[image: VBScript in a Nutshell, 2nd Edition]
VBScript in a Nutshell, 2nd Edition

Paul Lomax

Matt Childs

Ron Petrusha

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.
Foreword

The evolution of VBScript has been an interesting and somewhat
 unpredictable ride for everyone involved, from the product team here at
 Microsoft to, more importantly, the VBScript scripting community. We
 started VBScript back in 1994 as a lightweight scripting language that
 could be integrated into a set of technologies then known as Sweeper,
 which eventually saw the light of day as Internet Explorer 3. The intent
 was to provide a small, fast, and safe subset of Visual Basic that would
 allow for scripting of HTML and ActiveX Controls (actually they were still
 OLE Controls back then) in HTML pages. Since this seemed like a pretty
 simple task, a couple of developers set out on a Friday evening to
 implement it over a weekend, and sure enough, on Monday there was a
 working version of the language, albeit a very small subset of the
 language. We spent the next six months polishing the rough edges,
 resulting in the release of VBScript 1.0 with Internet Explorer 3.0.
 VBScript then was a pretty good language, including many of the features
 of VB—many more than were first imagined in that first weekend.
The plan for VBScript was always to let the language grow to make it
 usable to develop not just client-side web browser code, but also to
 script server-side pages. VBScript 2.0 was shipped with the first release
 of Active Server Pages just eight months after the release of Version
 1.0—ah, the halcyon days of Internet time. Active Server Pages proved to
 be wildly successful, and VBScript usage and interest skyrocketed. The
 next big step for VBScript was the introduction of Windows Script Host,
 which added administrative capabilities to the VBScripter’s toolkit. This
 proved to be very successful, since it finally provided a modern
 alternative to batch files that could take advantage of the rich COM
 components available in Windows.
The success of VBScript led to requests to expand the language to
 meet the expanded expectations of VBScript programmers. Some of the key
 design tenets for VBScript were to keep it small, simple to understand,
 flexible to grow with the programmer, and, most of all, fun to use. The
 last releases of VBScript Versions 5, 5.5 and 5.6 saw major additions to
 the language, including the long sought after with block, classes, function references for
 better Internet Explorer integration, and regular expressions. VBScript is
 now a much more capable and powerful language than we ever imagined it
 would be, and having a reference guide to all the language features
 becomes even more important. VBScript in a Nutshell is a great reference
 to the language, and I hope it makes your scripting even more enjoyable
 and productive.
Script Happens.
—Andrew Clinick
Preface

Visual Basic Scripting Edition, or VBScript, as
 it’s commonly called, began its life amid a certain amount of fanfare as a
 client-side scripting language for web browsers. Its appeal was that it
 was a subset of Visual Basic for Applications (VBA),
 the most widely used programming language in the world, and hence promised
 to make Internet programming easy not only for the huge installed base of
 VB/VBA programmers, but also for new programmers.
But for the most part, VBScript failed to deliver on its promise as
 a client-side scripting language. The problem wasn’t the language or its
 capabilities; rather, VBScript suffered because it was the second language
 to arrive in the arena of client-side scripting and was never able to
 supplant its rival, JavaScript. In fact, Netscape Navigator, the browser
 with the largest market share at the time, completely failed to support
 VBScript, leaving it a language that could be used exclusively for
 client-side scripting on corporate intranets (or for content providers on
 the public Internet who didn’t care that their content was incompatible
 with most browsers).
But while VBScript’s success as a client-side scripting language has
 been marginal, it has become one of the three major scripting languages
 (along with JavaScript and Perl) in use today. With the release of
 Internet Information Server (IIS) 2.0 in 1997, VBScript rapidly became the
 primary scripting language used in developing Active Server Pages (ASP),
 Microsoft’s server-side scripting technology for IIS. Also in 1997,
 Microsoft released the first version of Outlook, which was programmable
 and customizable only by using VBScript. Finally, in 1998, Microsoft
 released the first version of Windows Script Host (WSH), the long awaited
 “batch language” for Windows. Here again, VBScript rapidly emerged as the
 predominant choice for writing WSH scripts.
Why This Book?

The major source of documentation for VBScript is the Visual Basic
 Scripting HTML Help file, the official documentation that is included
 with VBScript itself. While VBScript’s online help is an indispensable
 resource that most VBScript programmers turn to first, it has a number
 of limitations:
	It offers a rather bare-bones approach to the language. There
 isn’t a level of detail that allows one to move beyond the basics or
 to make the documentation useful in troubleshooting and diagnosing
 sources of error.

	The examples rarely, if ever, move beyond the self-evident and
 obvious.

	In a very small number of cases, it incorrectly documents a
 feature that turns out not to work in VBScript, but that is
 implemented in VBA. This leads one to suspect that the documentation
 was originally written for VBA and then was quickly adapted to
 VBScript.

	Since one of the strengths of VBScript is that it allows VBA
 programmers to leverage their existing skills in learning a new
 technology, it is peculiar that the documentation totally disregards
 differences between VBA and VBScript.

In other words, the documentation included with VBScript just
 doesn’t have the depth of information that you need when you need it.
 Most of us can get by day-to-day without even opening VBScript Help. But
 when you need to open the Help file, it’s probably because you’ve either
 hit an unexpected problem or need to know what the consequences of
 coding a particular procedure in a particular way will be. However, Help
 tends only to show you how a function should be included in your code.
 This is understandable; after all, the help information for any language
 must be created before that language goes into general use, but it is
 only general everyday use in real-life situations that highlight how the
 language can best be used and its problems and pitfalls. Therefore,
 online help confines itself to the main facts: what the syntax is and,
 in a general way, how you should implement the particular function or
 statement.
This book takes up where the Help file leaves off. Contained
 within these pages are the experiences of professional VB and VBScript
 developers who have used these languages all day, every day, over many
 years, to create complex applications. It is these experiences from
 which you can benefit. Whether you have come to VBScript recently or
 have been using it since its introduction, there are always new tricks
 to learn. And it’s always important to find out about the gotchas
 that’ll getcha!

Who Should Read This Book?

This book is aimed at experienced VBScript developers or
 experienced developers coming to VBScript for the first time from
 another programming or scripting language (including, of course, VB/VBA
 programmers).
This book is a reference work and not a tutorial—for example, we
 won’t explain the concept of a For...Next loop; as an experienced developer,
 you already know this, so you don’t want someone like us insulting your
 intelligence. But we will explain in detail how a For...Next loop works in VBScript, how it
 works in practice, what the alternatives to it are, how it can be used
 to your best advantage, and what pitfalls it has and how to get around
 them.
Although this book is not intended as a tutorial, we have provided
 in Part I, a concise
 introduction to the language that focuses not only on the general
 structure of the VBScript language, but on also its application in the
 four major environments in which it is used. If you’re learning VBScript
 as a second language, the introduction combined with the reference is
 probably all that you’ll need to get started.

How This Book Should Be Used

VBScript in a Nutshell focuses on the needs
 of three different audiences: programmers and script developers who are
 new to VBScript, VB/VBA programmers who are new to VBScript, and
 VBScript programmers.
If You’re New to VBScript

This book is based upon the assumption that if you’re new to
 VBScript, you know one or more other programming languages. The first
 half of the book leads you through the important areas of VBScript
 programming, which, while very different from most other languages,
 are straightforward and easily mastered. We suggest therefore that you
 read these chapters in order while referring to the Language Reference
 when necessary.

If You’re a VBScript Programmer

As an experienced VBScript programmer, you will be able to dip
 into the book to get the lowdown on the language element that
 interests you. Appendix A
 lists all the functions, statements, and object models by category to
 help you find the relevant section in the Language Reference more
 easily.

If You’re a VB or VBA Developer New to VBScript

If you know VBA, you know VBScript, since the latter is a subset
 of the former. On the whole, you’ll find that VBScript is a much
 “cleaner” language than VBA— many of the archaic elements of VBA
 (elements that survived as Basic and QBasic evolved into VBA and as
 statement-based programming evolved into function-based programming
 and then object-based programming) have been removed from the
 language. But you’ll also find some incompatibilities, as particular
 language features that you’re accustomed to in VBA work differently in
 VBScript. We’ve tried to document those differences in this
 book.

How This Book Is Structured

This book is divided into three parts. The first part of the book,
 The Basics, is an introduction to the main features
 and concepts of VBScript programming, as well as an examination of how
 VBScript is used in its four major scripted environments: Active Server
 Pages, Windows Script Host, Outlook forms programming, and client-side
 scripting for Microsoft Internet Explorer (IE).
Even seasoned VB professionals should find items of interest here.
 If you’re new to VB, this part of the book is essential reading. It is
 divided into the following chapters:
	Chapter 1
	In this chapter, you’ll find information on the VBScript
 language and how it fits in to the family of VB products. We’ll
 also discuss the notion that a scripting language is a kind of
 “glue” meant to hold together and control various objects.
 Finally, there’s also a short discussion of the history of
 VBA.

	Chapter 2
	This chapter details how to create the basic program
 structures in VBScript; how to implement classes, procedures,
 functions, and properties and how a program follows proceeds in a
 VBScript program.

	Chapter 3
	VBScript actually only has a single data type, the variant.
 This chapter looks at the variant and all its data types and shows
 how to use them.

	Chapter 4
	On the assumption that we all strive to create robust
 applications, this chapter covers error handling in your VBScript
 application and discusses the process of debugging in order to
 identify and remove program bugs.

	Chapter 5
	This chapter shows how to incorporate VBScript code into an
 Active Server Page and discusses the IIS object model that you
 access when creating an ASP application.

	Chapter 6
	Outlook 97 and 98 used VBScript as their only programming
 language and Outlook forms as their only programmable feature.
 Outlook 2000 includes two programming languages: VBA for
 application-level development, and VBScript for forms-based
 development. In this chapter, we focus on the latter topic by
 examining the VBScript development environment, discussing how to
 structure and run Outlook code, and listing some of the basic
 objects in the Outlook object model.

	Chapter 7
	Programmers, administrators, and power users have long
 clamored for a “batch language” that would offer the power of the
 old DOS batch language in a graphical environment. Microsoft’s
 answer is Windows Script Host (WSH) and a scripting language of
 your choice. In this chapter, we look at VBScript as the “Windows
 batch language” by examining program flow and how to launch a WSH
 script, discussing the WSH object model, and focusing on the XML
 language elements that you can use to better structure your
 scripts.

	Chapter 8
	VBScript was first introduced as a scripting language for
 Internet Explorer, which remains an important, although secondary,
 area of application for VBScript. In this chapter, we provide a
 quick overview of how to add script to HTML pages and focus on
 some of the functionality available through the Internet Explorer
 object model.

	Chapter 9
	Windows Script Components (WSC) is a technology that allows
 you to create what appear to be reusable binary COM components
 with script. Chapter 9
 documents WSC and shows how you can use it to create your own
 binary COM components.

The second part of the book, The Reference,
 consists of one large chapter. Chapter 10 thoroughly details all
 the functions, statements, and object models that make up the VBScript
 language. The emphasis here is on the language elements found in
 VBScript 5 and 5.5 (which is currently in public beta). See the
 following section for a detailed explanation of how to use the Language
 Reference.
The third and final section consists of the following
 appendixes:
	Appendix A
	This lists all VBScript functions, statements, and major
 keywords by category.

	Appendix B
	This lists the constants built into the VBScript language
 that are available at all times.

	Appendix C
	This lists the operators supported by VBScript, along with a
 slightly more detailed treatment of Boolean and bitwise
 operators.

	Appendix D
	This lists the locale IDs by the
 GetLocale and SetLocale
 functions.

	Appendix E
	This documents Script Encoder (a command-line utility that
 hides source code) and shows how to use it for encoding all
 VBScript scripts except for those in Outlook forms.

The Format of the Language Reference

The following template has been used for all functions and
 statements that appear in Chapter
 10:
	Syntax
	This section uses standard conventions (detailed in the
 following section) to give a synopsis of the syntax used for the
 language item.

	Description (of parameters and replaceable items)
	Where applicable, this section details whether the item is
 optional, the data type of the item, and a brief description of
 the item.

	Return Value
	Where applicable, this section provides a very brief
 description of the value or data type returned by the function
 or property.

	Description
	This section provides a short description of what the
 language element does and when, and why it should be
 used.

	Rules at a Glance
	This section describes the main points of how to use the
 function, presented in the form of a bulleted list to enable you
 to quickly scan through the list of rules. In the vast majority
 of cases, this section goes well beyond the basic details found
 in the VB documentation.

	Example
	It’s not uncommon for documentation to excel at providing
 bad examples. How often do we encounter code fragments like the
 following:
' Illustrate conversion from Integer to Long!
Dim iVar1 As Integer
Dim lVar2 as Long
iVar1 = 3
lVar2 = CLng(iVar1)
Response.Write "The value of lVar2 is: " & lVar2
So you won’t find the gratuitous use of examples in this
 book. We see little point in including a one- or two-line code
 snippet that basically reiterates the syntax section. Therefore,
 we’ve tried to include examples only where they enhance the
 understanding of the use of a language element or demonstrate a
 poorly documented feature of a language element.

	VBA/VBScript Differences
	If you’re programming in the Professional or Enterprise
 Editions of Visual Basic, or in one of the hosted environments
 (like Microsoft Word or AutoCAD) using Visual Basic for
 Applications, this section shows you how a particular VBScript
 language element differs from its VB/VBA counterpart. If no
 differences are noted, the element functions identically in both
 environments. This helps you get up to speed with unfamiliar
 language elements quickly, as well as to get VBA code running
 under VBScript or VBScript code running under VBA.

	Programming Tips and Gotchas
	This is the most valuable section of the Language
 Reference, gained from years of experience using the VBA
 language in many different circumstances. The information
 included in here will save you countless hours of
 head-scratching and experimentation. This is the stuff Microsoft
 doesn’t tell you!

	See Also
	A simple cross-reference list of related or complimentary
 functions.

Conventions in This Book

Throughout this book, we’ve used the following typographic
 conventions:
	Constant width
	Constant width in body text indicates a language construct
 such as a VBA statement (like For or Set), an intrinsic or user-defined
 constant, a user-defined type, or an expression (like dElapTime = Timer() - dStartTime). Code fragments and code
 examples appear exclusively in constant-width text. In syntax
 statements and prototypes, text in constant width indicates such
 language elements as the function’s or procedure’s name, and any
 invariable elements required by the syntax.

	Constant width italic
	Constant width italic in body text indicates parameter and
 variable names. In syntax statements or prototypes, it indicates
 replaceable parameters.

	Constant width
 bold
	Constant width bold in code listings and examples is used to
 emphasize particular lines of code.

	Italic
	Italicized words in the text indicate intrinsic or
 user-defined functions and procedure names. Many system elements
 like paths and filenames are also italicized, as are new terms
 where they are defined.

Tip
This symbol indicates a note.

Warning
This symbol indicates a warning.

How To Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly & Associates, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 or any additional information. You can access this page at:
	http://www.oreilly.com/catalog/vbscriptian2

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O’Reilly Network, see our web site at:
	http://www.oreilly.com and http://vb.oreilly.com

Acknowledgments

We’d like to thank Eric Lippert of Microsoft for his careful and
 thorough review of the manuscript. Eric went far beyond the call of
 duty in working to make this a better book.

Part I. The Basics

This section serves as a general introduction to VBScript, the
 scripting language that is commonly used in Active Server Pages, Outlook
 Forms, Windows Script Host scripts, and client-side scripts for Internet
 Explorer. Taken together, these chapters form an extremely fast-paced
 introduction to the most critical VBScript programming topics. If you’re
 an experienced programmer learning VBScript as a second (or additional)
 programming or scripting language, this material should help to
 familiarize you with VBScript in as short a time as possible.
In addition to its role as a tutorial, Chapter 3 is an essential
 reference to the data subtypes supported by VBScript.
Part I consists of the following chapters:
	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	Chapter 7

	Chapter 8

	Chapter 9

Chapter 1. Introduction

Microsoft Visual Basic Scripting Edition, commonly known as
 VBScript, is a relative of the Visual Basic family, which includes the
 Microsoft Visual Basic Development System (the retail version of Visual
 Basic in its Enterprise, Professional, and Learning Editions) and Visual
 Basic for Applications (the language component of Visual Basic, which is
 included in the individual applications within Microsoft Office and
 Microsoft Project, as well as in a host of third-party
 applications).
VBScript is, for the most part, a subset of the Visual Basic for
 Applications programming language. It was developed so that the millions
 of Visual Basic developers could leverage their knowledge of VB/VBA in
 Internet scripting. One of the strengths of VBScript is that it uses the
 same familiar and easy syntax that has made VBA so popular as a
 programming language, making it very easy to learn for those who have
 some Visual Basic background. In addition, VBScript is fairly easy to
 learn for those without any programming experience.
Ironically, VBScript started as a client-side scripting language
 to create interactive web pages, but it had a major liability: it was
 and is not supported by Netscape Navigator. Instead, the two major web
 browsers on the market, Navigator and Microsoft Internet Explorer, both
 supported a common scripting language, ECMAScript, that became the
 de facto standard and is now the de
 jure standard for client-side scripting. (Netscape’s
 implementation of ECMAScript is named JavaScript, while Microsoft’s
 implementation is named JScript.) Despite its failure in this area,
 however, VBScript rapidly became the major scripting language in three
 other areas:
	Active Server Pages (ASP) applications

	Outlook forms

	Windows Script Host (WSH) scripts

VBScript’s History and Uses

Version 1.0 of VBScript was initially introduced in
 Microsoft Internet Explorer (IE) 3.0, which was released in 1996.
 Its intended use at that point was to allow web page developers to
 enhance their pages through client-side scripting. In contrast to
 plain HTML, which supported the creation of static web pages only, the
 combination of HTML and client-side script allows the creation of web
 pages that are both interactive and responsive to the user. For
 instance, a script could allow the web page to display extended
 information about hyperlinks as the user’s mouse passes over them, or
 it could be used to validate data entered by the user without
 submitting it to the server. A script could even be used to generate a
 web page on the fly, without using any “hardcoded” HTML. The only
 limitation to VBScript as a language for client-side scripting was
 that VBScript could be used inside of Internet Explorer only (the only
 browser to support it) and thus was suitable only for use on corporate
 intranets that had standardized on Internet Explorer. Using VBScript
 for client-side scripting on Internet Explorer is discussed in Chapter 8.
Version 2.0 of VBScript was introduced in Internet Information Server (IIS) 3.0 in 1997. The most
 notable additions to the language were “web-friendly” language
 elements (such as lightweight Format... functions and the Filter, InStrRev, Reverse, and Join functions) that in most cases were
 incorporated into the VBA language only with the release of VBA 6.0.
 In addition, VBScript 2.0 added support for a number of intrinsic
 constants to make code more readable and also implemented the Const statement to allow user-defined
 constants. Finally, the CreateObject and GetObject functions were added to
 instantiate external COM objects; these functions, which are
 inoperative in a client-side scripting environment, are essential for
 supporting components that are capable of extending a scripted
 server-side application.
This new version of VBScript was released with IIS to support
 server-side scripting using ASP. ASP is itself the object model exposed by IIS that
 allows your script to access information about the client’s request
 and to write to the server’s output stream. An ASP
 application consists of conventional web pages (that is,
 HTML and possibly client-side script written in any language) along
 with script that executes on the server. The output of an ASP script
 most commonly is HTML, which is simply inserted into the output stream
 returned by the server in response to a client request. This makes ASP
 important for several reasons. First, it can be used to produce output
 that is customized for the browser on which it’s displayed. Secondly,
 it provides a very strong web application environment, particularly
 one that takes advantage of backend processing. Along with ASP,
 Microsoft introduced ActiveX Data Objects (ADO)
 as its primary data access technology. Developing ASP applications
 with VBScript is discussed in Chapter 5.
Although IIS itself is language-independent and supports a
 number of available scripting languages, it is precisely in this
 realm—scripting for ASP—that VBScript quickly found its major
 application.
Version 3.0 of VBScript, released in 1998, had no new language
 features. Nevertheless, it was significant for marking the spread of
 VBScript beyond a scripted web environment. Besides IIS Version 4.0
 and Internet Explorer Version 4.0, VBScript was now incorporated into
 Outlook 98 (an interim release of Outlook that was developed out of
 sync from the other applications in Microsoft Office) andWindows Script Host 1.0.
Windows Script Host (WSH), which first
 appeared in the Windows NT 4 Option Pack, exposes some core system
 resources (like the registry, the network, printers, and the
 filesystem) and allows system administrators to write scripts that
 access or control them using VBScript, JavaScript, or any of a number
 of other scripting languages. Using WSH, administrators can write
 sophisticated scripts that run either locally or remotely to handle
 typical administrative tasks. WSH is considerably more powerful than
 typical Windows Shell scripting, and is also available in Windows 98.
 Microsoft has built the WSH to help companies address the growing
 concern of the total cost of administration. In addition, WSH appeals
 to power users who prefer writing a simple script rather than
 performing a repetitive task multiple times. Scripting for WSH is
 discussed in Chapter
 7.
Microsoft Outlook was originally released in Office 97 as
 Microsoft’s entry into the personal information manager/workgroup
 messaging market. Outlook featured a number of forms to handle
 standard MAPI message types (such as messages, contacts, tasks, notes,
 and appointments) out of the box. However, VBScript made it possible
 to design new forms and customize their behavior. Although Outlook’s
 latest release,Outlook 2002, includes support for VBA, VBScript remains
 the programming language for Outlook 2002 forms. Developing Outlook
 forms with VBScript is covered in Chapter 6.
Version 4.0 of VBScript was also released as part of Visual
 Studio 6.0 in 1998. As in Version 3.0, no new language features were
 present. The difference was in the Microsoft Scripting Runtime Library (scrrun.dll), which now included a File System object model as well
 as the Dictionary object introduced with VBScript 2.0. The addition of
 the object model made the library an essential component in any
 scripted environment.
Version 5.0, which shipped with Internet Explorer 5.0 and IIS
 5.0 (which shipped with Windows 2000), added a number of new language
 enhancements, including support for scripted classes using the
 Class...End Class construct,
 support for regular expression searches through the RegExp object, and
 the ability to dynamically build expressions to be evaluated using the
 Eval function or executed using
 the Execute method.
As you can see, even though VBScript’s advent as a client-side
 scripting language was largely unsuccessful, Microsoft remained
 committed to VBScript as a “lightweight” form of VBA and continued to
 move the language forward. As a result, it came to be used in a number
 of environments other than client-side scripts, and in fact, has
 become one of the major scripting languages in use today.

What VBScript Is Used For: Gluing Together Objects

We’ve outlined the four major areas in which VBScript is
 used, but if we were to look at how scripts are written in each of
 these environments, we’d quickly note far more differences than
 similarities. (Because of this, we’ve devoted a separate chapter to
 each area in which VBScript is commonly used.) Yet this is misleading.
 If we take a more high-level view, we can see that the role of
 VBScript and the role of the environment in which its scripts are run
 are broadly similar, regardless of the environment’s unique
 features.
Typically, scripting languages are described as “glue” languages. That is, they are used to glue things
 together. That means that the glue itself does relatively little—it
 simply binds the rest of the script together. The “things” that the
 scripting language binds together are components
 or objects—that is, the objects exposed by the
 environment for which the script is being written (like ASP, Internet
 Explorer, Outlook, or WSH), as well as objects that are exposed by
 external applications, environments, or components (such as ActiveX
 Data Objects, Collaboration Data Objects, Microsoft Word, Microsoft
 Excel, or custom components created in Visual Basic). A map of a
 single high-level object (such as the Microsoft Word application, for
 instance, which is represented by the Application object) along with
 its child objects is known as an object model
 .
One type of object model that’s particularly suitable for
 scripting is shown in Figure
 1-1. In this particular case, the figure shows the ASP object
 model. Two features that are particularly noteworthy are its flatness
 and its lack of interdependence. (Contrast it, for example, with the
 Microsoft Word object model, a portion of which is shown in Figure 1-2.) In particular,
 a flatter object model and/or one whose objects have a fair degree of
 independence has a number of advantages:
	Ease of navigation
	Since the object model is flat, you don’t have to be
 concerned with navigating upward and downward through the object
 hierarchy. This makes coding easier, reduces the time spent
 debugging, and improves performance.

	Ease of instantiating objects
	Since objects are independent of one another, you can
 easily create them or retrieve a reference to them, instead of
 having to figure out which portion of the object model you must
 navigate to in order to instantiate that object, or which
 property or method you must call that returns that
 object.

	[image: The Active Server Pages object model]

Figure 1-1. The Active Server Pages object model

	[image: A portion of the Microsoft Word object model]

Figure 1-2. A portion of the Microsoft Word object model

Individual objects within an object model expose properties,
 methods, and events. We’ll discuss each of these in turn.
Properties

Properties are attributes or values of an object that can be
 read and set. (In other words, properties are variables that belong
 to an object.) As long as the value returned by the property is not
 an object, setting and retrieving property values requires a simple
 assignment statement. For example, the following line of code stores
 the value of the ASP Session object’s TimeOut property to a variable
 named lTimeOut:
lTimeOut = Session.TimeOut ' Retrieve property value
Storing a new value to the property is just as easy. For
 instance, the following line of code changes the value of the
 Session object’s TimeOut property to 10 minutes:
Session.TimeOut = 10 ' Set property value
Some properties are read-only; that is, while you can retrieve
 a property’s value, attempting to set it is not permitted and
 generates an error. For example, the code:
lSVars = Request.ServerVariables.Count ' Read-only property
assigns the count of the number of variables in the Request
 object’s ServerVariables collection to a variable named
 lSVars. Attempting to set the value of
 the Count property, however, generates an error, since the property
 (as well as the ServerVariables collection itself) is read-only.
 Rarely, you may also encounter properties that are write-only, or
 that are write-only under certain conditions; you can set the
 property’s value, but you can’t retrieve it. Typically, this is done
 for security reasons.
Many properties return either individual objects or
 collections. (A collection is an object that serves as a container
 for other data items or objects.) These also require assignment
 statements that use the Set
 statement. For example, you can retrieve a reference to the root
 folder of the C: drive on a
 local system with a code fragment like the following:
Set oFS = CreateObject("Scripting.FileSystemObject")
Set oFolder = oFS.Drives.Item("C").RootFolder
Note that in the second line of code, we navigate the File
 System object model from its top-level object, the FileSystemObject
 object, to the Drives collection object. We use the collection’s
 Item property to retrieve a reference to the Drive object
 representing Drive C:, and then retrieve the
 value of its RootFolder property to get a reference to an object
 representing the drive’s root folder.

Methods

Methods are simply public functions or subroutines exposed by
 an object. You call them in the same way that you call any function
 or subroutine, except that you must preface the method name with a
 reference to the object whose method you are calling. If you are
 calling a subroutine or a function whose return value does not
 interest you, you can use syntax like:
Response.Write "<HTML><HEAD>"
which calls the ASP Response object’s Write method to write
 the beginning of a web page to the server’s output buffer in
 response to a client request. To call a method that returns an
 object, use an assignment statement along with the Set statement and enclose the argument
 list in parentheses. For example:
Set oShell = WScript.CreateObject("WScript.Shell")
Set oShortcut = oShell.CreateShortcut("My First Script.lnk")
is a fragment from a WSH script that creates a shortcut and
 returns the WshShortcut object representing that shortcut. If the
 method returns an ordinary value, the Set statement must not be used. For
 instance, the second line of the code:
Set oFS = CreateObject("Scripting.FileSystemObject")
strTempFile = oFS.GetTempName()
calls the FileSystemObject object’s GetTempName method to
 retrieve a temporary filename, which is stored to the variable
 strTempFile. The opening and closing
 parentheses after the method name are optional, since the method in
 this case takes no arguments.

Events

Methods are routines belonging to an object that we call in
 code. Event handlers , on the other hand, are functions or subroutines that
 we write that are called by the VBScript engine in response to some
 event that occurs to the object. For instance, when an ASP
 application is accessed for the first time, its OnStart event is
 fired. If we have included code like the following in our global.asa file:
Sub Application_OnStart
' application startup code goes here
End Sub
then that code is executed
 automatically.

Differences Between VBScript and VBA

 VBScript is a subset of the Visual Basic for Applications language. There are
 several features that VB and VBA programmers have become accustomed to
 that are not present in VBScript. This does not lessen the usability
 of VBScript: it only serves to reinforce that VBScript is meant for
 scripting and not full-blown client/server application development or
 COM component development. Let’s take a look at a few of the larger
 differences between VBScript and VBA:
	VBScript is a weakly typed language.
	Unlike Visual Basic and Visual Basic for Applications, in
 which the developer can define the data type of a variable in
 advance, all variables in VBScript are variants. There are types
 to handle different types of data; you can use these as you
 would the traditional data types in Visual Basic. For more
 information, see Chapter
 3.

	VBScript does not support early binding.
	Because variables are untyped and code is not compiled,
 all external objects instantiated in VBScript code are
 necessarily late-bound. This has a number of implications.
 First, late binding typically entails a substantial
 performance penalty in comparison to early binding. Second,
 while the properties and methods of early-bound objects can be
 examined in Visual Basic or hosted VBA environments using the
 Object Browser, this is not the case with late-bound objects.
 Finally, the help facilities available for early-bound objects
 in VB and VBA (like Auto List Members and Auto Quick Info) are
 not available, making syntax errors more likely and ready access
 to good documentation all the more necessary.

	VBScript does not support named arguments.
	VBA supports both positional and named arguments for most
 functions and procedures. For example, the VBA MsgBox function can be called using
 positional arguments as follows:
lResult = MsgBox("Delete this file?", _
 vbYesNo Or vbQuestion Or vbDefaultButton2, _
 "Confirm File Deletion")
A method call using named arguments takes the following
 form:
lResult = MsgBox(Prompt:="Delete this file?", _
 Title:="Confirm File Deletion", _
 Buttons:=vbYesNo Or vbQuestion Or vbDefaultButton2)
Note that while positional arguments must occur in a
 predefined sequence, named arguments need not. At least in our
 experience, more advanced programmers tend to prefer positional
 syntax, while more novice programmers tend to prefer named
 arguments.
Given all of this, it is unfortunate that VBScript
 supports only positional arguments.

	VBScript does not have an IDE.
	There is no integrated development environment for VBScript
 that parallels the IDE for Visual Basic and Visual Basic for
 Applications. Development tools are available for all of the
 environments in which VBScript is used, but all fall short of
 the power, simplicity, elegance, and ease of use of the VB/VBA
 IDE.Typically, web developers have had their own environments
 for writing their code. VBScript for the Web, whether it is
 client-side or server-side, is embedded inside of a <SCRIPT> tag. This allows web
 developers to continue to use their tool of choice even when
 using VBScript; a wide array of tools for web script development
 are available. Scripts for WSH can be created with the use of a
 simple text editor like Windows Notepad. Outlook comes with its
 rudimentary IDE (a glorified version of Notepad) for attaching
 code to Outlook forms.

We should also mention one difference between VBScript and VB/VBA that developers and commentators
 often emphasize—namely, that VBScript is slower than VB/VBA. This
 contention, though, raises more questions than it answers. First, if
 VBScript is used as “glue code,” as it typically is, then the limiting
 factor in a VBScript program’s performance will be the components it
 consumes, rather than theperformance of the script itself. Second, performance
 cannot be measured in a vacuum. Rather than asking whether VBScript is
 faster or slower in the abstract, we have to consider the particular
 tasks for which it is being used.
But practically speaking, “Which is faster?” is usually the
 wrong question. The right question to ask is, “Which is fast enough?”,
 which is a very different question. “Which is faster?” is a bad metric
 to use when choosing or comparing programming languages. Many factors
 influence performance, and not all are obvious. Code reliability,
 maintainability, robustness, and cost of development are all important
 factors to be considered along with performance.
Performance (“faster” and “slower”) is also inherently hard to
 measure, since the terms themselves are more subjective than
 objective. Do they refer to “UI snappiness,” “time to first byte,”
 “throughput,” or “page faults per second,” or to something
 else?
As a programming language, VBScript offers acceptable
 performance along with an elegance and simplicity that make it a
 valuable tool for the range of scripted applications for which it was
 developed.

Chapter 2. Program Structure

In order to write VBScript programs, you have to know how
 to structure your code so that your scripts and programs execute
 properly. Each of the different runtime environments for which you write
 VBScript code has different rules regarding program structure. We’ll
 look at each of these in turn. We’ll also examine the ways in which your
 host environment allows you to import VBScript code libraries, thus
 allowing you to create reusable code. Finally, we’ll end the chapter
 with a discussion of VBScript usage to write class modules. First,
 though, it’s important to cover the basic structures of VBScript that
 are relevant to all of the different script types: that global code
 calls code in individual functions or procedures.
Functions and Procedures

 Functions and procedures (or subroutines) are central to
 modern programming. Dividing our script into subroutines helps us to
 maintain and write programs by segregating related code into smaller,
 manageable sections. It also helps to reduce the number of lines of
 code we have to write by allowing us to reuse the same subroutine or
 function many times in different situations and from different parts
 of the program. In this section, we’ll examine the different types of
 subroutines, how and why they are used, and how using subroutines
 helps to optimize code.
Defining Subroutines: The Sub . . . End Sub Construct

 The Sub...End Sub
 construct is used to define a subroutine; that
 is, a procedure that performs some operation but does not return a
 value to its calling program. Blocks of code defined as subroutines
 with the Sub...End Sub construct
 can be called in three ways:
	Automatically
	Some subroutines provide the means by which an object
 interfaces with the script. For instance, when a class defined
 with the Class...End
 Class construct is
 initialized, its Initialize event, if one has been defined, is
 executed automatically. For subroutines of this type, the
 routine’s name can be constructed in only one way, as
 follows:
Sub objectname_event
For example, Sub
 Class_Initialize is a valid name of a subroutine.
 This type of subroutine is known as an event
 handler or an event procedure
 .

	Defining it as an event handler
	A subroutine can be executed automatically if it is
 defined as an event handler—as a routine that is executed
 whenever some event occurs. For the most part, the
 functionality to wire events and their event handlers is
 defined by the application environment rather than by the
 VBScript language itself. An exception, however, is the
 GetRef function, which allows you to
 define event handlers for Dynamic HTML pages in Internet
 Explorer.

	Referring to it by name
	A subroutine can be executed at any time by referring to
 it by name in another part of the script. (For additional
 details, including the syntax required to call subroutines,
 see Section
 2.1.2 " later in this chapter.)
 While it is possible to execute event procedures in this way,
 this method is most commonly used to execute custom
 subroutines . Custom subroutines are constructed to perform
 particular tasks within a program and can be assigned
 virtually any name that you like. They allow you to place code
 that’s commonly used or that is shared by more than one part
 of a program in a single place, so that you don’t have to
 duplicate the same code throughout your application.

Subroutine Names
Subroutine names follow the same rules as all identifiers,
 like classes, variables, and properties. This means that there are
 several very straightforward rules to remember when giving names
 to your subroutines:
	The name can contain any alphabetical or numeric
 characters and the underscore character.

	The name must start with a letter, not a numeric
 character or underscore, and it cannot contain embedded
 spaces.

	The name cannot contain any spaces. Use the underscore
 character to separate words to make them easier to
 read.

	The name cannot be a VBScript reserved word, such as a
 VBScript statement.

For example, in the following:
Sub 123MySub() ' Illegal
Sub My Sub Routine() ' Illegal
both names contain illegal subroutine names. However:
Sub MySub123() ' Legal
Sub MySubRoutine() ' Legal
are legal subroutine names.
Most of these rules can be broken by enclosing the
 subroutine name in brackets. The following VBScript code for WSH,
 for instance, defines valid subroutines whose names begin with an
 underscore and a numeric string character, include an embedded
 space, and conflict with a VBScript reserved word:
[_Main]
Public Sub [_Main]
 MsgBox "In_Main"
 [1Routine]
 [2 Routine]
 [Dim]
End Sub

Public Sub [1Routine]
 MsgBox "In 1Routine"
EndSub
Public Sub [2 Routine]
 MsgBox "In 2 Routine"
 End Sub
 Public Sub [Dim]
 MsgBox "In Dim"
End Sub

Example 2-1
 illustrates the use of a custom subroutine in a client-side script
 to contain code that is common to more than one part of an
 application. It provides a simple example of some common code that
 is placed in a custom subroutine. The web page in Example 2-1 contains three
 intrinsic HTML command buttons. But rather than handling the user’s
 click of a particular button separately, each button’s OnClick event
 procedure simply calls the ShowAlertBox routine. Had we not included
 the ShowAlertBox subroutine,
 which contains code common to all three event handlers in our web
 page, we would have had to create a script several times longer than
 the one shown in Example
 2-1.
Along with showing how to use a custom subroutine to share
 code, Example 2-1
 also demonstrates how to pass variables from one procedure to
 another, a topic discussed in greater depth in Section 2.1.4 later in
 this chapter. In particular, theShowAlertBox routine is passed the
 caption of the button on which the user has clicked so that it can
 display it in an alert box.
Example 2-1. Using a custom subroutine to share code
 Sub cmdButton1_OnClick
 Call ShowAlertBox(cmdButton1.Value)
 End Sub

 Sub cmdButton2_OnClick
 ShowAlertBox cmdButton2.Value
 End Sub

 Sub cmdButton3_OnClick
 ShowAlertBox cmdButton3.Value
 End Sub

 Sub ShowAlertBox(strButtonValue)
 dim strMessage
 strMessage = "This is to let you know" & vbCrLf
 strMessage = strMessage & "you just pressed the button" & vbCrLf
 strMessage = strMessage & "marked " & strButtonValue
 Alert strMessage
 End Sub

Calling a Subroutine

In Example
 2-1, you may have noticed that the cmdButton1_OnClick event
 procedure uses a different syntax to invoke the ShowAlertBox routine than the
 cmdButton2_OnClick and cmdButton3_OnClick procedures. The second
 form of the call to the ShowAlertBox function:
showAlertBox cmdButton2.Value
is currently the preferred method. Note that it is unclear
 that this is actually a call to a subroutine named ShowAlertBox. Presumably, ShowAlertBox could be a variable. In
 fact, in order to identify ShowAlertBox as a subroutine, we have to
 rely on a visual clue: it is followed by another variable on the
 same line of code. This assumes, of course, that the code is
 correct, and that we haven’t inadvertently omitted an equal sign
 between two variables.
In contrast, invoking a procedure by using a Call statement like the following:
Call showAlertBox(Top.cmdButton1.Value)
makes the code much more readable. You may prefer using it for
 this reason.
The rules for calling procedures are quite simple. If you use
 the Call statement, you must enclose the argument list in
 parentheses. If you do not use Call, you cannot use parentheses unless
 you’re passing a single variable. In this case, though, parentheses
 also cause the variable to be passed by value rather than by
 reference to the subroutine (for the meanings of “by value” and “by
 reference,” see Section
 2.1.4 later in this chapter), a behavior that may have
 undesirable consequences.

Defining Functions: The Function . . . End Function
 Construct

 As we’ve seen, subroutines created by the Sub...End Sub construct are used to
 manipulate data that is passed to them (assuming that the subroutine
 accepts parameters) or to perform some useful operation. However,
 subroutines have one major shortcoming: they don’t return data, such
 as the results of their manipulations or information on whether they
 were able to execute successfully.
It is possible for asubroutine to “return” a value by passing it an
 argument by reference (a topic discussed in Section 2.1.4).
 However, that has one major disadvantage: it requires that you
 declare a variable to pass to the subroutine, even if you’re not
 concerned with that variable’s value or with the value “returned” by
 the subroutine.
There’s also an additional way that a subroutine can return a
 value: you can pass the subroutine the value of a global variable
 that is visible throughout your routine. For instance, we could use
 the following code fragment to create a subroutine that cubes any
 value that is passed to it as a parameter:
<SCRIPT LANGUAGE="vbscript" RUNAT="Server">
 dim cube ' global variable

 Sub CubeIt(x)
 cube = x^3
 end sub
</SCRIPT>
Another routine can then access the result with a code
 fragment like the following:
<%
Dim intVar
intVar = 3
CubeIt intVar
Response.Write cube
%>
This approach, though, suffers from two limitations. First, it
 means that the global variable must remain in memory for the entire
 life of our script, even though the variable itself may be used only
 briefly, if at all. In most cases, this is a very minor concern,
 unless that variable is a large string or it’s used on a
 particularly busy web server. Second, and much more important, it
 creates a variable that can be accessed and modified from anywhere
 within our script. This makes it very easy for a routine to
 accidentally modify the value of a variable that is used elsewhere
 in the script. The availability or unavailability of a variable
 within a particular procedure is called its
 scope . And in general, the variables in a well-designed
 application should have the most restrictive scope possible.
Through its support for functions, VBScript supports a much
 safer way of retrieving some value from a routine. Functions share
 many of the same characteristics as subroutines defined with the
 Sub...End Sub construct:
	Through their optional argument list, they can be used to
 manipulate data that is passed to them.

	Since they can be called from anywhere in a script, they
 can be used to contain code that is shared by more than one part
 of the application.

However, unlike subroutines, functions return some value to the calling procedure.
 This makes functions ideal for such uses as storing the code for
 frequently used calculations and conversions.
Functions are defined by using the Function...End Function construct, and by
 placing the function’s code between these two statements. The full
 form of the Function...End
 Function statements is:
Function functionname(argumentlist)
End Function
Defining a Function’s Return Value
If you’ve used VB or VBA to create functions, you probably
 have used the As keyword to
 define the data type of the value returned by a function, as in
 the following statement:
Function CubeIt(ByVal x As Long) As Long
Since VBScript supports only the variant data type, though,
 the As keyword is not supported, and you don’t have to
 worry about the data type returned by your custom function. All
 functions defined by the Function statement return data of type
 variant.

A function’s argument list is defined in exactly the same way
 as a subroutine’s: the list of arguments is separated by commas and
 is enclosed in parentheses.
So how do we have our function return a value to the calling
 procedure? Within the body of our function, we assign the value that
 we want our function to return to a variable whose name is the same
 as the name of the function, as illustrated by the following code
 fragment:
Function functionname(argumentlist)
 . . . some calculation or manipulation
 functionname = result of calculation or manipulation
End Function
This variable is automatically initialized through the use of
 the Function statement. This
 means that if you’re accustomed to defining your variables before
 using them, and especially if you’ve included the Option Explicit statement in your script,
 you should not use the Dim statement to explicitly initialize the
 variable for the function’s return value.
To implement our earlier CubeIt procedure as a function rather
 than a subroutine, we dispense with the need to define a global
 variable to hold the cube of the argument passed to the function and
 enormously simplify our code, as the following code fragment
 shows:
<SCRIPT LANGUAGE="vbscript" RUNAT="Server">
 Function CubeIt(x)
 CubeIt = x^3
 End Function
</SCRIPT>

<%
Dim intVar
intVar = 3
Response.Write CubeIt(intVar)
%>
Once a custom function is correctly defined using the Function...End Function statement, it can
 be called just as if it were an intrinsic function that is built
 into the VBScript language. The function call itself can take either
 of two forms. The most common form involves using the function name
 and its argument list on the right side of an expression, and
 assigning its return value to a variable on the left side of the
 expression. For example, the most common way to call the CubeIt function is:
y = CubeIt(x)
This assigns the value returned by the CubeIt function to the variable
 y. Unlike a call to a subroutine, though,
 this means that the argument list, if one is present, must always be
 surrounded by parentheses. (If the function accepts no parameters,
 though, the opening and closing parentheses are typically still
 used, although they’re not required.)
In some cases, you may not actually be concerned with a
 function’s return value. This doesn’t happen very often—usually, you
 call a function precisely in order to have it return some
 value, so ignoring its return value renders the function useless.
 Nevertheless, if you do want to discard a function’s return value,
 you can call a function just like you would call a subroutine. For
 example:
Call CubeIt(x)
or:
CubeIt x
Example 2-2
 provides a real-world example—a client-side script that converts
 inches to either millimeters or meters—that shows how functions are
 defined and called. Along with two event procedures, it contains a
 function, sngMetric, that has a single
 argument, strInches, which is a string
 containing the number of inches that the user has input into the
 form’s text box. The function converts this value to a single
 precision number, multiplies by 25.4, and, by storing it to the
 variable sngMetric, returns the result.
 The cmdButton1_OnClick and cmdButton2_OnClick event handlers call
 the function as necessary and pass the appropriate values to it. As
 you can see, the result returned by the sngMetric function is immediately
 displayed in a message box.
Example 2-2. Calling a function and returning a result
<HTML>
 <HEAD>
 <SCRIPT LANGUAGE="vbscript">
 <!--
 Sub cmdButton1_OnClick
 Dim strImperial
 strImperial = txtText1.Value
 Alert CStr(sngMetric(strImperial)) & " mm"
 End Sub

 Sub cmdButton2_OnClick
 Dim strImperial
 strImperial = txtText1.Value
 Alert CStr(sngMetric(strImperial)/1000) & " m"
 End Sub

 Function sngMetric(strInches)
 Dim sngInches
 sngInches = CSng(StrInches)
 sngMetric = sngInches * 25.4
 End Function
 -->
 </SCRIPT>
 </HEAD>

 <BODY BGCOLOR="white">
 Input Inches: <INPUT TYPE="text" NAME="txtText1">
 <INPUT TYPE="button" NAME="cmdButton1" VALUE="Show Millimeters">
 <INPUT TYPE="button" NAME="cmdButton2" VALUE="Show Meters">
 </BODY>
</HTML>

Passing Variables into a Subroutine

 The ability to pass variables from one procedure to
 another is an important part of using custom procedures. It allows
 us to write custom “black box” routines that can behave differently
 depending on where the routine has been called from and also on the
 particular data values that the routine receives from the calling
 program.
The data is passed from a calling routine to a subroutine by
 an argument list . The argument list is delimited with commas and can
 contain any data types, including objects and arrays. For instance,
 the following mySubRoutine
 procedure expects three arguments:
 intDataIn1,
 strDataIn2, and
 lngDataIn3:
Sub AnotherSubRoutine()
 some code. . . .
 mySubRoutine intvar1, strvar2, lngvar3
 more code that executes after mySubRoutine
End Sub

Sub mySubRoutine(intDataIn1, strDataIn2, lngDataIn3)
 code which uses incoming data
End Sub
When mySubRoutine is called from
 AnotherSubRoutine, it is passed three variables
 as arguments: intvar1,
 strvar2, and
 lngvar3. So as you can see, the names of
 variables passed in the calling routine’s argument list do not need
 to match the names in the custom procedure’s argument list. However,
 the number of variables in the two argument lists does need to match
 or a runtime error results.
Passing Parameters by Reference
If you’re accustomed to programming in VB or VBA, you’ll
 recognize the way that you pass arguments in VBScript. However, in
 Versions 1 and 2 of VBScript, this wasn’t the case. Parameters
 could be passed only by value, and there was no support for
 passingparameters by reference.

In addition, because VBScript is so flexible in its use of
 data types, you must take care when building subroutines that use
 data passed into them. The variables designated in the custom
 subroutine’s argument list are automatically assigned the data types
 of the calling program’s argument list. If a custom subroutine
 attempts to perform some inappropriate operation on the data passed
 to it, an error results, as the following code fragment
 illustrates:
Sub AnotherSubRoutine()
 some code. . .
 intVar1 = "Hello World"
 Call mySubRoutine (intvar1, strvar2, lngvar3)
 more code that executes after mySubRoutine
End Sub

Sub mySubRoutine(intDataIn1, strDataIn2, lngDataIn3)
 code that uses incoming data
 intResult = intDataIn1 * 10 'this will generate an error
End Sub
The custom subroutine mySubRoutine assumed that
 intDataIn1 would be an integer, but
 instead the calling program passed it a string variable,
 intVar1. Therefore, VBScript
 automatically casts intDataIn1 as a
 string. The subroutine then produces a runtime error when it
 attempts to perform multiplication on a non-numeric variable. As you
 can see, while weakly typed languages like VBScript have many
 advantages, one of their major drawbacks is the fact that you must
 be on your guard for rogue data at all times.
You can pass an argument to a procedure either by reference or
 by value. By default, arguments are passed by
 reference, which means that the calling routine passes
 the called function or subroutine the actual variable (that is, its
 actual address in memory). As a result, any modifications made to
 the variable are reflected once control returns to the calling
 routine. The ASP code in Example 2-3 illustrates
 passing a variable by reference. The variable
 x is initially assigned a value of 10 in
 the DoSubroutine procedure.
 This value is then changed to 100 in the CallAnotherSub procedure. When control
 returns to the DoSubroutine
 procedure, the value of x remains 100
 because the variable was passed by reference to CallAnotherSub.
Example 2-3. Passing a variable by reference
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
Sub DoSubroutine()
 Dim x
 x = 10
 Response.Write "In DoSubroutine, x is " & x & "<P>"
 CallAnotherSub x
 Response.Write "Back in DoSubroutine, x is " & x & "<P>"
End Sub

Sub CallAnotherSub(ByRef var1)
 var1 = var1^2
 Response.Write "In CallAnotherSub, var1 is " & var1 & "<P>"
End Sub
</SCRIPT>

About to call DoSubroutine <P>
<%
 DoSubroutine
%>

The Sub statement for
 CallAnotherSub explicitly
 indicates that its single parameter,
 var1, is to be passedby reference because of the ByRef keyword. Since this is the default
 method of passing parameters, however, the keyword could have been
 omitted. The statement:
Sub CallAnotherSub(ByRef var1)
is identical to:
Sub CallAnotherSub(var1)
On the other hand, by value means that
 the calling routine passes the called function or subroutine a copy
 of the variable. This means that any changes to the variable’s value
 are lost when control returns to the calling program. The ASP code
 in Example 2-4
 illustrates passing a variable by value. As was also true in Example 2-3, the variable
 x is initially assigned a value of 10 in
 the DoSubroutine procedure.
 This value is then changed to 100 in the CallAnotherSub procedure. When control
 returns to the DoSubroutine
 procedure, the value of x remains 10
 because the variable x was passed by
 value to CallAnotherSub.
Example 2-4. Passing a variable by value
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
Sub DoSubroutine()
 Dim x
 x = 10
 Response.Write "In DoSubroutine, x is " & x & "<P>"
 CallAnotherSub x
 Response.Write "Back in DoSubroutine, x is " & x & "<P>"
End Sub

Sub CallAnotherSub(ByVal var1)
 var1 = var1^2
 Response.Write "In CallAnotherSub, var1 is " & var1 & "<P>"
End Sub
</SCRIPT>

About to call DoSubroutine <P>
<%
 DoSubroutine
%>

Note that the Sub statement
 for CallAnotherSub explicitly
 indicates that its single parameter,
 var1, is to be passed by value because of
 the ByVal keyword. This is
 necessary, since otherwise the variable would have been passed by
 reference.
To call a subroutine and pass it one or more arguments, you
 would use syntax like the following:
DoSomeSub x, y, z
where each argument in the argument list is separated from the
 other arguments by a comma, and the argument list is separated from
 the subroutine by a space. You cannot use parentheses to surround
 the argument list of a subroutine unless it has only a single
 argument.
To call a function, you can use the same syntax as you would
 use for a subroutine if you intend to discard the function’s return
 value. For example:
DoSomeFunc x, y, z
passes three arguments to a function and ignores its return
 value. If the function has only a single argument, you can also call
 it and ignore its return value as follows:
DoSomeFunc(x)
More commonly, however, you are interested in the return value
 of a function. In that case, the argument list should be enclosed in
 parentheses, and each argument should be separated from other
 arguments by a comma. For example:
retval = DoSomeFunc(x, y, z)
Although the called routine defines whether an argument is to
 be passed to it by value or by reference, there is actually no way
 to force the caller to call a routine and pass
 it an argument by reference. This is because there is one additional
 way to pass an argument to a procedure that overrides the explicit
 or default ByRef keyword: you can
 enclose the argument in parentheses. This is a subtle difference
 that you should be aware of when passing parameters to procedures, since it can have unintended
 consequences. Imagine, for example, that we have the following
 subroutine, which accepts two arguments by reference:
Sub DoSomething(xl, x2)
The caller can pass the first argument to the subroutine by
 value by using the following syntax:
DoSomething (x1), x2
Similarly, the caller can pass the second argument to the
 subroutine by value by using the following syntax:
DoSomething x1, (x2)
If a subroutine has only a single parameter, then calling it
 with a syntax like the following:
DoSomething(x)
also passes the argument x to it by
 value.
Tip
The converse does not work: parentheses do not cause an
 argument to be passed by reference to a routine that is expecting
 to receive an argument passed by value.

Overriding a by reference parameter when calling a function
 works similarly; arguments enclosed in parentheses are always passed
 by value rather than by reference. If the caller wishes to discard
 the function’s return value, then a function is called exactly as if
 it were a subroutine, and by reference parameters are overridden in
 the same way as in calls to subroutines. If the caller retrieves the
 function’s return value, then the function name must be followed by
 parentheses, as must the argument to be passed by value rather than
 by reference. For example, given a function with the
 signature:
Function CallFunction(var1, var2)
the code:
retVal = CallFunction(xl, (x2))
passes the x2 argument to the
 function by value rather than by reference. If a function has a
 single parameter, an argument can be passed to it by value rather
 than by reference using the following syntax:
retVal = CallFunction((x1))
Note the double parentheses around the single
 argument.

Exiting a Routine with the Exit Statement

Ordinarily, when you call a function or a subroutine, all code
 between the initial Function or
 Sub statement and the concluding
 End Function or End Sub statement is executed. In some
 cases, though, you may not want all of a routine’s code to be executed.
For example, imagine a situation in which you only want to
 execute a subroutine if a particular condition is met. One way of
 implementing this in your code is to test for the condition before
 calling the subroutine, as follows:
 . . . some code
If condition Then
 Call MySubRoutine()
End if
. . . more code
However, if you call the routine from multiple locations in
 your code, and you want to apply this test to each call, you’ll have
 to include this control structure at every place in the script in
 which you call the subroutine. To avoid this redundant code, it’s
 better to call the subroutine regardless of the condition, and to
 place the test within the subroutine. One way of doing this is as
 follows:
Sub MySubRoutine()
 If condition then
 . . . all our subroutine code
 End if
End Sub
This is all well and good, and quite legal. However, in a
 large and complex subroutine, the End
 If statement becomes visually lost, especially if there
 are several conditions to be met. The preferred alternative is the
 Exit Sub and the Exit Function statements, which are used with
 the Sub . . . End Sub and Function . . . End Function constructs, respectively. Our
 conditional test at the beginning of a subroutine then appears as
 follows if we use the Exit Sub
 statement:
Sub MySubRoutine()
 If Not condition Then Exit Sub
 . . . all our subroutine code
End Sub
Exit Sub and Exit Function immediately pass execution of the
 program back to the calling procedure; the code after the Exit statement is never executed. As you
 can see from the previous code fragment, the code is clean and
 clearly understandable. If the particular condition is not met, the
 remainder of the subroutine is not executed. Like the Exit Do and Exit
 For statements, any number of Exit Sub or Exit Function statements can be placed anywhere
 within a procedure, as the following code fragment
 demonstrates:
Function functionname(argumentlist)

 . . . some calculation or manipulation

 If condition1 Then
 functionname = result of calculation or manipulation
 Exit Function
 End If

 . . . perhaps some more code

 If condition2 Then
 functionname = result of calculation or manipulation
 Exit Function
 End If

End Function

Classes

Since VBScript 5.0, developers have been able to create
 classes to use in their scripts—a definite step along the road of
 object-oriented programming in VBScript. Writing classes with VBScript
 is very similar to writing COM objects with VB. Before we look at writing an actual
 class, let’s go over some of the terminology so we are clear on what
 we are doing and what we are referring to.
A class is simply the template for an
 object. When you instantiate an object (that is, create an instance of a class) in code,
 VBScript makes a copy of the class for your use. All objects come from
 a class. Writing the class is simply a matter of creating a design for
 the objects that you want to use.
So naturally, it follows that an object
 is simply a copy of the class that you are making
 available to your program. You can make as many copies as you like for
 your use. The copies are temporary structures for holding information
 or creating interactions. When you are done with the objects, you can
 release them. If you need another one, you can instantiate another
 copy.
In VBScript, classes must be created in the scripts where you
 want to use them or they must be included in the scripts that use
 them. Since VBScript isn’t compiled, unless you use Windows Script
 Components, you don’t have the advantage of being able to write a set
 of VBScript COM classes that are reusable outside of the scripts in
 which they’re defined or that can be easily accessed by programs and
 scripts written in other languages.
The Class Construct

You declare a class using the Class...End Class construct. The syntax of the Class statement is:
Class classname
where classname is the name you
 want to assign to the class. It must follow standard VBScript
 variable naming conventions.
Classes can contain variables, properties, methods, and
 events. How many of these and of what types is completely up to you.
 It is possible to have an object that has no properties or methods
 and supports only the two default events, but it won’t be a very
 useful class.
To instantiate an object—that is, to create an instance of
 your class that you can use in your code—use the following
 syntax:
	Set
 oObj =
 New classname

where oObj is the name you want to
 assign to your object variable (it again must follow standard
 VBScript variable naming conventions), and
 classname is the name of the class. The
 statement creates an object reference
 —that is, the variable oObj
 contains the address of your object in memory, rather than the
 object itself.

Class Variables

In addition to properties, methods (which are either
 functions or subroutines), and events (which are subroutines), the
 code inside a Class structure can
 include variable definitions (but not variable assignments). The
 variable definition can take any of the following forms:
Dim varName1 [, varName2...]
Private varName1 [, varName2...]
Public varName1 [, varName2...]
The variable name must once again follow standard VBScript
 variable naming conventions.
The Dim, Private, and Public keywords indicate whether the
 variable is accessible outside of the class. By default, variables
 are public—that is, they are visible outside of the Class...End Class structure. This means
 that the Dim and Public keywords both declare public
 variables, while the Private
 keyword declares a variable that’s not visible outside of the
 class.
In general, it is poor programming practice to make a class
 variable visible outside of the class. There are numerous reasons
 for this, the most important of which is that you have no control
 over the value assigned to the variable (which is especially a
 problem when dealing with a weakly typed language like VBScript) and
 no ability to detect when the value of the variable has been
 changed. As a rule, then, all variables declared within your classes
 should be private.

Class Properties

Typically, class properties are used to “wrap” the
 private variables of a class. That is, to change the
 value of a private variable, the user of your class changes the
 value of a property; the property assignment procedure (called a Property Let procedure) handles
 the process of data validation and assigning the new value to the
 private variable. If the private variable is an object, use an
 object property assignment procedure (called a
 Property Set procedure) to
 assign the new property value to the private object variable.
 Similarly, to retrieve the value of a private variable, the user of
 your class retrieves the value of a property; theproperty retrieval procedure (called a
 Property Get procedure) handles the process of returning the value
 of the private variable.
Read-only properties (which wrap read-only private variables)
 have only a Property Get procedure, while
 write-only properties (which are rare) have only a
 Property Let or a Property
 Set procedure. Otherwise, properties have a Property Get
 procedure and either a Property Let or a
 Property Set procedure and are
 read-write.
The use of public properties that are available outside of the
 class to wrap private variables is illustrated in Example 2-5, which shows a
 simple class that defines a private variable,
 modStrType, and two read-write
 properties, ComputerType and OperatingSystem, the latter of which is
 an object property. Normally, you would validate the incoming data
 in the Property Let and Property Set procedures before assigning it
 to private variables, although that hasn’t been done here to keep
 the example as simple as possible.
Example 2-5. Using properties to wrap private variables
Class Computer

 Private modStrType
 Private oOS

 Public Property Let ComputerType(strType)
 modStrType = strType
 End Property

 Public Property Get ComputerType()
 ComputerType = modStrType
 End Property

 Public Property Set OperatingSystem(oObj)
 Set oOS = oObj
 End Property

 Public Property Get OperatingSystem()
 Set OperatingSystem = oOS
 End Property

End Class

Class Methods

Methods allow the class to do something. There is no
 magic to methods—they are simply subroutines or functions that do
 whatever it is you wish for the object to do. For example, if we
 created an object to represent a laptop computer in a company’s
 inventory, then we would like to have a method that reports the
 laptop’s owner. Example
 2-6 shows a class with such a method.
Example 2-6. Creating a class method
Class LaptopComputer
Private modOwner

Public Property Let CompOwner(strOwner)
 modOwner = strOwner
End Property

Public Property Get CompOwner()
 CompOwner = modOwner
End Property

Public Function GetOwner()
 GetOwner = modOwner
End Function

End Class

As with properties, you can use the Public and Private keywords to make methods available
 inside or outside of the class. In the previous example, the method
 and both properties are available outside of the class because they
 are declared as Public.
Note that in Example
 2-6, the Property Get procedure performs
 the same functionality as the GetOwner method.
 This is quite common: you often can choose whether you want to
 implement a feature as a property or as a method. In this case, you
 could define both property procedures to be private; then the only
 way for anyone to get the owner information from the object would be
 to invoke the GetOwner method.
The GetOwner method is
 declared as a function because it returns a value to the calling
 code. You can write methods as subroutines as well. You would do
 this when the method that you are calling does not need to pass back
 a return value to the caller.

Class Events

Two events are automatically associated with every
 class you create:Class_Initialize andClass_Terminate. Class_Initialize is fired whenever
 you instantiate an object based on this class. Executing the
 statement:
Set objectname = New classname
causes the event to fire. You can use this event to set class
 variables, to create database connections, or to check to see if
 conditions necessary for the creation of the object exist. You can
 make this event handler either public or private, but usually event
 handlers are private—this keeps the interface from being fired from
 outside code. The general format of the Class_Initialize event
 is:
Private Sub Class_Initialize()
Initalization code goes here
End Sub
The Class_Terminate event handler is called when the script
 engine determines that there are no remaining references on an
 object. That might happen when an object variable goes out of scope
 or when an object variable is set equal to Nothing, but it also might not happen at
 either of these times if other variables continue to refer to the
 object. You can use this handler to clean up any other objects that
 might be opened or to shut down resources that are no longer
 necessary. Consider it a housekeeping event. This is a good place to
 make sure that you have returned all memory and cleaned up any
 objects no longer needed. The format of the Class_Terminate event
 is:
Private Sub Class_Terminate()
Termination code goes here
End Sub
Once again, the event handler can either be public or private,
 though ordinarily it’s defined as private to prevent termination
 code from being executed from outside of the class.

Global Code

 We’ve seen that code can be organized into functions,
 subroutines, and classes, and that some subroutines (and an occasional
 function) can be executed automatically if they are event handlers and
 the event they handle fires. However, that seems to offer a relatively
 limited “hook” for a script to run, and it doesn’t seem to make it
 possible for a script to perform whatever initialization might be
 required in order for its event handlers to function
 successfully.
Global code—that is, code outside functions
 and subroutines—is the answer to this dilemma. It is executed
 automatically when the script loads or as the HTML on the page is
 parsed. The precise meaning of global code and the exact way in which
 it is executed depends on the host environment for which the script is
 written. We’ll examine these in turn.
Active Server Pages

In ASP, global code is synonymous with code in direct
 ASP commands—it is script that is preceded by the <% or <%= tags and terminated by the %> tag. (For details on how script is
 embedded within in ASP page, see Chapter 5.) This code is
 executed automatically as the page’s HTML is parsed.
It is also possible to include global code in <SCRIPT>...</SCRIPT>
 tags in an ASP. However, this is not genuine global
 code; aside from variable declarations, the order in which this code
 is executed is undefined.
Figure 2-1
 shows the web page produced by Example 2-7, which
 illustrates global code in an Active Server Page. Note that although
 the variable x is defined and assigned a
 value in global code within the <SCRIPT> tag, the variable
 declaration is recognized but the variable assignment isn’t. We can
 determine this because we’ve used the Option Explicit statement to require variable
 declaration, and the VBScript language engine did not raise an error
 when it first encountered the use of x on
 the second line after the <BODY> tag. But our assignment of 10
 to x is not recognized, since the second
 line of our web page strongly suggests that
 x is uninitialized.
Example 2-7. Global code in an Active Server Page
 <% Option Explicit %>
<HEAD>
<TITLE>Global code in ASP</TITLE>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">

Dim x
x = 10

Function Increment(lVar)
 lVar = lVar + 1
 Increment = lVar
End Function

Function Decrement(lVar)
 lVar = lVar - 1
 Decrement = lVar
End Function

</SCRIPT>
</HEAD>
<BODY>
<H2><CENTER>An Active Server Page</CENTER></H2>
The current value of x is <%= x %>

<%
 Dim y
 y = 20
 If x = 0 Then x = 10
%>
Value returned by Increment function: <%= Increment(x) %>

Value returned by Increment function: <%= Increment(x) %>

Value returned by Decrement function: <%= Decrement(x) %>

The value of <I>x</I> is now <%= x %>.
The value of <I>y</I> is <%= y %>.
</BODY>
</HTML>

	[image: The web page produced by Example 2-7]

Figure 2-1. The web page produced by Example 2-7

We can draw the following conclusions from Example 2-7:
	Variable declarations placed at script level within the
 <SCRIPT> tag are
 recognized by ASP.

	Aside from variable declarations, no global code should be
 placed within the <SCRIPT> tag. The remaining code
 located within a <SCRIPT> tag should consist
 solely of function, subroutine, and class definitions.

	Direct commands can contain any global code.

	All direct commands are executed as the web server is
 parsing the HTML and generating a response to the client. In
 other words, along with handlers for the events supported by ASP
 (Application_OnStart, Application_OnEnd, Session_OnStart,
 Session_OnEnd, OnTransactionAbort, and OnTransactionCommit),
 direct commands are basic “hooks” that allow your code to
 run.

Windows Script Host

 In a standard VBScript file for WSH, global code is
 any code that’s not located in function, subroutine, or class
 definitions. This code is executed sequentially regardless of where
 it is located in the file. This produces some interesting
 possibilities for spaghetti code, as illustrated in Example 2-8, which provides
 a WSH equivalent of the ASP script in Example 2-7. This script
 produces the dialog shown in Figure 2-2. Although its
 program structure should not be duplicated in your own code, Example 2-8 illustrates
 that all global code is executed from the beginning of a VBScript
 file to the end.
Example 2-8. Global code in WSH
Option Explicit

Dim x
x = 10

Function Increment(lVar)
 lVar = lVar + 1
 Increment = lVar
End Function

Function Decrement(lVar)
 lVar = lVar - 1
 Decrement = lVar
End Function

Dim sMsg
sMsg = "The current value of x is " & x & vbCrLf

Dim y
y = 20
If x = 0 Then x = 10

sMsg = sMsg & "Value returned by Increment: " & Increment(x) & vbCrLf
sMsg = sMsg & "Value returned by Increment: " & Increment(x) & vbCrLf
sMsg = sMsg & "Value returned by Decrement: " & Decrement(x) & vbCrLf
sMsg = sMsg & "The value of x is now " & x & vbCrLf
sMsg = sMsg & "The value of y is " & y & vbCrLf

MsgBox sMsg

	[image: The dialog produced by the script in Example 2-8]

Figure 2-2. The dialog produced by the script in Example 2-8

If you’re using a .wsf
 file with XML elements rather than a simple VBScript
 file, the same principles apply to code within the XML <job> and
 </job> tags. All code must
 be assigned to a particular job, and code assigned to a job is
 independent of and unrelated to code assigned to any other job.
 Within the <job> tag, all
 global code is executed sequentially, regardless of how many
 <script> tags are used to
 contain it.

Client-Side Scripts for Internet Explorer

 Global code in client-side scripts is found inside
 <SCRIPT> . . . </SCRIPT> tags but not inside of
 functions, subroutines, and classes. All global code is executed by
 Internet Explorer, as Example 2-9 and Figure 2-3 show. In fact,
 global code can be used as a replacement for the Window_OnLoad event.
Example 2-9. Global code for Internet Explorer
<SCRIPT LANGUAGE="VBScript">
Option Explicit

Dim x
x = 10

Function Increment(lVar)
 lVar = lVar + 1
 Increment = lVar
End Function

Function Decrement(lVar)
 lVar = lVar - 1
 Decrement = lVar
End Function

</SCRIPT>
<CENTER><H2>Welcome to our web page!</H2></CENTER>
<SCRIPT LANGUAGE="VBScript">

Document.Write "The current value of x is " & x & "
"

Dim y
y = 20
If x = 0 Then
 Document.Write "Initializing <I>x</I> in the second script block" & "
"
 x = 10
End If

Document.Write "Value returned by Increment: " & Increment(x) & "
"
Document.Write "Value returned by Increment: " & Increment(x) & "
"
Document.Write "Value returned by Decrement: " & Decrement(x) & "
"
Document.Write "The value of x is now " & x & "
"
Document.Write "The value of y is " & y & "
"

</SCRIPT>

	[image: The document produced by Example 2-9]

Figure 2-3. The document produced by Example 2-9

Outlook Forms

Like Windows Script Host, Outlook executes all global
 code—not just variable declarations—when a form is loaded. In this
 case, global code corresponds closely to the Outlook form’s
 Item_Open event procedure, which is fired when the
 form is opened.
Although you can use global code for executable statements, in
 most cases it is preferable that you do not. Most Outlook form
 programming is event-driven; you should use events, including the
 Item_Open event, to handle variable initialization, and confine
 yourself to using global code to declare public and private
 variables.

Reusable Code Libraries

 We’ve now discussed all of the basic principles of
 structuring VBScript programs, of constructing subroutines that can be
 used by various parts of your program, of building functions that
 perform calculations and other manipulations and pass the result back
 to the calling part of the program, and of creating classes that allow
 you to encapsulate real-world processes and objects. The emphasis on
 subroutines, functions, and classes, though, raises another issue—that
 of code reuse. Typically, classes are defined so that they can be used
 in a variety of applications. Similarly, many subroutines and
 functions are intended not only to reduce code in a single
 application, but also to be “black boxes” that can provide some
 service to multiple applications.
Although it generally hasn’t been emphasized and is dependent on
 the host platform, VBScript code can be reused on three of the four
 host platforms discussed here. The only platform that doesn’t support
 code reuse isOutlook forms. That means that if you’re scripting for
 WSH, ASP, or Internet Explorer, you can develop code libraries that
 you import into your script.
Active Server Pages

You can import HTML, client-side script, or
 server-side script into an ASP file by using the #include server-side directive. Its syntax is:
<!-- #include PathType = sFileName -->
where PathType is one of the
 following keywords:
	File
	Indicates that sFileName is
 relative path from the current directory

	Virtual
	Indicates that sFileName is a
 full virtual path from the web server’s root folder to the
 file to be included

and sFileName is the name of the
 file whose contents are to be included. Note that the #include directive must be surrounded by
 an HTML comment. The included file can consist of any combination of
 client-side script, server-side script, and HTML, as long as it is
 syntactically correct and consistent with the script or HTML source
 at the point in the ASP page at which it is inserted.
Examples Example
 2-10 and Example
 2-11 illustrate one possible use of the #include directive. Example 2-10 shows the
 contents of classes.inc, an
 include file that contains a class definition to be used by the ASP
 application. Example
 2-11 shows the ASP page that includes the file. Note that the
 include file consists entirely of script and is delimited with the
 HTML <SCRIPT> and </SCRIPT> tags (or the ASP <% and %> symbols). The ASP page in Example 2-11 inserts the
 contents of the include file in the HTML header, immediately after
 the </TITLE> tag.
Example 2-10. classes.inc, an include file
<SCRIPT RUNAT="Server" LANGUAGE="VBScript">

Class CServer

 Private sName, sProtocol, sSoftware, sURL, lPort

 Public Property Get Name()
 Name = sName
 End Property

 Public Property Get Port()
 Port = lPort
 End Property

 Public Property Get Protocol()
 Protocol = sProtocol
 End Property

 Public Property Get URL()
 URL = sURL
 End Property

 Public Property Get Software()
 Software = sSoftware
 End Property

 Private Sub Class_Initialize()
 sName = Request.ServerVariables("SERVER_NAME")
 lPort = Request.ServerVariables("SERVER_PORT")
 sProtocol = Request.ServerVariables("SERVER_PROTOCOL")
 sSoftware = Request.ServerVariables("SERVER_SOFTWARE")
 sURL = Request.ServerVariables("URL")
 sSoftware = Request.ServerVariables("SERVER_SOFTWARE")
 End Sub

End Class

</SCRIPT>

Example 2-11. An ASP page that uses an include file
<% Option Explicit %>
<HTML>
<HEAD>
<TITLE>Including a Library File</TITLE>
<!-- #include File="Classes.inc" -->
</HEAD>
<BODY>
<H2>Welcome to our web site!</H2>
Here is information about our server: <P>
<%
 Dim oServer
 Set oServer = New CServer
%>
Name: <%= oServer.Name %>

Software: <%= oServer.Software %>

Port: <%= oServer.Port %>

Protocol <%= oServer.Protocol %>

Resource: <%= oServer.URL %>

</BODY>
</HTML>

The advantage of this approach is obvious: you can store
 common code in a separate file, making it available to all the ASP
 pages and all the ASP applications that require it. When that code
 requires modification, you need do so only once since there is only
 a single copy in a single location, rather than having to search
 through all of your web pages to discover which ones incorporate the
 code.
While reusable code libraries can be useful in ASP
 development, you should only include the code you actually need in
 your library. This is because there’s a runtime
 cost associated with declaring a function for ASP. Including massive
 libraries in an ASP application tends to produce noticeable
 slowdowns in throughput.

Windows Script Host

Although standard Windows Script host files (i.e.,
 .vbs files) do not allow you to import other files, WSH
 files with XML elements (i.e., .wsf files) do. Include another file by using the <SCRIPT SRC> tag. The syntax
 is:
<SCRIPT LANGUAGE="sLanguage" SRC="sFilename" />
where sLanguage is “VBScript” (or
 any other valid scripting language) and
 sFileName is either an absolute or a
 relative path to the file to be excluded. Note that using the
 <SCRIPT> tag requires that
 the .wsf file be structurally
 correct—that is, that the <PACKAGE> and <JOB> tags should be present.
The included file must be a standard WSH script file. It can
 contain only script, without any XML elements or tags. The include
 file is simply inserted into the .wsf file as if it were an intrinsic part
 of it.
Examples Example
 2-12 and Example
 2-13 illustrate the use of aninclude file. In this case, the code in Example 2-13 imports
 Lib.vbs, the include file shown
 in Example 2-12.
 Example 2-12 simply
 displays a message box displaying drives and their free space. To
 retrieve this information, it calls the GetFreeSpace function, which is located
 in the include file. This function returns a Dictionary object whose
 keys are drive names and whose values are the amount of free space
 available on the respective drive.
Example 2-12. Lib.vbs, an include file
Public Function GetFreeSpace()

Dim oDict, oFS, oDrives, oDrive

Set oDict = WScript.CreateObject("Scripting.Dictionary")
Set oFS = WScript.CreateObject("Scripting.FileSystemObject")
Set oDrives = oFS.Drives
For Each oDrive in oDrives
 If oDrive.IsReady Then
 oDict.Add oDrive.DriveLetter, oDrive.FreeSpace
 End If
Next

Set GetFreeSpace = oDict

End Function

Example 2-13. A WSH script that uses an include file
<package>
<job id=GetFreeSpace>
<script language="VBScript" src="Lib.vbs" />
<script>
Option Explicit

Dim oSpace, aDrives
Dim sMsg, sDrive
Dim iCtr

Set oSpace = GetFreeSpace()
aDrives = oSpace.Keys
For iCtr = 0 To UBound(aDrives)
 sDrive = aDrives(iCtr)
 sMsg = sMsg & sDrive & ": " & oSpace(sDrive) & vbCrLf
Next

MsgBox sMsg
</script>
</job>
</package>

Note that files must be included on a per-job basis. In other
 words, if a .wsf file contains
 multiple jobs, you must have a separate <SCRIPT SRC> tag for each job in which you want
 to include a particular file. An include file applies only to the
 job in which it’s been included.

Client-Side Scripts for Internet Explorer

 Like Windows Script Host, Internet Explorer supports
 the <SCRIPT SRC> tag, which allows you to include
 script files. The syntax of the tag is:
<SCRIPT SRC="sURL " LANGUAGE="sLanguage"> </SCRIPT>
where sURL is the URL of the
 include file and sLanguage is the
 language in which the file designated by
 sURL is written.
 sLanguage can be “VBScript” or any other
 valid scripting language.
The include file is simply inserted into the text stream
 on the client at the point that the <SCRIPT SRC> tag is encountered, and both it
 and the original document are viewed by the VBScript language engine
 as a single document. The inserted file can contain only script,
 without any HTML tags.
Example 2-14
 contains an include file and Example 2-15 contains an
 HTML document that includes a client-side script to validate data.
 Note that the IsBlank routine
 is visible to the web page, since the included script is considered
 part of the original document. Note also that Validate.inc contains only script,
 without any HTML tags, and that the source document contains a
 <SCRIPT SRC> tag immediately followed by a
 </SCRIPT> tag.
Example 2-14. Validate.inc, an include file
Private Function IsBlank(sValue)
 If Trim(sValue) = "" Then
 IsBlank = True
 Else
 IsBlank = False
 End If
End Function

Example 2-15. A web page that uses an include file
<HTML>
<HEAD>
<TITLE>The SRC Attribute</TITLE>
<SCRIPT SRC="Validate.inc" LANGUAGE="VBScript" > </SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript">
Private Function frmInfo_OnSubmit()
 With Document.frmInfo
 If IsBlank(.txtName.Value) Or _
 IsBlank(.txtAddress.Value) Or _
 IsBlank(.txtCity.Value) Or _
 IsBlank(.txtState.Value) Then
 frmInfo_OnSubmit = False
 Alert "Please make sure the Name, Address, City, " & _
 "State fields are not blank."
 End If
 End With
End Function
</SCRIPT>
<H3>Please enter the following data</H3>
<FORM METHOD=POST ACTION="Submission.asp" NAME="frmInfo">
Name: <INPUT TYPE="Text" NAME="txtName"> <P>
Address: <INPUT TYPE="Text" NAME="txtAddress"> <P>
City: <INPUT TYPE="Text" NAME="txtCity">
State <INPUT TYPE="Text" NAME="txtState">
Zip Code <INPUT TYPE="Text" NAME="txtZip"><P>
<INPUT TYPE="submit">
</BODY>
</HTML>

Chapter 3. Data Types and Variables

In this chapter, we’ll discuss VBScript’s rather unusual support
 for a single data type before turning to variables and constants in
 VBScript.
VBScript Data Types: The Many Faces of the Variant

 Unlike Visual Basic and Visual Basic for Applications,
 VBScript has only a single data type, called a
 variant. A variant is a very special data type,
 since it can contain many different types of data and can
 automatically select the most appropriate data type for the particular
 context in which it is being used. A simplified view of a variant is
 that it can hold both string data (characters) and numerical data as
 well as other data, such as dates, Booleans, and objects. Internally
 it is much more complex, which permits it to hold a wide range of
 different numeric types.
Variant Data Types

While the only data type recognized by VBScript is the
 variant, any item of variant data belongs to a particular type.
 Let’s look at the range of types — or the
 different types of data — that a variant can hold:
	Empty
	Empty is a type that consists of a single value,
 also called Empty, that is
 automatically assigned to new variables when you declare them,
 but before you explicitly assign a value to them. For
 instance, in the code fragment:
Dim var1, var2
var2 = 0
the type of var1 is Empty,
 whereas var2 is only Empty for the
 brief period of time between the execution of the Dim statement on the first line
 (which declares a variable; it is discussed later in this
 chapter in Section
 3.2.5) and the assignment statement on the second line.
 In addition, a variable’s type is Empty if it has been
 explicitly assigned a value of Empty, as in the following code
 fragment:
Dim var1
var1 = Empty

	Null
	Null is a special type that consists of a single
 value, also called Null,
 that is used to indicate that a variable does not contain any
 valid data. Typically, a Null is used to represent missing
 data. For instance, a variable called JanSales might be
 assigned a value of Null if
 the total of January’s sales is unknown or unavailable. This
 must be done by explicit assignment, as in the
 statement:
JanSales = Null
Because it represents missing data, once a Null value is assigned to a
 variable, it propagates to any variable whose value results
 from the value of the original variable. For instance, in the
 code
Dim JanSales, FebSales, MarSales, Q1Sales
' At this stage, all four variables are Empty

JanSales = 1276000
FebSales = 1000000
MarSales = Null
' We now have made MarSales Null

Q1Sales = JanSales + FebSales + MarSales
' Because MarSales is Null, Q1Sales will also be Null
the value of Q1Sales will be Null, since its value results from
 an expression that also includes a Null value. Because the Null type
 represents missing or unknown data, this makes sense: if
 March’s sales data is unknown, then any value that wholly or
 partially results from it, such as the total sales for the
 first quarter, must also be unknown.

	Boolean
	The Boolean type can contain either of two values,
 True or False. The keywords True and False are constants (if you’re not
 sure what a constant is; see Section 3.2 later
 in this chapter) that are predefined in VBScript, so you can
 make use of them in your code when you want to assign a
 Boolean value to a variable, as the following code fragment
 shows:
var1 = True
var2 = False
Many object properties have possible values of True or False, such as the Drive object’s
 IsReady property. In addition, Boolean variables within
 programs often serve as flags to control program flow, as the
 following code fragment shows:
If Not myBool Then
 myVar = 4
 myBool = True
Else
 myVar = 5
 myBool = False
End If
Note that this example toggles (or reverses) the value
 of myBool within the If...Else...End If construct.

	Byte
	A Byte is the smallest numeric type available in
 VBScript. One byte (8 binary bits) can represent 256 integer
 numbers, ranging from 0 to 255 in decimal or 00 to FF in
 hexadecimal. Because the Byte is an unsigned data type, only
 zero or positive integers are valid Byte values. Attempting to
 convert a value outside this range to a Byte results in a
 runtime error.

	Integer
	An Integer is a whole number that VBscript uses two
 bytes (or 16 bits) to store in memory. Since one bit is used
 to represent the sign (either positive or negative), the value
 of Integer data can range from -32,768 to 32,767. Attempting
 to convert a value outside this range to an Integer results in
 a runtime error.

	Long
	A Long is a signed integer that VBscript stores in
 four bytes (or 32 bits) of memory. This allows it to hold a
 far greater range of negative or positive numbers than the
 Integer type; the value of a Long can range from
 -2,147,483,648 to 2,147,483,647.

	Single
	The three numeric data types that we’ve examined
 so far (Byte, Integer, and Long) are all integers; they’re
 unable to represent fractional numbers. Fractions can be
 handled by a floating-point data type, two of which are
 available in VBScript. The first is Single, which is an
 abbreviation for single precision; it represents numbers with
 about seven digits of precision. Because of the large and
 small numbers involved, we are forced to specify the ranges as
 exponential numbers. There are two ranges, one for negative
 values and one for positive values. A negative single
 precision value can range from -3.402823E38 to -1.401298E-45,
 while the range of a positive single precision value is
 1.401298E-45 to 3.402823E38. A Single can also have a value of
 zero.
If you need to use a floating-point number in VBScript,
 there is no reason to use a Single; use a Double instead.
 Generally, Singles are used because they offer better
 performance than Doubles, but this is not true in VBScript.
 Not only are Singles not smaller than Doubles in the VBScript
 implementation, but the processor also converts Singles to
 Doubles, performs any numeric operations, and then converts
 Doubles back to Singles.

	Double
	The Double type stores a double precision
 floating-point number; basically, it’s the industrial-strength
 version of the Single data type. Its value can range from
 -1.79769313486232E308 to -4.94065645841247E-324 for negative
 values and from 4.94065645841247E-324 to 1.79769313486232E308
 for positive values. A Double can also have a value of
 zero.

	Date/Time
	The Date type represents the date or time. If the
 number holds a date value, the earliest date that can be
 represented is January 1, 100, and, taking the view that our
 web sites will be around for a long time, the furthest into
 the future that we can go is December 31, 9999.
A literal date can be defined by surrounding the date
 with the # symbol. For example:
Dim myvacationDay
myVacationDay = #01/10/03#

	Currency
	The Currency type provides a special numeric format
 for storing monetary values that eliminates floating-point
 error. Because of this, it, rather than the floating-point
 types, should be used when working with monetary values. Its
 value can range from 922,337,203,685,477.5808 to
 922,337,203,685,477.5807.

	String
	The most commonly used VBScript data type isString, which can contain virtually an unlimited
 number of characters — the theoretical limit is the size of
 the address space, which is two billion bytes on Win32
 systems. In practice, though, strings in scripted applications
 should never be longer than a few thousand bytes at most. The
 String type used in VBScript is a variable length data type,
 so you don’t have to worry about specifying how much memory to
 allocate to the variable, as you do in some programming
 languages.

	Object
	This data type contains a reference to an object.
 TheObject type includes the intrinsic VBScript Err
 object, as well as objects defined by the Class ... End Class construct. It also represents
 references to external COM objects instantiated with the
 CreateObject or
 GetObject methods. If we view script as
 the “glue” that binds the services provided by components
 together, then the Object is the most important data type
 supported by VBScript.

	Error
	The Error type contains an error number and is
 typically used to signal a missing argument or other condition
 resulting from missing data. Typically, Error variants are
 returned by calls to Visual Basic component methods. VBScript
 itself does not allow direct creation or manipulation of Error
 variants.

So what does all this mean to the VBScript programmer?
 Above all, it means simplicity: as with any well-designed system,
 the variant is complex, but not complicated. That is to say, the
 interface — the part that you deal with — is straightforward, yet
 behind the scenes the variant data type does some incredibly complex
 things, which means you don’t have to concern yourself with juggling
 code to ensure that data types are not mismatched, as Example 3-1 shows.
Example 3-1. The power of the variant data type
<HTML>
<HEAD>
<TITLE>The Variant #1</TITLE>
</HEAD>
<BODY>
<H2>
<CENTER>VBScript's Automatic Data Type Conversion</CENTER>
</H2>
<P>
<% Dim vVar1, vVar2, vResult
 vVar1 = 1
 vResult = 1
 vVar2 = 50000000.2658
 vResult = vVar1 + vVar2
%>
The result of adding <%=vVar1 %> and <%=vVar2 %> is <%=vResult %>.
</BODY>
</HTML>

When the user requests the ASP page, its script executes. It
 begins by using the Dim statement
 to declare three variables. Next, it assigns the integer value 1 to
 the first variable, vVar1, and to the
 third variable, vResult. Just to make
 things interesting, it assigns a large, double-precision number,
 50,000,000.2658, to the second variable,
 vVar2. Then the routine adds the two
 variables together and stores their result to the integer variable
 vResult. As you may recall from the
 overview of data types, the value assigned to an integer cannot
 exceed 32,767, nor can it include any digits to the left of the
 decimal. Yet our script does not generate a compiler error because
 of this. So in the process of performing the calculation, the
 VBScript engine converts vVar1 to a
 double-precision number. In most other programming languages, this
 task would have to be performed by the programmer.
If you modify the VBScript code in Example 3-1 to try
 different values for Var1 and
 Var2, you’ll find that the only time that
 the variant cannot handle the conversion occurs when one of the
 expressions is a String — i.e., you can’t add 100 to “Hello” and
 expect a valid result. When this happens, the VBScript engine
 displays a " Type mismatch” error, which indicates that one of the
 items of data was of the wrong type and the engine was unable to
 convert it. This raises a good point, though: in a numeric
 operation, it is possible—especially if the data is input by the
 user into an HTML form or a dialog produced by the InputBox function—that one or more of the
 variables is a string data type. How would you be able to know this
 in advance, before VBScript stops executing your script and displays
 an error message?

Determining the Variant Type

Having the variant data type take care of all your
 data typing is all well and good, but what happens when you need to
 know exactly what type of data is stored to a variable? VBScript
 provides two easy-to-use functions, VarType , which returns an integer that indicates the type of
 data stored to a variable; and TypeName , which returns the name of the data type.
VarType

The syntax of VarType
 is:
VarType(expression)
where expression is an expression
 whose type you want to determine; you can provide the name of only
 a single variable at a time. Table 3-1 lists the
 possible values returned by VarType and the data types that they
 represent. For purposes of reference, Table 3-1 also lists
 the VBScript constants that you can use in your code to compare
 with the values returned by the VarType function; for details, see
 Section 3.2.3
 later in this chapter.
Table 3-1. The values returned by the VarType function
	Value
	Data type
	Constant

	0
	Empty
	 vbEmpty

	1
	Null
	 vbNull

	2
	Integer
	 vbInteger

	3
	Long
	 vbLong

	4
	Single
	 vbSingle

	5
	Double
	 vbDouble

	6
	Currency
	 vbCurrency

	7
	Date
	 vbDate

	8
	String
	 vbString

	9
	Object
	 vbObject

	10
	Error
	 vbError

	11
	Boolean
	 vbBoolean

	12
	Array of Variant
	 vbVariant

	17
	Byte
	 vbByte

	8192
	Array
	 vbArray

Before we see how you use VarType within a script, we should
 quickly note the value returned by VarType if it detects an array.
 Actually, the function never returns 8192 or vbArray, as shown in Table 3-1. 8192 is
 only a base figure that indicates the presence of an array. When
 passed an array, VarType returns 8192 plus
 the value of the array type. For a VBScript array, it returns 8192
 (or vbArray) plus 12 (or
 vbVariant), or 8204. For a
 string array returned by a COM object, for instance, it returns
 8200 (vbArray + vbString).
Example 3-2
 provides a simple WSH script that uses the VarType function. It assigns a value of
 9 to the MyVal variable and calls the
 VarType function, passing to
 it MyVal as a parameter. The value
 returned by the function, 2, is then displayed in a message box;
 this indicates that MyVal is an
 Integer.
Example 3-2. The VarType function
Dim MyVal
MyVal = 9
MsgBox VarType(MyVal)

Try modifying this code by assigning various numbers and
 strings to MyVal. You’ll find that you
 can enter a very large integer for
 MyVal and the code will return 3 for
 Long, or you can enter a word or string (enclosed in quotation
 marks) and the code will return 8. You can even enter a number in
 quotation marks and it will return 8, indicating a String.

TypeName

The TypeName function returns the actual variant type rather
 than a number representing the data type. The syntax for TypeName is:
 result = TypeName(expression)
Like its older brother, TypeName is read-only, which means that
 you can use it to determine the type of a variable, but you can’t
 use it to explicitly set the type of a variable; to do this, you
 must use the conversion functions discussed in the next section.
 Table 3-2 shows
 the string that the TypeName
 function returns for each data type.
Table 3-2. Strings returned by the TypeName function
	Return value
	Description

	 <object
 type>
	Actual type name of an object

	Boolean
	Boolean value: True or False

	Byte
	Byte value

	Currency
	Currency value

	Date
	Date or time value

	Decimal
	Decimal (single-precision)
 value

	Double
	Double-precision floating-point
 value

	Empty
	Uninitialized

	Error
	Error

	Integer
	Integer value

	Long
	Long integer value

	Nothing
	Object variable that doesn’t refer to an
 object instance

	Null
	No valid data

	Object
	Generic object

	Single
	Single-precision floating-point
 value

	String
	Character string value

	Variant()
	Variant array

	Unknown
	Unknown object type

Of interest in Table 3-2 is
 thevariant array type, which is not listed in the
 VBScript official documentation. Whenever you pass the name of an
 array to TypeName, even an
 array that you have forced to be a certain data type by using the
 conversion functions, the return value is always “Variant()”.
 Unfortunately, because VBScript does not support strong typing,
 there’s no clear answer as to what data type lurks within your
 array; you can determine the data type of only one element at a
 time.
As for making your code easier to maintain, just look at
 this snippet:
If TypeName(x) = "Double" Then
Now you’ve no excuse for getting those nasty “type mismatch”
 errors!
Example 3-3
 illustrates the use of TypeName. When you type something into
 the text box and press the OK button, a message box indicates
 whether you entered a string, a date, or a number. You may notice,
 though, that it always identifies (or perhaps misidentifies)
 numbers as data of type double. That’s because our script uses the
 CDbl function to arbitrarily
 convert a numeric string entered into the text box to a variable
 of type double; for details on converting data from one type to
 another, see the following section.
Example 3-3. The TypeName function
Dim sInput, vResult
Do

 sInput = InputBox("Enter a data value:" , " TypeNameFunction", " ")
 If sInput = " " Then Exit Do

 If IsDate (sInput) Then
 vResult = CDate (sInput)
 ElseIf IsNumeric (sInput) Then
 vResult = CDbl (sInput)
 Else
 vResult = Trim (sInput)
 End If

 MsgBox TypeName(vResult)
Loop While Not sInput = " "

Converting from One Data Type to Another

VBScript provides us with a range of built-in conversion
 functions that are simple and quick to use. The syntax for each is
 basically the same. For example:
CBool(expression)
where expression is either the name
 of a variable, a constant, or an expression (like x - y).
 The conversion functions supported by VBScript are:
	CBool
	Converts expression to a
 Boolean. expression can contain any
 numeric data type or any string capable of being converted
 into a number.

	CByte
	Converts expression to
 aByte. expression can
 contain any numeric data or string data capable of conversion
 into a number that is greater than or equal to 0 and less than
 or equal to 255. If expression is
 out of range, VBScript displays an Overflow error message. If
 expression is a floating-point
 number, it is rounded to the nearest integer before being
 converted to byte data.

	CDate
	Converts expression to a
 Date/Time. CDate
 accepts numeric data and string data that
 appears to be a date, converting it to the correct format for
 the machine. The date is returned in the format specified by
 the locale information on the client computer. On a machine
 set to the American date format mm/dd/yy, if you enter the British
 date format dd/mm/yy in a
 text box and then use the CDate function on the contents of
 the text box, CDate will
 convert it to the American mm/dd/yy format.

	CCur
	Converts expression to a
 Currency. CCur accepts any numeric or string data that can be
 expressed as a currency value. The function recognizes the
 decimal and thousands separators based on locale information
 on the client computer.

	CDbl
	Converts expression
 to a Double. The function accepts any numeric data within the
 limits of the Double or any string data that can be converted
 to a number within the range of the double data type.

	CInt
	Converts expression to an
 Integer. CInt accepts any numeric data within the limits of
 the Integer or any string data that can be converted to a
 number within the limits of the integer data type.

	CLng
	Converts expression
 to a Long. The function accepts any numeric data within the
 limits of the long integer data type or any string data that
 can be converted to a number whose value lies within the range
 of a long integer.

	CSng
	Converts expression
 to a Single. The function accepts any numeric data within the
 limits of the Single or any string data that can be converted
 to a number within the range of the single data type.

	CStr
	Converts expression to a
 String. CStr accepts any kind of data.

So now you know what data types VBScript can handle and how to
 convert from one type to another. You know how to find out how the
 variant is handling your data, and you can convert from one type to
 another. Let’s now look at how you’re going to use these data types
 and data within your scripts.

Variables and Constants

A variable is a name for an abstract concept (such as an
 object, a string value, or a numeric value) in a computer program.
 Using variables allows us to refer to the variable by its name, rather
 than to focus on its implementation details. Think of the nightmare
 you’d have trying to keep track of just which memory location your
 particular piece of data was occupying (completely ignoring the
 possibility that its memory location might change while the program
 executes). Those nice people who write the software we use to create
 our programs and scripts solved this problem a long time ago by giving
 us variables and constants.
What Is a Variable?

A variable is a placeholder or recognizable name for a memory
 location. This location is of no consequence to us; all we have to
 do is remember the name. When we use the name, the script engine
 will go to the correct memory location and either retrieve the data
 stored there or change the data, depending upon our instructions. It
 is important therefore to learn the rules for namingvariables. (These in fact are the rules for naming any
 identifier in VBScript, including variables, functions, subs,
 classes, and constants.)
	Variable names can be no more than 255 characters in
 length. Variable names tend to become pretty unreadable after
 about 20 characters anyhow, which defeats the purpose of having
 longer variable names.

	The name must be unique within the scope it is being used.
 Don’t worry too much about scope right now; we’ll discuss it a
 little later. For now, remember not to use the same name for
 more than one variable in the same procedure — it makes sense,
 really.

	The variable name must start with an alphabetic character.
 2myVar is illegal, but
 myVar2 is good.

	Variable names must be composed only of letters, numbers,
 and underscore characters. If you need to split up the variable
 name in some way to improve its readability, use the underscore
 character, like this:
 This_Is_My_First_Variable.

	You cannot use reserved words
 — which include someVBScript keywords; these language elements, which
 include statement names and intrinsic constant names, are part
 of the VBScript language.

	You can override most of these rules by enclosing the name
 in brackets. You can, for instance, use names that include
 embedded spaces, that start with numeric characters, or that are
 reserved words.

Variable names within VBScript are not case-sensitive, so myvar is
 the same as MyVar. You may have noticed
 in the examples so far (and if you haven’t, go back and take a look)
 that we’ve used a combination of lower- and uppercase, with the
 first few letters usually in lowercase, for variable names like
 myVar. This is called camel
 casing. It improves readability, but is also a good
 habit to form; you’ll see why when we discuss naming
 conventions.
So variables can either be a simple single character:
x = 10
y = "Hello World"
or they can be more descriptive:
tableRows = 10
greetingString = "Hello World"
Variables are so called because their value can change
 throughout their lifetime in your script. But you may have a
 requirement for a variable that isn’t variable at all, whose value
 remains the same throughout your script. Guess what they’re
 called?

What Is a Constant?

Constants perform a similar function to variables:
 they allow you to replace a value with a more descriptive and
 intuitive string. The difference is that a constant keeps the same
 value throughout its lifetime.
Values are assigned to constants using the same method used
 for variables, and can contain most of the same data types.
 (Constants cannot be of type Single or Object, for instance.) In
 most respects, therefore, a constant is the same as a variable. In
 fact, it could be described as a variable whose value doesn’t
 vary!
VBScript uses the Const
 declaration to define a constant. A constant, which is declared as follows:
Const myConstant = 10
cannot have its value changed throughout the life of the
 program. If your script mistakenly attempts to modify its value,
 VBScript raises an “Illegal Assignment” error. You’ll know therefore
 — using the previous example — that whenever you use myConstant in your script, you are sure to
 be using the value 10.
Warning
Like the constant declaration in VB, Const in VBScript cannot be used to
 assign nonconstant values or the values returned by VBScript
 functions. This means that a statement like the following:
Const numConstant = myVar ' Invalid
is invalid, since it attempts to assign the value of a
 variable to a constant. It also means that a statement
 like:
Const long_Int_Len = Len(lNum) ' Invalid
is invalid, since it relies on the value returned by the
 VBScript Len function.
 Finally, unlike VB or VBA, you are not allowed to use any value
 that includes an operator in defining a constant. For example, the
 following declaration, which is valid in VB, generates a syntax
 error in VBScript:
Const added_Const = 4 + 1 ' Invalid

Intrinsic Constants

 In addition to allowing you to define your own
 constants using the Const
 keyword, VBScript includes a number of built-in or intrinsic
 constants whose values are predefined by VBScript. Along with saving
 you from having to define these values as constants, the major
 advantage of using intrinsic constants is that they enhance the
 readability of your code. So, for instance, instead of having to
 write code like this:
If myObject.ForeColor = &hFFFF Then
you can write:
If myObject.ForeColor = vbYellow Then
Intrinsic constants are available for the following:
	Color

	Comparison

	Date/Time

	Date Format

	Message Box

	Miscellaneous

	Object Error

	String

	Tristate

	VarType

Appendix B contains
 a complete listing of the built-in constants, along with their
 meanings and values.

Constants in Type Libraries

Type library files provide definitions of enumerated constants as well
 as of COM classes and their members (that is, of their properties,
 methods, and events). If you’re developing either ASP or WSH
 scripts, you can make type library definitions accessible to your
 script. In that case, they are treated just as if they were
 intrinsic VBScript constants, and you don’t have to define them
 yourself by using innumerable Const statements.
In ASP, you can make constants in type libraries available to
 all of the pages of your ASP application by including a METDATA tag in Global.asa. This offers significantly
 improved performance over a common alternative—using the ASP
 #include preprocessor directive on a page-by-page basis. Its syntax
 is:
<!-METADATA TYPE="TypeLibrary" FILE="FileName"
 UUID="TypeLibraryUUID"
 VERSION="MajorVersionNumber.MinorVersionNumber"
 LCIS="LocaleID" →
where its parameters are as follows:
	FileName
	Optional. The physical path and name of the type library
 file. (Type libraries are often stored with the
 .DLLs that they describe, and can also be
 housed in separate files with an extension of .tlb or .olb.) While optional, either
 FileName or
 TypeLibraryUUID must be specified
 to identify the type library.

	TypeLibraryUUID
	Optional. The universally unique identifier of the type
 library, as defined in the HKEY_CLASSES_ROOT\TypeLib key of the
 registry. While optional, either
 FileName or
 TypeLibraryUUID must be specified
 in order to identify the type library.

	MajorVersionNumber
	Optional. The major version number of the type library.
 If you include a
 MajorVersionNumber, you must also
 include a MinorVersionNumber. If
 version number information is specified and ASP cannot find
 the library with that version, a runtime error occurs.

	MinorVersionNumber
	Optional. The minor number of the type library. If you
 include a MinorVersionNumber, you must also include a
 MajorVersionNumber. If version information is specified and
 ASP cannot find the library with that version, a runtime error
 occurs.

	LocaleID
	Optional. The locale to use for this type library if the
 library supports multiple locales. If a
 LocaleID is specified that cannot
 be found in the type library, a runtime error occurs.

For example, the following code from
 Global.asa makes the enumerated constants in
 the ADO 2.5 type library accessible to an ASP application:
<!--METADATA
 TYPE="typelib"
 FILE="D:\Program Files\CommonFiles\System\ADO\msado21.tlb"
-->
In WSH, you can make constants in a type library available to
 your script by including the <reference
 /> tag in a script in a .wsf file. The constants are available
 only to the script within a single <job> tag. The syntax of <reference /> is:
<reference [object="progID"|guid="typelibGUID"
 [version="version"] />
with the following parameters:
	progID
	Optional. The version-independent or version-dependent
 programmatic identifier of the type library, as defined in the
 system registry. You must specify either
 ProgID or
 typeLibGUID.

	typelibGUID
	The globally unique identifier (GUID) of the type
 library, as defined in the system registry. This is the most
 common way to reference and access a type library from WSH.
 You must specify either ProgID or
 typelibGUID.

	version
	The version number of the type library your script needs
 to access.

For example, the following code makes the constants defined in
 Data Access Objects Version 5.0 available to a WSH script:
<reference guid="{00025E01-0000-0000-C000-000000000046}"
 version="5.0" />

Declaring Variables and Constants

 Unlike many other programming languages, VBScript
 allows the implicit declaration of variables. This means that as
 soon as you use a variable within your script, VBScript does all the
 necessary work of allocating memory, etc., and the variable is
 considered to be declared. However, it is good programming practice
 to explicitly declare any variables you want to use at the start of
 the procedure or script by using the Dim statement. Its syntax is:
Dim Variable_Name
If you have a number of variables to declare, you can do this
 on the same line by separating them with commas, as in the following
 Dim statement:
Dim intRefNo, intAnyVar
As you start to write more and more complex scripts, you can
 reduce the number of bugs by referring back to the Dim statements to check the spelling of
 the variables you are using. Many bugs have been found to be simple
 typos of a variable name. Try the simple WSH script in Example 3-4 exactly as it’s
 written (including the deliberate mistake). Enter a value into the
 input box and check the result.
Example 3-4. A typo in a variable name
Dim tstVar1

tstVar1 = InputBox("Enter a value")

MsgBox testVar1

Interesting result, isn’t it? No matter what you type into the
 input box, the message box is always blank. Now in this small
 script, it’s pretty noticeable that we misspelled the name of the
 variable, and that VBScript treats
 tstVar1 and
 testVar1 as two different variables
 altogether. However, more complicated scripts won’t bear out this
 error so easily. We know many frustrated programmers who have
 tracked down significant logic errors to misspelled variable names.
 Don’t despair, though — VBScript has a tool for helping us to
 eliminate this problem.
Option Explicit

Make a very slight amendment to the script shown in Example 3-4: add the
 statement Option Explicit on a
 line directly before the Dim
 statement. Run the script again, with the mistake still there.
 Now, instead of getting a useless empty text box that gives us no
 clue why our script didn’t work, we get the error message,
 “Variable is undefined.” We now know what we are looking for: the
 message tells us that we haven’t declared a variable, and gives us
 the line number on which the error occurred. Even in a complex
 script, it usually takes only a couple of seconds to find and
 correct the bug.
Using Option Explicit is good programming practice.
 It forces us to declare all variables with Dim, and, should we make an error in the
 script, makes it easier to find.

