

 [image: Programming Web Services with SOAP]

 Programming Web Services with SOAP

James Snell

Doug Tidwell

Pavel Kulchenko

Editor
Nathan Torkington

Copyright © 2009 O'Reilly Media, Inc.

[image: Programming Web Services with SOAP]

O'Reilly Media

Preface

You'd be hard-pressed to find a buzzword hotter than
web services
 . Breathless articles promise that web
services will revolutionize business, open new markets, and change
the way the world works. Proponents call web services "The
Third-Generation Internet," putting them on a par with email
and the browseable web. And no protocol for implementing web services
has received more attention than SOAP, the Simple Object
Access Protocol.

This book will give you perspective to make sense of all the hype.
When you finish this book, you will come away understanding three
things: what web services are, how they are written with SOAP, and
how to use other technologies with SOAP to build web services for the
enterprise.

While this book is primarily a technical resource for software
developers, its overview of the relevant technologies, development
models, standardization efforts, and architectural fundamentals can
be easily grasped by a nontechnical audience wishing to gain a better
understanding of this emerging set of new technologies.

For the technical audience, this book has several things to offer:
	A detailed walk-through of the SOAP, WSDL, UDDI, and related
specifications

	Source code and commentary for sample web services

	Insights on how to address issues such as security and reliability in
enterprise environments

Web services represent a powerful new way to build software systems
from distributed components. But because many of the technologies are
immature or only address parts of the problem, it's not a
simple matter to build a robust and secure web service. A web service
solution today will either dodge tricky issues like security, or will
be developed using many different technologies. We have endeavored to
lay a roadmap to guide you through the many possible technologies and
give you sound advice for developing web services.

Will web services revolutionize everything? Quite possibly, but
it's not likely to be as glamorous or lucrative, or happen as
quickly as the hype implies. At the most basic level, web services
are plumbing, and plumbing is never glamorous. The applications they
make possible may be significant in the future, and we discuss
Microsoft Passport and Peer-to-Peer (P2P) systems built with web
services, but the plumbing that enables these systems will never be
sexy.

Part of the fundamental utility of web services is their language
independence—we come back to this again and again in the book.
We show how Java, Perl, C#, and Visual Basic code can be easily
integrated using the web services architecture, and we describe the
underlying principles of the web service technologies that transcend
the particular programming language and toolkit you choose to use.

Audience for This Book

There's a shortage of good information on web services at all
levels. Managers are being bombarded with marketing hyperbole and
wild promises of efficiency, riches, and new markets. Programmers
have a bewildering array of acronyms thrust into their lives and are
expected to somehow choose the correct system to use. On top of this
confusion, there's pressure to do something with web service
immediately.

If you're a programmer, we show you the big picture of web
services, and then zoom in to give you low-level knowledge of the
underlying XML. This knowledge informs the detailed material on
developing SOAP web services. We also provide detailed information on
the additional technologies needed to implement enterprise-quality
web services.

Managers can benefit from this book, too. We strip away the hype and
present a realistic view of what is, what isn't, and what might
be. Chapter 1 puts SOAP in the wider context of
the web services architecture, and Chapter 9 looks
ahead to the future to see what is coming and what is needed (these
aren't always the same).

Structure of This Book

We've arranged the material in this book so that you can read
it from start to finish, or jump around to hit just the topics
you're interested in.

 Chapter 1
 , places SOAP in the
wider picture of web services, discussing Just-in-Time integration
and the Web Service Technology Stack.

 Chapter 2, explains what SOAP does and how it does
it, with constant reference to the XML messages being shipped around.
It covers the SOAP envelope, headers, body, faults, encodings, and
transports.

 Chapter 3, shows how to use SOAP toolkits in Perl,
Visual Basic, Java, and C# to create an elementary web service.

 Chapter 4, presents our first real-world web
service. Registered users may add, delete, or browse articles in a
database.

 Chapter 5, introduces the Web Services Description
Language (WSDL) at an XML and programmatic level, shows how WSDL
makes it easier to write a web service client, and discusses complex
message patterns.

 Chapter 6, shows how to use the Universal
Description, Discovery, and Integration (UDDI) project and the
WS-Inspection standard to publish, discover, and call web services,
and features best practices for using WSDL and UDDI together.

 Chapter 7, builds a peer-to-peer (P2P) web
services application for sharing source code in Perl and Java using
SOAP, WSDL, and related technologies.

 Chapter 8, describes the issues and approaches to
security in web services, focusing on Microsoft Passport, XML
Encryption, and Digital Signatures.

 Chapter 9, explains the present shortcomings in
web services technologies, describes some developing standardization
efforts, and identifies the future battlegrounds for web services
mindshare.

 Appendix A, is a summary of the many varied
standards for aspects of web services such as packaging, security,
transactions, routing, and workflow, with pointers to online sources
for more information on each standard.

 Appendix B, is a gentle introduction to the bits of
the XML Schema specification you'll need to know to make sense
of WSDL and UDDI.

 Appendix C, contains full source for the programs
developed in this book.

Conventions

The following typographic conventions are used in this book:
	
 Italic

	Used for filenames, directories, email addresses, and URLs.

	
 Constant Width

	Used for XML and code examples. Also used for constants, variables,
data structures, and XML elements.

	
 Constant Width Bold

	Used to indicate user input in examples and to highlight portions of
examples that are commented upon in the text.

	
 Constant Width Italic

	Used to indicate replaceables in examples.

Comments and Questions

We have tested and verified all of the information in this book to
the best of our ability, but you may find that features have changed,
that typos have crept in, or that we have made a mistake. Please let
us know about what you find, as well as your suggestions for future
editions, by contacting:

	O'Reilly & Associates, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the U.S. or Canada)
	(707) 829-0515 (international/local)
	(707) 829-0104 (fax)

You can also send us messages electronically. To be put on the
mailing list or request a catalog, send email to:

	
 info@oreilly.com

To ask technical questions or comment on the book, send email to:
	
 bookquestions@oreilly.com

We have a web site for the book, where we'll list examples,
errata, and any plans for future editions. You can access this page
at:

	
 http://www.oreilly.com/catalog/progwebsoap/

For more information about this book and others, see the
O'Reilly web site:

	
 http://www.oreilly.com

Acknowledgments

The authors and editor would like to thank the technical reviewers,
whose excellent and timely feedback greatly improved the book you
read: Ethan Cerami, Tony Hong, Matt Long, Simon Fell, and Aron
Roberts.

James

Thank you,
	To Pavel and Doug, for their help.
	To my editor, Nathan, for his persistent badgering.
	To my wife, Jennifer, for her patience.
	To my son, Joshua, for his joy.
	And to my God, for his grace.

This book wouldn't exist without them.

Doug

I would like to thank my wonderful wife, Sheri Castle, and our
amazing daughter, Lily, for their love and support. Nothing I do
would be possible or meaningful without them.

Pavel

I wouldn't have been able to participate in this project
without my family's patience and love. My son, Daniil, was the
source of inspiration for my work, and my wife, Alena, provided
constant support and encouragement. Thank you!

Many thanks to Tony Hong for his sound technical advice, productive
discussions, and our collaboration on projects that gave me the
required knowledge and experience.

I'd like to thank James Snell for inviting me to participate in
writing this book, and for the help he gave me throughout the
process.

Thanks to our wonderful technical editor, Nathan Torkington, who was
a delight to work with and wonderfully persistent in his efforts to
get this book done and make it great.

Finally, I am fortunate to be part of two communities, Perl and SOAP.
I want to thank the many people that make up those communities for
the enthusiastic support, feedback, and the fresh ideas that
they've provided to me—they've helped to make
SOAP::Lite and the other projects I've worked on what they are
now.

Chapter 1. Introducing Web Services

To make best use of web services and SOAP, you must have a firm
understanding of the principles and technologies upon which they
stand. This chapter is an introduction to a variety of new
technologies, approaches, and ideas for writing web-based
applications to take advantage of the web services architecture. SOAP
is one part of the bigger picture described in this chapter, and
you'll learn how it relates to the other technologies described
in this book: the Web Service Description Language (WSDL), the Web
Service Inspection Language (WS-IL), and the Universal Description,
Discovery, and Integration (UDDI) services.

What Is a Web Service?

Before we go any further, let's define the basic concept of a
"web service." A web
service
 is a network accessible interface to
application functionality, built using standard Internet
technologies. This is illustrated in Figure 1-1.

[image: A web service allows access to application code using standard Internet technologies]

Figure 1-1. A web service allows access to application code using standard Internet technologies

In other words, if an application can be accessed over a network
using a combination of protocols like HTTP, XML, SMTP, or Jabber,
then it is a web service. Despite all the media hype around web
services, it really is that simple.

Web services are nothing new. Rather, they represent the evolution of
principles that have guided the Internet for years.

Web Service Fundamentals

As Figure 1-1 and Figure 1-2 illustrate, a web service is an interface
positioned between the application code and the user of that code. It
acts as an abstraction layer, separating the platform and
programming-language-specific details of how the application code is
actually invoked. This standardized layer means that any language
that supports the web service can access the application's
functionality.

[image: Web services provide an abstraction layer between the application client and the application code]

Figure 1-2. Web services provide an abstraction layer between the application client and the application code

The web services that we see deployed on the Internet today are HTML
web sites. In these, the application services—the mechanisms
for publishing, managing, searching, and retrieving content—are
accessed through the use of standard protocols and data formats: HTTP
and HTML. Client applications (web browsers) that understand these
standards can interact with the application services to perform tasks
like ordering books, sending greeting cards, or reading news.

Because of the abstraction provided by the standards-based
interfaces, it does not matter whether the application services are
written in Java and the browser written in C++, or the application
services deployed on a Unix box while the browser is deployed on
Windows. Web services allow for cross-platform interoperability in a
way that makes the platform irrelevant.

 Interoperability
is one of the key benefits gained from implementing web services.
Java and Microsoft Windows-based solutions have typically been
difficult to integrate, but a web services layer between application
and client can greatly remove friction.

There is currently an ongoing effort within the Java community to
define an exact architecture for implementing web services within the
framework of the Java 2 Enterprise Edition specification. Each of the
major Java technology providers (Sun, IBM, BEA, etc.) are all working
to enable their platforms for web services support.

Many significant application vendors such as IBM and Microsoft have
completely embraced web services. IBM for example, is integrating web
services support throughout their WebSphere, Tivoli, Lotus, and DB2
products. And Microsoft's new .NET development platform is
built around web services.

What Web Services Look Like

Web services are a messaging framework. The only requirement placed
on a web service is that it must be capable of sending and receiving
messages using some combination of standard Internet protocols. The
most common form of web services is to call procedures running on a
server, in which case the messages encode "Call this subroutine
with these arguments," and "Here are the results of the
subroutine call."

 Figure 1-3 shows the pieces
of a web service. The application code holds all the business logic
and code for actually doing things (listing books, adding a book to a
shopping cart, paying for books, etc.). The
Service
Listener speaks the transport protocol (HTTP, SOAP, Jabber, etc.) and
receives incoming requests. The Service Proxy decodes those requests into
calls into the application code. The Service Proxy may then encode a
response for the Service Listener to reply with, but it is possible
to omit this step.

[image: A web service consists of several key components]

Figure 1-3. A web service consists of several key components

The Service Proxy and Service Listener components may either be
standalone applications (a TCP-server or HTTP-server daemon, for
instance) or may run within the context of some other type of
application server. As an example,

 IBM's WebSphere
Application Server includes built-in support for receiving a SOAP
message over HTTP and using that to invoke Java applications deployed
within WebSphere. In comparison, the popular open source
Apache web
server has a module that implements SOAP. In fact, there are
implementations of SOAP for both the Palm and PocketPL Portable
Digital Assistant (PDA) operating systems.

Keep in mind, however, that web services do not require a server
environment to run. Web services may be deployed anywhere that the
standard Internet technologies can be used. This means that web
services may be hosted or used by anything from an Application
Service Provider's vast server farm to a PDA.

Web services do not require that applications conform to a
traditional client-server (where the server holds the data and does
the processing) or n-tier development model (where data storage is
separated from business logic that is separated from the user
interface), although they are certainly being heavily deployed within
those environments. Web services may take any form, may be used
anywhere, and may serve any purpose. For instance, there are strong
crossovers between peer-to-peer systems (with decentralized data or
processing) and web services where peers use standard Internet
protocols to provide services to one another.

Intersection of Business and Programming

Because a web service exposes an application's functionality to
any client in any programming language, they raise interesting
questions in both the programming and the business world.

Programmers tend to raise questions like, "How do we do
two-phase commit transactions?" or "How do I do object
inheritance?" or "How do I make this damn thing run
faster?"—questions typically associated with going
through the steps of writing code.

Business folks, on the other hand, tend to ask questions like,
"How do I ensure that the person using the service is really
who they say they are?" or "How can we tie together
multiple web services into a workflow?" or "How can I
ensure the reliability of web service transactions?" Their
questions typically address business concerns.

These two perspectives go hand-in-hand with one another. Every
business issue will have a software-based solution. But the two
perspectives are also at odds with each other: the business processes
demand completeness, trust, security, and reliability, which may be
incompatible with the programmers' goals of simplicity,
performance, and robustness.

The outcome is that tools for implementing web services will do so
from one of these two angles, but rarely will they do so from both.
For example,
SOAP::Lite, the
Perl-based SOAP implementation written by the coauthor of this book,
Pavel Kulchenko, is essentially written for programmers. It provides
a very simple set of tools for invoking Perl modules using SOAP,
XML-RPC, Jabber, or any number of other protocols.

In contrast, Apache's Axis project (the next
generation of Apache's SOAP implementation) is a more complex
web services implementation designed to make it easier to implement
processes, or to tie together multiple web services. Axis can perform
the stripped down bare essentials, but that is not its primary focus.

The important thing to keep in mind is that both tools implement many
of the same set of technologies (SOAP, WSDL, UDDI, and others, many
of which we discuss later on), and so they are capable of
interoperating with each other. The differences are in the way they
interface with applications. This gives programmers a choice of how
their web service is implemented, without restricting the users of
that service.

Just-In-Time Integration

Once you understand the basic web services outlined earlier, the next
step is to add Just-In-Time
Integration
 . That is, the dynamic integration
of application services based not on the technology platform the
services are implemented in, but upon the business requirements of
what needs to get done.

Just-In-Time Integration recasts the Internet application development
model around a new framework called the web services architecture (Figure 1-4).

[image: The web services architecture]

Figure 1-4. The web services architecture

In the web services architecture, the service
provider publishes a description of the service(s) it
offers via the service registry. The
service consumer searches the service registry
to find a service that meets their needs. The service consumer could
be a person or a program.

Binding refers to a service consumer actually using the service
offered by a service provider. The key to Just-in-Time integration is
that this can happen at any time, particularly at runtime. That is, a
client might not know which procedures it will be calling until it is
running, searches the registry, and identifies a suitable candidate.
This is analogous to late binding in object-oriented programming.

Imagine a purchasing web service, where consumers requisition
products from a service provider. If the client program has
hard-coded the server it talks to, then the service is bound at
compile-time. If the client program searches for a suitable server
and binds to that, then the service is bound at runtime. The latter
is an example of Just-In-Time integration between services.

The Web Service Technology Stack

The web
services architecture is implemented through the layering of five
types of technologies, organized into layers that build upon one
another (Figure 1-5).

[image: The web service technology stack]

Figure 1-5. The web service technology stack

It should come as no surprise that this stack is very similar to the
TCP/IP network model used to describe the architecture of
Internet-based applications (Figure 1-6).

[image: The TCP/IP network model]

Figure 1-6. The TCP/IP network model

The additional packaging, description, and discovery layers in the
web services stack are the layers essential to providing Just-In-Time
Integration capability and the necessary platform-neutral programming
model.

Because each part of the web services stack addresses a separate
business problem, you only have to implement those pieces that make
the most sense at any given time. When a new layer of the stack is
needed, you do not have to rewrite significant chunks of your
infrastructure just to support a new form of exchanging information
or a new way of authenticating users.

The goal is total modularization of the distributed computing
environment as opposed to recreating the large monolithic solutions
of more traditional distributed platforms like Java, CORBA, and COM.
Modularity is particularly necessary in web services because of the
rapidly evolving nature of the standards. This is shown in the sample
CodeShare application of Chapter 7, where we
don't use the discovery layer, but we do draw in another XML
standard to handle security.

Beyond the Stack

The layers of the web services stack do not provide a complete
solution to many business problems. For instance, they don't
address security, trust, workflow, identity, or many other business
concerns. Here are some of the most important standardization
initiatives currently being pursued in these areas:

	XML Protocol
	
 The W3C XML
Protocol working group is chartered with standardizing the SOAP
protocol. Its work will eventually replace the SOAP protocol
completely as the de facto standard for implementing web services.

	XKMS
	
 The XML Key Management Services are a
set of security and trust related services that add Private Key
Infrastructure (PKI) capabilities to web services.

	SAML
	
 The Security Assertions Markup
Language is an XML grammar for expressing the occurrence of security
events, such as an authentication event. Used within the web services
architecture, it provides a standard flexible authentication system.

	XML-Dsig
	
 XML Digital Signatures allow any XML
document to be digitally signed.

	XML-Enc
	
 The
XML Encryption specification allows XML data to be encrypted and for
the expression of encrypted data as XML.

	XSD
	
 XML
Schemas are an application of XML used to express the structure of
XML documents.

	P3P
	
 The W3C's Platform for
Privacy Preferences is an XML grammar for the expression of data
privacy policies.

	WSFL
	The Web Services Flow Language is an
extension to WSDL that allows for the expression of work flows within
the web services architecture.

	Jabber
	
 Jabber is a new
lightweight, asynchronous transport protocol used in peer-to-peer
applications.

	ebXML
	
 ebXML is a suite of
XML-based specifications for conducting electronic business. Built to
use SOAP, ebXML offers one approach to implementing
business-to-business integration services.

Discovery

 The discovery layer provides the
mechanism for consumers to fetch the descriptions of providers. One
of the more widely recognized discovery mechanisms available is the
Universal Description, Discovery, and Integration (UDDI) project. IBM
and Microsoft have jointly proposed an alternative to UDDI, the Web
Services Inspection Language (WS-Inspection). We will discuss both
UDDI and WS-Inspection in depth (including arguments for and against
their use) in Chapter 6.

Description

When a web service is implemented, it must make decisions on every
level as to which network, transport, and packaging protocols it will
support. A description of that service represents those decisions in
such a way that the Service Consumer can contact and use the service.

The Web Service Description Language
(WSDL) is the de facto standard for providing those descriptions.
Other, less popular, approaches include the use of the W3C's
Resource Description Framework (RDF)
and the DARPA Agent Markup Language (DAML),
both of which provide a much richer (but far more complex) capability
of describing web services than WSDL.

We cover WSDL in Chapter 5. You can find out more
information about DAML and RDF from:

	
 http://daml.semanticweb.org

	
 http://www.w3.org/rdf

Packaging

 For
application data to be moved around the network by the transport
layer, it must be "packaged" in a format that all parties
can understand (other terms for this process are
"serialization" and "marshalling"). This
encompasses the choice of data types understood, the encoding of
values, and so on.

HTML is a kind of packaging format, but it can be inconvenient to
work with because HTML is strongly tied to the presentation of the
information rather than its meaning. XML is the basis for most of the
present web services packaging formats because it can be used to
represent the meaning of the data being transferred, and because XML
parsers are now ubiquitous.

 SOAP is a very common packaging
format, built on XML. In Chapter 2, we'll
see how SOAP encodes messages and data values, and in Chapter 3 we'll see how to write actual web
services with SOAP. There are several XML-based packaging protocols
available for developers to use (XML-RPC for instance), but as you
might have guessed from the title of this book, SOAP is the only
format we cover.

Transport

The transport layer includes the various
technologies that enable direct application-to-application
communication on top of the network layer. Such technologies include
protocols like TCP, HTTP, SMTP, and Jabber. The transport
layer's primary role is to move data between two or more
locations on the network. Web services may be built on top of almost
any transport protocol.

The choice of transport protocol is based largely on the
communication needs of the web service being implemented. HTTP, for
example, provides the most ubiquitous firewall support but does not
provide support for asynchronous communication. Jabber, on the other
hand, while not a standard, does provide good a asynchronous
communication channel.

Network

The
 network layer in the web services
technology stack is exactly the same as the network layer in the
TCP/IP
Network Model. It provides the critical basic communication,
addressing, and routing capabilities.

Application

The
 application layer is the code that
implements the functionality of the web service, which is found and
accessed through the lower layers in the stack.

The Peer Services Model

The peer
services model is a complimentary but alternative view of the web
services architecture. Based on the peer-to-peer
(P2P)
architecture, every member of a group of peers shares a common
collection of services and resources. A peer can be a person, an
application, a device, or another group of peers operating as a
single entity.

While it may not be readily apparent, the same fundamental web
services components are present as in the peer services architecture.
There are both service providers and service consumers, and there are
service registries. The distinction between providers and consumers,
however, is not as clear-cut as in the web services case. Depending
on the type of service or resource that the peers are sharing, any
individual peer can play the role of both a service provider and a
service consumer. This makes the peer services model more dynamic and
flexible.

 Instant
Messaging is the most widely utilized implementation of the peer
services model. Every person that uses instant messaging is a peer.
When you receive an invitation to chat with somebody, you are playing
the role of a service provider. When you send an invitation out to
chat with somebody else, you are playing the role of a service
consumer. When you log on to the Instant Messaging Server, the server
is playing the role of the service registry—that is, the
Instant Messaging Server keeps track of where you currently are and
what your instant messaging capabilities are. Figure 1-7 illustrates this.

[image: The peer web services model simply applies the concepts of the web services architecture in a peer-to-peer network]

Figure 1-7. The peer web services model simply applies the concepts of the web services architecture in a peer-to-peer network

Peer services and web services emerged and evolved separately from
one another, and accordingly make use of different protocols and
technologies to implement their respective models. Peer web services
tie the two together by unifying the technologies, the protocols, and
the models into a single comprehensive big picture. The
implementation of a peer web service will be the central focus of
Chapter 7.

Chapter 2. Introducing SOAP

 SOAP's place in the web services
technology stack is as a standardized packaging protocol for the
messages shared by applications. The specification defines nothing
more than a simple XML-based envelope for the information being
transferred, and a set of rules for translating application and
platform-specific data types into XML representations. SOAP's
design makes it suitable for a wide variety of application messaging
and integration patterns. This, for the most part, contributes to its
growing popularity.

This chapter explains the parts of the SOAP standard. It covers the
message format, the exception-reporting mechanism
(faults), and the system for encoding values in
XML. It discusses using SOAP over transports that aren't HTTP,
and concludes with thoughts on the future of SOAP. You'll learn
what SOAP does and how it does it, and get a firm understanding of
the flexibility of SOAP. Later chapters build on this to show how to
program with SOAP using toolkits that abstract details of the XML.

SOAP and XML

 SOAP is
XML. That is, SOAP is an application of the XML specification. It
relies heavily on XML standards like XML Schema and XML Namespaces
for its definition and function. If you are not familiar with any of
these, you'll probably want to get up to speed before
continuing with the information in this chapter (you can find
information about each of these specifications at the World Wide Web
Consortium's web site at http://www.w3c.org). This book assumes you
are familiar with these specifications, at least on a cursory level,
and will not spend time discussing them. The only exception is a
quick introduction to the XML Schema data types in Appendix B.

XML Messaging

 XML messaging
is where applications exchange information using XML documents (see
Figure 2-1). It provides a flexible way for
applications to communicate, and forms the basis of SOAP.

A message can be anything: a purchase order, a request for a current
stock price, a query for a search engine, a listing of available
flights to Los Angeles, or any number of other pieces of information
that may be relevant to a particular application.

[image: XML messaging]

Figure 2-1. XML messaging

Because XML is not tied to a particular application, operating
system, or programming language, XML messages can be used in all
environments. A Windows Perl program can create an XML document
representing a message, send it to a Unix-based Java program, and
affect the behavior of that Java program.

The fundamental idea is that two applications, regardless of
operating system, programming language, or any other technical
implementation detail, may openly share information using nothing
more than a simple message encoded in a way that both applications
understand. SOAP provides a standard way to structure XML messages.

RPC and EDI

 XML messaging, and
therefore SOAP, has two related applications: RPC and EDI. Remote
Procedure Call (RPC) is the basis of distributed computing, the way
for one program to make a procedure (or function, or method, call it
what you will) call on another, passing arguments and receiving
return values. Electronic Document Interchange (EDI) is basis of
automated business transactions, defining a standard format and
interpretation of financial and commercial documents and messages.

If you use SOAP for EDI (known as "document-style" SOAP),
then the XML will be a purchase order, tax refund, or similar
document. If you use SOAP for RPC (known, unsurprisingly, as
"RPC-style" SOAP) then the XML will be a representation
of parameter or return values.

The Need for a Standard Encoding

 If
you're exchanging data between heterogeneous systems, you need
to agree on a common representation. As you can see in Example 2-1, a single piece of data like a telephone
number may be represented in many different, and equally valid ways
in XML.

Example 2-1. Many XML representations of a phone number
<phoneNumber>(123) 456-7890</phoneNumber>
<phoneNumber>
 <areaCode>123</areaCode>
 <exchange>456</exchange>
 <number>7890</number>
</phoneNumber>
<phoneNumber area="123" exchange="456" label="7890" />
<phone area="123">
 <exchange>456</exchange>
 <number>7890</number>
</phone>

Which is the correct encoding? Who knows! The correct one is whatever
the application is expecting. In other words, simply saying that
server and client are using XML to exchange information is not
enough. We need to define:

	The types of information we are exchanging

	How that information is to be expressed as XML

	How to actually go about sending that information

Without these agreed conventions, programs cannot know how to decode
the information they're given, even if it's encoded in
XML. SOAP provides these conventions.

SOAP Messages

 A SOAP message consists of an envelope
containing an optional header and a required body, as shown in Figure 2-2. The header contains blocks of information
relevant to how the message is to be processed. This includes routing
and delivery settings, authentication or authorization assertions,
and transaction contexts. The body contains the actual message to be
delivered and processed. Anything that can be expressed in XML syntax
can go in the body of a message.

[image: The SOAP message structure]

Figure 2-2. The SOAP message structure

The XML syntax for expressing a SOAP message is based on the
http://www.w3.org/2001/06/soap-envelope namespace.
This XML namespace identifier points to an XML Schema that defines
the structure of what a SOAP message looks like.

If you were using document-style SOAP, you might transfer a purchase
order with the XML in Example 2-2.

Example 2-2. A purchase order in document-style SOAP
<s:Envelope
 xmlns:s="http://www.w3.org/2001/06/soap-envelope">
 <s:Header>
 <m:transaction xmlns:m="soap-transaction"
 s:mustUnderstand="true">
 <transactionID>1234</transactionID>
 </m:transaction>
 </s:Header>
 <s:Body>
 <n:purchaseOrder xmlns:n="urn:OrderService">
 <from><person>Christopher Robin</person>
 <dept>Accounting</dept></from>
 <to><person>Pooh Bear</person>
 <dept>Honey</dept></to>
 <order><quantity>1</quantity>
 <item>Pooh Stick</item></order>
 </n:purchaseOrder>
 </s:Body>
</s:Envelope>

This example illustrates all of the core components of the SOAP
Envelope specification. There is the
<s:Envelope>, the topmost container that
comprises the SOAP message; the optional
<s:Header>, which contains additional blocks
of information about how the body payload is to be processed; and the
mandatory <s:Body> element that contains the
actual message to be processed.

Envelopes

Every Envelope
 element must contain exactly one
Body element. The Body element
may contain as many child nodes as are required. The contents of the
Body element are the message. The
Body element is defined in such a way that it can
contain any valid, well-formed XML that has been namespace qualified
and does not contain any processing instructions or Document Type
Definition (DTD) references.

If an Envelope contains a
Header
 element, it must contain no more than
one, and it must appear as the first child of the
Envelope, beforethe
Body. The header, like the body, may contain any
valid, well-formed, and namespace-qualified XML that the creator of
the SOAP message wishes to insert.

Each element contained by the Header is called a
header block
 . The purpose of a header block is to
communicate contextual information relevant to the processing of a
SOAP message. An example might be a header block that contains
authentication credentials, or message routing information. Header
blocks will be highlighted and explained in greater detail throughout
the remainder of the book. In Example 2-2, the
header block indicates that the document has a transaction ID of
"1234".

RPC Messages

 Now
let's see an RPC-style message. Typically messages come in
pairs, as shown in Figure 2-3: the request (the
client sends function call information to the server) and the
response (the server sends return value(s) back to the client). SOAP
doesn't require every request to have a response, or vice
versa, but it is common to see the request-response pairing.

[image: Basic RPC messaging architecture]

Figure 2-3. Basic RPC messaging architecture

Imagine the server offers this function, which returns a
stock's price, as a SOAP service:

public Float getQuote(String symbol);

 Example 2-3 illustrates a simple RPC-style SOAP
message that represents a request for IBM's current stock
price. Again, we show a header block that indicates a transaction ID
of "1234".

Example 2-3. RPC-style SOAP message
<s:Envelope
 xmlns:s="http://www.w3.org/2001/06/soap-envelope">
 <s:Header>
 <m:transaction xmlns:m="soap-transaction"
 s:mustUnderstand="true">
 <transactionID>1234</transactionID>
 </m:transaction>
 </s:Header>
 <s:Body>
 <n:getQuote xmlns:n="urn:QuoteService">
 <symbol xsi:type="xsd:string">
 IBM
 </symbol>
 </n:getQuote>
 </s:Body>
</s:Envelope>

 Example 2-4 is a possible response that indicates
the operation being responded to and the requested stock quote value.

Example 2-4. SOAP response to request in Example 2-3

<s:Envelope
 xmlns:s="http://www.w3.org/2001/06/soap-envelope">
 <s:Body>
 <n:getQuoteRespone
 xmlns:n="urn:QuoteService">
 <value xsi:type="xsd:float">
 98.06
 </value>
 </n:getQuoteResponse>
 </s:Body>
</s:Envelope>

The mustUnderstand Attribute

 When a SOAP message is sent from one
application to another, there is an implicit requirement that the
recipient must understand how to process that message. If the
recipient does not understand the message, the recipient must reject
the message and explain the problem to the sender. This makes sense:
if Amazon.com sent O'Reilly a purchase order for 150 electric
drills, someone from O'Reilly would call someone from
Amazon.com and explain that O'Reilly and Associates sells
books, not electric drills.

Header blocks are different. A recipient may or may not understand
how to deal with a particular header block but still be able to
process the primary message properly. If the sender of the message
wants to require that the recipient understand a particular block, it
may add a mustUnderstand="true" attribute to the
header block. If this flag is present, and the recipient does not
understand the block to which it is attached, the recipient must
reject the entire message.

In the getQuote envelope we saw earlier, the
transaction header contains the
mustUnderstand="true" flag. Because this flag is
set, regardless of whether or not the recipient understands and is
capable of processing the message body (the
getQuote message), if it does not understand how
to deal with the transaction header block, the
entire message must be rejected. This guarantees that the recipient
understands transactions.

Encoding Styles

As part of the overall specification, Section 5 of the SOAP standard
introduces a concept known as encoding
styles
 . An encoding style is a set of rules
that define exactly how native application and platform data types
are to be encoded into a common XML syntax. These are, obviously, for
use with RPC-style SOAP.

The encoding style for a particular set of XML elements is defined
through the use of the
encodingStyle
 attribute, which can be placed
anywhere in the document and applies to all subordinate children of
the element on which it is located.

For example, the encodingStyle attribute on the
getQuote element in the body of Example 2-5 indicates that all children of the
getQuote element conform to the encoding style
rules defined in Section 5.

Example 2-5. The encodingStyle attribute
<s:Envelope
 xmlns:s="http://www.w3.org/2001/06/soap-envelope">
 <s:Body>
 <n:getQuote xmlns:n="urn:QuoteService"
 s:encodingStyle="http://www.w3.org/2001/06/soap-encoding">
 <symbol xsi:type="xsd:string">IBM</symbol>
 </n:getQuote>
 </s:Body>
</s:Envelope>

Even though the SOAP specification defines an encoding style in
Section 5, it has been explicitly declared that no single style is
the default serialization scheme. Why is this important?

Encoding styles are how applications on different platforms share
information, even though they may not have common data types or
representations. The approach that the SOAP Section 5 encoding style
takes is just one possible mechanism for providing this, but it is
not suitable in every situation.

For example, in the case where a SOAP message is used to exchange a
purchase order that already has a defined XML syntax, there is no
need for the Section 5 encoding rules to be applied. The purchase
order would simply be dropped into the Body
section of the SOAP envelope as is.

The SOAP Section 5 encoding style will be discussed in much greater
detail later in this chapter, as most SOAP applications and libraries
use it.

Versioning

 There
have been several versions of the SOAP specification put into
production. The most recent working draft, SOAP Version 1.2,
represents the first fruits of the World Wide Web Consortium's
(W3C) effort to standardize an XML-based packaging protocol for web
services. The W3C chose SOAP as the basis for that effort.

The previous version of SOAP, Version 1.1, is still widely used. In
fact, at the time we are writing this, there are only three
implementations of the SOAP 1.2 specification available: SOAP::Lite
for Perl, Apache SOAP Version 2.2, and Apache Axis (which is not even
in beta status).

While SOAP 1.1 and 1.2 are largely the same, the differences that do
exist are significant enough to warrant mention. To prevent subtle
incompatibility problems, SOAP 1.2 introduces a versioning model that
deals with how SOAP Version 1.1 processors and SOAP Version 1.2
processors may interact. The rules for this are fairly
straightforward:

	If a SOAP Version 1.1 compliant application receives a SOAP Version
1.2 message, a "version mismatch" error will be
triggered.

	If a SOAP Version 1.2 compliant application receives a SOAP Version
1.1 message, the application may choose to either process it
according to the SOAP Version 1.1 specification or trigger a
"version mismatch" error.

The version of a SOAP message can be determined by checking the
namespace defined for the SOAP envelope. Version 1.1 uses the
namespace
http://schemas.xmlsoap.org/soap/envelope/, whereas
Version 1.2 uses the namespace
http://www.w3.org/2001/06/soap-envelope. Example 2-6 illustrates the difference.

Example 2-6. Distinguishing between SOAP 1.1 and SOAP 1.2
<!-- Version 1.1 SOAP Envelope -->
<s:Envelope
 xmlns:s="
http://schemas.xmlsoap.org/soap/envelope/">
 ...
</s:Envelope>

<!-- Version 1.2 SOAP Envelope -->
<s:Envelope
 xmlns:s="
http://www.w3.org/2001/06/soap-envelope">
 ...
</s:Envelope>

When applications report a version mismatch error back to the sender
of the message, it may optionally include an
Upgrade header block that tells the sender which
version of SOAP it supports. Example 2-7 shows the
Upgrade header in action.

Example 2-7. The Upgrade header
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
 <s:Header>
 <V:Upgrade xmlns:V="http://www.w3.org/2001/06/soap-upgrade">
 <envelope qname="ns1:Envelope"
 xmlns:ns1="http://www.w3.org/2001/06/soap-envelope"/>
 </V:Upgrade>
 </s:Header>
 <s:Body>
 <s:Fault>
 <faultcode>s:VersionMismatch</faultcode>
 <faultstring>Version Mismatch</faultstring>
 </s:Fault>
 </s:Body>
</s:Envelope>

For backwards compatibility, version mismatch errors must conform to
the SOAP Version 1.1 specification, regardless of the version of SOAP
being used.

SOAP Faults

A SOAP fault (shown in Example 2-8) is a special type of message specifically
targeted at communicating information about errors that may have
occurred during the processing of a SOAP message.

Example 2-8. SOAP fault
<s:Envelope xmlns:s="...">
 <s:Body>
 <s:Fault>
 <faultcode>Client.Authentication</faultcode>
 <faultstring>
 Invalid credentials
 </faultstring>
 <faultactor>http://acme.com</faultactor>
 <details>
 <!-- application specific details -->
 </details>
 </s:Fault>
 </s:Body>
</s:Envelope>

The information communicated in the SOAP fault is as follows:
	The fault code
	An algorithmically generated value for identifying the type of error
that occurred. The value must be an XML Qualified Name, meaning that
the name of the code only has meaning within a defined XML namespace.

	The fault string
	A human-readable explanation of the error.

	The fault actor
	The unique identifier of the message processing node at which the
error occurred (actors will be discussed later).

	The fault details
	Used to express application-specific details about the error that
occurred. This must be present if the error that occurred is directly
related to some problem with the body of the message. It must not be
used, however, to express information about errors that occur in
relation to any other aspect of the message process.

