. Even in
            our simple one-dimensional example, if whatever we were looking at had a possibility of
            moving on its own for whatever reason, we would want to include random motion in our prediction step. The effect of such random motion will
            be to simply increase the variance of our state estimate with the passage of time.
            Random motion includes any motions that are not known or under our control. As with
            everything else in the Kalman filter framework, however, there is an assumption that
            this random motion is either Gaussian (i.e., a kind of random walk) or that it can at
            least be modeled effectively as Gaussian.
Thus, to include dynamics in our simulation model, we would first do an “update”
            step before including a new measurement. This update step would include first applying
            any knowledge we have about the motion of the object according to its prior state,
            applying any additional information resulting from actions that we ourselves have taken
            or that we know to have been taken on the system from another outside agent, and,
            finally, incorporating our notion of random events that might have changed the state of
            the system since we last measured it. Once those factors have been applied, we can then
            incorporate our next new measurement.
In practice, the dynamical motion is particularly important when the “state” of the system is
            more complex than our simulation model. Often when an object is moving, there are
            multiple components to the “state” such as the position as well as the velocity. In this
            case, of course, the state evolves according to the velocity that we believe it to have.
            Handling systems with multiple components to the state is the topic of the next section.
            We will develop a little more sophisticated notation as well to handle these new aspects
            of the situation.

Kalman equations



We can now generalize these motion equations in our toy model. Our more general
            discussion will allow us to factor in any model that is a linear function
              F
            of the object’s state. Such a model might consider combinations of the first
            and second derivatives of the previous motion, for example. We’ll also see how to allow
            for a control input uk to our model. Finally, we will allow for a
            more realistic observation model z in which we might measure only
            some of the model’s state variables and in which the measurements may be only indirectly
            related to the state variables. [159]
To get started, let’s look at how K, the gain in the previous
            section, affects the estimates. If the uncertainty of the new measurement is very large,
            then the new measurement essentially contributes nothing and our equations reduce to the
            combined result being the same as what we already knew at time k –
            1. Conversely, if we start out with a large variance in the original measurement and
            then make a new, more accurate measurement, then we will “believe” mostly the new
            measurement. When both measurements are of equal certainty (variance), the new expected
            value is exactly between them. All of these remarks are in line with our reasonable
            expectations.
Figure 10-19 shows how our uncertainty
            evolves over time as we gather new observations.
[image: image with no caption]

[image: Combining our prior knowledge N(xk–1, σk — 1) with our measurement observation N(zk, σk); the result is our new estimate]

Figure 10-19. Combining our prior knowledge N(xk–1, σk —
                1) with our measurement observation N(zk,
                σk); the result is our new estimate

This idea of an update that is sensitive to uncertainty can be generalized to many
            state variables. The simplest example of this might be in the context of video tracking,
            where objects can move in two or three dimensions. In general, the state might contain
            additional elements, such as the velocity of an object being tracked. In any of these general cases, we will need a
            bit more notation to keep track of what we are talking about. We will generalize the
            description of the state at time step k to be the following
            function of the state at time step k – 1:
[image: image with no caption]

Here xk is now an
            n-dimensional vector of state components and F
            is an n-by-n matrix, sometimes called the
              transfer matrix, that multiplies
                xk–1. The vector
                uk is new. It’s there to allow external
            controls on the system, and it consists of a c-dimensional vector
            referred to as the control inputs; B is an
              n-by-c matrix that relates these control
            inputs to the state change. [160] The variable wk is a random variable (usually called
            the process noise) associated with random events or forces that
            directly affect the actual state of the system. We assume that the components of
              wk have Gaussian distribution N(0,
                Qk) for some
              n-by-n covariance matrix
              Qk (Q is allowed to vary with time, but
            often it does not).
In general, we make measurements zk that
            may or may not be direct measurements of the state variable
                xk. (For example, if you want to know
            how fast a car is moving then you could either measure its speed with a radar gun or
            measure the sound coming from its tailpipe; in the former case,
                zk will be
                xk with some added measurement noise,
            but in the latter case, the relationship is not direct in this way.) We can summarize
            this situation by saying that we measure the m-dimensional vector
            of measurements zk given by:
[image: image with no caption]

Here Hk is an
              m-by-n matrix and
                vk is the measurement error, which is
            also assumed to have Gaussian distributions N(0,
                Rk) for some
              m-by-m covariance matrix
                Rk. [161]
Before we get totally lost, let’s consider a particular realistic situation of
            taking measurements on a car driving in a parking lot. We might imagine that the state
            of the car could be summarized by two position variables, x and
              y, and two velocities,
              vk and
              vy. These four variables would be the
            elements of the state vector xk. This
            suggests that the correct form for F is:
[image: image with no caption]

However, when using a camera to make measurements of the car’s state, we probably measure only the position variables:
[image: image with no caption]

This implies that the structure of H is something like:
[image: image with no caption]

In this case, we might not really believe that the velocity of the car is constant
            and so would assign a value of Qk to reflect
            this. We would choose Rk based on our
            estimate of how accurately we have measured the car’s position using (for example) our
            image analysis techniques on a video stream.
All that remains now is to plug these expressions into the generalized forms of the
            update equations. The basic idea is the same, however. First we compute the a priori
            estimate 
[image: image with no caption]

 of the state. It is relatively common (though not universal) in the
            literature to use the superscript minus sign to mean “at the time immediately prior to
            the new measurement”; we’ll adopt that convention here as well. This a priori estimate
            is given by:
[image: image with no caption]

Using 
[image: image with no caption]

 to denote the error covariance, the a priori estimate for this
            covariance at time k is obtained from the value at time
              k – 1 by:
[image: image with no caption]

This equation forms the basis of the predictive part of the estimator, and it tells
            us “what we expect” based on what we’ve already seen. From here we’ll state (without
            derivation) what is often called the Kalman gain or the
              blending factor, which tells us how to weight new information
            against what we think we already know:
[image: image with no caption]

Though this equation looks intimidating, it’s really not so bad. We can understand
            it more easily by considering various simple cases. For our one-dimensional example in
            which we measured one position variable directly,
              Hk is just a 1-by-1 matrix containing only
            a 1! Thus, if our measurement error is 
[image: image with no caption]

, then Rk is also a 1-by-1
            matrix containing that value. Similarly, Pk
            is just the variance 
[image: image with no caption]

. So that big equation boils down to just this:
[image: image with no caption]

Note that this is exactly what we thought it would be. The gain, which we first saw
            in the previous section, allows us to optimally compute the updated values for
                xk and
                Pk when a new measurement is
            available:
[image: image with no caption]

[image: image with no caption]

Once again, these equations look intimidating at first; but in the context
              of our simple one-dimensional discussion, it’s really not as bad as it
            looks. The optimal weights and gains are obtained by the same methodology as for the
            one-dimensional case, except this time we minimize the uncertainty of our position state
              x by setting to 0 the partial derivatives with respect to
              x before solving. We can show the relationship with the simpler
            one-dimensional case by first setting F = I (where
              I is the identity matrix), B = 0, and
              Q = 0. The similarity to our one-dimensional filter derivation is
            then revealed by making the following substitutions in our more general equations:
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, 
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, 
[image: image with no caption]

, 
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, 
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, 
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, 
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, 
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, and 
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.

OpenCV and the Kalman filter



With all of this at our disposal, you might feel that we don’t need OpenCV to do
            anything for us or that we desperately need OpenCV to do all of this for us.
            Fortunately, OpenCV is amenable to either interpretation. It provides four functions
            that are directly related to working with Kalman filters.
cvCreateKalman(
    int        nDynamParams,
    int        nMeasureParams,
    int        nControlParams
);
cvReleaseKalman(
    CvKalman** kalman
);
The first of these generates and returns to us a pointer to a CvKalman data structure, and the second deletes that
            structure.
typedef struct CvKalman {
    int MP;                           // measurement vector dimensions
    int DP;                           // state vector dimensions
    int CP;                           // control vector dimensions
    CvMat* state_pre;                 // predicted state:
                                      // x_k = F x_k-1 + B u_k
    CvMat* state_post;                // corrected state:
                                      // x_k = x_k' + K_k (z_k'- H x_k')
    CvMat* transition_matrix;         // state transition matrix
                                      // F
    CvMat* control_matrix;            // control matrix
                                      // B
                                      // (not used if there is no control)
    CvMat* measurement_matrix;        // measurement matrix
                                      // H
    CvMat* process_noise_cov;         // process noise covariance
                                      // Q
    CvMat* measurement_noise_cov;     // measurement noise covariance
                                      // R
    CvMat* error_cov_pre;             // prior error covariance:
                                      // P_k'=(F P_k-1 Ft) + Q
    CvMat* gain;                      // Kalman gain matrix:
                                      // K_k = P_k' H^T (H P_k' H^T + R)^-1
    CvMat* error_cov_post;            // posteriori error covariance
                                      // P_k = (I - K_k H) P_k'
    CvMat* temp1;                     // temporary matrices
    CvMat* temp2;
    CvMat* temp3;
    CvMat* temp4;
    CvMat* temp5;
 } CvKalman;
The next two functions implement the Kalman filter itself. Once the data is in the structure, we can compute the
            prediction for the next time step by calling cvKalmanPredict() and then integrate our new measurements by calling
              cvKalmanCorrect(). After running each of these
            routines, we can read the state of the system being tracked. The result of cvKalmanCorrect() is in state_post, and the result of cvKalmanPredict() is in state_pre.
cvKalmanPredict(
    CvKalman*  kalman,
    const      CvMat*  control = NULL
);
cvKalmanCorrect(
    CvKalman*  kalman,
    CvMat*     measured
);

Kalman filter example code



Clearly it is time for a good example. Let’s take a relatively simple one and
            implement it explicitly. Imagine that we have a point moving around in a circle, like a
            car on a race track. The car moves with mostly constant velocity around the track, but
            there is some variation (i.e., process noise). We measure the location of the car using
            a method such as tracking it via our vision algorithms. This generates some (unrelated
            and probably different) noise as well (i.e., measurement noise).
So our model is quite simple: the car has a position and an angular velocity at any
            moment in time. Together these factors form a two-dimensional state vector
                xk. However, our measurements are only
            of the car’s position and so form a one-dimensional “vector”
                zk.
We’ll write a program (Example 10-2) whose output
            will show the car circling around (in red) as well as the measurements we make (in
            yellow) and the location predicted by the Kalman filter (in white).
We begin with the usual calls to include the library header files. We also define a
            macro that will prove useful when we want to transform the car’s location from angular
            to Cartesian coordinates so we can draw on the screen.
Example 10-2. Kalman filter sample code
//   Use Kalman Filter to model particle in circular trajectory.
//
#include "cv.h"
#include "highgui.h"
#include "cvx_defs.h"

#define phi2xy(mat)                                                    /
  cvPoint( cvRound(img->width/2 + img->width/3*cos(mat->data.fl[0])),  /
    cvRound( img->height/2 - img->width/3*sin(mat->data.fl[0])) )

int main(int argc, char** argv) {

  // Initialize, create Kalman Filter object, window, random number
  // generator etc.
  //
  cvNamedWindow( "Kalman", 1 );
. . .continued below


Next, we will create a random-number generator, an image to draw to, and the Kalman
            filter structure. Notice that we need to tell the Kalman filter how many dimensions the
            state variables are (2) and how many dimensions the measurement variables are
            (1).
. . . continued from above
  CvRandState rng;
  cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );
  
  IplImage* img = cvCreateImage( cvSize(500,500), 8, 3 );
  CvKalman* kalman = cvCreateKalman( 2, 1, 0 );
. . .continued below
Once we have these building blocks in place, we create a matrix (really a vector,
            but in OpenCV we call everything a matrix) for the state x_k, the process noise w_k, the
            measurements z_k, and the all-important transition
            matrix F. The state needs to be initialized to something, so we
            fill it with some reasonable random numbers that are narrowly distributed around
            zero.
The transition matrix is crucial because it relates the state of the system at time
              k to the state at time k + 1. In this case,
            the transition matrix will be 2-by-2 (since the state vector is two-dimensional). It is,
            in fact, the transition matrix that gives meaning to the components of the state vector.
            We view x_k as representing the angular position of
            the car (φ) and the car’s angular velocity (ω). In this case, the transition matrix has
            the components [[1, dt], [0, 1]]. Hence, after multiplying by
              F, the state (φ, ω) becomes (φ + ω dt,
            ω)—that is, the angular velocity is unchanged but the angular position increases by an
            amount equal to the angular velocity multiplied by the time step. In our example we
            choose dt=1.0 for convenience, but in practice we’d
            need to use something like the time between sequential video frames.
. . . continued from above
  // state is (phi, delta_phi) - angle and angular velocity
  // Initialize with random guess.
  //
  CvMat* x_k = cvCreateMat( 2, 1, CV_32FC1 );
  cvR andSetRange( &rng, 0, 0.1, 0 );
  rng.disttype = CV_RAND_NORMAL;
  cvRand( &rng, x_k );
  
  // process noise
  //
  CvMat* w_k = cvCreateMat( 2, 1, CV_32FC1 );
  
  // measurements, only one parameter for angle
  //
  CvMat* z_k = cvCreateMat( 1, 1, CV_32FC1 );
  cvZero( z_k );
  
  // Transition matrix 'F' describes relationship between
  // model parameters at step k and at step k+1 (this is
  // the "dynamics" in our model)
  //
  const float F[] = { 1, 1, 0, 1 };
  memcpy( kalman->transition_matrix->data.fl, F, sizeof(F));
. . .continued below
The Kalman filter has other internal parameters that must be initialized. In
            particular, the 1-by-2 measurement matrix H is initialized to [1,
            0] by a somewhat unintuitive use of the identity function. The covariance of process
            noise and of measurement noise are set to reasonable but interesting values (you can
            play with these yourself), and we initialize the posterior error covariance to the
            identity as well (this is required to guarantee the meaningfulness of the first
            iteration; it will subsequently be overwritten).
Similarly, we initialize the posterior state (of the hypothetical step previous to
            the first one!) to a random value since we have no information at this time.
. . . continued from above
  // Initialize other Kalman filter parameters.
  //
  cvSetIdentity( kalman->measurement_matrix,    cvRealScalar(1) );
  cvSetIdentity( kalman->process_noise_cov,     cvRealScalar(1e-5) );
  cvSetIdentity( kalman->measurement_noise_cov, cvRealScalar(1e-1) );
  cvSetIdentity( kalman->error_cov_post,        cvRealScalar(1));
  
  // choose random initial state
  //
  cvRand( &rng, kalman->state_post );

  while( 1 ) {
. . .continued below
Finally we are ready to start up on the actual dynamics. First we ask the Kalman
            filter to predict what it thinks this step will yield (i.e., before giving it any new
            information); we call this y_k. Then we proceed to
            generate the new value of z_k (the measurement) for
            this iteration. By definition, this value is the “real” value x_k multiplied by the measurement matrix H with the
            random measurement noise added. We must remark here that, in anything but a toy
            application such as this, you would not generate z_k
            from x_k; instead, a generating function would arise
            from the state of the world or your sensors. In this simulated case, we generate the
            measurements from an underlying “real” data model by adding random noise ourselves; this way, we can see the effect of the Kalman filter.
. . . continued from above
    // predict point position
    const CvMat* y_k = cvKalmanPredict( kalman, 0 );
  
    // generate measurement (z_k)
    //
    cvRandSetRange(
      &rng,
      0,
      sqrt(kalman->measurement_noise_cov->data.fl[0]),
      0
    );
    cvRand( &rng, z_k );
    cvMatMulAdd( kalman->measurement_matrix, x_k, z_k, z_k );
. . .continued below
Draw the three points corresponding to the observation we synthesized previously,
            the location predicted by the Kalman filter, and the underlying state (which we happen
            to know in this simulated case).
. . . continued from above
   // plot points (eg convert to planar coordinates and draw)
    //
    cvZero( img );
    cvCircle( img, phi2xy(z_k), 4, CVX_YELLOW );   // observed state
    cvCircle( img, phi2xy(y_k), 4, CVX_WHITE, 2 ); // "predicted" state
    cvCircle( img, phi2xy(x_k), 4, CVX_RED );      // real state
    cvShowImage( "Kalman", img );
. . .continued below
At this point we are ready to begin working toward the next iteration. The first
            thing to do is again call the Kalman filter and inform it of our newest measurement.
            Next we will generate the process noise. We then use the transition matrix
              F to time-step x_k forward one
            iteration and then add the process noise we generated; now we are ready for another trip
            around.
. . . continued from above
    // adjust Kalman filter state
     //
     cvKalmanCorrect( kalman, z_k );
     
     // Apply the transition matrix 'F' (e.g., step time forward)
     // and also apply the "process" noise w_k.
     //
     cvRandSetRange(
       &rng,
       0,
       sqrt(kalman->process_noise_cov->data.fl[0]),
       0
     );
     cvRand( &rng, w_k );
     cvMatMulAdd( kalman->transition_matrix, x_k, w_k, x_k );

     // exit if user hits 'Esc'
     if( cvWaitKey( 100 ) == 27 ) break;
   }

   return 0;
 }
As you can see, the Kalman filter part was not that complicated; half of the required code was
            just generating some information to push into it. In any case, we should summarize
            everything we’ve done, just to be sure it all makes sense.
We started out by creating matrices to represent the state of the system and the
            measurements we would make. We defined both the transition and measurement matrices and
            then initialized the noise covariances and other parameters of the filter.
After initializing the state vector to a random value, we called the Kalman filter
            and asked it to make its first prediction. Once we read out that prediction (which was
            not very meaningful this first time through), we drew to the screen what was predicted.
            We also synthesized a new observation and drew that on the screen for comparison with
            the filter’s prediction. Next we passed the filter new information in the form of that
            new measurement, which it integrated into its internal model. Finally, we synthesized a
            new “real” state for the model so that we could iterate through the loop again.
Running the code, the little red ball orbits around and around. The little yellow
            ball appears and disappears about the red ball, representing the noise that the Kalman
            filter is trying to “see through”. The white ball rapidly converges down to moving in a
            small space around the red ball, showing that the Kalman filter has given a reasonable
            estimate of the motion of the particle (the car) within the framework of our
            model.
One topic that we did not address in our example is the use of control inputs. For
            example, if this were a radio-controlled car and we had some knowledge of what the
            person with the controller was doing, then we could include that information into our
            model. In that case it might be that the velocity is being set by the controller. We’d
            then need to supply the matrix B (kalman->control_matrix) and also to provide a second argument for
              cvKalmanPredict() to accommodate the control vector
              u.


A Brief Note on the Extended Kalman Filter



You might have noticed that requiring the dynamics of the system to be linear in the
          underlying parameters is quite restrictive. It turns out that the Kalman filter is still
          useful to us when the dynamics are nonlinear, and the OpenCV Kalman Filter routines remain useful as well.
Recall that “linear” meant (in effect) that the various steps in the definition of the
          Kalman filter could be represented with matrices. When might this not be the case? There
          are actually many possibilities. For example, suppose our control measure is the amount by
          which our car’s gas pedal is depressed: the relationship between the car’s velocity and
          the gas pedal’s depression is not a linear one. Another common problem is a force on the
          car that is more naturally expressed in Cartesian coordinates while the motion of the car (as in our example) is more naturally expressed in polar
          coordinates. This might arise if our car were instead a boat moving in circles but in a
          uniform water current and heading some particular direction.
In all such cases, the Kalman filter is not, by itself, sufficient. One way to handle
          these nonlinearities (or at least attempt to handle them) is to
            linearize the relevant processes (e.g., the update
            F or the control input response B). Thus, we’d
          need to compute new values for F and B, at every
          time step, based on the state x. These values would only approximate
          the real update and control functions in the vicinity of the particular value of
            x, but in practice this is often sufficient. This extension to the
          Kalman filter is known simply enough as the extended Kalman filter
          [Schmidt66].
OpenCV does not provide any specific routines to implement this, but none are actually
          needed. All we have to do is recompute and reset the values of kalman->update_matrix and kalman->control_matrix before each update. The Kalman filter has since
          been more elegantly extended to nonlinear systems in a formulation called the
            unscented particle filter [Merwe00]. A very good overview of the
          entire field of Kalman filtering, including the latest advances, is given in
          [Thrun05].


The Condensation Algorithm



The Kalman filter models a single hypothesis. Because the underlying model of the
        probability distribution for that hypothesis is unimodal Gaussian, it is not possible to
        represent multiple hypotheses simultaneously using the Kalman filter. A somewhat more
        advanced technique known as the condensation algorithm [Isard98], which
        is based on a broader class of estimators called particle filters, will
        allow us to address this issue.
To understand the purpose of the condensation algorithm, consider the hypothesis that an
        object is moving with constant speed (as modeled by the Kalman filter). Any data measured
        will, in essence, be integrated into the model as if it supports this hypothesis. Consider
        now the case of an object moving behind an occlusion. Here we do not know what the object is
        doing; it might be continuing at constant speed, it might have stopped and/or reversed
        direction. The Kalman filter cannot represent these multiple possibilities other than by
        simply broadening the uncertainty associated with the (Gaussian) distribution of the
        object’s location. The Kalman filter, since it is necessarily Gaussian, cannot represent
        such multimodal distributions.
As with the Kalman filter, we have two routines for (respectively) creating and
        destroying the data structure used to represent the condensation filter. The only difference
        is that in this case the creation routine cvCreateConDensation() has an extra parameter. The value entered for this
        parameter sets the number of hypotheses (i.e., “particles”) that the filter will maintain at
        any given time. This number should be relatively large (50 or 100; perhaps more for
        complicated situations) because the collection of these individual hypotheses takes the
        place of the parameterized Gaussian probability distribution of the Kalman filter. See Figure 10-20.
[image: Distributions that can (panel a) and cannot (panel b) be represented as a continuous Gaussian distribution parameterizable by a mean and an uncertainty; both distributions can alternatively be represented by a set of particles whose density approximates the represented distribution]

Figure 10-20. Distributions that can (panel a) and cannot (panel b) be represented as a continuous
          Gaussian distribution parameterizable by a mean and an uncertainty; both distributions can
          alternatively be represented by a set of particles whose density approximates the
          represented distribution

Cv ConDensation* cvCreateConDensation(
    int dynam_params,
    int measure_params,
    int sample_count
);

void cvReleaseConDensation(
    CvConDensation** condens
);
This data structure has the following internal elements:
typedef struct CvConDensation
{
    int     MP;             // Dimension of measurement vector
    int     DP;             // Dimension of state vector
    float*  DynamMatr;      // Matrix of the linear Dynamics system
    float*  State;          // Vector of State
    int     SamplesNum;     // Number of Samples
    float** flSamples;      // array of the Sample Vectors
    float** flNewSamples;   // temporary array of the Sample Vectors
    float*  flConfidence;   // Confidence for each Sample
    float*  flCumulative;   // Cumulative confidence
    float*  Temp;           // Temporary vector
    float*  RandomSample;   // RandomVector to update sample set
    CvRandState* RandS;     // Array of structures to generate random vectors
} CvConDensation;
Once we have allocated the condensation filter’s data structure, we need to initialize
        that structure. We do this with the routine cvConDensInitSampleSet(). While creating the CvConDensation structure we indicated how many particles we’d have, and for
        each particle we also specified some number of dimensions. Initializing all of these
        particles could be quite a hassle. [162] Fortunately, cvConDensInitSampleSet() does
        this for us in a convenient way; we need only specify the ranges for each
          dimension.
void cvConDensInitSampleSet(
    Cv ConDensation* condens,
    CvMat*          lower_bound,
    CvMat*          upper_bound
);
This routine requires that we initialize two CvMat
        structures. Both are vectors (meaning that they have only one column), and each has as many
        entries as the number of dimensions in the system state. These vectors are then used to set
        the ranges that will be used to initialize the sample vectors in the CvConDensation structure.
The following code creates two matrices of size Dim
        and initializes them to -1 and +1, respectively. When cvConDensInitSampleSet() is called, the initial sample set will be initialized
        to random numbers each of which falls within the (in this case, identical) interval from
          -1 to +1. Thus, if
          Dim were three then we would be initializing the filter
        with particles uniformly distributed inside of a cube centered at the origin and with sides
        of length 2.
CvMat LB = cvMat(Dim,1,CV_MAT32F,NULL);
CvMat UB = cvMat(Dim,1,CV_MAT32F,NULL);
cvmAlloc(&LB);
cvmAlloc(&UB);
ConDens = cvCreateConDensation(Dim, Dim,SamplesNum);
for( int i = 0; i<Dim; i++) {
    LB.data.fl[i] = -1.0f;
    UB.data.fl[i] = 1.0f;
}
cvConDensInitSampleSet(ConDens,&LB,&UB);
Finally, our last routine allows us to update the condensation filter state:
void cvConDensUpdateByTime( CvConDensation* condens );
There is a little more to using this routine than meets the eye. In particular, we must
        update the confidences of all of the particles in light of whatever new information has
        become available since the previous update. Sadly, there is no convenient routine for doing
        this in OpenCV. The reason is that the relationship between the new confidence for a
        particle and the new information depends on the context. Here is an example of such an
        update, which applies a simple [163] update to the confidence of each particle in the filter.
// Update the confidences on all of the particles in the filter
// based on a new measurement M[]. Here M has the dimensionality of
// the particles in the filter.
//
void CondProbDens(
    CvConDensation* CD,
    float* M
) {
    for( int i=0; i<CD->SamplesNum; i++ ) {
        float p = 1.0f;
        for( int j=0; j<CD->DP; j++ ) {
            p *= (float) exp(
                -0.05*(M[j] - CD->flSamples[i][j])*(M[j]-CD->flSamples[i][j])
            );
        }
        CD->flConfidence[i] = p;
    }
}
Once you have updated the confidences, you can then call cvCondensUpdateByTime() in order to update the particles. Here “updating” means
          resampling, which is to say that a new set of particles will be
        generated in accordance with the computed confidences. After updating, all of the
        confidences will again be exactly 1.0f, but the
        distribution of particles will now include the previously modified confidences directly into
        the density of particles in the next iteration.

Exercises



There are sample code routines in the …/opencv/samples/c/ directory that demonstrate many of the algorithms discussed in this chapter:
	lkdemo.c (optical flow)

	camshiftdemo.c (mean-shift tracking of colored
            regions)

	motempl.c (motion template)

	kalman.c (Kalman filter)



	The covariance Hessian matrix used in cvGoodFeaturesToTrack() is computed over some square region in the image
            set by block_size in that function.
	Conceptually, what happens when block size increases? Do we get more or fewer
                “good features”? Why?

	Dig into the lkdemo.c code, search for
                  cvGoodFeaturesToTrack(), and try playing with
                the block_size to see the difference.




	Refer to Figure 10-2 and consider the
            function that implements subpixel corner finding, cvFindCornerSubPix().
	What would happen if, in Figure 10-2, the checkerboard were
                twisted so that the straight dark-light lines formed curves that met in a point?
                Would subpixel corner finding still work? Explain.

	If you expand the window size around the twisted checkerboard’s corner point
                (after expanding the win and zero_zone parameters), does subpixel corner finding
                become more accurate or does it rather begin to diverge? Explain your answer.




	
            Optical flow
          
	Describe an object that would be better tracked by block matching than by
                Lucas-Kanade optical flow.

	Describe an object that would be better tracked by Lucas-Kanade optical flow
                than by block matching.




	Compile lkdemo.c. Attach a web camera (or use a
            previously captured sequence of a textured moving object). In running the program, note
            that “r” autoinitializes tracking, “c” clears tracking, and a mouse click will enter a
            new point or turn off an old point. Run lkdemo.c
            and initialize the point tracking by typing “r”. Observe the effects.
	Now go into the code and remove the subpixel point placement function cvFindCornerSubPix(). Does this hurt the results? In
                what way?

	Go into the code again and, in place of cvGoodFeaturesToTrack(), just put down a grid of points in an ROI
                around the object. Describe what happens to the points and why.
Hint: Part of what happens is a consequence of the aperture problem—given a
                  fixed window size and a line, we can’t tell how the line is moving.






	Modify the lkdemo.c program to create a program
            that performs simple image stabilization for moderately moving cameras. Display the
            stabilized results in the center of a much larger window than the one output by your
            camera (so that the frame may wander while the first points remain stable).

	Compile and run camshiftdemo.c using a web
            camera or color video of a moving colored object. Use the mouse to draw a (tight) box
            around the moving object; the routine will track it.
	In camshiftdemo.c, replace the cvCamShif() routine with cvMeanShift(). Describe situations where one tracker will work better
                than another.

	Write a function that will put down a grid of points in the initial cvMeanShift() box. Run both trackers at once.

	How can these two trackers be used together to make tracking more robust?
                Explain and/or experiment.




	Compile and run the motion template code motempl.c with a web camera or using a previously stored movie
            file.
	Modify motempl.c so that it can do simple
                gesture recognition.

	If the camera was moving, explain how to use your motion stabilization code from
                exercise 5 to enable motion templates to work also for moderately moving
                cameras.




	Describe how you can track circular (nonlinear) motion using a linear state model
            (not extended) Kalman filter.
Hint: How could you preprocess this to get back to linear dynamics?



	Use a motion model that posits that the current state depends on the previous
            state’s location and velocity. Combine the lkdemo.c
            (using only a few click points) with the Kalman filter to track Lucas-Kanade points
            better. Display the uncertainty around each point. Where does this tracking fail?
Hint: Use Lucas-Kanade as the observation model for the Kalman filter, and adjust
              noise so that it tracks. Keep motions reasonable.



	A Kalman filter depends on linear dynamics and on Markov independence (i.e., it
            assumes the current state depends only on the immediate past state, not on all past
            states). Suppose you want to track an object whose movement is related to its previous
            location and its previous velocity but that you mistakenly include a dynamics term only
            for state dependence on the previous location—in other words, forgetting the previous
            velocity term.
	Do the Kalman assumptions still hold? If so, explain why; if not, explain how
                the assumptions were violated.

	How can a Kalman filter be made to still track when you forget some terms of the
                dynamics?
Hint: Think of the noise model.






	Use a web cam or a movie of a person waving two brightly colored objects, one in
            each hand. Use condensation to track both hands.






[142] Oddly enough, the definitive description of Lucas-Kanade optical flow in a pyramid
            framework implemented in OpenCV is an unpublished paper by Bouguet [Bouguet04].

[143] A gradient is derived from first derivatives. If first derivatives are uniform
            (constant), then second derivatives are 0.

[144] Black and Anadan have created dense optical flow techniques [Black93; Black96] that
            are often used in movie production, where, for the sake of visual quality, the movie
            studio is willing to spend the time necessary to obtain detailed flow information. These
            techniques are slated for inclusion in later versions of OpenCV (see Chapter 14).

[145] Of course, the window could be 3-by-3, 7-by-7, or anything you choose. If the
                window is too large then you will end up violating the coherent motion assumption
                and will not be able to track well. If the window is too small, you will encounter
                the aperture problem again.

[146] If you are wondering why the funny size, it’s because these scratch spaces need
                to accommodate not just the image itself but the entire pyramid.

[147] You might even be asking yourself: “What is a Lagrange
                multiplier?”. In that case, it may be best to ignore this part of the paragraph and
                just set lambda equal to 1.

[148] If use_previous==0, then the search for a
                block will be conducted over a region of max_range distance from the location of the original block. If use_previous!=0, then the center of that search is first
                displaced by [image: ] and [image: ].

[149] Because mean-shift is a fairly deep topic, our discussion here is aimed mainly
                at developing intuition for the user. For the original formal derivation, see
                Fukunaga [Fukunaga90] and Comaniciu and Meer [Comaniciu99].

[150] The word “essentially” is used because there is also a scale-dependent aspect of
                mean-shift. To be exact: mean-shift is equivalent in a continuous distribution to
                first convolving with the mean-shift kernel and then applying a hill-climbing
                algorithm.

[151] Iterations are typically restricted to some maximum number or to some
                    epsilon change in center shift between iterations; however, they are guaranteed
                    to converge eventually.

[152] A rectangular kernel is a kernel with no falloff with
                distance from the center, until a single sharp transition to zero value. This is in
                contrast to the exponential falloff of a Gaussian kernel and the falloff with the
                square of distance from the center in the commonly used Epanechnikov kernel.

[153] Again, mean-shift will always converge, but convergence may be very slow near
                the local peak of a distribution if that distribution is fairly “flat” there.

[154] Here by “reasonable” we mean something like “sufficiently unrestrictive that the
              method is useful for a reasonable variety of actual problems arising in the real
              world”. “Reasonable” just seemed like less of a mouthful.

[155] The modifier “a posteriori” is academic jargon for “with hindsight”. Thus, when we
              say that such and such a distribution “maximizes the a posteriori probability”, what
              we mean is that that distribution, which is essentially a possible explanation of
              “what really happened”, is actually the most likely one given the data we have
              observed … you know, looking back on it all in retrospect.

[156] OK, one more footnote. We actually slipped in another assumption here, which is
              that the initial distribution also must be Gaussian in nature. Often in practice the
              initial state is known exactly, or at least we treat it like it is, and so this
              satisfies our requirement. If the initial state were (for example) a 50-50 chance of
              being either in the bedroom or the bathroom, then we’d be out of luck and would need
              something more sophisticated than a single Kalman filter.

[157] For a more detailed explanation that follows a similar trajectory, the reader is
                referred to J. D. Schutter, J. De Geeter, T. Lefebvre, and H. Bruyninckx, “Kalman
                Filters: A Tutorial” (http://citeseer.ist.psu.edu/443226.html).

[158] The rearranging is a bit messy. If you want to verify all this, it is much
                easier to (1) start with the equation for the Gaussian distribution
                  p12(x) in terms
                of [image: ] and σ12, (2)
                substitute in the equations that relate [image: ] to [image: ] and [image: ] and those that relate
                  σ12 to σ1 and
                  σ2, and (3) verify that the result can be separated into
                the product of the Gaussians with which we started.

[159] Observe the change in notation from
                  xk to
                    zk. The latter is standard in the
                literature and is intended to clarify that
                  zk is a general
                measurement, possibly of multiple parameters of the model, and not just (and
                sometimes not even) the position
                xk.

[160] The astute reader, or one who already knows something about Kalman filters, will notice another important assumption we slipped
                in—namely, that there is a linear relationship (via matrix multiplication) between
                the controls uk and the change in state.
                In practical applications, this is often the first assumption to break down.

[161] The k in these terms allows them to vary with time but does
                not require this. In actual practice, it’s common for H and
                  R not to vary with time.

[162] Of course, if you know about particle filters then you know that this is where we
            could initialize the filter with our prior knowledge (or prior assumptions) about the
            state of the system. The function that initializes the filter is just to help you
            generate a uniform distribution of points (i.e., a flat
            prior).

[163] The attentive reader will notice that this update actually implies a Gaussian
            probability distribution, but of course you could have a much more complicated update
            for your particular context.


Chapter 11. Camera Models and Calibration



Vision begins with the detection of light from the world. That light begins as rays emanating from some source
      (e.g., a light bulb or the sun), which then travels through space until striking some object.
      When that light strikes the object, much of the light is absorbed, and what is not absorbed we
      perceive as the color of the light. Reflected light that makes its way to our eye (or our
      camera) is collected on our retina (or our imager). The geometry of this
      arrangement—particularly of the ray’s travel from the object, through the lens in our eye or
      camera, and to the retina or imager—is of particular importance to practical computer
      vision.
A simple but useful model of how this happens is the pinhole camera model. [164] A pinhole is an imaginary wall with a tiny hole in the center
      that blocks all rays except those passing through the tiny aperture in the center. In this
      chapter, we will start with a pinhole camera model to get a handle on the basic geometry of
      projecting rays. Unfortunately, a real pinhole is not a very good way to make images because
      it does not gather enough light for rapid exposure. This is why our eyes and cameras use
      lenses to gather more light than what would be available at a single point. The downside,
      however, is that gathering more light with a lens not only forces us to move beyond the simple
      geometry of the pinhole model but also introduces distortions from the lens itself.
In this chapter we will learn how, using camera calibration, to
      correct (mathematically) for the main deviations from the simple pinhole model that the use of
      lenses imposes on us. Camera calibration is important also for relating camera measurements
      with measurements in the real, three-dimensional world. This is important because scenes are
      not only three-dimensional; they are also physical spaces with physical units. Hence, the
      relation between the camera’s natural units (pixels) and the units of the physical world
      (e.g., meters) is a critical component in any attempt to reconstruct a three-dimensional
        scene.
The process of camera calibration gives us both a model of the camera’s geometry and a
        distortion model of the lens. These two informational models define the
        intrinsic parameters of the camera. In this chapter we use these models
      to correct for lens distortions; in Chapter 12, we will use them
      to interpret a physical scene.
We shall begin by looking at camera models and the causes of lens distortion. From there
      we will explore the homography transform, the mathematical instrument
      that allows us to capture the effects of the camera’s basic behavior and of its various
      distortions and corrections. We will take some time to discuss exactly how the transformation
      that characterizes a particular camera can be calculated mathematically. Once we have all this
      in hand, we’ll move on to the OpenCV function that does most of this work for us.
Just about all of this chapter is devoted to building enough theory that you will truly
      understand what is going into (and what is coming out of) the OpenCV function cvCalibrateCamera2() as well as what that function is doing “under
      the hood”. This is important stuff if you want to use the function responsibly. Having said
      that, if you are already an expert and simply want to know how to use OpenCV to do what you
      already understand, jump right ahead to the “Calibration Function” section and get to
        it.
Camera Model



We begin by looking at the simplest model of a camera, the pinhole camera model. In this simple model, light is envisioned as entering from
        the scene or a distant object, but only a single ray enters from any particular point. In a
        physical pinhole camera, this point is then “projected” onto an imaging surface. As a
        result, the image on this image plane (also called the
          projective plane) is always in focus, and the size of the image
        relative to the distant object is given by a single parameter of the camera: its
          focal length. For our idealized pinhole camera, the distance from the
        pinhole aperture to the screen is precisely the focal length. This is shown in Figure 11-1, where f is the
        focal length of the camera, Z is the distance from the camera to the
        object, X is the length of the object, and x is
        the object’s image on the imaging plane. In the figure, we can see by similar triangles that
          –x/f = X/Z, or 
[image: image with no caption]

We shall now rearrange our pinhole camera model to a form that is equivalent but in
        which the math comes out easier. In Figure 11-2, we swap the pinhole and the image plane. [165] The main difference is that the object now appears rightside up. The point in
        the pinhole is reinterpreted as the center of projection. In this way
        of looking at things, every ray leaves a point on the distant object and heads for the
        center of projection. The point at the intersection of the image plane and the optical axis
        is referred to as the principal point. On this new
        frontal image plane (see Figure 11-2), which
        is the equivalent of the old projective or image plane, the image of the distant object is
        exactly the same size as it was on the image plane in Figure 11-1. The image is generated by
        intersecting these rays with the image plane, which happens to be exactly a distance
          f from the center of projection. This makes the similar triangles
        relationship x/f = X/Z more directly evident than before. The negative
        sign is gone because the object image is no longer upside down.
[image: Pinhole camera model: a pinhole (the pinhole aperture) lets through only those light rays that intersect a particular point in space; these rays then form an image by “projecting” onto an image plane]

Figure 11-1. Pinhole camera model: a pinhole (the pinhole aperture) lets through only those light
          rays that intersect a particular point in space; these rays then form an image by
          “projecting” onto an image plane

[image: A point Q = (X, Y, Z) is projected onto the image plane by the ray passing through the center of projection; the image plane is really just the projection screen “pushed” in front of the pinhole (the math is equivalent but simpler this way)]

Figure 11-2. A point Q = (X, Y, Z) is projected onto the image plane by the ray passing through
          the center of projection; the image plane is really just the projection screen “pushed” in
          front of the pinhole (the math is equivalent but simpler this way)

You might think that the principle point is equivalent to the center of the imager; yet
        this would imply that some guy with tweezers and a tube of glue was able to attach the
        imager in your camera to micron accuracy. In fact, the center of the chip is usually not on the
        optical axis. We thus introduce two new parameters,
          cx and
          cy, to model a possible displacement (away
        from the optic axis) of the center of coordinates on the projection screen. The result is
        that a relatively simple model in which a point Q in the physical
        world, whose coordinates are (X, Y, Z), is projected onto the screen at
        some pixel location given by (xscreen,
          yscreen) in accordance with the following
        equations: [166]
[image: image with no caption]

Note that we have introduced two different focal lengths; the reason for this is that the individual pixels on a typical
        low-cost imager are rectangular rather than square. The focal length
            fx (for example) is actually the product of
        the physical focal length of the lens and the size
          sx of the individual imager elements (this
        should make sense because sx has units of pixels
        per millimeter[167] while F has units of millimeters, which means that
            fx is in the required units of pixels). Of
        course, similar statements hold for fy and
            sy. It is important to keep in mind, though,
        that sx and
          sy cannot be measured directly via any camera
        calibration process, and neither is the physical focal length F
        directly measurable. Only the combinations fx =
            Fsx and fy =
            Fsy can be derived without actually dismantling the
        camera and measuring its components directly.
Basic Projective Geometry



The relation that maps the points Qi in
          the physical world with coordinates (Xi,
              Yi, Zi) to the points on the
          projection screen with coordinates (xi,
              yi) is called a projective
            transform. When working with such transforms, it is convenient to use what
          are known as homogeneous coordinates. The homogeneous coordinates
          associated with a point in a projective space of dimension n are
          typically expressed as an (n + 1)-dimensional vector (e.g.,
            x, y, z becomes x, y, z, w), with the
          additional restriction that any two points whose values are proportional are equivalent.
          In our case, the image plane is the projective space and it has two dimensions, so we will
          represent points on that plane as three-dimensional vectors q =
            (q1,
            q2,
            q3). Recalling that all points having
          proportional values in the projective space are equivalent, we can recover the actual
          pixel coordinates by dividing through by q3.
          This allows us to arrange the parameters that define our camera (i.e.,
              fx, fy,
              cx, and
            cy) into a single 3-by-3 matrix, which we
          will call the camera intrinsics matrix (the approach OpenCV takes to
          camera intrinsics is derived from Heikkila and Silven [Heikkila97]). The projection of the
          points in the physical world into the camera is now summarized by the following simple
            form:
[image: image with no caption]

Multiplying this out, you will find that w = Z and so, since the
          point q is in homogeneous coordinates, we should divide through by
            w (or Z) in order to recover our earlier
          definitions. (The minus sign is gone because we are now looking at the noninverted image
          on the projective plane in front of the pinhole rather than the inverted image on the
          projection screen behind the pinhole.)
While we are on the topic of homogeneous coordinates, there is a function in the
          OpenCV library which would be appropriate to introduce here: cvConvertPointsHomogenious()[168] is handy for converting to and from homogeneous coordinates; it also does a
          bunch of other useful things.
void cvConvertPointsHomogenious(
  const CvMat* src,
  CvMat*       dst
);
Don’t let the simple arguments fool you; this routine does a whole lot of useful
          stuff. The input array src can be
            Mscr-by-N or
            N-by-Mscr (for
            Mscr = 2, 3, or 4); it can also be
            1-by-N or N-by-1, with the array having
            Mscr = 2, 3, or 4 channels
            (N can be any number; it is essentially the number of points that
          you have stuffed into the matrix src for conversion).
          The output array dst can be any of these types as well,
          with the additional restriction that the dimensionality
            Mdst must be equal to
            Mscr,
            Mscr – 1, or
            Mscr + 1.
When the input dimension Mscr is equal to
          the output dimension Mdst, the data is simply
          copied (and, if necessary, transposed). If
            Mscr >
          Mdst, then the elements in dst are computed by dividing all but the last elements of the
          corresponding vector from src by the last element of
          that same vector (i.e., src is assumed to contain
          homogeneous coordinates). If Mscr <
            Mdst, then the points are copied but with a
          1 being inserted into the final coordinate of every vector in the dst array (i.e., the vectors in src are
          extended to homogeneous coordinates). In these cases, just as in the trivial case of
            Mscr =
            Mdst, any necessary transpositions are also
          done.
Tip
One word of warning about this function is that there can be cases (when
              N < 5) where the input and output dimensionality are
            ambiguous. In this event, the function will throw an error. If you find yourself in this
            situation, you can just pad out the matrices with some bogus values. Alternatively, the
            user may pass multichannel N-by-1 or 1-by-N
            matrices, where the number of channels is
              Mscr
              (Mdst). The function cvReshape() can be used to convert single-channel matrices
            to multichannel ones without copying any data.

With the ideal pinhole, we have a useful model for some of the three-dimensional
          geometry of vision. Remember, however, that very little light goes through a pinhole;
          thus, in practice such an arrangement would make for very slow imaging while we wait for
          enough light to accumulate on whatever imager we are using. For a camera to form images at
          a faster rate, we must gather a lot of light over a wider area and bend (i.e., focus) that
          light to converge at the point of projection. To accomplish this, we use a lens. A lens can focus a large amount of light on a point to give us fast
          imaging, but it comes at the cost of introducing distortions.