Array Variables

 The variables we have dealt with so far have contained
 single values, or, to give them their correct title, are
 scalar variables . But there are many occasions when you need to assign
 a range of values to a single variable. This type of variable is
 called an array. Arrays allow us to store a
 range of values in memory, each of which can be accessed quickly and
 efficiently by referring to its position within the array. You can
 think of an array as a very simple database of values. Arrays can
 hold all data types supported by VBScript.
Before examining arrays in VBScript in detail, let’s quickly
 cover some of the terminology used when talking about arrays.
 Creating an array is called dimensioning
 (i.e., defining its size). The individual data items
 within the array are known as elements
 , and the reference number we use to access these
 elements is known as an index . The lowest and highest index numbers are known as
 bounds or boundaries. There are four
 main types of arrays; arrays can be either fixed or dynamic; arrays
 can also be either one-dimensional or multidimensional.
Fixed arrays

Most of the time, we know how many values we need to
 store in an array in advance. We can therefore dimension it to the
 appropriate size, or number of elements, prior to accessing it by
 using a Dim statement like the following:
Dim myArray(5)
This line of code creates an array, named
 myArray, with six elements. Why six?
 All VBScript arrays start with location 0, so this Dim statement creates an array whose
 locations range from myArray(0)to
 myArray(5).
Example 3-5
 contains a simple WSH script that illustrates a fixed array. The
 script begins by instructing the VBScript engine to check that all
 our variables are correctly declared, then uses the Dim statement to dimension
 iArray as an array containing six
 elements, with indexes ranging from 0 to 5, as well as to
 dimension three other variables. The next six lines of code
 populate the array with values by explicitly assigning a value to
 each array element. This entire process of declaring and
 populating the array is done outside of a defined subroutine,
 which means that iArray is available to
 all subroutines and functions on the page (if there were any).
 This is known as scope, which we cover in depth later in this
 chapter.
Example 3-5. Using a fixed array
Option Explicit

Dim sNumber, iNumber, iElement
Dim iArray(5)

iArray(0) = 12
iArray(1) = 3
iArray(2) = 13
iArray(3) = 64
iArray(4) = 245
iArray(5) = 75

sNumber = InputBox("Enter a number between 0 and 5", _
 "Fixed Array", "0")
If Not IsNumeric(sNumber) Then
 MsgBox "Invalid string entry"
Else
 iElement = iArray(sNumber)
 MsgBox iElement
End If

When we enter a number into the text box and click the
 button, the routine makes sure that our entry can be converted to
 a number; if not, it displays an error dialog. Otherwise, a
 message box containing the value of the array element whose index
 we entered is displayed. Note that, in this case, VBScript is able
 to automatically convert the string that we entered using the
 InputBox function into an
 integer used as the array index. If it hadn’t been able to do
 this, or if we had chosen to handle the conversion ourselves, we
 could have used the CInt
 function.
Being the inquisitive type, you’ve probably already entered
 a number greater than 5 or less than 0 just to see what happens,
 right? You get an error message, “Subscript out of range.” The
 subscript is the index number, and in a real application, we’d
 have checked that the number entered was within the limits — or
 bounds — of the array prior to using the number. We’ll see how
 this is done in Section 3.2.6.3
 later in this chapter.
Fixed arrays are fine when we know in advance how many
 values or elements we need. But there are many cases where we do
 not have prior knowledge of this, and we need a way to expand our
 array should we have to. We can do this by declaring and using a
 dynamic array.

Dynamic arrays

The most convenient uses of an array are to store
 input from the user and to allow the user to input as many items
 of data as they like. Our application therefore has no way of
 knowing how to dimension the array beforehand. This type of
 problem calls for a dynamic array. Dynamic
 arrays allow you to expand the number of array elements by using
 the ReDim statement to
 redimension the array while the program is running.
A dynamic array is declared by leaving out the number of
 elements, like this:
Dim myDynamicArray()
When you need to resize the array, use the ReDim keyword:
ReDim myDynamicArray(10)
You can also declare a dynamic array, and specify the
 initial number of elements at the same time, using ReDim:
ReDim anyDynamicArray(4)
To populate an array with a series of values, you can use
 the intrinsicArray function.
 The function allows you to quickly assign a range of
 comma-delimited values to an array. For instance, assigning values
 to the array in Example
 3-6 with the Array
 function would be quite easy.
Dim myArray
myArray = Array(12,3,13,64,245,75)
To use the Array
 function, simply declare a variable, then assign the values of the
 array to the variable using the Array function. Any data type (even
 mixed data types) can be used with the Array function, as the ASP page in
 Example 3-5
 shows.
There is no limit to the number of times you can redimension
 a dynamic array, but obviously messing around with variables in
 this way carries an element of risk. As soon as you redimension an
 array, the data contained within it is lost. Don’t panic. If you
 need to keep the data, use the Preserve keyword:
ReDim Preserve myDynamicArray(10)
In fact, ReDim creates a
 new array (hence its emptiness). Preserve copies the data from the old
 array into the new array. This means that redimensioning arrays
 using the Preserve keyword
 results in poor performance for large arrays or for arrays with
 elements that have long strings. Another important point to note
 is that if you resize an array by contracting it, you lose the
 data in the deleted array elements.
Example 3-6. Using the array function
<HTML>
<HEAD>
<TITLE>Using the Array Function</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">

Sub ShowArray()

Dim myArray

myArray = Array("Hello", "World", 2, 1)

Response.Write "Element 0: " & myArray(0) & "
"
Response.Write "Element 1: " & myArray(1) & "
"
Response.Write "Element 2: " & myArray(2) & "
"
Response.Write "Element 3: " & myArray(3) & "
"

End Sub

</SCRIPT>

<% ShowArray %>

</BODY>
</HTML>

Example 3-7
 contains a client-side script that shows how to use a dynamic
 array to save multiple inputs from the user. When the user clicks
 the “Add to array” button, the contents of the text box are added
 to myArray, an array that is
 dynamically resized beforehand. When the user clicks the Show
 Array Contents button, a dialog box like the one shown in Figure 3-1 displays the
 data stored to the array.
	[image: The contents of our dynamic array]

Figure 3-1. The contents of our dynamic array

Example 3-7. Using dynamic arrays
<HTML>
<HEAD>
<TITLE>Dynamic Array Application</TITLE>
<SCRIPT LANGUAGE="vbscript">

Option Explicit 'require all variables to be declared

ReDim myArray(0) 'create a dynamic array with 1 element
Dim intIndex 'variable to track the array index

intIndex = 0 'assign the first index number to counter

Sub cmdButton1_OnClick
	
 ' Store the user input in the array
 myArray(intIndex) = Document.frmForm1.txtText1.Value
 intIndex = intIndex + 1 'increment the array counter by one
 ReDim Preserve myArray(intIndex) 'increase the size of the array
 Document.frmForm1.txtText1.Value = "" 'Empty the text box again
End Sub

Sub cmdButton2_OnClick
 Dim x, y, strArrayContents 'declare some variables we'll need

 'repeat this process as many times as there are array elements
 'note: the last element will always be empty because we've
 'incremented the counter *after* the assignment.
 'try changing the above sub so that we always fill every element
 For x = 0 to intIndex - 1
 'assign a short description and the element no to the variable
 strArrayContents = strArrayContents & "Element No." & _
 CStr(x) & " = "
 'add to this the contents of the element
 strArrayContents = strArrayContents & myArray(x) & vbCRLF
 'go back and do it again for the next value of x
 Next
 'when we're done show the result in a message box
 y = MsgBox(strArrayContents,0,"Dynamic Array Application")
End Sub

</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
 <FORM NAME="frmForm1">
 <INPUT TYPE="text" NAME="txtText1">

 <INPUT TYPE="button" NAME="cmdButton1" VALUE="Add to array"><P>
 <INPUT TYPE="button" NAME="cmdButton2" VALUE="Show Array Contents">
 </FORM>
</BODY>
</HTML>

Because the HTML text box controls return string data, you
 can save any type of data in your array, but they will
 automatically be saved as strings. This means that you must
 remember to convert the data saved in arrays before using them in
 calculations. This in turn requires that you check to make sure
 that data is actually numeric before accepting it or using
 it.
The previous example is fine as it stands, except that, as
 you can see from the source code, we have to keep track of the
 size of the array by using the intIndex
 variable. But VBScript allows a much cleaner approach to the
 problem of finding out how many elements there are in the
 array.

Determining array boundaries: UBound and LBound

 The UBound and
 LBound functions can be used
 to find the lower index and the upper index, respectively, of an
 array. UBound can be put to
 good use: to find the current size of a dynamic array.
VBScript and the Option Base Statement
In VB and VBA, you can use the Option Base statement
 to define the initial position of an array. The Option Base statement, however, is not
 supported by VBScript. All VBScript arrays begin at position
 zero. But note that an ActiveX component created with Visual
 Basic can return an array with a nonzero lower bound to a
 VBScript script.

The syntax for UBound
 is:
x = UBound(arrayname)
UBound returns the
 highest index number of an array. This is always one less than the
 actual number of elements in the array, unless the array was
 returned to the script by a Visual Basic component and has had its
 lower bound set to a non-zero value. For example, if
 myArray has ten elements, Ubound(
 myArray) returns the number nine. So we
 determine the total number of elements in an array as
 follows:
myArraySize = UBound(array) + 1
To illustrate the use of UBound, let’s rewrite parts of the
 dynamic array program in Example 3-7, as shown in
 Example 3-8.
 Instead of using an integer variable like
 intIndex in Example 3-7 to
 continually track the size of the dynamic array, Example 3-8 uses the
 UBound function.
Example 3-8. The UBound function
<HTML>
<HEAD>
<TITLE>Dynamic Array Application No.2</TITLE>
<SCRIPT LANGUAGE="vbscript">

Option Explicit 'require all variables to be declared	
ReDim myArray(0) 'create a dynamic array with 1 element

Sub cmdButton1_OnClick
 'Store the value enter by the user in the array
 myArray(UBound(myArray)) = Document.frmForm1.txtText1.Value
 'grow the array to be one element greater than its current size
 'Preserve its contents
 ReDim Preserve myArray(UBound(myArray) + 1)
 'Empty the text box for the user
 Document.frmForm1.txtText1.Value = ""
End Sub

Sub cmdButton2_OnClick
 'declare some variables we're going to need
 Dim x, y, strArrayContents
 'repeat this process as many times as there are array elements
 For x = 0 to UBound(myArray) - 1
 'add a short description and the element number to the variable,
 'along with the contents of the element and a carriage return
 strArrayContents = strArrayContents & "Element No." & CStr(x) & _
 " = " & myArray(x) & vbCrLf
 'go back and do it again for the next value of x
 Next
 'when we're done, show the result in a message box
 y = MsgBox(strArrayContents,0,"Dynamic Array Application #2")
End Sub

</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
 <FORM NAME="frmForm1">
 <INPUT TYPE="text" NAME="txtText1">

 <INPUT TYPE="button" NAME="cmdButton1" VALUE="Add to array"><P>
 <INPUT TYPE="button" NAME="cmdButton2" VALUE="Show Array Contents">
 </FORM>
</BODY>
</HTML>

The arrays that we have looked at so far are
 termed single-dimension arrays. They
 hold one element of data in each index location, which is fine for
 most needs. However there are times when you need to hold a full
 set of data for each element. These are called
 multidimensional arrays.

Multidimensional arrays

To get a sense of when using multidimensional arrays
 is appropriate, let’s look at two situations in which our scripts
 benefit from using arrays. First, there’s the simple case of the
 single-dimension array. Let’s say we’re an importer putting
 together an application that will display to a user the country of
 origin of our company’s products when they click a button. We can
 use a single-dimension array to hold the data — in this case, a
 string containing the country of origin. We have one piece of data
 for each element, as follows:
	Element number
	Data

	0
	Product 1 Country of Origin

	1
	Product 2 Country of Origin

	2
	Product 3 Country of Origin

Then the marketing department suggests that the application
 be “improved.” Instead of just showing the country of origin of
 each product, they also want to show its weight and any potential
 shipping hazard. If we continue to use a single dimension array,
 this poses something of a problem, as we can see from the
 following table.
	Element number
	Data

	0
	Product 1 Country of Origin

	1
	Product 1 Weight

	2
	Product 1 Hazards

	3
	Product 2 Country of Origin

	4
	Product 2 Weight

	5
	Product 2 Hazards

	6
	Product 3 Country of Origin

	7
	Product 3 Weight

	8
	Product 3 Hazards

	etc.
	

As you can see, there is no structure to this data; it’s all
 held sequentially, and as a result, can be very difficult to
 access. The solution is to use a multidimensional array. A
 multidimensional array allows you to have a separate array of data
 for each element of your array. Therefore, each element of the
 array in turn contains an array. To continue our product importer
 example, let’s say that we have four products, and for each
 product we want to store three items of data. We define the
 multidimensional array as follows:
Dim ourProductData(3,2)
VBScript and User-Defined Structures
If you’re an experienced VB or VBA programmer, you might
 prefer another solution — an array of user-defined structures —
 to a multidimensional array. However, this solution is not
 available with VBScript. VBScript does not support the Type...End Type construct, and therefore does not allow you to
 define a structured data type.

This is the equivalent of the following data table, which
 consists of four rows and three columns. Each data cell of the
 table can therefore be viewed as a coordinate, with the first cell
 (the one containing product 1’s country of origin) starting at
 0,0. The row number defines the first value of the coordinate,
 while the column number defines the second:
	 	Country of origin
	Weight
	Hazards

	 Product 1

	Element (0,0)
	 	Element (0,2)

	 Product 2

	 	 	
	 Product 3

	 	 	
	 Product 4

	Element (0,0)
	 	Element (0,2)

Tip
Multidimensional arrays can contain up to 60 dimensions,
 though it is extremely rare to use more than two or three
 dimensions.

Figures Figure
 3-2 and Figure
 3-3 illustrate the difference between a one-dimensional
 array and a multidimensional array — in this case, with a
 two-dimensional array. Notice how the two-dimensional array can be
 thought of as a one-dimensional array (the top row) with each
 element having its own individual array dropping down from it to
 form a column.
	[image: A one-dimensional array]

Figure 3-2. A one-dimensional array

	[image: A two-dimensional array]

Figure 3-3. A two-dimensional array

If in our sample ASP application, which is shown in Example 3-9, we set
 ourselves a rule that the country of origin will always be in
 element 0, the weight in element 1, etc., then we have a method by
 which we can quickly access each individual element of data. So if
 we need to access the weight for product 3, we use the following
 line of code:
strDataString = strShippingData(2,1) ' row #3 column #2
Because we know that the weight will always be in column
 two, we can use a constant to help the readability of the code —
 something known as self-commenting code. This
 is an ideal job for a constant, as the following code fragment
 shows:
Const weight = 1
strDataString = strShippingData(2, weight)
In this case, the most important part of creating our ASP
 application occurs before we actually begin writing our script,
 when we decide how we want to structure our multidimensional
 array.
Once that is done, implementing the goal for which the ASP
 page is created — to display shipping information about a selected
 product — is fairly straightforward, as shown in Example 3-9. The ASP page
 can display a simple list of products, or it can display a list of
 products along with information about one product whose hyperlink
 the user has clicked. Since the user clicks any of four hyperlinks
 to display shipping information about a particular product, a
 single routine can handle the display of information, as long as
 it knows which “row” of the multidimensional array contains that
 product’s information; that routine is named ProductInfo. The HREF attribute of each product’s
 <A> tag includes a query
 string consisting of the Product element and its value, which is
 the index of the product’s information in the
 strShippingData array. This index value
 is then passed as an argument to the ProductInfo routine if the user has
 clicked on a product hyperlink. The ProductInfo routine then simply
 retrieves the value of each element in the subarray belonging to
 the designated row and displays it to the web page. The result
 resembles Figure
 3-4.
Example 3-9. Using a multidimensional array
<HTML>
<HEAD>
<TITLE>Product Shipping Data</TITLE>
<SCRIPT LANGUAGE="vbscript" RUNAT="Server">

'declare a subroutine to display product info
Sub ProductInfo(Index)
 'declare variable to be used in this sub
 Dim iCtr
 ' Show product caption
 Response.Write "Shipping Data for Product" & CStr(Index + 1) & "<P>"

 'we want a line for each data item - use the constants
 For iCtr = country To hazards
 Response.Write strShippingData(Index,iCtr) & "
"
 Next
End Sub

</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<%
 'declare the constants
 Const country = 0
 Const weight = 1
 Const hazards = 2

 Dim strShippingData(3,2) ' declare a multidimensional array

 'assign values to the array
 strShippingData(0, country) = "Made in Finland"
 strShippingData(1, country) = "Made in Malawi"
 strShippingData(2, country) = "Made in USA"
 strShippingData(3, country) = "Made in Outer Mongolia"
 strShippingData(0,weight) = "Weight = 34 Kilos"
 strShippingData(1,weight) = "Weight = 17 Kilos"
 strShippingData(2,weight) = "Weight = 10 Kilos"
 strShippingData(3,weight) = "Weight = 15 Kilos"
 strShippingData(0,weight) = "No Hazard"
 strShippingData(1,hazards) = "Highly Inflammable"
 strShippingData(2,hazards) = "No Hazard"
 strShippingData(3,hazards) = "Highly Inflammable"
%>

 <%
 Dim iCtr
 For iCtr = 0 to 3
 %>
 <A HREF=MultiDim.asp?Product=<%=iCtr %> >
 Product <%=iCtr + 1 %><P>
 <%
 If Request.QueryString.Count > 0 Then
 If CInt(Request.QueryString("Product")) = iCtr Then
 ProductInfo CInt(Request.QueryString("Product"))
 End If
 End If
 Response.Write "<P>"
 Next
 %>

</BODY>
</HTML>

	[image: Sample output from Example 3-9]

Figure 3-4. Sample output from Example 3-9

You can use a multidimensional array as a rudimentary
 database that is located within the client machine’s memory. When
 you access a particular element of a multidimensional array, the
 value of the first dimension indicates a particular record of your
 database, while the value of the second dimension designates a
 particular field belonging to that record.

Dynamic multidimensional arrays

 Earlier, you saw how a one-dimensional dynamic array
 can be resized while your program is executing. Multidimensional
 arrays can be dynamic, too (as shown in Example 3-10), and the
 rules for redimensioning them are similar, but since you have more
 than one dimension to think about, you have to take care how you
 use and redimension them. The rules for using a dynamic
 multidimensional array are:
	You can ReDim a
 multidimensional array to change both the number of dimensions
 and the size of each dimension. This is illustrated by the WSH
 script in Figure
 3-4, where the myArray
 dynamic array is originally defined as a dynamic array and the
 user can choose between redimensioning it as a two-dimensional
 array with 11 elements in the first dimension and six in the
 second, or as a three-dimensional array with five elements in
 the first dimension, 11 in the second, and three in the
 third.

	If you use the Preserve keyword, you can resize only the last array
 dimension, and you can’t change the number of dimensions at
 all. For example:
...
ReDim myArray(10,5,2)
...
ReDim Preserve myArray(10,5,4)
...

Example 3-10. Redimensioning a two-dimensional array
Dim myArray(), nDims, iSelection

iSelection = vbYes
Do While iSelection <> vbCancel

 iSelection = MsgBox("Create 2 dimension array?", _
 vbQuestion Or vbYesNoCancel, "Dynamic Arrays")

 If iSelection = vbYes Then
 ReDim myArray(10,5)
 nDims = 2
 ElseIf iSelection = vbNo Then
 ReDim myArray(4,10,2)
 nDims = 3
 End If

 If iSelection <> vbCancel Then
 MsgBox "The upper bound of dimension " & nDims & _
 " is " & UBound(myArray, nDims)
 End If
Loop

Using UBound with multidimensional arrays

As you saw earlier, the UBound function returns the highest
 subscript (element number) in an array—that is, its Upper Boundary. You can also use UBound with a multidimensional array,
 except to find the largest element of a multidimensional array,
 you need to also specify a dimension:
 largestElement = UBound(
 arrayname, dimensionNo
)
To sum up, use fixed arrays to hold predetermined blocks of
 data in memory. If you don’t know the precise size of an array
 prior to defining it, use a dynamic array. Finally, if you need to
 reference more than one data field per data item, use a
 multidimensional array.
We have now covered the basics of variables and constants,
 apart from one major issue. You may have noticed in some of the
 previous examples that some variables and constants were declared
 at the very beginning of the script, outside of any subroutines,
 while some were declared within particular subroutines. Precisely
 where in a program or script you declare a variable or constant
 determines its scope and its
 lifetime.

Scope and Visibility

 A variable’s scope determines where within a script
 you are able to access that particular variable and whether that
 variable is visible within a particular
 routine. In a nutshell, variables declared outside of subroutines
 and functions can be accessed by the whole script, while those
 declared within a subroutine or function can be accessed only in the
 procedure in which they’ve been declared.
Global Scope
A variable has global scope when it can be accessed by all
 the subroutines and functions contained in a particular script.
 Variables and constants that have global scope also reside in
 memory for the lifetime of the script. That is to say, as long as
 the script remains in memory, its global variables and constants
 also remain in memory. To create a variable with global scope, you
 must declare it outside of any subroutine or function.

Global scope

Example
 3-11demonstrates the use of global variables and constants
 in a WSH script. Since lngMyVar is
 defined outside of any of the script’s procedures, it is a
 global variable that is visible to all routines.
 This is apparent from the GetUserInput procedure, which prompts
 the user to assign a value to lngMyVar
 and then calls the MySecondProcedure subroutine. MySecondProcedure displays a message
 box showing the value of lngMyVar, even
 though lngMyVar was not passed as a
 formal parameter to the procedure. (For a discussion of passing
 parameters, see Chapter
 2.) If lngMyVar were not visible
 throughout the script, GetUserInput would not have been able
 to assign a value to lngMyVar, and the
 MySecondProcedure routine
 would not have been able to access that value.
The IncrementValue
 procedure illustrates the use of a global constant. Because
 MY_CONST is defined and
 assigned a value outside of a function or procedure, it is visible
 to IncrementValue, which adds
 it to the value that the user entered in the input box and assigns
 the result back to lngMyVar.
Example 3-11. Global scope
Option Explicit

'any variable or constant declared here will be available to
'all scripts in the document
Dim lngMyVar
Const my_Const=5

GetUserInput()
'use lngMyVar in unrelated procedures just to check whether it's global
MySecondProcedure
IncrementValue
MySecondProcedure
MultiplyConstant
MySecondProcedure

Sub GetUserInput()

 'lngMyVar does not need to be declared here - it's global
 lngMyVar = InputBox("Enter a Number: ", "Script-Level", 0)

End Sub

Sub MySecondProcedure()
 'display the value of lngMyVar
 MsgBox "lngMyVar: " & lngMyVar
End Sub

Sub IncrementValue

 'let's add the value of the global constant to lngMyVar
 lngMyVar = lngMyVar + my_Const

End Sub

Sub MultiplyConstant

 lngMyVar = lngMyVar + (my_Const * 2)

End Sub

One peculiarity of this script is worth noting: in addition
 to including global constant and variable declarations in this WSH
 script, we have also included global executable code. InWSH,Outlook forms, and Internet Explorer, assignments and other executable
 code statements that are stored globally are executed. In Internet
 Explorer, you can include multiple <SCRIPT> tags, and all constants
 and variables declared in them but outside of functions and
 subroutines have global scope. In addition, all global code is
 executed.
ASP is an exception to this. Although global code
 does not generate an error, code generally will not execute. This
 means that you should only declare global variables and constants
 in ASP; you should never make assignments or other executable code
 global in scope.

Local scope

A variable that is declared within an individual procedure
 (that is, within a subroutine or a function) can only be used
 within that procedure, and is therefore said to have
 procedure-level scope . As soon as the procedure is complete, references
 to the variables defined within that procedure are erased from the
 computer’s memory. You can therefore define different variables in
 different procedures that use the same name, as in the case of the
 simple x variable commonly used in the
 For...Next loop.
 Procedure-level variables are ideal for temporary, localized
 storage of information.
To prove that when variables are declared (either implicitly
 by simply using their name or explicitly using the Dim statement) within a procedure they
 do not have scope outside that procedure, take a look at the Example 3-12. Here we
 have a variable named MyTestVar. The
 variable is declared globally and again within a subroutine.
 However, the scope is local only to the level where the variable
 was declared. In this example, the DemonstrateScope subroutine is called
 first and displays the value of
 MyTestVar as “Vacaville, CA”, then the
 subroutine exits back to the main program and the variable’s value
 is shown as “Anchorage, AK”. This clearly demonstrates that the
 variables are not one and the same, and hold values only at the
 scope where they were declared. (Incidentally, this “hiding” of
 variables with global scope by assigning identical names to local
 variables is called shadowing and is
 generally regarded as a poor programming practice.
Example 3-12. Procedure-level scope
Option Explicit

Sub DemonstrateScope
Dim MyTestVar
MyTestVar= "Vacaville, CA"
Msgbox MyTestVar
End sub

Dim MyTestVar
myTestVar = "Anchorage, AK"
DemonstrateScope
Msgbox MyTestVar

Public visibility

 Used outside of a procedure in place of the Dim statement, Public allows a variable to be seen not
 only by all procedures in all scripts in the current document, but also by all scripts in all procedures
 in all currently loaded documents.

Private

The Private declaration allows you to protect a variable by
 restricting its visibility to the document in which it has been
 declared. As with the Public
 declaration, the Private
 keyword can only be used outside a procedure; its use within a
 procedure generates an error. The Public and Private keywords are useful primarily in
 client-side Internet Explorer applications, where it is important
 to make variables either accessible or inaccessible between frames
 and
 documents.

Chapter 4. Error Handling and Debugging

Errors, bugs, and therefore, debugging, are a part of life for a
 programmer. As the saying goes, if you haven’t found any mistakes, then
 you aren’t trying hard enough.
Dealing with errors actually involves two very different
 processes: error handling and debugging. Error
 handling is a combination of coding and methodology that allows
 your program to anticipate user and other errors. It allows you to
 create a robust program. Error handling does not involve weeding out
 bugs and glitches in your source code, although some of the
 error-handling techniques covered in this chapter can be used to great
 advantage at the debugging stage. In general, error handling should be
 part of your overall program plan, so that when you have an error-free
 script, nothing is going to bring it to a screeching halt. With some
 sturdy error handling in place, your program should be able to keep
 running despite all the misuse that your users can — and certainly will
 — throw at it.
The following ASP page illustrates some simple error
 handling:
<HTML>
<HEAD><TITLE>Error Checking</TITLE>
<BODY>
<SCRIPT LANGUAGE="VBSCRIPT" RUNAT="SERVER">

Dim n, x

n = 10
x = Request.Form.Item("txtNumber")

If x = 0 Or Not IsNumeric(x) Then
 Response.Write "x is an invalid entry"
Else
 y = n / x
 Response.Write y
End If

</SCRIPT>

</BODY>
</HTML>
The error handling in this example is the best kind — it stops an
 error before it can occur. Suppose you hadn’t used the conditional
 If...Else statement and had allowed
 any value to be assigned to x. Sooner or
 later, some user will fail to enter a value or will enter a zero. In the
 former case, it would generate a type mismatch error, while in the
 latter, it would generate divide by zero error. So error handling, as
 this code fragment illustrates, is as much about careful data validation
 as it is about handling actual errors.
While preventing an error before it can occur is one approach to
 handling errors, the second is to handle the error after it occurs. For
 example, the following code fragment is a “real” error handler that
 we’ll examine later in this chapter, so don’t worry about the syntax at
 this stage. Like the previous code fragment, it aims at handling the
 “cannot divide by zero” runtime error—in this case, only after it
 occurs:
<HTML>
<HEAD><TITLE>Error Checking</TITLE>
<BODY>
<SCRIPT LANGUAGE="VBSCRIPT" RUNAT="SERVER">

On Error Resume Next

Dim n, x, y

n = 10
x = Server.HTMLEncode(Request.Form.Item("txtNumber"))
y = n / x

If Err.Number <> 0 Then
 y = "Oops! " & Err.Description
End If

Response.Write y

</SCRIPT>

</BODY>
</HTML>
As both of the previous examples show, the code itself is
 error-free and doesn’t contain any bugs, but without either the data
 validation code or the error handling code, this program would be
 brought to its knees the first time a user enters a zero in the text
 box. Error handling therefore is a way to prevent a potentially
 disastrous error from halting program execution. Instead, if an error
 does occur, your program can inform the user in a much more
 user-friendly manner, and you can still retain control over the
 program.
Debugging , on the other hand, involves finding errors and removing
 them from your program. There are many types of errors that you can
 unwittingly build into your scripts, and finding them provides hours of
 fun for all the family. Errors can result from:
	Including language features or syntax that the scripting
 engine does not support within the script.

	Failing to correctly implement the intent of the program or
 some particular algorithm. This occurs when code produces behavior
 or results other than those you intend, although it is syntactically
 correct and does not generate any errors.

	Including components that contain bugs themselves. In this
 case, the problem lies with a particular component, rather than with
 your script, which “glues” the components together.

The single most important thing you need when debugging is
 patience: you have to think the problem through in a structured logical
 fashion in order to determine why you are experiencing a particular
 behavior. The one thing that you do have on your side is that programs
 will never do anything of their own free will (although they sometimes
 seem to). Let’s begin by looking more closely at this structured,
 logical approach to debugging your scripts.
Debugging

You’ve designed your solution and written the code. You start to
 load it into the browser with high hopes and excitement, only to be
 faced with an big ugly gray box telling you that the VBScript engine
 doesn’t like what you’ve done. So where do you start?
When confronted with a problem, you first need to know
 the type of error you’re looking for. Bugs come in two main
 flavors:
	Syntax errors
	You may have spelled something incorrectly or made
 some other typographical or syntactical error. When this
 happens, usually the program won’t run at all.

	Logical errors
	Although syntactically correct, your program
 either doesn’t function as you expect or it generates an error
 message.

Bugs appear at different times, too:
	At compile time
	If a compile-time error is encountered, an error
 message appears as the page is loading. This usually is the
 result of a syntax error.

	At runtime
	The script loads OK, but the program runs with
 unexpected results or fails when executing a particular function
 or subroutine. This can be the result of a syntax error that
 goes undetected at compile time (such as an undefined variable)
 or of a logical error.

Let’s look at each type of bug individually. We’ll begin by
 looking at syntax errors—first at compile time and then at
 runtime—before looking at logical errors.
Syntax Errors

Ordinarily, objects containing script are compiled as
 they are loaded, and are then immediately executed. Errors can occur
 at either stage of the process. Although the distinction between
 compile-time and runtime errors is rapidly losing its importance, it
 is sometimes helpful to know that the entire script compiled
 successfully and that the error was encountered at a particular
 point in the script.
Syntax errors at compile time

Syntax errors at compile time are usually the easiest to trace and
 rectify. When the script loads, the host calls the scripting
 engine to compile the code. If the VBScript engine encounters a
 syntax error, it cannot compile the program and instead displays
 an error message.
For instance, an attempt to run the client-side script shown
 in Example 4-1
 produces the error message shown in Figure 4-1. In this
 case, it’s very easy to identify the source of the error: in the
 call to the LCase function, the closing
 parenthesis is omitted.
Example 4-1. Client-side script with a syntax error
<HTML>
<HEAD>
<TITLE>Syntax Error</TITLE>
<SCRIPT LANGUAGE="vbscript">
Sub cmdButton1_OnClick
 Alert LCase("Hello World"
End Sub
</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<INPUT TYPE="button" NAME="cmdButton1" VALUE="OK">
</BODY>
</HTML>

	[image: Error message generated by Example 4-1]

Figure 4-1. Error message generated by Example 4-1

When using ASP, diagnosing and fixing compile-time errors is a
 bit more difficult, since errors appear on the client browser,
 rather than in a dialog displayed on the server. For example, the
 simple ASP page shown in Example 4-2 displays the
 error message shown in Figure 4-2. This is a
 fairly standard ASP message display. The error code (which is
 expressed as a hexadecimal number in this case) appears to be
 meaningless. The line number causing the error, however, is
 correctly identified, and the description informs us of the exact
 cause of the error. So we can quickly see that we’ve omitted a
 closing quotation mark around the argument we passed to the
 ServerVariables property of the Request object.
Example 4-2. ASP page with a syntax error
<HTML>
<HEAD>
<TITLE>ASP Syntax Error</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
 Function BrowserName()
 BrowserName = Request.ServerVariables("HTTP_USER-AGENT)
 End Function
</SCRIPT>
<H2><CENTER>Welcome to Our Web Page!</CENTER></H2>
We are always happy to welcome surfers using <%= BrowserName %>.
</BODY>
</HTML>

	[image: ASP error information]

Figure 4-2. ASP error information

Syntax errors at runtime

Very often, a syntax error in VBScript appears only
 at runtime. Although the VBScript engine can successfully compile
 the code, it cannot actually execute it. (Note, though, that you
 may not actually be able to tell the difference between
 compile-time and runtime behavior in a relatively short script,
 since these two behaviors occur one after the other.) Example 4-3 shows a part
 of an ASP page that, among other things, tries to determine
 whether an ISBN number is correct. But attempting to access this
 page generates a runtime error, which is shown in Figure 4-3.
Example 4-3. Excerpt from an ASP page that generates an error
<HTML>
<HEAD>
<TITLE>Verifying an ISBN</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">

Function VerifyISBN(sISBN)

Dim sCheckSumDigit, sCheckSum

Dim iPos, iCtr, iCheckSum
Dim lSum
Dim sDigit

iPos = 1
sCheckSumDigit = Right(Trim(sISBN), 1)

' Make sure checksum is a valid alphanumeric
If Instr(1,"0123456789X", sCheckSumDigit) = 0 Then
 VerifyISBN = False
 Exit Function
End If

' Calculate checksum
For iCtr = 1 to Len(sISBN) - 1
 sDigit = Mid(sISBN, iCtr, 1)
 If IsNumeric(sDigit) Then
 lSum = lSum + (11 - iPos) * CInt(sDigit)
 iPos = iPos + 1
 End If
Next
iCheckSum = 11 - (lSum Mod 11)
Select Case iCheckSum
 case 11
 sCheckSum = "0"
 case 10
 sCheckSum = "X"
 case else
 sCheckSum = CStr(iCheckSum)
End Select
' Compare with last digit
If sCheckSum = sCheckSumDigit Then
 VerifyISBN = True
Else
 VerifyISBN = False
End If

End Function

</SCRIPT>

<H2><CENTER>Title Information</CENTER></H2>
Title: <%=Server.HTMLEncode(Request.Form("txtTitle")) %> <P>
ISBN:
<%
 sISBN = Server.HTMLEncode(Request.Form("txtISBN"))
 If Not VerifyIBN(sISBN) Then
 Response.Write "The ISBN you've entered is incorrect."
 Else
 Response.Write sISBN
 End If
%>

</BODY>
</HTML>

	[image: Error message generated by Example 4-3]

Figure 4-3. Error message generated by Example 4-3

In this example, all code has successfully compiled, since
 the server was able to begin returning output from the page. At
 compile time, even though the VerifyIBN
 (instead of VerifyISBN) function does not
 exist, the line of code appears to the compiler to identify a
 valid function, since it contains the correct syntax for a
 function call:functioname is followed
 by argumentlist. The VBScript engine
 can therefore compile the code into a runtime program, and an
 error is generated only when the engine tries to pass
 argumentlist to the nonexistent
 function VerifyIBN .

Logical Errors

Logical errors are caused by code that is syntactically correct —
 that is to say, the code itself is legal — but the logic used for
 the task at hand is flawed in some way. There are two categories of
 logical errors. One category of errors produces the wrong program
 results; the other category of errors is more serious, and generates
 an error message that brings the program to a halt.
Logical errors that affect program results

This type of logical error can be quite hard to track down,
 because your program will execute from start to finish without
 failing, only to produce an incorrect result. There are an
 infinite number of reasons why this kind of problem can occur, but
 the cause can be as simple as adding two numbers together when you
 meant to subtract them. Because this is syntactically correct (how
 does the scripting engine know that you wanted “-” instead of
 “+”?), the script executes perfectly.

Logical errors that generate error messages

The fact that an error message is generated helps you
 pinpoint where an error has occurred. However, there are times
 when the syntax of the code that generates the error is not the
 problem.
For instance, Example 4-4 shows a web
 page that invokes an ASP page shown in Example 4-5. The ASP page
 in turn generates a runtime error, which is shown in Figure 4-4.
Example 4-4. Division.htm, a web page for developing division
 skills
<HTML>
<HEAD>
<TITLE>A Test of Division</TITLE>
</HEAD>
<BODY>
<FORM METHOD="POST" ACTION="GetQuotient.asp">
 Enter Number: <INPUT TYPE="Text" NAME="txtNum1"> <P>
 Enter Divisor: <INPUT TYPE="Text" NAME="txtNum2"> <P>
 Enter Quotient: <INPUT TYPE="Text" NAME="txtQuotient"> <P>
 <INPUT TYPE="Submit">
</FORM>
</HEAD>
</HTML>

Example 4-5. GetQuotient.asp, the ASP page invoked by
 division.htm
<HTML>
<HEAD>
<TITLE>Checking your division...</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">

Dim nNum1, nNum2, nQuot

Public Function IsCorrect()

 nNum1 = CDbl(Server.HTMLEncode(Request.Form("txtNum1")))
 nNum2 = CDbl(Server.HTMLEncode(Request.Form("txtNum2")))
 nQuot = CDbl(Server.HTMLEncode(Request.Form("txtQuotient")))

 If (nNum1 / nNum2 = nQuot) Then
 IsCorrect = True
 Else
 nQuot = nNum1 / nNum2
 End If

End Function

</SCRIPT>

<%
 If IsCorrect() Then
 Response.Write "<H2><CENTER>Correct!</H2></CENTER>"
 Response.Write "Your answer is correct.<P>"
 Else
 Response.Write "<H2><CENTER>Incorrect!</H2></CENTER>"
 Response.Write "Your answer is wrong.<P>"
 End If
%>

<%=nNum1 %> divided by <%=nNum2 %> is <%=nQuot %> <P>

Answer another division problem.

</BODY>
</HTML>

	[image: Error display from Example 4-5]

Figure 4-4. Error display from Example 4-5

The problem here is not one of syntax. Line 16 (the line
 with the If statement in the
 IsCorrect function) is syntactically correct.
 We won’t get this error every time that we display the HTML page
 and it invokes the ASP page in Example 4-5. However, the
 values of variables can change (after all, that’s why they’re
 called variables), and here, the values of the variables in the
 ASP page are defined by the values that the user enters into the
 web page’s text boxes—in this case, by the user entering a 0 into
 the txtNum2 text box in Example 4-4. It could be
 said that this type of logical error produces a syntax error
 because the following syntax:
If (nNum1 / 0 = nQuot) Then
entails a division by zero and is therefore illegal.
In this case, we should have checked the value of the
 divisor to make sure that it was nonzero before calling the
 function. But more generally, this scenario — in which the value
 of a variable is incorrect either all of the time or, more
 commonly, only under certain conditions — is the essence of the
 logical error.

The Microsoft Script Debugger

The Script Debugger has been designed to allow you to
 debug your scripts while they are running in the browser. You can
 trace the execution of your script and determine the value of
 variables during execution. The Script Debugger is freely
 downloadable from the Microsoft web site. (For details, see the
 Microsoft Scripting home page at http://msdn.microsoft.com/scripting/.) It
 arrives in a single self-extracting, self-installing archive file,
 so that you can be up and running with the debugger in
 minutes.
Tip
You can also use Visual Interdev or Visual Studio .NET to
 debug scripts.

Launching the Script Debugger

The Script Debugger is not a standalone application in the
 sense that you cannot launch it on its own. Instead, the Script
 Debugger runs in the context of the browser or of WSH. When you
 are runningInternet Explorer, there are two ways to access the
 debugger:
	Select the Script Debugger option from the View
 menu
	A submenu is displayed that allows you to open the
 debugger to cause a break at the next statement.

	Automatically when a script fails for any reason
	This launches the debugger and displays the source
 code for the current page at the point where the script
 failed.

When you are running a WSH script, you can launch the debugger if an error
 occurs by supplying the //D
 switch, or you can run a script in the context of the debugger by
 supplying the //X switch. Figure 4-5 shows the
 Script Debugger.
	[image: The Microsoft Script Debugger]

Figure 4-5. The Microsoft Script Debugger

The Script Debugger interface

When you launch the Script Debugger, you’re faced with a
 number of different windows, each with its own special
 function:
	The Script window
	This contains the code for the current HTML page just
 as if you’d selected the View Source option to launch
 Notepad. It is from the script window that you control how
 the debugger steps through program execution and that you
 watch the execution of the script. The script in this window
 is read-only.

	The Running Documents window
	This displays a graphical view of the applications
 that support debugging and the documents that are active in
 them. To open a particular document, simply double-click its
 name in the Running Documents window.

	The Call Stack window
	This displays the current hierarchy of calls made by
 the program. If the Call Stack window is hidden, you can
 display it by selecting the Call Stack option from the View
 menu. The Call Stack window allows you to trace the path
 that program execution has followed to reach the current
 routine (and, implicitly, that it must also follow in
 reverse to “back out” of these routines). For example, let’s
 say you have a client-side script attached to the OnClick
 event of a button called cmdButton1, which in turn calls a
 function named sMyFunction. When
 sMyfunction is executing, the call
 stack will be:
cmdButton1_OnClick
sMyFunction
This allows you to see how program flow has reached
 the routine it’s currently in. It is all too easy when you
 have a breakpoint set in a particular function to lose track
 of how the script reached the function. A quick glance at
 the Call Stack window will tell you.

	The Command window
	This is the most important part of the debugger. If
 you have experience in Visual Basic, you can now breath a
 sigh of relief! The Command window allows you to interrogate
 the script engine and find the value of variables,
 expressions, and built-in functions. If the Command window
 is not visible, you can open it by selecting the Command
 Window option from the View menu. To use the Command window,
 type a question mark (?)
 followed by the name of the variable or value you wish to
 see, then press Enter. For example:
? sMyString
"Hello World"

Tracing execution with the Script Debugger

The goal of tracing program execution is to discover, in a
 logical sequence, how your program is operating. If your program
 runs but generates an error message — or produces results that are
 inconsistent with what you expected — it is obviously not
 operating according to plan. You therefore need to follow the flow
 of your program as it executes, and at various stages, test the
 value of key variables and build up an overall “picture” of what
 is really happening inside of your program. This should enable you
 to discover where and why your program is being derailed.
To trace the execution of your script, you need a way to “break into” the script
 while it is running, and then to step through each line of code to
 determine what execution path is being followed or perhaps where
 the script is failing. The Script Debugger gives you two ways to
 halt execution and pass control over to the debugging
 environment:
	Break at Next Statement
	The simplest option is to select the Break at Next Statement option from the Script
 Debugger’s Debug menu (or from the Script Debugger submenu
 of the Internet Explorer View menu). Then run your script in
 the normal way in the browser. As soon as the first line of
 scripting code is encountered by the browser, execution is
 suspended, and you have control over the script in the
 debugger. However, the part of the script you want to
 concentrate upon may be many lines of code further on from
 the first, in which case you will waste time stepping
 through to the portion that interests you.

	Set Breakpoint
	You will mostly have a good idea where your code is
 either failing or not producing the desired results. In this
 case, you can set abreakpoint by placing your cursor on the line
 of code at which to halt execution, and then either pressing
 F9 or selecting Toggle Breakpoint from the Script Editor’s
 Debug menu. A line’s breakpoint set is highlighted in red.
 Run your script from the browser. When the code containing
 the breakpoint is reached, execution is suspended; you have
 control over the script in the Debugger.

When the code has been suspended, it must be executed
 manually from the debugger. There are three methods you can use
 for stepping through a script one line at a time. For each method,
 you can either select an option from the debugger’s Debug menu or
 press a keyboard combination. The options are:
	Step Into (F8)
	This executes the next line of code. Using Step Into, you can follow every line of
 execution even if the next line to be executed is within
 another subroutine or function.

	Step Over (Shift-F8)
	This executes the next line of code only
 within the current subroutine or function. If a call is made
 to another subroutine or function, the procedure executes in
 the background before control is passed back to you in the
 current subroutine.

	Step Out (Ctrl-Shift-F8)
	This is required only if you have chosen Step Into and
 your script has called a function or subroutine. In some
 cases, you may realize that this is a lengthy procedure that
 has no consequence to your debugging. In this case, you can
 select Step Out to automatically execute the rest of
 the function and break again when control returns to the
 original subroutine or function.

Determining the value of a variable, expression, or
 function at runtime

 One of the main functions of the Immediate window is to allow you to check the value
 of a particular variable while the script is running. The most
 frustrating part about debugging a script prior to the release of
 the Script Debugger was that you could see the results of your
 script only after it had run (or failed). Most debugging requires
 you to get inside the script and wander around while it’s in the
 middle of execution.
In the absence of a debugger, many programmers and content
 providers inserted calls to the Window.Alert
 method (for client-side scripting), to the
 Response.Write method (for server-side
 scripting), or to the MsgBox function (for
 WSH scripts and Outlook forms) to serve as breakpoints in various
 places in a script. The dialog would then display thevalues of particular variables or expressions
 selected by the programmer. Although this can still be the most
 efficient method of debugging when you have a very good idea of
 what’s going wrong with your code, it becomes very cumbersome to
 continually move these calls and to change the information the
 dialogs display when you don’t really have a very good idea of
 where or why your script is failing.
In contrast, using the Command window to display the
 value of any non-object variable is easy. Simply type a question
 mark (?) followed by a space and the variable name, then press
 Enter. The Script Debugger will then evaluate the variable and
 display its value in the Immediate window. Note, though, that if
 your script requires variable declaration because you’ve included
 the Option Explicit statement, you must have
 declared the variable and it must be in scope for the debugger to
 successfully retrieve its value; otherwise, an error dialog is
 displayed. The debugger cannot evaluate the result of user-defined
 functions; it can evaluate only intrinsic
 functions (functions that are a built-in part of the
 scripting language).
But you aren’t limited to using the Command window to view
 the values of variables; you can also use it to inspect the values
 of expressions, of VBScript intrinsicfunctions, and of the properties and methods of
 particular objects. To see how this works, and also to get some
 experience using the Script Debugger, let’s try out the web page
 and client-side script in Example 4-6. Basically,
 the user should be able to enter a number and, if it is actually
 between zero and two, be shown the element of the array at that
 ordinal position. Somewhere in this code is a sneaky little bug
 causing problems. The script always tells the user that the number
 entered into the text box is too large, which indicates that it is
 greater than the upper boundary of the array. But this isn’t the
 case; the user can enter the numbers 0 or 2 and still be told that
 the number is too large.
Example 4-6. A badly behaving web page
<HTML>
<HEAD><TITLE>Testing the Script Debugger</TITLE></HEAD>
<BODY>
<SCRIPT LANGUAGE="VBSCRIPT">

Dim sTest
sTest = Array("Hello World", "Some Data", "AnyData")

Sub cmdButton1_OnClick
 Dim iTest	
 iTest = Document.frmForm1.txtText1.Value
 Alert sGetValue(iTest)
End Sub

Function sGetValue(iVal)
 If iVal > UBound(sTest) Then
 sGetValue = "Number too big"
 Elseif iVal < 0 Then
 sGetValue = "Number too small"
 Else
 sGetValue = sTest(iVal)
 End If
End Function

</SCRIPT>

<FORM NAME="frmForm1">
 Input a Number (0-2): <INPUT TYPE="text" NAME="txtText1"> <P>
 <INPUT TYPE="button" NAME="cmdButton1" VALUE="OK">
</FORM>

</BODY>
</HTML>

To debug the script in Example 4-6, you can
 place a breakpoint on the first line of the
 sGetValue function, since this is probably
 where the problem lies. Then run the script and enter the number 2
 into the text box txtText1. When execution is suspended, you can
 investigate the values of the program’s variables. As you can see,
 the call to the sGetValue function has a
 single argument, iTest, which is passed
 to the function as the iVal parameter.
 So our first step is to determine the value of
 iVal at runtime by entering the
 following into the Command window:
? iVal
Press Enter, and the debugger displays the result:
2
Next, find out what the script thinks the upper boundary of
 the array is by entering the following in the immediate window and
 pressingEnter:
? UBound(sTest)
Note that here you’re not simply asking for the value of a
 variable; you’re actually asking the debugger to evaluate the
 UBound function on the
 sTest array and return the result,
 which is:
2
So iVal is not greater than
 UBound(sTest). Next, go back to
 the script window and press F8 to follow the flow of program
 control. Execution is suspended on the following line, where the
 string “Number too big” is assigned to the variable
 sGetValue. That indicates that the
 scripting engine has evaluated the expression incorrectly and has
 decided that iVal is greater then
 UBound(sTest). So go back to
 the Command window, and this time try to evaluate the complete
 expression:
? iVal > UBound(sTest)
As you might expect from the appearance of the “Number too
 big” dialog when the script is run, the result of the expression
 is True, even though the
 expression that is evaluated (once we replace the variable and
 expression with their values) is 2 >
 2, which is clearly False. Given this apparent incongruity,
 it seems likely that our problem may be centered in the data types
 used in the comparison. So try the following:
? TypeName(UBound(sTest))
Here, you’re asking the debugger to evaluate the
 UBound function on the
 sTest array, and, by calling the
 TypeName function, to indicate the data type
 of the value returned by the UBound function.
 The result is:
Long
Now find out what data type iVal
 is:
? TypeName(iVal):
The debugger returns:
String
Aha! The Script Debugger shows that, in reality, you’re
 performing the following comparison:
If "2" > 2 Then
which of course is nonsense! Remember that
 iVal is the name within the
 sGetValue function of the
 iTest variable in the button’s OnClick
 event procedure. And iTest in turn
 represents the value retrieved from the textbox, which of course
 must be string data, as typing the following into the Command
 window establishes:
? TypeName(iTest)
String
Try this in the debugger:
? CLng(iVal) > UBound(sTest)
Success! The Command window shows:
False
You can see from this debugging exercise that the Command
 window is a powerful tool allowing you to perform function calls,
 evaluate complete expressions, and try out different ways of
 writing your code.

Changing variable values at runtime

Another use for the Command window is to assign a
 new value to a variable. For example, if you open the web page and
 client-side script shown in Example 4-7 and click the
 button, you’ll find that an error halts execution on line 10 with
 the message “Invalid procedure call or argument”. If you use the
 Command window to determine the value of
 myNum, which specifies the starting
 position of the InStr search, you’ll find
 that it was erroneously set to -1, an invalid value that generated
 the runtime error.
Example 4-7. Runtime error caused by an invalid argument
<HTML>
<HEAD><TITLE>Logical Error</TITLE>
<SCRIPT LANGUAGE="vbscript">

Sub cmdButton1_OnClick
 Dim myNum
 Dim sPhrase

 sPhrase = "This is some error"
 myNum = GetaNumber(CInt(Document.frmForm1.txtText1.Value))
 If Instr(myNum, sPhrase, "is") > 0 Then
 Alert "Found it!"
 End If
End Sub

Function GetaNumber(iNum)
 iNum = iNum - 1
 GetaNumber = iNum
End Function

</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<FORM NAME="frmForm1">
<INPUT TYPE="hidden" NAME="txtText1" VALUE=0>
<INPUT TYPE="button" NAME="cmdButton1" VALUE="Click Me">
<FORM>
</BODY>
</HTML>

You can, however, correct the error and continue executing
 the script. Just place a breakpoint on the offending line and
 click on the button when the browser displays it so that the
 script executes. When program execution halts, you can check
 the value
 of
 myNum :
? myNum
-1
How the VB Debugger and the Script Debugger
 Differ
 If you have experience with Visual Basic, the
 debugging concepts covered in this section will be familiar to
 you. However, there are a few features that aren’t available to
 you in the Script Debugger:
	No “on the fly” editing
	Because the scripting window is read-only, you
 cannot edit the code during execution, as you can most of
 the time with VB.

	No Instant Watch (Shift-F9)
	The VB debugger’s instant watch facility, which
 allows you to highlight a variable in your code, press
 Shift-F9, and see the value of the variable, is not
 available in the Script Debugger.

	Cannot set watches
	Watches do not exist in the Script Debugger.

	Cannot set the next statement
	Using the VB Debugger, you can place the cursor on a
 line of code and, by clicking CTRL-F9, have program
 execution resume at that line. This is particularly useful
 to backtrack or to re-execute a section of code.
 Unfortunately, this feature is not available in the Script
 Debugger.

Error Handling

Error handling does not involve finding errors in your
 scripts. Instead, use error-handling techniques to allow your program
 to continue executing even though a potentially fatal error has
 occurred. Ordinarily, all runtime errors that are generated by the
 VBScript engine are fatal, since execution of the current script is
 halted when the error occurs. Error handling allows you to inform the
 user of the problem and either halt execution of the program or, if it
 is prudent, continue executing the program.
The On Error Resume Next Statement

There are two main elements to error handling in VBScript. The
 first is the On Error statement,
 which informs the VBScript engine of your intention to handle errors
 yourself, rather than to allow the VBScript engine to display a
 typically uninformative error message and halt the program. This is
 done by inserting a statement like the following at the start of a
 procedure:
On Error Resume Next
This tells the VBScript engine that, should an error occur,
 you want it to continue executing the program starting with the line
 of code that directly follows the line in which the error occurred.
 For example, in the simple WSH script:
On Error Resume Next
x = 10
y = 0
z = x / y
Alert z
a “Cannot divide by Zero” error is generated on the fourth
 line of code because the value of y is 0.
 But because you’ve placed the On
 Error statement in line 1,
 program execution continues with line 5. The problem with this is
 that when an error is generated, the user is unaware of it; the only
 indication that an error has occurred is the blank Alert box (from
 line 5) that’s displayed for the user.
Tip
A particular On Error statement is valid until another
 On Error statement in the line of execution
 is encountered, or an On Error Goto
 0 statement (which turns off error handling) is
 executed. This means that if Function A contains an On Error statement, and Function A calls
 Function B, but Function B does not contain an On Error statement, the error handling from
 Function A is still valid. Therefore, if an error occurs in
 Function B, it is the On
 Error statement in Function A
 that handles the error; in other words, when an error is
 encountered in Function B, program flow will immediately jump to
 the line of code that followed the call to Function B in Function
 A. When Function A completes execution, the On Error statement it contains also goes
 out of scope. This means that, if the routine that called Function
 A did not include an On
 Error statement, no error
 handling is in place.

This is where the second element of VBScript’s error handling
 comes in. VBScript includes an error object, named Err, which, when
 used in conjunction with On
 Error Resume Next, adds much more functionality to
 error handling, allowing you to build robust programs and relatively
 sophisticated error-handling routines.
Exception Handling in ASP
ASP 3.0/IIS 5.0 (unlike previous versions of ASP) supports
 built-in exception handling. Errors in ASP scripts are handled
 automatically by the web server in one of three ways: by sending a
 default message to the client, by sending the client the contents
 of a particular file, or by redirecting the client to an
 error-handling web page, depending on how the IIS has been
 configured. Within the error-handling page, the ASPError object
 can be examined to determine the cause of the error. In ASP 3.0,
 using the VBScript On Error Resume Next statement circumvents ASP’s
 built-in exception handling and replaces it with VBScript’s less
 flexible error-handling system.

The Err Object

The Err object is part of the VBScript language and
 contains information about the last error to occur. By checking the
 properties of the Err object after a particular piece of code has
 executed, you can determine whether an error has occurred and, if
 so, which one. You can then decide what to do about the error — you
 can, for instance, continue execution regardless of the error, or
 you can halt execution of the program. The main point is that error
 handling using On Error and the
 Err object puts you in control of errors, rather than allowing an
 error to take control of the program (and bring it to a grinding
 halt). To see how the Err object works and how you can use it within
 an error-handling regimen within your program, let’s begin by taking
 a look at its properties and methods.
Err object properties

Like all object properties, the properties of the
 Err object can be accessed by using the name of the object, Err,
 the dot (or period) delimiter, and the property name.
 The Err object supports the following properties:
	Number
	The Number property is a Long value that contains
 an error code value between -2,147,483,648 and
 2,147,483,647. (The possibility of a negative error code
 value seems incongruous but results from the fact that error
 codes are unsigned long integers, a data type not supported
 by VBScript.) VBScript itself provides error code values
 that range from 0 to 65,535. COM components, however, often
 provide values outside of this range. If the value of
 Err.Number is 0, no error has
 occurred. A line of code like the following, then, can be
 used to determine if an error has occurred:
If Err.Number <> 0 Then
Although the properties of the Err object provide
 information on the last error to occur in a script, they do
 not do so permanently. All the Err object properties,
 including the Number property, are set either to zero or to
 zero-length strings after an End Sub, End Function, Exit
 Sub, or Exit Function statement. In addition, you can
 explicitly reset Err.Number to
 zero after an error by calling the Err object’sClear method. The WSH script in Example 4-8
 illustrates the importance of resetting theErr object after an error occurs.
Example 4-8. Failing to reset the Err object
Dim x, y ,z

On Error Resume Next

x = 10
y = 0
z = x / y
If Err.Number <> 0 Then
 MsgBox "There's been an error #1"
Else
 MsgBox z
End IF

z = x * y
If Err.Number <> 0 Then
 MsgBox "There's been an error #2"
Else
 MsgBox z
End If

End Sub

The division by zero on the fifth line of the script
 in Example
 4-8 generates an error. Therefore, the conditional
 statement on line 6 evaluates to True and an error dialog is
 displayed. Program flow then continues at line 12. Line 12
 is a perfectly valid assignment statement that always
 executes without error, but the Err.Number property still
 contains the error number from the previous error in line 5.
 As a result, the conditional statement on line 13 evaluates
 to True, and a second
 error dialog is displayed. Despite the two error messages,
 there’s only been a single error in the script.

	Description
	The Description property contains a string that
 describes the last error that occurred. You can use the
 Description property to build your own message box alerting
 the user to an error, as the WSH script in Example 4-9
 shows.
Example 4-9. Using the Description property to display error
 information
Dim x, y ,z
On Error Resume Next

x = 10
y = 0
z = x / y
If Err.Number <> 0 Then
 MsgBox "Error number " & Err.Number & ", " & _
 Err.Description & ", has occurred"
 Err.Clear
Else
 MsgBox z
End If

z = x * y
If Err.Number <> 0 Then
 MsgBox "Error No:" & Err.Number & " - " & _
 Err.Description & " has occurred"
 Err.Clear
Else
 Alert z
End If

	Source
	The Source property contains a string that
 indicates the class name of the object or application that
 generated the error. You can use the Source property to
 provide users with additional information about an error—in
 particular, about where an error occurred.
The value of the Source property for all errors
 generated within scripted code is simply “Microsoft VBScript
 runtime error.” This is true of all VBScript scripts,
 whether they’re written for Active Server Pages, Windows
 Script Host, Internet Explorer, or Outlook forms. Obviously,
 this makes the Source property less than useful in many
 cases. However, you can assign a value to the Source
 property in your own error-handling routines to indicate the
 name of the function or procedure in which an error
 occurred. In addition, the primary use of the Source
 property is to signal an error that is generated by some
 other object, like an OLE automation server (such as
 Microsoft Excel or Microsoft Word).

Err object methods

The two methods of the Err object allow you to raise
 or clear an error, while simultaneously changing the values of one
 or more Err object properties. The two methods are:
	Raise
	The Err.Raise method allows you to generate a runtime
 error. Its syntax is:[1]
Err.Raise(ErrorNumber)
where ErrorNumber is the
 numeric code for the error you’d like to generate. At first
 glance, generating an error within your script may seem like
 a very odd thing to want to do! However, there are times,
 particularly when you are creating large, complex scripts,
 that you need to test the effect a particular error will
 have on your script. The easiest way to do this is to
 generate the error by using the
 Err.Raise method and providing the
 error code to the ErrorNumber
 parameter, then sit back and note how your error-handling
 routine copes with the error, what the consequences of the
 error are, and what side effects the error has, if any. The
 client-side script in Example 4-10, for
 instance, allows the user to enter a number into a text box,
 which is passed as the error code value to the
 Err.Raise method. If the value of the
 error code is non-zero, an Alert box opens that displays the
 error code and its corresponding description. Figure 4-6, for
 instance, shows the Alert box that is displayed when the
 user enters a value of 13 into the text box.
Example 4-10. Calling the Err.Raise method
<HTML>
<HEAD>
<TITLE>Using the Err Object</TITLE>
<SCRIPT LANGUAGE="vbscript">

Sub cmdButton1_OnClick
On Error Resume Next
errN = Document.frm1.errcode.value
Err.Raise(errN)

If Err.Number <> 0 Then
 Alert "Error No:" & Err.Number & " - " & Err.Description
 Err.Number = 0
End If

End Sub

</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<CENTER>
<H2>Generating an Error</H2>
<P>
<FORM NAME="frm1">
Enter an Error Code
<INPUT TYPE="text" NAME="errcode">
<INPUT TYPE="button" NAME="cmdButton1" VALUE="Generate Error">
</CENTER>
</BODY>
</HTML>

Tip
An Error Code Generator (ERRCODES1.HTML, ERRCODES1.ASP, and ERRCODES1.VBS), which allows
 you to generate a complete list of current VBScript error
 codes, can be found on the O’Reilly Visual Basic web site
 at http://vb.oreilly.com.

	[image: Generating a Type mismatch error at runtime]

Figure 4-6. Generating a Type mismatch error at runtime

Table
 4-1 lists a few of the most commonruntime errors.
Table 4-1. Some common VBScript error codes
	Error number
	Description

	5
	Invalid procedure call

	6
	Overflow

	7
	Out of memory

	9
	Subscript out of range

	11
	Division by zero

	13
	Type mismatch

	Clear
	The Clear method clears the information that the
 Err object is storing about the previous error; it takes no
 parameters. It sets the values of
 Err.Number to 0 and the Err
 object’s Source and Description properties to a
 null
 string.

Common Problem Areas and How to Avoid Them

 There is much to be said for the old maxim, “The best
 way to learn is by making mistakes.” Once you have made a mistake,
 understood what you did wrong, and rectified the error, you will — in
 general — have a much better understanding of the concepts involved
 and of what is needed to build a successful application. But to save
 you from having to experience this painful process of trial and error
 in its entirety, we’d like to share with you some of the most common
 errors that ourselves and other programmers we’ve worked with have
 made over the years. These types of errors are actually not unique to
 VBScript, nor in fact to VB, but to programming in general. In
 approximate order of frequency, they are:
	Syntax errors generated by typing errors. This is a tough
 one. Typing errors — the misspelled function call or variable name
 — are always going to creep into code somewhere. They can be
 difficult to detect, particularly because they are typing errors;
 we frequently train our eyes to see what
 should be there, rather than what is there.
 When the effect of the typing error is subtle, it becomes even
 more difficult to detect. For instance, in a client-side script,
 we had spelled LANGUAGE as
 LANGAUGE in coding the <SCRIPT> tag. The result was that
 Internet Explorer immediately began reporting JavaScript syntax
 errors. This isn’t surprising, given that in the absence of a
 valid LANGUAGE attribute,
 Internet Explorer used its default scripting language, JScript.
 But when confronted with this situation, it takes a while to
 recognize the obvious — that the LANGUAGE attribute for some reason is
 improperly defined; instead, it seems that Internet Explorer and
 VBScript are somehow mysteriously “broken.” One way to reduce the
 time spent scratching your head is to build code in small
 executable stages, testing them as you go. Another good tip is to use
 individual small sample scripts if you are using a function or set
 of functions for the first time and aren’t sure how they’ll work.
 That allows you to concentrate on just the new functions rather
 than on the rest of the script as well. And perhaps the most
 effective technique for reducing troublesome misspelling of
 variables is to include the Option
 Explicit directive under the first <SCRIPT> tag in ASP, Internet
 Explorer, and WSH/XML scripts, and at the top of the page of WSH
 and Outlook form scripts. This way, any undefined variable — which
 includes misspelled variables — is caught at runtime.

	Type mismatches by everyone’s favorite data type, the
 variant. Type mismatches occur when the VBScript engine is
 expecting data of one variant type — like a string — but is
 actually passed another data type — like an integer.) T ype mismatch errors are fairly uncommon in VBScript,
 since most of the time the variant data type itself takes care of
 converting data from one type to another. That tends, though, to
 make type mismatch errors all the more frustrating. For instance,
 in Example 4-5, if
 we hadn’t used the statements:
nNum1 = CDbl(Server.HTMLEncode(Request.Form("txtNum1")))
nNum2 = CDbl(Server.HTMLEncode(Request.Form("txtNum2")))
nQuot = CDbl(Server.HTMLEncode(Request.Form("txtQuotient")))
to convert the form data submitted by the user to numeric
 data, our application would not have functioned as expected. The
 best way to reduce or eliminate type mismatch errors is to adhere
 as closely as possible to a uniform set of VBScript coding
 conventions. (For a review of coding conventions and their
 significance, see Chapter
 2.) For instance, when you know that a variable is going to
 hold a string, use a variable name like
 strMyVar to indicate its type, etc.
 Code becomes easier to use if you can tell instantly that some
 operation (like strMyString = intMyInt *
 dteMyDate) doesn’t make sense, but you’re none the wiser
 if your line of code reads a =
 b * c.

	Subscript Out Of Range is an error that occurs
 frequently when usingarrays. It actually doesn’t take much to eliminate
 this error for good. All you have to do is check the variable
 value you’re about to use to access the array element against the
 value of the UBound function, which lets you
 know exactly what the maximum subscript of an array is.

	The next most common error is division by zero. If you try
 to divide any number by zero, you’ll kill your script stone dead.
 While it’s very easy to generate a division by zero error in a script, it’s also not at
 all difficult to prevent it. A division by zero error is easy to
 diagnose: whenever a variable has a value of zero, it’s likely to
 cause a problem. So all your script has to do is check its value
 and, if it turns out to be zero, not perform the division. There’s
 no rocket science here! Simply use an If
 x = 0 Thenconditional
 statement, where x is the variable
 representing the divisor.

[1] A more complete version of the syntax of the Raise
 method is:

Chapter 5. VBScript with Active Server Pages

At root, web servers are pieces of software: they receive
 an incoming client request and handle it by transmitting a stream of
 bytes back to the client. Getting the web server to do something
 else—for instance, to respond to user interaction by sending back one
 byte stream rather than another, to save user state information from
 page to page, to add data from a database to the byte stream returned to
 the client, or to perform backend processing on the client
 request—requires a web server extension.
 Traditionally,web server extensions for Windows were developed using two
 technologies: Common Gateway Interface (CGI) and Common Gateway Interface for Windows (WinCGI). These are
 out-of-process extensions that communicate with the web server through
 standard input and output (in the case of CGI) or initialization files
 (WinCGI), which are both very inefficient methods that do not scale
 well. Microsoft Internet Information Server 1.0 added a new
 technology, Internet Server Application Programming Interface (ISAPI),
 that allowed developers to create applications or filters that ran in
 the same process as the web server, thus achieving better performance
 and greater scalability. Unfortunately, developing ISAPI applications
 and filters required an experienced C or C++ programmer, and thus was
 out of the reach of the vast majority of web content providers.
Active Server Pages was first introduced in Microsoft Internet
 Information Server 3.0 and allows web server extensions to be developed
 using scripts that can be written in any language
 that supports Microsoft’s Component Object Model (COM)—although the most common
 language for developing ASP scripts is VBScript. This makes ASP
 application development accessible to more web content providers than
 any previous technology for creating shell extensions.
In addition, Active Server Pages allows for the use of server-side
 components (that is, of COM components written in any of a number of
 programming languages, most notably Visual Basic) to enhance and better
 control web applications. The reasons for developing an ASP component
 rather than a simple script include the items shown in the following
 list.
	The functionality that an application requires is not
 available from VBScript or other scripted languages.

	The functionality is to be implemented in multiple web pages
 or web applications, rather than for just one web page or web
 application.

	The component offers significantly better performance than its
 scripted counterpart. That is, the scripted equivalent of the
 component is a performance bottleneck.

For a book that shows how to develop ASP components using Visual C++, Visual Basic, and Visual
 J++, see Developing ASP Components, by Shelley
 Powers (O’Reilly & Associates).
How ASP Works

Active Server Pages is implemented as an IIS component—in fact, as an ISAPI filter—that resides
 in a dynamic link library named ASP.DLL . (ISAPI filters are custom web server extensions that are
 called for every HTTP request received by the web server.) If the file
 extension of the resource requested by the client is .asp , Active Server Pages is used to parse the file and
 handle the client request; otherwise, it is bypassed.
ASP does not view pages purely on a one-by-one basis. Instead,
 it organizes its pages into applications.
 AnASP application is the entire set of files that can be
 accessed in a virtual directory and its subdirectories. This notion of
 an ASP application allows you to define global variables whose values
 are shared across all users of your ASP application, as well as to
 have ASP save state information from a particular client’s
 session.
When ASP is used to parse a web page, it first checks to see
 whether the request has originated from a new client. If the client is
 new, ASP checks the global.asa
 file (which is stored in the application’s virtual root directory) to
 determine whether any session-level data is to be initialized. If the
 client’s is the first request for the ASP application, ASP also checks
 global.asa for any
 application-level data as well. ASP then parses the HTML page,
 executes any script contained on the page, and includes any output
 from scripts into the HTML stream. Note that the output of ASP is HTML
 with or without client-side script; no server-side script contained in
 the ASP page is passed on to the client.
The global.asa File

As we’ve noted, when ASP receives a request from a new user,
 it checks the global.asa
 file, which must be located in the ASP application’s
 virtual root directory. If the request from the new user is the
 first request for the ASP application, theApplication_OnStart event procedure, if it is present,
 is executed before theSession_OnStart event. When a user session ends,
 usually because the session has timed out, ASP checks global.asa for aSession_OnEnd event. When the application’s last user
 session ends, ASP also checks whether code for the Applictaion_OnEnd event is present as well.
In addition, global.asa
 can use the <OBJECT> tag to
 define application-level and session-level objects. All objects
 declared to have application scope with the <OBJECT> tag are available throughout the application and can
 be accessed through the Application object’s StaticObjects
 collection. <OBJECT> tagged
 objects that have session scope are available in a single client
 session and can be accessed through the Session object’s
 StaticObjects collection. The syntax of the <OBJECT> tag is:
<OBJECT RUNAT=SERVER SCOPE=scope ID=name PROGID=progid>
where scope is either Application or Session, name
 is the name by which the object variable will be referenced in code,
 and progid is the object’s programmatic
 identifier, as defined in the registry.
Example 5-1
 shows the shell of a simple global.asa file. This file is fully
 customizable, so it can be changed to cater to your specific
 application needs. Of course, event handlers that you don’t intend
 to use need not be present in the file. If you choose not to take
 advantage of any application-level or session-level variables,
 initialization, and cleanup, you need not create a global.asa file.
Example 5-1. The structure of a global.asa file
<OBJECT RUNAT=Server SCOPE=Session ID=strName PROGID="progid">
</OBJECT>

<OBJECT RUNAT=Server SCOPE=Application ID=strName
 PROGID="progid">
</OBJECT>

<Script Language=VBScript Runat=Server>

Sub Application_OnStart
 'Code for handling startup events goes here
End Sub

Sub Application_OnEnd
 'Code for terminating events goes here
End Sub

Sub Session_OnStart
 ' Code for handling session startup goes here
End Sub

Sub Session_OnEnd
 'Code for handling session termination goes here
End Sub

</Script>

Including Server-Side Script in Web Pages

 ASP offers two methods for incorporating server-side
 script into a web page: server-side includes and the HTML <SCRIPT> tag.
The <SCRIPT>...</SCRIPT> tags
 define a single code block. The <SCRIPT> tag has the following
 format if you’re developing your ASP applications with
 VBScript:
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
 VBScript code goes here
</SCRIPT>
RUNAT="Server”
A common source of error for those writing their own ASP
 code is the omission of the RUNAT attribute. This causes the code to execute on the
 client rather than on the server, which invariably produces
 numerous syntax and other errors.

A single web page can include any number of <SCRIPT>...</SCRIPT> tags. The
 tags can be located anywhere within the <HEAD>...</HEAD> or the
 <BODY>...</BODY> tags
 of an ASP document. A single script block must contain code written
 in a single language to run at a single location (i.e., either the
 server or the client). If you want to run code on both the server
 and the client, separate script blocks are required. In the latter
 case, you can omit the RUNAT
 attribute from the <SCRIPT>
 clause. If you want to write script in multiple languages, separate
 code blocks are required for each language. Just supply a string
 that identifies the language to the LANGUAGE attribute for each scripting block.
Within the script tags, the order of execution of any
 page-level code (that is, code not located within functions or
 procedures) is undefined. In other words, you can’t rely on it
 having been executed at the point in your script when values of its
 variables may be needed. As a result, it’s best to limit the code
 contained within the <SCRIPT>...</SCRIPT> tags to
 complete functions and procedures, as well as to variable
 declarations (but not assignments) using the Dim, Public, and Private statements.
The second way to include script in an HTML page is to use the
 <%...%> or <%=
 %> delimiters,
 or the primary script commands . All code within the delimiters must be written in
 the primary scripting language defined for the application or for
 the ASP page, whichever has the least restrictive scope. The default
 application scripting language is defined by theDefault ASP Language property on the App Options tab
 in the snap-in for IIS 5.0. It can be overridden for an individual page
 by including the <@ LANGUAGE=
 ScriptingEngine %> directive at the beginning of an ASP
 page, where ScriptingEngine is the name
 of the language.
Both types of primary script commands contain code that is
 executed sequentially as the portion of the HTML page that contains
 them is parsed. The difference between the <%...%> and the <%=...%> delimiters is that the
 former can contain executable code but does not automatically send
 output to the HTML response stream, while the latter contains a
 variable or expression whose value is output into the HTML response
 stream. In practice, this is not a restriction for the former tag,
 since you can use the Response.Write method
 from the ASP object model to write to the HTML output stream.
Example 5-2
 shows a simple ASP page that contains both a script block and
 primary script commands. The first primary script command calls the
 user-defined Greeting function
 and writes the string it returns to the HTML response stream. The
 Greeting function itself is
 defined in the script block. It retrieves the time on the server and
 returns a string indicating whether it is morning, afternoon, or
 evening. The second primary script command simply calls the VBScript
 Now function to insert the date
 and time into the HTML response stream. Notice from the HTML source
 shown in Figure 5-1
 that the HTML page produced by the ASP page in Example 5-2 contains HTML
 only; the server-side script has been either discarded or replaced
 with the text that it has output.
Example 5-2. A simple ASP page
<HTML>
<HEAD><TITLE>A Simple ASP Page</TITLE></HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
Private Function Greeting()
 Dim timNow
 timNow = Time
 If timNow <= CDate("12:00:00") Then
 Greeting = "Good Morning"
 ElseIf timNow <= CDate("18:00:00") Then
 Greeting = "Good Afternoon"
 Else
 Greeting = "Good Evening"
 End If
End Function
</SCRIPT>

<%=Greeting() %>, the time is <%= Now %> on the server.<P>

</BODY>
</HTML>

	[image: HTML source produced by the ASP page in Example 5-2]

Figure 5-1. HTML source produced by the ASP page in Example 5-2

Note that ASP allows you to import script or HTML from
 external files by using the #include server-side directive. It is
 discussed in Chapter
 3.

Active Server Pages Object Model

 Although VBScript is a powerful, flexible scripting
 language when used to develop ASP applications, you can do relatively
 little with VBScript by itself. That is, most of the power and
 efficiency of ASP becomes available only when you use VBScript to
 access the Active Server Pages object model. In an ASP application,
 each of the objects in the ASP object model is globally available
 throughout your script; you don’t have to do anything special to
 instantiate ASP objects.
ASP includes six intrinsic objects, each of which are detailed
 in the following:
	Application
	An object whose collections and property values are shared
 across all instances of the application. (An ASP
 application , once again, is the entire set of files that can
 be accessed in a virtual directory and its subdirectories.) The
 Application object supports the members listing in
 Table
 5-1.
Table 5-1. Members of the Application object
	Name
	Description

	 Contents Collection
	Contains all application-scoped variables
 and objects added by script.

	 Lock Method
	Locks the Contents collection, preventing
 other instances from accessing it until it is unlocked.
 Its syntax is Application.Lock(
).

	 OnEnd Event
	Fired when the last user session
 ends.

	 OnStart Event
	Fired when the first user session
 starts.

	 StaticObjects Collection
	Contains all application-scoped variables
 added by the <OBJECT> tag.

	 Unlock Method
	Unlocks the Contents collection so that
 other instances can access it. Its syntax is Application.Unlock().

The Contents and StaticObjects collections have the
 members shown in Table 5-2.
Table 5-2. Members of the Application object’s Contents
 collections
	Name
	Description

	 Count Property
	Indicates the number of members in the
 collection.

	 Item Property
	Retrieves a member by its ordinal position
 in the collection or its name. Its syntax is oCollec.Item(index)
 where index is the one-based
 position of the member in the collection or its name.

	 Key Property
	Returns the name of a particular element in
 the collection that’s found at a specified ordinal
 position. Its syntax is oCollec.Key(index)
 where index is the one-based
 position of the member in the collection.

	 Remove Method
	Removes a designated member from the
 Contents collection; it is not supported for the
 StaticObjects collection. Its syntax is oCollec.Key(index)
 where index is the one-based
 position of the member in the collection or its name.
 Available in IIS 5.0 only.

	 RemoveAll Method
	Removes all the members from the Contents
 collection; it is not supported for the StaticObjects
 collection. Available in IIS 5.0 only.

	ObjectContext
	An object that provides transactional support to scripts.
 TheObjectContext object supports the members listed
 in Table 5-3
 from a scripted page.
Table 5-3. Members of the ObjectContext object
	Name
	Description

	 OnTransactionAbort Event
	Fired when a transaction is
 aborted.

	 OnTransactionCommit Event
	Fired when a transaction is
 committed.

	 SetAbort Method
	Indicates the transaction cannot complete
 and changes should be rolled back. Its syntax is
 ObjectContext.SetAbort(
).

	 SetComplete Method
	Indicates that from the viewpoint of the
 script, the transaction has completed successfully. If
 all other components participating in the transaction
 also call SetComplete, the transaction can be committed.
 Its syntax is ObjectContext.SetComplete().

	Request
	Gives you access to the client’s HTTP request header and
 body, as well as to some information about the server handling
 the request. The members of the Request object are listed in
 Table 5-4. All
 collections are read-only. TheRequest object also maintains a sort of
 “super-collection” that allows you to search for any members of
 the QueryString, Form, Cookies, ClientCertificate, and
 ServerVariables collections using the syntax:
vValue = Request("name")
Table 5-4. Members of the Request object
	Name
	Description

	 BinaryRead Method
	Returns a SAFEARRAY structure containing
 data retrieved from the client. This method is primarily
 for C/C++ programmers.

	 ClientCertificate Collection

	Contains the fields stored in the client
 certificate that is sent in the HTTP request, if there
 is one.

	 Cookies Collection
	Contains the cookies sent in the HTTP
 request.

	 Form Collection
	Contains form elements sent in the HTTP
 request body.

	 QueryString Collection
	Contains the values of variables sent in
 the HTTP query string.

	 ServerVariables Collection
	Contains predefined environment variables
 and their values.

	 TotalBytes Property
	Indicates the total number of bytes sent by
 the client in the body of the request; read-only.

The collections of the Request object support the members
 shown in Table
 5-5.
Table 5-5. Members of the Request object’s collections
	Name
	Description

	 Count Property
	A read-only property that returns the total
 number of members in the collection. The property is not
 available for the ClientCertificate collection, whose
 members are predefined.

	 Item Property
	A read-only property that returns the value
 of a specific element in the collection. Its syntax is
 oCollec.Item(Index)
 where Index can be either the
 one-based ordinal position of the item in the collection
 or its key.

	 Key Property
	A read-only property that returns the name
 or key value of a specific element in the collection.
 Its syntax is oCollec.Item(Index)
 where Index is the one-based
 ordinal position in the collection of the key whose name
 you want to retrieve.

Tip
Retrieving and then outputting raw user input from the
 Request object’s Form and QueryString collections leaves a
 site open to cross-site security scripting attacks. For
 details on what these security holes are and how to avoid
 them, see an article written by Michael Howard at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure07152002.asp.

	Response
	Allows you to control the output sent back to the
 requestor. TheResponse object’s members are shown in Table 5-6.
Table 5-6. Members of the Response object
	Name
	Description

	 AddHeader Method
	Adds a custom HTTP response header and its
 corresponding value to the HTTP output stream. Its
 syntax is Response.AddHeader
 strName,
 strValue where
 strName is the name of the
 response header and strValue
 is its value.

	 AppendToLog Method
	Adds a string to the server’s log entry for
 the current client request. Its syntax is Response.AppendToLog
 strLogEntry where
 strLogEntry is a string of up
 to 80 characters without commas that will be appended to
 the log.

	 BinaryWrite Method
	Writes information directly to the response
 body without any character conversion. Its syntax is
 Request.BinaryWrite
 arbyteData where
 arbyteData is an array
 containing the binary bytes to be written.

	 Buffer Property
	Determines whether script output is
 included in the HTML stream all at once (Buffer = True) or a line at a time
 (Buffer = False).

	 CacheControl Property
	A string value that determines whether
 proxy servers serving your pages can cache your page. If
 set to “Public,” pages can be cached; if set to
 “Private,” pages cannot be cached.

	 Charset Property
	Specifies a character set for the HTTP
 response content. The default character set is ISO-LATIN.

	 Clear Method
	Clears any part of the response body that’s
 been written to the output buffer. Its syntax is
 Response.Clear. The
 use of this method requires that the Buffer property of
 the Response object be set to True.

	 ContentType Property
	Defines the value of the Content-Type in
 the HTTP response header, which determines the type of
 data sent in the response body. The default value of the
 ContentType property is “Text/HTML.”

	 Cookies Collection
	Defines or accesses cookies to be written
 to the client machine. It has the same members as the
 Cookies collection of the Request object, except the
 Item property can be used to add a cookie to the
 collection as well as to retrieve an existing cookie.

	 End Method
	Closes the output buffer, sends its
 contents to the client, and stops the web server from
 processing additional code. Its syntax is Response.End.

	 Expires Property
	Specifies the number of minutes that the
 client may cache the current page.

	 ExpiresAbsolute Property
	Provides a date and time after which the
 content of the current page should no longer be cached
 by the client.

	 Flush Method
	Immediately sends all content in the output
 buffer to the client. Its syntax is Response.Flush.

	 IsClientConnected Property
	A read-only property that indicates whether
 the client is still connected to the server (its value
 is True) or not (its
 value is False).

	 PICS Property
	Provides a PICS (Platform for Internet
 Content Selection) label to the HTTP response header.

	 Redirect Method
	Redirects the client’s request to another
 URL. Its syntax is Response.Redirect
 strURL where
 strURL is the URL of the
 resource to which the client will be redirected.

	 Status Property
	Defines the HTTP status line that is
 returned to the client. Its default value is “200 OK.”

	 Write Method
	Writes information directly to the HTTP
 response body. Its syntax is Response.Write
 strData where
 strData is the data to be
 written to the output stream.

	Server
	Provides miscellaneous functionality, including the
 ability to instantiate ActiveX components and to get any
 information from the server necessary for properly handling your
 application. TheServer object has the members listed in Table 5-7.
Table 5-7. Members of the Server object
	Name
	Description

	 CreateObject Method
	Instantiates an object on the server. Its
 syntax is Set obj =
 Server.CreateObject(
 strProgID) where
 strProgID is the programmatic
 identifier of the object to be instantiated, as defined
 in the system registry.
 You should use the
 Server object’s CreateObject method to instantiate an
 external component (like ADO, CDO, or one of the custom
 components included with IIS) rather than calling the
 VBScript CreateObject function.

	 Execute Method
	Calls an .asp file and processes it as
 if it were part of the calling script. Its syntax is
 Server.Execute
 strPath where
 strPath is the location of
 the .asp file to
 execute. Available with IIS 5.0 and later.

	 GetLastError Method
	Returns an ASPError object providing
 information about the last error. Its syntax is Server.GetLastError(). The
 method (as well as the ASPError object) is new to IIS
 5.0.
 The ASPError object itself has the
 following members:
 	ASPCode
	Returns the error code generated by
 IIS.

	ASPDescription
	For ASP-related errors, returns a longer
 description of the error than that provided by the
 Description property.

	Category
	Returns a string indicating whether the source
 of the error was IIS, the scripting language, or a
 component.

	Column
	Indicates the column within the .asp file that generated
 the error.

	Description
	Returns a short description of the
 error.

	File
	Returns the name of the .asp file that was being
 processed when the error occurred.

	Line
	Indicates the line within the .asp file that generated
 the error.

	Number
	Returns a standard COM error code.

	Source
	If available, returns the source code on the
 line containing the error.

	 HTMLEncode Method
	Sends the actual HTML source to the output
 stream. Its syntax is Server.HTMLEncode
 strHTMLString where
 strHTMLString is the string
 whose HTML code is to be displayed on the client.

	 MapPath Method
	Returns the physical path on the server
 that corresponds to a virtual or relative path. Its
 syntax is Server.MapPath
 strPath where
 strPath is a complete virtual
 path or a path relative to the current script’s
 directory.

	 ScriptTimeout Property
	Defines the maximum number of seconds that
 the web server will continue processing a script. Its
 default value is 90 seconds.

	 Transfer Method
	Sends all of the information available to
 one .asp file—its
 Application and Session objects and variables as well as
 all information from the client request—to a second
 .asp file for
 processing. Its syntax is Server.Transfer
 strPath where
 strPath is the path and name
 of the .asp file to
 which control is to be transferred. New to IIS 5.0.

	 URLEncode Method
	Applies URL encoding to a string so that it
 can be sent as a query string. Its syntax is Server.URLEncode
 strURL where
 strURL is the string to be
 encoded.

	Session
	A Session is created for every visitor to your web
 site. You can use this object to store Session-specific
 information and to retain “state” throughout the client session.
 The Session object has the members listed in Table 5-8.
Table 5-8. Members of the Session object
	Name
	Description

	 Abandon Method
	Releases the memory used by the web server
 to maintain information about a given user session. Its
 syntax is Session.Abandon.

	 CodePage Property
	Sets or retrieves the code page that the
 web server uses to display content in the current page.

	 Contents Collection
	Contains all session-scoped variables and
 objects added by script.

	 LCID Property
	Sets or returns a valid local identifier
 that the web server uses to display content to the
 client.

	 OnEnd Event
	Fired when the user session
 ends.

	 OnStart Event
	Fired when the new user session
 starts.

	 SessionID Property
	A read-only value of type Long that
 uniquely identifies each current user session.

	 StaticObjects Collection
	Contains all session-scoped variables and
 objects added by the <OBJECT> tag.

	 TimeOut Property
	A Long that defines the number of minutes
 the web server will maintain a user’s session without
 the user requesting or refreshing a page. Its default
 value is 20 minutes.

The Session object’s Contents and StaticObjects
 collections have the members listed in Table 5-9.
Table 5-9. Members of the Session objects Contents and
 StaticObjects collections
	Name
	Description

	 Count Property
	Indicates the number of members in the
 collection.

	 Item Property
	Retrieves a member by its ordinal position
 in the collection or its name. Its syntax is oCollec.Item(index)
 where index is the one-based
 position of the member in the collection or its name.

	 Key Property
	Returns the name of a particular element in
 the collection that’s found at a specified ordinal
 position. Its syntax is oCollec.Key(index)
 where index is the one-based
 position of the member in the collection.

	 Remove Method
	Removes a designated member from the
 Contents collection; it is not supported for the
 StaticObjects collection. Its syntax is oCollec.Key(index)
 where index is the one-based
 position of the member in the collection or its name.
 Available in IIS 5.0 only.

	 RemoveAll Method
	Removes all the members from the Contents
 collection; it is not supported for the StaticObjects
 collection. Available in IIS 5.0 only.

For more detailed information about the ASP Object Model, refer to ASP in a
 Nutshell, Second Edition, by A. Keyton Weissinger
 (O’Reilly).

Chapter 6. Programming Outlook Forms

Until the release of Microsoft Office 2000, Microsoft Outlook was clearly an idiosyncratic member of
 the Office suite. First released in Office 97 and later released in an
 interim version as Outlook 98, Outlook was the sole member of the Office
 family to feature VBScript as its programming language. Outlook 2000
 finally added support forVBA and for the VBA-integrated development environment.
 However, in Outlook 2000 and Outlook 2002, VBScript remains as the
 programming language behind Outlook’s custom forms.
Designing and programming Outlook forms is a large topic that has
 been the sole focus of a number of books, most notably Building Applications with Microsoft
 Outlook, published by Microsoft Press and available in
 various editions covering different versions of Outlook. Our focus in
 this chapter will not be on designing, creating, or modifying Outlook
 forms, but rather on programming those forms with VBScript.
Why Program Outlook Forms?

As a general purpose personal information management
 system (or PIM), Microsoft Outlook includes most of the general
 features that an individual or a group must perform, including such
 tasks as reading, sending, and organizing email, scheduling meetings,
 keeping notes, and maintaining a contacts list. The emphasis here,
 though, is on general; Outlook offers the basic
 set of features that most users require. In order to make Outlook
 capable of addressing the particular needs of individual users or
 groups of users, Microsoft added a number of customization and
 extensibility features to the product. These include Outlook’s
 programmability (at an application level using VBA or a forms level
 using VBScript) and the ability to create custom forms.
By attaching VBScript code to either existing forms or new
 forms, you can modify the appearance or the behavior of the form, thus
 making it suitable for special applications. For example, you
 can:
	Change the recipient of an email message based on the
 content of the message to which you are replying

	Display or hide particular elements of a form depending on
 the attributes or content of a message, an appointment, or a
 contact

	Automatically store an item in a nondefault folder based on
 the item’s attributes or content

	Get at data in some other document—like a Word document or
 an Excel spreadsheet—to include as your form’s data

	Manipulate data stored in Outlook to summarize or display in
 an Outlook form

The Form-Based Development Environment

Although this chapter will discuss attaching code to Outlook
 forms, rather than creating and modifying Outlook forms themselves,
 we’ll begin by looking at how the Outlook object model views the
 Outlook user interface and by briefly examining how you access and
 work with Outlook forms in design mode; both topics provide background
 that is necessary in order to begin coding. Then we’ll look at
 Outlook’s rather primitive VBScript environment.
Interfaces and Objects

Figure 6-1
 shows a more-or-less standard Outlook window with Outlook displaying
 a mail folder. The Outlook window is divided into three parts, which
 correspond to four elements of the Outlook object model.
	[image: The Microsoft Outlook interface]

Figure 6-1. The Microsoft Outlook interface

	The Folder List
	On the left of the Outlook window is the Folder List. In the Outlook object model, this
 corresponds to the NameSpace object, which has a Folders collection
 in which each Folder object represents a folder in the MAPI
 store.

	The Explorer
	On the upper right of the Outlook window is
 theExplorer pane. (The term “Explorer” here is
 unrelated to Windows Explorer, the utility for displaying the
 Windows namespace and filesystem.) The Explorer pane is
 responsible for listing the items in the current folder. Each
 type of item has its ownExplorer object, which is a member of the
 Explorers collection.

	The Inspector
	On the lower right of the Outlook window is
 thePreview pane. In other cases, when the entire
 right side of the Outlook window is occupied by the Explorer
 pane, the Preview pane appears when the user selects an item
 in the Explorer pane. The Preview pane is responsible for
 displaying the item selected in the Explorer pane and
 corresponds to anInspector object in the Outlook object model.
 Note that the Inspector object uses an Outlook form to present
 a particular view of an Outlook data item.

	An item
	An item is one of several different object types that
 hold information. Outlook items include mail messages,
 appointments, and contacts. In the Outlook object model, these
 correspond to objects of specific kinds. For instance, a mail
 message is represented by a MailItem object, while an
 appointment is represented by an AppointmentItem object and a
 contact is represented by a ContactItem object. Table 6-1 lists
 the items available in Outlook and their corresponding objects
 in the Outlook object model.

Table 6-1. Outlook items and their objects
	Item type
	Outlook object

	appointment
	AppointmentItem object

	contact
	ContactItem object

	distribution list
	DistListItem object

	document
	DocumentItem object

	journal entry
	JournalItem object

	mail message
	MailItem object

	mail nondelivery report
	ReportItem object

	meeting
	MeetingItem object

	note
	NoteItem object

	post
	PostItem object

	remote mail message
	RemoteItem object

	task
	TaskItem object

	task acceptance notification
	TaskRequestAcceptItem object

	task rejection notification
	TaskRequestDeclineItem object

	task assignment request
	TaskRequestItem object

	task assignment update
	TaskRequestUpdateItem object

With this basic (and frequently nonintuitive) terminology out
 of the way, we return to the discussion of accessing the environment
 for developing Outlook forms.

Outlook Form Design Mode

 Outlook requires that a form be in design mode rather
 than in run (or display) mode before you can attach code to it. You
 can select the form that you’d like to program and open it in run
 mode in any of the following ways:
	Select File →
 New from Outlook’s main menu and choose the form type you’d like
 to create, modify, or code from the available menu items (Mail
 Message, Appointment, etc.).

	Select File →
 New → Choose Form
 from Outlook’s main menu. Outlook opens the Choose Form dialog,
 which allows you to select an existing form.

	Select Tools → Forms → Choose Form from Outlook’s main menu.
 Outlook opens the Choose Form dialog, which allows you to select
 an existing form.

You can then place the form in design mode by selecting Tools
 → Forms → Design This Form from the
 form’s menu.
You can also open a form and place it in design mode in either
 of the following ways:
	Select Tools → Forms → Design a Form from Outlook’s main
 menu. Outlook opens the Design Form dialog, which allows you to
 select the form you’d like to open. Outlook then opens the form
 you select in design mode.

	Select Tools → Forms → Design a Form from the menu of an
 Outlook form either when it is in design mode or in run mode.
 Outlook opens the Design Form dialog, which prompts you for the
 form you’d like to open. Outlook then opens the form in design
 mode.

Since Outlook’s form-based development environment is somewhat
 idiosyncratic, let’s review some of the basics of working with
 Outlook forms:
	You can’t create a new Outlook form directly. To create a
 new form, you have to open an existing form, modify it, and save
 it as a new form.

	You can modify an existing form by simply overwriting it.
 However, Outlook won’t permit you to overwrite forms in the
 Standard Forms Library, where Outlook stores its “hardcoded”
 forms.

	You can create or modify any type of Outlook form except
 for a note. Notes cannot be customized, nor are they
 programmable, presumably because of their extreme
 simplicity.

	You don’t “save” a form that you’ve modified or created.
 Instead, you “publish” it by clicking on the Publish Form button
 on the item’s toolbar or by selecting the Tools → Forms → Publish Form or Tools
 → Form → Publish Form As option
 from the item’s menu.

	You can retrieve forms from and save forms to a variety of
 locations:
	The Standard Forms library
	These are the “out of the box” forms provided by
 Outlook. The library is read-only; if you modify its
 forms, you have to save them elsewhere.

	The Personal Forms library
	These are customized forms stored in the current
 user’s personal store (.pst) file. As a result, they
 are inaccessible to other users.

	The Organizational Forms library
	For organizations using Microsoft Exchange, these
 forms are stored on the server and are accessible to all
 Outlook users with access to the server and with the
 necessary permissions. The library is unavailable for
 Outlook clients not using Microsoft Exchange.

	An Outlook folder
	Forms stored in Outlook folders are accessible only
 in that folder. If the folder is a public one, then the
 form is available to all users with access to the folder.
 Otherwise, the form is stored in the user’s .pst file and is accessible
 only to him.

	Outlook forms use the controls found in the MS Forms
 library—the same set of controls used in Microsoft Office
 UserForms. The controls are displayed on the control toolbox,
 which becomes visible when you click on the Control Toolbox
 button on a form’s toolbar, or when you select Form → Control Toolbox from a
 form’s menu.

	Just as in Visual Basic and in the VBA-hosted
 environments, you work with controls by setting their
 properties. The standard properties sheet is displayed when you
 select Form →
 Advanced Properties from the form’s menu. A more user-friendly
 Properties dialog is displayed when you select Form → Properties from the
 form’s menu.

	You can choose the data fields that your form displays by
 selecting them from the Field Chooser. The Field Chooser can be
 made visible by clicking on the Field Chooser button on the
 form’s toolbar or by selecting the Form → Field Chooser option from the form’s
 menu.

The VBScript Environment

 To write code for your form, open the VBScript editor
 by clicking on the View Code button on the form’s toolbar or select
 the View Code option from the form’s Form menu. Outlook will open
 the VBScript editor, which is shown in Figure 6-2.
	[image: The VBScript editor]

Figure 6-2. The VBScript editor

If you’re familiar with the rich development environments of
 Visual Basic or the hosted versions of VBA, you’ll recognize the
 VBScript editor as an extremely poor cousin. In fact, the editor is
 distinctly Notepad-like, without any of the amenities of the VBA
 IDE. Syntax is not checked automatically, nor are auto list members,
 auto quick info, or auto data tips available. In fact, the editor
 does not even have an option that allows you to require variable
 declaration. This feature, which is available in the VB and VBA
 IDEs, automatically adds an Option
 Explicit statement to each code module.
In keeping with its minimalist approach, the VBScript editor
 offers an object browser, though it lacks most of the ease-of-use
 features of the Object Browser found in the VBA IDE. To open it,
 select Script → Object
 Browser from the VBScript Editor’s menu. The VBScript object browser is shown in Figure 6-3. It lacks the
 icons that help identify elements in the VBA Object Browser. (For instance, the entries that
 begin “Ol” in the Classes list box are enumerations; casual
 inspection might lead you to completely overlook that fact.) Nor is
 the VBScript object browser searchable, which is a serious
 limitation. Finally, in the case of form-level events (which the
 object browser depicts as members of the ItemEvents object), the
 prototypes displayed by the object browser in the status bar are not
 completely consistent with the shells that the editor creates for
 them. For experienced programmers, this discrepancy will most
 probably go unnoticed. For inexperienced programmers, it serves as
 another source of needless confusion.
	[image: The VBScript object browser]

Figure 6-3. The VBScript object browser

If you need to browse the Outlook object model while you’re programming, it’s
 best to use the VBA Object Browser. It’s available by opening the
 VBA IDE (select Tools →
 Macro → Visual Basic
 Editor from the Outlook menu) and pressing F2.

Running Your Code

 The “hook” that allows your code to run is an
 event handler or an event procedure . Outlook recognizes particular external events—like an
 instance of a form being opened, or the user clicking on the Send
 button to send a mail message—and responds by firing an event. If a
 procedure exists to handle that event, its code is executed
 automatically. The event procedure can in turn call other procedures
 or functions, which can also call other procedures and functions, and
 so on.
Using VBScript, you are able to access only form-level events andcontrol-level events; events at other levels, such as
 the application or even the Items collection level, cannot be trapped
 within the scripted environment. You can examine a list of some of the
 available events in the VBScript editor by selecting Script → Event Handler. The editor opens
 the Insert Event Handler dialog like the one shown in Figure 6-4. If you select
 one of the events from the list box, the editor automatically creates
 the code shell for the event procedure. For example, if you were to
 select the Open item (which is fired just before a form is opened) in
 Figure 6-4, the editor
 would automatically generate the following code:
Function Item_Open()

End Function
	[image: The Insert Event Handler dialog]

Figure 6-4. The Insert Event Handler dialog

Note that Outlook identifies the object whose Open event is
 being fired as " Item.” Each form represents a particular kind of Item
 object—an email message, for instance, is represented by a MailItem
 object, while an appointment is represented by an AppointmentItem
 object. In other words, “Item” generically identifies the current item
 in much the same way that “Form” in Visual Basic identifies the
 current form. Each of the Outlook item object types listed in Table 6-1 supports the
 events for which the VBScript editor automatically generates a code
 shell.
If any arguments are passed by Outlook to your event handler,
 they are shown in the code shell created by the editor. For example,
 if you were to select the AttachmentAdd item, the editor would
 generate the following code automatically:
Sub Item_AttachmentAdd(ByVal NewAttachment)

End Sub
In this case, a single argument, which is referred to as
 NewAttachment within the event handler, is
 passed by value to the event handler; it represents the name of the
 file to be attached to a mail message.
Note that the editor identified the handler for the Item_Open
 event as a function, while it identified the handler for the
 Item_AttachmentAdd event as a subroutine. The difference is
 significant: a subroutine (defined with the Sub keyword) does not return a value, while
 a function (defined with the Function keyword) does. In the case of the
 Open event, the function returns a Boolean value that, if True, indicates that the form should be
 opened and, if False, cancels the
 open operation. So if the statement:
Item_Open = False
is executed within the function, the Item_Open event procedure
 will return a value of False, and
 Outlook will not open the item.
Table 6-2
 lists the events that you can select from the Insert Event Handler
 dialog and for which you can write event handlers. In addition, the
 table notes the types of items to which the event applies, lists any
 arguments passed to the handler, and, in the case of functions, notes
 their possible return values.
Table 6-2. Events automatically recognized by the VBScript
 editor
	Event
	Description

	 AttachmentAdd
	Fired when an attachment is added to an
 item.
 Parameter:
 NewAttachment, a reference to an
 Attachment object passed by value that represents the newly
 attached file.

	 AttachmentRead
	Fired when an attachment is opened.

 Parameter:
 ReadAttachment, a reference to an
 Attachment object passed by value that represents the
 attachment.

	 BeforeAttachmentSave
	Fired before an attachment is saved.

 Parameter:
 SaveAttachment, a reference to an
 Attachment object passed by value that represents the
 attachment to save.

	 BeforeCheckNames
	Fired before Outlook begins to check the names in
 the Recipients collection, which contains all the recipients
 of an item.
 Return Value:
 If False, the default
 value, Outlook checks recipients’ names. If set to True, the names check is cancelled.

	 Close
	Fired before the Inspector (the window that
 displays an item) associated with the item is closed.

 Return Value: If True, the default value, the
 Inspector is closed. If set to False, cancels the close operation
 and keeps the Inspector open.

	 CustomAction
	Fired when a custom action of an Outlook item
 executes.
 Parameters:
 Action, a reference to an Action
 object passed by value that defines the custom action;
 NewItem, a ByVal reference to the object
 created as a result of the custom action.

 Return Value: If True (the default), allows the
 custom action to complete. If set to False, the custom action is not
 complete.
 Optional:
 False when the event
 occurs. If the event procedure sets this argument to True, the custom action is not
 completed.

	 CustomPropertyChange
	Fired when the value of a custom property is
 changed.
 Parameter:
 Name, a string passed by value
 containing the name of the custom property whose value was
 changed.

	 Forward
	Fired when the user attempts to forward the item
 to one or more recipients.

 Parameter:
 ForwardItem, a reference passed by
 value to the new item to be forwarded.

 Return Value: If True (the default), the new item to
 be forwarded is displayed; if set to False, the operation is cancelled
 and the item is not displayed.

	 Open
	Fired when an Outlook item is being opened in an
 Inspector but before the Inspector is displayed.

 Return Value: If True (the default), the item is
 opened; if set to False,
 the Open operation is cancelled.

	 PropertyChange
	Fired when the value of a standard property is
 changed.
 Parameter:
 Name, a string passed by value
 containing the name of the standard property whose value was
 changed.

	 Read
	Fired when an existing item is opened in a view
 that supports editing. This contrasts with the Open event,
 which is fired whenever a new or an existing item is opened.
 The Read event is fired before the Open event. And although
 the VBScript editor treats Item_Read as a function, setting
 its return value cannot cancel the read operation.

	 Reply
	Fired when the user attempts to reply to an
 item.
 Parameter:
 Response, a reference passed by
 value to the new item to be sent in response to the original
 message.
 Return Value: If
 True (the default), the
 reply is displayed; if set to False, the operation is cancelled
 and the new item is not displayed.

	 ReplyAll
	Fired when the user selects the Reply All option
 in response to an item.

 Parameter:
 Response, a reference passed by
 value to the new item to be sent in response to the original
 message.
 Return Value: If
 True (the default), the
 reply is displayed; if set to False, the operation is cancelled
 and the new item is not displayed.

	 Send
	Fired when the user attempts to send an
 item.
 Return Value: If
 True (the default), the
 item is sent; if set to False, the Send operation is
 cancelled but the Inspector remains open.

	 Write
	Fired when an item is about to be saved.

 Return Value: If True (the default), the item is
 saved; if set to False, the
 save operation is cancelled.

Inaddition to these form-level events, there is a single
 control event that you can trap in your code that will
 automatically be executed. This is the Click event, which is fired
 whenever the user clicks any of the following controls:
	CommandButton control
	Frame control
	Image control
	Label control
	Page tab of form
	Page tab of MultiPage control

In addition, the Click event is also fired whenever the user
 changes the values of any of the following controls:
	CheckBox control
	ComboBox control
	ListBox control
	OptionButton control (when the value changes to True only)
	ToggleButton control

The remaining standard controls (TextBox, ScrollBar, SpinButton,
 TabStrip, and TextBox) do not support the Click event.
Warning
If you’re accustomed to working with controls either in Visual
 Basic or in Microsoft Office (or even with intrinsic elements in
 HTML forms), you’ll be very surprised (and probably disappointed) by
 an Outlook form’s support only for the Click event. The diverse
 events that developers have come to rely on are simply not trapped
 in Outlook’s scripted environment.