Standard SOAP Fault Codes

 SOAP defines four standard types of
faults that belong to the
http://www.w3.org/2001/06/soap-envelope namespace.
These are described here:

	
 VersionMismatch

	
 The SOAP envelope is using an invalid
namespace for the SOAP Envelope element.

	
 MustUnderstand

	
 A
Header block contained a
mustUnderstand="true" flag that was not understood
by the message recipient.

	
 Server

	
 An error
occurred that can't be directly linked to the processing of the
message.

	
 Client

	
 There is a
problem in the message. For example, the message contains invalid
authentication credentials, or there is an improper application of
the Section 5 encoding style rules.

These fault codes can be extended to allow for more expressive and
granular types of faults, while still maintaining backwards
compatibility with the core fault codes.

The example SOAP fault demonstrates how this extensibility works. The
Client.Authentication fault code is a more
granular derivative of the Client fault type. The
"." notation indicates that the piece to the left of the
period is more generic than the piece that is to the right of the
period.

MustUnderstand Faults

 As
mentioned earlier, a header block contained within a SOAP message may
indicate through the mustUnderstand="true" flag
that the recipient of the message must understand how to process the
contents of the header block. If it cannot, then the recipient must
return a MustUnderstand fault back to the sender
of the message. In doing so, the fault should communicate specific
information about the header blocks that were not understood by the
recipient.

The SOAP fault structure is not allowed to express any information
about which headers were not understood. The
details element would be the only place to put
this information and it is reserved solely for the purpose of
expressing error information related to the processing of the body,
not the header.

To solve this problem, the SOAP Version 1.2 specification defines a
standard
Misunderstood
 header block that can be added to
the SOAP fault message to indicate which header blocks in the
received message were not understood. Example 2-9
shows this.

Example 2-9. The Misunderstood header
<s:Envelope xmlns:s="...">
 <s:Header>
 <f:Misunderstood qname="abc:transaction"
 xmlns:="soap-transactions" />
 </s:Header>
 <s:Body>
 <s:Fault>
 <faultcode>MustUnderstand</faultcode>
 <faultstring>
 Header(s) not understood
 </faultstring>
 <faultactor>http://acme.com</faultactor>
 </s:Fault>
 </s:Body>
</s:Envelope>

The Misunderstood header block is optional, which
makes it unreliable to use as the primary method of determining which
headers caused the message to be rejected.

Custom Faults

 A web
service may define its own custom fault codes that do not derive from
the ones defined by SOAP. The only requirement is that these custom
faults be namespace qualified. Example 2-10 shows a
custom fault code.

Example 2-10. A custom fault
<s:Envelope xmlns:s="...">
 <s:Body>
 <s:Fault xmlns:xyz="urn:myCustomFaults">
 <faultcode>xyz:CustomFault</faultcode>
 <faultstring>
 My custom fault!
 </faultstring>
 </s:Fault>
 </s:Body>
</s:Envelope>

Approach custom faults with caution: a SOAP processor that only
understands the standard four fault codes will not be able to take
intelligent action upon receipt of a custom fault. However, custom
faults can still be useful in situations where the standard fault
codes are too generic or are otherwise inadequate for the expression
of what error occurred.

For the most part, the extensibility of the existing four fault codes
makes custom fault codes largely unnecessary.

The SOAP Message Exchange Model

Processing a SOAP message involves pulling apart the envelope and
doing something with the information that it carries. SOAP defines a
general framework for such processing, but leaves the actual details
of how that processing is implemented up to the application.

What the SOAP specification does have to say about message processing
deals primarily with how applications exchange SOAP messages. Section
2 of the specification outlines a very specific

 message exchange model.

Message Paths and Actors

At the core of this exchange model is the idea that while a SOAP
message is fundamentally a one-way transmission of an envelope from a
sender to a receiver, that message may pass through various
intermediate processors that each in turn do something with the
message. This is analogous to a Unix pipeline, where the output of
one program becomes the input to another, and so on until you get the
output you want.

A
 SOAP
intermediary is a web service specially designed to sit between a
service consumer and a service provider and add value or
functionality to the transaction between the two. The set of
intermediaries that the message travels through is called the
message path.
Every intermediary along that path is known as an actor.

The construction of a message path (the definition of which nodes a
message passes through) is not covered by the SOAP specification.
Various extensions to SOAP, such as Microsoft's SOAP Routing
Protocol (WS-Routing) have emerged to fill that gap, but there is
still no standard (de facto or otherwise) method of expressing the
message path. We cover WS-Routing later.

What SOAP does specify, however, is a mechanism of identifying which
parts of the SOAP message are intended for processing by specific
actors in its message path. This mechanism is known as
"targeting"
and can only be used in relation to header blocks (the body of the
SOAP envelope cannot be explicitly targeted at a particular node).

A header block is targeted to a specific actor on its message path
through the use of the special
actor
 attribute. The value of the
actor attribute is the unique identifier of the
intermediary being targeted. This identifier may be the URL where the
intermediary may be found, or something more generic. Intermediaries
that do not match the actor attribute must ignore
the header block.

For example, imagine that I am a wholesaler of fine cardigan
sweaters. I set up a web service that allows me to receive purchase
orders from my customers in the form of SOAP messages. You, one of my
best customers, want to submit an order for 100 sweaters. So you send
me a SOAP message that contains the purchase order.

For our mutual protection, however, I have established a relationship
with a trusted third-party web service that can help me validate that
the purchase order you sent really did come from you. This service
works by verifying that your digital signature header block embedded
in the SOAP message is valid.

When you send that message to me, it is going to be routed through
this third-party signature verification service, which will, in turn,
extract the digital signature, validate it, and add a new header
block that tells me whether the signature is valid. The transaction
is depicted in Figure 2-4.

[image: The signature validation intermediary]

Figure 2-4. The signature validation intermediary

Now, the signature verification intermediary needs to have some way
of knowing which header block contains the digital signature that it
is expected to verify. This is accomplished by targeting the digital
signature block to the verification service, as in Example 2-11.

Example 2-11. The actor header
<s:Envelope xmlns:s="...">
 <s:Header>
 <x:signature actor="uri:SignatureVerifier">
 ...
 </x:signature>
 </s:Header>
 <s:Body>
 <abc:purchaseOrder>...</abc:purchaseOrder>
 </s:Body>
</s:Envelope>

The actor attribute on the
signature header block is how the signature
verifier intermediary knows that it is responsible for processing
that header block. If the message does not pass through the signature
verifier, then the signature block is ignored.

The SOAP Routing Protocol

 Remember, SOAP does not specify
howthe message is to be routed to the signature
verification service, only that it should be at some point during the
processing of the SOAP message. This makes the implementation of SOAP
message paths a fairly difficult proposition since there is no single
standard way of representing that path. The SOAP Routing Protocol
(WS-Routing) is Microsoft's proposal for solving this problem.

WS-Routing defines a standard SOAP header block (see Example 2-12) for expressing routing information. Its role
is to define the exact sequence of intermediaries through which a
message is to pass.

Example 2-12. A WS-Routing message
<s:Envelope xmlns:s="...">
 <s:Header>
 <m:path xmlns:m="http://schemas.xmlsoap.org/rp/"
 s:mustUnderstand="true">
 <m:action>http://www.im.org/chat</m:action>
 <m:to>http://D.com/some/endpoint</m:to>
 <m:fwd>
 <m:via>http://B.com</m:via>
 <m:via>http://C.com</m:via>
 </m:fwd>
 <m:rev>
 <m:via/>
 </m:rev>
 <m:from>mailto:johndoe@acme.com</m:from>
 <m:id>
 uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d6
 </m:id>
 </m:path>
 </S:Header>
 <S:Body>
 ...
 </S:Body>
</S:Envelope>

In this example, we see the SOAP message is intended to be delivered
to a recipient located at
http://d.com/some/endpoint but that it must first
go through both the http://b.com and
http://c.com intermediaries.

To ensure that the message path defined by the WS-Routing header
block is properly followed, and because WS-Routing is a third-party
extension to SOAP that not every SOAP processor will understand, the
mustUnderstand="true" flag can be set on the
path header block.

Using SOAP for RPC-Style Web Services

 RPC is the most
common application of SOAP at the moment. The following sections show
how method calls and return values are encoded in SOAP message
bodies.

Invoking Methods

 The rules for packaging an RPC request
in a SOAP envelope are simple:

	The method call is represented as a single
structure with each in or in-out parameter modeled
as a field in that structure.

	The names and physical order of the parameters must correspond to the
names and physical order of the parameters in the method being
invoked.

This means that a Java method with the following signature:
String checkStatus(String orderCode,
 String customerID);
can be invoked with these arguments:
result = checkStatus("abc123", "Bob's Store")
using the following SOAP envelope:
<s:Envelope xmlns:s="...">
 <s:Body>
 <checkStatus xmlns="..."
 s:encodingStyle="http://www.w3.org/2001/06/soap-encoding">
 <orderCode xsi:type="string">abc123</orderCode>
 <customerID xsi:type="string">
 Bob's Store
 </customerID>
 </checkStatus>
 </s:Body>
</s:Envelope>
The SOAP RPC conventions do not require the use of the SOAP Section 5
encoding style and xsi:type explicit data typing.
They are, however, widely used and will be what we describe.

Returning Responses

 Method responses are similar to
method calls in that the structure of the response is modeled as a
single structure with a field for each in-out or
out parameter in the method signature. If the
checkStatus method we called earlier returned the
string new, the SOAP response might be something
like Example 2-13.

Example 2-13. Response to the method call
<s:Envelope xmlns:s="...">
 <s:Body>
 <checkStatusResponse
 s:encodingStyle="http://www.w3.org/2001/06/soap-encoding">
 <return xsi:type="xsd:string">new</return>
 </checkStatusResponse>
 </SOAP:Body>
</SOAP:Envelope>

The name of the message response structure
(checkStatusResponse) element is not important,
but the convention is to name it after the method, with
Response appended. Similarly, the name of the
return element is arbitrary—the first field in the message
response structure is assumed to be the return value.

Reporting Errors

 The SOAP RPC conventions make use of
the SOAP fault as the standard method of returning error responses to
RPC clients. As with standard SOAP messages, the SOAP fault is used
to convey the exact nature of the error that has occurred and can be
extended to provide additional information through the use of the
detail element. There's little point in
customizing error messages in SOAP faults when you're doing
RPC, as most SOAP RPC implementations will not know how to deal with
the custom error information.

SOAP's Data Encoding

 The first part of the SOAP
specification outlines a standard envelope format for packaging data.
The second part of the specification (specifically, Section 5)
outlines one possible method of serializing the data intended for
packaging. These rules outline in specific detail how basic
application data types are to be mapped and encoded into XML format
when embedded into a SOAP Envelope.

The SOAP specification introduces the SOAP encoding style as "a
simple type system that is a generalization of the common features
found in type systems in programming languages, databases, and
semi-structured data." As such, these encoding rules can be
applied in nearly any programming environment regardless of the minor
differences that exist between those environments.

Encoding styles are completely optional, and in many situations not
useful (recall the purchase order example we gave earlier in this
chapter, where it made sense to ship a document and not an encoded
method call/response). SOAP envelopes are designed to carry any
arbitrary XML documents no matter what the body of the message looks
like, or whether it conforms to any specific set of data encoding
rules. The Section 5 encoding rules are offered only as a convenience
to allow applications to dynamically exchange information without a
priori knowledge of the types of information to be exchanged.

Understanding the Terminology

Before continuing, it is important to gain a firm understanding of
the vocabulary used to describe the encoding process. Of particular
importance are the terms
value

and
accessor
 .

A value represents either a single data unit or
combination of data units. This could be a person's name, the
score of a football game, or the current temperature. An
accessor represents an element that contains or
allows access to a value. In the following,
firstname is an accessor, and
Joe is a value:

<firstname> Joe </firstname>
A compound value represents a combination of two or more accessors
grouped as children of a single accessor, and is demonstrated in
Example 2-14.

Example 2-14. A compound value
<name>
 <firstname> Joe </firstname>
 <lastname> Smith </lastname>
</name>

There are two types of compound values, structs (the structures we
talked about earlier) and arrays. A
struct

is a compound value in which each accessor has a different name. An
array

is a compound value in which the accessors have the same name (values
are identified by their positions in the array). A struct and an
array are shown in Example 2-15.

Example 2-15. Structs and arrays
<!--A struct -->
<person>
 <firstname>Joe</firstname>
 <lastname>Smith</lastname>
</person>

<!--An array-->
<people>
 <person name='joe smith'/>
 <person name='john doe'/>
</people>

Through the use of the special id and
href attributes, SOAP defines that accessors may
either be
single-referenced
 or
multireferenced
 . A single-referenced accessor
doesn't have an identity except as a child of its parent
element. In Example 2-16, the
<address> element is a single-referenced
accessor.

Example 2-16. A single-referenced accessor
<people>
 <person name='joe smith'>
 <address>
 <street>111 First Street</street>
 <city>New York</city>
 <state>New York</state>
 </address>
 </person>
</people>

A multireferenced accessor uses id to give an
identity to its value. Other accessors can use the
href attribute to refer to their values. In Example 2-17, each person has the same address, because
they reference the same multireferenced address
accessor.

Example 2-17. A multireferenced accessor
<people>
 <person name='joe smith'>
 <address href='#address-1'
 </person>
 <person name='john doe'>
 <address href='#address-1'
 </person>
</people>
<address id='address-1'>
 <street>111 First Street</street>
 <city>New York</city>
 <state>New York</state>
</address>

This approach can also be used to allow an accessor to reference
external information sources that are not a part of the SOAP Envelope
(binary data, for example, or parts of a MIME multipart envelope).
Example 2-18 references information contained within
an external XML document.

Example 2-18. A reference to an external document
<person name='joe smith'>
 <address href='http://acme.com/data.xml#joe_smith' />
</person>

XML Schemas and xsi:type

 The SOAP
encoding rule in Section 5.1 states how to express data types within
the SOAP envelope, and has caused quite a bit of confusion and
challenges for SOAP implementers. Read for yourself:

Although it is possible to use the xsi:type
attribute such that a graph of values is self-describing both in its
structure and that types of its values, the serialization rules
permit that the types of values MAY be determinable only by reference
to a schema. Such schemas MAY be in the notation described by
`XML Schema Part 1: Structures' and `XML Schemas
Part 2: Data types' or MAY be in any other notation.

English translation: SOAP defines three different ways to express the
data type of an accessor.

	Use the xsi:type attribute on each accessor,
explicitly referencing the data type according to the XML Schema
specification, as in this example:

<person>
 <name xsi:type="xsd:string">John Doe</name>
</person>

	Reference an XML Schema document that defines the exact data type of
a particular element within its definition, as in this example:

<person xmlns="personschema.xsd">
 <name>John Doe</name>
</person>
<!-- where "personschema.xsd" defines the name
 element as type=xsd:string -->

	Reference some other type of schema document that defines the data
type of a particular element within its definition, as in this
example:

<person xmlns="urn:some_namespace">
 <name>John Doe</name>
</person>
<!-- where "urn:some_namespace" indicates some
 namespace in which the value of name
 elements are strings -->

 Early SOAP
implementations varied in their interpretations of this part of the
SOAP specification, causing some rather nasty and annoying
integration problems (ironic because SOAP's main goal is to
enable interoperability). In particular, the IBM (later Apache) SOAP
implementation chose the route of requiring
xsi:type based typing (forgoing the other two
options completely) while the Microsoft SOAP implementation chose to
completely ignore the xsi:type option in favor of
using schemas based on an external service description document.
Since neither tool was implemented as a complete implementation of
the SOAP Encoding rules, neither tool was capable of interpreting the
data types encoded by the other, even though both were implemented as
legal SOAP Encoding schemes. This has, fortunately, since been
resolved.

In fact, there has been a large ongoing effort to improve the
interoperability between SOAP implementations. For more information
about this effort, see the "SOAPBuilders" group at
http://groups.yahoo.com.

SOAP Data Types

 The
data types supported by the SOAP encoding style are the data types
defined by the "XML Schema data types" specification. All
data types used within a SOAP-encoded block of XML must either be
taken directly from the XML Schema specification or derived from
types therein.

SOAP encoding provides two alternate syntaxes for expressing
instances of these data types within the SOAP envelope. Example 2-19 shows two equivalent expressions of an integer
equaling the value "36".

Example 2-19. Alternate SOAP encoding syntaxes for typing values
<SOAP-ENC:int>36</SOAP-ENC:int>
<value xsi:type="xsd:int">36</value>

The first method is what is known as an anonymous
accessor

 , and is commonly found in SOAP
encoded arrays (as we will see a little later in this chapter).
It's "anonymous" because the accessor's name
is its type, rather than a meaningful identification for the value.
The second approach is the named accessor syntax that we've
already seen. Either is valid since they both can be directly linked
back to the XML Schema data types.

Multiple References in XML-Encoded Data

The values a program works with are stored in memory. Variables are
how programming languages let you manipulate those values in memory.
Two different variables might have the same value; for instance, two
integer variables could both be set to the value 42. The SOAP XML
encoding for this would use single-reference XML, as in Example 2-20.

Example 2-20. Two integer variables set to 42
<SOAP-ENC:int>42</SOAP-ENC:int>
<SOAP-ENC:int>42</SOAP-ENC:int>

Sometimes, though, you need to indicate that two separate variables
are stored in the same piece of memory. For instance, if this
subroutine call is going to be XML encoded for SOAP, you'll
need to identify the first and second parameters as being the same:

tweak(&i, &i);
You do this with Section 5's encoding rules using
multiple-reference types. That is, you use
the id attribute to name the value in
i, then use the href attribute
to identify other occurrences of that value, as in Example 2-21.

Example 2-21. Multiple-reference to indicate two parameters are the same
<value xsi:type="xsd:int" id="v1">42</value>
<value href="#v1" />

It's important to understand that even though
"SOAP" originally stood for "Simple Object Access
Protocol," it actually has no concept of what an object is. To
SOAP, everything is data encoded into XML. Therefore there is no such
thing as an "object reference" in SOAP. Rather,
SOAP Section 5 Encoding specifies a set of rules for transforming an
object into XML representing that object. All references to that
object that must also be encoded would be done through the use of the
id and href attributes.

Given Example 2-22, the SOAP encoded serialization of
the Person object might look something like Example 2-23.

Example 2-22. Java code to construct an object
Address address = new Address();
Person person = new Person();
person.setAddress(address);

Example 2-23. SOAP serialization of the object
<Person>
 <Address href="#address1" />
</Person>
<Address id="address1" />

Structs, Arrays, and Other Compound Types

 It was mentioned previously that the
difference between an

 array and a struct in SOAP is that in an
array, each accessor in the group is differentiated only by its
ordinal position in the group, whereas in the struct, each accessor
is differentiated by name. This was shown in Example 2-15.

 Even though many programming languages regard
strings as an array of bytes, SOAP does not. A string is represented
with the string data type, rather than as an array of bytes. If you
do have a collection of bytes that you want to ship around, and those
bytes do not represent a text string, SOAP Section 5 Encoding decrees
that you should use a base64 string, as defined by the XML Schemas
specification. The proper serialization of an array of arbitrary
bytes, then, is shown in Example 2-24.

Example 2-24. A SOAP-encoded array of bytes
<some_binary_data xsi:type="SOAP-ENC:base64">
 aDF4JIK34KJjk3443kjlkj43SDF43==
</some_binary_data>

Regular arrays,
however, are indicated as
accessors
of the type SOAP-ENC:Array, or a type derived from
that. The type of elements that an array can contain is indicated
through the use of the SOAP defined
arrayType
 attribute, shown in Example 2-25.

Example 2-25. The arrayType attribute
<some_array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="se:string[3]">
 <se:string>Joe</se:string>
 <se:string>John</se:string>
 <se:string>Marsha</se:string>
</some_array>

Note the [3] appended to the end of the data type
value on the arrayType attribute. The square
brackets ([]

) indicate the dimensions of the array,
while the numbers internally represent the number of elements per
dimension. In other words, [3] indicates a single
dimension of 3 elements, while [3,2] indicates a
two dimensional array of three elements each. SOAP Encoding supports
an unlimited number of dimensions per array in addition to allowing
arrays of arrays. For instance, an arrayType of
xsd:string[2][] indicates an unbounded array of
single dimensional string arrays, each of which contains two
elements.

In Example 2-26, the data accessor
is an array that contains both of the names
arrays.

Example 2-26. A two-dimensional array
<data xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[2][]">
 <names href="#names-1"/>
 <names href="#names-2"/>
</data>
<names id="names-1" xsi:type="SOAP-ENC:Array"
 SOAP-ENC:arrayType="xsd:string[2]">
 <name>joe</name>
 <name>john</name>
</names>
<names id="names-2" xsi:type="SOAP-ENC:Array"
 SOAP-ENC:arrayType="xsd:string[2]">
 <name>mike</name>
 <name>bill</name>
</names>

Multidimensional arrays, expressed as XML, are syntactically no
different than a regular single-dimension array, with the exception
of the value indicated by the arrayType attribute.
For example, a two-dimensional array of two strings is nearly
identical to a one-dimensional array of four strings (shown in Example 2-27).

Example 2-27. Comparison of two-dimensional and one-dimensional arrays
<names xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[2,2]">
 <name xsi:type="xsd:string">a1d1</name>
 <name xsi:type="xsd:string">a2d1</name>
 <name xsi:type="xsd:string">a1d2</name>
 <name xsi:type="xsd:string">a2d2</name>
</names>

<names xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[4]">
 <name xsi:type="xsd:string">a1d1</name>
 <name xsi:type="xsd:string">a2d1</name>
 <name xsi:type="xsd:string">a3d1</name>
 <name xsi:type="xsd:string">a4d1</name>
</names>

The value of the arrayType attribute distinguishes
the true nature of the serialized array.

Partially Transmitted Arrays and Sparse Arrays

SOAP Encoding also includes support for partially
transmitted arrays

 and sparse
arrays
 through a set of additional attribute
definitions.

A partially transmitted array is one in which only part of the array
is serialized into the SOAP envelope. This is indicated through the
use of the
SOAP-ENC:offset
 attribute that provides the number or
ordinals counting from zero to the first ordinal position
transmitted. In other words, if you have a single-dimensional array
of five elements, and you want to transmit only the last two, you
would use the syntax in Example 2-28.

Example 2-28. Using SOAP-ENC:offset for partially transmitted arrays
<names xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[5]"
 SOAP-ENC:offset="[2]">
 <name>Item 4</name>
 <name>Item 5</name>
</names>

Sparse arrays represent a grid of values with specified dimensions
that may or may not contain any data. For example, if you have a
two-dimensional array of ten items each, but only the elements at
position [2,5] and [5,2]
contain data, the serialization in Example 2-29 would
be appropriate.

Example 2-29. SOAP serialization of sparse arrays
<names xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[10,10]">
 <name SOAP-ENC:position="[2,5]">data</name>
 <name SOAP-ENC:position="[5,2]">data</name>
</names>

Null Accessors

 In the sparse array example, the
absence of an accessor indicates that the value of the accessor is
either null or some other default value. One problem with this is the
fact that the receiver of the message has no real way of knowing
whether the value of the accessor really was null, or if the sender
just failed to serialize the message properly.

If the receiver expects to find the accessor in the message, a better
method of indicating whether an accessor contains a null value would
be to use the XML Schema defined xsi:nil="true"
attribute:

<name xsi:type="xsd:string" xsi:nil="true" />
This allows you to be far more expressive in your encoding of
application data and eliminates confusion over the significance of
missing elements.

SOAP Transports

 As mentioned before, SOAP fits in on the
web services technology stack as a standardized packaging protocol
layered on top of the network and transport layers. As a packaging
protocol, SOAP does not care what transport protocols are used to
exchange the messages. This makes SOAP extremely flexible in how and
where it is used.

As an illustration of this flexibility, SOAP::Lite—the
Perl-based SOAP web services implementation written by Pavel
Kulchenko—supports the ability to exchange SOAP messages
through HTTP, FTP, raw TCP, SMTP, POP3, MQSeries, and Jabber.
We'll show SOAP over Jabber in Chapter 3.

SOAP over HTTP

Because of its pervasiveness on the Internet,

 HTTP is by far the most
common transport used to exchange SOAP messages. The SOAP
specification even goes so far as to give special treatment to HTTP
within the specification itself—outlining in specific detail
how the semantics of the SOAP message exchange model map onto HTTP.

SOAP-over-HTTP is a natural match with SOAP's RPC
(request-response) conventions because HTTP is a
request-response-based protocol.The SOAP request message is posted to
the HTTP server with the HTTP request, and the server returns the
SOAP response message in the HTTP response (see Figure 2-5).

[image: SOAP request messages are posted to the HTTP server and response messages are returned over the same HTTP connection]

Figure 2-5. SOAP request messages are posted to the HTTP server and response messages are returned over the same HTTP connection

 Example 2-30 and Example 2-31
illustrate an HTTP request and HTTP response messages that contain a
SOAP message.

Example 2-30. HTTP request containing a SOAP message
POST /StockQuote HTTP/1.1
Content-Type: text/xml
Content-Length: nnnn
SOAPAction: "urn:StockQuote#GetQuote"

<s:Envelope xmlns:s="http://www.w3.org/2001/06/soap-envelope">
 ...
</s:Envelope>

Example 2-31. HTTP response containing a SOAP message
HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: nnnn

<s:Envelope xmlns:s="http://www.w3.org/2001/06/soap-envelope">
 ...
</s:Envelope>

The SOAPAction HTTP header is defined by the SOAP
specification, and indicates the intent of the SOAP HTTP request. Its
value is completely arbitrary, but it's intended to tell the
HTTP server what the SOAP message wants to do before the HTTP server
decodes the XML.

Servers can then use the SOAPAction header to
filter unacceptable requests.

Contentious Issues

The conventions for sending SOAP over HTTP have always caused
difficulty in the SOAP development community. There are a number of
issues that seem to come up time and again. Among these are:

	
 Should SOAP really use HTTP port 80 or should a SOAP-specific port be used?

	

 Because SOAP messages masquerade as
traditional web traffic on port 80, firewalls generally pass them
straight through. Obviously, security administrators may have a
problem with this. There are no requirements that SOAP over HTTP must
use port 80, but many people use it specifically to avoid being
filtered by firewalls.

	
 Is the SOAPAction header really useful?

	Because its value is arbitrary, there's no way for a server to
always know the intent of a request without parsing the XML. This is
an issue that has been debated ever since the
SOAPAction
 header was first introduced in SOAP
Version 1.1. The W3C working group that is standardizing SOAP is
leaning towards deprecating the SOAPAction header
in the next version of the protocol.

	

 When a client fault occurs while processing a SOAP message, should the server send a HTTP 500 "Server Error" back to the client or a HTTP 200 "OK" response with a SOAP fault included?

	This is an interesting question of semantics. A client fault in SOAP
is obviously an application level error, and not the result of a
server error. The HTTP 500 Server Error response however, is the
default response required for all SOAP faults, regardless of the
fault code. The general consensus on this question has been that
consistency is most important. Despite the fact that client fault
types are not Server Errors, the 500 Server Error code is still the
right response when HTTP is used for the transport.

	
 Should a SOAP specific URL scheme be used rather than the traditional http:// scheme used for web pages?

	
 This
question, like the one dealing with the use of port 80, directly
addresses the question of whether or not SOAP web services should
masquerade as more traditional HTTP-based services. Some have
maintained that a new soap:// URL scheme is
required. Microsoft's SOAP Routing Protocol even goes so far as
to define such a scheme.

While HTTP is the most popular transport for SOAP message, it is not
without problems. HTTP was not designed as a transport for XML
messages, and there are times when the two protocols don't mesh
perfectly. That said, it remains the most popular transport for SOAP,
although Microsoft's .NET makes heavy use of SOAP-over-Instant
Messaging and this may challenge HTTP's supremacy.

Chapter 3.
Writing SOAP Web Services

In Chapter 2, we looked under the hood of SOAP at
the XML underneath. In this chapter, we demonstrate how to create,
deploy, and use SOAP web services using toolkits for Java, Perl, and
Microsoft's new .NET platform. We cover the installation,
configuration, and use of SOAP::Lite for Perl, Apache SOAP for Java,
and Microsoft .NET for C#.

The task of creating and
deploying web services is really not all that
difficult, nor is it all that different than what developers
currently do in more traditional web applications. The tendency on
all platforms is to automate more and more of the gory details and
tedious work in creating web services. Most programmers don't
need to know the exact details of encodings and envelopes; instead,
they'll simply use a SOAP toolkit such as those described here.

Web Services Anatomy 101

 In
Chapter 1, we touched briefly on the fact that a
web
service consists of three components: a
listener to
receive the message, a
proxy to take that
message and translate it into an action to be carried out (such as
invoking a method on a Java object), and the application code to
implement that action.

The listener and proxy components should be completely transparent to
the application code, if properly implemented. The ideal situation in
most cases is that the code doesn't even know it is being
invoked through a web service interface, but that is not always
possible, or desirable.

A good example of a seamless, simple web services implementation is
the SOAP::Lite for Perl written by
Pavel
Kulchenko. This package allows any installed Perl module to be
automatically deployed as a web service without any work on the part
of the module developer. The proxy can automatically load and invoke
any subroutine in any module.

SOAP Implementations and Toolkits

There is a surprisingly long list of SOAP implementations available
to developers. In this book, we have chosen to focus on three of the
most popular tools: Apache SOAP for Java, SOAP::Lite for Perl, and
Microsoft .NET. No matter which toolkit you use, the fundamental
process of creating, deploying, and using SOAP web services is the
same.

A comprehensive and up-to-date listing of all known SOAP
implementations and toolkits can be found by visiting either

 http://www.soaplite.com or http://www.soapware.org. There are
SOAP
toolkits for all the popular programming languages and environments
(Java, C#, C++, C, Perl, PHP, and Python, just to name a few).

Handling SOAP Messages

 The integration of SOAP toolkits
varies with the transport layer. Some implement their own
HTTP servers. Some expect to be installed as part of a particular web
server, so that rather than serving up a web page, the HTTP daemon
hands the SOAP message to the toolkit's proxy component, which
does the work of invoking the code behind the web service (see Figure 3-1).

[image: The HTTP daemon passes the request to the SOAP proxy, which then invokes the code behind the web service]

Figure 3-1. The HTTP daemon passes the request to the SOAP proxy, which then invokes the code behind the web service

Still other SOAP toolkits support a pluggable transport
mechanism that allows you to select different transport protocols by
doing hardly anything more than setting a property value. SOAP::Lite
is a good example of this with its support for FTP, HTTP, IO, Jabber,
SMTP, POP3, TCP, and MQSeries transports.

Whether the transport is built-in or pluggable, all SOAP toolkits
provide the proxy
component, which parses and interprets the SOAP message to invoke
application code. The proxy must understand how to deal with things
like encoding styles, translation of native types of data in to XML
(and vice versa), whether headers in the SOAP message that have the
mustUnderstand="true" flag set are actually
understood—basically, everything that is covered in Chapter 2.

When the proxy component is handed a SOAP message by a listener, it
must do three things:

	Deserialize the message, if necessary, from XML into some native
format suitable for passing off to the code.

	Invoke the code.

	Serialize the response to the message (if one exists) back into XML
and hand it back to the transport listener for delivery back to the
requester.

Despite differences in how various SOAP implementations accomplish
these tasks, all SOAP web service tools follow this same simple
pattern.

Deploying Web Services

 Deploying
a web service involves telling the proxy component which code to
invoke when a particular type of message is received. In other words,
the proxy component has to know that a getQuote
message is going to be handled by the
samples.QuoteServer Java class or the
QuoteServer.pm Perl module. Once this has
happened, clients can access the server, send the message, and
trigger a call to application code.

Web service tools have different deployment mechanisms. SOAP::Lite
requires that the Perl module be in @INC,
Perl's module search path. Apache's SOAP implementation
requires a deployment descriptor file, which
describes the Java class and rules for mapping Java objects used in
the service to their XML equivalents. This file must be added to a
deployed services registry used by Apache SOAP (see Figure 3-2).

[image: Unlike SOAP::Lite, where the server program contains a description of which modules are to be deployed as services, Apache SOAP uses a separate deployment descriptor file]

Figure 3-2. Unlike SOAP::Lite, where the server program contains a description of which modules are to be deployed as services, Apache SOAP uses a separate deployment descriptor file

Creating Web Services in Perl with SOAP::Lite

Perl, like most languages, hides the programmer from the complexities
of SOAP with a toolkit. The
 SOAP::Lite toolkit is one of the most
complete implementations of SOAP available, supporting both Versions
1.1 and 1.2 of SOAP. It has strong support for alternate transports
(FTP, HTTP, IO, Jabber, SMTP, POP3, TCP, and MQSeries), which
we'll use later to demonstrate SOAP over Jabber.

Installing SOAP::Lite

SOAP::Lite, like many Perl modules, is available on the
Comprehensive Perl Archive Network
(CPAN). CPAN is a network of web and FTP sites with identical
content—the source to thousands of Perl modules. You can access
CPAN through a Perl command-line client or via the Web at

 http://www.cpan.org. See http://www.cpan.org/misc/cpan-faq.html#How_install_Perl_modules
for information on installing Perl modules.

 Example 3-1 shows a sample installation of
SOAP::Lite using the interactive
CPAN command-line shell.

Example 3-1. Installing SOAP::Lite with the CPAN shell
C:\book>perl -MCPAN -e shell
cpan shell—CPAN exploration and modules installation (v1.59_54)
cpan> install SOAP::Lite

(You may be walked through configuring the CPAN shell if this is the
first time you have run it.) The CPAN shell will connect to a CPAN
site and download the source for SOAP::Lite. Once downloaded, the
shell will attempt to build the module. SOAP::Lite has a series of
interactive steps to configure the module, shown in Example 3-2. You can either use a default configuration or
manually select from a menu of options to build a custom
configuration.

Example 3-2. SOAP::Lite's interactive configuration
We are about to install SOAP::Lite and for your convenience will provide you with list
of modules and prerequisites, so you'll be able to choose only modules you need for
your configuration.

XMLRPC::Lite, UDDI::Lite, and XML::Parser::Lite are included by default. Installed
transports can be used for both SOAP::Lite and XMLRPC::Lite.

Client (SOAP::Transport::HTTP::Client) [yes]
Client HTTPS/SSL support
 (SOAP::Transport::HTTP::Client, require OpenSSL) [no]
Client SMTP/sendmail support (SOAP::Transport::MAILTO::Client) [yes]
Client FTP support (SOAP::Transport::FTP::Client) [yes]
Standalone HTTP server (SOAP::Transport::HTTP::Daemon) [yes]
Apache/mod_perl server (SOAP::Transport::HTTP::Apache, require Apache)[no]
FastCGI server (SOAP::Transport::HTTP::FCGI, require FastCGI) [no]
POP3 server (SOAP::Transport::POP3::Server) [yes]
IO server (SOAP::Transport::IO::Server) [yes]
MQ transport support (SOAP::Transport::MQ) [no]
JABBER transport support (SOAP::Transport::JABBER) [no]
MIME messages [required for POP3, optional for HTTP]
 (SOAP::MIMEParser) [no]
SSL support for TCP transport (SOAP::Transport::TCP) [no]
Compression support for HTTP transport (SOAP::Transport::HTTP) [no]

Do you want to proceed with this configuration? [yes]

In most cases, the default configuration is adequate. We, however,
are going to make a slight change to the configuration in order to
demonstrate the use of Jabber as a transport protocol for SOAP. To
indicate this, answer "no" to the question "Do you
want to proceed with this configuration?" Press the Enter key
to accept the default options for each of the configuration items
until you get to the one that asks whether you plan to use the Jabber
transport support module. Answer "yes" and press Enter.
The CPAN shell will then make sure that all of the prerequisites and
support modules for using Jabber are installed. You may select the
default options for the remainder of the installation process.

The Hello Server

 No
book introducing a new programming system can get by without
including a Hello World sample illustrating how easy the system is to
use.

Start by creating the Hello World Perl module shown in Example 3-3.

Example 3-3. Hello.pm
Hello.pm - simple Hello module
package Hello;
sub sayHello {
 shift;				# remove class name
 return "Hello " . shift;
}
1;

This module will be the code that sits behind our web service
interface. There are several approaches you can take with SOAP::Lite
to deploy this module as a web service.

If you already have a CGI-capable web server (and most people do) you
can simply create the CGI script shown in Example 3-4.