Lens Distortions



In theory, it is possible to define a lens that will introduce no distortions. In
          practice, however, no lens is perfect. This is mainly for reasons of manufacturing; it is much easier to make a “spherical” lens than to make a
          more mathematically ideal “parabolic” lens. It is also difficult to mechanically align the
          lens and imager exactly. Here we describe the two main lens distortions and how to model
          them. [169]
          Radial distortions arise as a result of the shape of lens, whereas
            tangential distortions arise from the assembly process of the
          camera as a whole.
We start with radial distortion. The lenses of real cameras often noticeably distort
          the location of pixels near the edges of the imager. This bulging phenomenon is the source
          of the "barrel” or "fish-eye” effect (see the room-divider lines at the top of Figure 11-12 for a good example). Figure 11-3 gives some intuition as to why
          radial distortion occurs. With some lenses, rays farther from the center of the lens are
          bent more than those closer in. A typical inexpensive lens is, in effect, stronger than it
          ought to be as you get farther from the center. Barrel distortion is particularly
          noticeable in cheap web cameras but less apparent in high-end cameras, where a lot of
          effort is put into fancy lens systems that minimize radial distortion.
For radial distortions, the distortion is 0 at the (optical) center of the imager and
          increases as we move toward the periphery. In practice, this distortion is small and can
          be characterized by the first few terms of a Taylor series expansion around r = 0. [170] For cheap web cameras, we generally use the first two such terms; the first of
          which is conventionally called k1 and the
          second k2. For highly distorted cameras such
          as fish-eye lenses we can use a third radial distortion term
            k3. In general, the radial location of a
          point on the imager will be rescaled according to the following equations:
[image: Radial distortion: rays farther from the center of a simple lens are bent too much compared to rays that pass closer to the center; thus, the sides of a square appear to bow out on the image plane (this is also known as barrel distortion)]

Figure 11-3. Radial distortion: rays farther from the center of a simple lens are bent too much
            compared to rays that pass closer to the center; thus, the sides of a square appear to
            bow out on the image plane (this is also known as barrel distortion)

[image: image with no caption]

[image: image with no caption]

Here, (x, y) is the original location (on the imager) of the
          distorted point and (xcorrected,
            ycorrected) is the new location as a result
          of the correction. Figure 11-4 shows
          displacements of a rectangular grid that are due to radial distortion. External points on a front-facing rectangular grid are
          increasingly displaced inward as the radial distance from the optical center
          increases.
The second-largest common distortion is tangential distortion.
          This distortion is due to manufacturing defects resulting from the lens not being exactly parallel to the imaging plane; see Figure 11-5.
Tangential distortion is minimally characterized by two additional parameters,
            p1 and
            p2, such that: [171]
[image: image with no caption]

[image: image with no caption]

Thus in total there are five distortion coefficients that we require. Because all five
          are necessary in most of the OpenCV routines that use them, they are typically bundled
          into one distortion vector; this is just a 5-by-1 matrix containing
            k1,
            k2,
            p1,
            p2, and
            k3 (in that order). Figure 11-6 shows the effects of tangential
          distortion on a front-facing external rectangular grid of points. The points are displaced
          elliptically as a function of location and radius.
[image: Radial distortion plot for a particular camera lens: the arrows show where points on an external rectangular grid are displaced in a radially distorted image (courtesy of Jean-Yves Bouguet)]

Figure 11-4. Radial distortion plot for a particular camera lens: the arrows show where points
            on an external rectangular grid are displaced in a radially distorted image (courtesy of
            Jean-Yves Bouguet)

[image: Tangential distortion results when the lens is not fully parallel to the image plane; in cheap cameras, this can happen when the imager is glued to the back of the camera (image courtesy of Sebastian Thrun)]

Figure 11-5. Tangential distortion results when the lens is not fully parallel to the image
            plane; in cheap cameras, this can happen when the imager is glued to the back of the
            camera (image courtesy of Sebastian Thrun)

There are many other kinds of distortions that occur in imaging systems, but they
          typically have lesser effects than radial and tangential distortions. Hence neither we nor OpenCV will deal with them
          further.
[image: Tangential distortion plot for a particular camera lens: the arrows show where points on an external rectangular grid are displaced in a tangentially distorted image (courtesy of Jean-Yves Bouguet)]

Figure 11-6. Tangential distortion plot for a particular camera lens: the arrows show where
            points on an external rectangular grid are displaced in a tangentially distorted image
            (courtesy of Jean-Yves Bouguet)



Calibration



Now that we have some idea of how we’d describe the intrinsic and distortion properties of a camera mathematically, the next question that
        naturally arises is how we can use OpenCV to compute the intrinsics matrix and the
        distortion vector. [172]
OpenCV provides several algorithms to help us compute these intrinsic parameters. The
        actual calibration is done via cvCalibrateCamera2(). In
        this routine, the method of calibration is to target the camera on a known structure that
        has many individual and identifiable points. By viewing this structure from a variety of
        angles, it is possible to then compute the (relative) location and orientation of the camera
        at the time of each image as well as the intrinsic parameters of the camera (see Figure 11-9 in the “Chessboards” section). In
        order to provide multiple views, we rotate and translate the object, so let’s pause to learn
        a little more about rotation and translation.
Rotation Matrix and Translation Vector



For each image the camera takes of a particular object, we can describe the
            pose of the object relative to the camera coordinate system in
          terms of a rotation and a translation; see Figure 11-7.
[image: Converting from object to camera coordinate systems: the point P on the object is seen as point p on the image plane; the point p is related to point P by applying a rotation matrix R and a translation vector t to P]

Figure 11-7. Converting from object to camera coordinate systems: the point P on the object is
            seen as point p on the image plane; the point p is related to point P by applying a
            rotation matrix R and a translation vector t to P

In general, a rotation in any number of dimensions can be described in terms of
          multiplication of a coordinate vector by a square matrix of the appropriate size.
          Ultimately, a rotation is equivalent to introducing a new description of a point’s
          location in a different coordinate system. Rotating the coordinate system by an angle
            θ is equivalent to counterrotating our target point around the
          origin of that coordinate system by the same angle θ. The
          representation of a two-dimensional rotation as matrix multiplication is shown in Figure 11-8. Rotation in three dimensions can
          be decomposed into a two-dimensional rotation around each axis in which the pivot axis
          measurements remain constant. If we rotate around the x-, y-, and
            z-axes in sequence [173] with respective rotation angles ψ, φ, and
            θ, the result is a total rotation matrix R
          that is given by the product of the three matrices Rx(ψ),
              Ry(φ), and
            Rz(θ), where:
[image: image with no caption]

[image: image with no caption]

[image: image with no caption]

[image: Rotating points by θ (in this case, around the Z-axis) is the same as counterrotating the coordinate axis by θ; by simple trigonometry, we can see how rotation changes the coordinates of a point]

Figure 11-8. Rotating points by θ (in this case, around the Z-axis) is the same as
            counterrotating the coordinate axis by θ; by simple trigonometry, we can see how
            rotation changes the coordinates of a point

Thus, R = Rz(θ), Ry(φ),
              Rx(ψ). The rotation matrix R has the property that its inverse is
          its transpose (we just rotate back); hence we have
            RTR =
            RRT = I, where
            I is the identity matrix consisting of 1s along the diagonal and 0s
          everywhere else.
The translation vector is how we represent a shift from one
          coordinate system to another system whose origin is displaced to another location; in
          other words, the translation vector is just the offset from the origin of the first
          coordinate system to the origin of the second coordinate system. Thus, to shift from a
          coordinate system centered on an object to one centered at the camera, the appropriate
          translation vector is simply T = originobject
          – origincamera. We then have (with reference to Figure 11-7) that a point in the object (or
          world) coordinate frame Po has coordinates
              Pc in the camera coordinate
            frame:
[image: image with no caption]

Combining this equation for Pc above with
          the camera intrinsic corrections will form the basic system of equations that we will be asking OpenCV to solve. The solution to these
          equations will be the camera calibration parameters we seek.
We have just seen that a three-dimensional rotation can be specified with three angles and that a three-dimensional
            translation can be specified with the three parameters (x, y,
            z); thus we have six parameters so far. The OpenCV intrinsics matrix for a
          camera has four parameters (fx,
            fy, cx, and
              cy), yielding a grand total of ten
          parameters that must be solved for each view (but note that the camera intrinsic
          parameters stay the same between views). Using a planar object, we’ll soon see that each
          view fixes eight parameters. Because the six parameters of rotation and translation change
          between views, for each view we have constraints on two additional parameters that we use
          to resolve the camera intrinsic matrix. We’ll then need at least two views to solve for
          all the geometric parameters.
We’ll provide more details on the parameters and their constraints later in the
          chapter, but first we discuss the calibration object. The calibration
          object used in OpenCV is a flat grid of alternating black and white squares that is
          usually called a “chessboard” (even though it needn’t have eight squares, or even an equal
          number of squares, in each direction).

Chessboards



In principle, any appropriately characterized object could be used as a calibration
          object, yet the practical choice is a regular pattern such as a chessboard. [174] Some calibration methods in the literature rely on three-dimensional objects
          (e.g., a box covered with markers), but flat chessboard patterns are much easier to deal
          with; it is difficult to make (and to store and distribute) precise 3D calibration
          objects. OpenCV thus opts for using multiple views of a planar object (a chessboard)
          rather than one view of a specially constructed 3D object. We use a pattern of alternating
          black and white squares (see Figure 11-9),
          which ensures that there is no bias toward one side or the other in measurement. Also, the
          resulting grid corners lend themselves naturally to the subpixel localization function
          discussed in Chapter 10.
Given an image of a chessboard (or a person holding a chessboard, or any other scene
          with a chessboard and a reasonably uncluttered background), you can use the OpenCV
          function cvFindChessboardCorners() to locate the
          corners of the chessboard.
int cvFindChessboardCorners(
  const void*   image,
  CvSize        pattern_size,
  CvPoint2D32f* corners,
  int*          corner_count = NULL,
  int           flags        = CV_CALIB_CB_ADAPTIVE_THRESH
);
[image: Images of a chessboard being held at various orientations (left ) provide enough information to completely solve for the locations of those images in global coordinates (relative to the camera) and the camera intrinsics]

Figure 11-9. Images of a chessboard being held at various orientations (left ) provide enough
            information to completely solve for the locations of those images in global coordinates
            (relative to the camera) and the camera intrinsics

This function takes as arguments a single image containing a chessboard. This image
          must be an 8-bit grayscale (single-channel) image. The second argument, pattern_size, indicates how many corners are in each row and column of the board. This count is the number of
            interior corners; thus, for a standard chess game board the correct
          value would be cvSize(7,7). [175] The next argument, corners, is a pointer to
          an array where the corner locations can be recorded. This array must be preallocated and,
          of course, must be large enough for all of the corners on the board (49 on a standard
          chess game board). The individual values are the locations of the corners in pixel
          coordinates. The corner_count argument is optional; if
            non-NULL, it is a pointer to an integer where the
          number of corners found can be recorded. If the function is successful at finding all of
          the corners,[176] then the return value will be a nonzero number. If the function fails, 0 will
          be returned. The final flags argument can be used to
          implement one or more additional filtration steps to help find the corners on the
          chessboard. Any or all of the arguments may be combined using a Boolean OR.
	
              CV_CALIB_CB_ADAPTIVE_THRESH
            
	The default behavior of cvFindChessboardCorners() is first to threshold the image based on
                average brightness, but if this flag is set then an adaptive threshold will be used
                instead.

	
              CV_CALIB_CB_NORMALIZE_IMAGE
            
	If set, this flag causes the image to be normalized via cvEqualizeHist() before the thresholding is applied.

	
              CV_CALIB_CB_FILTER_QUADS
            
	Once the image is thresholded, the algorithm attempts to locate the quadrangles
                resulting from the perspective view of the black squares on the chessboard. This is
                an approximation because the lines of each edge of a quadrangle are assumed to be
                straight, which isn’t quite true when there is radial distortion in the image. If
                this flag is set, then a variety of additional constraints are applied to those
                quadrangles in order to reject false quadrangles.



Subpixel corners



The corners returned by cvFindChessboardCorners() are only approximate. What this means in practice
            is that the locations are accurate only to within the limits of our imaging device,
            which means accurate to within one pixel. A separate function must be used to compute
            the exact locations of the corners (given the approximate locations and the image as
            input) to subpixel accuracy. This function is the same cvFindCornerSubPix() function that we used for tracking in Chapter 10. It should not be surprising that this function can be
            used in this context, since the chessboard interior corners are simply a special case of
            the more general Harris corners; the chessboard corners just happen to be particularly easy
            to find and track. Neglecting to call subpixel refinement after you first locate the
            corners can cause substantial errors in calibration.

Drawing chessboard corners



Particularly when debugging, it is often desirable to draw the found chessboard corners onto
            an image (usually the image that we used to compute the corners in the first place);
            this way, we can see whether the projected corners match up with the observed corners.
            Toward this end, OpenCV provides a convenient routine to handle this common task. The
            function cvDrawChessboardCorners() draws the corners
            found by cvFindChessboardCorners() onto an image that
            you provide. If not all of the corners were found, the available corners will be
            represented as small red circles. If the entire pattern was found, then the corners will
            be painted into different colors (each row will have its own color) and connected by
            lines representing the identified corner order.
void cvDrawChessboardCorners(
    CvArr*        image,
    CvSize        pattern_size,
    CvPoint2D32f* corners,
    int           count,
    int           pattern_was_found
);
The first argument to cvDrawChessboardCorners()
            is the image to which the drawing will be done. Because the corners will be represented
            as colored circles, this must be an 8-bit color image; in most cases, this will be a
            copy of the image you gave to cvFindChessboardCorners() (but you must convert it to a three-channel image
            yourself). The next two arguments, pattern_size and
              corners, are the same as the corresponding
            arguments for cvFindChessboardCorners(). The argument
              count is an integer equal to the number of corners.
            Finally the argument pattern_was_found indicates
            whether the entire chessboard pattern was successfully found; this can be set to the
            return value from cvFindChessboardCorners(). Figure 11-10 shows the result of applying
              cvDrawChessboardCorners() to a chessboard
              image.
[image: Result of cvDrawChessboardCorners(); once you find the corners using cvFindChessboardCorners(), you can project where these corners were found (small circles on corners) and in what order they belong (as indicated by the lines between circles)]

Figure 11-10. Result of cvDrawChessboardCorners(); once you find the corners using
              cvFindChessboardCorners(), you can project where these corners were found (small
              circles on corners) and in what order they belong (as indicated by the lines between
              circles)

We now turn to what a planar object can do for us. Points on a plane undergo perspective transform
            when viewed through a pinhole or lens. The parameters for this transform are contained
            in a 3-by-3 homography matrix, which we describe next.


Homography



In computer vision, we define planar homography as a projective
          mapping from one plane to another. [177] Thus, the mapping of points on a two-dimensional planar surface to the imager
          of our camera is an example of planar homography. It is possible to express this mapping in terms of matrix
          multiplication if we use homogeneous coordinates to express both the viewed point
            Q and the point q on the imager to which
            Q is mapped. If we define:
[image: image with no caption]

then we can express the action of the homography simply as:
[image: image with no caption]

Here we have introduced the parameter s, which is an arbitrary
          scale factor (intended to make explicit that the homography is defined only up to that
          factor). It is conventionally factored out of H, and we’ll stick with
          that convention here.
With a little geometry and some matrix algebra, we can solve for this transformation
          matrix. The most important observation is that H has two parts: the
          physical transformation, which essentially locates the object plane we are viewing; and
          the projection, which introduces the camera intrinsics matrix. See Figure 11-11.
[image: View of a planar object as described by homography: a mapping—from the object plane to the image plane—that simultaneously comprehends the relative locations of those two planes as well as the camera projection matrix]

Figure 11-11. View of a planar object as described by homography: a mapping—from the object plane
            to the image plane—that simultaneously comprehends the relative locations of those two
            planes as well as the camera projection matrix

The physical transformation part is the sum of the effects of some rotation
            R and some translation t that relate
          the plane we are viewing to the image plane. Because we are working in homogeneous coordinates, we can combine these within a single matrix as
          follows: [178]
[image: image with no caption]

Then, the action of the camera matrix M (which we already know
          how to express in projective coordinates) is multiplied by W
          [image: ] this yields:
[image: image with no caption]

It would seem that we are done. However, it turns out that in practice our interest is
          not the coordinate [image: ] which is defined for all of space, but rather a coordinate
            [image: ] which is defined only on the plane we are looking at. This allows for
          a slight simplification.
Without loss of generality, we can choose to define the object plane so that
            Z = 0. We do this because, if we also break up the rotation matrix
          into three 3-by-1 columns (i.e., R =
            [r1
          r2
          r3]), then one of those columns is not needed.
          In particular:
[image: image with no caption]

The homography matrix H that maps a planar object’s points onto the imager is then described completely by
            H = sM[r1
          r2
          t], where:
[image: image with no caption]

Observe that H is now a 3-by-3 matrix.
OpenCV uses the preceding equations to compute the homography matrix. It uses multiple
          images of the same object to compute both the individual translations and rotations for
          each view as well as the intrinsics (which are the same for all views). As we have
          discussed, rotation is described by three angles and translation is defined by three
          offsets; hence there are six unknowns for each view. This is OK, because a known planar
          object (such as our chessboard) gives us eight equations—that is, the mapping of a square
          into a quadrilateral can be described by four (x, y) points. Each new
          frame gives us eight equations at the cost of six new extrinsic unknowns, so given enough
          images we should be able to compute any number of intrinsic unknowns (more on this
          shortly).
The homography matrix H relates the positions of the points on a
          source image plane to the points on the destination image plane (usually the imager plane)
          by the following simple equations:
[image: image with no caption]

[image: image with no caption]

Notice that we can compute H without knowing anything about the
          camera intrinsics. In fact, computing multiple homographies from multiple views is the
          method OpenCV uses to solve for the camera intrinsics, as we’ll see.
OpenCV provides us with a handy function, cvFindHomography(), which takes a list of correspondences and returns the
          homography matrix that best describes those correspondences. We need a minimum of four
          points to solve for H, but we can supply many more if we have them
            [179] (as we will with any chessboard bigger than 3-by-3). Using more points is
          beneficial, because invariably there will be noise and other inconsistencies whose effect
          we would like to minimize.
void cvFindHomography(
    const CvMat* src_points,
    const CvMat* dst_points,
    CvMat*       homography
);
The input arrays src_points and dst_points can be either N-by-2 matrices
          or N-by-3 matrices. In the former case the points are pixel
          coordinates, and in the latter they are expected to be homogeneous coordinates. The final argument, homography, is just a 3-by-3 matrix to be filled by the function in such a
          way that the back-projection error is minimized. Because there are only eight free
          parameters in the homography matrix, we chose a normalization where
            H33 = 1. Scaling the homography could be
          applied to the ninth homography parameter, but usually scaling is instead done by
          multiplying the entire homography matrix by a scale factor.

Camera Calibration



We finally arrive at camera calibration for camera intrinsics and distortion
          parameters. In this section we’ll learn how to compute these values using cvCalibrateCamera2() and also how to use these models to
          correct distortions in the images that the calibrated camera would have otherwise
          produced. First we say a little more about how many views of a chessboard are necessary in
          order to solve for the intrinsics and distortion. Then we’ll offer a high-level overview
          of how OpenCV actually solves this system before moving on to the code that makes it all
          easy to do.
How many chess corners for how many parameters?



It will prove instructive to review our unknowns. That is, how many parameters are
            we attempting to solve for through calibration? In the OpenCV case, we have four
              intrinsic parameters (fx,
                fy, cx,
              cy,) and five distortion
            parameters: three radial (k1,
              k2,
              k3) and two tangential
              (p1,
              p2). Intrinsic parameters are directly
            tied to the 3D geometry (and hence the extrinsic parameters) of where the chessboard is
            in space; distortion parameters are tied to the 2D geometry of how the pattern of points
            gets distorted, so we deal with the constraints on these two classes of parameters
            separately. Three corner points in a known pattern yielding six pieces of information
            are (in principle) all that is needed to solve for our five distortion parameters (of
            course, we use much more for robustness). Thus, one view of a chessboard is all that we
            need to compute our distortion parameters. The same chessboard view could also be used
            in our intrinsics computation, which we consider next, starting with the extrinsic
            parameters. For the extrinsic parameters we’ll need to know where
            the chessboard is. This will require three rotation parameters (ψ, φ,
              θ) and three translation parameters (Tx,
                Ty, Tz) for a total of six
            per view of the chessboard, because in each image the chessboard will move. Together,
            the four intrinsic and six extrinsic parameters make for ten altogether that we must
            solve for each view.
Let’s say we have N
            corners and K images of the chessboard (in different
            positions). How many views and corners must we see so that there will be enough
            constraints to solve for all these parameters?
	K images of the chessboard provide 2NK
                constraints (we use the multiplier 2 because each point on the image has both an
                  x and a y coordinate).

	Ignoring the distortion parameters for the moment, we have 4 intrinsic
                parameters and 6K extrinsic parameters (since we need to find
                the 6 parameters of the chessboard location in each of the K
                views).

	Solving then requires that 2NK ≥ 6K +
                4 hold (or, equivalently, (N – 3) K ≥
                2).



It seems that if N = 5 then we need only K
            = 1 image, but watch out! For us, K (the number of images) must be
            more than 1. The reason for requiring K > 1 is that we’re using
            chessboards for calibration to fit a homography matrix for each of the
              K views. As discussed previously, a homography can yield at most
            eight parameters from four (x, y) pairs. This is because only four
            points are needed to express everything that a planar perspective view can do: it can
            stretch a square in four different directions at once, turning it into any quadrilateral
            (see the perspective images in Chapter 6). So, no matter how
            many corners we detect on a plane, we only get four corners’ worth of information. Per
            chessboard view, then, the equation can give us only four corners of information or (4 –
            3) K > 1, which means K > 1. This
            implies that two views of a 3-by-3 chessboard (counting only internal corners) are the
            minimum that could solve our calibration problem. Consideration for noise and numerical
            stability is typically what requires the collection of more images of a larger
            chessboard. In practice, for high-quality results, you’ll need at least ten images of a
            7-by-8 or larger chessboard (and that’s only if you move the chessboard enough between
            images to obtain a “rich” set of views).

What’s under the hood?



This subsection is for those who want to go deeper; it can be safely skipped if you
            just want to call the calibration functions. If you are still with us, the question
            remains: how is all this mathematics used for calibration? Although there are many ways
            to solve for the camera parameters, OpenCV chose one that works well on planar objects.
            The algorithm OpenCV uses to solve for the focal lengths and offsets is based on
              Zhang’s method [Zhang00], but OpenCV uses a different method based on
              Brown [Brown71] to solve for the distortion parameters.
To get started, we pretend that there is no distortion in the camera while solving
            for the other calibration parameters. For each view of the chessboard, we collect a
            homography H as described previously. We’ll write
              H out as column vectors, H =
              [h1
            h2
            h3], where each h is a
            3-by-1 vector. Then, in view of the preceding homography discussion, we can set
              H equal to the camera intrinsics matrix M
            multiplied by a combination of the first two rotation matrix columns,
              r1 and
              r2, and the translation vector t; after including the scale factor s,
            this yields:
[image: image with no caption]

Reading off these equations, we have:
[image: image with no caption]
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Here, λ = 1/s.
The rotation vectors are orthogonal to each other by construction, and since the
            scale is extracted it follows that r1 and
              r2 are orthonormal. Orthonormal implies
            two things: the rotation vector’s dot product is 0, and the vectors’ magnitudes are
            equal. Starting with the dot product, we have:
[image: image with no caption]

For any vectors a and b we have
              (ab)T =
              bTaT,
            so we can substitute for r1 and
              r2 to derive our first constraint:
[image: image with no caption]

where A–T is shorthand for
              (A–1)T. We
            also know that the magnitudes of the rotation vectors are equal:
[image: image with no caption]

Substituting for r1 and
              r2 yields our second constraint:
[image: image with no caption]

To make things easier, we set B =
              M–TM–1.
            Writing this out, we have:
[image: image with no caption]

It so happens that this matrix B has a general closed-form
            solution:
[image: image with no caption]

Using the B-matrix, both constraints have the general form
              
[image: image with no caption]

 in them. Let’s multiply this out to see what the components are.
            Because B is symmetric, it can be written as one six-dimensional
            vector dot product. Arranging the necessary elements of B into the
            new vector b, we have:
[image: image with no caption]

Using this definition for
              vijT, our two
            constraints may now be written as:
[image: image with no caption]

If we collect K images of chessboards together, then we can
            stack K of these equations together:
[image: image with no caption]

where V is a 2K-by-6 matrix. As before, if
              K ≥ 2 then this equation can be solved for our
              b = [B11,
              B12,
              B22,
              B13,
              B23,
              B33]T. The
            camera intrinsics are then pulled directly out of our closed-form solution for the
              B-matrix:
[image: image with no caption]

where:
[image: image with no caption]

The extrinsics (rotation and translation) are then computed from the equations we
            read off of the homography condition:
[image: image with no caption]

Here the scaling parameter is determined from the orthonormality condition
              
[image: image with no caption]

.
Some care is required because, when we solve using real data and put the
              r-vectors together (R =
              [r1
            r2
            r3]), we will not end up with an exact
            rotation matrix for which RTR
              = RRT = I holds.
To get around this problem, the usual trick is to take the singular value decomposition (SVD) of R. As discussed in Chapter 3, SVD is a method of factoring a matrix into two
            orthonormal matrices, U and V, and a middle
            matrix D of scale values on its diagonal. This allows us to turn
              R into R = UDVT.
            Because R is itself orthonormal, the matrix D
            must be the identity matrix I such that R =
              UIVT. We can thus “coerce” our computed
              R into being a rotation matrix by taking R’s
            singular value decomposition, setting its D matrix to the identity
            matrix, and multiplying by the SVD again to yield our new, conforming rotation matrix
              R′.
Despite all this work, we have not yet dealt with lens distortions. We use the camera intrinsics found previously—together
            with the distortion parameters set to 0—for our initial guess to start solving a larger
            system of equations.
The points we “perceive” on the image are really in the wrong place owing to
            distortion. Let (xp,
              yp) be the point’s location if the pinhole camera were perfect and let (xd,
                yd) be its distorted location; then:
[image: image with no caption]

We use the results of the calibration without distortion via the following
            substitution:
[image: image with no caption]

A large list of these equations are collected and solved to find the distortion
            parameters, after which the intrinsics and extrinsics are reestimated. That’s the heavy
            lifting that the single function cvCalibrateCamera2()
            [180] does for you!

Calibration function



Once we have the corners for several images, we can call cvCalibrateCamera2(). This routine will do the number crunching and give us
            the information we want. In particular, the results we receive are the camera
              intrinsics matrix, the distortion coefficients, the
              rotation vectors, and the translation
              vectors. The first two of these constitute the intrinsic parameters of the
            camera, and the latter two are the extrinsic measurements that tell us where the objects
            (i.e., the chessboards) were found and what their orientations were. The distortion
            coefficients (k1,
              k2,
              p1,
              p2, and
              k3)[181] are the coefficients from the radial and tangential distortion equations we
            encountered earlier; they help us when we want to correct that distortion away. The
            camera intrinsic matrix is perhaps the most interesting final result, because it is what
            allows us to transform from 3D coordinates to the image’s 2D coordinates. We can also
            use the camera matrix to do the reverse operation, but in this case we can only compute
            a line in the three-dimensional world to which a given image point must correspond. We
            will return to this shortly.
Let’s now examine the camera calibration routine itself.
void cvCalibrateCamera2(
  CvMat*    object_points,
  CvMat*    image_points,
  int*      point_counts,
  CvSize    image_size,
  CvMat*    intrinsic_matrix,
  CvMat*    distortion_coeffs,
  CvMat*    rotation_vectors    = NULL,
  CvMat*    translation_vectors = NULL,
  int       flags               = 0
);
When calling cvCalibrateCamera2(), there are many
            arguments to keep straight. Yet we’ve covered (almost) all of them already, so hopefully
            they’ll make sense.
The first argument is the object_points, which is
            an N-by-3 matrix containing the physical coordinates of each of the
              K points on each of the M images of the
            object (i.e., N = K x M). These points are located in the
            coordinate frame attached to the object. [182] This argument is a little more subtle than it appears in that your manner of
            describing the points on the object will implicitly define your physical units and the
            structure of your coordinate system hereafter. In the case of a chessboard, for example,
            you might define the coordinates such that all of the points on the chessboard had a
              z-value of 0 while the x- and
              y-coordinates are measured in centimeters. Had you chosen inches,
            all computed parameters would then (implicitly) be in inches. Similarly if you had
            chosen all the x-coordinates (rather than the
              z-coordinates) to be 0, then the implied location of the
            chessboards relative to the camera would be largely in the
            x-direction rather than the z-direction. The
            squares define one unit, so that if, for example, your squares are 90 mm on each side,
            your camera world, object and camera coordinate units would be in mm/90. In principle
            you can use an object other than a chessboard, so it is not really necessary that all of
            the object points lie on a plane, but this is usually the easiest way to calibrate a
            camera. [183] In the simplest case, we simply define each square of the chessboard to be
            of dimension one “unit” so that the coordinates of the corners on the chessboard are
            just integer corner rows and columns. Defining
              Swidth as the number of squares across the
            width of the chessboard and Sheight as the
            number of squares over the height:
[image: image with no caption]

The second argument is the image_points, which is
            an N-by-2 matrix containing the pixel coordinates of all the points
            supplied in object_points. If you are performing a
            calibration using a chessboard, then this argument consists simply of the return values
            for the M calls to cvFindChessboardCorners() but now rearranged into a slightly different
            format.
The argument point_counts indicates the number of
            points in each image; this is supplied as an M-by-1 matrix. The
              image_size is just the size, in pixels, of the
            images from which the image points were extracted (e.g., those images of yourself waving
            a chessboard around).
The next two arguments, intrinsic_matrix and
              distortion_coeffs, constitute the intrinsic
            parameters of the camera. These arguments can be both outputs (filling them in is the
            main reason for calibration) and inputs. When used as inputs, the values in these
            matrices when the function is called will affect the computed result. Which of these
            matrices will be used as input will depend on the flags parameter; see the following discussion. As we discussed earlier, the
            intrinsic matrix completely specifies the behavior of the camera in our ideal camera
            model, while the distortion coefficients characterize much of the camera’s nonideal
            behavior. The camera matrix is always 3-by-3 and the distortion coefficients always
            number five, so the distortion_coeffs argument should
            be a pointer to a 5-by-1 matrix (they will be recorded in the order
              k1,
              k2,
              p1,
              p2,
              k3).
Whereas the previous two arguments summarized the camera’s intrinsic information,
            the next two summarize the extrinsic information. That is, they tell us where the
            calibration objects (e.g., the chessboards) were located relative to the camera in each
            picture. The locations of the objects are specified by a rotation and a translation.
              [184] The rotations, rotation_vectors, are
            defined by M three-component vectors arranged into an
              M-by-3 matrix (where M is the number of
            images). Be careful, these are not in the form of the 3-by-3 rotation matrix we
            discussed previously; rather, each vector represents an axis in three-dimensional space
            in the camera coordinate system around which the chessboard was rotated and where the
            length or magnitude of the vector encodes the counterclockwise angle of the rotation.
            Each of these rotation vectors can be converted to a 3-by-3 rotation matrix by calling
              cvRodrigues2(), which is described in its own
            section to follow. The translations, translation_vectors, are similarly arranged into a second
              M-by-3 matrix, again in the camera coordinate system. As stated
            before, the units of the camera coordinate system are exactly those assumed for the
            chessboard. That is, if a chessboard square is 1 inch by 1 inch, the units are
              inches.
Finding parameters through optimization can be somewhat of an art. Sometimes trying
            to solve for all parameters at once can produce inaccurate or divergent results if your
            initial starting position in parameter space is far from the actual solution. Thus, it
            is often better to “sneak up” on the solution by getting close to a good parameter
            starting position in stages. For this reason, we often hold some parameters fixed, solve
            for other parameters, then hold the other parameters fixed and solve for the original
            and so on. Finally, when we think all of our parameters are close to the actual
            solution, we use our close parameter setting as the starting point and solve for
            everything at once. OpenCV allows you this control through the flags setting. The flags argument allows
            for some finer control of exactly how the calibration will be performed. The following
            values may be combined together with a Boolean OR operation as needed.
	
                CV_CALIB_USE_INTRINSIC_GUESS
              
	Normally the intrinsic matrix is computed by cvCalibrateCamera2() with no additional information. In particular,
                  the initial values of the parameters
                    cx and
                      cy (the image center) are taken
                  directly from the image_size argument. If this
                  argument is set, then intrinsic_matrix is
                  assumed to contain valid values that will be used as an initial guess to be
                  further optimized by cvCalibrateCamera2().

	
                CV_CALIB_FIX_PRINCIPAL_POINT
              
	This flag can be used with or without CV_CALIB_USE_INTRINSIC_GUESS. If used without, then the principle
                  point is fixed at the center of the image; if used with, then the principle point
                  is fixed at the supplied initial value in the intrinsic_matrix.

	
                CV_CALIB_FIX_ASPECT_RATIO
              
	If this flag is set, then the optimization procedure will only vary
                      fx and
                      fy together and will keep their
                  ratio fixed to whatever value is set in the intrinsic_matrix when the calibration routine is called. (If the
                    CV_CALIB_USE_INTRINSIC_GUESS flag is not also
                  set, then the values of fx and
                      fy in intrinsic_matrix can be any arbitrary values and only their ratio
                  will be considered relevant.)

	
                CV_CALIB_FIX_FOCAL_LENGTH
              
	This flag causes the optimization routine to just use the
                      fx and
                      fy that were passed in in the
                    intrinsic_matrix.

	CV_CALIB_FIX_K1, CV_CALIB_FIX_K2 and CV_CALIB_FIX_K3
	Fix the radial distortion parameters
                    k1,
                    k2, and
                    k3. The radial parameters may be set
                  in any combination by adding these flags together. In general, the last parameter
                  should be fixed to 0 unless you are using a fish-eye lens.

	CV_CALIB_ZERO_TANGENT_DIST:
	This flag is important for calibrating high-end cameras which, as a result of
                  precision manufacturing, have very little tangential distortion. Trying to fit
                  parameters that are near 0 can lead to noisy spurious values and to problems of
                  numerical stability. Setting this flag turns off fitting the tangential distortion
                  parameters p1 and
                    p2, which are thereby both set to
                  0.




Computing extrinsics only



In some cases you will already have the intrinsic parameters of the camera and
            therefore need only to compute the location of the object(s) being viewed. This scenario
            clearly differs from the usual camera calibration, but it is nonetheless a useful task
            to be able to perform.
void cvFindExtrinsicCameraParams2(
    const CvMat* object_points,
    const CvMat* image_points,
    const CvMat* intrinsic_matrix,
    const CvMat* distortion_coeffs,
    CvMat*       rotation_vector,
    CvMat*       translation_vector
);
The arguments to cvFindExtrinsicCameraParams2()
            are identical to the corresponding arguments for cvCalibrateCamera2() with the exception that the intrinsic matrix and the
            distortion coefficients are being supplied rather than computed. The rotation output is
            in the form of a 1-by-3 or 3-by-1 rotation_vector
            that represents the 3D axis around which the chessboard or points were rotated, and the
            vector magnitude or length represents the counterclockwise angle of rotation. This
            rotation vector can be converted into the 3-by-3 rotation matrix we’ve discussed before
            via the cvRodrigues2() function. The translation
            vector is the offset in camera coordinates to where the chessboard origin is
            located.



Undistortion



As we have alluded to already, there are two things that one often wants to do with a
        calibrated camera. The first is to correct for distortion effects, and the second is to
        construct three-dimensional representations of the images it receives. Let’s take a moment
        to look at the first of these before diving into the more complicated second task in Chapter 12.
OpenCV provides us with a ready-to-use undistortion algorithm that takes a raw image and
        the distortion coefficients from cvCalibrateCamera2() and
        produces a corrected image (see Figure 11-12).
        We can access this algorithm either through the function cvUndistort2(), which does everything we need in one shot, or through the pair
        of routines cvInitUndistortMap() and cvRemap(), which allow us to handle things a little more
        efficiently for video or other situations where we have many images from the same camera.
          [185]
[image: Camera image before undistortion (left) and after undistortion (right)]

Figure 11-12. Camera image before undistortion (left) and after undistortion (right)

The basic method is to compute a distortion map, which is then used
        to correct the image. The function cvInitUndistortMap()
        computes the distortion map, and cvRemap() can be used to
        apply this map to an arbitrary image.[186] The function cvUndistort2() does one after
        the other in a single call. However, computing the distortion map is a time-consuming
        operation, so it’s not very smart to keep calling cvUndistort2() if the distortion map is not changing. Finally, if we just have
        a list of 2D points, we can call the function cvUndistortPoints() to transform them from their original coordinates to their
        undistorted coordinates.
// Undistort images
void cvInitUndistortMap(
  const CvMat*   intrinsic_matrix,
  const CvMat*   distortion_coeffs,
  cvArr*         mapx,
  cvArr*         mapy
);
void cvUndistort2(
  const CvArr*   src,
  CvArr*         dst,
  const cvMat*   intrinsic_matrix,
  const cvMat*   distortion_coeffs
);
// Undistort a list of 2D points only
void cvUndistortPoints(
  const CvMat*  _src,
  CvMat*         dst,
  const CvMat*   intrinsic_matrix,
  const CvMat*   distortion_coeffs,
  const CvMat*   R = 0,
  const CvMat*   Mr = 0;
);
The function cvInitUndistortMap() computes the
        distortion map, which relates each point in the image to the location where that point is
        mapped. The first two arguments are the camera intrinsic matrix and the distortion
        coefficients, both in the expected form as received from cvCalibrateCamera2(). The resulting distortion map is represented by two
        separate 32-bit, single-channel arrays: the first gives the x-value to
        which a given point is to be mapped and the second gives the y-value.
        You might be wondering why we don’t just use a single two-channel array instead. The reason
        is so that the results from cvUnitUndistortMap() can be
        passed directly to cvRemap().
The function cvUndistort2() does all this in a single
        pass. It takes your initial (distorted image) as well as the camera’s intrinsic matrix and
        distortion coefficients, and then outputs an undistorted image of the same size. As
        mentioned previously, cvUndistortPoints() is used if you
        just have a list of 2D point coordinates from the original image and you want to compute
        their associated undistorted point coordinates. It has two extra parameters that relate to
        its use in stereo rectification, discussed in Chapter 12.
        These parameters are R, the rotation matrix between the
        two cameras, and Mr, the camera intrinsic matrix of the
        rectified camera (only really used when you have two cameras as per Chapter 12). The rectified camera matrix Mr can have dimensions of 3-by-3 or 3-by-4 deriving from the
        first three or four columns of cvStereoRectify()’s return
        value for camera matrices P1 or P2 (for the left or right camera; see Chapter 12). These parameters are by default NULL, which the function interprets as identity
          matrices.

Putting Calibration All Together



OK, now it’s time to put all of this together in an example. We’ll present a program
        that performs the following tasks: it looks for chessboards of the dimensions that the user
        specified, grabs as many full images (i.e., those in which it can find all the chessboard
        corners) as the user requested, and computes the camera intrinsics and distortion
        parameters. Finally, the program enters a display mode whereby an undistorted version of the
        camera image can be viewed; see Example 11-1.
        When using this algorithm, you’ll want to substantially change the chessboard views between
        successful captures. Otherwise, the matrices of points used to solve for calibration parameters may form an ill-conditioned (rank deficient) matrix and
        you will end up with either a bad solution or no solution at all.
Example 11-1. Reading a chessboard’s width and height, reading and collecting the requested number
          of views, and calibrating the camera
// calib.cpp
// Calling convention:
// calib board_w board_h number_of_views
//
// Hit 'p' to pause/unpause, ESC to quit
//
#include <cv.h>
#include <highgui.h>
#include <stdio.h>
#include <stdlib.h>

int n_boards = 0; //Will be set by input list
const int board_dt = 20; //Wait 20 frames per chessboard view
int board_w;
int board_h;

int main(int argc, char* argv[]) {

  if(argc != 4){
    printf("ERROR: Wrong number of input parameters\n");
    return -1;
  }
  board_w  = atoi(argv[1]);
  board_h  = atoi(argv[2]);
  n_boards = atoi(argv[3]);
  int board_n  = board_w * board_h;
  CvSize board_sz = cvSize( board_w, board_h );
  CvCapture* capture = cvCreateCameraCapture( 0 );
  assert( capture );

  cvNamedWindow( "Calibration" );
  //ALLOCATE STORAGE
  CvMat* image_points      = cvCreateMat(n_boards*board_n,2,CV_32FC1);
  CvMat* object_points     = cvCreateMat(n_boards*board_n,3,CV_32FC1);
  CvMat* point_counts      = cvCreateMat(n_boards,1,CV_32SC1);
  CvMat* intrinsic_matrix  = cvCreateMat(3,3,CV_32FC1);
  CvMat* distortion_coeffs = cvCreateMat(5,1,CV_32FC1);

  CvPoint2D32f* corners = new CvPoint2D32f[ board_n ];
  int corner_count;
  int successes = 0;
  int step, frame = 0;
  IplImage *image = cvQueryFrame( capture );
  IplImage *gray_image = cvCreateImage(cvGetSize(image),8,1);//subpixel

  // CAPTURE CORNER VIEWS LOOP UNTIL WE'VE GOT n_boards
  // SUCCESSFUL CAPTURES (ALL CORNERS ON THE BOARD ARE FOUND)
  //
  while(successes < n_boards) {
    //Skip every board_dt frames to allow user to move chessboard
    if(frame++ % board_dt == 0) {
       //Find chessboard corners:
       int found = cvFindChessboardCorners(
                image, board_sz, corners, &corner_count,
                CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FILTER_QUADS
  );

  //Get Subpixel accuracy on those corners
  cvCvtColor(image, gray_image, CV_BGR2GRAY);
  cvFindCornerSubPix(gray_image, corners, corner_count,
             cvSize(11,11),cvSize(-1,-1), cvTermCriteria(
             CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 ));

  //Draw it
  cvDrawChessboardCorners(image, board_sz, corners,
             corner_count, found);
  cvShowImage( "Calibration", image );

  // If we got a good board, add it to our data
  if( corner_count == board_n ) {
     step = successes*board_n;
     for( int i=step, j=0; j<board_n; ++i,++j ) {
        CV_MAT_ELEM(*image_points, float,i,0) = corners[j].x;
        CV_MAT_ELEM(*image_points, float,i,1) = corners[j].y;
        CV_MAT_ELEM(*object_points,float,i,0) = j/board_w;
        CV_MAT_ELEM(*object_points,float,i,1) = j%board_w;
        CV_MAT_ELEM(*object_points,float,i,2) = 0.0f;
    }
    CV_MAT_ELEM(*point_counts, int,successes,0) = board_n;
    successes++;
  }
} //end skip board_dt between chessboard capture

//Handle pause/unpause and ESC
int c = cvWaitKey(15);
if(c == 'p'){
   c = 0;
   while(c != 'p' && c != 27){
        c = cvWaitKey(250);
   }
 }
 if(c == 27)
    return 0;
    image = cvQueryFrame( capture ); //Get next image
} //END COLLECTION WHILE LOOP.