VBScript does not automatically create a code shell for these
 control or page Click events as it does for form events. Instead, you
 have to create the code shell. Its general form is:
Sub ControlName_Click()

End Sub
where ControlName is the string
 assigned to the control’s Name property.
Control References in Code
Note that if you want to reference a control incode other than in the shell of its Click event
 handler, you either have to provide a complete object reference that
 identifies the control or instantiate an object variable that
 references the control. For instance, if you wanted to populate a
 list box named lstFavoriteColors with the
 names of some colors, you might use the following code
 fragment:
 ' This is a public variable so we don't have to instantiate
' it over and over
public lstFavoriteColors
' The Open event handler is executed before the form is
' opened
Function Item_Open()

set lstFavoriteColors = _
 Item.GetInspector.ModifiedFormPages("P.2").lstFavoriteColors
lstFavoriteColors.AddItem "Red"
lstFavoritecolors.AddItem "Green"
lstFavoritecolors.AddItem "Black"
lstFavoritecolors.AddItem "Pink"
0
End Function
Strangely, even if you reference the control in its own event
 handler, you must still retrieve a reference to it. For example, the
 following click event generates a syntax error if
 cmdVerify is not a public
 variable:
Sub cmdVerify_Click()
 If InStr(1, cmdVerify.Caption, "On") > 0 Then
 cmdVerify.Caption = "Verify: Off"
 Else
 cmdVerify.Caption = "Verify: On"
 End If
End Sub
Instead, code like the following is needed to recognize
 cmdVerify as a valid object:
Sub cmdVerify_Click()
 Dim cmdVerify
 Set cmdVerify = _
 Item.GetInspector.ModifiedFormPages("P.4").cmdVerify
 If InStr(1, cmdVerify.Caption, "On") > 0 Then
 cmdVerify.Caption = "Verify: Off"
 Else
 cmdVerify.Caption = "Verify: On"
 End If
End Sub

The MultiPage control is somewhat unusual in that, while the
 control itself does not support the Click event, its individual pages
 do. (Individual pages are represented by Page objects that are
 contained in the Pages collection, which in turn is returned by the
 MultiPage control’s Pages property.) Strangely, clicks on the page
 proper are detected, while clicks on the page’s tab are not. The
 general format of a page’s Click event is:
Sub PageName_Click()

End Sub
where PageName is the name of the
 page as defined by its Name property (and not the string that appears
 on the page’s tab, which is defined by its Caption property). This, of
 course, requires coding a separate event handler for each page of the
 control.
But taking advantage of the hook that automatically runs the
 code on your form isn’t very useful unless Outlook will automatically
 load the form itself. This, however, is quite easy. Outlook loads
 forms on a folder-by-folder basis, with the form to be used defined by
 the “When posting to this folder, use” dropdown combo box on the
 General tab of a folder’s Properties dialog (see Figure 6-5). The dialog is
 accessible by right-clicking on a folder and selecting Properties from
 the popup menu.
	[image: Defining the form used to display an item]

Figure 6-5. Defining the form used to display an item

In the case of mail messages, that approach won’t work, since
 Outlook expects that a Post message form will be used to display
 messages for all mail folders. A user can be given the choice of
 loading some form other than the default, however. To do this, publish
 the form to the folder in which you want it to be available. The user
 can then create a form of that type by selecting Actions → New
 formname from the Outlook menu.

Program Flow

As we have seen, the entry point into an Outlook program is an
 event handler, which is executed automatically based on some user
 action or other event. Program flow proceeds sequentially through
 the event procedure, with branches to all procedures and
 functions called by the event procedure (and of course, with branches
 to all procedures and functions called by those procedures or
 functions, and so on).
The code behind an Outlook form is finite, and consists of the
 code displayed by the VBScript editor for a single form. That is to
 say, Outlook forms provide no facility for importing or including
 additional code. Nor can thecode in one form be called by the code in another form;
 the flow of program control is confined to the code behind a single
 Outlook form.
The code in an Outlook form itself consists of three
 components:
	Global code
	 Code outside of any procedure or function.
 Generally, this code appears anywhere from the beginning of the
 script to the script’s first procedure or function. All of this
 code is executed when the form first loads, and before the
 Item_Load event procedure (if one is present) is invoked. In
 Visual Basic and VBA, this is known as a module’s
 general declarations section, and it can
 contain only constant and variable declarations (such as
 Const, Dim, Private, Public, and Declare statements). In Outlook, it
 can contain a far larger range of statements; object assignments
 and access to the Outlook object model, however, tend to be
 problematic if their code is placed here. All variables defined
 in global code, regardless of whether they are defined using the
 Dim, Private, or Public keywords, are public to the
 script.

	Code for event procedures
	 Event procedures, as we discussed in Section 6.3, are
 functions or procedures that are automatically executed based on
 some event, typically one that results from some action of the
 user. The scope of all variables declared in event procedures or
 in supporting procedures and functions is limited to that
 routine itself; in order to be visible in some routine other
 than the one in which they are declared, they must be explicitly
 passed as arguments. Finally, variables in event procedures and
 in supporting procedures and functions must be declared using
 the Dim statement; the use of
 both the Public and Private keywords generates a syntax
 error.

	Code for supporting procedures and functions
	Unlike event procedures, other procedures and functions are not
 invoked automatically. Instead, they must be called by an event
 procedure or by another supporting procedure or function when it
 is being executed. The scope of variables declared in supporting
 procedures and functions is the same as for variables declared
 in event procedures.

The Outlook Object Model

Although VBScript allows you only to program an Outlook form, it
 nevertheless gives you relatively complete access to the Outlook
 object model, which is shown in Figure 6-6. Since the object
 model is fairly large, we’ll focus only on some of its highlights
 here, and in particular on those objects that you are most likely to
 use when programming an Outlook form.You can explore the Outlook object model by opening the
 object browser in the VBScript editor, or by using the Object Browser
 included with the VBA-integrated development environment.
	[image: The Outlook object model]

Figure 6-6. The Outlook object model

Note that when you’re attempting to access the Outlook object
 model using VBScript, the context of your script is the current item,
 which can be represented by the Item keyword. In other words, as your script
 is executing, the Item object is the current object; to access other
 objects in the object model, you have to navigate to them from the
 Item object.
This also means that a reference to the current item is assumed
 in any attempt to navigate the object model or access a particular
 object, property, or method. For example, the code:
MsgBox Item.Application.Version
is identical to the code:
MsgBox Application.Version
This second line of code is interpreted as an attempt to
 retrieve the value of the Application object of the current item, and
 to retrieve its Version property.
If you’re making extensive use of the properties and methods of
 other objects, your script’s performance can be enormously improved by
 establishing references to those objects. For example, if your script
 involves accessing the object representing the form’s current page,
 rather than having to navigate downward through the object model each
 time you want to access it, you can define an object reference, as the
 following code does:
Dim objPage
Set objApp = Item.Application
You could then use the objApp object
 variable to access the controls on the page.
Warning
Although the Outlook Application object is a global object in
 VBA (that is, its properties and methods can be called without
 prefacing them with a reference to the Application object), this is
 not true of VBScript. In VBScript, you must explicitly reference the
 Application object in order to access its members.

The Current Item

 The current item that the form displays is represented
 by one of the item object types listed in Table 6-1. You can
 determine the object type by passing a reference to it to the VBA
 TypeName function. For
 example:
strClass = TypeName(Me)
or:
strClass = TypeName(Item)
where Item is an
 Outlook/VBScript keyword representing the current item.
You can call the general properties and methods that are
 suitable for any item (see Tables Table 6-3 and Table 6-4,
 respectively), as well as the properties and methods appropriate for
 an item of that particular type. The latter, unfortunately, are too
 numerous to mention in this chapter.
Table 6-3. General item properties
	Property
	Description

	 Actions[1]
	Returns the Actions collection, which consists
 of one Action object for each custom action defined for the
 item.

	 Application
	Returns a reference to the Application object,
 Outlook’s top-level object.

	 Attachments
	Returns the Attachments collection, which
 consists of the Attachment objects stored to the item.

	 BillingInformation
	A read-write string intended to hold billing
 information associated with the item.

	 Body
	A read-write string containing the item’s body
 text.

	 Categories
	A read-write string containing the categories
 assigned to the item. If multiple categories are present,
 they are separated from one another by a comma and a space.

	 Class
	A read-only value represented by a member of
 the OlObjectClass
 enumeration that indicates the item’s class.

	 Companies
	A read-write string designed to contain
 information about the company or companies associated with
 the item.

	 ConversationIndex
	Returns the index of the item’s conversation
 thread.

	 ConversationTopic
	Returns the topic of the item’s conversation
 thread.

	 CreationTime
	Returns the date and time that the item was
 created.

	 EntryID
	Returns the item’s identifier, which is unique
 to the items in a particular folder.

	 FormDescription
	Returns a FormDescription object that describes
 the form used to display the item.

	 GetInspector
	Returns an Inspector object that represents the
 window pane that contains the item.

	 Importance
	A read-write constant of the OlImportance enumeration;
 indicates the item’s importance. Enumeration members:
 olImportanceHigh (2),
 olImportance Low (0), and
 olImportanceNormal (1).

	 LastModificationTime
	Date and time the item was last
 modified.

	Links
	Returns the read-only collection of Link
 objects representing contacts to which the item is linked.

	 MessageClass
	A read-write string indicating the item’s
 message class, which links it to a particular Outlook form.

	 Mileage
	A read-write string field designed to store the
 mileage associated with an item for purposes of
 reimbursement.

	 NoAging
	A read-write Boolean that indicates whether the
 item should not be aged.

	 OutlookInternalVersion
	A read-only Long containing the build number of
 Outlook associated with the item.

	 OutlookVersion
	A read-only string containing the major and
 minor version of Outlook associated with the item.

	 Parent
	Returns a reference to the item’s parent
 object.

	 Saved
	A read-only flag that indicates whether the
 item has not been modified since it was last saved.

	 Sensitivity
	A constant of the OlSensitivity enumeration
 (olConfidential, olNormal, olPersonal, or olPrivate) that indicates the
 item’s sensitivity.

	 Session
	Returns the Namespace object for the current
 session.

	 Size
	Returns the item’s size in
 bytes.

	 Subject
	A string containing the subject of the item. It
 is the default member of all item types. In the case of
 NoteItem objects, it is read-only and is calculated from the
 content of the NoteItem object’s Body property.

	 Unread
	A read-write flag indicating if the item hasn’t
 been opened.

	 UserProperties
	Returns the UserProperties collection
 representing all the item’s user properties.

	[1] Does not apply to the NoteItem object.

Table 6-4. General item methods
	Method
	Description

	 Close
	Closes the item and its inspector and
 optionally saves changes. Its syntax is Item.Close(SaveMode)
 where SaveMode is a constant of
 the OlInspectorClose
 enumeration (olDiscard,
 olPromptForSave, olSave).

	 Copy
	Creates a copy of the object. The new object is
 returned by the method call.

	 Delete
	Deletes the item.

	 Display
	Displays the item in a new Inspector object.
 Its syntax is Item.Display(Modal)
 where Modal is a Boolean that
 indicates whether the Inspector should be modal; its default
 value is False.

	 Move
	Moves the item to a new folder. Its syntax is
 Item.Move
 DestFldr where
 DestFldr is a reference to the
 MAPIFolder object to which the item should be moved.

	 PrintOut
	Prints the item using the default
 settings.

	 Save
	Saves the item to the current folder or, in the
 case of a new item, to the default folder for that type of
 item.

	 SaveAs
	Saves the item to a specified location in a
 specified format. Its syntax is Item.SaveAs
 Path,
 [Type] where
 Path is the path to the location
 in which the item should be saved, and the optional
 Type parameter is a constant of
 the OlSaveAsType
 enumeration: olDoc,
 olHTML, olMSG (the default), olRTF, olTemplate, olTXT, olVCal, or olVCard.

The Inspector Object

The Inspector object represents the window in which a
 particular Outlook item is displayed. A reference to the current
 item’s Inspector object is returned by its GetInspector property. The Inspector object supports
 the properties shown in Table 6-5 and the
 methods shown in Table
 6-6.
Table 6-5. Properties of the Inspector object
	Property
	Description

	 Application
	Returns a reference to the Application object,
 Outlook’s top-level object.

	 Caption
	A read-only string that defines the caption in
 the inspector’s titlebar.

	 Class
	A read-only value that indicates the
 inspector’s class. Its value is always olInspector, or 35.

	 CommandBars
	Returns a reference to the CommandBars
 collection, which represents all the menus and toolbars
 available to the inspector.

	 CurrentItem
	Returns the current item that the inspector is
 displaying.

	 EditorType
	A read-only member of the OlEditorType enumeration: olEditorHTML (2), olEditorRTF (3), olEditorText (1), or olEditorWord (4).

	 Height
	A read-write value that determines the height
 in pixels of the inspector window.

	 HTMLEditor
	Returns the HTML Document Object Model of the
 displayed message. This property is valid only if the value
 of EditorType is olEditorHTML. In addition, since
 the object reference returned by this property is temporary,
 it should not be stored for later use.

	 Left
	A read-write value that determines the distance
 in pixels between the left edge of the screen and the left
 edge of the inspector window.

	 ModifiedFormPages
	Returns the Pages collection, which consists of
 the pages of the current form.

	 Parent
	Returns a reference to the inspector’s parent
 object, which is the Outlook Application object.

	 Session
	Returns the NameSpace object for the current
 session.

	 Top
	A read-write value that determines the distance
 in pixels between the top edge of the screen and the top
 edge of the inspector window.

	 Width
	A read-write value that determines the width in
 pixels of the inspector window.

	 WindowState
	A read-write constant of the OlWindowState enumeration
 (olMaximized , 1; olMinimized, 2; olNormal, 3)
 that determines the state of the inspector’s window.

	 WordEditor
	Returns the Word Document Object Model of the
 displayed message. This property is valid only if the value
 of EditorType is olEditorWord. In addition, since
 the object reference returned by this property is temporary,
 it should not be stored for later use.

Table 6-6. Methods of the Inspector object
	Method
	Description

	 Activate
	Brings the inspector window to the foreground
 and gives it the focus.

	 Close
	Closes the inspector window and optionally
 saves changes to the current item. Its syntax is oInspector.Close(SaveMode)
 where SaveMode is a constant of
 the OlInspectorClose
 enumeration (olDiscard,
 olPromptForSave, or
 olSave).

	 Display
	Displays a new Inspector object for the item.
 Its syntax is Inspector.Display(Modal)
 where Modal is a Boolean that
 indicates whether the Inspector should be modal; its default
 value is False.

	 HideFormPage
	Hides a page of the form displayed in the
 inspector. Its syntax is oInspector.HideFormPage
 PageName where
 PageName is a string that
 designates the name of the page to be hidden.

	 IsWordMail
	Returns a Boolean that specifies whether the
 mail message associated with an inspector is displayed in an
 inspector or in Microsoft Word. If True, the value of the inspector’s
 EditorType property is olEditorWord.

	 SetCurrentFormPage
	Displays a particular page of the current form.
 Its syntax is oInspector.SetCurrentFormPage
 PageName where
 PageName is the name of the page
 to be displayed.

	 ShowFormPage
	Shows a form page in the inspector. Its syntax
 is oInspector.ShowFormPage
 PageName where
 PageName is a string containing
 the name of the page to be shown.

The Pages Collection

The Pages collection represents the pages in the form
 that you want to access in order to customize. The Pages collection
 is returned by theModifiedFormPages property of the Inspector object.
 Initially, the Pages collection is empty. Individual form pages are
 added to the collection either explicitly, by calling the
 collection’s Add method, or implicitly, by referencing a control on
 one of the forms.
The Pages collection supports the properties shown in Table 6-7 and the
 methods listed in Table
 6-8.
Table 6-7. Properties of the Pages collection
	Property
	Description

	 Application
	Returns a reference to the Application object,
 Outlook’s top-level object.

	 Class
	A read-only value that indicates the page’s
 class. Its value is always olPages, or 36.

	 Count
	A read-only value that indicates the number of
 pages in the Pages collection.

	 Parent
	Returns a reference to the collection’s parent
 object, which is the Inspector object in which the form is
 displayed.

	 Session
	Returns the NameSpace object for the current
 session.

Table 6-8. Methods of the Pages collection
	Method
	Description

	 Add
	Adds a new page to the Pages collection. Its
 syntax is oPages.Add
 Name where
 Name is the name of the page to
 be added. The method returns a reference to the added page.
 Initially, the pages collection is empty, and there is a
 limit of five customizable pages per form.

	 Item
	Retrieves an individual page from the Pages
 collection. Its syntax is oPages.Item
 Index where
 Index is either the one-based
 ordinal position of the page in the Pages collection or the
 name of the page.

	 Remove
	Removes a page from the collection. Its syntax
 is oPages.Remove
 Index where
 Index is the one-based ordinal
 position of the page in the Pages colletion.

The FormDescription Object

The FormDescription object represents the form used to
 display a particular item in an inspector. It is returned by the
 current item’sFormDescription property. The FormDescription object
 has 22 properties (shown in Table 6-9) and a single
 method (shown in Table
 6-10).
Table 6-9. Properties of the FormDescription object
	Property
	Description

	 Application
	Returns a reference to the Application object,
 Outlook’s top-level object.

	 Category
	The category assigned to the form description.
 It corresponds to the Category drop-down list box on the
 form’s Properties page in design mode.

	 CategorySub
	The subcategory assigned to the form
 description. It corresponds to the Sub-Category dropdown
 list box on the form’s Properties page in design mode.

	 Class
	A read-only value that indicates the form
 description’s class. Its value is always olFormDescription, or 37.

	 Comment
	Sets or returns the comment associated with the
 form description. It corresponds to the Description text box
 on the form’s Properties page in design mode.

	 ContactName
	Sets or returns the name of the person to
 contact for information regarding the custom form. It
 corresponds to the Contact text box on the form’s Properties
 page in design mode.

	 DisplayName
	Defines the text that will be used to name the
 form in the Choose Forms dialog. Setting the DisplayName
 property also sets the Name property if it is empty (and
 vice versa).

	 Hidden
	Determines whether a custom form is hidden
 (i.e., it does not appear in the Choose Form dialog box and
 is used only if designated as the response form for another
 custom form). Its default value is False; custom forms are not
 hidden. This property corresponds to the “Use form only for
 responses” checkbox on the form’s Properties page in design
 mode.

	 Icon
	Contains the name of the icon file to be
 displayed for the form. By default, its value is a temporary
 icon file generated by Outlook and placed in the Windows
 temporary directory.

	 Locked
	Determines whether the form is read-only. Its
 default value is False;
 the form is read-write. It corresponds to the “Protect form
 design” checkbox on the form’s Properties page in design
 mode.

	 MessageClass
	The form’s message class, which links the form
 to the type of items it can display.

	 MiniIcon
	Contains the name of the icon file to be
 displayed for the form. By default, its value is a temporary
 icon file generated by Outlook and placed in the Windows
 temporary directory.

	 Name
	The name of the form. This property must be set
 before calling the PublishForm method.

	 Number
	Defines the number for the form. It corresponds
 to the Form Number text box on the form’s Properties page in
 design mode.

	 OneOff
	Determines whether the form is discarded after
 one-time use (True) or
 retained as a custom form (False). Its default value is
 False.

	 Parent
	Returns a reference to the form’s parent
 object, which is the item that the form displays.

	 Password
	Sets or returns the password needed to modify
 the form. It is retrievable programmatically as clear text.

	 ScriptText
	Returns a string containing all the VBScript
 code attached to the form.

	 Session
	Returns the NameSpace object for the current
 session.

	 Template
	Sets or returns the name of the Word template
 (*.dot file) for use
 with the form.

	 UseWordMail
	A Boolean that determines whether Microsoft
 Word is the default editor for the form.

	 Version
	Returns or sets the version number. It
 corresponds to the Version text box on the form’s Properties
 page in design mode.

Table 6-10. Method of the FormDescription object
	Method
	Description

	 PublishForm
	Saves the form definition. Its syntax is
 oFormDescription.PublishForm(Registry,[Folder])
 where Registry determines the
 location to which the form should be saved and can be
 olDefaultRegistry (0),
 olFolderRegistry (3),
 olOrganizationRegistry
 (4), or olPersonalRegistry (2). If
 Registry is olFolderRegistry,
 Folder is a reference to a
 MAPIFolder object that defines the folder to which the form
 will be published.

The NameSpace Object

The NameSpace object represents the root object for
 accessing Outlook data. In other words, from an Outlook form, the
 NameSpace object is important because it gives access to the
 MAPIFolder objects that comprise Outlook’s folder system.
The NameSpace object is returned by theGetNameSpace (“MAPI”) method of the Application
 object. It has the properties shown in Table 6-11 and the
 methods listed in Table
 6-12.
Table 6-11. Properties of the NameSpace object
	Property
	Description

	 AddressLists
	Returns a collection of address lists available
 for the session.

	 Application
	Returns a reference to the Application object,
 Outlook’s top-level object.

	 Class
	A read-only value that indicates the NameSpace
 object’s class. Its value is always olNamespace, or 1.

	 CurrentUser
	Returns a Recipient object representing the
 currently logged in user.

	 Folders
	Returns the Folders collection, which
 represents all the Folder objects contained in the
 NameSpace.

	 Parent
	Returns a reference to the namespace’s parent
 object, which is the Application object.

	 Session
	Returns the NameSpace object for the current
 session.

	 SyncObjects
	Returns a collection containing all
 synchronization profiles.

	 Type
	Returns the string “MAPI” to indicate the type
 of the NameSpace object.

Table 6-12. Methods of the NameSpace object
	Method
	Description

	 AddStore
	Adds a personal folder file (.pst) to the current profile. Its
 syntax is oNameSpace.AddStore
 Store where
 Store is the path and name of the
 .pst file.

	 CreateRecipient
	Creates and returns a Recipient object. Its
 syntax is oNameSpace.CreateRecipient
 RecipientName where
 RecipientName is the display name
 of the recipient.

	 GetDefaultFolder
	Returns a MAPIFolder object that represents the
 default folder of a particular type. Its syntax is oNameSpace.GetDefaultFolder
 FolderTypeEnum where
 FolderTypeEnum is a member of the
 OlDefaultFolders
 enumeration: olFolderCalendar (9). oFolderContacts (10), oFolderDeletedItems (3), oFolderDrafts (16), oFolderInbox (6), oFolderJournal (11), oFolderNotes (12), oFolderOutbox (4), oFolderSentMail (5), oFolderTasks (13).

	 GetFolderFromID
	Returns the MAPIFolder object that has a
 particular ID. Its syntax is oNamespace.GetFolderFromID(EntryIDFolder,
 [StoreID]) where
 EntryIDFolder is a string
 containing the folder’s entry ID, and
 StoreID is an optional string
 containing the folder’s store ID. These values are
 accessible through MAPI and CDO.

	 GetItemFromID
	Returns the item in a folder that has a
 particular ID. Its syntax is
 oNameSpace.GetItemFromID(EntryIDItem,
 [StoreID]) where
 EntryIDItem is a string
 containing the item’s entry ID, and
 StoreID is an optional string
 containing the item’s store ID. These values are readily
 accessible through MAPI and CDO.

	 GetRecipientFromID
	Returns a Recipient object that has a
 particular ID. Its syntax is oNameSpace.GetRecipientFromID(EntryID)
 where EntryID is a string
 containing the recipient’s entry ID. This value is readily
 accessible through MAPI and CDO.

	 GetSharedDefaultFolder
	Returns the MAPIFolder object that represents a particular type
of default folder for a specified user. This method is most
useful when one user has given another user access to one or
more default folders. Its syntax is:
 oNameSpace.GetSharedDefaultFolder(RecipientObject, FolderTypeEnum)
where RecipientObject is a Recipient object representing the
owner of the folder, and FolderTypeEnum is a constant from the
OlDefaultFolder enumeration (see the GetDefaultFolder method for
a list of its members).

	 Logoff
	Logs the user off from the current MAPI
 session.

	 Logon
	Logs the user onto MAPI and begins a MAPI
 session. Its syntax is oNameSpace.Logon
 [Profile]
 [Password],
 [ShowDialog],
 [NewSession] where
 Profile is the name of the
 profile to use for the session,
 Password is an optional (and
 usually omitted) string containing the password associated
 with the profile, ShowDialog is
 an optional Boolean that indicates whether the MAPI logon
 dialog should be displayed if
 Profile is incorrect or
 unavailable, and NewSession is an
 optional Boolean that determines whether a new session
 should be created even if there is an existing session.
 (Within Outlook, however, multiple sessions are not
 supported.)

	 PickFolder
	Displays the Pick Folder dialog and returns the
 MAPIFolder object representing the folder selected by the
 user. If the user cancels the dialog, the method returns
 Nothing.

The MAPIFolder Object

Given a reference to a MAPIFolder object, you can begin to programmatically
 manipulate the items that the folder contains. MAPIFolder objects
 are returned by the NameSpace object’s Folders property, as well as by itsGetDefaultFolder,GetSharedDefaultFolder, and PickFolder methods.
The properties of the MAPIFolder object are shown in Table 6-13, while its
 methods appear in Table
 6-14.
Table 6-13. Properties of the MAPIFolder object
	Property
	Description

	 Application
	Returns a reference to the Application object,
 Outlook’s top-level object.

	 Class
	A read-only value that indicates the NameSpace
 object’s class. Its value is always olFolder, or 2.

	 DefaultItemType
	Returns the default Outlook item type that the
 folder stores. It can be one of the following OlItemType constants: olAppointmentItem (1), olContactItem (2), olJournalItem (4), olMailItem (0), olNoteItem (5), olPostItem (6), or olTaskItem (3).

	 DefaultMessageClass
	A read-only string containing the default
 message class of items in the folder.

	 Description
	A read-write string containing the folder’s
 description. It corresponds to the Description text box in
 the folder’s Properties dialog.

	 EntryID
	Returns the folder’s unique entry ID that was
 assigned by MAPI when the folder was created.

	 Folders
	Returns the Folders collection, which contains
 one Folder object for each subfolder in the current folder.

	 Items
	Returns the collection of items in the
 folder.

	 Name
	The name of the folder.

	 Parent
	Returns a reference to the folder’s parent
 object, which is either the MAPI NameSpace object or a
 MAPIFolder object.

	 Session
	Returns the NameSpace object for the current
 session.

	 StoreID
	Returns or sets the folder’s
 StoreID.

	 UnReadItemCount
	A read-only value; indicates the number of
 unread items.

	 WebViewAllowNavigation
	A Boolean that determines whether the user can
 navigate using the Back and Forward buttons.

	 WebViewOn
	A Boolean that determines whether Outlook
 displays the web page specified by the WebViewURL property.

	 WebViewURL
	A string containing the web page assigned to
 the folder.

Table 6-14. Methods of the MAPIFolder object
	Method
	Description

	 CopyTo
	Copies the current folder. Its syntax is
 oFolder.CopyTo(DestFldr)
 where DestFldr is a MAPIFolder
 object representing the destination folder.

	 Delete
	Deletes the folder.

	 Display
	Displays a new Explorer object for the
 folder.

	 GetExplorer
	Returns a new inactive Explorer object in which
 the current folder is the folder whose GetExplorer method is
 called. The method is useful for creating a new Explorer
 object to display a folder rather than changing the folder
 displayed in the active Explorer. Its syntax is GetExplorer([DisplayMode])where
 DisplayMode is an optional
 constant of the OlFolderDisplayMode enumeration;
 its members are olFolderDisplayFolderOnly (1),
 olFolderNoNavigation (2),
 or olFolderDisplayNormal
 (0, the default).

	 MoveTo
	Moves the current folder.

Outlook Constants

 The object model for Outlook 2000 defines 275
 constants in 49 different enumerations. Unfortunately, though they
 are available to Outlook VBA, they are not available to VBScript. If
 you want to use the constants defined in Outlook’s type library,
 you’ll need to define them yourself using the Const statement. In addition, however, VBScript does not
 support the Enum statement, which allows you to define a group of
 constants. So you’ll have to define each constant separately, as in
 the following code, which makes the members of the OlInpectorClose enumeration available to a
 script:
Const olDiscard = 1
Const olPromptForSave = 2
Const olSave = 0
In general, it’s best to define all constants with global
 scope, which makes them available everywhere in your script.

Accessing Other Object Models

 Although most of the programming done with Outlook forms
 is likely to involve the Outlook object model, there may be times when
 you want to access data from some other application or draw on some
 system service provided by a particular object model. The VBScript
 CreateObject function is used for this purpose to access the object
 model of some other application, while the VBScript GetObject function is the only means available to get a reference
 to an existing instance of an application—that is, to a running
 application. (For the syntax of both functions, see their entries in
 Chapter 10
 .)
Warning
The GetObject function
 exists solely within VBScript, and is not implemented as a method of
 the Outlook Application object.

As Table 6-15
 shows, you can instantiate objects like the following using these
 methods:
	ActiveX Data Objects (ADO)
	 ADO is a data access technology that offers a
 uniform methodology for accessing data regardless of location or
 format. ADO has a relatively “flat” object model, and many
 objects (like the Recordset object or the Connection object) can
 be instantiated independently of one another.

	Data Access Objects (DAO)
	DAO is a data access technology intended primarily
 for use with Access databases. Its top-level object is named
 DBEngine.

	The Dictionary object
	A part of the Scripting Runtime Library, theDictionary object provides high-performance access
 to data sets that have identifiable keys.

	The Excel Application object
	The Excel object model is useful for extracting data
 from spreadsheets or for manipulating charts. Its top-level
 object is the Application object.

	The FileSystemObject object
	A part of the Scripting Runtime Library, the FileSystemObject provides access to the local
 filesystem.

	The Word Application object
	The Word object model makes it easy to manipulate Word
 .doc files as
 well as Rich Text Format (.rtf) files. Its top-level object is the Application
 object.

Table 6-15. Some object models and their programmatic identifiers
	Object
	ProgID
	Description

	Connection
	ADODB.Connection
	An ADO database connection

	DBEngine
	DAO.DBEngine
	The DAO object model, primarily for Access
 databases

	Dictionary
	Scripting.Dictionary
	A high-performance alternative to arrays and
 collections for keyed data

	Excel
	Excel.Application
	The Microsoft Excel application, for manipulating
 spreadsheets and charts

	FileSystemObject
	Scripting.FileSystemObject
	Represents the local filesystem

	Recordset
	ADODB.Recordset
	An ADO recordset

	Word
	Word.Application
	The Microsoft Word application for manipulating
 documents

Chapter 7. Windows Script Host 5.6

 Windows Script Host (WSH) is designed to
 eliminate one of the major limitations of theWin32 platform: it has no real batch or macro language
 that allows common processes (such as creating shortcuts, writing to and
 reading from the registry, or getting information on the filesystem) to
 be automated. Windows’ predecessor, the character-based DOS operating
 system, for instance, included the DOS batch language. And Windows 3.0
 included the idiosyncratic and unsuccessful Recorder, which allowed the
 user to “record” keystrokes and mouse clicks and later repeat
 them.
When you execute a WSH script, WSH uses WScript.exe as the
 runtime engine for scripts that run within the Windows
 environment and CScript.exe as the runtime engine
 for scripts that execute within a Command Prompt window. WSH is
 language-independent; it can be used with any language with a Windows
 Script-compatible script engine. The language most commonly used to
 write WSH scripts, however, is VBScript.
Why Use WSH?

WSH exposes a relatively small but very significant
 portion of the functionality of the 32-bit Windows family of operating
 systems. In addition, WSH allows you to tap into other object models
 (such as the FileSystemObject object model provided by the Scripting
 Runtime library) that allow you to access additional features of
 either the operating system or individual applications.
The advantage of any script is that it allows repetitive
 tasks—including complex ones that require multiple steps—to be
 performed more or less automatically. This makes scripting suitable
 for batch operations—that is, for repetitive operations that do not
 require user intervention. In addition, if you are writing your
 scripts in VBScript, you can allow user interaction through the
 standard VBScript InputBox and MsgBox functions, as well as by
 instantiating components that support more sophisticated forms of
 interaction. Support for user interaction enhances the scripting
 environment’s flexibility and increases the range of applications for
 which it is suitable.
Although the flexibility and power of WSH means that its actual
 uses are limited only by the imagination, we can nevertheless identify
 some areas in which WSH clearly excels:
	Access to network resources
	Although Windows makes automatic (and therefore
 more or less permanent) access to network resources at logon
 very easy, transitory access to network resources is not. WSH
 can be used to connect to network drives and printers for a
 short period, perform some operation, and then disconnect from
 the network resource.

	System administration
	A single script that is run locally on the user’s
 machine or that is run from the system administrator’s system
 and iterates network systems can enormously facilitate the tasks
 of administering a networked system.

	Simple installation scripts
	If your installation routine needs merely to check
 available disk space, determine whether any files are likely to
 be overwritten, copy some files, and add some registry settings,
 writing a WSH script can be as effective as a professional
 installation program while involving much less overhead.

	File operations
	By instantiating the FileSystemObject object, you can gain
 access to the local computer’s filesystem, including attached
 network drives. This allows you to perform repetitivefile operations, as well as to determine the
 status, capability, and storage space available on individual
 drives.

	Software automation
	 Using WSH and VBScript, you can access the object
 model of an application program or a system service to perform
 some repetitive operation. For instance, you might use CDO to
 send a batch of emails with Microsoft Outlook, use Microsoft
 Word and Access to print mailing labels, or use Microsoft Excel
 to update monthly sales data and print the results in chart
 form.

Running WSH Scripts

 Typically, WSH scripts have a file extension of
 .vbs (if they are written in VBScript) or .wsf (a Windows Script File, which
 contains XML elements along with script written in a language defined
 by the XML <script> tag),
 both of which are associated with the Windows Script Host executable
 in the registry. This allows the user to simply double-click on the
 file in an Explorer window in order to execute the script. If the
 script is a .wsf file containing multiple jobs,
 only the executable script in the first job (which must be delimited
 by the <job>...</job> tags) is
 executed.
It is also possible to run a script from the command line by
 using the syntax:
CScript.exe filename [//options] [/arguments]
or from the Run dialog or a Windows shortcut by using the
 syntax:
WScript.exe [//options] [/arguments]
where //
 options is one or more of the WSH features
 shown in Table 7-1,
 each of which must be preceded by double slashes.
Table 7-1. WSH options switches
	Switch
	Description

	 //B

	Batch mode (prevents script errors and user
 interface elements such as those produced by the
 MsgBox and InputBox
 functions from displaying).

	 //D

	Enables debugging. Automatically launches the
 debugger if an unhandled exception occurs.

	 //E:engine

	Uses engine (which can
 be either Jscript or
 VBScript) for executing
 script. The switch is useful if your script is in a file, such
 as a .txt file, whose
 extension does not indicate the scripting language.

	 //H:cscript

	Changes the default script host to
 CScript.exe.

	 //H:wscript

	Changes the default script host to
 WScript.exe; this is the default value
 and the opposite of //H:cscript. You have to be an
 administrator to change the default.

	 //I

	Interactive mode; this is the default and the
 opposite of //B.

	 //Job:xxxx

	Allows a single job (delimited by the <job>...</job>
 statements) to be run from a file containing multiple jobs.

	 //Logo

	Displays an opening banner; this applies to
 onlyCScript.exe and is the default
 switch.

	 //Nologo

	The opposite of //Logo, it suppresses the opening
 banner; applies to CScript.exe only.

	 //S

	Saves the current command-line options for the
 current user.

	 //T:nn

	Time out in seconds; maximum time a script is
 permitted to run before the scripting engine automatically
 terminates it.

	 //U

	Generates Unicode command-line output on Windows
 NT and Windows 2000 systems.

	 //X

	Launches the debugger and executes the script in
 it.

	 //?

	Displays help information on command-line
 options.

Finally, scripts can be launched from an Explorer window or as
 shortcuts on the desktop by dragging and dropping files onto them. In
 this case, each of the dropped files is passed as a command-line
 parameter to the script and can be retrieved from its WshArguments
 collection (see Section
 7.4.2 later in this chapter).

Program Flow

WSH supports two kinds of script files:
 simple script
 files, which were supported by WSH 1.0 and are
 suitable for simple scripting applications; and script files
 with XML, which are more structured, far more powerful, and
 have a number of features of interest to more advanced programmers. In
 this section, we’ll examine how both types of script files can be
 used.
Simple Script Files

 Simple script files written in VBScript usually have a
 .vbs extension and contain only
 VBScript language elements, along with references to the properties,
 methods, and events belonging to objects instantiated by the script.
 XML tags are not permitted within simple script files.
The program entry point of a simple script is the global area
 at the top of the file, and program execution terminates after the
 last line of code that is not contained within a function or a
 procedure has executed. This is illustrated by the simple script in
 Example 7-1. Program
 flow begins with the Dim
 statement on the first line and ends with the
 MsgBox function call on the fourth line. The
 fourth line also causes the AddTwo user-defined
 function to be executed before the MsgBox
 function. The MultTwo function is never
 executed, since it is not explicitly called by the first four lines
 of code.
Example 7-1. Program flow in a simple WSH script
Dim iVar1, iVar2

iVar1 = 1
iVar2 = 2
MsgBox AddTwo(iVar1, iVar2)

' Multiplies two numbers
Function MultTwo(var1, var2)
 MultTwo = var1 * var2
End Function

' Adds two numbers
Function AddTwo(var1, var2)
 AddTwo = var1 + var2
End Function

This top-down flow of control in WSH scripts has a very
 important implication: all variables defined outside of subroutines
 in a script file are global variables; that is, they are globally available
 to all of the routines stored in the file. To see what this means,
 let’s take a look at the code in Example 7-2. The variable
 fs, which represents a FileSystemObject
 object, is automatically visible to the
 ShowStorage routine; it does not have to be
 passed as a parameter in order to be visible to the routine.
Example 7-2. WSH global variables
Dim fs
Set fs = CreateObject("Scripting.FileSystemObject")

ShowStorage

Public Sub ShowStorage()
 Dim strMsg, dr

 For Each dr In fs.Drives
 strMsg = strMsg & dr.DriveLetter & ": " & _
 dr.FreeSpace & vbcrlf
 Next

 MsgBox strMsg
End Sub

This means, of course, that any modifications to the variable
 that the routine makes, whether they are deliberate or inadvertent,
 are reflected in the variable’s value once control returns to the
 main code block.
To prevent this, parameter lists can be used to make sure that
 arguments are explicitly passed to called routines. If those
 arguments are passed by value, using the ByVal keyword, their value will remain
 unchanged when control returns to the calling routine, even if their
 value has been changed in a subordinate routine. This is illustrated
 by the script in Example 7-3, which assigns the values 5 and 10 to
 two variables—intX and
 intY, respectively—before calling
 AddTwo with these two variables as arguments.
 AddTwo contains a common assignment error:
 rather than assigning the sum of the arguments to a new variable,
 the sum is assigned to the intX
 parameter, effectively overwriting its value. However, when control
 returns to the calling routine and the sum of
 intX and intY
 is displayed, it remains as it was before the call to the AddTwo subroutine, since the changes made
 to the value of intX in AddTwo does not affect its value once the
 routine ends.
Example 7-3. Passing arguments by value
Dim intX, intY

intX = 5
intY = 10

AddTwo intX, intY

MsgBox "intX + intY = " & intX + intY

Sub AddTwo(ByVal intX, ByVal intY)
 intX = intX + intY
 MsgBox intX
End Sub

Script Files with XML Code

 As of Version 2.0, WSH allows you to create .wsf files, which must contain
 one or more jobs that are designated by the XML <job>...</job> tag. In addition,
 you can include files containing script by using the <script>...</script> tag and including its
 src attribute. (See Section 7.5 later in this
 chapter for details on XML tags.)
Warning
Any script file with a .wsf extension
 must contain the XML tags needed for the script to run. At a
 minimum, these are the <job>...</job> and, if
 script is present, the <script> ...</script> tags.

In a .wsf file that contains multiple
 jobs, each job is independent of others. In other words, the public
 variables and the public subroutines and functions of one job are
 not available to other jobs in the same .wsf
 file. Program flow begins at the beginning of the global script in
 the job designated by the //Job: switch when
 the script was launched, and continues until the </job> tag is encountered. If the
 //Job: switch was not used,
 program flow begins with the global script belonging to the first
 job in the file.
If a script file is included using the src attribute of the <script> tag, it must contain only
 script and no XML tags. The entire script file is read, and any
 global code blocks within the file are executed at the point that
 the <script> tag is
 encountered. Any variables defined in its global code blocks will be
 visible to the original job, and any functions or subroutines
 contained in the included file can be called from code in the
 job.

The WSH Object Model

 When using VBScript to write WSH scripts, you use
 VBScript to access the WSH object model. The Windows Script Host
 object model, a small and fairly shallow object model with a number of
 createable objects, is shown in Figure 7-1.
	[image: The Windows Scripting Host object model]

Figure 7-1. The Windows Scripting Host object model

WSH is not intended to be a self-contained, all-encompassing
 object model. It focuses on three major areas:
	Providing resources necessary to support script execution.
 For instance, the WScript object reports on the interpreter and
 version of WSH in use, while the WshShell object allows shortcuts
 and Internet shortcuts to be created.

	Enhancing the ease with which a system can connect to and
 disconnect from network resources. This functionality is supported
 by the WshNetwork object.

	Supporting functionality that is not readily available in
 other object models. For example, the WshShell object allows
 access to environment variables and to the location of Windows
 system folders.

Through the CreateObject and GetObject methods of the WScript
 object, WSH allows you to take advantage of the functionality
 supported by other objects that support COM automation. This topic is
 discussed in Section
 7.6 later in this chapter. The remainder of this section
 provides concise documentation on the objects that form the WSH object
 model, along with their properties and methods.
The WScript Object

The WScript object, the top-level object in the WSH
 object model, provides information about the script host (that is,
 about WScript.exe or
 CScript.exe) and the script file it is
 executing as well as provides access to other objects. This object
 is instantiated automatically by the host whenever a WSH script is
 launched; you don’t have to retrieve a reference to it. (In fact,
 calls to either CreateObject or
 GetObject will fail to return a
 reference to the WScript object.) The properties of the WScript
 object are listed in Table 7-2, while its
 methods appear in Table
 7-3.
Table 7-2. Properties of the WScript object
	Property
	Description

	 Application
	Returns a reference to the WScript object
 itself, which can be passed as an argument to external
 routines.

	 Arguments
	Returns a WshArguments object consisting of
 several collections of strings containing the command-line
 arguments (both named and unnamed) passed to the script when
 it was invoked; see the entry for the WshArguments object
 later in this chapter for details.

	 Fullname
	The full path and filename of the script host
 file (which is usually either
 WScript.exe or
 CScript.exe).

	 Name
	The friendly name of the script host file. For
 example, the friendly name of both
 WScript.exe and
 CScript.exe is “Windows Script Host.”
 It is the default property of the WScript object.

	 Path
	The full path (without the filename) to the
 script host.

	 ScriptFullName
	The full path and filename of the script being
 executed.

	 ScriptName
	Returns a string containing the filename of the
 script file being executed.

	 StdErr
	Returns a reference to a write-only TextStream
 object that provides access to the script’s standard error
 stream when CScript.exe is the WSH
 host. Typically, the error output stream is sent to the
 console.
 The TextStream object is part of the
 File System object model available from the Microsoft
 Scripting Runtime Library. Because it is write-only, the
 TextStream object returned by the StdErr property supports
 only the following methods:
 Close

 Write
 WriteBlankLines

	 StdIn
	Returns a reference to a read-only TextStream
 object that provides access to the script’s standard input
 stream when CScript.exe is the WSH
 host. Typically, standard input to a program comes from the
 keyboard, though it can also be provided by a source defined
 by the command-line redirection character. For example, in
 the following statement, the standard input is the contents
 of the file Greeting.txt:

 CScript.exe ShowGreeting.vbs < Greeting.txt

 Any attempt to read input that is unavailable causes
 the respective read method to block. The read-only
 TextStream object returned by the StdIn property supports
 the following properties and methods:

 AtEndOfLine
 AtEndOfStream

 Column
 Line
 Close

 Read
 ReadAll
 ReadLine

 Skip

	 StdOut
	Returns a reference to a write-only TextStream
 object that provides access to the script’s standard output
 stream when CScript.exe is the WSH
 interpreter. Typically, standard output from a program goes
 to the screen; it can also go to a device defined by the
 command-line redirection character. For example, the output
 is redirected to the first parallel printer:

 CScript.exe ShowGreeting.vbs > Greeting.txt

 The TextStream object returned by StdOut supports
 these:
 Close
 Write

 WriteBlankLines

	 Version
	The version of the script host.

Table 7-3. Methods of the WScript object
	Method
	Description

	 CreateObject
	Instantiates a new instance of a class. Its
 syntax is WScript.CreaterObject(strProgID[,strPrefix])
 where strProgID is the
 programmatic identifier of the object to be created as
 defined in the registry and
 strPrefix is an optional string
 that instructs WSH to trap the object’s events (if it has
 any) and to fire public event handlers
 whose names begin with strPrefix
 concatenated with the event name. The method returns a
 reference to the new object. For example:

 Set oRate = _
 WScript.CreateObject("Component1.Rate", "oRate_")

Public Sub oRate_RateChanged()
 WScript.Echo "RateChanged event fired!"
End Sub
 The chief difference between the VBScript
 CreateObject function
 and the WScript CreateObject method is that the latter
 allows you to trap the events raised by an object.

	 ConnectObject
	Connects an object’s events to functions
 beginning with a designated prefix. Its syntax is WScript.ConnectObject strobject,
 strPrefix where
 strobject is a reference to the
 object whose events are to be trapped, and
 strPrefix is the prefix of the
 event handler for the events. Note that the documentation
 incorrectly indicates that
 strObject is the
 name of the object whose events are to
 be trapped. The event handler whose name is a concatenation
 of strPrefix and the event name
 is automatically invoked; for example:

 WScript.ConnectObject oRate, "oRate_"

Public Sub oRate_RateChanged()
 WScript.Echo "RateChanged event fired!"
End Sub
 Calling the ConnectObject method is equivalent
 to supplying a strPrefix
 parameter when retrieving an object reference using either
 the CreateObject or GetObject method of the WScript object.
 In addition, ConnectObject allows you to handle events
 raised by objects not createable by the CreateObject or
 GetObject methods.
 Some objects that source
 events do not allow runtime discovery of those events. Such
 objects cannot be connected with either the CreateObject or
 the ConnectObject methods of the WScript object.

	 DisconnectObject
	This method simply “disconnects” an event sync;
 that is, it “disconnects” the object “connected” by the
 ConnectObject method. Its syntax is WScript.DisconnectObject
 obj where
 obj is a reference to the object
 whose events are no longer to be handled. If the events
 raised by obj are not currently
 being trapped, calling the method has no effect.

	 Echo
	Sends output to a dialog box (if the host is
 WScript.exe) or the console (for
 CScript.exe). Its syntax is WScript.Echo
 [arg1,
 [arg2...]] where
 arg1 and
 arg2 are the expressions to be
 output. If multiple arguments are present, a space is used
 to separate them. If none are present, the method outputs a
 blank line.

	 GetObject
	Returns a reference to an existing instance of
 a class. Its syntax is WScript.GetObject(strPathname
 [,strProgID],
 [strPrefix]) where
 strPathname is the path and name
 of the file containing the object to retrieve,
 strProgID is the programmatic
 identifier of the object to be created as defined in the
 registry, and strPrefix is an
 optional string that instructs WSH to trap the object’s
 events (if it has any) and to fire
 public event handlers whose names begin
 with strPrefix concatenated with
 the event name. The method returns a reference to the
 object.

	 Quit
	Terminates script execution and raises an
 error. Its syntax is WScript.Quit
 [intErrorCode] where
 intErrorCode is the number of the
 error to raise.

	 ShowUsage
	Displays help information explaining how to use
 a script.

	 Sleep
	Suspends script execution for a specified
 number of milliseconds. Its syntax is WScript.Sleep(intTime)
 where intTime is the number of
 milliseconds to wait. Events continue to fire and event
 handlers continue to run while sleeping.

The WshArguments Object

The WshArguments object is a collection object returned by
 the Arguments property of the WScript object; it cannot be created
 by calls to the WScript object’s CreateObject or GetObject methods.
 The following statement returns a WshArguments collection
 object:
Dim oArgs
Set oArgs = WScript.Arguments
It consists of one string for each command-line argument
 passed to the script when it was invoked. You can iterate the
 arguments as follows:
Dim arg
For Each arg in oArgs
 ' Do something with arg, the individual argument
Next
Or you can retrieve an individual argument using code like the
 following, which retrieves the first argument in the
 collection:
Dim arg
arg = WScript.Arguments.Item(0)
WSH supports both named and unnamed arguments. Named
 arguments are passed to a script by using the
 syntax:
scriptname /ArgName:ArgValue
ArgName, the argument name, is
 preceded by a single slash, while the argument name and
 ArgValue, the value of the named
 argument, are separated from one another by a colon.
 Unnamed arguments are entered on the command
 line as values only, with no special syntax; for example:
scriptname ArgValue
Both named and unnamed arguments are included in the
 collection. The arguments can be filtered into named and unnamed
 arguments by using the WshArguments object’s Named and Unnamed
 properties.
The properties of the WshArguments object are shown in Table 7-4.
Table 7-4. Properties of the WshArguments object
	Property
	Description

	 Count
	Indicates the number of arguments in the
 collection.

	 Item
	Returns a string argument given its ordinal
 position (or index) in the collection. The first argument is
 at position 0. Item is the default member of the
 WshArguments collection.

	 length
	Like the Count method, returns the number of
 arguments in the collection.

	 Named
	Returns a WshNamed object containing the named
 arguments passed to the script when it was invoked. For
 details, see the entry for the WshNamed object later in this
 chapter.

	 Unnamed
	Returns a WshUnnamed object containing the
 unnamed arguments passed to the script when it was invoked.
 For details, see the entry for the WshUnnamed object later
 in this chapter.

The WshController Object

The WshController object, which is new toWSH 5.6, allows for the creation of a remote script
 process. WshController is a createable object that must be
 instantiated with a code fragment like the following:
Dim cnt
Set cnt = WScript.CreateObject("WSHController")
The WshController object has a single method,CreateScript, as shown in Table 7-5. It is this
 method that accesses the script to be run remotely and returns a
 WshRemote object that provides some control over the
 resulting script process. For an example of using remote scripting,
 see Section 7.4.7
 later in this chapter.
Table 7-5. Method of the WshController object
	Name
	Description

	CreateScript
	Returns a WshRemote object, which represents a
 remote script process. Its syntax is
 object.CreateScript(CommandLine,[MachineName])
 where object is a reference to a
 WshConnection object, CommandLine
 provides the name of the script to execute (along with an
 optional path and any command-line switches and parameters),
 and MachineName is an optional
 parameter containing the UNC name of the system on which the
 script is to execute. If
 MachineName is omitted, the
 script executes on the system on which the WshController
 object is instantiated. If
 CommandLine identifies a
 different system than
 MachineName, the script is loaded
 from the system identified by
 CommandLine but run on the system
 identified by MachineName.

The WshEnvironment Object

The WshEnvironment object is a collection object returned
 by the Environment property of the WshShell object; it cannot
 be created by calls to the WScript object’s CreateObject or
 GetObject methods.
WshEnvironment is a collection of strings containing a set of
 environment variables. Windows systems maintain two such sets of
 environment variables, either of which can be returned by the
 Environment property of the WshShell object:
	A system table, which is retrieved by supplying the string
 System as an argument to the
 Environment property of the WshShell object. The system table
 contains the environment variables available to all processes
 running on the system.

	A process table, which is retrieved by supplying the
 string Process as an argument
 to the Environment property of the WshShell object. The process
 table contains the environment variables defined for the
 individual process. It also includes the environment variables
 in the system table.

The members of the WshEnvironment object are shown in Table 7-6.
Since the WshEnvironment object is a child of the WshShell
 object, it requires that a WshShell object be instantiated. This
 requires that you access the WshEnvironment collection through a
 code fragment like the following:
Dim wsh, env
Set wsh = WScript.CreateObject("WScript.Shell")
Set env = wsh.Environment
You can then iterate the collection as follows:
Dim str
For Each str in env
 sMsg = sMsg & str & vbCrLf
Next

WScript.Echo sMsg
Table 7-6. Members of the WshEnvironment object
	Name
	Type
	Description

	 Count
	Property
	Indicates the number of environment variables
 in the collection.

	 Item
	Property
	Returns an environment variable’s name/value
 pair (separated by an equals sign) if passed a string
 containing its name (or key). Item is the default member of
 the WshEnvironment collection. Hence, the code:

 WScript.Echo(WshShell.Environment.Item("Path"))

 is functionally identical to the code:

 WScript.Echo(WshShell.Environment("Path"))

	 length
	Property
	Indicates the number of environment variables
 in the collection.

	 Remove
	Method
	Removes an environment variable from the
 collection. Its syntax is WshEnvironment.Remove
 strName where
 strName is a String representing
 the name of the environment variable. Attempting to delete a
 variable based on its ordinal position in the collection has
 no effect.

The WshNamed Object

The WshNamed object, which is new to WSH 5.6, is a collection object that contains named
 command-line arguments. (A named argument is entered on the command
 line with the syntax /
 name :
 value.) WshNamed is not a createable
 object, and is returned by theNamed property of the WshArguments object.
The following statement returns a WshNamed collection
 object:
Dim namedArgs
Set namedArgs = WScript.Arguments.Named
It consists of one string for each named command-line argument
 passed to the script when it was invoked. You can iterate the
 arguments as follows:
Dim arg
For Each arg in namedArgs
 ' Do something with arg, the individual named argument
Next
Or you can retrieve an individual argument using code like the
 following, which retrieves the first named argument in the
 collection:
Dim arg
arg = WScript.Arguments.Named(0)
The members of the WshNamed object are listed in Table 7-7.
Table 7-7. Members of the WshNamed object
	Name
	Type
	Description

	 Count
	Method
	Returns an integer indicating the number of
 named arguments in the collection. Its syntax is
 object.Count().

	 Exists
	Method
	Returns a Boolean indicating whether a
 particular named argument exists in the collection. Its
 syntax is object.Exists(strArgName)
 where strArgName is a String
 containing the argument name.

	 Item
	Property
	Returns a String containing the value of a
 particular named command line argument. Its syntax is:
 object.Item(strArgName) where
 strArgName is a String containing
 the argument name. If strArgName
 is not found in the collection, the property returns an
 empty string.
 Since Item is the default member
 of the WshNamed object, it need not be called explicitly.
 Hence, the following two lines of code function identically:

 strVal = oNamed.Item("name")
strVal = oNamed("name")

	 length
	Property
	Returns an integer indicating the number of
 named arguments in the collection.

The WshNetwork Object

The WshNetwork object representsnetwork resources that are available to a client
 computer. You can create a WshNetwork object with a code fragment
 like the following:
Dim oNet
Set oNet = WScript.CreateObject("WScript.Network")
The WshNetwork object supports the three properties shown in
 Table 7-8 and the
 eight methods shown in Table 7-9.
Table 7-8. Properties of the WshNetwork object
	Property
	Description

	 ComputerName
	Returns a String containing the name of the
 local computer.

	 UserDomain
	Returns a String containing the name of the
 user domain.

	 UserName
	Returns a String containing the
 username.

Table 7-9. Methods of the WshNetwork object
	Method
	Description

	 AddPrinterConnection
	Maps a remote printer to a local resource name.
 Its syntax is WshNetwork.AddPrinterConnection
 strLocalName,
 strRemoteName
 [,bUpdateProfile] [,
 strUser][,
 strPassword] where
 strLocalName is the local resource
 name, strRemoteName is the name of the
 remote resource, bUpdateProfile is an
 optional Boolean that indicates whether the user profile is
 to be updated to contain this mapping,
 strUser is the optional name of the
 user for whom the printer is being mapped, and
 strPassword is the password of the user
 for whom the printer is mapped.

	 AddWindowsPrinterConnection
	Adds a printer connection. Its syntax for
 Windows NT/2000/XP is WshNetwork AddWindowsPrinterConnection(strPrinterPath)
 where strPrinterPath is the path
 to the printer. Under Windows 95/98/ME, its syntax is:

 WshNetwork.AddWindowsPrinterConnection(strPrinterPath,
 strDriverName[,
 strPort])
 where
 strPrinterPath is the path to the
 printer, strDriverName is the
 name of the printer driver to use, and
 strPort is the optional name of
 the port to which to attach the printer. The default value
 of strPort is LPT1.

 This method differs from the AddPrinterConnection
 method by not requiring that the printer be assigned a local
 port.

	 EnumNetworkDrives
	Returns a zero-based collection of strings
 containing the current network drive mappings. All members
 having even index values are local names (drive letters),
 and all having odd index values are the remote names of the
 immediately preceding local drive. The collection returned
 by the method supports the following properties:

 	Count
	The number of items in the collection

	Item
	Returns an individual item from the
 collection

	length
	The number of items in the collection

	 EnumPrinterConnections
	Returns a zero-based collection of strings
 containing the current network printer mappings. All members
 having even index values are the ports, and all members
 having odd index values are the network mappings of the
 preceding port. The collection returned by the method has
 the following members:
 	Count
	The number of items in the collection

	Item
	Returns an individual item from the
 collection

	length
	The number of items in the collection

	 MapNetworkDrive
	Maps a network share to a local resource. Its
 syntax is WshNetwork.MapNetworkDrive
 strLocalName,
 strRemoteName ,
 [bUpdateProfile],
 [strUser],
 [strPassword] where
 strLocalName is the local
 resource, strRemoteName is the
 network resource, bUpdateProfile
 is a Boolean value that indicates whether the user’s profile
 should be updated to include the mapping,
 strUser is the optional name of
 the user for whom the printer is being mapped, and
 strPassword is the optional
 password of the user for whom the printer is being mapped.

	 RemoveNetworkDrive
	Removes a current resource connection. Its
 syntax is WshNetwork.RemoveNetworkDrive
 strName ,
 [bForce],
 [bUpdateProfile] where
 strName must be either a local
 name (if the remote drive is mapped to a local name) or a
 remote name, bForce is a Boolean
 value that indicates whether the connection should be
 removed even if the resource is in use, and
 bUpdateProfile is a Boolean that
 indicates whether the mapping should be removed from the
 user profile.

	 RemovePrinterConnection
	Removes the connection to a network printer.
 Its syntax is WshNetwork.RemovePrinterConnection
 strName,
 [bForce],
 [bUpdateProfile] where
 strName must be a local name (if
 the printer is mapped to a local name) or a remote name,
 bForce is a Boolean value that
 indicates whether the printer should be removed even if it
 is in use, and bUpdateProfile is
 a Boolean that indicates whether the connection should be
 removed from the user profile.

	 SetDefaultPrinter
	Sets the default printer to a remote printer.
 Its syntax is WshNetwork.SetDefaultPrinter
 strPrinterName where
 strPrinterName is the name of the
 remote printer. The names of available remote printers can
 be retrieved with the EnumPrinterConnection method.

The WshRemote Object

The WshRemote object, which is new to WSH 5.6, allows for control over a remote script by
 the launching script. It is returned by the CreateScript method of the WshController object. The
 WshRemote object supports the members shown in Table 7-10. Note that,
 unlike most of the objects in the Windows Script Host object model,
 the WshRemote object supports three events: Start, End, and
 Error.
Configuring Remote Scripting
 Before you can launch a script remotely, the system
 on which it runs has to be configured to support remote scripting.
 This requires that Windows Script Host 5.6 be installed on the
 remote machine, that the user launching the remote script be a
 member of the remote machine’s Local Administrators group, and
 that remote scripting be enabled in the registry. The HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
 Script Host\Settings key has a value entry
 named Remote. If its value is
 1, remote scripting is enabled; if 0, disabled. The following
 script enables the key:
Dim oShell, regKey, regValue
Set oShell = CreateObject("WScript.Shell")
regKey = "HKLM\Software\Microsoft\Windows Script Host\Settings\Remote"
regValue = oShell.RegRead(regKey)
If regValue = "0" Then
 regValue = "1"
 oShell.RegWrite regKey, regValue, "REG_SZ"
End If

Table 7-10. Members of the WshRemote object
	Name
	Type
	Description

	 End
	Event
	Fired when a remote script completes execution
 either because the WshRemote object’s Terminate method is
 called or because the script has itself terminated.

	 Error
	Property
	Returns a WshRemoteError object that, if
 retrieved from the WshRemote object’s Error event handler,
 provides information about the error that caused a remote
 script to terminate.

	 Error
	Event
	Fired when an error occurs in the remote
 script. No parameters are passed to the event handler.

	 Execute
	Method
	Starts the execution of a remote script. Its
 syntax is: object .Execute().

	 Start
	Event
	Fired when the WshRemote object’s Execute
 method is called to begin execution of a remote script.

	 Status
	Property
	Returns the status of the remote script.
 Possible values are NoTask (0), Running (1), and Finished (2).

	 Terminate
	Method
	Prematurely terminates the execution of a
 remote script.

The following example illustrates the use of remote scripting
 and the WshRemote object. A controller script launches remote
 scripts on a number of systems in order to assemble a report listing
 those systems with drives whose free space is under 200 MB. The
 following .wsf file launches
 the remote scripts:
<package>
<reference guid="{6F201540-B482-11D2-A250-00104BD35090}" />
<reference guid="{F935DC20-1CF0-11D0-ADB9-00C04FD58A0B}" />
<reference guid="{563DC060-B09A-11D2-A24D-00104BD35090}" />

<job id="GatherDiskInfo">
<reference guid="{420B2830-E718-11CF-893D-00A0C9054228}" />
<runtime>
 <description>
 This script uses remote scripting to examine the disk drives
 of designated systems and reports those with less than
 200MB free.
 </description>
</runtime>
<script language="VBScript">
Option Explicit

Const fn = "MachineList.txt"
Const NoTask = 0
Const WshRunning = 1
Const WshFinished = 2

Dim fs, ts
Dim ctrl, remote, sh
Dim machineName

' Retrieve file listing machines to examine
Set fs = CreateObject("Scripting.FileSystemObject")
Set ts = fs.OpenTextFile(fn, ForReading, False)
Set sh = CreateObject("WScript.Shell")
Set ctrl = CreateObject("WSHController")

Do While Not ts.AtEndOfStream
 machineName = ts.ReadLine()
 Set remote = ctrl.CreateScript("freespace.vbs " & machineName, _
 machineName)
 WScript.ConnectObject remote, "remote_"

 remote.Execute()
 Do While remote.Status = WshRunning
 WScript.Sleep 100
 Loop
 WScript.DisconnectObject remote
Loop

Sub remote_Start()
 sh.LogEvent 0, "Started remote script on " & machineName
End Sub

Sub remote_End()
 sh.LogEvent 0, "Ended remote script on " & machineName
End Sub

Sub remote_Error()
 Dim wshErr
 Set wshErr = remote.Error
 sh.LogEvent 1, "Error " & wshErr.Number & ": " & wshErr.Description
 WScript.Quit -1
End Sub
</script>
</job>
</package>
The script reads a text file, MachineList.txt, which contains a list of
 the systems whose drives are to be checked for available space, one
 system per line. For each machine, it calls the WshController
 object’s CreateScript method, which returns a reference to a
 WshRemote object. The first parameter to the CreateScript method is
 the name of the script to be run along with an unnamed argument, the
 machine name. The argument is included because this makes it very
 easy for the remote script to identify the system on which it is
 running. The second parameter of the CreateScript method is once
 again the name of the system on which the remote script is to
 run.
The call to the CreateScript method returns a reference to a
 WshRemote object, which is then used in the call to the WScript
 object’s ConnectObject method so that the script can receive event
 notifications. The script then executes the following remote script
 and enters a loop until the remote script has completed, at which
 point it disconnects the event handler and reads another line if one
 is present in MachineList.txt:
Option Explicit

Const ForAppending = 8
Const ForReading = 1
Const ForWriting = 2
Const Fixed = 2
Const fn = "c:\books\vbscript ian\wsh\freespace.txt"

Dim fs, drives, drive
Dim overWrite
Dim freeSpace
Dim msg

' Retrieve object references
Set fs = CreateObject("Scripting.FileSystemObject")
Set drives = fs.Drives

overWrite = True
 ' Enumerate drives
For Each drive In drives
 ' Examine only fixed drives
 If drive.IsReady And drive.DriveType = Fixed Then
 freeSpace = drive.FreeSpace
 ' Log if under 200MB free
 If freeSpace < 200000000 Then
 ' Form message string
 msg = msg & "System: " & WScript.Arguments.Unnamed(0) & " "
 msg = msg & "Drive " & drive.DriveLetter & ": " & _
 FormatNumber(drive.FreeSpace, 0, False, True, True) _
 & " free"
 msg = msg & " Date: " & Date() & " " & Time()
 WriteToFile msg
 overwrite = False
 End If
 End If
Next

Sub WriteToFile(strToWrite)

 Dim mode, create
 Dim ts

 mode = ForAppending
 create = False

 Set ts = fs.OpenTextFile(fn, mode, create)
 ts.WriteLine strToWrite
 ts.Close
End Sub
When the remote script begins and ends, its Start and End
 events, respectively, are fired. This executes the remote_Start and
 remote_End event handlers in the controller script, which write
 information about the beginning and end of the remote script to the
 controller’s event log. If an error occurs, information about it is
 also written to the controller’s event log.

The WshRemoteError Object

The WshRemoteError object provides access to information
 about the error that caused a remote script to terminate
 execution. The object is new to WSH 5.6. The WshRemoteError object is not createable;
 instead, it is returned by the Error property of the WshRemote
 object. The property’s value is typically retrieved in the Error
 event handler of the WshRemote object. To see the use of the
 WshRemoteError object in a script, see the example in Section 7.4.7 earlier
 in this chapter.
The properties of the WshRemoteError object are listed in
 Table
 7-11.
Table 7-11. Properties of the WshRemoteError object
	Property
	Description

	 Character
	Returns the character position in a line at
 which the error occurred, or a 0 if a line and character
 position could not be identified as containing the source of
 the error.

	 Description
	Returns a String containing a brief description
 of the error, or an empty string if none is available.

	 Line
	Returns the number of the line on which the
 error occurred, or a 0 if a line containing the source of
 the error could not be identified.

	 Number
	Returns a Long containing the error
 number.

	 Source
	Identifies the COM object in which the error
 occurred.

	 SourceText
	Returns the line of script containing the
 error, or an empty string if no line could be identified.

The WshScriptExec Object

The WshScriptExec object represents a local script or
 application launched by calling the
 WshShell.Exec method. Its members provide
 status information and allow you to access the script or
 application’s standard input, output, and error streams. The
 WshScriptExec object is new to WSH 5.6.
The members of the WshScriptExec object are listed in Table 7-12.
Table 7-12. Members of the WshScriptExec object
	Name
	Type
	Description

	 Status
	Property
	Returns status information about a script or
 application run using the WshShell.Exec
 method. Possible values are WshRunning (0) and WshFinished (1).

	 StdErr
	Property
	Provides access to the WshScriptExec’s standard
 error stream.

	 StdIn
	Property
	Provides access to the WshScriptExec’s standard
 input stream.

	 StdOut
	Property
	Provides access to the WshScriptExec’s standard
 output stream.

	 Terminate
	Method
	Sends a WM_CLOSE message to a process (a
 script or an application) launched by calling the
 WshShell.Exec method. How the message
 is handled depends on the application: it can ignore the
 message, or it can terminate.

The WshShell Object

The WshShell object provides access to a wide variety
 of shell services, such asregistry access, access toenvironment variables and to the location of
 system folders, and the ability to create shortcuts and
 to start processes. You can instantiate a WshShell object with a
 code fragment like the following:
Dim wsh
Set wsh = WScript.CreateObject("WScript.Shell")
The WShell object supports the 3 properties shown in Table 7-13 and the
 Table 7-11
 methods listed in Table
 7-14.
Table 7-13. Properties of the WshShell object
	Property
	Description

	CurrentDirectory
	A read-write property that determines the
 script’s current directory.

	 Environment
	Returns a WshEnvironment collection containing
 the system or process environment variables and their
 values. Its syntax is oShell.Environment([strType]) where
 strType is an optional string
 indicating which table of environment variables (System or Process) the property should
 return. For details, see the WshEnvironment object. If
 omitted, the property returns the system environment
 variables on Windows NT/2000/XP and the process environment
 variables on Windows 95/98/ME.

	 SpecialFolders
	Returns a WshSpecialFolders collection
 containing the names of system folders and their locations;
 for details, see the WshSpecialFolders object.

Table 7-14. Methods of the WshShell object
	Method
	Description

	 AppActivate
	Activates an application window. Its syntax is
 WshShell.AppActivate
 title where
 title is the caption of the
 application to be activated. If there is no exact match, WSH
 will attempt to match title with
 the application window whose caption begins with title. The
 documentation mentions that title can also be the task ID,
 which is returned by the Shell function; the Shell function,
 however, is present in VB but not in VBScript or WSH.

	 CreateShortcut
	Returns a reference to a new or an existing
 WshShortcut object. Its syntax is WshShell CreateShortcut-
 (strPathname) where
 strPathname is the path and
 filename of an existing or a new Windows shortcut file (a
 file with an extension of *.lnk). (If
 strPathname has an extension of
 *.url, the method returns a reference
 to a WshUrlShortcut object instead.)
 Once you
 retrieve the object reference, you can create or modify the
 physical shortcut file by calling the WshShortcut object’s
 Save method.

	 Exec
	Runs a script or application as a separate
 process and returns a WshScriptExec object that provides
 access to its standard input, standard output, and standard
 error. The method is new to WSH 5.6.

	 ExpandEnvironmentStrings
	Expands an environment variable and returns its
 value. Its syntax is WshShell.ExpandEnvironmentStrings
 (strString) where
 strString is a string that
 includes the name of an environment variable delimited by a
 beginning and closing percentage sign (%).

	 LogEvent
	Logs an event. Its syntax is WshShell.LogEvent(intType
 ,
 strMessage [,
 strTarget]) where
 intType defines the type of event
 and is one of the values in Table 7-15,
 strMessage is the text of the
 event message, and, for Windows NT/2000/XP only,
 strTarget is the optional name of
 the system on which the event should be logged. If
 strTarget is omitted, the event
 is logged on the local system. Under Windows NT/2000/XP,
 events are logged in the Windows NT event log. Under Windows
 95/98/ME, they’re logged in the WSH.log
 file in the user’s Windows directory; each entry contains
 the date and timestamp, the event type, and the text of the
 log message. The method returns True if successful and False otherwise.

	 Popup
	Displays a popup message box. Its syntax
 is:
 intButton = WshShell.Popup(strText, [natSecondsToWait],
[strTitle], [natType])
 where
 strText is the text of the
 message to appear in the pop up,
 natSecondsToWait is the optional
 number of seconds to wait before automatically closing the
 pop up, strTitle is the optional
 pop-up dialog’s caption (it defaults to “Windows Script
 Host” if omitted), and natType
 defines the types of buttons and icons to use in the pop-up
 window and has the same values as the Win32
 MessageBox function. This can consist
 of any one icon type combined with (i.e., logically Or'ed with) any one button set
 shown in Table
 7-16. The method returns one of the integers shown in
 Table
 7-17, which indicates which button is pressed to
 close the pop up.

	 RegDelete
	Deletes a key or value from the registry. Its
 syntax is WshShell.RegDelete
 strName where
 strName is the path to the key or
 value to delete. If strName ends
 in a backslash, it denotes a key; otherwise, it denotes a
 value. The default (or unnamed) value of a key cannot be
 deleted; it must be replaced with an empty string ("") by using the RegRead method.
 The abbreviations for the top-level registry keys are shown
 in Table
 7-18.

	 RegRead
	Returns a registry value. Its syntax is
 WshShell.RegRead-
 (strName) where
 strName is the path to the value
 to read. If strName ends in a
 backslash, the method reads the key’s default value;
 otherwise, it reads a named value. The abbreviations for the
 top-level keys are shown in Table 7-18;
 keys not listed must be accessed by their full name (e.g.,
 HKEY_ CURRENT_CONFIG). The RegRead
 method can read the data types shown in Table 7-19;
 other data types are not supported. Note that the RegRead
 method does not expand environment strings in REG_EXPAND_SZ data; this requires
 a separate call to the WshShell object’s
 ExpandEnvironmentStrings method.

	 RegWrite
	Writes a registry value. Its syntax is WshShell.RegWrite
 strName,
 anyValue
 [,strType] where
 strName is that path to the value
 to write. If strName ends in a
 backslash, the method writes the key’s default value;
 otherwise, it writes a named value. The abbreviations for
 the top-level registry keys are shown in Table 7-18;
 keys not listed must be accessed by their full names (e.g.,
 HKEY_USERS).The RegWrite
 method can read the data types shown in Table 7-19;
 other data types are not supported.

	 Run
	Creates a new process. Its syntax is WshShell.Run
 (strCommand,
 [intWindowStyle],
 [bWaitOnReturn]) where
 strCommand represents the command
 to execute, along with any command-line parameters. Any
 environment variable in it will be expanded automatically.
 intWindowStyle is an optional
 integer that defines the window style of the new process
 (for a list of valid window styles, see Table 7-20),
 and bWaitOnReturn is an optional
 Boolean synchronization flag that determines whether control
 returns to the script only after the process ends; by
 default, control returns to the script immediately after the
 Run method is called. The value returned by the function is
 0 if bWaitOnReturn is False;
 otherwise, the method returns any error code returned by the
 application.

	 SendKeys
	Sends keystrokes to the active window as if
 they were typed at the keyboard. Its syntax is SendKeys
 string where
 string is a string expression
 that specifies the keystrokes to send. Except for the
 special symbols shown in Table 7-21,
 each keyboard character is represented in
 string by itself.

 The SendKeys method cannot be used to send keystrokes
 to a non-Windows application. Nor can SendKeys be used to
 send the Print Screen key to any window.

Table 7-15. Values of the intType parameter of the LogEvent
 method
	Value
	Description

	0
	 Success

	1
	Error

	2
	Warning

	4
	Information

	8
	Audit_Success

	16
	Audit_Failure

Table 7-16. Values of the natType parameter of the Popup method
	Type
	Value
	Description

	Button
	0
	OK

	Button
	1
	OK and Cancel

	Button
	2
	Abort, Retry, Ignore

	Button
	3
	Yes, No, Cancel

	Button
	4
	Yes, No

	Button
	5
	Retry, Cancel

	Icon
	16
	Stop

	Icon
	32
	Question

	Icon
	48
	Exclamation

	Icon
	64
	Information

Table 7-17. Return values of the Popup method
	Value
	Description

	1
	OK button

	2
	Cancel button

	3
	Abort button

	4
	Retry button

	5
	Ignore button

	6
	Yes button

	7
	No button

Table 7-18. Abbreviations for the top-level registry keys
	Abbreviation
	Key

	HKCU
	 HKEY_CURRENT_USER

	HKLM
	HKEY_LOCAL_MACHINE

	HKCR
	HKEY_CLASSES_ROOT

Table 7-19. Data types supported by the WshShell registry
 methods
	Data type
	RegWrite string constant
	RegRead/RegWrite variant type

	 string
	“REG_SZ”
	String

	string with macros
	“REG_EXPAND_SZ”
	String

	string array
	not supported
	String array

	long integer
	“REG_DWORD”
	Long

	binary data (byte array)
	“REG_BINARY”
	Variant array of bytes

Table 7-20. Values of the intWindowStyle parameter of the Run
 method
	Value
	Description

	0
	 Hides the window and activates another window.

	1
	Activates and displays a window. If the window
 is minimized or maximized, the system restores it to its
 original size and position. This flag should be used when
 specifying an application for the first time.

	2
	Activates the window and displays it
 minimized.

	3
	Activates the window and displays it
 maximized.

	4
	Displays a window in its most recent size and
 position. The active window remains active.

	5
	Activates the window and displays it in its
 current size and position.

	6
	Minimizes the specified window and activates
 the next top-level window in the Z order.

	7
	Displays the window as a minimized window. The
 active window remains active.

	8
	Displays the window in its current state. The
 active window remains active.

	9
	Activates and displays the window. If it is
 minimized or maximized, the system restores it to its
 original size and position. An application should specify
 this flag when restoring a minimized window.

	10
	Sets the show state based on the state of the
 program that started the application.

Table 7-21. Special characters for use with the SendKeys method
	Key
	String
	Key
	String

	Shift
	 +
	Scroll Lock
	{SCROLLLOCK}

	Ctrl
	^
	Tab
	{TAB}

	Alt
	%
	Up Arrow
	{UP}

	Backspace
	{BACKSPACE}, {BS}, or {BKSP}
	F1
	{F1}

	Break
	{BREAK}
	F2
	{F2}

	Caps Lock
	{CAPSLOCK}
	F3
	{F3}

	Delete
	{DELETE} or {DEL}
	F4
	{F4}

	Down Arrow
	{DOWN}
	F5
	{F5}

	End
	{END}
	F6
	{F6}

	Enter
	{ENTER} or ~
	F7
	{F7}

	Esc
	{ESC}
	F8
	{F8}

	Help
	{HELP}
	F9
	{F9}

	Home
	{HOME}
	F10
	{F10}

	Insert
	{INSERT} or {INS}
	F11
	{F11}

	Left Arrow
	{LEFT}
	F12
	{F12}

	Num Lock
	{NUMLOCK}
	F13
	{F13}

	Page Down
	{PGDN}
	F14
	{F14}

	Page Up
	{PGUP}
	F15
	{F15}

	Print Screen
	{PRTSC}
	F16
	{F16}

	Right Arrow
	{RIGHT}
	 	

The WshShortcut Object

The WshShortcut object represents a shortcut—that is, a
 link to a file or other resource on the local system or local
 network. A new or existing WshShortcut object is returned by the
 CreateShortcut method of the WshShell object, as in the following
 code fragment:
Set WshShell = WScript.CreateObject("WScript.Shell")
Set oSCut = WshShell.CreateShortcut("Startup Script.lnk")
Tip
A WshShortcut object exists in memory only and not in the
 filesystem until it is saved by calling the object’s Save
 method.

When a new shortcut object is created, its FullName property
 is assigned the value specified by the
 strPathname parameter. The remaining
 properties assume their default values and must be changed
 programmatically before calling the WshShortcut object’s Save
 method.
The WshShortcut object supports the eight properties shown in
 Table 7-22 and
 the single method shown in Table 7-23.
Table 7-22. Properties of the WshShortcut object
	Property
	Description

	 Arguments
	Sets or returns a single String representing
 the arguments passed to the shortcut.

	 Description
	Sets or returns a String representing a
 description of the shortcut. The Description property is not
 visible from the Windows user interface.

	 FullName
	Returns a String containing the full path and
 filename of the shortcut file. Shortcut files have a file
 extension of *.lnk.

	 Hotkey
	Sets or returns a String containing the
 keyboard shortcut that executes the shortcut file; hotkeys
 apply only to shortcuts located on the Windows desktop or on
 the Start menu. Multiple keys are joined by a “+” sign. For
 example, a Hotkey value of “Alt+Ctrl+A” indicates that the
 shortcut’s hotkey is the Alt + Ctrl + A key combination.

 According to the documentation, strings
 indicating alphabetic keys are case-sensitive (“A” is an
 uppercase A, but “a” is lowercase), although this does not
 appear to be the case. The strings that represent some
 common nonalphanumeric hotkeys are listed in Table 7-24.

	 IconLocation
	Defines the location of the shortcut’s icon.
 Typically, its value is the complete path and filename to
 the file containing the icon followed by a comma and the
 zero- based position of the icon within the file. If the
 default icon is used, the value of IconLocation is " ,0”.

	 TargetPath
	Sets or returns the path and filename to the
 shortcut’s executable file. Note that the value of the
 TargetPath property can also include a data file that’s
 associated with an executable file.

	 WindowStyle
	Defines the window style of the application
 launched by the shortcut. Valid values are shown in Table 7-25.

	 WorkingDirectory
	Defines the shortcut’s working directory (i.e.,
 the directory in which the shortcut will start).

Table 7-23. Method of the WshShortcut object
	Method
	Description

	 Save
	Saves the Shortcut object to the filesystem at
 the location specified by the FullName property. Its syntax
 is WshShortcut.Save.

Table 7-24. Some common nonalphanumeric hotkey strings
	Hotkey String
	Description

	Alt
	Alt key

	Back
	Backspace key

	Ctrl
	Ctrl key

	Escape
	Esc key

	Shift
	Shift key

	Space
	Space key

	Tab
	Tab key

Table 7-25. Values of the WindowStyle property
	Value
	Description

	1
	Activates and displays a window.

	3
	Activates the window and displays it
 maximized.

	7
	Displays the window as a minimized window. The
 active window remains active.

The WshSpecialFolders Object

WshSpecialFolders is a collection object that stores
 strings that indicate the location of Windowssystem folders, like the Desktop folder of the Windows
 System folder. The collection is returned by the SpecialFolders
 property of the WshShell object, as the following code fragment
 shows:
Dim oShell, oSpFolders

Set oShell = WScript.CreateObject("WScript.Shell")
Set oSpFolders = oShell.SpecialFolders
Note that the location of a particular WshSpecialFolders
 object can be accessed by using its key, as discussed in the entry
 for the object’s Item property in Table 7-26.
The WshSpecialFolders object supports the standard three
 properties of a WSH collection object, as shown in Table 7-26.
Table 7-26. Properties of the WshSpecialFolders object
	Property
	Description

	 Count
	Indicates the number of items in the
 collection.

	 Item
	Returns an individual item from the collection;
 each item is a string that indicates the location of a
 particular special folder. If the member doesn’t exist, the
 Item property returns an empty variant. An item is retrieved
 from the collection either by its ordinal position in the
 collection or by its key; valid key values are:
 AllUsersDesktop, AllUsersStartMenu, AllUsersPrograms,
 AllUsersStartup, Desktop, Favorites, Fonts, MyDocuments,
 NetHood, PrintHood, Programs, Recent, SendTo, StartMenu,
 Startup, and Templates.

	 length
	Indicates the number of items in the
 collection.

The WshUnnamed Object

The WshUnnamed object, which is new toWSH 5.6, is a collection object that contains unnamed
 command-line arguments. (An unnamed argument is entered on the
 command line by itself with no special syntax.) WshUnnamed is not a
 createable object, and is returned by the Unnamed property of the
 WshArguments object.
The following statement returns a WshUnnamed collection
 object:
Dim unnamedArgs
Set unnamedArgs = WScript.Arguments.Unnamed
It consists of one string for each unnamed argument passed to
 the script when it was invoked. You can iterate the arguments as
 follows:
Dim arg
For Each arg in unnamedArgs
 ' Do something with arg, the individual argument
Next
Or you can retrieve an individual argument using code like the
 following, which retrieves the first unnamed argument in the
 collection:
Dim arg
arg = WScript.Arguments.Unnamed(0)
The members of the WshUnnamed object are shown in Table 7-27.
Table 7-27. Members of the WshUnnamed object
	Name
	Type
	Description

	 Count
	Method
	Returns an integer indicating the number of
 unnamed arguments in the collection. Its syntax is:
 object .Count().

	 Item
	Property
	Returns a String containing the value of a
 command-line argument at a particular ordinal position in
 the collection. Its syntax is: object.Item(
 intPos) where
 intPos is an Integer indicating
 the ordinal position of the argument. If
 intPos is outside of the range of
 the collection, an error occurs.
 Since Item is
 the default member of the WshUnnamed object, it need not be
 explicitly referenced. Hence, the following two lines of
 code function identically:
 strVal = oUnnamed.Item(2)
strVal = oUnnamed(2)

	 length
	Property
	Returns an integer indicating the number of
 named arguments in the collection.

The WshUrlShortcut Object

The WshUrlShortcut object represents anInternet shortcut—an Internet link to an Internet
 resource. A new or an existing WshUrlShortcut object is returned by
 the CreateShortcut method of the WshShell object, as in the
 following code fragment:
Set WshShell = WScript.CreateObject("WScript.Shell")
Set oURL = WshShell.CreateShortcut("Favorite Website.url")
Tip
A WshUrlShortcut object exists in memory only and not in the
 filesystem until it is saved by calling the object’s Save
 method.

When a new WshUrlShortcut object is created, its FullName
 property is assigned the value specified by the
 strPathname parameter.
Its remaining property, TargetPath, must be changed
 programmatically before calling the WshUrlShortcut object’s Save
 method.
The WshUrlShortcut object supports the three members shown in
 Table
 7-28.
Table 7-28. Members of the WshUrlShortcut object
	Member type
	Member name
	Description

	Property
	 FullName
	Returns a String containing the full path and
 filename of the Internet shortcut file. Shortcut files have
 a file extension of *.url.

	Property
	 TargetPath
	Sets or returns a String containing the
 complete URL of the Internet resource to which the Internet
 shortcut is linked.

	Method
	 Save
	Saves the Internet shortcut object to the
 filesystem at the location specified by the FullName
 property. Its syntax is WshUrlShortcut.Save .

WSH Language Elements

 All the language elements listed in Table 7-29 have been
 added to Windows Script Host as of Version 2.0. They are XML elements
 that can be used in .wsf files
 and allow metadata about script-based applications to be embedded in
 the same file as the script
Table 7-29. WSH language elements
	Element
	Description

	 <?job ?>
	Defines error handling. It syntax is <?job error="flag"
 debug="flag"
 ?> where
 flag is the string “True” or
 “False”, “Yes” or “No”, or the integers 1 or 0. The error attribute defines whether the
 user will be notified of errors; the debug attribute determines whether a
 debugger is launched when an error is raised. By default, both
 attributes are false.

	 <?xml ?>
	Indicates that the contents of a file should be
 parsed as XML. Its syntax is <?XML version="version"
 [standalone="DTDflag“]
 ?> where
 version is a string in the format
 n.n that indicates the XML level of
 the file, and DTDflag is a Boolean
 value that indicates whether the XML file includes a reference
 to an external DTD. Since script files do not include DTDs,
 the value of this attribute must always be “yes.” The <?xml ?> tag must be the first element
 in the file, and cannot be preceded by any blank lines. Its
 most common use is to indicate that the script file can be
 edited by an XML editor.

	 <description>
descriptiveText
</description>
	Defines the purpose of a script. It is displayed
 when the WScript.ShowUsage
 method is called or the user adds the /? command-line switch when running
 the script. It is enclosed within the <runtime>...</runtime> element.

	 <example>
exampleScript
</example>
	Provides an example of a script’s usage. It is
 displayed when the WScript.ShowUsage method is called
 or the user adds the /?
 command-line switch when running the script. It is enclosed
 within the <runtime>...</runtime> element.

	 <job>
script
</job>
	Defines an individual job within a script file
 containing one or more jobs. Its syntax is <job id=
 "jobid“> where
 jobid is a string identifier that’s
 unique within the file. Every element that appears within a
 <job>...</job>
 tag applies to that job. An individual job can be invoked
 using the //Job
 command-line switch.

	 <named
 name=name
 helpstring=hlp
 type=type
 required=req
/>
	Provides information about a named argument to a
 script. It is displayed when the WScript.ShowUsage method is called
 or the user adds the /?
 command-line switch when running the script.
 name is the argument’s name.
 hlp describes the argument.
 type indicates the argument’s type
 and can be string, boolean, or simple.
 req is a Boolean that indicates
 whether the argument is required or optional. The <named> element must be
 enclosed within the <runtime>...</runtime> element. The
 required element is used in
 displaying usage information, and name and helpstring are used to describe the
 named argument.

	 <object />
	Defines a global object. Its syntax is <object id=
 "objID" [classid=“clsid:GUID"
 | progid="progID"]
 /> where
 objID is the name by which the
 object will be referred in the script or scripts,
 GUID is the CLSID of the class from
 which the object was created (as defined in HKEY_CLASSES_ROOT\CLSID), and
 progID is the programmatic
 identifier of the class. Either one of
 GUID or
 ProgID must be present, but not
 both.

	 <package>
script
</package>
	Indicates that a Windows Script Host
 (.ws) file contains multiple job
 definitions, as defined by the <job>...</ job> element. If a file contains
 only a single job, the element is optional.

	 <reference />
	Adds a reference to a type library, making its
 constants available to the script. Its syntax is <reference [object=
 "progid" | guid=
 "LibID"] [version=
 "version"] /> where
 progid is the programmatic
 identifier of the type library,
 LibID is its GUID, and
 version is its version number.
 Either progid or
 TypeLibGUID must be present, but
 not both. Typically, this is element causes a good deal of
 difficulty, although it does work. While individual classes
 within type libraries do have programmatic identifiers, most
 type libraries do not, which means that you should specify the
 GUID by determining its value from a subkey of the HKEY_CLASSES_ROOT\ TypeLib key in the registry. In
 addition, version defaults to 1.0,
 which is rarely the version you’d want to use. Available
 versions are listed as subkeys of HKEY_CLASSES_ ROOT\TypeLib\
 LibID, where
 LibID is the type library’s GUID.

	 <resource id=id>
text or number
</resource>
	Defines a string or number as a resource that can
 be retrieved by its identifier rather than “hard-coded”
 throughout script. Among other uses, resources are invaluable
 in localizing applications. Resources can be retrieved using
 the getResource method, whose syntax is getResource(id) where
 id is the ID of the resource. The
 method returns a string containing the resource value.

	 <runtime>
runtimeInfo
</runtime>
	Provides runtime information about a script when
 the WScript.ShowUsage method is called or
 the user adds the /?
 command-line switch when running the script. It must appear
 within the <job>...</job> element and therefore
 can apply to only a single script. It in turn can contain
 <description>,
 <usage>, <example>, <named>, and <unnamed> elements.

	 <script>
script
</script>
	Defines the language in which a code block is
 written and optionally imports that code block from another
 file. Its syntax is <script language="lang"
 [scr="strfile“]> where
 lang is a COM-compliant scripting
 language such as “VBScript” or “JScript” and
 strfile is the path and name of the
 file to be included.

	 <unnamed
 name=unnamed
 helpstring=hlp
 many=many
 required=req
/>
	Provides information about an unnamed argument to
 a script. It is displayed when the
 WScript.ShowUsage method is called or the
 user adds the /?
 command-line switch when running the script.
 name is the name used for the
 unnamed argument. hlp describes the
 argument. many is a Boolean that
 indicates whether the argument can be specified more times
 than the required
 attribute. type. req is a Boolean
 that indicates how many times the argument should appear on
 the command line.

	 <usage>
descriptiveText
</usage>
	Provides information about a script that is
 displayed when the WScript.ShowUsage
 method is called or the user adds the /? command-line switch when running
 the script. It allows the typical usage display to be
 overridden, since if it is present, all other tags contained
 by the <runtime>
 element are ignored. The <usage> element must be
 enclosed within the <runtime>...</runtime> element.

Accessing Other Object Models

 On the whole, the functionality of WSH is strictly
 limited. For instance, WSH itself provides almost no access to the
 filesystem, nor does it support any application services. This is a
 deliberate omission; the designers of Windows Script Host intended
 that you could draw on the functionality of other object models when
 writing WSH scripts.
The “hooks” into other object models are provided by the WScript
 object’s CreateObject andGetObject methods; the former method creates a new
 instance of an object, while the latter retrieves a reference to an
 existing instance. As Table 7-30 shows, using
 these methods, you can instantiate objects like the following:
	 Active Directory Service Interface (ADSI)
	ADSI provides a single set of directory service interfaces
 for managing network resources.

	ActiveX Data Objects (ADO)
	 ADO is a data access technology that offers a
 uniform methodology for accessing data regardless of location or
 format. ADO has a relatively “flat” object model, and many
 objects (like the Recordset object, or the Connection object)
 can be instantiated independently of one another.

	Collaborative Data Objects (CDO)
	 CDO is an object model that uses MAPI to create
 mail-enabled applications. The Session object is its top-level
 object.

	Data Access Objects (DAO)
	DAO is a data access technology intended primarily
 for use with Access databases and the Jet database engine. Its
 top-level object is named DBEngine.

	The Dictionary object
	A part of the Scripting Runtime Library, theDictionary object provides access to data sets
 that have identifiable keys.

	The Excel Application object
	The Excel object model is useful for extracting data
 from spreadsheets or for manipulating charts. Its top-level
 object is the Application object.

	The FileSystemObject object
	A part of the Scripting Runtime Library, the FileSystemObject provides access to the local
 filesystem.

	Windows Management Instrumentation (WMI)
	 WMI is Microsoft’s implementation of Web-Based
 Enterprise Management (WBEM), a technology that aims at
 standardizing access to management information in an enterprise
 environment.

	The Word Application object
	The Word object model makes it easy to manipulate Word
 .doc files as well as Rich Text Format
 (.rtf) files. Note that its top-level
 object is the Application object.

Table 7-30. Some object models and their programmatic identifiers
	Object
	ProgID
	Description

	Access
	 Access.Application
	The forms and reports (primarily) of an Access
 table

	Connection
	 ADODB.Connection
	An ADO database connection

	DBEngine
	 DAO.DBEngine

	The DAO object model, primarily for Access
 databases

	Dictionary
	 Scripting.Dictionary
	A high-performance alternative to arrays and
 collections for keyed data

	Excel
	 Excel.Application
	The Microsoft Excel application, for manipulating
 spreadsheets and charts

	FileSystemObject
	 Scripting.FileSystemObject

	Represents the local filesystem

	Recordset
	 ADODB.Recordset
	An ADO recordset

	Session
	 MAPI.Session

	A Session object using Collaborative Data Objects
 (CDO)

	SWbemLocator
	 WbemScripting.SWbemLocator

	A WMI object that provides access to WMI on a
 particular local or remote host computer

	SWbemObjectPath
	 WbemScripting.SWbemObjectPath

	A WMI object that constructs and validates object
 paths

	SWbemServices
	 winmgmts:

	A WMI object whose InstancesOf method provides
 access to WMI class instances

	Word
	 Word.Application
	The Microsoft Word application for
 manipulating
 documents

Chapter 8. VBScript with Internet Explorer

VBScript was initially intended for client-side scripting. It
 provided a Visual Basic-like method for HTML developers to add
 interactivity to their web pages. The hope was that since many
 developers were familiar with Visual Basic, a scripting language modeled
 after the application development tool would have a wide audience. The
 basic concept proved to be correct, although client-side scripting with
 VBScript never achieved the popularity its developers had hoped for.
 This is because client-side scripting with VBScript has a major
 downside: VBScript is supported only in Internet Explorer. This means
 that you have to either force your users to a specific browser (which is
 really only possible on intranets), or script with both VBScript and
 some flavor of ECMAScript to make sure that you are providing the same
 functionality to all users. This, however, does not mean that scripting
 in ECMAScript will answer all of your compatibility issues,
 either.Netscape Navigator and Internet Explorer each have their
 own flavor of ECMAScript, which, while mostly similar, still have their
 differences. Anyway, we’ll assume that if you are reading this chapter
 that you are interested in client-side scripting in Internet
 Explorer.
The <SCRIPT> Tag

Very much like the <A> tag is used to delimit a hyperlink
 on your web page, the <SCRIPT> tag is used to contain your
 script. The <SCRIPT> tag
 allows scripts to be written inline with the rest of your HTML
 document, and indicates where the embedded scripting code begins. It
 also indicates the scripting language, and therefore serves to
 identify which particular scripting engine is responsible for handling
 the code. As with nearly all HTML tags, there is a corresponding end
 tag (</SCRIPT>) to close the
 script.
<SCRIPT> Attributes

The <SCRIPT>
 tag has one main attribute, LANGUAGE, which is optional. There are
 also two additional attributes, SRC and FOR, that give the <SCRIPT> tag a specialized
 meaning.
The LANGUAGE attribute

LANGUAGE is used to specify to the browser which scripting
 language engine is to compile and execute the code contained
 within the script tags. In order to indicate that a script should
 be handled by the VBScript language engine, either of the
 following two forms of the <SCRIPT> tag are
 acceptable:
<SCRIPT LANGUAGE="vbscript">
<SCRIPT LANGUAGE="vbs">
Unless otherwise stated, HTML tags or elements and
 attributes are not case-sensitive. Therefore, it would be legal to
 include the following <SCRIPT> tag in an HTML
 document:
<script language="VBSCRIPT">
As we saw earlier, the language attribute is actually
 optional. However, if you do not specify the language, Internet
 Explorer will, by default, treat the script as though it were
 JScript, and use theJScript language engine when compiling and executing
 it.
Instead of the LANGUAGE
 attribute, it is possible to use the TYPE attribute to specify the scripting language. The
 value of the TYPE attribute
 must be the MIME type of a scripting engine. The valid MIME types
 for VBScript are text/VBScript
 and text/VBS. Hence, the
 following two <SCRIPT>
 tags are functionally identical:
<script language="VBSCRIPT">
<script type="text/VBScript">

The SRC attribute

The <SCRIPT> tag
 itself need not contain script. Instead, the <SCRIPT> tag, when used with the
 SRC attribute, can designate ascript file to be included at that point in the HTML
 stream. The SRC attribute’s
 value is the URL of the script file to be included. When the
 SRC attribute is present, the
 LANGUAGE attribute should also
 be used. Otherwise, Internet Explorer interprets the included
 script file as having the same language as the
 last script block parsed; if there is no
 previous script block, it defaults to JScript. In addition, the
 </SCRIPT> end tag should
 immediate follow the <SCRIPT> tag. For instance, the
 following tag includes a file named Include1.htm:
<SCRIPT SRC="Include1.htm" LANGUAGE="VBScript"> </SCRIPT>
The file designated by the SRC attribute should be purely a script
 file containing source code in the designated scripting language;
 that is, it should contain no embedded HTML tags, not even the
 <SCRIPT> tag. Otherwise,
 an error results.
Note that the file designated by the SRC attribute is included in the HTML
 stream and is treated by the scripting engine as if it were part
 of the HTML file in which it is included. This means, for
 instance, that attempting to “hide” global variables from the
 scripts in the calling HTML document by declaring them private
 will not succeed, since the scripting engine will see them as
 having been defined in the document from which you’re trying to
 hide them.
The SRC attribute can be
 extremely useful in allowing you to make a code library accessible to your web pages. You
 simply relocate all of the functions and procedures that you use
 in multiple web pages to a single script file and include it in
 all of the web pages that require its functions and procedures.
 One of the obvious advantages of this approach is that it leaves
 you with only a single copy of the source code to maintain, rather
 than with innumerable frequently incompatible copies in a
 multiplicity of locations.

The FOR attribute

Strictly speaking, FOR
 is an attribute of the <SCRIPT> tag. However, we like to
 separate <SCRIPT> and
 <SCRIPT FOR> in our minds, at least, since
 they are used somewhat differently. <SCRIPT FOR> is used to enclose the script for a single event
 belonging to a single object or control, whereas <SCRIPT> can contain numerous
 functions, procedures, events, etc. You can see this clearly in
 the full <SCRIPT FOR>
 tag. Unlike all the other <SCRIPT> tags you have seen thus
 far, this line attaches its script to a specific event of a
 specific control:
<SCRIPT FOR="myButton" EVENT="onClick" LANGUAGE="vbscript">
The FOR attribute
 specifies which control (usually an intrinsic HTML object) the
 code is to be attached to, and the EVENT attribute tells the scripting engine what event
 handler the <SCRIPT FOR>
 tag script is defining. To put it another way, the <SCRIPT FOR> tag allows you to
 define an event handler for a control event without having to name
 that event explicitly. For instance, Example 8-1 defines an
 event handler for the myButton_onClick event.
Example 8-1. The <SCRIPT FOR> tag
<HTML>
<BODY BGCOLOR="white">
<FORM NAME="myForm">
 <INPUT TYPE=text NAME="myText">
 <INPUT TYPE=button NAME="myButton">
 <SCRIPT FOR="myButton" EVENT="onClick" LANGUAGE="vbscript">
 alert Document.myForm.myText.Value
 </SCRIPT>
</FORM>
</BODY>
</HTML>

As you can see from Example 8-1, the VBScript
 Sub...End Sub construct is not
 required, since the event and object have been specified in the
 <SCRIPT FOR> tag, and the
 script itself consists of a complete procedure. If you attempt to
 use the Sub...End Sub construct, the VBScript compiler
 displays an error message. This means, incidentally, that the
 procedure defined by the <SCRIPT
 FOR> tag does not have a name; consequently, it
 cannot be called from any other part of a VBScript program. Also
 note that to improve readability, it is usual to place a <SCRIPT FOR> construct directly
 after the object to which it relates.

Where to Place the <SCRIPT> Tag

The <SCRIPT>
 tag can be placed anywhere within the <HEAD> or <BODY> sections of an HTML document.
 There’s also no limitation on the number of <SCRIPT> sections you can place
 within a HTML file; you can have as many combinations of <SCRIPT>...</SCRIPT> as you
 want. You may choose to bundle all your procedures together into one
 large <SCRIPT> section and
 place this at the end of the BODY
 section, out of the way of the main HTML coding, or you could quite
 easily split the procedures into their own <SCRIPT> sections, placing them near
 to or directly after the HTML elements they refer to (or are called
 from). The three models or templates that appear in Examples Example 8-2 through Example 8-4 show where you
 can place the <SCRIPT> tag
 within your HTML document.
Example 8-2. Using a single <SCRIPT> section as part of the
 <HEAD> section
<HTML>
 <HEAD>
 <SCRIPT LANGUAGE="vbscript">
 various scripted procedures
 </SCRIPT>
 </HEAD>
<BODY>
various html coding, etc.
</BODY>
</HTML>

Example 8-3. Using a single <SCRIPT> section at the end of the
 <BODY> section
<HTML>
 <HEAD>
 </HEAD>
<BODY>
 various html coding, etc.
 <SCRIPT LANGUAGE="vbscript">
 various scripted procedures
 </SCRIPT>
</BODY>
</HTML>

Example 8-4. Using multiple <SCRIPT> sections within the
 <BODY> section
<HTML>
 <HEAD>
 </HEAD>
<BODY>
 various html coding, etc.
 <SCRIPT LANGUAGE="vbscript">
 various scripted procedures
 </SCRIPT>
 Various HTML coding etc.
 <SCRIPT LANGUAGE="vbscript">
 various scripted procedures
 </SCRIPT>
 various html coding, etc.
 <SCRIPT LANGUAGE="vbscript">
 various scripted procedures
 </SCRIPT>
</BODY>
</HTML>

Using <!——> with <SCRIPT>

Although certainly not mandatory, Microsoft recommends that
 you “comment out” the contents of the <SCRIPT> section by using the
 HTMLcomment tags <!-- and -->
 . This prevents olderbrowsers that do not recognize the <SCRIPT> tag from interpreting the
 script as plain text and displaying it on the HTML page, as
 illustrated in Figure
 8-1.
	[image: An older browser displaying uncommented script as text]

Figure 8-1. An older browser displaying uncommented script as
 text

The comment tags <!--
 and --> must be placed within
 the <SCRIPT> tags, as the
 following code fragment shows:
<SCRIPT LANGUAGE="vbscript">
 <!--
 Sub DoAScript

 End Sub
 -->
</SCRIPT>
Otherwise, the <SCRIPT> tags themselves will be
 ignored by all browsers. Since browsers are expected to overlook
 tags that they don’t understand, older browsers will skip over the
 <SCRIPT> tag. But since
 they don’t “know” that the <SCRIPT> tag marks the beginning of
 executable content, rather than of displayable text, they’ll display
 the text unless the comment tags are present. On the other hand,
 browsers that support the <SCRIPT> tag use the scripting
 engine to interpret all text between the <SCRIPT> and </SCRIPT> tags. The HTML comment
 tags are ignored by the script engine, so that it “sees” only the
 actual code. However, any additional comment tags, or any comment
 tags in any other position within the <SCRIPT> and </SCRIPT> tags, are interpreted as
 script, and generate a syntax error. This means that if you need to
 add comments to your code, don’t use the HTML comment tags; use
 either REM or a single quotation
 mark (') at the start of the
 line.

What Can You Do with Client-Side Scripting?

The three main things that you can do with client-side
 scripting are:
	Interact with the client

	Handle events

	Validate data entry

These tasks are accomplished by manipulating the Internet
 Explorer Document Object Model (DOM). We’ll examine each of these uses
 in turn.
Interacting with the Client

 First, let’s take a look at a small script that
 displays a message to the user when the web page loads, as shown in
 Figure 8-2; its HTML
 source is shown in Example
 8-5. Don’t worry about the code now; we’ll take a more
 in-depth look at it later.
Example 8-5. A little VBScript interactivity
<HTML>
<HEAD>
<Script Language = "VBSCRIPT">
sub window_onload
 msgbox "Welcome to my Website"
end sub
</SCRIPT>
</HEAD>

<BODY>
<H1>Matt's Wonderful World of Web</H1>
</BODY>
</HTML>

This simple example will pop up a message box to the client
 when the page loads in the window. Not too complex, but a nice touch
 — and more importantly, not something you can do without a scripting
 language. Let’s take a little closer look at what is happening
 here.
	[image: Web page produced by Example 8-5]

Figure 8-2. Web page produced by Example 8-5

First, we declare the subroutine in the <HEAD> section of the HTML page.
 This isn’t required, but we highly recommend it as good practice.
 Better to have all of your code in one place so you can find the
 subroutines faster when you need to make corrections or
 changes.
The next section is the actual VBScript that has been written
 for this event:
sub window_onload
 msgbox "Welcome to my Website"
end sub
This should be a common sight for anyone who has written any
 VB or VBA code. Here we have declared a subroutine that will fire
 when the page is being loaded. In this case, it will display a
 simple message box to the user welcoming them to our site.
From this small example, it is easy to see how VBScript allows
 you to add some flavor and depth to your web pages.
Now that you’ve seen a small example, let’s expand on it and
 add a little more interactivity. Our HTML source code is shown in
 Example 8-6.
Example 8-6. A simple interactive web page
<HTML>
<HEAD>
<Script Language = VBSCRIPT>

sub window_onload
 msgbox "Welcome to my Website"
end sub

sub cmdMessage_onclick
 msgbox "Hello " & txtName.value
end sub

</SCRIPT>
</HEAD>

<BODY>
<H1>Matt's Wonderful World of Web</H1>
<input type = "Text" Name = "txtName"/>

<Input Type = "Button" Name = "cmdMessage" VALUE = "Submit"/>
</BODY>
</HTML>

You’ll notice that there are now two different subroutines in
 the <HEAD> section of the
 HTML document. In addition to the original one from Example 8-1, there is now a
 new one that is tied to abutton that we have placed on the page. Again, nothing
 too complex here, so we will walk through the new code
 quickly.
You can see that we have added a button to the form with the
 following line of HTML:
<Input Type = "Button" Name = "cmdMessage" VALUE = "Submit">
We have named the button cmdMessage, and in the <HEAD> section of the document, we
 have created an event handler for this button called
 cmdMessage_onclick. This event will fire every time this button is
 clicked. Let’s take a look at what the code does:
sub cmdMessage_onclick
 msgbox "Hello " & txtName.value
end sub
This should seem familiar to you by know. We are again calling
 the MsgBox function, but this
 time we are appending a variable value to our message. In this code,
 we are referencing the value of the input box directly, but we could
 have also used a declared variable as well:
sub cmdMessage_onclick
 dim txtUser
 txtUser = txtName.value
 msgbox "Hello " & txtUser
end sub
There is no real advantage to using a variable in this
 instance, but most of your code won’t be this simple, so it is a
 good idea to get used to handling user input or other information
 with variables.