Example 3-4. hello.cgi
#!/usr/bin/perl -w
hello.cgi - Hello SOAP handler
use SOAP::Transport::HTTP;
SOAP::Transport::HTTP::CGI
 -> dispatch_to('Hello::(?:sayHello)')
 -> handle
;

This CGI script is the glue that ties the listener (the HTTP server
daemon) to the proxy (the SOAP::Lite module). With this glue,
SOAP::Lite will dispatch any received request to the Hello World
module's sayHello operation.

Perl will need to find the Hello module, though. If you don't
have permission to install Hello into one of Perl's default
module directories (print @INC to see what they
are), use the lib pragma to tell Perl to look in
the directory containing the Hello module. If the module is in
/home/pavel/lib then simply add this
use line to hello.cgi:

use lib '/home/pavel/lib';
Your SOAP web service is deployed and ready for action.

The Hello Client

 To
test your Hello web service, simply use the client script in Example 3-5.

Example 3-5. hw_client.pl
#!/usr/bin/perl -w
hw_client.pl - Hello client
use SOAP::Lite;
my $name = shift;
print "\n\nCalling the SOAP Server to say hello\n\n";
print "The SOAP Server says: ";
print SOAP::Lite
 -> uri('urn:Example1')
 -> proxy('http://localhost/cgi-bin/helloworld.cgi')
 -> sayHello($name)
 -> result . "\n\n";

Running this script should give you the following results:
% perl hw_client.pl James

Calling the SOAP Server to say hello
The SOAP Server says: Hello James
%
We see here a complete SOAP web service. Granted, it doesn't do
much, but that wasn't the point. The point was that the process
we followed (create the code, deploy the service, invoke the service)
is the same regardless of the service we're implementing, the
tools we're using, or the complexity of the service.

A Visual Basic Client

 To prove that it really is
SOAP that we're passing around here, the Visual Basic Script in
Example 3-6 uses the Microsoft XML Parser's
ability to send XML directly over HTTP to exchange SOAP messages back
and forth with the Hello World service.

Example 3-6. hw_client.vbs
Dim x, h
Set x = CreateObject("MSXML2.DOMDocument")
x.loadXML "<s:Envelope xmlns:s='http://schemas.xmlsoap.org/soap/envelope/' xmlns
:xsi='http://www.w3.org/1999/XMLSchema-instance' xmlns:xsd='http://www.w3.org/1999/
XMLSchema'><s:Body><m:sayHello xmlns:m='urn:Example1'><name xsi:type='xsd:string'>James</
name></m:sayHello></s:Body></s:Envelope>"
msgbox x.xml, , "Input SOAP Message"
Set h = CreateObject("Microsoft.XMLHTTP")
h.open "POST", "http://localhost:8080"
h.send (x)
while h.readyState <> 4
wend
msgbox h.responseText,,"Output SOAP Message"

Running the Visual Basic script should demonstrate two things to you:
invoking SOAP web services is easy to do, and it doesn't matter
which language you use. Perl and Visual Basic strings are being
interchanged over HTTP.

In the next example, there are two messages exchanged between the
requester and the service provider. The request, encoding the service
we're calling (sayHello) and the parameter
(James), is shown in Example 3-7,
and the response containing Hello
 James is shown in Example 3-8.

Example 3-7. Hello request
<s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <s:Body>
 <m:sayHello xmlns:m='urn:Example1'>
 <name xsi:type='xsd:string'>James</name>
 </m:sayHello>
 </s:Body>
</s:Envelope>

Example 3-8. Hello response
<s:Envelope
 xmlns:s="http://www.w3.org/2001/06/soap-envelope"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <s:Body>
 <n:sayHelloResponse xmlns:n="urn:Example1">
 <return xsi:type="xsd:string">
 Hello James
 </return>
 </n:sayHelloResponse>
 </s:Body>
</s:Envelope>

Changing Transports

 SOAP::Lite supports many
transport protocols. Let's modify the Hello World sample so
that it can be invoked using Jabber. This demonstrates the modular
nature of the web services stack, where the packaging can be
independent of the transport. You might deploy a web service over
Jabber to take advantage of the presence and identity features that
Jabber provides.

 Create an instance of the
SOAP-aware Jabber server built into SOAP::Lite using the script in
Example 3-9.

Example 3-9. sjs, the SOAP Jabber server
#!/usr/bin/perl -w
sjs - soap jabber server

use SOAP::Transport::JABBER;

my $server = SOAP::Transport::JABBER::Server
 -> new('jabber://soaplite_server:soapliteserver@jabber.org:5222')
 -> dispatch_to('Hello')
;

print "SOAP Jabber Server Started\n";
do { $server->handle } while sleep 1;

Then, modify the client script we used earlier to point to the Jabber
address of the service, as shown in Example 3-10.

Example 3-10. sjc, the SOAP Jabber client
#!/usr/bin/perl -w
sjc - soap jabber client

use SOAP::Lite;

my $name = shift;
print "\n\nCalling the SOAP Server to say hello\n\n";
print "The SOAP Server says: ";
print SOAP::Lite
 -> uri('urn:Example1')
 -> proxy('jabber://soaplite_client:soapliteclient@jabber.org:5222/' .
 'soaplite_server@jabber.org/')
 -> sayHello($name)
 -> result . "\n\n";

The soaplite_server and
soaplite_client accounts are registered with
Jabber.org, so this example
should work as typed. To avoid confusion when everyone reading this
book tries the example at the same time, you should register your own
Jabber IDs at

 http://www.jabber.org.

Now, in case you're curious as to how Jabber is capable of
carrying SOAP messages, Example 3-11 is the text of
the sayHello message sent by the previous script.
As you can see, the SOAP message itself is embedded into the Jabber
message element. This demonstrates the flexibility of both protocols.

Example 3-11. Jabber message with SOAP payload
<iq to="soapproxy@johndoe.ibm.com/soaprouter" id="6" type="get">
 <query xmlns="soap-message">
 <s:Envelope
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <s:Body>
 <m:sayHello xmlns:m="urn:Example1">
 <name xsi:type="xsd:string">James</name>
 </m:sayHello>
 </s:Body>
 </s:Envelope>
 </query>
</iq>

Creating Web Services in Java with Apache SOAP

 Creating web services in Java is more
work than in Perl with SOAP::Lite, but the process is essentially the
same. To illustrate how it's done, let's create the same
Hello World web service and deploy it using the
Apache SOAP tools.

 Apache SOAP is the Apache Software
Foundation's implementation of the SOAP protocol. It is
designed to run as a servlet within any Java HTTP Server. As such, it
implements only the proxy part of the message handling process. Like
SOAP::Lite, Apache SOAP's list of features is impressive,
sharing many of the same benefits as its Perl-based counterpart.

Installing Apache SOAP

 Apache
SOAP can be used as both a client and provider of SOAP web services.
A server-side installation of Apache SOAP involves placing some
.jar files in your classpath. You will need a
separate web server that supports Servlets and Java Server Pages,
such as Apache's Tomcat (http://jakarta.apache.org/tomcat/).

The Apache SOAP homepage, http://xml.apache.org/soap/index.html, has
links to both source-only and precompiled distributions of the
toolkit. Installing the precompiled binary distribution is as simple
as downloading a Zip archive and extracting it into a directory.

On the client, three .jar files from the
distribution (soap.jar,
mail.jar, and
activation.jar) must be present in
your classpath. Also present must be any Java API for XML Parsing
(JAXP) aware XML parser, such as Xerces Version 1.4 (http://xml.apache.org/xerces-j/).

Assuming that you installed Apache SOAP .jar
files in the C:\book\soap directory, set your
SOAP_LIB environment variable to
C:\book\soap\lib. Adding the
.jar files to your classpath then entails:

set CLASSPATH = %CLASSPATH%;%SOAP_LIB%\soap.jar
set CLASSPATH = %CLASSPATH%;%SOAP_LIB%\mail.jar
set CLASSPATH = %CLASSPATH%;%SOAP_LIB%\activation.jar
Or, in the Unix Bourne shell (/bin/sh):
CLASSPATH = $CLASSPATH;$SOAP_LIB/soap.jar
CLASSPATH = $CLASSPATH;$SOAP_LIB/mail.jar
CLASSPATH = $CLASSPATH;$SOAP_LIB/activation.jar
The exact steps for a server installation will depend on which web
application server you are using, but the process is essentially the
same. The first step is to ensure the same three
.jar files are located in your application
server's classpath.

If your application server supports the use of web application
archives (WAR files), simply use the soap.war
file that ships with Apache SOAP. Apache Tomcat supports this. The
Apache SOAP documentation includes detailed installation instructions
for Tomcat and a number of other environments.

If you intend to use the Bean Scripting Framework (BSF) to make
script-based web services, you need to ensure that
bsf.jar and js.jar (a BSF
JavaScript implementation) are also in the web application
server's classpath.

The vast majority of problems encountered by new Apache SOAP users
are related to incorrect classpaths. If you encounter problems
writing web services with Apache SOAP, be sure to start your
debugging by checking your classpath!

The Hello Server

 We're going to do the same things
we did in Perl: create the code, deploy the service, and use the
service. Example 3-12 shows the Java code for the
Hello class.

Example 3-12. Hello.java
package samples;
public class Hello {
 public String sayHello(String name) {
 return "Hello " + name;
 }
}

Compile the Java class and put it somewhere in your web
server's classpath.

Deployment Descriptor

Next we must create a deployment
descriptor

 to tell the Apache SOAP
implementation everything it needs to know to dispatch
sayHello messages to the
samples.Hello class. This is shown in Example 3-13.

Example 3-13. Deployment descriptor for samples.Hello
<dd:service xmlns:dd="http://xml.apache.org/xml-soap/deployment" id="urn:Example1">
 <dd:provider type="java"
 scope="Application"
 methods="sayHello">
 <dd:java class="samples.Hello"
 static="false" />
 </dd:provider>
 <dd:faultListener>
 org.apache.soap.server.DOMFaultListener
 </dd:faultListener>
 <dd:mappings />
</dd:service>

The information contained within a deployment descriptor is fairly
basic. There is the class name of the Java code being invoked
(<dd:java class="samples.Hello"
 static="false" />), and an indication of the
session scope of the service class (application or session scope, as
defined by the Java Servlet specification), an indication of which
faultListener to use (used to declare how faults
are handled by the SOAP engine), and a listing of Java-to-XML type
mappings. We will demonstrate later how the type mappings are
defined.

Apache SOAP supports the use of pluggable
providers
 that allow web services to be
implemented not only as Java classes, but as Enterprise Java Beans,
COM Classes, and Bean Scripting Framework scripts. Full information
about how to use pluggable providers is available in the
documentation and not covered here.

While simple in structure, deployment descriptor files must be
created for every web service that you want to deploy. Thankfully,
there are tools available that automate that process, but they still
require the developer to walk through some type of wizard to select
the Java class, the methods, and the type mappings. (A type
mapping is an explicit link between a type of XML data and
a Java class, and the Java classes that are used to serialize or
deserialize between those types.)

Once the file is created, you have to deploy it with the Apache SOAP
service manager. There are two ways to do this: you can use the
Service Manager Client or, if you're using the XML-based
Service Manager that ships with Apache SOAP, modify the deployment
registry directly.

The first method requires executing the following command:
% java org.apache.soap.server.ServiceManagerClient http://hostname:port/soap/servlet/
rpcrouter deploy foo.xml
Where hostname:port is the hostname and
port that your web service is listening on.

One interesting fact you should notice here is that the Apache
Service Manager is itself a web service, and that deployment of a new
service takes place by sending a SOAP message to the server that
includes the deployment descriptor. While this is handy, it's
not necessarily all that secure (considering the fact that it would
allow anybody to deploy and undeploy services on your web server). To
disable this, set the SOAPInterfaceEnabled option
in the soap.xml configuration file to
false. This will prevent the
ServiceManagerClient from working.

The second approach will only work if you're using the XML
Configuration Manager. This component allows you to store deployment
information in an XML file. This file is located in the
web-apps folder where your Apache SOAP servlet
is located.

The XML is nothing more than a root element that contains all of the
deployment descriptors for all of the services deployed. To deploy
the Hello World service, simply take the deployment descriptor we
wrote earlier and append it to this list. The next time that the SOAP
servlet is started, the service manager will be reinitialized and the
new service will be ready for use. A sample configuration file is
given in Example 3-14.

Example 3-14. Apache SOAP configuration file
<root>
 <dd:service xmlns:dd="http://xml.apache.org/xml-soap/deployment"
 id="urn:Example1">
 <dd:provider type="java"
 scope="Application"
 methods="sayHello">
 <dd:java class="samples.Hello"
 static="false" />
 </dd:provider>
 <dd:faultListener>
 org.apache.soap.server.DOMFaultListener
 </dd:faultListener>
 <dd:mappings />
 </dd:service>
</root>

The Hello Client

 To invoke the Hello World service, use
the Java class in Example 3-15.

Example 3-15. Hello client in Java
import java.io.*;
import java.net.*;
import java.util.*;
import org.apache.soap.*;
import org.apache.soap.rpc.*;

public class Example1_client {

 public static void main (String[] args)
 throws Exception {

 System.out.println("\n\nCalling the SOAP Server to say hello\n\n");
 URL url = new URL (args[0]);
 String name = args[1];

 Call call = new Call ();
 call.setTargetObjectURI("urn:Example1");
 call.setMethodName("sayHello");
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC;);
 Vector params = new Vector ();
 params.addElement (new Parameter("name", String.class, name, null));
 call.setParams (params);

 System.out.print("The SOAP Server says: ");

 Response resp = call.invoke(url, "");

 if (resp.generatedFault ()) {
 Fault fault = resp.getFault ();
 System.out.println ("\nOuch, the call failed: ");
 System.out.println (" Fault Code = " + fault.getFaultCode ());
 System.out.println (" Fault String = " + fault.getFaultString ());
 } else {
 Parameter result = resp.getReturnValue ();
 System.out.print(result.getValue ());
 System.out.println();
 }
 }
}

The amount of code to accomplish this relatively simple operation may
seem surprising (nine lines to actually initialize and invoke the web
services call). Java will never be as terse as Perl and other
scripting languages, but it has other strengths. Also, various
Java-based SOAP toolkits such as The Mind Electric's GLUE and
IBM's Web Services ToolKit support dynamic proxy interfaces
that cut down the amount of code necessary to invoke web services.
Those interfaces, however, generally require additional mechanisms,
such as WSDL, to simplify the programming interface. We will take a
look at these dynamic proxies later in Chapter 5.
For now, if you compile and run this class, you'll end up with
the same result that we saw in the Perl example:

% java samples.Hello http://localhost/soap/servlet/rpcrouter James

Calling the SOAP Server to say hello
The SOAP Server says: Hello James

%
Your Java web service is finished. If you have both the Perl and Java
versions installed, run the Perl client script again but point it at
the Java version of the Hello World service (the modified script is
shown in Example 3-16). You'll see that
everything still works.

Example 3-16. hw_jclient.pl, the Perl client for the Java Hello World server
#!/usr/bin/perl -w
hw_jclient.pl - java Hello client
use SOAP::Lite;
my $name = shift;
print "\n\nCalling the SOAP Server to say hello\n\n";
print "The SOAP Server says: ";
print SOAP::Lite
 -> uri('urn:Example1')
 -> proxy('http://localhost/soap/servlet/rpcrouter James')
 -> sayHello($name)
 -> result . "\n\n";

Which will produce the expected result:
% perl hw_client.pl James

Calling the SOAP Server to say hello
The SOAP Server says: Hello James

%

The TCPTunnelGui Tool

One very useful tool that comes bundled with
Apache
SOAP is
TCPTunnelGui, a
debugging tool that lets a developer view the SOAP messages that are
being sent to and returned from a SOAP web service. The tool is a
proxy—it listens on the local machine and forwards traffic to
and from the real SOAP server. The contents of the messages passing
through the local port will be displayed in the graphical interface.

Launch the tool by typing:
% java org.apache.soap.util.net.TcpTunnelGui listenport tunnelhost tunnelport

 Listenport

is the local TCP/IP port number you want the tool to open and listen
to requests.
Tunnelhost

is the address of the server (either DNS or IP address) where the
traffic is to be redirected, and
tunnelport

is the port number at tunnelhost.

For example, assume your Hello World service is deployed at
http://www.example.com/soap/servlet/rpcrouter.
To view the messages sent to and from that service by redirecting
traffic through local TCP/IP port 8080, launch the TCPTunnelGui tool
with the following parameters:

% java org.apache.soap.util.net.TcpTunnelGui 8080 http://www.example.com 80
And now direct the Hello World SOAP requests to
http://localhost:8080/soap/servlet/rpcrouter.

 Figure 3-3 shows TCPTunnelGui displaying the SOAP
messages for each request to the Hello World service.

[image: The TCPTunnelGui Tool showing the SOAP messages sent to and from the Hello World service]

Figure 3-3. The TCPTunnelGui Tool showing the SOAP messages sent to and from the Hello World service

TCPTunnelGui is an extremely valuable tool for anybody wanting to
learn how SOAP Web services work (or debugging why a service
doesn't work!).

Creating Web Services In .NET

 For web service developers working
strictly on the Windows platform, Microsoft's .NET development
platform offers built-in support for easily creating and deploying
SOAP web services. Let's walk through how you create the Hello
World service using C#, the new Java-like programming
language designed specifically for use with .NET.

Installing .NET

 The
first thing you need to do is download and install the Microsoft .NET
SDK Beta 2 from http://msdn.microsoft.com. This free
distribution contains everything you need to create and run any .NET
application, including .NET Web Services.

 There are, however, several prerequisites
that you need:

	You must be running Windows 2000, Windows NT 4.0, Windows 98, or
Windows Millennium Edition.

	You must have Microsoft Internet Explorer Version 5.01 or higher.

	You must have the Microsoft Data Access Components (Version 2.6 or
higher) installed.

	And you must have Microsoft Internet Information Server (IIS)
installed and running. .NET Web services can only be deployed within
the IIS environment.

The .NET Framework SDK installation is a fairly automatic process,
with an easy-to-use installation wizard. Once installed, we can
create the Hello World service.

Introducing .NET

 Before
we get into exactly how web services are created in .NET, let's
take a quick walk through the .NET architecture to help put things
into perspective.

First and foremost, .NET is a runtime environment similar to the Java
Virtual Machine. Code packages, called
assemblies
 ,
can be written in several .NET specific versions of popular
programming languages like Visual Basic, C++, C#, Perl, Python, and
so on. Assemblies run within a managed, hierarchically organized
runtime called the "Common Language Runtime" that deals
with all of the low-level memory and system management details (see
Figure 3-4).

[image: The .NET managed runtime]

Figure 3-4. The .NET managed runtime

Currently,
 .NET runs basically as an extension to
the existing COM environment upon which the current versions of
Windows are built. As such, .NET can be utilized anywhere COM can be
used, including within Microsoft's Internet Information Server
(IIS) environment.

.NET web services are specific types of .NET assemblies that are
specially flagged for export as web services. These assemblies are
either contained within or referenced from a new type of server-side
script called an .asmx

 file. The .NET extensions to IIS
recognize files ending in .asmx as web services
and automatically export the functions of the referenced assemblies.

The process is simple:
	Write the code.

	Save the code in an .asmx file.

	Move the .asmx file to your IIS web server.

	Invoke your web service.

Saying Hello

 .NET introduces a programming language
called C#. We'll develop our example web service in
C#, but remember that .NET makes it
just as easy to develop in Visual Basic, C++, and other languages.

 Example 3-17 defines the .NET Hello World service.
You can use an ordinary text editor to create this file.

Example 3-17. HelloWorld.asmx, a C# Hello World Service
<%@ WebService Language="C#" Class="Example1" %>

using System.Web.Services;

[WebService(Namespace="urn:Example1")]
public class Example1 {

 [WebMethod]
 public string sayHello(string name) {
 return "Hello " + name;
 }

}

Notice how similar the code looks to the Java version we created
earlier. At heart, a function that appends two strings isn't
rocket science. The bracketed sections (<%
 %> and [
]) tell the .NET runtime that this code is
intended to be exported as a SOAP web service.

The <% WebService Language="C#" Class="Example1"
%> line tells .NET that we are exporting one web
service, written in C#, implemented by the
Example1 class.

The using line imports a module, in this case the
standard web services classes.

The [WebService(Namespace="urn:Example1")] line is
optional, but allows us to declare various attributes of the web
service being deployed. In this instance, we are setting an explicit
namespace for the web service rather than allowing .NET to assign a
default (which, by the way, will always be
http://tempuri.org/). Other attributes you can set
for the web service include the name and textual description of the
service.

The [
 WebMethod
] line sets an attribute that flags the methods in
the class to be exposed as part of the web service. As with the
WebService attribute previously, we could use this
line to define various custom properties about the web service
operation. Options include whether to buffer the response of the
operation; if buffered, how long to keep it buffered; whether to
maintain a session state for the operation; whether transactions are
supported on the method; what the exported name of the operation is;
and a textual description of the operation. In the case of the Hello
World example, we have no need to set any of these options, so we
simply leave it alone.

What will .NET do with all of this information? It's actually
quite simple. Whenever a .asmx file is requested
by a client through IIS, the .NET runtime will first compile the code
for the service if it hasn't done so already. The compiled code
is temporarily cached in memory and recompiled every time a change is
made to the .asmx file or the IIS server is
restarted.

Next, the .NET runtime will determine what type of request is being
made. There are several choices:

	The request may be for information about the web service.

	The request may be for information about one of the methods exported
by the web service.

	Or, the request may be to invoke an operation on the web service.
.NET allows the operations to be invoked one of three different ways:
through an HTTP-GET operation, through an HTTP-POST operation, or
through the use of SOAP messages. .NET is one of the only web
services platforms that allow web services to be invoked using
multiple protocols.

Deploying the Service

 Save the
HelloWorld.asmx file to a location in your IIS
web root. Take note of the .asmx file's
URL. For example, if your Microsoft IIS server is installed at
c:\inetpub (the default installation location),
the web root is c:\inetpub\wwwroot. If you saved
the .asmx file directly to this location, the
URL of the .asmx file will be http://localhost/helloworld.asmx, where
localhost is the DNS name or IP address of your
IIS server. Once you've completed this step, your .NET web
service is deployed.

Ensure that your .NET environment and web service are fully
operational by launching your favorite web browser and navigating to
http://localhost/HelloWorld.asmx.
If all goes well, you should be presented with an automatically
generated HTML page that documents the Hello World service you just
created (see Figure 3-5).

[image: Automatically generated documentation for the .NET web service]

Figure 3-5. Automatically generated documentation for the .NET web service

These pages are generated dynamically whenever an HTTP-GET request is
received for the deployed .asmx file. You do not
have to do anything to create these pages.

Clicking on the "sayHello" link will yield a detailed
description of how to invoke the sayHello
operation using SOAP, HTTP-GET, and HTTP-POST, as well as a simple
HTML form for testing the operation (see Figure 3-6).

[image: Auto-generated documentation for the sayHello operation]

Figure 3-6. Auto-generated documentation for the sayHello operation

To test the service, either type your name in the test form at the
top of the automatically generated documentation page (see Figure 3-7), or navigate your browser to http://localhost/helloworld.asmx/sayHello?name=yourname.

[image: Ensure that the service works using the Test form]

Figure 3-7. Ensure that the service works using the Test form

Either method should generate the response shown in Figure 3-8.

[image: A typical HTTP-GET web service response]

Figure 3-8. A typical HTTP-GET web service response

If you get the "Hello James" message, you're ready
to move on.

Invoking the Service Using SOAP

 Creating a SOAP client for the Hello World
service using .NET is, surprisingly, harder than creating the service
itself. There are tools to make it easier (we will explore them
briefly in Chapter 5), but for now we'll go
through the steps manually so you know what is going on.

Again using your favorite text editor, create
HelloWorld.cs (the
.cs
 extension
indicates C# source code) from Example 3-18.

Example 3-18. HelloWorld.cs, a C# HelloWorld client
// HelloWorld.cs

using System.Diagnostics;
using System.Xml.Serialization;
using System;
using System.Web.Services.Protocols;
using System.Web.Services;

[System.Web.Services.WebServiceBindingAttribute(
 Name="Example1Soap",
 Namespace="urn:Example1")]
public class Example1 :
 System.Web.Services.Protocols.SoapHttpClientProtocol {

 public Example1() {
 this.Url = "http://localhost/helloworld.asmx ";
 }

 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 "urn:Example1/sayHello",
 RequestNamespace="urn:Example1",
 ResponseNamespace="urn:Example1",
 Use=System.Web.Services.Description.SoapBindingUse.Literal,
 ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
 public string sayHello(string name) {
 object[] results = this.Invoke("sayHello",
 new object[] {name});
 return ((string)(results[0]));
 }

 public static void Main(string[] args) {
 Console.WriteLine("Calling the SOAP Server to say hello");
 Example1 example1 = new Example1();
 Console.WriteLine("The SOAP Server says: " +
 example1.sayHello(args[0]));
 }
}

The
[System.Web.Services.WebserviceBindingAttribute]
line tells the .NET managed runtime that this particular .NET
assembly is going to be used to invoke a web service. When the
assembly is compiled, .NET will automatically supply the
infrastructure to make the SOAP request work.

Subclassing
System.Web.Services.Protocols.SOAPHttpClientProtocol
tells the .NET runtime which protocol you want to use (SOAP
over HTTP in this case). Within the constructor for this class, set
the URL for the web service (the assignment to
this.Url).

The rest of the class declares a proxy for the
sayHello operation, specifies various attributes
of the web services invocation, calls the invoke method, and returns
the result.

Lastly, we create the main entry point for the C# application. The
entry point does nothing more than create an instance of our client
class and invoke the proxy sayHello operation,
outputting the results to the console.

Compile the client to a HelloWorld.exe
application:

C:\book>csc HelloWorld.cs
To invoke the web service, simply type:
C:\book>HelloWorld yourname
You will be greeted with the same result we saw previously with the
Java and Perl versions of the Hello World service:

Calling the SOAP Server to say hello
The SOAP Server says: Hello James

Interoperability Issues

 At the time of this writing,
.NET's SOAP implementation still has a few issues that need to
be worked out, primarily in the area of interoperability.

Slight variations between the way .NET implements SOAP and
SOAP::Lite's implementation of SOAP, for example, cause some
difficulty in allowing the two to work together out of the box. To
illustrate the problem, follow the steps shown here. One would think
that everything would work fine, but it doesn't. I'll
point out why after we walk through it.

First, launch the Java TcpTunnelGui tool that ships with Apache SOAP,
specifying port 8080 as the local listening port, and redirecting to
whatever server you have your HelloWorld.asmx
file deployed to:

C:\book>start java org.apache.soap.util.net.TcpTunnelGui 8080
 localhost 80
Then, modify the Perl Hello World client to point to the
HelloWorld.asmx file, but replace the server
part of the URL with localhost:8080.

When you run the Perl script:
C:\book>perl hello_client1.pl James
The result is not what you would expect. The script ends without ever
displaying the "Hello James" result. If you take a look
at the TcpTunnelGui tool, you'll see that the SOAP message is
sent, but the .NET runtime rejects the request and issues a SOAP
fault in response. This is shown in Example 3-19.

Example 3-19. SOAP fault from .NET
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Client</faultcode>
 <faultstring>
 System.Web.Services.Protocols.SoapException: Server did
 not recognize the value of HTTP Header SOAPAction:
 urn:Example#sayHello.
 at System.Web.Services.Protocols.SoapServerProtocol.Initialize()
 at System.Web.Services.Protocols.ServerProtocolFactory.Create(
 Type type, HttpContext context, HttpRequest request,
 HttpResponse response)
 </faultstring>
 <detail />
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

.NET requires that the HTTP SOAPAction header be
used to exactly identify the operation on which service is being
invoked. .NET requires the format of the
SOAPAction header to be the service namespace,
followed by a forward slash, followed by the name of the operation,
or urn:Example/sayHello. Notice, though, that
SOAP::Lite's default is to use a pound sign
(#) to separate the service namespace from the
name of the operation. This wasn't an issue when we were
invoking Java services with SOAP::Lite because Apache SOAP simply
ignores the SOAPAction header altogether.

To fix this problem, we must explicitly tell SOAP::Lite how to format
the SOAPAction header. To do so, make the change to the client script
highlighted in Example 3-20.

Example 3-20. Fragment showing change to Perl client script
print SOAP::Lite
 -> uri('urn:Example1')
 -> on_action(sub{sprintf '%s/%s', @_ })
 -> proxy('http://localhost:8080/helloworld/example1.asmx')
 -> sayHello($name)
 -> result . "\n\n";

The on_action method in SOAP::Lite allows the
developer to override the default behavior and specify a new format
for the SOAPAction header.

However, even with this change there's still a problem. The
script will appear to run, but rather than returning the expected
Hello James string, all that will be returned is
Hello. The name is missing from the response! This
happens because .NET requires all parameters for a method call to be
named and typed explicitly, whereas Perl does not do this by default.

Again, take a look at the TcpTunnelGui tool and look at the SOAP
message sent to the HelloWorld.asmx service from
SOAP::Lite. This is shown in Example 3-21.

Example 3-21. The Perl-generated SOAP request sent to the .NET service
<SOAP-ENV:Envelope
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>
 <namesp1:sayHello xmlns:namesp1="urn:Hello">
 <c-gensym3 xsi:type="xsd:string">
 James
 </c-gensym3>
 </namesp1:sayHello>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Notice the oddly named c-gensym3 element that
contains the input parameter. Because Perl is a scripting language
that does not support strong typing or strict function signatures,
method parameters do not have names, nor do they have types. When
SOAP::Lite creates the SOAP message it automatically generates an
element name and sets all parameters to the string
data type. .NET doesn't like this behavior. If the C# method is
written to take a String parameter called
name it expects to find an element in the SOAP
envelope called name with a type of
xsi:type="xsd:string". In XML, that would be as
shown in Example 3-22.

Example 3-22. A SOAP request encoded by .NET
<SOAP-ENV:Envelope
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>
 <namesp1:sayHello xmlns:namesp1="urn:Hello">
 <name xsi:type="xsd:string">
 James
 </name>
 </namesp1:sayHello>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The .NET beta also did not properly recognize that the
name element is declared as part of the same
namespace as its parent sayHello element. This is
a standard rule of XML namespaces. To get SOAP::Lite working with
.NET, we must tell SOAP::Lite the name, type, and namespace of each
of the parameters we are passing into the operation, as shown in
Example 3-23.

Example 3-23. Perl client modified to work with .NET
use SOAP::Lite;

my $name = shift;

print "\n\nCalling the SOAP Server to say hello\n\n";
print "The SOAP Server says: ";

print SOAP::Lite
 -> uri('urn:Example1')
 ->on_action(sub{sprintf '%s/%s', @_ })
 ->proxy('http://localhost:8080/helloworld/example1.asmx')
 ->sayHello(SOAP::Data->name(name => $name->type('string')
 ->uri('urn:Example1'))
 ->result . "\n\n";

Now, run the script and you will see that everything works as
expected.

Developers who are writing and using web services that may be
accessed by a wide variety of SOAP implementations need to be aware
that inconsistencies like this will exist between the various
toolkits and you need to be prepared to deal with them. As web
services become more complex and more mission critical, it is
important to have a clear understanding of how to manage these
issues. Over time, the more popular SOAP implementations will be
honed to a point where they will work together seamlessly, but with
many of these implementations still being released as beta and
sometimes alpha code status, you must be aware that issues will
exist. Luckily, as we will see in Chapter 5, there
are workarounds available for some of these problems.

Chapter 4. The Publisher Web Service

The Publisher web service is a
demonstration of a more complex web service modeled after the one
used by the SOAP Web Services Resource Center (http://www.soap-wrc.com). This service
demonstrates techniques for implementing more complicated forms of
web services. It builds on the Hello World example from Chapter 3.

Overview

The Publisher web service manages a database of important news items,
articles, and resources that relate to SOAP and web services in
general.

A Perl-based service allows registered users to post, delete, or
browse items, and to manage their registration information.
We've also implemented an interactive Java shell client that
uses the Apache SOAP client.

The supported operations are:
	register
	Create a new user account.

	modify
	Modify a user account.

	login
	Start a user session.

	post
	Post a new item to the database.

	remove
	Remove an item from the database.

	browse
	Browse the database by item type. The data can be returned in either
a publisher-specific XML format or as a Rich Site Summary (RSS)
channel.

Publisher Service Security

 Security in the Publisher service is
handled through a login operation that returns an authorization token
to the user. This token consists of a user ID, email address, login
time, and a MD5 digest that the user must include in all operations
that require that the user be authenticated, namely the post and
remove operations (see Figure 4-1).

[image: When registered users log in, they will be given an authentication token that they must use whenever they post or remove an item in the database]

Figure 4-1. When registered users log in, they will be given an authentication token that they must use whenever they post or remove an item in the database

In the login operation, the user's ID and password are sent (in
plain text) to the publisher service where they are validated. The
service then creates an authentication token and returns it to the
user. While not very secure, this illustrates one way that
authentication can occur in SOAP-based web services. That is, rather
than using transport-level security mechanisms, such as HTTP
authentication, security can be built into the web services interface
directly. In Chapter 5, we will discuss several
much more secure and robust security mechanisms for web services.

The Publisher Operations

The operations exposed by the Publisher service are fairly
straightforward. If we cast these operations in a Java interface,
they would look like Example 4-1.

Example 4-1. The Publisher interface in Java
public Interface Publisher {

 public boolean register (String email,
 String password,
 String firstName,
 String lastName,
 String title,
 String company,
 String url);

 public boolean modify (String email,
 String newemail,
 String password,
 String firstName,
 String lastName,
 String title,
 String company,
 String url);

 public AuthInfo login {String id,
 String password);

 public int post (AuthInfo authinfo,
 String type,
 String title,
 String description);

 public boolean remove (AuthInfo authinfo,
 int itemID);

 public org.w3c.dom.Document browse (
 String type,
 String format,
 int maxRows);
}

The Publisher Server

The Publisher Perl module uses the Perl DBI package and
DBD::CSV package,
both of which are available from CPAN and installed the same way
SOAP::Lite is installed. The code discussed in the next section
should be contained in a single Perl module called
Publisher.pm
 , shown in full in Appendix C.

The code is quite straightforward. We create a database to store the
news, articles, and resource items, and the list of users who will
use the service. After the database is created, we define the
operations for manipulating that database. Those operations are not
exported. The deployed code is in the last half of the script,
managing user logins and exposing the various operations that the web
service will support.

The Preamble

 Example 4-2 defines the code's namespace,
loads the database module, and defines a convenience function for
accessing the database handle. Data is stored in a comma-separated
text file, but you can change that to a relational database by
changing the "DBI:CSV:..." string to the data
source specifier for a MySQL or a similar database.

Example 4-2. Publisher preamble
package Publisher;

use strict;

package Publisher::DB;

use DBI;
use vars qw($CONNECT);

$CONNECT = "DBI:CSV:f_dir=/home/book;csv_sep_char=\0";
my $dbh;

sub dbh {
 shift;
 unless ($dbh) {
 $dbh = DBI->connect(shift || $CONNECT);
 $dbh->{'RaiseError'} = 1;
 }
 return $dbh;
}

Data Tables

 Example 4-3 creates
the data tables for storing information about the members and items
managed by the Publisher service.

Example 4-3. Create data tables
sub create {
 my $dbh = shift->dbh;

 $dbh->do($_) foreach split /;/, '

 CREATE TABLE members (
 memberID integer,
 email char(100),
 password char(25),
 firstName char(50),
 lastName char(50),
 title char(50),
 company char(50),
 url char(255),
 subscribed integer
);

 CREATE TABLE items (
 itemID integer,
 memberID integer,
 type integer,
 title char(255),
 description char(512),
 postStamp integer
)

';

}

Once the tables are created, we need to write the code for
manipulating the data in those tables. These methods, shown in Example 4-4, are private and will not be exposed as part
of our web service. Only the first few methods are shown in full.

 Consult Appendix C for the full source.