//ALLOCATE MATRICES ACCORDING TO HOW MANY CHESSBOARDS FOUND
CvMat* object_points2   =  cvCreateMat(successes*board_n,3,CV_32FC1);
CvMat* image_points2    =  cvCreateMat(successes*board_n,2,CV_32FC1);
CvMat* point_counts2    =  cvCreateMat(successes,1,CV_32SC1);
//TRANSFER THE POINTS INTO THE CORRECT SIZE MATRICES
//Below, we write out the details in the next two loops. We could
//instead have written:
//image_points->rows = object_points->rows = \
//successes*board_n; point_counts->rows = successes;
//
for(int i = 0; i<successes*board_n; ++i) {
    CV_MAT_ELEM( *image_points2, float, i, 0) =
           CV_MAT_ELEM( *image_points, float, i, 0);
    CV_MAT_ELEM( *image_points2, float,i,1) =
           CV_MAT_ELEM( *image_points, float, i, 1);
    CV_MAT_ELEM(*object_points2, float, i, 0) =
           CV_MAT_ELEM( *object_points, float, i, 0) ;
    CV_MAT_ELEM( *object_points2, float, i, 1) =
           CV_MAT_ELEM( *object_points, float, i, 1) ;
    CV_MAT_ELEM( *object_points2, float, i, 2) =
           CV_MAT_ELEM( *object_points, float, i, 2) ;
}
for(int i=0; i<successes; ++i){ //These are all the same number
  CV_MAT_ELEM( *point_counts2, int, i, 0) =
            CV_MAT_ELEM( *point_counts, int, i, 0);
}
cvReleaseMat(&object_points);
cvReleaseMat(&image_points);
cvReleaseMat(&point_counts);

// At this point we have all of the chessboard corners we need.
// Initialize the intrinsic matrix such that the two focal
// lengths have a ratio of 1.0
//
CV_MAT_ELEM( *intrinsic_matrix, float, 0, 0 ) = 1.0f;
CV_MAT_ELEM( *intrinsic_matrix, float, 1, 1 ) = 1.0f;

//CALIBRATE THE CAMERA!
cvCalibrateCamera2(
    object_points2, image_points2,
    point_counts2, cvGetSize( image ),
    intrinsic_matrix, distortion_coeffs,
    NULL, NULL,0 //CV_CALIB_FIX_ASPECT_RATIO
);

// SAVE THE INTRINSICS AND DISTORTIONS
cvSave("Intrinsics.xml",intrinsic_matrix);
cvSave("Distortion.xml",distortion_coeffs);
// EXAMPLE OF LOADING THESE MATRICES BACK IN:
CvMat *intrinsic = (CvMat*)cvLoad("Intrinsics.xml");
CvMat *distortion = (CvMat*)cvLoad("Distortion.xml");

// Build the undistort map that we will use for all
// subsequent frames.
//
IplImage* mapx = cvCreateImage( cvGetSize(image), IPL_DEPTH_32F, 1 );
IplImage* mapy = cvCreateImage( cvGetSize(image), IPL_DEPTH_32F, 1 );
cvInitUndistortMap(
  intrinsic,
  distortion,
  mapx,
  mapy
);
// Just run the camera to the screen, now showing the raw and
// the undistorted image.
//
cvNamedWindow( "Undistort" );
while(image) {
  IplImage *t = cvCloneImage(image);
  cvShowImage( "Calibration", image ); // Show raw image
  cvRemap( t, image, mapx, mapy );     // Undistort image
  cvReleaseImage(&t);
  cvShowImage("Undistort", image);     // Show corrected image

  //Handle pause/unpause and ESC
  int c = cvWaitKey(15);
  if(c == 'p') {
     c = 0;
     while(c != 'p' && c != 27) {
          c = cvWaitKey(250);
     }
  }
  if(c == 27)
      break;
  image = cvQueryFrame( capture );
 }
 return 0;
}



Rodrigues Transform



When dealing with three-dimensional spaces, one most often represents rotations in that
        space by 3-by-3 matrices. This representation is usually the most convenient because
        multiplication of a vector by this matrix is equivalent to rotating the vector in some way.
        The downside is that it can be difficult to intuit just what 3-by-3 matrix goes with what
        rotation. An alternate and somewhat easier-to-visualize [187] representation for a rotation is in the form of a vector about which the
        rotation operates together with a single angle. In this case it is standard practice to use
        only a single vector whose direction encodes the direction of the axis to be rotated around
        and to use the size of the vector to encode the amount of rotation in a counterclockwise
        direction. This is easily done because the direction can be equally well represented by a
        vector of any magnitude; hence we can choose the magnitude of our vector to be equal to the
        magnitude of the rotation. The relationship between these two representations, the matrix
        and the vector, is captured by the Rodrigues transform. [188] Let r be the three-dimensional vector
          r = [rx ry
            rz]; this vector implicitly defines
          θ, the magnitude of the rotation by the length (or magnitude) of
          r. We can then convert from this axis-magnitude representation to a
        rotation matrix R as follows:
[image: image with no caption]

We can also go from a rotation matrix back to the axis-magnitude representation by
        using:
[image: image with no caption]

Thus we find ourselves in the situation of having one representation (the matrix
        representation) that is most convenient for computation and another representation (the
        Rodrigues representation) that is a little easier on the brain. OpenCV provides us with a
        function for converting from either representation to the other.
void cvRodrigues2(
  const CvMat* src,
  CvMat*       dst,
  CvMat*       jacobian = NULL
);
Suppose we have the vector r and need the corresponding rotation
        matrix representation R; we set src
        to be the 3-by-1 vector r and dst to
        be the 3-by-3 rotation matrix R. Conversely, we can set src to be a 3-by-3 rotation matrix R and
          dst to be a 3-by-1 vector r. In
        either case, cvRodrigues2() will do the right thing. The
        final argument is optional. If jacobian is not NULL, then it should be a pointer to a 3-by-9 or a 9-by-3 matrix
        that will be filled with the partial derivatives of the output array components with respect
        to the input array components. The jacobian outputs are
        mainly used for the internal optimization algorithms of cvFindExtrinsicCameraParameters2() and cvCalibrateCamera2(); your use of the cvRodrigues2() function will mostly be limited to converting the outputs of
          cvFindExtrinsicCameraParameters2() and cvCalibrateCamera2() from the Rodrigues format of 1-by-3 or
        3-by-1 axis-angle vectors to rotation matrices. For this, you can leave jacobian set to NULL.

Exercises



	Use Figure 11-2 to derive the
            equations x = fx · (X/Z) +
              cx and y – fy ·
              (Y/Z) + cy using similar triangles with a
            center-position offset.

	Will errors in estimating the true center location
                (cx, cy) affect
            the estimation of other parameters such as focus?
	Hint: See the q = MQ equation.


	Draw an image of a square:
	Under radial distortion.

	Under tangential distortion.

	Under both distortions.




	Refer to Figure 11-13. For perspective
            views, explain the following.
	Where does the “line at infinity” come from?

	Why do parallel lines on the object plane converge to a point on the image
                plane?

	Assume that the object and image planes are perpendicular to one another. On the
                object plane, starting at a point p1,
                move 10 units directly away from the image plane to
                  p2. What is the corresponding movement
                distance on the image plane?




	Figure 11-3 shows the outward-bulging
            “barrel distortion” effect of radial distortion, which is especially evident in the left
            panel of Figure 11-12. Could some lenses
            generate an inward-bending effect? How would this be possible?

	Using a cheap web camera or cell phone, create examples of radial and tangential
            distortion in images of concentric squares or chessboards.

	Calibrate the camera in exercise 6. Display the pictures before and after
            undistortion.

	Experiment with numerical stability and noise by collecting many images of
            chessboards and doing a “good” calibration on all of them. Then see how the calibration
            parameters change as you reduce the number of chessboard images. Graph your results:
            camera parameters as a function of number of chessboard images.
[image: Homography diagram showing intersection of the object plane with the image plane and a viewpoint representing the center of projection]

Figure 11-13. Homography diagram showing intersection of the object plane with the image plane
              and a viewpoint representing the center of projection


	With reference to exercise 8, how do calibration parameters change when you use
            (say) 10 images of a 3-by-5, a 4-by-6, and a 5-by-7 chessboard? Graph the
            results.

	High-end cameras typically have systems of lens that correct physically for
            distortions in the image. What might happen if you nevertheless use a multiterm
            distortion model for such a camera?
	Hint: This condition is known as overfitting.


	Three-dimensional joystick trick. Calibrate a camera. Using
            video, wave a chessboard around and use cvFindExtrinsicCameraParams2() as a 3D joystick. Remember that cvFindExtrinsicCameraParams2() outputs rotation as a 3-by-1
            or 1-by-3 vector axis of rotation, where the magnitude of the vector represents the
            counterclockwise angle of rotation along with a 3D translation vector.
	Output the chessboard’s axis and angle of the rotation along with where it is
                (i.e., the translation) in real time as you move the chessboard around. Handle cases
                where the chessboard is not in view.

	Use cvRodrigues2() to translate the output of
                  cvFindExtrinsicCameraParams2() into a 3-by-3
                rotation matrix and a translation vector. Use this to animate a simple 3D stick
                figure of an airplane rendered back into the image in real time as you move the
                chessboard in view of the video camera.









[164] Knowledge of lenses goes back at least to Roman times. The pinhole camera model goes back
          at least 987 years to al-Hytham [1021] and is the classic way of introducing the geometric
          aspects of vision. Mathematical and physical advances followed in the 1600s and 1700s with
          Descartes, Kepler, Galileo, Newton, Hooke, Euler, Fermat, and Snell (see O’Connor
          [O’Connor02]). Some key modern texts for geometric vision include those by Trucco
          [Trucco98], Jaehne (also sometimes spelled Jähne) [Jaehne95; Jaehne97], Hartley and
          Zisserman [Hartley06], Forsyth and Ponce [Forsyth03], Shapiro and Stockman [Shapiro02],
          and Xu and Zhang [Xu96].

[165] Typical of such mathematical abstractions, this new arrangement is not one that can
            be built physically; the image plane is simply a way of thinking of a “slice” through
            all of those rays that happen to strike the center of projection. This arrangement is, however, much easier to draw and
            do math with.

[166] Here the subscript “screen” is intended to remind you that the coordinates being
            computed are in the coordinate system of the screen (i.e., the imager). The difference
            between (xscreen,
              yscreen) in the equation and
              (x, y) in Figure 11-2 is precisely the point of
                cx and
                cy. Having said that, we will
            subsequently drop the “screen” subscript and simply use lowercase letters to describe
            coordinates on the imager.

[167] Of course, “millimeter” is just a stand-in for any physical unit you like. It could
            just as easily be “meter,” “micron,” or “furlong.” The point is that
                sx converts physical units to pixel
            units.

[168] Yes, “Homogenious” in the function name is misspelled.

[169] The approach to modeling lens distortion taken here derives mostly from Brown
              [Brown71] and earlier Fryer and Brown [Fryer86].

[170] If you don’t know what a Taylor series is, don’t worry too much. The Taylor series
              is a mathematical technique for expressing a (potentially) complicated function in the
              form of a polynomial of similar value to the approximated function in at least a small
              neighborhood of some particular point (the more terms we include in the polynomial
              series, the more accurate the approximation). In our case we want to expand the
              distortion function as a polynomial in the neighborhood of r = 0.
              This polynomial takes the general form f(r) =
                a0 +
                a1r +
                a2r2
              + …, but in our case the fact that f(r) = 0 at
                r = 0 implies a0 =
              0. Similarly, because the function must be symmetric in r, only
              the coefficients of even powers of r will be nonzero. For these
              reasons, the only parameters that are necessary for characterizing these radial
              distortions are the coefficients of
              r2,
                r4, and (sometimes)
                r6.

[171] The derivation of these equations is beyond the scope of this book, but the
              interested reader is referred to the "plumb bob” model; see D. C. Brown, “Decentering Distortion of Lenses”, Photometric Engineering 32(3) (1966),
              444–462.

[172] For a great online tutorial of camera calibration, see Jean-Yves Bouguet’s calibration website (http://www.vision.caltech.edu/bouguetj/calib_doc).

[173] Just to be clear: the rotation we are describing here is first around the
                z-axis, then around the new position of
              the y-axis, and finally around the new position of the
                x-axis.

[174] The specific use of this calibration object—and much of the calibration approach
              itself—comes from Zhang [Zhang99; Zhang00] and Sturm [Sturm99].

[175] In practice, it is often more convenient to use a chessboard grid that is
              asymmetric and of even and odd dimensions—for example, (5, 6). Using such even-odd
              asymmetry yields a chessboard that has only one symmetry axis, so the board
              orientation can always be defined uniquely.

[176] Actually, the requirement is slightly stricter: not only must all the corners be
              found, they must also be ordered into rows and columns as expected. Only if the
              corners can be found and ordered correctly will the return value of the function be
              nonzero.

[177] The term “homography” has different meanings in different sciences; for example,
              it has a somewhat more general meaning in mathematics. The homographies of greatest
              interest in computer vision are a subset of the other, more general, meanings of the
              term.

[178] Here W = [R
              t] is a 3-by-4 matrix whose first three columns
              comprise the nine entries of R and whose last column consists of
              the three-component vector t.

[179] Of course, an exact solution is guaranteed only when there are four
              correspondences. If more are provided, then what’s computed is a solution that is
              optimal in the sense of least-squares error.

[180] The cvCalibrateCamera2() function is used
                internally in the stereo calibration functions we will see in Chapter 12. For stereo calibration, we’ll be calibrating
                two cameras at the same time and will be looking to relate them together through a
                rotation matrix and a translation vector.

[181] The third radial distortion component
                  k3 comes last because it was a late
                addition to OpenCV to allow better correction to highly distorted fish eye type
                lenses and should only be used in such cases. We will see momentarily that
                  k3 can be set to 0 by first
                initializing it to 0 and then setting the flag to CV_CALIB_FIX_K3.

[182] Of course, it’s normally the same object in every image, so the
                  N points described are actually M
                repeated listings of the locations of the K points on a single
                object.

[183] At the time of this writing, automatic initialization of the intrinsic matrix
                before the optimization algorithm runs has been implemented only for planar
                calibration objects. This means that if you have a nonplanar object then you must
                provide a starting guess for the principal point and focal lengths (see CV_CALIB_USE_INTRINSIC_GUESS to follow).

[184] You can envision the chessboard’s location as being expressed by (1) “creating”
                a chessboard at the origin of your camera coordinates, (2) rotating that chessboard
                by some amount around some axis, and (3) moving that oriented chessboard to a
                particular place. For those who have experience with systems like OpenGL, this
                should be a familiar construction.

[185] We should take a moment to clearly make a distinction here between
              undistortion, which mathematically removes lens distortion, and
              rectification, which mathematically aligns the images with
            respect to each other.

[186] We first encountered cvRemap() in the context of
            image transformations (Chapter 6).

[187] This “easier” representation is not just for humans. Rotation in 3D space has only
            three components. For numerical optimization procedures, it is more efficient to deal
            with the three components of the Rodrigues representation than with the nine components of a 3-by-3 rotation
            matrix.

[188] Rodrigues was a 19th-century French mathematician.


Chapter 12. Projection and 3D Vision



In this chapter we’ll move into three-dimensional vision, first with projections and then with multicamera stereo depth perception. To do this, we’ll
      have to carry along some of the concepts from Chapter 11.
      We’ll need the camera instrinsics matrix M, the
        distortion coefficients, the rotation matrix R,
      the translation vector T, and especially the homography
        matrix
      H.
We’ll start by discussing projection into the 3D world using a calibrated camera and
      reviewing affine and projective transforms (which we first encountered in Chapter 6); then we’ll move on to an example of how to get a bird’s-eye
      view of a ground plane. [189] We’ll also discuss POSIT, an algorithm that allows us to find the 3D pose (position and rotation) of a known 3D object in an image.
We will then move into the three-dimensional geometry of multiple images. In general,
      there is no reliable way to do calibration or to extract 3D information without multiple
      images. The most obvious case in which we use multiple images to reconstruct a
      three-dimensional scene is stereo vision. In stereo vision, features in
      two (or more) images taken at the same time from separate cameras are matched with the
      corresponding features in the other images, and the differences are analyzed to yield depth
      information. Another case is structure from motion. In this case we may
      have only a single camera, but we have multiple images taken at different times and from
      different places. In the former case we are primarily interested in disparity
        effects (triangulation) as a means of computing distance. In the latter, we
      compute something called the fundamental matrix (relates two different
      views together) as the source of our scene understanding. Let’s get started with
        projection.
Projections



Once we have calibrated the camera (see Chapter 11), it is possible to unambiguously project points in the physical world to points in the
        image. This means that, given a location in the three-dimensional physical coordinate frame
        attached to the camera, we can compute where on the imager, in pixel coordinates, an
        external 3D point should appear. This transformation is accomplished by the OpenCV routine
          cvProjectPoints2().
void cvProjectPoints2(
    const CvMat* object_points,
    const CvMat* rotation_vector,
    const CvMat* translation_vector,
    const CvMat* intrinsic_matrix,
    const CvMat* distortion_coeffs,
    CvMat*       image_points,
    CvMat*       dpdrot          = NULL,
    CvMat*       dpdt            = NULL,
    CvMat*       dpdf            = NULL,
    CvMat*       dpdc            = NULL,
    CvMat*       dpddist         = NULL,
    double       aspectRatio     = 0
);
At first glance the number of arguments might be a little intimidating, but in fact this
        is a simple function to use. The cvProjectPoints2()
        routine was designed to accommodate the (very common) circumstance where the points you want
        to project are located on some rigid body. In this case, it is natural to represent the
        points not as just a list of locations in the camera coordinate system but rather as a list
        of locations in the object’s own body centered coordinate system; then we can add a rotation
        and a translation to specify the relationship between the object coordinates and the
        camera’s coordinate system. In fact, cvProjectPoints2()
        is used internally in cvCalibrateCamera2(), and of course
        this is the way cvCalibrateCamera2() organizes its own
        internal operation. All of the optional arguments are primarily there for use by cvCalibrateCamera2(), but sophisticated users might find them
        handy for their own purposes as well.
The first argument, object_points, is the list of
        points you want projected; it is just an N-by-3 matrix containing the
        point locations. You can give these in the object’s own local coordinate system and then
        provide the 3-by-1 matrices rotation_vector[190] and translation_vector to relate the two
        coordinates. If in your particular context it is easier to work directly in the camera
        coordinates, then you can just give object_points in that
        system and set both rotation_vector and translation_vector to contain 0s. [191]
The intrinsic_matrix and distortion_coeffs are just the camera intrinsic information and the distortion
        coefficients that come from cvCalibrateCamera2()
        discussed in Chapter 11. The image_points argument is an N-by-2 matrix into which the
        results of the computation will be written.
Finally, the long list of optional arguments dpdrot, dpdt,
          dpdf, dpdc, and dpddist are all Jacobian
        matrices of partial derivatives. These matrices relate the image points to each of the
        different input parameters. In particular: dpdrot is an
          N-by-3 matrix of partial derivatives of image points with respect to
        components of the rotation vector; dpdt is an
          N-by-3 matrix of partial derivatives of image points with respect to components of the translation vector; dpdf is an N-by-2 matrix of partial
        derivatives of image points with respect to fx
        and fy; dpdc
        is an N-by-2 matrix of partial derivatives of image points with respect
        to cx and
          cy; and dpddist is an N-by-4 matrix of partial derivatives of
        image points with respect to the distortion coefficients. In most cases, you will just leave
        these as NULL, in which case they will not be computed.
        The last parameter, aspectRatio, is also optional; it is used for derivatives only when the
        aspect ratio is fixed in cvCalibrateCamera2() or cvStereoCalibrate(). If this parameter is not 0 then the
        derivatives dpdf are adjusted.

Affine and Perspective Transformations



Two transformations that come up often in the OpenCV routines we have discussed—as well
        as in other applications you might write yourself—are the affine and perspective
        transformations. We first encountered these in Chapter 6. As
        implemented in OpenCV, these routines affect either lists of points or entire images, and
        they map points on one location in the image to a different location, often performing
        subpixel interpolation along the way. You may recall that an affine transform can produce
        any parallelogram from a rectangle; the perspective transform is more general and can
        produce any trapezoid from a rectangle.
The perspective transformation is closely related to the
          perspective projection. Recall that the perspective projection maps
        points in the three-dimensional physical world onto points on the two-dimensional image
        plane along a set of projection lines that all meet at a single point called the
          center of projection. The perspective transformation, which is a specific kind
        of homography, [192] relates two different images that are alternative projections of the same
        three-dimensional object onto two different projective planes (and
        thus, for nondegenerate configurations such as the plane physically intersecting the 3D
        object, typically to two different centers of projection).
These projective transformation-related functions were discussed in detail in Chapter 6; for convenience, we summarize them here in Table 12-1.
Table 12-1. Affine and perspective transform functions
	
                Function

              	
                Use

              
	
                
                  cvTransform()
                

              	
                Affine transform a list of points

              
	
                
                  cvWarpAffine()
                

              	
                Affine transform a whole image

              
	
                
                  cvGetAffineTransform()
                

              	
                Fill in affine transform matrix parameters

              
	
                
                  cv2DRotationMatrix()
                

              	
                Fill in affine transform matrix parameters

              
	
                
                  cvGetQuadrangleSubPix()
                

              	
                Low-overhead whole image affine transform

              
	
                
                  cvPerspectiveTransform()
                

              	
                Perspective transform a list of points

              
	
                
                  cvWarpPerspective()
                

              	
                Perspective transform a whole image

              
	
                
                  cvGetPerspectiveTransform()
                

              	
                Fill in perspective transform matrix parameters

              



Bird’s-Eye View Transform Example



A common task in robotic navigation, typically used for planning purposes, is to
          convert the robot’s camera view of the scene into a top-down “bird’s-eye” view. In Figure 12-1, a robot’s view of a scene is
          turned into a bird’s-eye view so that it can be subsequently overlaid with an alternative
          representation of the world created from scanning laser range finders. Using what we’ve
          learned so far, we’ll look in detail about how to use our calibrated camera to compute
          such a view.
[image: Bird’s-eye view: A camera on a robot car looks out at a road scene where laser range finders have identified a region of “road” in front of the car and marked it with a box (top); vision algorithms have segmented the flat, roadlike areas (center); the segmented road areas are converted to a bird’s-eye view and merged with the bird’s-eye view laser map (bottom)]

Figure 12-1. Bird’s-eye view: A camera on a robot car looks out at a road scene where laser
            range finders have identified a region of “road” in front of the car and marked it with
            a box (top); vision algorithms have segmented the flat, roadlike areas (center); the
            segmented road areas are converted to a bird’s-eye view and merged with the bird’s-eye
            view laser map (bottom)

To get a bird’s-eye view, [193] we’ll need our camera intrinsic and distortion matrices from the calibration
          routine. Just for the sake of variety, we’ll read the files from disk. We put a chessboard
          on the floor and use that to obtain a ground plane image for a miniature robot car; we then remap that image into a bird’s-eye view. The algorithm runs as
            follows.
	Read the intrinsics and distortion models for the camera.

	Find a known object on the ground plane (in this case, a chessboard). Get at least
              four points at subpixel accuracy.

	Enter the found points into cvGetPerspectiveTransform() (see Chapter 6) to
              compute the homography matrix H for the ground plane view.

	Use cvWarpPerspective( ) (again, see Chapter 6) with the flags CV_INTER_LINEAR + CV_WARP_INVERSE_MAP + CV_WARP_FILL_OUTLIERS to obtain a
              frontal parallel (bird’s-eye) view of the ground plane.



Example 12-1 shows the full working code for bird’s-eye
          view.
Example 12-1. Bird’s-eye view
//Call:
//  birds-eye board_w board_h instrinics distortion image_file
// ADJUST VIEW HEIGHT using keys 'u' up, 'd' down. ESC to quit.
//

int main(int argc, char* argv[]) {
  if(argc != 6) return -1;

  // INPUT PARAMETERS:
  //
  int       board_w    = atoi(argv[1]);
  int       board_h    = atoi(argv[2]);
  int       board_n    = board_w * board_h;
  CvSize    board_sz   = cvSize( board_w, board_h );
  CvMat*    intrinsic  = (CvMat*)cvLoad(argv[3]);
  CvMat*    distortion = (CvMat*)cvLoad(argv[4]);
  IplImage* image      = 0;
  IplImage* gray_image = 0;
  if( (image = cvLoadImage(argv[5])) == 0 ) {
    printf("Error: Couldn't load %s\n",argv[5]);
    return -1;
  }
  gray_image = cvCreateImage( cvGetSize(image), 8, 1 );
  cvCvtColor(image, gray_image, CV_BGR2GRAY );

  // UNDISTORT OUR IMAGE
  //
  IplImage* mapx = cvCreateImage( cvGetSize(image), IPL_DEPTH_32F, 1 );
  IplImage* mapy = cvCreateImage( cvGetSize(image), IPL_DEPTH_32F, 1 );
//This initializes rectification matrices
//
cvInitUndistortMap(
  intrinsic,
  distortion,
  mapx,
  mapy
);
IplImage *t = cvCloneImage(image);

// Rectify our image
//
cvRemap( t, image, mapx, mapy );

// GET THE CHESSBOARD ON THE PLANE
//
cvNamedWindow("Chessboard");
CvPoint2D32f* corners = new CvPoint2D32f[ board_n ];
int corner_count = 0;
int found = cvFindChessboardCorners(
  image,
  board_sz,
  corners,
  &corner_count,
  CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FILTER_QUADS
);
if(!found){
  printf("Couldn't aquire chessboard on %s, "
    "only found %d of %d corners\n",
    argv[5],corner_count,board_n
  );
  return -1;
}
//Get Subpixel accuracy on those corners:
cvFindCornerSubPix(
  gray_image,
  corners,
  corner_count,
  cvSize(11,11),
  cvSize(-1,-1),
  cvTermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 30, 0.1 )
);

//GET THE IMAGE AND OBJECT POINTS:
// We will choose chessboard object points as (r,c):
// (0,0), (board_w-1,0), (0,board_h-1), (board_w-1,board_h-1).
//
CvPoint2D32f objPts[4], imgPts[4];
objPts[0].x = 0;          objPts[0].y = 0;
objPts[1].x = board_w-1;  objPts[1].y = 0;
objPts[2].x = 0;          objPts[2].y = board_h-1;
objPts[3].x = board_w-1;  objPts[3].y = board_h-1;
imgPts[0]   = corners[0];
imgPts[1]   = corners[board_w-1];
imgPts[2]   = corners[(board_h-1)*board_w];
imgPts[3]   = corners[(board_h-1)*board_w + board_w-1];

// DRAW THE POINTS in order: B,G,R,YELLOW
//
cvCircle( image, cvPointFrom32f(imgPts[0]), 9, CV_RGB(0,0,255),   3);
cvCircle( image, cvPointFrom32f(imgPts[1]), 9, CV_RGB(0,255,0),   3);
cvCircle( image, cvPointFrom32f(imgPts[2]), 9, CV_RGB(255,0,0),   3);
cvCircle( image, cvPointFrom32f(imgPts[3]), 9, CV_RGB(255,255,0), 3);

// DRAW THE FOUND CHESSBOARD
//
cvDrawChessboardCorners(
  image,
  board_sz,
  corners,
  corner_count,
  found
);
cvShowImage( "Chessboard", image );

// FIND THE HOMOGRAPHY
//
CvMat *H = cvCreateMat( 3, 3, CV_32F);
cvGetPerspectiveTransform( objPts, imgPts, H);

// LET THE USER ADJUST THE Z HEIGHT OF THE VIEW
//
float Z = 25;
int key = 0;
IplImage *birds_image = cvCloneImage(image);
cvNamedWindow("Birds_Eye");

// LOOP TO ALLOW USER TO PLAY WITH HEIGHT:
//
// escape key stops
//
while(key != 27) {
  // Set the height
  //
  CV_MAT_ELEM(*H,float,2,2) = Z;

  // COMPUTE THE FRONTAL PARALLEL OR BIRD'S-EYE VIEW:
  // USING HOMOGRAPHY TO REMAP THE VIEW
  //
  cvWarpPerspective(
    image,
    birds_image,
    H,
    CV_INTER_LINEAR | CV_WARP_INVERSE_MAP | CV_WARP_FILL_OUTLIERS
  );
  cvShowImage( "Birds_Eye", birds_image );

    key = cvWaitKey();
    if(key == 'u') Z += 0.5;
    if(key == 'd') Z -= 0.5;
  }

  cvSave("H.xml",H); //We can reuse H for the same camera mounting
  return 0;
}


Once we have the homography matrix and the height parameter set as we wish, we could
          then remove the chessboard and drive the miniature car around, making a bird’s-eye view video of the path, but we’ll leave that as an exercise for the
          reader. Figure 12-2 shows the input at left and output at
          right for the bird’s-eye view code.
[image: Bird’s-eye view example]

Figure 12-2. Bird’s-eye view example



POSIT: 3D Pose Estimation



Before moving on to stereo vision, we should visit a useful algorithm that can estimate
        the positions of known objects in three dimensions. POSIT (aka “Pose from Orthography and
        Scaling with Iteration”) is an algorithm originally proposed in 1992 for computing the pose
        (the position T and orientation R described by six
        parameters [DeMenthon92]) of a 3D object whose exact dimensions are known. To compute this
        pose, we must find on the image the corresponding locations of at least four non-coplanar
        points on the surface of that object. The first part of the algorithm, pose from
          orthography and scaling (POS), assumes that the points on the object are all at
        effectively the same depth[194] and that size variations from the original model are due solely to scaling with
        distance from the camera. In this case there is a closed-form solution for that object’s 3D
          pose based on scaling. The assumption that the object points are all at the same
        depth effectively means that the object is far enough away from the camera that we can
        neglect any internal depth differences within the object; this assumption is known as the
          weak-perspective approximation.
Given that we know the camera intrinsics, we can find the perspective scaling of our
        known object and thus compute its approximate pose. This computation will not be very
        accurate, but we can then project where our four observed points would go if the true 3D
        object were at the pose we calculated through POS. We then start all over again with these
        new point positions as the inputs to the POS algorithm. This process typically converges
        within four or five iterations to the true object pose—hence the name “POS algorithm
          with iteration“. Remember, though, that all of this assumes that the
        internal depth of the object is in fact small compared to the distance away from the camera.
        If this assumption is not true, then the algorithm will either not converge or will converge
        to a “bad pose”. The OpenCV implementation of this algorithm will allow us to track more
        than four (non-coplanar) points on the object to improve pose estimation accuracy.
The POSIT algorithm in OpenCV has three associated functions: one to allocate a data
        structure for the pose of an individual object, one to de-allocate the same data structure,
        and one to actually implement the algorithm.
CvPOSITObject* cvCreatePOSITObject(
    CvPoint3D32f* points,
    int           point_count
);
void cvReleasePOSITObject(
    CvPOSITObject** posit_object
);
The cvCreatePOSITObject() routine just takes points (a set of three-dimensional points) and point_count (an integer indicating the number of points) and
        returns a pointer to an allocated POSIT object structure. Then cvReleasePOSITObject() takes a pointer to such a structure pointer and
        de-allocates it (setting the pointer to NULL in the
          process).
void cvPOSIT(
    CvPOSITObject* posit_object,
    CvPoint2D32f*  image_points,
    double         focal_length,
    CvTermCriteria criteria,
    float*         rotation_matrix,
    float*         translation_vector
);
Now, on to the POSIT function itself. The argument list to cvPOSIT() is different stylistically than most of the other functions we have
        seen in that it uses the “old style” arguments common in earlier versions of OpenCV.
          [195] Here posit_object is just a pointer to the
        POSIT object that you are trying to track, and image_points is a list of the locations of the corresponding points in the
        image plane (notice that these are 32-bit values, thus allowing for subpixel locations). The
        current implementation of cvPOSIT() assumes square pixels
        and thus allows only a single value for the focal_length
        parameter instead of one in the x and one in the y
        directions. Because cvPOSIT() is an iterative algorithm,
        it requires a termination criteria: criteria is of the
        usual form and indicates when the fit is “good enough”. The final two parameters, rotation_matrix and translation_vector, are analogous to the same arguments in earlier routines;
        observe, however, that these are pointers to float and so
        are just the data part of the matrices you would obtain from calling (for example) cvCalibrateCamera2(). In this case, given a matrix
          M, you would want to use something like M->data.fl as an argument to cvPOSIT().
When using POSIT, keep in mind that the algorithm does not benefit from additional
        surface points that are coplanar with other points already on the surface. Any point lying
        on a plane defined by three other points will not contribute anything useful to the
        algorithm. In fact, extra coplanar points can cause degeneracies that hurt the algorithm’s
        performance. Extra non-coplanar points will help the algorithm. Figure 12-3 shows the POSIT algorithm in use with
        a toy plane [Tanguay00]. The plane has marking lines on it, which are used to define four
        non-coplanar points. These points were fed into cvPOSIT(), and the resulting rotation_matrix
        and translation_vector are used to control a flight simulator.
[image: POSIT algorithm in use: four non-coplanar points on a toy jet are used to control a flight simulator]

Figure 12-3. POSIT algorithm in use: four non-coplanar points on a toy jet are used to control a
          flight simulator


Stereo Imaging



Now we are in a position to address stereo imaging.[196] We all are familiar with the stereo imaging capability that our eyes give us. To
        what degree can we emulate this capability in computational systems? Computers accomplish
        this task by finding correspondences between points that are seen by one imager and the same
        points as seen by the other imager. With such correspondences and a known baseline
        separation between cameras, we can compute the 3D location of the points. Although the
        search for corresponding points can be computationally expensive, we can use our knowledge
        of the geometry of the system to narrow down the search space as much as possible. In
        practice, stereo imaging involves four steps when using two cameras.
	Mathematically remove radial and tangential lens distortion; this is called
              undistortion and is detailed in Chapter 11. The outputs of this step are undistorted
            images.

	Adjust for the angles and distances between cameras, a process called
              rectification. The outputs of this step are images that are
              row-aligned[197] and rectified.

	Find the same features in the left and right[198] camera views, a process known as correspondence. The
            output of this step is a disparity map, where the disparities are
            the differences in x-coordinates on the image planes of the same
            feature viewed in the left and right cameras:
              xl –
                xr.

	If we know the geometric arrangement of the cameras, then we can turn the disparity
            map into distances by triangulation. This step is called
              reprojection, and the output is a depth map.



We start with the last step to motivate the first three.
Triangulation



Assume that we have a perfectly undistorted, aligned, and measured stereo rig as shown
          in Figure 12-4: two cameras whose image
          planes are exactly coplanar with each other, with exactly parallel optical axes (the
          optical axis is the ray from the center of projection O through the
          principal point c and is also known as the principal ray[199]) that are a known distance apart, and with equal focal lengths
              fl = fr. Also,
          assume for now that the principal points
          [image: ] and [image: ] have been calibrated to have the same pixel coordinates in their
          respective left and right images. Please don’t confuse these principal points with the
          center of the image. A principal point is where the principal ray intersects the imaging
          plane. This intersection depends on the optical axis of the lens. As we saw in Chapter 11, the image
          plane is rarely aligned exactly with the lens and so the center of the imager is almost
          never exactly aligned with the principal point.
[image: With a perfectly undistorted, aligned stereo rig and known correspondence, the depth Z can be found by similar triangles; the principal rays of the imagers begin at the centers of projection Ol and Or and extend through the principal points of the two image planes at cl and cr]

Figure 12-4. With a perfectly undistorted, aligned stereo rig and known correspondence, the
            depth Z can be found by similar triangles; the principal rays of the imagers begin at
            the centers of projection Ol and Or and
            extend through the principal points of the two image planes at cl
            and cr

Moving on, let’s further assume the images are row-aligned and that every pixel row of
          one camera aligns exactly with the corresponding row in the other camera. [200] We will call such a camera arrangement frontal parallel.
          We will also assume that we can find a point P in the physical world
          in the left and the right image views at pl
          and pr, which will have the respective
          horizontal coordinates xl and
              xr.
In this simplified case, taking xl and
              xr to be the horizontal positions of
          the points in the left and right imager (respectively) allows us to show that the depth is
          inversely proportional to the disparity between these views, where the disparity is
            defined simply by d =
              xl – xr.
          This situation is shown in Figure 12-4,
          where we can easily derive the depth Z by using similar triangles.
          Referring to the figure, we have: [201]
[image: image with no caption]

Since depth is inversely proportional to disparity, there is obviously a nonlinear
          relationship between these two terms. When disparity is near 0, small disparity
          differences make for large depth differences. When disparity is large, small disparity
          differences do not change the depth by much. The consequence is that stereo vision systems
          have high depth resolution only for objects relatively near the camera, as Figure 12-5 makes clear.
[image: Depth and disparity are inversely related, so fine-grain depth measurement is restricted to nearby objects]

Figure 12-5. Depth and disparity are inversely related, so fine-grain depth measurement is
            restricted to nearby objects

We have already seen many coordinate systems in the discussion of calibration in Chapter 11. Figure 12-6 shows the 2D and 3D coordinate
          systems used in OpenCV for stereo vision. Note that it is a right-handed coordinate
          system: if you point your right index finger in the direction of X
          and bend your right middle finger in the direction of Y, then your
          thumb will point in the direction of the principal ray. The left and right imager pixels
          have image origins at upper left in the image, and pixels are denoted by coordinates
              (xl, yl) and
              (xr, yr),
          respectively. The center of projection are at
            Ol and
            Or with principal rays intersecting the
          image plane at the principal point (not the center) (cx,
              cy). After mathematical rectification, the cameras
          are row-aligned (coplanar and horizontally aligned), displaced from one another by
            T, and of the same focal length f.
With this arrangement it is relatively easily to solve for distance. Now we must spend
          some energy on understanding how we can map a real-world camera setup into a geometry that
          resembles this ideal arrangement. In the real world, cameras will almost never be exactly
          aligned in the frontal parallel configuration depicted in Figure 12-4. Instead, we will mathematically
          find image projections and distortion maps that will rectify the left and right images
          into a frontal parallel arrangement. When designing your stereo rig, it is best to
          arrange the cameras approximately frontal parallel and as close to horizontally aligned as
          possible. This physical alignment will make the mathematical tranformations more
          tractable. If you don’t align the cameras at least approximately, then the resulting
          mathematical alignment can produce extreme image distortions and so reduce or eliminate
          the stereo overlap area of the resulting images. [202] For good results, you’ll also need synchronized cameras. If they don’t capture
          their images at the exact same time, then you will have problems if anything is moving in
          the scene (including the cameras themselves). If you do not have synchronized cameras, you
          will be limited to using stereo with stationary cameras viewing static scenes.
[image: Stereo coordinate system used by OpenCV for undistorted rectified cameras: the pixel coordinates are relative to the upper left corner of the image, and the two planes are row-aligned; the camera coordinates are relative to the left camera’s center of projection]

Figure 12-6. Stereo coordinate system used by OpenCV for undistorted rectified cameras: the
            pixel coordinates are relative to the upper left corner of the image, and the two planes
            are row-aligned; the camera coordinates are relative to the left camera’s center of
            projection

Figure 12-7 depicts the real situation
          between two cameras and the mathematical alignment we want to achieve. To perform this
          mathematical alignment, we need to learn more about the geometry of two cameras viewing a
          scene. Once we have that geometry defined and some terminology and notation to describe
          it, we can return to the problem of alignment.
[image: Our goal will be to mathematically (rather than physically) align the two cameras into one viewing plane so that pixel rows between the cameras are exactly aligned with each other]

Figure 12-7. Our goal will be to mathematically (rather than physically) align the two cameras
            into one viewing plane so that pixel rows between the cameras are exactly aligned with
            each other


Epipolar Geometry



The basic geometry of a stereo imaging system is referred to as epipolar
            geometry. In essence, this geometry combines two pinhole models (one for each
            camera[203]) and some interesting new points called the epipoles (see
            Figure 12-8). Before explaining what
          these epipoles are good for, we will start by taking a moment to define them clearly and
          to add some new related terminology. When we are done, we will have a concise
          understanding of this overall geometry and will also find that we can narrow down
          considerably the possible locations of corresponding points on the two stereo cameras.
          This added discovery will be important to practical stereo implementations.
For each camera there is now a separate center of projection,
              Ol and
            Or, and a pair of corresponding projective
          planes, ∏
            l
           and ∏
            r
          . The point P in the physical world has a projection onto
          each of the projective planes that we can label
            pl and
            pr. The new points of interest are the
          epipoles. An epipole el (resp.
              er) on image plane ∏
            l
           (resp. ∏
            r
          ) is defined as the image of the center of projection of the other camera
              Or (resp.
              Ol). The plane in space formed by the
          actual viewed point P and the two epipoles
              el and
            er (or, equivalently, through the two
          centers of projection Or and
              Ol) is called the epipolar
            plane, and the lines
              plel and
              prer (from the
          points of projection to the corresponding epipoles) are called the epipolar
            lines.[204]
[image: The epipolar plane is defined by the observed point P and the two centers of projection, Ol and Or; the epipoles are located at the point of intersection of the line joining the centers of projection and the two projective planes]

Figure 12-8. The epipolar plane is defined by the observed point P and the two centers of
            projection, Ol and Or; the epipoles are
            located at the point of intersection of the line joining the centers of projection and
            the two projective planes

To understand the utility of the epipoles we first recall that, when we see a point in
          the physical world projected onto our right (or left) image plane, that point could
          actually be located anywhere along a entire line of points formed by the ray going from
              Or out through
              pr (or
            Ol through
              pl) because, with just that single camera,
          we do not know the distance to the point we are viewing. More specifically, take for
          example the point P as seen by the camera on the right. Because that
          camera sees only pr (the projection of
            P onto ∏
            r
          ), the actual point P could be located anywhere on the
          line defined by pr and
              Or. This line obviously contains
            P, but it contains a lot of other points, too. What is interesting,
          though, is to ask what that line looks like projected onto the left image plane
            ∏
            l
          ; in fact, it is the epipolar line defined by
              pl and
            el. To put that into English, the image of
          all of the possible locations of a point seen in one imager is the
            line that goes through the corresponding point and the epipole on
          the other imager.
We’ll now summarize some facts about stereo camera epipolar geometry (and why we care).
	Every 3D point in view of the cameras is contained in an epipolar plane that
              intersects each image. The resulting line of intersection is an epipolar line.

	Given a feature in one image, its matching view in the other image must lie along
              the corresponding epipolar line. This is known as the epipolar
                constraint.

	The epipolar constraint means that the possible two-dimensional search for
              matching features across two imagers becomes a one-dimensional search along the
              epipolar lines once we know the epipolar geometry of the stereo rig. This is not only
              a vast computational savings, it also allows us to reject a lot of points that could
              otherwise lead to spurious correspondences.

	Order is preserved. If points A and B are visible in both images and occur
              horizontally in that order in one imager, then they occur horizontally in that order
              in the other imager. [205]




The Essential and Fundamental Matrices



You might think that the next step would be to introduce some OpenCV function that
          computes these epipolar lines for us, but we actually need two more ingredients before we can
          arrive at that point. These ingredients are the essential matrix
          E and the fundamental matrix
          F. [206] The matrix E contains information about the translation
          and rotation that relate the two cameras in physical space (see Figure 12-9), and F
          contains the same information as E in addition to information about
          the intrinsics of both cameras. [207] Because F embeds information about the intrinsic
          parameters, it relates the two cameras in pixel coordinates.
[image: The essential geometry of stereo imaging is captured by the essential matrix E, which contains all of the information about the translation T and the rotation R, which describe the location of the second camera relative to the first in global coordinates]

Figure 12-9. The essential geometry of stereo imaging is captured by the essential matrix E,
            which contains all of the information about the translation T and the rotation R, which
            describe the location of the second camera relative to the first in global
            coordinates

Let’s reinforce the differences between E and
            F. The essential matrix E is purely geometrical and knows
          nothing about imagers. It relates the location, in physical coordinates, of the point P as
          seen by the left camera to the location of the same point as seen by the right camera
          (i.e., it relates pl to
              pr). The fundamental matrix
            F relates the points on the image plane of one camera in image
          coordinates (pixels) to the points on the image plane of the other camera in image
          coordinates (for which we will use the notation
            ql and
            qr).
Essential matrix math



We will now submerge into some math so we can better understand the OpenCV function
            calls that do the hard work for our stereo geometry problems.
Given a point P, we would like to derive a relation which
            connects the observed locations pl and
              pr of P on the two
            imagers. This relationship will turn out to serve as the definition of the essential
            matrix. We begin by considering the relationship between
                pl and
                pr, the physical locations of the point
            we are viewing in the coordinates of the two cameras. These can be related by using
            epipolar geometry, as we have already seen. [208]
Let’s pick one set of coordinates, left or right, to work in and do our calculations
            there. Either one is just as good, but we’ll choose the coordinates centered on
                Ol of the left camera. In these
            coordinates, the location of the observed point is
              Pl and the origin of the other camera is
            located at T. The point P as seen by the right
            camera is Pr in that camera’s coordinates,
            where Pr =
                R(Pl –
              T). The key step is the introduction of the epipolar plane, which
            we already know relates all of these things. We could, of course, represent a plane any
            number of ways, but for our purpose it is most helpful to recall that the equation for
            all points x on a plane with normal vector n and passing through point a
            obey the following constraint:
[image: image with no caption]

Recall that the epipolar plane contains the vectors
                Pl and T; thus, if
            we had a vector (e.g., Pl X
              T) perpendicular to both, [209] then we could use that for n in our plane
            equation. Thus an equation for all possible points
              Pl through the point
              T and containing both vectors would be: [210]
[image: image with no caption]

Remember that our goal was to relate ql
            and qr by first relating
                Pl and
                Pr. We draw
                Pr into the picture via our equality
                Pr = R(Pl – T),
            which we can conveniently rewrite as (Pl –
              T) = R–1
              Pr. Making this substitution and using that
                RT = R–1
              yields:
[image: image with no caption]

It is always possible to rewrite a cross product as a (somewhat bulky) matrix
            multiplication. We thus define the matrix S such
              that:
[image: image with no caption]

This leads to our first result. Making this substitution for the cross product
              gives:
[image: image with no caption]

This product RS is what we define to be the essential matrix E, which leads to the compact
              equation:
[image: image with no caption]

Of course, what we really wanted was a relation between the points as we observe
            them on the imagers, but this is just a step away. We can simply substitute using the
            projection equations pl =
                  flPl /
                Zl and
              pr = fr
                Pr / Zr and then divide the
            whole thing by ZlZr /
                  fl
              fr to obtain our final
              result:
[image: image with no caption]

This might look at first like it completely specifies one of the
              p-terms if the other is given, but E turns
            out to be a rank-deficient matrix [211] (the 3-by-3 essential matrix has rank 2) and so this actually ends up being
            an equation for a line. There are five parameters in the essential matrix—three for
            rotation and two for the direction of translation (scale is not set)—along with two
            other constraints. The two additional constraints on the essential matrix are: (1) the
            determinant is 0 because it is rank-deficient (a 3-by-3 matrix of rank 2); and (2) its
            two nonzero singular values are equal because the matrix S is
            skew-symmetric and R is a rotation matrix. This yields a total of
            seven constraints. Note again that E contains nothing intrinsic to the cameras in
              E; thus, it relates points to each other in physical or camera
            coordinates, not pixel coordinates.