Handling Events

The previous section demonstrated some simple code
 based on events that can be triggered from within a web page. Before
 we discuss data validation, we should touch on the idea of
 event-driven programming and look at how we can use VBScript to
 handle events that take place on your web pages. Table 8-1 displays some
 commonHTML intrinsic controls and their associated
 events.
Table 8-1. HTML intrinsic controls and their events
	Control
	Event

	Button
	OnClick

	Check Box
	OnClick

	Image
	OnClick

	Form
	OnReset
 OnSubmit

	Radio
	OnClick

	Submit
	OnClick

	Text
	OnBlur
 OnChange

 OnFocus
 OnSelect

	Textarea
	OnBlur
 OnChange

 OnFocus
 OnSelect

	Window
	OnLoad

This is by no means an exhaustive list, just some of the more
 common events that are available to you. For a complete list of all
 of the HTML controls and their corresponding events, we
 recommend HTML & XHTML: The Definitive
 Guide, Fifth Edition, by Chuck Musciano and Bill Kennedy
 (O’Reilly).
Most of the code that you write will be in response to some
 sort of action that the user takes. When you write code for a
 specific event, it is called an event handler.
 In other words, you have created code that will be executed in
 response to a specific event. The concept of event-driven
 programming is what makes VB and VBA so popular. In client-side
 scripting, you have laid the framework with HTML, and you are using
 VBScript to respond to the way the user interacts with the web
 page.
The code in Example
 8-6 handles two different events, one when the window is
 loaded into the browser, and the other when the user clicks on a
 button. Both of these event handlers use the method of appending the
 name of the event being handled to the object name; the VBScript
 parser knows to associate this code with the proper event. In the
 case of the button, it looked like this:
Sub btnUser_onclick
Msgbox "Display a message"
End Sub
This method is familiar to VB and VBA developers, since it is
 how event handlers are named within those two environments.
In addition, you can use the <SCRIPT FOR> tag to
 explicitly declare the event that the code will be associated with.
 For example:
<SCRIPT FOR="btnUser" EVENT="onclick" LANGUAGE="vbscript"
MsgBox "Display a message"
</SCRIPT>
As in most coding, this is really a matter of which style you
 prefer. Developers who have worked with VB and VBA may prefer the
 implicit style, while HTML programmers adding VBScript to their
 toolbox may prefer the explicit method. There is no functional
 difference between the two, so the choice is yours.
Now that we’ve had a look at how to write code for the events,
 let’s look at putting that into a little more useful practice. Next
 we’ll take a look at data validation and how we can use VBScript to
 make sure that the user has entered the correct data before we do
 anything important with it.

Data Validation

 One of the best uses of client-side scripting is to
 check user input before processing it. Let’s build on our earlier
 example and add a simple routine to check whether data entered by
 the user meets our requirements. Example 8-7 asks the user
 to enter a user ID and then checks to make sure that she has entered
 only numeric data.
Example 8-7. Simple data validation in client-side script
<HTML>
<HEAD>
<Script Language = VBSCRIPT>
sub window_onload
 msgbox "Welcome to my Website"
end sub

sub cmdMessage_onclick
 dim txtUser
 txtUser = txtName.value
 if isnumeric(txtUser) then
	 msgbox "Number Accepted"
 else
 msgbox "Please enter a numeric value"
 end if
end sub
</SCRIPT>
</HEAD>

<BODY>
<H1>Matt's Wonderful World of Web</H1>
<input type = "Text" Name = "txtName">
 Enter your ID Number

<Input Type = "Button" Name = "cmdMessage" VALUE = "Submit">
</BODY>
</HTML>

First, we’ve added some instructions to our HTML to let the
 user know that we want him or her to enter a numeric user ID.
 Second, we have made some changes to the onClick event for the
 Submit button. Now when the user submits the information, an
 If statement is executed that
 checks whether the value the user entered is a number. If it is, the
 user gets a message telling them that the value is correct; if not,
 the user is prompted to re-enter a correct value.
This is a good example of doing some basic data checking.
 Let’s expand this and look at validating data that the user has
 entered into a form. In order to do this, we’ll need to expand our
 HTML a bit and add some new elements. Example 8-8 shows the
 result.
Example 8-8. Validating form data
<HTML>
<HEAD>
<Script Language = VBSCRIPT>

Function radUserChecked (grpState)
 dim intChkRadio
 radUserChecked = False
 For intChkRadio = 0 to grpState.Length -1
 If grpState(intChkRadio).Checked Then
 radUserChecked = True
 Exit Function
 end if
 Next
End Function

sub cmdMessage_onclick
 If radUserChecked(frmUser.radUserState) Then
 msgbox "Thank you for making a selection"
 else
 msgbox "Please select one of the choices"
 end if
end sub

</SCRIPT>
</HEAD>

<BODY>
<H1>Matt's Wonderful World of Web</H1>

<Form method=post id=frmUser name=frmUser>
New User
<Input Type = "Radio" id=radUserState name=radUserState value="New User">

Previous User
<Input Type = "Radio" id=radUserState name=radUserState value="Previous User">

<Input Type = "Button" Name = "cmdMessage" VALUE = "Submit">
</FORM>
</BODY>
</HTML>

Here we have added a form to the HTML document. Inside the
 form, we have added two radio buttons. We want to make sure that the user has
 checked one of the buttons before we submit any information. In
 order for all of the radio buttons to be a group, you have to
 remember to give them the same name. Grouping the buttons allows us
 to loop through the collection to make sure that one of them has
 been selected. We achieve this by creating the radUserChecked function that will return
 a value to let us know the state of the group.
Next, let’s look at how to handle whether data is submitted to
 the server. Ultimately, this is the reason that you are performing
 data validation. Let’s use the example of a web page that asks the
 user to submit an email address. First, we will need to determine
 whether the user has entered anything; second, we will parse the
 text looking for an @ somewhere
 in the string. The web page is shown in Example 8-9.
Example 8-9. Cancelling form submission
<HTML>
<HEAD>
<Script Language="VBSCRIPT">
Function frmEmail_onsubmit()

Dim strEmail

strEmail = frmEmail.txtEmail.value

If strEmail = "" Then
 MsgBox "You must submit an email address"
 frmEmail_onsubmit = False
Else
 If InStr(1, strEmail, "@", vbTextCompare) = 0 Then
 MsgBox "You have not entered a valid email address"
 frmEmail_onsubmit = False
 Else
 MsgBox "Thanks for entering your Email"
 End If
End If

End Function

</Script>
</HEAD>
<BODY>
<Form action="getemail.asp" method=POST id=frmEmail
 name=frmEmail>
Please Enter Your Email Address

<INPUT type="text" id="txtEmail" name="txtEmail">

<INPUT type = "submit" value="Send Email" id=btnSubmit
 name=btnSubmit>
</Form>
</BODY>
</HTML>

In this example, we prevented the user from posting the form
 data without entering a valid email address. The event handler for
 the HTML Form object’s OnSubmit event (frmEmail_OnSubmit in our example) is a
 function, rather than a subroutine, and the function’s return value
 indicates whether the default action of the event — in the case of
 the OnSubmit event, that the form data be submitted to the URL
 defined by the ACTION attribute —
 should occur. If the function returns True (its default value), the form data is
 submitted. But if it returns False, the submission is cancelled. In
 Example 8-9, when we
 detected that the user had not entered the correct data, we sent
 back a value of frmEmail_onsubmit
 = False, which cancels
 the submit action.
As you can see, you can check and handle most user interaction
 with VBScript. The previous examples are pretty straightforward, but
 don’t be fooled by them. You can build in incredibly complex
 client-side scripting as needed. Now let’s move on to more
 interaction with the browser itself by taking a look at the Document
 Object Model.

Understanding the IE Object Model

 Once the World Wide Web began to gain popularity, there
 was a great concern about preserving standards, so that the exchange
 of information would remain as open as possible. The Document Object Model (DOM), like HTML, is one of those
 standards. Basically, the Document Object Model provides a means for
 you to interact programmatically with the document displayed by the
 browser. Both Netscape Navigator and Internet Explorer have a document
 object model; however, there are some large differences between the
 two. Despite the presence of standards documents, there is always room
 for interpretation. (If you are interested in reading more about the
 Document Object Model standards, or any of the other standards that
 apply to the World Wide Web, see http://www.w3.org.)
We are going to take a look at the Internet Explorer Document
 Object Model. It is a rich environment that will allow you a measure
 of control over the document in the browser. Before we jump in, let’s
 have a quick look at the Document Object Model itself and some of its
 parts. These are shown in Figure 8-3.
	[image: Internet Explorer Object Model]

Figure 8-3. Internet Explorer Object Model

As you can see, the Window object is the parent of all of the
 other objects in this model. Each document will always have at least
 one Window object. A Window object will always have at least one
 Document object. Without the Document object, there would not be much
 for you to do with the Document Object Model. This figure shows the
 hierarchical nature of the Document Object Model. Like many of the
 object models that Visual Basic developers work with, you can access
 objects via their parent and use their properties to enhance your
 client-side development.
The object model is too extensive to document fully here. The
 next section displays some tables that describe the properties and
 methods of some of the objects that are programmatically available in
 the DOM. These tables are not exhaustive references to the objects; we
 have included the methods and properties that we consider to be the
 most useful and interesting. This will give you an idea of the scope
 and power of the Document Object Model.
The Window Object

The Window object is the top-level object in the object model.
 When you reference the Window object, you are actually interacting
 directly with the browser and the browser window itself. The Frame
 object in the object model is also just a particular type of Window
 object — the same properties and methods that apply to the Window
 object apply to the Frame object as well.
Some of the Window object’s significant properties are shown
 in Table 8-2; its
 methods appear in Table
 8-3.
Table 8-2. Some properties of the Window object
	Property
	Description

	 clientInformation
	Returns the navigator (or clientInformation)
 object, which provides information about the browser.

	 closed
	A Boolean value that can be checked to see if a
 window is still open.

	 event
	Returns an event object that is accessible only
 from within an event handler. The event object itself
 conveys a wealth of information (such as mouse location or
 keyboard status) about the system environment when the event
 was fired.

	 history
	Returns the History object for the current
 window or frame.

	 location
	Sets or retrieves the URL of the document
 currently loaded in the window.

	 name
	The name of a frame or window.

	 parent
	Returns a reference to the parent
 window.

	 screen
	Returns a reference to the screen
 object.

	 status
	Returns or sets the text of the status bar in
 the browser.

	 top
	Returns a reference to the browser window
 (i.e., the top-level Window object).

Table 8-3. Some methods of the Window object
	Method
	Description

	 alert
	Displays a dialog box with a message. Its
 syntax is Window.alert
 sMsg where
 sMsg is an optional string
 containing the message.

	 blur
	Removes the focus from the window and fires the
 onBlur event. Its syntax is Window.blur.

	 clearTimeout
	Turns off the timeout delay counter set in a
 previous call to the setTimeout method. Its syntax is
 Window.clearTimeout
 iTimeoutID where
 iTimeoutID is the timeout setting
 returned by the previous call to setTimeout.

	 close
	Closes the current window. Its syntax is
 Window.close.

	 execScript
	Evaluates one or more script expressions in any
 scripting language embedded in the browser. Its syntax is
 Window.execScript
 sExpression,sLanguage, where
 sExpression is a string that
 specifies the code to be executed and
 sLanguage is an optional string
 that specifies the language of
 sExpression. The default value of
 sLanguage is JScript.

	 focus
	Brings the window to the front of all regular
 browser windows and fires the onFocus event. Its syntax is
 Window.focus.

	 navigate
	Loads a new document into the window or frame.
 Its syntax is Window.navigate
 sURL, where
 sURL is a string containing the
 URL of the document to be loaded.

	 open
	Opens a new window (but does not close the
 original one). Its syntax is Window.open(sURL,
 sName,
 sFeatures,
 bReplace), where
 sURL is the optional URL of the
 document to be opened in the window (if absent, the browser
 will open its default document),
 sName is the optional name of a
 window used as the value of the TARGET attribute of the <FORM> or <A> tag,
 sFeatures is an optional string
 that can contain a wide array of window configuration
 features, and bReplace is an
 optional Boolean that indicates whether the new URL should
 replace the existing one in the browser’s history list
 (True) or whether an
 entry should be added (False). The method returns a
 reference to the new Window object.

	 print
	Starts the printing process for the window or
 frame. Its syntax is Window.print.

	 scroll
	Sets the scrolled position of the document
 inside the current window or frame. Its syntax is Window.scroll
 ix,
 iy, where
 ix and
 iy are the number of pixels to be
 offset horizontally and vertically in the upper-left corner
 of the window.

	 showHelp
	Displays a help window with the document
 specified by the URL parameter. Its syntax is Window.showHelp
 sURL,
 vContextID where
 sURL is the URL of the help file
 and vContextID is an optional
 context identifier that identifies a particular item within
 the help file.

The Document Object

The Document object represents the document displayed in a
 window or frame. Its properties are shown in Table 8-4 and its
 methods are listed in Table 8-5.
Table 8-4. Some properties of the Document object
	Property
	Description

	 activeElement
	Returns a reference to the object that
 currently has the focus within the document.

	 alinkColor
	Retrieves or sets thecolor of the hypertext link as it is clicked.

	 bgColor
	Retrieves or sets the background color of the
 element.

	 body
	Returns a reference to the Body object defined
 by the <BODY>
 element within the document.

	 domain
	Returns or sets the hostname of the server that
 served up the document.

	 fgColor
	Retrieves or sets the foreground color for the
 document.

	 linkColor
	Retrieves or sets the color of a hypertext link
 that hasn’t been visited.

	 location
	Returns a location object that allows the URL
 of the current document to be retrieved or set.

	 vlinkColor
	Retrieves or sets the color of a link that has
 been visited recently.

Table 8-5. Some methods of the Document object
	Method
	Description

	 clear
	Removes the document from the window or frame.
 Its syntax is Document.clear.

	 close
	Closes the document writing stream to a window
 or frame. Its syntax is Document.close.

	 createStyleSheet
	Creates and adds a new stylesheet for the
 document. Its syntax is Document.createStyleSheet
 sURL,
 iIndex where
 sURL is an optional string that
 specifies whether to add style information as a Link object
 or as a Style object, and iIndex
 is an optional integer that indicates where the new
 stylesheet is to be inserted in the styleSheets collection.
 By default, it is inserted at the end of the collection. The
 method returns a reference to the new styleSheet object.

	 open
	Opens a new window to receive output from the
 Write and WriteLn methods. Its syntax is Document.open(
 sMimeType, sReplace), where
 sMimeType must be “text/html,”
 and sReplace is an optional
 string that indicates whether the new document replaces the
 existing one in the history list (True) or not (False, the default). The method
 returns the new Document object.

	 write
	Allows for dynamic content to be added to the
 page. Must be called when the page is being opened. Its
 syntax is Document.write
 sText, where
 sText is the text and HTML to be
 written.

The Elements Collection and HTML Intrinsic Controls

 The Elements collection is a collection of all the
 HTML intrinsic objects contained in a form. You can access the
 Elements collection with a code fragment like the following:
Dim oElements
Set oElements = Document.frmForm.Elements
where frmForm is the name of the
 form on which the Elements collection resides. The Elements
 collection has two read-only properties:
	length
	Indicates the number of HTML intrinsic controls in the
 collection.

	Item
	Retrieves a specific HTML intrinsic control based on
 either its name or its ordinal position in the collection,
 starting at 0. The highest ordinal position in the collection
 is one less than the value of the length property.

You can then access a particular control with a code fragment
 like:
Set oCtrl = Document.frmData.Elements.Item("txtName")
However, the Item property is the default member of the
 Elements collection, so this can be shortened to:
Set oCtrl = Document.frmData.Elements("txtName")
The default member of the Form collection is the Elements
 collection, though, so this statement can be further shortened
 to:
Set oCtrl = Document.frmData("txtName")
or, even more clearly:
Set oCtrl = Document.frmData.txtName
Unfortunately, the way in which you programmatically work with
 an HTML intrinsic control depends on the control type; HTML
 intrinsic controls do not have a uniform set of properties, methods,
 and events. Each, however, does have a type property, which allows
 you to determine the type of control with which you are
 working.
The following sections will examine the HTML intrinsic
 controls and their most important properties, methods, and
 events.
The textbox control

The HTML textbox control is defined by the <INPUT TYPE=Text> tag. Working with the
 textbox control is very straightforward, and closely resembles
 working with a Visual Basic TextBox control or a VBA UserForm
 TextBox control. The control’s properties include the
 following:
	Property
	Description

	 defaultValue
	The initial contents of the textbox, as
 defined by the VALUE
 attribute

	 name
	The name assigned to the textbox by the
 NAME attribute

	 type
	The type property of a textbox control is
 always “text”

	 value
	The contents or text of the textbox

The most useful methods of the textbox control (none of
 which take any parameters) are:
	Method
	Description

	 Focus
	Moves the focus to the textbox control if it
 does not have the focus and fires its onFocus event

	 Select
	Selects or highlights all of the text
 contained in the control

Of the events supported by the textbox control, the
 following are most useful:
	Event
	Description

	 onChange
	Fired when the contents of the textbox
 control have changed

	 onFocus
	Fired when the control receives the input
 focus

The checkbox control

The HTML Checkbox control is defined by the <INPUT TYPE=checkbox> tag. Working with the
 Checkbox control is very straightforward, and closely resembles
 working with a Visual Basic checkbox control or a VBA UserForm
 checkbox control. The control’s properties include the
 following:
	Property
	Description

	 checked
	A Boolean that reflects whether the control
 is checked

	 name
	The name assigned to the checkbox by the
 NAME attribute

	 type
	The type property of a checkbox control is
 always “checkbox”

The most useful methods of the checkbox control (none of
 which take any parameters) are:
	Method
	Description

	 Click
	Simulates a click by causing the OnClick
 event to fire

	 Focus
	Moves the focus to the textbox control if it
 does not have the focus and fires its onFocus event

Of the events supported by the checkbox control, the
 following are most useful:
	Event
	Description

	 onClick
	Fired when the user clicks on the
 checkbox

	 onFocus
	Fired when the control receives the input
 focus

	 onReadyStateChange
	Fired when the state of a checkbox has
 changed

The radio button control

The HTML radio button control is defined by the <INPUT TYPE=radio> tag. Because radio
 buttons reflect a set of two or more mutually exclusive choices,
 there is always more than one radio button with the same name on a
 form. The individual button’s VALUE attribute determines which of
 those mutually exclusive choices the button represents, while the
 presence of the CHECKED
 attribute causes it to be the selected button of the set.
Since multiple radio buttons have the same name in the
 Elements collection, you cannot retrieve the selected radio button
 directly from the Elements collection. Instead, you must iterate
 the collection with the For
 Each...Next
 construct, extract the button whose Selected property is True, and retrieve its value. The code
 to do this looks something like the following:
Dim oElement, oElements, oRadio
Dim sValue

' Get reference to Elements collection
Set oElements = Document.frmTest.Elements

' Iterate collection looking for selected radio button
For Each oElement in oElements
 If oElement.Type = "radio" And oElement.Checked
 Set oRadio = oElement
 Exit For
 End If
Next

' Make sure a radio button was selected
If Not oRadio Is Nothing Then
 sValue = oRadio.Value
 ' Perform any other processing
End If
If the form has multiple sets of radio buttons, then you can
 look for the radio button of a particular name whose Checked
 property is True.
The radio button control’s properties include the
 following:
	Property
	Description

	 checked
	A Boolean that indicates whether the radio
 button is selected

	 name
	The name assigned to the radio button by the
 NAME attribute

	 type
	The type property of a radio button control
 is always “radio”

	 value
	The option represented by this control in the
 set of radio button controls

The most useful methods of the radio button control (none of
 which take any parameters) are:
	Method
	Description

	 Click
	Simulates a click by causing the OnClick
 event to fire

	 Focus
	Moves the focus to the textbox control if it
 does not have the focus and fires its onFocus event

Of the events supported by the radio button control, the
 following are most useful:
	Event
	Description

	 onClick
	Fired when the user clicks on a radio
 button

	 onFocus
	Fired when the control receives the input
 focus

	 onReadyStateChange
	Fired when the state of a radio button has
 changed

The list box

A list box is defined by the <SELECT>...</SELECT> tag,
 with its individual items defined by <OPTION> tags. Depending on
 whether the MULTIPLE attribute
 is present, multiple items can be selected at a single time. Each
 item in the list box is a member of the Options collection, which
 is returned by the list box’s Options property. In a
 single-selection list, you can determine the item selected by
 examining the SelectedIndex property. In a multiple-selection
 list, you can determine which items are selected by iterating the
 Options collection and checking whether the item’s Selected
 property is True. If it is, you
 can retrieve the value of its Index and Text properties. The
 following code fragment illustrates this by forming strings
 containing the index numbers of selected items and the text of
 selected items:
 Dim oElements, oDropDown, oOption
 Dim sSelected, sItems

 Set oElements = Document.frmTest.Elements
 Set oDropDown = oElements("lstColors")

 For each oOption in oDropDown.Options
 If oOption.Selected Then
 sSelected = sSelected & cStr(oOption.index) & vbCrLf
 sItems = sItems & oOption.Text & vbCrLf
 End If
 Next
The list box has the following properties:
	Property
	Description

	 length
	The number of items in the list
 box.

	 multiple
	A Boolean value that indicates whether
 multiple items can be selected at the same time.

	 name
	The name of the drop-down list box, which
 corresponds to its NAME
 attribute.

	 options
	A collection of Option objects, each of which
 represents an item in the list box.

	 selectedIndex
	The index of the selected option. If the list
 box supports multiple selections, the selectedIndex
 property reflects the index of the first selected item in
 the list.

	 type
	The type property of a drop-down list box is
 either “select-one” if the multiple property is False or “select-multiple” if
 the multiple property is True.

The list box’s most useful methods (none of which take any
 parameters) are:
	Method
	Description

	 Click
	Simulates a click by causing the OnClick
 event to fire

	 Focus
	Moves the focus to the textbox control if it
 does not have the focus and fires its onFocus event

Of the events supported by the radio button control, the
 following are most useful:
	Event
	Description

	 onChange
	Fired when a list box selection has
 changed

	 onClick
	Fired when the user clicks on the list
 box

	 onFocus
	Fired when the control receives the input
 focus

	 onScroll
	Fired when the user scrolls the list box

Individual Option objects, which represent individual items
 in the list box, have the following properties:
	Property
	Description

	 index
	The ordinal position of the item in the
 Options collection. The first item is at position 0, and
 the last is at 1 less than the value of the list box’s
 length property.

	 selected
	A Boolean value that indicates whether the
 item is selected. For single-selection lists, only one
 item can return a True
 value for the selected property.

	 text
	The text used to describe the item in the
 list box.

Command button controls

HTML supports three types of buttons:
	The Submit button (defined with an <INPUT TYPE=submit> tag), which submits
 form data to a web server

	The Reset button (defined with an <INPUT TYPE=reset> tag), which resets
 form data to its default values

	A general-purpose command button (defined with an
 <INPUT TYPE=button> tag), whose function
 is defined programatically

The three button types share a common set of properties and
 methods. The most commonly used properties are:
	Property
	Description

	 name
	The name assigned to the button by the
 NAME attribute

	 type
	The type property of a button control is
 defined by the TYPE
 attribute and is either “submit,” “reset,” or “button”

	 value
	The button’s caption

The most commonly used methods are:
	Method
	Description

	 Click
	Simulates a click by causing the OnClick
 event to fire

	 Focus
	Moves the focus to the button if it does not
 have the focus and fires its onFocus event

Finally, the most commonly used events are:
	Event
	Description

	 onClick
	Fired when the user clicks on a command
 button.

	 onFocus
	Fired when the control receives the input
 focus.

	 onReset
	Fired when the Reset button is clicked and
 before existing form data is reset to its default values.
 This event handler is a function rather than a subroutine;
 by setting its return value to False, the reset operation can
 be cancelled.

	 onSubmit
	Fired when the Submit button is clicked and
 before form data is submitted to the web server. This
 event handler is a function rather than a subroutine; by
 setting its return value to False, submission of form data
 to the server can be cancelled.

The History Object

The History object represents the history list of recently
 opened documents. It has only one property, which is shown in Table 8-6, and three
 methods, which are listed in Table 8-7.
Table 8-6. Property of the History object
	Property
	Description

	 length
	Returns the number of items in the history
 list

Table 8-7. Methods of the History object
	Method
	Description

	 back
	Allows for bringing previously viewed document
 to be loaded into a target window or frame. Its syntax is
 History.back
 iDistance, where
 iDistance is the number of URLs
 to go back.

	 forward
	Navigates to the next item in the history
 array. Its syntax is History.forward.

	 go
	Navigates to a specific position in the history
 listing. Its syntax is History.go
 vLocation where
 vLocation can be an integer that
 indicates the relative position of the URL in the history
 list or a string that matches all or part of a URL contained
 in the browser’s history.

The Event Object

The Event object can be accessed inside of an event
 handler and provides additional information about that event. Its
 major properties are listed in Table 8-8.
Table 8-8. Major properties of the Event object
	Property
	Description

	 altKey
	A Boolean that indicates whether the Alt key
 was pressed when the event fired

	 button
	For mouse events, indicates which mouse button
 set off the event

	 ctrlKey
	A Boolean that indicates whether the Ctrl key
 was pressed when the event fired

	 fromElement
	Returns a reference to the object where the
 cursor had just been prior to the onMouseOver or onMouseOut
 event

	 keyCode
	The Unicode key value for the keyboard that
 triggered the onKeyUp, onKeyDown, and onKeyPress events

	 reason
	Returns a code associated with the
 onDataSetComplete event signifying the state of a data
 transfer

	 shiftKey
	A Boolean that indicates whether the Shift key
 was pressed when the event fired

	 srcElement
	Returns a reference to the element object that
 fired the current event

	 type
	Returns a string containing the name of the
 current event

Using the Document Object Model

 Let’s take a look at a simple example, Example 8-10, and then
 build on that until we are exploiting a few of the different options
 available. It’s not the most useful piece of code ever written, but
 it does demonstrate a piece of the Document Object Model
 hierarchy.
Example 8-10. A simple example using the Document Object Model
<HTML>
<HEAD>
<Script Language = VBSCRIPT>

sub showme_onclick
	dim varTagName
	set varTagName = window.document.all(6)
	MsgBox varTagName.name
end sub

</SCRIPT>
</HEAD>
<BODY>
Demonstrates a simple use of the Document Object Model

<input type = "button" value = "Get Tag Name" name = "showme">
</BODY>
</HTML>

First, we declare a variable called
 varTagName in the showme_onclick event
 procedure. We will set this variable equal to the value returned by
 the seventh member of the all collection, which corresponds to the
 seventh tag in the document. In this instance, this is the input
 button that we have created. When the user clicks the button, this
 page will generate a message box with the name of the tag. It is
 important to note here that tags are zero-based, so the first tag in
 the document will actually be tag 0. You can also refer to the tag
 by its name.
In Example
 8-11, we are using the hierarchy to work into the individual
 elements of a table. First we reference the table by the tag name
 “table1,” and then we can set the row and cell references after
 that. In this instance, we have given the table a tag name so that
 we can easily refer to it. If you do not give your tags names, then
 you must work with their index position on the page. If you look at
 the Name property of a tag with no name assigned, you will see the
 tag definition.
Example 8-11. Using client-side scripting to create a table
<HTML>
<HEAD>
<Script Language = VBSCRIPT>

sub showme_onclick
	dim varRowCon
	dim varTableCon
	dim varCellCon
	
	set varTableCon = document.all("table1")
	set varRowCon = varTableCon.all(1)
	set varCellCon = varRowCon.all(2)
	MsgBox varCellCon.InnerText
end sub

</SCRIPT>
</HEAD>
<BODY>
<Table border=1 id="table1" name="table1">
<TR>
 <TD> This is Cell One </TD>
 <TD> This is Cell Two </TD>
 <TD> This is Cell Three </TD
</TR>
<TR>
 <TD> This is Cell One, Row Two </TD>
 <TD> This is Cell Two, Row Two </TD>
 <TD> This is Cell Three, Row Two </TD>
</TR>
</TABLE>

<input type = "button" value = "Show Cell" name = "showme">
</BODY>
</HTML>

The Document Object Model allows us to work with the
 individual elements on the page pretty effectively. You could apply
 this type of logic to make dynamic changes based on user
 interaction. This is the basis of Dynamic HTML (DHTML) coding. The Document Object Model
 is an active living concept, and there is currently an update to the
 standard being considered. The nice thing is that with each
 iteration of the standard, the DOM has become a more powerful tool
 for developers. For more information on DHTML, see Dynamic
 HTML: The Definitive Reference, Second Edition,
 by Danny Goodman
 (O’Reilly).

Chapter 9. Windows Script Components

 Windows Script Components (WSC) is a technology that allows programmers
 using scripting languages like VBScript to create COM components (that
 is, components based on Microsoft’s Component Object Model technology). Ordinarily, COM
 component creation requires a compiled programming language, such as C++
 or Visual Basic. Windows Script Components relies on a runtime module
 (scrobj.dll) that handles the implementation details of COM, while a
 script file parsed by the script engine contains the component
 definition.
The source code for a script component is stored in a Windows
 Script Component (.wsc) file. This is an XML file that contains the component
 definition, along with the code for the properties, methods, and events
 that the component exposes.
In addition, Windows Script Components supports
 interface handlers , which are compiled COM components that provide the
 implementation for particular interfaces. Windows Script Components
 automatically provides support for the interfaces necessary for COM
 automation, ASP, and DHTML.
Windows Scripts Components automates much of the process of
 creating a COM component by providing a wizard that collects information
 on the component to be created and writes it to a .wsc file. To illustrate the operation of the
 wizard, we’ll create a simple math component.
The Script Component Wizard

The opening screen of the Script Component Wizard is
 shown in Figure 9-1.
 Although the dialog contains a number of text boxes, it is only
 necessary to enter the component name in the Name text box. The Script Component Wizard will then
 automatically use this information to complete theFilename and Prog ID text boxes. However, each of these text boxes,
 as well as theVersion and Location text boxes, can be manually overridden. The
 text boxes are described in the following list:
	Name
	The name of the component.

	Filename
	The Windows Script Component (.wsc) file containing the component
 definition. If you specify an existing filename, WSC will
 overwrite it with the new component definition.

	Prog ID
	The component’s programmatic identifier. The
 programmatic identifier can be any string and is defined in the
 system registry. Typically, it consists of two substrings
 separated by a period. For instance, the VBScript CreateObject function, which creates
 a new instance of an object, takes a programmatic identifier as
 an argument.

	Version
	The version number of the component. This has the
 format
 MajorVersion.MinorVersion.

	Location
	The path to the directory in which the .wsc file resides.

Tip
WSC allows you to define multiple components within a single
 .wsc file. This feature is not
 supported, however, by the Script Component Wizard; if you attempt
 to assign a new component to an existing .wsc file, the
 wizard overwrites the file containing the original component. If you
 do want to create multiple components, you can use the wizard to
 define the first component, and then use a text editor to define all
 remaining components.

	[image: The component definition dialog of the Script Component Wizard]

Figure 9-1. The component definition dialog of the Script Component
 Wizard

For our example, we’ll name the component MathLib. Figure 9-2 shows the
 completed dialog after we enter the component name.
	[image: The component definition dialog for the MathLib component]

Figure 9-2. The component definition dialog for the MathLib
 component

The second screen, which is shown in Figure 9-3, allows you to
 define the general characteristics of the component, such as its
 scripting language, the interface handlers it uses, and whether error
 checking and debugging are available for the component at
 runtime.
By default, WSC supports three interface handlers: COM automation, ASP, and DHTML. Support for COM
 automation is automatically added whenever you define a property,
 method, or event for the component. If the component is to be used
 within Microsoft Internet Explorer, support for DHTML can be added by
 checking the “Use this scriptlet with DHTML behaviors” check box. If
 the component is to be used in generating ASP pages, check the Support
 Active Server Pages check box.
The runtime options check boxes allow you to determine whether
 any debugging features are enabled at runtime. The “Error
 checking” check box allows the component to display a descriptive
 error message should an error occur in the component when it is used.
 Ordinarily, the component will not display an error message, since
 recognizing and handling the error is the responsibility of the client
 that instantiates the component. The Debugging check box allows the
 Script Debugger to be launched if an error occurs. If this option is
 disabled, a runtime error simply terminates the program or script
 without prompting the user to open the Script Debugger.
	[image: The component characteristics dialog of the Script Component Wizard]

Figure 9-3. The component characteristics dialog of the Script Component
 Wizard

In the case of our component, we’ll uncheck the “Do you want
 special implements support” box to turn off support for the ASP and
 DHTML interface handlers. And we’ll leave error checking and debugging
 enabled.
The third screen, which is shown in Figure 9-4, allows you to
 define componentproperties. Properties are attributes or descriptions of
 the state of component. Along with the property’s name, you indicate
 whether the property is read/write, read-only, or write-only. In
 addition, you can assign an optional default value to the property.
 For our example MathLib component, define the properties as shown in
 Figure 9-4.
	[image: The properties definition dialog of the Script Component Wizard]

Figure 9-4. The properties definition dialog of the Script Component
 Wizard

The fourth screen, which is shown in Figure 9-5, allows you to
 define component methods, along with their parameters. Each parameter is
 specified as a simple parameter name. Multiple parameters are
 separated from each other by commas. The methods for our example
 MathLib component are shown in Figure 9-5.
	[image: The methods definition dialog of the Script Component Wizard]

Figure 9-5. The methods definition dialog of the Script Component
 Wizard

The fifth screen, shown in Figure 9-6, allows you to
 define theevents raised by the component. This simply requires
 that you enter the name of the event. In the case of our example,
 we’ll define one event, DivByZero. The sixth and final screen simply
 summarizes the information that you’ve entered about thecomponent. Figure 9-7 shows the summary
 dialog for our MathLib component.
	[image: The events definition dialog of the Script Component Wizard]

Figure 9-6. The events definition dialog of the Script Component
 Wizard

	[image: The summary dialog of the Script Component Wizard]

Figure 9-7. The summary dialog of the Script Component Wizard

When you click the Finish button, the wizard generates the
 .wsc file that contains the
 skeleton code needed by your component. All that you have to do is to
 write the script required by your component’s properties, methods, and
 events. In order to do this, however, it is useful to know something
 about the format of a .wsc
 file.
The MathLib.wsc file
 produced by the Script Component Wizard is shown in Example 9-1. It begins with
 an <?xml ?> tag, which is automatically inserted by the wizard and
 is required if the file is to be edited using an XML editor;
 otherwise, it is optional. Its presence indicates that the file is to
 be parsed using strict XML syntax.
Example 9-1. The MathLib.wsc file
<?xml version="1.0"?>
<component>

<?component error="true" debug="true"?>

<registration
 description="MathLib"
 progid="MathLib.WSC"
 version="1.00"
 classid="{ca624be4-9313-4d4a-9f1b-d585f50b321a}"
>
</registration>

<public>
 <property name="Pi">
 <get/>
 </property>
 <property name="E">
 <get/>
 </property>
 <property name="Value">
 <get/>
 <put/>
 </property>
 <method name="IsEven">
 <PARAMETER name="number"/>
 </method>
 <method name="IsOdd">
 <PARAMETER name="number"/>
 </method>
 <method name="Min">
 <PARAMETER name="number1"/>
 <PARAMETER name="number2"/>
 </method>
 <method name="Max">
 <PARAMETER name="number1"/>
 <PARAMETER name="number2"/>
 </method>
 <method name="Divide">
 <PARAMETER name="number1"/>
 <PARAMETER name="number2"/>
 </method>
</public>

<script language="VBScript">
<![CDATA[

dim Pi
Pi = 3.14159
dim E
E = 2.71828
dim Value

function get_Pi()
 get_Pi = Pi
end function

function get_E()
 get_E = E
end function

function get_Value()
 get_Value = Value
end function

function put_Value(newValue)
 Value = newValue
end function

function IsEven(number)
 IsEven = "Temporary Value"
end function

function IsOdd(number)
 IsOdd = "Temporary Value"
end function

function Min(number1, number2)
 Min = "Temporary Value"
end function

function Max(number1, number2)
 Max = "Temporary Value"
end function

function Divide(number1, number2)
 Divide = "Temporary Value"
end function

]]>
</script>

</component>

Note that the beginning and end of our MathLib component
 definition is signaled by the <component> and </component> tags. If multiple
 components are stored in a single file, <package> and </package>
 tags that surround all component definition tags are required. The
 <?component ?> tag defines
 attributes for runtime error handling. It is only inserted by the
 wizard if either runtime error handling or debugging are enabled;
 otherwise, it is omitted. If you’ve selected the defaults and
 nevertheless want to add it, it takes the following form:
<?component error="false" debug="false" ?>
The <registration>
 ...<registration> tag provides the
 registration information needed to identify and create an instance of
 the component. This includes a description or friendly name for the
 component, its programmatic identifier and version number, and finally
 a globally unique identifier (GUID) that uniquely identifies the
 component. Eventually, the information provided by the <registration> tag is entered into the
 system registry.
The <public> ...</public>
 tag defines a component’s public interface. Information on all of the
 properties (indicated by the <property> tag), methods (indicated by the <method> tag),
 and events (indicated by the <event> tag,
 which is not shown in Example
 9-1) exposed by the component is stored here. The presence of
 the <public> tag also
 indicates that the component will use the COM automation interface
 handler.
The <property> tag has
 a name attribute that defines the
 property name, as well as one or two subelements. If the property is
 read-only, it has a <get>
 element, which indicates that a property value can be retrieved. If
 the property is write-only, it has a <put> element, which indicates that a
 property value can be assigned. And if the property is read-write, it
 has both a <get> and a
 <put> element.
The <method> tag has a
 name attribute as well as zero,
 one, or more <parameter>
 subelements that indicate the names of the method parameters.
The <public> tag can
 also have one or more <event>
 subelements that indicate the event name. This syntax means,
 incidentally, that we cannot define events that supply arguments to
 event handlers. But although we’ve defined an event for our MathLib
 component, as Figure
 9-6 shows, the <event>
 element has not been added to our .wsc file. If we want our component to fire
 events, we have to add the <event> element manually.
The <property> and
 <method> elements are
 responsible for defining the public interface members of a component,
 but they do not provide an implementation. The actual operation of
 properties and methods is determined by code within the <script> ...</script>
 tags. As Example 9-1
 shows, in addition to providing the <script>...</script> tags, the Script Component
 Wizard creates a template for each of the component’s properties and
 methods. Both member types, however, are implemented in code as
 methods. Property accessor methods (that is, methods responsible for
 retrieving a property value) are named by prepending the string
 get_ to the property name. Property
 mutator methods (methods responsible for assigning a value to a
 property) are named by prepending the string put_ to the property name. The value to be
 assigned to a property is represented by the
 newValue parameter.
In addition to providing a template in which we can supply code
 to define the operation of our component’s public methods, the Script
 Component Wizard also handles defining a default value to a property.
 In the case of our read-only Pi property, for instance, it defines a
 variable named Pi (which is not the same as the Pi property) to which
 it assigns the default value 3.14159.
In the next section, we’ll complete our component by writing the
 code for its public members. In the process, we’ll look at some of the
 issues involved in developing components using WSC.

Writing Component Code

For the most part, Example 9-2, which shows the
 completed script block for our MathLib component, contains
 straightforward VBScript code. Only handling the DivByZero event,
 which will be discussed in Section 9.4.1 later in
 this chapter, requires comment.
Example 9-2. Script block for the MathLib component
<script language="VBScript">
<![CDATA[

dim Pi
Pi = 3.14159
dim E
E = 2.71828
dim Value

function get_Pi()
 get_Pi = Pi
end function

function get_E()
 get_E = E
end function

function get_Value()
 get_Value = Value
end function

function put_Value(newValue)
 Value = newValue
end function

function IsEven(number)
 IsEven = (number/2 = number\2)
end function

function IsOdd(number)
 IsOdd = Not IsEven(number)
end function

function Min(number1, number2)
 If number1 < number2 Then
 Min = number1
 Else
 Min = number2
 End If
end function

function Max(number1, number2)
 If number1 > number2 Then
 Max = number1
 Else
 Max = number2
 End If
end function

function Divide(number1, number2)
 If number2 = 0 Then
 fireEvent "DivByZero"
 Divide = 0
 Else
 Divide = number1/number2
 End If
end function

]]>
</script>

Using the Component

Once you’ve generated the .wsc file and written its code, there are
 two additional steps that may be required before you can use the
 component, depending precisely on how the component is to be
 used.
Registration

In most cases, unless the component is to be used exclusively to interface with
 DHTML in Microsoft Internet Explorer, it should be registered. The
 registration process stores information about the component that is
 needed to identify, locate, and activate it in the system registry.
 You can register your component in one of two ways:
	By right clicking on the file in Windows Explorer and
 selecting the Register option from the context menu.

	By typing the following from the command line:
regsvr32 <componentFilename>
where componentFilename is the name and
 extension of the .wsc file
 to be registered.

When registration has succeeded, a dialog appears that reads
 DllRegisterServer and DllInstall in <
 path >\scrobj.dll succeeded.

Instantiating the Component

If you’re using the component from VBScript, you instantiate a script component like you would any
 other object—by calling the CreateObject function and passing it the programmatic identifier
 of the object to be created. You can then access the component’s
 members. For instance, Example 9-3 shows a Windows
 Script Host script that instantiates the MathLib component and
 accesses each of its members. Programmatically, the scripted
 component is handled identically to a binary COM component.
Example 9-3. Using the MathLib component
Dim math, sMsg
' Instantiate script component
Set math = CreateObject("MathLib.WSC")
WScript.ConnectObject math, "math_"

' Set and retrieve Value property
math.Value = 12.121
sMsg = "Value: " & math.Value & vbCrLf

' Retrieve read-only properties
sMsg = sMsg & "Pi: " & math.Pi & vbCrLf
sMsg = sMsg & "E:" & math.E & vbCrLf

' Call Min/Max methods
sMsg = sMsg & "Min: " & math.Min(10, 10.3) & vbCrLf
sMsg = sMsg & "Max: " & math.Max(1000,200) & vbCrLf

' Call Divide method
sMsg = sMsg & "Divide by 10: " & math.Divide(100, 10) & vbCrLf
sMsg = sMsg & "Divide by 0: " & math.Divide(2, 0) & vbCrLf

' Call IsEven/IsOdd methods
sMsg = sMsg & "Even: " & math.IsEven(12) & vbCrLf
sMsg = sMsg & "Even: " & math.IsEven(1) & vbCrLf
sMsg = sMsg & "Odd: " & math.IsOdd(12) & vbCrlf
sMsg = sMsg & "Odd: " & math.IsOdd(3) & vbCrlf

MsgBox sMsg

Public Sub math_DivByZero
 Dim eMsg
 eMsg = "Division by Zero Error " & vbCrLf & vbCrLf
 eMsg = eMsg & Err.Number & ": " & Err.Description
 eMsg = eMsg & Err.Source
 MsgBox eMsg
End Sub

WSC Programming Topics

For the most part, the Script Component Wizard succeeds in
 automating the process of creating a script component so that you can
 focus on the code needed to implement your component’s logic, rather
 than on the code needed to implement basic “plumbing” so that the
 component can work properly. In a number of areas, however, WSC offers
 functionality that either requires some additional coding or that
 extend the functionality of VBScript in significant ways. These
 include handling events, using interface handlers, taking advantage of
 resources, and building object models.
Handling Events

VBScript itself provides no native support for firing or
 handling custom events. Its support for events is limited to the
 Initialize and Terminate events, which are fired when a new instance
 of a class defined by the Class...End Class construct is created or destroyed,
 respectively. (And, in fact, they’re not real events: the scripting
 runtime simply calls the routines if they’re present.) Support for
 any other events must be provided by the environment in which
 VBScript is running.
In the case of Windows Script Components, WSC requires that an
 event be declared using the <event> element. Its syntax
 is:
<event name="event_name" dispid="dispid" />
where name defines the name
 of the event, and dispid is an
 optional attribute that assigns the event’s dispatch ID. Ordinarily,
 WSC automatically provides a dispatch ID to identify an event. You
 might want to provide your own dispatch ID to map a custom event to
 a standard COM event, or to insure that dispatch IDs remain the same
 across different versions of your component.
Once the event is defined, you can fire it from your code. For
 this, you use the WSC fireEvent method. Its syntax is:
fireEvent eventName[,...]
where eventName is a string
 containing the name of the event to be fired. Multiple events can be
 fired by separating them from one another with a comma. The use of
 the fireEvent method is illustrated by the boldface line of code in
 Example 9-3.
Once the event is fired, it must also be handled by the client
 application using the event definition facilities provided by the
 client environment. Example
 9-3, shown earlier in Section 9.3.2,
 illustrates how an event is handled in a WSH script. In the code,
 the ConnectObject method of the WScript object is invoked to
 indicate that the script should receive event notifications for the
 math object.

Using an Interface Handler: ASP

The <implements> element in a .wsc file allows you to define the
 interface handlers that are available to your script. The element’s
 syntax is:
<implements type="handlerName" id="sourceCodeName" assumed=fAssumed >
</implements>
The <implements>
 element has the following attributes:
	type
	The name of the interface handler. In scrobj.dll WSC provides an ASP handler for Active Server Pages
 and a Behavior handler for
 DHTML. A third handler for COM automation is automatically
 referenced without an <implements> element if the
 <public> element is
 encountered in a .wsc
 file.

	id
	An optional element that defines the name by which the
 interface handler will be referenced in code. Since referenced
 interfaces are in the script’s global namespace (that is, they
 do not have to be referenced through an interface object),
 id is typically used only
 to uniquely identify an object or member when there is a
 naming conflict between multiple interfaces.

	assumed
	An optional Boolean that determines whether the value of
 the internalName attribute
 is assumed in scripts, so that the referenced interface
 resides in the script’s global namespace and does not have to
 be referenced through an object. By default, its value is
 true.

Ordinarily, once the interface handler is defined, interface
 classes and members can be referenced as if they were native to the
 component. In the case of ASP, for instance, an implements element like:
<implements type="ASP" id="ASP"/>
means that the ASP intrinsics are globally accessible to a WSC
 component. As a result, the number of items in the Contents
 collection of the Application object, for instance, can be retrieved
 with the following line of code, which is identical to the code that
 would be used within an Active Server Page itself:
Dim iCount = Application.Contents.Count
iCount = Application.Contents.Count
 Example
 9-4 shows a simple ASP component that displays information
 from the intrinsic ASP Request object. Although most of the code is
 straightforward, several features are worth noting:
	Since ASP objects are available in the component’s global
 namespace, they can be accessed without referencing the
 interface handler. The user agent string in the ServerVariables
 collection, for instance, could be accessed as:
ASP.Request.ServerVariables("Http_User_Agent")
but is instead accessed in Example 9-4 as:
Request.ServerVariables("Http_User_Agent")

	WSC supports parameterized properties. For instance, the
 Value property has a name parameter
 that contains the key whose value is to be retrieved.
 Implementing a parameterized property simply requires editing
 the .wsc file with a text
 editor to add a <parameter> element.

	In addition to scalar values, properties can return
 arrays, objects, or collections. In Example 9-4, for
 instance, the Values property returns the ASP Form collection
 object.

Example 9-4. A simple component for ASP
<?xml version="1.0"?>
<component>

<?component error="true" debug="true"?>

<registration
 description="ASPInfo"
 progid="ASPInfo.WSC"
 version="1.00"
 classid="{783106e5-f78e-402d-b16f-b78e20d2e0b2}"
>
</registration>

<public>
 <property name="Browser">
 <get/>
 </property>
 <property name="ServerName">
 <get/>
 </property>
 <property name="RemoteAddress">
 <get/>
 </property>
 <property name="Value">
 <PARAMETER name="name"/>
 <get/>
 </property>
 <property name="Values">
 <get/>
 </property>

</public>

<implements type="ASP" id="ASP"/>

<script language="VBScript">
<![CDATA[

dim Browser
dim RemoteAddress
dim Values

function get_Browser()
 get_Browser = Request.ServerVariables("HTTP_USER_AGENT")
end function

function get_ServerName()
 get_ServerName = Request.ServerVariables("SERVER_NAME")
end function

function get_RemoteAddress()
 get_RemoteAddress = Request.ServerVariables("REMOTE_ADDR")
end function

function get_Value(name)
 get_Value = Server.HtmlEncode(Request.Form.Item(name))
end function

function get_Values()
 set get_Values = Request.Form
end function

]]>
</script>

</component>

Example 9-5
 provides the HTML source for a page that requests the ASP page whose
 listing appears in Example
 9-6.
Example 9-5. An HTML page
<HTML>
<HEAD><TITLE>Using an ASP Component</TITLE></HEAD>
<BODY>
Enter your name:
<FORM METHOD="POST" ACTION="AspInterface.asp">
<INPUT TYPE="text" NAME="name" SIZE=20> <P>
<INPUT TYPE="submit" VALUE="Submit">
</FORM>
</BODY>
</HTML>

Example 9-6. An ASP page that uses a Windows Script Component
<%
Dim info
Set info = CreateObject("ASPInfo.WSC")
Response.Write "Your Browser: " & Info.Browser & "
"
Response.Write "Server Name: " & info.ServerName & "
"
Response.Write "Your IP Address: " & info.RemoteAddress & "
"
Response.Write "Your Name: " & Server.HTMLEncode(info.Value("name")) & "
"
%>

Using Resources

Typically, strings are handled by hardcoding their values
 throughout one or more scripts. This creates a maintenance nightmare
 when the strings need to be modified or localized. To deal with this
 problem, WSC offers the <resource> element, which allows a
 value to be associated with a resource identifier. The syntax of the
 resource element is:
<resource id="resourceID">value</resource>
resourceID must be a string that
 uniquely identifies the resource in the component; it is, in other
 words, a key value. value is the string
 or number that is associated with the resource identifier.
Example 9-7
 illustrates one possible way to use resources. The component has a
 SayHello method that returns a string in one of four languages. The
 language name serves as the key or resource ID that provides access
 to the localized string. The user can then select his native
 language from a drop-down list box (see the HTML page in Example 9-8). An ASP page
 (see Example 9-9)
 instantiates the component, retrieves the user’s name and language
 choice from the Request object’s Form collection, and uses the
 language as the key to look up the localized version of the
 greeting.
Example 9-7. A component that uses resources
<?xml version="1.0"?>
<component>

<registration
 description="Greeting"
 progid="Greeting.WSC"
 version="1.00"
 classid="{6c7d1aec-fed2-42b1-bc79-2e87cf34ad9b}" >
</registration>

<public>
 <method name="SayHello">
 <PARAMETER name="language"/>
 </method>
</public>

<resource id="English">Good day</resource>
<resource id="Croat">Dobar dan</resource>
<resource id="French">Bonjour</resource>
<resource id="German">Guten tag</resource>

<script language="VBScript">
<![CDATA[

function SayHello(language)
 SayHello = getResource(language)
end function

]]>
</script>

</component>

Example 9-8. HTML page allowing the user to select a language
<HTML>
<HEAD><TITLE>Using a Resource</TITLE></HEAD>
<BODY>
Enter your name:
<FORM METHOD="POST" ACTION="Resource.asp">
<INPUT TYPE="text" NAME="name" SIZE=20> <P>
Your native language:
<SELECT NAME="language" size="1">
 <OPTION>English
 <OPTION>French
 <OPTION>Croat
 <OPTION>German
</SELECT> <P>
<INPUT TYPE="submit" VALUE="Submit">
</FORM>
</BODY>
</HTML>

Example 9-9. ASP page that uses the Greeting component
<%
Dim greet, lang, name

Set greet = CreateObject("Greeting.WSC")

lang = Request.Form.Item("language")
name = Request.Form.Item("name")
If Not name = "" Then
 Response.Write greet.SayHello(lang) & ", " & name
Else
 Response.Write "You have failed to provide us with your name."
End If
%>

Building an Object Model

Often when you work with your component, you don’t
 want to instantiate just one object. Instead, you want to
 instantiate a parent object, which in turn builds a hierarchy of
 child objects.
To build an object model in this way with Windows Script
 Component, you can include multiple components in your .wsc file. This requires some
 modification to the basic .wsc
 file created by the Script Component Wizard:
	If multiple components are defined in the same .wsc file, a <package> tag within which all
 <component> tags are
 nested must be included.

	Each <component>
 tag must include the optional id attribute, which defines the name
 by which the component is referenced within the .wsc file.

You can then instantiate all but the parent or top-level
 component by calling the Windows Script Component’s createComponent
 method. Its syntax is:
Set object = createComponent(componentID)
where object is the variable that
 will contain the object reference, and
 componentID is the name assigned to the
 component by the id attribute of
 the <component>
 element.
Example 9-10
 illustrates the use of the createComponent method to instantiate
 child components. A parent Workgroup object contains a Users
 component, which in turn contains zero or more User components. When
 the workgrp component is
 instantiated, a users object is
 also automatically instantiated; it is accessible only through the
 workgrp object’s Users property. When the users object’s Add method
 is called, a user object is added to the array held by the users
 object.
Example 9-10. A three-component object model
<?xml version="1.0"?>
<package>
<component id="workgrp">
<registration
	description="Workgroup"
	progid="Workgrp.WSC"
	version="1.00"
	classid="{6f4d2531-a891-4e8e-9b17-e05603eefee2}"
>
</registration>

<public>
 <property name="Users">
 <get/>
 </property>
 <property name="name">
 <get/>
 </property>
</public>

<script language="VBScript">
<![CDATA[

dim Users, workgroupName

workgroupName = "MyWorkgroup"
Set users = createComponent("Users")

Function get_Users()
 set get_Users = users
End Function

Function get_name()
 get_name = workgroupName
End Function
]]>
</script>

</component>

<component id="Users">

<registration progid="users.wsc" />

<public>
 <method name="Add" />
 <method name="Item" dispid="0">
 <parameter name="index" />
 </method>
</public>

<script language="VBScript">
<![CDATA[

Dim ctr, userArray(10)

Sub Add()
 Dim username
 username = InputBox("Enter name of user: ", "User Name")

 If Not username = "" Then

 Set usr = createComponent("user")

 usr.Name = username

 If ctr > 0 And ctr Mod 10 = 0 Then
 ReDim Preserve userArray(UBound(userArray)+10)
 End If

 Set userArray(ctr) = usr

 ctr = ctr + 1
 End If
End Sub

Function Item(index)
 Set Item = userArray(index)
End Function

]]>
</script>

</component>

<component id="user">

<registration progid="user.wsc" />

<public>
 <property name="Name">
 <get />
 <put />
 </property>
</public>

<script language="VBScript">
<![CDATA[

Dim userName

Function get_Name()
 get_Name = userName
End Function

Function put_Name(newValue)
 userName = newValue
End Function

]]>
</script>

</component>

</package>

Part II. Reference

This section consists of only a single very long chapter, Chapter 10, which contains an
 alphabetic reference to VBScript language elements.
The chapter documents the following:
	Statements, like Dim or For Each.

	Functions, like Format or InStr.

	The Scripting Runtime object models: the File System object
 model and the Dictionary object model. Here you’ll find complete
 documentation of all of the objects, along with their properties and
 methods.

When you’re looking for a particular language element but don’t
 quite remember what it’s called, an alphabetic reference is of little
 value. For this reason, we’ve included Appendix A. Finally, VBScript
 operators aren’t included in this section. Instead, you’ll find them
 discussed in Appendix
 C.

Chapter 10. The Language Reference

The elements of the VBScript language can be broken into
 four main areas: statements, functions, operators, and object
 models.
	Statements
	Statements form the cornerstone of the language.
 You’ll notice in Appendix
 A that the largest concentration of statements is in the
 program structure section. Statements are used mainly for such
 tasks as declaring variables or procedures.

	Functions
	In general, functions return a value, although, as
 with any function, you can choose to ignore the return
 value.

	Operators
	An operator connects or performs some operation upon
 one or more language elements to form a single expression. For
 example, in the code fragment:
 strResult = 16 + int(lngVar1)
the addition operator (+)
 combines 16 and the value returned by int(lngVar1) into a single expression
 whose value is assigned to the variable
 strResult. Operators are not documented
 in this chapter but are listed in Appendix C.

	Object models
	An integral part of VBScript is the Microsoft
 Scripting Runtime, which provides an add-on library containing the
 Dictionary object (which is similar to a Perl
 associative array) and the FileSystemObject object (which provides access to a
 local filesystem). Because of their significance, both object
 models are fully documented in this book.

VBScript is a high-level language and, like all high-level
 languages, it is a large yet rich language. While this means that it
 takes time for new users to understand the intricacies of the functions
 and statements available to them, at the same time, the language’s
 syntax is straightforward, logical, and easy to understand.
To speed the process of finding the right function or statement to
 perform a particular task, you can use Appendix A to determine what
 language elements are available for the purpose you require.

Name
Abs Function

Syntax
 result = Abs(number)
	number
	Use: Required
Data Type: Any valid numeric expression
A number or a string representation of a number.

Return Value
The absolute value of number
 . The data type is the same as that passed to
 the function if number is numeric, and
 Double if it is not.

Description
Returns the absolute value of a number (i.e., its unsigned
 magnitude). For example, Abs(-1)
 and Abs(1) both return 1.

Rules at a Glance
	number can be a number, a
 string representation of a number, an object whose default
 property is numeric, or a Null or Empty.

	If number is Null, the function returns Null.

	If number is an uninitialized
 variable or Empty, the
 function returns zero.

See Also
IsNumeric Function

Name
Array Function

Syntax
Array([element1], [elementN],....)
	element
	Use: Optional
Data Type: Any
The data to be assigned to the first array
 element.

	elementN
	Use: Optional
Data Type: Any
Any number of data items you wish to add to the
 array.

Return Value
A variant array consisting of the arguments passed into the
 function.

Description
Returns a variant array containing the elements whose values
 are passed to the function as arguments.
The code fragment:
Dim vaMyArray
vaMyArray = Array("Mr", "Mrs", "Miss", "Ms")
is similar to writing:
Dim vaMyArray(3)
vaMyArray(0) = "Mr"
vaMyArray(1) = "Mrs"
vaMyArray(2) = "Miss"
vaMyArray(3) = "Ms"
Because Array creates a variant array,
 you can pass any data type, including objects, to the
 Array function. You can also pass the values
 returned by calls to other Array functions to
 create multidimensional arrays; these kinds of arrays are called
 “ragged” arrays.

Rules at a Glance
	Although the array you create with the
 Array function is a variant array data
 type, the individual elements of the array can be a mixture of
 different data types.

	The initial size of the array you create is the number of
 arguments you place in the argument list and pass to the
 Array function.

	The lower bound of the array created by the
 Array function is 0.

	The array returned by the Array
 function is a dynamic rather than a static array. Once created,
 you can redimension the array using Redim, Redim Preserve, or another call to the
 Array function.

	If you don’t pass any arguments to the
 Array function, an empty array is created.
 Although this may appear to be the same as declaring an array in
 the conventional manner with the statement:
Dim myArray()
the difference is that you can then use the empty array
 with the Array function again later in your
 code.

Example
<%
Dim myArray
myArray = Array(100, 2202, 3.3, 605, 512)
Response.Write myArray(2)
%>

Programming Tips and Gotchas
	The Array function was not present in
 the first version of VBScript and was added to the language in
 Version 2.

	You cannot assign the return value of
 Array to a variable previously declared as
 an array variable. Therefore, don’t declare
 the variant variable as an array using the normal syntax:
Dim MyArray()
Instead, simply declare a variant variable, such
 as:
Dim MyArray

	The Array function is ideal for
 saving space and time and for writing more efficient code when
 creating a fixed array of known elements, for example:
Dim Titles
Title = Array("Mr", "Mrs", "Miss", "Ms")
You can use the Array function to
 create multidimensional arrays. However, accessing the elements
 of the array needs a little more thought. The following code
 fragment creates a simple two-dimensional array with three
 elements in the first dimension and four elements in the
 second:
Dim vaListOne

vaListOne = Array(Array(1, 2, 3, 4), _
 Array(5, 6, 7, 8), _
 Array(9, 10, 11, 12))
Surprisingly, the code you’d expect to use to access the
 array returns a “Subscript out of range” error:
'This line generates a Subscript out of range error
Response.Write vaListOne(1, 2)
Instead, since this is an array stored within an array
 (that is, a ragged array), you can access it as follows:
Response.Write vaListOne(1)(2)

	Because you declare the variant variable to hold the array
 as a simple variant, rather than an array and can then make
 repeated calls to Array, the function can
 create dynamic arrays. For example, the following code fragment
 dimensions a variant to hold the array, calls
 Array to create a variant array, then calls
 Array again to replace the original variant
 array with a larger variant array:
Dim varArray
varArray = Array(10,20,30,40,50)
...
varArray = Array(10,20,30,40,50,60)
The major disadvantage of using this method is that while
 it makes it easy to replace an array with a different array, it
 doesn’t allow you to easily expand or contract an existing
 array.

VBA/VBScript Differences
Unlike Visual Basic, VBScript does not contain an Option Base statement;
 therefore, arrays created in VBScript using the
 Array function have a lower boundary of 0. That
 is, the first element of the array will always be accessed using an
 index value of 0.

See Also
Dim Statement, LBound Function, ReDim Statement, UCase Function

Name
Asc, AscB, AscW Functions

Syntax
Asc(string)
AscB(string)
AscW(string)
	string
	Use: Required
Data Type: String
Any expression that evaluates to a string.

Return Value
An integer that represents the character code of the first
 character of the string.

Description
Returns the ANSI (in the case of Asc) or
 Unicode (in the case of AscW) character code that represents the
 first character of the string passed to it. All other characters in
 the string are ignored. The AscB function
 returns the first byte of a string.

Rules at a Glance
	The string expression passed to the function must contain
 at least one character, or a runtime error (either “Invalid use
 of Null” or “Invalid procedure call or argument”) is
 generated.

	Only the first character of the string is evaluated by
 Asc, AscB, and
 AscW.

	Use the AscW function to return the
 Unicode character of the first character of a string.

	Use the AscB function to return the
 first byte of a string containing byte data.

Example
<%
Dim sChars
Dim iCharCode

sChars = Request.Form("chars")
If Len(sChars) > 0 Then
 CharCode = Asc(sChars)
 If iCharCode >= 97 And iCharCode <= 122 Then
 Response.Write "The first character must be uppercase"
 Else
 Response.Write iCharCode
 End If
End If
%>

Programming Tips and Gotchas
	Always check that the string you are passing to the
 function contains at least one character using the
 Len function, as the following example
 shows:
If Len(sMyString) > 0 Then
 iCharCode = Asc(sMyString)
Else
 Response.Write "Cannot process a zero-length string"
End If

	Surprisingly, although the VBScript documentation shows
 that the data type of the parameter passed to the
 Asc function is String, it can actually be
 any data type. Evidently the Asc routine
 converts incoming values to strings before extracting their
 first character. Try this quick example for yourself:
<%
sChars = 123
Response.Write Asc(sChars)
%>

	Use Asc within your data validation
 routines to determine such conditions as whether the first
 character is upper- or lowercase and whether it’s alphabetic or
 numeric, as the following example demonstrates:
Function CheckText (sText)

Dim iChar

If Len(sText) > 0 Then
 iChar = Asc(sText)
 If iChar >= 65 And iChar <= 90 Then
 CheckText = "The first character is UPPERCASE"
 ElseIf iChar >= 97 And iChar <= 122 Then
 CheckText = "The first character is lowercase"
 Else
 CheckText = "The first character isn't alphabetical"
 End If
Else
 CheckText = "Please enter something in the text box"
End If

End Function

See Also
Chr, ChrB, ChrW
 Functions

Name
Atn Function

Syntax
Atn(number)
	number
	Use: Required
Data Type: Numeric
Any numeric expression, representing the ratio of two
 sides of a right angle triangle.

Return Value
The return value is a Double representing the arctangent of
 number in the range -pi/2 to pi/2
 radians.

Description
Takes the ratio of two sides of a right triangle
 (number) and returns the corresponding
 angle in radians. The ratio is the length of the side opposite the
 angle divided by the length of the side adjacent to the
 angle.

Rules at a Glance
	If no number is specified, a runtime error is
 generated.

	The return value of Atn is in
 radians, not degrees.

Example
<%
Const Pi = 3.14159
 Dim dblSideAdj, dblSideOpp
 Dim dblRatio, dblAtangent, dblDegrees

 dblSideAdj = 50.25
 dblSideOpp = 75.5

 dblRatio = dblSideOpp / dblSideAdj
 dblAtangent = Atn(dblRatio)
 ' convert from radians to degrees
 dblDegrees = dblAtangent * (180 / Pi)
 Response.Write dblDegrees & " Degrees"
%>

Programming Tips and Gotchas
	To convert degrees to radians, multiply degrees by
 pi/180.

	To convert radians to degrees, multiply radians by
 180/pi.

	Don’t confuse Atn with the cotangent.
 Atn is the inverse
 trigonometric function of
 Tan, as opposed to the simple inverse of
 Tan.

See Also
Tan Function

Name
Call Statement

Syntax
[Call] procedurename [argumentlist]
	Call
	Use: Optional
Use: Required
Data Type: n/a
The name of the subroutine being called.

	argumentlist
	Use: Optional
Data Type: Any
A comma-delimited list of arguments to pass to the
 subroutine being called.

Description
Passes program control to an explicitly named procedure or
 function.

Rules at a Glance
	The Call statement
 requires that the procedure being called be named explicitly.
 You cannot assign the subroutine name to a variable and provide
 that as an argument to the Call statement. For example, the
 following is an illegal use of Call:
Dim sProc
sProc = "PrintRoutine"
Call sProc(sReport) ' Illegal: sProc is a variable
The following code fragment shows a valid use of the
 Call statement:
Call PrintRoutine(sReport) ' Legal usage

	You aren’t required to use the Call keyword when calling a function
 procedure. However, if you use the Call keyword to call a procedure that
 requires arguments, argumentlist must
 be enclosed in parentheses. If you omit the Call keyword from the procedure call,
 you must also omit the parentheses around
 argumentlist.

Example
The WSH code fragment shows a call to a procedure that passes
 two arguments: a string array and a string. Note that while the call
 to the ShowList procedure uses the Call keyword, the equivalent call to the
 MsgBox function within the ShowList procedure does not:
Dim aList, sCaption

aList = Array("One", "Two", "Three", "Four")
sCaption = "Array Contents"
Call ShowList(aList, sCaption)

Sub ShowList(arr(), s2)
 Dim mem, sMsg

 For Each mem In arr
 sMsg = sMsg & mem & vbCrLf
 Next

 MsgBox sMsg, ,s2
End Sub

Programming Tips and Gotchas
	You can use the Call
 keyword to call a function when you’re not interested in the
 function’s return value.

	The use of the Call
 keyword is considered outdated. We suggest not using the
 keyword, as it is unnecessary and provides no value.

	If you remove the Call
 statement but fail to remove the parentheses from a call to a
 subroutine with a single argument, then that argument is passed
 by value rather than by reference. This can have unintended
 consequences.

VBA/VBScript Differences
VBA (as of Version 6.0) supports the
 CallByName function, which allows you to call a
 public procedure in a VBA object module by assigning the procedure
 name to a variable. VBScript does not support the
 CallByName function and requires that you provide the name of
 the function or sub procedure in the Call statement.

Name
CBool Function

Syntax
CBool(expression)
	expression
	Use: Required
Data Type: String or Numeric
Any numeric expression or a string representation of a
 numeric value.

Return Value
expression converted to a type of
 Boolean (True or False).

Description
Casts expression as aa Boolean
 type. Expressions that evaluate to 0 are converted to False (0), and expressions that evaluate
 to nonzero values are converted to True (-1).

Rules at a Glance
If the expression to be converted is a string, the string must
 act as a number. Therefore, CBool("ONE") results in a type mismatch
 error, yet CBool("1") converts to
 True.

Programming Tips and Gotchas
	You can check the validity of the expression prior to
 using the CBool function by using the
 IsNumeric function.

	When you convert an expression to a Boolean, an expression
 that evaluates to 0 is converted to False (0), and any nonzero number is
 converted to True (-1).
 Therefore, a Boolean False
 can be converted back to its original value (i.e., 0), but the
 original value of the True
 expression can’t be restored unless it was originally -1.

See Also
IsNumeric Function

Name
CByte Function

Syntax
CByte(expression)
	expression
	Use: Required
Data Type: Numeric or String
A string or numeric expression that evaluates between 0
 and 255.

Return Value
expression converted to a type of
 Byte.

Description
Converts expression to a Byte data
 type. The Byte type is the smallest data storage device in VBScript.
 Being only one byte in length, it can store unsigned numbers between
 0 and 255.

Rules at a Glance
	If expression is a string, the
 string must be capable of being treated as a number.

	If expression evaluates to less
 than 0 or more than 255, an overflow error is generated.

	If expression isn’t a whole
 number, CByte rounds the number prior to
 conversion.

Example
If IsNumeric(sMyNumber) Then
 If val(sMyNumber) >= 0 and val(sMyNumber) <= 255 Then
 BytMyNumber = Cbyte(sMyNumber)
 End If
End If

Programming Tips and Gotchas
	Check that the value you pass to
 CByte is neither negative nor greater than
 255.

	Use IsNumeric to insure the value
 passed to CByte can be converted to a
 numeric expression.

	When using CByte to convert
 floating-point numbers, fractional values up to but not
 including 0.5 are rounded down, while values greater than 0.5
 are rounded up. Values of 0.5 are rounded to the nearest even
 number (i.e., they use the Banker’s Rounding Algorithm).

See Also
IsNumeric Function

Name
CCur Function

Syntax
CCur(expression)
	expression
	Use: Required
Data Type: Numeric or String
A string or numeric expression that evaluates to a
 number between -922,337,203,685,477.5808 and
 922,337,203,685,477.5807.

Return Value
expression converted to a type of
 Currency.

Description
Converts an expression into a type of Currency.

Rules at a Glance
	If the expression passed to the function is outside the
 range of the Currency data type, an overflow error
 occurs.

	Expressions containing more than four decimal places are
 rounded to four decimal places.

	The only localized information included in the value
 returned by CCur is the decimal
 symbol.

Example
If IsNumeric(sMyNumber) Then
 curMyNumber = CCur(sMyNumber)
End If

Programming Tips and Gotchas
	CCur doesn’t prepend or append a
 currency symbol; for this, you need to use the
 FormatCurrency function.
 CCur does, however, correctly convert
 strings that include a localized currency symbol. For instance,
 if a user enters the string “$1234.68” into a text box whose
 value is passed as a parameter to the CCur
 function, CCur correctly returns a currency
 value of 1234.68.

	CCur doesn’t include the thousands
 separator; for this, you need to use the
 FormatCurrency function.
 CCur does, however, correctly convert
 currency strings that include localized thousands separators.
 For instance, if a user enters the string “1,234.68” into a text
 box whose value is passed as a parameter to the
 CCur function, CCur
 correctly converts it to a currency value of 1234.68.

See Also
FormatCurrency, FormatNumber,
 FormatPercent Functions

Name
CDate Function

Syntax
CDate(expression)
	expression
	Use: Required
Data Type: String or Numeric
Any valid date expression.

Return Value
expression converted into a Date
 type.

Description
Converts expression to a Date type.
 The format of expression—the order of
 day, month, and year—is determined by the locale setting of your
 computer. To be certain of a date being recognized correctly by
 CDate, the month, day, and year elements of
 expression must be in the same sequence
 as your computer’s regional settings; otherwise, the
 CDate function has no idea that in the
 expression “04/01/01,” 4 is supposed to
 be the 4th of the month, not the month of April, for example.
CDate also converts numbers to a date.
 The precise behavior of the function, however, depends on the value
 of expression :
	If expression is less than or
 equal to 23 and includes a fractional component less than 60,
 the integer is interpreted as the number of hours since
 midnight, and the fraction is interpreted as the number of
 seconds.

	In all other cases, the integer portion of
 expression is converted to a date
 that interprets the integer as the number of days before (in the
 case of negative numbers) or after December 31, 1899, and its
 fractional part is converted to the time of day, with every .01
 representing 864 seconds (14 minutes 24 seconds) after
 midnight.

Rules at a Glance
	CDate accepts both numerical date
 expressions and string literals. You can pass month names into
 CDate in either complete or abbreviated
 form; for example, “31 Dec 1997” is correctly recognized.

	You can use any of the date delimiters specified in your
 computer’s regional settings; for most systems, this includes
 , / - and the space
 character.

	The oldest date that can be handled by the Date data type
 is 01/01/100, which in VBScript terms equates to the number
 -657434. Therefore, if you try to convert a number of magnitude
 greater than -657434 with CDate, an error
 (“Type mismatch”) is generated.

	The furthest date into the future that can be handled by
 the Date data type is 31/12/9999, which in VBScript terms
 equates to the number 2958465. Therefore, if you try to convert
 a number higher than 2958465 with CDate, an
 error (“Type mismatch”) is generated.

	A “Type mismatch” error is generated if the values
 supplied in expresssion are invalid.
 CDate tries to treat a month value greater
 than 12 as a day value.

Programming Tips and Gotchas
	Use the IsDate function to determine
 if expression can be converted to a
 date or time.

	A common error is to pass an uninitialized variable to
 CDate, in which case midnight will be
 returned

	A modicum of intelligence has been built into the
 CDate function. It can determine the day
 and month from a string regardless of their position, but only
 where the day number is larger than 12, which automatically
 distinguishes it from the number of the month. For example, if
 the string “30/12/97” were passed into the
 CDate function on a system expecting a date
 format of mm/dd/yy,
 CDate sees that 30 is obviously too large
 for a month number and treats it as the day. It’s patently
 impossible for CDate to second guess what
 you mean by “12/5/97”—is it the 12th of May, or 5th of December?
 In this situation, CDate relies on the
 regional settings of the computer to distinguish between day and
 month. This can also lead to problems, as you may have increased
 a month value to more than 12 inadvertently in an earlier
 routine, thereby forcing CDate to treat it
 as the day value. If your real day value is 12 or less, no error
 is generated, and a valid, albeit incorrect, date is
 returned.

	If you pass a two-digit year into
 CDate, how does it know which century you
 are referring to? Is “10/20/97” 20 October 1997 or
 20 October 2097? The answer is that
 two-year digits less than 30 are treated as being in the 21st
 Century (i.e., 29 = 2029), and two-year digits of 30 and over
 are treated as being in the 20th Century (i.e., 30 =
 1930).

	Don’t follow a day number with “st,” “nd,” “rd,” or “th,”
 since this generates a type mismatch error.

	If you don’t specify a year, the
 CDate function uses the year from the
 current date on your computer.

VBA/VBScript Differences
If you pass an initialized variable to the
 CDate function in VBA, the return value is 31
 December 1899. In VBScript, the function’s return value is 12:00:00
 AM.

See Also
FormatDateTime
 Function

Name
CDbl Function

Syntax
CDbl(expression)
	expression
	Use: Required
Data Type: Numeric or String
-1.79769313486232E308 to -4.94065645841247E-324 for
 negative values; 4.94065645841247E-324 to 1.79769313486232E308
 for positive values.

Return Value
expression cast as a Double
 type.

Description
Converts expression to a Double
 type.

Rules at a Glance
	If the value of expression is
 outside the range of the double data type, an overflow error is
 generated.

	Expression must evaluate to a numeric value; otherwise, a
 type mismatch error is generated.

Example
Dim dblMyNumber as Double
If IsNumeric(sMyNumber) then
 dblMyNumber = CDbl(sMyNumber)
End If

Programming Tips and Gotchas
Use IsNumeric to test whether
 expression evaluates to a number.

See Also
IsNumeric Function

Name
Chr, ChrB, ChrW Functions

Syntax
Chr(charactercode)
ChrB(charactercode)
ChrW(charactercode)
	charactercode
	Use: Required
Data Type: Long
An expression that evaluates to either an ANSI or
 Unicode character code.

Return Value
Chr, ChrB, and
 ChrW return a variant of the string type that
 contains the character represented by
 charactercode.

Description
Returns the character represented by
 charactercode.

Rules at a Glance
	Chr returns the character associated
 with an ANSI character code.

	ChrB returns a one-byte
 string.

	ChrW returns a Unicode
 character.

Programming Tips and Gotchas
	Use Chr(34) to embed
 quotation marks inside a string, as shown in the following
 example:

sSQL = "SELECT * from myTable where myColumn = " & Chr(34) & _
 sValue & Chr(34)
	You can use the ChrB function to
 assign binary values to String variables.

	The following table lists some of the more commonly used
 character codes that are supplied in the call to the
 Chr function:

	Code
	Value
	Description

	0
	NULL
	For C/C++ string functions, the null character
 required to terminate standard strings; equivalent to the
 vbNullChar constant.

	9
	TAB
	Equivalent to the vbTab constant.

	10
	LF
	Equivalent to the vbLf constant.

	13
	CR
	Equivalent to the vbCr constant.

	13 & 10
	CRLF
	Equivalent to the CWlocal
 constant.

	34
	"
	Quotation mark. Useful to embed quotation marks
 within a literal string, especially when forming SQL query
 strings.

See Also
Asc, AscB, AscW Functions,
 CStr Function

Name
CInt Function

Syntax
CInt(expression)
	expression
	Use: Required
Data Type: Numeric or String
The range of expression is -32,768 to 32,767; fractions
 are rounded.

Return Value
expression cast as an integer
 type.

Description
Converts expression to a type of
 integer; any fractional portion of
 expression is rounded.

Rules at a Glance
	expression must evaluate to a
 numeric value; otherwise, a type mismatch error is
 generated.

	If the value of expression is
 outside the range of the Integer data type, an overflow error is
 generated.

	When the fractional part of
 expression is exactly 0.5,
 CInt always rounds to the nearest even
 number. For example, 0.5 rounds to 0, and 1.5 rounds to
 2.

Example
<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
Option Explicit

Sub cmdAdd_OnClick()

 Dim iSum, sNum1, sNum2

 sNum1 = Window.Document.frmAdd.txtText1.Value
 sNum2 = Window.Document.frmAdd.txtText2.Value
 If IsNumeric(sNum1) And IsNumeric(sNum2) Then
 iSum = CInt(sNum1) + CInt(sNum2)
 Alert "The sum is: " & iSum
 Else
 Alert "The values you enter in the text boxes must be numeric."
 End If
End Sub
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME="frmAdd">
 <INPUT TYPE="text" NAME="txtText1">

 <INPUT TYPE="text" NAME="txtText2">

 <INPUT TYPE="button" NAME="cmdAdd" VALUE="Sum">
</FORM>
</BODY>
</HTML>

Programming Tips and Gotchas
	Use IsNumeric to test whether
 expression evaluates to a number
 before performing the conversion.

	CInt differs from the
 Fix and Int functions,
 which truncate, rather than round, the fractional part of a
 number. Also, Fix and
 Int always return a value of the same type
 as was passed in.

	In client-side scripts, CInt is
 useful in converting the string in an HTML intrinsic text box
 control to a number. This is illustrated in the example.

See Also
CLng Function, Fix Function, FormatCurrency, FormatNumber, FormatPercent
 Functions, Int Function,
 IsNumeric Function

Name
Class Statement

Syntax
Class name
 'statements
End Class
	name
	Use: Required
Data Type: n/a
The name of the class

Description
Defines a class and delimits the statements that define that
 class’s member variables, properties, and methods.

Rules at a Glance
	name follows standard Visual
 Basic variable naming conventions.

	statements can consist of the
 following:
	Private variable definitions. These variables are
 accessible within the class but not outside it.

	Public variable definitions. (If variables are
 declared using the Dim
 keyword without an explicit indication of their
 accessibility, they are Public by default.) These variables
 become public properties of the class.

	Public functions and subroutines defined with the
 Function...End Function or Sub...End Sub statements. The
 scope of routines not explicitly defined by the Public or Private keywords is public by
 default. These routines become the public methods of the
 class.

	Private function and subroutines defined with the
 Function...End Function or Sub...End Sub statements. They are
 visible within the Class...End
 Class code block, but not to code outside the
 class.

	Public properties defined using the Property Let, Property Get, and Property Set statements.
 Properties defined without an explicit Public or Private statement are also Public
 by default. They, along with any public variables, form the
 public properties of the class.

	Private properties defined using the Property Let, Property Get, and Property Set statements. They are visible
 within the class, but inaccessible outside of it.

	The default member of the class can be defined by
 specifying the Default
 keyword in the member’s Function, Sub, or Property Get statement.

	The Initialize event is fired and the Class_Initialize
 event procedure is executed, if it is present, when the class is
 instantiated.

	The Terminate event is fired and the Class_Terminate event
 procedure is executed, if it is present, when an instance of the
 class is destroyed. This occurs when the last variable or
 property holding the object reference is set to Nothing or when it goes out of scope.
 Note that, even if all the variables are destroyed, there are
 situations (such as circular references) in which the object
 persists until the script engine is destroyed. Hence, the
 Terminate event procedure may not be called until very
 late.

	The class can be instantiated by using the Set statement with the New keyword. For example, if a class
 named CObject is defined with
 the Class...End Class construct, the following code
 fragment instantiates an object belonging to the class:
Dim oObj
Set oObj = New CObject

Example
The example defines a class, CCounter, with one read-only property,
 Value, and one method, ShowCount, as well as an Initialize event
 procedure and one private variable:
Dim oCtr
Set oCtr = New CCounter

oCtr.Increment
oCtr.Increment
MsgBox "Count: " & oCtr.ShowCount

' definition of CCounter class
Class CCounter
 Private lCtr

 Private Sub Class_Initialize()
 lCtr = 1
 End Sub

 Public Sub Increment()
 lCtr = lCtr + 1
 End Sub

 Public Function ShowCount()
 ShowCount = Me.Value
 End Function
End Class

Programming Tips and Gotchas
	A property defined as a simple public variable cannot be
 designated as the class’s default member.

	Public properties should be defined using the Property Let, Property Get, and Property Set statements, since they allow the
 value of a property to be modified in a controlled and
 predictable way. Defining a public variable that becomes
 accessible outside of the class (that is, defining a variable
 using either the Dim or
 Public keywords) is
 considered poor programming practice.

	The Me Keyword can be
 used within the Class...End
 Class construct to reference the object
 instance.

	The Initialize event procedure can be used to initialize
 variables and property values.

	The Terminate event procedure can be used to perform
 cleanup, such as releasing references to child objects, or
 closing database connections or recordsets. But be very careful
 about what code you run in the Terminate event terminator. Any
 code that results in the object being referenced again results
 in the terminated object’s continued existence.

	A VBScript object instance should never be stored to the
 Session object in an ASP application. Since VBScript object
 instances are apartment-threaded, this has the effect of locking
 down the application to a single thread of execution.

VBA/VBScript Differences
The Class...End Class
 construct, which is the scripted equivalent of VBA class modules, is
 not supported in VBA.

See Also
Dim Statement, Function Statement, Initialize Event, Private Statement, Property Get Statement, Property Let Statement, Property Set Statement, Public Statement, Set Statement, Sub Statement, Terminate Event

Name
CLng Function

Syntax
CLng(expression)
	expression
	Use: Required
Data Type: Numeric or String
The range of expression is
 -2,147,483,648 to 2,147,483,647; fractions are rounded.

Return Value
expression cast as a type of
 Long.

Description
Converts expression to a type of
 Long; any fractional element of
 expression is rounded.

Rules at a Glance
	expression must evaluate to a
 numeric value; otherwise, a type mismatch error is
 generated.

	If the value of expression is
 outside the range of the long data type, an overflow error is
 generated.

	When the fractional part is exactly 0.5,
 CLng always rounds it to the nearest even
 number. For example, 0.5 rounds to 0, and 1.5 rounds to
 2.

Example
<HTML>
<HEAD>
<SCRIPT LANGUAGE="VBScript">
Option Explicit

Sub cmdAdd_OnClick()

 Dim lSum, sNum1, sNum2

 sNum1 = Window.Document.frmAdd.txtText1.Value
 sNum2 = Window.Document.frmAdd.txtText2.Value
 If IsNumeric(sNum1) And IsNumeric(sNum2) Then
 lSum = CLng(sNum1) + CLng(sNum2)
 Alert "The sum is: " & lSum
 Else
 Alert "The values you enter in the text boxes must be numeric."
 End If
End Sub
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME="frmAdd">
 <INPUT TYPE="text" NAME="txtText1">

 <INPUT TYPE="text" NAME="txtText2">

 <INPUT TYPE="button" NAME="cmdAdd" VALUE="Sum">
</FORM>
</BODY>
</HTML>

Programming Tips and Gotchas
	Use IsNumeric to test whether
 expression evaluates to a
 number.

	CLng differs from the
 Fix and Int functions,
 which truncate, rather than round, the fractional part of a
 number. Also, Fix and
 Int always return a value of the same type
 as was passed in.

	In client-side scripts, CLng is
 useful in converting the string in an HTML intrinsic text box
 control to a number. This is illustrated in the example.

See Also
CInt Function, Fix Function, FormatCurrency, FormatNumber, FormatPercent
 Functions, Int Function,
 IsNumeric Function

Name
Const Statement

Syntax
[Public|Private] Const constantname = constantvalue
	constantname
	Use: Required
The name of the constant.

	constantvalue
	Use: Required
Data Type: Numeric or String
A constant value, and optionally, the + and - unary
 operators. Unlike variables, constants must be
 initialized.

Description
Declares a constant value; i.e., its value can’t be changed
 throughout the life of the program or routine. One of the ideas of
 declaring constants is to make code easier to both write and read;
 it allows you to replace a value with a recognizable word.

Rules at a Glance
	The rules for constantname are
 the same as those of any variable: the name can be up to 255
 characters in length and can contain any alphanumeric character
 or an underscore, although it must start with an alphabetic
 character. As is the case with variable names, these rules can
 be overridden by placing brackets around the constant
 name.

	constantvalue can be a string
 or numeric literal. It can be only a single value (a simple
 constant); that is, it cannot be an expression that includes a
 call to an intrinsic or user-defined function, property, or
 method, nor can it contain any arithmetic or string operators or
 variables. In addition, a constant can’t be defined in terms of
 another constant, as in the statement:
Public Const CDATE = CSTART_DATE ' Invalid

Example
Private Const my_Constant = 3.1417

Programming Tips and Gotchas
	The recommended coding convention for constants is the
 same as variables: use camel casing. This places the first
 letter of the first word in lowercase, and the first letter of
 subsequent words in uppercase. All other characters are in
 lowercase. To improve readability, you can also use underscores
 to separate words. For example, myConstant or my_Constant are constant names that
 adhere to this coding convention.

	One of the benefits of long variable and constant names
 (of up to 255 characters) in VBScript is that you can make your
 constant names as meaningful as possible while using
 abbreviations sparingly. After all, you may know what
 abbreviations mean, but will others?

	Rather than having to explicitly define constants found in
 type libraries, you can access the type library definitions from
 Windows Script Hosts by using the XML <reference> element in an
 .wsf file (for details, see
 Chapter 7), and from
 Active Server Pages by using the <METADATA> tag in the
 application’s global.asa
 file.

VBA/VBScript Differences
	VBA allows you to explicitly define the data type of the
 constant. VBScript, since it does not support strong typing,
 does not.

	VBA supports complexconstants; that is, VBA allows you to define
 constants using other constants, as well as using expressions
 containing absolute values, operators, and constants. In
 contrast, VBScript supports only simple constants; that is, it
 allows you to define a constant using only an absolute
 value.

See Also
Private Statement, Public Statement

Name
Cos Function

Syntax
Cos(number)
	number
	Use: Required
Data Type: Numeric expression
An angle in radians.

Return Value
A type of Double denoting the cosine of an angle.

Description
Takes an angle specified in radians and returns a ratio
 representing the length of the side adjacent to the angle divided by
 the length of the hypotenuse.

Rules at a Glance
The cosine returned by the function is between -1 and
 1.

Example
Dim dblCosine as Double
dblCosine = Cos(dblRadians)

Programming Tips and Gotchas
	To convert degrees to radians, multiply degrees by
 pi/180.

	To convert radians to degrees, multiply radians by
 180/pi.

See Also
Atn Function, Sin Function, Tan Function

Name
CreateObject Function

Syntax
CreateObject(servername, progID [, location])
	servername
	Use: Required
Data Type: String
The name of application providing the object.

	ProgID
	Use: Required
Data Type: String
The programmatic identifier (ProgID) of the object to
 create, as defined in the system registry.

	Location
	Use: Optional
Data Type: String
The name of the server where the object is to be
 created.

Return Value
A reference to an ActiveX object.

Description
Creates an instance of an OLE Automation (ActiveX) object.
 Prior to calling the methods, functions, or properties of an object,
 you are required to create an instance of that object. Once an
 object is created, you reference it in code using the object
 variable you defined.

Rules at a Glance
	In order to assign the object reference to a variable, you
 must use the Set keyword. For
 example:
Dim oDoc
Set oDoc = CreateObject("Word.Document")

	Programmatic identifiers use a string to identify a
 particular COM component or COM-enabled application. They are
 included among the subkeys of HKEY_CLASSES_ROOT in the system
 registry.

	Some common programmatic identifiers are shown in the
 following table:

	ProgID
	Description

	 ADODB.Connection
	An ActiveX Data Objects
 connection

	 ADODB.Recordset
	An ActiveX Data Objects
 recordset

	 DAO.DBEngine
	Data Access Objects

	 Excel.Application
	Microsoft Excel

	 Excel.Chart

	A Microsoft Excel chart

	 Excel.Sheet

	A Microsoft Excel workbook

	 MAPI.Session
	Collaborative Data Objects

	 Outlook.Application

	Microsoft Outlook

	 Scripting.Dictionary

	Dictionary object

	 Scripting.FileSystemObject

	File System object model

	 Word.Application
	Microsoft Word

	 Word.Document
	A Microsoft Word document

	If an instance of the ActiveX object is already running,
 CreateObject may start a new instance when
 it creates an object of the required type.

Example
The following WSH example places text in the first cell of an
 Excel spreadsheet document, changes the font to bold, saves the
 document to the MyDocuments folder, and closes
 the Excel application. In this example, Excel must already be
 running for the code to work (the code uses the
 CreateObject function to create a new workbook,
 but not to open Excel itself), but you can just as easily use the
 CreateObject function to open an
 application:
' Get MyDocuments folder
Dim oShell
Dim docfolder
Set oShell = WScript.CreateObject ("WScript.Shell")
docfFolder = oShell.SpecialFolders ("MyDocuments")

'Create and save Excel worksheet
Dim XLObj, XLBook, XLSheet
Set XLObj = CreateObject ("Excel.Application")
XLObj.Application.Visible = True
XLObj. Workbooks.Add()
Set XLSheet = XLObj.ActiveSheet
XLSheet.Cells(1,1) = "Insert Text Here"
XLSheet.Cells(1,1).Font.Bold = True
XLSheet.SaveAs docFolder & "\Test.xls"
XLObj.Application.Quit

Programming Tips and Gotchas
	In a scripted environment, it’s sometimes preferable to
 use the host application’s object model to instantiate new
 objects rather than to use the VBScript
 CreateObject function. For instance, using
 the CreateObject method of
 the IIS Server object instead of the VBScript
 CreateObject function allows ASP to track
 the object instance and allows the object to participate in MTS
 or COM+ transactions. In Windows Script Host, using the
 CreateObject method of the
 WScript object instead of the VBScript
 CreateObject function allows WSH to track
 the object instance and to handle the object’s events. When
 using VBScript to develop an Outlook form, the CreateObject method of the
 Application object is the preferred way to instantiate an
 external class.

	The CreateObject function does not
 succeed in client-side Internet Explorer scripts if the code
 attempts to create a dangerous object or the user’s security
 policy does not allow it. In order to instantiate an object, use
 the HTML <OBJECT>
 tag.

	VBScript offers the ability to reference an object on
 another network server. Using the
 Location parameter, you can pass in
 the name of a remote server and the object can be referenced
 from that server. This means that you could even specify
 different servers depending upon prevailing circumstances, as
 this short example demonstrates:
Dim sMainServe
Dim sBackUpServer

sMainServer = "NTPROD1"
sBackUpServer = "NTPROD2"

If IsOnline(sMainServer) Then
 CreateObject("Sales.Customer",sMainServer)
Else
 CreateObject("Sales.Customer",sBackUpServer)
End If

	To use a current instance of an already running ActiveX
 object, use the GetObject function.

	If an object is registered as a single-instance object
 (i.e., an out-of-process ActiveX EXE), only one instance of the
 object can be created; regardless of the number of times
 CreateObject is executed, you will obtain a
 reference to the same instance of the object.

	An urban programming legend says it’s necessary to release
 unused object references by setting them to Nothing when the reference is no
 longer needed. But since unused object references are released
 when they go out of scope, this step is not necessary. In
 general, object variables need to be explicitly released only to
 free circular references.

	Using the CreateObject function’s
 location parameter to invoke
 an object remotely requires that the object be DCOM-aware. As an
 alternative, scripts can be run remotely using Remote Windows
 Script Host, a technology briefly discussed in Chapter 7.

	A apartment-threaded COM object instantiated using the
 CreateObject function should never be
 stored to the Session object in an ASP application, since doing
 so locks down the ASP application to a single thread of
 execution.

VBA/VBScript Differences
	In VBA, the CreateObject function is
 just one of the language constructs that you can use to
 instantiate a new object; you can also use the New keyword in either the object
 variable declaration or the object assignment. Because VBScript
 supports only late binding, however,
 CreateObject (along with a similar method
 in the target object model that you’re using) is the only method
 available to instantiate objects that are external to the
 script.

	While CreateObject under VBA is an
 intrinsic part of the language, you cannot assume that
 CreateObject is necessarily available in a
 particular scripted environment. In Internet Explorer, for
 instance, calls to the CreateObject method generate a
 runtime error.

See Also
GetObject Function, Set Statement

Name
CSng Function

Syntax
CSng(expression)
	expression
	Use: Required
Data Type: Numeric or String
The range of expression is
 -3.402823E38 to -1.401298E-45 for negative values;
 1.401298E-45 to 3.402823E38 for positive values.

Return Value
expression cast as a type of
 Single.

Description
Returns a single-precision number.

Rules at a Glance
	expression must evaluate to a
 numeric value; otherwise, a type mismatch error is
 generated.

	If the value of expression is
 outside the range of the Single data type, an overflow error is
 generated.

Example
Dim sngMyNumber
If IsNumeric(sMyNumber) then
 sngMyNumber = CSng(sMyNumber)
End If

Programming Tips and Gotchas
	If you need to use a floating-point number in VBScript,
 there is no reason to use a Single; use a Double instead.
 Generally, a Single is used because it offers better performance
 than a Double, but this is not true in VBScript. Not only is a
 Single not smaller than a Double in the VBScript implementation,
 but the processor also converts Singles to Doubles, performs any
 numeric operations, and then converts Doubles back to
 Singles.

	Test that expression evaluates
 to a number by using the IsNumeric
 function.

See Also
FormatCurrency, FormatNumber,
 FormatPercent Functions, IsNumeric
 Function

Name
CStr Function

Syntax
CStr(expression)
	expression
	Use: Required
Data Type: Any
Any expression that is to be converted to a
 string.

Return Value
expression converted to a
 String.

Description
Returns a string representation of
 expression.

Rules at a Glance
Almost any data can be passed to CStr to
 be converted to a string.

Example
Dim sMyString
SMyString = CStr(100)

Programming Tips and Gotchas
	The string representation of Boolean values is either
 True or False, as opposed to their underlying
 values of 0 and -1.

	An uninitialized variable passed to
 CStr returns an empty string.

	An object reference cannot be passed to the
 CStr function. Attempting to do so
 generates a runtime error.

Name
Date Function

Syntax
Date

Return Value
Date returns a
 Date.

Description
Returns the current system date.

Rules at a Glance
They don’t come any easier than this!

Programming Tips and Gotchas
To return both the current date and time in one variable, use
 the Now function.

See Also
IsDate Function, Now Function

Name
DateAdd Function

Syntax
DateAdd(interval, number, date)
	interval
	Use: Required
Data Type: String
An expression denoting the interval of time you need to
 add or subtract (see the following table “Interval
 Settings”).

	number
	Use: Required
Data Type: Any numeric type
An expression denoting the number of time intervals you
 want to add or subtract.

	date
	Use: Required
Data Type: Date
The date on which to base the DateAdd calculation.

Interval Settings
	Setting
	Description

	 yyyy

	Year

	 q

	Quarter

	 m

	Month

	 y

	Day of year

	 d

	Day

	 w

	Weekday

	 ww

	Week

	 h

	Hour

	 n

	Minute

	 s

	Second

Return Value
A Date.

Description
Returns a Date representing the result of adding or
 subtracting a given number of time periods to or from a given date
 or time. For instance, you can calculate the date 178 months before
 today’s date, or the date and time 12,789 minutes from now.

Rules at a Glance
	Specify the interval value as a string enclosed in
 quotation marks (e.g., "ww").

	If number is positive, the
 result will be after date; if
 number is negative, the result will
 be before date.

	The DateAdd function has a built-in
 calendar algorithm to prevent it from returning an invalid date.
 For example, if you add 10 minutes to 31 December 1999 23:55,
 DateAdd automatically recalculates all
 elements of the date to return a valid date—in this case, 1
 January 2000 00:05. In addition, the calendar algorithm takes
 the presence of 29 February into
 account for leap years.

Example
Dim lNoOfIntervals
lNoOfIntervals = 100
Msgbox DateAdd("d", lNoOfIntervals, Now)

Programming Tips and Gotchas
	When working with dates, always check that a date is valid
 using the IsDate function prior to passing
 it as a parameter to the function.

	To add a number of days to
 date, use either the day of the year
 "y", the day "d", or the weekday "w".

	The Variant date type can handle only dates as far back as
 100 A.D. DateAdd generates an error
 (runtime error number 5, “Invalid procedure call or argument”)
 if the result precedes the year 100.

	The Variant date type can handle dates as far into the
 future as 9999 A.D.—from a practical application standpoint, a
 virtual infinity. If the result of DateAdd
 is a year beyond 9999 A.D., the function generates runtime error
 number 5, “Invalid procedure call or argument.”

	If number contains a fractional
 value, it’s rounded to the nearest whole number before being
 used in the calculation.

See Also
DateDiff Function, DatePart Function, DateSerial Function, IsDate Function

Name
DateDiff Function

Syntax
 DateDiff(interval, date1, date2[, firstdayofweek[, firstweekofyear]])
	interval
	Use: Required
Data Type: String
The units of time used to express the result of the
 difference between date1 and
 date2 (see the following “Interval
 Settings” table).

	date1
	Use: Required
Data Type: Date
The first date you want to use in the differential
 calculation.

	date2
	Use: Required
Data Type: Date
The second date you want to use in the differential
 calculation.

	firstdayofweek
	Use: Optional
Data Type: Integer
A numeric constant that defines the first day of the
 week. If not specified, Sunday is assumed (see the following
 table “First Day of Week Constants”).

	firstweekofyear
	Use: Optional
Data Type: Integer
A numeric constant that defines the first week of the
 year. If not specified, the first week is assumed to be the
 week in which January 1 occurs (see the following table “First
 Week of Year Constants”).

Interval Settings
	Setting
	Description

	 yyyy

	Year

	 q

	Quarter

	 m

	Month

	 y

	Day of year

	 d

	Day

	 w

	Weekday

	 ww

	Week

	 h

	Hour

	 n

	Minute

	 s

	Second

First Day of Week Constants
	Constant
	Value
	Description

	 vbUseSystem

	0
	Use the NLS API setting

	 vbSunday

	1
	Sunday (default)

	 vbMonday

	2
	Monday

	 vbTuesday

	3
	Tuesday

	 vbWednesday

	4
	Wednesday

	 vbThursday

	5
	Thursday

	 vbFriday

	6
	Friday

	 vbSaturday

	7
	Saturday

First Week of Year Constants
	Constant
	Value
	Description

	vbUseSystem
	0
	Use the NLS API setting

	vbFirstJan1
	1
	Start with the week in which January 1 occurs
 (default)

	vbFirstFourDays
	2
	Start with the first week that has at least
 four days in the new year

	vbFirstFullWeek
	3
	Start with first full week of the
 year

Return Value
A Long specifying the number of time intervals between two
 dates.

Description
The DateDiff function calculates the
 number of time intervals between two dates. For example, you can use
 the function to determine how many days there are between 1 January
 1980 and 31 May 1998.

Rules at a Glance
	The calculation performed by DateDiff
 is always date2-- date1
 . Therefore, if
 date1 chronologically follows
 date2, the value returned by the
 function is negative.

	If interval is Weekday "w", DateDiff
 returns the number of weeks between
 date1 and
 date2. DateDiff
 totals the occurrences of the day on which
 date1 falls, up to and including
 date2, but not including
 date1. Note that an
 interval of "w" doesn’t return the number of
 weekdays between two dates, as you might expect.

	If interval is Week "ww", DateDiff
 returns the number of calendar weeks between
 date1 and
 date2. To achieve this,
 DateDiff counts the number of Sundays (or
 whichever other day is defined to be the first day of the week
 by the firstdayofweek argument)
 between date1 and
 date2.
 date2 is counted if it falls on a
 Sunday, but date1 isn’t counted, even
 if it falls on a Sunday.

	The firstdayofweek argument
 affects only calculations that use the "ww" (week) interval values.

Example
Dim dtNow, dtThen
Dim sInterval
Dim lNoOfIntervals

dtNow = Date
dtThen = #01/01/1990#
sInterval = "m"

lNoOfIntervals = DateDiff(sInterval, dtThen, dtNow)

MsgBox lNoOfIntervals

Programming Tips and Gotchas
	When working with dates, always check that a date is valid
 using the IsDate function prior to passing
 it as a function parameter.

	When comparing the number of years between December 31 of
 one year and January 1 of the following year,
 DateDiff returns 1, although in reality,
 the difference is only one day.

	
 DateDiff considers the four quarters of the
 year to be January 1-March 31, April 1-June 30, July 1-September
 30, and October 1-December 31. Consequently, when determining
 the number of quarters between March 31 and April 1 of the same
 year, for example, DateDiff returns 1, even
 though the latter date is only one day after the former.

	If interval is "m", DateDiff
 simply counts the
 difference in the months on which the respective dates fall. For
 example, when determining the number of months between January
 31 and February 1 of the same year,
 DateDiff returns 1, even though the latter
 date is only one day after the former.

	To calculate the number of days between
 date1 and
 date2, you can use either Day of year
 "y" or Day "d".

	In calculating the number of hours, minutes, or seconds
 between two dates, if an explicit time isn’t specified,
 DateDiff provides a default value of
 midnight (00:00:00).

	If you specify date1 or
 date2 as strings within quotation
 marks (" ") and omit the year, the year is
 assumed to be the current year, as taken from the computer’s
 date. This allows the same code to be used in different
 years.

See Also
DateAdd Function, DatePart Function, IsDate Function

Name
DatePart Function

Syntax
DatePart(interval, date[,firstdayofweek[, firstweekofyear]])
	interval
	Use: Required
Data Type: String
The unit of time to extract from within
 date (see the following table
 “Interval Settings”).

	date
	Use: Required
Data Type: Date
The Date value that you want to evaluate.

	firstdayofweek
	Use: Optional
Data Type: Integer
A numeric constant that defines the first day of the
 week. If not specified, Sunday is assumed (see the following
 table “First Day of Week Constants”).

	firstweekofyear
	Use: Optional
Data Type: Integer
A numeric constant that defines the first week of the
 year. If not specified, the first week is assumed to be the
 week in which January 1 occurs (see the following table “First
 Week of Year Constants”).

Interval Settings
	Setting
	Description

	yyyy
	Year

	q
	Quarter

	m
	Month

	y
	Day of year

	d
	Day

	w
	Weekday

	ww
	Week

	h
	Hour

	n
	Minute

	s
	Second

First Day of Week Constants
	Constant
	Value
	Description

	vbUseSystem
	0
	 Use the NLS API setting

	vbSunday
	1
	Sunday (default)

	vbMonday
	2
	Monday

	vbTuesday
	3
	Tuesday

	vbWednesday
	4
	Wednesday

	vbThursday
	5
	Thursday

	vbFriday
	6
	Friday

	vbSaturday
	7
	Saturday

First Week of Year Constants
	Constant
	Value
	Description

	 vbUseSystem

	0
	Use the NLS API setting

	 vbFirstJan1

	1
	Start with week in which January 1 occurs
 (default)

	 vbFirstFourDays
	2
	Start with the first week that has at least
 four days in the new year

	 vbFirstFullWeek
	3
	Start with first full week of the
 year

Return Value
An Integer.

Description
Extracts an individual component of the date or time (like the
 month or the second) from a date/time value. It returns an Integer
 containing the specified portion of the given date.
 DatePart is a single function encapsulating the
 individual Year, Month,
 Day, Hour,
 Minute, and Second
 functions.

Rules at a Glance
	The firstdayofweek argument
 affects only calculations that use either the "w" or "ww"
 interval values.

	The firstdayofweek argument
 affects only calculations that use the "ww"
 interval value.