Example 4-4. Methods to manipulate data in tables
sub insert_member {
 my $dbh = shift->dbh;
 my $newMemberID = 1 + $dbh->selectrow_array(
 "SELECT memberID FROM members ORDER BY memberID
 DESC");

 my %parameters = (@_, memberID => $newMemberID, subscribed => 0);
 my $names = join ', ', keys %parameters;
 my $placeholders = join ', ', ('?') x keys %parameters;

 $dbh->do("INSERT INTO members ($names) VALUES
 ($placeholders)", {}, values %parameters);
 return $newMemberID;
}

sub select_member {
 my $dbh = shift->dbh;
 my %parameters = @_;

 my $where = join ' AND ', map {"$_ = ?"} keys %parameters;
 $where = "WHERE $where" if $where;

 # returns row in array context and first element (memberID) in scalar
 return $dbh->selectrow_array("SELECT * FROM members
 $where", {}, values %parameters);
}

sub update_member {}

sub insert_item {}

sub select_item {}

sub select_all_items {}

sub delete_item {}

Utility Functions

Now we start defining the actual Publisher web service. Example 4-5 shows several private
utility functions, primarily for
dealing with the creation and validation of the authorization tokens
used as part of the Publisher service's security model
(discussed later).

Example 4-5. Utility functions
package Publisher;

use POSIX qw(strftime);

@Publisher::ISA = qw(SOAP::Server::Parameters);

use Digest::MD5 qw(md5);

my $calculateAuthInfo = sub {
 return md5(join '', 'unique (yet persistent) string', @_);
};

my $checkAuthInfo = sub {
 my $authInfo = shift;
 my $signature = $calculateAuthInfo->(@{$authInfo}{qw(memberID email time)});
 die "Authentication information is not valid\n" if $signature ne $authInfo->{signature};
 die "Authentication information is expired\n" if time() > $authInfo->{time};
 return $authInfo->{memberID};
};

my $makeAuthInfo = sub {
 my($memberID, $email) = @_;
 my $time = time()+20*60;
 my $signature = $calculateAuthInfo->($memberID, $email, $time);
 return +{memberID => $memberID, time => $time, email => $email, signature => $signature};
};

Register a New User

 Example 4-6

 shows
the code for the exported operation that registers new users.

Example 4-6. Exported method to register a new user
sub register {
 my $self = shift;
 my $envelope = pop;
 my %parameters = %{$envelope->method() || {}};

 die "Wrong parameters: register(email, password, firstName, " .
 "lastName [, title][, company][, url])\n"
 unless 4 == map {defined} @parameters{qw(email password firstName
lastName)};

 my $email = $parameters{email};
 die "Member with email ($email) already registered\n"
 if Publisher::DB->select_member(email => $email);
 return Publisher::DB->insert_member(%parameters);
}

Modify User Information

 Example 4-7 is the operation that
allows

users to modify their information.

Example 4-7. Exported subroutine to modify a user's information
sub modify {
 my $self = shift;
 my $envelope = pop;
 my %parameters = %{$envelope->method() || {}};

 my $memberID = $checkAuthInfo->($envelope->valueof('//authInfo'));
 Publisher::DB->update_member($memberID, %parameters);
 return;
}

User Login

 Example 4-8

 is
the operation that validates a user's ID and password and
issues an authentication token.

Example 4-8. Exported method to validate a user and issue a token
sub login {
 my $self = shift;
 my %parameters = %{pop->method() || {}};

 my $email = $parameters{email};
 my $memberID = Publisher::DB->select_member(email => $email, password => $parameters{password});
 die "Credentials are wrong\n" unless $memberID;
 return bless $makeAuthInfo->($memberID, $email) => 'authInfo';
}

Posting an Item

 Example 4-9
 shows the method that posts a new item
to the database.

Example 4-9. Exported method to post a new item
my %type2code = (news => 1, article => 2, resource => 3);
my %code2type = reverse %type2code;

sub postItem {
 my $self = shift;
 my $envelope = pop;
 my $memberID = $checkAuthInfo->($envelope->valueof('//authInfo'));
 my %parameters = %{$envelope->method() || {}};

 die "Wrong parameter(s): postItem(type, title, description)\n"
 unless 3 == map {defined} @parameters{qw(type title description)};

 $parameters{type} = $type2code{lc $parameters{type}}
 or die "Wrong type of item ($parameters{type})\n";
 return Publisher::DB->insert_item(memberID => $memberID, %parameters);
}

Removing Items

 Example 4-10
 shows the exported method for removing
items from the database. Only the user who added an item can remove
it.

Example 4-10. Exported method to remove an item from the database
sub removeItem {
 my $self = shift;
 my $memberID = $checkAuthInfo->(pop->valueof('//authInfo'));
 die "Wrong parameter(s): removeItem(itemID)\n" unless @_ == 1;

 my $itemID = shift;
 die "Specified item ($itemID) can't be found or removed\n"
 unless Publisher::DB->select_item(memberID => $memberID, itemID => $itemID);
 Publisher::DB->delete_item($itemID);
 return;
}

Browsing

 Users can
browse the item
database using either a Publisher service-specific XML format or the
popular Rich Site Summary (RSS) format used
extensively across the Internet.

 Example 4-11, while looking fairly complex, creates
the appropriate XML structures depending on the format requested by
the caller.

Example 4-11. Code to support browsing in proprietary and RSS formats
my $browse = sub {
 my $envelope = pop;
 my %parameters = %{$envelope->method() || {}};

 my ($type, $format, $maxRows, $query) = @parameters{qw(type format maxRows query)};
 $type = {all => 'all', %type2code}->{lc($type) || 'all'}
 or die "Wrong type of item ($type)\n";
 # default values
 $maxRows ||= 25;
 $format ||= 'XML';
 my $items = Publisher::DB->select_all_items($type ne 'all' ? (type => $type) : ());
 my %members;
 my @items = map {
 my ($type, $title, $description, $date, $memberID) = @$_;
 my ($email, $firstName, $lastName) = @{
 $members{$memberID} ||= [Publisher::DB->select_member(memberID =>
 $memberID)]
 }[1,3,4];
 +{
 $format =~ /^XML/ ? (
 type => $code2type{$type},
 title => $title,
 description => $description,
 date => strftime("%Y-%m-%d", gmtime($date)),
 creator => "$firstName $lastName ($email)"
) : (
 category => $code2type{$type},
 title => "$title by $firstName $lastName ($email) on "
 . strftime("%Y-%m-%d", gmtime($date)),
 description => $description,
)
 }
 } @{$items}[0..(!$query && $maxRows <= $#$items ? $maxRows-1 : $#$items)];

 if ($query) {
 my $regexp = join '', map {
 /\s+and\s+/io ? '&&' : /\s+or\s+/io ? '||' : /[()]/ ? $_ : $_ ? '/'
 . quotemeta($_) . '/o' : ''
 } split /(\(|\)|\s+and\s+|\s+or\s+)/io, $query;
 eval "*checkfor = sub { for (\@_) { return 1 if $regexp; } return }"
 or die;
 @items = grep {checkfor(values %$_)} @items;
 splice(@items, $maxRows <= $#items ? $maxRows : $#items+1);
 }

 return $format =~ /^(XML|RSS)str$/
 ? SOAP::Serializer
 -> autotype(0)
 -> readable(1)
 -> serialize(SOAP::Data->name(($1 eq 'XML' ? 'itemList' : 'channel')
 => \SOAP::Data->name(item => @items)))
 : [@items];
};

sub browse {
 my $self = shift;
 return SOAP::Data->name(browse => $browse->(@_));
}

Search

The search

operation is similar to the browse operation with
the exception that users are allowed to specify a keyword filter to
limit the number of items returned. It is shown in Example 4-12.

Example 4-12. Exported method to search the database
sub search {
 my $self = shift;
 return SOAP::Data->name(search => $browse->(@_));
}

Deploying the Publisher Service

 To
deploy the Publisher service, you need to do two things. First,
create the database that is going to store the information. Do so by
running the script in Example 4-13.

Example 4-13. Program to create the database
#!/usr/bin/perl -w
use Publisher;
Publisher::DB->create;

This will create two files in the current directory, called
members

and
items
 .

Next, create the CGI script that will listen for SOAP messages and
dispatch them to SOAP::Lite and the Publisher module. This is given
in Example 4-14.

Example 4-14. Publisher.cgi, SOAP proxy for the Publisher module
#!/bin/perl -w

use SOAP::Transport::HTTP;
use Publisher;

$Publisher::DB::CONNECT =
 "DBI:CSV:f_dir=d:/book;csv_sep_char=\0";
$authinfo = 'http://www.soaplite.com/authInfo';
my $server = SOAP::Transport::HTTP::CGI
 -> dispatch_to('Publisher');
$server->serializer->maptype({authInfo => $authinfo});
$server->handle;

The dispatch_to
 method call instructs the SOAP::Lite
package which methods to accept, and in which module those methods
can be found.

Copy the CGI script to your web server's
cgi-bin directory and install the
Publisher.pm, members, and
items files in your Perl module directory. The
Publisher web service is now ready for business.

The Java Shell Client

The Java shell client is a simple interface for interacting with the
Publisher web service. A typical session is shown in Example 4-15. Notice that once the shell is started, the
user must log on prior to posting new items.

Example 4-15. A sample session with the Java shell client
C:\book>java Client http://localhost/cgi-bin/Publisher.cgi

Welcome to Publisher!
> help

Actions: register | login | post | remove | browse
> login

What is your user id: james@soap-wrc.com

What is your password: abc123xyz

Attempting to login...
james@soap-wrc.com is logged in

> post

What type of item [1 = News, 2 = Article, 3 = Resource]: 1

What is the title:
Programming Web Services with SOAP, WSDL and UDDI

What is the description:
A cool new book about Web services!

Attempting to post item...
Posted item 46

> quit

C:\book>

To create the shell, you need to create two Java classes: one for the
shell itself (Client.java), and the other to keep
track of the authorization token issued by the Publisher service when
you log in (AuthInfo.java).

The Authentication Class

The preamble to the
authInfo

class is shown in Example 4-16.

Example 4-16. The authInfo class
// authInfo.java

import org.w3c.dom.Document;
import org.w3c.dom.Element;

public class authInfo {
 private int memberID;
 private long time;
 private String email;
 private byte [] signature;

 public authInfo() { }

 public authInfo(int memberID, long time, String email, byte[] signature) {
 this.memberID = memberID;
 this.time = time;
 this.email = email;
 this.signature = signature;
 }

The class has the usual get and set accessors. Example 4-17 shows the first four methods, and stubs the
rest. For the full source, see Appendix C.

Example 4-17. authInfo accessors
 public void setMemberID(int memberID) {
 this.memberID = memberID;
 }

 public int getMemberID() {
 return memberID;
 }

 public void setTime(long time) {
 this.time = time;
 }

 public long getTime() {
 return time;
 }

 public void setEmail(String email) {}
 public String getEmail() {}
 public void setSignature(byte [] signature) {}
 public byte [] getSignature() {}
 public String toString() {}

 public void serialize(Document doc) {
 Element authEl = doc.createElementNS(
 "http://www.soaplite.com/authInfo",
 "authInfo");
 authEl.setAttribute("xmlns:auth", "http://www.soaplite.com/authInfo");
 authEl.setPrefix("auth");

 Element emailEl = doc.createElement("email");
 emailEl.appendChild(doc.createTextNode(auth.getEmail()));

 Element signatureEl = doc.createElement("signature");
 signatureEl.setAttribute("xmlns:enc", Constants.NS_URI_SOAP_ENC);
 signatureEl.setAttribute("xsi:type", "enc:base64");
 signatureEl.appendChild(doc.createTextNode(
 Base64.encode(auth.getSignature())));

 Element memberIdEl = doc.createElement("memberID");
 memberIdEl.appendChild(doc.createTextNode(
 String.valueOf(auth.getMemberID())));

 Element timeEl = doc.createElement("time");
 timeEl.appendChild(doc.createTextNode(
 String.valueOf(auth.getTime())));

 authEl.appendChild(emailEl);
 authEl.appendChild(signatureEl);
 authEl.appendChild(memberIdEl);
 authEl.appendChild(timeEl);
 doc.appendChild(authEl);
 }
}

The serialize
 method creates an XML representation of
the authInfo class instance that looks like Example 4-18.

Example 4-18. Sample serialization from the authInfo class
<auth:authInfo xmlns:auth="http://www.soaplite.com/authInfo">
 <email>johndoe@acme.com</email>
 <signature> <!-- Base64 encoded string --> </signature>
 <memberID>123</memberID>
 <time>2001-08-10 12:04:00 PDT (GMT + 8:00)</time>
</auth:authInfo>

The Client Class

The Client

class is straightforward. There are utility routines for working with
the SOAP client object, some code to handle authentication and login,
methods to make a SOAP call for each of the operations the user might
wish to perform, and then a main routine to handle the interface with
the user.

Preamble

The preamble to the Client class is shown Example 4-19.

Example 4-19. The Client class
// Client.java
import java.io.*;
import java.net.*;
import java.util.*;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.w3c.dom.*;

import org.apache.soap.util.xml.*;
import org.apache.soap.*;
import org.apache.soap.encoding.*;
import org.apache.soap.encoding.soapenc.*;
import org.apache.soap.rpc.*;

public class Client {

 private URL url;
 private String uri;
 private authInfo authInfo;

 public Client (String url, String uri) throws Exception {
 try {
 this.uri = uri;
 this.url = new URL(url);
 } catch (Exception e) {
 throw new Exception(e.getMessage());
 }
 }

The initCall
 method in Example 4-20
initializes the Apache SOAP client.

Example 4-20. The initCall method
 private Call initCall () {
 Call call = new Call();
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 call.setTargetObjectURI(uri);
 return call;
 }

The invokeCall
 method shown in Example 4-21 makes the calls to the Publisher service. This
is similar to the Hello World service example that we provided
earlier.

Example 4-21. The invokeCall method
 private Object invokeCall (Call call)
 throws Exception {
 try {
 Response response = call.invoke(url, "");
 if (!response.generatedFault()) {
 return response.getReturnValue() == null
 ? null :
 response.getReturnValue().getValue();
 } else {
 Fault f = response.getFault();
 throw new Exception("Fault = " +
 f.getFaultCode() + ", " +
 f.getFaultString());
 }
 } catch (SOAPException e) {
 throw new Exception("SOAPException = " +
 e.getFaultCode() + ", " +
 e.getMessage());
 }
 }

Authentication

The
makeAuthHeader

operation in Example 4-22 creates a SOAP header block
that contains an authentication token. This operation must be called
every time that somebody wishes to post or remove items in the
Publisher service.

It works by simply creating a DOM document, instructing the
authInfo class to serialize itself to that
document (see the serialize operation on the
authInfo class in Example 4-18),
and adding the authentication information to the headers.

Example 4-22. The makeAuthHeader method
 public Header makeAuthHeader (authInfo auth)
 throws Exception {
 if (auth == null) { throw new Exception("Oops,
 you are not logged in. Please login first"); }
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 dbf.setValidating(false);
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.newDocument();
 auth.serialize(doc);
 Vector headerEntries = new Vector();
 headerEntries.add(doc.getDocumentElement());
 Header header = new Header();
 header.setHeaderEntries(headerEntries);
 return header;
 }

User login

 Example 4-23
 shows
the login operation. Notice that before we invoke
the request, we must tell Apache SOAP which deserializer to use for
the authentication token that will be returned if the operation is a
success. The
BeanSerializer
 is a utility class that comes with Apache
SOAP for translating XML into instances of Java classes that conform
to the Java Bean standard. We must explicitly inform Apache SOAP that
we want all authInfo XML elements found in a SOAP
message within the
http://www.soaplite.com/Publisher namespace to be
deserialized using the BeanSerializer class. If we
don't, an error occurs whenever an authInfo
element is found in the SOAP envelope.

We earlier brought up the topic of type mappings in Apache SOAP but
never really explained what they are or how they work. A
type mapping
is a link between some type of native data type (such as a Java
class) and the way that data type appears as XML. Serializers and
deserializers are special pieces of code capable of translating
between the two. The
SOAPMappingRegistry
is a collection of all type mappings and their corresponding
serializers and deserializers.

In Apache SOAP, we have to declare a type mapping whenever we want to
use any data type other than primitive built-in data types (e.g.,
strings, integers, floats, etc.).

Example 4-23. The login method
public void login (String email, String password) throws Exception {
 Call call = initCall();

 SOAPMappingRegistry smr =
 new SOAPMappingRegistry();
 BeanSerializer beanSer = new BeanSerializer();
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("http://www.soaplite.com/Publisher",
 "authInfo"),
 authInfo.class, beanSer, beanSer);

 Vector params = new Vector ();
 params.add(new Parameter("email", String.class,
 email, null));
 params.add(new Parameter("password",
 String.class, password, null));
 call.setParams(params);
 call.setMethodName("login");
 call.setSOAPMappingRegistry(smr);
 authInfo = (authInfo) invokeCall(call);
 System.out.println(authInfo.getEmail() + " logged in.");
}

Wrappers to call the remote operations

 Although the shell client has
methods for each of the operations of the Publisher web service, it
doesn't necessarily have to. We've done it in this
example to ensure you get a clear picture of the way the SOAP
envelope gets built and used. This would be easier, though, if we had
a mechanism for creating a more dynamic proxy similar to the one
provided by SOAP::Lite. In Chapter 5 we will
demonstrate a Java proxy built on top of Apache SOAP that does just
that.

The operations in Example 4-24 all follow a very
simple pattern: initialize the SOAP call, set the parameters, and
invoke the SOAP call.

Example 4-24. Wrappers for the remote operations
public void register (String email,
 String password,
 String firstName,
 String lastName,
 String title,
 String company,
 String url) throws Exception {
 Call call = initCall();

 Vector params = new Vector ();
 params.add(new Parameter("email", String.class, email, null));
 params.add(new Parameter("password", String.class, password, null));
 params.add(new Parameter("firstName", String.class, firstName, null));
 params.add(new Parameter("lastName", String.class, lastName, null));
 if (url != null)
 params.add(new Parameter("url", String.class, url, null));
 if (title != null)
 params.add(new Parameter("title", String.class, title, null));
 if (company != null)
 params.add(new Parameter("company", String.class, company, null));
 call.setParams(params);
 call.setMethodName("register");
 invokeCall(call);
 System.out.println("Registered.");
}

public void postItem (String type,
 String title,
 String description)
 throws Exception {
 Call call = initCall();
 Vector params = new Vector ();
 params.add(new Parameter("type", String.class, type, null));
 params.add(new Parameter("title", String.class, title, null));
 params.add(new Parameter("description", String.class, description, null));
 call.setParams(params);
 call.setMethodName("postItem");
 call.setHeader(makeAuthHeader(authInfo));
 Integer itemID = (Integer)invokeCall(call);
 System.out.println("Posted item " + itemID + ".");
}

public void removeItem (Integer itemID);
public void browse (String type,
 String format,
 Integer maxRows);

The main routine

 Now
that the basic operations for interacting with the web service have
been defined, we need to create the code for the Publisher shell
(Example 4-25). This code does nothing more than
provide users with a menu of things that can be done with the
Publisher service. In a loop we get input from the user, decide what
they want to do, and do it.

Because none of this code deals directly with the invocation and use
of the Publisher web service, significant pieces were removed for the
sake of brevity. The entire code sample can be found in Appendix C.

Example 4-25. The main method
 public static void main(String[] args) {
 String myname = Client.class.getName();

 if (args.length < 1) {
 System.err.println("Usage:\n java " + myname + " SOAP-router-URL");
 System.exit (1);
 }

 try {
 Client client = new Client(args[0], "http://www.soaplite.com/Publisher");

 InputStream in = System.in;
 InputStreamReader isr = new
 InputStreamReader(in);
 BufferedReader br = new BufferedReader(isr);
 String action = null;
 while (!("quit".equals(action))) {
 System.out.print("> ");
 action = br.readLine();

 if ("register".equals(action)) {
 // code hidden for brevity
 client.register(email, password, firstName, lastName,
 title, company, url);
 }

 if ("login".equals(action)) {
 // code hidden for brevity
 client.login(id,pwd);
 }

 if ("post".equals(action)) {
 // code hidden for brevity
 client.postItem(type, title, desc);
 }

 if ("remove".equals(action)) {
		// code hidden for brevity
 client.removeItem(Integer.valueOf(id));
 } catch (Exception ex) {
 System.out.println("\nCould not remove item!");
 }
 System.out.println();
 }

 if ("browse".equals(action)) {
		// code hidden for brevity
 client.browse(type, format, ival);
 } catch (Exception ex) {
 System.out.println(ex);
 System.out.println("\nCould not browse!");
 }
 }

 if ("help".equals(action)) {
 System.out.println("\nActions: register | login | post | remove | browse");
 }
 }
 } catch (Exception e) {
 System.err.println("Caught Exception: " + e.getMessage());
 }
 }
}

Deploying the Client

 Once
the code is written, compile it and launch it with the following
command:

C:\book>java Client http://localhost/cgi-bin/Publisher.cgi
Replace localhost with the name of the web server
where the Publisher CGI script is deployed. Figure 4-2 shows the shell in action.

[image: The Publisher shell at runtime]

Figure 4-2. The Publisher shell at runtime

Chapter 5. Describing a SOAP Service

Having seen the basic steps in implementing web services,
you're now ready to explore technologies that make it easier to
use web services that have already been deployed. Specifically, this
chapter focuses on the Web Service Description Language
(WSDL), which makes possible automated code-generation tools to
simplify building clients for existing web services. WSDL also forms
an integral component of the discovery process we'll see in
Chapter 6.

Describing Web Services

 The introduction
of web services in Chapter 1 mentioned that one of the key things
that sets web services apart from other types of applications is that
they can be made self-describing. Here, we describe what that means.

Every application exposes some type of functionality; you invoke that
functionality through various types of operations. Those operations
require you to provide specific pieces of information. Once the
operation is complete, the application may return information back to
you. This entire exchange must be conducted using some agreed upon
protocol for packaging the information and sending it back and forth.
However, most applications typically require you, the developer, to
describe how all of this is supposed to happen. The specific details
of how a service is implemented become entrenched in the application.
If any changes need to be made, the application must be changed and
recompiled. These applications are not very flexible.

With web services, though, it is possible to allow applications to
discover all of this information dynamically while the application is
being run. This ability makes changes easier to accommodate and much
less disruptive.

The SOAP specification does not address description. The de facto
standard specification used to make web services self-describing is
the Web Services Description Language (WSDL). Using WSDL, a web
service can describe everything about what it does, how it does it,
and how consumers of that web service can go about using it.

There are several advantages to using WSDL:
	WSDL makes it easier to write and maintain services by providing a
more structured approach to defining web service interfaces.

	WSDL makes it easier to consume web services by reducing the amount
of code (and potential errors) that a client application must
implement.

	WSDL makes it easier to implement changes that will be less likely to
"break" SOAP client applications. Dynamic discovery of
WSDL descriptions allows such changes to be pushed down automatically
to clients using WSDL so that potentially expensive modifications to
the client code don't have to be made every time a change
occurs.

WSDL is not perfect, however. Currently, there is no support for
versioning of WSDL descriptions, so web services providers and
consumers need to be aware that when significant changes to a WSDL
description occur, there may very well be problems propagated down to
the client. For the most part, however, WSDL descriptions should be
treated in a similar manner to traditional object
interfaces—where the definition of the service, once put into
production, is immutable and cannot be changed.

Another key point is that, for the most part, web service developers
will not be required to manually create WSDL descriptions of their
services. Many toolkits include tools for generating WSDL
automatically from existing application components.

Microsoft's .NET platform, for example, will automatically
generate a WSDL description of deployed .asmx
services simply by appending ?WSDL to the URL of
the .asmx file. If you have .NET and the
HelloWorld.asmx service from Chapter 3, open your web browser and append the
?WSDL to the end of the service's URL. You
will see a dynamically generated WSDL description of the Hello World
service, shown in Figure 5-1.

[image: Automatically generated WSDL description for the .NET Hello World service]

Figure 5-1. Automatically generated WSDL description for the .NET Hello World service

Keep in mind that not every web services toolkit includes WSDL
support; third party add-ons may be required. IBM supplies an
extension to Apache SOAP called the Web Services ToolKit that
provides comprehensive WSDL support on top of Apache SOAP. WSIF,
another IBM tool that we will take a look at in just a minute, is
another example of a WSDL-enabling add-on for Apache SOAP. Apache
Axis, when complete, will include built-in support for the use and
creation of WSDL documents.

Although you can, and many do, use SOAP without WSDL, WSDL
descriptions of your services make life easier for consumers of those
services.

A Quick Example

To demonstrate quickly the difference that using a WSDL description
of a web service can make in terms of the amount of code necessary to
access a web service from Java, let's create a WSDL description
for the Hello World web service and use the IBM
Web Service Invocation Framework
(WSIF) tools to invoke it.
WSIF is a Java package
that provides a WSDL-aware layer on top of Apache SOAP, allowing us
to call SOAP services easily given only a WSDL description. It can be
downloaded from http://alphaworks.ibm.com/tech/wsif. Within
this service description, we will point to the Perl-based Hello World
service created in Chapter 3.

The WSDL file begins with a preamble, then defines some messages that
will be exchanged. This preamble is shown in Example 5-1.

Example 5-1. WSDL preamble
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorldDescription"
 targetNamespace="urn:HelloWorld"
 xmlns:tns="urn:HelloWorld"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:message name="sayHello_IN">
 <part name="name" type="xsd:string" />
 </wsdl:message>
 <wsdl:message name="sayHello_Out">
 <part name="greeting" type="xsd:string" />
 </wsdl:message>

Next, the WSDL defines how a method translates into messages. This is
shown in Example 5-2.

Example 5-2. WSDL showing how a method corresponds to messages
 <wsdl:portType name="HelloWorldInterface">
 <wsdl:operation name="sayHello">
 <wsdl:input message="tns:sayHello_IN" />
 <wsdl:output message="tns:sayHello_OUT" />
 </wsdl:operation>
 </wsdl:portType>

Then the WSDL defines how the method is implemented (see Example 5-3).
Example 5-3. WSDL showing the implementation of the method
 <wsdl:binding name="HelloWorldBinding"
 type="tns:HelloWorldInterface">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"
 />
 <wsdl:operation name="sayHello">
 <soap:operation soapAction="urn:Hello" />
 <wsdl:input>
 <soap:body use="encoded"
 namespace="urn:Hello"
 encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
 />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="encoded"
 namespace="urn:Hello"
 encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
 />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

And finally the WSDL says where the service is hosted (Example 5-4).

Example 5-4. WSDL showing the location of the service
 <wsdl:service name="HelloWorldService">
 <wsdl:port name="HelloWorldPort"
 binding="tns:HelloWorldBinding">
 <!-- location of the Perl Hello World Service -->
 <soap:address
 location="http://localhost:8080" />
 </wsdl:port>
 </wsdl:service>	
</wsdl:definitions>

The values of the name attributes in WSDL (e.g.,
HelloWorldInterface and
HelloWorldBinding) are completely arbitrary. There
are no defined naming conventions you should follow.

The complete WSDL document, shown in full in Appendix C, would be placed either in a well-known or, as
we will explain Chapter 6, a discoverable location
on your web server so that it may be retrieved using a simple
HTTP-GET request. Once that is done, we can invoke the

 WSIF DynamicInvoker
class to invoke the web service. This can be done using a single
command-line operation:

C:\book>java clients.DynamicInvoker http://localhost/sayhello.wsdl sayHello James

Which will produce the output:
Hello James
This is a big difference compared to the code we used in Chapter 3 to invoke the exact same service. The WSDL
description allowed the WSIF tools to automatically figure out what
needed to be done with the Apache SOAP tools in order to send the
message and process the results, and you didn't have to write a
single line of code. While this is a fairly simple example (you
won't be able to use a single command line for every web
service that uses WSDL and WSIF, as we will demonstrate later), it
does stress the point: we use WSDL because it makes it easier to
write web services.

Anatomy of a Service Description

A web service description describes the abstract interface through
which a service consumer communicates with a service provider, as
well as the specific details of how a given web service has
implemented that interface. It does so by defining four types of
things: data, messages, interfaces, and services.

A
service

(HelloWorldService in our example) is a collection
of
ports

(addresses implementing the service; see
HelloWorldPort in the example). A port has both an
abstract definition (the port type) and a
concrete definition (the binding). Port types
function as the specification of the software interface
(HelloWorldInterface in this example), and are
composed of collections of
operations

(the individual method signatures) that define the ordered exchanges
of
messages

(sayHello_IN and sayHello_OUT
in the example). Bindings say which protocols are used by the port,
including the packaging protocol (SOAP in this case). A message is a
logical collection of named
parts

(data values) of a particular type. The type of part is defined using
some standard data typing mechanism such as the XML Schema
specification.

The structure of a web service description is illustrated in Figure 5-2.

[image: A service description describes four basic things about a web service: the data types, the messages, the interfaces, and the services]

Figure 5-2. A service description describes four basic things about a web service: the data types, the messages, the interfaces, and the services

Defining Data Types and Structures with XML Schemas

 Interoperability between applications on
various operating system platforms and programming languages is most
often hindered because one system's "integer" may
not be exactly the same as another system's
"integer." Because different operating systems and
programming languages have different definitions of what particular
base (or primitive) data types are not only called, but also how they
are expressed when sent out over the wire, those operating systems
and programming languages cannot communicate with each other.

To allow seamless cross-platform interoperability, there must be a
mechanism by which the service consumer and the service provider
agree to a common set of types and the textual representation of the
data stored in them. The web services description provides the
framework through which the common data types may be defined.

In WSDL, the primary method of defining these shared data types is
the W3C's XML Schema specification. WSDL is, however, capable
of using any mechanism to define data types, and may actually
leverage the type definition mechanisms of existing programming
languages or data interchange standards. No matter what type
definition mechanism is used, both the service consumer and the
service provider must agree to it or the service description is
useless. That is why the authors of the WSDL specification chose to
use XML
Schemas—they are completely platform neutral.

If you're unfamiliar with the XML Schema data representation
system, now would be a good time to read the quick introduction in
Appendix B.

Interestingly, while XML Schemas are used to define the data types,
the message that is actually sent does not have to be serialized as
XML. For example, if we decide to use a standard HTML form to invoke
a web service, the input message will not be in XML syntax. The XML
Schema specification itself recognizes that a schema may be used to
describe data that is not serialized as an XML document instance, as
evidenced by Section 2 of the
 XML Schema specification
primer (http://www.w3.org/TR/xmlschema-0/):

The purpose of a schema is to define a class of XML documents, and so
the term "instance document" is often used to describe an
XML document that conforms to a particular schema. In fact, neither
instances nor schemas need to exist as documents per se—they
may exist as streams of bytes sent between applications, as fields in
a database record, or as collections of XML Infoset
"Information Items." —XML Schema Part 0: Primer,
Section 2

So, if the data can be expressed as XML, regardless of whether it
actually is expressed as XML, then XML Schemas
can be used to describe the rules that define the data.

Using XML Schemas in WSDL

 Once the data types are defined, they
must be referenced within a WSDL description. Do so either by
embedding the schema directly within the <wsdl:types
/> element, or by importing the schema using the
<wsdl:import
/>
 element. While both approaches are
valid, many WSDL-enabled tools do not yet properly support
<wsdl:import />. The <wsdl:types
/> method is by far the most common. Examples of both
approaches are shown here.

With import
 , you must declare the namespace that
the XML Schema defines, then import the XML Schema document. This is
shown in Example 5-5.

Example 5-5. Using import to reference a type definition
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorldDescription"
 targetNamespace="urn:HelloWorld"
 xmlns:tns="urn:HelloWorld"
 xmlns:types="urn:MyDataTypes"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:import namespace="urn:MyDataTypes"
 location="telephonenumber.xsd" />

</wsdl:definitions>

 Example 5-6 is the same definition but with the XML
Schema embedded directly into the WSDL description.

Example 5-6. Embedding XML Schema directly to define types
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorldDescription"
 targetNamespace="urn:HelloWorld"
 xmlns:tns="urn:HelloWorld"
 xmlns:types="urn:MyDataTypes"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 targetNamespace="urn:MyDataTypes"
 elementFormDefault="qualified">
 <xsd:complexType name="telephoneNumberEx">
 <xsd:complexContent>
 <xsd:restriction base="telephoneNumber">
 <xsd:sequence>
 <xsd:element name="countryCode">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{2}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="area">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="exchange">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="number">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{4}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>

</wsdl:definitions>

Describing the Web Service Interface

Web service interfaces are generally no different from interfaces
defined in object-oriented languages. There are input messages (the
set of parameters passed into the operation), output messages (the
set of values returned from the operation), and fault messages (the
set of error conditions that may arise while the operation is being
invoked). In WSDL, a web service interface is known as a
port type
 .

With this in mind, let's look again at the WSDL that we used
earlier to describe the Hello World service. The relevant
parts are shown in Example 5-7.

Example 5-7. Describing the Hello World service
<definitions ...>
 <wsdl:message name="sayHello_IN">
 <part name="name" type="xsd:string" />
 </wsdl:message>

 <wsdl:message name="sayHello_Out">
 <part name="greeting" type="xsd:string" />
 </wsdl:message>
	
 <wsdl:portType name="HelloWorldInterface">
 <wsdl:operation name="sayHello">
 <wsdl:input message="tns:sayHello_IN" />
 <wsdl:output message="tns:sayHello_OUT" />
 </wsdl:operation>
 </wsdl:portType>
 ...
</definitions>

The portType element defines the interface to the
Hello World service. This interface consists of a single operation
that has both an input and an expected output. The input is a message
of type sayHello_IN, consisting of a single part
called name of type string.

 WSDL portTypes
do not support inheritance. It would be nice to be able to do
something along the lines of Example 5-8, but
it's not supported yet.

Example 5-8. Attempting inheritance with WSDL
<wsdl:definitions>
 <wsdl:portType name="HelloWorldInterface">
 <wsdl:operation name="sayHello" />
 </wsdl:portType>
 <wsdl:portType name="HelloWorldInterfaceEx"
 extends="HelloWorldInterface">
 <wsdl:operation name="sayGoodbye" />
 </wsdl:portType>
</wsdl:definitions>

The goal would be to have SayHelloInterfaceEx
inherit the sayHello operation defined in
HelloWorldInterface. You can't do that in
WSDL right now, but support for some form of inheritance is being
considered for future versions of the specification.

Describing the Web Service Implementation

WSDL can also describe the implementation of a given port type. This
description is generally divided into two parts: the binding, which
describes how an interface is bound to specific transport and
messaging protocols (such as SOAP and HTTP), and the service, which
describes the specific network location (or locations) where an
interface has been implemented.

Binding Web Service Interfaces

Just as in Java, COM, or any object-oriented language, interfaces
must be implemented in order to be useful. In WSDL, the word for
implementation is
binding

 : the interfaces are
bound to specific network and messaging protocols. In WSDL, this is
represented by the
binding
 element, shown in Example 5-9.

Example 5-9. Binding an interface to specific protocols
<wsdl:binding name="HelloWorldBinding"
 type="tns:HelloWorldInterface">

 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="sayHello">
 <soap:operation soapAction="urn:Hello" />

 <wsdl:input>
 <soap:body use="encoded"
 namespace="..."
 encodingStyle="..." />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="encoded"
 namespace="..."
 encodingStyle="..." />
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

This creates a new binding definition, representing a SOAP-over-HTTP
implementation of the HelloWorldInterface port
type. A SOAP-aware web services platform would use this information
and the information contained in the port type and data type
definitions to construct the appropriate SOAP envelopes for each
operation.

 The
only difference between the binding element and
the portType element is the addition of the
<soap:binding />,
<soap:operation />, and
<soap:body /> elements. These are the pieces
that tell us how the messages are to be packaged. An instance of the
input message for the sayHello operation bound to
SOAP, using the earlier definition, would look something like Example 5-10.

Example 5-10. Instance of the message
<s:Envelope xmlns:s="...">
 <s:Body>
 <m:sayHello xmlns:m="urn:Hello">
 <name>John</name>
 </m:sayHello>
 </s:Body>
</s:Envelope>

The various soap: prefixed elements indicate
exactly how the SOAP protocol is to be applied to the Hello World
interface:

	

 <soap:binding />

	Defines the transport protocol and the style of the SOAP message.
There are two styles: RPC and
document. RPC indicates a SOAP message
conforming to the SOAP RPC convention. Document indicates a SOAP
messaging carrying some arbitrary package of XML data.

	

 <soap:operation />

	Defines the value of the SOAPAction header when
the HTTP transport protocol is used.

	

 <soap:body />

	Specifies how the parts of the abstract WSDL message definition will
appear in the body of the SOAP message by defining whether the parts
are encoded (following the rules of some encoding style) or literal
(arbitrary XML not necessarily following any defined set of encoding
rules).

	

 <soap:fault />

	While not shown in the previous example, this element specifies the
contents of the SOAP fault detail element. It
works exactly like the <soap:body />
element, defining how the detail part of the
message will appear in the SOAP envelope.

	

 <soap:header />

	Specifies how parts of the message will appear in the header of the
SOAP message.