Fundamental matrix math



The matrix E contains all of the information about the geometry
            of the two cameras relative to one another but no information about the cameras
            themselves. In practice, we are usually interested in pixel coordinates. In order to
            find a relationship between a pixel in one image and the corresponding epipolar line in
            the other image, we will have to introduce intrinsic information about the two cameras.
            To do this, for p (the pixel coordinate) we substitute
              q and the camera intrinsics matrix that relates them. Recall that
              q = Mp (where M is the
            camera intrinsics matrix) or, equivalently, p =
                M–1 q. Hence our equation for
              E becomes:
[image: image with no caption]


Though this looks like a bit of a mess, we clean it up by defining the fundamental matrix F as:
[image: image with no caption]

so that
[image: image with no caption]

In a nutshell: the fundamental matrix F is just like the essential matrix
              E, except that F operates in image pixel
            coordinates whereas E operates in physical coordinates. [212] Just like E, the fundamental matrix
              F is of rank 2. The fundamental matrix has seven parameters, two
            for each epipole and three for the homography that relates the two image planes (the
            scale aspect is missing from the usual four parameters).

How OpenCV handles all of this



We can compute F, in a manner analogous to computing the image
            homography in the previous section, by providing a number of known correspondences. In
            this case, we don’t even have to calibrate the cameras separately because we can solve
            directly for F, which contains implicitly the fundamental matrices
            for both cameras. The routine that does all of this for us is called cvFindFundamentalMat().
int cvFindFundamentalMat(
  const CvMat* points1,
  const CvMat* points2,
  CvMat*       fundamental_matrix,
  int          method            = CV_FM_RANSAC,
  double       param1            = 1.0,
  double       param2            = 0.99,
  CvMat*       status            = NULL
);
The first two arguments are N-by-2 or
              N-by-3[213] floating-point (single- or double-precision) matrices containing the
            corresponding N points that you have collected (they can also be
              N-by-1 multichannel matrices with two or three channels). The
            result is fundamental_matrix, which should be a
            3-by-3 matrix of the same precision as the points (in a special case the dimensions may
            be 9-by-3; see below).
The next argument determines the method to be used in computing the fundamental matrix from the corresponding points, and it can take one of
            four values. For each value there are particular restrictions on the number of points
            required (or allowed) in points1 and points2, as shown in Table 12-2.
Table 12-2. Restrictions on argument for method in cvFindFundamentalMat()
	
                    Value of method

                  	
                    Number of points

                  	
                    Algorithm

                  
	
                    
                      CV_FM_7POINT
                    

                  	
                    N = 7

                  	
                    7-point algorithm

                  
	
                    
                      CV_FM_8POINT
                    

                  	
                    N ≥ 8

                  	
                    8-point algorithm

                  
	
                    
                      CV_FM_RANSAC
                    

                  	
                    N ≥ 8

                  	
                    RANSAC algorithm

                  
	
                    
                      CV_FM_LMEDS
                    

                  	
                    N ≥ 8

                  	
                    LMedS algorithm

                  



The 7-point algorithm uses exactly seven points, and it uses the fact that the
            matrix F must be of rank 2 to fully constrain the matrix. The
            advantage of this constraint is that F is then always exactly of
            rank 2 and so cannot have one very small eigenvalue that is not quite 0. The
            disadvantage is that this constraint is not absolutely unique and so three different
            matrices might be returned (this is the case in which you should make fundamental_matrix a 9-by-3 matrix, so that all three
            returns can be accommodated). The 8-point algorithm just solves F
            as a linear system of equations. If more than eight points are provided then a linear
            least-squares error is minimized across all points. The problem with both the 7-point
            and 8-point algorithms is that they are extremely sensitive to outliers (even if you
            have many more than eight points in the 8-point algorithm). This is addressed by the
            RANSAC and LMedS algorithms, which are generally classified as robust methods because
            they have some capacity to recognize and remove outliers. [214] For both methods, it is desirable to have many more than the minimal eight
              points.
The next two arguments are parameters used only by RANSAC and LMedS. The first,
              param1, is the maximum distance from a point to the
            epipolar line (in pixels) beyond which the point is considered an outlier. The second
            parameter, param2, is the desired confidence (between
            0 and 1), which essentially tells the algorithm how many times to iterate.
The final argument, status, is optional; if used,
            it should be an N-by-1 matrix of type CV_8UC1, where N is the same as the length of points1 and points2. If
            this matrix is non-NULL, then RANSAC and LMedS will use it to store information about
            which points were ultimately considered outliers and which points were not. In
            particular, the appropriate entry will be set to 0 if the point was decided to be an
            outlier and to 1 otherwise. For the other two methods, if this array is present then all
            values will be set to 1.
The return value of cvFindFundamentalMat() is an
            integer indicating the number of matrices found. It will be either 1 or 0 for all
            methods other than the 7-point algorithm, where it can also be 3. If the value is 0 then
            no matrix could be computed. The sample code from the OpenCV manual, shown in Example 12-2, makes this clear.
Example 12-2. Computing the fundamental matrix using RANSAC
int point_count = 100;
CvMat* points1;
CvMat* points2;
CvMat* status;
CvMat* fundamental_matrix;

points1 = cvCreateMat(1,point_count,CV_32FC2);
points2 = cvCreateMat(1,point_count,CV_32FC2);
status = cvCreateMat(1,point_count,CV_8UC1);

/* Fill the points here ... */
for( int i = 0; i < point_count; i++ )
{
    points1->data.fl[i*2]   = <x1,i>; //These are points such as found
    points1->data.fl[i*2+1] = <y1,i>; // on the chessboard calibration
    points2->data.fl[i*2]   = <x2,i>; // pattern.
    points2->data.fl[i*2+1] = <y2,i>;
}

fundamental_matrix = cvCreateMat(3,3,CV_32FC1);
int fm_count = cvFindFundamentalMat( points1, points2,
                                     fundamental_matrix,
                                     CV_FM_RANSAC,1.0,0.99,status );


One word of warning—related to the possibility of returning 0—is that these
            algorithms can fail if the points supplied form degenerate
              configurations. These degenerate configurations arise when the points
            supplied provide less than the required amount of information, such as when one point
            appears more than once or when multiple points are collinear or coplanar with too many
            other points. It is important to always check the return value of cvFindFundamentalMat().


Computing Epipolar Lines



Now that we have the fundamental matrix, we want to be able to compute epipolar lines.
          The OpenCV function cvComputeCorrespondEpilines()
          computes, for a list of points in one image, the epipolar lines in the other image. Recall
          that, for any given point in one image, there is a different corresponding epipolar line
          in the other image. Each computed line is encoded in the form of a vector of three points
            (a, b, c) such that the epipolar line is defined by the
            equation:
ax + by + c = 0
To compute these epipolar lines, the function requires the fundamental matrix that we computed
          with cvFindFundamentalMat().
void cvComputeCorrespondEpilines(
  const CvMat* points,
  int          which_image,
  const CvMat* fundamental_matrix,
  CvMat*       correspondent_lines
);
Here the first argument, points, is the usual
            N-by-2 or N-by-3 [215] array of points (which may be an N-by-1 multichannel
          array with two or three channels). The argument which_image must be either 1 or 2, and indicates which image the points are
          defined on (relative to the points1 and points2 arrays in cvFindFundamentalMat()), Of course, fundamental_matrix is the 3-by-3 matrix returned by cvFindFundamentalMat(). Finally, correspondent_lines is an N-by-3 array of floating-point
          numbers to which the result lines will be written. It is easy to see that the line
          equation ax + by + c = 0 is
          independent of the overall normalization of the parameters a, b, and
            c. By default they are normalized so that
            a2 +
            b2 = 1.

Stereo Calibration



We’ve built up a lot of theory and machinery behind cameras and 3D points that we can
          now put to use. This section will cover stereo calibration, and the next section will
          cover stereo rectification. Stereo calibration is the process of
          computing the geometrical relationship between the two cameras in space. In contrast,
            stereo rectification is the process of “correcting” the individual
          images so that they appear as if they had been taken by two cameras with row-aligned image
          planes (review Figures Figure 12-4 and
            Figure 12-7). With such a rectification,
          the optical axes (or principal rays) of the two cameras are parallel and so we say that
          they intersect at infinity. We could, of course, calibrate the two camera images to be in
          many other configurations, but here (and in OpenCV) we focus on the more common and
          simpler case of setting the principal rays to intersect at infinity.
Stereo calibration depends on finding the rotation matrix R and
          translation vector T between the two cameras, as depicted in Figure 12-9. Both R and
            T are calculated by the function cvStereoCalibrate(), which is similar to cvCalibrateCamera2() that we saw in Chapter 11 except that we now have two cameras and our
          new function can compute (or make use of any prior computation of) the camera, distortion,
          essential, or fundamental matrices. The other main difference between stereo and
          single-camera calibration is that, in cvCalibrateCamera2(), we ended up with a list of rotation and translation
          vectors between the camera and the chessboard views. In cvStereoCalibrate(), we seek a single rotation matrix and translation vector
          that relate the right camera to the left camera.
We’ve already shown how to compute the essential and fundamental matrices. But how do
          we compute R and T between the left and right
          cameras? For any given 3D point P in object coordinates, we can
          separately use single-camera calibration for the two cameras to put P
          in the camera coordinates Pl =
              RlP + Tl and
              Pr =
            RrP +
            Tr for the left and right cameras,
          respectively. It is also evident from Figure 12-9 that the two views of P (from the two cameras) are related by
              Pl =
            RT(Pr
          – T), [216] where R and T are, respectively, the
          rotation matrix and translation vector between the cameras. Taking these three equations
          and solving for the rotation and translation separately yields the following simple
          relations: [217]
R =
              Rr(Rl)T
T = Tr –
              RTl
Given many joint views of chessboard corners, cvStereoCalibrate() uses cvCalibrateCamera2() to solve for rotation and translation parameters of the
          chessboard views for each camera separately (see the discussion in the “What’s under the
          hood?” subsection of Chapter 11 to recall how this is
          done). It then plugs these left and right rotation and translation solutions into the
          equations just displayed to solve for the rotation and translation parameters between the
          two cameras. Because of image noise and rounding errors, each chessboard pair results in
          slightly different values for R and T. The
            cvStereoCalibrate() routine then takes the median
          values for the R and T parameters as the initial
          approximation of the true solution and then runs a robust Levenberg-Marquardt iterative algorithm to find the (local) minimum of the
            reprojection error of the chessboard corners for both camera views, and the
          solution for R and T is returned. To be clear on
          what stereo calibration gives you: the rotation matrix will put the right camera in the
          same plane as the left camera; this makes the two image planes coplanar but not
          row-aligned (we’ll see how row-alignment is accomplished in the Stereo Rectification
          section below).
The function cvStereoCalibrate() has a lot of
          parameters, but they are all fairly straightforward and many are the same as for cvCalibrateCamera2() in Chapter 11.
bool cvStereoCalibrate(
    const CvMat*   objectPoints,
    const CvMat*   imagePoints1,
    const CvMat*   imagePoints2,
    const CvMat*   npoints,
    CvMat*         cameraMatrix1,
    CvMat*         distCoeffs1,
    CvMat*         cameraMatrix2,
    CvMat*         distCoeffs2,
    CvSize         imageSize,
    CvMat*         R,
    CvMat*         T,
    CvMat*         E,
    CvMat*         F,
    CvTermCriteria termCrit,
    int            flags=CV_CALIB_FIX_INTRINSIC
);
The first parameter, objectPoints, is an
            N-by-3 matrix containing the physical coordinates of each of the
            K points on each of the M images of the 3D
          object such that N = K X M.
          When using chessboards as the 3D object, these points are located in the coordinate frame
          attached to the object—setting, say, the upper left corner of the chessboard as the origin
          (and usually choosing the Z-coordinate of the points on the
          chessboard plane to be 0), but any known 3D points may be used as discussed with cvCalibrateCamera2().
We now have two cameras, denoted by “1” and “2” appended to the appropriate parameter
          names. [218] Thus we have imagePoints1 and imagePoints2, which are N-by-2 matrices
          containing the left and right pixel coordinates (respectively) of all of the object
          reference points supplied in objectPoints. If you
          performed calibration using a chessboard for the two cameras, then imagePoints1 and imagePoints2 are just the respective returned values for the
            M calls to cvFindChessboardCorners() for the left and right camera views.
The argument npoints contains the number of points
          in each image supplied as an M-by-1 matrix.
The parameters cameraMatrix1 and cameraMatrix2 are the 3-by-3 camera matrices, and distCoeffs1 and distCoeffs2
          are the 5-by-1 distortion matrices for cameras 1 and 2, respectively. Remember that, in
          these matrices, the first two radial parameters come first; these are followed by the two tangential
          parameters and finally the third radial parameter (see the discussion in Chapter 11 on distortion coefficients). The third radial
          distortion parameter is last because it was added later in OpenCV’s development; it is
          mainly used for wide-angle (fish-eye) camera lenses. The use of these camera intrinsics is controlled by
          the flags parameter. If flags is set to CV_CALIB_FIX_INTRINSIC,
          then these matrices are used as is in the calibration process. If flags is set to CV_CALIB_USE_INTRINSIC_GUESS, then these matrices are used as a starting
          point to optimize further the intrinsic and distortion parameters for each camera and will
          be set to the refined values on return from cvStereoCalibrate(). You may additively combine other settings of flags that have possible values that are exactly the same as
          for cvCalibrateCamera2(), in which case these
          parameters will be computed from scratch in cvStereoCalibrate(). That is, you can compute the intrinsic, extrinsic, and
          stereo parameters in a single pass using cvStereoCalibrate().[219]
The parameter imageSize is the image size in
          pixels. It is used only if you are refining or computing intrinsic parameters, as when
            flags is not equal to CV_CALIB_FIX_INTRINSIC.
The terms R and T are output parameters that
          are filled on function return with the rotation matrix and translation vector (relating
          the right camera to the left camera) that we seek. The parameters E
          and F are optional. If they are not set to NULL, then cvStereoCalibrate() will calculate and fill these 3-by-3
          essential and fundamental matrices. We have seen termCrit many times before. It sets the internal optimization either to
          terminate after a certain number of iterations or to stop when the computed parameters
          change by less than the threshold indicated in the termCrit structure. A typical argument for this function is cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 100,
          1e-5).
Finally, we’ve already discussed the flags
          parameter somewhat. If you’ve calibrated both cameras and are sure of the result, then you
          can “hard set” the previous single-camera calibration results by using CV_CALIB_FIX_INTRINSIC. If you think the two cameras’ initial calibrations
          were OK but not great, you can use it to refine the intrinsic and distortion parameters by
          setting flags to CV_CALIB_USE_INTRINSIC_GUESS. If the cameras have not been individually
          calibrated, you can use the same settings as we used for the flags parameter in cvCalibrateCamera2() in
            Chapter 11.
Once we have either the rotation and translation values (R, T) or
          the fundamental matrix F, we may use these results to rectify the two
          stereo images so that the epipolar lines are arranged along image rows and the scan lines
          are the same across both images. Although R and
            T don’t define a unique stereo rectification, we’ll see how to use these terms (together with other
          constraints) in the next section.

Stereo Rectification



It is easiest to compute the stereo disparity when the two image planes align exactly
          (as shown in Figure 12-4). Unfortunately,
          as discussed previously, a perfectly aligned configuration is rare with a real stereo
          system, since the two cameras almost never have exactly coplanar, row-aligned imaging
          planes. Figure 12-7 shows the goal of
          stereo rectification: We want to reproject the image planes of our two cameras so that
          they reside in the exact same plane, with image rows perfectly aligned into a frontal
          parallel configuration. How we choose the specific plane in which to mathematically align
          the cameras depends on the algorithm being used. In what follows we discuss two cases
          addressed by OpenCV.
We want the image rows between the two cameras to be aligned after rectification so
          that stereo correspondence (finding the same point in the two different camera views) will
          be more reliable and computationally tractable. Note that reliability and computational
          efficiency are both enhanced by having to search only one row for a match with a point in
          the other image. The result of aligning horizontal rows within a common image plane
          containing each image is that the epipoles themselves are then located at infinity. That
          is, the image of the center of projection in one image is parallel to the other image
          plane. But because there are an infinite number of possible frontal parallel planes to
          choose from, we will need to add more constraints. These include maximizing view overlap
          and/or minimizing distortion, choices that are made by the algorithms discussed in what
          follows.
The result of the process of aligning the two image planes will be eight terms, four
          each for the left and the right cameras. For each camera we’ll get a distortion vector distCoeffs , a rotation matrix
              Rrect (to apply to the image), and the
          rectified and unrectified camera matrices
            (Mrect and M,
          respectively). From these terms, we can make a map, using cvInitUndistortRectifyMap() (to be discussed shortly), of where to
          interpolate pixels from the original image in order to create a new rectified image.
            [220]
There are many ways to compute our rectification terms, of which OpenCV implements
          two: (1) Hartley’s algorithm [Hartley98], which can yield uncalibrated stereo using
          just the fundamental matrix; and (2) Bouguet’s algorithm, [221] which uses the rotation and translation parameters from two calibrated
          cameras. Hartley’s algorithm can be used to derive structure from motion recorded by a
          single camera but may (when stereo rectified) produce more distorted images than Bouguet’s
          calibrated algorithm. In situations where you can employ calibration patterns—such as on a
          robot arm or for security camera installations—Bouguet’s algorithm is the natural one to
          use.
Uncalibrated stereo rectification: Hartley’s algorithm



Hartley’s algorithm attempts to find homographies that map the epipoles to infinity
            while minimizing the computed disparities between the two stereo images; it does this
            simply by matching points between two image pairs. Thus, we bypass having to compute the
            camera intrinsics for the two cameras because such intrinsic information is implicitly
            contained in the point matches. Hence we need only compute the fundamental matrix, which
            can be obtained from any matched set of seven or more points between the two views of
            the scene via cvFindFundamentalMat() as already
            described. Alternatively, the fundamental matrix can be computed from cvStereoCalibrate().
The advantage of Hartley’s algorithm is that online stereo calibration can be
            performed simply by observing points in the scene. The disadvantage is that we have no
            sense of image scale. For example, if we used a chessboard for generating point matches
            then we would not be able to tell if the chessboard were 100 meters on each side and far
            away or 100 centimeters on each side and nearby. Neither do we explicitly learn the
            intrinsic camera matrix, without which the cameras might have different focal lengths,
            skewed pixels, different centers of projection, and/or different principal points. As a
            result, we can determine 3D object reconstruction only up to a projective transform.
            What this means is that different scales or projections of an object can appear the same
            to us (i.e., the feature points have the same 2D coordinates even though the 3D objects
            differ). Both of these issues are illustrated in Figure 12-10.
[image: Stereo reconstruction ambiguity: if we do not know object size, then different size objects can appear the same depending on their distance from the camera (left); if we don’t know the camera instrinsics, then different projections can appear the same—for example, by having different focal lengths and principal points]

Figure 12-10. Stereo reconstruction ambiguity: if we do not know object size, then different
              size objects can appear the same depending on their distance from the camera (left);
              if we don’t know the camera instrinsics, then different projections can appear the
              same—for example, by having different focal lengths and principal points

Assuming we have the fundamental matrix F, which required seven
            or more points to compute, Hartley’s algorithm proceeds as follows (see Hartley’s original paper
            [Hartley98] for more details).
	We use the fundamental matrix to compute the two epipoles via the relations
                  
[image: image with no caption]

 and 
[image: image with no caption]

 for the left and right epipoles, respectively.

	We seek a first homography Hr, which
                will map the right epipole to the 2D homogeneous point at infinity (1, 0,
                  0)T. Since a homography has seven constraints (scale is
                missing), and we use three to do the mapping to infinity, we have 4 degrees of
                freedom left in which to choose our Hr.
                These 4 degrees of freedom are mostly freedom to make a mess since most choices of
                    Hr will result in highly distorted
                images. To find a good Hr, we choose a
                point in the image where we want minimal distortion to happen, allowing only rigid
                rotation and translation not shearing there. A reasonable choice for such a point is
                the image origin and we’ll further assume that the epipole 
[image: image with no caption]

 lies on the x-axis (a rotation matrix will
                accomplish this below). Given these coordinates, the matrix
[image: image with no caption]

will take such an epipole to infinity.

	For a selected point of interest in the right image (we chose the origin), we
                compute the translation T that will take that point to the
                image origin (0 in our case) and the rotation R that will take
                the epipole to 
[image: image with no caption]

. The homography we want will then be 
[image: image with no caption]

.

	We next search for a matching homography
                  Hl that will send the left epipole to
                infinity and align the rows of the two images. Sending the left epipole to infinity
                is easily done by using up three constraints as in step 2. To align the rows, we
                just use the fact that aligning the rows minimizes the total distance between all
                matching points between the two images. That is, we find the
                    Hl that minimizes the total
                disparity in left-right matching points 
[image: image with no caption]

. These two homographies define the stereo rectification.



Although the details of this algorithm are a bit tricky, cvStereoRectify Uncalibrated() does all the hard work for us. The function
            is a bit misnamed because it does not rectify uncalibrated stereo images; rather, it
            computes homographies that may be used for rectification. The algorithm call is
int cvStereoRectifyUncalibrated(
    const CvMat* points1,
    const CvMat* points2,
    const CvMat* F,
          CvSize imageSize,
          CvMat* Hl,
          CvMat* Hr,
          double threshold
);
In cvStereoRectifyUncalibrated(), the algorithm
            takes as input an array of 2-by-K corresponding points between the
            left and right images in the arrays points1 and
              points2. The fundamental matrix we calculated above
            is passed as the array F. We are familiar with imageSize, which just describes the width and height of the
            images that were used during calibration. Our return rectifying homographies are
            returned in the function variables Hl and Hr. Finally, if the distance from points to their
            corresponding epilines exceeds a set threshold, the
            corresponding point is eliminated by the algorithm. [222]
If our cameras have roughly the same parameters and are set up in an approximately
            horizontally aligned frontal parallel configuration, then our eventual rectified outputs
            from Hartley’s algorithm will look very much like the calibrated case described next. If
            we know the size or the 3D geometry of objects in the scene, we can obtain the same
            results as the calibrated case.

Calibrated stereo rectification: Bouguet’s algorithm



Given the rotation matrix and translation (R, T) between the
            stereo images, Bouguet’s algorithm for stereo rectification simply attempts to minimize
            the amount of change reprojection produces for each of the two images (and thereby minimize the
            resulting reprojection distortions) while maximizing common viewing area.
To minimize image reprojection distortion, the rotation matrix
              R that rotates the right camera’s image plane into the left
            camera’s image plane is split in half between the two cameras; we call the two resulting
            rotation matrixes rl and
                rr for the left and right camera,
            respectively. Each camera rotates half a rotation, so their principal rays each end up
            parallel to the vector sum of where their original principal rays had been pointing. As
            we have noted, such a rotation puts the cameras into coplanar alignment but not into row
            alignment. To compute the Rrect that will
            take the left camera’s epipole to infinity and align the epipolar lines horizontally, we
            create a rotation matrix by starting with the direction of the epipole
                e1 itself. Taking the principal point
                (cx, cy) as the
            left image’s origin, the (unit normalized) direction of the epipole is directly along
            the translation vector between the two cameras’ centers of projection:
[image: image with no caption]

The next vector, e2, must be orthogonal
            to e1 but is otherwise unconstrained. For
              e2, choosing a direction orthogonal to the
            principal ray (which will tend to be along the image plane) is a good choice. This is
            accomplished by using the cross product of
              e1 with the direction of the principal ray
            and then normalizing so that we’ve got another unit vector:
[image: image with no caption]

The third vector is just orthogonal to
              e1 and
              e2; it can be found using the cross
            product:

            e3 = e1 X
                e2
          
Our matrix that takes the epipole in the left camera to infinity is
              then:
[image: image with no caption]

This matrix rotates the left camera about the center of projection so that the
            epipolar lines become horizontal and the epipoles are at infinity. The row alignment of
            the two cameras is then achieved by setting:[image: ]
We will also compute the rectified left and right camera matrices
              Mrect_l and
              Mrect_r but return them combined with
            projection matrices Pl and
              Pr:
[image: image with no caption]

and
[image: image with no caption]

(here αl and
                αr allow for a pixel skew factor that in
            modern cameras is almost always 0). The projection matrices take a 3D point in
            homogeneous coordinates to a 2D point in homogeneous coordinates as
              follows:
[image: image with no caption]

where the screen coordinates can be calculated as (x/w, y/w).
            Points in two dimensions can also then be reprojected into three dimensions given their
            screen coordinates and the camera intrinsics matrix. The reprojection matrix is:
[image: image with no caption]

Here the parameters are from the left image except for
                c′x , which is the principal
            point x coordinate in the right image. If the principal rays
            intersect at infinity, then cx =
                c′x and the
            term in the lower right corner is 0. Given a two-dimensional homogeneous point and its
            associated disparity d, we can project the point into three
            dimensions using:
[image: image with no caption]

The 3D coordinates are then (X/W, Y/W, Z/W).
Applying the Bouguet rectification method just described yields our ideal stereo configuration as
            per Figure 12-4. New image centers and
            new image bounds are then chosen for the rotated images so as to maximize the
            overlapping viewing area. Mainly this just sets a uniform camera center and a common
            maximal height and width of the two image areas as the new stereo viewing planes.
void cvStereoRectify(
    const CvMat* cameraMatrix1,
    const CvMat* cameraMatrix2,
    const CvMat* distCoeffs1,
    const CvMat* distCoeffs2,
          CvSize imageSize,
    const CvMat* R,
    const CvMat* T,
          CvMat* Rl,
          CvMat* Rr,
          CvMat* Pl,
          CvMat* Pr,
          CvMat* Q=0,
          int    flags=CV_CALIB_ZERO_DISPARITY
);
For cvStereoRectify(), [223] we input the familiar original camera matrices and distortion vectors
            returned by cvStereoCalibrate(). These are followed
            by imageSize, the size of the chessboard images used
            to perform the calibration. We also pass in the rotation matrix R
            and translation vector T between the right and left cameras that
            was also returned by cvStereoCalibrate().
Return parameters are Rl and Rr, the 3-by-3 row-aligned rectification rotations for the
            left and right image planes as derived in the preceding equations. Similarly, we get
            back the 3-by-4 left and right projection equations Pl and Pr. An optional return parameter
            is Q, the 4-by-4 reprojection matrix described previously.
The flags parameter is defaulted to set disparity
            at infinity, the normal case as per Figure 12-4. Unsetting flags means that we want the cameras verging toward each
            other (i.e., slightly “cross-eyed”) so that zero disparity occurs at a finite distance
            (this might be necessary for greater depth resolution in the proximity of that
            particular distance).
If the flags parameter was not set to CV_CALIB_ZERO_DISPARITY, then we must be more careful about
            how we achieve our rectified system. Recall that we rectified our system relative to the
            principal points (cx,
              cy) in the left and right cameras. Thus, our
            measurements in Figure 12-4 must also be
            relative to these positions. Basically, we have to modify the distances so that
              
[image: image with no caption]

 and 
[image: image with no caption]

. When disparity has been set to infinity, we have [image: ] = [image: ] (i.e., when CV_CALIB_ZERO_DISPARITY is passed to cvStereoRectify()), and we can pass plain pixel coordinates (or disparity)
            to the formula for depth. But if cvStereoRectify() is
            called without CV_CALIB_ZERO_DISPARITY then
              [image: ] ≠[image: ] in general. Therefore, even though the formula Z =
              fT/(xl – xr) remains the same,
            one should keep in mind that xl and
              xr are not counted from the image center but rather from
            the respective principal points [image: ] and [image: ], which could differ from xl and
              xr. Hence, if you computed disparity d =
              xl – xr then it should be
            adjusted before computing Z: Z fT/(d – ([image: ] – [image: ])).

Rectification map



Once we have our stereo calibration terms, we can pre-compute left and right
            rectification lookup maps for the left and right camera views using separate calls to
              cvInitUndistortRectifyMap(). As with any
            image-to-image mapping function, a forward mapping (in which we just compute where
            pixels go from the source image to the destination image) will not, owing to
            floating-point destination locations, hit all the pixel locations in the destination
            image, which thus will look like Swiss cheese. So instead we work backward: for each
            integer pixel location in the destination image, we look up what floating-point
            coordinate it came from in the source image and then interpolate from its surrounding
            source pixels a value to use in that integer destination location. This source lookup
            typically uses bilinear interpolation, which we encountered with cvRemap() in Chapter 6.
The process of rectification is illustrated in Figure 12-11. As shown by the equation flow in
            that figure, the actual rectification process proceeds backward from (c) to (a) in a
            process known as reverse mapping. For each integer pixel in the rectified image (c), we
            find its coordinates in the undistorted image (b) and use those to look up the actual
            (floating-point) coordinates in the raw image (a). The floating-point coordinate pixel
            value is then interpolated from the nearby integer pixel locations in the original
            source image, and that value is used to fill in the rectified integer pixel location in
            the destination image (c). After the rectified image is filled in, it is typically
            cropped to emphasize the overlapping areas between the left and right images.
The function that implements the math depicted in Figure 12-11 is called cvInitUndistortRectifyMap(). We call this function twice,
            once for the left and once for the right image of stereo pair.
void cvInitUndistortRectifyMap(
   const CvMat* M,
   const CvMat* distCoeffs,
   const CvMat* Rrect,
   const CvMat* Mrect,
   CvArr*       mapx,
   CvArr*       mapy
);
The cvInitUndistortRectifyMap() function takes as
            input the 3-by-3 camera matrix M, the rectified
            3-by-3 camera matrix Mrect, the 3-by-3 rotation
            matrix Rrect, and the 5-by-1 camera distortion
            parameters in distCoeffs.
If we calibrated our stereo cameras using cvStereoRectify(), then we can read our input to cvInitUndistortRectifyMap() straight out of cvStereoRectify() using first the left parameters to rectify the left
            camera and then the right parameters to rectify the right camera. For Rrect, use Rl or Rr from cvStereoRectify(); for M, use cameraMatrix1 or cameraMatrix2. For Mrect we could use
            the first three columns of the 3-by-4 Pl or Pr from cvStereoRectify(), but as a convenience the function allows us to pass
              Pl or Pr
            directly and it will read Mrect from them.
If, on the other hand, we used cvStereoRectifyUncalibrated() to calibrate our stereo cameras, then we must
            preprocess the homography a bit. Although we could—in principle and in practice—rectify
            stereo without using the camera intrinsics, OpenCV does not have a function for doing
            this directly. If we do not have Mrect from some
            prior calibration, the proper procedure is to set Mrect equal to M. Then, for Rrect in cvInitUndistortRectifyMap(), we need to compute [image: ] (or just [image: ][image: ] is unavailable) and [image: ] (or just [image: ] is unavailable) for the left and the right rectification, respectively. Finally, we will also need the distortion
            coefficients for each camera to fill in the 5-by-1 distCoeffs parameters.
[image: Stereo rectification: for the left and right camera, the raw image (a) is undistorted (b) and rectified (c) and finally cropped (d) to focus on overlapping areas between the two cameras; the rectification computation actually works backward from (c) to (a)]

Figure 12-11. Stereo rectification: for the left and right camera, the raw image (a) is
              undistorted (b) and rectified (c) and finally cropped (d) to focus on overlapping
              areas between the two cameras; the rectification computation actually works backward
              from (c) to (a)

The function cvInitUndistortRectifyMap() returns
            lookup maps mapx and mapy as output. These maps indicate from where we should interpolate source
            pixels for each pixel of the destination image; the maps can then be plugged directly
            into cvRemap(), a function we first saw in Chapter 6. As we mentioned, the function cvInitUndistortRectifyMap() is called separately for the left and the right
            cameras so that we can obtain their distinct mapx and
              mapy remapping parameters. The function cvRemap() may then be called, using the left and then the
            right maps each time we have new left and right stereo images to rectify. Figure 12-12 shows the results of stereo
            undistortion and rectification of a stereo pair of images. Note how feature points
            become horizontally aligned in the undistorted rectified images.


Stereo Correspondence



Stereo correspondence—matching a 3D point in the two different camera views—can be
          computed only over the visual areas in which the views of the two cameras overlap. Once
          again, this is one reason why you will tend to get better results if you arrange your
          cameras to be as nearly frontal parallel as possible (at least until you become expert at stereo
          vision). Then, once we know the physical coordinates of the cameras or the sizes of
          objects in the scene, we can derive depth measurements from the triangulated disparity
          measures d = xl – x
            r
           (or d = xl – x
            r
          ( [image: ] – [image: ]) if the principal rays intersect at a finite distance) between the
          corresponding points in the two different camera views. Without such physical information,
          we can compute depth only up to a scale factor. If we don’t have the camera instrinsics,
          as when using Hartley’s algorithm, we can compute point locations only up to a projective
          transform (review Figure 12-10).
[image: Stereo rectification: original left and right image pair (upper panels) and the stereo rectified left and right image pair (lower panels); note that the barrel distortion (in top of chessboard patterns) has been corrected and the scan lines are aligned in the rectified images]

Figure 12-12. Stereo rectification: original left and right image pair (upper panels) and the
            stereo rectified left and right image pair (lower panels); note that the barrel
            distortion (in top of chessboard patterns) has been corrected and the scan lines are
            aligned in the rectified images

OpenCV implements a fast and effective block-matching stereo algorithm, cvFindStereoCorrespondenceBM(), that is similar to the one developed by Kurt
            Konolige [Konolige97]; it works by using small "sum of absolute difference” (SAD) windows to find matching points between the left and right stereo
          rectified images. [224] This algorithm finds only strongly matching (high-texture) points between the
          two images. Thus, in a highly textured scene such as might occur outdoors in a forest, every pixel might
          have computed depth. In a very low-textured scene, such as an indoor hallway, very few
          points might register depth. There are three stages to the block-matching stereo correspondence algorithm, which works on undistorted, rectified stereo image
            pairs:
	Prefiltering to normalize image brightness and enhance texture.

	Correspondence search along horizontal epipolar lines using an SAD
              window.

	Postfiltering to eliminate bad correspondence matches.



In the prefiltering step, the input images are normalized to reduce lighting
          differences and to enhance image texture. This is done by running a window—of size 5-by-5,
          7-by-7 (the default), …, 21-by-21 (the maximum)—over the image. The center pixel Ic under
          the window is replaced by min[max(Ic – Ī, –
            Icap),
            Icap], where Ī is the
          average value in the window and Icap is a
          positive numeric limit whose default value is 30. This method is invoked by a CV_NORMALIZED_RESPONSE flag. The other possible flag is
            CV_LAPLACIAN_OF_GAUSSIAN, which runs a peak detector
          over a smoothed version of the image.
Correspondence is computed by a sliding SAD window. For each feature in the left
          image, we search the corresponding row in the right image for a best match. After
          rectification, each row is an epipolar line, so the matching location in the right image
          must be along the same row (same y-coordinate) as in the left image;
          this matching location can be found if the feature has enough texture to be detectable and
          if it is not occluded in the right camera’s view (see Figure 12-16). If the left feature pixel
          coordinate is at (x0,
            y0) then, for a horizontal frontal parallel camera
          arrangement, the match (if any) must be found on the same row and at, or to the left of,
              x0; see Figure 12-13. For frontal parallel cameras,
              x0 is at zero disparity and larger
          disparities are to the left. For cameras that are angled toward each other, the match may
          occur at negative disparities (to the right of
            x0). The first parameter that controls
          matching search is minDisparity, which is where the
          matching search should start. The default for minDisparity is 0. The disparity search is then carried out over numberOfDisparities counted in pixels (the default is 64
          pixels). Disparities have a discrete subpixel resolution which is equal to four bits of
          resolution below the individual pixel level. When the output image is a 32-bit floating
          point image, non-integer disparities will be returned. When the output image is a 16-bit
          integer, the disparity will be returned in 4-bit fixed-point form (i.e. multiplied by 16
          and rounded to an integer).
Setting the minimum disparity and the number of disparities to be searched establishes
          the horopter, the 3D volume that is covered by the search range of
          the stereo algorithm. Figure 12-14
          shows disparity search limits of five pixels starting at three different disparity limits:
          20, 17, and 16. Each disparity limit defines a plane at a fixed depth from the cameras
          (see Figure 12-15). As shown in Figure 12-14, each disparity limit—together with
          the number of disparities—sets a different horopter at which depth can be detected.
          Outside of this range, depth will not be found and will represent a “hole” in the depth
          map where depth is not known. Horopters can be made larger by decreasing the baseline
          distance T between the cameras, by making the focal length smaller,
          by increasing the stereo disparity search range, or by increasing the pixel
            width.
Correspondence within the horopter has one in-built constraint, called the
            order constraint, which simply states that the order of the
          features cannot change from the left view to the right. There may be
            missing features—where, owing to occlusion and noise, some features
          found on the left cannot be found on the right—but the ordering of those features that are
          found remains the same. Similarly, there may be many features on the right that were not
          identified on the left (these are called insertions), but insertions
          do not change the order of features although they may spread those features out. The
          procedure illustrated in Figure 12-16
          reflects the ordering constraint when matching features on a horizontal scan
            line.
[image: Any right-image match of a left-image feature must occur on the same row and at (or to the left of) the same coordinate point, where the match search starts at the minDisparity point (here, 0) and moves to the left for the set number of disparities; the characteristic matching function of window-based feature matching is shown in the lower part of the figure]

Figure 12-13. Any right-image match of a left-image feature must occur on the same row and at (or
            to the left of) the same coordinate point, where the match search starts at the
            minDisparity point (here, 0) and moves to the left for the set number of disparities;
            the characteristic matching function of window-based feature matching is shown in the
            lower part of the figure

[image: Each line represents a plane of constant disparity in integer pixels from 20 to 12; a disparity search range of five pixels will cover different horopter ranges, as shown by the vertical arrows, and different maximal disparity limits establish different horopters]

Figure 12-14. Each line represents a plane of constant disparity in integer pixels from 20 to 12;
            a disparity search range of five pixels will cover different horopter ranges, as shown
            by the vertical arrows, and different maximal disparity limits establish different
            horopters

[image: A fixed disparity forms a plane of fixed distance from the cameras]

Figure 12-15. A fixed disparity forms a plane of fixed distance from the cameras

Given the smallest allowed disparity increment Δd, we can
          determine smallest achievable depth range resolution ΔZ by using the
            formula:
[image: image with no caption]


It is useful to keep this formula in mind so that you know what kind of depth
          resolution to expect from your stereo rig.
After correspondence, we turn to postfiltering. The lower part of Figure 12-13 shows a typical matching function
          response as a feature is “swept” from the minimum disparity out to maximum disparity. Note
          that matches often have the characteristic of a strong central peak surrounded by side
          lobes. Once we have candidate feature correspondences between the two views, postfiltering
          is used to prevent false matches. OpenCV makes use of the matching function pattern via a
            uniquenessRatio parameter (whose default value is 12)
          that filters out matches, where uniquenessRatio >
            (match_val–min_match)/min_match.
[image: Stereo correspondence starts by assigning point matches between corresponding rows in the left and right images: left and right images of a lamp (upper panel); an enlargement of a single scan line (middle panel); visualization of the correspondences assigned (lower panel).]

Figure 12-16. Stereo correspondence starts by assigning point matches between corresponding rows
            in the left and right images: left and right images of a lamp (upper panel); an
            enlargement of a single scan line (middle panel); visualization of the correspondences
            assigned (lower panel).

To make sure that there is enough texture to overcome random noise during matching,
          OpenCV also employs a textureThreshold. This is just a
          limit on the SAD window response such that no match is considered whose response is below
          the textureThreshold (the default value is 12).
          Finally, block-based matching has problems near the boundaries of objects because the
          matching window catches the foreground on one side and the background on the other side.
          This results in a local region of large and small disparities that we call
            speckle. To prevent these borderline matches, we can set a speckle
          detector over a speckle window (ranging in size from 5-by-5 up to 21-by-21) by setting
            speckleWindowSize, which has a default setting of 9
          for a 9-by-9 window. Within the speckle window, as long as the minimum and maximum
          detected disparities are within speckleRange, the match
          is allowed (the default range is set to 4).
Stereo vision is becoming crucial to surveillance systems, navigation, and
          robotics, and such systems can have demanding real-time performance requirements. Thus,
          the stereo correspondence routines are designed to run fast. Therefore, we can’t keep
          allocating all the internal scratch buffers that the correspondence routine needs each
          time we call cvFindStereoCorrespondenceBM().
The block-matching parameters and the internal scratch buffers are kept in a data
          structure named CvStereoBMState:
typedef struct CvStereoBMState {
  //pre filters (normalize input images):
   int      preFilterType;
   int      preFilterSize;//for 5x5 up to 21x21
   int      preFilterCap;
//correspondence using Sum of Absolute Difference (SAD):
   int      SADWindowSize; // Could be 5x5,7x7, ..., 21x21
   int      minDisparity;
   int      numberOfDisparities;//Number of pixels to search
//post filters (knock out bad matches):
   int      textureThreshold; //minimum allowed
   float    uniquenessRatio;// Filter out if:
                            // [ match_val - min_match <
                            // uniqRatio*min_match ]
                            // over the corr window area
   int      speckleWindowSize;//Disparity variation window
   int      speckleRange;//Acceptable range of variation in window
// temporary buffers
   CvMat* preFilteredImg0;
   CvMat* preFilteredImg1;
   CvMat* slidingSumBuf;
} Cv StereoBMState;
The state structure is allocated and returned by the function cvCreateStereoBMState(). This function takes the parameter preset, which can be set to any one of the
            following.
	