Example
Dim sTimeInterval
Dim dtNow

sTimeInterval = "n" 'minutes
dtNow = Now

MsgBox DatePart(sTimeInterval, dtNow)

Programming Tips and Gotchas
	When working with dates, always check that a date is valid
 using the IsDate function prior to passing
 it as a function parameter.

	If you specify date within
 quotation marks (" ") omitting the year, the year is
 assumed to be the current year taken from the computer’s
 date.

	If you attempt to extract either the hours, the minutes,
 or the seconds, but date1 doesn’t
 contain the necessary time element, the function assumes a time
 of midnight (0:00:00).

See Also
DateSerial Function,
 Day Function, Month Function, Year Function, Minute Function, Hour Function, Second Function

Name
DateSerial Function

Syntax
DateSerial(year, month, day)
	year
	Use: Required
Data Type: Integer
Number between 0 and 9999, inclusive.

	month
	Use: Required
Data Type: Integer
Any numeric expression to express the month between 1
 and 12.

	day
	Use: Required
Data Type: Integer
Any numeric expression to express the day between 1 and
 31.

Return Value
A Date.

Description
Returns a Date from the three date components (year, month,
 and day). For the function to succeed, all three components must be
 present and all must be numeric values.

Rules at a Glance
	If the value of a particular element exceeds its normal
 limits, DateSerial adjusts the date
 accordingly. For example, if you tried DateSerial (96,2,31)—February 31,
 1996—DateSerial returns March 2,
 1996.

	You can specify expressions or formulas that evaluate to
 individual date components as parameters to
 DateSerial. For example, DateSerial (98,10+9,23) returns 23 March 1999.
 This makes it easier to use DateSerial to
 form dates whose individual elements are unknown at design time
 or that are created on the fly as a result of user input.

Example
Dim iYear, iMonth, iday

iYear = 1987
iMonth = 3 + 11
iday = 16

MsgBox DateSerial(iYear, iMonth, iday)

Programming Tips and Gotchas
	If any of the parameters exceed the range of the Integer
 data type (-32,768 to 32,767), an error (runtime error 6,
 “Overflow”) is generated.

	The Microsoft documentation for this function incorrectly
 states, “For the year argument, values between 0 and 99,
 inclusive, are interpreted as the years 1900-1999.” In fact,
 DateSerial handles two-digit years in the
 same way as other Visual Basic date functions. A year argument
 between 0 and 29 is taken to be in the 21st Century (2000 to
 2029); year arguments between 30 and 99 are taken to be in the
 20th Century (1930 to 1999). Of course, the safest way to
 specify a year is to use the full four digits.

See Also
DateAdd Function

Name
DateValue Function

Syntax
DateValue(stringexpression)
	stringexpression
	Use: Required
Data Type: String expression
Any of the date formats recognized by
 IsDate.

Return Value
Variant of type Date.

Description
Returns a Date variant containing the date represented by
 stringexpression.
 DateValue can successfully recognize a
 stringexpression in any of the date
 formats recognized by IsDate.
 DateValue doesn’t return time values in a
 date/time string; they are simply dropped. However, if
 stringexpression includes a valid date
 value but an invalid time value, a runtime error results.

Rules at a Glance
	The order of the day, the month, and the year within
 stringexpression must be the same as
 the sequence defined by the computer’s regional settings.

	Only those date separators recognized by
 IsDate can be used.

	If you don’t specify a year in your date expression,
 DateValue uses the current year from the
 computer’s system date.

Example
Dim dateExpression

dateExpression = #10 March 2003#

If IsDate (dateExpression) Then
 MsgBox DateValue(dateExpression)
Else
 MsgBox "Invalid date"
End If

Programming Tips and Gotchas
	When working with dates, always check that a date is valid
 using the IsDate function prior to passing
 it as a function parameter.

	If stringexpression includes
 time information as well as date information, the time
 information is ignored; however, if only time information is
 passed to DateValue, an error is
 generated.

	
 DateValue handles two-digit years in the
 following manner: year arguments between 0 and 29 are taken to
 be in the 21st Century (2000 to 2029), and year arguments
 between 30 and 99 are taken to be in the 20th Century (1930 to
 1999). The safest way to specify a year is to use the full four
 digits.

	The current formats being used for dates are easier to
 discover on Windows NT than on Windows 9x. On Windows NT, the
 date formats are held as string values in the following registry
 keys:
	Date Separator
	HKEY_CURRENT_USER\Control
 Panel\International,
 sDate value
 entry

	Long Date
	HKEY_CURRENT_USER\Control
 Panel\International,
 sLongDate value
 entry

	Short Date
	HKEY_CURRENT_USER\Control
 Panel\International,
 sShortDate value
 entry

	The more common approach to date conversion is to use the
 CDate function. Microsoft also recommends
 using CDate and the other
 C... conversion functions due to their
 enhanced capabilities and their locale awareness.

See Also
CDate Function, DateSerial Function, IsDate Function

Name
Day Function

Syntax
Day(dateexpression)
	dateexpression
	Use: Required
Data Type: Any valid date expression
Any expression capable of conversion to a Date.

Return Value
Variant of type Integer.

Description
Returns a variant integer data type that can take on a value
 ranging from 1 to 31, representing the day of the month of
 dateexpression.
 dateexpression, the argument passed to
 the Day function, must be a valid date/time or
 time value.

Rules at a Glance
	 dateexpression can be any
 variant, numeric expression, or string expression that
 represents a valid date.

	The range of dateexpression is
 1/1/100 to 12/31/9999.

	If dateexpression is Null, Null is returned.

Programming Tips and Gotchas
	When working with dates, always check that a date is valid
 using the IsDate function prior to passing
 it as a function parameter.

	If dateexpression omits the
 year, Day still returns a valid day.

	If the day portion of
 dateexpression is outside its valid
 range, the function generates runtime error 13, “Type mismatch.”
 This is also true if the day and month portion of
 dateexpression is 2/29 for a nonleap
 year.

	To return the day of the week, use the
 WeekDay function.

See Also
DatePart Function, Weekday Function, WeekdayName Function, Month Function, Year Function

Name
Dictionary Object

Createable
Yes

Library
Microsoft Scripting Runtime

Description
The Dictionary object is similar to a Collection object,
 except that it’s loosely based on the Perl associative array. Like
 an array or a Collection object, the Dictionary object holds
 elements, called items or
 members, containing data. A Dictionary object
 can contain any data whatsoever, including objects and other
 Dictionary objects. Access the value of these dictionary items by
 using unique keys (or named values) that are
 stored along with the data, rather than by using an item’s ordinal
 position as you do with an array. This makes the Dictionary object
 ideal when you need to access data that is associated with a unique
 named value.
You can access each item stored to a Dictionary object by
 using the For Each ...Next construct. However, rather
 than returning a variant containing the data value stored to the
 Dictionary object as you would expect, it returns a variant
 containing the key associated with the member. You then have to pass
 this key to the Item method to retrieve the member, as the following
 example shows:
Dim vKey
Dim sItem, sMsg
Dim oDict

Set oDict = CreateObject("Scripting.Dictionary")
oDict.Add "One", "Engine"
oDict.Add "Two", "Wheel"
oDict.Add "Three", "Tire"
oDict.Add "Four", "Spanner"

For Each vKey In oDict
 sItem = oDict.Item(vKey)
 sMsg = sMsg & sItem & vbCrLf
Next

MsgBox sMsg

Dictionary Object Properties
The Dictionary object includes the following four
 properties:
	Property
	Description

	CompareMode
	Determines the order of text comparisons in the
 Item property

	Count
	Indicates the total number of items in the
 dictionary

	Item
	Sets or retrieves a particular item of data in
 the dictionary

	Key
	Renames an existing key

Dictionary Object Methods
The Dictionary object supports the following five
 methods:
	Property
	Description

	Add
	Adds an item and its associated key to the
 dictionary

	Exists
	Determines whether a particular key exists in
 the dictionary

	Keys
	Returns all keys in the
 dictionary

	Remove
	Removes an item from the
 dictionary

	Remove All
	Removes all the data from the
 dictionary

Name
Dictionary.Add Method

Syntax
 dictionaryobject.Add key, item
	dictionaryobject
	Use: Required
Data Type: Dictionary object
A reference to a Dictionary object.

	key
	Use: Required
Data Type: Any
A key value that’s unique in the Dictionary
 object.

	item
	Use: Required
Data Type: Any
The item to be added to the dictionary.

Description
Adds a key and its associated item to the specified Dictionary
 object.

Rules at a Glance
	If the key isn’t unique, runtime error 457, “This key is
 already associated with an element of this collection,” is
 generated.

	item can be of any data type,
 including objects and other Dictionary objects.

Example
The example uses a Dictionary object to store state
 abbreviations and their corresponding state names:
Dim StateCode, StateName
Dim StateDict
Dim Key

Set StateDict = CreateObject("Scripting.Dictionary")

StateCode = "CA"
StateName = "California"
StateDict.Add StateCode, StateName

StateCode = "NY"
StateName = "New York"
StateDict.Add StateCode, StateName

StateCode = "MI"
StateName = "Michigan"
StateDict.Add StateCode, StateName

Key = "NY"
MsgBox StateDict.Item(Key)

Programming Tips and Gotchas
	The order of members within a Dictionary object is
 officially undefined. That is, you can’t control the position of
 individual members, nor can you retrieve individual members
 based on their position within the Dictionary object. Your code,
 in short, should make no assumptions about the position of
 individual elements within the Dictionary objects.

	Once you add a key and its associated data item, you can
 change the key by using the write-only Key property.

	Use the Dictionary object to store tables of data, and
 particularly to store single items of data that can be
 meaningfully accessed by a key value.

	The use of the Dictionary object to store multifield data
 records is not recommended; instead, classes offer a better
 programmatic alternative. Typically, you would store a record by
 adding an array representing the record’s field values to the
 dictionary. But assigning arrays to items in the Dictionary
 object is a poor programming practice, since individual elements
 of the array cannot be modified directly once they are assigned
 to the dictionary.

See Also
Dictionary.Key
 Property

Name
Dictionary.CompareMode Property

Data Type
Long

Description
Sets or returns the mode used to compare the keys in a
 Dictionary object.

Rules at a Glance
	CompareMode can be set only on a dictionary that doesn’t
 contain any data.

	The CompareMode property can have either of the following
 two values:
	0, Binary
	This is the default value. It compares the keys with
 a string byte-per-byte to determine whether a match
 exists.

	1, Text
	Uses a case-insensitive comparison when attempting
 to match keys with a string.

In addition, the value of CompareMode can be greater than
 2, in which case it defines the locale identifier (LCID) to be
 used in making the comparison.

Programming Tips and Gotchas
	You need to explicitly set the CompareMode property only
 if you do not wish to use the default binary comparison
 mode.

	The Scripting Runtime type library defines constants
 (BinaryCompare and TextCompare) that can be used in place
 of their numeric equivalents. You can do this in one of three
 ways. You can define the constants yourself by adding the
 following code to your script:
Const BinaryCompare = 0
Const TextCompare = 1
You can also use the equivalent vbBinaryCompare and vbTextCompare constants that are
 defined in the VBScript library.
Finally, if you’re an ASP programmer, you can use the
 METADATA directive to access the Scripting Runtime type library;
 if you’re developing a Windows Script Host script, you can
 include the following line in a Windows Script Host (.wsf) file in order to access the
 constants from the Scripting Runtime type library:
<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

	Practically, the CompareMode property indicates whether
 the comparison between existing key names and the
 key argument of the Dictionary
 object’s Add method, Exists method, Item property, or Key
 property will be case-sensitive (BinaryCompare) or case-insensitive
 (TextCompare). By default,
 comparisons are case-sensitive.

Name
Dictionary.Count Property

Data Type
Long

Description
A read-only property that returns the number of key/item pairs
 in a Dictionary object.

Rules at a Glance
This property returns the actual number of items in the
 dictionary. So if you use the Count property to iterate the items in
 the dictionary, you would use code like the following:
Dim ctr
For ctr = 0 to dictionary.Count - 1
 ' do something
Next

Name
Dictionary.Exists Method

Syntax
 dictionaryobject.Exists(key)
	dictionaryobject
	Use: Required
Data Type: Dictionary object
A reference to a Dictionary object.

	key
	Use: Required
Data Type: String
The key value being sought.

Return Value
Boolean

Description
Determines whether a given key is present in a Dictionary
 object.

Rules at a Glance
Returns True if the
 specified key exists in the Dictionary object; False if not.

Programming Tips and Gotchas
	If you attempt to use the Item property to return the item
 of a nonexistent key, or if you assign a new key to a
 nonexistent key, the nonexistent key is added to the dictionary,
 along with a blank item. To prevent this, you should use the
 Exists property to ensure that the Key is present in the
 dictionary before proceeding.

	The way in which key is
 compared with the existing key values is determined by the
 setting of the Dictionary object’s CompareMode property.

Example
If oDict.Exists(strOldKey) Then
 oDict.Key(strOldKey) = strNewKey
End If

Name
Dictionary.Item Property

Syntax
The syntax for setting an item is:
 dictionaryobject.Item(key) = item
The syntax for returning an item is:
 value = dictionaryobject.Item(key)
	dictionaryobject
	Use: Required
Data Type: Dictionary object
A reference to a Dictionary object.

	key
	Use: Required
Data Type: String
A unique string key for this Dictionary object.

	item
	Use: Optional
Data Type: Any
The data associated with
 key.

Data Type
Any

Description
Sets or returns the data item to be linked to a specified key
 in a Dictionary object.

Rules at a Glance
	The Item property is the default member of the Dictionary
 object.

	The data type is that of the item being returned.

	Unlike the Item property of most objects, the Dictionary
 object’s Item property is read/write. If you try to set
 item to a nonexistent key, the key is
 added to the dictionary, and the item is linked to it as a sort
 of “implicit add.”

Programming Tips and Gotchas
	The Dictionary object doesn’t allow you to retrieve an
 item by its ordinal position.

	If you provide a nonexistent key when trying to retrieve
 an item, the dictionary exhibits rather strange behavior: it
 adds key to the Dictionary object
 along with a blank item. You should therefore use the Exists
 method prior to setting or returning an item, as the example
 shows.

	If the item to be assigned or retrieved from the
 Dictionary object is itself an object, be sure to use the
 Set keyword when assigning it
 to a variable or to the Dictionary object.

	The comparison of key with
 member keys is defined by the value of the Dictionary object’s
 CompareMode property.

	Although the read/write character of the Dictionary
 object’s Item property has its drawbacks, it also has its
 advantages. In particular, it makes it easy to overwrite or
 replace an existing data item, since its Item property is
 read/write: simply assign the new value like you would with any
 other property.

	The Dictionary object should never be used to store HTML
 form or query data in Session scope in an ASP application. Since
 the Dictionary object is an apartment-threaded COM object, this
 has the effect of locking down the application to a single
 thread of execution.

Example
The example uses the Dictionary object as a lookup table to
 retrieve the state name that corresponds to the state code entered
 by the user. The HTML page that submits user information to the
 server is as follows:
<HTML>
<HEAD><TITLE>Dictionary Object Example</TITLE></HEAD>
<BODY>
Enter your name and location: <P>
<FORM METHOD=POST ACTION=dictobj.asp>
Your name:
<INPUT TYPE="Text" NAME="VisitorName" /><P>
Your location:
<INPUT TYPE="Text" NAME="City" />,
<INPUT TYPE="Text" NAME="State" SIZE=2 /> <P>
<INPUT TYPE="Submit" VALUE="Submit" />
</FORM>
<BODY>
</HTML>
The ASP page that retrieves the information submitted by the
 user, encodes it, and uses the Dictionary object to retrieve the
 full state name is as follows:
<HTML>
<HEAD>
<TITLE>ASP Page for the Dictionary Object Example</TITLE>
</HEAD>
<BODY>

 <% Show Greeting %>

<SCRIPT LANGUAGE="VBScript" RUNAT="Server">

Sub ShowGreeting()
 Dim StateDict
 Dim ClientName, ClientState

 ' Initialize dictionary
Set StateDict = Server.CreateObject("Scripting.Dictionary")
StateDict.Add "NY", "New York"
StateDict.Add "CA", "California"
StateDict.Add "FL", "Florida"
StateDict.Add "WA", "Washington"
StateDict.Add "MI", "Michigan"
StateDict.Add "MA", "Massachusetts"
StateDict.Add "MN", "Minnesota"
' add other states

ClientName = Server.HTMLEncode(Request.Form("VisitorName"))
ClientState = Server.HTMLEncode(Request.Form("State"))

Response.Write("Hello, " & ClientName & ". <P>")
Response.Write("We are pleased to have a visitor from ")
 Response.Write(StateDict.Item(ClientState) & "!")
End Sub
</SCRIPT>
</BODY>
</HTML>

Name
Dictionary.Items Method

Syntax
 dictionaryobject.Items
	dictionaryobject
	Use: Required
Data Type: Dictionary object
A reference to a Dictionary object.

Return Value
A Variant array.

Description
Returns an array containing all the items in the specified
 Dictionary object.

Rules at a Glance
The returned array is always a zero-based variant array whose
 data type matches that of the items in the Dictionary object.

Programming Tips and Gotchas
	The only way to directly access members of the Dictionary
 is via their key values. However, using the Items method, you
 can “dump” the data from the Dictionary into a zero-based
 variant array. The data items can then be accessed like an array
 in the normal way, as the following code shows:
Dim vArray
vArray = DictObj.Items
For i = 0 to DictObj.Count -1
 Response.Write vArray(i) & "<P>"
Next I

	The Items method retrieves only the items stored in a
 Dictionary object; you can retrieve all the Dictionary object’s
 keys by calling its Keys method.

See Also
Dictionary.Keys
 Method

Name
Dictionary.Key Property

Syntax
 dictionaryobject.Key(key) = newkey
	dictionaryobject
	Use: Required
Data Type: Dictionary object
A reference to a Dictionary object.

	key
	Use: Required
Data Type: String
The key of an existing dictionary item.

	newkey
	Use: Required
Data Type: String
A new unique key for this dictionary item.

Data Type
A String.

Description
Replaces an existing key with a new one.

Rules at a Glance
	The Key property is write-only.

	key, the existing key value,
 must exist in the dictionary or an error results.

	newkey must be unique and must
 not already exist in the dictionary or an error results.

	The comparison of key and
 newkey with existing key values is
 defined by the Dictionary object’s CompareMode property.

Example
Private Function ChangeKeyValue(sOldKey, sNewKey)
'Assumes oDictionary is a public object
 If oDictionary.Exists(sOldKey) Then
 oDictionary.Key(sOldKey) = sNewKey
 ChangeKeyValue = True
 Else
 ChangeKeyValue = False
 End If
End Function

Programming Tips and Gotchas
	Use the Key property to change the name of an existing
 key. Use the Add method to add a new key and its associated
 value to the Dictionary object. Use the Keys method to retrieve
 the names of all keys; this is especially useful when you don’t
 know the names or the contents of the dictionary in
 advance.

	Attempting to retrieve the key name (a nonsensical
 operation, since this amounts to providing the key’s name in
 order to retrieve the key’s name) generates an error, as does
 attempting to modify a key name that hasn’t already been added
 to the dictionary.

	Using a For Each...Next
 loop to iterate the members of a Dictionary object involves an
 implicit call to the Key property. In other words, each
 iteration of the loop returns a key, rather than a data item. To
 retrieve the member’s data, you then must use its key value to
 access its data through the Item property. This is illustrated
 in the example for the Dictionary.Item property.

Name
Dictionary.Keys Method

Syntax
 dictionaryobject.Keys
	dictionaryobject
	Use: Required
Data Type: Dictionary object
A reference to a Dictionary object.

Return Value
An array of strings.

Description
Returns an array containing all the Key values in the
 specified Dictionary object.

Rules at a Glance
The returned array is always a 0-based variant array whose
 data type is String.

Programming Tips and Gotchas
The Keys method retrieves only the keys stored in a Dictionary
 object. You can retrieve all the Dictionary object’s items by
 calling its Items method. You can recall an individual data item by
 using the Dictionary object’s Item property.

Example
Dim vArray
vArray = DictObj.Keys
For i = 0 to DictObj.Count -1
 Response.Write vArray(i) & "
"
Next

Name
Dictionary.Remove Method

Syntax
 dictionaryobject.Remove key
	dictionaryobject
	Use: Required
Data Type: Dictionary object
A reference to a Dictionary object.

	key
	Use: Required
Data Type: String
The key associated with the item to be removed.

Description
Removes both the specified key and its associated data (i.e.,
 its item) from the dictionary.

Rules at a Glance
If key doesn’t exist, runtime error
 32811, “Element not found,” occurs.

Name
Dictionary.RemoveAll Method

Syntax
 dictionaryobject.RemoveAll
	dictionaryobject
	Use: Required
Data Type: Dictionary object
A reference to a Dictionary object.

Description
Clears out the dictionary; in other words, removes all keys
 and their associated data from the dictionary.

Programming Tips and Gotchas
If you want to remove a selected number of members rather than
 the entire contents of the dictionary, use the Remove method.

Name
Dim Statement

Syntax
Dim varname[([subscripts])], varname[([subscripts])]
	varname
	Use: Required
Your chosen name for the variable.

	subscripts
	Use: Optional
Dimensions of an array variable.

Description
Declares and allocates storage space in memory for variables.
 The Dim statement is used either
 at the start of a procedure or the start of a global script block.
 In the first case, the variable declared using Dim is local to the procedure. In the
 second, it’s available throughout the module.

Rules at a Glance
	You can declare multiple variables in a single Dim statement, as long as you use a
 comma to delimit them.

	When variables are first initialized with the Dim statement, they have a value of
 Empty. In addition, if a variable has been initialized but not
 assigned a value, the following expressions will both evaluate
 to True:
If vVar = 0 Then
If vVar = "" Then

	To declare array variables, use the following
 syntax:
	Fixed length, single dimension
	Dim
 arrayname (
 upper)
Example: Dim
 myArray(10)

	Fixed length, multidimensional
	Dim
 arrayname (
 upper ,
 upper , ...)
Example: Dim
 MyArray(20,30)

	Variable length, single or multidimensional
	Dim
 arrayname ()
Example: Dim
 myArray()

	You can declare a multidimensional array with up to 60
 dimensions.

	Variable-length arrays can be resized using the ReDim statement. Fixed-length arrays
 can’t be resized.

Example
The example shows how to use the Dim statement to define a variable that
 receives an array returned by a function:
Dim Input, NumArray

Input = InputBox("Enter three numbers separated by commas: ")
NumArray = Split(Input, ",")
If IsEmpty(NumArray) Then
 MsgBox "No numbers were entered."
Else
 Dim Sum, Element
 For Each Element in NumArray
 If IsNumeric(Element) Then Sum = Sum + CDbl(Element)
 Next
 MsgBox "The total of the numbers is: " & Sum
End If

Programming Tips and Gotchas
	It’s accepted practice to place all the Dim statements to be used in a
 particular procedure at the beginning of that procedure, and to
 place all Dim statements for
 global variables at the beginning of the script block.

	Variables declared with Dim in the global script block are
 available to all procedures within the script. At the procedure
 level, variables are available only within the procedure.

VBA/VBScript Differences
	VBA allows you to instantiate objects of a particular type
 through early binding by using the New keyword. VBScript does not support
 the New keyword when used with Dim statement, nor does it support
 strong typing of objects.

	VBA supports the use of the WithEvents keyword, which allows VBA code to trap the events
 fired by an object of a particular type (that is, by a strongly
 typed object). VBScript does not support the keyword and hence
 does not allow you to trap events that are not otherwise
 supported by the host object model. For instance, you can trap
 the Application_OnStart, Application_OnEnd, OnTransactionCommit,
 OnTransactionAbort, Session_OnStart, and Session_OnEnd events in
 an ASP application. (For details on events supported by each
 object model, see Chapter
 5 through Chapter
 8, which discuss the object models of each host
 environment that supports VBScript.) A partial exception to this
 lack of support for external events is Windows Script Host,
 which allows you to trap an object’s events by supplying an
 extra parameter to the WScript.CreateObject method or by calling
 the WScript.ConnectObject method.

	In VBA, only variables explicitly declared as variants and
 variables whose data type has not been declared are reported by
 the IsEmpty function to be empty, and
 return True when compared to
 zero or to a null string. This is true of all variables in
 VBScript, because it does not support strong typing.

See Also
Const Statement, Private Statement, Public Statement, ReDim Statement

Name
Do . . . Loop Statement

Syntax
Do [{While | Until} condition]
 [statements]
[Exit Do]
 [statements]
Loop
or:
Do
 [statements]
[Exit Do]
 [statements]
Loop [{While | Until} condition]
	condition
	Use: Optional
Data Type: Boolean expression
An expression that evaluates to True or False.

	statements
	Use: Optional
Program statements that are repeatedly executed while,
 or until, condition is True.

Description
Repeatedly executes a block of code while or until a condition
 becomes True.

Rules at a Glance
	On its own, Do...Loop repeatedly executes the code
 that is contained within its boundaries indefinitely. You
 therefore need to specify under what conditions the loop is to
 stop repeating. Sometimes, this requires modifying the variable
 that controls loop execution within the loop. For
 example:
Do
 intCtr = intCtr + 1 ' Modify loop control variable
 Response.Write "Iteration " & intCtr & _
 " of the Do loop..." & "
"
 ' Compare to upper limit
 If intCtr = 10 Then Exit Do
Loop
Failure to do this results in the creation of an endless
 loop.

	Adding the Until
 keyword after Do instructs
 your program to Do something
 Until the condition is
 True. Its syntax is:
Do Until condition
 code to execute
Loop
If condition is True before your code gets to the
 Do statement, the code within
 the Do...Loop is
 ignored.

	Adding the While
 keyword after Do repeats the
 code while a particular condition is True. When the condition becomes
 False, the loop is
 automatically exited. The syntax of the Do While statement is:
Do While condition
 code to execute
Loop
Again, the code within the Do...Loop construct is ignored if
 condition is False when the program arrives at the
 loop.

	In some cases, you may need to execute the loop at least
 once. You might, for example, evaluate the values held within an
 array and terminate the loop if a particular value is found. In
 that case, you’d need to execute the loop at least once. To do
 this, place the Until or
 While keyword along with the
 condition after the Loop statement. Do...Loop Until always executes the code in the
 loop at least once and continues to loop until the condition is
 True. Likewise, Do...Loop While always executes the code at
 least once, and continues to loop while the condition is
 True. The syntax of these two
 statements is as follows:
Do
 code to execute
Loop Until condition

Do
 code to execute
Loop While condition

	A Null
 condition is treated as False.

	Your code can exit the loop at any point by executing the
 Exit Do statement.

Programming Tips and Gotchas
	Inexperienced programmers often think that a loop exits as
 soon as the condition that terminates the loop is met. In fact,
 however, it exits whenever the conditional statement that
 evaluates the loop control expression is executed and that
 expression is True. For example, in the code:
Do While X <> 10
 ' This always executes if the loop is entered

 ' Set loop termination variable
 X = 10

 ' Any code here still executes. There is nothing
 ' monitoring X
Loop
all statements following the assignment execute until the
 condition at the top of the loop is evaluated.

	You’ll also encounter situations in which you intend to
 continually execute the loop while or until a condition is
 True, except in a particular
 case. This type of exception is handled using the Exit Do statement. You can place as many
 Exit Do statements within a Do...Loop structure as you require. As
 with any exit from a Do...Loop, whether it’s exceptional or
 normal, the program continues execution on the line directly
 following the Loop statement.
 The following code fragment illustrates the use of Exit Do:
Do Until condition1
 'code to execute
 If condition2 Then
 Exit Do
 End if
 'more code to execute—only if condition2 is false
Loop

See Also
For Each . . . Next
 Statement, For . . . Next
 Statement, While . . . Wend
 Statement

Name
Drive Object

Returned by
	File.Drive property
	FileSystemObject.Drives.Item property

Createable
No

Library
Microsoft Scripting Runtime

Description
Represents a single drive connected to the current machine,
 including a network drive. By using the Drive object, you can
 interrogate the system properties of any drive. In addition, you can
 use the Folder object returned by the Drive object’s RootFolder
 property as your foothold into the physical drive’s
 filesystem.
A new instance of the Drive object cannot be created. Instead,
 a Drive object that represents an existing physical drive typically
 is retrieved from the FileSystemObject object’s Drives collection,
 as in the following code fragment, which retrieves an object
 reference that represents the C: drive:
Dim oFS, oDrive
Set oFS = CreateObject("Scripting.FileSystemObject")
set oDrive = oFS.Drives("C")
For an overview of the File System object model, including the
 library reference needed to access it, see the “File System Object
 Model” entry.

Properties
All Drive object properties are read-only. In addition,
 removable media drives must be ready (i.e., have media inserted) for
 the Drive object to read certain properties.
	AvailableSpace
	Data Type: Long
Returns the number of bytes unused on the disk.
 Typically, the AvailableSpace property returns the same number
 as the Drive object’s FreeSpace property, although differences
 may occur on systems that support quotas. In early versions of
 the Scripting Runtime, AvailableSpace was capable of storing
 only values that ranged from 0 to 2^31, or 2,147,483,648; in
 other words, in the case of drives with over 2 GB free, it
 failed to accurately report the amount of available free
 space.
In order to check the amount of available space on the
 drive, the drive must be ready. Otherwise, an error is likely
 to result. This makes it worthwhile to check the value of the
 IsReady property before attempting to retrieve a drive’s free
 space, particularly if your script is iterating the Drives
 collection.

	DriveLetter
	Data Type: String
The drive letter used for this drive on the current
 machine (e.g., C). In addition, its
 value is an empty string ("") if the drive is a network share
 that has not been mapped to a local drive letter.

	DriveType
	Data Type: Long
A value (see the following table) indicating the type of
 drive. Any remote drive is shown only as remote. For example,
 a shared CD-ROM or Zip drive that is both remote and removable
 is shown simply as remote (i.e., it returns a value of 3) on
 any machine other than the machine on which it’s
 installed.
	Constant
	Value

	CDROM
	4

	Fixed
	2

	RAMDisk
	5

	Remote
	3

	Removable
	1

	Unknown
	0

The Scripting Runtime type library defines the constants
 shown in the above table’s Constant column that can be used in
 place of their numeric equivalents. You can take advantage of
 these constants in your scripts in one of two ways. You can
 define the constants yourself by adding the following code to
 your script:
Const Unknown = 0
Const Removable = 1
Const Fixed = 2
Const Remote = 3
Const CDRom = 4
Const RAMDisk = 5
You can also use the ASP METADATA tag to access the
 constants from the type library, or you can include the
 following line in a Windows Script Host (.wsf) file in order to access the
 constants from the Scripting Runtime type library:
<reference
GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />
The DriveType property does not require that the drive
 be ready to return a value.

	FileSystem
	Data Type: String
The installed filesystem; returns FAT, FAT32, NTFS, or
 CDFS. In order to determine that the filesystem in place, a
 device must be present on removable drives or runtime error
 71, “Disk not ready,” results.

	FreeSpace
	Data Type: Long
The number of bytes unused on the disk. Typically, its
 value is the same as the Drive object’s AvailableSpace
 property, although differences may occur on computer systems
 that support quotas.
In early versions of the scripting Runtime, the property
 was capable of storing only values that ranged from 0 to
 231, or 2,147,483,648. In other
 words, in the case of drives with over 2 GB free, it failed to
 accurately report the amount of available free space.

	IsReady
	Data Type: Boolean
For hard drives, this should always return True. For removable media drives,
 True is returned if media
 is in the drive; otherwise, False is returned.
A number of Drive object properties raise an error if
 the drive they represent is not ready. You can use the IsReady
 property to check the status of the drive and prevent your
 script from raising an error.

	Path
	Data Type: String
The drive name followed by a colon (e.g.,
 C:). (Note that it does not include the
 root folder.) This is the default property of the Drive
 object.

	RootFolder
	Data Type: Folder object
Gives you access to the rest of the drive’s filesystem
 by exposing a Folder object representing the root
 folder.

	SerialNumber
	Data Type: Long
The serial number of the drive, an integer that uniquely
 identifies the drive or disk. If a disk or CD-ROM has been
 assigned a serial number, you can use this property to insure
 that the correct disk is present in a drive that has removable
 media.

	ShareName
	Data Type: String
For a network share, returns the machine name and share
 name in UNC format (e.g.,
 \NTSERV1\TestWork). If the Drive object
 does not represent a network drive, the ShareName property
 returns a zero-length string ("").

	TotalSize
	Data Type: Double
The total size of the drive in bytes. In early versions
 of the Scripting Runtime, the TotalSize property was capable
 of storing only values that ranged from 0 to
 231, or 2,147,483,648. In other
 words, in the case of drives larger than 2 GB, it failed to
 accurately report the total drive size.
In order to check the amount of total space on the
 drive, the drive must be ready. Otherwise, a “Disk not ready”
 error is likely to result. This makes it worthwhile to check
 the value of the IsReady property before attempting to
 retrieve a drive’s free space, particularly if your script is
 iterating the Drives collection.

	VolumeName
	Data Type: String
The drive’s volume name, if one is assigned (e.g.,
 DRIVE_C). If a drive or disk has not been
 assigned a volume name, the VolumeName property returns an
 empty string (""). This is
 the only read/write property supported by the Drive
 object.
In order to retrieve the volume name, the drive must be
 ready. Otherwise, a “Disk not ready” error is likely to
 result. This makes it worthwhile to check the value of the
 IsReady property before attempting to retrieve a drive’s
 volume name, particularly if your script is iterating the
 Drives collection.

Name
Drives Collection Object

Returned by
FileSystemObject.Drives property

Createable
No

Library
Microsoft Scripting Runtime

Description
All drives connected to the current machine are included in
 the Drives collection, even those that aren’t currently ready (like
 removable media drives with no media inserted in them). The Drives
 collection object is read-only.
The Drives collection cannot be created; instead, it is
 returned by the Drives property of the FileSystemObject object, as
 the following code fragment illustrates:
Dim oFS, oDrives
Set oFS = CreateObject("Scripting.FileSystemObject")
Set oDrives = oFS.Drives
For an overview of the filesystem object model, including the
 library reference needed to access it, see the “File System Object
 Model” entry.

Properties
	Count
	Data Type: Long
Returns the number of Drive objects in the
 collection.

	Item
	Syntax: oDrives.Item(
 key)
Data Type: Drive object
Returns a Drive object whose key is
 key, the drive letter. This is an
 unusual collection, since the drive’s index value (its ordinal
 position in the collection) can’t be used; attempting to do so
 generates runtime error 5, “Invalid procedure call or
 argument.” Since attempting to retrieve a Drive object for a
 drive that doesn’t exist generates runtime error 68, it’s a
 good idea to call the FileSystemObject object’s DriveExists
 method beforehand.

Example
Dim ofsFileSys As FileSystemObject
Dim ofsDrives As Drives
Dim ofsDrive As Drive

Set ofsFileSys = New FileSystemObject
Set ofsDrives = ofsFileSys.Drives
Set ofsDrive = ofsDrives.Item("C")
MsgBox ofsDrive.DriveType

See Also
Drive Object, FileSystemObject.Drives Property

Name
End . . . Statement

Syntax
End Class
End Function
End If
End Property
End Select
End Sub
End With

Description
Ends a procedure or a block of code.

Rules at a Glance
The End statement is used
 as follows:
	Statement
	Description

	End Class
	Marks the end of a class
 definition

	End Function
	Marks the end of a Function
 procedure

	End If
	Marks the end of an If...Then...Else
 statement

	End Property
	Marks the end of a Property Let, Property Get,
 or Property Set procedure within a Class...End Class construct

	End Select
	Marks the end of a Select Case statement

	End Sub
	Marks the end of a Sub procedure

	End With
	Marks the end of a With statement

Programming Tips and Gotchas
The End statement used by
 itself to terminate the program is not supported within a VBScript
 script or procedure. Instead you should terminate execution of a
 procedure prematurely using the Exit... statement. You can also terminate
 the script or application by calling a method belonging to an object
 of the object model you are using. These are shown in the following
 table:
	Environment
	Method

	ASP
	Response.End or Session.Abandon

	IE
	Application.Quit

	Outlook form
	Item.Close

	Windows Script Host
	WScript.Quit

VBA/VBScript Differences
VBA supports the End
 statement, which immediately terminates execution of code and, in
 the case of Visual Basic, terminates the application. The End statement, however, is not supported
 in VBScript.

See Also
Exit Statement

Name
Erase Statement

Syntax
Erase arraylist
	arraylist
	Use: Required
Data Type: Variant array
A list of array variables to clear.

Description
Resets the elements of an array to their initial (unassigned)
 values. In short, Erase “clears
 out” or empties an array.

Rules at a Glance
	Specify more than one array to be erased by using commas
 to delimit arraylist.

	Fixed array variables remain dimensioned; on the other
 hand, all memory allocated to dynamic arrays is released.

	After the Erase
 statement executes, TypeName returns “Variant()” for a
 fixed-length array; in addition, the
 IsEmpty function returns True when individual members of the
 array are passed to it, and comparisons of an individual member
 of the array with an empty string ("") and with zero both return True. On the other hand, the
 TypeName function returns Empty for a
 dynamic array, and comparisons of the array with an empty string
 ("") and zero also return
 True.

Programming Tips and Gotchas
Once you use Erase to clear
 dynamic arrays, they must be redimensioned with ReDim before being used again. This is
 because Erase releases the memory
 storage used by the dynamic array back to the operating system,
 which sets the array to have no elements.

VBA/VBScript Differences
Because VBA can be strongly typed, the behavior of the
 Erase statement in clearing a
 fixed array varies, depending on the array’s data type. The effect
 of the Erase statement on a fixed
 variant array in VBScript is described earlier in the “Rules at
 Glance” section.

See Also
Dim Statement, ReDim Statement

Name
Err Object

Description
The Err object contains properties and methods that allow you
 to obtain information about a single runtime error in a VBScript
 script. It also allows you to generate errors and to reset the error
 object. Because the Err object is an intrinsic object (which means
 that it’s part of every VBScript script you create) with global
 scope, you don’t need to create an instance of it within your
 code.
When an error is generated in your application—whether it’s
 handled or not—the properties of the Err object are assigned values
 you can then access to gain information about the error that
 occurred. You can even generate your own errors explicitly using the
 Err.Raise method. You can also define your own errors to unify the
 error-handling process.
When your program reaches an On Error Resume
 Next or On Error Goto 0
 statement, the Err object is cleared and its properties
 reinitialized. This can also be achieved explicitly using the
 Err.Clear method.

Properties
	Property name
	Description

	Description
	The string associated with the given error
 number

	HelpContext
	A context ID within a VBScript Help
 file

	HelpFile
	The path to a VBScript Help file

	Number
	A long integer used to describe an error (i.e.,
 an error code)

	Source
	Either the name of the current project or the
 class name of the application that generated the error

Methods
	Method name
	Description

	Clear
	Resets all the properties of the Err
 object

	Raise
	Forces an error with a particular error code to
 be generated

Programming Tips and Gotchas
The VBScript Err object isn’t a collection; it contains only
 information about the last error, if one occurred. You could,
 however, implement your own error collection class to store a number
 of errors by copying error information from the Err object into an
 object array that holds error information.

VBA/VBScript Differences
	The VBA Err object includes one additional property,
 LastDLLError, that reports the last error code generated by a
 call to a DLL routine.

	In VBA, the Err object is automatically reset whenever an
 Exit Function, Exit Sub, Exit
 Property, Resume,
 or On Error statement is
 encountered, the Err object is cleared, and its properties
 reinitialized. In VBScript, this occurs only when an On Error Resume Next or an On Error Goto 0 statement is
 executed.

See Also
Err.Clear Method, Err.Raise Method, On Error Statement

Name
Err.Clear Method

Syntax
Err.Clear

Description
Explicitly resets all the properties of the Err object after
 an error has been handled.

Rules at a Glance
You need to clear the Err object only if you need to reference
 its properties for another error within the same subroutine or
 before another On Error Resume Next statement within the same
 subroutine.

Example
On Error Resume Next

i = oObjectOne.MyFunction(iVar)

If Err.Number <> 0 Then
 MsgBox "The Error : " & Err.Description & vbCrLf _
 & " was generated in " & Err.Source
 Err.Clear
End If

j = oObjectTwo.YourFunction(iVar)

If Err.Number <> 0 Then
 MsgBox "The Error : " & Err.Description & vbCrLf _
 & " was generated in " & Err.Source
 Err.Clear
End If

Programming Tips and Gotchas
	Resetting the Err object explicitly using the Clear method
 is necessary when you use On
 Error Resume Next and test the value of
 Err.Number repeatedly. Unless you
 reset the Err object, you run the very real risk of catching the
 previously handled error, the details of which are still lurking
 in the Err object’s properties.

	The Err object is automatically reset when an On Error Resume
 Next or On Error Goto
 0 statement is executed.

	It is also possible to set the Err.Number property to 0
 instead of calling up the Err.Clear method. However, this
 doesn’t reset the remaining properties of the Err object.

	When testing the value of
 Err.Number, don’t forget that OLE
 servers often return “negative” numbers. Actually internally
 they’re not really negative, but are unsigned longs. However,
 since VBScript has no unsigned long data type, its value is
 represented as a negative number.

VBA/VBScript Differences
In VBA, the Err object is automatically reset by an Exit Function, Exit Sub, Exit Property, Resume, or On Error statement. In VBScript, it’s reset
 only by an On Error
 statement.

See Also
Err Object, Err.Raise Method, On Error Statement

Name
Err.Description Property

Data Type
String

Description
A read/write property containing a short string describing a
 runtime error.

Rules at a Glance
	When a runtime error occurs, the Description property is
 automatically assigned the standard description of the
 error.

	If there is no error (that is, if the value of Err.Number
 is 0), the value of the Description property is an empty
 string.

	For user-defined errors (that is, for errors that you
 define in your own scripts), you must assign a string expression
 to the Description property or the error won’t have an
 accompanying textual message.

	You can override the standard description by assigning
 your own description to the Err object for both VBScript errors
 and user-defined errors.

Example
This example uses the description parameter of the Err.Raise
 method to return an error message when validating information from
 an HTML form. The web page containing the form is:
<HTML>
<HEAD>
<TITLE>Register</TITLE>
</HEAD>
<BODY>
<CENTER><H1>Welcome!</H1></CENTER>
Enter Your Name:
<FORM NAME="frmName" METHOD="POST" ACTION="Err_Desc2.asp" >
<INPUT TYPE="text" NAME="txtName">
<INPUT TYPE="submit">
</FORM>
</BODY>
</HTML>
The source code for Err_Desc2.asp is:
<HTML>
<HEAD>
<TITLE>Welcome to our Web Page</TITLE>
<SCRIPT LANGUAGE="VBSCRIPT" RUNAT="Server">
Function ValidateString(sString)
 If sString = "" Then
 Err.Raise 61000,,
 "<H4>Please press the Back button and enter your name.</H4>"
 Else
 ValidateString = sString
 End If
End Function
</SCRIPT>
</HEAD>

<BODY>
<%
 On Error Resume Next
 Dim sFormName, sName

 sFormName = Server.HTMLEncode(Request.Form.Item("txtName"))
 sName = ValidateString(sFormName)
 If Err.Number = 0 Then
 Response.Write "<H1><CENTER>Welcome, " & sName & "."
 Else
 Response.Write "We encounter an error in the information you
submitted: " & _
"<P>" & Err.Description
 End If
%>
</BODY>
</HTML>Chapter 7

Programming Tips and Gotchas
	If you raise an error with the Err.Raise method that does
 not correspond to a VBScript error and don’t set the Description
 property, the Description property is automatically set to
 “Unknown runtime error.”

	You can also pass the Err.Description to a logging device
 such as a log file in Windows 95/98/ME or the application log in
 Windows NT/2000/XP by using the Windows Script Host
 WSHShell.LogEvent method; for details, see Chapter 7.

	The best way to set the Description property for your own
 application-defined errors is to use the
 description argument with the Raise
 method:
Err.Raise 65444,, "Meaningful Error Description"

VBA/VBScript Differences
In VBA, user-defined errors that do not have descriptions are
 automatically assigned a description of “Application Defined or
 Object Defined Error.” In VBScript, the description is “Unknown
 runtime error.”

See Also
Err Object, Err.Number Property, Err.Raise Method

Name
Err.HelpContext Property

Data Type
Long

Description
A read/write property that either sets or returns a long
 integer value containing the context ID of the appropriate topic
 within a Help file.

Rules at a Glance
	The HelpContext property can be set either directly or by
 supplying the fifth parameter (the
 helpcontext parameter) to the
 Err.Raise method.

	HelpContext IDs are decided upon when writing and creating
 a Windows help file. Once the Help or HTML help file has been
 compiled, the IDs can’t be changed. Each ID points to a separate
 Help topic.

Example
On Error Resume Next

Dim i

i = 8
MsgBox (i / 0)
If Err.Number <> 0 Then
 Err.Description = "You are attempting to divide by zero."
 Err.Helpfile = "C:\Windows\help\CustomApp.CHM"
 Err.HelpContext = 1000000 + Err.Number
 MsgBox Err.Description, vbMsgBoxHelpButton, "Error", Err.HelpFile, _
 Err.HelpContext
End If

Programming Tips and Gotchas
	You can display a topic from a help file by supplying
 values to the Err.HelpFile and Err.HelpContext properties, using
 the MsgBox function with the vbMsgBoxHelpButton constant and
 passing Err.HelpContext as the
 HelpContext argument (as shown in the
 previous example).

	If you supply a HelpContext ID that can’t be found in a
 Windows Help file, the contents page for the Help file should be
 displayed. However, what actually happens is that a Windows Help
 error is generated, and a message box is displayed that informs
 the user to contact their vendor. If you supply a HelpContextID
 that cannot be found in an HTML Help file, VBScript displays an
 error message indicating that the Help file is either invalid or
 corrupted.

	In ASP applications, the HelpContext and HelpFile
 properties should not be used, since context-sensitive help on
 the server is undesirable. In Internet Explorer applications,
 particularly those that are accessible over the Internet, use of
 the HelpContext and HelpFile properties is not advisable, since
 you can’t be certain that the appropriate help file is available
 on the client.

VBA/VBScript Differences
	At runtime, the HelpFile and HelpContext properties are
 automatically set when a VBA runtime error is encountered either
 because of an actual error or because of a call to the Err.Raise
 method. When a VBScript-defined error is encountered, on the
 other hand, these property values are not updated, since it may
 not make sense to supply help in a scripted environment.

	An invalid HelpContext ID to an HTML Help file causes VBA
 to display the file’s Contents page. It causes VBScript to
 display an error message noting that the file either is not a
 help file or has been corrupted.

See Also
MsgBox Function, Err.HelpFile Property, Chapter 4

Name
Err.HelpFile Property

Data Type
String

Description
A read/write string property that contains the fully qualified
 path of a Windows Help or HTML Help file.

Rules at a Glance
The HelpFile property can be set either directly or by
 supplying the fourth parameter (the
 helpfile parameter) to the Err.Raise
 method.

Example
See Err.HelpContext.

Programming Tips and Gotchas
	Some objects you may use within your application have
 their own help files, which you can access using HelpFile to
 display highly focused help to your users.

	Remember that once the program encounters an On Error statement, all the properties of
 the Err object are reset; this includes HelpFile. You must
 therefore set the Err.HelpFile property each time your
 application needs to access the help file.

	In ASP applications, the HelpContext and HelpFile
 properties should not be used, since context-sensitive help on
 the server is undesirable. In IE applications, particularly
 those that are accessible over the Internet, use of the
 HelpContext and HelpFile properties is not advisable, since you
 can’t be certain that the appropriate help file is available on
 the client.

VBA/VBScript Differences
Much of the utility of the HelpFile and HelpContext properties
 in VBA stems from the fact that, for errors recognized by the
 runtime engine, these values are automatically supplied to the Err
 object and can in turn be passed to the MsgBox
 function. In VBScript, however, these values are not updated
 automatically; if you want to use a help file or implement
 context-sensitive help, you have to supply these values
 yourself.

See Also
Err.HelpContext Property,
 Err.Number Property, Chapter 4

Name
Err.Number Property

Data Type
Long

Description
A read/write property containing a type Long value that
 represents the error code for the last error generated.

Rules at a Glance
	When a runtime error is generated within the program, the
 error code is automatically assigned to Err.Number.

	The Number property is updated with an application-defined
 error whose code is passed as an argument to the Err.Raise
 method.

	When using the Err.Raise method in normal code, your
 user-defined error codes can’t be greater than 65536 or less
 than 0. (See the final note in the “Programming Tips and
 Gotchas” section of the entry for the Err.Raise method.)

	VBScript uses error numbers in the range of 1-1058 as well
 as 32766-32767 and 32811 for its own trappable errors. In
 implementing a series of application-defined errors, your error
 handlers should either translate application errors into
 VBScript trappable errors or, preferably, assign a unique range
 to application-defined errors.

	If your code instantiates an ActiveX server, its error
 codes should be increased by the value of the VBScript intrinsic
 constant vbObjectError. When
 control returns to the local application after an error has been
 raised by the OLE server, the application can determine that the
 error originated in the OLE server and extract the error number
 with a line of code like the following:
Dim lError
If ((Err.Number And &HFF00) And vbObjectError) Then
 lError = Err.Number XOr vbObjectError

Name
Err.Raise Method

Syntax
 Err.Raise number, [source], [description], _
 [[helpfile], helpcontext]
	number
	Use: Required
Data Type: Long integer
A numeric identifier of the particular error.

	source
	Use: Optional
Data Type: String
The name of the object or application responsible for
 generating the error.

	description
	Use: Optional
Data Type: String
A useful description of the error.

	helpfile
	Use: Optional
Data Type: String
The fully qualified path of a Microsoft Windows Help or
 HTML Help file containing help or reference material about the
 error.

	helpcontext
	Use: Optional
Data Type: Long
The context ID within
 helpfile.

Description
Generates a runtime error.

Rules at a Glance
	To use the Raise method, you must specify an error
 number.

	If you supply any of the
 number,
 source,
 description,
 helpfile, and
 helpcontext arguments when you call
 the Err.Raise method, they are supplied as values to the Err
 object’s Number, Source, Description, HelpFile, and HelpContext
 properties, respectively. Refer to the entries for the
 individual properties for full descriptions of and rules for
 each property.

Programming Tips and Gotchas
	The Raise method doesn’t reinitialize the Err object prior
 to assigning the values you pass in as arguments. This can mean
 that if you Raise an error against an Err object that hasn’t
 been cleared since the last error, any properties you don’t
 specify values for still contain the values from the last
 error.

	As well as using Raise in a runtime scenario, you can put
 it to good use in the development stages of your program to test
 the viability of your error-handling routines under various
 circumstances.

	The fact that Err.Number accepts only numbers in the range
 0-65536 may appear to be strange at first because the data type
 of the Error Number parameter in the Raise event is a Long;
 however, deep in the recesses of the Err object, the error code
 must be declared as an unsigned integer, which is a data type
 not supported by VBScript.

	When you raise an error in a scripted environment, it may
 not make sense to supply arguments to the
 helpfile and
 helpcontext parameters. They have no
 relevance to ASP applications; in IE applications, the help file
 itself may not be available on the host computer.

See Also
Err Object, Err.Clear Method, Err.HelpContext Property, Err.Number Property, Chapter 4

Name
Err.Source Property

Data Type
String

Description
A read/write string property containing the name of the
 application or the object that has generated the error.

Rules at a Glance
	When a runtime error occurs in your code, the Source
 property is automatically assigned the string “Microsoft
 VBScript runtime error.”

	If the error occurs in an ActiveX component instantiated
 by your application, the Source property usually contains the
 class name or the programmatic identifier of the component that
 raised the error.

Programming Tips and Gotchas
Knowing what type of error has occurred within a program is
 often of little use if you don’t know where the error was generated.
 However, if you enhance the standard Source property by adding the
 name of the procedure, class, property, or method when you raise an
 error, your debugging time can be cut dramatically.

See Also
Err Object, Chapter 4

Name
Escape Function

Syntax
Escape (string)
string
	string
	Use: Optional
Data Type: String
The String to be encoded.

Return Value
An encoded Variant of Type string.

Description
Returns an encoded version of
 string.

Rules at a Glance
	All Unicode characters 255 and below are converted to
 %
 xx format except for A-Z, a-z, 0-9,
 and _*+-./@. For example, a space is replaced by %20.

Programming Tips and Gotchas
	The Escape function is not documented in the VBScript
 documentation.

	The function corresponds to the JScript escape
 method.

	You can use the Escape function to encode an HTML document
 so that a web browser displays the HTML source rather than
 interprets it. Alternatively, you can use the HTMLEncode method
 of the ASP Server object to achieve a similar (and more
 readable) result.

	You can use the Escape function to encode an HTTP query
 string before returning it to a web server.

	If string contains no spaces,
 punctuation characters, accented characters, or non-ASCII
 characters, the Escape function simply returns
 string unchanged.

Example
The following is a very simple routine that allows you to
 experiment with encoding character strings:
Option Explicit

Dim sIn, sOut
Do While True
 sIn = InputBox("Enter a string:", "UnescapedString", "")
 If sIn = " Then Exit Do

 sOut = Escape(sIn)

 msgbox "In: " & sIn & vbcrlf & _
Loop
For example, the string:
This is a level-1 head: <H1>Hello!</H1>
returns the string:
This%20is%20a%20level-1%20head%3A%20%3CH1%3EHello%21%3C/H1%3E

VB/VBA Differences
This function is not supported in VBA.

See Also
Unescape
 Function

Name
Eval Function

Syntax
[result =]Eval(expression)
	result
	Use: Optional
Data Type: Any
A variable to hold the result of the Eval function.

	expression
	Use: Required
Data Type: String
The expression to be evaluated.

Return Value
Any

Description
Evaluates an expression and returns the results.

Rules at a Glance
	Eval follows the rules of precedence
 in evaluating expression.

	If an equals sign (=) occurs in
 expression, it is interpreted as a
 comparison operator rather than as an assignment operator. In
 this case, Eval returns True if the parts of
 expression are equal and False if they are not.

Example
In this example, the first result will always evaluate to
 False, since the variables are not equal, and the second will always
 evaluate to True, since Test1 is in fact
 less than Test2:
Dim Test1, Test2, Result

Test1 = 4
Test2 = 5
Result = Eval("Test1 = Test2")
MsgBox Result
Result = Eval("Test1 < Test2")
MsgBox Result
Result = Eval("Test1 / Test2")
MsgBox Result
Result = Eval("Test1 - Test2")
MsgBox Result

Programming Tips and Gotchas
You may wonder why you’d want to bother with
 Eval when you can do the same thing without it.
 For example:
 lVar1 = 2
 lVar2 = 3
 lResult = lVar1 + lVar2
is the same as:
 lVar1 = 2
 lVar2 = 3
 lResult = Eval(lVar1 + lVar2)
But the significance of Eval is that it
 evaluates expressions stored to strings. For example, the
 code:
 Dim sExp, result, a, b, c

 a = 10
 b = 20
 c = 30

 sExp = "a + b + c"

 result = eval(sExp)
returns 60. This means that you can build expressions and
 assign them to strings dynamically, then have them evaluated by
 passing them to the Eval function.

VBA/VBScript Differences
The Eval function is not supported in
 VBA.

See Also
Execute Statement

Name
Execute Statement

Syntax
Execute statement
	statement
	Use: Required
Data Type: String expression
A string expression containing one or more statements
 for execution.

Description
Executes one or more statements.

Rules at a Glance
	statement must evaluate to a
 string that contains one or more executable statements. An
 executable statement is any call to a user-defined procedure or
 function, or any intrinsic VBScript command.

	You can put multiple statements in the expression;
 separate them with colons.

	You can also separate the arguments with embedded line
 breaks.

	If statement includes an equal
 sign, it is interpreted as an assignment rather than an
 evaluation. For example, x =
 3 assigns the value 3 to the variable x, rather than
 comparing the value of the variable x with 3.

	In VBScript, a program fragment such as x=3 can be interpreted as both an
 assignment statement (assigning the value 3 to the variable x)
 or as a comparison expression (for example If x = 3 Then...) The Execute and ExecuteGlobal statements always treat
 strings of the form a = b as
 assignment statements. Use Eval to interpret strings of this
 form as expressions.

Example
The following is a corrected version of an example appearing
 in online help that appears to do nothing. In this case, the
 Execute statement is used to
 execute a procedure named Proc2, and the entire source code for the
 procedure is also stored to the string S
 that is passed to the Execute
 statement:
dim S

S = "Proc2 : "
S = S & "Sub Proc2 : "
S = S & "Dim x : "
S = S & "x = 10 : "
S = S & "MsgBox X : "
S = S & "End Sub "

Execute S
But since the Execute
 statement only defines Proc2 as
 a procedure that’s visible within the script block but does not
 execute it, we must also execute Proc2 as follows:
dim S

S = "Sub Proc2 : "
S = S & "Dim x : "
S = S & "x = 10 : "
S = S & "MsgBox X : "
S = S & "End Sub "

Execute S
Proc2

Programming Tips and Gotchas
	The Execute statement
 does for executable statements what the
 Eval function does for expressions: it
 allows you to dynamically (i.e., at runtime) assign code to a
 string and execute it by passing it to the Execute statement.

	Be careful with this technique, since it can lead to very
 hard-to-read code.

VBA/VBScript Differences
The Execute statement is
 not supported by VBA. However, it is not unlike the
 CallByName function, which appeared for the
 first time in VBA 6.0. CallByName allows you to
 execute a routine whose name you store to a variable; hence, the
 name of the routine need not be determined at design time.

See Also
Eval Function, ExecuteGlobal Statement

Name
ExecuteGlobal Statement

Syntax
ExecuteGlobal statement
	statement
	Use: Required
Data Type: String
A string expression containing zero or more statements
 for execution.

Description
Executes zero or more statements in the global namespace of a
 script.

Rules at a Glance
	statement must evaluate to a
 string containing one or more executable statements. An
 executable statement is any call to a user-defined procedure or
 function, or to an intrinsic VBScript command.

	If statement contains
 multiple statements or lines of code, you can separate them with
 colons.

	You can also separate statements or lines of code with
 embedded line breaks (i.e., vbCrLf).

	If statement includes an equal
 sign, it is interpreted as an assignment rather than an
 evaluation. For example, x =
 3 assigns the value 3 to the variable x, rather than
 comparing the value of the variable x with 3.

	Code created by ExecuteGlobal is executed in the
 script’s global namespace. The global
 namespace is the following:
	In ASP and IE, code within a <SCRIPT>...</SCRIPT> tag, but outside
 of individual functions or procedures.

	In Outlook, form-level code outside of individual
 event handlers, functions, or procedures.

	In WSH, code outside of individual functions and
 procedures.

Example
The example WSH script illustrates the difference between
 Execute and ExecuteGlobal. Each is called within the
 MainProc procedure to define a
 subroutine. Execute creates a
 procedure named Proc2; however,
 it is only visible if called from MainProc. ExecuteGlobal creates a procedure named
 Proc1 which is globally available
 throughout the script.
Option Explicit

Dim x
x = 10

MainProc
EndProc
'Proc2 ' procedure not visible

Sub MainProc
 Dim x
 x = 20
 ExecuteGlobal "Sub Proc1 : MsgBox x : End Sub"
 Execute "Sub Proc2 : MsgBox x : End Sub"
 Proc2 ' only callable from MainProc
 Proc1
End Sub

Sub EndProc
 Proc1
End Sub
Note that both Proc1 and
 Proc2 access the public variable
 x, even though a local variable x was visible in MainProc when the Execute statement created the Proc2 procedure. If we wanted to pass the
 local variable x to our routine, we’d have to redefine Proc2 to accept it as a parameter, as
 follows:
Execute "Sub Proc2(ByVal a) : MsgBox a : End Sub"

Programming Tips and Gotchas
	While the Execute
 statement executes code that inherits the scope of the procedure
 in which it was declared, ExecuteGlobal always executes code in
 the script’s global scope. This has two major
 implications:
	After the ExecuteGlobal statement runs,
 functions, procedures, or classes defined using ExecuteGlobal can be accessed from
 anywhere within the script.

	Any variables accessed from code defined by the
 ExecuteGlobal statement
 must have global scope. In other words, when using ExecuteGlobal in a local scope,
 ExecuteGlobal will not
 see local variables.

VBA/VBScript Differences
The ExecuteGlobal statement
 is not supported by VBA.

See Also
Eval Function, Execute Statement

Name
Exit Statement

Syntax
Exit Do
Exit For
Exit Function
Exit Property
Exit Sub

Description
Prematurely exits a block of code.

Rules at a Glance
	Exit Do
	Exits a Do...Loop
 statement. If the current Do...Loop is within a nested
 Do...Loop, execution
 continues with the next Loop statement wrapped around the
 current one. If, however, the Do...Loop is standalone, program
 execution continues with the first line of code after the
 Loop statement.

	Exit For
	Exits a For...Next
 loop. If the current For...Next is within a nested
 For...Next loop, execution
 continues with the next Next statement wrapped around the
 current one. If, however, the For...Next loop is standalone,
 program execution continues with the first line of code after
 the Next statement.

	Exit Function
	Exits the current function.

	Exit Property
	Exits the current property procedure.

	Exit Sub
	Exits the current sub procedure.

Programming Tips and Gotchas
	Traditional programming theory recommends one entry point
 and one exit point for each procedure. However, you can improve
 the readability of long routines by using the Exit statement. Using Exit Sub can save having to wrap almost an
 entire subroutine (which could be tens of lines long) within an
 If...Then statement.
With Exit Sub:
Sub MyTestSub(iNumber)
 If iNumber = 10 Then
 Exit Sub
 End If
 ...'code
End Sub
Without Exit
 Sub:
Sub MyTestSub(iNumber)
 If iNumber <> 10 Then
 ...'code
 End If
End Sub

	In the case of the Exit
 Function, Exit Property, and Exit Sub statements, the point in the
 program to which program flow returns depends on the caller of
 the property, function, or sub, respectively, and not on the
 property, function, or sub itself.

See Also
Do . . . Loop Statement,
 For . . . Next Statement, For Each . . . Next Statement, Function Statement, Property Get Statement, Property Let Statement, Property Set Statement, Sub Statement

Name
Exp Function

Syntax
Exp(number)
	number
	Use: Required
Data Type: Number
Any valid numeric expression.

Return Value
A Double representing the antilogarithm of
 number.

Description
Returns the antilogarithm of a number; the antilogarithm is
 the base of natural logarithms, e (whose
 value is the constant 2.7182818), raised to a power.

Rules at a Glance
The maximum value for number is
 709.782712893.

Programming Tips and Gotchas
Exp is the inverse of the
 Log function.

See Also
Log Function

Name
File Object

Createable
No

Returned by
	Files.Item property
	FileSystemObject.GetFile method

Library
Microsoft Scripting Runtime

Description
The File object represents a disk file that can be a file of
 any type and allows you to interrogate the properties of the file
 and to move upward in the filesystem hierarchy to interrogate the
 system on which the file resides. The process of instantiating a
 File object—for example, assigning a reference from the File
 object’s Item property to a local object variable—doesn’t open the
 file. An open file is represented in the File System object model by
 a TextStream object, which can be generated by the File object’s
 OpenAsTextStream method.
There are several methods of retrieving a reference to an
 existing File object:
	If you want to work with a particular file, you can
 retrieve a reference to it directly by calling the GetFile
 method of the FileSystemObject object. For example:
Dim oFS, oFile
Set oFS = CreateObject("Scripting.FileSystemObject")
Set oFile = oFS.GetFile("C:\Documents\MyReport.doc")
allows you to retrieve a reference to a File object
 representing the MyReport.doc file without having to
 use the File System object model to navigate the
 filesystem.

	If you want to work with a file as a member of a folder or
 of a set of files, you can retrieve a reference to a File object
 that represents it from the Item property of the Files
 collection. (The Files collection is returned by the Files
 property of a Folder object.) The following code fragment, for
 instance, retrieves a reference to a file named MyReport.doc that is a member of the
 Documents folder:
Dim oFS, oFile
Set oFS = CreateObject("Scripting.FileSystemObject")
Set oFile = oFS.Drives("C").RootFolder.SubFolders("Documents"). _
 Files("MyReport.doc")
Note that a File object represents an existing file; you
 cannot create a File object representing a new file. (You can,
 however, create a new TextStream object that represents a new
 text file by calling the Folder object’s CreateTextFile
 method.)

Properties
	Attributes
	Data Type: Long
Sets or returns the file’s attributes. The value of the
 property represents a bit mask consisting of six flags in the
 case of a File object, each of which represents a particular
 file attribute. These values are:
	Value
	Description

	1
	Read-only

	2
	Hidden

	4
	System

	32
	Archive

	1024
	Alias

	2048
	Compressed

All flags are read/write except for the alias and
 compressed flags. A value of 0 (normal) indicates that no
 flags are set.
The attribute flags are represented by the constants of
 the FileAttribute enumeration in the Scripting Runtime
 library. You can access them from an ASP page by including the
 METADATA tag, or from a WSH script by including the following
 line in a Windows Script Host (.wsf)
 file:
<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />
You can also add Const statements that define the
 attribute constants.

	DateCreated
	Data Type: Date
The date and time the file was created; the property is
 read-only.

	DateLastAccessed
	Data Type: Date
The date and time the file was last accessed. Whether
 the property includes the date and time or only the date
 depends on the operating system; Windows 95, Windows 98, and
 Windows ME, for instance, only return the date, while Windows
 NT, Windows 2000, and Windows XP return the date and time. The
 property is read-only.

	DateLastModified
	Data Type: Date
The date and time the file was last modified; the
 property is read-only.

	Drive
	Data Type: Drive object
Returns a Drive object representing the drive on which
 the file resides; the property is read-only.

	Name
	Data Type: String
The name of the file. Modifying the value of a File
 object’s Name property renames the file.

	ParentFolder
	Data Type: Folder object
Returns a Folder object representing the folder in which
 the file resides; the property is read-only.

	Path
	Data Type: String
Returns the full path to the file from the current
 machine, including drive letter or network path/share name;
 the property is read-only. Path is the default property of the
 File object.

	ShortName
	Data Type: String
Returns a DOS 8.3 filename.

	ShortPath
	Data Type: String
Returns a DOS 8.3 folder name. The property is
 read-only.

	Size
	Data Type: Long
Returns the size of the file in bytes. The property is
 read-only.
The Size property holds a long integer, meaning that it
 accurately reports file sizes from 0 to 2,147,483,648 bytes.
 In previous versions of VBScript, the property failed to
 accurately report the size of large files of over 2 GB.

	Type
	Data Type: String
Returns a string containing the registered type
 description. This is the type string displayed for the file in
 Windows Explorer. If a file doesn’t have an extension, the
 type is simply “File.” When a file’s type isn’t registered,
 the type appears as the extension and “File.” The property is
 read-only.

Methods
	Copy
	Move
	Delete
	OpenAsTextStream

Name
File.Copy Method

Syntax
 oFileObj.Copy Destination [, OverwriteFiles]
	oFileObj
	Use: Required
Data Type: File object
A File object.

	Destination
	Use: Required
Data Type: String
The path and, optionally, the filename of the copied
 file.

	OverwriteFiles
	Use: Optional
Data Type: Boolean
True if the copy
 operation can overwrite an existing file, False otherwise.

Description
Copies the file represented by
 oFileObj to another location.

Rules at a Glance
Wildcard characters can’t be used in
 Destination.

Programming Tips and Gotchas
	If the Destination path is set
 to read-only, the Copy method fails regardless of the
 OverwriteFiles setting and generates
 a “Permission denied” error.

	If OverwriteFiles is False and the file already exists in
 Destination, runtime error 58, “File
 Already Exists,” is generated.

	If the user has adequate rights,
 Destination can be a network path or
 share name. For example:
MyFile.Copy "\\NTSERV1\d$\RootTwo\"
MyFile.Copy "\\NTSERV1\RootTest"

See Also
FileSystemObject.CopyFile
 Method

Name
File.Delete Method

Syntax
 oFileObj.Delete [Force]
	oFileObj
	Use: Required
Data Type: File object
A File object.

	Force
	Use: Optional
Data Type: Boolean
If set to True,
 ignores the file’s read-only flag (if it’s on), and deletes
 the file.

Description
Removes the current file.

Rules at a Glance
	The Delete method deletes a file permanently; it does not
 move it to the Recycle Bin.

	If the file is open, the method fails with a “Permission
 Denied” error.

	The default setting for Force
 is False.

	If Force is set to False, and the file is read-only, the
 method will fail.

Programming Tips and Gotchas
	Unlike the FileSystemObject object’s DeleteFile method,
 which accepts wildcard characters in the path parameter and can
 therefore delete multiple files, the Delete method deletes only
 the single file represented by
 oFileObj.

	As a result of the Delete method, the Files collection
 object containing oFileObj is
 automatically updated, the deleted file is removed from the
 collection, and the collection count is reduced by one. You
 shouldn’t try to access the deleted file object again; you
 should set oFileObj to Nothing.

See Also
FileSystemObject.DeleteFile
 Method

Name
File.Move Method

Syntax
 oFileObj.Move destination
	oFileObj
	Use: Required
Data Type: File object
A File object.

	destination
	Use: Required
Data Type: String
The path to the location where the file is to be
 moved.

Description
Moves a file from one folder to another.

Rules at a Glance
	The file represented by
 oFileObj must not be open or an error
 occurs.

	Wildcard characters can’t be used in
 Destination.

	Destination can be either an
 absolute or a relative path.

Programming Tips and Gotchas
	If a fatal system error occurs during the execution of
 this method (like a power failure), the worst that can happen is
 that the file is copied to the destination but not removed from
 the source. There are no rollback capabilities built into the
 File.Move method; however, because the copy part of this
 two-stage process is executed first, the file can’t be
 lost.

	If a folder or a file by the same name already exists in
 destination, the method generates
 runtime error 58, “File exists.” To prevent this, you can use
 the FileSystemObject’s FileExists and GetAbsolutePath methods
 prior to calling the Move method.

	Unlike the FileSystemObject’s MoveFile method, which
 accepts wildcard characters in the path parameter and can
 therefore move multiple files, the Move method moves only the
 single file represented by
 oFileObj.

	As a result of the Move method, the Files collection
 object originally containing oFileObj
 is automatically updated, the file is removed from it, and the
 collection count is reduced by one. You shouldn’t try to access
 the moved file object again in the same Folders collection
 object.

	oObj, the File object
 reference, remains valid after the file has been moved. Its
 relevant properties (the Drive, ParentFolder, Path, and
 ShortPath properties, for example) are all updated to reflect
 the file’s new path after the move.

	If the user has rights,
 destination can be a network path or
 share name:
oFile.Move "\\NTSERV1\d$\RootTwo\myfile.doc"

See Also
FileSystemObject.MoveFile
 Method

Name
File.OpenAsTextStream Method

Syntax
 oFileObj.OpenAsTextStream ([IOMode[, Format]])
	oFileObj
	Use: Required
Data Type: File object
A File object.

	IOMode
	Use: Optional
Data Type: Long
A constant specifying the purpose for opening the
 file.

	Format
	Use: Optional
Data Type: Long
A constant specifying ASCII or Unicode format.

Return Value
A TextStream object.

Description
Opens the referenced text file for reading or writing.

Rules at a Glance
	 IOMode can be one of the
 following values:
	Constant
	Value
	Description

	ForAppending
	8
	Opens the file in append mode; that is, the
 current contents of the file are protected, and new data
 written to the file is placed at the end of the file.

	ForReading
	1
	Opens the file for reading; you can’t write
 to a file that has been opened for reading.

	ForWriting
	2
	Opens the file for writing; all previous
 file content is overwritten by new data.

The default value is 1, ForReading.

	The Scripting Runtime type library defines constants of
 the IOMode enumeration that
 can be used in place of their numeric equivalents for the
 IOMode argument. You can use them in
 your scripts in either of two ways. You can define the constants
 yourself by adding the following code to your script:
Const ForReading = 1
Const ForWriting = 2
Const ForAppending = 8
You can also include the ASP METADATA tag in
 global.asa or include the following line in
 a Windows Script Host (.wsf
) file in order to access the constants from the Scripting
 Runtime type library:
<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

	Unicode can be one of the
 following values:
	Constant
	Value
	Description

	TristateUseDefault
	-2
	Open as System default

	TristateTrue
	-1
	Open as Unicode

	TristateFalse
	 0
	Open as ASCII

The default value is 0 or ASCII (TristateFalse).

	The Scripting Runtime type library defines constants of
 the Tristate enumeration that
 can be used in place of their numeric equivalents for the
 Unicode argument. You can use them in
 your scripts in either of two ways. You can define the constants
 yourself by adding the following code to your script:
Const TristateFalse = 0
Const TristateTrue = -1
Const TristateUseDefault = -2
You can also include the ASP METADATA tag in
 global.asa or include the following line in
 a Windows Script Host (.wsf
) file in order to access the constants from the
 Scripting Runtime type library:
<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

	If another process has opened the file, the method fails
 with a “Permission Denied” error.

	The TextStream object is so named for a very good reason:
 it is designed to work with text files rather than binary files.
 Although it is possible to use the OpenAs TextStream method to
 open a binary file, an enormous number of subtle bugs may crop
 up when you manipulate binary data as text. Because of this, if
 you want to work with binary files, you should use some
 technology (like the ADO binary file object) or programming
 language (like C/C++) that’s more amenable to processing binary
 files.

See Also
FileSystemObject.OpenTextFile
 Method , TextStream
 Object

Name
File System Object Model

Library to Reference
Microsoft Scripting Runtime (SCRRUN.DLL)

Description
The FileSystemObject is a boon for all developers using any
 variety of Visual Basic (VBScript, VBA, and VB). It simplifies the
 task of dealing with any type of file input and output and for
 dealing with the system file structure itself. Rather than resorting
 to complex calls to the Win32 API (or, in the case of VBScript, not
 being able to access the filesystem altogether), this object allows
 the developer to easily handle files and navigate the underlying
 directory structures. This is especially useful for those developers
 or administrators who are creating scripts that are used for system
 administration or maintenance.
The File System object model is available to both VB and VBA
 developers, but it is only intrinsically part of the VBScript
 scripting language. The File System object model allows you to
 interrogate, create, delete, and manipulate folders and text
 files.
To access the File System object model, you must first create
 an instance of the FileSystemObject object, the only externally
 createable object in the model. From there, you can navigate through
 the object model, as shown in the object hierarchy diagram in Figure 10-1. The
 FileSystemObject object can be instantiated with a code fragment
 like the following:
Dim oFS
Set oFS = CreateObject("Scripting.FileSystemObject")
	[image: The File System object model]

Figure 10-1. The File System object model

It can also be instantiated using the object creation method
 of the host object model.

See Also
File Object, Files Collection Object, FileSystemObject Object, Folder Object, Folders Collection Object, TextStream Object

Name
Files Collection Object

Createable
No

Returned by
Folder.Files property

Library
Microsoft Scripting Runtime

Description
The Files collection object is one of the objects in the File
 System object model; for an overview of the model, including the
 library reference needed to access it, see the “File System Object
 Model” entry.
The Files collection object is a container for File objects
 that is returned by the Files property of any Folder object. All
 files contained in the folder are included in the Files collection
 object. You can obtain a reference to a Files collection object
 using a code fragment like the following:
Dim oFS, oFiles

Set oFS = CreateObject("Scripting.FileSystemObject")
Set oFiles = oFS.Drives("C:").RootFolder. _
 SubFolders("Windows").Files
This code returns the Files collection for the Windows
 folder.
You can obtain a reference to an individual File object using
 the Files collection object’s Item property; this takes the exact
 filename, including the file extension, as an argument. To iterate
 through the collection, you can use the For Each...Next statement. For details, see
 the entry for the File Object.
The Files collection object is read-only. Consequently, it
 supports only the following two properties.

Properties
	Count
	Data Type: Long
The number of File objects in the collection.

	Item
	Data Type: File object
Takes the filename (including the file extension) as a
 parameter and returns the File object representing the file
 with that name. Individual File objects can’t be accessed by
 their ordinal position in the collection. Item is the Files
 collection object’s default property. The code fragment shown
 next uses the Item property to retrieve the autoexec.bat File object.
Dim ofsFiles
Dim ofsFile

Set ofsFileSys = CreateObject("Scripting.FileSystemObject")
Set ofsFiles = ofsFileSys.Drives("C:").RootFolder.Files
Set ofsFile = ofsFiles.Item("autoexec.bat")
MsgBox ofsFile.DateCreated & vbCrLf & _
 ofsFile.DateLastModified & vbCrLf & _
 ofsFile.DateLastAccessed

See Also
File System Object Model,
 File Object

Name
FileSystemObject Object

Createable
Yes

Library
Microsoft Scripting Runtime

Description
The FileSystemObject object is at the top level of the File
 System object model and is the only externally createable object in
 the hierarchy; that is, it’s the only object you can create using
 the CreateObject function or the host object model’s object creation
 facilities. For example, the following code instantiates a
 FileSystemObject object named oFS:
Dim oFS
Set oFS = CreateObject("Scripting.FileSystemObject")
The FileSystemObject object represents the host computer’s
 filesystem as a whole. Its members allow you to begin navigation
 into the filesystem, as well as to access a variety of common
 filesystem services. For information about the FileSystemObject
 object’s properties and methods, see the entry for each property and
 method.
For an overview of the file system object model, see the “File
 System Object Model” entry.

Properties
Drives (returns a Drives collection object).

Methods
	BuildPath
	FileExists
	GetFileName

	CopyFile
	FolderExists
	GetFolder

	CopyFolder
	GetAbsolutePathName
	GetParentFolderName

	CreateFolder
	GetBaseName
	GetSpecialFolderd

	CreateTextFile
	GetDrive
	GetTempName

	DeleteFile
	GetDriveName
	MoveFile

	DeleteFolder
	GetExtensionName
	MoveFolder

	DriveExists
	GetFile
	OpenTextFile

Name
FileSystemObject.BuildPath Method

Syntax
 oFileSysObj.BuildPath(Path, Name)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	Path
	Use: Required
Data Type: String
A drive and/or folder path.

	Name
	Use: Required
Data Type: String
The folder or file path to append to
 path.

Return Value
A String.

Description
Creates a single string representing a path and filename or
 simply a path by concatenating the path
 parameter with the folder or filename, adding, where required, the
 correct path separator for the host system.

Rules at a Glance
	Path can be an absolute or
 relative path and doesn’t have to include the drive name.

	Neither Path nor
 Name has to currently exist.

Programming Tips and Gotchas
	BuildPath is really a string concatenation method rather
 than a filesystem method; it does not check the validity of the
 new folder or filename. If you intend that the method’s return
 value be a path, you should check it by passing it to the
 FolderExists method; if you intend that the method’s return
 value be a path and filename, you should verify it by passing it
 to the FileExists method.

	The only advantage to using the BuildPath function as opposed to
 concatenating two strings manually is that the function selects
 the correct path separator.

Name
FileSystemObject.CopyFile Method

Syntax
 oFileSysObj
 .CopyFile Source, Destination [, OverwriteFiles]
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	Source
	Use: Required
Data Type: String
The path and name of the file to be copied. The path can
 be relative or absolute, and the filename (but not the path)
 can contain wildcard characters.

	Destination
	Use: Required
Data Type: String
The path and optionally the filename of the copy to
 make. Destination cannot include
 wildcard characters.

	OverwriteFiles
	Use: Optional
Data Type: Boolean
Flag indicating whether an existing file is to be
 overwritten (True) or not
 (False). It’s default value
 is True; files of the same
 names in the target folder will be overwritten.

Description
Copies a file or files from one folder to another.

Rules at a Glance
	The default value for
 OverwriteFiles is True.

	The source path can be relative or absolute.

	The source filename can contain wildcard characters; the
 source path can’t.

	Wildcard characters can’t be included in
 Destination.

Programming Tips and Gotchas
	If the destination path or file is read-only, the CopyFile
 method fails, regardless of the value of
 OverwriteFiles and generates runtime
 error 70, “Permission Denied.”

	If OverwriteFiles is set to
 False and the file exists in
 Destination, a trappable
 error—runtime error 58, “File Already Exists”—is
 generated.

	If an error occurs while copying more than one file, the
 CopyFile method exits immediately, thereby
 leaving the rest of the files uncopied. There is no rollback
 facility to undo copies made prior to the error.

	Both Source and
 Destination can include relative
 paths—that is, paths that are relative to the current folder.
 The current folder is the folder in which
 the script is stored, the folder specified in the “Start in”
 text box of a shortcut, or the folder from which the script is
 launched from the console mode. The symbol to indicate the
 parent of the current folder is (..); the symbol to indicate the
 current folder is (.).

	Source must include an explicit
 filename. For instance, under DOS, you could copy all of the
 files in a directory with a command in the format of:
Copy c:\data c:\bckup
or:
Copy c:\data\ c:\bckup
which would copy all the files from the C:\data directory to C:\bckup. The Source argument cannot
 take any of these forms; instead, you must include some filename
 component. For example, to copy all of the files from C:\data, the CopyFile statement would take the
 form:
oFS.CopyFile "C:\data*.*", "C:\bckup"

	To specify multiple files, the
 Source argument can include the
 * and ? wildcard characters. Both are
 legacies from DOS. * matches
 any characters in a filename that follow those characters that
 are explicitly specified. For instance, a
 Source argument of File* matches File01.txt, File001.txt, and File.txt, since all three filenames
 begin with the string “File”; the remainder of the filename is
 ignored. ? is a wildcard that
 ignores a single character in a filename comparison. For
 instance, a Source argument of
 Fil?01.txt copies File01.txt and Fil_01.txt, since the fourth
 character of the filename is ignored in the comparison.

	If you want the source and the destination directories to
 be the same, you can copy only a single file at a time, since
 Destination does not accept wildcard
 characters.

	If the path specified in Destination
 does not exist, the method does not create it. Instead, it
 generates runtime error 76, “Path not found.”

	If the user has adequate rights, the source or destination
 can be a network path or share name. For example:
CopyFile "c:\Rootone*.*", "\\NTSERV1\d$\RootTwo\"
CopyFile "\\NTSERV1\RootTest\test.txt", "c:\RootOne"

	The CopyFile method copies a file or files stored in a
 particular folder. If the folder itself has subfolders
 containing files, the method doesn’t copy these; use the
 CopyFolder method.

	The CopyFile method differs from the Copy method of the
 File object in two ways:
	You can copy any file anywhere in a filesystem without
 having to first instantiate it as a File object.

	You can copy multiple files in a single operation,
 rather than copying only the file represented by the File
 object.

See Also
FileSystemObject.CopyFolder
 Method, Folder.Copy
 Method

Name
FileSystemObject.CopyFolder Method

Syntax
 oFileSysObj
 .CopyFolder Source, Destination [, OverwriteFiles]
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	Source
	Use: Required
Data Type: String
The path and name of the folder to be copied
 from.

	Destination
	Use: Required
Data Type: String
The path for the folder where the copy is to be
 made.

	OverwriteFiles
	Use: Optional
Data Type: Boolean
Flag indicating whether existing files are to be
 overwritten (True) or not
 (False). Its default value
 is True; files of the same
 name will be overwritten if they already exist in
 Destination.

Description
Copies the contents of one or more folders, including their
 subfolders, to another location.

Rules at a Glance
	Source must end with either a
 wildcard character or no path separator. If it ends with a
 wildcard character, all matching subfolders and their contents
 will be copied. Wildcard characters can be used in
 Source only for the last
 component.

	Wildcard characters can’t be used in
 Destination.

	All subfolders and files contained within the source
 folder are copied to Destination
 unless disallowed by the wildcard characters. That is, the
 CopyFolder method is recursive.

	If Destination ends with a path
 separator or Source ends with a
 wildcard, CopyFolder assumes that the folder stated in
 Source exists in
 Destination or should otherwise be
 created. For example, given the following folder
 structure:
C:\
 Rootone
 SubFolder1
 SubFolder2
 RootTwo
The code FileSys.CopyFolder "c:\Rootone*", "C:\RootTwo" produces this folder
 structure:
C:\
 Rootone
 SubFolder1
 SubFolder2
 RootTwo
 SubFolder1
 SubFolder2
The code FileSys.CopyFolder "c:\Rootone", "C:\RootTwo\" produces this folder
 structure:
C:\
 Rootone
 SubFolder1
 SubFolder2
 RootTwo
 Rootone
 SubFolder1
 SubFolder2

Programming Tips and Gotchas
	If the destination path or any of the files contained in
 Destination are set to read-only, the
 CopyFolder method fails, regardless of the value of
 OverwriteFiles.

	If OverwriteFiles is set to
 False, and the source folder
 or any of the files contained in
 Source exists in
 Destination, runtime error 58, “File
 Already Exists,” is generated.

	If an error occurs while copying more than one file or
 folder, the CopyFolder function exits
 immediately, leaving the rest of the folders or files uncopied.
 There is no rollback facility to undo the copies prior to the
 error.

	If the user has adequate rights, both the source or
 destination can be a network path or share name. For
 example:
CopyFolder "c:\Rootone", "\\NTSERV1\d$\RootTwo\"
CopyFolder "\\NTSERV1\RootTest", "c:\RootOne"

See Also
Folder.Copy Method

Name
FileSystemObject.CreateFolder Method

Syntax
 oFileSysObj
 .CreateFolder(Path)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	Path
	Use: Required
Data Type: String
An expression that returns the name of the new folder to
 create.

Return Value
A Folder object.

Description
Creates a single new folder in the path specified and returns
 its Folder object.

Rules at a Glance
	Wildcard characters aren’t allowed in
 Path.

	Path can be a relative or
 absolute path.

	If no path is specified in
 Path, the current drive and directory
 are used.

	If the last folder in Path
 already exists, the method generates runtime error, “File
 already exists.”

Programming Tips and Gotchas
	If Path is read-only, the
 CreateFolder method fails.

	If Path already exists, the
 method generates runtime error 58, “File already exists.”

	If the user has adequate rights,
 Path can be a network path or share
 name. For example:
CreateFolder "\\NTSERV1\d$\RootTwo\newFolder"
CreateFolder "\\NTSERV1\RootTest\newFolder"

	You must use the Set
 statement to assign the Folder object to an object variable. For
 example:
Dim oFileSys
Dim oFolder
Set oFileSys = CreateObject("Scripting.FileSystemObject")
Set oFolder = oFileSys.CreateFolder("MyFolder")

See Also
Folders.Add Method

Name
FileSystemObject.CreateTextFile Method

Syntax
 oFileSysObj
 .CreateTextFile Filename [, Overwrite[, Unicode]])
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	Filename
	Use: Required
Data Type: String
Any valid filename, along with an optional path.

	Overwrite
	Use: Optional
Data Type: Boolean
Flag indicating if an existing file of the same name
 should be overwritten.

	Unicode
	Use: Optional
Variant Sub Type: Boolean
Flag indicating if Filename
 is to be written in Unicode or ASCII.

Return Value
A TextStream object.

Description
Creates a new file and returns its TextStream object.

Rules at a Glance
	Wildcard characters aren’t allowed in
 Filename.

	Filename can be a relative or
 absolute path.

	If no path is specified in
 Filename, the script’s current drive
 and directory are used. If no drive is specified in
 Filename, the script’s current drive
 is used.

	If the path specified in
 Filename doesn’t exist, the method
 fails. To prevent this error, you can use the FileSystemObject
 object’s FolderExists method to insure that the path is
 valid.

	The default value for Overwrite
 is False.

	If Unicode is set to True, the file is created in Unicode;
 otherwise, it’s created as an ASCII text file. The default value
 for Unicode is False.

Programming Tips and Gotchas
	The newly created text file is automatically opened only
 for writing. If you subsequently wish to read from the file, you
 must first close it and reopen it in read mode.

	If the path referred to in
 Filename is set to read-only, the
 CreateTextFile method fails regardless of the value of
 Overwrite.

	If the user has adequate rights,
 Filename can contain a network path
 or share name. For example:
FileSys.CreateTextFile "\\NTSERV1\RootTest\myFile.doc"

	You must use the Set
 statement to assign the TextStream object to your local object
 variable.

	The CreateTextFile method of the Folder object is
 identical in operation to that of the FileSystemObject
 object.

See Also
Folder.CreateTextFile
 Method, TextStream
 Object

Name
FileSystemObject.DeleteFile Method

Syntax
 oFileSysObj
 .DeleteFile FileSpec [, Force]
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	FileSpec
	Use: Required
Data Type: String
The name and path of the file or files to delete.

	Force
	Use: Optional
Data Type: Boolean
If set to True, the
 read-only flag on a file is ignored and the file deleted. Its
 default value is False;
 read-only files will not be deleted.

Description
Permanently removes a given file or files.

Rules at a Glance
	FileSpec can contain wildcard
 characters as the final path component, which allows multiple
 files to be deleted.

	FileSpec can be a relative or
 absolute path.

	If any of the files specified for deletion are open, the
 method fails with a “Permission Denied” error.

	If the specified file or files can’t be found, the method
 fails.

	If only a filename is used in
 FileSpec, the application’s current
 drive and directory is assumed.

Programming Tips and Gotchas
	If FileSpec specifies a path
 not ending in a path separator, the method will fail without
 generating an error. If FileSpec
 specifies a path that ends in a path separator, the method fails
 and generates runtime error 53, “File not found.”

	The DeleteFile method differs from the Delete method of
 the File object in several respects. First, it allows you to
 delete a file directly, without first obtaining an object
 reference to it. Second, by supporting wildcards, it allows you
 to delete multiple files at once.

	If an error occurs while deleting more than one file, the
 DeleteFile method exits immediately, thereby leaving the rest of
 the files undeleted. There is also no rollback facility to undo
 deletions prior to the error.

	If the user has adequate rights, the source or destination
 can be a network path or share name. For example:
DeleteFile "\\NTSERV1\RootTest\myFile.doc"

	DeleteFile permanently deletes files; it doesn’t move them
 to the Recycle Bin.

See Also
Folder.Delete Method

Name
FileSystemObject.DeleteFolder Method

Syntax
 oFileSysObj
 .DeleteFolder FileSpec[, Force]
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	FileSpec
	Use: Required
Data Type: String
The name and path of the folders to delete.

	Force
	Use: Optional
Data Type: Boolean
If set to True, the
 read-only flag on a file is ignored and the file deleted. By
 default, its value is False; read-only files will not be
 deleted.

Description
Removes a given folder and all its files and
 subfolders.

Rules at a Glance
	FileSpec can contain wildcard
 characters as the final path component, which allows multiple
 folders that meet the file specification to be deleted.

	FileSpec can’t end with a path
 separator.

	FileSpec can be a relative or
 absolute path.

	If any of the files within the specified folders are open,
 the method fails with a “Permission Denied” error.

	The DeleteFolder method deletes all contents of the given
 folder, including other folders and their contents.

	If the specified folder can’t be found, the method
 fails.

Programming Tips and Gotchas
	If an error occurs while deleting more than one file or
 folder, the DeleteFolder method exits immediately, thereby
 leaving the rest of the folders or files undeleted. There is
 also no rollback facility to undo the deletions prior to the
 error.

	DeleteFolder permanently deletes folders and their
 contents; it doesn’t move them to the Recycle Bin.

	The DeleteFolder method differs from the Delete method of
 the Folder object in two respects. First, it allows you to
 directly delete a folder, without first having to navigate to it
 or otherwise obtain an object reference to it. Second, it allows
 you to delete multiple folders, whereas the Delete method allows
 you to delete only the folder represented by the Folder
 object.

	If the user has adequate rights, the source or destination
 can be a network path or share name. For example:

FileSys.DeleteFolder "\\NTSERV1\d$\RootTwo"

See Also
Folder.Delete Method

Name
FileSystemObject.DriveExists Method

Syntax
 oFileSysObj
 .DriveExists (DriveSpec)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	DriveSpec
	Use: Required
Data Type: String
A path or drive letter.

Return Value
Boolean (True or False).

Description
Determines whether a given drive (of any type) exists on the
 local machine or on the network. The method returns True if the drive exists or is connected
 to the machine, and returns False
 if not.

Rules at a Glance
	If DriveSpec is a Windows drive
 letter, it doesn’t have to include the colon. For example,
 "C" works just as well as
 "C:“.

	Returns True if the
 drive exists or is connected to the machine, and returns
 False if not.

Programming Tips and Gotchas
	DriveExists doesn’t note the current state of removable
 media drives; for this, you must use the IsReady property of the
 Drive object representing the given drive.

	If the user has adequate rights,
 DriveSpec can be a network path or
 share name. For example:
If ofs.DriveExists("\\NTSERV1\d$") Then

	This method is ideal for detecting any current drive
 around the network before calling a function in a remote ActiveX
 server located on that drive.

Name
FileSystemObject.Drives Property

Syntax
 oFileSysObj.Drives
	oFileSysObj
	Use: Required
Variant Type: FileSystemObject object
A FileSystemObject object.

Return Value
Drives collection object.

Description
Drives is a read-only property that returns the Drives
 collection; each member of the collection is a Drive object,
 representing a single drive available on the system. Using the
 collection object returned by the Drives property, you can iterate
 all the drives on the system using a For...Next loop, or you can retrieve an
 individual Drive object, which represents one drive on the system,
 by using the Drives collection’s Item method.

See Also
Drive Object, Drives Collection Object

Name
FileSystemObject.FileExists Method

Syntax
 oFileSysObj.FileExists(FileSpec)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	FileSpec
	Use: Required
Data Type: String
A complete path to the file.

Return Value
Boolean (True or False).

Description
Determines if a given file exists.

Rules at a Glance
	Returns True if the
 file exists or is connected to the machine, and returns False if not.

	FileSpec can’t contain wildcard
 characters.

	FileSpec can include either an
 absolute or a relative path—that is, a path that is relative to
 the current folder. The current folder is
 the folder in which the script is running, or the folder
 specified in the “Start in” text box of the shortcut used to
 launch the script. The symbol to indicate the parent of the
 current folder is (..); the
 symbol to indicate the current folder is (.). If
 FileSpec does not include a path, the
 current folder is used.

Programming Tips and Gotchas
If the user has adequate rights,
 FileSpec can be a network path or share
 name. For example:
If ofs.FileExists("\\TestPath\Test.txt") Then

See Also
FileSystemObject.FolderExists
 Method

Name
FileSystemObject.FolderExists Method

Syntax
 oFileSysObj
 .FolderExists(FolderSpec)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	FolderSpec
	Use: Required
Data Type: String
The complete path to the folder.

Return Value
Boolean (True or False).

Description
Determines whether a given folder exists; the method returns
 True if the Folder exists, and
 returns False if not.

Rules at a Glance
	FolderSpec can’t contain
 wildcard characters.

	FolderSpec cannot include a
 filename as well as a path. In other words, the entire
 FolderSpec string can only include
 drive and path information.

	If FolderSpec does not include
 a drive specification, the current drive is assumed.

	FolderSpec is interpreted as an
 absolute path if it begins with a drive name and a path
 separator, and it is interpreted as an absolute path on the
 current drive if it begins with a path separator. Otherwise, it
 is interpreted as a relative path.

Programming Tips and Gotchas
	If the user has adequate rights,
 FolderSpec can be a network path or
 share name. For example:
If FileSys.FolderExists("\\NTSERV1\d$\TestPath\") Then

	Among its string manipulation methods, the Scripting
 Runtime library lacks one that will extract a complete path from
 a path and filename. The example provides the
 GetCompletePath function to perform this
 useful task, as well as to illustrate the use of the
 FolderExists method.

Example
Function GetCompletePath(sPath)

Dim oFS
Dim sFileName, sPathName
Dim lPos

Set oFS = CreateObject("Scripting.FileSystemObject")

' Check if no backslash is present
If Instr(1, sPath, "\") = 0 Then
 ' Determine if string is a filename
 If oFS.FileExists(sPath) Then
 ' Return current folder
 GetCompletePath = oFS.GetAbsolutePathName(".")
 Else
 ' Check if folder exists
 If oFS.FolderExists("\" & sPath) Then
 GetCompletePath = sPath
 Else
 ' Raise "Path not found" error
 Err.Raise 76
 End If
 End If
' At least one backslash is present
Else
 ' check if last character is a backslash
 If Right(sPath, 1) = "\" Then
 If oFS.FolderExists(sPath) Then
 GetCompletePath = sPath
 Else
 Err.Raise 76
 End If
 ' Extract prospective filename from path
 Else
 ' Check if the string includes a filename
 lPos = InstrRev(sPath, "\")
 sFileName = Mid(sPath, lPos + 1)
 If oFS.FileExists(sPath) Then
 GetCompletePath = Left(sPath, lPos)
 Else
 ' Generate file not found error
 Err.Raise 53
 End If
 End If
End If

End Function

See Also
FileSystemObject.DriveExists
 Method, FileSystemObject.FileExists
 Method

Name
FileSystemObject.GetAbsolutePathName Method

Syntax
 oFileSysObj.GetAbsolutePathName(Path)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	Path
	Use: Required
Data Type: String
A path specifier.

Return Value
A string containing the absolute path of a given path
 specifier.

Description
Converts a relative path to a fully qualified path, including
 the drive letter.

Rules at a Glance
	(.) returns the drive
 letter and complete path of the current folder.

	(..) returns the drive
 letter and path of the parent of the current folder.

	If
 Path is simply a filename without a
 path, the method concatenates the complete path to the current
 directory with the filename. For example, if the current folder
 is C:\Documents\MyScripts,
 then the method call:
sFileName = GetAbsolutePathName("MyFile.txt")
produces the string
 “C:\Documents\MyScripts\MyFile.txt”.

	All relative pathnames are assumed to originate at the
 current folder. This means, for example, that (.) returns the drive letter and
 complete path of the current folder, and that (..) returns the drive letter and path
 of the parent of the current folder.

	If a drive isn’t explicitly provided as part of
 Path, it’s assumed to be the current
 drive.

	Wildcard characters can be included in
 Path at any point.

Programming Tips and Gotchas
	An absolute path provides a complete route from the root
 directory of a particular drive to a particular folder or file.
 In contrast, a relative path describes a route from the current
 folder to a particular folder or file.

	For mapped network drives and shares, the method doesn’t
 return the full network address. Rather, it returns the fully
 qualified local path and locally issued drive letter.

	The GetAbsolutePathName method is really a string
 conversion and concatenation method, rather than a filesystem
 method. It merely returns a string, but doesn’t verify that a
 given file or folder exists in the path specified.

Name
FileSystemObject.GetBaseName Method

Syntax
 oFileSysObj.GetBaseName(Path)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	Path
	Use: Required
Data Type: String
A path specifier.

Return Value
A string containing the last element in
 Path.

Description
Returns the name of the last path component, less any
 extension.

Rules at a Glance
The file extension of the last element in
 Path isn’t included in the returned
 string.

Programming Tips and Gotchas
	GetBaseName doesn’t verify that a given file or folder
 exists in Path.

	In stripping the “file extension” and returning the base
 name of Path, GetBaseName has no
 intelligence. That is, it doesn’t know whether the last
 component of Path is a path or a
 filename. If the last component includes one or more dots, it
 simply removes the last one, along with any following text.
 Hence, GetBaseName returns a null string for a
 Path of (.) and it returns (.) for a
 Path of (..). It is, in other words, really a
 string manipulation function, rather than a file
 function.

See Also
FileSystemObject.GetExtensionName
 Method

Name
FileSystemObject.GetDrive Method

Syntax
 oFileSysObj.GetDrive(drivespecifier)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	drivespecifier
	Use: Required
Data Type: String
A drive name, share name, or network path.

Return Value
A Drive object.

Description
Obtains a reference to a Drive object for the specified
 drive.

Rules at a Glance
	If drivespecifier is a local
 drive or the letter of a mapped drive, it can consist of only
 the drive letter (e.g., “C”), the drive letter with a colon
 (“C:”), or the drive letter and path to the root directory
 (e.g., “C:\”) without generating a runtime error.

	If drivespecifier is a share
 name or network path, GetDrive ensures that it exists as part of
 the process of creating the Drive object; if it doesn’t, the
 method generates runtime error 76, “Path not found.”

	If the specified drive isn’t connected or doesn’t exist,
 runtime error 67, “Device unavailable,” occurs.

Programming Tips and Gotchas
	Individual drive objects can be retrieved from the Drives
 collection by using the Drives property. This is most useful,
 though, if you want to enumerate the drives available on a
 system. In contrast, the GetDrive method provides direct access
 to a particular Drive object.

	If you are deriving the
 drivespecifier string from a path,
 you should first use GetAbsolutePathName to insure that a drive
 is present as part of the path. Then you should use FolderExists
 to verify that the path is valid before calling GetDriveName to
 extract the drive from the fully qualified path. For
 example:
Dim oFileSys, oDrive

Set oFileSys = CreateObject("Scripting.FileSystemObject")
sPath = oFileSys.GetAbsolutePathName(sPath)
If oFileSys.FolderExists(sPath) Then
 Set oDrive = oFileSys.GetDrive(oFileSys.GetDriveName(sPath))
End If

	If drivespecifier is a network
 drive or share, you should use the DriveExists method to confirm
 the required drive is available prior to calling the GetDrive
 method.

	You must use the Set
 statement to assign the Drive object to a local object
 variable.

See Also
Drives Collection
 Object

Name
FileSystemObject.GetDriveName Method

Syntax
 oFileSysObj.GetDriveName (Path)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	Path
	Use: Required
Data Type: String
A path specifier.

Return Value
A String.

Description
Returns the drive name of a given path.

Rules at a Glance
If the drive name can’t be determined from the given path, a
 zero-length string (” “) is returned.

Programming Tips and Gotchas
	For local and mapped drives, GetDriveName appears to look
 for the colon as a part of the drive’s name to determine whether
 a drive name is present. For network drives, it appears to look
 for the computer name and drive name.

	GetDriveName is really a string-parsing method rather than
 a filesystem method. In particular, it does not verify that the
 drive name that it extracts from Path
 actually exists on the system.

	 Path can be a network drive or
 share.

Name
FileSystemObject.GetExtensionName Method

Syntax
 oFileSysObj.GetExtensionName(Path)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	Path
	Use: Required
Data Type: String
A path specifier.

Return Value
A String.

Description
Returns the extension of the file element of a given
 path.

Rules at a Glance
If the extension in Path can’t be
 determined, a zero-length string (” “) is returned.

Programming Tips and Gotchas
	GetExtensionName is a string parsing method rather than a
 filesystem method. It does not verify that
 Path is valid, does not verify that
 the filename designated in Path
 exists, and does not even guarantee that the value it returns is
 a valid file extension. In other words, GetExtensionName has no
 intelligence. It simply parses a string and returns the text
 that follows the last dot of the last element.

	 Path can be a network drive or
 share.

See Also
FileSystemObject.GetBaseName
 Method

Name
FileSystemObject.GetFile Method

Syntax
 oFileSysObj
 .GetFile(FilePath)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	FilePath
	Use: Required
Data Type: String
A path and filename.

Return Value
File object.

Description
Returns a reference to a File object.

Rules at a Glance
	FilePath can be an absolute or
 a relative path.

	If FilePath is a share name or
 network path, GetFile ensures that the drive or share exists as
 part of the process of creating the File object.

	If any part of the path in
 FilePath can’t be contacted or
 doesn’t exist, an error occurs.

Programming Tips and Gotchas
	The object returned by GetFile is a File object, not a
 TextStream object. A File object isn’t an open file; the point
 of the File object is to perform methods such as copying or
 moving files and interrogating a file’s properties. Although you
 can’t write to or read from a File object, you can use the File
 object’s OpenAsTextStream method to obtain a TextStream object.
 You can also save yourself a step by calling the
 FileSystemObject object’s OpenTextFile method.

	You should first use GetAbsolutePathName to create the
 required FilePath string.

	If FilePath includes a network
 drive or share, you could use the DriveExists method to confirm
 that the required drive is available prior to calling the
 GetFile method.

	Since GetFile generates an error if the file designated in
 FilePath doesn’t exist, you should
 call the FileExists method before calling GetFile.

	You must use the Set
 statement to assign the File object reference to a local object
 variable.

See Also
FileSystemObject.GetFolder
 Method, FileSystemObject.GetDrive
 Method, FileSystemObject.OpenTextFile
 Method

Name
FileSystemObject.GetFileName Method

Syntax
 oFileSysObj
 .GetFileName(Path)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	Path
	Use: Required
Data Type: String
A path specifier.

Return Value
A String.

Description
Returns the filename element of a given path.

Rules at a Glance
	If the filename can’t be determined from the given
 Path, a zero-length string (” “) is
 returned.

	Path can be a relative or
 absolute reference.

Programming Tips and Gotchas
	GetFileName doesn’t verify that a given file exists in
 Path.

	Path can be a network drive or
 share.

	Like all the Getx Name methods of the
 FileSystemObject object, the GetFileName method is more a string
 manipulation routine that an object-related routine. GetFileName
 has no built-in intelligence (and, in fact, seems to have even
 less intelligence than usual for this set of methods); it simply
 assumes that the last element of the string that is not part of
 a drive and path specifier is in fact a filename. For example,
 if Path is C:\Windows, the method returns the
 string “Windows”; if Path is C:\Windows\ (which unambiguously
 denotes a folder rather than a filename), the method still
 returns the string “Windows.”

Name
FileSystemObject.GetFileVersion Method

Syntax
 oFileSysObj.GetFileVersion(FileName)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A reference to the FileSystemObject object.

	FileName
	Use: Required
Data Type: String
A path and filename.

Return Value
A String.

Description
Retrieves version information about the file specified in
 FileName.

Rules at a Glance
	FileName should include the
 path as well as the name of the file. The path component can be
 either an absolute or a relative path to the file.