	

 <soap:headerfault />

	Specifies how fault information pertaining to specific headers will
appear in the header of the SOAP fault message returned to the
sender.

	

 <soap:address />

	Specifies the network location where the SOAP web service has been
deployed.

Alternatively, the binding could have specified a different packaging
protocol for the messages—HTTP-GET, for instance. In this case,
the binding element will include elements that describe how the
message will appear within an HTTP URL. This is shown in Example 5-11.

Example 5-11. WSDL binding to HTTP-GET
<wsdl:binding name="HelloWorldBinding"
 type="tns:HelloWorldInterface">
 <http:binding verb="GET"/>
 <wsdl:operation name="sayHello">
 <http:operation location="sayHello" />
 <wsdl:input>
 <http:urlEncoded />
 </wsdl:input>
 <wsdl:output>
 <mime:content type="text/plain" />
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

Each of the http:
 and
mime:
 prefixed elements specify exactly how
the port type is to be implemented. For example, the
<http:urlEncoded /> element indicates that
all of the parts of the input message will appear as query string
extensions to the service URL. An instance of this binding would
appear as:

http://www.acme.com/sayHello?name=John
With the response message represented as nothing more than a stream
of data with a MIME content type of text/plain.

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Content-Type: text/plain;
Content-Length: 11

Hello James

Describing the Location of a Web Service

 The final piece of information that
a WSDL service implementation description must provide is the network
location where the web service is implemented. This is done by
linking a specific protocol binding to a specific network address in
the WSDL service and port elements, as shown in Example 5-12.

Example 5-12. Linking a binding to a network address
<wsdl:service name="HelloWorldService">
 <wsdl:port name="HelloWorldPort"
 binding="tns:HelloWorldBinding">
 <soap:address location="http://localhost:8080" />
 </wsdl:port>
</wsdl:service>	

In this example, we see that the Hello World service can be invoked
through the use of SOAP messages, as defined by the
HelloWorldBinding implemented at http://localhost:8080.

 One interesting aspect of WSDL is that a
service may define multiple ports, each of which may implement a
different binding at a different network location. It is possible,
for example, to create a single WSDL service description for our
three Hello World services written in Perl, Java, and .NET, as shown
in Example 5-13.

Example 5-13. Multiple instances of the same server
<wsdl:service name="HelloWorldService">
 <wsdl:port name="HelloWorldPort_Perl"
 binding="tns:HelloWorldBinding">
 <soap:address location="http://localhost:8080" />
 </wsdl:port>
 <wsdl:port name="HelloWorldPort_Java"
 binding="tns:HelloWorldBinding">
 <soap:address location="http://localhost/soap/servlet/rpcrouter" />
 </wsdl:port>
 <wsdl:port name="HelloWorldPort_NET"
 binding="tns:HelloWorldBinding">
 <soap:address location="http://localhost/helloworld.asmx" />
 </wsdl:port>
</wsdl:service>

At this point the WSDL has described everything that a service
consumer needs to know in order to invoke the Hello World web service
we created in Chapter 3.

Understanding Messaging Patterns

A messaging pattern describes the sequence of messages exchanged between the service
consumer and the service provider. The web services architecture
supports two fundamental types of message patterns: single-message
exchange and multiple-message exchange.

The definition of each pattern is based on whether the service
provider or the service consumer is the first to initiate the
exchange of messages, and whether there is an expected response to
that initial message. Figure 5-3 illustrates two
common message patterns.

[image: Two patterns of message exchange between the service provider (P) and the service consumer (C)]

Figure 5-3. Two patterns of message exchange between the service provider (P) and the service consumer (C)

Understanding these messaging patterns is an essential part of
understanding how to build effective and useful web services.

Single-Message Exchange

A
 single-message exchange involves just
that—a single message exchanged between the service consumer
and the service provider. They are analogous to functions that do not
have return values. The message may originate with either the service
provider or the service consumer.

To express a single-message exchange pattern in WSDL, define the
abstract operation within the portType where the
exchange will take place, as shown in Example 5-14.

Example 5-14. Single-message pattern in WSDL
<portType name="...">
 <operation name="Consumer_to_Provider">
 <input message="..." />
 </operation>
 <operation name="Provider_to_Consumer">
 <output message="..." />
 </operation>
</portType>

In WSDL, the <input /> element is used to
express the exchange of a message from the service consumer to the
service provider. The <output /> element is
used to express the exchange of a message in the opposite direction,
from the provider to the consumer.

Multiple-Message Exchange

And, obviously,
 multiple-message exchanges involve two
or more messages between the service consumer and the service
provider. These types of transactions range in complexity from simple
function-style exchanges (calling a
method on an object and returning a single result value), to a
complex choreography of messages passed back and forth. The current
version of WSDL, however, is only capable of expressing the simple
function-style exchanges, as in Example 5-15.

Example 5-15. Function-style exchanges in WSDL
<portType name="...">
 <operation name="Consumer_to_Provider_to_Consumer">
 <input message="..." />
 <output message="..." />
 </operation>
 <operation name="Provider_to_Consumer_to_Provider">
 <output message="..." />
 <input message="..." />
 </operation>
</portType>

Again, all <input /> messages originate with
the service consumer and all <output />
messages originate with the service provider.

Complex Multiple-Message Exchanges

 By itself, WSDL is only capable of
describing very rudimentary message exchange patterns. WSDL lacks the
added ability to specify not only what messages to exchange in any
given operation, but also the sequencing of operations themselves.
Quite often, for example, it may be useful to specify that a service
consumer must login before attempting to
deleteAllRecords. WSDL has no way to describe such
sequencing rules. A future version of WSDL may allow such sequencing
to be defined, either natively or through various extensibility
mechanisms. Specifications such as IBM's Web Services Flow
Language (WSFL) and Microsoft's XLANG (pronounced
"slang") have also been designed to deal with such
sequencing issues from the point of view of a workflow process. These
specifications will not be covered in this book.

Intermediaries

 In Chapter 2 we discussed actors and message paths. A
message path is the path a SOAP message takes on its way from the
service consumer to the service requester. This path may be through
several intermediary web services called actors, each of which may do
something when it receives the message.

Intermediaries do not change the exchange pattern for a given
operation. For example, a request-response operation between the
service consumer and the service requester is still a
request-response style operation. The only difference is that the
request and the response messages may make a few additional stops on
their way to their final destination. WSDL does not yet provide any
facilitities for communicating the path that a message is to
take.

Chapter 6. Discovering SOAP Services

Once a WSDL description of a web service has been created, a service
consumer must be able to locate it in order to be able to use it.
This is known as
discovery
 ,
the topic of this chapter. In particular, we look at the
Universal Description, Discovery,
and Integration (UDDI) project and the new Web Services Inspection
Language.

WSDL provides a service consumer with all the information they need
to interact with a service provider. But how can a consumer learn of
services to use? The UDDI project is an industry effort to define a
searchable registry of services and their descriptions so that
consumers can automatically discover the services they need.

UDDI has two parts: a registry of all a web service's metadata
(including a pointer to the WSDL description of a service), and a set
of WSDL port type definitions for manipulating and searching that
registry.

The latest UDDI
specification is Version 2.0. In this book, however, we focus
completely on Version 1.0. Version 2.0 has not yet been widely
implemented and there is very little support available for it.

UDDI is not the only option for service discovery. IBM and Microsoft
have recently announced the Web Services Inspection Language
(WS-Inspection), an XML-based language that provides an index of all
the web services at a given web location.

The first part of this chapter will focus primarily on UDDI. The last
half will briefly introduce WS-Inspection and demonstrate its role
inService Discovery.

The UDDI Registry

 The UDDI registry
allows a business to publicly list a description of itself and the
services it provides. Potential consumers of those services can
locate them based on taxonomical information, such as what the
service does or what industry the service targets.

The registry itself is defined as a hierarchy of business, service,
and binding descriptions expressed in XML.

Business Entity

The business entity structure represents
the provider of web services. Within the UDDI registry, this
structure contains information about the company itself, including
contact information, industry categories, business identifiers, and a
list of services provided. Example 6-1 shows a
fictitious business's UDDI registry entry.

Example 6-1. A UDDI business entry
<businessEntity businessKey="uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40"
 operator="http://www.ibm.com"
 authorizedName="John Doe">
 <name>Acme Company</name>
 <description>
 We create cool Web services
 </description>
 <contacts>
 <contact useType="general info">
 <description>General Information</description>
 <personName>John Doe</personName>
 <phone>(123) 123-1234</phone>
 <email>jdoe@acme.com</email>
 </contact>
 </contacts>
 <businessServices>
 ...
 </businessServices>
 <identifierBag>
 <keyedReference
 TModelKey="UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823"
 name="D-U-N-S"
 value="123456789" />
 </identifierBag>
 <categoryBag>
 <keyedReference
 TModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"
 name="NAICS"
 value="111336" />
 </categoryBag>
</businessEntity>

Business Services

The business service structure
represents an individual web service provided by the business entity.
Its description includes information on how to bind to the web
service, what type of web service it is, and what taxonomical
categories it belongs to. Example 6-2 show a
possible business service structure for the Hello World web service.

Example 6-2. Hello World business structure in UDDI
<businessService serviceKey="uuid:D6F1B765-BDB3-4837-828D-8284301E5A2A"
 businessKey="uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40">
 <name>Hello World Web Service</name>
 <description>A friendly Web service</description>
 <bindingTemplates>
 ...
 </bindingTemplates>
 <categoryBag />
</businessService>

Notice the use of the Universally Unique Identifiers
(UUIDs) in the
businessKey

 and serviceKey
attributes. Every business entity and business service is uniquely
identified in all UDDI registries through the UUID assigned by the
registry when the information is first entered.

Binding Templates

 Binding
templates are the technical descriptions of the web services
represented by the business service structure. A single business
service may have multiple binding templates. The binding template
represents the actual implementation of the web service (it is
roughly equivalent to the service element we saw
in WSDL). Example 6-3 shows a binding template for
Hello World.

Example 6-3. A binding template for Hello World
<bindingTemplate serviceKey="uuid:D6F1B765-BDB3-4837-828D-8284301E5A2A"
 bindingKey="uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40">
 <description>Hello World SOAP Binding</description>
 <accessPoint URLType="http">
 http://localhost:8080
 </accessPoint>
 <TModelInstanceDetails>
 <TModelInstanceInfo
 TModelKey="uuid:EB1B645F-CF2F-491f-811A-4868705F5904">
 <instanceDetails>
 <overviewDoc>
 <description>
 references the description of the
 WSDL service definition
 </description>
 <overviewURL>
 http://localhost/helloworld.wsdl
 </overviewURL>
 </overviewDoc>
 </instanceDetails>
 </TModelInstanceInfo>
 </TModelInstanceDetails>
</bindingTemplate>

Because a business service may have multiple binding templates, the
service may specify different implementations of the same service,
each bound to a different set of protocols or a different network
address.

TModels

A
TModel

is a way of describing the various business, service, and template
structures stored within the UDDI registry. Any abstract concept can
be registered within UDDI as a TModel. For
instance, if you define a new WSDL port type, you can define a
TModel that represents that port type within UDDI.
Then, you can specify that a given business service implements that
port type by associating the TModel with one of
that business service's binding templates.

A TModel representing the
HelloWorldInterface port type looks like Example 6-4.

Example 6-4. A TModel for Hello World
<TModel TModelKey="uuid:xyz987..."
 operator="http://www.ibm.com"
 authorizedName="John Doe">
 <name>HelloWorldInterface Port Type</name>
 <description>
 An interface for a friendly Web service
 </description>
 <overviewDoc>
 <overviewURL>
 http://localhost/helloworld.wsdl
 </overviewURL>
 </overviewDoc>
</TModel>

Federated UDDI Registries

 At its core, UDDI is comprised of a
global network of linked (federated) registries
that all implement the same SOAP-based web service interface for
publishing and locating web services. Figure 6-1
illustrates this.

[image: UDDI registries can be linked to provide a rudimentary distributed search capability]

Figure 6-1. UDDI registries can be linked to provide a rudimentary distributed search capability

Private UDDI Registries

 As an alternative to using the public
federated network of UDDI registries available on the Internet,
companies or industry groups may choose to implement their own
private UDDI registries. These exclusive services would be designed
for the sole purpose of allowing members of the company or of the
industry group to share and advertise services amongst themselves.

The key to this, however, is that whether the UDDI registry is part
of the global federated network or a privately owned and operated
registry, the one thing that ties it all together is a common web
services API for publishing and locating businesses and services
advertised within the UDDI registry.

The UDDI Interfaces

 A registry is no use without some
way to access it. The UDDI standard specifies
two SOAP interfaces for service consumers and
service providers to interact with the registry. Service consumers
use
InquireSOAP

to find a service, and service providers use
PublishSOAP to list a service. These services are
described with WSDL. The following explanation of the SOAP APIs
refers to the WSDL, but abbreviates some of the repetitive parts. The
full WSDL specification of the UDDI API is given in Appendix B.

The core of the UDDI interfaces is the UDDI XML Schema definitions.
These define the fundamental UDDI data types, for instance, the
businessDetail, which communicates detailed
information about registered business entities. The UDDI XML Schema
must be imported into the WSDL description from its network location
at http://www.uddi.org/schema/2001/uddi_v1.xsd,
as shown in Example 6-5.

Example 6-5. Importing the WSDL description

 <import namespace="urn:uddi-org:api"
 location="http://www.uddi.org/schema/2001/uddi_v1.xsd"
 />

The Publisher Interface

 The
Publisher
interface defines sixteen operations for a service provider managing
its entries in the UDDI registry:

	

 get_authToken

	Retrieves an authorization token. It works exactly like the
authorization token we used in the Publisher example in Chapter 3. All of the Publisher interface operations
require that a valid authorization token be submitted with the
request.

	

 discard_authToken

	Tells the UDDI registry to no longer accept a given authorization
token. This step is equivalent to logging out of the system.

	

 save_business

	Creates or updates a business entity's information contained in
the UDDI registry.

	

 save_service

	Creates or updates information about the web services that a business
entity provides.

	

 save_binding

	Creates or updates the technical information about a web
service's implementation.

	

 save_TModel

	Creates or updates the registration of abstract concepts managed by
the UDDI registry.

	

 delete_business

	Removes the given business entities from the UDDI registry completely.

	

 delete_service

	Removes the given web services from the UDDI registry completely.

	

 delete_binding

	Removes the given web service technical details from the UDDI
registry.

	

 delete_TModel

	Removes the specified TModels from the UDDI
registry.

	

 get_registeredInfo

	Returns a summary of everything the UDDI registry is currently
keeping track of for the user, including all businesses, all
services, and all TModels.

In the WSDL, these methods correspond to messages based on the
underlying UDDI data types, as in Example 6-6.

Example 6-6. UDDI method definition
 <message name="bindingDetail">
 <part name="body"
 element="uddi:bindingDetail" />
 </message>

 <message name="businessDetail">
 <part name="body"
 element="uddi:businessDetail" />
 </message>

The other standard messages are similarly defined.

 Finally, we define the port type
itself, creating the interface through which modifications can be
made to the UDDI registry. Again, only a few definitions have been
shown in full detail in Example 6-7, as they all
follow the same pattern.

Example 6-7. Representative Publisher operation definitions
 <portType name="PublishSoap">
 <operation name="delete_binding">
 <input message="tns:delete_binding" />
 <output message="tns:dispositionReport" />
 <fault name="error"
 message="tns:dispositionReport" />
 </operation>

 <operation name="delete_business">
 <input message="tns:delete_business" />
 <output message="tns:dispositionReport" />
 <fault name="error"
 message="tns:dispositionReport" />
 </operation>

 <operation name="delete_service">
 <input message="tns:delete_service" />
 <output message="tns:dispositionReport" />
 <fault name="error"
 message="tns:dispositionReport" />
 </operation>

 <operation name="delete_TModel"> ...
 <operation name="discard_authToken"> ...
 <operation name="get_authToken"> ...
 <operation name="get_registeredInfo"> ...
 <operation name="save_binding"> ...
 <operation name="save_business"> ...
 <operation name="save_service"> ...
 <operation name="save_TModel"> ...
 <operation name="validate_categorization"> ...
 </portType>
</definitions>

The Inquiry Interface

 The inquiry
interface defines ten operations for searching the UDDI registry and
retrieving details about specific registrations:

	

 find_binding

	Returns a list of web services that match a particular set of
criteria based on the technical binding information.

	

 find_business

	Returns a list of business entities that match a particular set of
criteria.

	

 find_ltservice

	Returns a list of web services that match a particular set of
criteria.

	

 find_TModel

	Returns a list of TModels that match a particular
set of criteria.

	

 get_bindingDetail

	Returns the complete registration information for a particular web
service binding template.

	

 get_businessDetail

	Returns the registration information for a business entity, including
all services that entity provides.

	

 get_businessDetailExt

	Returns the complete registration information for a business entity.

	

 get_serviceDetail

	Returns the complete registration information for a web service.

	

 get_TModelDetail

	Returns the complete registration information for a
TModel.

 InquireSOAP defines the web service interface for
searching the UDDI registry. Example 6-8 shows the
method definitions for find_binding,
find_business, and
find_service.

Example 6-8. InquireSOAP
 <portType name="InquireSoap">
 <operation name="find_binding">
 <input message="tns:find_binding" />
 <output message="tns:bindingDetail" />
 <fault name="error"
 message="tns:dispositionReport" />
 </operation>

 <operation name="find_business">
 <input message="tns:find_business" />
 <output message="tns:businessList" />
 <fault name="error"
 message="tns:dispositionReport" />
 </operation>

 <operation name="find_service">
 <input message="tns:find_service" />
 <output message="tns:serviceList" />
 <fault name="error"
 message="tns:dispositionReport" />
 </operation>

The message definitions are as
straightforward as in the Publisher interface. Example 6-9 shows the first three. Consult Appendix C for the full list.

Example 6-9. Inquiry message definitions
 <message name="authToken">
 <part name="body"
 element="uddi:authToken" />
 </message>

 <message name="bindingDetail">
 <part name="body"
 element="uddi:bindingDetail" />
 </message>

 <message name="businessDetail">
 <part name="body"
 element="uddi:businessDetail" />
 </message>

Using UDDI to Publish Services

 There are several toolkits, both open and
closed source, that provide an implementation of the UDDI Publish and
Inquiry interfaces. We'll walk you through using an open source
package from

 IBM called UDDI4J (UDDI for Java). You
can download this package from http://oss.software.ibm.com/developerworks/projects/uddi4j.

 The steps for using UDDI4J to publish web
services are:

	Register the service provider as a UDDI business entity.

	Specify the categories and identifiers that apply to your business
entity entry.

	Register the web service as a UDDI business service.

	Specify the categories that apply to your business service entry.

	Register the implementation details of your web service, including
the network location where the service is deployed.

The UDDI data model lets us do all these steps in a single operation.
Registration Program

 A Java program to publish the Hello
World service is given in Appendix C. We'll
step you through the highlights, which demonstrate how to use the
UDDI4J toolkit.

 You use UDDI4J through a proxy
object, which handles the underlying SOAP encoding and decoding. You
should initialize the proxy to the UDDI registry as shown in Example 6-10.

Example 6-10. Initializing the UDDI Proxy
UDDIProxy proxy = new UDDIProxy();
proxy.setPublishURL("https://www-3.ibm.com/services/uddi/testregistry/protect/
 publishapi");

 UDDI4J
defines classes for the UDDI data types. They have straightforward
accessors, so you prepare the business entity record as in Example 6-11.

Example 6-11. Specifying the business entity
BusinessEntity business = new BusinessEntity();
business.setName("O'Reilly and Associates");

Similarly you can specify the categories and identifiers for this
business entity. In Example 6-12, we use a North
American Industry Classification System (NAICS) category code of
11194.

Example 6-12. Specifying categories and identifiers for the business entity
CategoryBag cbag = new CategoryBag();
KeyedReference cat = new KeyedReference();
cat.setTModelKey("UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2");
cat.setKeyName("NAICS");
cat.setKeyValue("11194");
cbag.getKeyedReferenceVector().add(cat);
business.setCategoryBag(cbag);

In Example 6-13, we prepare the identifiers for the
business entity. We specify a Dun and Bradstreet number that may be
used to identify the business entity (it's fictitious, but you
get the idea). Because you can have more than one identifier for a
business, UDDI4J defines an IdentifierBag class
that holds the individual identifiers.

Example 6-13. Business entity identifiers
IdentifierBag ibag = new IdentifierBag();
KeyedReference id = new KeyedReference();
id.setTModelKey("UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823");
id.setKeyName("D-U-N-S");
id.setKeyValue("1234567890");
ibag.getKeyedReferenceVector().add(id);
business.setIdentifierBag(ibag);

Prepare the business service record as in Example 6-14.

Example 6-14. Initializing the business service record
BusinessServices services = new BusinessServices();
BusinessService service = new BusinessService();
service.setName("Hello World Service");
services.getBusinessServiceVector().add(service);
business.setBusinessServices(services);

 Example 6-15 shows the initialization of the
binding
templates. The binding template specifies the protocols implemented
by a service and the network location. It is the UDDI equivalent to
the WSDL binding and service port definition.

Example 6-15. Initializing the binding templates
BindingTemplates bindings = new BindingTemplates();
BindingTemplate binding = new BindingTemplate();
AccessPoint accessPoint = new AccessPoint();
accessPoint.setText("http://localhost:8080");
accessPoint.setURLType("HTTP");
binding.setAccessPoint(accessPoint);
bindings.getBindingTemplateVector().add(binding);
service.setBindingTemplates(bindings);

 Example 6-16
logs onto the UDDI registry and registers the business entity.

Example 6-16. Registering the business entity
AuthToken token = proxy.get_authToken("james", "semaj");
Vector businesses = new Vector();
businesses.add(business);
proxy.save_business(token.getAuthInfo().getText(), businesses);

How to Register

You'll need two things before you can use the registration
program:

	You must have a valid user account with the UDDI registry you choose.
You acquire one by registering through the HTML-form interface
provided by the specific UDDI registry provider.

	You must have Apache SOAP Version 2.1 or higher in your Java
classpath (UDDI4J uses Apache SOAP). To meet this requirement, make
sure that soap.jar,
mail.jar, and
activation.jar are all in your classpath.

There are three common situations that cause an error registering a
service:

	A company may already exist with the specified name.

	There may be some problem with the information defined.

	You might not have proper permissions to perform the requested action.

The SOAP Envelope for the Registration

The SOAP envelope sent to the UDDI registry
includes all of the registration information for the business entity,
as seen in Example 6-17.

Example 6-17. SOAP envelope for the registration
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>

 <save_business generic="1.0" xmlns="urn:uddi-org:api">
 <authInfo>test</authInfo>
 <businessEntity>
 <name>O'Reilly and Associates</name>
 <businessServices>
 <businessService>
 <name>Hello World Service</name>
 <bindingTemplates>
 <bindingTemplate>
 <accessPoint
 urlType="HTTP">http://localhost:8080</accessPoint>
 </bindingTemplate>
 </bindingTemplates>
 </businessService>
 </businessServices>
 <identifierBag>
 <keyedReference keyName="D-U-N-S"
 keyValue="1234567890"
 TModelKey="UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823"/>
 </identifierBag>
 <categoryBag>
 <keyedReference keyName="NAICS"
 keyValue="11194"
 TModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"/>
 </categoryBag>
 </businessEntity>
 </save_business>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Other Issues

 Operations like
save_business are destructive. In other words,
when you tell the UDDI registry to save a business entity, the
registry will use the information you provide to replace all other
information on that business entity that exists in the registry.
There are two ways around this:

	Retrieve the complete business entity record from the UDDI registry
prior to making any changes to the information (e.g., publishing a
new service). Make all changes directly to the record received from
the registry. Saving stores your modified record.

	Save only the specific parts you are changing. For example, if you
already have a business entity registration at a UDDI registry, and
all you want to do is register a new service, then you should use the
save_service operation rather than
save_business. This cuts down on the amount of
data being moved around and compartmentalizes the changes being made.

 Example 6-18 uses save_service to
localize changes.

Example 6-18. Changing only some fields in the registry
// Initialize the proxy to the UDDI registry
UDDIProxy proxy = new UDDIProxy();
proxy.setPublishURL("https://www-3.ibm.com/services/uddi/testregistry/protect/publishapi");

// Prepare the business service record
BusinessServices services = new BusinessServices();
BusinessService service = new BusinessService();
service.setBusinessKey("uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40");
service.setName("Hello World Service");
services.getBusinessServiceVector().add(service);

// Prepare the binding templates
BindingTemplates bindings = new BindingTemplates();
BindingTemplate binding = new BindingTemplate();
AccessPoint accessPoint = new AccessPoint();
accessPoint.setText("http://localhost:8080");
accessPoint.setURLType("HTTP");
binding.setAccessPoint(accessPoint);
bindings.getBindingTemplateVector().add(binding);
service.setBindingTemplates(bindings);

// Logon to UDDI registry and register
AuthToken token = proxy.get_authToken("username", "password");
Vector services = new Vector();
services.add(service);
proxy.save_service(token.getAuthInfo().getText(), services);

The only real difference is the absence of the business entity and
the addition of the service.setBusinessKey line.
This tells the UDDI registry which business entity to update. This ID
is generated automatically by the UDDI registry and returned to the
client when the business entity registration is created.

Using UDDI to Locate Services

 UDDI4J can also be used to locate
services that have been published within a UDDI registry. The process
involves the use of several find operations such
as find_business, find_service,
and find_binding.

 Appendix C has a program to search for a business
entity and navigate the results of that operation to find out
information about the services provided by that entity. We'll
discuss the highlights.

 FindQualifiers

modifies the search operations by indicating whether case-sensitive
searching is required, whether the results should be sorted ascending
or descending, and whether exact name matching is required. The last
argument in all of the find operations is the maximum number of
results to return. Passing in the number zero
indicates that all matching results should be returned. Example 6-19 sets up FindQualifiers to
look for the O'Reilly business.

Example 6-19. FindQualifiers to look for O'Reilly
FindQualifiers fqs = new FindQualifiers();
FindQualifier fq = new FindQualifier();
fq.setText(FindQualifier.sortByNameAsc);
BusinessList list = proxy.find_business("O'Reilly", fqs, 0);

Matching business entities are returned along with a listing of the
services offered. The listing includes the name and unique identifier
of the service. Use the UUID to drill down and get more information
about the service, as in Example 6-20.

Example 6-20. Fetching more information about the service
BusinessInfos infos = list.getBusinessInfos();
for (Iterator i = infos.getBusinessInfoVector().iterator(); i.hasNext();) {
 BusinessInfo info = (BusinessInfo)i.next();
 System.out.println("Business name: " + info.getName());
 for (Iterator j = info.getServiceInfos().getServiceInfoVector().iterator();
 j.hasNext();) {

 ServiceInfo sinfo = (ServiceInfo)j.next();
 System.out.println("\tService name: " + sinfo.getName());
 }
}

To retrieve more specific information about a given service, use the
get_serviceDetail
 operation
and pass in the unique identifier of the service you are requesting:

ServiceDetail detail = proxy.get_serviceDetail(serviceKey);
Using the information contained in the service detail, a client can
connect to and invoke the web service.

Generating UDDI from WSDL

 Because there are some variances and
overlapping in how WSDL and UDDI support the description of web
services, the industry coalition that is driving UDDI has released a
document describing the best practices to follow when using UDDI and
WSDL together to enable dynamic discovery of web service
descriptions. It basically defines how to use a WSDL description to
generate the UDDI registration for a service.

First, divide the WSDL description into two parts (two separate WSDL
files). The first file becomes the interface description. It includes
the data types, messages, port types, and bindings. The second file
is known as the implementation description. It includes only the
service definition. The implementation description imports the
interface description using the <wsdl:import
/> mechanism.

Interface Description

 Example 6-21 is the
 interface description for our Hello World
example.

Example 6-21. HelloWorldInterfaceDescription.wsdl
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorldInterfaceDescription"
 targetNamespace="urn:HelloWorldInterface"
 xmlns:tns="urn:HelloWorldInterface"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:message name="sayHello_IN">
 <part name="name" type="xsd:string" />
 </wsdl:message>
 <wsdl:message name="sayHello_Out">
 <part name="greeting" type="xsd:string" />
 </wsdl:message>

 <wsdl:portType name="HelloWorldInterface">
 <wsdl:operation name="sayHello">
 <wsdl:input message="tns:sayHello_IN" />
 <wsdl:output message="tns:sayHello_OUT" />
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="HelloWorldBinding"
 type="tns:HelloWorldInterface">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"
 />
 <wsdl:operation name="sayHello">
 <soap:operation soapAction="urn:Hello" />
 <wsdl:input>
 <soap:body use="encoded"

 namespace="urn:Hello"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="encoded"
 namespace="urn:Hello"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

Implementation Description

 Example 6-22 is the WSDL
implementation description for our Hello World example.

Example 6-22. HelloWorldImplementationDescription.wsdl
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorldImplementationDescription"
 targetNamespace="urn:HelloWorldImplementation"
 xmlns:tns="urn:HelloWorldImplementation"
 xmlns:hwi="urn:HelloWorldInterface"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:import namespace="urn:HelloWorldInterface"
 location="HelloWorldInterfaceDescription.wsdl" />

 <wsdl:service name="HelloWorldService">
 <wsdl:port name="HelloWorldPort"
 binding="hwi:HelloWorldBinding">
 <!-- location of the Perl Hello World Service -->
 <soap:address
 location="http://localhost:8080" />
 </wsdl:port>
 </wsdl:service>	

</wsdl:definitions>

Registering

 Register the interface description as a UDDI
TModel. You've seen NAICS categories and
D-U-N-S identifiers as TModels. Another type of
TModel is a WSDL description of a service
interface.

To register the interface as a TModel, create a
TModel structure and use the
save_TModel

operation as in Example 6-23.

Example 6-23. Registering the interface description as a TModel
TModel TModel = new TModel();
TModel.setName("Hello World Interface");

The
OverviewDoc

is a pointer to the interface WSDL description, held on a publicly
available web server. Example 6-24 shows how to set
this.

Example 6-24. Setting the OverviewDoc
OverviewDoc odoc = new OverviewDoc();
// localhost == the name of the server where
// the WSDL can be accessed
odoc.setOverviewURL("http://localhost/HelloWorldInterface.wsdl");
TModel.setOverviewDoc(odoc);

Indicate that this TModel represents a WSDL
interface description by creating a category reference with a
TModelKey of
uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4, a key
name of uddi-org:types, and a key value of
wsdlSpec, as shown in Example 6-25.

Example 6-25. Marking the TModel as WSDL
CategoryBag cbag = new CategoryBag();
KeyedReference kr = new KeyedReference();
kr.setTModelKey("uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4");
kr.setKeyName("uddi-org:types");
kr.setKeyValue("wsdlSpec");

 Example 6-26 shows how to call the
save_TModel operation to register the
TModel.

Example 6-26. Calling the save_TModel operation
UDDIProxy proxy = new UDDIProxy();
proxy.setPublishURL(
"https://www-3.ibm.com/services/uddi/
 testregistry/protect/publishapi");
AuthToken token = proxy.get_authToken("james", "semaj");
Vector TModels = new Vector();
TModels.add(TModel);
TModelDetail detail = proxy.save_TModel(token.getAuthInfo().getText(), TModels);

The
save_TModel

operation returns a copy of the TModel record just
registered, including the automatically generated unique identifier.
We keep that unique key for the next step, as shown in Example 6-27.

Example 6-27. Retaining unique key
TModel = (TModel)detail.getTModelVector().elementAt(0);
String TModelKey = TModel.getTModelKey();

Now say what the service is and where it lives, as in Example 6-28.

Example 6-28. Defining a service, binding template, and access point for the service
BusinessService service = new BusinessService();
service.setBusinessKey(businessKey);
service.setName("HelloWorldService");

BindingTemplates templates = new BindingTemplates();
BindingTemplate template = new BindingTemplate();
templates.getBindingTemplateVector().add(template);
service.setBindingTemplates(templates);

AccessPoint accessPoint = new AccessPoint();
accessPoint.setURLType("HTTP");
accessPoint.setText("http://localhost:8080");
template.setAccessPoint(accessPoint);

 Example 6-29 specifies that this service is an
instance of the HelloWorld-InterfaceDescription
 TModel just registered. The variable
TModelKey is the unique identifier fetched in
Example 6-27.

Example 6-29. Associate service with TModel
TModelInstanceDetails details = new TModelInstanceDetails();
TModelInstanceInfo instance = new TModelInstanceInfo();
instance.setTModelKey(TModelKey);

Provide a link to the WSDL implementation description as in Example 6-30. This, like the interface description, needs
to be located at some publicly available web address.

Example 6-30. Linking to WSDL implementation description
InstanceDetails instanceDetails = new InstanceDetails();
OverviewDoc odoc = new OverviewDoc();
odoc.setOverviewURL("http://localhost/HelloWorldImplementationDescription.wsdl");
instanceDetails.setOverviewDoc(odoc);
instance.setInstanceDetails(instanceDetails);
details.getTModelInstanceInfoVector().add(instance);
template.setTModelInstanceDetails(details);

Once the registration is prepared, initialize the proxy and call the
save_service operation to register the business
service. Example 6-31 shows this, in abbreviated
form. See Appendix C for the full source.

Example 6-31. Saving the service information
UDDIProxy proxy = new UDDIProxy();
// ...abbreviated
proxy.save_service(authInfo, services);

By following these guidelines, WSDL and UDDI can be made to work very
well together.

Using UDDI and WSDL Together

Once the WSDL-defined web service is published into a UDDI registry,
it is possible to build highly dynamic service proxies. The IBM Web
Services ToolKit, for example, provides built-in support for locating
services in UDDI and invoking those services through a dynamically
configured WSDL-based proxy.

To show you more of what is going on behind the scenes, however,
we're going to use UDDI4J and
 WSIF together to implement the same type
of functionality.

The steps are simple:
	Locate the Hello World service in the UDDI registry.

	Access the WSDL description for the Hello World service.

	Invoke the Hello World service.

All this is done on the client side. Nothing has to be done on the
server for this to work.

First, write the code to locate the Hello World service in UDDI.
Example 6-32 searches with
FindQualifiers and takes the first result offered
by the UDDI server.

Example 6-32. Locating a Hello World service
UDDIProxy proxy = new UDDIProxy();
FindQualifiers fq = new FindQualifiers();

ServiceList list = proxy.find_service(businessKey, "HelloWorldService", fq, 0);
ServiceInfos infos = list.getServiceInfos();

ServiceInfo info = (ServiceInfo)infos.getServiceInfoVector().elementAt(0);
String serviceKey = info.getServiceKey();

With the unique identifier of the matching service, Example 6-33 goes to the UDDI registry to retrieve the
business service. The binding template for that service then
identifies the implementation to use.

Example 6-33. Locating an implementation
ServiceDetail detail = proxy.get_serviceDetail(serviceKey);
BusinessService service = (BusinessService)detail.
 getBusinessServiceVector().elementAt(0);

BindingTemplate template = (BindingTemplate)service.
 getBindingTemplates().getBindingTemplateVector().elementAt(0);
TModelInstanceDetails details = template.getTModelInstanceDetails();
TModelInstanceInfo instance = details.getTModelInstanceInfoVector().elementAt(0);
InstanceDetails instanceDetails = instance.getInstanceDetails();

OverviewDoc odoc = instanceDetails.getOverviewDoc();
String wsdlpath = odoc.getOverviewURLString();

WSDL in hand, Example 6-34 uses WSIF to invoke the
web service.

Example 6-34. Invoking the web service with WSIF
Definition def = WSIFUtils.readWSDL(null, wsdlPath);
Service service = WSIFUtils.selectService(def, null, "HelloWorldService");
PortType portType = WSIFUtils.selectPortType(def, null, "HelloWorldInterface");

WSIFDynamicPortFactory dpf = new WSIFDynamicPortFactory(def, service, portType);
WSIFPort port = dpf.getPort();

Typically, message creation is done behind the scenes, out of the
sight of the programmer. Example 6-35 shows this.

Example 6-35. Creating messages with WSIF
WSIFMessage input = port.createInputMessage();
WSIFMessage output = port.createOutputMessage();
WSIFMessage fault = port.createFaultMessage();

 Example 6-36 calls the Hello World service.
Example 6-36. Invoking Hello World
WSIFPart namePart = new WSIFJavaPart(String.class, args[0]);
input.setPart("name", namePart);

System.out.println("Calling the SOAP Server to say hello!\n");
System.out.print("The SOAP Server says: ");
port.executeRequestResponseOperation("sayHello", input, output, fault);

WSIFPart greetingPart = output.getPart("greeting");
String greeting = (String)greetingPart.getJavaValue();
System.out.print(greeting + "\n");

Running this produces the same output we saw in the other Hello World
services examples (shown in Example 6-37).