              CV_STEREO_BM_BASIC
            
	Sets all parameters to their default values

	
              CV_STEREO_BM_FISH_EYE
            
	Sets parameters for dealing with wide-angle lenses

	
              CV_STEREO_BM_NARROW
            
	Sets parameters for stereo cameras with narrow field of view



This function also takes the optional parameter numberOfDisparities; if nonzero, it overrides the default value from the
          preset. Here is the specification:
CvStereoBMState* cvCreateStereoBMState(
    int presetFlag=CV_STEREO_BM_BASIC,
    int numberOfDisparities=0
);
The state structure, CvStereoBMState{}, is released
          by calling
void cvReleaseBMState(
    CvStereoBMState **BMState
);
Any stereo correspondence parameters can be adjusted at any time between cvFindStereoCorrespondenceBM calls by directly assigning new
          values of the state structure fields. The correspondence function will take care of
          allocating/reallocating the internal buffers as needed.
Finally, cvFindStereoCorrespondenceBM() takes in
          rectified image pairs and outputs a disparity map given its state structure:
void cvFindStereoCorrespondenceBM(
    const CvArr     *leftImage,
    const CvArr     *rightImage,
    CvArr           *disparityResult,
    Cv StereoBMState *BMState
);

Stereo Calibration, Rectification, and Correspondence Code



Let’s put this all together with code in an example program that will read in a number
          of chessboard patterns from a file called list.txt.
          This file contains a list of alternating left and right stereo (chessboard) image pairs,
          which are used to calibrate the cameras and then rectify the images. Note once again that
          we’re assuming you’ve arranged the cameras so that their image scan lines are roughly
          physically aligned and such that each camera has essentially the same field of view. This will help avoid the problem of the
          epipole being within the image [225] and will also tend to maximize the area of stereo overlap while minimizing the
          distortion from reprojection.
In the code (Example 12-3), we first
          read in the left and right image pairs, find the chessboard corners to subpixel accuracy,
          and set object and image points for the images where all the chessboards could be found.
          This process may optionally be displayed. Given this list of found points on the found
          good chessboard images, the code calls cvStereoCalibrate() to calibrate the camera. This calibration gives us the camera matrix _M
          and the distortion vector _D for the two cameras; it
          also yields the rotation matrix _R, the translation
          vector _T, the essential matrix _E, and the fundamental
          matrix _F.
Next comes a little interlude where the accuracy of calibration is assessed by
          checking how nearly the points in one image lie on the epipolar lines of the other image.
          To do this, we undistort the original points using cvUndistortPoints() (see Chapter 11),
          compute the epilines using cvComputeCorrespondEpilines(), and then compute the dot product of the points
          with the lines (in the ideal case, these dot products would all be 0). The accumulated
          absolute distance forms the error.
The code then optionally moves on to computing the rectification maps using the
          uncalibrated (Hartley) method cvStereoRectifyUncalibrated() or the calibrated (Bouguet) method cvStereoRectify(). If
          uncalibrated rectification is used, the code further allows for either computing the
          needed fundamental matrix from scratch or for just using the fundamental matrix from the
          stereo calibration. The rectified images are then computed using cvRemap(). In our example, lines are drawn across the image pairs to aid in
          seeing how well the rectified images are aligned. An example result is shown in Figure 12-12, where we can see that the barrel
          distortion in the original images is largely corrected from top to bottom and that the
          images are aligned by horizontal scan lines.
Finally, if we have rectified the images, we can then compute the disparity maps by
          using cvFindStereoCorrespondenceBM(). (The block-matching state
            CvStereoBMState, which is passed to cvFindStereoCorrespondenceBM(), should be created in advance using cvCreateStereoBMState().) Our code example allows you to use either
          horizontally aligned (left-right) or vertically aligned (top-bottom) cameras; note,
          however, that for the vertically aligned case the function cvFindStereoCorrespondenceBM() can compute disparity only for the case of
          uncalibrated rectification unless you add code to transpose the images yourself. For
          horizontal camera arrangements, cvFindStereoCorrespondenceBM() can find disparity for calibrated or for
          uncalibrated rectified stereo image pairs. (See Figure 12-17 in the next section for example
          disparity results.)
Example 12-3. Stereo calibration, rectification, and correspondence
#include "cv.h"
#include "cxmisc.h"
#include "highgui.h"
#include "cvaux.h"
#include <vector>
#include <string>
#include <algorithm>
#include <stdio.h>
#include <ctype.h>

using namespace std;

//
// Given a list of chessboard images, the number of corners (nx, ny)
// on the chessboards, and a flag called useCalibrated (0 for Bouguet
// or 1 or 2 for Hartley stereo methods). Calibrate the cameras and display the
// rectified results along with the computed disparity images.
//
static void
StereoCalib(const char* imageList, int nx, int ny, int useUncalibrated)
{
    int displayCorners = 0;
    int showUndistorted = 1;
    bool isVerticalStereo = false;//OpenCV can handle left-right
                                      //or up-down camera arrangements
    const int maxScale = 1;
    const float squareSize = 1.f; //Set this to your actual square size
    FILE* f = fopen(imageList, "rt");
    int i, j, lr, nframes, n = nx*ny, N = 0;
    vector<string> imageNames[2];
    vector<CvPoint3D32f> objectPoints;
    vector<CvPoint2D32f> points[2];
    vector<int> npoints;
    vector<uchar> active[2];
    vector<CvPoint2D32f> temp(n);
    CvSize imageSize = {0,0};
    // ARRAY AND VECTOR STORAGE:
    double M1[3][3], M2[3][3], D1[5], D2[5];
    double R[3][3], T[3], E[3][3], F[3][3];
    CvMat _M1 = cvMat(3, 3, CV_64F, M1 );
    CvMat _M2 = cvMat(3, 3, CV_64F, M2 );
    CvMat _D1 = cvMat(1, 5, CV_64F, D1 );
    CvMat _D2 = cvMat(1, 5, CV_64F, D2 );
    CvMat _R = cvMat(3, 3, CV_64F, R );
    CvMat _T = cvMat(3, 1, CV_64F, T );
    CvMat _E = cvMat(3, 3, CV_64F, E );
    CvMat _F = cvMat(3, 3, CV_64F, F );
    if( displayCorners )
        cvNamedWindow( "corners", 1 );
// READ IN THE LIST OF CHESSBOARDS:
    if( !f )
    {
        fprintf(stderr, "can not open file %s\n", imageList );
        return;
    }
    for(i=0;;i++)
    {
        char buf[1024];
        int count = 0, result=0;
        lr = i % 2;
        vector<CvPoint2D32f>& pts = points[lr];
        if( !fgets( buf, sizeof(buf)-3, f ))
            break;
        size_t len = strlen(buf);
        while( len > 0 && isspace(buf[len-1]))
            buf[--len] = '\0';
        if( buf[0] == '#')
            continue;
        IplImage* img = cvLoadImage( buf, 0 );
        if( !img )
            break;
        imageSize = cvGetSize(img);
        imageNames[lr].push_back(buf);
    //FIND CHESSBOARDS AND CORNERS THEREIN:
        for( int s = 1; s <= maxScale; s++ )
        {
            IplImage* timg = img;
            if( s > 1 )
            {
                timg = cvCreateImage(cvSize(img->width*s,img->height*s),
                    img->depth, img->nChannels );
                cvResize( img, timg, CV_INTER_CUBIC );
            }
            result = cvFindChessboardCorners( timg, cvSize(nx, ny),
                &temp[0], &count,
                CV_CALIB_CB_ADAPTIVE_THRESH |
                CV_CALIB_CB_NORMALIZE_IMAGE);
            if( timg != img )
                cvReleaseImage( &timg );
            if( result || s == maxScale )
                for( j = 0; j < count; j++ )
            {
                temp[j].x /= s;
                temp[j].y /= s;
            }
            if( result )
                break;
        }
        if( displayCorners )
        {
            printf("%s\n", buf);
            IplImage* cimg = cvCreateImage( imageSize, 8, 3 );
            cvCvtColor( img, cimg, CV_GRAY2BGR );
            cvDrawChessboardCorners( cimg, cvSize(nx, ny), &temp[0],
                count, result );
            cvShowImage( "corners", cimg );
            cvReleaseImage( &cimg );
            if( cvWaitKey(0) == 27 ) //Allow ESC to quit
                exit(-1);
        }
        else
            putchar('.');
        N = pts.size();
        pts.resize(N + n, cvPoint2D32f(0,0));
        active[lr].push_back((uchar)result);
    //assert( result != 0 );
        if( result )
        {
         //Calibration will suffer without subpixel interpolation
           cvFindCornerSubPix( img, &temp[0], count,
               cvSize(11, 11), cvSize(-1,-1),
               cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
               30, 0.01) );
           copy( temp.begin(), temp.end(), pts.begin() + N );
        }
        cvReleaseImage( &img );
    }
    fclose(f);
    printf("\n");
// HARVEST CHESSBOARD 3D OBJECT POINT LIST:
    nframes = active[0].size();//Number of good chessboads found
    objectPoints.resize(nframes*n);
    for( i = 0; i < ny; i++ )
        for( j = 0; j < nx; j++ )
        objectPoints[i*nx + j] =
        cvPoint3D32f(j*squareSize, i*squareSize, 0);
    for( i = 1; i < nframes; i++ )
        copy( objectPoints.begin(), objectPoints.begin() + n,
        objectPoints.begin() + i*n );
    npoints.resize(nframes,n);
    N = nframes*n;
    CvMat _objectPoints = cvMat(1, N, CV_32FC3, &objectPoints[0] );
    CvMat _imagePoints1 = cvMat(1, N, CV_32FC2, &points[0][0] );
    CvMat _imagePoints2 = cvMat(1, N, CV_32FC2, &points[1][0] );
    CvMat _npoints = cvMat(1, npoints.size(), CV_32S, &npoints[0] );
    cvSetIdentity(&_M1);
    cvSetIdentity(&_M2);
    cvZero(&_D1);
    cvZero(&_D2);
// CALIBRATE THE STEREO CAMERAS
    printf("Running stereo calibration ...");
    fflush(stdout);
    cvStereoCalibrate( &_objectPoints, &_imagePoints1,
        &_imagePoints2, &_npoints,
        &_M1, &_D1, &_M2, &_D2,
        imageSize, &_R, &_T, &_E, &_F,
        cvTermCriteria(CV_TERMCRIT_ITER+
        CV_TERMCRIT_EPS, 100, 1e-5),
        CV_CALIB_FIX_ASPECT_RATIO +
        CV_CALIB_ZERO_TANGENT_DIST +
        CV_CALIB_SAME_FOCAL_LENGTH );
    printf(" done\n");
// CALIBRATION QUALITY CHECK
// because the output fundamental matrix implicitly
// includes all the output information,
// we can check the quality of calibration using the
// epipolar geometry constraint: m2^t*F*m1=0
    vector<CvPoint3D32f> lines[2];
    points[0].resize(N);
    points[1].resize(N);
    _imagePoints1 = cvMat(1, N, CV_32FC2, &points[0][0] );
    _imagePoints2 = cvMat(1, N, CV_32FC2, &points[1][0] );
    lines[0].resize(N);
    lines[1].resize(N);
    CvMat _L1 = cvMat(1, N, CV_32FC3, &lines[0][0]);
    CvMat _L2 = cvMat(1, N, CV_32FC3, &lines[1][0]);
//Always work in undistorted space
    cvUndistortPoints( &_imagePoints1, &_imagePoints1,
        &_M1, &_D1, 0, &_M1 );
    cvUndistortPoints( &_imagePoints2, &_imagePoints2,
        &_M2, &_D2, 0, &_M2 );
    cvComputeCorrespondEpilines( &_imagePoints1, 1, &_F, &_L1 );
    cvComputeCorrespondEpilines( &_imagePoints2, 2, &_F, &_L2 );
    double avgErr = 0;
    for( i = 0; i < N; i++ )
    {
        double err = fabs(points[0][i].x*lines[1][i].x +
            points[0][i].y*lines[1][i].y + lines[1][i].z)
            + fabs(points[1][i].x*lines[0][i].x +
            points[1][i].y*lines[0][i].y + lines[0][i].z);
        avgErr += err;
    }
    printf( "avg err = %g\n", avgErr/(nframes*n) );
//COMPUTE AND DISPLAY RECTIFICATION
    if( showUndistorted )
    {
        CvMat* mx1 = cvCreateMat( imageSize.height,
            imageSize.width, CV_32F );
        CvMat* my1 = cvCreateMat( imageSize.height,
            imageSize.width, CV_32F );
        CvMat* mx2 = cvCreateMat( imageSize.height,
            imageSize.width, CV_32F );
        CvMat* my2 = cvCreateMat( imageSize.height,
            imageSize.width, CV_32F );
        CvMat* img1r = cvCreateMat( imageSize.height,
            imageSize.width, CV_8U );
        CvMat* img2r = cvCreateMat( imageSize.height,
            imageSize.width, CV_8U );
        CvMat* disp = cvCreateMat( imageSize.height,
            imageSize.width, CV_16S );
        CvMat* vdisp = cvCreateMat( imageSize.height,
            imageSize.width, CV_8U );
        CvMat* pair;
        double R1[3][3], R2[3][3], P1[3][4], P2[3][4];
        CvMat _R1 = cvMat(3, 3, CV_64F, R1);
        CvMat _R2 = cvMat(3, 3, CV_64F, R2);
// IF BY CALIBRATED (BOUGUET'S METHOD)
         if( useUncalibrated == 0 )
         {
             CvMat _P1 = cvMat(3, 4, CV_64F, P1);
             CvMat _P2 = cvMat(3, 4, CV_64F, P2);
             cvStereoRectify( &_M1, &_M2, &_D1, &_D2, imageSize,
                 &_R, &_T,
                 &_R1, &_R2, &_P1, &_P2, 0,
                 0/*CV_CALIB_ZERO_DISPARITY*/ );
             isVerticalStereo = fabs(P2[1][3]) > fabs(P2[0][3]);
   //Precompute maps for cvRemap()
           cvInitUndistortRectifyMap(&_M1,&_D1,&_R1,&_P1,mx1,my1);
           cvInitUndistortRectifyMap(&_M2,&_D2,&_R2,&_P2,mx2,my2);
         }
//OR ELSE HARTLEY'S METHOD
         else if( useUncalibrated == 1 || useUncalibrated == 2 )
      // use intrinsic parameters of each camera, but
      // compute the rectification transformation directly
      // from the fundamental matrix
          {
            double H1[3][3], H2[3][3], iM[3][3];
            CvMat _H1 = cvMat(3, 3, CV_64F, H1);
            CvMat _H2 = cvMat(3, 3, CV_64F, H2);
            CvMat _iM = cvMat(3, 3, CV_64F, iM);
      //Just to show you could have independently used F
              if( useUncalibrated == 2 )
                  cvFindFundamentalMat( &_imagePoints1,
                  &_imagePoints2, &_F);
              cvStereoRectifyUncalibrated( &_imagePoints1,
                  &_imagePoints2, &_F,
                  imageSize,
                  &_H1, &_H2, 3);
              cvInvert(&_M1, &_iM);
              cvMatMul(&_H1, &_M1, &_R1);
              cvMatMul(&_iM, &_R1, &_R1);
              cvInvert(&_M2, &_iM);
              cvMatMul(&_H2, &_M2, &_R2);
              cvMatMul(&_iM, &_R2, &_R2);
      //Precompute map for cvRemap()
             cvInitUndistortRectifyMap(&_M1,&_D1,&_R1,&_M1,mx1,my1);
             cvInitUndistortRectifyMap(&_M2,&_D1,&_R2,&_M2,mx2,my2);
        }
        else
            assert(0);
        cvNamedWindow( "rectified", 1 );
// RECTIFY THE IMAGES AND FIND DISPARITY MAPS
         if( !isVerticalStereo )
             pair = cvCreateMat( imageSize.height, imageSize.width*2,
             CV_8UC3 );
         else
             pair = cvCreateMat( imageSize.height*2, imageSize.width,
             CV_8UC3 );
//Setup for finding stereo correspondences
        CvStereoBMState *BMState = cvCreateStereoBMState();
        assert(BMState != 0);
        BMState->preFilterSize=41;
        BMState->preFilterCap=31;
        BMState->SADWindowSize=41;
        BMState->minDisparity=-64;
        BMState->numberOfDisparities=128;
        BMState->textureThreshold=10;
        BMState->uniquenessRatio=15;
        for( i = 0; i < nframes; i++ )
        {
            IplImage* img1=cvLoadImage(imageNames[0][i].c_str(),0);
            IplImage* img2=cvLoadImage(imageNames[1][i].c_str(),0);
            if( img1 && img2 )
            {
                CvMat part;
                cvRemap( img1, img1r, mx1, my1 );
                cvRemap( img2, img2r, mx2, my2 );
                if( !isVerticalStereo || useUncalibrated != 0 )
                {
             // When the stereo camera is oriented vertically,
             // useUncalibrated==0 does not transpose the
             // image, so the epipolar lines in the rectified
             // images are vertical. Stereo correspondence
             // function does not support such a case.
                   cvFindStereoCorrespondenceBM( img1r, img2r, disp,
                       BMState);
                   cvNormalize( disp, vdisp, 0, 256, CV_MINMAX );
                   cvNamedWindow( "disparity" );
                   cvShowImage( "disparity", vdisp );
               }
               if( !isVerticalStereo )
               {
                   cvGetCols( pair, &part, 0, imageSize.width );
                   cvCvtColor( img1r, &part, CV_GRAY2BGR );
                   cvGetCols( pair, &part, imageSize.width,
                       imageSize.width*2 );
                   cvCvtColor( img2r, &part, CV_GRAY2BGR );
                   for( j = 0; j < imageSize.height; j += 16 )
                       cvLine( pair, cvPoint(0,j),
                       cvPoint(imageSize.width*2,j),
                       CV_RGB(0,255,0));
               }
               else
               {
                   cvGetRows( pair, &part, 0, imageSize.height );
                   cvCvtColor( img1r, &part, CV_GRAY2BGR );
                   cvGetRows( pair, &part, imageSize.height,
                       imageSize.height*2 );
                   cvCvtColor( img2r, &part, CV_GRAY2BGR );
                   for( j = 0; j < imageSize.width; j += 16 )
                       cvLine( pair, cvPoint(j,0),
                       cvPoint(j,imageSize.height*2),
                       CV_RGB(0,255,0));
               }
               cvShowImage( "rectified", pair );
               if( cvWaitKey() == 27 )
                   break;
            }
            cvReleaseImage( &img1 );
            cvReleaseImage( &img2 );
       }
        cvReleaseStereoBMState(&BMState);
        cvReleaseMat( &mx1 );
        cvReleaseMat( &my1 );
        cvReleaseMat( &mx2 );
        cvReleaseMat( &my2 );
        cvReleaseMat( &img1r );
        cvReleaseMat( &img2r );
        cvReleaseMat( &disp );
    }
}
int main(void)
{
    StereoCalib("list.txt", 9, 6, 1);
    return 0;
}



Depth Maps from 3D Reprojection



Many algorithms will just use the disparity map directly—for example, to detect
          whether or not objects are on (stick out from) a table. But for 3D shape matching, 3D model
          learning, robot grasping, and so on, we need the actual 3D reconstruction or depth map. Fortunately, all
          the stereo machinery we’ve built up so far makes this easy. Recall the 4-by-4 reprojection
          matrix Q introduced in the section on calibrated stereo rectification. Also recall that, given the disparity d
          and a 2D point (x, y), we can derive the 3D depth using
            
[image: image with no caption]


where the 3D coordinates are then (X/W, Y/W, Z/W). Remarkably, Q
          encodes whether or not the cameras’ lines of sight were converging (cross eyed) as well as
          the camera baseline and the principal points in both images. As a result, we need not
          explicitly account for converging or frontal parallel cameras and may instead simply extract depth by matrix multiplication. OpenCV has two functions that do this for us.
          The first, which you are already familiar with, operates on an array of points and their
          associated disparities. It’s called cvPerspectiveTransform:
void cvPerspectiveTransform(
    const CvArr *pointsXYD,
    CvArr* result3DPoints,
    const CvMat *Q
);
The second (and new) function cvReprojectImageTo3D() operates on whole images:
void cvReprojectImageTo3D(
    CvArr *disparityImage,
    CvArr *result3DImage,
    CvArr *Q
);
This routine takes a single-channel disparityImage
          and transforms each pixel’s (x, y) coordinates along with that
          pixel’s disparity (i.e., a vector [x y
          d]T) to the corresponding 3D point (X/W,
            Y/W, Z/W) by using the 4-by-4 reprojection matrix Q. The
          output is a three-channel floating-point (or a 16-bit integer) image of the same size as
          the input.
Of course, both functions let you pass an arbitrary perspective transformation (e.g.,
          the canonical one) computed by cvStereoRectify or a
          superposition of that and the arbitrary 3D rotation, translation, et cetera.
The results of cvReprojectImageTo3D() on an image
          of a mug and chair are shown in Figure 12-17.


Structure from Motion



Structure from motion is an important topic in mobile robotics as well as in the analysis of more general video imagery such as might
        come from a handheld camcorder. The topic of structure from motion is a broad one, and a
        great deal of research has been done in this field. However, much can be accomplished by
        making one simple observation: In a static scene, an image taken by a camera that has moved
        is no different than an image taken by a second camera. Thus all of our intuition, as well
        as our mathematical and algorithmic machinery, is immediately portable to this situation. Of
        course, the descriptor “static” is crucial, but in many practical situations the scene is
        either static or sufficiently static that the few moved points can be treated as outliers by
        robust fitting methods.
[image: Example output of depth maps (for a mug and a chair) computed using cvFindStereoCorrespondenceBM() and cvReprojectImageTo3D() (image courtesy of Willow Garage)]

Figure 12-17. Example output of depth maps (for a mug and a chair) computed using
          cvFindStereoCorrespondenceBM() and cvReprojectImageTo3D() (image courtesy of Willow
          Garage)

Consider the case of a camera moving through a building. If the environment is
        relatively rich in recognizable features, as might be found with optical flow techniques such as cvCalcOpticalFlowPyrLK(), then we should be able to compute correspondences
        between enough points—from frame to frame—to reconstruct not only the trajectory of the
        camera (this information is encoded in the essential matrix E, which can be computed from the fundamental matrix F and the camera intrinsics matrix M) but also, indirectly, the overall three-dimensional
        structure of the building and the locations of all the aforementioned features in that
        building. The cvStereoRectifyUncalibrated() routine
        requires only the fundamental matrix in order to compute the basic structure of a scene up to a
        scale factor.

Fitting Lines in Two and Three Dimensions



A final topic of interest in this chapter is that of general line fitting. This can
        arise for many reasons and in a many contexts. We have chosen to discuss it here because one
        especially frequent context in which line fitting arises is that of analyzing points in
        three dimensions (although the function described here can also fit lines in two
        dimensions). Line-fitting algorithms generally use statistically robust techniques [Inui03,
        Meer91, Rousseeuw87]. The OpenCV line-fitting algorithm cvFitLine() can be used whenever line fitting is needed.
void cvFitLine(
  const CvArr* points,
  int          dist_type,
  double       param,
  double       reps,
  double       aeps,
  float*       line
);
The array points can be an
        N-by-2 or N-by-3 matrix of floating-point values
        (accommodating points in two or three dimensions), or it can be a sequence of cvPointXXX structures. [226] The argument dist_type indicates the distance
        metric that is to be minimized across all of the points (see Table 12-3).
Table 12-3. Metrics used for computing dist_type values
	
                Value of dist_type

              	
                Metric

              
	
                
                  CV_DIST_L2
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                  CV_DIST_L1
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                  CV_DIST_L12
                

              	
                
                  
[image: image with no caption]


                

              
	
                
                  CV_DIST_FAIR
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                  CV_DIST_WELSCH
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                  CV_DIST_HUBER
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The parameter param is used to set the parameter C
        listed in Table 12-3. This can be left set
        to 0, in which case the listed value from the table will be selected. We’ll get back to
          reps and aeps after
        describing line.
The argument line is the location at which the result
        is stored. If points is an N-by-2
        array, then line should be a pointer to an array of four
        floating-point numbers (e.g., float array[4]). If
          points is an N-by-3 array, then
          line should be a pointer to an array of six
        floating-point numbers (e.g., float array[6]). In the
        former case, the return values will be (vx,
            vy, x0,
          y0), where (vx,
            vy) is a normalized vector parallel to the fitted line
        and (x0, y0) is a point
        on that line. Similarly, in the latter (three-dimensional) case, the return values will be
            (vx, vy,
            vz, x0, y0,
            z0), where (vx,
            vy, vz) is a normalized vector
        parallel to the fitted line and (x0,
          y0,
          z0) is a point on that line. Given this line
        representation, the estimation accuracy parameters reps
        and aeps are as follows: reps is the requested accuracy of x0, y0[,
          z0] estimates and aeps is the requested
        angular accuracy for vx, vy[, vz]. The OpenCV
        documentation recommends values of 0.01 for both accuracy values.
cvFitLine() can fit lines in two or three dimensions.
        Since line fitting in two dimensions is commonly needed and since three-dimensional
        techniques are of growing importance in OpenCV (see Chapter 14), we
        will end with a program for line fitting, shown in Example 12-4. [227] In this code we first synthesize some 2D points noisily around a line, then add
        some random points that have nothing to do with the line (called
          outlier points), and finally fit a line to the points and display it.
        The cvFitLine() routine is good at ignoring the outlier
        points; this is important in real applications, where some measurements might be corrupted
        by high noise, sensor failure, and so on.
Example 12-4. Two-dimensional line fitting
#include "cv.h"
#include "highgui.h"
#include <math.h>

int main( int argc, char** argv )
{
  IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 );
  CvRNG rng = cvRNG(-1);

  cvNamedWindow( "fitline", 1 );

  for(;;) {

  char key;
  int i;
  int count    = cvRandInt(&rng)%100 + 1;
  int outliers = count/5;
  float a      = cvRandReal(&rng)*200;
  float b      = cvRandReal(&rng)*40;
  float angle  = cvRandReal(&rng)*CV_PI;
  float cos_a  = cos(angle);
  float sin_a  = sin(angle);
  CvPoint pt1, pt2;
  CvPoint* points = (CvPoint*)malloc( count * sizeof(points[0]));
  CvMat pointMat = cvMat( 1, count, CV_32SC2, points );
  float line[4];
  float d, t;

  b = MIN(a*0.3, b);
  // generate some points that are close to the line
  //
  for( i = 0; i < count - outliers; i++ ) {
      float x = (cvRandReal(&rng)*2-1)*a;
      float y = (cvRandReal(&rng)*2-1)*b;
      points[i].x = cvRound(x*cos_a - y*sin_a + img->width/2);
      points[i].y = cvRound(x*sin_a + y*cos_a + img->height/2);
  }

  // generate "completely off" points
  //
  for( ; i < count; i++ ) {
      points[i].x = cvRandInt(&rng) % img->width;
      points[i].y = cvRandInt(&rng) % img->height;
  }

  // find the optimal line
  //
  cvFitLine( &pointMat, CV_DIST_L1, 1, 0.001, 0.001, line );
  cvZero( img );

  // draw the points
  //
  for( i = 0; i < count; i++ )
    cvCircle(
      img,
      points[i],
      2,
     (i < count - outliers) ? CV_RGB(255, 0, 0) : CV_RGB(255,255,0),
     CV_FILLED, CV_AA,
     0
    );
  // ... and the line long enough to cross the whole image
  d = sqrt((double)line[0]*line[0] + (double)line[1]*line[1]);
  line[0] /= d;
  line[1] /= d;
  t = (float)(img->width + img->height);
  pt1.x = cvRound(line[2] - line[0]*t);
  pt1.y = cvRound(line[3] - line[1]*t);
  pt2.x = cvRound(line[2] + line[0]*t);
  pt2.y = cvRound(line[3] + line[1]*t);
  cvLine( img, pt1, pt2, CV_RGB(0,255,0), 3, CV_AA, 0 );

  cvShowImage( "fitline", img );

  key = (char) cvWaitKey(0);
  if( key == 27 || key == 'q' || key == 'Q' ) // 'ESC'
      break;
  free( points );
 }
 cvDestroyWindow( "fitline" );
 return 0;
}



Exercises



	Calibrate a camera using cvCalibrateCamera2() and
            at least 15 images of chessboards. Then use cvProjectPoints2() to project an arrow orthogonal to the chessboards (the
            surface normal) into each of the chessboard images using the rotation and translation
            vectors from the camera calibration.

	Three-dimensional joystick. Use a simple known object with at
            least four measured, non-coplanar, trackable feature points as input into the POSIT
            algorithm. Use the object as a 3D joystick to move a little stick figure in the
            image.

	In the text’s bird’s-eye view example, with a camera above the plane looking out
            horizontally along the plane, we saw that the homography of the ground plane had a
            horizon line beyond which the homography wasn’t valid. How can an infinite plane have a
            horizon? Why doesn’t it just appear to go on forever?
Hint: Draw lines to an equally spaced series of points on the plane going out away
              from the camera. How does the angle from the camera to each next point on the plane
              change from the angle to the point before?



	Implement a bird’s-eye view in a video camera looking at the ground plane. Run it in
            real time and explore what happens as you move objects around in the normal image versus
            the bird’s-eye view image.

	Set up two cameras or a single camera that you move between taking two
            images.
	Compute, store, and examine the fundamental matrix.

	Repeat the calculation of the fundamental matrix several times. How stable is
                the computation?




	If you had a calibrated stereo camera and were tracking moving points in both
            cameras, can you think of a way of using the fundamental matrix to find tracking
            errors?

	Compute and draw epipolar lines on two cameras set up to do stereo.

	Set up two video cameras, implement stereo rectification and experiment with depth
            accuracy.
	What happens when you bring a mirror into the scene?

	Vary the amount of texture in the scene and report the results.

	Try different disparity methods and report on the results.




	Set up stereo cameras and wear something that is textured over one of your arms. Fit
            a line to your arm using all the dist_type methods.
            Compare the accuracy and reliability of the different methods.






[189] This is a recurrent problem in robotics as well as many other vision applications.

[190] The “rotation vector” is in the usual Rodrigues representation.

[191] Remember that this rotation vector is an axis-angle representation of the rotation,
            so being set to all 0s means it has zero magnitude and thus “no rotation”.

[192] Recall from Chapter 11 that this special kind
            of homography is known as planar homography.

[193] The bird’s-eye view technique also works for transforming perspective views of any
              plane (e.g., a wall or ceiling) into frontal parallel views.

[194]  The construction finds a reference plane through the object that is parallel to the
            image plane; this plane through the object then has a single distance
              Z from the image plane. The 3D points on the object are first
            projected to this plane through the object and then projected onto the image plane using
            perspective projection. The result is scaled orthographic projection, and it makes
            relating object size to depth particularly easy.

[195] You might have noticed that many function names end in “2”. More often than not,
            this is because the function in the current release in the library has been modified
            from its older incarnation to use the newer style of arguments.

[196] Here we give just a high-level understanding. For details, we recommend the
            following texts: Trucco and Verri [Trucco98], Hartley and Zisserman [Hartley06], Forsyth
            and Ponce [Forsyth03], and Shapiro and Stockman [Shapiro02]. The stereo rectification
            sections of these books will give you the background to tackle the original papers
            cited in this chapter.

[197] By “row-aligned” we mean that the two image planes are coplanar and that the
                image rows are exactly aligned (in the same direction and having the same
                  y-coordinates).

[198] Every time we refer to left and right cameras you can also use vertically
                oriented up and down cameras, where disparities are in the
                y-direction rather than the
                x-direction.

[199] Two parallel principal rays are said to intersect at infinity.

[200] This makes for quite a few assumptions, but we are just looking at the basics
              right now. Remember that the process of rectification (to which we will return
              shortly) is how we get things done mathematically when these assumptions are not
              physically true. Similarly, in the next sentence we will temporarily “assume away” the
              correspondence problem.

[201] This formula is predicated on the principal rays intersecting at infinity.
              However, as you will see in “Calibrated Stereo Rectification” (later in this chapter),
              we derive stereo rectification relative to the principal points [image: ] and [image: ]. In our derivation, if the principal rays intersect at infinity
              then the principal points have the same coordinates and so the formula for depth holds
              as is. However, if the principal rays intersect at a finite distance then the
              principal points will not be equal and so the equation for depth becomes Z =
                fT / (d – ([image: ] – [image: ])).

[202] The exception to this advice is that for applications where we want more
              resolution at close range; in this case, we tilt the cameras slightly in toward each
              other so that their principal rays intersect at a finite distance. After mathematical
              alignment, the effect of such inward verging cameras is to introduce an
                x-offset that is subtracted from the disparity. This may result
              in negative disparities, but we can thus gain finer depth resolution at the nearby
              depths of interest.

[203] Since we are actually dealing with real lenses and not pinhole cameras, it is
              important that the two images be undistorted; see Chapter 11.

[204] You can see why the epipoles did not come up before: as the planes approach being
              perfectly parallel, the epipoles head out toward infinity!

[205] Because of occlusions and areas of overlapping view, it is certainly possible
                  that both cameras do not see the same points. Nevertheless, order is maintained.
                  If points A, B, and C are arranged left
                  to right on the left imager and if B is not seen on the right
                  imager owing to occlusion, then the right imager will still see points
                    A and C left to right.

[206] The next subsections are a bit mathy. If you do not like math then just skim over
              them; at least you’ll have confidence that somewhere, someone understands all of this
              stuff. For simple applications, you can just use the machinery that OpenCV provides
              without the need for all of the details in these next few pages.

[207] The astute reader will recognize that E was described in
              almost the exact same way as the homography matrix H in the
              previous section. Although both are constructed from similar information, they are not
              the same matrix and should not be confused. An essential part of the definition of
                H is that we were considering a plane viewed by a camera and
              thus could relate one point in that plane to the point on the camera plane. The matrix
                E makes no such assumption and so will only be able to relate a
              point in one image to a line in the other.

[208] Please do not confuse pl and
                    pr, which are points on the
                projective image planes, with Pl and
                    Pr, which are the locations of the
                point P in the coordinate frames of the two cameras.

[209] The cross product of vectors produces a third vector orthogonal to the first
                two. The direction is defined by the “right hand rule”: if you point in the
                direction a and bend your middle finger in the direction
                  b, then the cross product a X
                  b points perpendicular to a and
                  b in the direction of your thumb.

[210] Here we have replaced the dot product with matrix multiplication by the
                transpose of the normal vector.

[211] For a square n-by-n matrix like
                  E, rank deficient
                essentially means that there are fewer than n
                nonzero eigenvalues. As a result, a system of linear equations specified by a
                rank-deficient matrix does not have a unique solution. If the rank (number of
                nonzero eigenvalues) is n – 1 then there will be a line formed
                by a set of points all of which satisfy the system of equations. A system specified
                by a matrix of rank n – 2 will form a plane, and so
                forth.

[212] Note the equation that relates the fundamental matrix to the essential matrix.
                If we have rectified images and we normalize the points by dividing by the focal
                lengths, then the intrinsic matrix M becomes the identity
                matrix and F = E.

[213] You might be wondering what the N-by-3 or three-channel
                matrix is for. The algorithm will deal just fine with actual 3D points (x,
                  y, z) measured on the calibration object. Three-dimensional points will
                end up being scaled to (x/z, y/z), or you could enter 2D points
                in homogeneous coordinates (x, y, 1), which will be treated in
                the same way. If you enter (x, y, 0) then the algorithm will
                just ignore the 0. Using actual 3D points would be rare because usually you have
                only the 2D points detected on the calibration object.

[214] The inner workings of RANSAC and LMedS are beyond the scope of this book, but
                the basic idea of LMedS is to solve the problem many times using a random subset of
                the points and then take the particular solution closest to the average or the
                median solution. RANSAC takes a subset of points, estimates a solution, then adds
                from the remaining points only those points that are “consistent” with that
                solution. You do this many times, take the set of points that fits the best, and
                throw away the others as “outliers”. For more information, consult the original
                papers: Fischler and Bolles [Fischler81] for RANSAC; Rousseeuw [Rousseeuw84] for
                least median squares; and Inui, Kaneko, and Igarashi [Inui03] for line fitting using
                LMedS.

[215] See the footnote on How OpenCV handles all of this.

[216] Let’s be careful about what these terms mean:
                Pl and
                  Pr denote the locations of the 3D
              point P from the coordinate system of the left and right cameras
              respectively; Rl and
                  Tl (resp.,
                  Rr and
                  Tr) denote the rotation and
              translation vectors from the camera to the 3D point for the left (resp. right) camera;
              and R and T are the rotation and translation
              that bring the right-camera coordinate system into the left.

[217] The left and right cameras can be reversed in these equations either by reversing
              the subscripts in both equations or by reversing the subscripts and dropping the
              transpose of R in the translation equation only.

[218] For simplicity, think of “1” as denoting the left camera and “2” as denoting the
              right camera. You can interchange these as long as you consistently treat the
              resulting rotation and translation solutions in the opposite fashion to the text
              discussion. The most important thing is to physically align the cameras so that their
              scan lines approximately match in order to achieve good calibration results.

[219] Be careful: Trying to solve for too many parameters at once will sometimes cause
              the solution to diverge to nonsense values. Solving systems of equations is something
              of an art, and you must verify your results. You can see some of these considerations
              in the calibration and rectification code example, where we check our calibration
              results by using the epipolar constraint.

[220] Stereo rectification of an image in OpenCV is possible only when the epipole is
              outside of the image rectangle. Hence this rectification algorithm may not work with
              stereo configurations that are characterized by either a very wide baseline or when
              the cameras point towards each other too much.

[221] The Bouguet algorithm is a completion and simplification of the method first
              presented by Tsai [Tsai87] and Zhang [Zhang99; Zhang00]. Jean-Yves Bouguet never
              published this algorithm beyond its well-known implementation in his Camera
              Calibration Toolbox Matlab.

[222] Hartley’s algorithm works best for images that have been rectified
                previously by single-camera calibration. It won’t work at all for images with high
                distortion. It is rather ironic that our “calibration-free” routine works only for
                undistorted image inputs whose parameters are typically derived from prior
                calibration. For another uncalibrated 3D approach, see Pollefeys
                [Pollefeys99a].

[223] Again, cvStereoRectify() is a bit of a
                misnomer because the function computes the terms that we can use for rectification but doesn’t actually rectify the stereo images.

[224] This algorithm is available in an FPGA stereo hardware system from Videre (see
              [Videre]).

[225] OpenCV does not (yet) deal with the case of rectifying stereo images when the
              epipole is within the image frame. See, for example, Pollefeys, Koch, and Gool
              [Pollefeys99b] for a discussion of this case.

[226] Here XXX is used as a placeholder for anything
            like 2D32f or 3D64f.

[227] Thanks to Vadim Pisarevsky for generating this example.


Chapter 13. Machine Learning



What Is Machine Learning



The goal of machine learning (ML)[228] is to turn data into information. After learning from a collection of data, we
        want a machine to be able to answer questions about the data: What other data is most
        similar to this data? Is there a car in the image? What ad will the user respond to? There
        is often a cost component, so this question could become: “Of the products that we make the
        most money from, which one will the user most likely buy if we show them an ad for it?”
        Machine learning turns data into information by extracting rules or patterns from that
          data.
Training and Test Set



Machine learning works on data such as temperature values, stock prices, color
          intensities, and so on. The data is often preprocessed into features.
          We might, for example, take a database of 10,000 face images, run an edge detector on the
          faces, and then collect features such as edge direction, edge strength, and offset from
          face center for each face. We might obtain 500 such values per face or a feature vector of
          500 entries. We could then use machine learning techniques to construct some kind of model
          from this collected data. If we only want to see how faces fall into different groups
          (wide, narrow, etc.), then a clustering algorithm would be the
          appropriate choice. If we want to learn to predict the age of a person from (say) the
          pattern of edges detected on his or her face, then a classifier
          algorithm would be appropriate. To meet our goals, machine learning algorithms analyze our
          collected features and adjust weights, thresholds, and other parameters to maximize
          performance according to those goals. This process of parameter adjustment to meet a goal
          is what we mean by the term learning.
It is always important to know how well machine learning methods are working, and this can be a subtle task.
          Traditionally, one breaks up the original data set into a large training set (perhaps 9,000 faces, in our example) and a smaller test set (the remaining 1,000 faces). We can then run our classifier over the
          training set to learn our age prediction model given the data feature vectors. When we are done, we can
          test the age prediction classifier on the remaining images in the test set.
The test set is not used in training, and we do not let the classifier “see” the test
          set age labels. We run the classifier over each of the 1,000 faces in the test set of data
          and record how well the ages it predicts from the feature vector match the actual ages. If
          the classifier does poorly, we might try adding new features to our data or consider a
          different type of classifier. We’ll see in this chapter that there are many kinds of
          classifiers and many algorithms for training them.
If the classifier does well, we now have a potentially valuable model that we can
          deploy on data in the real world. Perhaps this system will be used to set the behavior of
          a video game based on age. As the person prepares to play, his or her face will be
          processed into 500 (edge direction, edge strength, offset from face center) features. This
          data will be passed to the classifier; the age it returns will set the game play behavior
          accordingly. After it has been deployed, the classifier sees faces that it never saw
          before and makes decisions according to what it learned on the training set.
Finally, when developing a classification system, we often use a validation data set. Sometimes, testing the whole system at the end is too big
          a step to take. We often want to tweak parameters along the way before submitting our
          classifier to final testing. We can do this by breaking the original 10,000-face data set
          into three parts: a training set of 8,000 faces, a validation set of 1,000 faces, and a
          test set of 1,000 faces. Now, while we’re running through the training data set, we can
          “sneak” pretests on the validation data to see how we are doing. Only when we are
          satisfied with our performance on the validation set do we run the classifier on the test
          set for final judgment.

Supervised and Unsupervised Data



Data sometimes has no labels; we might just want to see what kinds of groups the faces
          settle into based on edge information. Sometimes the data has labels, such as age. What
          this means is that machine learning data may be supervised (i.e., may
          utilize a teaching “signal” or “label” that goes with the data feature vectors). If the
          data vectors are unlabeled then the machine learning is
          unsupervised.
Supervised learning can be categorical, such as learning to
          associate a name to a face, or the data can have numeric or
            ordered labels, such as age. When the data has names (categories)
          as labels, we say we are doing classification. When the data is
          numeric, we say we are doing regression: trying to fit a numeric
          output given some categorical or numeric input data.
Supervised learning also comes in shades of gray: It can involve one-to-one pairing of
          labels with data vectors or it may consist of deferred learning
          (sometimes called reinforcement learning). In reinforcement learning,
          the data label (also called the reward or
            punishment) can come long after the individual data vectors were
          observed. When a mouse is running down a maze to find food, the mouse may experience a
          series of turns before it finally finds the food, its reward. That reward must somehow
          cast its influence back on all the sights and actions that the mouse took before finding
          the food. Reinforcement learning works the same way: the system receives a delayed signal
          (a reward or a punishment) and tries to infer a policy for future runs (a way of making
          decisions; e.g., which way to go at each step through the maze). Supervised learning can
          also have partial labeling, where some labels are missing (this is also called
            semisupervised learning), or noisy labels, where some labels are
          just wrong. Most ML algorithms handle only one or two of the situations just described.
          For example, the ML algorithms might handle classification but not regression; the algorithm might be able to do semisupervised learning but not
          reinforcement learning; the algorithm might be able to deal with numeric but not
          categorical data; and so on.
In contrast, often we don’t have labels for our data and are interested in seeing
          whether the data falls naturally into groups. The algorithms for such unsupervised
          learning are called clustering algorithms. In this situation, the
          goal is to group unlabeled data vectors that are “close” (in some predetermined or
          possibly even some learned sense). We might just want to see how faces are distributed: Do
          they form clumps of thin, wide, long, or short faces? If we’re looking at cancer data, do
          some cancers cluster into groups having different chemical signals? Unsupervised clustered
          data is also often used to form a feature vector for a higher-level supervised classifier.
          We might first cluster faces into face types (wide, narrow, long, short) and then use that
          as an input, perhaps with other data such as average vocal frequency, to predict the
          gender of a person.
These two common machine learning tasks, classification and clustering, overlap with two of the
          most common tasks in computer vision: recognition and segmentation. This is sometimes referred to as “the what” and
          “the where”. That is, we often want our computer to name the object in an image
          (recognition, or “what”) and also to say where the object appears (segmentation, or
          “where”). Because computer vision makes such heavy use of machine learning, OpenCV
          includes many powerful machine learning algorithms in the ML library, located in the …/
            opencv/ml directory.
Tip
The OpenCV machine learning code is general. That is, although it is highly useful
            for vision tasks, the code itself is not specific to vision. One could learn, say,
            genomic sequences using the appropriate routines. Of course, our concern here is mostly
            with object recognition given feature vectors derived from images.


Generative and Discriminative Models



Many algorithms have been devised to perform classification and clustering. OpenCV
          supports some of the most useful currently available statistical approaches to machine
          learning. Probabilistic approaches to machine learning, such as Bayesian networks or graphical models, are less well supported in OpenCV,
          partly because they are newer and still under active development. OpenCV tends to support
            discriminative algorithms, which give us the probability
          of the label given the data (P(L | D)), rather than
            generative algorithms, which give the distribution of the data
          given the label (P(D | L)). Although the distinction is not always
          clear, discriminative models are good for yielding predictions given the data while
          generative models are good for giving you more powerful representations of the data or for
          conditionally synthesizing new data (think of “imagining” an elephant; you’d be generating
          data given a condition “elephant”).
It is often easier to interpret a generative model because it models (correctly or
          incorrectly) the cause of the data. Discriminative learning often comes down to making a
          decision based on some threshold that may seem arbitrary. For example, suppose a patch of
          road is identified in a scene partly because its color “red” is less than 125. But does
          this mean that red = 126 is definitely not road? Such issues can be hard to interpret.
          With generative models you are usually dealing with conditional distributions of data
          given the categories, so you can develop a feel for what it means to be “close” to the
          resulting distribution.

OpenCV ML Algorithms



The machine learning algorithms included in OpenCV are given in Table 13-1. All algorithms are in the
            ML library with the exception of Mahalanobis and
            K-means, which are in CXCORE, and face
          detection, which is in CV.
Table 13-1. Machine learning algorithms supported in OpenCV, original references to the
            algorithms are provided after the descriptions
	
                  Algorithm

                	
                  Comment

                
	
                  Mahalanobis

                	
                  A distance measure that accounts for the “stretchiness” of the data
                    space by dividing out the covariance of the data. If the covariance is the
                    identity matrix (identical variance), then this measure is identical to the
                      Euclidean distance measure [Mahalanobis36].

                
	
                  K-means

                	
                  An unsupervised clustering algorithm that represents a distribution of data
                    using K centers, where K is chosen by
                    the user. The difference between this algorithm and expectation maximization is that here the centers are not Gaussian
                    and the resulting clusters look more like soap bubbles, since centers (in
                    effect) compete to “own” the closest data points. These cluster regions are
                    often used as sparse histogram bins to represent the data. Invented by Steinhaus
                    [Steinhaus56], as used by Lloyd [Lloyd57].

                
	
                  Normal/Naïve Bayes classifier

                	
                  A generative classifier in which features are assumed to be Gaussian
                    distributed and statistically independent from each other, a strong assumption
                    that is generally not true. For this reason, it’s often called a “naïve Bayes”
                    classifier. However, this method often works surprisingly well. Original mention
                    [Maron61; Minsky61].

                
	
                  Decision trees

                	
                  A discriminative classifier. The tree finds one data feature and a threshold
                    at the current node that best divides the data into separate classes. The data
                    is split and we recursively repeat the procedure down the left and right
                    branches of the tree. Though not often the top performer, it’s often the first
                    thing you should try because it is fast and has high functionality
                    [Breiman84].