	If path information is omitted, VBScript attempts to find
 FileName in the current
 folder.

	This function reports version information in the
 format:
Major_Version.Minor_Version.0.Build

	If a file does not contain version information, the
 function returns an empty string (” “).

Programming Notes
	The files that can contain version information are
 executable files (.exe) and
 dynamic link libraries (.dll).

	If you’re using VBScript to replace a private executable
 or DLL with another, be particularly careful with version
 checking, since it has been a particularly serious source of
 error. Ensuring that the new version of the file should be
 installed requires that any one of the following conditions be
 true:
	It has the same major and minor version but a later
 build number than the existing file.

	It has the same major version but a greater minor
 version number than the existing file.

	It has a higher version number than the existing
 file.

	It’s also a good idea to copy the replaced file to a
 backup directory, such as the Windows Sysbckup directory.

	If you’re thinking of using VBScript to replace a system
 executable or DLL with another, it’s best to use a professional
 installation program for this purpose.

	Although this function is listed in the type library and
 is actually implemented in the Scripting Runtime, no
 documentation for it is available in the HTML Help file.

See Also
ScriptEngineBuildVersion
 Function, ScriptEngineMajorVersion
 Function, ScriptEngineMinorVersion
 Function

Name
FileSystemObject.GetFolder Method

Syntax
 oFileSysObj
 .GetFolder(FolderPath)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	FolderPath
	Use: Required
Data Type: String
A path to the required folder.

Return Value
A Folder object.

Description
Returns a reference to a Folder object.

Rules at a Glance
	FolderPath can be an absolute
 or relative path.

	If FolderPath is a share name
 or network path, GetFolder ensures that the drive or share
 exists as part of the process of returning the Folder
 object.

	If any part of FolderPath
 doesn’t exist, an error occurs.

Programming Tips and Gotchas
	You should first use GetAbsolutePathName to create the
 required FolderPath string.

	If FolderPath includes a
 network drive or share, you could use the DriveExists method to
 confirm the required drive is available prior to calling the
 GetFolder method.

	Since GetFolder requires that
 FolderPath is the path to a valid
 folder, you should call the FolderExists method to verify that
 FolderPath exists.

	The GetFolder method allows you to directly obtain an
 object reference to a particular folder. You can also use the
 Item property of the Folders collection object for cases in
 which you must navigate the filesystem to reach a particular
 folder, or for those cases in which you’re interested in
 enumerating the subfolders belonging to a particular
 folder.

	You must use the Set
 statement to assign the Folder object reference to a local
 object variable.

See Also
Folders Collection
 Object

Name
FileSystemObject.GetParentFolderName Method

Syntax
 oFileSysObj.GetParentFolderName(Path)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	Path
	Use: Required
Data Type: String
A path specifier.

Return Value
A String.

Description
Returns the folder name immediately preceding the last element
 of a given path. In other words, if Path
 ends in a filename, the method returns the path to the folder
 containing that file. If Path ends in a
 folder name, the method returns the path to that folder’s
 parent.

Rules at a Glance
	If the parent folder name can’t be determined from
 Path, a zero-length string (” “) is
 returned.

	Path can be a relative or
 absolute reference.

Programming Tips and Gotchas
	GetParentFolderName doesn’t verify that any element of
 Path exists.

	Path can be a network drive or
 share.

	GetParentFolderName assumes that the last element of the
 string that isn’t part of a drive specifier is the parent
 folder. It makes no other check than this. As with all the
 Getx Name methods of the FileSystemObject
 object, the GetParentFolderName method is more a string parsing
 and manipulation routine than an object-related routine.

Name
FileSystemObject.GetSpecialFolder Method

Syntax
 oFileSysObj
 .GetSpecialFolder(SpecialFolder)
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	SpecialFolder
	Use: Required
Data Type: Special folder constant
A value specifying one of three special system
 folders.

Return Value
A Folder object.

Description
Returns a reference to a Folder object of one of the three
 special system folders: System, Temporary, and Windows.

Rules at a Glance
SpecialFolder can be one of the
 following special folder constants:
	Constant
	Value
	Description

	 SystemFolder
	1
	The Windows system folder
 (/windows/system or
 /windows/system32)

	 TemporaryFolder
	2
	The folder that stores temporary files
 (../windows/temp)

	 WindowsFolder
	0
	The root folder of the Windows system folder
 tree (/windows or
 /winnt)

Programming Tips and Gotchas
	As the previous table shows, the Scripting Runtime type
 library defines constants of the SpecialFolderConst enumeration that
 can be used in place of their numeric equivalents. You can use
 them in your scripts in either of two ways. You can define the
 constants yourself by adding the following code to your
 script:
Const WindowsFolder = 0
Const SystemFolder = 1
Const TemporaryFolder = 2
You can also include a METADATA tag in an ASP global.asa file or include the
 following line in a Windows Script Host (.wsf) file in order to access the
 constants from the Scripting Runtime type library:
<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

	Prior to the development of the Scripting Runtime Library
 with its support for the FileSystemObject, the only way to
 determine the location of system folders was via the Win32 API.
 This is a much simpler way of getting at that information. This
 is especially significant when using VBScript with the Windows
 Script Host, and adds an extremely powerful aspect to writing
 administrative or maintenance scripts with VBScript.

	You can use the Set
 statement to assign the Folder object reference to a local
 object variable. However, if you’re interested only in
 retrieving the path to the special folder, you can do it with a
 statement like the following:
sPath = oFileSys.GetSpecialFolder(iFolderConst)
or:
sPath = oFileSys.GetSpecialFolder(iFolderConst).Path
The first statement works because the Path property is the
 Folder object’s default property. Since the assignment isn’t to
 an object variable, it’s the default property’s value, rather
 than the object reference, that is assigned to
 sPath.

	WSH includes a SpecialFolders collection. However, it does
 not duplicate the functionality of the GetSpecialFolder
 method.

Name
FileSystemObject.GetStandardStream Method

Syntax
 oFileSys.GetStandardStream(StandardStreamType, [Unicode])
	oFileSys
	Use: Required
Data Type: FileSystemObject object
A reference to the FileSystemObject object.

	StandardStreamType
	Use: Required
Data Type: Long
A constant indicating which standard stream (input,
 output, or error) should be returned by the function.

	Unicode
	Use: Optional
Data Type: Boolean
A Boolean indicating whether the stream should be
 Unicode or ASCII.

Return Value
A TextStream object.

Description
Allows you to read from the standard input stream and write to
 the standard output or standard error streams.

Rules at a Glance
	StandardStreamType can be one
 of the following constants defined in the Scripting Runtime type
 library:

	Constant
	Value
	Description

	StdIn
	0
	Standard input

	StdOut
	1
	Standard output

	StdErr
	2
	Standard error

	The Scripting Runtime type library defines constants of
 the StandardStreamTypes
 enumeration that can be used in place of their numeric
 equivalents for the
 StandardStreamType argument. You can
 use them in your scripts in either of two ways. You can define
 the constants yourself by adding the following code to your
 script:
Const StdIn = 0
Const StdOut = 1
Const StdErr = 2
You can also include an ASP METADATA tag in the global.asa file or the following line
 in a Windows Script Host (.wsf
) file in order to access the constants from the
 Scripting Runtime type library:
<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

	The Unicode parameter
 can be either Unicode (True)
 or ASCII (False).

Programming Tips and Gotchas
	The GetStandardStream method is available from a WSH
 script run in console mode using CScript.exe as the WSH engine.
 Otherwise, attempting to retrieve a reference to the TextStream
 object returned by the method generates an “Invalid handle” or
 (in ASP) a “Server.CreateObject failed” error message.

	Note that standard input is a read-only stream, while
 standard output and standard error are write-only
 streams.

	Although the function is implemented in the Scripting
 Runtime library, it is currently undocumented.

	This method is functionally equivalent to three methods in
 the WSH object model: the WScript.StdIn property, which returns
 a TextStream object representing the standard input; the
 WScript.StdOut property, which returns a TextStream object
 representing the standard output; the WScript.StdErr property,
 which returns a TextStream object representing the standard
 error stream.

See Also
TextStream Object

Name
FileSystemObject.GetTempName Method

Syntax
 oFileSysObj.GetTempName
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

Return Value
A String.

Description
Returns a system-generated temporary file or folder
 name.

Rules at a Glance
GetTempName doesn’t create a temporary file or folder; it
 simply provides a name you can use with the CreateTextFile
 method.

Programming Tips and Gotchas
	As a general rule, you shouldn’t create your own temporary
 filenames. Windows provides an algorithm within the Windows API
 to generate the special temporary file and folder names so that
 it can recognize them later.

	If you are calling GetTempName as the first step in
 creating a temporary file, you can also call the
 GetSpecialFolder method to retrieve the path of the temporary
 directory, as follows:
Const TemporaryFolder = 2
Dim oFS, sTempPath
Set oFS = CreateObject("Scripting.FileSystemObject")
sTempPath = oFS.GetSpecialFolder(TemporaryFolder)
You can then form the complete path to the temporary
 folder as follows:
<CODE>sFullPath = sTempPath & "' & sTempFileName

Name
FileSystemObject.MoveFile Method

Syntax
 oFileSysObj
 .MoveFile source, destination
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	source
	Use: Required
Data Type: String
The path to the file or files to be moved.

	destination
	Use: Required
Data Type: String
The path to the location where the file or files are to
 be moved.

Description
Moves a file from one folder to another.

Rules at a Glance
	If source contains wildcard
 characters or if destination ends in
 a path separator, destination is
 interpreted as a path; otherwise, its last component is
 interpreted as a filename.

	If the destination file exists, an error occurs.

	source can contain wildcard
 characters, but only in its last component. This allows multiple
 files to be moved.

	destination can’t contain
 wildcard characters.

	Both source and
 destination can be either absolute or
 relative paths.

	Both source and
 destination can be network paths or
 share names.

Programming Tips and Gotchas
	MoveFile resolves both arguments before beginning the
 operation.

	Any single file move operation is atomic; that is, any
 file removed from source is copied to
 destination. However, if an error
 occurs while multiple files are being moved, the execution of
 the function terminates, but files already moved aren’t moved
 back to their previous folder. If a fatal system error occurs
 during the execution of this method (like a power failure), the
 worst that can happen is that the affected file is copied to the
 destination but not removed from the source. There are no
 rollback capabilities built into the File.Move method, since,
 because the copy part of this two-stage process is executed
 first, the file can’t be lost. But while there is no chance of
 losing data, particularly in multifile operations, it’s more
 difficult to determine whether the move operations have
 succeeded. This is because an error at any time while files are
 being moved causes the MoveFile method to be aborted.

	You can use the GetAbsolutePath, FolderExists, and
 FileExists methods prior to calling the MoveFile method to
 ensure its success.

	The MoveFile method differs from the File object’s Move
 method by allowing you to directly designate a file to be moved
 rather than requiring that you first obtain an object reference
 to it. It also allows you to move multiple files rather than the
 single file represented by the File object.

See Also
FileSystemObject.CopyFile
 Method, FileSystemObject.FileExists Method,
 FileSystemObject.GetAbsolutePathName
 Method

Name
FileSystemObject.MoveFolder Method

Syntax
 oFileSysObj
 .MoveFolder source, destination
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	source
	Use: Required
Data Type: String
The path to the folder or folders to be moved.

	destination
	Use: Required
Data Type: String
The path to the location where the folder or folders are
 to be moved.

Description
Moves a folder along with its files and subfolders from one
 location to another.

Rules at a Glance
	source must end with either a
 wildcard character or no path separator.

	Wildcard characters can be used in
 source, but only for the last
 component.

	Wildcard characters can’t be used in
 destination.

	All subfolders and files contained within the source
 folder are copied to destination
 unless disallowed by the wildcard characters. That is, the
 MoveFolder method is recursive.

	If destination ends with a path
 separator or Source ends with a
 wildcard, MoveFolder assumes the folder in
 Source exists in
 Destination. For example:
C:\
 Rootone
 SubFolder1
 SubFolder2
 RootTwo
The command MoveFolder
 "c:\Rootone*", "C:\RootTwo\" produces this folder
 structure:
C:\
 Rootone
 RootTwo
 SubFolder1
 SubFolder2
The command MoveFolder
 "c:\Rootone", "C:\RootTwo\" produces this folder
 structure:
C:\
 RootTwo
 Rootone
 SubFolder1
 SubFolder2

	source and
 destination can be either absolute or
 relative paths.

	source and
 destination can be network paths or
 share names.

Programming Tips and Gotchas
	MoveFolder resolves both arguments before starting the
 operation.

	If a fatal system error occurs during the execution of
 this method (like a power failure), the worst that can happen is
 that the file is copied to the destination but not removed from
 the source. There are no rollback capabilities built into the
 FileSystemObject.MoveFolder method, since, because the copy part
 of this two-stage process is executed first, the file can’t be
 lost.

	Although there is no chance of actually losing data, it
 can be difficult to determine whether the operation has
 succeeded or failed in the event of an error when multiple
 folders are being moved. This is because an error in the middle
 of a multifile move operation causes the MoveFolder method to be
 abandoned and subsequent folder operations to be aborted.

	You can call the GetAbsolutePath and FolderExists methods
 before calling the MoveFile method to ensure its success.

	If the user has adequate rights, the source or destination
 can be a network path or share name. For example:
MoveFolder "c:\Rootone", "\\NTSERV1\d$\RootTwo\"

See Also
FileSystemObject.CopyFile
 Method, FileSystemObject.FolderExists Method,
 FileSystemObject.GetAbsolutePathName
 Method

Name
FileSystemObject.OpenTextFile Method

Syntax
 oFileSysObj
 .OpenTextFile(FileName[, IOMode[, Create[, Format]]])
	oFileSysObj
	Use: Required
Data Type: FileSystemObject object
A FileSystemObject object.

	FileName
	Use: Required
Data Type: String
The path and filename of the file to open.

	IOMode
	Use: Optional
Data Type: Long
A constant specifying the purpose for opening the
 file.

	Create
	Use: Optional
Data Type: Boolean
A Boolean flag denoting whether the file should be
 created if it can’t be found in the given path.

	Format
	Use: Optional
Data Type: Long
A constant specifying ASCII or Unicode format.

Return Value
A TextStream object.

Description
Opens (and optionally first creates) a text file for reading
 or writing.

Rules at a Glance
	File open (IOMode)
 values are:

	Constant
	Value
	Description

	 ForAppending
	8
	Opens the file for appending; that is, the
 current contents of the file are protected and new data
 written to the file is placed at the end of the file.

	 ForReading

	1
	Opens the file for reading; ForReading files are read-only.

	 ForWriting

	2
	Opens the file for writing; all previous file
 content is overwritten by new data.

	Tristate (Format) values
 are:

	Constant
	Value
	Description

	 TristateUseDefault
	-2
	Opens as System default

	 TristateTrue
	-1
	Opens as Unicode

	 TristateFalse
	 0
	Opens as ASCII

	The path element of FileName
 can be relative or absolute.

	The default IOMode setting is
 ForReading (1).

	The default Format setting is
 ASCII (False).

	If another process has opened the file, the method fails
 with a “Permission Denied” error.

Programming Tips and Gotchas
	You can use the GetAbsolutePath and FileExists methods
 prior to calling the OpenTextFile method to ensure its
 success.

	As the table listing values for the
 IOMode parameter shows, the Scripting
 Runtime type library defines constants of the IOMode enumeration that can be used in
 place of their numeric equivalents. You can use them in your
 scripts in either of two ways. You can define the constants
 yourself by adding the following code to your script:
Const ForReading = 1
Const ForWriting = 2
Const ForAppending = 8
You can also include a METADATA tag in the ASP global.asa file or the following line
 in a Windows Script Host (.wsf
) file in order to access the constants from the
 Scripting Runtime type library:
<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

	The value of IOMode can be only
 that of a single constant. For example, a method call such as
 the following:
lMode = ForReading Or ForWriting
oFileSys.OpenTextStream(strFileName, lMode) ' WRONG
generates runtime error 5, "Invalid procedure call or argument."

	As the table listing values for the
 Format parameter shows, the Scripting
 Runtime type library defines constants of the Tristate enumeration that can be used
 in place of their numeric equivalents. You can use them in your
 scripts in either of two ways. You can define the constants
 yourself by adding the following code to your script:
Const TristateFalse = 0
Const TristateTrue = -1
Const TristateUseDefault = -2
You can also include a METADATA tag in the ASP global.asa file or the following line
 in a Windows Script Host (.wsf) file in order to access the
 constants from the Scripting Runtime type library:
<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />

	If the user has adequate rights, the path element of
 FileName can be a network path or
 share name. For example:
OpenTextFile "\\NTSERV1\d$\RootTwo\myFile.txt"

See Also
File.OpenAsTextStream
 Method, TextStream Object

Name
Filter Function

Syntax
Filter(SourceArray, FilterString[, Switch[, Compare]])
	SourceArray
	Use: Required
Data Type: String or numeric
An array containing values to be filtered.

	FilterString
	Use: Required
Data Type: String or numeric
The string of characters to find in the source
 array.

	Switch
	Use: Optional
Data Type: Boolean
A Boolean (True or
 False) value. If True, the default value,
 Filter includes all matching values in
 result; if False, Filter
 excludes all matching values (or, to put it another way,
 includes all nonmatching values).

	Compare
	Use: Optional
Data Type: Long
An optional constant (possible values are 0, vbBinaryCompare; 1, vbTextCompare) that indicates the
 type of string comparison to use. The default value is 0,
 vbBinaryCompare.

Return Value
A String array of the elements filtered from
 SourceArray.

Description
Produces an array of matching values from an array of source
 values that either match or don’t match a given filter string. In
 other words, individual elements are copied from a source array to a
 target array if they either match or don’t match a filter
 string.

Rules at a Glance
	The default Switch value is
 True.

	The default Compare value is 0,
 vbBinaryCompare.

	vbBinaryCompare is
 case-sensitive; that is, Filter matches
 both character and case. In contrast, vbTextCompare is case-insensitive,
 matching only character regardless of case.

Programming Tips and Gotchas
	SourceArray elements that are
 Empty or that contain
 zero-length strings (“”) are ignored by the
 Filter function.

	The array you declare to assign the return value of
 Filter should be a simple variant, as the
 following code fragment illustrates:
Dim aResult
aResult = Filter(sNames, sCriteria, True)

	Although the Filter function is
 primarily a string function, you can also filter numeric values.
 To do this, populate a SourceArray
 with numeric values. Although
 FilterString appears to be declared
 internally as a variant string, a Long or Integer can be passed
 to the function. For example:
Dim varSource As Variant, varResult As Variant
Dim strMatch As String

strMatch = CStr(2)
varSource = Array(10, 20, 30, 21, 22, 32)
varResult = Filter(varSource, strMatch, True, _
 vbBinaryCompare)
In this case, the resulting array contains four elements:
 20, 21, 22, and 32.

	The Filter function is an ideal
 companion to the Dictionary object. The Dictionary object is a
 collection-like array of values, each of which is stored with a
 unique string key. The Keys method of the Dictionary object
 allows you to produce an array of these Key values, which you
 can then pass into the Filter function as a
 rapid method of filtering the members of your Dictionary, as the
 following example demonstrates.

Example
 Dim sKeys
 Dim sFiltered
 Dim sMatch
 Dim blnSwitch
 Dim oDict

 Set oDict = CreateObject("Scripting.Dictionary")

 oDict.Add "Microsoft", "One Microsoft Way"
 oDict.Add "AnyMicro Inc", "31 Harbour Drive"
 oDict.Add "Landbor Data", "The Plaza"
 oDict.Add "Micron Co.", "999 Pleasant View"

 sKeys = oDict.Keys
 sMatch = "micro"
 blnSwitch = True
 'find all keys that contain the string "micro" - any case
 sFiltered = Filter(sKeys, sMatch, blnSwitch, _
 vbTextCompare)
 'now iterate through the resulting array
 For i = 0 To UBound(sFiltered)
 sMsg = sMsg & sFiltered(i) & ", " & oDict.Item(sFiltered(i)) & _
 vbCrLf
 Next
 MsgBox sMsg

See Also
RegExp Object

Name
Fix Function

Syntax
Fix(number)
	number
	Use: Required
Data Type: Numeric
Any valid numeric expression.

Return Value
The same data type as passed to the function containing only
 the integer portion of number.

Description
Removes the fractional part of a number. Operates in a similar
 way to the Int function.

Rules at a Glance
	If number is Null, Fix returns
 Null.

	The operations of Int and
 Fix are identical when dealing with
 positive numbers: numbers are rounded down to the next lowest
 whole number. For example, both Int(3.14) and Fix(3.14) return 3.

	If number is negative,
 Fix removes its fractional part, thereby
 returning the next greater whole number. For example, Fix(-3.667) returns -3. This contrasts
 with Int, which returns the negative
 integer less than or equal to number (or
 -4, in the case of our example).

Example
 Dim dblTest
 Dim varTest

 dblTest = -100.9353
 varTest = Fix(dblTest)
 ' returns -100
 Msgbox varTest & " " & TypeName(varTest)

 dblTest = 100.9353
 varTest = Fix(dblTest)
 'returns 100
 Msgbox.Print varTest & " " & TypeName(varTest)

Programming Tips and Gotchas
Fix doesn’t round
 number to the nearest whole number; it
 simply removes the fractional part of
 number. Therefore, the integer returned
 by Fix is the nearest whole number less than
 (or greater than, if the number is negative) the number passed to
 the function.

See Also
Int Function, CInt Function, CLng Function, Round Function

Name
Folder Object

Createable
No

Returned by
	Drive.RootFolder property
	FileSystemObject.CreateFolder method
	FileSystemObject.GetFolder method
	Folder.SubFolders.Item property
	Folders.Add method

Library
Microsoft Scripting Runtime

Description
The Folder object allows you to interrogate the system
 properties of the folder and provides methods that allow you to
 copy, move, and delete the folder. You can also create a new text
 file within the folder.
The Folder object is unusual because with it, you can gain
 access to a Folders collection object. The more usual method is to
 extract a member of a collection to gain access to the individual
 object. However, because the Drive object exposes only a Folder
 object for the root folder, you have to extract a Folders collection
 object from a Folder object (the collection represents the
 subfolders of the root). From this collection, you can navigate
 downward through the filesystem to extract other Folder objects and
 other Folders collections. A Boolean property, IsRootFolder, informs
 you of whether the Folder object you are dealing with currently is
 the root of the drive.
The Folder object is one of the objects in the Filesystem
 object model; for an overview of the model, see the “File System
 Object Model” entry.

Properties
	Attributes
	Data Type: Long
A set of flags representing the folder’s attributes. The
 flags that apply to folders are:
	Constant
	Value

	Archive
	32

	Directory
	16

	Hidden
	2

	ReadOnly
	1

	System
	4

As the table shows, the Scripting Runtime type library
 defines constants of the FileAttribute enumeration that can
 be used in place of their numeric equivalents. You can use
 them in your scripts in either of two ways. You can define the
 constants yourself by adding the following code to your
 script:
Const Normal = 0
Const ReadOnly = 1
Const Hidden = 2
Const System = 4
Const Directory = 16
Const Archive = 32
Or you can take advantage of the host’s facilities to
 make the constants accessible. In Active Server Pages, you can
 include the METADATA tag in
 the global.asa file and
 provide the type library identifier for the Scripting Runtime
 as follows:
<!-- METADATA TYPE="TypeLib"
 UUID="420B2830-E718-11CF-893D-00A0C9054228"
-->
In Windows Script Host, you can include the following
 line in a .wsf file in
 order to access the constants defined in the Scripting
 Runtime:
<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />
You can determine which flag is set by using a logical
 AND along with the value returned by the property and the
 value of the flag you’d like to test. For example:
If oFolder.Attributes And ReadOnly Then
 ' Folder is read-only
To clear a flag, And
 the value of the Attributes property with a Long in which the
 flag you want to clear is turned off. For example, the
 following code clears a Folder object’s read-only flag:
oFile.Attributes = oFile.Attributes And (Not
ReadOnly)

	Date Created
	Data Type: Date
The date and time the folder was created.

	DateLastAccessed
	Data Type: Date
The date and, if it’s available from the operating
 system, the time that the folder was last accessed.

	DateLastModified
	Data Type: Date
The date and time the folder was last modified.

	Drive
	Data Type: Drive object
Returns a Drive object representing the drive on which
 this folder resides; the property is read-only.

	Files
	Data Type: Files collection object
Returns a read-only Files collection object representing
 all files in the current folder.

	IsRootFolder
	Data Type: Boolean
Returns True if the
 folder is the root folder of its drive.

	Name
	Data Type: String
Returns the name of the folder.

	ParentFolder
	Data Type: Folder object
Returns a folder object representing the folder that’s
 the parent of the current folder. It returns Nothing if the current object is the
 root folder of its drive (i.e., if its IsRootFolder property
 is True).

	Path
	Data Type: String
Returns the complete path of the current folder,
 including its drive. It is the default property of the Folder
 object.

	ShortName
	Data Type: String
Returns a DOS 8.3 folder name without the folder’s path.
 The property is read-only.

	ShortPath
	Data Type: String
Returns the complete path to a folder in DOS 8.3 format.
 The property is read-only.

	Size
	Data Type: Long
Returns the total size of all files, subfolders, and
 their contents in the folder structure, starting with the
 current folder. The property is read-only.
In previous versions of the Scripting Runtime, this
 property failed to accurately report the size of a folder
 whose files and subfolders occupied more than 2 GB of disk
 space.
Attempting to retrieve the value of a Folder object’s
 Size property when that folder is a drive’s root folder (that
 is, its IsRootFolder property returns True) generates a
 runtime error.

	SubFolders
	Data Type: Folders collection object
Returns a Folders collection object representing all
 subfolders within the current folder.

	Type
	Data Type: String
Returns the description of a filesystem object, as
 recorded in the system registry. For Folder objects, the
 property always returns “File Folder.”

Methods
	Copy
	Create TextFile
	Delete
	Move

Name
Folder.Copy Method

Syntax
 oFolderObj.Copy Destination [, OverwriteFiles]
	oFolderObj
	Use: Required
Data Type: Folder object
A Folder object.

	Destination
	Use: Required
Data Type: String
The path and, optionally, the filename of the copy to be
 made.

	OverwriteFiles
	Use: Optional
Data Type: Boolean
Indicates whether existing files and folders should be
 overwritten (True) or not
 (False).

Description
Copies the current folder and its contents, including other
 folders, to another location.

Rules at a Glance
	Wildcard characters can’t be used in
 Destination.

	The folder and all subfolders and files contained in the
 source folder are copied to
 Destination. That is, the Copy method
 is recursive.

	Unlike the FileSystemObject.CopyFolder method, there is no
 operational difference between ending
 Destination with a path separator or
 not.

Programming Tips and Gotchas
	If the destination path or any of the files contained in
 the Destination structure are set to
 read-only, the Copy method will fail regardless of the value of
 OverwriteFiles and will generate a
 “Permission denied” error.

	If OverwriteFiles is set to
 False, and the source folder
 or any of the files contained in the
 Destination structure exists in the
 Destination structure, then trappable
 error 58, “File Already Exists,” is generated.

	If an error occurs while copying more than one file, the
 Copy method exits immediately, leaving the rest of the files
 uncopied. There is also no rollback facility to undo the copies
 prior to the error.

	If the user has adequate rights,
 Destination can be a network path or
 share name. For example:
oFolder.Copy "\\NTSERV1\d$\RootTwo\"

Name
Folder.CreateTextFile Method

Syntax
 oFolderObj
 .CreateTextFile FileName[, Overwrite[, Unicode]])
	oFolderObj
	Use: Required
Data Type: Folder object
A Folder object.

	FileName
	Use: Required
Data Type: String
Any valid filename and optional path.

	Overwrite
	Use: Optional
Data Type: Boolean
Flag to indicate whether an existing file of the same
 name should be overwritten.

	Unicode
	Use: Optional
Data Type: Boolean
Flag to indicate whether file is to be written in
 Unicode or ASCII.

Return Value
A TextStream object.

Description
Creates a new file at the specified location and returns a
 TextStream object for that file.

Rules at a Glance
	Filename can be a relative or
 absolute path. Wildcard characters are not allowed in
 FileName.

	If no path is specified in
 Filename, the script’s current drive
 and directory are used. If no drive is specified in
 Filename, the script’s current drive
 is used.

	The default value for Overwrite
 is False.

	If Unicode is set to True, a Unicode file is created;
 otherwise it’s created as an ASCII text file.

	The default value for Unicode
 is False.

Programming Tips and Gotchas
	If the path specified in
 Filename does not exist, the method
 fails. To prevent this error, you can use the FileSystemObject
 object’s FolderExists method to be sure that the path is
 valid.

	The newly created text file is automatically opened only
 for writing. If you subsequently wish to read from the file, you
 must first close it and reopen it in read mode.

	If the file referred to in
 Filename already exists as a
 read-only file, the CreateTextFile method fails regardless of
 the value of Overwrite.

	You must use the Set
 statement to assign the TextStream object to a local object
 variable.

	If the user has adequate rights,
 Filename can contain a network path,
 or share name. For example:
oFolder.CreateTextFile "\\NTSERV1\RootTest\myFile.doc"

	The CreateTextFile method in the Folder object is
 identical in operation to that in the FileSystemObject
 object.

See Also
FileSystemObject.CreateTextFile
 Method, TextStream
 Object

Name
Folder.Delete Method

Syntax
 oFolderObj
 .Delete [Force]
	oFolderObj
	Use: Required
Data Type: Folder object
A Folder object.

	Force
	Use: Optional
Data Type: Boolean
If set to True, any
 read-only flag on a file or a folder to be deleted is ignored
 and the file or folder is deleted. When set to False, a read-only flag prevents
 that folder or file from being deleted. Its default value is
 False.

Description
Removes the folder specified by the Folder object and all its
 files and subfolders.

Rules at a Glance
	If any of the files within the folder are open, the method
 fails with a “Permission Denied” error.

	The Delete method deletes all the contents of the given
 folder, including subfolders and their contents.

	The default setting for Force
 is False. If any of the files
 in the folder or its subfolders are set to read-only, the method
 will fail.

	If Force is set to False and any of the files in the
 folders are set to read-only, the method fails.

Programming Tips and Gotchas
	The Delete method deletes a folder and its files and
 subfolders permanently; it does not move the folder or its files
 and subfolders to the Recycle Bin.

	If an error occurs while deleting more than one file in
 the folder, the Delete method exits immediately, thereby leaving
 the rest of the folders or files undeleted. There is also no
 rollback facility to undo the deletions prior to the
 error.

	Unlike the FileSystemObject’s DeleteFolder method, which
 accepts wildcard characters in the path parameter and can
 therefore delete multiple folders, the Delete method deletes
 only the single folder represented by the Folder object.

	Immediately after the Delete method executes, the Folder’s
 collection object containing the Folder object is automatically
 updated. The deleted folder is removed from the collection, and
 the collection count is reduced by one. You shouldn’t try to
 access the deleted Folder object again, and you should set the
 local object variable to Nothing, as the following code snippet
 demonstrates:
Set ofsSubFolder = ofsSubFolders.Item("roottwo")
 MsgBox ofsSubFolders.Count
 ofsSubFolder.Delete False
 MsgBox ofsSubFolders.Count
Set ofsSubFolder = Nothing

See Also
FileSystemObject.DeleteFile
 Method, FileSystemObject.DeleteFolder
 Method

Name
Folder.Move Method

Syntax
 oFolderObj
 .Move destination
	oFolderObj
	Use: Required
Data Type: Folder object
A Folder object.

	destination
	Use: Required
Data Type: String
The path to the location where the folder or folders are
 to be moved.

Description
Moves a folder structure from one location to another.

Rules at a Glance
	Wildcard characters can’t be used in
 destination.

	If any of the files within the folder being moved are
 open, an error is generated.

	All subfolders and files contained within the source
 folder are copied to destination,
 unless disallowed by the wildcard characters. That is, the Move
 method is recursive.

	destination can be either an
 absolute or a relative path.

Programming Tips and Gotchas
	If a fatal system error (like a power failure) occurs
 during the execution of this method, the worst that can happen
 is that the folder is copied to the destination but not removed
 from the source. There are no rollback capabilities built into
 the Folder.Move method; since, the copy part of this two-stage
 process is executed first, the folder can’t be lost.

	If an error occurs in the middle of a move operation, the
 operation is terminated, and the remaining files and folders in
 the folder aren’t moved.

	If a folder or a file by the same name already exists in
 destination, the method generates
 runtime error 58, “File already exists.” To prevent this, you
 can use the FileSystemObject’s FolderExists and GetAbsolutePath
 methods prior to calling the Move method.

	Unlike the FileSystemObject’s MoveFolder method, which
 accepts wildcard characters in the
 source parameter and can therefore
 move multiple folders, the Move method moves only the single
 folder represented by the Folder object and its contents.

	Immediately after the Move method executes, the Folders
 collection object containing the Folder object is automatically
 updated, the moved folder is removed from the collection, and
 the collection count is reduced by one. You shouldn’t try to
 access the moved folder object again from the same Folders
 collection object.

	oFolderObj, the Folder object
 reference, remains valid after the folder has been moved. Its
 relevant properties (the Drive, ParentFolder, Path, and
 ShortPath properties, for example) are all updated to reflect
 the folder’s new path after the move.

	If the user has adequate rights, the destination can be a
 network path or share name. For example:
oFolder.Move "\\NTSERV1\d$\RootTwo\"

See Also
FileSystemObject.MoveFile
 Method, FileSystemObject.MoveFolder
 Method

Name
Folders Collection Object

Createable
No

Returned by
Folder.SubFolders property

Library
Microsoft Scripting Runtime

Description
The Folders collection object is a container for Folder
 objects. Normally, you’d expect to access a single object from the
 collection of that object; for example, you’d expect to access a
 Folder object from the Folders collection object. However, things
 are the other way around here: you access the Folders collection
 object from an instance of a Folder object. This is because the
 first Folder object you instantiate from the Drive object is a Root
 Folder object, and from it you instantiate a subfolders collection.
 You can then instantiate other Folder and subfolder objects to
 navigate through the drive’s filesystem.
The Folders collection is a subfolder of any Folder object.
 For instance, the top-level Folders collection (representing all of
 the folders in the root directory of a particular drive) can be can
 be instantiated as follows:
Dim oFS, oFolders
Set oFS = CreateObject("Scripting.FileSystemObject")
Set oFolders = oFS.Drives("C").RootFolder.SubFolders
The Folders collection object is one of the objects in the
 File System object model; see the File System object model entry for
 an overview of the model, including the library reference needed to
 access it.

Properties
	Item
	Data Type: Folder object
Retrieves a particular Folder object from the Folders
 collection object. You can access an individual folder object
 by providing the exact name of the folder without its path.
 However, you can’t access the item using its ordinal number.
 For example, the following statement returns the Folder object
 that represents the roottwo folder:
Set ofsSubFolder = ofsSubFolders.Item("roottwo")

	Count
	Data Type: Long
The number of Folder objects contained in the Folders
 collection.

Methods
	Add

See Also
Folders.Add Method, Folder Object

Name
Folders.Add Method

Syntax
 oFoldersCollObj
 .Add newfoldername
	oFoldersCollObj
	Use: Required
Data Type: Folders collection object
Any object variable returning a Folders collection
 object.

	newfoldername
	Use: Required
Data Type: String
The name of the new folder.

Return Value
Folder object.

Description
Creates a new folder. The location of the new folder is
 determined by the parent to which the Folders collection object
 belongs. For example, if you are calling the Add method from a
 Folders collection object that is a child of the root Folder object,
 the new folder is created in the root (i.e., it’s added to the
 root’s subfolders collection). For example:
Dim oFileSys
Dim oRoot, oChild
Dim oRootFolders

Set oFileSys = CreateObject("Scripting.FileSystemObject")
Set oRoot = oFileSys.Drives("C").RootFolder
Set oRootFolders = oRoot.SubFolders
Set oChild = oRootFolders.Add("Downloads")

Rules at a Glance
You can’t use a path specifier in newfoldername
 ; you can use only the name of the new folder.

See Also
FileSystemObject.CreateFolder
 Method

Name
For . . . Next Statement

Syntax
For counter = initial_value To maximum_value [Step stepcounter]

 code to execute on each iteration
 [Exit For]
Next
	counter
	Use: Required
Data Type: Numeric
A variable to be used as the loop counter.

	initial_value
	Use: Required
Data Type: Numeric
Any valid numeric expression that specifies the loop
 counter’s initial value.

	maximum_value
	Use: Required
Data Type: Numeric
Any valid numeric expression that specifies the loop
 counter’s maximum value.

	stepcounter
	Use: Optional (required if Step used)
Data Type: Numeric
Any valid numeric expression that indicates how much the
 loop counter should be incremented with each new iteration of
 the loop.

Description
Defines a loop that executes a given number of times, as
 determined by a loop counter. To use the For...Next loop, you must assign a numeric
 value to a counter variable. This counter is either incremented or
 decremented automatically with each iteration of the loop. In the
 For statement, you specify the
 value that is to be assigned to the counter initially and the
 maximum value the counter will reach for the block of code to be
 executed. The Next statement
 marks the end of the block of code that is to execute repeatedly,
 and also serves as a kind of flag that indicates the counter
 variable is to be modified.

Rules at a Glance
	If initial_value is greater
 than maximum_value, and no Step keyword is used or the step
 counter is positive, the For...Next loop is ignored and
 execution commences with the first line of code immediately
 following the Next
 statement.

	If initial_value and
 maximum_value are equal and
 stepcounter is 1, the loop executes
 once.

	counter can’t be a variable of
 type Boolean or an array element.

	counter is incremented by one
 with each iteration unless the Step keyword is used.

	If the Step keyword is
 used, stepcounter specifies the
 amount counter is incremented if
 stepcounter is positive or
 decremented if it’s negative.

	If the Step keyword is
 used, and stepcounter is negative,
 initial_value should be greater than
 maximum_value. If this isn’t the
 case, the loop doesn’t execute.

	The For...Next loop can
 contain any number of Exit
 For statements. When the
 Exit For statement is executed, program
 execution commences with the first line of code immediately
 following the Next
 statement.

Example
This example demonstrates how to iterate from the end to the
 start of an array of values:
sArray=Array(10, 12, 14, 16, 18, 20, 22, 24)
For i = UBound(sArray) To LBound(sArray) Step -1
 total = total +sArray(i)
Next
This example demonstrates how to select only every other value
 from an array of values:
sArray=Array(10, 12, 14, 16, 18, 20, 22, 24)
For i = LBound(sArray) To UBound(sArray) Step 2
 total = total +sArray(i)
Next

Programming Tips and Gotchas
	You can also nest For...Next loops:
For iDay = 1 to 365
 For iHour = 1 to 23
 For iMinute = 1 to 59
 ...
 Next
 Next
Next

	You should avoid changing the value of
 counter in the code within the loop.
 Not only can this lead to unexpected results, but it also makes
 for code that’s incredibly difficult to read and to
 understand.

See Also
For Each . . . Next
 Statement

Name
For Each . . . Next Statement

Syntax
For Each element In group
[statements]
[Exit For]
[statements]
Next
	element
	Use: Required
Data Type: Variant
A variable to which the current element from the group
 is assigned.

	group
	Use: Required
A collection or an array.

	statements
	Use: Optional
A line or lines of program code to execute within the
 loop.

Description
Loops through the items of a collection or the elements of an
 array.

Rules at a Glance
	The For...Each code
 block is executed only if group
 contains at least one element.

	All statements are executed for
 each element in
 group in turn until either there are
 no more elements in group, or the
 loop is exited prematurely using the Exit For statement. Program execution then
 continues with the line of code following Next.

	For Each...Next loops can be nested, but
 each element must be unique. For
 example:
For Each myObj In anObject
 For Each subObject In myObject
 sName(ctr) = subObject.NameProperty
 ctr = ctr + 1
 Next
Next
uses a nested For
 Each...Next loop, but two
 different variables, myObj and
 subObject, represent
 element.

	Any number of Exit
 For statements can be placed
 with the For Each...Next loop to allow for
 conditional exit of the loop prematurely. On exiting the loop,
 execution of the program continues with the line immediately
 following the Next statement.
 For example, the following loop terminates once the program
 finds a name in the myObj collection
 that has fewer than 10 characters:
For Each subObject In myObj
 SName = subObject.NameProperty
 If Len(Sname) < 10 then
 Exit For
 End if
Next

Programming Tips and Gotchas
	Each time the loop executes when iterating the objects in
 a collection, an implicit Set
 statement is executed. The following code reflects the
 “longhand” method that is useful for explaining what is actually
 happening during each iteration of the For Each...Next loop:
For i = 1 to MyObject.Count
 Set myObjVar = MyObject.Item(i)
 MsgBox myObjVar.Name
Next

	Because the elements of an array are assigned to
 element by value,
 element is a local copy of the array
 element and not a reference to the array element itself. This
 means that you can’t make changes to the array element using
 For Each...Next and expect them to be
 reflected in the array once the For Each...Next loop terminates, as
 demonstrated in the example shown next.
Dim strNameArray(1)
Dim intCtr

strNameArray(0) = "Paul"
strNameArray(1) = "Bill"

intCtr = 0

For Each varName In strNameArray
 varName = "Changed"
 Msgbox strNameArray(intCtr)
intCtr = intCtr + 1
Next
For example, on the first iteration of the loop, although
 varName has been changed from “Paul”
 to “Changed,” the underlying array element,
 strNameArray(0), still reports a
 value of “Paul.” This proves that a referential link between the
 underlying array and object variable isn’t present; instead, the
 value of the array element is passed to
 element by value.

See Also
Exit Statement, For . . . Next Statement

Name
FormatCurrency, FormatNumber, FormatPercent
 Functions

Syntax
FormatCurrency(number[,DecimalPlaces][, _
 IncLeadingZero[,UseParenthesis[,GroupDigits]]]])
FormatNumber(number[,DecimalPlaces][, _
 IncLeadingZero[,UseParenthesis[,GroupDigits]]]])
FormatPercent(number[,DecimalPlaces][, _
 IncLeadingZero[,UseParenthesis[,GroupDigits]]]])
	number
	Use: Required
Data Type: Any numeric expression
The number to be formatted.

	DecimalPlaces
	Use: Optional
Data Type: Long
Number of digits the formatted string should contain
 after the decimal point.

	IncLeadingZero
	Use: Optional
Data Type: Long
Indicates whether the formatted string is to have a 0
 before floating-point numbers between 1 and -1.

	UseParenthesis
	Use: Optional
Data Type: Long
Specifies whether parentheses should be placed around
 negative numbers.

	GroupDigits
	Use: Optional
Data Type: Long
Determines whether digits in the returned string should
 be grouped using the delimiter specified in the computer’s
 regional settings. For example, on American English systems,
 the value 1000000 is returned as 1,000,000 if
 GroupDigits is True.

Return Value
String

Description
The three functions are almost identical. They all take
 identical arguments. The only difference is that
 FormatCurrency returns a formatted number
 beginning with the currency symbol specified in the computer’s
 regional settings, while FormatNumber returns
 just the formatted number, and FormatPercent
 returns the formatted number followed by a percentage sign (%).

Rules at a Glance
	If DecimalPlaces isn’t
 specified, the value in the computer’s regional settings is
 used.

	Possible values for the
 IncLeadingZero,
 UseParenthesis, and
 GroupDigits parameters are -1,
 TristateTrue; 0, TristateFalse; and -2, TriStateUseDefault. You can define the
 constants in your scripts by using the VBScript Const statement as follows:
Const TristateTrue = -1
Const TristateFalse = 0
Const TristateUseDefault = -2
If you’re using the constants in a WSH script, you could
 also include the following line in a Windows Script Host
 (.wsf) file in order to
 access the constants from the Scripting Runtime type
 library:
<reference GUID="{420B2830-E718-11CF-893D-00A0C9054228}" />
To access the constants in the ASP page, you can add the
 following METADATA tag to the
 application’s global.asa
 file:
<!--METADATA TYPE="TypeLib"
 UUID="420B2830-E718-11CF-893D-00A0C9054228"
-->

Programming Tips and Gotchas
These three functions first appeared in VBScript Version 2 as
 “light” alternatives to the VBA Format
 function. They are quick and easy to use, and make your code more
 self-documenting; you can instantly see what format is being applied
 to a number without having to decipher the format string.

Name
FormatDateTime Function

Syntax
FormatDateTime(date[,format])
	date
	Use: Required
Data Type: Date or String
Any expression that can be evaluated as a date.

	format
	Use: Optional
Data Type: Long
Defines the format; see the list of values in “Rules at
 a Glance.”

Return Value
String

Description
Formats a date or time expression based on the computer’s
 regional settings.

Rules at a Glance
	The intrinsic constants to use for the format argument
 are:
	vbGeneralDate
	Value: 0
Displays a date and/or time. If there is a date
 part, displays it as a short date. If there is a time
 part, displays it as a long time. If present, both parts
 are displayed. For example:
 MsgBox FormatDate Time(#04/10/03#, vbGeneralDate)
displays 4/10/2003.

	VbLongDate
	Value: 1
Uses the long date format specified in the client
 computer’s regional settings. For example:
MsgBox FormatDate Time(#04/10/03#, vbLongDate)
displays Thursday, April 10, 2003.

	VbShortDate
	Value: 2
Uses the short date format specified in the client
 computer’s regional settings. For example:
MsgBox FormatDate Time(#04/10/03#, vbShortDate)
displays 4/102003.

	VbLongTime
	Value: 3
Uses the time format specified in the computer’s
 regional settings. For example:
MsgBox FormatDate Time(#1:03:00 PM#, vbLong Time)
displays 1:03:00 PM.

	VbShortTime
	Value: 4
Uses a 24-hour format (hh:mm). For example:
MsgBox FormatDate Time(#1:03:00 PM#, vbShortTime)
displays 13:03.

	The default date format is vbGeneralDate(0).

	These constants are all defined in the VBScript library
 and hence are an intrinsic part of the language.

Programming Tips and Gotchas
Remember that date and time formats obtained from the client
 computer are based on the client computer’s regional settings. It’s
 not uncommon for a single application to be used internationally, so
 that date formats can vary widely. Not only that, but you can never
 be sure that a user has not modified the regional settings on a
 computer. In short, never take a date coming in from a client
 machine for granted; ideally, you should always insure it’s in the
 format you need prior to using it.

Name
Function Statement

Syntax
[Public [Default] | Private] Function name [(arglist)] [()]
 [statements]
 [name = expression]
 [Exit Function]
 [statements]
 [name = expression]
End Function
	Public
	Use: Optional
Type: Keyword
Indicates that the function is accessible in all
 scripts. If used in a class, indicates that the function is a
 member of the class’s public interface. Public and Private are mutually exclusive;
 Public is the
 default.

	Default
	Use: Optional
Type: Keyword
Defines a method as the default member of a class. It is
 valid only for a public function defined within a Class...End Class statement. Only one property
 or method in a class block can be defined as the default
 member of the class.

	Private
	Use: Optional
Type: Keyword
Restricts access to the function to other procedures in
 the script where it is declared. If the function is a member
 of a class, it makes the function accessible only to other
 procedures in that class.

	name
	Use: Required
The name of the function.

	arglist uses the following
 syntax and parts:
	Use: Optional
A comma-delimited list of variables to be passed to the
 function as arguments from the calling procedure.

	statements
	Use: Optional
Program code to be executed within the function.

	expression
	Use: Optional
The value to return from the function to the calling
 procedure.

	arglist uses the following
 syntax and parts:
	[ByVal | ByRef] varname[()]

	ByVal
	Use: Optional
Type: Keyword
The argument is passed by value; that is, the local copy
 of the variable is assigned the value of the argument.

	ByRef
	Use: Optional
Type: Keyword
The argument is passed by reference; that is, the local
 variable is simply a reference to the argument being passed.
 All changes made to the local variable are also reflected in
 the calling argument. ByRef
 is the default method of passing variables.

	varname
	Use: Required
The name of the local variable containing either the
 reference or value of the argument.

Description
Defines a function procedure.

Rules at a Glance
	If you don’t include either Public or Private keywords, a function is
 Public by default.

	Any number of Exit
 Function statements can be
 placed within the function. After an Exit Function statement, execution
 continues on the line of code from which the function was
 called. For example, in the code:
var = AddOne (AddTwo(x))
an Exit Function statement in the
 AddTwo function causes execution to return
 to the line of code calling the function, so that the
 AddOne function is called next. If a value
 has not been assigned to the function when the Exit Function statement executes, the
 function will return Empty.

	The return value of a function is passed back to the
 calling procedure by assigning a value to the function name.
 This may be done more than once within the function.

	To return an object reference from a function, the object
 must be assigned to the function’s return value using the
 Set statement. For
 example:
Set x = GetAnObject ()

Function GetAnObject ()
 Dim oTempObject
 Set oTempObject = New SomeObject
 oTempObject.Name = "Jane Doe"
 Set GetAnObject = oTempObject
End Function

	VBScript allows you to return arrays of any type from a
 procedure. Here’s a quick example showing this in operation.
 Here, the PopulateArray function is called
 and is passed a string value. PopulateArray
 takes this value and concatenates the number 0 to 10 to it,
 assigns each value to an element of an array, then passes this
 array back to the calling procedure. Note that in the calling
 procedure, the variable used to accept the array returned from
 the function is a simple variant that is never explicitly
 dimensioned as an array:
Dim i
Dim sReturnedArray

sReturnedArray = PopulateArray("A")

For i = 0 To UBound(sReturnedArray)
 msgbox sReturnedArray(i)
Next

Private Function PopulateArray(sVal)

 Dim sTempArray(10)
 Dim i

 For i = 0 To 10
 sTempArray(i) = sVal & CStr(i)
 Next

 PopulateArray = sTempArray

End Function

Programming Tips and Gotchas
	There is often confusion between the ByRef and ByVal methods of assigning arguments
 to the function. ByRef
 assigns a reference to the variable in the calling procedure to
 the variable in the function; any changes made to the variable
 from within the function are in reality made to the variable in
 the calling procedure. On the other hand, ByVal assigns the value of the
 variable in the calling procedure to the variable in the
 function. Changes made to the variable in the function have no
 effect on the variable in the calling procedure.

	Functions can return only one value, or can they? Look at
 the following code:
Sub testTheReturns()

 Dim iValOne

 iValOne = 10
 If testValues(iValOne) Then
 Msgbox iValOne
 End If

End Sub

Function testValues(ByRef iVal)

 iVal = iVal + 5
 testValues = True

End Function
Because the argument was passed ByRef, the function acted upon the
 underlying variable iValOne. This
 means you can use ByRef to
 obtain several “return” values (although they’re not strictly
 return values) from a single function call.

	There are many occasions where you will run into the
 dreaded (by some!) recursive function call.
 Recursion occurs when you call a function from within itself.
 Recursion is a legitimate and often essential part of software
 development; for example, it’s an efficient method for
 enumerating or iterating a hierarchical structure. However, you
 must be aware that recursion can lead to stack overflow. The
 extent to which you can get away with recursion really depends
 upon the complexity of the function concerned, the amount and
 type of data being passed in, and an infinite number of other
 variables and unknowns.

See Also
Sub Statement

Name
GetLocale Function

Syntax
GetLocale()

Return Value
A Long indicating the current locale ID.

Description
Gets the current locale ID.

Rules at a Glance
	A locale ID represents a language as well as regional
 conventions. It determines such things as keyboard layout,
 alphabetic sort order, and date, time, number, and currency
 formats.

	Appendix D lists
 valid locale IDs.

Programming Tips and Gotchas
	If you want to temporarily change the locale, there is no
 need to call GetLocale and
 store its returned value before calling SetLocale, since SetLocale returns the value of the
 previous locale ID.

	GetLocale returns the
 locale ID currently in use by the script engine.

	Although you can set the locale using either a decimal,
 hexadecimal, or string locale ID, the GetLocale function returns only a
 decimal locale ID value.

	The default value of the script engine’s locale ID is
 determined as follows: When the script engine starts up, the
 host passes it a locale ID. If the host does not do so, the
 script engine uses the user’s default locale ID. If there is no
 user, then the script engine uses the system’s default locale
 ID.

	Note that the script engine’s locale ID is different from
 the system locale ID, the user locale ID, and the host
 application’s locale ID. The GetLocale
 function reports the locale ID in use by the script engine
 only.

VBA/VBScript Differences
The GetLocale function is
 not supported by VBA.

See Also
SetLocale
 Function

Name
GetObject Function

Syntax
GetObject([pathname] [, class])
	pathname
	Use: Optional
Data Type: String
The full path and filename of a file that stores the
 state of an automation object, or a moniker (that is, a name
 that represents an object) along with the information required
 by the syntax of the moniker to identify a specific
 object.

	class
	Use: Optional
Data Type: String
The object’s programmatic identifier (ProgID), as
 defined in the system registry.

Return Value
A reference to an ActiveX object.

Description
Returns a reference to an automation object. The
 GetObject function has three functions:
	It retrieves references to objects from the Running Object
 Table.

	It loads persisted state into objects.

	It creates objects based on monikers.

Rules at a Glance
	Although both pathname and
 class are optional, at least one
 argument must be supplied.

	GetObject can be used to retrieve a
 reference to an existing instance of an automation object from
 the Running Object Table. For this purpose, you supply the
 object’s programmatic identifier as the
 class argument. However, if the
 object cannot be found in The Running Object Table,
 GetObject is unable to create it and
 instead returns runtime error 429, “ActiveX component can’t
 create object.” To create a new object instance, use the
 CreateObject function.

	If you specify a class argument and specify
 pathname as a zero-length string,
 GetObject returns a new instance of the
 object—unless the object is registered as single instance, in
 which case the current instance is returned. For example, the
 following code launches Excel and creates a new instance of the
 Excel Application object:
Dim excel
Set excel = GetObject (" ", "Excel. Application")
In this case, the effect of the function is similar to
 that of CreateObject.

	To assign the reference returned by
 GetObject to your object variable, you must
 use the Set statement:
Dim myObject
Set myObject = GetObject("C:\OtherApp\Library.lib")
To load an object’s persisted state into an object, supply
 the filename in which the object is stored as the
 pathname argument and omit the
 class argument.

	The details of how you create different objects and
 classes are determined by how the server has been written; you
 need to read the documentation for the server to determine what
 you need to do to reference a particular part of the object.
 There are three ways you can access an ActiveX object:
	The overall object library. This is the highest level,
 and it gives you access to all public sections of the
 library and all its public classes:
GetObject("C:\OtherApp\Library.lib")

	A section of the object library. To access a
 particular section of the library, use an exclamation mark
 (!) after the filename,
 followed by the name of the section:
GetObject("C:\OtherApp\Library.lib!Section")

	A class within the object library. To access a class
 within the library, use the optional Class parameter:
GetObject("C:\OtherApp\Library.lib", "App.Class")

	To instantiate an object using a moniker, supply the
 moniker along with its required arguments. For details, see the
 discussion of monikers in the Programming Tips and Gotchas
 section.

Example
The example uses the IIS moniker to retrieve a reference to
 the IIS metabase. It then iterates the IIS metabase class hierarchy
 and writes the names of all classes to a file. Its code is:
Dim oIIS, oFS, msg, txtStream, filename

fileName = "C: \ IISClasses.txt"

Set oIIS = GetObject ("IIS:// localhost")
IterateClasses oIIS, 0
Set oFS = CreateObject ("Scripting.FileSystemObject")
txtStream.Write msg
txtStream. Close

MsgBox "IIS Metabse information written to " & filename

Sub IterateClasses (collec, indent)

 Dim oItem

 For Each oItem In collec
 msg = msg & space(indent) & oItem.Name & vbCrL
 IterateClasses oItem, indent + 3f
 Next
End Sub

Programming Tips and Gotchas
	Pay special attention to objects registered as single
 instance. As their type suggests, there can be only one instance
 of the object created at any one time. Calling
 CreateObject against a single-instance
 object more than once has no effect; you still return a
 reference to the same object. The same is true of using
 GetObject with a pathname of " “; rather
 than returning a reference to a new instance, you obtain a
 reference to the original instance of the object. In addition,
 you must use a pathname argument with single-instance objects
 (even if this is " “); otherwise an error is generated.

	You can’t use GetObject to obtain a
 reference to a class created with VBScript; this can only be
 done using the New
 keyword.

	The following table shows when to use
 GetObject and
 CreateObject
 :

	Use
	Task

	 CreateObject

	Create a new instance of an OLE
 server

	 CreateObject

	Create a subsequent instance of an already
 instantiated server (if the server isn’t registered as
 single instance)

	 GetObject
	Obtain a further reference to an already
 instantiated server without launching a subsequent instance

	 GetObject
	Launch an OLE server application and load an
 instance of a subobject

	 CreateObject

	Instantiate a class registered on a remote
 machine

	 GetObject
	Instantiate an object using a
 moniker

	A moniker is simply a name that represents an object
 without indicating how the object should be instantiated. (It
 contrasts with a programmatic identifier, for instance, which
 indicates that information stored in the system registry is used
 to locate and instantiate an object.) The following are some of
 the valid monikers recognized by the
 GetObject function, along with their
 required arguments:

	Moniker
	Arguments
	Description

	 IIS:

	 metabasepath

	Retrieves a reference to an IIS metabase
 object, which allows the programmer to view or modify the
 configuration of IIS

	 JAVA:

	 classname

	Returns a reference to an unregistered Java
 object stored in the java\trustlib
 folder

	 SCRIPT:

	 path

	Returns a reference to an unregistered Windows
 Script Component

	 CLSID:

	 clsid

	Returns a reference to an object based on its
 class identifier (ClsID) in the system registry

	 WINMGMTS:

	 string

	Returns a reference to a WMI object that allows
 access to core Windows functionality

	 QUEUE:

	 clsid or
 progid
	Uses MSMQ to return a reference to a queued
 COM+ component

	 NEW:

	 clsid or
 progid
	Creates a new instance of any COM component
 that supports the IClassFactory interface (that is,
 of any createable COM component)

See Also
CreateObject Function, Set Statement

Name
GetRef Function

Syntax
GetRef(procname)
	procname
	Use: Required
Data Type: String
Name of a sub or function

Return Value
A Long containing a reference to
 procname.

Description
Returns a reference to a sub or function. This reference can
 be used for such purposes as binding to events or defining callback
 functions.

Rules at a Glance
	GetRef can be used
 whenever a function or procedure reference is expected.

	When using GetRef to define event
 handlers for events, the Set
 keyword is required. For example, the code required to bind the
 Window.OnLoad event to a procedure named ShowGreetingDialog is:
Set Window.OnLoad = GetRef("ShowGreetingDialog")

Example
<HTML>
<HEAD>
<TITLE>The VBScript GetRef Function</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBSCRIPT">

Set popWin = Window.CreatePopup()
Set Window.Onload = GetRef("ShowPopup")

Sub ShowPopup()
 Set popBody = popWin.Document.Body
 popBody.Style.BackgroundColor = "lightblue"
 popBody.Style.Border = "solid black"
 popBody.innerHTML = "Click outside popup to close."
 popWin.Show 100, 100, 220, 30, Document.body
End Sub

</SCRIPT>
</BODY>
</HTML>

Programming Tips and Gotchas
	A common use of GetRef is to bind to DHTML events in
 Internet Explorer. You can use GetRef to bind to any of the events
 in the DHTML object model.

	GetRef can be used to
 pass the address of a procedure to a routine that expects the
 address of a callback function as an argument.

VBA/VBScript Differences
The GetRef function is
 not supported by VBA. However, similar functionality is provided in
 VBA by the AddressOf operator,
 which returns a pointer to (or the address of) a procedure.

See Also
Function Statement, Sub Statement, Set Statement

Name
Hex Function

Syntax
Hex(number)
	number
	Use: Required
Data Type: Numeric or String
A valid numeric or string expression.

Return Value
String representing the hexadecimal value of
 number.

Description
Returns a string that represents the hexadecimal value of a
 number.

Rules at a Glance
	If number contains a fractional
 part, it’s rounded automatically to the nearest whole number
 prior to processing. If the number ends in .5, it’s rounded to
 the nearest even whole number.

	number must evaluate to a
 numeric expression that ranges from -2,147,483,648 to
 2,147,483,647. If the argument is outside this range, runtime
 error 6, “Overflow,” results.

	The return value of Hex is dependent upon the value and
 type of number :

	number
	Return value

	Null
	Null

	Empty
	Zero (0)

	Any other number
	Up to eight hexadecimal
 characters

Programming Tips and Gotchas
If the value of number is known
 beforehand and isn’t the result of an expression, you can represent
 the number as a hexadecimal by simply affixing &H to
 number. Each of the following statements
 assigns a hexadecimal value to a variable:
lngHexValue1 = &HFF ' Assigns 255

VBA/VBScript Differences
The Hex$ function is not
 available in VBScript.

See Also
Oct Function

Name
Hour Function

Syntax
Hour(time)
	time
	Use: Required
Data Type: Any expression that can be converted to a
 date.
Any valid time expression.

Return Value
A variant of data type Integer representing the hour of the
 day.

Description
Extracts the hour element from a time expression.

Rules at a Glance
	Hour returns a whole number between 0
 and 23, representing the hour of a 24-hour clock.

	If time contains Null, Null is returned.

See Also
Minute Function, Now Function, Second Function

Name
If . . . Then . . . Else Statement

Syntax
If condition Then
 [statements]
[ElseIf condition-n Then
 [elseifstatements] ...
[Else
 [elsestatements]]
End If
Or, you can use the single-line syntax:
If condition Then [statements] [Else elsestatements]
	condition
	Use: Required
Data Type: Boolean
An expression returning either True or False or an object type.

	statements
	Use: Optional
Program code to be executed if
 condition is True.

	condition-n
	Use: Optional
Same as condition.

	elseifstatements
	Use: Optional
Program code to be executed if the corresponding
 condition-n is True.

	elsestatements
	Use: Optional
Program code to be executed if the corresponding
 condition or
 condition-n is False.

Description
Executes a statement or block of statements based on the
 Boolean (True or False) value of an expression.

Rules at a Glance
	If condition is True, the statements following the
 If statement are
 executed.

	If condition is False and no Else or ElseIf statement is present, execution
 continues with the corresponding End If statement. If
 condition is False and ElseIf statements are present, the
 condition of the next ElseIf
 is tested. If condition is False, and an Else is present, the statements
 following the Else are
 executed.

	In the block form, each If statement must have a corresponding
 End If statement. ElseIf statements don’t have their own
 End If. For example:
If condition Then
 statements
ElseIf condition Then
 statements
End If

	ElseIf and Else are optional, and any number of
 ElseIf and Else statements can appear in the
 block form. However, no ElseIf statements can appear after an
 Else.

	condition can be any statement
 that evaluates to True or
 False.

	If condition returns Null, it’s treated as False.

	statements are optional only in
 the block form of If.
 However, statements are required when
 using the single-line form of If in which there is no Else clause.

Programming Tips and Gotchas
	You can use the single-line form of the If statement to execute multiple
 statements, which you can specify by delimiting the statements
 using colons; however, single-line form If statements are hard to read and
 maintain, and should be avoided for all but the simplest of
 situations.

	In situations where you have many possible values to test,
 you will find the Select
 Case statement much more
 flexible, manageable, and readable than a bunch of nested
 If statements.

	You will come across situations in which very large blocks
 of code have to execute based one or more conditions. In
 these—and in all situations—you should try to make your code as
 readable as possible, not only for other programmers, but for
 yourself when you try to maintain the code several months down
 the line. Take a common scenario in which, at the beginning of a
 procedure, a check is made to see if the procedure should in
 fact be executed under the current circumstances. You have the
 choice of surrounding the whole code with an If...Then...End If construct, like
 this:
If iSuccess Then
 ...
 ...
 ... 'x000 lines of code
End If
Or you can switch the result to look for a False, then exit the sub, like
 this:
If Not iSuccess Then
 Exit Sub
End If
.... 'x000 lines of code
The difference is that, with the second method, you don’t
 have to scroll down screens worth of code looking for the
 matching End If.

	Indentation is important for the readability of If, and especially nested If, statements. The recommended
 indentation is four characters. The set of statements within
 each new If...Else...End If
 block should be indented. The following example shows correctly
 indented code:
If x = y Then
 DoSomethingHere
 If y < z Then
 DoSomethingElseToo
 Else
 DoAnotherThing
 If z = 101 Then
 DoAThing
 End If
 End If
Else
 DoAlternative
End If

	Use of the If statement
 requires some understanding of the implicit and explicit use of
 True in VBScript. The
 following If statement uses
 an implicit True:
If iSuccess Then
Notice that you are allowing VBScript to evaluate the
 iSuccess variable to True or False. When this implicit form is
 used, any nonzero value evaluates to True, and conversely, a zero value
 evaluates to False. The
 following code evaluates iSuccess as
 True and prints the “OK”
 message box:
Dim iSuccess
iSuccess = 41
If iSuccess Then
 MsgBox "OK"
Else
 MsgBox "False"
End If
However, when you compare a variable to an explicit
 True or False, the value must be -1 to
 evaluate to True, and 0 for
 False. If you amend:
iSuccess = 41
If iSuccess = True Then
iSuccess doesn’t
 evaluate to VB’s version of True (-1). As you can imagine, this
 can lead to some confusion, since a variable can evaluate to
 True when using an implicit
 comparison but not when using an explicit comparison. Actually,
 just to add to the confusion, you could get the explicit
 comparison to behave the same as the implicit one by converting
 iSuccess to a Boolean:
If CBool(iSuccess) = True Then
This isn’t entirely recommended, but it does show that
 VBScript’s built-in constants of True and False evaluate
 only -1 and 0, respectively.

	Logical comparison operators can be included in the
 condition expression, allowing you to
 make decisions based on the outcome of more than one individual
 element. The most common are And and Or. You can create:
If x = 1 And y = 3 Then

	VBScript always evaluates both sides of a logical
 comparison, unlike some languages that stop once the value of
 the expression is known; this is known as
 short circuiting. For
 example, in the following code, if x does
 equal 1, then the If
 condition is true. Some
 languages would stop the evaluation here. But regardless of the
 value of x, VBScript still evaluates
 the comparison with y . This means
 that the second part of an expression can generate an error even
 if the result of the expression is already known. This is the
 case if the second comparison assumes the truth or falsity of
 the first comparison. For example:
If (Not x Is Nothing) And x.SomeProperty = 123 Then 'BAD CODE
Here, the first comparison tests whether x is a valid object reference. But the
 second comparison, which tests the value of the value of
 x’s SomeProperty property,
 presupposes that x is a valid
 object reference.
If x = 1 Or y = 3 Then

	The If statement is
 also used with objects to determine if an object reference has
 been successfully assigned to an object variable. (Actually,
 that’s not completely accurate; you check to see whether the
 object variable is still set to Nothing.) However, you can’t use the
 equality operator (=) for this comparison. Instead, you must use
 the object comparison operator Is:
If Not objectname Is Nothing Then

VBA/VBScript Differences
In VBA, you can determine an object type with a statement
 like:
If TypeOf oObj Is CClass Then
In VBScript, however, the TypeOf operator is not supported; you must
 use the TypeName
 function instead.

See Also
Select Case Statement

Name
Initialize Event

Syntax
Sub object_Initialize()

Description
Use the Initialize event of a class defined with the Class...End Class construct to prepare the
 object or class for use, setting any references to subobjects or
 assigning default values to properties and values to class-level
 variables.

Rules at a Glance
	The Initialize event is triggered automatically when a
 class is first instantiated by the Set statement. For example, in the
 following code, the Set
 statement generates the Initialize event:
Dim MyObject As MyClass
'some code
...
'initialize event called here
Set MyObject = New MyClass
StrName = MyObject.CustName

	The Initialize event doesn’t take any arguments.

	It is best to declare the Initialize event as Private,
 although this is not required.

Programming Tips and Gotchas
	While it’s possible to explicitly call the Initialize
 event from within the object at any stage after the object has
 been created, it isn’t recommended, because the code in the
 Initialize event should be written to be “run once” code.

	Use the Initialize event of a class module to generate
 references to dependent objects. For example:
Option Explicit

Dim custOrder
Set custOrder = New Order
' ...other code

Class Order
 Private cust, itemsOrdered
 Private Sub Class_Initialize()
 Set cust = New Customer
 Set itemsOrdered = New Items
 End Sub
End Class

Class Customer
 ' Implementation of Customer
End Class

Class Items
 Dim orderItem(10)

 Private Sub Class_Initialize()
 Set orderItem(0) = New Item
 End Sub
 ' Other implementation details of Items collection
End Class

Class Item
 ' Implementation of Item
End Class

	The Initialize event is triggered only once, when a new
 object is created. When an object variable is assigned a
 reference to an existing object, the Initialize event isn’t
 invoked. For example, in the following code fragment, the
 Initialize event is invoked only once when the Set objMine1 statement is executed:
Dim objMine1, objMine2
Set objMine1 = New MyObj
Set objMine2 = objMine1

See Also
Set Statement, Terminate Event

Name
InputBox Function

Syntax
InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile,
context])
	prompt
	Use: Required
Data Type: String
The message in the dialog box.

	title
	Use: Optional
Data Type: String
The titlebar of the dialog box.

	default
	Use: Optional
Data Type: String
String to be displayed in the text box on
 loading.

	xpos
	Use: Optional
Data Type: Numeric
The distance from the left side of the screen to the
 left side of the dialog box.

	ypos
	Use: Optional
Data Type: Numeric
The distance from the top of the screen to the top of
 the dialog box.

	helpfile
	Use: Optional
Data Type: String
The Help file to use if the user clicks the Help button
 on the dialog box.

	context
	Use: Optional
Data Type: Numeric
The context number to use within the Help file specified
 in helpfile.

Return Value
InputBox returns a variant string
 containing the contents of the text box from the
 InputBox dialog.

Description
Displays a dialog box containing a label, which prompts the
 user about the data you expect them to input, a text box for
 entering the data, an OK button, a Cancel button, and optionally, a
 Help button. When the user clicks OK, the function returns the
 contents of the text box.

Rules at a Glance
	If the user clicks Cancel, a zero-length string (” “) is
 returned.

	prompt can contain
 approximately 1,000 characters, including nonprinting characters
 like the intrinsic vbCrLf
 constant.

	If the title parameter is
 omitted, “VBScript” is displayed in the titlebar.

	If you don’t use the default
 parameter to specify a default entry for the text box, the text
 box is shown empty; a zero-length string is returned if the user
 doesn’t enter anything in the text box prior to clicking
 OK.

	xpos and
 ypos are specified in
 twips. A twip is a
 device-independent unit of measurement that equals 1/20 of a
 point or 1/1440 of an inch.

	If the xpos parameter is
 omitted, the dialog box is centered horizontally.

	If the ypos parameter is
 omitted, the top of the dialog box is positioned approximately
 one-third of the way down the screen.

	If the helpfile parameter is
 provided, the context parameter must also be provided, and vice
 versa.

	In VBScript, when both helpfile
 and context are passed to the
 InputBox function, a Help button is
 automatically placed on the InputBox
 dialog, allowing the user to click and obtain context-sensitive
 help.

Programming Tips and Gotchas
	If you are omitting one or more optional arguments and
 using subsequent arguments, you must use a comma to signify the
 missing argument. For example, the following code fragment
 displays a prompt, a default string in the text box, and the
 help button, but default values are used for the title and
 positioning.
sString = InputBox("Enter it now", , "Something", , _
 , "help.hlp", 321321)

	Because it is a user-interface element that would execute
 on the server, the InputBox function should
 not be used in Active Server Pages or it will generate runtime
 error 70, “Permission denied.”

	In a client-side web page, it’s preferable to rely on HTML
 intrinsic controls with validation using client-side script,
 rather than on the InputBox
 function.

VBA/VBScript Differences
In VBA, in an Office-hosted environment, the maximum length of
 prompt is 256 characters. This limitation
 doesn’t exist in VBScript.

See Also
MsgBox Function

Name
InStr, InStrB Functions

Syntax
InStr([start,]stringtosearch, stringtofind[, comparemode])
	start
	Use: Optional
Data Type: Numeric
The starting position for the search.

	stringtosearch
	Use: Required
Data Type: String
The string being searched.

	stringtofind
	Use: Required
Data Type: String
The string being sought.

	comparemode
	Use: Optional
Data Type: Integer
The type of string comparison.

Return Value
A Long.

Description
Finds the starting position of one string within
 another.

Rules at a Glance
	The return value of InStr is
 influenced by the values of
 stringtosearch and
 stringtofind, as shown in the
 following table:

	Condition
	InStr return value

	 stringtosearch is
 zero-length
	0

	 stringtosearch is
 Null
	 Null

	 stringtofind is
 zero-length
	 start

	 stringtofind is
 Null
	 Null

	 stringtofind is not
 found
	0

	 stringtofind is
 found within stringtosearch

	Position at which the start of
 stringtofind is found

	 start
 > len(stringtofind)
	0

	If the start argument is
 omitted, InStr commences the search with
 the first character of
 stringtosearch.

	If the start argument is
 Null, an error occurs.

	You must specify a start
 argument if you are specifying a
 comparemode argument.

	VBScript supports intrinsic constants for
 comparemode, as follows:
	Comparison mode
	Value
	Constant

	Binary (default)
	0
	 vbBinaryCompare

	Text—case- insensitive
	1
	 vbTextCompare

In effect, a binary comparison means that the search for
 stringtofind in
 stringtosearch is case-sensitive. A
 text comparison means that the search for
 stringtofind in
 stringtosearch is not
 case-sensitive.

	If the comparemode argument
 contains Null, an error is
 generated.

	If comparemode is omitted, the
 type of comparison is vbBinaryCompare.

Programming Tips and Gotchas
You can use the InStrB function to
 compare byte data contained within a string. In this case,
 InStrB returns the byte position of
 stringtofind, as opposed to the character
 position.

VBA/VBScript Differences
In VBA, the default value of the compare parameter is
 determined by the setting of the Option
 Compare statement. VBScript, however, does not support the
 Option Compare statement, and
 comparemode defaults to vbBinaryCompare.

See Also
InstrRev Function, Left, LeftB Functions, Mid, MidB Functions, Right, RightB Functions, StrComp Function

Name
InstrRev Function

Syntax
InstrRev(sourcestring, soughtstring[, start[, compare]])
	sourcestring
	Use: Required
Data Type: String
The string to be searched.

	soughtstring
	Use: Required
Data Type: String
The substring to be found within
 sourcestring.

	start
	Use: Optional
Data Type: Numeric
Starting position of the search. If no value is
 specified, start defaults to
 1.

	compare
	Use: Optional
Data Type: Integer
The method that compares
 soughtstring with
 sourcestring ; its value can be
 vbBinaryCompare or vbTextCompare

Return Value
Variant of type Long.

Description
Determines the starting position of a substring within a
 string by searching from the end of the string to its
 beginning.

Rules at a Glance
	While InStr searches a string from
 left to right, InStrRev searches a string
 from right to left.

	vbBinaryCompare is
 case-sensitive; that is, InstrRev matches
 both character and case, whereas vbTextCompare is case-insensitive,
 matching only character, regardless of case.

	The default value for compare
 is vbBinaryCompare.

	start designates the starting
 point of the search and is the number of characters from the
 start of the string.

	If start is omitted, the search
 begins from the last character in
 sourcestring.

	sourcestring is the complete
 string in which you want to find the starting position of a
 substring.

	If soughtstring isn’t found,
 InStrRev returns 0.

	If soughtstring is found within
 sourcestring ,
 the value returned by InStrRev is the
 position of sourcestring from the
 start of the string.

Programming Tips and Gotchas
One of the useful applications of
 InstrRev is to search backward through a path
 and filename to extract each successive component.

Example
This example uses both InStr and
 InStrRev to highlight the different results
 produced by each. Using a sourcestring
 that states “I like the functionality that
 InStrRev gives,” InStr
 finds the first occurrence of “th” at character 8, while
 InStrRev finds the first occurrence of “th” at
 character 26:
Dim myString
Dim sSearch
myString = "I like the functionality that InStrRev gives"
sSearch = "th"

Msgbox InStr(myString, sSearch)						
Msgbox InStrRev(myString, sSearch)

See Also
InStr, InStrB
 Functions

Name
Int Function

Syntax
Int(number)
	number
	Use: Required
Data Type: Any valid numeric data type
The number to be truncated.

Return Value
Returns a value of the numeric data type passed to it.

Description
Returns the integer portion of a number.

Rules at a Glance
	The fractional part of number
 is removed and the resulting integer value returned.
 Int doesn’t round
 number to the nearest whole number;
 for example, Int(100.9)
 returns 100.

	If number is negative,
 Int returns the first negative integer less
 than or equal to number ; for
 example, Int(-10.1) returns
 -11.

Programming Tips and Gotchas
	Int and Fix work
 identically with positive numbers. However, for negative
 numbers, Fix returns the first negative
 integer greater than number. For
 example, Int (-10.1) returns -10.

	Don’t confuse the Int function with
 CInt. CInt casts the
 number passed to it as an Integer data type, whereas
 Int returns the same data type that was
 passed to it.

See Also
Fix Function

Name
Is Operator

Syntax
object1 Is object2
	object1
	Use: Required
Data Type: Object
An object variable.

	object2
	Use: Required
Data Type: Object
A second object variable.

Return Value
Boolean.

Description
Compares two object variables to determine whether they
 reference the same object.

Rules at a Glance
	Both object1 and
 object2 must be object references, or
 runtime error 424, “Object required,” results.

	The operation returns a result of True if the object references are
 identical and False if they
 are not.

	It is also possible to determine whether an object
 contains a valid reference by replacing
 object2 with the special Nothing keyword. For example:
If oDrive Is Nothing Then
returns True if
 oDrive does not refer to an object
 and False if it does. This
 should be used to test for an uninitialized object
 reference.

Programming Tips and Gotchas
	Note that objects in VBScript are references—that is, they
 reference an object in memory. This means that if two variables
 reference the same object and you make changes to the object’s
 properties using the first object variable, those changes are
 reflected when you retrieve the object’s property settings using
 the second object variable.

	You may wonder why there is a special Is operator for objects. When you
 perform a comparison of scalar variables, you want to know
 whether their values are the same. But in the case of objects,
 you want to know whether two references point to a single
 object. (Many objects have identical property values; a test for
 equal values is meaningless.) This is the reason for the
 Is operator.

	You can create identical object references in a number of
 ways. One is by assigning an existing reference to a second
 object variable:
Dim oDrive1, oDrive2
Set oDrive1 = oFS.Drives("C")
Set oDrive2 - oDrive1
You can also set two objects equal to a third object
 reference:
Dim oDrive1, oDrive2, oDrive
Set oDrive = oFS.Drives("C")
Set oDrive1 = oDrive
Set oDrive2 = oDrive
Finally, you can set both object references equal by
 retrieving them from the same object in an object model. For
 example:
Dim oDrive1, oDrive2
Set oDrive1 = oFS.Drives("C")
Set oDrive2 - oFS.Drives("C")

	Typically, the Is
 operator is used in an If...Then...Else construct to take
 some action if objects are the same or if an object reference
 does not point to a valid object.

Name
IsArray Function

Syntax
IsArray(varname)
	varname
	Use: Required
Data Type: Any
The name of the variable to be checked.

Return Value
Boolean (True or False).

Description
Tests whether a variable is an array.

Rules at a Glance
If the variable passed to IsArray is an
 array or contains an array, True
 is returned; otherwise, IsArray returns
 False.

Programming Tips and Gotchas
Due to the nature of variants, it isn’t always obvious if a
 variant variable contains an array, especially if you pass the
 variant to a function, and the function may or may not attach an
 array to the variant. Calling any of the array functions — such as
 LBound or UBound—or trying
 to access an element in an array that doesn’t exist will obviously
 generate an error. In these situations, you should first use the
 IsArray function to determine whether you can
 safely process the array.

Name
IsDate Function

Syntax
IsDate(expression)
	expression
	Use: Required
Data Type: Any.
Variable or expression containing a date or time.

Return Value
Boolean (True or False).

Description
Determines whether a variable’s value can be converted to a
 date.

Rules at a Glance
If the expression passed to IsDate is a
 valid date, True is returned;
 otherwise, IsDate returns False.

Programming Tips and Gotchas
	IsDate uses the locale settings of
 the current Windows system to determine whether the value held
 within the variable is recognizable as a date. Therefore, what
 is a legal date format on one machine may fail on
 another.

	IsDate is particularly useful for
 validating data input.

Name
IsEmpty Function

Syntax
IsEmpty(varname)
	varname
	Use: Required
Data Type: Any
A numeric or string expression.

Return Value
Boolean (True or False).

Description
Determines whether the variable has been initialized by having
 an initial value (other than Empty) assigned to it.

Rules at a Glance
	If the variant passed to IsEmpty has
 not been initialized, True is
 returned; otherwise, IsEmpty returns
 False.

	Although IsEmpty can take an
 expression as the value of varname,
 it always returns False if
 more than one variable is used in the expression.
 IsEmpty is therefore most commonly used
 with single variables.

Programming Tips and Gotchas
When passed an object variable that has been set equal to
 Nothing, the IsEmpty function returns False. Hence, the function should not be
 used to test whether a previously initialized object variable now
 holds a valid object reference.

Name
IsNull Function

Syntax
IsNull(expression)
	expression
	Use: Required
Data Type: Any
An expression containing string or numeric data.

Return Value
Boolean (True or False).

Description
Determines whether expression
 contains is Null.

Rules at a Glance
	If the expression passed to IsNull is
 Null, True is returned; otherwise,
 IsNull returns False.

	All variables in expression are
 checked for null values. If a null value is found in any one
 part of the expression, True
 is returned for the entire expression.

	In VBScript, Null is a separate data type that can take on
 a single value, Null. It is
 used to indicate that data is missing. Because it represents
 missing data, all expressions that include a Null value also result in a Null value. This makes perfect sense.
 For instance, if we have an array containing two valid months of
 sales data and a Null
 representing the third month’s sales data, the quarter’s sales
 data should also be Null,
 since accurate data for the quarter is not available.

Programming Tips and Gotchas
	IsNull is useful when returning data
 from a database. You should check field values in columns that
 allow Nulls against IsNull before assigning
 the value to a collection or other variable. This stops the
 common “Invalid Use of Null” error from occurring.

	IsNull is the only way to evaluate an
 expression containing a null. For example, the seemingly correct
 statement:
If varMyVar = Null Then
always evaluates to False, even if
 varMyVar is null. This occurs because
 the value of an expression containing Null is always Null, and therefore False.

Name
IsNumeric Function

Syntax
IsNumeric(expression)
	expression
	Use: Required
Data Type: Any
A numeric or string expression.

Return Value
Boolean (True or False).

Description
Determines whether expression can
 be evaluated as a number.

Rules at a Glance
If the expression passed to IsNumeric
 evaluates to a number, True is
 returned; otherwise, IsNumeric returns False.

Programming Tips and Gotchas
	If expression is a date or
 time, IsNumeric evaluates to False.

	If expression is a currency
 value, including a string that includes the currency symbol
 defined by the Control Panel’s Regional Settings applet,
 IsNumeric evaluates to True.

Name
IsObject Function

Syntax
IsObject(varname)
	varname
	Use: Required
Data Type: Any
Name of the variable to be evaluated.

Return Value
Boolean (True or False).

Description
Indicates whether a variable contains a reference to an
 object—in other words, if it’s an object variable.

Rules at a Glance
If the variable passed to IsObject
 references or has referenced an object, even if its value is
 Nothing, True is returned; otherwise,
 IsObject returns False.

Programming Tips and Gotchas
	IsObject doesn’t validate the
 reference being held by an object variable; it simply determines
 whether the variable is an object. To ensure that an object
 reference is valid, you can use the syntax Is Nothing, as shown in this code
 snippet:
If objVar Is Nothing Then
...
End if

	IsObject is simply a “convenience”
 function that is roughly equivalent to the following
 user-defined function:
Public Function IsObject(varObj)

If VarType(varObj) = vbObject Then
 IsObject = True
Else
 IsObject = False
End If

End Function

Name
Join Function

Syntax
result = Join(sourcearray, [delimiter])
	sourcearray
	Use: Required
Data Type: Array
Array whose elements are to be concatenated.

	delimiter
	Use: Optional
Data Type: String
Character used to delimit the individual values in the
 string.

Return Value
A type String.

Description
Concatenates an array of values into a delimited string using
 a specified delimiter.

Rules at a Glance
	If no delimiter is specified, the space character is used
 as a delimiter.

	The members of sourcearray must
 be convertible to strings. The individual members of
 sourcearray can be any data type
 except Object. In fact, the individual members of
 sourcearray can be objects as long as
 the object’s default member is not another object. For example,
 the Join function in the
 code fragment:
Set oFS = CreateObject("Scripting.FIleSystemObject")
Set oDrive1 = oFS.Drives("C")
Set oDrive2 = oFS.DRives("D")

Set vArr(0) = oDrive1
Set vArr(1) = oDrive2

sJoin = Join(vArr, ",")
returns the string "C:,D:".

	When a delimiter is specified, unused
 sourcearray elements are noted in the
 return string by the use of the delimiter. For example, if you
 specify a delimiter of ","
 and a source array with 11 elements, of which only the first two
 are used, Join returns a string similar to
 the following:
"a,b,,,,,,,,,"

Programming Tips and Gotchas
The Join function is ideal for quickly
 and efficiently writing out a comma-delimited text file from an
 array of values.

Name
LBound Function

Syntax
LBound(arrayname[, dimension])
	arrayname
	Use: Required
Data Type: Array
The name of the array.

	dimension
	Use: Optional
Data Type: Long
A number specifying the dimension of the array.

Return Value
A Long.

Description
Determines the lower limit of a specified dimension of an
 array. The lower boundary is the smallest subscript you can access
 within the specified array.

Rules at a Glance
If dimension isn’t specified, 1 is
 assumed. To determine the lower limit of the first dimension of an
 array, set dimension to 1, to 2 for the
 second, and so on.

Programming Tips and Gotchas
	This function appears to have little use in VBScript,
 since VBScript does not allow you to control the lower bound of
 an array. Its value, which is 0, is invariable. However, it is
 possible for ActiveX components created using Visual Basic to
 return a array with a lower bound other than 0 to a VBScript
 script.

	LBound is useful when handling arrays
 passed by ActiveX controls written in VB, since these may have a
 lower bound other than 0.

VBScript/VB & VBA Differences
Unlike VBA, there is no Option
 Base available in VBScript, nor does VBScript support the
 To keyword in the Dim, Private, Public, and ReDim statements. Therefore, all arrays
 will have a lower bound of 0.

See Also
Array Function, UBound Function

Name
LCase Function

Syntax
LCase(string)
	string
	Use: Required
Data Type: String
A valid string expression.

Return Value
A String.

Description
Converts a string to lowercase.

Rules at a Glance
	LCase affects only uppercase letters;
 all other characters in string are
 unaffected.

	LCase returns Null if
 string contains a Null.

VBScript/VB & VBA Differences
There is no LCase$
 function available in VBScript.

See Also
UCase Function

Name
Left, LeftB Functions

Syntax
Left(string, length)
	string
	Use: Required
Data Type: String
The string to be processed.

	length
	Use: Required
Data Type: Long
The number of characters to return from the left of the
 string.

Return Value
Left and LeftB
 return a String.

Description
Returns a string containing the left-most
 length characters of
 string.

Rules at a Glance
	If length is 0, a zero-length
 string (” “) is returned.

	If length is greater than the
 length of string,
 string is returned.

	If length is less than 0 or
 Null, the function generates
 runtime error 5, “Invalid procedure call or argument,” and
 runtime error 94, “Invalid use of Null,” respectively.

	If string contains Null, Left
 returns Null.

	Left processes strings of characters;
 LeftB is used to process binary
 data.

Programming Tips and Gotchas
	Use the Len function to determine the
 overall length of string.

	When you use the LeftB function with
 byte data, length specifies the
 number of bytes to return.

VBScript/VB & VBA Differences
There are no Left$ or
 LeftB$ functions available in
 VBScript.

See Also
Len, LenB Functions, Mid, MidB Functions, Right, RightB Functions

Name
Len, LenB Functions

Syntax
Len(string | varname)
LenB(string | varname)
	string
	Use: Required
Data Type: String
A valid string literal or string expression.

	varname
	Use: Required
Data Type: Any except Object
A valid variable name.

Return Value
Long.

Description
Len returns the number of characters in a
 string or variable. LenB returns the number of
 bytes required to store a string in memory.

Rules at a Glance
	string and
 varname are mutually exclusive; that
 is, you must specify either string or
 varname, but not both.

	If either string or
 varname is Null, Len and
 LenB return Null.

	You can’t use Len or
 LenB with an object variable.

	If varname is an array, you
 must also specify a valid subscript. In other words,
 Len and LenB
 can’t determine the total number of elements in or the total
 size of an array. To determine the size of an array, use the
 LBound and UBound
 functions.

Programming Tips and Gotchas
	Nonstring data is treated the same as strings when passed
 to the Len and LenB
 functions. For example, in the code:
Dim number
number = 100
WScript.Echo Len(number)
the Len function returns 3, since
 that is the number of characters in the value of
 number.

	LenB is intended to work with string
 data, and returns the number of bytes required to store that
 string. If a nonstring data type is passed to the
 LenB function, its value is first converted
 to a string before its length is determined.

VBA/VBScript Differences
Although the Len and
 LenB functions handle strings identically in
 VBA and VBScript, they handle non-string data types quite
 differently. Len and LenB
 in VBA reports the number of bytes required to store the non-string
 data type in memory. In contrast, in VBScript,
 Len reports the number of characters in the
 string representation of non-character data, and
 LenB reports the number of bytes needed to
 store the string representation of noncharacter data.

Name
LoadPicture Function

Syntax
LoadPicture(picturename)
	picturename
	Use: Required
Data Type: String
The path and filename of the picture file.

Return Value
A StdPicture object.

Description
Loads a picture object.

Rules at a Glance
	picturename consists of an
 optional path along with the name of a supported image file. If
 the path component of picturename is
 omitted, the VBScript runtime engine attempts to find the image
 in the script’s current directory.

	picturename can be a bitmap
 (.bmp), enhanced metafile
 (.emf), icon (.ico), Graphics Interchange Format
 (.gif), JPEG (.jpg), run-length encoded (.rle), or Windows metafile (.wmf).

Example
The following example loads an image into an Outlook contact
 form:
Function Item_Open()

Dim oPic

Set oPic = LoadPicture("C:\windows\" & Item.FullName & ".bmp")

Set Item.GetInspector.ModifiedFormPages("General").imgContact.Picture = _
 oPic
End Function

Programming Tips and Gotchas
	The StdPicture object is defined by the OLE Automation
 library STDOLE2.TLB. It
 supports the members shown in the following table:

	Name
	Type
	Description

	Handle
	Property
	Returns a handle to the image.

	Height
	Property
	Indicates the height of the image in HiMetric
 units.

	hPal
	Property
	Returns a handle to the Picture object’s
 palette.

	Render
	Method
	Draws all or part of the image to a destination
 object.

	Type
	Property
	Returns the Picture object’s graphics format.
 Possible values are 0 (none), 1 (bitmap), 2 (metafile), 3
 (icon), and 4 (enhanced metafile).

	Width
	Property
	Indicates the width of the image in HiMetric
 units.

Name
Log Function

Syntax
Log(number)
	number
	Use: Required
Data Type: Double
A numeric expression greater than zero.

Return Value
A Double.

Description
Returns the natural logarithm of a given number.

Rules at a Glance
	The natural logarithm is based on
 e, a constant whose value is
 approximately 2.718282. The natural logarithm is expressed by
 the equation:
ez = x
where z = Log(x). In other words, the natural
 logarithm is the inverse of the exponential function.

	number, the value whose natural
 logarithm the function is to return, must be a positive real
 number. If number is negative or zero, the function generates
 runtime error 5, “Invalid procedure call or argument.”

Programming Tips and Gotchas
	You can calculate base-n
 logarithms for any number x, by
 dividing the natural logarithm of x
 by the natural logarithm of n, as the
 following expression illustrates:
Logn(x) = Log(x) / Log(n)
For example, the Log10 function shows
 the source code for a custom function that calculates base-10
 logarithms:
Function Log10(X)
 Log10 = Log(X) / Log(10)
End Function

	A number of other mathematical functions that aren’t
 intrinsic to VBScript can be computed using the value returned
 by the Log function. The functions and
 their formulas are:
	Inverse Hyperbolic Sine
	HArcsin(X)
 = Log(X + Sqr(X * X + 1))

	Inverse Hyperbolic Cosine
	HArccos(X)
 = Log(X + Sqr(X * X - 1))

	Inverse Hyperbolic Tangent
	HArctan(X)
 = Log((1 + X) / (1 - X)) / 2

	Inverse Hyperbolic Secant
	HArcsec(X)
 = Log((Sqr(-X * X + 1) + 1) / X)

	Inverse Hyperbolic Cosecant
	HArccosec(X)
 = Log((Sgn(X) * Sqr(X * X + 1) +1) / X)

	Inverse Hyperbolic Cotangent
	HArccotan(X)
 = Log((X + 1) / (X - 1)) / 2

Name
LTrim Function

Syntax
LTrim(stringexp)
	stringexp
	Use: Required
Data Type: String
A string expression.

Return Value
A String.

Description
Removes any leading spaces from
 stringexp.

Rules at a Glance
	LTrim returns a String.

	If stringexp contains a
 Null,
 LTrim returns Null.

Programming Tips and Gotchas
	Unless you need to keep trailing spaces, it’s best to use
 the Trim function, which is the equivalent
 of LTrim(RTrim(
 string)). This allows you to remove both
 leading and trailing spaces in a single function call.

	Although we have seen it done, it’s extremely unwise to
 create data relationships that rely on leading spaces. Most
 string-based data types in relational database management
 systems like SQL Server and Access automatically remove leading
 spaces.

VB/VBA Differences
VBScript does not support the VBA LTrim$
 function.

See Also
RTrim Function, Trim Function

Name
Match Object

Description
A member of the Matches collection that is returned by a call
 to the RegExp object’s Execute method, the Match object represents a
 successful regular expression match.

Createable
No.

Returned by
	Matches.Item property.

Properties
The Match object supports the following three
 properties:
	FirstIndex
	Data Type: Long
Indicates the position in the original search string
 where the regular expression match occurred. The first
 character in the search string is at position 1.

	Length
	Data Type: Long
Indicates the number of characters in the match found in
 the search string. This is also the number of characters in
 the Match object’s Value property.

	Value
	Data Type: String
The text of the match found in the search string.

Example
Since the RegExp object’s Execute method searches only a
 string, the example program writes the filename of each file in the
 Windows directory to a variable named
 strNames. Each filename is preceded by
 two spaces. The RegExp object’s Execute method is then called to
 search for every filename beginning with the letter “B” (the regular
 expression searches for two spaces followed by a “B”). The Matches
 collection is then iterated so that each filename can be extracted
 from strNames and displayed in a message
 box:
Dim fs, root, dir, fls, fl
Dim rexp
Dim mtchs, mtch
Dim strNames, strMsg
Dim lStartPos

strNames = " "
Set fs = CreateObject("Scripting.FileSystemObject")
Set root = fs.Drives("C").RootFolder
Set dir = root.SubFolders("Windows")
Set fls = dir.Files

For Each fl In fls
 strNames = strNames & fl.Name & " "
Next
MsgBox Len(strNames)
Set rexp = New RegExp
rexp.Global = True
rexp.Pattern = "(\s\sB)"
Set mtchs = rexp.Execute(strNames)

For Each mtch In mtchs
 lStartPos = mtch.FirstIndex + 2
 strMsg = strMsg & Mid(strNames, lStartPos, _
 InStr(lStartPos, strNames, " ") - lStartPos + 1) & vbCrLf
Next

MsgBox strMsg

See Also
RegExp Object

Name
Matches Collection Object

Description
The collection of zero or more Match objects returned by the
 RegExp object’s Execute method; each Match object allows you to
 identify and manipulate one of the strings found by the regular
 expression.

Createable
No.

Returned by
RegExp.Execute
 Method.

Properties
The Matches collection object supports the following two
 properties:
	Count
	Data Type: Long
Indicates the number of objects in the collection. A
 value of zero indicates that the collection is empty. The
 property is read-only.

	Item
	Syntax: Matches.Item(
 index)
Data Type: Match object
Returns a particular Match object based on
 index, its ordinal position in the
 collection. Matches is a zero-based collection; that is, its
 first member is at ordinal position 0, while its last member
 is at ordinal position Matches.Count - 1.

Example
See the example for the Match object.

See Also
Match Object, RegExp Object, RegExp.Execute Method

Name
Me Keyword

Syntax
Me

Description
The Me Keyword represents
 the current instance of the class in which code is executing.

Rules at a Glance
	Me is an implicit
 reference to the current object as defined by the Class...End Class statement.

	Me is automatically
 available to every procedure in a VBScript class.

Example
In this example, a class method in a WSH script passes an
 instance of itself to a function outside of the class by using the
 Me Keyword:
Dim oCtr
Set oCtr = New CCounter
oCtr.Increment
oCtr.Increment
MsgBox "Count: " & oCtr.ShowCount

' definition of CCounter class
Class CCounter

Private lCtr

Property Get Value
 Value = lCtr
End Property

Private Sub Class_Initialize()
 lCtr = 1
End Sub

Public Sub Increment()
 lCtr = lCtr + 1
End Sub

Public Function ShowCount()
 ShowCount = ShowObjectValue(Me)
End Function

End Class

' Show value of an object's Value property
Public Function ShowObjectValue(oObj)
 ShowObjectValue = oObj.Value
End Function

Programming Tips and Gotchas
	Values can’t be assigned to the Me Keyword.

	The Me Keyword is
 particularly useful when passing an instance of the current
 class as a parameter to a routine outside of the class.

See Also
Class Statement

Name
Mid, MidB Functions

Syntax
Mid(string, start[, length])
	string
	Use: Required
Data Type: String
The expression from which to return a substring.

	start
	Use: Required
Data Type: Long
The starting position of the substring.

	length
	Use: Optional
Data Type: Long
The length of the substring.

Return Value
A String.

Description
Returns a substring of a specified length from within a given
 string.

Rules at a Glance
	If string contains a Null, Mid returns
 Null.

	If start is more than the
 length of string, a zero-length
 string is returned.

	If start is less than zero,
 error 5, “Invalid procedure call or argument,” is
 generated.

	If length is omitted or is
 greater than the length of string,
 all characters from start to the end
 of string are returned.

	The MidB version of the
 Mid function is used with byte data held
 within a string. When using MidB, both
 start and
 length refer to numbers of bytes as
 opposed to numbers of characters.

Example
The following example is a function that parses a string
 passed to it as a parameter and writes each word to a dynamic array.
 Note the use of the InStr function to determine
 the position of a space, which in this case is the character that
 can terminate a word:
Public Function ParseString(strString)

Dim arr()
Dim intStart, intEnd, intStrLen, intCtr

intCtr = 0
intStart = 1
intStrLen = Len(strString)
Redim Preserve arr(10)

Do While intStart > 0
 intEnd = InStr(intStart, strString, " ") - 1
 If intEnd <= 0 Then intEnd = intStrLen
 If intCtr > UBound(arr) Then
 Redim Preserve arr(UBound(arr)+10)
 End If
 arr(intCtr) = Mid(strString, intStart, _
 intEnd - intStart + 1)
 intStart = intEnd + 2
 intCtr = intCtr + 1
 If intStart > intStrLen Then intStart = 0
Loop

ParseString = arr

End Function

Programming Tips and Gotchas
	Use the Len function to determine the
 total length of string.

	Use InStr to determine the starting
 point of a given substring within another string.

VBA/VBScript Differences
	Because it does not support strong typing, VBScript does
 not support the Mid$ and
 MidB$ functions, which
 explicitly return a string, rather than a String.

	VBA supports the Mid statement, which allows a portion of
 the string to be replaced with another substring. For
 example:
Dim strPhrase As String

strPhrase = "This will be the day."
Mid(strPhrase, 3, 2) = "at"
changes the value of strPhrase
 to “That will be day.” This usage of Mid in
 statement form is not supported by VBScript.

See Also
Left, LeftB Functions; Len, LenB Functions; Right, RightB Functions

Name
Minute Function

Syntax
Minute(time)
	time
	Use: Required
Data Type: Date
Any valid date/time expression, or an expression that
 can be evaluated as a date/time expression.

Return Value
An Integer.

Description
Returns an integer between 0 and 59 representing the minute of
 the hour from a given date/time expression.

Rules at a Glance
If time is Null, the Minute
 function returns Null.

Programming Tips and Gotchas
If time isn’t a valid date/time
 expression, the function generates runtime error 13, “Type
 mismatch.” To prevent this, use the IsDate
 function to check the argument before calling the
 Minute function.

See Also
Hour Function, Second Function

Name
Month Function

Syntax
Month(date)
	date
	Use: Required
Data Type: Date
Any valid date expression.

Return Value
An Integer between 1 and 12.

Description
Returns a variant representing the month of the year of a
 given date expression.

Rules at a Glance
If date contains Null, Month returns
 Null.

Programming Tips and Gotchas
	The validity of the date expression and the position of
 the month element within the date expression are initially
 determined by the locale settings of the current Windows system.
 However, some intelligence has been built into the
 Month function that surpasses the usual
 comparison of a date expression to the current locale settings.
 For example, on a Windows machine set to U.S. date format
 (mm/dd/yyyy), the date
 “13/12/2000” is technically illegal. However, the Month function returns 12 when passed
 this date. The basic rule for the Month
 function is that if the system-defined month element is outside
 legal bounds (i.e., greater than 12), the system-defined day
 element is assumed to be the month and is returned by the
 function.

	Since the IsDate function adheres to
 the same rules and assumptions as Month, it
 determines whether a date is valid before passing it to the
 Month function.

See Also
DatePart Function, Day Function, IsDate Function, MonthName Function, Year Function

Name
MonthName Function

Syntax
MonthName monthnumber [, abbreviate]
	monthnumber
	Use: Required
Data Type: Long
The ordinal number of the month, from 1 to 12.

	abbreviate
	Use: Optional
Data Type: Boolean
A flag to indicate whether an abbreviated month name
 should be returned.

Return Value
A String.

Description
Returns the month name of a given month. For example, 1
 returns January, or if abbreviate is
 True, Jan.

Rules at a Glance
The default value for abbreviate is
 False.

Programming Tips and Gotchas
monthnumber must be an integer or a
 long; it can’t be a date. Use DatePart("m",
 dateval) to obtain a month number from a
 date.

See Also
DatePart Function, Month Function, WeekdayName Function

Name
MsgBox Function

Syntax
MsgBox(prompt[, buttons][, title][, helpfile, context])
	prompt
	Use: Required
Data Type: String
The text of the message to display in the message box
 dialog.

	buttons
	Use: Optional
Data Type: Numeric
The sum of the Button, Icon, Default Button, and Modality constant values.

	title
	Use: Optional
Data Type: String
The title displayed in the titlebar of the message box
 dialog.

	helpfile
	Use: Optional
Data Type: String
An expression specifying the name of the help file to
 provide help functionality for the dialog.

	context
	Use: Optional
Data Type: Numeric
An expression specifying a context ID within
 helpfile.

Return Value
An Integer indicating the button clicked by the user.

Description
Displays a dialog box containing a message, buttons, and
 optional icon to the user. The action taken by the user is returned
 by the function as an integer value.

Rules at a Glance
	 prompt can contain
 approximately 1,000 characters, including carriage return
 characters such as the built-in vbCrLf constant.

	In order to divide prompt onto
 multiple lines, you can use any of the vbCr, vbLf, vbCrLf, or vbNewLine constants. For
 example:
SMsg = "This is line 1" & vbCrLf & _
"This is line 2"

	If the title parameter is
 omitted, the text of title depends on
 the type of script being executed, as the following table
 shows:

	Script type
	Caption

	ASP script
	not applicable

	IE script
	“VBScript”

	Outlook form
	“VBScript”

	WSH script
	“VBScript”

	If the helpfile parameter is
 provided, the context parameter must also be provided, and vice
 versa.

	When both helpfile and
 context are passed to the
 MsgBox function, a Help button is
 automatically placed on the MsgBox dialog,
 allowing the user to click and obtain context-sensitive
 help.

	If you omit the buttons
 argument, the default value is 0; VB opens an application modal
 dialog containing only an OK button.

	The following intrinsic constants can be added together
 (or logically Or'ed) to form
 a complete buttons argument:
ButtonDisplayConstant + IconDisplayConstant + _
DefaultButtonConstant + ModalityConstant
Only one constant from each group can make up the overall
 buttons value.

Button Display Constants
	Constant
	Value
	Buttons to display

	 vbOKOnly

	0
	OK only

	 vbOKCancel
	1
	OK and Cancel

	 vbAbortRetryIgnore

	2
	Abort, Retry, and Ignore

	 vbYesNoCancel
	3
	Yes, No, and Cancel

	 vbYesNo

	4
	Yes and No

	 vbRetryCancel
	5
	Retry and Cancel

Icon Display Constants
	Constant
	Value
	Icon To display

	 vbCritical
	16
	Critical Message

	 vbQuestion
	32
	Warning Query

	 vbExclamation
	48
	Warning Message

	 vbInformation
	64
	Information Message

Default Button Constants
	Constant
	Value
	Default button

	 vbDefaultButton1
	0
	First button

	 vbDefaultButton2
	256
	Second button

	 vbDefaultButton3
	512
	Third button

	 vbDefaultButton4
	768
	Fourth button

Modality Constants
	Constant
	Value
	modality

	 vbApplicationModal

	0
	Application

	 vbSystemModal
	4096
	System

	The following intrinsic constants determine the action
 taken by the user and represent the value returned by the
 MsgBox function:

Return Values
	Constant
	Value
	Button clicked

	 vbOK

	1
	OK

	 vbCancel

	2
	Cancel (or Esc key pressed)

	 vbAbort

	3
	Abort

	 vbRetry

	4
	Retry

	 vbIgnore

	5
	Ignore

	 vbYes

	6
	Yes

	 vbNo

	7
	No

	If the MsgBox contains a Cancel
 button, the user can press the Esc key, and the function’s
 return value is that of the Cancel button.