Example 6-37. Output from the WSDL, UDDI, and WSIF Hello World client
C:\book>java wsdluddiExample James
Calling the SOAP Server to say hello!

The SOAP Server says: Hello James

The program dynamically discovered, inspected, and bound to the Hello
World web services. We didn't program the client knowing which
implementation we'd use. While the client was in Java,
there's no reason we couldn't have written it in any
language. C#, Visual Basic, and Perl all have UDDI and WSDL
extensions.

The Web Service Inspection Language (WS-Inspection)

 While UDDI is the best-known mechanism
for service discovery, it is neither the only mechanism nor always
the best tool for the job. In many cases, the complexity and scope of
UDDI is overkill if all that is needed is a simple pointer to a WSDL
document or a services URL endpoint. Recognizing this, IBM and
Microsoft got together and worked out a proposal for a new Web
Service Inspection Language that can be used to create a simple index
of service descriptions at a given network location.

An example WS-Inspection document is illustrated in Example 6-38. It contains a reference to a single service
(Hello World) with two descriptions—one WSDL-based description
and one UDDI-based description.

Example 6-38. A simple WS-Inspection document
<?xml version="1.0"?>
<inspection
 xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
 xmlns:uddi="http://schemas.xmlsoap.org/ws/2001/10/inspection/uddi/">

<service>
 <abstract>The Hello World Service</abstract>

 <description
 referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
 location="http://example.com/helloworld.wsdl"/>

 <description referencedNamespace="urn:uddi-org:api">
 <uddi:serviceDescription
 location="http://www.example.com/uddi/inquiryapi">
 <uddi:serviceKey>
 4FA28580-5C39-11D5-9FCF-BB3200333F79
 </uddi:serviceKey>
 </uddi:serviceDescription>
 </description>
 </service>

<link
 referencedNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
 location="http://example.com/moreservices.wsil"/>

</inspection>

Once created, WS-Inspection documents should be placed in a
well-known or easilydiscoverable location on your web server. In
fact, the WS-Inspection specification defines that, at a minimum, an
inspection document called Inspection.wsil
should be available at the root the server: for instance, http://www.ibm.com/inspection.wsil. This
allows potential clients of those services to locate inspection
documents easily and thereby discover the services being advertised.

The relationship between UDDI and WS-Inspection is simple.
UDDI is a phone book. If you need a
plumber to fix the pipes under your kitchen sink but do not know of a
good one to call, you open the phone book and find one. If you need a
web service that implements a particular WSDL defined port type for
processing purchase orders for ball bearings, you can submit a
request to a UDDI registry to find an appropriate service.
WS-Inspection, however, is useful if you already know the service
provider you want to use (e.g., you already know which plumber who
want to call so you dont have to look in the phonebook). You'd
simply refer to the WS-Inspection document published by the service
provider to find the location of the services they are offering.

WS-Inspection Syntax

 The
syntax of a WS-Inspection document is simple. The root
inspection element contains a collection of
abstract, link, and
service elements. The abstract
element provides for simple documentation throughout the
WS-Inspection document. The link element allows
the inspection document to link to other external inspection
documents or even other discovery mechanisms (such as a UDDI
registry) where additional information can be found. The
service element represents a web service being
offered by the publisher of the inspection document.

The service element itself is a collection of
abstract and description
elements. You can describe a service in several ways. WS-Inspection
allows all a service's descriptions to be listed. You can
provide extended information about each service description using XML
extensibility. Example 6-38, for instance, contains
both a WSDL and UDDI-based description.

WS-Inspection will be submitted for standardization at some point.
For now, both IBM and Microsoft have implemented support for it in
their web services offerings and other web service toolkit vendors
are considering doing the same. Because of its usefulness and simple
syntax, WS-Inspection is likely to develop favorable support.

Chapter 7. Web Services in Action

In the previous chapters, we've been building a picture of the
technologies and methodologies around SOAP web services. In this
chapter, we apply the discussion to the real-world implementation of
a SOAP web service. You'll see how SOAP and WSDL are deployed,
and also how to draw in other XML technologies to solve problems that
SOAP and WSDL do not address.

The service we'll develop is the CodeShare Service Network, a
simple set of peer-to-peer web services for sharing application
source code. While we develop that code, we'll stop to take a
look at security, and how to implement it when SOAP and WSDL
don't cover it.

The CodeShare implementation we show here provides a way for people
to share source code. We use digital signatures to verify the
identity of clients, and keep a central registry of the files people
are offering. Rather than a single web service, the CodeShare
application comprises a number of different small interfaces, a
common web services design. Each interface can be implemented in any
language that supports SOAP, and we used a mixture of Perl and Java
to demonstrate this. CodeShare is an example of a peer web service.
In the peer-to-peer (P2P) model, the
Internet isn't viewed as a network of
clients accessing the resources of a
server. Rather, it's a cooperative network
of peers sharing resources equally and evenly.
The lines are blurred between the service provider and the service
consumer, with no application required to have just a single role.

Peer web services uses already-deployed web services technologies to
provide P2P services.

The CodeShare Service Network

The CodeShare
Service Network is a very simple example of peer web services. It
provides an environment where developers may easily share source code
with the rest of the world.

Overview

 There
are three important CodeShare components: the owner of the code being
shared, the requester of the code, and the CodeShare server that
serves as clearinghouse for the code and as an authentication
authority that code owners can use to control access to the code that
they are sharing. The relationships between the components are shown
in Figure 7-1.

[image: The CodeShare architecture]

Figure 7-1. The CodeShare architecture

Here is the typical use scenario:
	The developers of some code decide to share that code publicly. They
do so by updating their local project index.xml
file, indicating the files they wish to share.

	The developers log onto the CodeShare server to update their entry in
the master index maintained at the server.

	The developers then start their CodeShare owner service (a local SOAP
HTTP daemon).

	Whenever users wish to find code being shared, they have two options:
they can connect to the developer's CodeShare owner service
directly and execute four basic operations:
search, list,
info, and get; or they can
connect to the CodeShare server and search the master index. Doing so
will result in a list of all CodeShare owner services sharing code
that matches the search request. All get
operations point directly to the owner service to retrieve the source
code being shared.

	At times, developers may wish to restrict who is allowed to access
the code they are sharing. To do so, they simply add the names of all
authorized users to their index.xml (all users
are registered with the CodeShare server). Whenever a user tries to
retrieve the restricted code, the owner service will check first to
see if the user has logged into the CodeShare server and if so,
whether they are allowed access.

Prerequisites

 There
are a few things that you need to have set up on your system before
you can run this example:

	SOAP::Lite Version 5.1 and all prerequisites
	Instructions on how to install this are given in Chapter 3.

	DBI and DBD:CSV
	These are Perl SQL database modules used by the CodeShare owner
server. Install them by typing install DBI and
install DBD::CSV in the CPAN shell.

	A Servlet-enabled web server
	We recommend Apache's Jakarta

 Tomcat Version 3.22. Tomcat can be
downloaded from http://jakarta.apache.org.

	Apache Xerces 1.4 or any other JAXP-enabled XML parser
	

 JAXP is the Java API for XML Processing
(http://xml.apache.org/xerces-j).

	Apache SOAP
	At the time of writing, the latest version was 2.2, which has a bug
you will need to fix. Download the source distribution of Apache
SOAP. The changes and the build process are described in the next
section of this chapter.

	The latest version of the IBM XML Security Suite
	

 This is available from IBM's
alphaWorks web site (http://alphaworks.ibm.com/tech/xmlsecuritysuite).
Once downloaded, unzip the distribution and put the
XSS4J.jar file into your application
server's classpath.

Fixing the bug in Apache SOAP 2.2

 The problem in Version 2.2 of Apache SOAP
causes invalid XML to be produced in some situations. CodeShare
happens to cause one of those situations. The bug fix detailed here
has been submitted and it should not be necessary to make this fix in
versions of Apache SOAP after 2.2.

Assuming that you have already downloaded the source distribution of
the Apache SOAP source code, locate a file called
DOM2Writer.java, in the
%SOAP_HOME%\java\src\org\apache\soap\util\xml
folder. ($SOAP_HOME will be in the directory where
the unzipped contents of the distribution were downloaded.)

At line 172, replace the lines in Example 7-1 with
those in Example 7-2.

Example 7-1. Code in DOM2Writer.java to replace
out.print(' ' + attr.getNodeName() +"=\"" + normalize(attr.getValue()) + '\"');

Example 7-2. New code for DOM2Writer.java
if (attr.getNodeName().startsWith("xmlns:") &&
 !(NS_URI_XMLNS.equals(attr.getNamespaceURI()))) {
 String attrName = attr.getNodeName();
 String prefix= attrName.substring(attrName.indexOf(":")+1);
 try
 {
 String namespaceURI =
 (String)namespaceStack.lookup(prefix);
 if (!attr.getNodeValue().equals(namespaceURI)) {
 printNamespaceDecl(prefix, namespaceURI,
 namespaceStack, out);
 }
 }
 catch (IllegalArgumentException e)
 {
 printNamespaceDecl(prefix,
 attr.getNodeValue(),
 namespaceStack, out);
 }
 }
else
 {
 out.print(' ' + attr.getNodeName() +"=\"" + normalize(attr.getValue()) + '\"');
 }

Now add the new method in Example 7-3 to the
DOM2Writer class.

Example 7-3. New method for the DOM2Writer class
private static void printNamespaceDecl(String prefix,
 String namespaceURI, ObjectRegistry namespaceStack,
 PrintWriter out)
{
 if (!(namespaceURI.equals(NS_URI_XMLNS) && prefix.equals("xmlns")))
 {
 out.print(" xmlns:" + prefix + "=\"" + namespaceURI + '\"');
 }
 namespaceStack.register(prefix, namespaceURI);
}

Next, compile the Apache SOAP package.

Compiling Apache SOAP

 To build
Apache SOAP, you need to use
 Ant, a Java
build-management tool released by Apache. Ant is available from
http://jakarta.apache.org and is
officially a part of the Jakarta Tomcat project. Once downloaded,
please follow the detailed instructions included with the package on
how to install it.

Ant uses an XML-based script
(build.xml
)
for defining how to compile the code. Apache SOAP's
build.xml file is located in the
%SOAP_HOME%\java directory.

Before you can build, you need to make sure that all of the
prerequisites are in place. These are listed at the start of the
build.xml file:

	Any JAXP-enabled XML Parser (Xerces is preferred)

	The
 JavaMail package, available from
http://java.sun.com/products/javamail/

	The
 Java Activation Framework package,
available from http://java.sun.com/products/beans/glasgow/jaf.html

These packages must all be in your classpath prior to attempting the
build. Once there, start the build using the following command:

java org.apache.tools.ant.Main <target>
Where target is one of four options:
	
 compile

	Creates the soap.jar package

	
 javadocs

	Creates the soap.jar JavaDocs

	
 dist

	Creates the complete binary distribution

	
 srcdist

	Creates the complete source code distribution

For our purposes, use the compile target option.
This will create a new soap.jar file with the
modified DOM2Writer.java class included. Once
built, replace all other soap.jar files that may
be in your application servers classpath with the newly built
soap.jar.

The Code Share Index

 The
source code shared through the CodeShare network is organized around
a simple index structure that preserves the original directory-file
hierarchy. Everybody wanting to share source code through the
CodeShare must create an index. As an example, let's assume
that we are sharing the following Java project:

HelloWorld
+---build.xml
+---lib
| +---HelloWorld.jar
+---src
 +---oreilly
 +---samples
 +---HelloWorld
 +---HelloWorld.java
There are a total of six directories and three files being shared.
Within the CodeShare index, we represent this project as Example 7-4.

Example 7-4. CodeShare index for sample project
<codeShare xmlns:dc="http://purl.org/dc/elements/1.1/">
 <project location="HelloWorld">
 <dc:Title>HelloWorld</dc:Title>
 <dc:Creator>James Snell, et al</dc:Creator>
 <dc:Date>2001-08-20</dc:Date>
 <dc:Subject>Hello World Web service example</dc:Subject>
 <dc:Description>
 Example Hello World Web service
 </dc:Description>
 <file location="build.xml">
 <dc:Title>Ant Build Script</dc:Title>
 </file>
 <directory location="lib">
 <dc:Title>Compiled libraries</dc:Title>
 <file location="HelloWorld.jar">
 <dc:Title>Compiled Hello World JAR</dc:Title>
 </file>
 </directory>
 <directory location="src">
 <dc:Title>Source Code</dc:Title>
 <directory location="oreilly">
 <dc:Title>oreilly</dc:title>
 <directory location="samples">
 <dc:Title>samples</dc:Title>
 <directory location="HelloWorld">
 <dc:Title>HelloWorld</dc:Title>
 <file location="HelloWorld.java">
 <dc:Title>HelloWorld.java</dc:Title>
 </file>
 </directory>
 </directory>
 </directory>
 </directory>
 </project>
</codeShare>

As you can see, the structure of the index is very basic. The
codeShare element is the root for the entire
index. The project element defines a shared
project. The directory element defines a directory
being shared within a project. The file element
defines a file being shared.

The most interesting feature of the index is the use of
Dublin Core metadata elements
(dc:Title, for example) to add descriptive
properties to each of the shared items.

The Dublin Core metadata project is an initiative to define standard
types of metadata (data about data) capable of describing Internet
content. We use it here to provide more flexible searching options
when people are looking for particular types of code. Without these
descriptive elements, the CodeShare searching capability would be
limited to searches based only on the name of the file or directory
being searched. Later, we'll see exactly how this additional
data is used.

The Dublin Core
 specification (http://www.dublincore.org/documents/dces/)
defines a set of 15 metadata elements, all of which may be used
within the CodeShare index. The elements are described in Table 7-1.

Table 7-1. Dublin Core element set
	
 Element name

 	
 Element description

	

 Title

 	
 The name given to the resource

	

 Creator

 	
 The entity responsible for creating the resource

	

 Subject

 	
 A short topic that describes the resource

	

 Description

 	
 A detailed, textual description of the resource

	

 Publisher

 	
 The entity responsible for making the resource available

	

 Contributor

 	
 An entity responsible for making contributions to the resource

	

 Date

 	
 Typically, the date the resource was created

	

 Type

 	
 The generic type of resource (not the MIME Content Type)

	

 Format

 	
 The MIME Content Type or other physical format of the resource

	

 Identifier

 	
 An unambiguous reference to the resource

	

 Source

 	
 A reference to the resource from which this resource is derived

	

 Language

 	
 The language (not programming language) in which the resource is
presented

	

 Relation

 	
 A reference to a related resource

	

 Coverage

 	
 The extent or scope of the resource

	

 Rights

 	
 Information about rights held in or over the resource

Web Services Security

 What
does it mean to add security to web services? In the case of the
CodeShare example, our goal is to let the owners of the code specify
access rights for particular individuals. If a user is not on the
list of approved users, she will not be able to download the code.

Security in web services means adding basic security capabilities to
the technologies that make web services happen. This means having the
ability to encrypt SOAP messages, digitally sign WSDL service
descriptions, add reliability to the protocol transports we use to
carry this information around, assert a user's identity, define
policies that govern how information is to be used, by whom it can be
used, and for what purposes it can be used, and any number of a
laundry list of other items. It could take almost an entire book by
itself to describe how to implement all of these requirements.
Unfortunately, while efforts are currently being made in each of
these areas, we are still a long way from having defined standards
(de facto or otherwise) on how all of this will happen in the web
services environment. For the CodeShare example, we focus on only
one:
 user
authentication.

Authentication in SOAP-based web services can occur in a wide variety
of ways. The service may choose to use traditional transport-layer
authentication methods, such as HTTP Basic or Digest Authentication.
Alternatively, the service may choose to implement a service-layer
authentication mechanism that makes the service itself responsible
for validating a user's identity.

The second approach is what we see emerging in the form of
Microsoft's Passport authentication service, which provides
Kerberos-based authentication over web service protocols.
Kerberos is a
popular Internet-standard authentication mechanism based on the
exchange of
tickets
 .
These tickets are used in much the same way as a ticket to a movie.
The bearer of the ticket presents it as a pass to get in to see the
movie, or in our case, to access a service.

 Chapter 8 discusses the Passport authentication
scheme and several other alternative approaches in greater detail.

The Security Assertions Markup Language (SAML)

One of the many emerging web service technologies is specifically
designed to be used as a method of implementing service-layer global
sign-on for web services. The specification, called the
Security Assertions Markup Language,
or SAML, defines an XML syntax for expressing security-related facts.
For example, SAML may be used to express the fact that Pavel
Kulchenko authenticated at 10:00 a.m. and that the authentication
expires at 2:00 p.m.

SAML assertions,
as they are called, are created and digitally signed by the
authentication authority who handles the actual authentication
process. For example, when a user invokes the login operation on the
CodeShare client interface, the CodeShare server (which validates the
user ID and password) issues the SAML assertion stating that the
login was successful. By digitally signing that assertion, anybody
who receives it may validate that it was, in fact, created and issued
by the CodeShare server.

 Example 7-5 is a digitally signed SAML assertion
returned by the login operation. The assertion itself is highlighted
in bold type. The first part of this structure is the
XML
Digital Signature, which validates that the SAML assertion is
authentic. XML Digital Signatures are being standardized through a
joint effort by the W3C and the IETF. The structure of these
signatures is too complex to explain here, so we've provided
links to some supplemental information in Chapter 8. Luckily, we do not have to create these
signatures manually. This particular example was created using
IBM's XML Security suite.

Example 7-5. SAML assertion
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/TR/2000/WD-xml-c14n-20000119"/>
 <SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
 <Reference URI="#999852828470">
 <DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>pCvvhLY/UdR7D8Jzja7kG2+finQ=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>
 T110Nd9tt4f1m9Ahoe82HoPXWrZ0se/9ON9qU01TRkZ4FrOg8DBg9g==
 </SignatureValue>
 <KeyInfo>
 <KeyValue>
 <DSAKeyValue>
 <P>
 /X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow9s
 ubVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bT
 xR7DAjVUE1oWkTL2dfOuK2HXKu/yIgMZndFIAcc= </P>
 <Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</Q>
 <G>
 9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFn
 Ej6EwoFhO3zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTx
 vqhRkImog9/hWuWfBpKLZl6Ae1UlZAFMO/7PSSo= </G>
 <Y>
 xbzyPw8CzjbnzxmoB9WDLnR0Enw2/5CxHLsozIXNT+n/EtZpi3okfytFxjAcQVUuiZ
 Jwkf2/Eke7peA/R5dd9krb1j0EdlTVXd+eOcyWJOWplKEJuNYclrC4f+zy6FTcxGlq
 d/GqVEwud1kUiQ+5RPoAYsxpzaRDAVIeaarxXN0= </Y>
 </DSAKeyValue>
 </KeyValue>
 <X509Data>
 <X509IssuerSerial>
 <X509IssuerName>CN=Codeshare</X509IssuerName>
 <X509SerialNumber>999849441</X509SerialNumber>
 </X509IssuerSerial>
 <X509SubjectName>CN=Codeshare</X509SubjectName>
 <X509Certificate>
 MIICXjCCAhsCBDuYfeEwCwYHKoZIzjgEAwUAMBQxEjAQBgNVBAMTCUNvZGVzaGFyZTAeFw0wMTA5MDcwNzU3MjFaF
w0wMTEyMDYwNzU3MjFaMBQxEjAQBgNVBAMTCUNvZGVzaGFyZTCCAbgwggEsBgcqhkjOOAQBMIIBHwKBgQD9f1OBHX
USKVLfSpwu7OTn9hG3UjzvRADDHj+AtlEmaUVdQCJR+1k9jVj6v8X1ujD2y5tVbNeBO4AdNG/
yZmC3a5lQpaSfn+gEexAiwk+7qdf+t8Yb+DtX58aophUPBPuD9tPFHsMCNVQTWhaRMvZ1864rYdcq7/
IiAxmd0UgBxwIVAJdgUI8VIwvMspK5gqLrhAvwWBz1AoGBAPfhoIXWmz3ey7yrXDa4V7l5lK+7+jrqgvlXTAs9B4J
nUVlXjrrUWU/
mcQcQgYC0SRZxI+hMKBYTt88JMozIpuE8FnqLVHyNKOCjrh4rs6Z1kW6jfwv6ITVi8ftiegEkO8yk8b6oUZCJqIPf
4VrlnwaSi2ZegHtVJWQBTDv+z0kqA4GFAAKBgQDFvPI/DwLONufPGagH1YMudHQSfDb/
kLEcuyjMhc1P6f8S1mmLeiR/K0XGMBxBVS6JknCR/
b8SR7ul4D9Hl132StvWPQR2VNVd3545zJYk5amUoQm41hyWsLh/
7PLoVNzEaWp38apUTC53WRSJD7lE+gBizGnNpEMBUh5pqvFc3TALBgcqhkjOOAQDBQADMAAwLQIVAIyej/
xrPI4jpVCBUdHz/zz4nUY9AhRGb/VRBiqS2NKo+PO0KbURVg2g5A== </X509Certificate>
 </X509Data>
 </KeyInfo>
 <dsig:Object Id="999852828470" xmlns=""
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 <AuthenticationAssertion AssertionID="999852828470"
 IssueInstant="Fri Sep 07 01:53:48 PDT 2001"
 Issuer="CodeShare.org" Version="1.0"
 xmlns="http://www.oasis-open.org/committees/security/docs/
 draft-sstc-schema-assertion-15.xsd">

 <Subject>
 <NameIdentifier>
 <SecurityDomain>CodeShare.org</SecurityDomain>
 <Name>james</Name>
 </NameIdentifier>
 </Subject>
 <AuthenticationMethod>http://codeshare.org</AuthenticationMethod>
 <AuthenticationInstant>
 Fri Sep 07 01:53:48 PDT 2001
 </AuthenticationInstant>
 <AuthenticationLocale>
 <IP>123.123.123.123</IP>
 <DNS_Domain>codeshare.org</DNS_Domain>
 </AuthenticationLocale>
 </AuthenticationAssertion>
 </dsig:Object>
</Signature>

 The purpose of this example
SAML assertion is to state that the user james
from the domain CodeShare.org authenticated on
Friday, September 7, at 1:53 p.m. Pacific Daylight Time 2001, using
CodeShare's default authentication method (the login
operation). The authentication itself was provided by a server
located at the 123.123.123.123 IP address with the
DNS domain name codeshare.org. This statement is
digitally signed using the CodeShare Servers X509 digital
certificate, guaranteeing its authenticity.

When a user presents this token to a CodeShare owner, the owner can
verify that it is authentic by asking the CodeShare server if it
really did issue the statement. Figure 7-2
illustrates the flow of messages.

[image: A flow illustrating the typical conversation between the CodeShare owner and CodeShare server]

Figure 7-2. A flow illustrating the typical conversation between the CodeShare owner and CodeShare server

SAML assertions can be created and validated by anybody, making them
a very good mechanism for implementing single sign-on functionality.
Later in this chapter, we will demonstrate how this SAML assertion
was created and signed.

Definitions and Descriptions

 Because
web services are all about the interfaces that tie applications
together, the first thing we need to do is define what those
interfaces look like.

In this example there are four interfaces of interest:
	The owner interface implemented by CodeShare owners and the CodeShare
server for allowing users to search for and retrieve source code.

	The client interface implemented by the CodeShare server for allowing
users to register and login.

	The login verification interface implemented by the CodeShare server
to allow CodeShare owners to ensure that users have logged on.

	The master index interface that allows CodeShare owners to update
their entries in the master index maintained by the CodeShare server.

Each of these interfaces is expressed using WSDL service interface
descriptions.

The Owner Interface

The owner interface consists of four
fundamental operations:

	
 search

	Searches the index.xml file for elements that
match a given value. By default, this operation searches only the
Dublin Core Title element, but other Dublin Core
elements may be targeted instead.

If this was a Java function, it would be something like:
public List search(String value,
 String dcElement);
In this example, dcElement equals the name of the
Dublin Core element that you want to search.

	
 list

	Lists all of the projects and items being shared by the owner. Only
basic information about the items is returned, including the location
and title of the items. Filters may be applied that return only items
that match a given value of a specified Dublin Core element. Like the
search operation, the title is the default element
upon which filters are applied.

Again looking at this from a Java perspective, the signature of this
operation is:

public List list(String value,
 String dcElement);
Unlike the search operation, however, both the
value and dcElement parameters
are optional.

	
 info

	Returns detailed information about each of the projects and items
being shared. Like the list operation, filters may
be applied to limit the number of items that are returned. The
signature of this operation is exactly the same as the
list operation.

	
 get

	Returns all of the files being shared for a specified project or
projects. The exact directory structures will be recreated. The
signature of this operation is also the same as the
list operation.

All of these operations return a SOAP encoded array of
item elements similar to Example 7-6.

Example 7-6. Sample array returned by owner operations
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/">
 <env:Body>
 <env:listResponse>
 <Items enc:arrayType="csi:item[2]"
 xsi:type="csi:ArrayOfItems">
 <item xsi:type="namesp1:SOAPStruct">
 <path xsi:type="xsd:string">HelloWorld</path>
 <title xsi:type="xsd:string"> HelloWorld </title>
 <fullpath xsi:type="xsd:string">HelloWorld/</fullpath>
 <type xsi:type="xsd:string">project</type>
 </item>
 <item xsi:type="namesp1:SOAPStruct">
 <path xsi:type="xsd:string" />
 <title xsi:type="xsd:string">build.xml</title>
 <fullpath xsi:type="xsd:string">HelloWorld/</fullpath>
 <type xsi:type="xsd:string">file</type>
 </item>
 </enc:Array>
 </env:listResponse>
 </env:Body>
</env:Envelope>

WSDL port type definition

 The full WSDL port type
definition is given in Appendix C. We'll
cover the highlights here: the data types, the messages, the port
type, and the protocol binding.

Data types

The data types are
defined with an embedded XML schema. This schema defines two data
types: an item, which, as we saw in the previous
SOAP envelope, represents a project item within the CodeShare index,
and an array of items.

The item definition, shown in Example 7-7, is straightforward. It is a complex type
element with four children and a flag to include any Dublin Core
elements that the CodeShare service may want to add.

Example 7-7. The item definition
<xsd:element name="item">
 <xsd:annotation>
 <xsd:documentation>
 CodeShare Indexed Item
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:all>
 <xsd:element name="path" type="xsd:string"
 nullable="true" minOccurs="0"/>
 <xsd:element name="title" type="xsd:string"
 nullable="true" minOccurs="0"/>
 <xsd:element name="fullpath" type="xsd:string"
 nullable="true" minOccurs="0"/>
 <xsd:element name="type" type="xsd:string"
 nullable="true" minOccurs="0"/>
 </xsd:all>
 <xsd:any namespace='xmlns:dc="http://purl.org/dc/elements/1.1/"'
 processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

The ArrayOfItems
 data
type, given in Example 7-8, is a derivative of the
Array data type defined by the SOAP Section 5
encoding style. With this definition, we state this is an array of
item elements as specified by the Section 5
encoding rules.

Example 7-8. The ArrayOfItems definition
<xsd:complexType name="ArrayOfItems">
 <xsd:annotation>
 <xsd:documentation>
 Array of CodeShare item elements
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="se:Array">
 <xsd:attribute ref="se:arrayType"
 wsdl:arrayType="types:item[]" />
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Messages

There are exactly two messages defined for each operation. A sample
operation's messages are defined in Example 7-9. See the complete listing in Appendix C.

Example 7-9. Search message definitions
<wsdl:message name="search">
 <part name="p1" type="xsd:string" />
 <part name="p2" type="xsd:string" />
</wsdl:message>
<wsdl:message name="searchResponse">
 <part name="response" type="types:ArrayOfItems" />
</wsdl:message>

Port type

The owner interface port type is defined in
terms of the messages we just created. Example 7-10
shows the portType element with a representative
operation defined. See Appendix C for the complete
listing. The parameterOrder attribute is a WSDL
mechanism for specifying the order in which the parts of a message
must appear within the body of the SOAP message.

Example 7-10. The portType definition
<wsdl:portType name="CodeShareOwnerInterface">
 <wsdl:operation name="search" parameterOrder="p1 p2">
 <wsdl:input name="search" message="tns:search" />
 <wsdl:output name="searchResponse"
 message="tns:searchResponse" />
 </wsdl:operation>
 <!-- and so on for the other operations -->
</wsdl:portType>

Protocol binding

 Example 7-11
 specifies that the owner interface
port type is accessed via SOAP messages transported over HTTP. Each
of the SOAP messages will conform to the Section 5 encoding style (as
indicated by the soap:body elements). As before,
only one operation is shown here. For the full set, see the complete
WSDL listing in Appendix C.

Example 7-11. Binding the interface to the portType
<wsdl:binding name="CodeShareOwner_SOAP_HTTP"
 type="tns:CodeShareOwnerInterface">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="search">
 <soap:operation soapAction="urn:CodeShareOwner#search" />
 <wsdl:input>
 <soap:body use="encoded" namespace="urn:CodeShareOwner"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output name="Name">
 <soap:body use="encoded" namespace="urn:CodeShareOwner"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>
 <!-- and so on for the other operations -->
/wsdl:binding>

The Client Interface

 The
client interface consists of two operations:
register and login. Because the
WSDL interface is similar in structure to the one defined for the
owner interface, we will not show it here. It is printed in full in
Appendix C.

	
 register

	Takes a simple user ID and password pair to create a new user account
on the CodeShare server.

	
 login

	Receives a Base64 encoded string consisting of the user ID and
password and returns a digitally signed SAML assertion indicating
that the user logged in successfully. If login was not successful, a
SOAP fault with the type "Client.Authentication" will be
returned.

CodeShare login operation

The CodeShare login operation validates
the user ID and password and generates a signed SAML assertion, as
shown in Figure 7-3. It's not a perfect
security solution—the SAML specification is missing some very
significant pieces (for example, it is very easy for somebody to
intercept a signed SAML assertion and pretend to be the person for
whom it is issued). It will be some time before all of these issues
get worked out. For our purposes, we need only something simple, just
to demonstrate the basic idea.

[image: A flow illustrating the typical conversation between the CodeShare client and CodeShare server]

Figure 7-3. A flow illustrating the typical conversation between the CodeShare client and CodeShare server

The Login Verification Interface

 The user presents the CodeShare
server's SAML assertions to retrieve the code being shared. The
assertion is given to the code owner who must validate that it did in
fact come from the CodeShare service. The CodeShare login
verification interface provides this functionality.

There is only a single verify operation defined by
this interface. It takes the SAML assertion as an input and returns a
simple true or false value indicating the validity of the assertion.
See Appendix C for the full WSDL.

The Master Index Interface

 Aside from providing the user
management and authentication functions for the CodeShare network,
the CodeShare service also provides a master index of all code being
shared. Code owners update this master index through the master index
interface.

This interface defines two operations. New code owners participate in
the CodeShare network through register, and the
update operation lets owners update their entries
in the master index. The update operation receives the owner's
user ID, password, and up-to-date project index.

Implementing the CodeShare Server

The
CodeShare
server is implemented as a set of Java classes that maintain a master
index of every CodeShare
owner who is sharing code and all of the registered users who may
have access to that code. The server is divided into four distinct
web services, each an implementation of the four interfaces that
we've already defined: the master index service, the owner
service, the client service, and the verification service.

The Master Index Service

 The master index service allows
CodeShare owners to update their entries in the index maintained by
the Code Share server. The codeshare.OwnerService
class implements the index service.

Operations

The list of registered owners is stored as an XML file. The
register operation in Example 7-12
simply adds a new element to that XML file.

Example 7-12. The register operation
public static boolean register(String ownerid, String password, String url) {
 Element e = doc.getDocumentElement();
 NodeList nl = e.getElementsByTagName("owner");
 for (int n = 0; n < nl.getLength(); n++) {
 Element ex = (Element)nl.item(n);
 if (ex.getAttribute("id").equals(ownerid)) {
 throw new IllegalArgumentException(
 "An owner with that ID already exists!");
 }
 }
 Element u = doc.createElement("owner");
 u.setAttribute("id", ownerid);
 u.setAttribute("password", password);
 u.setAttribute("url", url);
 e.appendChild(u);
 XMLUtil.put(owners, doc);
 return true;
}

 The master index itself (the list of
all code being shared through the CodeShare network) is also
maintained as an XML file. As with the register
operation, the update operation shown in Example 7-13 does nothing more than update this XML file by
either inserting the index passed in by the owner, or replacing an
existing part of the index updated at a previous time.

Example 7-13. The update operation
public static boolean update(String ownerid, String password, Element index) {
 Element el = doc.getDocumentElement();
 NodeList nl = el.getElementsByTagName("owner");
 for (int n = 0; n < nl.getLength(); n++) {
 Element e = (Element)nl.item(n);
 if (e.getAttribute("id").equals(ownerid) &&
 e.getAttribute("password").equals(password)) {
 Element i = (Element)doc.importNode(index, true);
 NodeList c = e.getElementsByTagName("index");
 if (c.getLength() > 0) {
 Node node = c.item(1);
 e.replaceChild(node, i);
 } else {
 e.appendChild(i);
 }
 XMLUtil.put(owners, doc);
 return true;
 }
 }
 return false;
}

Deployment

 This service is deployed to the
Apache SOAP engine using the process we described in Chapter 3. The deployment descriptor we'll use is
shown in Example 7-14.

Example 7-14. The deployment descriptor for the master index service
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:CodeShareService-MasterIndex">
 <isd:provider type="java"
 scope="Application"
 methods="register update">
 <isd:java class="codeshare.IndexService"/>
 </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener
 </isd:faultListener>
</isd:service>

The Owner Service

The owner service is a partial
implementation of the CodeShare owner interface. This interface
allows users to search the master index, but does not allow them to
use the get or info
operations—these must be performed directly against the
CodeShare owner service that is providing the code. The CodeShare
server will provide the information users need to find the owner
services sharing the code they wish to access.

The operations implemented by the owner service
(search and list) basically do
the same thing: return an array of shared items that match the
specified criteria. The search operation is shown in Example 7-15. This operation loops through all of the items
in the master index looking for matching items.

Example 7-15. The owner service operations
public org.w3c.dom.Element search(String p1)
{
 return search(p1, "dc:Title");
}

public Element search(String p1, String p2)
{
 Element e = doc.getDocumentElement();
 NodeList nl = e.getElementsByTagName(p2);

 Document d = SAMLUtil.newDocument();
 Element list = doc.createElement("list");
 d.appendChild(list);

 for (int n = 0; n < nl.getLength(); n++)
 {
 Element next = (Element)nl.item(n);
 try
 {
 RE targetRE = new RE(p1);
 if (targetRE.match(SAMLUtil.getInnerText(next.getText()))
 {
 Element item = (Element)d.importNode(next);
 list.appendChild(item);
 }
 }
 catch (Exception exc)
 {
 }
 }
 return list;
}

The CodeShare server does not support the info and
get operations, so we do not need to write any
code to implement them at this point.

This service is deployed to the Apache SOAP engine using the same
process we described in Chapter 3. The deployment
descriptor we'll use is shown in Example 7-16.

Example 7-16. Deployment descriptor for the CodeShare server
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:CodeShareService-OwnerService">
 <isd:provider type="java"
 scope="Application"
 methods="list search">
 <isd:java class="codeshare.OwnerService"/>
 </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener
 </isd:faultListener>
</isd:service>

The Client Service

 The
client service is a Java implementation of the client interface that
allows users to register and log in to the CodeShare service. This
service keeps track of all the various user accounts and issues the
digitally signed SAML assertions that users present to the CodeShare
owners. Owners use those assertions to ensure that only authorized
users can access the code they are sharing.

Creating SAML assertions

 Creating a SAML assertion involves
nothing more than creating an XML document that conforms to the SAML
schema. Because SAML is still being developed, this application
implements just a small subset of the most recent working draft being
discussed within the SAML working group.

We create the SAML assertion by building an object model (which we
created; there currently is no standard SAML API) that corresponds to
each of the major parts of the SAML schema, then serializing that
object model out to an XML document. The full code for this example
is available in Appendix C. Here we just show the
assertion being created.

We use the
AssertionFactory
 class to create an instance of the object
model. This class, given in full in Appendix C, is
discussed next.

The first step is to set the various required properties, such as the
assertion ID, the name of the issuer, and the data and time at which
the assertion was created. Example 7-17 shows this
step.