                
	
                  Boosting

                	
                  A discriminative group of classifiers. The overall classification decision
                    is made from the combined weighted classification decisions of the group of
                    classifiers. In training, we learn the group of classifiers one at a time. Each
                    classifier in the group is a "weak” classifier (only just above chance performance). These
                      weak classifiers are typically composed of single-variable decision
                    trees called “stumps”. In training, the decision stump learns its classification
                    decisions from the data and also learns a weight for its “vote” from its
                    accuracy on the data. Between training each classifier one by one, the data
                    points are re-weighted so that more attention is paid to data points where
                    errors were made. This process continues until the total error over the data
                    set, arising from the combined weighted vote of the decision trees, falls below
                    a set threshold. This algorithm is often effective when a large amount of
                    training data is available [Freund97].

                
	
                  Random trees

                	
                  A discriminative forest of many decision trees, each built down to a large
                    or maximal splitting depth. During learning, each node of each tree is allowed
                    to choose splitting variables only from a random subset of the data features.
                    This helps ensure that each tree becomes a statistically independent decision
                    maker. In run mode, each tree gets an unweighted vote. This algorithm is often
                    very effective and can also perform regression by averaging the output numbers
                    from each tree [Ho95]; implemented: [Breiman01].

                
	
                  Face detector / Haar classifier

                	
                  An object detection application based on a clever use of boosting. The
                    OpenCV distribution comes with a trained frontal face detector that works
                    remarkably well. You may train the algorithm on other objects with the software
                    provided. It works well for rigid objects and characteristic views
                    [Viola04].

                
	
                  Expectation maximization (EM)

                	
                  A generative unsupervised algorithm that is used for clustering. It will fit
                      N multidimensional Gaussians to the data, where
                      N is chosen by the user. This can be an effective way to
                    represent a more complex distribution with only a few parameters (means and
                    variances). Often used in segmentation. Compare with K-means listed previously
                    [Dempster77].

                
	
                  K-nearest neighbors

                	
                  The simplest possible discriminative classifier. Training data are simply
                    stored with labels. Thereafter, a test data point is classified according to the majority vote of its
                    K nearest other data points (in a Euclidean sense of nearness). This is probably
                    the simplest thing you can do. It is often effective but it is slow and requires
                    lots of memory [Fix51].

                
	
                  Neural networks / Multilayer perceptron (MLP)

                	
                  A discriminative algorithm that (almost always) has “hidden units” between
                    output and input nodes to better represent the input signal. It can be slow to
                    train but is very fast to run. Still the top performer for things like letter
                    recognition [Werbos74; Rumelhart88].

                
	
                  Support vector machine (SVM)

                	
                  A discriminative classifier that can also do regression. A distance function between any two data points in a
                    higher-dimensional space is defined. (Projecting data into higher dimensions
                    makes the data more likely to be linearly separable.) The algorithm learns
                    separating hyperplanes that maximally separate the classes in the higher
                    dimension. It tends to be among the best with limited data, losing out to
                    boosting or random trees only when large data sets are available
                    [Vapnik95].

                




Using Machine Learning in Vision



In general, all the algorithms in Table 13-1 take as input a data vector made up
          of many features, where the number of features might well number in the thousands. Suppose
          your task is to recognize a certain type of object—for example, a person. The first problem that you will encounter is how to collect and label
            training data that falls into positive (there is a person in the scene) and
          negative (no person) cases. You will soon realize that people appear at different scales:
          their image may consist of just a few pixels, or you may be looking at an ear that fills
          the whole screen. Even worse, people will often be occluded: a man inside a car; a woman’s
          face; one leg showing behind a tree. You need to define what you actually mean by saying a
          person is in the scene.
Next, you have the problem of collecting data. Do you collect it from a security
          camera, go to http://www.flickr.com and attempt to find “person” labels, or
          both (and more)? Do you collect movement information? Do you collect other information,
          such as whether a gate in the scene is open, the time, the season, the temperature? An
          algorithm that finds people on a beach might fail on a ski slope. You need to capture the
          variations in the data: different views of people, different lightings, weather
          conditions, shadows, and so on.
After you have collected lots of data, how will you label it? You must first decide on
          what you mean by “label”. Do you want to know where the person is in the scene? Are
          actions (running, walking, crawling, following) important? You might end up with a million
          images or more. How will you label all that? There are many tricks, such as doing
          background subtraction in a controlled setting and collecting the segmented foreground
          humans who come into the scene. You can use data services to help in classification; for
          example, you can pay people to label your images through Amazon’s "mechanical turk” (http://www.mturk.com/mturk/welcome). If you
          arrange things to be simple, you can get the cost down to somewhere around a penny per
          label.
After labeling the data, you must decide which features to extract from the objects. Again, you must know what you are after.
          If people always appear right side up, there’s no reason to use rotation-invariant
          features and no reason to try to rotate the objects beforehand. In general, you must find
          features that express some invariance in the objects, such as scale-tolerant histograms of
          gradients or colors or the popular SIFT features.[229] If you have background scene information, you might want to first remove it to
          make other objects stand out. You then perform your image processing, which may consist of
          normalizing the image (rescaling, rotation, histogram equalization, etc.) and computing
          many different feature types. The resulting data vectors are each given the label
          associated with that object, action, or scene.
Once the data is collected and turned into feature vectors, you often want to break up
          the data into training, validation, and test sets. It is a “best practice” to do your learning, validation, and testing within a cross-validation framework. That
          is, the data is divided into K subsets and you run many training
          (possibly validation) and test sessions, where each session consists of different sets of
          data taking on the roles of training (validation) and test.[230] The test results from these separate sessions are then averaged to get the
          final performance result. Cross-validation gives a more accurate picture of how the
          classifier will perform when deployed in operation on novel data. (We’ll have more to say
          about this in what follows.)
Now that the data is prepared, you must choose your classifier. Often the choice of
          classifier is dictated by computational, data, or memory considerations. For some
          applications, such as online user preference modeling, you must train the classifier
          rapidly. In this case, nearest neighbors, normal Bayes, or decision trees would be a good
          choice. If memory is a consideration, decision trees or neural networks are space
          efficient. If you have time to train your classifier but it must run quickly, neural
          networks are a good choice, as are normal Bayes classifiers and support vector machines. If you have time to train but need high accuracy, then boosting and
            random trees are likely to fit your needs. If you just want an easy,
          understandable sanity check that your features are chosen well, then decision trees or
          nearest neighbors are good bets. For best “out of the box” classification performance, try
          boosting or random trees first.
Tip
There is no “best” classifier (see http://en.wikipedia.org/wiki/No_free_lunch_theorem). Averaged over all
            possible types of data distributions, all classifiers perform the same. Thus, we cannot
            say which algorithm in Table 13-1 is the
            “best”. Over any given data distribution or set of data distributions, however, there is
            usually a best classifier. Thus, when faced with real data it’s a good idea to try many
            classifiers. Consider your purpose: Is it just to get the right score, or is it to
            interpret the data? Do you seek fast computation, small memory requirements, or
            confidence bounds on the decisions? Different classifiers have different properties
            along these dimensions.


Variable Importance



Two of the algorithms in Table 13-1
          allow you to assess a variable’s importance.[231] Given a vector of features, how do you determine the importance of those
          features for classification accuracy? Binary decision trees do this directly: they are
          trained by selecting which variable best splits the data at each node. The top node’s
          variable is the most important variable; the next-level variables are the second most
          important, and so on. Random trees can measure variable importance using a technique
          developed by Leo Breiman;[232] this technique can be used with any classifier, but so far it is implemented
          only for decision and random trees in OpenCV.
One use of variable importance is to reduce the number of features your classifier
          must consider. Starting with many features, you train the classifier and then find the
          importance of each feature relative to the other features. You can then discard
          unimportant features. Eliminating unimportant features improves speed performance (since
          it eliminates the processing it took to compute those features) and makes training and
          testing quicker. Also, if you don’t have enough data, which is often the case, then
          eliminating unimportant variables can increase classification accuracy; this yields faster
            processing with better results.
Breiman’s variable importance algorithm runs as follows.
	Train a classifier on the training set.

	Use a validation or test set to determine the accuracy of the classifier.

	For every data point and a chosen feature, randomly choose a new value for that
              feature from among the values the feature has in the rest of the data set (called
              “sampling with replacement”). This ensures that the distribution of that feature will
              remain the same as in the original data set, but now the actual structure or meaning
              of that feature is erased (because its value is chosen at random from the rest of the
              data).

	Train the classifier on the altered set of training data and then measure the
              accuracy of classification on the altered test or validation data set. If randomizing
              a feature hurts accuracy a lot, then that feature is very important. If randomizing a
              feature does not hurt accuracy much, then that feature is of little importance and is
              a candidate for removal.

	Restore the original test or validation data set and try the next feature until we
              are done. The result is an ordering of each feature by its importance.



This procedure is built into random trees and decision trees. Thus, you can use random
          trees or decision trees to decide which variables you will actually use as features; then
          you can use the slimmed-down feature vectors to train the same (or another)
          classifier.

Diagnosing Machine Learning Problems



Getting machine learning to work well can be more of an art than a science. Algorithms
          often “sort of” work but not quite as well as you need them to. That’s where the art comes
          in; you must figure out what’s going wrong in order to fix it. Although we can’t go into
          all the details here, we’ll give an overview of some of the more common problems you might encounter.[233] First, some rules of thumb: More data beats less data, and better features
          beat better algorithms. If you design your features well—maximizing their independence
          from one another and minimizing how they vary under different conditions—then almost any
          algorithm will work well. Beyond that, there are two common problems:
	
              Bias
            
	Your model assumptions are too strong for the data, so the model won’t fit
                well.

	
              Variance
            
	Your algorithm has memorized the data including the noise,
                so it can’t generalize.



Figure 13-1 shows the basic setup for
          statistical machine learning. Our job is to model the true function f
          that transforms the underlying inputs to some output. This function may be a regression
          problem (e.g., predicting a person’s age from their face) or a category prediction problem (e.g., identifying a
          person given their facial features). For problems in the real world, noise and
          unconsidered effects can cause the observed outputs to differ from the theoretical
          outputs. For example, in face recognition we might learn a model of the measured distance between eyes, mouth, and nose to identify a face. But lighting variations from a nearby
          flickering bulb might cause noise in the measurements, or a poorly manufactured camera
          lens might cause a systematic distortion in the measurements that wasn’t considered as
          part of the model. These affects will cause accuracy to suffer.
[image: Setup for statistical machine learning: we train a classifier to fit a data set; the true model f is almost always corrupted by noise or unknown influences]

Figure 13-1. Setup for statistical machine learning: we train a classifier to fit a data set;
            the true model f is almost always corrupted by noise or unknown influences

Figure 13-2 shows under- and overfitting of data in the upper two panels and the consequences in terms of
          error with training set size in the lower two panels. On the left side of Figure 13-2 we attempt to train a classifier to
          predict the data in the lower panel of Figure 13-1. If we use a model that’s too
          restrictive—indicated here by the heavy, straight dashed line—then we can never fit the
          underlying true parabola f indicated by the thinner dashed line.
          Thus, the fit to both the training data and the test data will be poor, even with a lot of
          data. In this case we have bias because both training and test data are predicted poorly.
          On the right side of Figure 13-2 we fit the
          training data exactly, but this produces a nonsense function that fits every bit of noise.
          Thus, it memorizes the training data as well as the noise in that data. Once again, the
          resulting fit to the test data is poor. Low training error combined with high test error
          indicates a variance (overfit) problem.
Sometimes you have to be careful that you are solving the correct problem. If your
          training and test set error are low but the algorithm does not perform well in the real
          world, the data set may have been chosen from unrealistic conditions—perhaps because these
          conditions made collecting or simulating the data easier. If the algorithm just cannot
          reproduce the test or training set data, then perhaps the algorithm is the wrong one to
          use or the features that were extracted from the data are ineffective or the “signal” just
          isn’t in the data you collected. Table 13-2 lays out some possible fixes to the problems we’ve described here. Of course, this is not a complete list of the possible problems or solutions.
          It takes careful thought and design of what data to collect and what features to compute
          in order for machine learning to work well. It can also take some systematic thinking to
          diagnose machine learning problems.
[image: Poor model fitting in machine learning and its effect on training and test prediction performance, where the true function is graphed by the lighter dashed line at top: an underfit model for the data (upper left) yields high error in predicting the training and the test set (lower left), whereas an overfit model for the data (upper right) yields low error in the training data but high error in the test data (lower right)]

Figure 13-2. Poor model fitting in machine learning and its effect on training and test
            prediction performance, where the true function is graphed by the lighter dashed line at
            top: an underfit model for the data (upper left) yields high error in predicting the
            training and the test set (lower left), whereas an overfit model for the data (upper
            right) yields low error in the training data but high error in the test data (lower
            right)

Table 13-2. Problems encountered in machine learning and possible solutions to try; coming up
            with better features will help any problem
	
                  Problem

                	
                  Possible Solutions

                
	
                  Bias

                	
                  
                    
	More features can help make a better fit.

	Use a more powerful algorithm.




                  

                
	
                  Variance

                	
                  
                    
	More training data can help smooth the model.

	Fewer features can reduce overfitting.

	Use a less powerful algorithm.




                  

                
	
                  Good test/train, bad real world

                	
                  
                    
	Collect a more realistic set of data.




                  

                
	
                  Model can’t learn test or train

                	
                  	Redesign features to better capture invariance in the data.

	Collect new, more relevant data.

	Use a more powerful algorithm.




                    
                  

                



Cross-validation, bootstrapping, ROC curves, and confusion matrices



Finally, there are some basic tools that are used in machine learning to measure
            results. In supervised learning, one of the most basic problems is simply knowing how
            well your algorithm has performed: How accurate is it at classifying or fitting the
            data? You might think: “Easy, I’ll just run it on my test or validation data and get the
            result.” But for real problems, we must account for noise, sampling fluctuations, and
            sampling errors. Simply put, your test or validation set of data might not accurately
            reflect the actual distribution of data. To get closer to “guessing” the true
            performance of the classifier, we employ the technique of
              cross-validation and/or the closely related technique of
              bootstrapping.[234]
In its most basic form, cross-validation involves dividing the data into
              K different subsets of data. You train on K
            – 1 of the subsets and test on the final subset of data (the “validation set”) that
            wasn’t trained on. You do this K times, where each of the
              K subsets gets a “turn” at being the validation set, and then
            average the results.
Bootstrapping is similar to cross-validation, but the validation set is selected at
            random from the training data. Selected points for that round are used only in test, not
            training. Then the process starts again from scratch. You do this N times,
            where each time you randomly select a new set of validation data and average the results
            in the end. Note that this means some and/or many of the data points are reused in
            different validation sets, but the results are often superior compared to
            cross-validation.
Using either one of these techniques can yield more accurate measures of actual
            performance. This increased accuracy can in turn be used to tune parameters of the
            learning system as you repeatedly change, train, and measure.
Two other immensely useful ways of assessing, characterizing, and tuning classifiers
            are plotting the receiver operating characteristic (ROC) and
            filling in a confusion matrix; see Figure 13-3. The ROC curve measures the
            response over the performance parameter of the classifier over the full range of
            settings of that parameter. Let’s say the parameter is a threshold. Just to make this
            more concrete, suppose we are trying to recognize yellow flowers in an image and that we have a threshold on the color yellow as our
            detector. Setting the yellow threshold extremely high would mean that the classifier
            would fail to recognize any yellow flowers, yielding a false positive rate of 0 but at
            the cost of a true positive rate also at 0 (lower left part of the curve in Figure 13-3). On the other hand, if the
            yellow threshold is set to 0 then any signal at all counts as a recognition. This means
            that all of the true positives (the yellow flowers) are recognized as well as all the
            false positives (orange and red flowers); thus we have a false positive rate of 100%
            (upper right part of the curve in Figure 13-3). The best possible ROC curve
            would be one that follows the y-axis up to 100% and then cuts
            horizontally over to the upper right corner. Failing that, the closer the curve comes to
            the upper left corner, the better. One can compute the fraction of area under the ROC
            curve versus the total area of the ROC plot as a summary statistic of merit: The closer
            that ratio is to 1 the better is the classifier.
[image: Receiver operating curve (ROC) and associated confusion matrix: the former shows the response of correct classifications to false positives along the full range of varying a performance parameter of the classifier; the latter shows the false positives (false recognitions) and false negatives (missed recognitions)]

Figure 13-3. Receiver operating curve (ROC) and associated confusion matrix: the former shows
              the response of correct classifications to false positives along the full range of
              varying a performance parameter of the classifier; the latter shows the false
              positives (false recognitions) and false negatives (missed recognitions)

Figure 13-3 also shows a
              confusion matrix. This is just a chart of true and false
            positives along with true and false negatives. It is another quick way to assess the
            performance of a classifier: ideally we’d see 100% along the NW-SE diagonal and 0%
            elsewhere. If we have a classifier that can learn more than one class (e.g., a
            multilayer perceptron or random forest classifier can learn many different class labels
            at once), then the confusion matrix generalizes to many classes and you just keep track
            of the class to which each labeled data point was assigned.
Cost of misclassification. One thing we haven’t discussed much here is
            the cost of misclassification. That is, if our classifier is built to detect poisonous
            mushrooms (we’ll see an example that uses such a data set shortly) then we are willing
            to have more false negatives (edible mushrooms mistaken as poisonous) as long as we minimize false
            positives (poisonous mushrooms mistaken as edible). The ROC curve can help with this; we can set our ROC parameter to choose an
            operation point lower on the curve—toward the lower left of the graph in Figure 13-3. The other way of doing this is
            to weight false positive errors more than false negatives when generating the ROC curve.
            For example, you can set each false positive error to count as much as ten false
              negatives.[235] Some OpenCV machine learning algorithms, such as decision trees and
              SVM, can regulate this balance of “hit rate versus false alarm” by
            specifying prior probabilities of the classes themselves (which classes are expected to
            be more likely and which less) or by specifying weights of the individual training
            samples.
Mismatched feature variance. Another common problem with training some classifiers
            arises when the feature vector comprises features of widely different variances. For
            instance, if one feature is represented by lowercase ASCII characters then it ranges
            over only 26 different values. In contrast, a feature that is represented by the count
            of biological cells on a microscope slide might vary over several billion values. An algorithm such
            as K-nearest neighbors might then see the first feature as relatively constant
            (nothing to learn from) compared to the cell-count feature. The way to correct this
            problem is to preprocess each feature variable by normalizing for its variance. This
            practice is acceptable provided the features are not correlated with each other; when
            features are correlated, you can normalize by their average variance or by their
            covariance. Some algorithms, such as decision trees,[236] are not adversely affected by widely differing variance and so this
            precaution need not be taken. A rule of thumb is that if the algorithm depends in some
            way on a distance measure (e.g., weighted values) then you should normalize for
            variance. One may normalize all features at once and account for their covariance by
            using the Mahalanobis distance, which is discussed later in this chapter.[237]
We now turn to discussing some of the machine learning algorithms supported in
            OpenCV, most of which are found in the …/opencv/ml
            directory. We start with some of the class methods that are universal across the ML
            sublibrary.



Common Routines in the ML Library



This chapter is written to get you up and running with the machine learning algorithms.
        As you try out and become comfortable with different methods, you’ll also want to reference
        the …/opencv/docs/ref/opencvref_ml.htm manual that
        installs with OpenCV and/or the online OpenCV Wiki documentation (http://opencvlibrary.willowgarage.com/).
          Because this portion of the library is under active development, you
        will want to know about the latest and greatest available tools.
All the routines in the ML library[238] are written as C++ classes and all derived from the CvStatModel class, which holds the methods that are universal to all the
        algorithms. These methods are listed in Table 13-3. Note that in the CvStatModel there are two ways of storing and recalling the
        model from disk: save() versus write() and load() versus read(). For machine learning models, you should use the much
        simpler save() and load(), which essentially wrap the more complex write() and read() functions into an
        interface that writes and reads XML and YAML to and from disk. Beyond that, for learning
        from data the two most important functions, predict() and
          train(), vary by algorithm and will be discussed next.
Table 13-3. Base class methods for the machine learning (ML) library
	
                CvStatModel:: Methods

              	
                Description

              
	
                
                  
save(
   const char* filename,
   const char* name    = 0
)

                

              	
                Saves learned model in XML or YMAL. Use this method for storage.

              
	
                
                  
load(
   const char* filename,
   const char* name=0
);

                

              	
                Calls clear() and then loads XML or YMAL
                  model. Use this method for recall.

              
	
                
                  
clear()

                

              	
                De-allocates all memory. Ready for reuse.

              
	
                
                  
bool train(
  -data points-,
  [flags]
  -responses-,
  [flags etc]
) ;

                

              	
                The training function to learn a model of the dataset. Training is specific to the algorithm and so the input
                  parameters will vary.

              
	
                
                  
float predict(
   const CvMat* sample
   [,<prediction_params>]
 ) const;

                

              	
                After training, use this function to predict the label or value of a new
                  training point or points.

              
	
                Constructor, Destructor:

              	
                

              
	
                
                  
CvStatModel();
CvStatModel(
  const CvMat* train_data ...
);

                

              	
                Default constructor and constructor that allows creation and training of the
                  model in one shot.

              
	
                
                  
CvStatModel::~CvStatModel();

                

              	
                The destructor of the ML model.

              
	
                Write/Read support (but use save/load above
                    instead):

              	 
	
                
                  
write(
  CvFileStorage* storage,
  const char*    name
);

                

              	
                Generic CvFileStorage structured write to
                  disk, located in the cxcore library (discussed in Chapter 3) and called by save().

              
	
                
                  
read(
  CvFileStorage* storage,
  CvFileNode*    node
);

                

              	
                Generic file read to CvFileStorage
                  structure, located in the cxcore library and called by
                    load().

              



Training



The training prototype is as follows:
bool CvStatModel::train(
  const CvMat* train_data,
  [int tflag,]               ...,
  const CvMat* responses,    ...,
  [const CvMat* var_idx,]    ...,
  [const CvMat* sample_idx,] ...,
  [const CvMat* var_type,]   ...,
  [const CvMat* missing_mask,]
  <misc_training_alg_params> ...
);
The train() method for the machine learning algorithms can assume different forms according to what the
          algorithm can do. All algorithms take a CvMat matrix
          pointer as training data. This matrix must be of type 32FC1 (32-bit, floating-point, single-channel). CvMat does allow for multichannel images, but machine learning algorithms
          take only a single channel—that is, just a two-dimensional matrix of numbers. Typically
          this matrix is organized as rows of data points, where each “point” is represented as a
          vector of features. Hence the columns contain the individual features for each data point
          and the data points are stacked to yield the 2D single-channel training matrix. To belabor
          the topic: the typical data matrix is thus composed of (rows, columns) = (data points,
          features). However, some algorithms can handle transposed matrices directly. For such
          algorithms you may use the tflag parameter to tell the
          algorithm that the training points are organized in columns. This is just a convenience so
          that you won’t have to transpose a large data matrix. When the algorithm can handle both
          row-order and column-order data, the following flags apply.
	
              tflag = CV_ROW_SAMPLE
            
	Means that the feature vectors are stored as rows (default)

	
              tflag = CV_COL_SAMPLE
            
	Means that the feature vectors are stored as columns



The reader may well ask: What if my training data is not floating-point numbers but
          instead is letters of the alphabet or integers representing musical notes or names of
          plants? The answer is: Fine, just turn them into unique 32-bit floating-point numbers when
          you fill the CvMat. If you have letters as features or
          labels, you can cast the ASCII character to floats when filling the data array. The same
          applies to integers. As long as the conversion is unique, things should work—but remember
          that some routines are sensitive to widely differing variances among features. It’s
          generally best to normalize the variance of features as discussed previously. With the
          exception of the tree-based algorithms (decision trees, random trees, and boosting) that
          support both categorical and ordered input variables, all other OpenCV ML algorithms work
          only with ordered inputs. A popular technique for making ordered-input algorithms also
          work with categorical data is to represent them in 1-radix notation; for example, if the
          input variable color may have seven different values then it may be replaced by seven
          binary variables, where one and only one of the variables may be set to 1.
The parameter responses are either categorical labels such as “poisonous” or
          “nonpoisonous”, as with mushroom identification, or are regression values (numbers) such
          as body temperatures taken with a thermometer. The response values or “labels” are usually
          a one-dimensional vector of one value per data point—except for neural networks, which can
          have a vector of responses for each data point. Response values are one of two types: For
          categorical responses, the type can be integer (32SC1);
          for regression values, the response is 32-bit floating-point (32FC1). Observe also that some algorithms can deal only with classification
          problems and others only with regression; but others can handle both. In this last case,
          the type of output variable is passed either as a separate parameter or as a last element
          of a var_type vector, which can be set as
          follows.
	
              CV_VAR_CATEGORICAL
            
	Means that the output values are discrete class labels

	
              CV_VAR_ORDERED (= CV_VAR_NUMERICAL)
            
	Means that the output values are ordered; that is, different values can be
                compared as numbers and so this is a regression problem



The types of input variables can also be specified using var_type. However, algorithms of the regression type can handle only
          ordered-input variables. Sometimes it is possible to make up an ordering for categorical
          variables as long as the order is kept consistent, but this can sometimes cause
          difficulties for regression because the pretend “ordered” values may jump around wildly
          when they have no physical basis for their imposed order.
Many models in the ML library may be trained on a selected feature subset and/or on a
          selected sample subset of the training set. To make this easier for the user, the method
            train() usually includes the vectors var_idx and sample_idx as
          parameters. These may be defaulted to “use all data” by passing NULL values for these parameters, but var_idx can be used to indentify variables (features) of interest and
            sample_idx can identify data points of interest.
          Using these, you may specify which features and which sample points on which to train.
          Both vectors are either single-channel integer (CV_32SC1) vectors—that is, lists of zero-based indices—or single-channel
          8-bit (CV_8UC1) masks of active variables/samples,
          where a nonzero value signifies active. The parameter sample_idx is particularly helpful when you’ve read in a chunk of data and
          want to use some of it for training and some of it for test without
          breaking it into two different vectors.
Additionally, some algorithms can handle missing measurements. For example, when the
          authors were working with manufacturing data, some measurement features would end up
          missing during the time that workers took coffee breaks. Sometimes experimental data
          simply is forgotten, such as forgetting to take a patient’s temperature one day during a
          medical experiment. For such situations, the parameter missing_mask, an 8-bit matrix of the same dimensions as train_data, is used to mark the missed values (nonzero
          elements of the mask). Some algorithms cannot handle missing values, so the missing points should be interpolated by the user
          before training or the corrupted records should be rejected in advance. Other algorithms,
          such as decision tree and naïve Bayes, handle missing values in different ways. Decision trees use alternative
          splits (called “surrogate splits” by Breiman); the naïve Bayes algorithm infers the
          values.
Usually, the previous model state is cleared by clear() before running the training procedure. However, some algorithms may
          optionally update the model learning with the new training data instead of starting from scratch.

Prediction



When using the method predict(), the var_idx parameter that specifies which features were used in
          the train() method is remembered and then used to
          extract only the necessary components from the input sample. The general form of the
            predict() method is as follows:
float CvStatMode::predict(
  const CvMat* sample
  [, <prediction_params>]
) const;
This method is used to predict the response for a new input data vector. When using a
          classifier, predict() returns a class label. For the
          case of regression, this method returns a numerical value. Note that the input sample must
          have as many components as the train_data that was used
          for training. Additional prediction_params are
          algorithm-specific and allow for such things as missing feature values in tree-based
          methods. The function suffix const tells us that
          prediction does not affect the internal state of the model, so this method is thread-safe
          and can be run in parallel, which is useful for web servers performing image retrieval for
          multiple clients and for robots that need to accelerate the scanning of a scene.

Controlling Training Iterations



Although the iteration control structure CvTermCriteria has been discussed in other chapters, it is used by several
          machine learning routines. So, just to remind you of what the function is, we repeat it
            here.
typedef struct CvTermCriteria {
    int    type;     /* CV_TERMCRIT_ITER and/or CV_TERMCRIT_EPS */
    int    max_iter; /* maximum number of iterations */
    double epsilon;  /* stop when error is below this value    */
}
The integer parameter max_iter sets the total
          number of iterations that the algorithm will perform. The epsilon parameter sets an error threshold stopping criteria; when the error
          drops below this level, the routine stops. Finally, the type tells which of these two criteria to use, though you may add the
          criteria together and so use both (CV_TERMCRIT_ITER |
            CV_TERMCRIT_EPS). The defined values for term_crit.type are:
#define CV_TERMCRIT_ITER    1
#define CV_TERMCRIT_NUMBER  CV_TERMCRIT_ITER
#define CV_TERMCRIT_EPS     2
Let’s now move on to describing specific algorithms that are implemented in OpenCV. We
          will start with the frequently used Mahalanobis distance metric and then go into some
          detail on one unsupervised algorithm (K-means); both of these may be found in the
            cxcore library. We then move into the machine learning library proper with the normal Bayes classifier, after which
          we discuss decision-tree algorithms (decision trees, boosting, random trees, and Haar
          cascade). For the other algorithms we’ll provide short descriptions and usage
            examples.


Mahalanobis Distance



The Mahalanobis distance is a distance measure that accounts for
        the covariance or “stretch” of the space in which the data lies. If you know what a
          Z-score is then you can think of the Mahalanobis distance as a
        multidimensional analogue of the Z-score. Figure 13-4(a) shows an initial distribution
        between three sets of data that make the vertical sets look closer together. When we
        normalize the space by the covariance in the data, we see in Figure 13-4(b) that that horizontal data sets are
        actually closer together. This sort of thing occurs frequently; for instance, if we are
        comparing people’s height in meters with their age in days, we’d see very little variance in
        height to relate to the large variance in age. By normalizing for the variance we can obtain
        a more realistic comparison of variables. Some classifiers such as K-nearest neighbors deal
        poorly with large differences in variance, whereas other algorithms (such as decision trees)
        don’t mind it.
We can already get a hint for what the Mahalanobis distance must be by looking at Figure 13-4;[239] we must somehow divide out the covariance of the data while measuring distance.
        First, let us review what covariance is. Given a list X of
          N data points, where each data point may be of dimension (vector
        length) K with mean vector
          μx (consisting of individual means
          μ1,…,K), the covariance
        is a K-by-K matrix given by:
[image: image with no caption]

where E[·] is the expectation operator. OpenCV makes computing the
        covariance matrix easy, using
void cvCalcCovarMatrix(
  const CvArr** vects,
  int           count,
  CvArr*        cov_mat,
  CvArr*        avg,
  int           flags
);
This function is a little bit tricky. Note that vects
        is a pointer to a pointer of CvArr. This implies that we
        have vects[0] through vects[count-1], but it actually depends on the flags settings as described in what follows. Basically, there are two
        cases.
	Vects is a 1D vector of pointers to 1D vectors or
            2D matrices (the two dimensions are to accommodate images). That is, each vects[i] can point to a 1D or a 2D vector, which occurs if
            neither CV_COV_ROWS nor CV_COV_COLS is set. The accumulating covariance computation is scaled or
            divided by the number of data points given by count
            if CV_COVAR_SCALE is set.

	Often there is only one input vector, so use only vects[0] if either CV_COVAR_ROWS or
              CV_COVAR_COLS is set. If this is set, then scaling
            by the value given by count is ignored in favor of
            the number of actual data vectors contained in vects[0]. All the data points are then in:
[image: The Mahalanobis computation allows us to reinterpret the data’s covariance as a “stretch” of the space: (a) the vertical distance between raw data sets is less than the horizontal distance; (b) after the space is normalized for variance, the horizontal distance between data sets is less than the vertical distance]

Figure 13-4. The Mahalanobis computation allows us to reinterpret the data’s covariance as a
              “stretch” of the space: (a) the vertical distance between raw data sets is less than
              the horizontal distance; (b) after the space is normalized for variance, the
              horizontal distance between data sets is less than the vertical distance

	the rows of vects[0] if CV_COVAR_ROWS is set; or 

	the columns of vects[0] if instead CV_COVAR_COLS is set. You cannot set both row and column
                flags simultaneously (see flag descriptions for more details).






Vects can be of types 8UC1,
          16UC1, 32FC1, or 64FC1. In any case, vects contains a list of K-dimensional data
        points. To reiterate: count is how many vectors there are
        in vects[] for case 1 (CV_COVAR_ROWS and CV_COVAR_COLS not set);
        for case 2a and 2b (CV_COVAR_ROWS or CV_COVAR_COLS is set), count
        is ignored and the actual number of vectors in vects[0]
        is used instead. The resulting K-by-K covariance
        matrix will be returned in cov_mat, and it can be of type
          CV_32FC1 or CV_64FC1. Whether or not the vector avg is
        used depends on the settings of flags (see listing that
        follows). If avg is used then it has the same type as
          vects and contains the K-feature
        averages across vects. The parameter flags can have many combinations of settings formed by adding
        values together (for more complicated applications, refer to the …/opencv/docs/ref/opencvref_cxcore.htm documentation). In general, you will
        set flags to one of the following.
	
            CV_COVAR_NORMAL
          
	Do the regular type of covariance calculation as in the previously displayed
              equation. Average the results by the number in count if CV_COVAR_SCALE is not set;
              otherwise, average by the number of data points in vects[0].

	
            CV_COVAR_SCALE
          
	Normalize the computed covariance matrix.

	
            CV_COVAR_USE_AVG
          
	Use the avg matrix instead of automatically
              calculating the average of each feature. Setting this saves on computation time if you
              already have the averages (e.g., by having called cvAvg() yourself); otherwise, the routine will compute these averages for
                you.[240]



Most often you will combine your data into one big matrix, let’s say by rows of data
        points; then flags would be set as flags = CV_COVAR_NORMAL |
          CV_COVAR_SCALE | CV_COVAR_ROWS.
We now have the covariance matrix. For Mahalanobis distance, however, we’ll need to divide out the variance of the space and so
        will need the inverse covariance matrix. This is easily done by
        using:
double cvInvert(
  const CvArr* src,
  CvArr*       dst,
  int          method = CV_LU
);
In cvInvert(), the src matrix should be the covariance matrix calculated before and dst should be a same sized matrix, which will be filled with the
        inverse on return. You could leave the method at its
        default value, CV_LU, but it is better to set the method
        to CV_SVD_SYM.[241]
With the inverse covariance matrix 
[image: image with no caption]

 finally in hand, we can move on to the Mahalanobis distance measure. This
        measure is much like the Euclidean distance measure, which is the square root of the sum of
        squared differences between two vectors x and y, but it divides out the covariance of the space:
[image: image with no caption]

This distance is just a number. Note that if the covariance matrix is the identity
        matrix then the Mahalanobis distance is equal to the Euclidean distance. We finally arrive
        at the actual function that computes the Mahalanobis distance. It takes two input vectors
          (vec1 and vec2) and
        the inverse covariance in mat, and it returns the
        distance as a double:
double cvMahalanobis(
  const CvArr* vec1,
  const CvArr* vec2,
  CvArr*       mat
);
The Mahalanobis distance is an important measure of similarity between two different
        data points in a multidimensional space, but is not a clustering algorithm or classifier
        itself. Let us now move on, starting with the most frequently used clustering algorithm:
        K-means.

K-Means



K-means is a clustering algorithm implemented in the cxcore because it was
        written long before the ML library. K-means attempts to find the natural clusters or
        “clumps” in the data. The user sets the desired number of clusters and then K-means rapidly
        finds a good placement for those cluster centers, where “good” means that the cluster
        centers tend to end up located in the middle of the natural clumps of data. It is one of the
        most used clustering techniques and has strong similarities to the expectation maximization algorithm for Gaussian mixture (implemented as CvEM() in the ML library) as well as some similarities to the
          mean-shift algorithm discussed in Chapter 9
        (implemented as cvMeanShift() in the CV library). K-means
        is an iterative algorithm and, as implemented in OpenCV, is also known as Lloyd’s algorithm[242] or (equivalently) "Voronoi iteration”. The algorithm runs as follows.
	Take as input (a) a data set and (b) desired number of clusters
              K (chosen by the user).

	Randomly assign cluster center locations.

	Associate each data point with its nearest cluster center.

	Move cluster centers to the centroid of their data points.

	Return to step 3 until convergence (centroid does not move).



Figure 13-5 diagrams K-means in action;
        in this case, it takes just two iterations to converge. In real cases the algorithm often
        converges rapidly, but it can sometimes require a large number of iterations.
Problems and Solutions



K-means is an extremely effective clustering algorithm, but it does have three
          problems.
	K-means isn’t guaranteed to find the best possible solution to locating the
              cluster centers. However, it is guaranteed to converge to some solution (i.e., the
              iterations won’t continue indefinitely).

	K-means doesn’t tell you how many cluster centers you should use. If we had chosen
              two or four clusters for the example of Figure 13-5, then the results would be
              different and perhaps nonintuitive.

	K-means presumes that the covariance in the space either doesn’t matter or has
              already been normalized (cf. our discussion of the Mahalanobis distance).



Each one of these problems has a “solution”, or at least an approach that helps. The
          first two of these solutions depend on “explaining the variance of the data”. In K-means,
          each cluster center “owns” its data points and we compute the variance of those
          points.
[image: K-means in action for two iterations: (a) cluster centers are placed randomly and each data point is then assigned to its nearest cluster center; (b) cluster centers are moved to the centroid of their points; (c) data points are again assigned to their nearest cluster centers; (d) cluster centers are again moved to the centroid of their points]

Figure 13-5. K-means in action for two iterations: (a) cluster centers are placed randomly and
            each data point is then assigned to its nearest cluster center; (b) cluster centers are
            moved to the centroid of their points; (c) data points are again assigned to their
            nearest cluster centers; (d) cluster centers are again moved to the centroid of their
            points

The best clustering minimizes the variance without causing too much complexity (too
          many clusters). With that in mind, the listed problems can be ameliorated as
          follows.
	Run K-means several times, each with different placement of the cluster
              centers (easy to do, since OpenCV places the centers at random); then choose the run
              whose results exhibit the least variance.

	Start with one cluster and try an increasing number of clusters (up to some
              limit), each time employing the method of #1 as well. Usually the total variance will
              shrink quite rapidly, after which an “elbow” will appear in the variance curve; this
              indicates that a new cluster center does not significantly reduce the total variance.
              Stop at the elbow and keep that many cluster centers.

	Multiply the data by the inverse covariance matrix (as described in the
              “Mahalanobis Distance” section). For example, if the input data vectors
                D are organized as rows with one data point per row, then
              normalize the “stretch” in the space by computing a new data vector 
[image: image with no caption]

, where 
[image: image with no caption]

.




K-Means Code



The call for K-means is simple:
void cvKMeans2(
  const CvArr*   samples,
  int            cluster_count,
  CvArr*         labels,
  CvTermCriteria termcrit
);
The samples array is a matrix of multidimensional
          data points, one per row. There is a little subtlety here in that each element of the data
          point may be either a regular floating-point vector of CV_32FC1 numbers or a multidimensional point of type CV_32FC2 or CV_32FC3 or even CV_32FC(K).[243] The parameter cluster_count is simply how
          many clusters you want, and the return vector labels
          contains the final cluster index for each data point. We encountered termcrit in the section “Common Routines in the ML Library”
          and in the “Controlling Training Iterations” subsection.
It’s instructive to see a complete example of K-means in code (Example 13-1), because the data generation sections can be used to test
          other machine learning routines.
Example 13-1. Using K-means
#include "cxcore.h"
#include "highgui.h"

void main( int argc, char** argv )
{
    #define MAX_CLUSTERS 5
    CvScalar color_tab[MAX_CLUSTERS];
    IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 );
    CvRNG rng = cvRNG(0xffffffff);

    color_tab[0] = CV_RGB(255,0,0);
    color_tab[1] = CV_RGB(0,255,0);
    color_tab[2] = CV_RGB(100,100,255);
    color_tab[3] = CV_RGB(255,0,255);
    color_tab[4] = CV_RGB(255,255,0);

    cvNamedWindow( "clusters", 1 );

    for(;;)
    {
        int k, cluster_count = cvRandInt(&rng)%MAX_CLUSTERS + 1;
        int i, sample_count = cvRandInt(&rng)%1000 + 1;
        CvMat* points = cvCreateMat( sample_count, 1, CV_32FC2 );
        CvMat* clusters = cvCreateMat( sample_count, 1, CV_32SC1 );

        /* generate random sample from multivariate
           Gaussian distribution */
        for( k = 0; k < cluster_count; k++ )
        {
            CvPoint center;
            CvMat point_chunk;
            center.x = cvRandInt(&rng)%img->width;
            center.y = cvRandInt(&rng)%img->height;
            cvGetRows( points, &point_chunk,
                       k*sample_count/cluster_count,
                       k == cluster_count - 1 ? sample_count :
                       (k+1)*sample_count/cluster_count );
            cvRandArr( &rng, &point_chunk, CV_RAND_NORMAL,
                       cvScalar(center.x,center.y,0,0),
                       cvScalar(img->width/6, img->height/6,0,0) );
        }

        /* shuffle samples */
        for( i = 0; i < sample_count/2; i++ )
        {
            CvPoint2D32f* pt1 = (CvPoint2D32f*)points->data.fl +
                                 cvRandInt(&rng)%sample_count;
            CvPoint2D32f* pt2 = (CvPoint2D32f*)points->data.fl +
                                 cvRandInt(&rng)%sample_count;
            CvPoint2D32f temp;
            CV_SWAP( *pt1, *pt2, temp );
        }

        cvKMeans2( points, cluster_count, clusters,
                   cvTermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,
                                   10, 1.0 ));
        cvZero( img );
        for( i = 0; i < sample_count; i++ )
        {
            CvPoint2D32f pt = ((CvPoint2D32f*)points->data.fl)[i];
            int cluster_idx = clusters->data.i[i];
            cvCircle( img, cvPointFrom32f(pt), 2,
                      color_tab[cluster_idx], CV_FILLED );
        }

        cvReleaseMat( &points );
        cvReleaseMat( &clusters );

        cvShowImage( "clusters", img );

        int key = cvWaitKey(0);
        if( key == 27 ) // 'ESC'
            break;
    }
}


In this code we included highgui.h to use a
          window output interface and cxcore.h because it
          contains Kmeans2(). In main(), we set up the coloring of returned clusters for display, set the
          upper limit to how many cluster centers can be chosen at random to MAX_CLUSTERS (here 5) in cluster_count, and allow up to 1,000 data points, where the random value for
          this is kept in sample_count. In the outer for{} loop, which repeats until the Esc key is hit, we
          allocate a floating point matrix points to contain
            sample_count data points (in this case, a single
          column of 2D data points CV_32FC2) and allocate an
          integer matrix clusters to contain their resulting
          cluster labels, 0 through cluster_count - 1.
We next enter a data generation for{} loop that can
          be reused for testing other algorithms. For each cluster, we fill in the points array in successive chunks of size sample_count/cluster_count. Each chunk is filled with a normal distribution,
            CV_RAND_NORMAL, of 2D (CV_32FC2) data points centered on a randomly chosen 2D center.
The next for{} loop merely shuffles the resulting
          total “pack” of points. We then call cvKMeans2(), which
          runs until the largest movement of a cluster center is less than 1 (but allowing no more
          than ten iterations).
The final for{} loop just draws the results. This
          is followed by de-allocating the allocated arrays and displaying the results in the
            "clusters" image. Finally, we wait indefinitely (cvWaitKey(0)) to allow
          the user another run or to quit via the Esc key.


Naïve/Normal Bayes Classifier



The preceding routines are from cxcore. We’ll now
        start discussing the machine learning (ML) library section of OpenCV. We’ll begin with
        OpenCV’s simplest supervised classifier, CvNormalBayesClassifier, which is called both a normal
          Bayes classifier and a naïve Bayes classifier. It’s
        “naïve” because it assumes that all the features are independent from one another even though this is seldom the case
        (e.g., finding one eye usually implies that another eye is lurking nearby). Zhang discusses
        possible reasons for the sometimes surprisingly good performance of this classifier
        [Zhang04]. Naïve Bayes is not used for regression, but it’s an effective classifier that can
        handle multiple classes, not just two. This classifier is the simplest possible case of what
        is now a large and growing field known as Bayesian networks, or "probabilistic graphical models”. Bayesian networks are causal models; in Figure 13-6, for example, the face features in an
        image are caused by the existence of a face. In use, the face variable is considered a
          hidden variable and the face features—via image processing operations
        on the input image—constitute the observed evidence for the existence of a face. We call
        this a generative model because the face causally generates the face
        features. Conversely, we might start by assuming the face node is active and then randomly
        sample what features are probabilistically generated given that face is active.[244] This top-down generation of data with the same statistics as the learned causal
        model (here, the face) is a useful ability that a purely discriminative model does not possess. For example, one might generate faces for
        computer graphics display, or a robot might literally “imagine” what it should do next by
        generating scenes, objects, and interactions. In contrast to Figure 13-6, a discriminative model would have
        the direction of the arrows reversed.
[image: A (naïve) Bayesian network, where the lower-level features are caused by the presence of an object (the face)]

Figure 13-6. A (naïve) Bayesian network, where the lower-level features are caused by the presence
          of an object (the face)

Bayesian networks are a deep and initially difficult field to understand, but the naïve
          Bayes algorithm derives from a simple application of Bayes’ law. In this case,
        the probability (denoted p) of a face given the features (denoted, left
        to right in Figure 13-6, as LE, RE, N, M, H)
        is:
[image: image with no caption]

Just so you’ll know, in English this equation means:
[image: image with no caption]

In practice, we compute some evidence and then decide what object caused it. Since the
        computed evidence stays the same for the objects, we can drop that term. If we have many
        models then we need only find the one with the maximum numerator. The numerator is exactly
        the joint probability of the model with the data: p(face, LE, RE, N, M,
        H). We can then use the definition of conditional probability to derive the joint
        probability:
[image: image with no caption]

Applying our assumption of independence of features, the conditional features drop out.
        So, generalizing face to “object” and particular features to “all features”, we obtain the
        reduced equation:
[image: image with no caption]

To use this as an overall classifier, we learn models for the objects that we want. In
        run mode we compute the features and find the object that maximizes this equation. We
        typically then test to see if the probability for that “winning” object is over a given
        threshold. If it is, then we declare the object to be found; if not, we declare that no
        object was recognized.
Tip
If (as frequently occurs) there is only one object of interest, then you might ask:
          “The probability I’m computing is the probability relative to what?” In such cases, there
          is always an implicit second object—namely, the background—which is everything that is
            not the object of interest that we’re trying to learn and
          recognize.