	The Help button doesn’t itself return a value, because it
 doesn’t close the MsgBox dialog. If the
 user clicks the Help button, a Help window is opened. Once the
 Help window is closed, the user clicks one of the other buttons
 on the message box to close the dialog; this then returns a
 value.

Programming Tips and Gotchas
	Application modality means that the
 user can’t access other parts of the application until a
 response to the message box has been given. In other words, the
 appearance of the message box prevents the application from
 performing other tasks or from interacting with the user other
 than through the message box.

	System modality used to mean that all
 applications were suspended until a response to the message box
 was given. However, with multitasking operating systems such as
 the Windows family of 32- and 64-bit operating systems, this
 isn’t the case. Basically the message box is defined to be a
 “Topmost” window that is set to “Stay on Top,” which means that
 the user can switch to another application and use it without
 responding to the message box; but because the message box is
 the topmost window, it’s positioned on top of all other running
 applications.

	Unlike its InputBox counterpart,
 MsgBox can’t be positioned on the screen;
 it’s always displayed in the center of the screen.

	Since it produces a user interface that is displayed on
 the server rather than on the client,
 MsgBox should not be used within an ASP
 script that runs on the server. It can, however, be included as
 script in the text stream that an ASP page sends to the
 client.

	If WSH scripts are run in batch mode (that is, with the /B
 switch), calls to the MsgBox function are
 ignored. Note that, if the return value of the
 MsgBox function is used to define the value
 of variables or to control program flow, the script may no
 longer function as intended when run in batch mode.

VBA/VBScript Differences
In VBA, if the title parameter is
 omitted, the name of the current application or project is displayed
 in the title bar. In VBScript, the string that appears on the title
 bar depends on the type of script that executes.

See Also
InputBox Function

Name
Now Function

Syntax
Now

Return Value
A Date.

Description
Returns the current date and time based on the system
 setting.

Example
The following example returns the date 10 days from
 today:
Dim dFutureDate
dFutureDate = DateAdd("d", 10, Now)

Programming Tips and Gotchas
	It’s often overlooked that workstations in a modern
 Windows environment are at the mercy of the user! If your
 application relies on an accurate date and time setting, you
 should consider including a line in the workstation’s logon
 script to synchronize the time with one of the servers. Many
 so-called bugs have been traced to a workstation that has had
 its date or time wrongly altered by the user. The following line
 of code, when added to the logon script of an NT/Windows 2000
 machine, synchronizes the machine’s clock with that of a server
 called NTSERV1:
net time \\NTSERV1 /set

	If you convert the date returned by Now to a string, it takes the Windows
 General Date format based on the locale settings of the local
 computer. The U.S. setting for General Date is mm/dd/yy hh:mm:ss.

	The Now function is often used to
 generate timestamps. However, for short-term timing and
 intra-day timestamps, the Timer function,
 which returns the number of milliseconds elapsed since midnight,
 affords greater precision.

See Also
Timer Function

Name
Oct Function

Syntax
Oct(number)
	number
	Use: Required
Data Type: Numeric or String
Number or string representation of a number to
 convert.

Return Value
A String.

Description
Returns a string containing the octal representation of a
 given number.

Rules at a Glance
	If number isn’t already a whole
 number, it’s rounded to the nearest whole number before being
 evaluated.

	If number is Null, Oct returns
 Null.

	If number is the special
 Empty variant,
 Oct returns 0 (zero).

	Oct returns up to 11 octal
 characters.

Programming Tips and Gotchas
You can also use literals in your code to represent octal
 numbers by appending &O to
 the relevant octal value. For example, 100 decimal has the octal
 representation &O144. The
 following statement assigns an octal value to a variable:
lngOctValue1 = &o200 ' Assigns 128

See Also
Hex Function

Name
On Error Statement

Syntax
On Error Resume Next
On Error Goto 0

Description
Enables or disables error handling within a procedure. If you
 don’t use an On Error statement in your procedure, or if
 you have explicitly switched off error handling, the VBScript
 runtime engine handles the error automatically. First, it displays a
 dialog containing the standard text of the error message, something
 many users are likely to find incomprehensible. Second, it
 terminates the application, so any error that occurs in the
 procedure produces a fatal runtime error.

Rules at a Glance
	When a runtime error occurs in the routine in which the
 On Error Resume Next statement occurs, program
 execution continues with the program line following the line
 that generated the error. This means that, if you want to handle
 an error, this line following the line that generated the error
 should call or include an inline error-handling routine.

	When a runtime error occurs in any routine called by the
 routine in which the On Error Resume
 Next statement occurs, or by its subroutines, program
 execution returns to the statement immediately after the
 subroutine call in the routine containing the On Error Resume Next statement.

	When used in an ASP page for IIS 5.0, On Error Resume Next disables ASP’s own error
 handling.

	You disable error handling by using the On Error Goto 0 statement.

Programming Tips and Gotchas
	If you have no error handling in your procedure, the
 VBScript runtime engine traces back through the call stack until
 a procedure is reached where error handling is enabled. In this
 case, the error is handled by that procedure by executing the
 statement immediately after the call to the subroutine that
 caused program control to leave the procedure. However, if no
 error handler can be found in the call stack, a runtime error
 occurs, and program execution is halted.

	On Error Resume Next can be useful in situations where
 you are certain that errors will occur, or where the errors that
 could occur are minor. The following example shows how you can
 quickly cycle through an array with some uninitialized values to
 sum its elements. By using the On Error Resume Next statement, you force your program
 to ignore errors caused by elements with invalid data and carry
 on with the next element. For example, the following code
 fragment allows you to ignore errors caused by attempting to add
 nonnumeric data:
On Error Resume Next
Dim arr, element, sum
arr = array(12, "string", 14, 7, 19, 2)

For Each element in arr
 sum = sum + element
Next

	The quality of error trapping, error handling, and error
 reporting within a program often determines the success or
 failure of the application. Attention to detail in this area can
 be the difference between a stable, well-behaved, and robust
 application and one that seems to generate nothing but hassle.
 Using logs like the application and event logs in Windows NT,
 Windows 2000, and Windows XP within your error-handling routines
 can help you track down persistent problems quickly and
 efficiently. See Chapter
 4, which explains creation of robust VBScript
 error-handling routines.

	It’s important to understand the flow of program control
 in the event an error occurs in a subroutine, and in particular,
 to understand that in the event of an error in a called routine,
 program execution returns to the statement after the statement
 that caused program flow to leave the routine containing the
 On Error Resume Next statement. In most cases, this
 behavior is highly undesirable. It can be prevented by including
 an On Error Resume Next
 statement in each routine of a script or module.

	You can provide inline error handling after lines of code
 that are particularly likely to cause errors. Typically, this is
 done by checking whether the Err object’s Number property is
 nonzero, as in the following code fragment:
On Error Resume Next

Dim oDAO

Set oDAO = CreateObject("DAO.DBEngine.30")
If Err.Number <> 0 Then
 MsgBox Err.Number & ": " & Err.Description 'Handle error
Err.Clear
End If
Note that it’s particularly important to test for a
 nonzero error code rather than a positive
 error code, since most errors are unsigned long integers that
 VBScript (which does not support unsigned integers) represents
 as negative numbers. It’s also important, once you’ve handled
 the error, to clear the error information by calling the Err
 object’s Clear method.

	You cannot trap syntax errors with the On Error statement. This is because
 syntax errors do not terminate a program; a program with syntax
 errors never even begins execution.

VBA/VBScript Differences
Unlike VBA, which also supports the On Error Goto syntax to branch program flow to an
 error-handling section within a routine or function, VBScript
 supports only the On Error Resume Next statement. This means that, if you’re
 programming with VBScript, you must use inline error
 handling.

See Also
Err Object, Chapter 6

Name
Option Explicit Statement

Syntax
Option Explicit

Description
Use Option Explicit to generate an error whenever a
 variable that has not been declared is encountered.

Rules at a Glance
	The Option Explicit statement must appear in a
 script before any other statements; otherwise, a nontrappable
 error occurs.

	In modules where the Option Explicit statement isn’t used, any
 undeclared variables are declared automatically.

	Where Option Explicit is used, all variables must
 be declared using the Dim,
 Private, Public, or ReDim statements.

Programming Tips and Gotchas
	It’s considered good programming practice to always use
 the Option vbCrLfExplicit statement. The
 following example shows why:
 Dim iVariable

 iVariable = 100
 iVariable = iVarable + 50
 MsgBox iVariable
In this code snippet, a variable,
 iVariable, has been declared.
 However, because the name of the variable has been mistyped in
 line 3, the message box shows its value as 50 instead of 150.
 This is because iVarable is assumed
 to be an undeclared variant whose value is 0. If the Option Explicit statement had been used, the
 code wouldn’t have executed without generating an error, and
 iVarable would have been highlighted
 as the cause when Error 500, “Variable is undefined,” was
 raised.

	For ASP pages, the Option
 Explicit statement must appear before the beginning of
 the HTML stream. For example:
<% Option Explicit %>
<HTML>
A single Option
 Explicit statement applies to
 all script blocks in an ASP page.

Name
Private Statement

Syntax
Private varname[([subscripts])] [, varname[([subscripts])] . . .
	varname
	Use: Required
Variant Type: Any
The name of the variable, following Visual Basic naming
 conventions.

	subscripts
	Use: Optional
Variant Type: Integer or Long
Denotes varname as an array
 and optionally specifies the number and extent of array
 dimensions.

Description
Used in a script or in a class to declare a private variable
 and allocate the relevant storage space in memory.

Rules at a Glance
	A Private variable’s
 visibility is limited to the script in which it’s created for
 global variables and to the class in which it is declared for
 class-level variables. Elsewhere, the Private keyword generates an
 error.

	varname follows standard VB
 naming conventions. It must begin with an alphabetic character,
 can’t contain embedded periods or spaces, can’t be the same as a
 VBScript reserved word, must be shorter than 255 characters, and
 must be unique within its scope.

	You can override standard variable naming conventions by
 placing your variable name in brackets. This allows you to use
 reserved words or illegal characters in variable names. For
 example:
Private [me]
Private [1Var]
Private [2-Var]

	The subscripts argument has the
 following syntax:
 upperbound [,upperbound]...
For example:
Private strNames(10)
defines an array of 11 elements (an array whose lower
 bound is 0 and whose upper bound is 10). Similarly:
Private lngPrices(10, 10)
defines a two-dimensional array of eleven elements in each
 dimension.

	Using the subscripts argument,
 you can declare up to 60 multiple dimensions for the
 array.

	If the subscripts argument
 isn’t used (i.e., the variable name is followed by empty
 parentheses), the array is declared dynamic. You can change both
 the number of dimensions and the number of elements of a dynamic
 array using the ReDim
 statement.

	VBScript supports only the variant data type: all
 variables are variants. The following table shows the values
 held by each type of variant when it is first
 initialized:

	Variable type
	Initial value
	Example

	Array
	 Variant()

	 Private
 arrNames(10)

	Array Element
	Empty
	 arr(0)

	Variant Variable
	Empty
	 Private
 vCtr

Programming Tips and Gotchas
	The behavior of variables defined using the Private statement outside of a class
 is determined by the host. In general, there is rarely a good
 reason to declare a private variable outside of a class.

	Within a class, you should prevent variables from being
 modified outside of the class by declaring them as private.
 Instead, public properties should be used to provide a means of
 accessing and modifying private variables. For example, rather
 than defining a public variable Age as follows:
Class Person
 Dim Age
End Class

	You can define it as follows and allow properties to
 provide access to the private data:
Class Person
 Dim iAge

 Public Property Get Age()
 Age = iAge
 End Property

 Public Property Let Age(value)
 iAge = value
 End Property
End Class

	One of the uses of private variables is in client-side
 scripts for IE. If there are multiple script blocks in a single
 page, a private variable is visible only in the script block in
 which it is declared; it is not visible in any other script
 block on that page.

	All variables created at procedure level (that is, in code
 within a Sub...End Sub, Function...End Function, or Property...End Property construct are
 local by default. That is, they don’t have scope outside the
 procedure in which they are created. The use of the Private keyword in these cases
 generates a runtime error.

	You cannot change the dimensions of arrays that were
 defined to be dynamic arrays while preserving their original
 data.

	It’s good practice to always use Option Explicit at the beginning of a module
 to prevent misnamed variables from causing hard-to-find
 errors.

VBA/VBScript Differences
	In VBA, you can explicitly define the lower bound of an
 array in the subscripts argument. In
 VBScript, this is not permitted; the lower bound of all arrays
 is always 0.

	VBA supports the WithEvents keyword to allow an object
 reference to receive notification of the events fired by its
 corresponding object. VBScript, however, does not support the
 WithEvents keyword. Note,
 though, that some scriptable applications (such as Windows
 Script Host, Internet Explorer, and Active Server Pages) do
 expose their events to scripts.

	VBA supports the New
 keyword to create early bound objects. However, since scripting
 languages necessarily rely on late binding, the New keyword is not supported in a
 variable declaration statement.

See Also
Dim Statement, Public Statement, ReDim Statement, Set Statement

Name
Property Get Statement

Syntax
[Public [Default] | Private Property Get name [(arglist)]
 [statements]
 [name = expression]
 [Exit Property]
 [statements]
 [name = expression]
End Property
	Public
	Use: Optional
Type: Keyword
Makes the property accessible from outside the class,
 giving it visibility through all procedures in all scripts.
 Public and Private are mutually
 exclusive.

	Default
	Use: Optional
Type: Keyword
Used only with the Public keyword to indicate that a
 public property is the default property of the class.

	Private
	Use: Optional
Type: Keyword
Restricts the visibility of the property to those
 procedures within the same Class...End Class code block.
 Public and Private are mutually
 exclusive.

	name
	Use: Required
The name of the property.

	arglist
	Use: Optional
Data Type: Any
A comma-delimited list of variables to be passed to the
 property as arguments from the calling procedure.

	statements
	Use: Optional
Program code to be executed within the property.

	expression
	Use: Optional
Variant Type: Any
The value to return from the property to the calling
 procedure.

	arglisthas the following
 syntax:
	[ByVal | ByRef] argname[()]

	ByVal
	Use: Optional
The argument is passed by value; that is, a local copy
 of the variable is assigned the value of the argument.

	ByRef
	Use: Optional
The argument is passed by reference; that is, the local
 variable is simply a reference to the argument being passed.
 Changes made to the local variable are reflected in the
 argument. ByRef is the
 default way of passing variables.

	argname
	Use: Required
The name of the local variable representing the
 argument.

Description
Declares the name, arguments, and code for a procedure that
 reads the value of a property and returns it to the calling
 procedure. The Property Get statement is used within a class
 defined by the Class...End Class
 construct.

Rules at a Glance
	Property procedures are Public by default.

	The Default keyword
 indicates that this Property
 Get procedure is the class’s
 default member. A default member is
 automatically executed in an assignment statement without the
 need to explicitly reference it. To take a common example, the
 following two statements are identical:
Set oCDrive = FileSystemObject.Drives.Item("C")
Set oCDrive = FileSystemObject.Drives("C")
Both return a reference to a
 Drive object representing the local
 system’s C drive. The
 second statement works because Item is the default member of the
 Drives collection.

	A class can have only a single default member. This must
 be a public procedure defined either by the Property Get statement or by the Function statement.

	Unlike other function and procedure names, the name of the
 Property Getprocedure doesn’t have to be unique
 within its class module. Specifically, the Property Let and Property Set procedures can have the same name
 as the Property Get procedure. For example:
Property Let Name(sVal)
 msName = sVal
End Property

Property Get Name()
 Name = msName
End Property

	The number of arguments passed to a Property Get statement must match the
 corresponding Property
 Let or Property Set statement. For example:
Public Property Let MyProperty(sVal, iVal)
 miMyProperty = iVal
End Property

Public Property Get MyProperty(sVal)
 MyProperty = miMyProperty
End Property
Both the Property
 Let and Property Get procedures share a common
 argument, sVal. The Property Let procedure has one additional
 argument, iVal, which represents the
 value that is to be assigned to the MyProperty property. (For
 details, see the next point.)

	In a Property Let procedure, the last argument
 defines the data assigned to the property. The data returned by
 the Property Get procedure must match the last
 argument of a corresponding Property Let or Property Set procedure.

	If an Exit Property statement is executed, the
 property procedure exits and program execution immediately
 continues with the statement from which the property procedure
 was called. Any number of Exit Property statements can appear in a
 Property Get procedure.

	If the value of the Property Get procedure has not been explicitly
 set when the program execution exits the procedure, its value
 will be empty, the uninitialized value of a variant.

Programming Tips and Gotchas
	You can create a read-only property by defining a Property Get procedure without a corresponding
 Property Let or Property Set procedure.

	If the value of the property is an object, be sure to use
 the Set keyword when the
 Property Get procedure is
 called. For example:
Property Get Drive
 Set Drive = oDrive
End Property

	You should protect the value of properties by defining a
 Private variable to hold the
 internal property value and control the updating of the property
 by outside applications through the Property Let and Property Get statements, as the following
 template describes:
Class Object
 'Class Module Declarations Section
 'private data member only accessible from within
 'this code module
 Private miMyProperty

 Public Property Let MyProperty(iVal)
 'procedure to allow the outside world to
 'change the value of private data member
 miMyProperty = iVal
 '(do not use a Property Let when creating a
 'Read-Only Property)
 End Property

 Public Property Get MyProperty() As Integer
 'procedure to allow the outside world to
 'read the value of private data member
 MyProperty = miMyProperty
 End Property
End Class
Otherwise, if the variable used to store a property value
 is public, its value can be modified arbitrarily by any
 application that accesses the class containing the
 property.

	Using a Property
 Let procedure rather than
 allowing the user to access a class variable directly allows you
 to perform validation on incoming data. For example, the
 following code insures that the value assigned to the Age
 property is a number that is between 0 and 110:
Class Person
 Private iAge

 Property Get Age
 Age = iAge
 End Property
 Property Let Age(value)
 ' Check that data is numeric
 If Not IsNumeric(value) Then
 Err.Raise 13 ' Type mismatch error
 Exit Property
 ' Check that number is in range
 ElseIf value < 0 Or value > 110 Then
 Err.Raise 1031 ' Invalid number error
 End If

 iAge = value
 End Property
End Class

	The default method of passing a parameter is ByRef, which means that any
 modifications made to a variable passed as an argument to the
 Property Get statement are reflected in the
 variable’s value when control returns to the calling routine. If
 this behavior is undesirable, explicitly pass parameters by
 value using the ByVal keyword
 in arglist.

	You can use only the property defined by the Property Get statement on the right
 side of a property assignment.

VBA/VBScript Differences
	VBScript allows you to designate a particular Property Get procedure as the default member of
 its class. As of Version 6.0, VBA does not.

	VBA supports Friend property procedures as well as public
 and private ones. VBScript supports only public and private
 property procedures.

	VBA supports the Static
 keyword in the property declaration, which preserves the value
 of all local variables between calls to the Property Get procedure. VBScript does not have
 an Optional keyword to
 support optional arguments. “Optional arguments” in VBScript are
 supported only by omitting arguments to a procedure call.
 VBScript provides no way of assigning default values to optional
 arguments.

	VBA supports optional parameters and allows them to be
 assigned a default value. VBScript does not support optional
 arguments.

See Also
Property Let Statement,
 Property Set Statement

Name
Property Let Statement

Syntax
[Public | Private Property Let name ([arglist,] value)
 [statements]
 [Exit Property]
 [statements]
End Property
	Public
	Use: Optional
Type: Keyword
Makes the property visible outside of the class, giving
 it visibility through all procedures in all scripts. Public and Private are mutually
 exclusive.

	Private
	Use: Optional
Type: Keyword
Restricts the visibility of the property to those
 procedures within the same Class...End Class code block. Private and Public are mutually
 exclusive.

	name
	Use: Required
The name of the property.

	arglist
	Use: Optional
Data Type: Any
A comma-delimited list of variables to be passed to the
 property as arguments from the calling procedure.

	value
	Use: Required
Data Type: Any
The last (or only) argument in
 arglist; a variable containing the
 value to be assigned to the property.

	statements
	Use: Optional
Program code to be executed within the property.

	arglist uses the following
 syntax:
	[ByVal | ByRef] varname[()]

	ByVal
	Use: Optional
Type: Keyword
The argument is passed by value; that is, a local copy
 of the variable is assigned the value of the argument.

	ByRef
	Use: Optional
Type: Keyword
The argument is passed by reference; that is, the local
 variable is simply a reference to the argument being passed.
 All changes made to the local variable are reflected in the
 calling argument when control returns to the calling
 procedure. ByRef is the
 default method of passing variables.

	varname
	Use: Required
The name of the local variable containing either the
 reference or value of the argument.

Description
Declares the name, arguments, and code for a procedure that
 assigns a value to a property. The Property Let statement is used within a class
 defined by the Class...End Class
 construct.

Rules at a Glance
	A Property Let
 statement must contain at least one argument in
 arglist. If there is more than one
 argument, the last one contains the value to be assigned to the
 property. (This is the argument indicated as
 value in the prototype for the
 Property Let
 statement.)

	The last argument in arglist
 should correspond to both the private data member (at least, it
 should be defined as Private;
 see the first comment in the “Programming Tips and Gotchas”
 section) used to hold the property value and the return value of
 the corresponding Property
 Get procedure, if there is one.

	Property procedures are Public by default.

	Unlike other functions and procedures, the name of the
 Property Let procedure can be repeated within
 the same module as the name of the Property Get and Property Set procedures.

	The number of the arguments passed to a Property Let statement must match the
 corresponding Property
 Get statement. For details,
 see the section “Rules at a Glance” in the entry for Property
 Get .

	If an Exit Property statement is executed,
 program flow continues with the statement following the call to
 the property. Any number of Exit Property statements can appear in a
 Property Let
 procedure.

Programming Tips and Gotchas
	You should protect the values of properties by defining a
 Private variable to hold the
 internal property value and control the updating of the property
 by outside applications via Property Let and Property Get statements, as described in the
 “Programming Tips and Gotchas” section of the Property
 Get statement.

	You can create a write-only property by defining a
 Property Let procedure without a corresponding
 Property Get procedure. Write-only properties,
 however, are comparatively rare, and are used primarily to
 prevent access to sensitive information such as
 passwords.

	The default method of passing parameters is ByRef, which means that any
 modifications made to a variable passed as an argument to the
 Property Let statement are reflected in the
 variable’s value when control returns to the calling routine. If
 this behavior is undesirable, explicitly pass arguments by value
 using the ByVal keyword in
 arglist.

	You can use the property defined by the Property Let statement only on the
 left side of a property assignment.

VBA/VBScript Differences
	VBA supports Friend property procedures as well as public
 and private ones. VBScript supports only public and private
 property procedures.

	VBA supports the Static
 keyword in the property declaration, which preserves the value
 of all local variables between calls to the Property Let procedure. VBScript does not have
 an Optional keyword to
 support optional arguments. “Optional arguments” in VBScript are
 supported only by omitting arguments to a procedure call.
 VBScript provides no way of assigning default values to optional
 arguments.

	VBA supports optional parameters and allows them to be
 assigned a default value. VBScript does not support optional
 arguments.

See Also
Property Get
 Statement

Name
Property Set Statement

Syntax
[Public | Private Property Set name ([arglist,] reference)
 [statements]
 [Exit Property]
 [statements]
End Property
	Public
	Use: Optional
Type: Keyword
Makes the property accessible from outside the class, so
 that it is visible to all procedures in all scripts. Public and Private are mutually
 exclusive.

	Private
	Use: Optional
Type: Keyword
Restricts the scope of the property to code within the
 Class...End Class construct
 in which the property is declared. Public and Private are mutually
 exclusive.

	name
	Use: Required
The name of the property.

	arglist
	Use: Optional
Data Type: Any
A comma-delimited list of variables to be passed to the
 property as arguments from the calling procedure.

	reference
	Use: Required
Data Type: Object
The last (or only) argument in
 arglist, it must be a variable
 containing the object reference to be assigned to the
 property.

	statements
	Use: Optional
Program code to be executed within the property.

	arglist uses the following
 syntax and parts:
	[ByVal | ByRef] varname[()] _

	ByVal
	Use: Optional
Type: Keyword
The argument is passed by value; that is, a local copy
 of the variable is assigned the value of the argument.

	ByRef
	Use: Optional
Type: Keyword
The argument is passed by reference; that is, the local
 variable is simply a reference to the argument being passed.
 All changes made to the local variable are reflected in the
 calling argument when control returns to the calling
 procedure. ByRef is the
 default method of passing variables.

	varname
	Use: Required
Data Type: Any
The name of the local variable containing either the
 reference or value of the argument.

Description
Declares the name, arguments, and code for a procedure that
 assigns an object reference to a property. The Property Set statement is used within a class
 defined by the Class...End Class
 construct.

Rules at a Glance
	A Property Set statement must contain at least
 one argument in arglist. (This is the
 argument indicated as reference in
 the statement’s prototype.) If there is more than one argument,
 it’s the last one that contains the object reference to be
 assigned to the property.

	The last argument in arglist
 must match both the private data member used to hold the
 property value and the data returned by the corresponding
 Property Get procedure, if
 there is one.

	Property procedures are Public by default.

	Unlike other variables and procedures, the name of a
 Property Set procedure can be repeated within
 the same module as the name of a Property Get procedure.

	The number of arguments passed to a Property Set statement must match the
 corresponding Property
 Get statement. For
 example:
Public Property Set MyProperty(iVal, oVal)
 Set miMyProperty(iVal) = oVal
End Property

Public Property Get MyProperty(iVal)
 Set MyProperty = miMyProperty(iVal)
End Property
Both the Property
 Set and the Property Get procedures share a common
 argument, iVal. The Property Set procedure has one additional
 argument, oVal, which represents the
 object that is to be assigned to the MyProperty property.

	If an Exit Property statement is executed,
 program execution immediately continues with the statement
 following the call to the property. Any number of Exit Property statements can appear in a
 Property Set
 procedure.

Programming Tips and Gotchas
	You should protect the values of properties by defining a
 Private variable to hold the
 internal property value and control the updating of the property
 by outside applications via Property Set and Property Get statements, as described in the
 “Programming Tips and Gotchas” section of the entry for the
 Property
 Get statement.

	The default method of passing parameters is ByRef, which means that any
 modifications made to a variable passed as an argument to the
 Property Set statement are reflected in the
 variable’s value when control returns to the calling routine. If
 this behavior is undesirable, explicitly pass arguments by value
 using the ByVal keyword in
 arglist.

	The property defined by the Property Set statement can occur only on the
 left side of a statement that assigns an object
 reference.

VBA/VBScript Differences
	VBA supports Friend property procedures as well as public
 and private ones. VBScript supports only public and private
 property procedures.

	VBA supports the Static
 keyword in the property declaration, which preserves the value
 of all local variables between calls to the Property Set procedure. VBScript does not have
 an Optional keyword to
 support optional arguments. “Optional arguments” in VBScript are
 supported only by omitting arguments to a procedure call.
 VBScript provides no way of assigning default values to optional
 arguments.

	VBA supports optional parameters and allows them to be
 assigned a default value. VBScript does not support optional
 arguments.

See Also
Property Get Statement,
 Property Let Statement

Name
Public Statement

Syntax
Public varname[([subscripts])] _
 varname[([subscripts])]
	varname
	Use: Required
Data Type: Any
The name of the variable, which must follow VBScript
 naming conventions (see the second bullet in “Rules at a
 Glance”).

	subscripts
	Use: Optional
Data Type: Integer or Long
Denotes varname as an array
 and optionally specifies the dimensions and number of elements
 of the array.

Description
Used in a script or a Class
 block to declare a public variable and allocate the relevant storage
 space in memory. A Public
 variable has global scope—that is, it can be used by all procedures
 in a script. When used in a class construct, it is visible outside
 the class project.

Rules at a Glance
	The behavior of a Public variable depends on where it’s
 declared, as the following table shows:

	Variable declared in...
	Scope

	Any procedure, Function or Property
 statement
	Illegal; generates a syntax error; use the
 Dim statement instead.

	Global code
	Variable is available throughout the
 script.

	Class block declarations section
	Variable is available as a property of the
 class to all code within the script.

	You can override standard variable naming conventions by
 placing your variable name in brackets. This allows you to use
 reserved words or illegal characters in variable names. For
 example:
Public [me]
Public [1Var]
Public [2-Var]

	varname follows standard VB
 naming conventions. It must begin with an alphabetic character,
 can’t contain embedded periods or spaces, can’t be the same as a
 VBScript reserved word, must be shorter than 255 characters, and
 must be unique within its scope.

	The subscripts argument has the
 following syntax:
 upperbound [, upperbound]

	Using the subscripts argument,
 you can declare up to 60 dimensions for the array.

	If the subscripts argument
 isn’t used (i.e., the variable name is followed by empty
 parentheses), the array is declared as dynamic. You can change
 both the number of dimensions and number of elements of a
 dynamic array using the ReDim
 statement.

	All variables are variants. The following table shows the
 values held by each type of variant when it is first
 initialized:

	Data type
	Initial value
	Example

	Array
	 Variant()

	 Public
 arrNames(10)

	Array Element
	Empty
	 arr(0)

	Scalar Variable
	Empty
	 Public vCtr

Programming Tips and Gotchas
	The precise meaning of a public variable is defined by the
 host environment. In Internet Explorer, a variable defined as
 public in a script block is visible in all other script blocks
 on the page, including those written in JScript.

	Instead of declaring a variable as Public within a class construct, you
 should create Property
 Let and Property Get procedures that assign and
 retrieve the value of a private variable, respectively.

	You cannot change the dimensions of arrays that were not
 defined to be dynamic arrays.

	It’s good programming practice to always use Option Explicit at the beginning of a module
 to prevent misnamed variables causing hard-to-find
 errors.

VBA/VBScript Differences
	In VBA, you can explicitly define the lower bound of an
 array in the subscripts argument. In
 VBScript, this is not permitted; the lower bound of all arrays
 is always 0.

	VBA supports the WithEvents keyword to allow an object
 variable to receive notification of the events fired by the
 object to which it refers. VBScript, however, does not support
 the WithEvents keyword. Note,
 though, that some scriptable applications (such as Windows
 Script Host, Internet Explorer, and Active Server Pages) do
 expose their events to scripts.

	VBA supports the New
 keyword to create early bound objects. However, since scripting
 languages necessarily rely on late binding, the New keyword is not supported in a
 variable declaration statement.

See Also
Private Statement, ReDim Statement, Set Statement

Name
Randomize Sub

Syntax
Randomize [number]
	number
	Use: Optional
Data Type: Numeric
Any valid numeric expression.

Description
Initializes the random number generator.

Rules at a Glance
	Randomize uses
 number as a new seed value to
 initialize the random number generator used by the Rnd function. The seed value is an
 initial value that generates a sequence of pseudorandom
 numbers.

	If you don’t pass number to the
 Randomize statement, the
 value of the system timer is used as the new seed value.

	Repeatedly passing the same number to Randomize doesn’t cause Rnd to repeat the same sequence of
 random numbers.

	If Randomize is not
 used and the Rnd function
 is called either with no argument or with 1 as an argument, the
 Rnd function always uses the same number as
 the seed value the first time it is called, and subsequently
 uses the last generated number as a seed value.

Programming Tips and Gotchas
If you need to repeat a sequence of random numbers, you should
 call the Rnd function with a
 negative number as an argument immediately prior to using Randomize with any numeric argument. This
 is illustrated in the example program.

Example
RepeatNumbers()

Sub RepeatNumbers()
 Dim arr(9, 3)
 Dim loopCtr, intCtr
 Dim strMsg

 For loopCtr = 0 To 3
 Rnd -1
 Randomize(100)
 For intCtr = 0 To 9
 strMsg = strMsg & Rnd() & " "
 Next
 strMsg = strMsg & vbCrLf
 Next

 MsgBox strMsg
End Sub

See Also
Rnd Function

Name
ReDim Statement

Syntax
ReDim [Preserve] varname(subscripts)_
 [, varname(subscripts)] ...
	Preserve
	Use: Optional
Type: Keyword
Preserves the data within an array when changing its
 single or its last dimension.

	varname
	Use: Required
Data Type: Any
Name of the variable.

	subscripts
	Use: Required
Number of elements and dimensions of the array, using
 the following syntax:
 upper [, upper] . . .
where upper is the upper
 bound of a particular array dimension.

Description
Used within a procedure to resize and reallocate storage space
 for a dynamic array.

Rules at a Glance
	A dynamic array is created using a Private, Public, or Dim statement with empty parentheses.
 Only dynamic arrays created in this manner can be resized using
 the ReDim statement. There is
 no limit to the number of times you can redimension a dynamic
 array.

	Use of the Preserve
 keyword allows you to retain the current values within the
 array, but it also places several limitations on how the
 Redim statement can be
 used:
	Only the last dimension of an array can be
 resized.

	The number of dimensions can’t be changed.

	Only the upper bound of the array can be
 changed.

	If you reduce either the number of elements of the array
 or the number of dimensions in the array, data in the removed
 elements is permanently lost, irrespective of the use of the
 Preserve keyword.

Programming Tips and Gotchas
	You can pass an array by reference to a procedure,
 redimension it within the procedure, and return the modified
 array to the calling program. This is illustrated in the
 following code:
CreateArray()

Private Sub CreateArray()

 Dim strArray(), strElement, strMsg
 Dim intCtr

 ReDim strArray(9)

 For intCtr = 0 To UBound(strArray)
 strArray(intCtr) = "Original element"
 Next

 ExpandArray strArray

 For intCtr = 0 To UBound(strArray)
 strMsg = strMsg & strArray(intCtr) & vbCrLf
 Next

 MsgBox strMsg

End Sub

Private Sub ExpandArray(ByRef arrDynamic())

 Dim intBound, intCtr

 intBound = UBound(arrDynamic)

 ReDim Preserve arrDynamic(UBound(arrDynamic) * 2)

 For intCtr = intBound + 1 To UBound(arrDynamic)
 arrDynamic(intCtr) = "New element"
 Next

End Sub
When you run this example, both the original elements and
 new elements are listed in a message box, proving that the array
 was successfully expanded in the ExpandArray procedure.

	It’s possible to create a new dynamic array within a
 procedure using the ReDim
 statement if the array to which it refers doesn’t already exist.
 Typically, this results from an error of omission; the
 programmer forgets to explicitly define the array using Dim, Public, or Private. Since this method of creating
 an array can cause conflicts if a variable or array of the same
 name is subsequently defined explicitly, ReDim should be used only to
 redimension an existing array, not to define a new one.

	When a dynamic array is initialized, its individual
 elements are Empty. You can
 determine whether a value has been assigned to a particular
 element by using the IsEmpty function.

VBA/VBScript Differences
VBA allows you to define the lower limit of a redimensioned
 array as well as its upper limit. Arrays in VBScript, on the other
 hand, are always zero-based.

See Also
Dim Statement, Private Statement, Public Statement

Name
RegExp Object

Description
The RegExp object provides support for regular expression
 matching—for the ability to search strings for substrings matching
 general or specific patterns.
In order to conduct a pattern search, you must first
 instantiate the regular expression object, with code like the
 following:
Dim oRegExp ' Instance of RegExp object
Set oRegExp = New RegExp
To conduct a search using the RegExp object, do the
 following:
	Determine whether the search should be
 case-sensitive.

	Determine whether all instances or just the first instance
 of the substring should be returned.

	Supply the pattern string that you want to find.

	Provide a string that the RegExp object is to
 search.

The RegExp object allows you to search for a substring that
 matches your pattern string in any of three ways:
	You can determine whether a pattern match is found in the
 string.

	You can return one or all of the occurrences of the
 matching substrings. In this case, results are returned in Match
 objects within the Matches collection.

	You can replace all substrings matching the pattern string
 with another string.

Properties
The RegExp object supports the three properties shown in the
 following table. Each is documented in depth in its own section in
 the Language Reference.
	Property name
	Description

	Global
	Indicates whether to search for all occurrences
 of the pattern string or just for the first one

	IgnoreCase
	Indicates whether the pattern search is
 case-sensitive

	Pattern
	Indicates the pattern string to search
 for

Methods
The RegExp object supports the three methods shown in the
 following table. Each is documented in depth in its own section in
 the Language Reference.
	Method name
	Description

	Execute
	Returns a Matches collection containing
 information about the substrings in a larger string that
 match a pattern string

	Replace
	Replaces all substrings in a larger string that
 match a pattern string with a second string

	Test
	Indicates whether the search of a string has
 succeeded in finding a pattern match

VBA/VBScript Differences
The RegExp object, which was introduced to give VBScript
 comparable features to JScript, is exclusive to VBScript; it does
 not exist as a core part of the VBA language. However, the RegExp
 object is implemented as a member of the VBScript.dll library and can be added to
 any Visual Basic project. It is listed in the References dialog
 (which is available by selecting the References option from the
 Visual Basic Project menu) as “Microsoft VBScript Regular
 Expressions.”

See Also
InStr, InStrB Functions,
 InstrRev Function, Match Object, Matches Collection Object

Name
RegExp.Execute Method

Syntax
RegExp.Execute(string)
	string
	Use: Required
Data Type: String
The string to be searched.

Return Value
A Matches collection containing one or more Match
 objects.

Description
Performs a regular expression search against
 string and returns the results in the
 Matches collection.

Rules at a Glance
	The method searches string
 using the RegExp object’s Pattern property.

	The results are returned in the Matches collection, which
 is a collection of Match objects.

	If the search finds no matches, the Matches collection is
 empty.

Programming Tips and Gotchas
	Remember to use the Set
 statement to assign the Matches collection returned by the
 Execute method to an object variable.

	You can determine whether the Matches collection returned
 by the Execute method is empty by examining its Count property.
 It is empty if the value of Count is 0.

Example
See the example for the RegExp.Pattern Property.

See Also
Matches Collection Object,
 RegExp.Pattern Property, RegExp.Replace Method, RegExp.Test Method

Name
RegExp.Global Property

Data Type
Boolean

Description
Determines whether the search for a pattern string should
 match all occurrences in the search string or just the first
 one.

Rules at a Glance
A search will attempt to locate only the first occurrence of
 the pattern string in a search string; that is, the default value of
 the Global property is False. If
 you want to search for all occurrences of the pattern string in the
 search string, you must set the Global property to True.

Programming Tips and Gotchas
If you’re interested only in determining whether the pattern
 string exists in the search string, there’s no point in overriding
 the Global property’s default value of False.

See Also
Matches Collection Object,
 Match Object, RegExp Object

Name
RegExp.IgnoreCase Property

Data Type
Boolean

Description
Determines whether the search for a pattern string is
 case-sensitive.

Rules at a Glance
By default, regular expression searches are case-sensitive;
 that is, the default value of the IgnoreCase property is False. If you don’t want the search to be
 case-sensitive, you must set the IgnoreCase property to True.

Programming Tips and Gotchas
If your search string does not attempt to match any alphabetic
 characters (A-Z and a-z), you can safely ignore the setting of
 IgnoreCase, since it won’t affect the results of your search.

See Also
RegExp Object, RegExp.Pattern Property

Name
RegExp.Pattern Property

Data Type
String

Description
Contains a pattern string that defines the substring to be
 found in a search string.

Rules at a Glance
The following table defines the meaning of the individual
 characters that can be included in the pattern string. The table in
 the “Programming Tips and Gotchas” section lists a pattern string
 using each symbol and shows the results returned by the Execute
 method.
	Symbol
	Description

	 \

	Marks the next character as either a special
 character (such as \n for
 the newline character) or as a literal (if that character
 otherwise has special meaning in a pattern search string).
 The special characters are:
 	\f
	form feed character

	\n
	newline character

	\r
	carriage return character

	\t
	tab character

	\v
	vertical tab character

	 ^

	Matches the beginning of input.

	 $

	Matches the end of input.

	 *

	Matches the preceding atom zero or more
 times.

	 +

	Matches the preceding atom one or more
 times.

	 ?

	Matches the preceding atom zero or one
 time.

	 .

	Matches any single character except a newline
 character.

	 ()

	Defines a subexpression within the larger
 subexpression. A subexpression:
 	Overrides the order of precedence used in
 evaluating pattern strings.

	Can be referenced again in the pattern string.
 To insert the result of the subexpression later in the
 pattern string, reference it by its one-based ordinal
 position among subexpressions, preceded by the
 backslash symbol (e.g., \1). See the example using
 the \num syntax in the
 “Programming Tips and Gotchas” section.

	Can be referenced again in the replacement
 string in calls to the RegExp.Replace method. To use
 the result of the original subexpression as a
 replacement string, reference its one-based ordinal
 position among subexpressions, preceded by a dollar
 sign (e.g., $1).
 See RegExp.Replace Method for an example.

	 x|y

	Matches either x or
 y.

	 {n}

	Matches exactly n
 times, where n is a nonnegative
 integer.

	 {n,}

	Matches at least n
 times, where n is a nonnegative
 integer. o{1,} is the
 same as o+, and o{0,} is the same as o*.

	 {n,m}

	Matches at least n
 and at most m times, where
 m and
 n are nonnegative integers.
 o{0,1} is the same as
 o?.

	 [abc]

	Matches any one of the enclosed characters
 (represented by abc) in the
 character set.

	 [^xyz]

	Matches any character (represented by
 xyz) not enclosed in the
 character set. For example, [^abc] matches the “p” in “plain.”

	 [a-z]

	Matches any character in a range of characters
 (represented by a-z).

	 [^m-z]

	Matches any character not included in a range
 of characters (represented by
 m-z).

	 \b

	Matches a word boundary; that is, the position
 between a word and a space. The word boundary symbol does
 not include newline characters or the end of input (see the
 \s symbol).

	 \B

	Matches a nonword boundary. ea*r\B matches the “ear” in “never
 early.”

	 \d

	Matches a digit character. Equivalent to
 [0-9].

	 \D

	Matches a nondigit character. Equivalent to
 [^0-9].

	 \s

	Matches any whitespace, including space, tab,
 form-feed, etc. Equivalent to [
 \f\n\r\t\v].

	 \S

	Matches any nonwhitespace character. Equivalent
 to [^ \f\n\r\t\v].

	 \w

	Matches any word character including
 underscore. Equivalent to [A-Za-z0-9_].

	 \W

	Matches any nonword character, including
 whitespace and carriage returns. Equivalent to [^A-Za-z0-9_].

	 \num

	Matches the subexpression (enclosed in
 parentheses) whose ordinal position in the pattern is
 num, where
 num is a positive integer.

	 \n
	Matches n, where
 n is the octal value of an ASCII
 code. Octal escape values must be 1, 2, or 3 digits long and
 must not exceed 256; if they do, only the first two digits
 are used.

	 \xn
	Matches n, where
 n is the hexadecimal value of an
 ASCII code. Hexadecimal escape values must be two digits
 long.

Programming Tips and Gotchas
The following table shows a search string and the Value
 property of each Match object returned by the Execute method when
 the string:
"To be or not to be. That is the question." & vbCrLf & _
"Whether 'tis nobler in the mind to endure..."
is passed to the Execute method. The RegExp object’s Global
 property is set to True, and its
 IgnoreCase property is set to True.
	Pattern
	Matches

	 \n.....

	Wheth

	 ^.....

	To be

	$

	re...

	 no*

	no, n, no, n, n, n (6 matches)

	 no+

	no, no (2 matches)

	 bo*e?

	be, be, b (3 matches)

	 qu...

	quest

	 th(at|e)

	That, the, the, the (4 matches)

	 to|i

	To, to, i, i, i, i, i, to (8
 matches)

	 \.{3}

	...

	 \.{2,}

	...

	 \.{1,3)

	., ., ... (3 matches)

	 i[nst]

	is, is, in, in (4 matches)

	 [^bhm]e

	ue, le, e, re (4 matches)

	 [r-z]o

	To, to, to (3 matches)

	 [^o-z]o

	o, no, io, no (4 matches)

	 .o\b

	To, to, to (3 matches)

	 .o\B

	o, no, io, no (4 matches)

	 \d

	(0 matches)

	 \D\.\b

	e., n. (2 matches)

	 ...\s

	be, not, be., hat, the, on., her, tis, ler,
 the, ind (11 matches)

	 \b\S{3}\b

	not, the, tis, the (3 matches)

	 \w{3}\.\s

	ion.

	 \W{3}

	. (vbCrLf), ... (2 matches)

	 (\S+)(\s+)\S+\2\S+\2\S+\2

	To be or not, to be. That is, Whether `tis
 nobler in (3 matches)

	 \164\157

	To, to, to (3 matches)

	 \x74\x6f

	To, to, to (3 matches)

Searches using regular expressions can be quite complex. If
 you’re interested in a book that deals exclusively with regular
 expressions and pattern searches, see Mastering Regular
 Expressions, written by Jeffrey E. Friedl
 (O’Reilly).

Example
The following routine allows you to experiment with searches
 using regular expressions. When you call it, just pass the string
 you’d like to search. A dialog appears repeatedly, prompting you for
 a pattern string, followed by another dialog that displays the
 results of the search using the regular expression you’ve entered.
 When you’re finished, simply click the Cancel button to exit the
 routine:
Public Sub SearchExp(strSearch)

Dim oRegExp, colMatches, oMatch
Dim strPattern

Set oRegExp = New RegExp

oRegExp.Global = True
oRegExp.IgnoreCase = True

Do

 strPattern = InputBox("Enter pattern string: ", "Pattern", "")
 if strPattern = "" then
 Exit Do
 Else
 oRegExp.Pattern = strPattern
 end If
 strMsg = "Pattern: " & oRegExp.Pattern

 Set colMatches = oRegExp.Execute(strSearch)
 strMsg = strMsg & ", Matches: " & colMatches.Count & vbcrlf & vbcrlf
 if colMatches.Count > 0 Then
 for each oMatch in colMatches
 strMsg = strMsg & oMatch.Value & vbCrLf
 next
 Else
 strMsg = strMsg & "No match found"
 End If

 MsgBox strMsg

Loop

End Sub

See Also
RegExp Object, RegExp.Execute Method, RegExp.Replace Method, RegExp.Test Method

Name
RegExp.Replace Method

Syntax
RegExp.Replace(searchString, replaceString)
	searchString
	Use: Required
Data Type: String
The string to be searched.

	replaceString
	Use: Required
Data Type: String
The replacement string.

Return Value
A String containing the entire string that results when
 matched substrings in searchString are
 replaced with replaceString.

Description
Performs a regular expression search against
 searchString and replaces matched
 substrings with replaceString.

Rules at a Glance
	The method searches
 searchString using the RegExp
 object’s Pattern property.

	If no matches are found, the method returns
 searchString unchanged.

Programming Tips and Gotchas
replaceString the replacement
 string, can contain pattern strings that control how substrings in
 searchString should be replaced.

Example
The following WSH code illustrates the use of subexpressions
 in the search and replacement strings. The search returns three
 subexpressions: “to be”, “or”, and “not to be”. The first
 subexpression is replaced with the third, while the third
 subexpression is replaced with the first, resulting in the string
 “not to be or to be”:
Dim strString, strPattern, strReplace, strResult
Dim oRegExp

strString = "to be or not to be "
strPattern = "(\S+\s+\S+\s+)(\S+\s+)(\S+\s+\S+\s+\S+\s+)"
strReplace = "$3$2$1"

Set oRegExp = New RegExp
oRegExp.Pattern = strPattern

strResult = oRegExp.Replace(strString, strReplace)
If strResult = strString Then
 MsgBox "No replacements were made"
Else
 MsgBox strResult
End If

See Also
RegExp.Execute Method, RegExp.Pattern Property, RegExp.Test Method

Name
RegExp.Test Method

Syntax
RegExp.Test(string)
	string
	Use: Required
Data Type: String
The string to be searched.

Return Value
A Boolean indicating whether a match was found.

Description
Performs a regular expression search against
 string and indicates whether a match was
 found

Rules at a Glance
	Prior to calling the Test method, the search string should
 be defined by setting the Pattern property.

	The method searches string
 using the RegExp object’s Pattern property.

	The method returns True
 if the search succeeds and False otherwise.

Programming Tips and Gotchas
	Since a search is successful if one match is found, you do
 not have to set the RegExp object’s Global property before
 calling the Test method.

	You can use the method to determine whether a match exists
 before calling either the Execute or the Replace methods.

See Also
RegExp.Execute Method, RegExp.Pattern Property, RegExp.Replace Method

Name
Rem Statement

Syntax
Rem comment
' comment
	comment
	Use: Optional
A textual comment to place within the code.

Description
Use the Rem statement or an
 apostrophe (') to place remarks within the code.

Rules at a Glance
Apostrophes held within quotation marks aren’t treated as
 comment markers, as this code snippet shows:
myVar = "'Something'"

VBA/VBScript Differences
	In VBA, if you use the Rem statement (but not the apostrophe)
 on the same line as program code, a colon is required after the
 program code and before the Rem statement. For example:
Set objDoc = Server.CreateObject("MyApp.MyObj") : Rem Define the object
 Rem reference
VBScript, on the other hand, successfully recognizes the
 Rem statement even without
 the colon.

	In VBA using the VBA editor, if you “comment out” a line,
 that line and all of its line continuations are affected. In
 VBScript, the comment keyword or symbol must be added to each
 line to be “commented out.”

Name
Replace Function

Syntax
Replace(string, stringToReplace, replacementString [, start[, count[,
compare]]])
	string
	Use: Required
Data Type: String
The complete string containing the substring to be
 replaced.

	stringToReplace
	Use: Required
Data Type: String
The substring to be found by the function.

	replacementString
	Use: Required
Data Type: String
The new substring to replace
 stringToReplace in
 string.

	start
	Use: Optional
Data Type: Long
The character position in
 string at which the search for
 stringToReplace begins.

	count
	Use: Optional
Data Type: Long
The number of instances of
 stringToReplace to replace.

	compare
	Use: Optional
Data Type: Integer
The method that compares
 stringToReplace with
 string ; its value can be vbBinaryCompare or vbTextCompare.

Return Value
The return value from Replace depends on
 the parameters you specify in the argument list, as the following
 table shows:
	If
	Return value

	 string = ""

	Zero-length string (“”)

	 string is
 Null
	An error

	 StringToReplace =
 ""
	Copy of string

	 replacementString =
 ""
	Copy of string with
 all instances of stringToReplace
 removed

	 start >
 Len(string)
	Zero-length string (“”)

	 count = 0

	Copy of string

Description
Replaces a given number of instances of a specified substring
 in another string.

Rules at a Glance
	If start is omitted, the search
 begins at the start of the string.

	If count is omitted, its value
 defaults to -1, which means that all instances of the substring
 after start are replaced.

	vbBinaryCompare is
 case-sensitive; that is, Replace matches
 both character and case, whereas vbTextCompare is case-insensitive,
 matching only character, regardless of case.

	The default value for compare
 is vbBinaryCompare.

	start not only specifies where
 the search for stringToReplace
 begins, but also where the new string returned by the
 Replace function commences.

Programming Tips and Gotchas
	If count isn’t used, be careful
 when replacing short strings that may form parts of unrelated
 words. For example, consider the following:
Dim sString
sString = "You have to be careful when you do this " _
 & "or you could ruin your string"
Msgbox Replace(sString, "you", "we")
Because we don’t specify a value for
 count, the call to
 Replace replaces every occurrence of “you”
 in the original string with “we.” But the fourth occurrence of
 “you” is part of the word “your,” which is modified to become
 “wer.”
The best way to avoid this problem is to use regular
 expressions. By specifying the word-break pattern in your search
 criterion, you can insure that only whole words are matched. For
 example:
strSearch = "You have to be careful when you do this " _
 & "or you could ruin your string for you."

oRegExp.Pattern = "you·"
str = oRegExp.Replace(strSearch, "we")

MsgBox str

	You must also be aware that if
 start is greater than 1, the returned
 string starts at that character and not at the first character
 of the original string, as you might expect. For example, given
 the statements:
sOld = "This string checks the Replace function"
sNew = Replace(sOld, "check", "test", 5, _
 vbTextCompare)
sNew will contain the value:
"string tests the Replace function"

See Also
InStr, InStrB Functions,
 Mid, MidB Functions

Name
RGB Function

Syntax
RGB(red,
 green,
 blue)
	red
	Use: Required
Data Type: Integer
A number between 0 and 255, inclusive.

	green
	Use: Required
Data Type: Integer
A number between 0 and 255, inclusive.

	blue
	Use: Required
Data Type: Integer
A number between 0 and 255, inclusive.

Return Value
A Long integer representing the RGB color value.

Description
Returns a system color code that can be assigned to object
 color properties.

Rules at a Glance
	The RGB color value represents the relative intensity of
 the red, green, and blue components of a pixel that produces a
 specific color on the display.

	The RGB function assumes any argument greater than 255 is
 255.

	The following table demonstrates how the individual color
 values combine to create certain colors:

	Color
	Red
	Green
	Blue

	Black
	0
	0
	0

	Blue
	0
	0
	255

	Green
	0
	255
	0

	Red
	255
	0
	0

	White
	255
	255
	255

Programming Tips and Gotchas
	The RGB value is derived with the following
 formula:
RGB = red + (green * 256) + (blue * 65536)
In other words, the individual color components are stored
 in the opposite order one would expect. VBScript stores the red
 color component in the low-order byte of the long integer’s
 low-order word, the green color in the high-order byte of the
 low-order word, and the blue color in the low-order byte of the
 high-order word.

	VBScript has a wide range of intrinsic color constants
 that can assign color values directly to color properties of
 objects. For a list of these, see Appendix B.

Name
Right, RightB Functions

Syntax
Right(string, length)
	string
	Use: Required
Data Type: String
The string to be processed.

	length
	Use: Required
Data Type: Long
The number of characters to return from the right of the
 string.

Return Value
A String.

Description
Returns a string containing the right-most
 length characters of
 string.

Rules at a Glance
	If length is 0, a zero-length
 string (” “) is returned.

	If length is greater than the
 length of string,
 string is returned.

	If length is less than zero or
 is Null, an error is
 generated.

	If string contains a Null, Right
 returns Null.

Example
The following function assumes it’s passed either a filename
 or a complete path and filename, and returns the filename from the
 end of the string:
Private Function ParseFileName(strFullPath)

Dim lngPos, lngStart
Dim strFilename

lngStart = 1
Do
 lngPos = InStr(lngStart, strFullPath, "\")
 If lngPos = 0 Then
 strFilename = Right(strFullPath, Len(strFullPath) - lngStart + 1)
 Else
 lngStart = lngPos + 1
 End If
Loop While lngPos > 0

ParseFileName = strFilename

End Function

Programming Tips and Gotchas
	Use the Len function to determine the
 total length of string.

	When you use the RightB function with
 byte data, length specifies the
 number of bytes to return.

VB/VBA Differences
Because VBScript doesn’t support strong typing, it does not
 support the Right$ and
 RightB$ functions, which
 explicitly return a data type.

See Also
Len, LenB Functions, Left, LeftB Functions

Name
Rnd Function

Syntax
Rnd[(seed)]
	seed
	Use: Optional
Data Type: Single
Any valid numeric expression.

Return Value
A random number of variant type Single.

Description
Returns a random number.

Rules at a Glance
	The behavior of the Rnd function is
 determined by seed, as described in
 this table:

	Number
	Rnd generates...

	< 0
	The same number each time, using
 seed as the seed number

	> 0
	The next random number in the current
 sequence

	0
	The most recently generated
 number

	Not supplied
	The next random number in the current
 sequence

	The Rnd function always returns a
 value between and 1.

	If number isn’t supplied, the Rnd
 function uses the last number generated as the seed for the next
 generated number. This means that given an initial seed
 (seed), the same sequence is
 generated if number isn’t supplied on subsequent calls.

Example
The following example uses the Randomize statement along with the
 Rnd function to fill 100 cells of an Excel
 worksheet with random numbers:
Public Sub GenerateRandomNumbers()

Dim objExcel, objBook, objSheet
Dim intRow, intCol

' Start Excel
Set objExcel = CreateObject("Excel.Application")

' Get or create active worksheet
If objExcel.ActiveSheet Is Nothing Then
 Set objBook = objExcel.Workbooks.Add
End If
Set objSheet = objExcel.ActiveWorkbook.ActiveSheet
Randomize

' make Excel visible
objExcel.Visible = True
' Set the color of the input text to blue
objSheet.Cells.Font.ColorIndex = 5
' Loop through first 10 rows & columns,
' filling them with random numbers
For intRow = 1 To 10
 For intCol = 1 To 10
 objSheet.Cells(intRow, intCol).Value = Rnd
 Next
Next
' Resize columns to accommodate random numbers
objSheet.Columns("A:C").AutoFit

End Sub

Programming Tips and Gotchas
	Before calling the Rnd function, you
 should use the Randomize
 statement to initialize the random number generator.

	The standard formula for producing numbers in a given
 range is as follows:
Int((highest - lowest + 1) * Rnd + lowest)
where lowest is the lowest
 required number in the range, and
 highest is the highest.

See Also
Randomize Sub

Name
Round Function

Syntax
Round(expression[, numdecimalplaces])
	expression
	Use: Required
Data Type: Numeric
Any numeric expression.

	numdecimalplaces
	Use: Optional
Data Type: Long
The number of places to include after the decimal
 point.

Return Value
The same data type as
 expression.

Description
Rounds a given number to a specified number of decimal
 places.

Rules at a Glance
	numdecimalplaces can be any
 whole number between 0 and 16.

	Round follows standard rules for
 rounding:
	If the digit in the position to the right of
 numdecimalplaces is greater than
 5, the digit in the
 numdecimalplaces position is
 incremented by one.

	If the digit in the position to the right of
 numdecimalplaces is less than 5,
 the digits to the right of
 numdecimalplaces are
 dropped.

	If the digit in the position to the right of
 numdecimalplaces is 5 and the
 digit in the numdecimalplaces
 position is odd, the digit in the
 numdecimalplaces position is
 incremented by one.

	If the digit in the position to the right of
 numdecimalplaces is 5 and the
 digit in the numdecimalplaces
 position is even, the digits to the right of
 numdecimalplaces are
 dropped.

Programming Tips and Gotchas
If expression is a string
 representation of a numeric value, Round
 converts it to a numeric value before rounding. However, if
 expression isn’t a string representation
 of a number, Round generates runtime error 13,
 “Type mismatch.” The IsNumeric function insures
 that expression is a proper numeric
 representation before calling Round.

See Also
Fix Function, Int Function

Name
RTrim Function

Syntax
RTrim(stringexp)
	stringexp
	Use: Required
Data Type: String
A valid string expression.

Return Value
A String.

Description
Removes any trailing spaces from
 stringexp.

Rules at a Glance
If stringexp contains a Null, RTrim returns
 Null.

Programming Tips and Gotchas
Unless you need to keep leading spaces, you should use the
 Trim function, which is the equivalent of
 RTrim(LTrim(
 string)), thereby clearing both leading and
 trailing spaces in a single function call.

VB/VBA Differences
Because it does not support strong typing, VBScript does not
 support the VBA RTrim$
 function, which returns a strongly typed string rather than a string
 variant.

See Also
LTrim Function, Trim Function

Name
ScriptEngine Function

Syntax
ScriptEngine()

Return Value
A String.

Description
Indicates the scripting language currently in use.

Rules at a Glance
According to the documentation, the function returns the
 values shown in the following table:
	Return value
	Description

	JScript
	Microsoft JScript

	VBA
	Visual Basic for Applications

	VBScript
	VBScript

Programming Tips and Gotchas
The function is implemented in VBScript.dll, as well as in JScript.dll. However, it is not
 implemented in the VB Version 6 runtime libraries. Calls to this
 function from VBA code will generate an error rather than return the
 string “VBA”.

VBA/VBScript Differences
This function is not supported in VBA.

See Also
ScriptEngineBuildVersion
 Function, ScriptEngineMajorVersion
 Function

Name
ScriptEngineBuildVersion Function

Syntax
ScriptEngineBuildVersion()

Return Value
A Long.

Description
Returns the build number of the VBScript script engine.

Programming Tips and Gotchas
The function is also implemented in the JScript script
 engine.

VBA/VBScript Differences
This function is not supported in VBA.

Name
ScriptEngineMajorVersion Function

Syntax
ScriptEngineMajorVersion()

Return Value
A Long.

Description
Indicates the major version (1, 2, etc.) of the scripting
 language currently in use.

Rules at a Glance
The following table lists the versions of VBScript through
 5.0, as well as the year in which they were released and the
 products with which they were initially released:
	Version
	Year
	Product

	1.0
	1996
	Internet Explorer 3.0

	2.0
	1997
	IIS 2.0

	3.0
	1998
	Internet Explorer 4.0, IIS 4.0, WSH 1.0,
 Outlook 98

	4.0
	1998
	Visual Studio 6.0

	5.0
	1999
	Internet Explorer 5.0

	5.5
	2001
	Internet Explorer 5.5

	5.6
	2002
	Microsoft Visual Studio .NET

Programming Tips and Gotchas
	The function is also implemented in the JScript script
 engine.

	If your script requires some functionality available in a
 baseline version, ordinarily you want to make sure that the
 script is running on that version or a later version. For
 instance, if your script requires regular expression support,
 which became available only in VBScript Version 5, you would
 test for the version with a code fragment like:
If ScriptingEngineMajorVersion >= 5 Then
You do not want to test for equality, as in:
If ScriptingEngineMajorVersion = 5 Then
since that may leave your script unable to run on versions
 of VBScript later than Version 5.

VBA/VBScript Differences
This function is not supported in VBA.

See Also
ScriptEngineBuildVersion
 Function, ScriptEngineMinorVersion Function

Name
ScriptEngineMinorVersion Function

Syntax
ScriptEngineMinorVersion()

Return Value
A Long.

Description
Indicates the minor version (the number to the right of the
 decimal point) of the scripting language engine currently in
 use.

Programming Tips and Gotchas
	The function is also implemented in the JScript script
 engine.

	If your script requires some functionality available in a
 baseline minor version, you ordinarily would want to make sure
 that the script is running on that version or a later version.
 Test for a minor version with a code fragment like:
lMajor = ScriptingEngineMajorVersion
lMinor = ScriptingEngineMinorVersion
If (lMajor = 5 And lMinor >= 1) Or (lMajor > 5) Then
You should not test for equality, and
 you should never test for a minor version alone, without
 considering the major version.

VBA/VBScript Differences
This function is not supported in VBA.

See Also
ScriptEngine Function, ScriptEngineBuildVersion Function, ScriptEngineMajorVersion Function

Name
Second Function

Syntax
Second(time)
	time
	Use: Required
Data Type: String, numeric, or date/time
Any valid expression that can represent a time
 value.

Return Value
An Integer in the range 0 to 59.

Description
Extracts the seconds from a given time expression.

Rules at a Glance
If the time expression time is Null, the Second
 function returns Null.

See Also
Hour Function, Minute Function

Name
Select Case Statement

Syntax
Select Case testexpression
 [Case expressionlist
 [statements-n]] ...
 [Case Else
 [elsestatements]]
End Select
	testexpression
	Use: Required
Data Type: Any
Any numeric or string expression whose value determines
 which block of code is executed.

	expressionlist
	Use: Required
Data Type: Any
Comma-delimited list of expressions to compare values
 with testexpression.

	statements-n
	Use: Optional
Program statements to execute if a match is found
 between any section of
 expressionlist and
 testexpression.

	elsestatements
	Use: Optional
Program statements to execute if a match between
 testexpression and any
 expressionlist can’t be
 found.

Description
Allows for conditional execution of a block of code, typically
 out of three or more code blocks, based on some condition. Use the
 Select Case statement as an alternative to
 complex nested If...Then...Else
 statements.

Rules at a Glance
	Any number of Case
 clauses can be included in the Select Case statement.

	If a match between
 testexpression and any part of
 expressionlist is found, the program
 statements following the matched
 expressionlist are executed. When
 program execution encounters the next Case clause or the End Select clause, execution continues
 with the statement immediately following the End Select clause.

	Both expressionlist and
 testexpression must be a
 valid expression that can consist of one or
 more of the following: a literal value, a variable, an
 arithmetic or comparison operator, or the value returned by an
 intrinsic or user-defined function.

	If used, the Case
 Else clause must be the last
 Case clause. Program
 execution encounters the Case
 Else clause—and thereby
 executes, the elsestatements—only if
 all other expressionlist comparisons
 fail.

	Select Case statements can also be nested,
 resulting in a successful match between
 testexpression and
 expressionlist being another Select Case statement.

Example
The following example uses Select Case to read a variable populated by the
 user and determine the name of the user’s operating system:
Dim varOS, varOSDesc

Select Case varOS
 Case 1
 varOSDesc = "Windows NT"
 Case 2
 varOSDesc = "Windows 98"
 Case 3
 varOSDesc = "Windows 95"
 Case 4
 varOSDesc = "Windows 3.11"
 Case 5
 varOSDesc = "Windows 2000"
 Case 6
 varOSDesc = "Windows ME"
 Case 7
 varOSDesc = "Windows XP"
 Case Else
 varOSDesc = "OS is unknown"
End Select

Programming Tips and Gotchas
	The Select Case statement is the VBA/VBScript
 equivalent of the Switch
 construct found in C and C++.

	The Case Else clause is optional. However, as
 with If...Then...Else
 statements, it’s often good practice to provide a Case Else to catch the exceptional instance
 when—perhaps unexpectedly—a match can’t be found in any of the
 expressionlists you have
 provided.

	If testexpression satisfies
 more than one expressionlist
 comparison, only the code in the first is executed.

VBA/VBScript Differences
VBA supports two variations of
 expressionlist that are not supported by
 VBScript. These are shown in the following table:
	Not supported
	Examples

	To keyword
	Case 10 To 20, 110 To 120

	Is keyword
	Case Is >= 100Case Is <= 10, Is >=
 100

See Also
If...Then
 Statement

Name
SetLocale Function

Syntax
SetLocale(lcid)
	lcid
	Use: Optional
Data Type: Long or String
A number representing a locale ID.

Return Value
A Long indicating the previous locale ID.

Description
Sets the current locale ID.

Rules at a Glance
	A locale ID represents language as well as regional
 conventions. It determines such things as keyboard layout,
 alphabetic sort order, and date, time, number, and currency
 formats.

	Appendix D lists
 valid locale IDs.

	If SetLocale is called with no
 arguments, it resets the script locale back to the host default,
 which is usually the user default.

	If lcid is zero or 1024, the
 locale is set as defined by the user’s locale ID.

	If lcid is 2048, the local is
 set as defined by the system’s regional settings.

Programming Tips and Gotchas
	There is no need to call GetLocale and store its returned
 value before calling SetLocale, since SetLocale returns the value of the
 previous locale ID.

	SetLocale sets the locale ID of the
 script engine only. It does not affect the system, user, or
 host/application locale IDs.

VBA/Script Differences
The SetLocale function is
 not supported by VBA.

See Also
GetLocale
 Function

Name
Set Statement

Syntax
Set objectvar = (objectexpression | New classname Nothing)
	objectvar
	Use: Required
Data Type: Object
The name of the object variable or property.

	objectexpression
	Use: Optional
Data Type: Object
An expression evaluating to an object.

	New
	Use: Optional
Type: Keyword
Creates a new instance of an object defined using the
 Class...End Class construct, or with the syntax
 New RegExp instantiates the Regular Expression object.

	classname
	Use: Required
Data Type: String literal
The name of the class defined by the Class...End Class construct to be
 instantiated.

	Nothing
	Use: Optional
Type: Keyword
Assigns the special data type Nothing to
 objectvar, thereby releasing the
 reference to the object.

Description
Assigns an object reference to a variable or property.

Rules at a Glance
	objectvar doesn’t hold a copy
 of the underlying object; it simply holds a reference to the
 object.

	If the New keyword is
 used is used to instantiate a VBScript class defined using the
 Class...End Class construct,
 a new instance of the class is immediately created and its Class
 Initialize event fires. This applies only to classes defined
 using the Class...End Class
 construct.
You can also instantiate a Regular Expression object with
 the New keyword by using a
 statement like the following:
 Set oRegExp = New RegExp

	All classes defined by the Class...End Class construct can be created using
 the New keyword. For external
 objects, the application’s object model determines which objects
 can be created and which cannot.

	If objectvar holds a reference
 to an object when the Set
 statement is executed, the current reference is released and the
 new one referred to in
 objectexpression is assigned.

	objectexpression can be any of
 the following:
	The name of an object. This creates a duplicate object
 reference in which two references point to the same object.
 For instance:
 Dim oFS, oRoot, oFolder
 Set oFS = CreateObject("Scripting.FileSystemObject")
 Set oRoot = oFS.Drives("C").RootFolder
 Set oFolder = oRoot

	A variable that has been previously declared and
 instantiated using the Set statement and that refers to
 the same type of object:
 Dim dSpace
 Dim oFS, oDrive

 dSpace = CDbl(0)
 Set oFS = CreateObject("Scripting.FileSystemObject")
 Set oDrive = oFS.Drives("C")
 dSpace = dSpace + oDrive.FreeSpace
 Set oDrive = oFS.Drives("D")
 dSpace = dSpace + oDrive.FreeSpace

 MsgBox "Total free space: " & dSpace & " " & typename(dSpace)

	A call to a function, method, or property that returns
 the same type of object.

	By assigning Nothing to
 objectvar, the reference held by
 objectvar to the object is
 released.

Example
The following code creates a simple web page that prompts the
 user for a name and an email address if she desires to be added to a
 discussion forum:
<HTML>
<HEAD>
<TITLE>Join Discussion Forum</TITLE>
</HEAD>
<BODY>
<H2><CENTER>Join the Discussion Forum</CENTER></H2>
<FORM ACTION="AddContact.asp" NAME=frmAdd METHOD="POST">
 Name:
 <INPUT TYPE="Text" NAME="txtName">

 Email Address:
 <INPUT TYPE="Text" NAME="txtEmail">

 <INPUT TYPE="Submit" VALUE="Submit">
</FORM>
</BODY>
</HTML>
Following is the source for AddContact.asp, the ASP application that
 instantiates an instance of the CContact class to handle data access
 using ADO:
<HTML>
<HEAD>
<TITLE>Our Discussion Forum</TITLE>
<SCRIPT LANGUAGE="VBSCRIPT" RUNAT="SERVER">

Const adLockOptimistic = 3
Const adOpenDynamic = 2
Const adCmdTable = 2

Class CContact

Private rs
Private sName, sEmail

Public Property Get ShowCount()
 rs.MoveLast
 ShowCount = rs.RecordCount
End Property

Public Function AddContact
 Dim sRetString

 sName = Server.HTMLEncode(Request.Form("txtName"))
 sEmail = Request.Form("txtEmail")
 If sName = "" Or sEmail = "" Then
 sRetString = "Please press the back button and enter both " & _
 "your name and your email address."
 Else
 rs.AddNew
 rs.Fields("ContactName") = sName
 rs.Fields("Email") = sEmail
 rs.Update
 sRetString = "<H3><CENTER>" & _
 "Thank you for joining our forum!" & _
 "</H3></CENTER><P>" & _
 "Your information has been added to the " & _
 "forum membership list.<P>" & _
 "The forum now has " & Me.ShowCount & " members.<P>"
 End If

 AddContact = sRetString
End Function

Private Sub Class_Initialize()
 Dim sConnect
 sConnect = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=E:\Databases\DiscussionList.mdb"
 Set rs = CreateObject("ADODB.Recordset")
 rs.Open "Contacts", sConnect, adOpenDynamic, adLockOptimistic, _
 adCmdTable
End Sub

Private Sub Class_Terminate()
 rs.Close
 Set rs = Nothing
End Sub

End Class
</SCRIPT>
</HEAD>
<BODY>
<H1>From the Discussion Forum...</H1><P>
<%
 Dim oContact
 Set oContact = New CContact
 Response.Write oContact.AddContact
%>
</BODY>
</HTML>

Programming Tips and Gotchas
	You can have more than one object variable referring to
 the same object. However, bear in mind that a change to the
 underlying object using one object variable is reflected in all
 the other object variables that reference that object. For
 example, consider the following code fragment, in which the
 objColorCopy object reference is set
 equal to the objColor object:
Dim objColor, objColorCopy
Set objColor = New CColor ' CColor class not shown
Set objColorCopy = objColor

objColor.CurrentColor = "Blue"
Msgbox objColorCopy.CurrentColor
Since both objColor and
 objColorCopy reference a single
 object, the value of the CurrentColor property is Blue in both cases.

	It is commonly believed that you should release object
 references as soon as you are finished with them using code like
 the following:
Dim myClass
Set myClass = New SomeObject
' Do something here
Set myClass = Nothing
Most of the time, though, releasing object references is
 unnecessary, since they are released anyway by the garbage
 collector when the object reference goes out of scope. There are
 only a couple of situations in which it is necessary to
 explicitly release object references:
	When the object encapsulates a scarce resource, such
 as a database connection. In this case, it often makes sense
 to release the object reference as soon as you are done with
 it.

	When two objects hold references to one another. In
 this situation, the objects are not destroyed when their
 references go out of scope. And their references going out
 of scope means that it is no longer possible to release the
 objects programmatically. VBScript objects (i.e., objects
 instantiated from classes declared with the Class... End Class construct will
 be destroyed when the scripting engine is torn down, which
 may be before application shutdown. COM objects instantiated
 with the CreateObject or
 GetObject functions, though, may
 persist until the application terminates. Since terminating
 a web server or the ASP process, in particular, is highly
 undesirable, it is far preferable to release object
 references explicitly by setting them to nothing. The
 following code illustrates a circular reference:
 Class MyClass
 Dim Subclass

 Public Property Get MySubclass
 Set MySubclass = Subclass
 End Property

 Public Property Set MySubclass(value)
 Set Subclass = value
 End Property
 End Class

 Dim myClass1, myClass2

 Set myClass1 = New MyClass
 Set myClass2 = New MyClass

 Set myClass1.MySubclass = myClass2
 Set myClass2.MySubclass = myClass1

	When trying to discover whether an object reference has
 been successfully assigned, you should determine if the object
 variable has been assigned as Nothing. However, you can’t use the
 equality comparison operator (=) for this purpose; you must use
 the Is operator, as the
 following code snippet shows:
If objectvar Is Nothing Then
 ... 'assignment failed
End If

	Any function that returns an object reference requires the
 use of the Set statement to
 assign the reference to a variable. This includes the VBScript
 CreateObject and
 GetObject functions, as well as the WSH
 WScript.CreateObject method and the ASP Server.CreateObject
 method.
Dim oMainObject
Set oMainObject = CreateObject("MainLib.MainObject")

VBA/VBScript Differences
	An external createable object can be instantiated using
 VBA’s New when the variable
 is declared if the VBA project has a reference to its type
 library:
Dim oFS As New Scripting.FileSystemObject
In this case, there is no need use the Set statement to instantiate the
 object, since it will be instantiated when it is next referenced
 in code. Since this early binding is not supported by VBScript,
 however, this use of the New
 keyword is not allowed.

	An external createable object can be instantiated using
 the VBA New keyword along
 with the Set statement if the
 VBA project has a reference to its type library. For
 example:
Dim oFS As Scripting.FileSystemObject
Set oFS = New Scripting.FileSystemObject
Since VBScript does not support early binding, however,
 this usage is not allowed. The Set statement, along with the New keyword, can be used only to
 instantiate a class declared with the Class...End Class construct.

See Also
CreateObject Function, GetObject Function, GetRef Function

Name
Sgn Function

Syntax
Sgn(number)
	number
	Use: Required
Data Type: Any expression capable of conversion into a
 numeric value
A numeric expression.

Return Value
An Integer.

Description
Determines the sign of a number.

Rules at a Glance
The return value of the Sgn function is
 determined by the sign of number:
	If number is...
	Sgn returns

	Positive
	 1

	Zero
	 0

	Negative
	-1

Programming Tips and Gotchas
	If you’re planning on using the Sgn
 function to evaluate a result to False (0) or True (any nonzero value), you could
 also use the CBool function.

	The major use for Sgn—a fairly
 trivial one—is to determine the sign of an expression. It’s
 equivalent to the following code:
Function Sgn(varNumber)
 If varNumber > 0 Then
 Sgn = 1
 ElseIf varNumber = 0 Then
 Sgn = 0
 Else
 Sgn = -1
 End If
End Function

	Sgn is useful in cases in which the
 sign of a quantity defines the sign of an expression. For
 example:
lngResult = lngQty * Sgn(lngValue)

	Although Sgn handles the conversion
 of strings to numeric data, it’s a good idea to make sure that
 number is valid by calling the IsNumeric
 function before the call to Sgn.

See Also
If...Then
 Statement

Name
Sin Function

Syntax
Sin(number)
	number
	Use: Required
Data Type: Numeric
An angle expressed in radians.

Return Value
A Double containing the sine of an angle.

Description
Returns the ratio of two sides of a right triangle in the
 range -1 to 1.

Rules at a Glance
The ratio is determined by dividing the length of the side
 opposite the angle by the length of the hypotenuse.

Programming Tips and Gotchas
	You can convert radians to degrees using the
 formula:
radians = degrees * (pi/180)

	You can convert degrees to radians using the
 formula:
degrees = radians * (180/pi)

Name
Space Function

Syntax
Space(number)
	number
	Use: Required
Data Type: Integer
An expression evaluating to the number of spaces
 required.

Return Value
A String containing number
 spaces.

Description
Creates a string containing number
 spaces.

Rules at a Glance
	While number can be zero (in
 which case the function returns a empty string), runtime error
 5, “Invalid procedure call or argument,” is generated if
 number is negative.

	Space is a “convenience function”
 that is equivalent to the function call:
sString = String(number, 32)

VBA/VBScript Differences
VBScript doesn’t support the VBA Space$ function.

Name
Split Function

Syntax
Split(expression, [delimiter[, count[, compare]]])
	expression
	Use: Required
Data Type: String
A string to be broken up into multiple strings.

	delimiter
	Use: Optional
Data Type: String
The character used to delimit the substrings in
 expression.

	count
	use: Optional
Data Type: Long
The number of strings to return.

	compare
	Use: Optional
Data Type: Long
The method of comparison. Possible values are vbBinaryCompare or vbTextCompare. Note that both are
 intrinsic VBScript constants; you do not have to define them
 yourself using the Const
 statement.

Return Value
A variant array consisting of the arguments passed into the
 function.

Description
Parses a single string containing delimited values into an
 array.

Rules at a Glance
	If delimiter isn’t found in
 expression,
 Split returns the entire string in element
 0 of the return array.

	If delimiteris omitted, a space
 character is used as the delimiter.

	If count is omitted or its
 value is -1, all strings are returned.

	The default comparison method is vbBinaryCompare. If
 delimiter is an alphabetic character,
 this setting controls whether the search for it in
 expression is case-sensitive
 (vbBinaryCompare) or not
 (vbTextCompare).

	Once count has been reached,
 the remainder of the string is placed, unprocessed, into the
 next element of the returned array.

Programming Tips and Gotchas
	The variable you declare to assign the return value of
 Filter must be a simple
 variant, rather than a variant array. The following code is
 incorrect:
' Incorrect
Dim sArray()
sArray = Split(sString, ",")
This error is corrected in the following code
 fragment:
' Correct
Dim sArray
sArray = Split(sString, ",")

	Strings are written to the returned array in the order in
 which they appear in
 expression.

See Also
Join Function

Name
Sqr Function

Syntax
Sqr(number)
	number
	Use: Required
Data Type: Double
Any numeric expression greater than or equal to
 0.

Return Value
A Double containing the square root of
 number.

Description
Calculates the square root of a given number.

Rules at a Glance
number must be equal to or greater
 than zero or runtime error 5, “Invalid procedure call or argument,”
 occurs.

Name
StrComp Function

Syntax
StrComp(string1, string2[, compare])
	string1
	Use: Required
Data Type: String
Any string expression.

	string2
	Use: Required
Data Type: String
Any string expression.

	compare
	Use: Optional
Data Type: Integer constant
The type of string comparison to perform.

Return Value
An Integer.

Description
Determines whether two strings are equal and which of two
 strings is greater.

Rules at a Glance
	The following intrinsic constants are available as the
 settings for compare:

	Constant
	Value
	Comparison to perform

	 vbBinaryCompare
	0
	Binary (default)

	 vbTextCompare
	1
	Textual

	If compare isn’t specified, its
 value defaults to vbBinaryCompare. In other words, the
 comparison of string1 and
 string2 is case-sensitive.

	This table describes the possible return values from the
 StrComp function:

	Scenario
	Return value

	 string1 <
 string2
	-1

	 string1 =
 string2
	 0

	 string1 >
 string2
	 1

	 string1 or
 string2 is Null
	 Null

Programming Tips and Gotchas
	If you just need to know whether
 string1 is greater than
 string2 (or vice versa), couldn’t you
 simply use the < or
 > comparison operators?
 When you’re dealing with strings of characters, VBScript sees
 each character as a number. Simply using the comparison
 operators therefore compares the numerical value of one string
 with the other. Take this scenario:
Dim sString1
Dim sString2

sString1 = "hello world"
sString2 = "HELLO WORLD"
Subjectively, because of the significance of uppercase
 letters in text, we’d probably say that
 sString2 is greater than
 sString1. But VBScript sees these
 strings as a series of Unicode numbers, and because uppercase
 characters have a lower Unicode number than lowercase numbers,
 the lowercase string (sString1) is
 greater.
This is similar to how the default StrComp option vbBinaryCompare operates—comparing the
 Unicode numbers of each string at binary level. The sort order
 is derived from the international binary representations of the
 characters. vbCompareText
 performs a case-insensitive search, which means that it ignores
 the difference between upper- and lowercase characters. It also
 means that it will equate different representations of the same
 character in some Far Eastern character sets. vbCompareText, in other words,
 indicates a case-insensitive textual sort order as determined by
 the user’s locale.

	Even performing a simple single comparison like:
If UCase(sString1) < UCase(sString2) Then
shows a performance hit of about 30 percent over the much
 more elegant and efficient StrComp function
 call:
If StrComp(sString1,sString2, vbTextCompare) = -1
Then
The former version, though, is easier to read and makes
 the code self-documenting.

Name
String Function

Syntax
String(number, character)
	number
	Use: Required
Data Type: Long
The length of the required string.

	character
	Use: Required
Data Type: Variant
Character or character code used to create the required
 string.

Return Value
A string made up of character,
 repeated number times.

Description
Creates a string comprising a specified single character
 repeated a specified number of times.

Rules at a Glance
	If number contains Null, Null is returned.

	If character contains Null, Null is returned.

	character can be specified as a
 string or as an ANSI character code. For example:
strBuffer1 = String(128, "=") ' Fill with "="
strBuffer2 = String(128, 0) ' Fill with Chr$(0)

	If character consists of
 multiple characters, the first character is used only, and the
 remainders are discarded.

Programming Tips and Gotchas
	The String function is useful for
 creating long strings of _,
 -, or = characters to create horizontal
 lines for delimiting sections of a report.

VB/VBA Differences
VBScript does not support the VBA String$ function.

See Also
Space Function

Name
StrReverse Function

Syntax
StrReverse(str_expression)
	str_expression
	Use: Required
Data Type: String
The string whose characters are to be reversed.

Return Value
A String.

Description
Returns a string that is the reverse of the string passed to
 it. For example, if the string “and” is passed to it as an argument,
 StrReverse returns the string “dna.”

Rules at a Glance
	If str_expression is a
 zero-length string (” “), the function’s return value is a
 zero-length string.

	If str_expression is Null, the function generates runtime
 error 94, “Invalid use of Null.”

Name
Sub Statement

Syntax
[Public [Default] | Private] Sub name [(arglist)]
 [statements]
 [Exit Sub]
 [statements]
End Sub
	Public
	Use: Optional
Type: Keyword
Gives the sub procedure visibility to all scripts. If
 used in a class definition, the sub procedure is also
 accessible from outside the class. Public and Private are mutually
 exclusive.

	Default
	Use: Optional
Type: Keyword
Indicates that a public procedure defined in a VBScript
 class (that is, defined within a Class...End Class construct) is the
 default member of the class.

	Private
	Use: Optional
Type: Keyword
Restricts the visibility of the sub procedure to those
 procedures within the same script. In a class definition,
 restricts the visibility of the sub procedure to the class
 itself. Public and Private are mutually
 exclusive.

	name
	Use: Required
The name of the sub procedure.

	arglist
	Use: Optional
Data Type: Any
A comma-delimited list of variables to be passed to the
 sub procedure as arguments from the calling procedure.

	statements
	Use: Optional
Program code to be executed within the sub
 procedure.

	arglist uses the following
 syntax and parts:
	[ByVal | ByRef] varname[()]

	ByVal
	Use: Optional
The argument is passed by value; that is, a local copy
 of the variable is assigned the value of the argument.

	ByRef
	Use: Optional
The argument is passed by reference; that is, the local
 variable is simply a reference to the argument being passed.
 All changes made to the local variable are also reflected in
 the calling argument. ByRef
 is the default method of passing variables.

	varname
	Use: Required
The name of the local variable containing the reference
 or argument value.

Description
Defines a sub procedure.

Rules at a Glance
	If you don’t include the Public or Private keywords, a sub procedure is
 Public by default.

	Unlike a Function
 procedure, a sub procedure doesn’t return a value to the calling
 procedure. You would think that this means that a sub procedure
 can’t be used as part of an expression, but in fact this isn’t
 the case; subs can be included in expressions are treated as
 functions that return Empty.

	Any number of Exit
 Sub statements can be placed
 within the sub procedure. Execution continues with the line of
 code immediately following the call to the sub procedure.

	Only one property, procedure, or function in a class can
 be designated as its default member by assigning it the Default keyword.

	The Default keyword can
 be used only with public procedures.

	You can invoke a sub procedure using the Call statement, in which parameters
 are enclosed in parentheses. For example:
 Call MySub(param1, param2)
You can also omit the Call keyword, in which case the
 parentheses around parameters are also omitted. For
 example:
 MySub param1, param2

Programming Tips and Gotchas
	There is often confusion between the ByRef and ByVal methods of assigning arguments
 to the sub procedure. ByRef
 assigns the reference of the variable in the calling procedure
 to the variable in the sub procedure. As a result, any changes
 made to the variable from within the sub procedure are, in
 reality, made to the variable in the calling procedure. On the
 other hand, ByVal assigns the
 value of the variable in the calling procedure to the variable
 in the sub procedure; that is, it makes a separate copy of the
 variable in a separate memory location. Changes made to the
 variable in the sub procedure have no effect on the variable in
 the calling procedure.

	You can override arguments passed to sub procedures by
 reference and instead pass them by value by enclosing them in
 parentheses. For instance, in the code:
 Dim x
 x = 10
 SubByRef(x)
 MsgBox "x after SubByRef: " & x

 Sub SubByRef(y)
 y = 20
 End Sub
x retains its original value of 10 when control returns
 from the SubByRef sub procedure. Note that
 you can enclose the argument list in parentheses when there is a
 single argument, but that argument is then passed to the calling
 sub procedure by value rather than by reference.
If a sub procedure has two or more arguments, you can pass
 a particular argument by reference by enclosing it in
 parentheses. For instance:
 Dim x, x1
 x = 10
 x1 = 10
 SubByRef (x),x1 ' after return, x=10, x1=20
 x1 = 10
 Call SubByRef((x), x1) ' after return, x=10, x1=20
 Sub SubByRef(y, z)
 y = 20
 z = 20
 End Sub

	Sub procedures can’t return a value, or can they? Look at
 the following code:
Sub testTheReturns()
 Dim iValOne

 iValOne = 10
 testValues iValOne
 Msgbox iValOne
End Sub

Sub testValues(ByRefiVal)
 iVal = iVal + 5
End Sub
Because the argument was passed with ByRef, the sub procedure acted upon
 the underlying variable iValOne. This
 means that you can use ByRef
 to obtain a “return” value or values (although they’re not
 strictly return values) from a sub procedure call.

	There are many occasions in which recursively calling a
 sub procedure can be used to solve a programming problem.
 Recursion occurs when you call a sub procedure from within
 itself. Recursion is a legitimate and often essential part of
 software development; for example, it offers a reliable method
 of enumerating or iterating a hierarchical structure. However,
 you must be aware that recursion can lead to stack overflow. The
 extent to which you can get away with recursion really depends
 upon the complexity of the sub procedure concerned, the amount
 and type of data being passed in, and an infinite number of
 other variables and unknowns.

See Also
Call Statement, Exit Statement, Function Statement

Name
Tan Function

Syntax
	Tan
 (number)
number
	Use: Required
Data Type: Numeric expression
An angle in radians.

Return Value
A Double containing the tangent of an angle.

Description
Returns the ratio of two sides of a right-angle
 triangle.

Rules at a Glance
The returned ratio is derived by dividing the length of the
 side opposite the angle by the length of the side adjacent to the
 angle.

Programming Tips and Gotchas
	You can convert degrees to radians using the following
 formula:
radians = degrees * (pi/180)

	You can convert radians to degrees using the following
 formula:
degrees = radians * (180/pi)

Name
Terminate Event

Syntax
Private Sub Class_Terminate()

Description
The Terminate event is fired when an instance of a class is
 removable from memory.

Rules at a Glance
	The Terminate event applies to classes defined with the
 Class...End Class construct.

	Instances of a class are removed from memory by explicitly
 setting the object variable to Nothing or by the object variable
 going out of scope.

	If a script ends because of a runtime error, a class’s
 Terminate event isn’t fired.

Example
The following example shows a typical Terminate event in a
 class object that decrements a global instance counter used to
 ensure that only a single instance of a particular utility object is
 created. When the counter reaches 0, the global object reference to
 the utility object is destroyed.
Private Sub Class_Terminate()

 glbUtilCount = glbUtilCount - 1
 If glbUtilCount = 0 then
 Set goUtils = Nothing
 End If

End Sub

Programming Tips and Gotchas
	Because the Terminate event is fired when an object
 becomes removable from memory, it is possible, but not
 recommended, for the Terminate event handler to add references
 back to itself and thereby prevent its removal. However, in this
 case, when the object actually is released, the Terminate event
 handler will not be called again.

	The Terminate event is fired under the following
 conditions:
	An object goes out of scope.

	The last reference to an object is set equal to
 Nothing.

	An object variable is assigned a new object
 reference.

	The Terminate event is fired when an object is about to be
 removed from memory, not when an object reference is about to be
 removed. In other words, if two variables reference the same
 object, the Terminate event will be fired only once, when the
 second reference is about to be destroyed.

See Also
Initialize Event, Set Statement

Name
TextStream Object

Createable
No

Returned by
	File.OpenAsTextStream Method
	FileSystemObject.CreateTextFile Method
	FileSystemObject.GetStandardStream Method
	FileSystemObject.OpenTextFile Method

Library
Microsoft Scripting Runtime
Windows Script Host

Description
Most commonly, the TextStream object represents a text file.
 As of Windows Script Host 2.0 and VBScript 5.5, however, it also
 represents any input/output stream, such as standard input, standard
 output, and the standard error stream. Depending on the precise
 character of the I/O stream, you can open a TextStream object to
 read from, append to, or write to the stream. The TextStream object
 provides methods to read, write, and close the text file or I/O
 stream.
When dealing with files, note that the TextStream object
 represents the file’s contents or internals; the File object
 represents the file’s externals or the file as an object in the
 filesystem.
The TextStream object is one of the objects in the File System
 object model; for an overview of the model, including the library
 reference needed to access it, see the File System Object Model
 entry.

Properties
The availability of TextStream object properties depends on
 the precise character of the TextStream object; some properties are
 available only when the stream is opened in read mode (indicated by
 an R in the Availability field); others are available in both read
 and write modes (indicated by a RW in the Availability field). All
 of the following TextStream object properties are read-only:
	AtEndOfLine
	Data Type: Boolean
Availability: R
A flag denoting whether the end-of-a-line marker has
 been reached (True) or not
 (False). Relevant only when
 reading a file.
When reading a standard input stream from the keyboard,
 the end of a line is indicated by pressing the Enter
 key.

	AtEndofStream
	Data Type: Boolean
Availability: R
A flag denoting whether the end of the stream has been
 reached (True) or not
 (False). Relevant only when
 reading a file.
When reading from a standard input stream from the
 keyboard, the end of the input stream is indicated by the
 Ctrl-Z character.

	Column
	Data Type: Long
Availability: RW
Returns the column number position of the file marker.
 The first column position in the input stream and in each row
 is 1.
Examining the value of the Column property is most
 useful in input streams after calls to the TextStream object’s
 Read and Skip methods. Although it is less useful for output
 streams, it can be used after a call to the TextStream
 object’s Write method.

	Line
	Data Type: Long
Availability: RW
Returns the line number position of the file marker.
 Lines in the text stream are numbered starting at 1.
Unless the end of the text stream has been reached, the
 value of the Line property is incremented after calls to the
 ReadAll, ReadLine, and SkipLine methods. Similarly, in output
 streams, it is incremented after calls to the WriteLine and
 WriteBlankLines methods.

Methods
	Close
	Read
	ReadAll
	ReadLine
	Skip
	SkipLine
	Write
	WriteBlankLines
	WriteLine

Name
TextStream.Close Method

Syntax
 oTextStreamObj
 .Close

Availability
RW

Description
Closes the current TextStream object.

Rules at a Glance
Although calling the Close method does not invalidate the
 object reference, you shouldn’t try to reference a TextStream object
 that has been closed.

Programming Tips and Gotchas
	After closing the TextStream object, set oTextStreamObj to Nothing.

	If you are writing to a file-based text stream, text is
 automatically written to the file. You do not have to call the
 Save method to commit changes to a disk file before calling the
 Close method.

Name
TextStream.Read Method

Syntax
 oTextStreamObj
 .Read(Characters)
	oTextStreamObj
	Use: Required
Data Type: TextStream object
Any property or object variable returning a readable
 TextStream object.

	Characters
	Use: Required
Data Type: Long
The number of characters you want to read from the input
 stream.

Return Value
A String.

Availability
R

Description
Reads a given number of characters from a file or the standard
 input and returns the resulting string.

Rules at a Glance
	Files opened for writing or appending can’t be read; you
 must first close the file and reopen it using the ForReading constant.

	After the read operation, the file pointer advances
 Characters characters, unless the end
 of the file is encountered.

	If the number of characters available to be read are less
 than Characters, all characters will
 be read.

	When reading the standard input stream from the keyboard,
 program execution pauses until an end-of-line or end-of-stream
 character is encountered. However, only the first
 Characters characters of the stream
 are read. If at least Characters
 characters are available in the input stream for subsequent read
 operations, program execution does not pause to wait for further
 keyboard input. The usual technique is to process keystrokes in
 a loop until the end-of-stream marker is encountered. For
 example:
Do While Not oIn.AtEndOfStream
 sIn = oIn.Read(10) ' Read up to 10 characters
 ' process text
Loop

See Also
TextStream.ReadAll Method ,
 TextStream.ReadLine Method

Name
TextStream.ReadAll Method

Syntax
 oTextStreamObj
 .ReadAll

Return Value
A String.

Availability
R

Description
Reads the entire file or input stream into memory.

Rules at a Glance
	For large files, use the ReadLine or Read methods to
 reduce the load on memory resources.

	Files opened for writing or appending can’t be read; you
 must first close the file and reopen it using the ForReading constant.

	When used to read the standard input stream from the
 keyboard, the ReadAll method pauses program execution and polls
 the keyboard until the AtEndOfStream symbol is encountered. For
 this reason, the ReadAll method should not be executed
 repeatedly in a loop.

See Also
TextStream.Read Method ,
 TextStream.ReadLine Method

Name
TextStream.ReadLine Method

Syntax
 oTextStreamObj
 .ReadLine

Return Value
A String.

Availability
R

Description
Reads a line of the text file or input stream into memory,
 from the start of the current line up to the character immediately
 preceding the next end-of-line marker.

Rules at a Glance
	Files opened for writing or appending can’t be read; you
 must first close the file and reopen it using the ForRead constant.

	The ReadLine method causes the file pointer to advance to
 the beginning of the next line, if there is one.

	When used to retrieve standard input from the keyboard,
 the ReadLine method pauses program execution and waits until the
 end-of-line character (i.e., the Enter key) has been pressed.
 Unless your script expects to retrieve just one line of input,
 it’s best to call the ReadLine method repeatedly in a
 loop.

See Also
TextStream.Read Method ,
 TextStream.ReadAll Method

Name
TextStream.Skip Method

Syntax
 oTextStreamObj
 .Skip (Characters)
	oTextStreamObj
	Use: Required
Data Type: TextStream object
Any property or object variable returning a readable
 TextStream object.

	NoOfChars
	Use: Required
Data Type: Long
Number of characters to skip when reading.

Availability
R

Description
Ignores the next Characters
 characters when reading from a text file or input stream.

Rules at a Glance
	As a result of the skip operation, the file pointer is
 placed at the character immediately following the last skipped
 character.

	The Skip method is available only for input streams—that
 is, for files or streams opened in ForReading mode.

See Also
TextStream.SkipLine Method

Name
TextStream.SkipLine Method

Syntax
 oTextStreamObj
 .SkipLine

Availability
R

Description
Ignores the current line when reading from a text file.

Rules at a Glance
	The SkipLine method is available only for files opened in
 ForReading mode.

	After the SkipLine method executes, the internal file
 pointer is placed at the beginning of the line immediately
 following the skipped line, assuming that one exists.

Name
TextStream.Write Method

Syntax
 oTextStreamObj
 .Write(Text)
	oTextStreamObj
	Use: Required
Data Type: TextStream object
Any property or object variable returning a writable
 TextStream object.

	Text
	Use: Required
Data Type: String
Any string expression to write to the file.

Availability
W

Description
Writes a string to the text file.

Rules at a Glance
The file marker is set at the end of string. As a result,
 subsequent writes to the file adjoin each other, with no spaces
 inserted. To write data to the file in a more structured manner, use
 the WriteLine method.

See Also
TextStream.WriteBlankLines Method
 , TextStream.WriteLine Method

Name
TextStream.WriteBlankLines Method

Syntax
 oTextStreamObj
 .WriteBlankLines(Lines)
	oTextStreamObj
	Use: Required
Data Type: TextStream object
Any property or object variable returning a writable
 TextStream object.

	Lines
	Use: Required
Data Type: Long
The number of newline characters to insert.

Availability
W

Description
Inserts one or more newline characters in the file or output
 stream at the current file marker position.

See Also
TextStream.Write Method ,
 TextStream.WriteLine Method

Name
TextStream.WriteLine Method

Syntax
 oTextStreamObj
 .WriteLine (String)
	oTextStreamObj
	Use: Required
Data Type: TextStream object
Any property or object variable returning a writable
 TextStream object.

	String
	Use: Required
Data Type: String
A string expression to write to the file.

Availability
W

Description
Writes a string immediately followed by a newline character to
 a text file.

See Also
TextStream.WriteBlankLines Method

Name
Time Function

Syntax
Time

Return Value
A Date.

Description
Returns the current system time.

Rules at a Glance
The Time function returns the
 time.

Programming Tips and Gotchas
The Time function returns but does not
 allow you to set the system time.

VBA/VBScript Differences
VBA includes a Time$
 function that returns the time as a string rather than a variant.
 Because VBScript does not support strong typing, the function is not
 implemented in VBScript.

See Also
Now Function

Name
Timer Function

Syntax
Timer()

Return Value
A Single.

Description
Returns the number of seconds since midnight.

Programming Tips and Gotchas
	You can use the Timer function as an
 easy method of passing a seed number to the Randomize statement, as
 follows:
Randomize Timer

	The Timer function is ideal for
 measuring the time taken to execute a procedure or program
 statement, as the following ASP snippet shows:
<%
Dim sStartTime
Dim i, j

sStartTime = Timer()
For i = 1 To 100
 Response.Write "Hello
"
 For j = 0 To 1000
 Next
Next
Response.Write "Time Taken = " & _
 FormatDateTime(Timer - sStartTime, vbShortTime) & _
 " Seconds"
%>

Name
TimeSerial Function

Syntax
TimeSerial(hour, minute, second)
	hour
	Use: Required
Data Type: Integer
A number in the range 0 to 23.

	minute
	Use: Required
Data Type: Integer
Any valid integer.

	second
	Use: Required
Data Type: Integer
Any valid integer.

Return Value
A Date.

Description
Constructs a valid time given a number of hours, minutes, and
 seconds.

Rules at a Glance
	Any of the arguments can be specified as relative values
 or expressions.

	The hour argument requires a
 24-hour clock format; however, the return value is always in a
 12-hour clock format suffixed with A.M. or P.M.

	If any of the values are greater than the normal range for
 the time unit to which it relates, the next higher time unit is
 increased accordingly. For example, a second argument of 125 is
 evaluated as 2 minutes 5 seconds.

	If any of the values are less than zero, the next higher
 time unit is decreased accordingly. For example, TimeSerial(2,-1,30) returns
 01:59:30.

	If any of the values are outside the range -32,768 to
 32,767, an error occurs.

	If the value of any parameter causes the date returned by
 the function to fall outside the range of valid dates, an error
 occurs.

Programming Tips and Gotchas
Because TimeSerial handles time units
 outside of their normal limits, it can be used for time
 calculations. However, because the DateAdd
 function is more flexible and is internationally aware, it should be
 used instead.

See Also
DateAdd Function

Name
TimeValue Function

Syntax
TimeValue(time)
	time
	Use: Required
Data Type: String
Any valid string representation of a time.

Return Value
A Date.

Description
Converts a string representation of a time to a Variant Date
 type.

Rules at a Glance
	If time is invalid, a runtime
 error is generated.

	If time is Null, TimeValue
 returns Null.

	Both 12- and 24-hour clock formats are valid.

	Any date information contained within
 time is ignored by the
 TimeValue function.

	If TimeValue returns invalid time
 information, an error occurs.

Programming Tips and Gotchas
	A time literal can also be assigned to a Variant or Date
 variable by surrounding the date with hash characters (#), as the following snippet
 demonstrates:
Dim dMyTime
dMyTime = #12:30:00 AM#

	The CDate function can also cast a
 time expression contained within a string as a Date variable,
 with the additional advantage of being internationally
 aware.

See Also
CDate Function, TimeSerial Function

Name
Trim Function

Syntax
Trim(string)
	string
	Use: Required
Data Type: String
Any string expression.

Return Value
A String.

Description
Returns a string in which any leading and trailing spaces in
 an original string are removed.

Rules at a Glance
If string is Null, the
 Trim function returns Null.

Programming Tips and Gotchas
Trim combines into a single function call
 what would otherwise be separate calls to the
 RTrim and LTrim
 functions.

VBA/VBScript Differences
VBA includes a Trim$
 function that returns the a trimmed string rather than a trimmed
 string variant. Because VBScript does not support strong typing, the
 function is not implemented in VBScript.

See Also
LTrim Function, RTrim Function

Name
TypeName Function

Syntax
TypeName(varname)
	varname
	Use: Required
Data Type: Any
The name of a variable.

Return Value
A String.

Description
Returns a string containing the name of the data type of a
 variable.

Rules at a Glance
	TypeName returns the variant’s data
 type. If the variant has not been assigned a value,
 TypeName returns Empty. Therefore,
 TypeName never actually returns the string
 “Variant.”

	The following table describes the possible return values
 and their meaning:

	Return value
	Underlying data type

	Boolean
	Boolean

	Byte
	Byte

	 classname

	An object variable of type
 classname

	Currency
	Currency

	Date
	Date

	Decimal
	Decimal

	Double
	Double-precision floating-point
 number

	Empty
	Uninitialized variable

	Error
	A missing argument error

	Integer
	Integer

	Long
	Long integer

	Nothing
	A variable of type Object that is not set to a
 valid object

	Null
	No valid data

	Object
	A generic object

	Single
	Single-precision floating-point
 number

	String
	String

	Unknown
	An object whose type is unknown

	 Variant()

	An array

VBA/VBScript Differences
	In VBA, the data type of a strongly typed variable can be
 ascertained earlier than the data type of a VBScript variable.
 For instance, in VBA, the code fragment:
Dim lNumber As Long
MsgBox TypeName(lNumber)
indicates that lNumber is a
 long. The equivalent VBScript code fragment:
Dim lNumber
MsgBox TypeName(lNumber)
indicates that lNumber is
 Empty, since it hasn’t yet
 been assigned a value and therefore VBScript cannot determine
 its data type. (Note that, in VBA, if
 lNumber is defined as a variant, the
 behavior of the TypeName function is
 identical to its behavior in VBScript.)

	In VBA, the type name of an object variable that has been
 declared but not yet initialized returns “Nothing.” In VBScript,
 the TypeName function returns “Nothing”
 only for object variables that have been explicitly set equal to
 Nothing.

	In VBScript, all arrays return the value Variant(). In VBA, the return value
 depends on whether the array is strongly typed.

	In part because VBA can be strongly typed, a number of
 data types are more common than their corresponding VBScript
 data types. The Decimal data type does not exist in VBScript,
 since VBScript does not support the CDec
 function, which is the only method available for defining a
 Decimal. Similarly, the Byte and Currency data types are much
 rarer in VBScript than in VBA.