Example 7-17. Setting assertion properties
AuthenticationAssertion aa =
 new AuthenticationAssertion();

IDType aid = new IDType(id);
aa.setAssertionID(aid);
aa.setIssuer(issuerName);
aa.setIssueInstant(issueInstant);

Every SAML assertion has a subject that indicates what the assertion
is about. In this case, the subject is a name identifier that states
which user has been authenticated. Example 7-18 shows
how to set the subject.

Example 7-18. Setting the SAML subject
Subject subject = new Subject();
{
 NameIdentifier ni = new NameIdentifier();
 ni.setName(name);
 ni.setSecurityDomain(domain);
 subject.setNameIdentifier(ni);
 aa.setSubject(subject);
}

Finally, we fill in additional details about the type of
authentication that was used, and an indication of where the
authentication occurred (Example 7-19).

Example 7-19. Completing the authentication assertion
aa.setAuthenticationMethod(
new AuthenticationMethod(method));
aa.setAuthenticationInstant(new AuthenticationInstant(authInstant));
AuthenticationLocale locale = new AuthenticationLocale();
locale.setIP(ip);
locale.setDNSDomain(dns);
aa.setAuthenticationLocale(locale);

The AssertionFactory provides a convenient wrapper
to this dogwork. To create an assertion, simply pass in the various
relevant pieces of information, and the authentication assertion is
created, filled out, and returned.

 Example 7-20 uses the
AsssertionFactory class to generate a SAML
assertion.

Example 7-20. Using the AssertionFactory class
AuthenticationAssertion aa = AssertionFactory.newInstance(
 new String(new Long(System.currentTimeMillis()).toString()),
 "CodeShare.org",
 new java.util.Date(),
 userid,
 "CodeShare.org",
 "http://codeshare.org",
 java.net.InetAddress.getLocalHost().getHostAddress(),
 java.net.InetAddress.getLocalHost().getHostName()
);

 Example 7-21 shows the SAML assertion created by
Example 7-20.

Example 7-21. The SAML assertion
<AuthenticationAssertion
 AssertionID="999852828470"
 IssueInstant="Fri Sep 07 01:53:48 PDT 2001"
 Issuer="CodeShare.org" Version="1.0"
 xmlns="http://www.oasis-open.org/committees/security/docs/draft-
 sstc-schema-assertion-15.xsd">
 <Subject>
 <NameIdentifier>
 <SecurityDomain>CodeShare.org</SecurityDomain>
 <Name>james</Name>
 </NameIdentifier>
 </Subject>
 <AuthenticationMethod>
 http://codeshare.org
 </AuthenticationMethod>
 <AuthenticationInstant>
 Fri Sep 07 01:53:48 PDT 2001
 </AuthenticationInstant>
 <AuthenticationLocale>
 <IP>127.0.0.1</IP>
 <DNS_Domain>diamond</DNS_Domain>
 </AuthenticationLocale>
</AuthenticationAssertion>

This is the assertion in Example 7-5.

Java keystores

Signing the assertion will use Java's support for public and
private keys, which warrants a quick refresher. Somewhere on your
computer is a Java keystore, a local database where all of your
private keys are stored. You create a new key in this database by
using the keytool utility that ships with Java.
You can also use keytool to create new keystore
databases.

This command creates the private key for the CodeShare server, which
is used to sign all SAML assertions.

C:\book>keytool -genkey -dname "cn=CodeShare Server" -keypass CodeShare -alias
CodeShare -storepass CodeShare -keystore codeshare.db
This creates a new file called codeshare.db in
the C:\book folder that contains the private key
corresponding to the cn=CodeShare Server
distinguished name.

Signing the SAML assertion

We use the IBM XML Security Suite's XML Digital Signature
capability to sign the SAML assertion. The full source to the
AssertionSigner class is given in Appendix C. The highlights are discussed in this section.
At the time of writing, the programming interface of the IBM XML
Security Suite was being redesigned. The code shown here was tested
with Version XYZ of the XML Security Suite but may not work with
other versions.

We can't sign an assertion object directly.
Instead we have to serialize it to a DOM document and sign that. The
serialization is handled by the code in Example 7-22.

Example 7-22. Serializing the assertion to a DOM document
Document doc = SAMLUtil.newDocument();
Element root = doc.createElement("root");
assertion.serialize(root);

A SignatureGenerator object will make the
signature for us. In the constructor, we indicate the encryption and
signing protocols we want to use. This is shown in Example 7-23.

Example 7-23. Creating a SignatureGenerator
SignatureGenerator siggen =
 new SignatureGenerator(doc,
 DigestMethod.SHA1,
 Canonicalizer.W3C,
 SignatureMethod.DSA,
 null);

The XML signature document can include the message being signed, or
the message might be linked as an external resource or another XML
document. The most common approach is to include the message being
signed—so that's what we'll do, as shown in Example 7-24.

Example 7-24. Embedding the message being signed
siggen.addReference(
 siggen.createReference(
 siggen.wrapWithObject(
 root.getFirstChild(),
 assertion.getAssertionID().getText())
)
);

The code in Example 7-25 accesses the keystore and
extracts the information it needs to prepare the key needed for
signing the SAML assertion. Also prepared is an X509 digital
certificate that includes the public key for the
cn=CodeShare Server. This certificate is embedded
into the signature so that it can be used later to validate the
signature.

Example 7-25. Preparing the key
KeyStore keystore = KeyStore.getInstance("JKS");
keystore.load(
 new FileInputStream(keystorepath),
 storepass.toCharArray());
X509Certificate cert = (X509Certificate)keystore.getCertificate(alias);
Key key = keystore.getKey(alias, keypass.toCharArray());
if (key == null) {
 throw
 new IllegalArgumentException("Invalid Key Info");
}
KeyInfo keyInfo = new KeyInfo();
KeyInfo.X509Data x5data = new KeyInfo.X509Data();
x5data.setCertificate(cert);
x5data.setParameters(cert, true, true, true);
keyInfo.setX509Data(new KeyInfo.X509Data[] { x5data });
keyInfo.setKeyValue(cert.getPublicKey());
siggen.setKeyInfoGenerator(keyInfo);

Finally, we can use the prepared key to sign the assertion. The
sign operation on the
SignatureContext object handles the complex
cryptographic processes to create the signature (see Example 7-26). Once the assertion has been signed, we
return the DOM element that contains the signature just created.

Example 7-26. Signing the assertion
Element sig = siggen.getSignatureElement();
SignatureContext context = new SignatureContext();
context.sign(sig, key);
return sig;

The login operation

The encryption code is used in the login
operation, shown in Example 7-27. It verifies the
user's password, generates the SAML assertion, and signs it.

Example 7-27. The login operation
public static Element login(String userid,
 String password) throws Exception {

 Element el = doc.getDocumentElement();
 NodeList nl = el.getElementsByTagName("user");
 for (int n = 0; n < nl.getLength(); n++) {
 Element e = (Element)nl.item(n);
 if (e.getAttribute("id").equals(userid) &&
 e.getAttribute("password").equals(password)) {

 AuthenticationAssertion aa =
 AssertionFactory.newInstance(new String(new
 Long(System.currentTimeMillis()).toString()),
 "CodeShare.org",
 new java.util.Date(),
 userid,
 "CodeShare.org",
 "http://codeshare.org",
 new java.util.Date(),
 java.net.InetAddress.getLocalHost().
 getHostAddress(),
 java.net.InetAddress.getLocalHost().getHostName());

 Element sa = AssertionSigner.sign(aa,
 "CodeShare.db",
 "CodeShare",
 "CodeShareKeyPass",
 "CodeShareStorePass");
 return sa;
 }
 }
 return null;
}

The deployment descriptor we use to deploy the client service to
Apache Axis is shown in Example 7-28.

Example 7-28. Deployment descriptor
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:CodeShareService-ClientService">
 <isd:provider type="java"
 scope="Application"
 methods="register login">
 <isd:java class="codeshare.AuthenticationService"/>
 </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener
 </isd:faultListener>
</isd:service>

The Verification Service

 The task of the verification service
is to validate the signed SAML assertion on behalf of the CodeShare
owner. The CodeShare server handles this validation for the owner, so
the owner doesn't have to worry about the complexities of
implementing the full XML digital signature specification. Granted,
it's not a very secure approach, but it works for our purposes
here.

The verification service exposes a single operation,
verify
 , which receives the signature and
returns a Boolean response indicating whether that signature is valid
(see Example 7-29). A real verification of the SAML
assertion would include a number of checks, such as ensuring that all
of the fields contain valid data. We have omitted those checks in the
interest of brevity.

Example 7-29. The verify operation
public static boolean verify(Element signature) throws Exception {

 Key key = null;
 Element keyInfoElement = KeyInfo.searchForKeyInfo(signature);
 if (keyInfoElement != null) {
 KeyInfo keyInfo = new KeyInfo(keyInfoElement);
 key = keyInfo.getKeyValue();
 }

 SignatureContext context = new SignatureContext();
 Validity validity = context.verify(signature, key);
 return validity.getCoreValidity();
}

 Deploy this service using the deployment
descriptor in Example 7-30.

Example 7-30. Deployment descriptor for the verification service
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:CodeShareService-Verification">
 <isd:provider type="java"
 scope="Application"
 methods="verify">
 <isd:java class="codeshare.VerificationService"/>
 </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener
 </isd:faultListener>
</isd:service>

Implementing the CodeShare Owner

The CodeShare owner server is a lightweight
Perl application that consists of two parts: the owner module and a
SOAP-enabled HTTP daemon. The server builds on top of SOAP::Lite.

The Owner Module

The CodeShare::Owner module works with the
owner's index.xml to allow users to search
for and retrieve shared code. The owner service also interacts with
the CodeShare service to update the master index and validate the
identities of users who submit SAML assertions.

This code, written in Perl, implements the same owner interface as
the Java CodeShare owner service seen in the previous example. The
same WSDL interface description applies to both. The operations have
the same effect and return the same types of data.

The init
 method shown in Example 7-31 turns the owner's
index.xml into a data structure, stored in the
variable $index.

Example 7-31. The init method
sub init {
 my($class, $root) = @_;
 open(F, $root) or die "$root: $!\n";
 $index = SOAP::Custom::XML::Deserializer
 ->deserialize(join '', <F>)->root;
 close(F) or die "$root: $!\n";
}

To interact with the CodeShare server master index and validation
services, we create a SOAP::Lite proxy to the CodeShare server (shown
in Example 7-32).

Example 7-32. Constructing a SOAP::Lite proxy to the server
my $codeshare_server;

sub codeshare_server {
 return $codeshare_server ||=
 SOAP::Lite
 ->proxy($SERVER_ENDPOINT)
 ->uri("urn:Services:CodeShareServer");
}

The
update
 operation shown in Example 7-33 updates this owner's entry in the master
index with the information given as arguments to the method.

Example 7-33. The update operation
sub update {
 shift->codeshare_server->update(@_)->result;
}

When a user submits a SAML assertion, it must be validated by the
owner service. The
code in Example 7-34 uses the CodeShare service proxy
created in Example 7-32 to do just that. Once the
assertion is validated, it is cached so the owner doesn't have
to validate it again.

Example 7-34. Validating an assertion
sub is_valid_signature {
 my($self, $username, $signature) = @_;

 my $key = join "\0", $username, $signature;

 # already cached?
 return $cache{$key} if exists $cache{$key};

 my $response = eval { $self->codeshare_server
 ->isValid(SOAP::Data->type(xml => $signature)) };
 die "CodeShare server is unavailable. Can't validate credentials\n" if $@;
 die "CodeShare server is unavailable. ",
 $response->faultstring, "\n" if $response->fault;
 die "Invalid credentials\n"
 unless $cache{$key} = $response->result;

 return $cache{$key};
}

The
traverse
 procedure shown in Example 7-35 navigates the index.xml,
checking whether the items in the index match the criteria requested
by the user in the search,
info, list, or
get operations.

Example 7-35. The traverse method
sub traverse {
 my($self, %params) = @_;

 my $start = $params{start};

 my $type = $start->SOAP::Data::name; # file|project|directory
 my $location = ref $start->location ? $start->location->value : '';

 # path to current structure. Empty for projects
 my $path = $type eq 'directory' ||
 $type eq 'file' ? join('/', $params{path} || (), $location)
 : '';
 my $prefix = $type eq 'project' ? $location : $params{prefix} || '';
 my $fullpath = join '/', $prefix, $path; # full path. Used to GET files

 my $where = $params{where};
 my $matched =
 $params{get} && $params{matched} ||
 $params{what} &&
 # check only subelements in Dublin Core namespace
 $start->$where() =~ /$params{what}/ && $start->$where()->uri eq $DC_NS;

 return
 # current element
 ($matched
 ? +{ type => $type,
 path => $path,
 ($params{get} ? (fullpath => $fullpath) : ()),
 map { ref $start->$_() ? ($_ => $start->$_()->value) : ()
 } @ELEMENTS
 }
 : ()
),

 # and everything below
 map { $self->traverse(start => $_, where => $where,
 what => $params{what},
 path => $path,
 prefix => $prefix,
 get => ($params{get} || 0),
 matched => $matched) }
 $start->project, $start->directory,
 ($type eq 'file' ? () : $start->file)
 ;
}

The
list
 operation provides a simple listing of
all shared items, and is shown in Example 7-36.

Example 7-36. The list method
sub list {
 pop;
 my($self, $what) = @_;
 return [map { my $e = $_; +{ map {$_ => $e->{$_}}
 qw(type path Title file fullpath) } }
 $self->traverse(start => $index, where => 'Title',
 what => $what, get => 1)
];
}

The get operation shown in Example 7-38 retrieves the requested set of items; before
it can do so, however, it must check to see if the user is authorized
to access those items. It does so by validating the SAML assertion of
the user and checking to see if the owner has explicitly allowed the
user to access.

The owner specifies access permissions for a specific item in the
index by adding a Dublin Core dc:Rights element to
it. The value of this element is the list of users allowed to access
it. If the element is missing, it is assumed that everyone is allowed
to access it. Example 7-37 shows a
sample index file.

Example 7-37. Sample index file
<codeshare>
 <project location="HelloWorld">
 <dc:Title>Hello World</dc:Title>
 <dc:Rights>james pavel doug</dc:Rights>
 </project>
</codeshare>

The index in Example 7-37 indicates that the users
james, pavel, and
doug are allowed to get the HelloWorld project
item. The
get
 operation shown in Example 7-38 retrieves the requested set of items.

Example 7-38. The get operation
sub get {
 my $self = shift;
 my $envelope = $_[-1];
 my $username =
 $envelope->valueof('//{http://www.oasis-open.org/committees/security/
docs/draft-sstc-schema-assertion-15.xsd}Name');
 my $results = $self->list(@_);
 [map { # return file
 $_->{type} eq 'file' && open(F, delete $_->{fullpath})
 ? ($_->{file} = join('', <F>), close F) : (); $_
 }
 grep { # check rights
 ($_->{Rights} || '') =~ /^\s*$/ || # public access if empty
 $username && $_->{Rights} =~ /\b$username\b/ &&
 $self->is_valid_signature($username, get_signature($envelope))
 }
 @$results
];
}

The Server Daemon

 To deploy this code as a web service,
simply create and run the HTTP server daemon given in Example 7-39.

Example 7-39. The HTTP server daemon
use SOAP::Transport::HTTP;
use CodeShare::Owner;

print "\n\nWelcome to CodeShare! The Open source code sharing network!";
print "\nCopyright(c) 2001, James Snell, Pavel Kulchenko, Doug Tidwell\n";

CodeShare::Owner->init(shift or die "Usage: $0 <path/to/index.xml>\n");

my $daemon = SOAP::Transport::HTTP::Daemon
 -> new (LocalPort => 8080)
 -> dispatch_to('CodeShare::Owner::(?:get|search|info|list)')
;
print "CodeShare Owner Server started at ", $daemon->url, "\n";
print "Waiting for a request...\n";
$daemon->handle;

Launch the daemon with the following command line:
C:\book>start perl cs_server.pl index.xml
The running program is shown in Figure 7-4.

[image: Screenshot of the CodeShare owner server running]

Figure 7-4. Screenshot of the CodeShare owner server running

Implementing the CodeShare Client

 The
CodeShare client, like the owner server, is a Perl application that
implements a simple shell for interacting with the CodeShare server
and owner services. It also uses SOAP::Lite. The full source to the
client is given in Appendix C. We discuss the
highlights here.

First we create a proxy, shown in Example 7-40, to
the CodeShare server to authenticate the user.

Example 7-40. Creating the proxy
my($server, $uri) =
 $ownerserver ? ($ownerserver => 'http://namespaces.soaplite.com/CodeShare/Owner')
 : ($codeshareserver => 'urn:Services:CodeShareServer');
my $soap = SOAP::Lite
 ->proxy($server)
 ->uri($uri);

If the user logs in (doing so is completely optional), the client
invokes the login operation exposed by the
CodeShare service client interface. This returns a SAML assertion,
which the client caches. We can tell whether the user is logging in
based on whether he provides a username and password. Example 7-41 demonstrates this.

Example 7-41. Logging in
my $signature;
if ($username || $password) {
 my $response = $soap->login(
 SOAP::Data->name(credential => join ':', $username, $password)->type('base64')
);
 die $response->faultstring if $response->fault;
 $signature = SOAP::Data->type(xml => get_signature($response));
}

The client is implemented as a simple shell interface, shown in Figure 7-5.

[image: The CodeShare client shell interface]

Figure 7-5. The CodeShare client shell interface

We create this shell using a
while

 loop (shown in Example 7-42) to read input, work out what to do, and do
it. The loop:

	Waits for the user to enter a command (search,
info, get,
list, quit, or
help).

	Checks to see which command was entered.

	Invokes the SOAP operation.

	If the get command was issued, the resulting list
of items is looped through and the items are returned using a simple
HTTP-GET operation to the CodeShare owner server.

Example 7-42. The loop at the heart of the client
while (defined($_ = shift || <>)) {
 next unless /\w/;				# must have a command
 my($method, $modifier, $parameters) =		# split input
 m!^\s*(\w+)(?:\s*/(\w*)\s)?\s*(.*)!;

 last if $method =~ /^q(?:uit)?$/i; # handle quit command
 help(), next if $method =~ /^h(?:elp)?$/i; # handle help comma

 # call the SOAP method

 my $res = eval "\$soap->$method('$parameters', '$modifier',
 \$signature || ())";

 # check for errors
 $@ and print(STDERR join "\n", $@, ''), next;
 defined($res) && $res->fault and print(STDERR join "\n",
 $res->faultstring, ''), next;
 !$soap->transport->is_success and print(STDERR join "\n",
 $soap->transport->status, ''), next;

 # check for result
 my @result = @{$res->result} or print(STDERR "No matches\n"), next;

 foreach (@result) {
 print STDERR "$_->{type}: ",
 join(', ', $_->{Title} || (), $_->{path} || ()), "\n";
 if ($method eq 'get') {
 if ($_->{type} eq 'directory') { File::Path::mkpath($_->{path}) }
 if ($_->{type} eq 'file') {
 open(F, '>'. $_->{path}) or warn "$_->{path}: $!\n";
 print F $_->{file};
 close(F) or warn "$_->{path}: $!\n";
 }
 } elsif ($method eq 'info') {
 foreach my $key (grep {$_ !~ /^(?:type|path)/} keys %$_) {
 print " $key: $_->{$key}\n";
 }
 }
 }
} continue {
 print STDERR "\n> ";
}

Seeing It in Action

 You
can download an archive of the code from the O'Reilly web site
(http://www.oreilly.com/catalog/progwebsoap/
), and run the CodeShare service yourself. First make sure that you
have properly installed Apache SOAP, Perl, and SOAP::Lite. Then run
the codeshare.bat script for Windows or the
codeshare.sh shell script for Unix. These scripts
deploy the CodeShare services and launch the various components,
allowing you to experiment with the shell client.

What's Missing from This Picture?

That was a lot of code, but even with all the programs we've
written for the CodeShare server, we still haven't used all the
web services components. There's no UDDI, and we haven't
used the features of many P2P services, such as presence and
asynchronous messaging.

Where Is UDDI?

 One piece that is conspicuously missing is
UDDI. Nowhere in the CodeShare example we've laid out so far is
there any mention of how UDDI fits into the picture. This shows that
none of these web services technologies are overly dependent upon one
another. If UDDI is not useful in a given situation, leave it out. If
SAML hadn't been useful, we would have left that out also.

In COM, CORBA, J2EE, etc., there are parts that just aren't
useful, but that you still have to deal with, or at least deploy
along with your sample. In web services, you are not locked into a
monolithic set of technologies, but instead have a loosely coupled
conglomeration of standards that make writing code easier.

UDDI could be used in this example. For instance, the CodeShare
server could be listed in a public UDDI registry so that it can be
more readily discovered. Additionally, since each CodeShare owner is
itself a web service, owners themselves could be listed in a UDDI
registry.

Presence and Asynchronous Messaging

 Even though the CodeShare
service implements a peer-to-peer architecture, there are two aspects
of P2P that are missing: the concept of
presence and the
ability to have peers communicate with each other
asynchronously.

Presence boils down to the ability of one peer to see if another peer
(in this case an owner server) is currently online. The owner's
HTTP daemon could very easily tell the CodeShare server when it is
starting up and when it is shutting down, allowing the CodeShare
server to pass that information on to users who are looking for code.
This would work just like the buddy list in your Instant Messaging
application.

Even if your buddies are offline, you should still be able to send
messages to be delivered when they do come online. If a CodeShare
user wants to get some code, and the owner of that code is currently
offline, it would be nice if the owner could still get that request
and handle it later. CodeShare does not yet support asynchronous
communication like this.

Developing CodeShare

 CodeShare has been registered as an
open source project at SourceForge, a leading open source development
portal. If this example has inspired you to add features to the
application, you can take an active role in developing the CodeShare
Service Network into a real-life infrastructure for sharing code.

To access the project at SourceForge, visit http://www.sourceforge.com, create a user
account, and search for the "CodeShare" project. To be an
active contributor, you'll need to become familiar with the
source code control system, called CVS. Details are available at the
SourceForge web site.

Chapter 8. Web Services Security

 Security is one of the key issues that
developers of web services face, particularly in the enterprise.
Without a comprehensive security infrastructure, web services will
simply not reach their highest potential. It is no surprise that we
are starting to see new battles emerge in the marketplace as
companies vie for the dominant security position.

Authentication is one of the key components that has emerged.
Currently, there are three widely known, competing (and
unfortunately, incompatible)
 web service authentication
infrastructures jockeying for position in the marketplace:

	

Passport
	Microsoft's proprietary single sign-on service that provides
authentication and digital wallet services for millions of users.

	

Magic Carpet
	AOL's own single sign-on service and digital wallet for use by
AOL members.

	Sun's Liberty Project
	A collaborative effort among Java and open source development
communities to develop an alternative to Passport.

Of the three, Passport is the best known and understood architecture.
We discuss that architecture in this chapter, but first we will look
more closely at web services security in general, including a look at
the XML digital signature and XML encryption specifications.

What Is a "Secure" Web Service?

Web services are all about moving information; it doesn't
really matter what type of information is being moved. A
"secure" web service is one in which the information
sender trusts that the recipient of that information is really who he
claims to be and vice versa. Also, a "secure" web service
is one in which the information can be received and accessed only by
the intended recipient. This definition implies two things:

	There must be some type of authentication.

	There must be some type of privacy and integrity protection, such as
encryption and authorization.

Authentication

 Authentication
asks questions like:

	Who am I?

	How do I prove who I am?

	Why should you trust me when I tell you who I am?

	Who are you?

	How can I prove that you are who you say you are?

	Why should I trust you when you tell me who you are?

In the web services world, answering these questions is vitally
important. Of equal importance is coming up with a standard
method to ask and answer these questions.

That's where protocols like the Security
Assertions Markup Language (SAML) come into play. In Chapter 5 we briefly discussed SAML and demonstrated in
a very simple way how it can be used to provide single sign-on
capabilities, but there is more to it than that.

SAML assertions can provide a standard machine-readable expression of
a person, application, or device's identity. This identity can
be validated, passed around, and used as proof that you really are
who you say you are. Because the assertion is digitally signed, we
can establish some sort of trust based not on my word that I am who I
say I am, but on the word of a trusted third party (the issuer of the
assertion).

Even though SAML still has hurdles to jump through on its way to
completion, there is a huge amount of potential to provide a very
comprehensive, standard framework for implementing global sign-on.

Microsoft recently proposed an alternative approach to authentication
based on embedding structures such as Kerberos tickets within the
SOAP header. This approach, defined by two related specifications
called
WS-Security and
WS-License, is
used extensively by Microsoft's .NET My Services project (formerly
known as Hailstorm).

There are no standards (real or de facto) that define how to carry
authentication information within a SOAP Envelope.

Privacy

 There are
two important issues involved in ensuring privacy; both address the
protection of assets. The first issue is the protection of an
individual's personal information. For example, if I give you
my home address and credit card number, I expect that you will
protect that information and not send it out over the Internet
unguarded. The second issue deals with how you would actually go
about protecting that data; this aspect of protection implies
authorization policies that detail who is allowed access to the
information and what they are allowed to do with it, and encryption
methods that ensure unauthorized parties cannot access it.

Currently, there is little Internet privacy infrastructure. While
there are simple mechanisms in place to obscure information as it
passes from one point to the next (SSL, for example), there is no way
to ensure that your personal information is used only for the
specific purpose you intended it for once it is sent out over the
wire.

The closest thing we have to a privacy infrastructure is the
W3C
Platform for Privacy Preferences
(P3P), which specifies an XML-based language for creating privacy
profiles. Service providers create these profiles to tell service
consumers how they intend to use the personal information provided by
the consumer. While it is a valuable first step, these profiles are
not legally binding, can change at any time, and often do. So if a
company decides to use your information in a way that violates the
original terms of the profile, there are no laws to stop them. This
is changing, though, and hopefully laws will be passed in the very
near future to make privacy policies legally binding.

Another problem with

 privacy on the Internet is that people
conflate authentication with authorization. This is seen in the
version of Microsoft's Passport service currently being used at
a wide range of e-commerce sites. When a user authenticates with
Passport, almost all of the personal information contained in his
Passport profile is shared automatically with the Passport-enabled
web sites the user visits. The problem of authenticating users is
solved, but the authorization of companies allowed to access your
information is not.

Authentication of a user's identity and management of a
user's personal information need to be completely separated
from one another. Services like Passport, Magic Carpet, and Liberty
blur these lines.

Microsoft Passport, Version 1.x and 2.x

 The
current version of Microsoft
Passport is designed around providing
single sign-on and digital wallet services for web browser-based
services. It is easy to understand:

	A user, Jane, visits a Passport-enabled web site
(MSN.com, for instance).

	She is presented with a "Passport Sign-on" link that
redirects her web browser to http://www.passport.com, where she types her
Passport user ID and password.

	Upon validating the username and password,
Passport.com creates a cookie on Jane's
computer that contains her encrypted user profile (all of her
personal information).

	Passport then redirects her back to the original site, which checks
for the existence of the cookie, accesses it, and extracts the
information it needs about Jane to provide more personalized service.

Drawbacks

There are several problems with this architecture. First, it would be
very simple for a malicious person to fool Jane into voluntarily
compromising her user ID and password, by simply creating a fake
Passport login page. The average user, redirected to the fake page
rather than the authentic Passport.com page,
would not be able to tell the difference. She would enter her login
information, press Submit, and never know that she never actually
logged in. Meanwhile, the bad guy now has Jane's password and
can access all of her personal information and even pretend to be
Jane at real Passport-enabled sites.

A second problem is that there is nothing to stop a malicious person
from setting up a real Passport-enabled site and taking advantage of
Passport, freely dispersing Jane's personal information when
she happens to visit the site.

In either situation, it is likely that neither Jane nor Passport will
ever know that her information has been compromised because Passport
does not include any auditing capabilities that would let Jane go
back and monitor the activity of her account.

Another big problem is the natural insecurity of using cookies to
store profile information—even if it is encrypted. All it would
take is a simple worm virus targeted at locating and decrypting these
encrypted Passport cookies to cause a very serious security issue for
the millions of Passport users.

In fact, Microsoft's Passport service has recently come under
heavy criticism due to a very serious security flaw that allowed
credit card numbers and other personal information stored by Passport
to be read by a malicious hacker.

Microsoft Passport, Version 3.x

 While the details are still sketchy,
Microsoft is busy working to implement the next generation of their
Passport service—this time basing it on the much more secure
Kerberos authentication scheme and providing more robust privacy
controls.

Overview of Kerberos

 Kerberos is an
authentication protocol that's been around for quite some time.
Originally developed by a university, many large companies, such as
Microsoft and IBM, have picked up Kerberos and incorporated support
for it into their product lines. Microsoft is by far the largest
proponent of Kerberos in the industry today.

Kerberos is too complex to explain in detail. Here's a very
abbreviated rundown of how it works:

	First, the user (we'll use Jane again) asks the Kerberos
authentication server to validate her credentials. Jane does this by
encrypting a packet of information using her private key. The
Kerberos server decrypts this packet using her public key. If the
decryption was successful, the Kerberos service rules that Jane
really is Jane, and sends her an authentication ticket.

	Whenever Jane wants to use some network resource, she must go to the
Kerberos Ticket Granting Service (TGS) and explicitly ask permission
to use that specific service. The TGS will validate her
authentication ticket and issue, as appropriate a one-time use ticket
for the service she is requesting.

	Jane presents that one-time use ticket to the service when she
submits her request. Also included in the request is an authenticator
that proves the one-time use ticket is authentic and really did come
from Jane, not some malicious bad guy trying to impersonate her.

That, while being a gross oversimplification, is all that Kerberos
does. Passport 3.0 will implement this model, allowing (hopefully) a
more robust and secure authentication model that will offer better
protection to the services' 160 million plus users.This process
protects the user from the impersonation and spoofing attacks that
are possible in the current version of Passport. It is a huge
advantage.

The Passport privacy management is also improved. Passport users will
be able to establish policies that dictate how their information is
shared, and who is allowed to access it. The details have not been
fleshed out yet, but it will use P3P privacy policies. This
doesn't change the fact that P3P policies are not yet legally
binding, but it is a huge leap forward for Passport.

Give Me Liberty or Give Me ...

 A
new arrival in the web services security battle is a collaborative
project called Liberty. Sponsored by Sun and a handful of significant
industry players, this project seeks to achieve three main
objectives:

	To allow individual consumers and businesses to maintain personal
information securely by enabling a decentralized approach to
garnering personal or proprietary information, and promoting
interoperability or service delivery across networks.

	To provide a universal, open standard for "single
sign-on," which users and service providers can rely upon, and
leverage to interoperate.

	To provide an open standard for network identity spanning all
network-connected devices, allowing the providers of network services
and the infrastructure that enables those services to adopt a
neutral, open standard, available wherever the Internet is available,
securing reliable identity authentication across handsets,
automobiles, credit cards—literally any device attached to the
Internet.

No technical details have been released on how these goals will be
met. At the time of this writing, the Liberty project is essentially
vaporware.

A Magic Carpet

There is as little information about AOL's

 Magic Carpet proposal as there is about
Liberty. The little that is available points to Magic Carpet being an
extension of AOL's Screen Name service. Screen Name attempts to
provide a single sign-on that can give access to many different web
sites across the Web. You can create a profile for the web sites you
visit, and you can limit the web sites' access to various parts
of your profile. At the time of this writing, AOL's Magic
Carpet is still in stealth mode, and should be considered vaporware
like Sun's Liberty.

The Need for Standards

 Microsoft is not the only company working on
this problem. Unfortunately, those who are working on it are not
necessarily working together. To date, we have three incompatible
solutions being proposed for web services. In a battle that is
starting to resemble the Great Browser Wars of old, traditional
enemies are drawing lines and duking it out over who is going to
control web services security.

A better approach (the approach that developers need to demand) is
for standards to be developed and adopted by all the different
players. While it will probably be a long time coming, what we
don't need is to develop a great new open interoperability and
integration-focused architecture only to have interoperability break
down once we actually try to do something really interesting, like
global sign-on.

XML Digital Signatures and Encryption

 Two positive examples of
standardization efforts currently going on the XML and web services
arena are the XML Digital Signature and XML Encryption activities
being conducted primarily through the W3C (the IETF is also involved
heavily in the XML Digital Signature effort). Providing comprehensive
digital signature and encryption support will be by far a more
important issue than the choice of authentication services.

The XML Digital Signature project is working to define a standard
syntax for digitally signing data (including XML data) and for
encoding that signature as XML. Digital Signatures are critical to
protecting the integrity of business transactions on the Internet and
will be a key piece of the overall web services infrastructure.

The XML Encryption project is working to define how encrypted data
(including XML data) and the metainformation necessary to decrypt
that data can be encoded as XML. Encryption of XML data is critical
to ensuring the confidentiality of information exchanged between web
service participants.

Currently, only IBM's Web Services ToolKit and Microsoft's .NET web
services implementations include support for digitally signing and
encrypting SOAP messages. While they both support the same XML
Encryption and Digital Signature standards, they have different ideas
as to how exactly signatures and encrypted data should be placed
within a SOAP Envelope. So while each set of tools supports
encryption and signing, they are not compatible with one another.

Expect these interoperability differences to be worked out soon,
leading to compatible implementations. A key issue will be getting
other web service tool vendors to support these security standards
within their products.

Chapter 9. The Future of Web Services

Throughout this book, we've maintained a fairly narrow focus on
what web services are and how to go about creating them. To finish
up, we will spend some time discussing the future of web services
from both the point of view of the technologies, and from the point
of view of the architecture as a whole. Specifically, we'll
discuss the futures of SOAP, WSDL, and UDDI, as well as the next
generation of even more useful and powerful services.

The Future of Web Development

Before we get into where the technologies are going in the future,
let's take a moment to highlight exactly how web services are
most likely to impact web development.

We've spent a great deal of time talking about
interoperability. With web
services, we're concerned about how to find information and
move it across the Web. Issues that used to be important, such as the
programming language in which the code was written, the operating
system on which the code is running, the object model on which the
code is based, or the vendor of the underlying database system,
don't matter that much anymore.

Now that's a strong statement. Some may even say that it is too
strong. Here's the reasoning.

First, prior to web services, the vast majority of enterprise-scale
development platforms were rather inbred. Java applications worked
best with Java applications; COM applications worked best with COM
applications; CORBA applications worked best with CORBA applications,
and so on. To make the most of each environment, you had to
standardize and focus on the technology platform itself. You could
get Java and COM to work together, but it was painful.

Web services, however, opened an integration channel between Java and
COM, and COM and CORBA, etc., that did not exist before. Because this
channel is built with open standards that any platform can implement,
for the first time we have a situation where one can
easily invoke functionality written in one
programming language on one platform from any other programming
language on any other platform. This allows us to look beyond
programming languages and focus on the applications themselves.

This point was demonstrated in the Hello World example in Chapter 3. We created the same type of web service with
three different programming languages. Barring minor interoperability
bugs that exist in the web services tools, we could easily switch
between the three service implementations without paying attention to
how they were actually written. If we were to go looking for a Hello
World service somewhere out on the Internet, it would be of no
importance to me whether it is written in Java, Perl, .NET, or even
COBOL or ADA. (There is an implementation of SOAP for ADA, by the
way. And Microsoft's Visual Studio.NET will support writing
assemblies with COBOL.)

Web Services and Existing Technologies

 A critical insight is that web
services do not replace existing technology
infrastructures. Rather, they help to integrate existing
technologies. In other words, if you need a J2EE application to talk
to a COM application, web services makes it easier. Web services
won't completely replace that 30-year-old mainframe system in
the back closet that nobody ever thinks about anymore. But web
services might provide cross-platform automated access to the
mainframe's applications, thus opening new channels of
business.

The Future of SOAP

The SOAP
protocol is already a couple of years old. One of
the original versions became what is now called XML-RPC, a simple,
popular alternative to SOAP championed by Userland Software.
(Userland's CEO, Dave Winer, is one of the coauthors of the
original SOAP specification.) To learn more about
XML-RPC, read Programming Web
Services with XML-RPCby Simon St.
Laurent, Joe Johnston, and Edd Dumbill
(O'Reilly).

XML-RPC split from SOAP in 1998. The first version of the SOAP
protocol was announced in 1999, and since then there have been four
revisions with a fifth now being worked on by the W3C. The two
versions we've discussed in this book (Version 1.1 and Version
1.2) are those currently being used in production environments, even
though they are not official W3C standards.