Learning the models is easy. We take many images of the objects; we then compute
        features over those objects and compute the fraction of how many times a feature occurred
        over the training set for each object. In practice, we don’t allow zero probabilities
        because that would eliminate the chance of an object existing; hence zero probabilities are
        typically set to some very low number. In general, if you don’t have much data then simple
        models such as naïve Bayes will tend to outperform more complex models, which will “assume” too much
        about the data (bias).
Naïve/Normal Bayes Code



The training method for the normal Bayes classifier is:
bool CvNormalBayesClassifier::train(
  const CvMat* _train_data,
  const CvMat* _responses,
  const CvMat* _var_idx    = 0,
  const CvMat* _sample_idx = 0,
  bool         update      = false
);
This follows the generic method for training described previously, but it allows only
          data for which each row is a training point (i.e., as if tflag=CV_ROW_SAMPLE). Also, the input _train_data is a single-column CV_32FC1
          vector that can only be of type ordered, CV_VAR_ORDERED
          (numbers). The output label _responses is a vector
          column that can only be of categorical type CV_VAR_CATEGORICAL (integers, even if contained in a float vector). The
          parameters _var_idx and _sample_idx are optional; they allow you to mark (respectively) features and
          data points that you want to use. Mostly you’ll use all features and data and simply pass
            NULL for these vectors, but _sample_idx can be used to divide the training and test sets, for example.
          Both vectors are either single-channel integer (CV_32SC1) zero-based indexes or 8-bit (CV_8UC1) mask values, where 0 means to skip. Finally, update can be set to merely update the normal Bayes learning
          rather than to learn a new model from scratch.
The prediction for method for CvNormalBayesClassifier computes the most probable class for its input
          vectors. One or more input data vectors are stored as rows of the samples matrix. The predictions are returned in corresponding rows of the
            results vector. If there is only a single input in
          samples, then the resulting prediction is returned as a float value by the predict method and the results array may be set to NULL (the default). The format for the prediction
          method is:
float CvNormal BayesClassifier::predict(
  const CvMat* samples,
  CvMat*       results = 0
) const;
We move next to a discussion of tree-based classifiers.


Binary Decision Trees



We will go through decision trees in detail, since they are highly useful and use most
        of the functionality in the machine learning library (and thus serve well as an
        instructional example). Binary decision trees were invented by Leo Breiman and colleagues,[245] who named them classification and regression tree (CART)
        algorithms. This is the decision tree algorithm that OpenCV implements. The gist of the
        algorithm is to define an impurity metric relative to the data in every node of the tree. For example,
        when using regression to fit a function, we might use the sum of squared differences between
        the true value and the predicted value. We want to minimize the sum of differences (the
        “impurity”) in each node of the tree. For categorical labels, we define a measure that is
        minimal when most values in a node are of the same class. Three common measures to use are
          entropy, Gini index, and misclassification (all
        are described in this section). Once we have such a metric, a binary decision tree searches
        through the feature vector to find which feature combined with which threshold most purifies
        the data. By convention, we say that features above the threshold are “true” and that the
        data thus classified will branch to the left; the other data points branch right. This
        procedure is then used recursively down each branch of the tree until the data is of
        sufficient purity or until the number of data points in a node reaches a set
          minimum.
The equations for node impurity i(N) are given next. We must deal
        with two cases, regression and classification.
Regression Impurity



For regression or function fitting, the equation for node impurity is simply the
          square of the difference in value between the node value y and the
          data value x. We want to minimize:
[image: image with no caption]


Classification Impurity



For classification, decision trees often use one of three methods: entropy
            impurity, Gini impurity, or misclassification impurity.
          For these methods, we use the notation P(ωj)
          to denote the fraction of patterns at node N that are in class
              ωj. Each of these impurities has slightly
          different effects on the splitting decision. Gini is the most commonly used, but all the algorithms attempt to minimize the
            impurity at a node. Figure 13-7 graphs
          the impurity measures that we want to minimize.
Entropy impurity



[image: image with no caption]


Gini impurity



[image: image with no caption]


Misclassification impurity



[image: image with no caption]

[image: Decision tree impurity measures]

Figure 13-7. Decision tree impurity measures

Decision trees are perhaps the most widely used classification technology. This is
            due to their simplicity of implementation, ease of interpretation of results,
            flexibility with different data types (categorical, numerical, unnormalized and mixes thereof), ability to handle missing data through surrogate splits,
            and natural way of assigning importance to the data features by order of splitting.
            Decision trees form the basis of other algorithms such as boosting and random trees,
            which we will discuss shortly.


Decision Tree Usage



In what follows we describe perhaps more than enough for you to get decision trees
          working well. However, there are many more methods for accessing nodes, modifying splits,
          and so forth. For that level of detail (which few readers are likely ever to need) you
          should consult the user manual …/opencv/docs/ref/opencvref_ml.htm, particularly with regard to the classes
            CvDTree{}, the training class CvDTreeTrainData{}, and the nodes CvDTreeNode{} and splits
            CvDTreeSplit{}.
For a pragmatic introduction, we start by dissecting a specific example. In the
            …/opencv/samples/c directory, there is a mushroom.cpp file that runs decision trees on the agaricus-lepiota.data data file. This data file consists of a
          label “p” or “e” (denoting poisonous or edible, respectively) followed by 22 categorical attributes, each represented
          by a single letter. Observe that the data file is given in “comma separated value” (CSV)
          format, where the features’ values are separated from each other by commas. In mushroom.cpp there is a rather messy function mushroom_read_database() for reading in this particular data
          file. This function is rather overspecific and brittle but mainly it’s just filling three
          arrays as follows. (1) A floating-point matrix data[][], which has dimensions rows = number of data points by columns = number
          of features (22 in this case) and where all the features are converted from their
          categorical letter values to floating-point numbers. (2) A character matrix missing[][], where a “true” or “1” indicates a missing value
          that is indicated in the raw data file by a question mark and where all other values are
          set to 0. (3) A floating-point vector responses[],
          which contains the poison “p” or edible “e” response cast in floating-point values. In
          most cases you would write a more general data input program. We’ll now discuss the main
          working points of mushroom.cpp, all of which are
          called directly or indirectly from main() in the
          program.
Training the tree



For training the tree, we fill out the tree parameter structure CvDTreeParams{}:
struct CvDTreeParams {

  int   max_categories;       //Until pre-clustering
  int   max_depth;            //Maximum levels in a tree
  int   min_sample_count;     //Don't split a node if less
  int   cv_folds;             //Prune tree with K fold cross-validation
  bool  use_surrogates;       //Alternate splits for missing data
  bool  use_1se_rule;         //Harsher pruning
  bool  truncate_pruned_tree; //Don't "remember" pruned branches
  float regression_accuracy;  //One of the "stop splitting" criteria
  const float* priors;        //Weight of each prediction category

  CvDTreeParams() : max_categories(10), max_depth(INT_MAX),
    min_sample_count(10), cv_folds(10), use_surrogates(true),
    use_1se_rule(true), truncate_pruned_tree(true),
    regression_accuracy(0.01f), priors(NULL) { ; }

  CvDTreeParams(
    int          _max_depth,
    int          _min_sample_count,
    float        _regression_accuracy,
    bool         _use_surrogates,
    int          _max_categories,
    int          _cv_folds,
    bool         _use_1se_rule,
    bool         _truncate_pruned_tree,
    const float* _priors
  );
}
In the structure, max_categories has a default
            value of 10. This limits the number of categorical values before which the decision tree
            will precluster those categories so that it will have to test no more than 2
              max_categories
            –2 possible value subsets.[246] This isn’t a problem for ordered or numerical features, where the algorithm
            just has to find a threshold at which to split left or right. Those variables that have
            more categories than max_categories will have their
            category values clustered down to max_categories
            possible values. In this way, decision trees will have to test no more than max_categories levels at a time. This parameter, when set to
            a low value, reduces computation at the cost of accuracy.
The other parameters are fairly self-explanatory. The last parameter, priors, can be crucial. It sets the relative weight that you
            give to misclassification. That is, if the weight of the first category is 1 and the
            weight of the second category is 10, then each mistake in predicting the second category
            is equivalent to making 10 mistakes in predicting the first category. In the code we
            have edible and poisonous mushrooms, so we “punish” mistaking a poisonous
            mushroom for an edible one 10 times more than mistaking an edible mushroom for a
            poisonous one.
The template of the methods for training a decision tree is shown below. There are
            two methods: the first is used for working directly with decision trees; the second is
            for ensembles (as used in boosting) or forests (as used in random trees).
// Work directly with decision trees:
  bool CvDTree::train(
  const CvMat*  _train_data,
  int           _tflag,
  const CvMat*  _responses,
  const CvMat*  _var_idx      = 0,
  const CvMat*  _sample_idx   = 0,
  const CvMat*  _var_type     = 0,
  const CvMat*  _missing_mask = 0,
  CvDTreeParams params        = CvDTreeParams()
);

// Method that ensembles of decision trees use to call individual

// training for each tree in the ensemble
bool CvDTree::train(
  CvDTreeTrainData* _train_data,
  const CvMat*      _subsample_idx
);
In the train() method, we have the floating-point
              _train_data[][] matrix. In that matrix, if _tflag is set to CV_ROW_SAMPLE then each row is a data point consisting of a vector of
            features that make up the columns of the matrix. If tflag is set to CV_COL_SAMPLE, the row
            and column meanings are reversed. The _responses[]
            argument is a floating-point vector of values to be predicted given the data features.
            The other parameters are optional. The vector _var_idx indicates features to include, and the vector _sample_idx indicates data points to include; both of these
            vectors are either zero-based integer lists of values to skip or 8-bit masks of active
            (1) or skip (0) values (see our general discussion of the train() method earlier in the chapter). The byte (CV_8UC1) vector _var_type is a
            zero-based mask for each feature type (CV_VAR_CATEGORICAL or CV_VAR_ORDERED[247]); its size is equal to the number of features plus 1. That last entry is for
            the response type to be learned. The byte-valued _missing_mask[][] matrix is used to indicate missing values with a 1 (else
            0 is used). Example 13-2 details the creation
            and training of a decision tree.
Example 13-2. Creating and training a decision tree
float priors[] = { 1.0, 10.0}; // Edible vs poisonous weights

CvMat* var_type;

var_type = cvCreateMat( data->cols + 1, 1, CV_8U );

cvSet( var_type, cvScalarAll(CV_VAR_CATEGORICAL) ); // all these vars
                                                    // are categorical
CvDTree* dtree;
dtree = new CvDTree;
dtree->train(
  data,
  CV_ROW_SAMPLE,
  responses,
  0,
  0,
  var_type,
  missing,
  CvDTreeParams(
    8,     // max depth
    10,    // min sample count
    0,     // regression accuracy: N/A here
    true,  // compute surrogate split,
           //   since we have missing data
    15,    // max number of categories
           //   (use suboptimal algorithm for
           //   larger numbers)
    10,    // cross-validations
    true,  // use 1SE rule => smaller tree
    true,  // throw away the pruned tree branches
    priors // the array of priors, the bigger
           //   p_weight, the more attention
           //   to the poisonous mushrooms
  )
);


In this code the decision tree dtree is declared
              and allocated. The dtree->train()
            method is then called. In this case, the vector of responses[] (poisonous or edible) was set to the ASCII value of “p” or “e” (respectively) for each
            data point. After the train() method terminates,
              dtree is ready to be used for predicting new data. The decision tree may also be saved to disk via
              save() and loaded via load() (each method is shown below).[248] Between the saving and the loading, we reset and zero out the tree by
            calling the clear() method.
dtree->save("tree.xml","MyTree");

dtree->clear();

dtree->load("tree.xml","MyTree");
This saves and loads a tree file called tree.xml. (Using the .xml extension
            stores an XML data file; if we used a .yml or
              .yaml extension, it would store a YAML data
            file.) The optional "MyTree" is a tag that labels the
            tree within the tree.xml file. As with other
            statistical models in the machine learning module, multiple objects cannot be stored in
            a single .xml or .yml file when using save(); for
            multiple storage one needs to use cvOpenFileStorage()
            and write(). However, load() is a different story: this function can load an object by its name
            even if there is some other data stored in the file.
The function for prediction with a decision tree is:
CvDTreeNode* CvDTree::predict(
  const CvMat* _sample,
  const CvMat* _missing_data_mask = 0,
  bool         raw_mode           = false
) const;
Here _sample is a floating-point vector of
            features used to predict; _missing_data_mask is a
            byte vector of the same length and orientation[249] as the _sample vector, in which nonzero
            values indicate a missing feature value. Finally, raw_mode indicates unnormalized data with “false” (the default) or “true”
            for normalized input categorical data values. This is mainly used in ensembles of trees
            to speed up prediction. Normalizing data to fit within the (0, 1) interval is simply a
            computational speedup because the algorithm then knows the bounds in which data may
            fluctuate. Such normalization has no effect on accuracy. This method returns a node of
            the decision tree, and you may access the predicted value using (CvDTreeNode *)->value which is returned by the dtree->predict() method (see CvDTree::predict() described previously):
double r = dtree->predict( &sample, &mask )->value;
Finally, we can call the useful var_importance()
            method to learn about the importance of the individual features. This function will
            return an N-by-1 vector of type double (CV_64FC1) containing each feature’s relative importance for prediction,
            where the value 1 indicates the highest importance and 0 indicates absolutely not important or useful for prediction.
            Unimportant features may be eliminated on a second-pass training. (See Figure 13-12 for a display of variable importance.) The call is as follows:
const CvMat* var_importance = dtree->get_var_importance();
As demonstrated in the …/opencv/samples/c/mushroom.cpp file, individual elements of the
            importance vector may be accessed directly via
double val = var_importance->data.db[i];
Most users will only train and use the decision trees, but advanced or research
            users may sometimes wish to examine and/or modify the tree nodes or the splitting
            criteria. As stated in the beginning of this section, the information for how to do this
            is in the ML documentation that ships with OpenCV at …/opencv/docs/ref/opencvref_ml.htm#ch_dtree, which can also be accessed
            via the OpenCV Wiki (http://opencvlibrary.sourceforge.net/). The sections
            of interest for such advanced analysis are the class structure CvDTree{}, the training structure CvDTreeTrainData{}, the node structure CvDTreeNode{}, and its contained split structure CvDTreeSplit{}.


Decision Tree Results



Using the code just described, we can learn several things about edible or poisonous
          mushrooms from the agaricus-lepiota.data file. If we
          just train a decision tree without pruning, so that it learns the data perfectly, we get the tree shown in Figure 13-8. Although the full decision tree
          learns the training set of data perfectly, remember the lesson of Figure 13-2 (overfitting). What we’ve done in
            Figure 13-8 is to memorize the data
          together with its mistakes and noise. Thus, it is unlikely to perform well on real data.
          That is why OpenCV decision trees and CART type trees typically include an additional step
          of penalizing complex trees and pruning them back until complexity is in balance with
          performance. There are other decision tree implementations that grow the tree only until
          complexity is balanced with performance and so combine the pruning phase with the learning
          phase. However, during development of the ML library it was found that trees that are
          fully grown first and then pruned (as implemented in OpenCV) performed better than those
          that combine training with pruning in their generation phase.
Figure 13-9 shows a pruned tree that
          still does quite well (but not perfectly) on the training set but will probably perform
          better on real data because it has a better balance between bias and variance. Yet this
          classifier has an serious shortcoming: Although it performs well on the data, it still
          labels poisonous mushrooms as edible 1.23% of the time. Perhaps we’d be happier with a
          worse classifier that labeled many edible mushrooms as poisonous provided it never invited us to eat a poisonous
          mushroom! Such a classifier can be created by intentionally biasing the classifier and/or the data. This is sometimes
          referred to as adding a cost to the classifier. In our case, we want
          to add a higher cost for misclassifying poisonous mushrooms than for misclassifying
            edible mushrooms. Cost can be imposed “inside” a classifier by changing the
          weighting of how much a “bad” data point counts versus a “good” one. OpenCV allows you to
          do this by adjusting the priors vector in the CvDTreeParams{} structure passed to the train() method, as we have discussed previously. Even without
          going inside the classifier code, we can impose a prior cost by duplicating (or resampling
          from) “bad” data. Duplicating “bad” data points implicitly gives a higher weight to the
          “bad” data, a technique that can work with any classifier.
[image: Full decision tree for poisonous (p) or edible (e) mushrooms: this tree was built out to full complexity for 0% error on the training set and so would probably suffer from variance problems on test or real data (the dark portion of a rectangle represents the poisonous portion of mushrooms at that phase of categorization)]

Figure 13-8. Full decision tree for poisonous (p) or edible (e) mushrooms: this tree was built
            out to full complexity for 0% error on the training set and so would probably suffer
            from variance problems on test or real data (the dark portion of a rectangle represents
            the poisonous portion of mushrooms at that phase of categorization)

Figure 13-10 shows a tree where a 10 X
          bias was imposed against poisonous mushrooms. This tree makes no mistakes on poisonous
          mushrooms at a cost of many more mistakes on edible mushrooms’a case of “better safe than sorry”. Confusion matrices for the (pruned) unbiased and biased trees are shown in
            Figure 13-11.
[image: Pruned decision tree for poisonous (p) and edible (e) mushrooms: despite being pruned, this tree shows low error on the training set and would likely work well on real data]

Figure 13-9. Pruned decision tree for poisonous (p) and edible (e) mushrooms: despite being
            pruned, this tree shows low error on the training set and would likely work well on real
            data

[image: An edible mushroom decision tree with 10 × bias against misidentification of poisonous mushrooms as edible; note that the lower right rectangle, though containing a vast majority of edible mushrooms, does not contain a 10 × majority and so would be classified as inedible]

Figure 13-10. An edible mushroom decision tree with 10 × bias against misidentification of
            poisonous mushrooms as edible; note that the lower right rectangle, though containing a
            vast majority of edible mushrooms, does not contain a 10 × majority and so would be
            classified as inedible

Finally, we can learn something more from the data by using the variable
            importance machinery that comes with the tree-based classifiers in
            OpenCV.[250] Variable importance measurement techniques were discussed in a previous
          subsection, and they involve successively perturbing each feature and then measuring the
          effect on classifier performance. Features that cause larger drops in performance when
          perturbed are more important. Also, decision trees directly show importance via the splits
          they found in the data: the first splits are presumably more important than later splits.
          Splits can be a useful indicator of importance, but they are done in a “greedy”
          fashion—finding which split most purifies the data now. It is often
          the case that doing a worse split first leads to better splits later, but these trees
          won’t find this out.[251] The variable importance for poisonous mushrooms is shown in Figure 13-12 for both the unbiased and the biased trees. Note that the order of important variables
          changes depending on the bias of the trees.
[image: Confusion matrices for (pruned) edible mushroom decision trees: the unbiased tree yields better overall performance (top panel) but sometimes misclassifies poisonous mushrooms as edible; the biased tree does not perform as well overall (lower panel) but never misclassifies poisonous mushrooms]

Figure 13-11. Confusion matrices for (pruned) edible mushroom decision trees: the unbiased tree
            yields better overall performance (top panel) but sometimes misclassifies poisonous
            mushrooms as edible; the biased tree does not perform as well overall (lower panel) but
            never misclassifies poisonous mushrooms



Boosting



Decision trees are extremely useful, but they are often not the best-performing
        classifiers. In this and the next section we present two techniques,
          boosting and random trees, that use trees in
        their inner loop and so inherit many of the useful properties of trees (e.g., being able to
        deal with mixed and unnormalized data types and missing features). These techniques
        typically perform at or near the state of the art; thus they are often the best “out of the
        box” supervised classification techniques[252] available in the library.
Within in the field of supervised learning there is a meta-learning
        algorithm (first described by Michael Kerns in 1988) called statistical boosting. Kerns wondered
        whether it is possible to learn a strong classifier out of many weak classifiers.[253] The first boosting algorithm, known as AdaBoost, was formulated
        shortly thereafter by Freund and Schapire.[254] OpenCV ships with four types of boosting:
[image: Variable importance for edible mushroom as measured by an unbiased tree (left panel) and a tree biased against poison (right panel)]

Figure 13-12. Variable importance for edible mushroom as measured by an unbiased tree (left panel)
          and a tree biased against poison (right panel)

	CvBoost :: DISCRETE (discrete AdaBoost)

	CvBoost :: REAL (real AdaBoost)

	CvBoost :: LOGIT (LogitBoost)

	CvBoost :: GENTLE (gentle AdaBoost)



Each of these are variants of the original AdaBoost, and often we find that the “real”
        and “gentle” forms of AdaBoost work best. Real AdaBoost is a technique
        that utilizes confidence-rated predictions and works well with categorical data.
          Gentle AdaBoost puts less weight on outlier data points and for that
        reason is often good with regression data. LogitBoost can also produce
        good regression fits. Because you need only set a flag, there’s no reason not to try all
        types on a data set and then select the boosting method that works best.[255] Here we’ll describe the original AdaBoost. For classification it should be noted
        that, as implemented in OpenCV, boosting is a two-class (yes-or-no) classifier[256] (unlike the decision tree or random tree classifiers, which can handle multiple
        classes at once). Of the different OpenCV boosting methods, LogitBoost and GentleBoost (referenced in
        the “Boosting Code” subsection to follow) can be used to perform regression in addition to
        binary classification.
AdaBoost



Boosting algorithms are used to train T
          weak classifiers ht,
            
[image: image with no caption]

. These classifiers are generally very simple individually. In most cases
          these classifiers are decision trees with only one split (called decision
            stumps) or at most a few levels of splits (perhaps up to three). Each of the
          classifiers is assigned a weighted vote α
            t
           in the final decision-making process. We use a labeled data set of input
          feature vectors xi, each with scalar label
              yi (where i =
            1,…,M data points). For AdaBoost the label is binary,
            
[image: image with no caption]

, though it can be any floating-point number in other algorithms. We
          initialize a data point weighting distribution
            Dt(i) that tells the algorithm how much
          misclassifying a data point will “cost”. The key feature of boosting is that, as the
          algorithm progresses, this cost will evolve so that weak classifiers trained later will focus on the data points that the earlier
          trained weak classifiers tended to do poorly on. The algorithm is as follows.
	D1(i) =
                1/m, i = 1,…,m.

	For t = 1,…,T:
	Find the classifier ht that
                  minimizes the Dt(i) weighted
                  error:

	[image: image with no caption]

, where 
[image: image with no caption]

 (for yi ≠
                      hj(xi)) as long as
                    
[image: image with no caption]

; else quit.

	Set the ht voting weight
                    
[image: image with no caption]

, where 
[image: image with no caption]

 is the arg min error from step 2b.

	Update the data point weights: 
[image: image with no caption]

, where Zt normalizes
                  the equation over all data points i.






Note that, in step 2b, if we can’t find a classifier with less than a 50% error rate
          then we quit; we probably need better features.
When the training algorithm just described is finished, the final strong classifier
          takes a new input vector x and classifies it using a weighted sum
          over the learned weak classifiers ht:
[image: image with no caption]

Here, the sign function converts anything positive
          into a 1 and anything negative into a –1 (zero remains 0).

Boosting Code



There is example code in …/opencv/samples/c/letter_recog.cpp that shows how to use boosting, random
          trees and back-propagation (aka multilayer perception, MLP). The code for boosting is similar to the code for decision trees but with
          its own control parameters:
struct CvBoostParams : public CvDTreeParams {
  int    boost_type;        // CvBoost:: DISCRETE, REAL, LOGIT, GENTLE
  int    weak_count;        // How many classifiers
  int    split_criteria;    // CvBoost:: DEFAULT, GINI, MISCLASS, SQERR
  double weight_trim_rate;
  CvBoostParams();
  CvBoostParams(
    int          boost_type,
    int          weak_count,
    double       weight_trim_rate,
    int          max_depth,
    bool         use_surrogates,
    const float* priors
  );
};
In CvDTreeParams, boost_type selects one of the
          four boosting algorithms listed previously. The split_criteria is one of the following.
	CvBoost :: DEFAULT (use the default for the
              particular boosting method)

	CvBoost :: GINI (default option for real
                AdaBoost)

	CvBoost :: MISCLASS (default option for
              discrete AdaBoost)

	CvBoost :: SQERR (least-square error; only
              option available for LogitBoost and gentle AdaBoost)



The last parameter, weight_trim_rate, is for
          computational savings and is used as described next. As training goes on, many data points
          become unimportant. That is, the weight Dt(i)
          for the ith data point becomes very small. The weight_trim_rate is a threshold between 0 and 1 (inclusive)
          that is implicitly used to throw away some training samples in a given boosting iteration.
          For example, suppose weight_trim_rate is set to 0.95.
          This means that samples with summary weight ≤ 1.0–0.95 = 0.05 (5%) do not participate in
          the next iteration of training. Note the words “next iteration”. The samples are not
          discarded forever. When the next weak classifier is trained, the weights are computed for
          all samples and so some previously insignificant samples may be returned back to the next
          training set. To turn this functionality off, set the weight_trim_rate value to 0.
Observe that CvBoostParams{} inherits from CvDTreeParams{}, so we may set other parameters that are
          related to decision trees. In particular, if we are dealing with features that may be
            missing[257] then we can set use_surrogates to true, which will ensure that alternate features on which the
          splitting is based are stored at each node. An important option is that of using priors to
          set the “cost” of false positives. Again, if we are learning edible or poisonous mushrooms then we might set the priors to be float priors[] = {1.0, 10.0};
          then each error of labeling a poisonous mushroom edible would cost ten times as much as
          labeling an edible mushroom poisonous.
The CvBoost class contains the member weak, which is a CvSeq*
          pointer to the weak classifiers that inherits from CvDTree
          decision trees.[258] For LogitBoost and GentleBoost, the trees are regression trees (trees that predict
          floating-point values); decision trees for the other methods return only votes for class 0
          (if positive) or class 1 (if negative). This contained class sequence has the following
            prototype:
class CvBoostTree: public CvDTree {

public:
    CvBoostTree();
    virtual ~CvBoostTree();
    virtual bool train(
      CvDTreeTrainData* _train_data,
      const CvMat*      subsample_idx,
      CvBoost*          ensemble
    );
    virtual void scale( double s );
    virtual void read(
      CvFileStorage*    fs,
      CvFileNode*       node,
      CvBoost*          ensemble,
      CvDTreeTrainData* _data
    );
    virtual void clear();

protected:
    ...
    CvBoost* ensemble;

};
Training is almost the same as for decision trees, but there is an extra parameter
          called update that is set to false (0) by default. With
          this setting, we train a whole new ensemble of weak classifiers from scratch. If update is set to true (1) then we just add new weak
          classifiers onto the existing group. The function prototype for training a boosted
          classifier is:
bool CvBoost::train(
  const CvMat*  _train_data,
  int           _tflag,
  const CvMat*  _responses,
  const CvMat*  _var_idx      = 0,
  const CvMat*  _sample_idx   = 0,
  const CvMat*  _var_type     = 0,
  const CvMat*  _missing_mask = 0,
  CvBoostParams params        = CvBoostParams(),
  bool          update        = false
);
An example of training a boosted classifier may be found in …/opencv/samples/c/letter_recog.cpp. The training code snippet is shown in
            Example 13-3.
Example 13-3. Training snippet for boosted classifiers
var_type = cvCreateMat( var_count + 2, 1, CV_8U );

cvSet( var_type, cvScalarAll(CV_VAR_ORDERED) );

// the last indicator variable, as well
// as the new (binary) response are categorical
//
cvSetReal1D( var_type, var_count, CV_VAR_CATEGORICAL );
cvSetReal1D( var_type, var_count+1, CV_VAR_CATEGORICAL );

// Train the classifier
//
boost.train(
  new_data,
  CV_ROW_SAMPLE,
  responses,
  0,
  0,
  var_type,
  0,
  CvBoostParams( CvBoost::REAL, 100, 0.95, 5, false, 0 )
);

cvReleaseMat( &new_data );
cvReleaseMat( &new_responses );


The prediction function for boosting is also similar to that for decision trees:
float CvBoost::predict(
  const CvMat* sample,
  const CvMat* missing        = 0,
  CvMat*       weak_responses = 0,
  CvSlice      slice          = CV_WHOLE_SEQ,
  bool         raw_mode       = false
) const;
To perform a simple prediction, we pass in the feature vector sample and then predict() returns the
          predicted value. Of course, there are a variety of optional parameters. The first of these
          is the missing feature mask, which is the same as it
          was for decision trees; it consists of a byte vector of the same dimension as the sample vector, where nonzero values indicate a missing
          feature. (Note that this mask cannot be used unless you have trained the classifier with
          the use_surrogates parameter set to CvDTreeParams::use_surrogates.)
If we want to get back the responses of each of the weak classifiers, we can pass in a floating-point CvMat vector, weak_responses, with length
          equal to the number of weak classifiers. If weak_responses is
          passed, CvBoost::predict will fill the vector with the
          response of each individual classifier:
CvMat* weak_responses = cvCreateMat(
  1,
  boostedClassifier.get_weak_predictors()->total,
  CV_32F
);
The next prediction parameter, slice, indicates
          which contiguous subset of the weak classifiers to use; it can be set by
inline CvSlice cvSlice( int start, int end );
However, we usually just accept the default and leave slice set to “every weak classifier” (CvSlice
            slice=CV_WHOLE_SEQ). Finally, we have the raw_mode, which is off by default but can be turned on by setting it to
            true. This parameter is exactly the same as for
          decision trees and indicates that the data is prenormalized to save computation time.
          Normally you won’t need to use this. An example call for boosted prediction is
boost.predict( temp_sample, 0, weak_responses );
Finally, some auxiliary functions may be of use from time to time. We can remove a
          weak classifier from the learned model via
void CvBoost::prune( CvSlice slice );
We can also return all the weak classifiers for examination:
CvSeq* CvBoost::get_weak_predictors();
This function returns a CvSeq of pointers to
            CvBoostTree.


Random Trees



OpenCV contains a random trees class, which is implemented
        following Leo Breiman’s theory of random forests.[259] Random trees can learn more than one class at a time simply by collecting the
        class “votes” at the leaves of each of many trees and selecting the class receiving the
        maximum votes as the winner. Regression is done by averaging the values across the leaves of
        the “forest”. Random trees consist of randomly perturbed decision trees and are among the
        best-performing classifiers on data sets studied while the ML library was being assembled.
        Random trees also have the potential for parallel implementation, even on nonshared memory
        systems, a feature that lends itself to increased use in the future. The basic subsystem on
        which random trees are built is once again a decision tree. This decision tree is built all
        the way down until it’s pure. Thus (cf. the upper right panel of Figure 13-2), each tree is a high-variance
        classifier that nearly perfectly learns its training data. To counterbalance the high
        variance, we average together many such trees (hence the name random trees).
Of course, averaging trees will do us no good if the trees are all very similar to each
        other. To overcome this, random trees cause each tree to be different by randomly selecting
        a different feature subset of the total features from which the tree may learn at each node.
        For example, an object-recognition tree might have a long list of potential features: color,
        texture, gradient magnitude, gradient direction, variance, ratios of values, and so on. Each
        node of the tree is allowed to choose from a random subset of these features when
        determining how best to split the data, and each subsequent node of the tree gets a new,
        randomly chosen subset of features on which to split. The size of these random subsets is
        often chosen as the square root of the number of features. Thus, if we had 100 potential
        features then each node would randomly choose 10 of the features and find a best split of
        the data from among those 10 features. To increase robustness, random trees use an
          out of bag measure to verify splits. That is, at any given node,
        training occurs on a new subset of the data that is randomly selected with
          replacement,[260] and the rest of the data—those values not randomly selected, called “out of bag”
        (or OOB) data—are used to estimate the performance of the split. The OOB data is
        usually set to have about one third of all the data points.
Like all tree-based methods, random trees inherit many of the good properties of trees:
        surrogate splits for missing values, handling of categorical and numerical values, no need
        to normalize values, and easy methods for finding variables that are important for
        prediction. Random trees also used the OOB error results to estimate how well it will do on
        unseen data. If the training data has a similar distribution to the test data, this OOB
        performance prediction can be quite accurate.
Finally, random trees can be used to determine, for any two data points, their
          proximity (which in this context means “how alike” they are, not “how
        near” they are). The algorithm does this by (1) “dropping” the data points into the trees,
        (2) counting how many times they end up in the same leaf, and (3) dividing this “same leaf”
        count by the total number of trees. A proximity result of 1 is exactly similar and 0 means
        very dissimilar. This proximity measure can be used to identify outliers (those points very
        unlike any other) and also to cluster points (group close points together).
Random Tree Code



We are by now familiar with how the ML library works, and random trees are no
          exception. It starts with a parameter structure, CvRTParams, which it inherits from decision trees:
struct CvRTParams : public CvDTreeParams {

  bool           calc_var_importance;
  int            nactive_vars;
  CvTermCriteria term_crit;

  CvRTParams() : CvDTreeParams(
    5, 10, 0, false,
    10, 0, false, false,
    0
  ), calc_var_importance(false), nactive_vars(0) {

    term_crit = cvTermCriteria(
      CV_TERMCRIT_ITER | CV_TERMCRIT_EPS,
      50,
      0.1
    );
  }

  CvRTParams(
    int          _max_depth,
    int          _min_sample_count,
    float        _regression_accuracy,
    bool         _use_surrogates,
    int          _max_categories,
    const float* _priors,
    bool         _calc_var_importance,
    int          _nactive_vars,
    int          max_tree_count,
    float        forest_accuracy,
    int          termcrit_type,
  );

};
The key new parameters in CvRTParams are calc_var_importance, which is just a switch to calculate the
            variable importance of each feature during training (at a slight cost in
          additional computation time). Figure 13-13
          shows the variable importance computed on a subset of the mushroom data set that ships
          with OpenCV in the …/opencv/samples/c/
            agaricus-lepiota.data file. The nactive_vars parameter sets the size of the randomly selected subset of features to be tested at any given node and is
          typically set to the square root of the total number of features; term_crit (a structure discussed elsewhere in this chapter) is the control on
          the maximum number of trees. For learning random trees, in term_crit the max_iter parameter sets the
          total number of trees; epsilon sets the “stop learning”
          criteria to cease adding new trees when the error drops below the OOB error; and the
            type tells which of the two stopping criteria to use
          (usually it’s both: CV_TERMCRIT_ITER |
          CV_TERMCRIT_EPS).
Random trees training has the same form as decision trees training (see the
          deconstruction of CvDTree::train() in the subsection on
          “Training the Tree”) except that is uses the CvRTParam
          structure:
bool CvRTrees::train(
  const CvMat* train_data,
  int          tflag,
  const CvMat* responses,
  const CvMat* comp_idx     = 0,
  const CvMat* sample_idx   = 0,
  const CvMat* var_type     = 0,
  const CvMat* missing_mask = 0,
  CvRTParams   params       = CvRTParams()
);
[image: Variable importance over the mushroom data set for random trees, boosting, and decision trees: random trees used fewer significant variables and achieved the best prediction (100% correct on a randomly selected test set covering 20% of data)]

Figure 13-13. Variable importance over the mushroom data set for random trees, boosting, and
            decision trees: random trees used fewer significant variables and achieved the best
            prediction (100% correct on a randomly selected test set covering 20% of data)

An example of calling the train function for a multiclass learning problem is
          provided in the samples directory that ships with OpenCV; see the …/opencv/samples/c/letter_recog.cpp file, where the random
          trees classifier is named forest.
forest.train(
  data,
  CV_ROW_SAMPLE,
  responses,
  0,
  sample_idx,
  var_type,
  0,
  CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER)
);
Random trees prediction has a form similar to that of the decision trees prediction
          function CvDTree::predict, but rather than return a
            CvDTreeNode* pointer it returns the average return
          value over all the trees in the forest. The missing
          mask is an optional parameter of the same dimension as the sample vector, where nonzero values indicate a missing feature value in
            sample.
double CvRTrees::predict(
  const CvMat* sample,
  const CvMat* missing = 0
) const;
An example prediction call from the letter_recog.cpp file is
double r;
CvMat sample;

cvGetRow( data, &sample, i );

r = forest.predict( &sample );
r = fabs((double)r - responses->data.fl[i]) <= FLT_EPSILON ? 1 : 0;
In this code, the return variable r is converted
          into a count of correct predictions.
Finally, there are random tree analysis and utility functions. Assuming that CvRTParams::calc_var_importance is set in training, we can
          obtain the relative importance of each variable by
const CvMat* CvRTrees::get_var_importance() const;
See Figure 13-13 for an example of
            variable importance for the mushroom data set from random trees. We can also
          obtain a measure of the learned random trees model proximity of one data point to another
          by using the call
float CvRTrees::get_proximity(
  const CvMat* sample_1,
  const CvMat* sample_2
) const;
As mentioned previously, the returned proximity is 1 if the data points are identical
          and 0 if the points are completely different. This value is usually between 0 and 1 for
          two data points drawn from a distribution similar to that of the training set data.
Two other useful functions give the total number of trees or the data structure
          containing a given decision tree:
int           get_tree_count() const; // How many trees are in the forest
CvForestTree* get_tree(int i) const;  // Get an individual decision tree

Using Random Trees



We’ve remarked that the random trees algorithm often performs the best (or among the
          best) on the data sets we tested, but the best policy is still to try many classifiers
          once you have your training data defined. We ran random trees, boosting, and decision
          trees on the mushroom data set. From the 8,124 data points we randomly extracted 1,624
          test points, leaving the remainder as the training set. After training these three
          tree-based classifiers with their default parameters, we obtained the results shown in
            Table 13-4 on the test set. The mushroom
          data set is fairly easy and so—although random trees did the best—it wasn’t such an
          overwhelming favorite that we can definitively say which of the three classifiers works
          better on this particular data set.
Table 13-4. Results of tree-based methods on the OpenCV mushroom data set (1,624 randomly
            chosen test points with no extra penalties for misclassifying poisonous
            mushrooms)
	
                  Classifier

                	
                  Performance Results

                
	
                  Random trees

                	
                  100%

                
	
                  AdaBoost

                	
                  99%

                
	
                  Decision trees

                	
                  98%

                



What is more interesting is the variable importance (which we also measured from the classifiers), shown in
            Figure 13-13. The figure shows that random
          trees and boosting each used significantly fewer important variables than required by
          decision trees. Above 15% significance, random trees used only three variables and
          boosting used six whereas decision trees needed thirteen. We could thus shrink the feature
          set size to save computation and memory and still obtain good results. Of course, for the
          decision trees algorithm you have just a single tree while for random trees and AdaBoost
          you must evaluate multiple trees; thus, which method has the least computational cost
          depends on the nature of the data being used.


Face Detection or Haar Classifier



We now turn to the final tree-based technique in OpenCV: the Haar
          classifier, which builds a boosted rejection cascade. It
        has a different format from the rest of the ML library in OpenCV because it was developed
        earlier as a full-fledged face-recognition application. Thus, we cover it in detail and show
        how it can be trained to recognize faces and other rigid objects.
Computer vision is a broad and fast-changing field, so the parts of OpenCV that
        implement a specific technique—rather than a component algorithmic piece—are more at risk of
        becoming out of date. The face detector that comes with OpenCV is in this “risk” category. However, face
        detection is such a common need that it is worth having a baseline technique that works
        fairly well; also, the technique is built on the well-known and often used field of
        statistical boosting and thus is of more general use as well. In fact, several companies
        have engineered the “face” detector in OpenCV to detect “mostly rigid” objects (faces, cars,
        bikes, human body) by training new detectors on many thousands of selected training images
        for each view of the object. This technique has been used to create state-of-the-art
        detectors, although with a different detector trained for each view or pose of the object.
        Thus, the Haar classifier is a valuable tool to keep in mind for such recognition
        tasks.
OpenCV implements a version of the face-detection technique first developed by Paul
          Viola and Michael Jones—commonly known as the Viola-Jones detector[261]—and later extended by Rainer Lienhart and Jochen Maydt[262] to use diagonal features (more on this distinction to
        follow). OpenCV refers to this detector as the "Haar classifier” because it uses Haar features[263] or, more precisely, Haar-like wavelets that consist of adding and subtracting
        rectangular image regions before thresholding the result. OpenCV ships with a set of
        pretrained object-recognition files, but the code also allows you to train and store new
        object models for the detector. We note once again that the training (createsamples(), haartraining()) and detecting (cvHaarDetectObjects()) code works well on any objects (not just
        faces) that are consistently textured and mostly rigid.
The pretrained objects that come with OpenCV for this detector are in …/opencv/data/haarcascades, where the model that works best for
        frontal face detection is haarcascade_frontalface_alt2.xml. Side face views are harder to detect
        accurately with this technique (as we shall describe shortly), and those shipped models work
        less well. If you end up training good object models, perhaps you will consider contributing
        them as open source back to the community.
Supervised Learning and Boosting Theory



The Haar classifier that is included in OpenCV is a supervised classifier (these
          were discussed at the beginning of the chapter). In this case we typically present
          histogram- and size-equalized image patches to the classifier, which are then labeled as
          containing (or not containing) the object of interest, which for this classifier is most
          commonly a face.
The Viola-Jones detector uses a form of AdaBoost but organizes it as a rejection cascade of
          nodes, where each node is a multitree AdaBoosted classifier designed to have high (say,
          99.9%) detection rate (low false negatives, or missed faces) at the cost of a low (near
          50%) rejection rate (high false positives, or “nonfaces” wrongly classified). For each
          node, a “not in class” result at any stage of the cascade terminates the computation, and
          the algorithm then declares that no face exists at that location. Thus, true class
          detection is declared only if the computation makes it through the entire cascade. For
          instances where the true class is rare (e.g., a face in a picture), rejection cascades can
          greatly reduce total computation because most of the regions being searched for a face
          terminate quickly in a nonclass decision.
Boosting in the Haar cascade



Boosted classifiers were discussed earlier in this chapter. For the Viola-Jones rejection cascade, the weak classifiers that it boosts in each node are decision trees that often
            are only one level deep (i.e., "decision stumps”). A decision stump is allowed just one decision of the
            following form: “Is the value v of a particular feature
              f above or below some threshold t“; then,
            for example, a “yes” indicates face and a “no” indicates no face:
[image: image with no caption]

The number of Haar-like features that the Viola-Jones classifier uses in each weak classifier can be set in training, but
            mostly we use a single feature (i.e., a tree with a single split) or at most about three
            features. Boosting then iteratively builds up a classifier as a weighted sum of these
            kinds of weak classifiers. The Viola-Jones classifier uses the classification function:
[image: image with no caption]

Here, the sign function returns –1 if the number is less than 0, 0 if the number
            equals 0, and +1 if the number is positive. On the first pass through the data set, we
            learn the threshold tl of
              f1 that best classifies the input.
            Boosting then uses the resulting errors to calculate the weighted vote
              w1. As in traditional AdaBoost, each feature vector (data point) is also reweighted low or high
            according to whether it was classified correctly or not[264] in that iteration of the classifier. Once a node is learned this way, the
            surviving data from higher up in the cascade is used to train the next node and so
            on.


Viola-Jones Classifier Theory



The Viola-Jones classifier employs AdaBoost at each node in the cascade to learn a
          high detection rate at the cost of low rejection rate multitree (mostly multistump)
          classifier at each node of the cascade. This algorithm incorporates several innovative
            features.
	It uses Haar-like input features: a threshold applied to sums and differences of
              rectangular image regions.

	Its integral image technique enables rapid computation of the
              value of rectangular regions or such regions rotated 45 degrees (see Chapter 6). This data structure is used to accelerate computation
              of the Haar-like input features.

	It uses statistical boosting to create binary (face–not face) classification nodes
              characterized by high detection and weak rejection.