See Also
VarType Function

Name
UBound Function

Syntax
UBound(arrayname[, dimension])
	arrayname
	Use: Required
An array variable or an expression that evaluates to an
 array.

	dimension
	Use: Optional
Data Type: Long
A number specifying the dimension of the array.

Return Value
A Long.

Description
Indicates the upper limit of a specified dimension of an
 array. The upper boundary is the largest subscript you can access
 within the specified array.

Rules at a Glance
	If dimension isn’t specified, 1
 is assumed. To determine the upper limit of the first dimension
 of an array created by VBScript code, set
 dimension to 1, set it to 2 for the
 second dimension, and so on.

	The upper bound of an array dimension can be set to any
 integer value using Dim,
 Private, Public, and Redim.

Programming Tips and Gotchas
	Note that UBound returns the actual
 subscript of the upper bound of a particular array
 dimension.

	UBound is especially useful for
 determining the current upper boundary of a dynamic
 array.

	The UBound function works only with
 conventional arrays. To determine the upper bound of a
 collection object, retrieve the value of its Count or Length
 property.

See Also
LBound Function

Name
UCase Function

Syntax
UCase(string)
	string
	Use: Required
Data Type: String
A valid string expression.

Return Value
A String.

Description
Converts a string to uppercase.

Rules at a Glance
	UCase affects only lowercase
 alphabetical letters; all other characters within
 string remain unaffected.

	UCase returns Null if
 string contains a Null.

VBA/VBScript Differences
VBA includes a UCase$ function that
 returns an uppercase string rather than a uppercase string variant.
 Because VBScript does not support strong typing, the function is not
 implemented in VBScript.

See Also
LCase Function

Name
Unescape function

Syntax
Unescape(string)
string
Use: Required
Data Type: String
An encoded string

Return Value
A string variant containing the decoded version of
 string.

Description
Decodes a URL-encoded or HTML-encoded string.

Rules at a Glance
Replaces all encoded characters with their corresponding
 characters. Encoded values in the form of % xx are
 replaced with their corresponding ASCII characters, while values in
 the form %u
 xxxx are replaced with their
 corresponding Unicode characters.

Programming Notes
	The Unescape function is not
 documented in the VBScript documentation.

	The function corresponds to the JScript Unescape
 method.

	If string has no encoded
 characters, the function merely returns
 string unchanged.

	All encoded characters in the form % xx are
 replaced with their equivalent ASCII strings.

	All encoded characters in the form %u xxxx are
 replaced with their equivalent Unicode character strings.

VB/VBA Differences
This function is not supported in VBA.

See Also
Escape Function

Name
VarType Function

Syntax
VarType(varname)
	varname
	Use: Required
The name of a variable.

Return Value
An Integer representing the data type of
 varname.

Description
Determines the data type of a specified variable.

Rules at a Glance
	The following intrinsic constants can test the return
 value of the VarType function:

	Constant
	Value
	Data type

	 vbBoolean

	11
	Boolean

	 vbByte

	17
	Byte

	 vbCurrency

	6
	Currency

	 vbDataObject
	13
	A data access object variable

	 vbDate

	7
	Date

	 vbDecimal

	14
	Decimal

	 vbDouble

	5
	Double-precision floating-point
 number

	 vbEmpty

	0
	Uninitialized

	 vbError

	10
	An error type that indicates a missing
 argument

	 vbInteger

	2
	Integer

	 vbLong

	3
	Long integer

	 vbNull

	1
	No valid data

	 vbObject

	9
	A generic object

	 vbSingle

	4
	Single-precision floating-point
 number

	 vbString

	8
	String

	 vbVariant

	12
	Variant—returned only with vbArray (8194)

	If varname is an array created
 by VBScript code, the VarType function
 returns 8200 (vbArray) and
 vbVariant.

	If varname is an array returned to the script by a
 component, the VarType function returns
 8200 (vbArray) and the value
 representing the data type of the array. For instance, a Visual
 Basic Integer array returned to a VBScript script produces a
 value of 8196(vbInteger +
 vbArray).

	To test for an array, you can use the intrinsic constant
 vbArray. For example:
If VarType(myVar) And vbArray Then
 MsgBox "This is an array"
End If
Alternatively, you can also use the
 IsArray function.

Programming Tips and Gotchas
	When you use VarType with an object
 variable, you may get what appears to be an incorrect return
 value. The reason for this is that if the object has a default
 property, VarType returns the data type of
 the default property.

	There is no such value as vbNothing.

	For most purposes, the TypeName function, which returns a
 string indicating a variable’s data type, is much more
 convenient and easy to use.

VBA/VBScript Differences
	In VBA, the data type of a strongly typed variable can be
 ascertained earlier than the data type of a VBScript variable.
 For instance, in VBA, the code fragment:
Dim lNumber As Long
MsgBox VarType(lNumber)
returns vbLong,
 indicating that lNumber is a Long.
 The equivalent VBScript code fragment:
Dim lNumber
MsgBox VarType(lNumber)
returns vbEmpty,
 indicating that lNumber is Empty, since it hasn’t yet been
 assigned a value and therefore VBScript cannot determine its
 data type. (Note that, in VBA, if
 lNumber is defined as a variant, the
 behavior of the VarType function is
 identical to its behavior in VBScript.)

	In VBA, if varname is an array,
 the value returned by the function is 8194 (vbArray) plus the value of the data
 type of the array. For example, an array of strings will return
 8192 + 8 = 8200, or vbArray +
 vbString. In VBScript, all arrays return 8192 + 10, or
 vbArray + vbVariant.

	In part because VBA can be strongly typed, a number of
 data types are more common than their corresponding VBScript
 data types. The Decimal data type does not exist in VBScript,
 since VBScript does not support the CDec
 function, which is the only method available for defining a
 Decimal. Similarly, the Byte and Currency data types are much
 rarer in VBScript than in VBA.

See Also
TypeName Function

Name
Weekday Function

Syntax
Weekday(date, [firstdayofweek])
	date
	Use: Required
Data Type: Variant
Any valid date expression.

	firstdayofweek
	Use: Optional
Data Type: Integer
Integer specifying the first day of the week.

Return Value
An Integer.

Description
Determines the day of the week of a given date.

Rules at a Glance
	The following intrinsic VBScript constants determine the
 value returned by the Weekday
 function:

	Constant
	Return value
	Day represented

	 vbSunday

	1
	Sunday

	 vbMonday

	2
	Monday

	 vbTuesday

	3
	Tuesday

	 vbWednesday

	4
	Wednesday

	 vbThursday

	5
	Thursday

	 vbFriday

	6
	Friday

	 vbSaturday

	7
	Saturday

	If date is Null, the Weekday
 function also returns Null.

	The following table describes the settings for the
 firstdayofweek argument:

	Constant
	Value
	Description

	vbUseSystem
	0
	Use the NLS API setting

	vbSunday
	1
	Sunday (default)

	vbMonday
	2
	Monday

	vbTuesday
	3
	Tuesday

	vbWednesday
	4
	Wednesday

	vbThursday
	5
	Thursday

	vbFriday
	6
	Friday

	vbSaturday
	7
	Saturday

Programming Tips and Gotchas
	If you specify a firstdayofweek
 argument, the function returns the day of the week relative to
 firstdayofweek. For instance, if you
 set the value of firstdayofweek to
 vbMonday (2), indicating that
 Monday is the first day of the week, and attempt to determine
 the day of the week on which October 1, 1996, falls, the
 function returns a 2. That’s because October 1, 1996, is a
 Tuesday, the second day of a week whose first day is
 Monday.

	Because the function’s return value is relative to
 firstdayofweek, using the day of the
 week constants to interpret the function’s return value is
 confusing, to say the least. If we use our October 1, 1996,
 example once again, the following expression evaluates to
 True if the day of the week
 is Tuesday:
If vbMonday = WeekDay(CDate("10/1/96"), vbMonday) Then

See Also
DatePart Function, Day Function, Month Function, Year Function

Name
WeekdayName Function

Syntax
WeekdayName(WeekdayNo, [abbreviate [, FirstDayOfWeek]])
	WeekdayNo
	Use: Required
Data Type: Long
The ordinal number of the required weekday, from 1 to
 7.

	abbreviate
	Use: Optional
Data Type: Boolean
Specifies whether to return the full day name or an
 abbreviation.

	FirstDayOfWeek
	Use: Optional
Data Type: Integer
Specifies which day of the week should be first.

Return Value
A String.

Description
Returns the real name of the day.

Rules at a Glance
	WeekDayNo must be a number
 between 1 and 7, or the function generates runtime error 5,
 “Invalid procedure call or argument.”

	If FirstDayOfWeek is omitted,
 WeekdayName treats Sunday
 as the first day of the week.

	The default value of abbreviate
 is False.

Programming Tips and Gotchas
	You’d expect that, given a date,
 WeekDayName would return the name of that
 date’s day. But this isn’t how the function works. To determine
 the name of the day of a particular date, combine
 WeekDayName with a call to the
 WeekDay function, as the following code
 fragment shows:
sDay = WeekDayName(Weekday(dDate, iFirstDay), _
 bFullName, iFirstDay)
Note that the value of the
 FirstDayOfWeek argument must be the
 same in the calls to both functions for
 WeekDayName to return an accurate
 result.

See Also
Weekday Function

Name
While . . . Wend Statement

Syntax
While condition
 [statements]
Wend
	condition
	Use: Required
Data Type: Boolean
An expression evaluating to True or False.

	statements
	Use: Optional
Program statements to execute while condition remains
 True.

Description
Repeatedly executes program code while a given condition
 remains True.

Rules at a Glance
	A Null condition is
 evaluated as False.

	If condition evaluates to
 True, the program code
 between the While and
 Wend statements is executed.
 After the Wend statement is
 executed, control is passed back up to the While statement, where
 condition is evaluated again. When
 condition evaluates to False, program execution skips to the
 first statement following the Wend statement.

	You can nest While...Wend loops within each
 other.

Programming Tips and Gotchas
The While...Wend statement
 remains in VBScript for backward compatibility only. It has been
 superseded by the much more flexible Do...Loop statement.

See Also
Do . . . Loop
 Statement

Name
With Statement

Syntax
With object
 [statements]
End With
	object
	Use: Required
Data Type: Object
A previously declared object variable.

	statements
	Use: Optional
Program code to execute against object.

Description
Performs a set of property assignments and executes other code
 against a particular object, thus allowing you to refer to the
 object only once. Because the object is referred to only once, the
 “behind the scenes” qualification of that object is also performed
 only once, leading to improved performance of the code block.

Rules at a Glance
	The single object referred to in the With statement remains the same
 throughout the code contained within the With...End With block. Therefore, only properties
 and methods of object can be used
 within the code block without explicitly referencing the object.
 All other object references within the With...End statement must start with a
 fully qualified object reference.

	With statements can be
 nested, as long as the inner With statement refers to a child
 object or a dependent object of the outer With statement.

See Also
Do . . . Loop Statement,
 Set Statement

Name
Year Function

Syntax
Year(date)
	date
	Use: Required
Data Type: Date
Any valid date expression.

Return Value
An Integer.

Description
Returns an integer representing the year in a given date
 expression.

Rules at a Glance
If date contains Null, Year returns Null.

Programming Tips and Gotchas
	The validity of the date expression and position of the
 year element within the given date expression are initially
 determined by the locale settings of the Windows system.
 However, some extra intelligence relating to two-digit year
 values has been built into the Year
 function that surpasses the usual comparison of a date
 expression to the current locale settings.

	What happens when you pass a date over to the
 Year function containing a two-digit year?
 Quite simply, when the Year function sees a
 two-digit year, it assumes that all values equal to or greater
 than 30 are in the 20th Century (i.e., 30 = 1930, 98 = 1998) and
 that all values less than 30 are in the 21st century (i.e., 29 =
 2029, 5 = 2005). Of course, if you don’t want sleepless nights
 rewriting your programs in the year 2029, you should insist on a
 four-digit year, which will see your code work perfectly for
 about the next 8,000 years!

See Also
DatePart Function, Day Function, IsDate Function, Month Function, Weekday Function

Part III. Appendixes

Part III contains five appendixes that supplement the core
 reference material provided in Part II. These include:
	Appendix A, which
 lists each VBScript statement, function, procedure, property, or
 method in each of a number of categories. You can use it to identify
 a particular language element so that you can look up its detailed
 entry in Part II.

	Appendix B, which
 lists the constants that are automatically supported by
 VBScript.

	Appendix C,
 including a somewhat more detailed treatment of the logical and
 bitwise operators.

	Appendix D, which
 lists valid locale IDs for the GetLocale and SetLocale
 functions.

	Appendix E, which
 documents the Script Encoder, a tool for creating encoded
 script

Appendix A. Language Elements by Category

This appendix lists all the functions and statements,
 available within the VBScript language by category. The categories
 are:
	Section
 A.1

	Section
 A.2

	Section
 A.3

	Section
 A.4

	Section
 A.5

	Section
 A.6

	Section
 A.7

	Section
 A.8

	Section
 A.9

	Section
 A.10

	Section
 A.11

	Section
 A.12

	Section
 A.13

	Section
 A.14

	Section
 A.15

	Section
 A.16

	Section
 A.17

Where necessary, individual language elements may appear in more
 than one category. Note that neither constants nor operators are listed
 here; the former are listed in Appendix B, while the latter appear
 in Appendix C.
Array Handling

	 Array Function

	 Creates and returns an array from a
 comma-delimited list of values

	 Dim Statement

	Declares a fixed or dynamic array

	 Erase Statement

	Clears the contents of an array

	 Filter Function

	Returns an array of strings matching (or not) a
 specified value

	 IsArray Function

	Indicates whether a variable is an
 array

	 Join Function

	Returns a string constructed by concatenating an
 array of values with a given separator

	 LBound Function

	Returns the lower bound of an array, which is
 always 0 in VBScript

	 Preserve Statement

	Used with the ReDim statement to copy a dynamic
 array to a resized dynamic array

	 ReDim Statement

	Declares or redimensions a dynamic
 array

	 Split Function

	Returns an array of values derived from a single
 string and a specified separator

	 UBound Function

	Returns the upper bound of an
 array

Assignment

	 = Operator
	Assigns a value to a variable or
 property

	 Set Statement

	Assigns an object reference to a
 variable

Comment

	 ' Statement
	Declares all text from the apostrophe onward as a
 comment to be ignored by the language engine

	 Rem Statement

	Declares all text following the Rem statement as a comment to be
 ignored by the language engine

Constants

	 Const Statement

	Defines a constant

Data Type Conversion

	 Asc Function

	Returns the ASCII code for a
 character

	 AscW Function

	Returns the Unicode code for a
 character

	 CBool Function

	Converts a value to a Boolean

	 CByte Function

	Converts a value to a Byte

	 CCur Function

	Converts a value to Currency

	 CDate Function

	Returns a Date data type

	 CDbl Function

	Converts a value to a Double

	 Chr Function

	Returns the character corresponding to a numeric
 ASCII code

	 ChrW Function

	Returns the character corresponding to a
 particular Unicode value

	 CInt Function

	Converts a value to an Integer

	 CLng Function

	Converts a value to a Long

	 CSng Function

	Converts a value to a Single

	 CStr Function

	Converts a value to a String

	 DateSerial Function

	Returns a date from valid year, month, and day
 values

	 DateValue Function

	Returns a date from any valid date
 expression

	 Fix Function

	Returns an integer portion of
 number

	 Hex Function

	Returns a hexadecimal representation of a number

	 Int Function

	Returns the integer portion of a
 number

	 Oct Function

	Returns an octal representation of a
 number

	 TimeSerial Function

	Returns a date from valid hour, minute, and
 second values

	 TimeValue Function

	Returns a date value from any valid time
 expression

Date and Time

	 CDate Fujnction

	Converts a value to a date

	 Date Function

	Returns the current system date

	 DateAdd Function

	Returns the result of a data/time addition or
 subtraction calculation

	 DateDiff Function

	Returns the difference between two
 dates

	 DatePart Function

	Returns the part of the date
 requested

	 DateSerial Function

	Returns a date from an expression containing
 month, day, and year

	 DateValue Function

	Returns a date from a representation of a
 date

	 Day Function

	Returns a number representing the day of the
 month

	 FormatDateTime Function

	Returns a string variant formatted using the date
 settings for the current locale

	 Hour Function

	Returns a number representing the hour of the
 day

	 Minute Function

	Returns a number representing the minute of the
 hour

	 Month Function

	Returns a number representing the month of the
 year

	 MonthName Function

	Returns the name of the month for a given
 date

	 Now Function

	Returns the current system time

	 Second Function

	Returns a number representing the second of the
 minute

	 Time Property

	Returns or sets the current system
 time

	 Timer Property

	Returns the number of seconds elapsed since
 midnight

	 TimeSerial Function

	Returns a representation of a given hour, minute,
 and second

	 TimeValue Function

	Returns a time value from a string representation
 of a time

	 Weekday Function

	Returns a number representing the day of the
 week

	 WeekdayName Function

	Returns a string indicating the day of the
 week

	 Year Function

	Returns a number representing the year in a date
 expression

Dictionary Object

	 Add Method
	Adds an item to the dictionary

	 CompareMode Property

	Returns or sets the comparison
 mode

	 Count Property

	Returns the number of items in the
 dictionary

	 Exists Method

	Returns True
 if the key exists

	 Item Property

	Returns or sets the item associated with a given
 key

	 Items Method

	Returns an array of all items in the
 dictionary

	 Key Property

	Renames a given key

	 Keys Method
	Returns an array of all keys in the
 dictionary

	 Remove Method

	Removes an item associated with a given
 key

	 RemoveAll Method

	Removes all items from the
 dictionary

Error Handling

	 Clear Method

	Resets the current Err object

	 Description Property

	Returns or sets the Err object’s description of
 the current error

	 Err Object
	Contains information about the last
 error

	 HelpContext Property

	Returns or sets the help file ID for the Err
 object’s current error

	 HelpFile Property

	Returns or sets the name and path of the help
 file relating to the Err object’s current error

	 Number Property

	Returns or sets the current error code for an Err
 object

	 On Error Resume Next
 Statement
	Indicates that errors will be handled within
 script and that program execution should continue on the line
 of code following an error

	 Raise Method

	Generates a user-defined error

	 Source Property

	Returns or sets the name of the object or
 application which raised an Err object’s error

File System Objects

Drive Object

	 AvailableSpace Property

	Returns a number representing the available
 space on the drive in bytes

	 DriveLetter Property

	Returns a string containing the drive
 letter

	 DriveType Property

	Returns a DriveTypeConst specifying the type of
 drive

	 FileSystem Property

	Returns a string containing an abbreviation for
 the filesystem type (i.e., FAT)

	 FreeSpace Property

	Returns the free space on the drive in
 bytes

	 IsReady Property

	Returns True if the specified drive is
 ready

	 Path Property

	Returns a string containing the full path of
 the drive

	 RootFolder Property

	Returns a Folder object representing the root
 of the drive

	 SerialNumber Property

	Returns a Long containing the serial number of
 the disk

	 ShareName Property

	Returns a String containing the share name, if
 any

	 TotalSize Property

	Returns a variant containing the total size of
 the disk in bytes

	 VolumeName Property

	Returns a string containing the name of the
 current volume

Drives Collection Object

	 Count Property

	Returns the number of Drive objects in the
 collection

	 Item Property

	Returns the Drive object associated with the
 given key (the drive name)

File Object

	 Attributes Property

	Returns a FileAttributes
 constant

	 Copy Method

	Copies this file to another
 location

	 DateCreated Property

	Returns the date the file was
 created

	 DateLastAccessed Property

	Returns the date the file was last
 accessed

	 DateLastModified Property

	Returns the date the file was last
 modified

	 Delete Method

	Removes this file

	 Drive Property

	Returns a Drive object representing the drive
 on which this file is located

	 Move Method

	Moves this file to another
 location

	 Name Property

	Returns the name of this file

	 OpenAsTextStream

	Opens this file for text manipulation and
 returns the open file as a TextStream object

	 ParentFolder Property

	Returns a Folder object representing the folder
 in which this file is contained

	 Path Property

	Returns a string containing the full path of
 this file

	 ShortName Property

	Returns a string containing the short name of
 this file

	 ShortPath Property

	Returns a string containing the short path of
 this file

	 Size Property

	Returns a Variant specifying the size of this
 file

	 Type Property

	Returns a string detailing the type of this
 file

Files Collection Object

	 Count Property

	Returns the number of Folder objects in the
 collection

	 Item Property

	Returns the File object associated with the
 specified key

FileSystemObject Object

	 BuildPath Function

	Returns a string containing the full
 path

	 CopyFile Method

	Copies a file

	 CopyFolder Method

	Copies a folder and its contents

	 CreateFolder Function

	Returns a Folder object for the newly created
 folder

	 CreateTextFile Function

	Returns a TextStream object for the newly
 created text file

	 DeleteFile Method

	Removes a file from disk

	 DeleteFolder Method

	Removes the folder and its contents from
 disk

	 DriveExists Function

	Returns True
 if the specified drive is found

	 Drives Property

	Returns a Drive object

	 FileExists Function

	Returns True
 if the specified file is found

	 FolderExists Function

	Returns True
 if the specified folder is found

	 GetAbsolutePathName
 Function
	Returns the canonical representation of the
 path

	 GetBaseName Function

	Returns the base name from a
 path

	 GetDrive Function

	Returns a Drive object for the specified
 drive

	 GetDriveName Function

	Returns a string representing the name of a
 drive

	 GetExtensionName Function

	Returns a string containing the extension from
 a given path

	 GetFile Function

	Returns a File object

	 GetFileName Function

	Returns a string containing the name of a file
 from a given path

	 GetFileVersion Function

	Returns a string containing the version of a
 file

	 GetFolder Function

	Returns a Folder object

	 GetParentFolderName
 Function
	Returns the name of the folder immediately
 above the folder in a given path

	 GetSpecialFolder Function

	Returns a folder object representing one of the
 special Windows folders

	 GetStandardStream

	Returns a TextStream object representing the
 standard input, standard output, or standard error stream

	 GetTempName Function

	Returns a string containing a valid windows
 temporary filename

	 MoveFile Method

	Moves a file from one location to
 another

	 MoveFolder Method

	Moves a folder and all its contents from one
 location to another

	 OpenTextFile Function

	Returns a TextStream object of the opened
 file

Folder Object

	 Attributes Property

	Returns a FileAttributes constant
 value

	 Copy Method

	Copies this folder and its contents to another
 location

	 CreateTextFile Function

	Returns a TextStream object for the newly
 created text file

	 DateCreated Property

	Returns the date the folder was
 created

	 DateLastAccessed Property

	Returns the date the folder was last
 accessed

	 DateLastModified Property

	Returns the date the folder was last
 modified

	 Delete Method

	Removes the folder and all its
 contents

	 Drive Property

	Returns a Drive object representing the drive
 on which the folder is located

	 Files Property

	Returns a Files collection object representing
 the files in the folder

	 IsRootFolder Property

	Returns True
 if the folder is the root of the drive

	 Move Method

	Moves the folder and its contents to another
 location

	 Name Property

	Returns the name of the folder

	 ParentFolder Property

	Returns a Folder object representing the next
 folder up in hierarchy

	 Path Property

	Returns a string containing the full path of
 the folder

	 ShortName Property

	Returns a string containing the short name of
 the folder

	 ShortPath Property

	Returns a string containing the short path of
 the folder

	 Size Property

	Returns a Variant specifying the total size of
 all files and all subfolders contained in the folder

	 SubFolders Property

	Returns a Folders collection object
 representing the subfolders contained in the folder

	 Type Property

	Returns a string detailing the type of
 folder

Folders Collection Object

	 Add Function

	Returns a Folder object for the newly created
 folder

	 Count Property

	Returns the number of Folder objects in the
 collection

	 Item Property

	Returns the Folder object associated with the
 specified key

TextStreamObject

	 AtEndOfLine Property

	Returns True
 if the end of the line has been reached

	 AtEndOfStream Property

	Returns True
 if the end of the text stream has been reached

	 Close Method

	Closes the TextStream object

	 Column Property

	Returns a Long specifying the current column
 number

	 Line Property

	Returns a Long specifying the current line
 number

	 Read Function

	Returns a string containing a specified number
 of characters from the TextStream

	 ReadAll Function

	Returns a string containing the entire contents
 the TextStream

	 ReadLine Function

	Returns a string containing the current line
 within the TextStream

	 Skip Method

	Skips a specified number of
 characters

	 SkipLine Method

	Skips to the next line

	 Write Method

	Writes a specified string to the
 TextStream

	 WriteBlankLines Method

	Writes a specified number of blank lines to the
 TextStream

	 WriteLine Method

	Writes a specified string and a line break to
 the TextStream

Information Functions

	 GetLocale Function

	Returns the ID of the current locale

	 IsArray Function

	Returns True
 if a variable is an array

	 IsDate Function

	Returns True
 if an expression can be converted to a date

	 IsEmpty Function

	Returns True
 if a variant variable has not been initialized

	 IsNull Function

	Returns True
 if an expression evaluates to Null

	 IsNumeric Function

	Returns True
 if an expression can be evaluated as a number

	 IsObject Function

	Returns True
 if a variable contains an object reference

	 Len Function

	Returns the length of a variable

	 LenB Function

	Returns the number of bytes needed to hold a
 given variable

	 RGB Function

	Returns a number representing an RGB color
 value

	 ScriptEngine Function

	Returns a string representing the scripting
 language in use

	 ScriptEngineBuildVersion
 Function
	Returns VBScript’s build number

	 ScriptEngineMajorVersion
 Function
	Returns VBScript’s major version
 number

	 ScriptEngineMinorVersion
 Function
	Returns VBScript’s minor version
 number

	 TypeName Function

	Returns the data type name of a
 variable

	 VarType Function

	Returns a number representing the data type of a
 variable

Mathematical and Numeric

	 Abs Function

	Returns the absolute value of a given
 number

	 Atn Function

	Returns the arctangent of a number

	 Cos Function

	Returns the cosine of an angle

	 Exp Function

	Returns the base of a natural logarithm raised to
 a power

	 FormatNumber Function

	Returns a number formatted according to a
 specified format

	 FormatPercent Function

	Returns a number formatted using the %
 symbol

	 Fix Function

	Returns the integer portion of
 number

	 Int Function

	Returns the integer portion of a
 number

	 Log Function

	Returns the natural logarithm of a
 number

	 Randomize Sub

	Initializes the random number
 generator

	 Rnd Function

	Returns a random number

	 Round Function

	Rounds a number

	 Sgn Function

	Indicates the sign of a number

	 Sin Function

	Returns the sine of an angle

	 Sqr Function

	Returns the square root of a
 number

	 Tan Function

	Returns the tangent of an angle

Miscellaneous

	 Eval Function

	Evaluates an expression that can be built
 dynamically at runtime and returns the result

	 Execute Statement

	Executes one or more statements that can be built
 dynamically at runtime

	 ExecuteGlobal Statement

	Executes one or more statements that can be built
 dynamically at runtime in the script’s global namespace

	 LoadPicture Function

	Returns a Picture object

Object Programming

	 Class...End Class Statement

	Defines a class

	 CreateObject Function

	Returns a reference to a COM
 component

	 For Each...Next Statement

	Iterates through a collection or array of objects
 or values, returning a reference to each of the members

	 Function Statement

	Defines a function

	 GetObject Function

	Returns a reference to a COM
 object

	 GetRef Function

	Returns a reference to a procedure that can be
 used as an object’s event handler

	 Initialize Event

	Fired when a class is first
 instantiated

	 Is Operator
	Compares two object references to determine
 whether they are identical

	 Property Get Statement

	Returns the value of a property

	 Property Let Statement

	Sets the value of a property

	 Property Set Statement

	Assigns an object reference to a
 property

	 Set Statement

	Assigns an object reference to an object
 variable

	 Sub Statement

	Defines a sub; that is, a procedure that does not
 return a value

	 Terminate Event

	Fired when the last reference to an instance of a
 class is destroyed

	 With...End With Statement

	Allows the implicit use of an object
 reference

Program Structure and Flow

	 Call Statement

	Passes execution to a subroutine or event
 handler

	 Do... Loop Statement

	Repeats a section of code while or until a
 condition is met; can take the form of Do Until...Loop (loops until an
 expression is True), Do...Loop Until (loops at least once until an
 expression is True), Do
 While...Loop (loops while
 an expression is True), and Do...Loop While (loops at least once while the
 expression is True)

	 Exit Statement

	Branches to the next line of code outside of the
 currently executing structure; can take the form of Exit Do,
 Exit For, Exit Function, Exit Property, and Exit Sub

	 End Statement

	Marks the end of a program control structure; can
 take the form of End Class, End Function, End If, End
 Property, End Select, End Sub, and End With

	 For Each...Next Statement

	Iterates through a collection or array of objects
 or values, returning a reference to each of the members

	 For...Next Statement

	Iterates through a section of code a given number
 of times

	 Function Statement

	Declares a procedure

	 If..Then..ElseIf...Else
 Statement
	Defines a conditional block or blocks of
 code

	 Private Statement

	Declares the procedure or variable to have scope
 only within the module in which it is defined

	 Property Get Statement

	Defines a prototype for a property procedure that
 returns a value

	 Property Let Statement

	Defines a prototype for a property procedure that
 accepts a value

	 Property Set Statement

	Defines a prototype for a property procedure that
 sets a reference to an object

	 Public Statement

	Declares a global or public variable or function.
 In a class, marks the member as part of the class’ public
 interface

	 Select Case...

 End Select Statement

	A series of code blocks of which only one will
 execute based on a given value

	 Sub Statement

	Declares a procedure that does not return a
 value

	 While...Wend Statement

	Repeats a section of code while or until a
 condition is met

	 With...End With Statement

	Allows the implicit use of an object
 reference

String Manipulation

	 Asc Function

	Returns a number representing the ASCII character
 of the first character of a string

	 AscB Function

	Returns the value of the first byte in a
 string

	 AscW Function

	Returns the Unicode character code of the first
 character in a string

	 Chr Function

	Returns a string containing the character
 associated with the specified character code

	 ChrB Function

	Returns a string containing the specified single
 byte

	 ChrW Function

	Returns a string with the character that
 corresponds to a particular Unicode character code

	 Escape Function

	Returns an encoded version of a
 string

	 Execute Method

	Performs a regular expression search on a
 string

	 Filter Function

	Returns an array of strings matching (or not) a
 specified value

	 FirstIndex Property

	Returns the starting position in a search string
 where a regular expression match represented by a Match object
 occurred.

	 FormatCurrency Function

	Returns a string formatted using the currency
 settings for the current locale

	 FormatDateTime Function

	Returns a string formatted using the date
 settings for the current locale

	 FormatNumber Function

	Returns a number formatted to a specified
 format

	 FormatPercent Function

	Returns a number formatted using the % symbol

	 Global Property

	Indicates whether a RegExp object’s pattern
 should match all occurrences in a search string or just one

	 IgnoreCase Property

	Indicates whether a RegExp object’s pattern match
 should be case-insensitive

	 InStr Function

	Returns the position of the first occurrence of
 one string within another

	 InStrB Function

	Returns the byte position of the first occurrence
 of one string in another

	 InStrRev Function

	Returns the last occurrence of a string within
 another string

	 Join Function

	Returns a string constructed by concatenating an
 array of values with a given separator

	 LCase Function

	Returns a variant string converted to
 lowercase

	 Left Function

	Returns a variant string containing the leftmost
 n characters of a string

	 LeftB Function

	Returns a variant string containing the leftmost
 n bytes of a string

	 Len Function

	Returns the length of a given
 string

	 LenB Function

	Returns the number of bytes in a given
 string

	 Length Property

	Returns the length of a match represented by a
 Match object in a search string

	 LTrim Function

	Returns a variant string with any leading spaces
 removed

	 Match Object

	Represents a single match from a regular
 expression search

	 Matches Collection

	Contains all the Match objects representing the
 matches found in a regular expression search

	 Mid Function

	Returns a variant substring containing a
 specified number of characters

	 MidB Function

	Returns a variant string containing a specified
 number of bytes from a string

	 Pattern Property

	Sets or returns the pattern that the RegExp
 object attempts to find in its search string

	 RegExp Object

	An object designed to provide regular expression
 support

	 Replace Function

	Returns a string where a specified value has been
 replaced with another given value

	 Replace Method

	Replaces substrings found in a regular expression
 search

	 Right Function

	Returns a variant string containing the rightmost
 n characters of a string

	 RightB Function

	Returns a variant string containing the rightmost
 n bytes of a string

	 RTrim Function

	Returns a variant string with any trailing spaces
 removed

	 Space Function

	Returns a variant string consisting of the
 specified number of spaces

	 Split Function

	Returns an array of values derived from a single
 string and a specified separator

	 StrComp Function

	Returns the result of a comparison of two
 strings

	 String Function

	Returns a variant string containing a repeated
 character

	 StrReverse Function

	Returns the reverse of a string

	 Test Method
	Indicates whether a match was found in a RegExp
 object search

	 Trim Function

	Returns a variant string with both leading and
 trailing spaces removed

	 UCase Function

	Returns a variant string converted to
 uppercase

	 Unescape Function

	Decodes a URL- or HTML-encoded
 string

	 Value Property

	Returns the text of a regular expression match
 represented by a Match object

User Interaction

	 InputBox Function

	Displays a dialog box to allow user
 input

	 MsgBox Function

	Displays a dialog box and returns a value
 indicating the command button selected by the user

	 SetLocale Function

	Sets the current locale and returns the ID of the
 previous locale

Variable Declaration

	 Const Statement

	Declares a constant

	 Dim Statement

	Declares a variable

	 Option Explicit Statement

	Requires variable declaration

	 Private Statement

	Declares the procedure or variable to have scope
 only in the module in which it is defined

	 Public Statement

	Declares a global or public variable or function;
 marks the member as part of the class’ public interface in a
 class

	 ReDim Statement

	Declares a dynamic array variable

Appendix B. VBScript Constants

 What follows is a series of tables listing the intrinsic
 constants supported by VBScript and their values. Note that, because the
 constants are part of the VBScript language, you don’t have to define
 them using the Const
 statement.
Color Constants

These constants represent the values returned by RGB for standard colors:
	Constant
	Value
	Description

	 vbBlack

	0
	Black

	 vbRed

	255
	Red

	 vbGreen

	65280
	Green

	 vbYellow

	65535
	Yellow

	 vbBlue

	16,711,680
	Blue

	 vbMagenta

	16,711,935
	Magenta

	 vbCyan

	16,776,960
	Cyan

	 vbWhite

	16,777,215
	White

Comparison Constants

The comparison constants are used by a number of functions
 (Filter, StrComp, Split, and Replace), as well as by the CompareMode
 property of the Dictionary object, to determine whether astring comparison should be case-sensitive or
 not:
	Constant
	Value
	Description

	 vbBinaryCompare
	0
	Binary (case-sensitive comparison)

	 vbTextCompare

	1
	Text (case-insensitive comparison)

	 vbDatabaseCompare
	2
	Database (unused in VBScript)

Date and Time Constants

 A number of functions (DateDiff, DatePart, Weekday, and WeekdayName) have a
 FirstDayOfWeek parameter whose value can be
 one of the day of the week constants (vbSunday through vbSaturday) as well as vbUseSystemDayOfWeek.
The DateDiff and DatePart functions also have a
 FirstWeekOfYear parameter whose value can
 be vbUseSystem, vbFirstJan1, vbFirstFourDays, or vbFirstFullWeek.
	Constant
	Value
	Description

	 vbSunday

	1
	Sunday

	 vbMonday

	2
	Monday

	 vbTuesday

	3
	Tuesday

	 vbWednesday

	4
	Wednesday

	 vbThursday

	5
	Thursday

	 vbFriday

	6
	Friday

	 vbSaturday

	7
	Saturday

	 vbUseSystem

	0
	Use the date format defined by the local
 computer’s regional settings

	 vbUseSystemDayOfWeek
	0
	Use the day of the week specified in your system
 settings for the first day of the week

	 vbFirstJan1

	1
	Use the week in which January 1 occurs; this is
 the default value for both DateDiff and DatePart

	 vbFirstFourDays
	2
	Use the first week that has at least four days in
 the new year

	 vbFirstFullWeek
	3
	Use the first full week of the
 year

Date Format Constants

The FormatDateTime
 function allows you to specify the format in which a
 date or time is displayed by choosing one of the date format constants
 to supply to its NamedFormat
 parameter:
	Constant
	Value
	Description

	 vbGeneralDate

	0
	Display a date in short date format and a time in
 long time format. If present, both parts are displayed.

	 vbLongDate

	1
	Use the long date format defined in the local
 computer’s regional settings.

	 vbLongTime

	3
	Use the long time format defined in the local
 computer’s regional settings.

	 vbShortDate

	2
	Use the short date format defined in the local
 computer’s regional settings.

	 vbShortTime

	4
	Use the short time format defined in the local
 computer’s regional settings.

Error Constant

vbObjectError is used as a base error number for user-defined
 errors:
	Constant
	Value
	Description

	 vbObjectError

	-2,147,221,504
	The base error number, to which a specific number
 is added when a user-defined error is raised. For example:

 Err.Raise vbObjectError + 102

Logical and TriState Constants

In many cases, only the logical constants vbTrue and vbFalse can be used. In other cases, the
 third constant, vbUseDefault, can
 be used to indicate a setting that is neither True nor False, or a setting that is defined
 elsewhere in the system:.
	Constant
	Value
	Description

	 vbFalse

	0
	False

	 vbTrue

	-1
	True

	 vbUseDefault

	-2
	Use the default value defined by the system, or
 not applicable

Message Box Constants

Except for vbMsgBoxHelpButton, any one of the following
 constants can be used with the
 buttons parameters of the MsgBox function to determine which buttons
 appear in the dialog. The vbMsgBoxHelpButton constant can be ORed with
 the button constant to add a Help button to provide context-sensitive
 help; this, however, also requires that arguments be supplied to the
 function’s helpfile and
 context parameters.
	Constant
	Value
	Description

	 vbAbortRetryIgnore
	2
	Abort, Retry, and Ignore buttons

	 vbMsgBoxHelpButton
	16384
	Help button

	 vbOKCancel

	1
	OK and Cancel buttons

	 vbOKOnly

	0
	OK button; this is the default value

	 vbRetryCancel

	5
	Retry and Cancel buttons

	 vbYesNo

	4
	Yes and No buttons

	 vbYesNoCancel

	3
	Yes, No, and Cancel buttons

You can determine which of these buttons is the default (that
 is, it appears selected and will be chosen if the user presses the
 Enter key) by logically ORing any one of the following constants with
 any other constants passed to the buttons
 parameter. The selected button is designated by its position on the
 dialog. By default, the first button appears selected.
	Constant
	Value
	Description

	 vbDefaultButton1
	0
	First button is the default

	 vbDefaultButton2
	256
	Second button is the default

	 vbDefaultButton3
	512
	Third button is the default

	 vbDefaultButton4
	768
	Fourth (Help) button is the
 default

The MsgBox function also
 allows you to designate an icon that appears in the message box to
 indicate the message type. You can logically OR any one of the message
 box icon constants with the other values that you pass as arguments to
 the buttons parameter, as in the following
 code fragment:
iResult = MsgBox("Is this OK?", vbYesNo Or vbQuestion Or _
 vbApplicationModal, "Delete File")
	Constant
	Value
	Description

	 vbCritical

	16
	Critical (stop sign) icon

	 vbExclamation

	48
	Exclamation (caution) icon

	 vbInformation

	64
	Information icon

	 vbQuestion

	32
	Question mark icon

You can also determine the modality of the message box by ORing
 one of the following constants with any other constants passed to the
 buttons parameter:
	Constant
	Value
	Description

	 vbApplicationModal
	0
	The focus cannot move to another interface object
 in the application until the dialog is closed.

	 vbSystemModal

	4096
	The focus cannot move elsewhere in the system
 until the dialog is closed.

Three miscellaneous constants can be used to control the
 behavior of the dialog. Once again, they must be logically ORed with
 any other constants passed to the buttons
 parameter.
	Constant
	Value
	Description

	 vbMsgBoxRight

	524288
	Right aligns text

	 vbMsgBoxRtlReading
	1048576
	On Hebrew and Arabic systems, specifies that text
 should appear from right to left

	 vbMsgBoxSetForeground

	65536
	Makes the message box the foreground
 window

Finally, the value returned by the MsgBox function can be compared with the
 following constants to determine which button was selected. Note that
 there is no need for a vbHelp
 constant, since selecting the Help button, if it is displayed, keeps
 the message box open but opens a help window to display
 context-sensitive help information.
	Constant
	Value
	Description

	 vbAbort

	3
	The Abort button

	 vbCancel

	2
	The Cancel button

	 vbIgnore

	5
	The Ignore button

	 vbNo

	7
	The No button

	 vbOK

	1
	The OK button

	 vbRetry

	4
	The Retry button

	 vbYes

	6
	The Yes button

String Constants

The following constants are replacements for one or more
 characters. For instance, to add a line break to a string that’s not
 being displayed in a web page, you can use a statement like the
 following:
sMsg = sMsg & vbCrLf
	Constant
	Value
	Description

	 vbCr

	Chr(13)
	Carriage return

	 vbCrLf

	Chr(10) & Chr(13)
	Carriage return and linefeed
 characters

	 vbFormFeed

	Chr(12)
	Form-feed character

	 vbLf

	Chr(10)
	Linefeed character

	 vbNewLine

	Platform Specific
	New line character

	 vbNullChar

	Chr(0)
	Null character

	 vbNullString

	0
	Null pointer, used for calling external
 routines

	 vbTab

	Chr(9)
	Tab character

	 vbVertical
 Tab
	Chr(11)
	Vertical tab character

Variable Type Constants

The VarType constant returns
 one of the following constants to indicate the data subtype of the
 variable passed to it as a parameter. The exception is an array, which
 returns a value of 8204, or vbArray Or
 vbVariant.
	Constant
	Value
	Description

	 vbArray

	8192
	Array

	 vbBoolean

	11
	Boolean

	 vbByte

	17
	Byte

	 vbCurrency

	6
	Currency

	 vbDataObject

	13
	Data Object

	 vbDate

	7
	Date

	 vbDecimal

	14
	Decimal (unavailable in VBScript)

	 vbDouble

	5
	Double

	 vbEmpty

	0
	Empty

	 vbError

	10
	Error

	 vbInteger

	2
	Integer

	 vbLong

	3
	Long

	 vbNull

	1
	Null

	 vbObject

	9
	Object

	 vbSingle

	4
	Single

	 vbString

	8
	String

	 vbVariant

	12
	Variant

Appendix C. Operators

There are four groups of operators in VBScript:
 arithmetic, concatenation, comparison, and logical. You’ll find some to
 be instantly recognizable, while others may be unfamiliar. However, if
 you have the need to use these types of operators, it is likely that you
 know the mathematics fundamentals behind them. We will look at each
 group of operators in turn before discussing the order of precedence
 VBScript uses when it encounters more than one type of operator within
 an expression.
Arithmetic Operators

	+
	The addition operator. Used to add numeric
 expressions, as well as to concatenate (join together) two
 string variables. However, it’s preferable to use the
 concatenation operator with strings to eliminate ambiguity. For
 example:
result = expression1 + expression2

	-
	The subtraction operator. Used to find the difference
 between two numeric values or expressions, as well as to denote
 a negative value. Unlike the addition operator, it cannot be
 used with string variables. For example:
result = expression1 - expression2

	/
	The division operator. Returns a floating-point
 number.
result = expression1 / expression2

	*
	The multiplication operator. Used to multiply two
 numerical values. For example:
result = expression1 * expression2

	\
	The integer division operator. Performs division on
 two numeric expressions and returns an integer result (no
 remainder or decimal places). For example:
result = expression1 \ expression2

	Mod
	The modulo operator. Performs division on two numeric
 expressions and returns only the remainder. If either of the two
 numbers are floating-point numbers, they are rounded to integer
 values prior to the modulo operation.For example:
result = expression1 Mod expression2

	^
	The exponentiation operator. Raises a number to the
 power of the exponent. For example:
result = number ^ exponent

String Operator

There is only one operator for strings: the concatenation operator, represented by the ampersand
 symbol (&). It is used to bind
 a number of string variables together, creating one string from two or
 more individual strings. Any nonstring variable or expression is
 converted to a string prior to concatenation. Its syntax is:
result = expression1 & expression2

Comparison Operators

There are three main comparison operators: < (less-than), >
 (greater-than), and = (equal to). They can be used individually, or any two
 operators can be combined with each other. Their general syntax
 is:
result = expression1 operator expression2
The resulting expression is True (-1), False (0), or Null. A Null results only if either
 expression1 or
 expression2 itself is Null.
What follows is a list of all the comparison operators supported
 by VBScript, as well as an explanation of the condition required for
 the comparison to result in True:
	>
	expression1 is greater than and
 not equal to expression2

	<
	expression1 less than and not
 equal to expression2

	 <> or
 ><
	expression1 not equal to
 expression2 (less than or greater
 than)

	>= or =>
	expression1 greater than or
 equal to expression2

	<= or =<
	expression1 less than or equal
 to expression2

	=
	expression1 equal to
 expression2

Comparison operators can be used with both numeric and string
 variables. Literal numbers and strings are called hard. Variables and
 other expressions are called soft. When comparing two expressions
 where one is a string and one is a numeric, the rules are:
	If both are hard, the string is converted to a number before
 the comparison is executed.

	If one is hard and one is soft, then the soft one is
 converted to the type of the hard one before the
 comparison.

	If both are soft, then the number will be considered
 “smaller” than the string.

The Is Operator

The Is operator determines whether two object reference
 variables refer to the same object. Thus, it tests for the
 “equality” of two object references. Its syntax is:
result = object1 Is object2
If both object1 and
 object2 refer to the same object, the
 result is True; otherwise, the
 result is False. You also use the
 Is operator to determine whether
 an object variable refers to a valid object. This is done by
 comparing the object variable to the special Nothing value:
If oVar Is Nothing Then
The result is True if the
 object variable does not hold a reference to an object.

Logical and Bitwise Operators

 Logical operators allow you to evaluate one or more
 expressions and return a logical value. VBA supports six logical
 operators: And, Or, Not,
 Eqv, Imp, and Xor. These operators also double as bitwise
 operators. A bitwise comparison examines each bit position in both
 expressions and sets or clears the corresponding bit in the result
 depending upon the operator used. The result of a bitwise operation is
 a numeric value.
	 And
	Performs logical conjunction; that is, it returns True only if both
 expression1 and
 expression2 evaluate to True. If either expression is False, then the result is False. If either expression is
 Null, then the result is
 Null. Its syntax is:
result = expression1 And expression2
For example:
If x = 5 And y < 7 Then
In this case, the code after the If statement will be executed only if
 the value of x is five and the value
 of y is less than seven.
As a bitwise operator, And returns 1 if the compared bits in
 both expressions are 1, and returns 0 in all other cases, as
 shown in the following table:
	Bit in expression1
	Bit in expression2
	Result

	0
	0
	0

	0
	1
	0

	1
	0
	0

	1
	1
	1

For example, the result of 15 And
 179 is 3, as the following binary representation
 shows:
00000011 = 00001111 And 10110011

	 Or
	Performs logical disjunction; that is, if either
 expression1 or
 expression2 evaluates to True, or if both
 expression1 and
 expression2 evaluate to True, the result is True. Only if neither expression is
 True does the Or operation return False. If either expression is
 Null, then the result is also
 Null. The syntax for the
 Or operator is:
result = expression1 Or expression2
For example:
If x = 5 Or y < 7 Then
In this case, the code after the If statement will be executed if the
 value of x is five or if the value of
 y is less than seven.
As a bitwise operator, Or returns 0 if the compared bits in
 both expressions are 0, and returns 1 in all other cases, as
 shown in the following table:
	Bit in expression1
	Bit in expression2
	Result

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1

For example, the result of 15 Or 179 is 191, as the following binary
 representation shows:
10111111 = 00001111 Or 10110011

	 Not
	Performs logical negation on a single expression; that is,
 if the expression is True,
 the Not operator causes it to
 become False, while if it is
 False, the operator causes
 its value to become True. If
 the expression is Null,
 though, the result of using the Not operator is still a Null. Its syntax is:
result = Not expression1
For example:
If Not IsNumeric(x) Then
In this example, the code following the If statement will be executed if
 IsNumeric returns False, indicating that
 x is not a value capable of being
 represented by a number.
As a bitwise operator, Not simply reverses the value of the
 bit, as shown in the following table:
	expression1
	Result

	0
	1

	1
	0

For example, the result of Not
 16 is 239 (or -17, depending on how the high-order bit
 is interpreted), as the following binary representation
 shows:
Not 00010000 = 11101111

	 Eqv
	Performs logical equivalence; that is, it determines
 whether the value of two expressions is the same. Eqv returns True when both expressions evaluate to
 True or both expressions
 evaluate to False, but it
 returns False if either
 expression evaluates to True
 while the other evaluates to False. Its syntax is:
result = expression1 Eqv expression2
As a bitwise operator. Eqv returns 1 if the compared bits in
 both expressions are the same, and it returns 0 if they are
 different, as shown in the following table:
	Bit in expression1
	Bit in expression2
	Result

	0
	0
	1

	0
	1
	0

	1
	0
	0

	1
	1
	1

For example, the result of 15 Eqv
 179 is 67 (or -189), as the following binary
 representation shows:
01000011 = 00001111 Eqv 10110011

	 Imp
	Performs logical implication, as shown in the following
 table:
	expression1
	expression2
	Result

	 True

	 True

	 True

	 True

	 False

	 False

	 True

	 Null

	 Null

	 False

	 True

	 True

	 False

	 False

	 True

	 False

	 Null

	 True

	 Null

	 True

	 True

	 Null

	 False

	 Null

	 Null

	 Null

	 Null

Its syntax is:
result = expression1 Imp expression2
As a bitwise operator, Imp returns 1 if the compared bits in
 both expressions are the same or if
 expression1 is 1; it returns 0 if the
 two bits are different and the bit in
 expression1 is 1, as shown in the
 following table:
	Bit in expression1
	Bit in expression2
	Result

	0
	0
	1

	0
	1
	1

	1
	0
	0

	1
	1
	1

For example, the result of 15 Imp
 179 is 243 (or -13), as the following binary
 representation shows:
11110011 = 00001111 Imp 10110011

	 Xor
	Perform logical exclusion, which is the opposite of
 Eqv; that is, Xor (an abbreviation for eXclusive OR)
 determines whether two expressions are different. When both
 expressions are either True
 or False, then the result is
 False. If only one expression
 is True, the result is
 True. If either expression is
 Null, the result is also
 Null. Its syntax is:
result = expression1 Xor expression2
As a bitwise operator, Xor returns 1 if the bits being
 compared are different, and returns 0 if they are the same, as
 shown in the following table:
	Bit in expression1
	Bit in expression2
	Result

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	0

For example, the result of 15 Xor
 179 is 188, as the following binary representation
 shows:
10111100 = 00001111 Xor 10110011

Operator Precedence

 If you include more than one operator in a single line
 of code, you need to know the order in which VBScript will evaluate
 them. Otherwise, the results may be completely different than you
 intend. The rules that define the order in which a language handles
 operators is known as the order of precedence. If
 the order of precedence results in operations being evaluated in an
 order other than the one you intend—and therefore if the value that
 results from these operations is “wrong” from your point of view—you
 can explicitly override the order of precedence through the use of
 parentheses. However, the order of precedence still applies to
 multiple operators within parentheses.
When a single line of code includes operators from more than one
 category, they are evaluated in the following order:
	Arithmetic operators

	Concatenation operators

	Comparison operators

	Logical operators

Within each category of operators except for the single
 concatenation operator, there is also an order of precedence. If
 multiple comparison operators appear in a single line of code, they
 are simply evaluated from left to right. The order of precedence of
 arithmetic operators is as follows:
	Exponentiation (^)

	Division and multiplication (/,*) (No order of precedence between the
 two)

	Integer division (\)

	Modulo arithmetic (Mod)

	Addition and subtraction (+,-)
 (No order of precedence between the two)

If the same arithmetic operator is used multiple times in a
 single line of code, the operators are evaluated from left to
 right.
The order of precedence of logical operators is:
	Not

	And

	Or

	Xor

	Eqv

	Imp

If the same arithmetic or logical operator is used multiple
 times in a single line of code, the operators are evaluated from left
 to right.

Appendix D. Locale IDs

 The following table lists the locale IDs used by the
 GetLocale and SetLocale functions. The GetLocale function returns a Long containing
 the decimal locale ID. In most cases, the SetLocale function accepts a locale ID in the
 form of a decimal, a hexadecimal, or a string value.
	Locale
	Decimal ID
	Hex ID
	String ID

	Afrikaans
	1078
	&h0436
	 af

	Albanian
	1052
	&h041C
	 sq

	Arabic (No location)
	1
	&h0001
	 ar

	Arabic (United Arab Emirates)
	14337
	&h3801
	 ar-ae

	Arabic (Bahrain)
	15361
	&h3C01
	 ar-bh

	Arabic (Algeria)
	5121
	&h1401
	 ar-dz

	Arabic (Egypt)
	3073
	&h0C01
	 ar-eg

	Arabic (Iraq)
	2049
	&h0801
	 ar-iq

	Arabic (Jordan)
	11265
	&h2C01
	 ar-jo

	Arabic (Kuwait)
	13313
	&h3401
	 ar-kw

	Arabic (Lebanon)
	12289
	&h3001
	 ar-lb

	Arabic (Libya)
	4097
	&h1001
	 ar-ly

	Arabic (Morocco)
	6145
	&h1801
	 ar-ma

	Arabic (Oman)
	8193
	&h2001
	 ar-om

	Arabic (Qatar)
	16385
	&h4001
	 ar-qa

	Arabic (Saudi Arabia)
	1025
	&h0401
	 ar-sa

	Arabic (Syria)
	10241
	&h2801
	 ar-sy

	Arabic (Tunisia)
	7169
	&h1C01
	 ar-tn

	Arabic (Yemen)
	9217
	&h2401
	 ar-ye

	Azeri (Latin)
	1068
	&h042C
	 az-az

	Basque
	1069
	&h042D
	 eu

	Belarusian
	1059
	&h0423
	 be

	Bulgarian
	1026
	&h0402
	 bg

	Catalan
	1027
	&h0403
	 ca

	Chinese (No location)
	4
	&h0004
	 zh

	Chinese (China)
	2052
	&h0804
	 zh-cn

	Chinese (Hong Kong S.A.R.)
	3076
	&h0C04
	 zh-hk

	Chinese (Singapore)
	4100
	&h1004
	 zh-sg

	Chinese (Taiwan)
	1028
	&h0404
	 zh-tw

	Croatian
	1050
	&h041A
	 hr

	Czech
	1029
	&h0405
	 cs

	Danish
	1030
	&h0406
	 da

	Dutch (The Netherlands)
	1043
	&h0413
	 nl

	Dutch (Belgium)
	2067
	&h0813
	 nl-be

	English (No location)
	9
	&h0009
	 en

	English (Australia)
	3081
	&h0C09
	 en-au

	English (Belize)
	10249
	&h2809
	 en-bz

	English (Canada)
	4105
	&h1009
	 en-ca

	English (Caribbean)
	9225
	&h2409
	
	English (Ireland)
	6153
	&h1809
	 en-ie

	English (Jamaica)
	8201
	&h2009
	 en-jm

	English (New Zealand)
	5129
	&h1409
	 en-nz

	English (Philippines)
	13321
	&h3409
	 en-ph

	English (South Africa)
	7177
	&h1C09
	 en-za

	English (Trinidad)
	11273
	&h2C09
	 en-tt

	English (United Kingdom)
	2057
	&h0809
	 en-gb

	English (United States)
	1033
	&h0409
	 en-us

	Estonian
	1061
	&h0425
	 et

	Farsi
	1065
	&h0429
	 fa

	Finnish
	1035
	&h040B
	 fi

	Faroese
	1080
	&h0438
	 fo

	French (France)
	1036
	&h040C
	 fr

	French (Belgium)
	2060
	&h080C
	 fr-be

	French (Canada)
	3084
	&h0C0C
	 fr-ca

	French (Luxembourg)
	5132
	&h140C
	 fr-lu

	French (Switzerland)
	4108
	&h100C
	 fr-ch

	Gaelic (Ireland)
	2108
	&h083C
	
	Gaelic (Scotland)
	1084
	&h043C
	 gd

	German (Germany)
	1031
	&h0407
	 de

	German (Austria)
	3079
	&h0C07
	 de-at

	German (Liechtenstein)
	5127
	&h1407
	 de-li

	German (Luxembourg)
	4103
	&h1007
	 de-lu

	German (Switzerland)
	2055
	&h0807
	 de-ch

	Greek
	1032
	&h0408
	 el

	Hebrew
	1037
	&h040D
	 he

	Hindi
	1081
	&h0439
	 hi

	Hungarian
	1038
	&h040E
	 hu

	Icelandic
	1039
	&h040F
	 is

	Indonesian
	1057
	&h0421
	 in

	Italian (Italy)
	1040
	&h0410
	 it

	Italian (Switzerland)
	2064
	&h0810
	 it-ch

	Japanese
	1041
	&h0411
	 ja

	Korean
	1042
	&h0412
	 ko

	Latvian
	1062
	&h0426
	 lv

	Lithuanian
	1063
	&h0427
	 lt

	FYRO Macedonian
	1071
	&h042F
	 mk

	Malay (Malaysia)
	1086
	&h043E
	 ms

	Maltese
	1082
	&h043A
	 mt

	Marathi
	1102
	&h044E
	 mr

	Norwegian (Bokmål)
	1044
	&h0414
	 no

	Norwegian (Nynorsk)
	2068
	&h0814
	
	Polish
	1045
	&h0415
	 pl

	Portuguese (Portugal)
	2070
	&h0816
	 pt

	Portuguese (Brazil)
	1046
	&h0416
	 pt-br

	Raeto-Romance
	1047
	&h0417
	 rm

	Romanian (Romania)
	1048
	&h0418
	 ro

	Romanian (Moldova)
	2072
	&h0818
	 ro-mo

	Russian
	1049
	&h0419
	 ru

	Russian (Moldova)
	2073
	&h0819
	 ru-mo

	Sanskrit
	1103
	&h044F
	
	Serbian (Cyrillic)
	3098
	&h0C1A
	 sr

	Serbian (Latin)
	2074
	&h081A
	
	Setsuana
	1074
	&h0432
	 tn

	Slovenian
	1060
	&h0424
	 sl

	Slovak
	1051
	&h041B
	 sk

	Sorbian
	1070
	&h042E
	 sb

	Spanish (Spain)
	1034
	&h0C0A
	 es

	Spanish (Argentina)
	11274
	&h2C0A
	 es-ar

	Spanish (Bolivia)
	16394
	&h400A
	 es-bo

	Spanish (Chile)
	13322
	&h340A
	 es-cl

	Spanish (Colombia)
	9226
	&h240A
	 es-co

	Spanish (Costa Rica)
	5130
	&h140A
	 es-cr

	Spanish (Dominican Republic)
	7178
	&h1C0A
	 es-do

	Spanish (Ecuador)
	12298
	&h300A
	 es-ec

	Spanish (Guatemala)
	4106
	&h100A
	 es-gt

	Spanish (Honduras)
	18442
	&h480A
	 es-hn

	Spanish (Mexico)
	2058
	&h080A
	 es-mx

	Spanish (Nicaragua)
	19466
	&h4C0A
	 es-ni

	Spanish (Panama)
	6154
	&h180A
	 es-pa

	Spanish (Peru)
	10250
	&h280A
	 es-pe

	Spanish (Puerto Rico)
	20490
	&h500A
	 es-pr

	Spanish (Paraguay)
	15370
	&h3C0A
	 es-py

	Spanish (El Salvador)
	17418
	&h440A
	 es-sv

	Spanish (Uruguay)
	14346
	&h380A
	 es-uy

	Spanish (Venezuela)
	8202
	&h200A
	 es-ve

	Sutu
	1072
	&h0430
	 sx

	Swahili
	1089
	&h0441
	
	Swedish (Sweden)
	1053
	&h041D
	 sv

	Swedish (Finland)
	2077
	&h081D
	 sv-fi

	Tamil
	1097
	&h0449
	
	Tatar
	1092
	0X0444
	
	Thai
	1054
	&h041E
	 th

	Turkish
	1055
	&h041F
	 tr

	Tsonga
	1073
	&h0431
	 ts

	Ukrainian
	1058
	&h0422
	 uk

	Urdu
	1056
	&h0420
	 ur

	Uzbek (Cyrillic)
	2115
	&h0843
	 uz-uz

	Uzbek (Latin)
	1091
	&h0443
	 uz-uz

	Vietnamese
	1066
	&h042A
	 vi

	Xhosa
	1076
	&h0434
	 xh

	Yiddish
	1085
	&h043D
	
	Zulu
	1077
	&h0435
	 zu

Appendix E. The Script Encoder

 The Script Encoder, screnc.exe , is a command-line utility that encodes script, including
 the script embedded in HTML page, ASP pages (including incline ASP
 script), and .wsf scripts for the
 Windows Script Host. The encoded script, rather than the original source
 code, is then decoded and executed when the script is run. Using the
 Script Encoder to encode script offers two advantages:
	Source code protection
	Ordinarily, script is plainly visible to prying
 eyes. Client-side script in particular can be inspected by anyone
 who requests a web page. Although both ASP and WSH scripts are
 accessible to a smaller number of users, they nevertheless can be
 read by anyone with access to the system on which they reside. By
 encrypting the code, the Script Component renders it
 illegible.

	Security
	Not only can scripts be viewed, but in some cases
 they can even be modified. Once a script is encoded, however, any
 further modification renders it inoperable. By permitting scripts
 to be encoded, the Script Encoder has two objectives:
	Stop casual inspection and modification of a
 script.

	Provide a legal recourse, should inspection or
 modification take place.

At the same time, it is important to recognize that the
 script encoder is not cryptographically
 strong; encoded scripts can be unencoded very easily (and
 unencoders are readily downloadable from the Internet). The Script
 Encoder ultimately offers the same level of minimal protection as
 locking a car provides to its contents. It mitigates casual
 inspection of code, but should not be used to protect valuable or
 sensitive information like passwords.

Tip
The Script Encoder can successfully encode most scripts written
 in VBScript. An exception, however, is script written for Outlook
 forms, in part because their script is not stored in standalone script
 files, and in part because Outlook forms support only one language,
 VBScript, whereas from the viewpoint of the host, encoded script is a
 separate language: VBScript.Encode.
In addition, problems arise when using encoded script on Far
 East operating systems. In particular, it is possible for collisions
 with DBCS characters to occur, causing the encoded script to be
 incorrectly decoded. As a result, the Script Encoder should not be
 used if a script is ever going to be run on a Far East operating
 system.

How Encoding and Decoding Works

The command-line Script Encoder utility (screnc.exe) is responsible for
 encodingscripts. To determine what to encode, the Script Encoder
 looks for a start encode marker, which takes the following form for
 VBScript code:
'**Start Encode**
The Script Encoder encodes the file from the point at which the
 start encode marker is encountered until the closing </SCRIPT> or %> tag, or until the end of the file is
 found. If there is no start encode marker, the Script Encoder encodes
 the entire script block indicated by the <SCRIPT>...</SCRIPT>, <%...%>, or <%=...%> tags, or it will encode the entire
 file if no tags are encountered.
In addition to encoding the script, the Script Encoder changes
 the LANGUAGE attribute of the
 <SCRIPT> tag from VBScript to VBScript.Encode. For an ASP page, it also
 adds the following attribute to the beginning of the page:
<%@ LANGUAGE = VBScript.Encode %>
When the page is loaded and the script is executed, VBScript.Encode serves as the programmatic
 identifier that specifies not only the language in use, but also the
 COM component responsible for parsing and handling the script. The
 hosting environment, such as ASP or the MSIE browser, uses the
 programmatic identifier to look up the class identifier, which, in
 this case, corresponds to COM components in vbscript.dll. So vbscript.dll is responsible for not only
 interpreting and executing the codes, but also for decoding it.

Script Encoder Syntax

The Script Encoder has the following simplified syntax:
screnc inputfile
 outputfile
where inputfile is the target file
 containing script to be decoded, along with its optional path, and
 outputfile is the file containing encoded
 script that the Script Encoder is to create, along with its optional
 path. Note that inputfile and
 outputfile can include the standard
 wildcard characters.
The Script Encoder also accepts the following optional
 command-line switches:
	/?
	Display help information for the Script Encoder.

	/f
	The output file is to overwrite the source file, which
 means that the original decoded source file is lost. With the
 /f switch,
 outputfile need not be specified. By
 default, the Script Encoder will not overwrite
 inputfile.

	/s
	The Script Encoder is to work in silent mode, without
 producing screen output. By default, the Script Encoder produces
 verbose output.

	/xl
	Specifies that the Script Encoder should not add the
 @LANGUAGE directive to the
 top of ASP files. (The @LANGUAGE directive determines the
 scripting language used by ASP to process the page; VBScript is
 the default.) By default, the Script Encoder adds an @LANGUAGE directive whenever it
 encodes an ASP page.

	/l
 defLanguage
	Defines the default scripting language for the Script
 Encoder to use. Script blocks lacking a LANGUAGE attribute are assumed to be
 written in this language. If no language is specified, the
 Script Encoder otherwise assumes that JScript is the default
 language for HTML pages and .js files, and that VBScript is the
 default language for ASP and .vbs files. The Script Encoder does
 not recognize a default language for Windows Script Component
 (.wsc) files. Either the
 LANGUAGE attribute must be
 specified in the file’s <SCRIPT> tag, or the /l switch must be used; otherwise, no
 script will be encoded.

	/e
 defExtension
	Associates inputfile, whose
 file extension does not correspond to a scriptable file type,
 with a recognizable file type. Recognized extensions are
 .asa, .asp, .cdx, .htm, .html, .js, .sct, and .vbs.

Encoding Examples

Encoding most file types containing VBScript (such as
 .asp files without client-side
 script or .htm or .html files with client-side script) is
 quite intuitive. Consequently, in this section, we’ll examine how to
 use the Script Encoder’s command-line parameters to encode some of the
 scripted files that are otherwise difficult to encode. In each case,
 the conventional syntax of:
screnc inputfile
 outputfile
either generates an error or does not achieve the desired
 results.
Encoding .vbs Files

Although the documentation notes that the Script Encoder
 encodes VBScript (.vbs) files
 “out of the box,” it does not indicate how to do this. The usual
 syntax, such as the following:
screnc OriginalScript.vbs EncodedScript.vbs
creates an encoded file, but attempting to execute it
 generates a runtime error.
The reason for this is that VBScript files lack any equivalent
 to the @ LANGUAGE directive or the <SCRIPT> tag, which tell the
 VBScript interpreter what type of code (VBScript or VBScript.Encode) the file contains.
 Instead, when the VBScript interpreter is invoked and is passed a
 filename, it determines the file type from the file’s extension. The
 .vbs extension indicates a file
 of type VBScript—that is, an
 unencoded VBScript file. The VBScript interpreter detects encoded
 files (files of type VBScript.Encode) by their .vbe file extension.
Example E-1
 shows the contents of a .vbs
 file that lists free space on available drives. This script can be
 encoded using the following command-line syntax:
screnc freespace.vbs freespace.vbe
The result (with line breaks added) is shown in Example E-2. Note that
 there is no need to add the /xl
 switch, since the encoder recognizes a VBScript file and
 automatically suppresses its default @ LANGUAGE directive.
Example E-1. An unencoded .vbs file
' FreeSpace Script
' Calculates the amount of free space on available drives
' (c) 2003 O'Reilly & Associates
'**Start Encode**

Const FIXED = 2

Dim oFS, oDrive, oDrives
Dim sMsg

Set oFS = CreateObject("Scripting.FileSystemObject")

Set oDrives = oFS.Drives
sMsg = "Drive Space Information:" & vbCrLf
For Each oDrive in oDrives
 If oDrive.DriveType = FIXED Or oDrive.IsReady Then
 sMsg = sMsg & vbCrLf
 sMsg = sMsg & " " & oDrive.DriveLetter & " " _
 & FormatNumber(oDrive.Freespace, 0, True, False, True)
 Else
 sMsg = sMsg & vbCrLf
 sMsg = sMsg & " " & oDrive.DriveLetter & " Unavailable"
 End If
Next
WScript.Echo sMsg

Example E-2. An encoded .vbs file
' FreeSpace Script
' Calculates the amount of free space on available drives
' (c) 2003 O'Reilly & Associates
'**Start Encode**#@~^YgIAAA==@#@&@#@&;W	/Y,s&p2GPxPy@#@&@#@&fks~Ww?~,
G9Db\~~W9.b\n/@#@&fb:~dt/o@#@&@#@&j+D~Ksj,',ZDlDnr(LnmD`Ej1DkaOk	oRwrs
+UXkYn:68N+^Yrb@#@&@#@&jYPG9Mk-+k~{PGw?cfDb\d@#@&/\/TPx~rfDb-+,?wm^nP&x6W.:
CObWU)r~[,\8/MS0@#@&wW.PAC1t~KfMk\PbUPKf.k7+d@#@&PP,(0,WfMr-+cfMk-+Pza+~',
oqo29~}DPG9Mk-+c(kInmNHPK4+	@#@&,P~P,Pd\koP{~/t/o,'~\(ZMSW@#@&~,P~P,dHko~x,
/HdL,[~J,~,P~rPLPWGDb-+cf.k7+JnDY+M~[,JPr~m@#@&P,P~P~~,P~P,~P,P~~LPsG.slO1!h(+
.vWGDk7+coD+dwmmnS,!~,PD!+~,oCVk+BPPD;n*@#@&P,~2^/n@#@&PP~~,PdHkL,
'~kHkoPLP78ZMSW@#@&P~~,PPk\/TP',d\/TPLPEP~~,
PEPL~WGDr-Rf.r7+J+DOD~LPrPj	l7Ck^l8VJ@#@&,PPAUN,q0@#@&H+XY@#@&	?^.
bwORA^tKPd\koVKMAAA==^#~@

Encoding .wsf Files

The Script Encoder does not appear to be able to encode
 Windows Script Host’s .wsf
 files. This seems curious, since Windows Script Files
 contain <SCRIPT>...
 </SCRIPT> tags that should
 make the encoding and decoding processes easy. Nevertheless, there
 are two reasons that .wsf files
 cannot be encoded using the most simple Script Encoder
 syntax:
	.wsf is not a file
 extension recognized by the Script Encoder.

	The Script Encoder automatically inserts an @ LANGUAGE directive at the top of the
 page, which causes WSH to generate an error.

Both of these problems can be addressed using command-line
 switches. In particular, we can use the /xl switch to suppress the @ LANGUAGE directive. And we can indicate a
 file type, such as an .htm
 file, that’s similar to a .wsf
 file and that the Script Encoder does know how to handle. (We can’t
 the .asp file type, since
 because the <SCRIPT> tag
 lacks the RUNAT attribute, Script
 Encoder won’t encode the script.)
Example E-3
 shows the unencoded contents of a .wsf file that includes a routine to list
 free space on available drives. This script can be encoded using the
 following command-line syntax:
screnc filesystemutil.wsf filesystemutilenc.wsf /e htm /xl
The result (with line breaks added) is shown in Example E-4.
Example E-3. An unencoded .wsf file
<package>
<job id="ShowDiskSpace">
<?job error="true"?>
 <script language="vbscript">
 ' ShowDiskSpace script
 '
 ' Calculates the amount of free space on available drives
 ' (c) 2003 O'Reilly & Associates
 '**Start Encode**
 Dim oFS, oDrive, oDrives
 Dim sMsg
 Set oFS = CreateObject("Scripting.FileSystemObject")
 Set oDrives = oFS.Drives
 sMsg = "Drive Space Information:" & vbCrLf
 For Each oDrive In oDrives
 If oDrive.DriveType = Fixed Or oDrive.IsReady Then
 sMsg = sMsg & vbCrLf
 sMsg = sMsg & " " & oDrive.DriveLetter & " " _
 & oDrive.FreeSpace
 Else
 sMsg = sMsg & vbCrLf
 sMsg = sMsg & " " & oDrive.DriveLetter & " Unavailable"
 End If
 Next
 WScript.Echo sMsg
 </script>
</job>
</package>

Example E-4. An encoded .wsf file
<package>
<job id="ShowDiskSpace">
<?job error="true"?>
 <script language="VBScript.Encode">
 ' ShowDiskSpace script
 '
 ' Calculates the amount of free space on available drives
 ' (c) 2003 O'Reilly & Associates
 '**Start Encode**#@~^VgIAAA==~,@#@&,P,fksPKo?BPGfMk-
nBPWG.k7+/@#@&~P,fb:~/\dT@#@&P,~?Y~Gw?Px~;DnlDn}4%mD`JUmMrw
DkUocsrs?XkO+sr4Nn^Yr#@#@&~P~jY~WG.k7+d~{PWojcf.k7nk@#@&,P,
/Hko,xP,J9Db\n~Uwl1nP&x0K.hlDkKxlJ~',\8ZMJ0@#@&~~,sW.~Al^t,
GGDr7+,qx,WG.k7+d@#@&P~~,PP&WPKfDb-nRGDb\nKz2PxPwr6N~6MPW9.b
\nR&d"+C9X,Ktx@#@&P,P~P,P~~kH/T~',
/HkL~[,\(Z.SW@#@&P~P,~P,P~dt/o~x,/\/T~LPE,P,PPrPL~WGDr\R9.b
\+dnYD+D,'~J,J,{@#@&~~,P~P,~P,P~~,PP~~,P~PL~Kf.b\RsM+jwmmn
@#@&P~~,PPAs/@#@&,~~P,P,P~/\dTPxPk\/TP'~74Z.J6@#@&P,~,P~,P,
/Hko,xPkHdo,[~E,PP,~J,[PK9.k7+cf.k-nd+OY.PLPE~`xl-CbVC4^nr
@#@&,P,PP,2[P&0@#@&,P~H6Y@#@&P,PU^.kaYc2^tG~kHdo@#@&P,PJJo
AAA==^#~@
</script>
</job>
</package>

Encoding ASP Files with Client-Side Script

Encoding ASP files is simple enough, as is encoding HTML files
 with client-side script. But encoding all script in an ASP file that
 contains embedded (rather than dynamically generated) client-side
 script is not straightforward. Using the simple version of the
 Script Encoder’s syntax to encode an ASP file leaves client-side
 script unencoded. Encoding an ASP file as if it were an HTML file,
 as with the following syntax:
screnc form2.asp form2enc.asp /e htm
encodes both client-side script and ASP <SCRIPT> blocks, but it does not
 encode script in the <%...%> and <%=...%> tags found within the HTML
 stream.
The solution is to double-encode an ASP file. For example,
 Example E-5 shows a
 very simple ASP page that contains embedded client-side script. It
 can first be encoded using the conventional syntax:
screnc form2.asp form2enc.asp
This encodes the ASP script only. The next step is to encode
 the client-side script using the following syntax:
screnc form2enc.asp /f /e htm
These command-line switches treat the ASP file as if it were
 an HTML file and overwrite the source form2enc.asp file. The result, which is
 shown (with added line breaks) in Example E-6, is encoded ASP
 script and client-side script
Example E-5. An unencoded ASP file with client-side script
<HTML>
<HEAD>
<TITLE>A Sample Form</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBSCRIPT">
 '
 ' Event handler fired when window loads
 ' Displays dialog to user
 Sub Window_OnLoad()
 Alert "Thank you for filling out the form!"
 End Sub
</SCRIPT>
You provided us with the following information: <P>
<% ShowInformation %>
<P>
Thank you for submitting this information.

<SCRIPT LANGUAGE="VBSCRIPT" RUNAT="SERVER">

Sub ShowInformation()
 If Not Request("txtName") = "" Then
 Response.Write "Name: " & Server.HTMLEncode(Request("txtName")) & "
"
 Response.Write "Country: " & Server.HTMLEncode(Request("txtCountry")) &
"<P>"
 Else
 Response.Write "None"
 End If
End Sub
</SCRIPT>
</BODY>
</HTML>

Example E-6. An ASP page with both ASP and client-side script
 encoded
<%@ LANGUAGE = VBScript.Encode %>
<HTML>
<HEAD>
<TITLE>A Sample Form</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="VBScript.Encode">#@~^twAAAA==@#@&P~,B@#@&P,PE~27+UY,
tCU9V+M~0bD+9~Atx,hrx[GSPsWm[/@#@&~~,BP9rkwslHd,NrmVKoPDW,;/D@#@&,
P~j!4Pqrx9Wh|6USKl9`b@#@&~,P~P,)VDO~rKtCU0PzW!~6W.,0bVVbxT~W!Y~Y4+~WKD:
eE@#@&PP,3UN,?!4@#@&sTIAAA==^#~@</SCRIPT>
You provided us with the following information: <P>
<%#@~^EQAAAA==~UtGSq	0WM:mOkKx~ZwYAAA==^#~@%>
<P>
Thank you for submitting this information.

<SCRIPT LANGUAGE="VBScript.Encode" RUNAT="SERVER">
#@~^OgEAAA==@#@&@#@&UE(P?4WS(x6W.:mYrG	`#@#@&P,Pq6~HWDP"+5EndD`EYXO1m:
nE*P'~ErPPtU@#@&~,P,PP"+k2W	/nRqDrOPJgC:)Pr~'PU+M
\nD u:HJ2	^W9+c];EndD`EYXOglhJ*#PLPr@!A"@*E@#@&P~~,
PP"n/aWxkn MkD+~J/G!xODHlPrP'~U+D-nMRuKtJAx^KN`I;!n/D`EYXY
/G!xYMzJ*#PL~E@!h@*r@#@&P~~AVd+@#@&P,P~~,
I+d2Kxd+c	MkOPr1W	+r@#@&,P~2	N~(6@#@&AUN,
?E(@#@&X1QAAA==^#~@</SCRIPT>
</BODY>
</HTML>

About the Authors
Paul Lomax, author of O'Reilly's VB & VBA in a Nutshell and a coauthor of VBScript in a Nutshell, is an experienced VB programmer with a passion for sharing his knowledge--and his collection of programming tips and techniques gathered from real-world experience.
Matt Childs is a vice president with Integrity Solutions Inc., one of Alaska's leading custom software development companies. Matt is responsible for overseeing all in-house development, and over the past year has worked with the State of Alaska and Alaska's two largest telecommunications companies. Matt has worked in the information technology field for nine years, and has been a VB programmer since Visual Basic 3. During most of his early career, Matt was an information technology manager for a large transportation company, where he developed custom software solutions and systems integration for the company's largest clients. Matt has industry experience with utilities; express transportation; and chemical, petroleum, and retail companies. In the winter, Matt spends his free time with his telescope, and during the long Alaska summer days, he enjoys playing softball and spending time with his family. Matt, his wife LeAndra and their daughter Meghan recently returned to Anchorage, Alaska, after spending some time in the southern United States. Matt is also a fiction writer and a freelance journalist.
Ron Petrusha is an editor for O'Reilly and is the author/coauthor of many books, including VBScript in a Nutshell. Ron has a background in quantitative labor history, specializing in Russian labor history, and holds degrees from the University of Michigan and Columbia University. He began working with computers in the mid 1970s, programming in SPSS (a programmable statistical package) and FORTRAN on the IBM 370 family. Since then, he has been a computer book buyer, an editor of a number of books on Windows and Unix, and a consultant on projects written in dBASE, Clipper, and Visual Basic.

Colophon
Our look is the result of reader comments, our own experimentation,
 and feedback from distribution channels. Distinctive covers complement our
 distinctive approach to technical topics, breathing personality and life
 into potentially dry subjects.
The animal on the cover of VBScript in a
 Nutshell, Second Edition is a miniature pinscher. Known only
 to have existed in Germany up until about 100 years ago, the miniature
 pinscher is said to have descended from the German pinscher or is possibly
 a cross between the Italian greyhound and the dachshund. He is not a small
 Doberman pinscher, as some may think. He was bred to be a ratter and a
 good barking watchdog.
The miniature pinscher is considered the smallest breed of guard
 dog. It is classified in Group 2, which also includes the Doberman
 pinscher, rottweiler, mastiff, boxer, and Great Dane.
The miniature pinscher has been characterized as having a heroic
 demeanor and a striking personality. Pinscher owners commonly affirm that
 the dog is small and fragile only in appearance, not in temperament. Mary
 Brady was the production editor and proofreader for VBScript in
 a Nutshell, Second Edition. Emily Quill and Claire Cloutier
 provided quality control. Jamie Peppard and Derek Di Matteo provided
 production support. Brenda Miller wrote the index.
Ellie Volckhausen designed the cover of this book, based on a series
 design by Edie Freedman. The cover image is a 19th-century engraving from
 the Dover Pictorial Archive. Emma Colby produced the cover layout with
 QuarkXPress 4.1 using Adobe’s ITC Garamond font.
Bret Kerr designed the interior layout, based on a series design by
 David Futato. This book was converted by Mike Sierra to FrameMaker 5.5.6
 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil
 Walls, and Mike Sierra that uses Perl and XML technologies. The text font
 is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
 code font is LucasFont’s TheSans Mono Condensed. The illustrations that
 appear in the book were produced by Robert Romano and Jessamyn Read using
 Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons
 were drawn by Christopher Bing. This colophon was written by Maureen
 Dempsey.
The online edition of this book was created by the Safari production
 group (John Chodacki, Becki Maisch, and Madeleine Newell) using a set of
 Frame-to-XML conversion and cleanup tools written and maintained by Erik
 Ray, Benn Salter, John Chodacki, and Jeff Liggett.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

VBScript in a Nutshell, 2nd Edition

Paul Lomax

Matt Childs

Ron Petrusha

Editor
Ron Petrusha

Copyright © 2009 O’Reilly Media, Inc.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-03-31T15:11:56-07:00

OEBPS/bk01-toc.html
VBScript in a Nutshell, 2nd Edition

Table of Contents
		Special Upgrade Offer

		Foreword

		Preface		Why This Book?

		Who Should Read This Book?

		How This Book Should Be Used		If You’re New to VBScript

		If You’re a VBScript Programmer

		If You’re a VB or VBA Developer New to VBScript

		How This Book Is Structured		The Format of the Language Reference

		Conventions in This Book

		How To Contact Us		Acknowledgments

		I. The Basics		1. Introduction		1.1. VBScript’s History and Uses

		1.2. What VBScript Is Used For: Gluing Together Objects		1.2.1. Properties

		1.2.2. Methods

		1.2.3. Events

		1.3. Differences Between VBScript and VBA

		2. Program Structure		2.1. Functions and Procedures		2.1.1. Defining Subroutines: The Sub . . . End Sub Construct

		2.1.2. Calling a Subroutine

		2.1.3. Defining Functions: The Function . . . End Function
 Construct

		2.1.4. Passing Variables into a Subroutine

		2.1.5. Exiting a Routine with the Exit Statement

		2.2. Classes		2.2.1. The Class Construct

		2.2.2. Class Variables

		2.2.3. Class Properties

		2.2.4. Class Methods

		2.2.5. Class Events

		2.3. Global Code		2.3.1. Active Server Pages

		2.3.2. Windows Script Host

		2.3.3. Client-Side Scripts for Internet Explorer

		2.3.4. Outlook Forms

		2.4. Reusable Code Libraries		2.4.1. Active Server Pages

		2.4.2. Windows Script Host

		2.4.3. Client-Side Scripts for Internet Explorer

		3. Data Types and Variables		3.1. VBScript Data Types: The Many Faces of the Variant		3.1.1. Variant Data Types

		3.1.2. Determining the Variant Type		3.1.2.1. VarType

		3.1.2.2. TypeName

		3.1.3. Converting from One Data Type to Another

		3.2. Variables and Constants		3.2.1. What Is a Variable?

		3.2.2. What Is a Constant?

		3.2.3. Intrinsic Constants

		3.2.4. Constants in Type Libraries

		3.2.5. Declaring Variables and Constants		3.2.5.1. Option Explicit

		3.2.6. Array Variables		3.2.6.1. Fixed arrays

		3.2.6.2. Dynamic arrays

		3.2.6.3. Determining array boundaries: UBound and LBound

		3.2.6.4. Multidimensional arrays

		3.2.6.5. Dynamic multidimensional arrays

		3.2.6.6. Using UBound with multidimensional arrays

		3.2.7. Scope and Visibility		3.2.7.1. Global scope

		3.2.7.2. Local scope

		3.2.7.3. Public visibility

		3.2.7.4. Private

		4. Error Handling and Debugging		4.1. Debugging		4.1.1. Syntax Errors		4.1.1.1. Syntax errors at compile time

		4.1.1.2. Syntax errors at runtime

		4.1.2. Logical Errors		4.1.2.1. Logical errors that affect program results

		4.1.2.2. Logical errors that generate error messages

		4.1.3. The Microsoft Script Debugger		4.1.3.1. Launching the Script Debugger

		4.1.3.2. The Script Debugger interface

		4.1.3.3. Tracing execution with the Script Debugger

		4.1.3.4. Determining the value of a variable, expression, or
 function at runtime

		4.1.3.5. Changing variable values at runtime

		4.2. Error Handling		4.2.1. The On Error Resume Next Statement

		4.2.2. The Err Object		4.2.2.1. Err object properties

		4.2.2.2. Err object methods

		4.3. Common Problem Areas and How to Avoid Them

		5. VBScript with Active Server Pages		5.1. How ASP Works		5.1.1. The global.asa File

		5.1.2. Including Server-Side Script in Web Pages

		5.2. Active Server Pages Object Model

		6. Programming Outlook Forms		6.1. Why Program Outlook Forms?

		6.2. The Form-Based Development Environment		6.2.1. Interfaces and Objects

		6.2.2. Outlook Form Design Mode

		6.2.3. The VBScript Environment

		6.3. Running Your Code

		6.4. Program Flow

		6.5. The Outlook Object Model		6.5.1. The Current Item

		6.5.2. The Inspector Object

		6.5.3. The Pages Collection

		6.5.4. The FormDescription Object

		6.5.5. The NameSpace Object

		6.5.6. The MAPIFolder Object

		6.5.7. Outlook Constants

		6.6. Accessing Other Object Models

		7. Windows Script Host 5.6		7.1. Why Use WSH?

		7.2. Running WSH Scripts

		7.3. Program Flow		7.3.1. Simple Script Files

		7.3.2. Script Files with XML Code

		7.4. The WSH Object Model		7.4.1. The WScript Object

		7.4.2. The WshArguments Object

		7.4.3. The WshController Object

		7.4.4. The WshEnvironment Object

		7.4.5. The WshNamed Object

		7.4.6. The WshNetwork Object

		7.4.7. The WshRemote Object

		7.4.8. The WshRemoteError Object

		7.4.9. The WshScriptExec Object

		7.4.10. The WshShell Object

		7.4.11. The WshShortcut Object

		7.4.12. The WshSpecialFolders Object

		7.4.13. The WshUnnamed Object

		7.4.14. The WshUrlShortcut Object

		7.5. WSH Language Elements

		7.6. Accessing Other Object Models

		8. VBScript with Internet Explorer		8.1. The <SCRIPT> Tag		8.1.1. <SCRIPT> Attributes		8.1.1.1. The LANGUAGE attribute

		8.1.1.2. The SRC attribute

		8.1.1.3. The FOR attribute

		8.1.2. Where to Place the <SCRIPT> Tag

		8.1.3. Using <!——> with <SCRIPT>

		8.2. What Can You Do with Client-Side Scripting?		8.2.1. Interacting with the Client

		8.2.2. Handling Events

		8.2.3. Data Validation

		8.3. Understanding the IE Object Model		8.3.1. The Window Object

		8.3.2. The Document Object

		8.3.3. The Elements Collection and HTML Intrinsic Controls		8.3.3.1. The textbox control

		8.3.3.2. The checkbox control

		8.3.3.3. The radio button control

		8.3.3.4. The list box

		8.3.3.5. Command button controls

		8.3.4. The History Object

		8.3.5. The Event Object

		8.3.6. Using the Document Object Model

		9. Windows Script Components		9.1. The Script Component Wizard

		9.2. Writing Component Code

		9.3. Using the Component		9.3.1. Registration

		9.3.2. Instantiating the Component

		9.4. WSC Programming Topics		9.4.1. Handling Events

		9.4.2. Using an Interface Handler: ASP

		9.4.3. Using Resources

		9.4.4. Building an Object Model

		II. Reference		10. The Language Reference		Abs Function

		Array Function

		Asc, AscB, AscW Functions

		Atn Function

		Call Statement

		CBool Function

		CByte Function

		CCur Function

		CDate Function

		CDbl Function

		Chr, ChrB, ChrW Functions

		CInt Function

		Class Statement

		CLng Function

		Const Statement

		Cos Function

		CreateObject Function

		CSng Function

		CStr Function

		Date Function

		DateAdd Function

		DateDiff Function

		DatePart Function

		DateSerial Function

		DateValue Function

		Day Function

		Dictionary Object

		Dictionary.Add Method

		Dictionary.CompareMode Property

		Dictionary.Count Property

		Dictionary.Exists Method

		Dictionary.Item Property

		Dictionary.Items Method

		Dictionary.Key Property

		Dictionary.Keys Method

		Dictionary.Remove Method

		Dictionary.RemoveAll Method

		Dim Statement

		Do . . . Loop Statement

		Drive Object

		Drives Collection Object

		End . . . Statement

		Erase Statement

		Err Object

		Err.Clear Method

		Err.Description Property

		Err.HelpContext Property

		Err.HelpFile Property

		Err.Number Property

		Err.Raise Method

		Err.Source Property

		Escape Function

		Eval Function

		Execute Statement

		ExecuteGlobal Statement

		Exit Statement

		Exp Function

		File Object

		File.Copy Method

		File.Delete Method

		File.Move Method

		File.OpenAsTextStream Method

		File System Object Model

		Files Collection Object

		FileSystemObject Object

		FileSystemObject.BuildPath Method

		FileSystemObject.CopyFile Method

		FileSystemObject.CopyFolder Method

		FileSystemObject.CreateFolder Method

		FileSystemObject.CreateTextFile
 Method

		FileSystemObject.DeleteFile Method

		FileSystemObject.DeleteFolder Method

		FileSystemObject.DriveExists Method

		FileSystemObject.Drives Property

		FileSystemObject.FileExists Method

		FileSystemObject.FolderExists Method

		FileSystemObject.GetAbsolutePathName
 Method

		FileSystemObject.GetBaseName Method

		FileSystemObject.GetDrive Method

		FileSystemObject.GetDriveName Method

		FileSystemObject.GetExtensionName
 Method

		FileSystemObject.GetFile Method

		FileSystemObject.GetFileName Method

		FileSystemObject.GetFileVersion
 Method

		FileSystemObject.GetFolder Method

		FileSystemObject.GetParentFolderName
 Method

		FileSystemObject.GetSpecialFolder
 Method

		FileSystemObject.GetStandardStream
 Method

		FileSystemObject.GetTempName Method

		FileSystemObject.MoveFile Method

		FileSystemObject.MoveFolder Method

		FileSystemObject.OpenTextFile Method

		Filter Function

		Fix Function

		Folder Object

		Folder.Copy Method

		Folder.CreateTextFile Method

		Folder.Delete Method

		Folder.Move Method

		Folders Collection Object

		Folders.Add Method

		For . . . Next Statement

		For Each . . . Next Statement

		FormatCurrency, FormatNumber, FormatPercent
 Functions

		FormatDateTime Function

		Function Statement

		GetLocale Function

		GetObject Function

		GetRef Function

		Hex Function

		Hour Function

		If . . . Then . . . Else Statement

		Initialize Event

		InputBox Function

		InStr, InStrB Functions

		InstrRev Function

		Int Function

		Is Operator

		IsArray Function

		IsDate Function

		IsEmpty Function

		IsNull Function

		IsNumeric Function

		IsObject Function

		Join Function

		LBound Function

		LCase Function

		Left, LeftB Functions

		Len, LenB Functions

		LoadPicture Function

		Log Function

		LTrim Function

		Match Object

		Matches Collection Object

		Me Keyword

		Mid, MidB Functions

		Minute Function

		Month Function

		MonthName Function

		MsgBox Function

		Now Function

		Oct Function

		On Error Statement

		Option Explicit Statement

		Private Statement

		Property Get Statement

		Property Let Statement

		Property Set Statement

		Public Statement

		Randomize Sub

		ReDim Statement

		RegExp Object

		RegExp.Execute Method

		RegExp.Global Property

		RegExp.IgnoreCase Property

		RegExp.Pattern Property

		RegExp.Replace Method

		RegExp.Test Method

		Rem Statement

		Replace Function

		RGB Function

		Right, RightB Functions

		Rnd Function

		Round Function

		RTrim Function

		ScriptEngine Function

		ScriptEngineBuildVersion Function

		ScriptEngineMajorVersion Function

		ScriptEngineMinorVersion Function

		Second Function

		Select Case Statement

		SetLocale Function

		Set Statement

		Sgn Function

		Sin Function

		Space Function

		Split Function

		Sqr Function

		StrComp Function

		String Function

		StrReverse Function

		Sub Statement

		Tan Function

		Terminate Event

		TextStream Object

		TextStream.Close Method

		TextStream.Read Method

		TextStream.ReadAll Method

		TextStream.ReadLine Method

		TextStream.Skip Method

		TextStream.SkipLine Method

		TextStream.Write Method

		TextStream.WriteBlankLines Method

		TextStream.WriteLine Method

		Time Function

		Timer Function

		TimeSerial Function

		TimeValue Function

		Trim Function

		TypeName Function

		UBound Function

		UCase Function

		Unescape function

		VarType Function

		Weekday Function

		WeekdayName Function

		While . . . Wend Statement

		With Statement

		Year Function

		III. Appendixes		A. Language Elements by Category		A.1. Array Handling

		A.2. Assignment

		A.3. Comment

		A.4. Constants

		A.5. Data Type Conversion

		A.6. Date and Time

		A.7. Dictionary Object

		A.8. Error Handling

		A.9. File System Objects		A.9.1. Drive Object

		A.9.2. Drives Collection Object

		A.9.3. File Object

		A.9.4. Files Collection Object

		A.9.5. FileSystemObject Object

		A.9.6. Folder Object

		A.9.7. Folders Collection Object

		A.9.8. TextStreamObject

		A.10. Information Functions

		A.11. Mathematical and Numeric

		A.12. Miscellaneous

		A.13. Object Programming

		A.14. Program Structure and Flow

		A.15. String Manipulation

		A.16. User Interaction

		A.17. Variable Declaration

		B. VBScript Constants		B.1. Color Constants

		B.2. Comparison Constants

		B.3. Date and Time Constants

		B.4. Date Format Constants

		B.5. Error Constant

		B.6. Logical and TriState Constants

		B.7. Message Box Constants

		B.8. String Constants

		B.9. Variable Type Constants

		C. Operators		C.1. Arithmetic Operators

		C.2. String Operator

		C.3. Comparison Operators		C.3.1. The Is Operator

		C.4. Logical and Bitwise Operators

		C.5. Operator Precedence

		D. Locale IDs

		E. The Script Encoder		E.1. How Encoding and Decoding Works

		E.2. Script Encoder Syntax

		E.3. Encoding Examples		E.3.1. Encoding .vbs Files

		E.3.2. Encoding .wsf Files

		E.3.3. Encoding ASP Files with Client-Side Script

		About the Authors

		Colophon

		Special Upgrade Offer

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages181056.png
BlE[E] [IETE]E
e e e e e

S35 Doliow_OvCick Top ighrame Dorner Open Top RghFrams Documert Wit ™
“Top igtFrame Document i

Right Page
*Top Rightrame Dicmess Wi *
Let's make it UPPER case

* T Baey = UCase(Sef Document Tt tEiny V) T RighFrame Documet Weke
eTheEstry Top ightPrane Docioent Wrs

now lower case.

ie|

T Baey = LCase(Self Documen frTes st Sy V) Top RihiFrame Docernent Wit
e TheEsiy Top gt Frame Docicest Wive

..casy, what about just the first 7 characters
. Se Dot

s iy Vo7 Tep ighframe Document Weie

OEBPS/httpatomoreillycomsourceoreillyimages181024.png
00

06

30

36

OEBPS/httpatomoreillycomsourceoreillyimages181030.png
T ta At T e

Qs O x] Z e o @ @) (-

P — Y8
The page cannot b displayedd

Lo

Tt o s s

P e

3 7he pess. 4 Wicossl nterne Cxplres [Sl-T

OEBPS/httpatomoreillycomsourceoreillyimages181048.png

OEBPS/httpatomoreillycomsourceoreillyimages181072.png
Add Windows Script Component events

Doyttt 5 eyrts toyou Windos Scip Corperent?
e e of s v baon.

Evets
[prtzen =

|

Cood | ok | > .

OEBPS/httpatomoreillycomsourceoreillyimages181046.png
Gasses Menbers o witen
[=] [

o e re—
[icsicain

et [t
[Mectrsten [norerwarded
ismespoce e

fisnaspoces erts fdcitematin
fitenem joody

[occoncestuse (Cotagers
[okccarmephirve <
|okcsarnezponsesee jcss
[okctanshaon [Gearconversaonindex
[owtzatmeretyeo jckze

Ioevans [Conpanie:

[l P

o | obmtrs

OEBPS/httpatomoreillycomsourceoreillyimages181044.png
L Limo))
El

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages181020.png
A Q & I E-

Pafn_towe | Sexch Fovtes Mo Wl

O Sy

[

ShowArsy Cortents

[V5.t Dymanic Ay Appcation BB

OEBPS/httpatomoreillycomsourceoreillyimages181062.png
Windows 5 cript Component Wizard - Step 1 of 6 =L71x]

Define Windows Seript Component object

s the genescnation oy Wi Scipt
Conperent?

Nams:

Flonane:
Progp: [WSC
Vesore [100

Locatin: [CWosbcrot rei?

Bowe

Caont

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/httpatomoreillycomsourceoreillyimages181060.png
doument fames
e > [coument
> [anchars Lo [doument
> [aspes tistory
- [body navigator
(> [ement > [mimelpes
- [embeds Lo [pigins
s Toctin
> [foms et
> [images saeen
> [inks
> [plgis
> [scits

Syleshets

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/httpatomoreillycomsourceoreillyimages181070.png
Add Windows Seript Component methods

Doyt i matheds for o Vs St
Conperert?

Eris e e nd psameters for s method Each
paneler s epaaled oy cone Leaye i fed bk e
neiod o ot have oy psseters

Pt
e
e
bt b2
bt b
bl b2

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages181064.png
findows Sciipt Component Wizaid - Step 1 of 6

Define Windows Seript Component object

Wk b e zmaens o s Wik S
Aﬂ Conpenent?

& T e
& Fierame
FroglD.
Vo

Localin:

Corcel

o

e

o

e ——

[Cbokavtrot ez

Bowe

N>

OEBPS/httpatomoreillycomsourceoreillyimages181028.png
P —
() Doseuviniopebug?

Le's
Eror Eipeced !

T

OEBPS/httpatomoreillycomsourceoreillyimages181026.png
et E xplor O]
fe B Ve Fowies Lok leb [=]
G z Q Gi DB .
D S Ribeh Nom Seach Forer Wooy Vol

e 53 oot e D s e

3

Shipping Data for Product No2

Made in Malawi

Weight= 17 Kilos

Hhly Inammatie

|

OEBPS/httpatomoreillycomsourceoreillyimages181012.png
Aopation

e Homnioiodng
) i g
s > N
o homtarion [Sctowmsoam
Hwome oo
e Gt e
H{Grorios oy Usterps senpt)
H{ o oo Tetewblston)
-|{mmn i) ¥ e
Gnrando oo oo Cramie

{{[mse
S) s
T e i
IH{Ecmens smeny > (H{eain »
H[Emitpions ongsspeion Sytegsgsoton

e H{Snomie
H{Fiomeres o Hmen
Hisam i
o (- {Fems ez >
| Fosomptamesiocoans o [V

L [Fatos >

OEBPS/httpatomoreillycomsourceoreillyimages181034.png
) Chocking reur adion.__ Micresoh intemat Explone
EX

Yo g Tok t0

o Q.A A @ a2 o
Py B i e

it [e

i

Vs VESeit i oo SN

s sl 16

e

OEBPS/httpatomoreillycomsourceoreillyimages181032.png
EXZ Intemst E nplorer

B E8 Ve Foer Tk Hob

- © A A4 @ @ 3 D g
Bk S i o sesth Foer o WPt
P S

Title Information
T Dog Soris

e
Miroso VEScrpt ntime ror D03:0006
Type mismteh. Verfy BN
AtesGetTot 35, ins 55

&0me 24 Locarmanel

OEBPS/httpatomoreillycomsourceoreillyimages181036.png

OEBPS/httpatomoreillycomsourceoreillyimages181038.png
N,

OEBPS/httpatomoreillycomsourceoreillyimages181076.png
FileSystemObject

g™

L. roe

Textstream

OEBPS/httpatomoreillycomsourceoreillyimages181042.png
D3 T i s s w37 e @1

s P

OEBPS/httpatomoreillycomsourceoreillyimages181014.png
B Scrpt level cods in ASP _ Nicresolt Inkcsnct E splonet -5
G £ dor Frown Iow =
o 2.4 4 2 2 s
ey] G sout i s

L 3 0w

- 3
An Active Server Page

hecumee e s
Vi rened vy st S 11
Vit e by T Bt 12
Vit e by Dt e 11
The v cx 00w 11
vl

=
D T

OEBPS/httpatomoreillycomsourceoreillyimages181050.png
Inbox Properties EHE)

Gonerl | ags | tccive |

=) —

[———
Laction: PesonsiFaders
pescrptn

o o
I

When gotingto i foder, ue: [— =

¥ Aoty erert Mcrosft Exchnge viws

ol s

o el

OEBPS/orm_front_cover.jpg
——3

VBSCRIP

JAA R 0404

A Desktop Quick Reference

y Paul Lomax,
O’REILLY* Matt Childs & Ron Petrusha

OEBPS/httpatomoreillycomsourceoreillyimages181010.png
iation
e

fonra
hec
i

Regquest
Okt

Response
Objct

Server
Ot

Session
bt

OEBPS/httpatomoreillycomsourceoreillyimages181066.png
‘Specify characteristics

Wb rusge 030 want 0 7
 Esci
 sscet

Cowe [

7 D0 ou an spocialinpemerts sppor?
© Use this st v DHTM bhavirs
@ Suspot Acive Sever Poges.

Wt i cpions vk o et
R Enschesking
7 ebugong

S E

Caont cock | N>

OEBPS/httpatomoreillycomsourceoreillyimages181074.png
B Windows S ciipt Component Wizard - Step 6 of 6 =L71x]

That's all we need!

When o cick Frih. th wead i caneal o now il
ik Bock o 1ok ry chepgr 1o yout s

Sunmay:

reons St Componert
Warti
Veion 100

BbiiTcce 564 a1 340200

(——
aseiot
Tt
Inlenerts Upe fone)
Erxcheckn ()
Deugge (el o

OEBPS/httpatomoreillycomsourceoreillyimages181054.png
Wcipt WeaShel “Wahlework WihContrller

Ol Ot Ot Ohet
Vgqunens | [Wstorc | | [Viusoriar Wdenie
Db Ol b b

T

Wipred | [Wtnmanes | [“stepoment | [Wtsooteec] [Wospecaroes | [Wstsenottrar
ot Ot Opjec’ Ot Oy O

OEBPS/httpatomoreillycomsourceoreillyimages181058.png
2.0 Ala @I B I [
D o | o e iy
el 3 ew

st [T T

El
Matt's Wonderful World of Web

OEBPS/httpatomoreillycomsourceoreillyimages181052.png
Applction

Tomespoce

s

Poperypages Poerpoge]

NG OAaE)

Sy S0t

o ()

st bt oo

(et sty o

e Gnrardo i)

(e =)
o Gane
e ey Ot

H{Formpescrpin

OutookrGroups OwlooBarGoup

] etors et

Outonarstorts Oslosgarstorca)

[Feacimenspradimen) o o]
ey ecpient Voresor
N ML ar
s o) Pages ag)
Enasgune Conmandr Gnmandsn)

Fomeras Fiemere)

on

Fserd

OEBPS/httpatomoreillycomsourceoreillyimages181022.png

OEBPS/httpatomoreillycomsourceoreillyimages181018.png
5]
B k8 G from Lo [|
-

oo Q 3 4 Q@ 4 S b oD

Pt So it sewer fome Wiy Tt

b [T o op TR S) o
3

‘Welcome to our web page!
The e i 10

e ey e 11

Vi eraaedty e 12

Vil sencedty Decren 1

v cxi w1

v sy 30

10 My Carpen

OEBPS/httpatomoreillycomsourceoreillyimages181016.png
The cunent e o i 10
Ve etanad by ncrenent: 11
Vi ctuned by nenent 12
Vi etanad by Docres 11
The vae o i ron 11

The vae oy 1 0

st

OEBPS/httpatomoreillycomsourceoreillyimages181040.png
[-[o[x]
e £d_each beb
TIey

[CHEAD>CTITLE>A Simple ASP Page</TITLE></HEAD>
Py

[Good Horning, the tine is 2/25/00 2:54:13 AN on the server.cP>

l</noov>
<>

OEBPS/httpatomoreillycomsourceoreillyimages181068.png
Windows 5 cript Component Wizard - Step 3 of 6 =L71x]

Add Windows Script Component properties

s A
T B

et i, o and deu vabefor sch ey
& oroparty s nct egated o have a defaul vakae and thi el cn
e

Propetis.
Tiee Do

Read iy 314159
Fiead iy 2riecn