	It organizes the weak classifier nodes of a rejection cascade. In other words: the
              first group of classifiers is selected that best detects image regions containing an
              object while allowing many mistaken detections; the next classifier group[265] is the second-best at detection with weak rejection; and so forth. In test
              mode, an object is detected only if it makes it through the entire cascade.[266]



The Haar-like features used by the classifier are shown in Figure 13-14. At all scales, these features form
          the “raw material” that will be used by the boosted classifiers. They are rapidly computed
          from the integral image (see Chapter 6) representing the original
          grayscale image.
[image: Haar-like features from the OpenCV source distribution (the rectangular and rotated regions are easily calculated from the integral image): in this diagrammatic representation of the wavelets, the light region is interpreted as “add that area” and the dark region as “subtract that area”]

Figure 13-14. Haar-like features from the OpenCV source distribution (the rectangular and rotated
            regions are easily calculated from the integral image): in this diagrammatic
            representation of the wavelets, the light region is interpreted as “add that area” and
            the dark region as “subtract that area”

Viola and Jones organized each boosted classifier group into nodes of a rejection cascade, as shown in Figure 13-15. In the figure, each of the nodes
              Fj contains an entire boosted cascade of
          groups of decision stumps (or trees) trained on the Haar-like features from faces and
          nonfaces (or other objects the user has chosen to train on). Typically, the nodes are
          ordered from least to most complex so that computations are minimized (simple nodes are
          tried first) when rejecting easy regions of the image. Typically, the boosting in each
          node is tuned to have a very high detection rate (at the usual cost of many false
          positives). When training on faces, for example, almost all (99.9%) of the faces are found
          but many (about 50%) of the nonfaces are erroneously “detected” at each node. But this is
          OK because using (say) 20 nodes will still yield a face detection rate (through the whole
          cascade) of 0.99920 ≈ 98% with a false positive rate of only 0.520 ≈ 0.0001%!
During the run mode, a search region of different sizes is swept over the original
          image. In practice, 70–80% of nonfaces are rejected in the first two nodes of the
          rejection cascade, where each node uses about ten decision stumps. This quick and early
          “attentional reject” vastly speeds up face detection.
Works well on …



This technique implements face detection but is not limited to faces; it also works
            fairly well on other (mostly rigid) objects that have distinguishing views. That is,
            front views of faces work well; backs, sides, or fronts of cars work well; but side
            views of faces or “corner” views of cars work less well—mainly because these views
            introduce variations in the template that the "blocky” features (see next paragraph) used in this detector cannot handle
            well. For example, a side view of a face must catch part of the changing background in
            its learned model in order to include the profile curve. To detect side views of faces,
            you may try haarcascade_profileface.xml, but to do
            a better job you should really collect much more data than this model was trained with
            and perhaps expand the data with different backgrounds behind the face profiles. Again,
            profile views are hard for this classifier because it uses block features and so is
            forced to attempt to learn the background variability that “peaks” through the
            informative profile edge of the side view of faces. In training, it’s more efficient to
            learn only (say) right profile views. Then the test procedure would be to (1) run the
            right-profile detector and then (2) flip the image on its vertical axis and run the
            right-profile detector again to detect left-facing profiles.
[image: Rejection cascade used in the Viola-Jones classifier: each node represents a multitree boosted classifier ensemble tuned to rarely miss a true face while rejecting a possibly small fraction of nonfaces; however, almost all nonfaces have been rejected by the last node, leaving only true faces]

Figure 13-15. Rejection cascade used in the Viola-Jones classifier: each node represents a
              multitree boosted classifier ensemble tuned to rarely miss a true face while rejecting
              a possibly small fraction of nonfaces; however, almost all nonfaces have been rejected
              by the last node, leaving only true faces

As we have discussed, detectors based on these Haar-like features work well with
            “blocky” features—such as eyes, mouth, and hairline—but work less well with tree branches, for example, or
            when the object’s outline shape is its most distinguishing characteristic (as with a
            coffee mug).
All that being said, if you are willing to gather lots of good, well-segmented data
            on fairly rigid objects, then this classifier can still compete with the best, and its
            construction as a rejection cascade makes it very fast to run (though not to train,
            however). Here “lots of data” means thousands of object examples and tens of thousands
            of nonobject examples. By “good” data we mean that one shouldn’t mix, for instance,
            tilted faces with upright faces; instead, keep the data divided and use two classifiers, one for tilted and one for upright. “Well-segmented” data means
            data that is consistently boxed. Sloppiness in box boundaries of the training data will
            often lead the classifier to correct for fictitious variability in the data. For
            example, different placement of the eye locations in the face data location boxes can
            lead the classifier to assume that eye locations are not a geometrically fixed feature
            of the face and so can move around. Performance is almost always worse when a classifier
            attempts to adjust to things that aren’t actually in the real data.


Code for Detecting Faces



The detect_and_draw() code shown in Example 13-4 will detect faces and draw their found
          locations in different-colored rectangles on the image. As shown in the fourth through
          seventh (comment) lines, this code presumes that a previously trained classifier cascade
          has been loaded and that memory for detected faces has been created.
Example 13-4. Code for detecting and drawing faces
// Detect and draw detected object boxes on image
// Presumes 2 Globals:
//  Cascade is loaded by:
//     cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name,
//   0, 0, 0 );
//  AND that storage is allocated:
//  CvMemStorage* storage = cvCreateMemStorage(0);
//
void detect_and_draw(
  IplImage* img,
  double scale = 1.3
){
 static CvScalar colors[] = {
   {{0,0,255}}, {{0,128,255}},{{0,255,255}},{{0,255,0}},
   {{255,128,0}},{{255,255,0}},{{255,0,0}}, {{255,0,255}}
 }; //Just some pretty colors to draw with

 // IMAGE PREPARATION:
 //
 IplImage* gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );
 IplImage* small_img = cvCreateImage(
   cvSize( cvRound(img->width/scale), cvRound(img->height/scale)), 8, 1
 );
 cvCvtColor( img, gray, CV_BGR2GRAY );
 cvResize( gray, small_img, CV_INTER_LINEAR );
 cvEqualizeHist( small_img, small_img );

 // DETECT OBJECTS IF ANY
 //
 cvClearMemStorage( storage );
 CvSeq* objects = cvHaarDetectObjects(
   small_img,
   cascade,
   storage,
   1.1,
   2,
   0 /*CV_HAAR_DO_CANNY_PRUNING*/,
   cvSize(30, 30)
 );

 // LOOP THROUGH FOUND OBJECTS AND DRAW BOXES AROUND THEM
 //
 for(int i = 0; i < (objects ? objects->total : 0); i++ ) {
   CvRect* r = (CvRect*)cvGetSeqElem( objects, i );
   cvRectangle(
     img,
     cvPoint(r->x* scale, r->y* scale),
     cvPoint((r->x+r->width) *scale, (r->y+r->height) *scale)
     colors[i%8]
   )
 }
 cvReleaseImage( &graygray );
 cvReleaseImage( &small_img );
}


For convenience, in this code the detect_and_draw()
          function has a static array of color vectors colors[]
          that can be indexed to draw found faces in different colors. The classifier works on
          grayscale images, so the color BGR image img passed
          into the function is converted to grayscale using cvCvtColor() and then optionally resized in cvResize(). This is followed by histogram equalization via cvEqualizeHist(), which spreads out the brightness
          values—necessary because the integral image features are based on differences of rectangle
          regions and, if the histogram is not balanced, these differences might be skewed by
          overall lighting or exposure of the test images. Since the classifier returns found object
          rectangles as a sequence object CvSeq, we need to clear
          the global storage that we’re using for these returns by calling cvClearMemStorage(). The actual detection takes place just above the for{} loop, whose parameters are discussed in more detail
          below. This loop steps through the found face rectangle regions and draws them in
          different colors using cvRectangle(). Let us take a
          closer look at detection function call:
CvSeq* cvHaarDetectObjects(
   const CvArr*             image,
   CvHaarClassifierCascade* cascade,
   CvMemStorage*            storage,
   double                   scale_factor  = 1.1,
   int                      min_neighbors = 3,
   int                      flags         = 0,
   CvSize                   min_size      = cvSize(0,0)
);
CvArr image is a grayscale image. If region of
          interest (ROI) is set, then the function will respect that region. Thus, one way of
          speeding up face detection is to trim down the image boundaries using ROI. The classifier
          cascade is just the Haar feature cascade that we loaded with cvLoad() in the face detect code. The storage argument is an OpenCV “work buffer” for the algorithm; it is
          allocated with cvCreateMemStorage(0) in the face
          detection code and cleared for reuse with cvClearMemStorage(storage). The cvHaarDetectObjects() function scans the input image for faces at all scales.
          Setting the scale_factor parameter determines how big
          of a jump there is between each scale; setting this to a higher value means faster
          computation time at the cost of possible missed detections if the scaling misses faces of
          certain sizes. The min_neighbors parameter is a
          control for preventing false detection. Actual face locations in an image tend to get
          multiple “hits” in the same area because the surrounding pixels and scales often indicate
          a face. Setting this to the default (3) in the face detection code indicates that we will
          only decide a face is present in a location if there are at least three overlapping
          detections. The flags parameter has four valid
          settings, which (as usual) may be combined with the Boolean OR operator. The first is
            CV_HAAR_DO_CANNY_PRUNING. Setting flags to this value causes flat regions (no lines) to be
          skipped by the classifier. The second possible flag is CV_HAAR_SCALE_IMAGE, which tells the algorithm to scale the image rather than
          the detector (this can yield some performance advantages in terms of how memory and cache
          are used). The next flag option, CV_HAAR_FIND_BIGGEST_OBJECT, tells OpenCV to return only the largest object
          found (hence the number of objects returned will be either one or none).[267] The final flag is CV_HAAR_DO_ROUGH_SEARCH,
          which is used only with CV_HAAR_FIND_BIGGEST_OBJECT.
          This flag is used to terminate the search at whatever scale the first candidate is found
          (with enough neighbors to be considered a “hit”). The final parameter, min_size, is the smallest region in which to search for a
          face. Setting this to a larger value will reduce computation at the cost of missing small
          faces. Figure 13-16 shows results for using
          the face-detection code on a scene with faces.

Learning New Objects



We’ve seen how to load and run a previously trained classifier cascade stored in an
          XML file. We used the cvLoad() function to load it and
          then used cvHaarDetectObjects() to find objects similar
          to the ones it was trained on. We now turn to the question of how to train our own
          classifiers to detect other objects such as eyes, walking people, cars, et cetera. We do this with the OpenCV haartraining application, which creates a classifier given a
          training set of positive and negative samples. The four steps of training a classifier are
          described next. (For more details, see the haartraining reference manual supplied with OpenCV in the opencv/apps/HaarTraining/doc directory.)
	Gather a data set consisting of examples of the object you want to learn (e.g.,
              front views of faces, side views of cars). These may be stored in one or more
              directories indexed by a text file in the following format:
<path>/img_name_1 count_1 x11 y11 w11 h11 x12 y12 . . .
<path>/img_name_2 count_2 x21 y21 w21 h21 x22 y22 . . .
 . . .
Each of these lines contains the path (if any) and file name of the image
              containing the object(s). This is followed by the count of how many objects are in
              that image and then a list of rectangles containing the objects. The format of the
              rectangles is the x- and y-coordinates of
              the upper left corner followed by the width and height in pixels.
[image: Face detection on a park scene: some tilted faces are not detected, and there is also a false positive (shirt near the center); for the 1054-by-851 image shown, more than a million sites and scales were searched to achieve this result in about 1.5 seconds on a 2 GHz machine]

Figure 13-16. Face detection on a park scene: some tilted faces are not detected, and there
                is also a false positive (shirt near the center); for the 1054-by-851 image shown,
                more than a million sites and scales were searched to achieve this result in about
                1.5 seconds on a 2 GHz machine

To be more specific, if we had a data set of faces located in directory data/faces/, then the index file faces.idx might look like this:
data/faces/face_000.jpg 2 73 100 25 37 133 123 30 45
data/faces/face_001.jpg 1 155 200 55 78
 . . .
If you want your classifier to work well, you will need to gather a lot of
              high-quality data (1,000–10,000 positive examples). “High quality” means that you’ve
              removed all unnecessary variance from the data. For example, if you are learning
              faces, you should align the eyes (and preferably the nose and mouth) as much as possible. The intuition here is that otherwise you are
              teaching the classifier that eyes need not appear at fixed locations in the face but
              instead could be anywhere within some region. Since this is not true of real data,
              your classifier will not perform as well. One strategy is to first train a cascade on
              a subpart, say “eyes”, which are easier to align. Then use eye detection to find the
              eyes and rotate/resize the face until the eyes are aligned. For asymmetric data, the
              “trick” of flipping an image on its vertical axis was described previously in the
              subsection “Works well on …”.

	Use the utility application createsamples to
              build a vector output file of the positive samples. Using this file, you can repeat
              the training procedure below on many runs, trying different parameters while using the
              same vector output file. For example:
createsamples -vec faces.vec -info faces.idx -w 30 -h 40
This reads in the faces.idx file described in
              step 1 and outputs a formatted training file, faces.vec. Then createsamples
              extracts the positive samples from the images before normalizing and resizing them to
              the specified width and height (here, 30-by-40). Note that createsamples can also be used to synthesize data by applying geometric
              transformations, adding noise, altering colors, and so on. This procedure could be
              used (say) to learn a corporate logo, where you take just one image and put it through
              various distortions that might appear in real imagery. More details can be found in
              the OpenCV reference manual haartraining located
              in /apps/HaarTraining/doc/.

	The Viola-Jones cascade is a binary classifier: It simply decides whether or not
              (“yes” or “no”) the object in an image is similar to the training set. We’ve described
              how to collect and process the “yes” samples that contained the object of choice. Now
              we turn to describing how to collect and process the “no” samples so that the
              classifier can learn what does not look like our object. Any
              image that doesn’t contain the object of interest can be turned into a negative
              sample. It is best to take the “no” images from the same type of data we will test on.
              That is, if we want to learn faces in online videos, for best results we should take
              our negative samples from comparable frames (i.e., other frames from the same video).
              However, respectable results can still be achieved using negative samples taken from
              just about anywhere (e.g., CD or Internet image collections). Again we put the images
              into one or more directories and then make an index file consisting of a list of image
              filenames, one per line. For example, an image index file called backgrounds.idx might contain the following path and
              filenames of image collections:
data/vacations/beach.jpg
data/nonfaces/img_043.bmp
data/nonfaces/257-5799_IMG.JPG
 . . .

	Training. Here’s an example training call that you could type
              on a command line or create using a batch file:
Haartraining /
  -data face_classifier_take_3 /
  -vec faces.vec -w 30 -h 40 /
  -bg backgrounds.idx /
  -nstages 20 /
  -nsplits 1 /
  [-nonsym] /
  -minhitrate 0.998 /
  -maxfalsealarm 0.5



In this call the resulting classifier will be stored in face_classifier_take_3.xml. Here faces.vec is the set of positive samples (sized to
          width-by-height = 30-by-40), and random images extracted from backgrounds.idx will be used as negative samples. The cascade is set to have
          20 (-nstages) stages, where every stage is trained to
          have a detection rate (-minhitrate) of 0.998 or higher.
          The false hit rate (-maxfalsealarm) has been set at 50%
          (or lower) each stage to allow for the overall hit rate of 0.998. The weak classifiers are specified in this case as "stumps”, which means they can have only one split (-nsplits); we could ask for more, and this might improve the results in some
          cases. For more complicated objects one might use as many as six splits, but mostly you
          want to keep this smaller and use no more than three splits.
Even on a fast machine, training may take several hours to a day, depending on the
          size of the data set. The training procedure must test approximately 100,000 features
          within the training window over all positive and negative samples. This search is
          parallelizable and can take advantage of multicore machines (using OpenMP via the Intel Compiler). This parallel version is the one shipped with OpenCV.


Other Machine Learning Algorithms



We now have a good feel for how the ML library in OpenCV works. It is designed so that
        new algorithms and techniques can be implemented and embedded into the library easily. In
        time, it is expected that more new algorithms will appear. This section looks briefly at
        four machine learning routines that have recently been added to OpenCV. Each implements a
        well-known learning technique, by which we mean that a substantial body of literature exists
        on each of these methods in books, published papers, and on the Internet. For more detailed
        information you should consult the literature and also refer to the …/opencv/docs/ref/opencvref_ml.htm manual.
Expectation Maximization



Expectation maximization (EM) is another popular clustering
          technique. OpenCV supports EM only with Gaussian mixtures, but the technique itself is
          much more general. It involves multiple iterations of taking the most likely (average or
          “expected”) guess given your current model and then adjusting that model to maximize its
          chances of being right. In OpenCV, the EM algorithm is implemented in the CvEM{} class and simply involves fitting a mixture of
          Gaussians to the data. Because the user provides the number of Gaussians to fit, the
          algorithm is similar to K-means.

K-Nearest Neighbors



One of the simplest classification techniques is K-nearest
            neighbors (KNN), which merely stores all the training data points. When you
          want to classify a new point, look up its K nearest points (for
            K an integer number) and then label the new point according to
          which set contains the majority of its K neighbors. This algorithm is
          implemented in the CvKNearest{} class in OpenCV. The
          KNN classification technique can be very effective, but it requires that you store the
          entire training set; hence it can use a lot of memory and become quite slow. People often
          cluster the training set to reduce its size before using this method. Readers interested
          in how dynamically adaptive nearest neighbor type techniques might be used in the brain
          (and in machine learning) can see Grossberg [Grossberg87] or a more recent summary of
          advances in Carpenter and Grossberg [Carpenter03].

Multilayer Perceptron



The multilayer perceptron (MLP; also known as back-propagation) is a neural network
          that still ranks among the top-performing classifiers, especially for text recognition. It
          can be rather slow in training because it uses gradient descent to minimize error by
          adjusting weighted connections between the numerical classification nodes within the
          layers. In test mode, however, it is quite fast: just a series of dot products followed by
          a squashing function. In OpenCV it is implemented in the CvANN_MLP{} class, and its use is documented in the …/opencv/samples/c/letter_recog.cpp file. Interested readers will find
          details on using MLP effectively for text and object recognition in LeCun, Bottou, Bengio,
          and Haffner [LeCun98a]. Implementation and tuning details are given in LeCun, Bottou, and
          Muller [LeCun98b]. New work on brainlike hierarchical networks that propagate
          probabilities can be found in Hinton, Osindero, and Teh [Hinton06].

Support Vector Machine



With lots of data, boosting or random trees are usually the best-performing
          classifiers. But when your data set is limited, the support vector
            machine (SVM) often works best. This N-class algorithm works by
          projecting the data into a higher-dimensional space (creating new dimensions out of
          combinations of the features) and then finding the optimal linear separator between the
          classes. In the original space of the raw input data, this high-dimensional linear
          classifier can become quite nonlinear. Hence we can use linear classification techniques
          based on maximal between-class separation to produce nonlinear
          classifiers that in some sense optimally separate classes in the data. With enough
          additional dimensions, you can almost always perfectly separate data classes. This
          technique is implemented in the CvSVM{} class in
          OpenCV’s ML library.
These tools are closely tied to many computer vision algorithms that range from finding feature points via trained
          classification to tracking to segmenting scenes and also include the more straightforward
          tasks of classifying objects and clustering image data.


Exercises



	Consider trying to learn the next stock price from several past stock prices.
            Suppose you have 20 years of daily stock data. Discuss the effects of various ways of
            turning your data into training and testing data sets. What are the advantages and
            disadvantages of the following approaches?
	Take the even-numbered points as your training set and the odd-numbered points
                as your test set.

	Randomly select points into training and test sets.

	Divide the data in two, where the first half is for training and the second half
                for testing.

	Divide the data into many small windows of several past points and one
                prediction point.




	Figure 13-17 depicts a distribution of
            “false” and “true” classes. The figure also shows several potential places (a, b, c, d,
            e, f, g) where a threshold could be set.
[image: A Gaussian distribution of two classes, “false” and “true”]

Figure 13-17. A Gaussian distribution of two classes, “false” and “true”

	Draw the points a–g on an ROC curve.

	If the “true” class is poisonous mushrooms, at which letter would you set the
                threshold?

	How would a decision tree split this data?




	Refer to Figure 13-1.
	Draw how a decision tree would approximate the true curve (the dashed line) with
                three splits (here we seek a regression, not a classification model).
Tip
The “best” split for a regression takes the average value of the data values
                  contained in the leaves that result from the split. The output values of a
                  regression-tree fit thus look like a staircase.


	Draw how a decision tree would fit the true data in seven splits.

	Draw how a decision tree would fit the noisy data in seven splits.

	Discuss the difference between (b) and (c) in terms of overfitting.




	Why do the splitting measures (e.g., Gini) still work when we want to learn multiple
            classes in a single decision tree?

	Review Figure 13-4, which depicts a
            two-dimensional space with unequal variance at left and equalized variance at right.
            Let’s say that these are feature values related to a classification problem. That is,
            data near one “blob” belongs to one of two classes while data near another blob belongs
            to the same or another of two classes. Would the variable importance be different
            between the left or the right space for:
	decision trees?

	K-nearest neighbors?

	naïve Bayes?




	Modify the sample code for data generation in Example 13-1—near
            the top of the outer for{} loop in the K-means
            section—to produce a randomly generated labeled data set. We’ll use a single normal
            distribution of 10,000 points centered at pixel (63, 63) in a 128-by-128 image with
            standard deviation (img->width/6,
            img->height/6). To label these data, we divide the space into four
            quadrants centered at pixel (63, 63). To derive the labeling probabilities, we use the
            following scheme. If x < 64 we use a 20% probability for
              class
            A; else if x ≥ 64 we use a 90% factor for
              class
            A. If y
            < 64 we use a 40% probability for class
            A; else if y ≥ 64 we use a 60% factor for
              class
            A. Multiplying the x and
              y probabilities together yields the total probability for
              class
            A by quadrant with values listed in the 2-by-2 matrix shown. If a
            point isn’t labeled A, then it is labeled B by
            default. For example, if x
            < 64 and y < 64, we would have an 8%
            chance of a point being labeled class
            A and a 92% chance of that point being labeled
              class
            B. The four-quadrant matrix for the probability of a point being
            labeled class
            A (and if not, it’s class B) is:
	
                    0.2 x 0.6 = 0.12

                  	
                    0.9 x 0.6 = 0.54

                  
	
                    0.2 x 0.4 = 0.08

                  	
                    0.9 x 0.4 = 0.36

                  


Use these quadrant odds to label the data points. For each data point, determine its
            quadrant. Then generate a random number from 0 to 1. If this is less than or equal to
            the quadrant odds, label that data point as class A; else label it
              class B. We will then have a list of labeled data points together
            with x and y as the features. The reader will
            note that the x-axis is more informative than the
              y-axis as to which class the data might be. Train random forests
            on this data and calculate the variable importance to show x is
            indeed more important than y.

	Using the same data set as in exercise 6, use discrete AdaBoost to learn two models:
            one with weak_count set to 20 trees and one set to
            500 trees. Randomly select a training and a test set from the 10,000 data points. Train
            the algorithm and report test results when the training set contains:
	150 data points;

	500 data points;

	1,200 data points;

	5,000 data points.

	Explain your results. What is happening?




	Repeat exercise 7 but use the random trees classifier with 50 and 500 trees.

	Repeat exercise 7, but this time use 60 trees and compare random trees versus
            SVM.

	In what ways is the random tree algorithm more robust against overfitting than
            decision trees?

	Refer to Figure 13-2. Can you imagine
            conditions under which the test set error would be lower than the training set
            error?

	Figure 13-2 was drawn for a
            regression problem. Label the first point on the graph A, the
            second point B, the third point A, the forth
            point B and so on. Draw a separation line for these two classes
              (A and B) that shows:
	bias;

	variance.




	Refer to Figure 13-3.
	Draw the generic best-possible ROC curve.

	Draw the generic worst-possible ROC curve.

	Draw a curve for a classifier that performs randomly on its test data.




	The “no free lunch” theorem states that no classifier is optimal over all
            distributions of labeled data. Describe a labeled data distribution over which no
            classifier described in this chapter would work well.
	What distribution would be hard for naïve Bayes to learn?

	What distribution would be hard for decision trees to learn?

	How would you preprocess the distributions in parts a and b so that the
                classifiers could learn from the data more easily?




	Set up and run the Haar classifier to detect your face in a web camera.
	How much scale change can it work with?

	How much blur?

	Through what angles of head tilt will it work?

	Through what angles of chin down and up will it work?

	Through what angles of head yaw (motion left and right) will it work?

	Explore how tolerant it is of 3D head poses. Report on your findings.




	Use blue or green screening to collect a flat hand gesture (static pose). Collect
            examples of other hand poses and of random backgrounds. Collect several hundred images
            and then train the Haar classifier to detect this gesture. Test the classifier in real
            time and estimate its detection rate.

	Using your knowledge and what you’ve learned from exercise 16, improve the results
            you obtained in that exercise.






[228] Machine learning is a vast topic. OpenCV deals mostly with statistical
            machine learning rather than things that go under the name “Bayesian networks”, “Markov
            random fields”, or “graphical models”. Some good texts in machine learning are by
            Hastie, Tibshirani, and Friedman [Hastie01], Duda and Hart [Duda73], Duda, Hart, and
            Stork [Duda00], and Bishop [Bishop07]. For discussions on how to parallelize machine
            learning, see Ranger et al. [Ranger07] and Chu et al. [Chu07].

[229] See Lowe’s SIFT feature demo (http://www.cs.ubc.ca/~lowe/keypoints/).

[230] One typically does the train (possibly validation) and test cycle five to ten
                times.

[231] This is known as “variable importance” even though it refers to the importance of
              a variable (noun) and not the fluctuating importance (adjective) of a variable.

[232] Breiman’s variable importance technique is described in “Looking Inside the Black
              Box” (www.stat.berkeley.edu/~breiman/wald2002-2.pdf).

[233] Professor Andrew Ng at Stanford University gives the details in a web lecture
              entitled “Advice for Applying Machine Learning” (http://www.stanford.edu/class/cs229/materials/ML-advice.pdf).

[234] For more information on these techniques, see “What Are Cross-Validation and
                Bootstrapping?” (http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html).

[235] This is useful if you have some specific a priori notion of the relative cost of
                the two error types. For example, the cost of misclassifying one product as another
                in a supermarket checkout would be easy to quantify exactly beforehand.

[236] Decision trees are not affected by variance differences in feature variables
                because each variable is searched only for effective separating thresholds. In other
                words, it doesn’t matter how large the variable’s range is as long as a clear
                separating value can be found.

[237] Readers familiar with machine learning or signal processing might recognize this as a
                technique for "whitening” the data.

[238] Note that the Haar classifier, Mahalanobis, and K-means algorithms were written before the
            ML library was created and so are in cv and
              cxcore libraries instead.

[239] Note that Figure 13-4 has a diagonal
            covariance matrix, which entails independent X and
              Y variance rather than actual covariance. This was done to make
            the explanation simple. In reality, data is often “stretched” in much more interesting
            ways.

[240] A precomputed average data vector should be passed if the user has a more
                  statistically justified value of the average or if the covariance matrix is
                  computed by blocks.

[241] CV_SVD could also be used in this case, but it is
            somewhat slower and less accurate than CV_SVD_SYM.
              CV_SVD_SYM, even if it is slower than CV_LU, still should be used if the dimensionality of the space is much
            smaller than the number of data points. In such a case the overall computing time will
            be dominated by cvCalcCovarMatrix() anyway. So it may
            be wise to spend a little bit more time on computing inverse covariance matrix more
            accurately (much more accurately, if the set of points is concentrated in a subspace of
            a smaller dimensionality). Thus, CV_SVD_SYM is
            usually the best choice for this task.

[242] S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Transactions on
              Information Theory 28 (1982), 129–137.

[243] This is exactly equivalent to an N-by-K
              matrix in which the N rows are the data points, the
                K columns are the individual components of each point’s
              location, and the underlying data type is 32FC1.
              Recall that, owing to the memory layout used for arrays, there is no distinction
              between these representations.

[244] Generating a face would be silly with the naïve Bayes algorithm because it assumes
            independence of features. But a more general Bayesian network can easily build in
            feature dependence as needed.

[245] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
              Regression Trees (1984), Wadsworth.

[246] More detail on categorical vs. ordered splits: Whereas a split on an ordered
                variable has the form “if x < a then go left, else go
                right”, a split on a categorical variable has the form “if [image: ] then go left, else go right”, where the
                    vi are some possible values of the
                variable. Thus, if a categorical variable has N possible values
                then, in order to find a best split on that variable, one needs to try
                  2
                  N
                 –2 subsets (empty and full subset are excluded). Thus, an approximate algorithm is used
                whereby all N values are grouped into K ≤
                  max_categories clusters (via the K-mean
                algorithm) based on the statistics of the samples in the currently analyzed node.
                Thereafter, the algorithm tries different combinations of the clusters and chooses
                the best split, which often gives quite a good result. Note that for the two most
                common tasks, two-class classification and regression, the optimal categorical split
                (i.e., the best subset of values) can be found efficiently without any clustering.
                Hence the clustering is applied only in n > 2-class
                classification problems for categorical variables with N >
                max_categories possible values. Therefore, you
                should think twice before setting max_categories
                to anything greater than 20, which would imply more than a million operations for
                each split!

[247] CV_VAR_ORDERED is the same thing as CV_VAR_NUMERICAL.

[248] As mentioned previously, save() and load() are convenience wrappers for the more complex
                functions write() and read().

[249] By “same … orientation” we mean that if the sample is a
                  1-by-N vector the mask must be 1-by-N,
                and if the sample is N-by-1 then the mask must be
                  N-by-1.

[250] Variable importance techniques may be used with any classifier, but at this time
              OpenCV implements them only with tree-based methods.

[251] OpenCV (following Breiman’s technique) computes variable importance across all the splits, including surrogate ones, which
              decreases the possible negative effect that CART’s greedy splitting algorithm would
              have on variable importance ratings.

[252] Recall that the “no free lunch” theorem informs us that there is no a priori “best”
            classifier. But on many data sets of interest in vision, boosting and random trees
            perform quite well.

[253] The output of a "weak classifier” is only weakly correlated with the true classifications,
            whereas that of a "strong classifier” is strongly correlated with true classifications. Thus,
            weak and strong are defined in a statistical sense.

[254] Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm”, in
              Machine Learning: Proceedings of the Thirteenth International
              Conference (Morgan Kauman, San Francisco, 1996), 148–156.

[255] This procedure is an example of the machine learning metatechnique known as
              voodoo learning or voodoo programming.
            Although unprincipled, it is often an effective method of achieving the best possible
            performance. Sometimes, after careful thought, one can figure out why the
            best-performing method was the best, and this can lead to a deeper understanding of the
            data. Sometimes not.

[256] There is a trick called unrolling that can be used to adapt any
            binary classifier (including boosting) for N-class classification
            problems, but this makes both training and prediction significantly more expensive. See
              …/opencv/samples/c/letter_recog.cpp.

[257] Note that, for computer vision, features are computed from an image and then fed
              to the classifier; hence they are almost never “missing”. Missing features arise often
              in data collected by humans—for example, forgetting to take the patient’s temperature
              one day.

[258] The naming of these objects is somewhat nonintuitive. The object of type CvBoost is the boosted tree classifier. The objects of
              type CvBoostTree are the weak classifiers that constitute the overall boosted strong classifier. Presumably, the weak classifiers are typed as CvBoostTree because they derive from CvDTree (i.e., they are little trees in themselves, albeit
              possibly so little that they are just stumps). The member variable weak of CvBoost points
              to a sequence enumerating the weak classifiers of type CvBoostTree.

[259] Most of Breiman’s work on random forests is conveniently collected on a single
            website (http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.htm).

[260] This means that some data points might be randomly repeated.

[261] P. Viola and M. J. Jones, “Rapid Object Detection Using a Boosted Cascade of Simple
            Features,” IEEE CVPR (2001).

[262] R. Lienhart and J. Maydt, “An Extended Set of Haar-like Features for Rapid Object Detection,” IEEE
              ICIP (2002), 900–903.

[263] This is technically not correct. The classifier uses the threshold of the sums and
            differences of rectangular regions of data produced by any feature detector, which may
            include the Haar case of rectangles of raw (grayscale) image values. Henceforth we will
            use the term “Haar-like” in deference to this distinction.

[264] There is sometimes confusion about boosting lowering the classification weight
                on points it classifies correctly in training and raising the weight on points it
                classified wrongly. The reason is that boosting attempts to focus on correcting the
                points that it has “trouble” on and to ignore points that it already “knows” how to
                classify. One of the technical terms for this is that boosting is a margin
                maximize.

[265] Remember that each “node” in a rejection cascade is an AdaBoosted group of
                  classifiers.

[266] This allows the cascade to run quickly, because it almost immediately rejects
                  image regions that don’t contain the object (and hence need not process through
                  the rest of the cascade).

[267] It is best not to use CV_HAAR_DO_CANNY_PRUNING
              with CV_HAAR_FIND_BIGGEST_OBJECT. Using both will
              seldom yield a performance gain; in fact, the net effect will often be a performance
              loss.


Chapter 14. OpenCV’s Future



Past and Future



In Chapter 1 we saw something of OpenCV’s past. This was followed by
        Chapters Chapter 2–Chapter 13, in
        which OpenCV’s present state was explored in detail. We now turn to OpenCV’s future. Computer vision applications are growing rapidly, from product inspection to image and video indexing on the Web to medical
        applications and even to local navigation on Mars. OpenCV is also growing to accommodate these
        developments.
OpenCV has long received support from Intel Corporation and has more recently received support from Willow Garage (www.willowgarage.com), a privately funded new robotics research institute and technology incubator. Willow Garage’s intent is
        to jump-start civilian robotics by developing open and supported hardware and software
        infra-structure that now includes but goes beyond OpenCV. This has given OpenCV new
        resources for more rapid update and support, with several of the original developers of
        OpenCV now recontracted to help maintain and advance the library. These renewed resources
        are also intended to support and enable greater community contribution to OpenCV by allowing
        for faster code assessment and integration cycles.
One of the key new development areas for OpenCV is robotic perception. This effort
        focuses on 3D perception as well as 2D plus 3D object recognition since the combination of
        data types makes for better features for use in object detection, segmentation and
        recognition. Robotic perception relies heavily on 3D sensing, so efforts are under way to
        extend camera calibration, rectification and correspondence to multiple cameras and to
        camera + laser rangefinder combinations (see Figure 14-1).[268]
Should commercially available hardware warrant it, the “laser + camera calibration”
        effort will be generalized to include devices such as flash LIDAR and infrared wavefront
        devices. Additional efforts are aimed at developing triangulation with structured or laser
        light for extremely accurate depth sensing. The raw output of most depth-sensing methods is
        in the form of a 3D point cloud. Complementary efforts are thus planned to support turning
        the raw point clouds resulting from 3D depth perception into 3D meshes. 3D meshes will allow for 3D model capture of
          objects in the environment, segmenting objects in 3D and hence the ability for
        robots to grasp and manipulate such objects. Three-dimensional mesh generation can also be
        used to allow robots to move seamlessly from external 3D perception to internal 3D graphics
        representation for planning and then back out again for object registration, manipulation, and
        movement.
[image: New 3D imager combinations: calibrating a camera (left) with the brightness return from a laser depth scanner (right). (Images courtesy of Hai Nguyen and Willow Garage)]

Figure 14-1. New 3D imager combinations: calibrating a camera (left) with the brightness return
          from a laser depth scanner (right). (Images courtesy of Hai Nguyen and Willow
          Garage)

Along with sensing 3D objects, robots will need to recognize 3D objects and their 3D
        poses. To support this, several scalable methods of 2D plus 3D object recognition are being
        pursued. Creating capable robots subsumes most fields of computer vision and artificial
        intelligence, from accurate 3D reconstruction to tracking, identifying humans, object
        recognition, and image stitching and on to learning, control, planning, and decision making.
        Any higher-level task, such as planning, is made much easier by rapid and accurate depth
        perception and recognition. It is in these areas especially that OpenCV hopes to enable
        rapid advance by encouraging many groups to contribute and use ever better methods to solve
        the difficult problems of real-world perception, recognition, and learning.
OpenCV will, of course, support many other areas as well, from image and movie indexing
        on the web to security systems and medical analysis. The wishes of the general community
        will heavily influence OpenCV’s direction and growth.

Directions



Although OpenCV does not have an absolute focus on real-time algorithms, it will
        continue to favor real-time techniques. No one can state future plans with certainty, but the following high-priority areas are likely to
        be addressed.
	Applications
	There are more “consumers” for full working applications than there are for
              low-level functionality. For example, more people will make use of a fully automatic stereo solution than a better subpixel corner detector. There will be several more full applications,
              such as extensible single-to-many camera calibration and rectification as well as 3D
              depth display GUI.

	3D
	As already mentioned, you can expect to see better support for 3D depth sensors
              and combinations of 2D cameras with 3D measurement devices. Also expect better stereo
              algorithms. Support for structured light is also likely.

	Dense Optical Flow
	Because we want to know how whole objects move (and partially to support 3D),
              OpenCV is long overdue for an efficient implementation of Black’s [Black96] dense
              optical flow techniques.

	Features
	In support of better object recognition, you can expect a full-function tool kit
              that will have a framework for interchangeable interest-point detection and
              interchangeable keys for interest-point identification. This will include popular
              features such as SURF, HoG, Shape Context, MSER, Geometric Blur, PHOG, PHOW, and others. Support for 2D and 3D features is planned.

	Infrastructure
	This includes things like a wrapper class,[269] a good Python interface, GUI improvements, documentation improvements, better
              error handling, improved Linux support, and so on.

	Camera Interface
	More seamless handling of cameras is planned along with eventual support for
              cameras with higher dynamic range. Currently, most cameras support only 8 bits per
              color channel (if that), but newer cameras can supply 10 or 12 bits per
                channel.[270] The higher dynamic range of such cameras allows for better recognition and
              stereo registration because it enables them to detect the subtle textures and colors
              to which older, more narrow-range cameras are blind.



Specific Items



Many object recognition techniques in computer vision detect salient regions that change
          little between views. These salient regions[271] can be tagged with some kind of key—for example, a
          histogram of image gradient directions around the salient point. Although all the
          techniques described in this section can be built with existing OpenCV primitives, OpenCV currently lacks direct implementation of the most
          popular interest-region detectors and feature keys.
OpenCV does include an efficient implementation of the Harris corner interest-point detectors, but it lacks direct support for the
          popular “maximal Laplacian over scale” detector developed by David Lowe [Lowe04] and for maximally stable extremal region (MSER) [Matas02] detectors and others.
Similarly, OpenCV lacks many of the popular keys, such as SURF gradient histogram grids [Bay06], that identify the salient regions.
          Also, we hope to include features such as histogram of oriented gradients (HoG) [Dalai05], Geometric Blur [Berg01], offset image patches [Torralba07], dense rapidly computed Gaussian scale variant gradients (DAISY) [Tola08], gradient location and orientation histogram (GLOH) [Mikolajczyk04], and, though patented, we want to add for reference the
          scale invariant feature transform (SIFT) descriptor [Lowe04] that started it all. Other
          learned feature descriptors that show promise are learned patches with orientation
          [Hinterstoisser08] and learned ratio points [Ozuysal07]. We’d also like to see contextual
          or meta-features such as pyramid match kernels [Grauman05], pyramid histogram embedding of other features, PHOW [Bosch07], Shape Context [Belongie00; Mori05], or other approaches that locate features
          by their probabilistic spatial distribution [Fei-Fei98]. Finally, some global features
          give the gist of an entire scene, which can be used to boost recognition by context [Oliva06]. All this is a tall order, and the OpenCV
          community is encouraged to develop and donate code for these and other features.
Other groups have demonstrated encouraging results using frameworks that employ
          efficient nearest neighbor matching to recognize objects using huge learned databases of
          objects [Nister06; Philbin07; Torralba08]. Putting in an efficient nearest neighbor
          framework is therefore suggested.
For robotics, we need object recognition (what) and object location (where). This
          suggests adding segmentation approaches building on Shi and Malik’s work [Shi00] perhaps
          with faster implementations [Sharon06]. Recent approaches, however, use learning to
          provide recognition and segmentation together [Oppelt08; Schroff08; Sivic08]. Direction of
          lighting [Sun98] and shape cues may be important [Zhang99; Prados05].
Along with better support for features and for 3D sensing should come support for
          visual odometry and visual SLAM (simultaneous localization and mapping). As we acquire more accurate depth
          perception and feature identification, we’ll want to enable better navigation and 3D
          object manipulation. There is also discussion about creating a specialized vision
          interface to a ray-tracing package (e.g., perhaps the Manta open source ray-tracing
          software [Manta]) in order to generate better 3D object training sets.
Robots, security systems, and Web image and video search all need the ability to
          recognize objects; thus, OpenCV must refine the pattern-matching techniques in its machine
          learning library. In particular, OpenCV should first simplify its interface to the
          learning algorithms and then to give them good defaults so that they work “out of the
          box”. Several new learning techniques may arise, some of which will work with two or more
          object classes at a time (as random forest does now in OpenCV). There is a need for
          scalable recognition techniques so that the user can avoid having to learn a completely
          new model for each object class. More allowances should also be made to enable ML
          classifiers to work with depth information and 3D features.
Markov random fields (MRFs) and conditional random fields (CRFs) are becoming quite popular in computer vision. These methods are often
          highly problem-specific, yet we would like to figure how they might be supported in a
          flexible way.
We’ll also want methods of learning web-sized or automatically collected via moving
          robot databases, perhaps by incorporating Zisserman’s suggestion for “approximate nearest neighbor” techniques as
          mentioned previously when dealing with millions or billions of data points. Similarly, we
          need much-accelerated boosting and Haar feature training support to allow scaling to
          larger object databases. Several of the ML library routines currently require that all the
          data reside in memory, severely limiting their use on large datasets. OpenCV will need to
          break free of such restrictions.
OpenCV also requires better documentation than is now available. This book helps of course, but the OpenCV
          manual needs an overhaul together with improved search capability. A high priority is
          incorporating better Linux support and a better external language interface—especially to allow
          easy vision programming with Python and Numpy. We’ll also want to make sure that the machine learning library can be
          directly called from Python and its SciPy and Numpy packages.
For better developer community interaction, developer workshops may be held at major vision
          conferences. There are also efforts underway that propose vision “grand challenge”
          competitions with commensurate prize money.


OpenCV for Artists



There is a worldwide community of interactive artists who use OpenCV so that viewers can
        interact with their art in dynamic ways. The most commonly used routines for this
        application are face detection, optical flow, and tracking. We hope this book will enable
        artists to better understand and use OpenCV for their work, and we believe that the addition
        of better depth sensing will make interaction richer and more reliable. The focused effort
        on improving object recognition will allow different modes of interacting with art, because
        objects can then be used as modal controls. With the ability to capture 3D meshes, it may
        also be possible to “import” the viewer into the art and so allow the artist to gain a
        better feel for recognizing user action; this, in turn, could be used to enhance dynamic
        interaction. The needs and desires of the artistic community for using computer vision will
        receive enhanced priority in OpenCV’s future.

Afterword



We’ve covered a lot of theory and practice in this book, and we’ve described some of the
        plans for what comes next. Of course, as we’re developing the software, the hardware is also
        changing. Cameras are now cheaper and have proliferated from cell phones to traffic lights.
        A group of manufacturers are aiming to develop cell-phone projectors—perfect for robots,
        because most cell phones are lightweight, low-energy devices whose circuits already include
        an embedded camera. This opens the way for close-range portable structured light and thereby
        accurate depth maps, which are just what we need for robot manipulation and 3D object
        scanning.
Both authors participated in creating the vision system for Stanley, Stanford’s robot
        racer that won the 2005 DARPA Grand Challenge. In that effort, a vision system coupled with
        a laser range scanner worked flawlessly for the seven-hour desert road race [Dahlkamp06].
        For us, this drove home the power of combining vision with other perception systems: the
        previously unsolved problem of reliable road perception was converted into a solvable
        engineering challenge by merging vision with other forms of perception. It is our hope
        that—by making vision easier to use and more accessible through this book—others can add
        vision to their own problem-solving tool kits and thus find new ways to solve important
        problems. That is, with commodity camera hardware and OpenCV, people can start solving real
        problems such as using stereo vision as an automobile backup safety system, new game
        controls, and new security systems. Get hacking!
Computer vision has a rich future ahead, and it seems likely to be one of the key
        enabling technologies for the 21st century. Likewise, OpenCV seems likely to be (at least in
        part) one of the key enabling technologies for computer vision. Endless opportunities for
        creativity and profound contribution lie ahead. We hope that this book encourages, excites,
        and enables all who are interested in joining the vibrant computer vision
          community.



[268] At the time of this writing, these methods remain under development and are not yet
            in OpenCV.

[269] Daniel Filip and Google have donated the fast, lightweight image class wrapper,
                    WImage, which they developed for internal
                  use, to OpenCV. It will be incorporated by the time this book is published, but
                  too late for documentation in this version.

[270] Many expensive cameras claim up to 16 bits, but the authors have yet to see
                  more than 10 actual bits of resolution, the rest being noise.

[271] These are also known as interest points.
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