In the not-too-distant future, the SOAP 1.2 working draft
specification will evolve into the W3C XML Protocol Version 1.0
recommendation, which will be the first
standardized version of the protocol.

There should not be many changes between SOAP 1.2 and XML Protocol
Version 1.0, because the W3C working group has committed to using
SOAP as the basis for their work and to ensuring that backwards
compatibility is maintained at least on a fundamental level.
Unfortunately, it is still far too early in the process to know about
any differences between the XML Protocol and SOAP 1.2. If
you're curious, monitor the XML Protocol development discussion
through the xml-dist-app mailing list (see the
W3C XML Protocol home page at http://www.w3.org/2000/xp for subscription
details).

The Future of WSDL

 Like
SOAP, the Web Service Description Language
is not yet an official Internet standard, but it is well on the road
to becoming one. It has been submitted to the W3C and a working group
is being formed to manage it. Unlike SOAP, which has a fairly stable
direction within the W3C, standardized WSDL may be different from the
version being widely used in web services today. It's too early
to know how different, or when the W3C-blessed standard will be
released.

Missing Pieces

There are several important things missing from WSDL that will have
to be addressed by the W3C working group. For example, there is no
standardized mechanism for extending the WSDL description to include
information about security requirements, quality of service
attributes, sequencing of operations, and so on. While not a strict
requirement when WSDL is used to describe simple, basic RPC-style
services, such standard extensions become critical when applying web
services technology to enterprise e-business scenarios.

An Alternative to WSDL

Another key issue that the WSDL working group will need to address is
the reconciliation of WSDL to other, alternative service description
mechanisms, such as the DARPA
Agent Markup Language (DAML) based DAML-S (S stands for
"services"). DAML-S is focused on the task of building a
formal semantic data model for web services. In other words,
they're formalizing the language we use to describe web
services. While DAML-S has no solid corporate backing, much of the
work being done will have an impact on the future direction of WSDL
standardization.

The concepts involved in DAML-S are really not all that different
from WSDL, but the syntax is much more complex. For instance, Example 9-1 shows a partial description of the Hello World
service from Chapter 3, in DAML-S instead of WSDL.

Example 9-1. Sample DAML-S description of the WSDL service
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:service="http://www.daml.org/services/daml-s/2001/05/Service#"
 xmlns:process="http://www.daml.org/services/daml-s/2001/05/Process#"
 xmlns:profile="http://www.daml.org/services/daml-s/2001/05/Profile#">

 <daml:Ontology about="">

 <daml:versionInfo>HelloWorld</daml:versionInfo>
 <daml:imports
 rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns" />
 <daml:imports
 rdf:resource="http://www.w3.org/2000/01/rdf-schema" />
 <daml:imports
 rdf:resource="http://www.w3.org/2000/10/XMLschema" />
 <daml:imports
 rdf:resource="http://www.daml.org/2001/03/daml+oil" />
 <daml:imports
 rdf:resource="http://www.daml.org/services/daml-s/2001/05/Service" />
 <daml:imports
 rdf:resource="http://www.daml.org/services/daml-s/2001/05/Process" />
 <daml:imports
 rdf:resource="http://www.daml.org/services/daml-s/2001/05/Profile" />
 </daml:Ontology>

 <rdf:Service rdf:ID="StockQuoteService">
 <service:presents>
 <profile:Advertisement rdf:about="#StockQuote_Advertisement" />
 </service:presents>
 <service:implements>
 <process:ProcessModel rdf:about="#StockQuote_ProcessModel" />
 </service:implements>
 </rdf:Service>

 <process:ProcessModel rdf:ID="StockQuote_ProcessModel">
 <service:topLevelEvent rdf:resource="#GetStockQuote" />
 </process>

 <rdfs:Class rdf:ID="GetStockQuote">
 <rdfs:subClassOf
 rdf:resource="http://www.daml.org/services/daml-s/2001/05/Process#Process" />
 </rdfs:Class>

 <rdf:Property rdf:id="symbol">
 <rdfs:domain rdf:resource="#GetStockQuote" />
 <rdfs:subPropertyOf
 rdf:resource="http://www.daml.org/services/daml-s/2001/05/Profile#input" />
 <rdfs:range
 rdf:resource="http://www.w3.org/2000/10/XMLschema#string" />
 </rdf:Property>

 <rdf:Property rdf:id="value">
 <rdfs:domain rdf:resource="#GetStockQuote" />
 <rdfs:subPropertyOf
 rdf:resource="http://www.daml.org/services/daml-s/2001/05/Profile#output" />
 <rdfs:range
 rdf:resource="http://www.w3.org/2001/10/XMLSchema#float" />
 </rdf:Property>

 <profile:Advertisement rdf:ID="StockQuote_Advertisement">
 <profile:serviceName>StockQuoteService</profile:serviceName>
 <!-- elements removed for brevity -->
 </profile:Advertisement>
</rdf:RDF>

DAML-S is based on the Resource Description Framework (RDF)
standard. This tends to make it more complex, verbose, and difficult
to use than WSDL.

That said, there are several lessons WSDL can learn from DAML-S:
	DAML-S naturally supports the ability to extend service descriptions
to include a wide variety of semantic and functional information such
as security, quality of service, etc.

	DAML-S naturally supports inheritance throughout the entire
description.

	DAML-S provides a rich mechanism for describing web service processes
(logical sequences of operations). WSDL does not support sequencing
operations at all.

	DAML-S allows a service to implement multiple processes (the DAML-S
equivalent to a WSDL port type).

	DAML-S supports a rich service advertisement description that
provides information about who is providing the service, what the
provider's capabilities are, and so on. WSDL does not include
any advertisement information at all.

These features of DAML-S are likely to be a part of the next
generation WSDL.

Standard Extensions

One key component of the success of web services will be the ability
to describe not only the service itself, but also all of the
services' capabilities, requirements, assumptions, and
processes in a standard, consistent way.

For example, consider how to describe a web service that uses a
SAML-based single sign-on like the one we discussed in Chapter 5. There is no way to declare the type of
authentication a service supports in WSDL. For that matter, there is
no way to declare that a service supports any type of authentication.

How might the WSDL of the future let you express what type of
authentication mechanism is used? One way would be to define a
standard extension to the WSDL binding element, as in Example 9-2.

Example 9-2. Hypothetical extension to WSDL bindings
<binding name="HelloWorldBinding" type="HelloWorldPortType">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <s:authentication method="http://schemas.xmlsoap.org/security/saml" />
</binding>

WSDL-enabled web services tools that understand the authentication
extension would then know that SAML could be used for authentication.

Currently, though, there are no standard extensions to WSDL, nor is
there a broad industry effort to define them. This also may become
part of the W3C-standardized WSDL.

The Future of UDDI

 Chapter 4

 introduced UDDI as a web service
for discovering other web services. Through the definition of a
standardized registry format and port type interface, UDDI allows
service providers and service consumers to dynamically discover and
integrate with one another.

UDDI was originally developed by Microsoft, IBM, and Ariba, and is
now managed by a broad industry consortium of companies. The plan is
to submit UDDI for standardization once Version 3.0 of the
specification is finished (the current version is 2.0).

One of the key requirements for future versions of UDDI is a security
infrastructure that would allow service consumers to validate the
identity of service providers publishing their
services—allowing for a much more robust trust relationship to
be established.

Problems with UDDI

There are some problems with UDDI that will need to be addressed in
future versions of the specification. Weak security is one of the
most significant issues. Currently, it is possible for anybody to
create an entry in a UDDI registry, pretending to be somebody else.
For example, I can easily create an entry in a UDDI registry
pretending to be Microsoft. Needless to say, this is not good.

Another major problem is the proliferation of "bad links"
in public UDDI registries. These links point to companies or services
that don't exist or are no longer available.

There is a lack of understanding in companies about what UDDI is for
and how it may be useful. This might hamper its adoption in future.
Even among companies who understand it, there have been some doubts
raised about whether public UDDI registries will be useful in the
long term.

Web Services Battlegrounds

 Over
the last few decades, we've seen companies go to war to
establish their operating systems, component models, programming
languages, browsers, and so on. One refreshing aspect of the web
services world is that most of these battles become irrelevant.
Consider the SOAP services and clients we've discussed in this
book. When we deploy a SOAP service, we define the methods we want to
expose across the network. In the past, we'd have defined those
methods with CORBA IDL or something similar, generated language
bindings for various programming languages and platforms, then hoped
we could get enough of the marketplace to use our service. If your
platform or your development tools weren't compatible with your
infrastructure (maybe they didn't support the correct level of
CORBA, for example), you would probably be out of luck.

With SOAP, we can describe everything in terms of
platform-independent XML Schema data types. If your development
platform has XML parsing tools (and these days you're
hard-pressed to find a platform that doesn't, from mobile
phones to mainframes), you can start developing applications that use
the service.

Don't think for a moment that the fierce competitors of
today's marketplace will suddenly get along swimmingly, though.
As companies discover that the old battles no longer matter, everyone
will try to get an edge on their competitors in some other way.
We'll take a look at a couple of the battlegrounds of the
future.

Development Tools

 One of the reasons for the dominance of
the Windows platforms is Microsoft's success in courting
developers. Whatever the benefits of your technology, if you can
convince hundreds of thousands of clever people to start building
products with them, you gain an overwhelming advantage in the market.
You don't have to come up with the killer app yourself;
third-party developers can do that for you.

With that in mind, you'll see the major software vendors
working very aggressively to differentiate their web services
development tools. If I can convince you that my tools will make you
infinitely more productive and successful, the task of locking you
into my development tools becomes much easier. And once you're
comfortable with my development tools, I can integrate my proprietary
technology initiatives with those tools, slowly removing your ability
to use other tools.

Vendors must appear to be standards-compliant, yet also seem somehow superior. A
lot of the differentiating features will be nonstandard add-ons, a
form of "embracing and extending" that has the potential
to weaken web services interoperability while locking in developers
to one vendor's products.

Killer Services

 If millions of developers can access
web services with free tools, one obvious business model is to
provide web services so cool that developers will be willing to tie
themselves to those services. This is similar to the Web, in which
millions of customers can access web sites with a free browser.

One early contestant in the race for killer services is the online
wallet. A next-generation online wallet is a web service that allows
customers to store passwords, credit card numbers, and other
sensitive information. The online wallet provider becomes a
clearinghouse for e-commerce. If we want to set up an online store,
we can use the service to process credit card transactions. A
customer gives us some information (username and password, for
example), and we access the online clearinghouse to get an approval
code for the transaction.

We might have to pay the clearinghouse a fee (a percentage of the
total, perhaps) for each transaction, but if this service is easy to
use and access, provides a high level of service, is secure, and is
widely accepted by consumers, we could save ourselves a great deal of
time and headache in operating and managing our online store. If
development tools make it very easy to use a particular online
wallet, the vendor behind the development tools and the online wallet
is in a very good position. This is widely thought to be part of
Microsoft's .NET and .Net My Services (formerly known as
Hailstorm) strategies.

As web services take hold in the marketplace, we'll see lots of
providers try to come up with other killer services to bring the
world to their online doorsteps.

Lucrative Marketplaces

 The EDI
industry has worked for decades to automate the exchange of purchase
orders, invoices, and similar documents. Unfortunately, these systems
have traditionally been very expensive to create and maintain. With
the lower startup costs of web services (you can build, deploy, and
access web services with the technologies you already have), many
smaller firms can now participate in these online business
communities, just as the advent of the Web introduced many new
companies that gave established merchants a run for their money.

As the web services revolution takes off, we'll see the
industry try once again to establish business-to-business (B2B)
marketplaces. In the past, these have failed for two reasons:

	Buyers wanted more control over their buying decisions; they
didn't want a machine to make a buy decision based on which
company came up first on the alphabetized list of search results.

	Providers wanted more control over pricing. A marketplace in which a
seller's prices are shopped around online might be good for an
agent trying to find the lowest online price, but it's not good
for the providers, particularly when an agent might not take into
account such things as a provider's ability to handle large
orders, how other buyers have rated a particular provider, etc.

As web services mature, these concerns will be addressed. Through
SOAP method calls to a UDDI registry, an online buyer can find all of
the providers that claim to meet the buyer's needs. New web
services built on top of UDDI will allow agents to get more
information about providers, including their credit ratings, how
quickly they've delivered orders in the past, etc. Other
services can reassure providers that buyers will be able to compare
different providers fairly. For example, my company may have slightly
higher prices, but we don't claim to have products in stock
when our warehouses are empty.

Web services promise to create an environment in which agents can
evaluate various factors the way a human would, allowing those human
users to focus on things more important to their businesses.

The Enterprise

 Perhaps one of the most significant
battles yet to emerge will be the one for dominance in the market for
enterprise web services. These are the infrastructure services that
will provide the foundation for delivering on the promise of agents,
and more dynamic forms of e-business. These services include such
things as distributed trust management and negotiation; metering,
accounting, and billing; content and information management; privacy
enforcement and auditing; intelligent and dynamic sourcing and
materials procurement; and any number of other services that provide
the bedrock of enterprise business development. It is still unclear
what effect basing such core pieces of the infrastructure on web
services technology will have on the marketplace, and at this point,
far too early to offer any real insight. Whatever the impact, expect
to see much more activity in this area in the very near future, as
Internet technology companies (both old and new) vie for position in
a burgeoning new market.

Web services are a young approach to writing distributed
applications. As such, they are nowhere near as mature and
feature-rich as mechanisms like J2EE, CORBA, and .NET. Particularly
needed is functionality that enables web services to operate in the
enterprise environment: security, transactions, database integration,
etc. This is similar to the early days of Java—it took until
Java 2 Enterprise Edition for programmers to have a set of standard
extensions to Java for security, transactions, messaging, server
support, databases, etc.

With web services, we see a parallel evolution. Currently, we have
the technologies (e.g., SOAP, WSDL, and UDDI) for allowing web
services to function. By themselves, these technologies hold great
promise, but they are not quite enough for the enterprise
environment.

Technologies

Although many web services standards are already defined, there are
also many technologies that aren't quite there yet. We'll
discuss those missing pieces, and speculate about how and when those
missing pieces will be filled in.

Agents

An agent is a program
that can act on your behalf. For example, I'd like to have an
agent make flight, rental car, and hotel reservations for an upcoming
business trip. My ideal agent would know which airlines and hotels I
prefer, possibly based on previous trips to the same region. If we
assume that all of the relevant data our agent might use is in a
richly structured XML document, an agent might be programmed to take
advantage of all sorts of information when planning a trip. For
example, when flying coast to coast, Chicago is more likely to have
weather delays in the winter, while Dallas is more likely to have
weather delays in the summer. An agent could find out that there is a
frequent-flyer promotion that would give me 10,000 extra
frequent-flyer miles if I fly through Toronto. Maybe an agent could
automatically check my calendar to see what time I'm free to
leave the day of my flight.

Agents have been an AI pipedream for years. XML and web services have
the potential to make them real, though. Here's what's
needed:

	All the data involved must be encoded in XML, using well-understood
vocabularies. That means we need standard tag sets for calendars,
flights, airports, weather forecasts, etc. A few of those
vocabularies exist, but most of them will need to be created.

	All of the various airlines, hotels, rental car companies, and other
vendors must provide web services that make it easy for my agent to
create, change, and cancel reservations.

	Most importantly, the agent technology must be powerful, reliable,
secure, and easy to use. That's not exactly the easiest task in
the world of software development. People won't use agents if
they are untrustworthy, can't do much, or are too complicated
for anyone without a Ph.D. in Computer Science.

Quality of Service

Web services make it possible to build applications from multiple
components spread out across the Web. That's a very powerful
notion, but for some applications, developers need assurance that
those components will be available constantly with acceptable speeds.
That means Quality of Service contracts will
become even more important, simply because the Web will become a
vital part of more and more applications.

Privacy

If the devices and agents in my life have been entrusted with
sensitive personal data, it's crucial that they understand my
wishes about privacy. It's also crucial that those devices and
agents understand how various entities around the network will handle
that data.

The Platform for Privacy Preferences (P3P) work
done by the W3C will become increasingly important. P3P documents are
machine readable, meaning that agents and other pieces of code can
examine a site's privacy policy and determine whether it is
acceptable.

As the importance of privacy grows (as well as the public's
awareness of how little the Web actually has), other privacy
technologies may be needed. For example, an agent could get a
digitally signed and encrypted P3P document from a provider,
obtaining a legally binding agreement that data supplied to the
provider by the agent will be protected and handled a particular way.

The first step is relatively simple: create a P3P policy and
associate it with your web service through links provided in the WSDL
description of that service. However, this is only part of the
solution. What is needed is a more comprehensive,
standardized infrastructure for protecting
information as it travels across the Web. Until such a framework is
in place, the impact and usefulness of web services geared at
handling personal information will be limited at best. Currently,
there are no proposals on the table for doing this.

 Example 9-3 shows what a P3P policy reference might
look like from within a WSDL document. Here, we are stating that the
Privacy.xml P3P policy applies to every
operation defined by the HelloWorldBinding.

Example 9-3. P3P within WSDL
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/">
 <binding name="HelloWorldBinding" type="HelloWorldPortType">
 <P3P:POLICY-REFERENCES>
 <P3P:POLICY-REF about="Privacy.xml">
 <INCLUDE>*</INCLUDE>
 </P3P:POLICY-REF>
 </P3P:POLICY-REFERENCES>
 </binding>
</definitions>

Security

 Beyond everything else, security is
paramount. It doesn't matter what a given web service can
do—if it's likely to give away my credit card number, I
don't want to use it. Although the base SOAP specification
itself was not designed with security in mind, that doesn't
mean security is impossible.

One of the examples we've discussed in this book uses
IBM's XML Security Suite to encrypt the contents of SOAP
envelopes as they move across a network. As web services take hold,
we'll see more technologies like this, with the end result
being that secure SOAP envelopes will become as common as HTML
documents transmitted across the Secure Socket Layer.

The question of security demands a complex answer—one that
always comes back around to point not at the technology, but at how
that technology is implemented, deployed, and used. Technology
companies can only do so much in the way of providing methods of
expressing trust or asserting facts. Security happens only when
businesses take the time to make it a priority.

Trust Management

Trust is the paramount requirement for conducting business over the
Internet and will be a key component to the success of the web
services architecture. Already technologies are emerging that help
companies express and establish trust relationships within the
context of web services. One example of such a technology is the XML
Key Management Service, a standard mechanism for managing public and
private keys.

Online Contracts

 We've
talked about contracts and other legally binding documents throughout
this section, emphasizing the point that if web services are
commonplace, the impact of a particular service being unavailable or
providing incorrect data could be catastrophic. How will those
contracts be negotiated or enforced? Clearly, having the attorneys
for the service provider meet with the attorneys for the service
requestor won't work in a world of applications built from
conglomerations of services.

Several attempts have been made to create XML-based languages capable
of describing agreements and contracts. The Collaboration Profile
Protocol and Collaboration Profile Agreement (CPP-CPA) from ebXML is
one such technology. Unfortunately, none of these attempts have been
widely adopted and the ultimate winner is yet to emerge.

Reliable Messaging

Reliable messaging involves ensuring that both the sender and
recipient of a message know whether a message was actually sent and
received, and ensuring that the message was sent once and only once
to the intended recipient. It is a problem that has plagued Internet
application development since its inception.

The Internet is, by its very nature, unreliable. Servers that were up
and running one moment may be down the next. The protocols used to
connect senders and receivers have not been designed to support
reliable messaging constructs, such as message identifiers and
acknowledgments. Recipients of messages must be able to acknowledge
that they did in fact receive a message. Senders of messages must be
able to cache those messages in the event that an acknowledgment is
not received and the message needs to be sent again. The fundamental
technology that drives the Internet today does not support such
mechanisms. Therefore, we are forced to implement new protocols and
technologies that address these needs.

The importance of reliable messaging within the enterprise cannot be
understated, especially when we are discussing the implementation of
web services that may span across firewalls to integrate with
customers, suppliers, and partners.

Within the enterprise, reliable messaging has typically been provided
by proprietary solutions such as
IBM's MQ Series or Microsoft
Message Queue, neither of which are capable of integrating easily
with each other (there are ways to make them work together, but they
are painful at best).

From the context of web services, there are two ways to approach the
implementation of reliable messaging:

	You can implement reliable messaging on the application layer,
meaning that the tenets of reliable messaging must be incorporated
directly into the implementation of the web service.

	You can implement reliable messaging on the transport layer, meaning
that web services don't have to do anything to support the use
of reliable messaging.

The first approach is implemented by products such as
Microsoft's
BizTalk, which uses web services technologies such as SOAP to
exchange business documents (e.g., purchase orders and requests for
quotes) in a reliable way.

The second approach is implemented by protocols such as

 IBM's Reliable HTTP (HTTP-R). HTTP-R
is an implementation of standard HTTP with the addition of
"endpoint managers" that ensure the reliability of the
connection between the HTTP requester and the HTTP server.

A full discussion of HTTP-R and BizTalk are out of the scope of this
discussion. For more information on them, see the online references
in Appendix A.

Transactions

One of the key requirements for applications deployed within an
enterprise is the support of transactions. Multiple operations that
need to be executed in a batch must either all succeed or all fail in
order for any of the operations to be valid. Currently, there is no
standard (or even proposed) method for implementing and managing
transactions in the web service environment.

There is a long-running debate as to whether web services require a
method for doing two-phase commit style
transactions. A two-phase commit transaction is one in which all of
the operations in a batch must be invoked, but not finalized. Once
all operations report successful invocation, they may all go back and
finalize their operations. The classic example of a two-phase commit
is when an application needs to write data to two different tables in
a database. Both tables must be updated or neither of the tables can
be updated. If the write operation on one table
succeeds, but the write operation on the second
table fails, the first write must be undone and an
error reported back to the user.

The primary problem with two-phase commit on the Web is that when
each of the participants in the transaction (for example, the two
database tables in the previous example), is waiting for the final
confirmation that all of the operations have been completed
successfully, they must hold a lock on the resource being modified
within the transaction. This
 lock prevents anybody else from making
changes to the resource that otherwise may have caused the
transactions to fail. These locks are fine when all of the resources
are being managed by the same computer, but cause performance,
scalability, and reliability problems in a distributed computing
environment.

This problem goes back to the discussion of reliable messaging. With
web services, by far the most amount of traffic will be over HTTP.
Without the promise of absolute reliability, if the connection
between two participants in a transaction is broken while the
transaction is being carried out, neither participant can finalize
their operations because neither can figure out if the other's
operation completed successfully. The locks placed on the resources
in question could be held indefinitely, and processing would grind to
a halt.

One promising IBM research project in the transaction area is
something called a Dependency
Sphere
 . A Dependency Sphere, or D-Sphere for
short, is a new way of looking at transactions from a distributed
computing, messaging-based viewpoint. In a two-phase commit, a
transaction is successful if all of the operations executed within
the context of that transaction perform without generating any
errors. In the D-Sphere approach, the transaction is successful if
all messages sent are reliably received and acknowledged by the
intended recipient of those messages.

D-Spheres applied to web services introduce a new type of web service
for managing the D-Sphere transaction context. It is the job of this
management service to ensure that the transaction either succeeds or
fails. If it fails, a notice will be sent to the participants of the
transaction so that they can make the appropriate compensating
actions. The advantage to this approach is that reliable messaging is
assumed (so temporary disconnections between participants are no
longer a factor) and resource locks are not necessary, stopping the
types of deadlocks that could occur with a two-phase commit approach.

An example of how D-Spheres might come into play within an enterprise
web services environment is when a service requester must perform
multiple operations on multiple services—for instance, creating
a new user in CRM and ERP services at the same time. The D-Sphere
could ensure that both services successfully receive and acknowledge
the request to add a new user. Appendix A has
pointers to more information on D-Spheres.

Licensing and Accounting Services

 Part of the
web services vision is the idea that software can be sold as a
service. That is, companies will pay to lease access to applications
rather than take on the cost of purchasing and maintaining the
applications themselves. This concept can ease maintenance costs, but
requires standard web services for managing licenses and monitoring
the use of services.

Within the enterprise, these services will have to integrate with
existing accounting and billing solutions, authentication and
authorization solutions, and event and notification services in order
to be meaningful and useful.

Web Services Rollout

 How are
web services likely to be rolled out in the marketplace? We think the
most likely scenario is that customers will build web services
internally, then move on to applications built with more broadly
distributed web services.

We've already discussed the technologies that must be built on
top of SOAP and related technologies for web services to bear more of
the weight of business. Given that issues like security,
authentication, and nonrepudiation are difficult to address on the
Web of today, we feel that many early adopters will start by
implementing web services internally. As a network administrator, I
can control access to internal servers much more easily than I can
control access to a public web site.

As an example, say I build a SOAP-based application for processing
expense accounts. Whenever a user returns from a business trip, she
uses the SOAP client application to fill out her expense report. The
SOAP client sends a query to the local UDDI registry, which points
the client to a WSDL document, which provides the information the
client needs to access the expense account application. The head of
the accounting department can move the location of the expense
account application at any time, and the client will still be able to
find it and access it.

Because the application is built on SOAP, it's possible (it
might even be easy) to write client applications that work on almost
any platform I support. Because all the clients are internal to my
network, I'm less concerned about security and privacy than I

would be otherwise. Because the metadata about the application is
described with WSDL and stored in a UDDI registry, I can change the
location, host platform, host language, etc., of the application
without affecting the clients. This gives system administrators a
tremendous amount of flexibility.

As more and more internal applications are built with web services,
we'll see early adopters start to bring in their vendors and
business partners. It's great that I can do an inter-company
requisition for supplies; the obvious next step is to do requisitions
from outside suppliers. That next step requires that my suppliers use
SOAP (and WSDL and UDDI and . . .) as well. Applications based on
web services will become commonplace, and a component architecture
based on SOAP will become the dominant development paradigm.

Appendix A.
Web Service Standardization

This appendix contains a listing of many of the better known
standardization efforts (by category) currently being pursued that
relate to web services in some way. A brief description is offered,
but complete information is available through the information links
provided.

Packaging Protocols

	
 SOAP/XML Protocol
	

 Originally an acronym for the
"Simple Object Access Protocol," now the basis for the
W3C XML Protocol effort.

Version 1.1 of the specification is available at http://www.w3.org/tr/soap. The Version 1.2
working draft is available at http://www.w3.org/tr/soap12.

More information about SOAP and the W3C XML Protocol effort can be
found by visiting the W3C XML Protocol working group home page at
http://www.w3.org/2000/xp/.

	
 XML-RPC
	The original manifestation of SOAP invented by
Dave Winer of
Userland software. This simple, popular protocol—while not
officially a standard—has a significant, vocal user base in the
open source community. Information is available at http://www.xmlrpc.org/.

	
 Jabber
	Jabber is both a transport protocol and a simple packaging protocol
that can be used in asynchronous peer-to-peer style web services. It
too is not an official standard but is building a significant user
and developer base. Information can be found by visiting the Jabber
home page at http://www.jabber.org.

	
 DIME
	The Direct Internet Message Encapsulation (DIME) protocol is "a
lightweight, binary encapsulation format that can be used to
encapsulate multiple application defined entities or payloads of
arbitrary type as well as to provide efficient message
delimiting." More information is available at http://www.gotdotnet.com/team/xml_wsspecs/default.aspx.

Description Protocols

	
 WSDL
	
 The Web Service Description Language
is the de facto standard language for describing web services. It has
been submitted to the W3C for standardization and a working group is
being organized. WSDL replaces the previous description proposals put
forth by IBM and Microsoft (NASSL and SDL respectively).

Version 1.1 of the WSDL specification can be found at http://www.w3.org/tr/wsdl.

	
 DAML-S
	The DARPA Agent Markup Language Ontology for web services is an
academic research project for semantically describing web services.
Information can be found by visiting the DAML-S home page at
http://daml.semanticweb.org.

	
 RDF
	There has been some discussion around the fact that RDF could have
"very easily" been used as a method of describing web
services. Several examples have cropped up, including a demonstration
of how WSDL could be modified to conform to RDF syntax. DAML-S is
another example that is built completely on top of RDF. Information
is available at http://www.w3.org/rdf.

Discovery Protocols

	
 UDDI
	
 The Universal Description, Discovery,
and Integration initiative promises to define a standard service
registry. Information can be accessed at http://www.uddi.org.

	
 WS-Inspection
	The Web Service Inspection Language provides an XML index for
discovering the services available at a given network location. See
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html.

	
 ebXML Registry
	Part of the ebXML effort (http://www.ebxml.org) was to define a
standard registry model for discovering business services. The
approach is somewhat different, but not incompatible with UDDI, and
includes many more types of information than UDDI does.

	
 JXTA Search
	The Sun-sponsored JXTA peer-to-peer services infrastructure defines a
distributed search protocol for discovering content and services in a
peer-to-peer architecture. Information is available by visiting
http://www.jxta.org/project/www/white_papers.html.

Security Protocols

	

 XML Digital Signatures
	A joint W3C and IETF effort to define a standard method of
representing digital signatures as XML content (http://www.w3.org/Signature/).

	
 XML Encryption
	A W3C effort to define a standard way of both encrypting XML content
and representing encrypted data as XML content (http://www.w3.org/Encryption/2001/).

	
 SAML
	The Security Assertions Markup Language, being developed under the
auspices of Oasis (http://www.oasis-open.org/committees/security/).

	XKMS
	The XML Key Management Service is a web
service specification submitted to the W3C for implementing a
service-based public key infrastructure. The XKMS specification is
available at http://www.w3.org/tr/xkms, and additional
information is at http://www.xkms.org.

	
 XACML
	An effort to define a standard access control mechanism for XML
documents (http://www.oasis-open.org/committees/xacml/).

	

 WS-Security and WS-License
	These are two proposals from Microsoft defining how to carry
authentication, encryption, and digital signatures within a SOAP
Envelope. These specifications are used primarily by in Microsoft
.NET and the .NET My Services (Hailstorm). As they have not yet been
submitted to a standards body, they should be considered proprietary
to Microsoft.

	
 SOAP Security Extensions
	Initially worked on as a joint effort between IBM and Microsoft,
these specifications define how to carry authentication, encryption,
and digital signatures within a SOAP Envelope. The Digital Signatures
portion of the specification has already been submitted to the W3C
with the encryption and authentication parts soon to be released and
submitted. Currently, IBM's Web Services ToolKit is the only
known available implementation of the SOAP Security Extensions.

Transport Protocols

	

 HTTP
	The most common transport used for web services.

	
 Jabber
	A new, XML-based asynchronous transport protocol used most frequently
in peer-to-peer style applications (http://www.jabber.org).

	
 BEEP
	A new XML-based transport protocol being worked on by the IETF that
claims a duplexed connection and asynchronous transport (http://www.bxxp.org/).

	
 Reliable HTTP (HTTPr)
	A new version of HTTP proposed by IBM for adding reliable messaging
support to the venerable HTTP protocol. An overview and link to the
specification is available at http://www-106.ibm.com/developerworks/webservices/library/ws-phtt.

Routing and Workflow

	
 WSFL
	The Web Services Flow Language provides a
WSDL-based grammar for scripting business processes out of web
services (http://www.ibm.com/developerWorks/webservices).

	

XLANG
	Microsoft's own workflow scripting language for web services
(http://msdn.microsoft.com/webservices).

	

WS-Routing
	A Microsoft proposed mechanism for defining the route that a SOAP
message must take through various intermediaries (http://msdn.microsoft.com/library/en-us/dnsrvspec/html/ws-routing.asp).

Programming Languages/Platforms

	
 JAXP
	
 Java API for XML Parsing is the
Java Community Process (JCP) effort to
standardized XML API's in Java (http://java.sun.com/xml/jaxp.html).

	JAX-RPC
	
 Java API for XML RPC is the JCP effort to
standardized Java API's for using web services (http://java.sun.com/xml/jaxrpc.html).

	JAXR
	
 Java API for XML Registries is the
JCP effort to define Java API's for discovery registries such
as UDDI (http://java.sun.com/xml/jaxr/index.html).

	JAXM
	
 Java API for XML Messaging is the JCP
effort to define Java API's for XML messaging (http://java.sun.com/xml/jaxm/index.html).

	JSR-109
	JCP effort to define how web services are to be integrated into the
Java 2 Enterprise Edition architecture.

	JSR-105
	JCP effort to create standard Java API's for XML digital
signatures (http://www.jcp.org/jsr/detail/105.jsp).

	JSR-106
	JCP effort to create standard Java API's for XML encryption
(http://www.jcp.org/jsr/detail/106.jsp).

	JSR-110
	JCP effort to define a standard Java API for WSDL (http://www.jcp.org/jsr/detail/110.jsp).

Any relevant efforts that may be missing from this list are an
oversight on the authors' part, and not a reflection on the
merit or importance of the work.

Appendix B. XML Schema Basics

The XML Schema specification is long and
complex. To create SOAP and WSDL XML, you must know how XML Schema
specify data types. This appendix is a quick introduction to the
topic, with examples. You won't come away a Schema guru; you
will be able to follow WSDL.

Simple and Complex Types

In an XML Schema, all data types are either
primitive

 or derived. A
primitive data type is one that cannot be expressed in terms of any
other data type. The XML Schema specification gives the example of a
float, "a well-defined mathematical
concept that cannot be defined in terms of other data types,"
where an integer is a derivative of
decimal data type. In this case, a float is
primitive and an integer is derived.

All primitive data types are
atomic
 . That is, the value of the data type
cannot be broken down any more than it already is. For example, the
number 1 is an atomic value.Derived data types
may or may not be atomic. For example, an integer as we have already
seen is a derived data type that has an atomic value. A telephone
number, however, is also a derived data type whose value is not
atomic; it is actually a collection of three individual atomic
values.

Data types are mainly derived through
restriction
 or
extension
 (there are other ways, but these are the
most common). In derivation through restriction, the value of the
data type is restricted in some way. For example, an integer is a
derivation of the decimal data type that allows for a narrower range
of values than does a decimal; an integer, in other words, is allowed
to contain a restricted subset of decimal values. Derivation through
extension means that various restrictions on the base data type are
being lifted to allow additional values that otherwise wouldn't
be allowed. For example, a telephone number data type may be extended
to include a country code field.

This is somewhat analogous to Java classes and objects. All Java
classes are types of Java objects. All Java objects are of type
java.lang.Object. When I create a new Java class
that derives from java.lang.Object, most of the
time I am adding new functionality (a new operation, a new property,
etc). This is derivation by extension. When I
override an existing operation (such as the toString(
) operation), I am deriving by
restriction. This analogy obviously doesn't bear
close examination, but may be useful nonetheless.

The authors of the XML Schema specification realized that while they
had a simple and extensible data typing mechanism, they still needed
to define a handful of built-in data types that reflect common use
scenarios. That way, application developers wouldn't have to
keep reinventing the same common data types time and time again,
which would just end with the same confusion that interferes with
interoperability between programming platforms. So the built-in
XML Schema data types were born and we
now have things like string,
integer, float,
boolean, URI, and
time finally defined in a common way that all
application platforms are capable of understanding.

These data types form a hierarchy that can be traced back to a single
primitive atomic data type called
anyType
 .
All other data types used in XML Schemas derive from this single
primitive type.

There are two kinds of data types that can be derived from
anyType: simple types and complex types. Simple
types represent all derived, atomic data types built into XML Schema.
This includes things like string,
integer, and boolean. Complex
types represent all derived, nonatomic data types—the telephone
number, for instance.

 Figure B-1, adapted from the one used in the XML
Schema data type specification, illustrates the hierarchy of built-in
data types.

[image: Hierarchy of built-in data types in XML Schemas]

Figure B-1. Hierarchy of built-in data types in XML Schemas

Be sure to notice that every built-in "simple type" does
not derive directly from anyType, but from the
anySimpleType data type, which is itself a
derivative of anyType. As a rule, the XML Schema
specification dictates that any derivative of
anySimpleType cannot be derived by
extension. Basically, this means the element
cannot contain any attributes or child elements, in terms of
expressing the data type as XML. Again, if this isn't making
much sense, it will soon as we look at a few simple examples.

A quick review: we introduced the fact that there are essentially two
types of data defined by an XML Schema. These include simple types,
which are atomic. Single value data types that may or may not be
derived through restriction from other simple types. The other type
of data defined by an XML Schema is complex types, which are composed
of collections of simple types and must be derived either from other
complex types or simple types.

Some Examples

While the XML Schema data typing mechanism is actually quite easy to
use, we have found that it is often a difficult thing to explain.
Let's walk through some simple examples to clear things up.

Simple Types

 Let's practice defining a simple
data type. Say we have a productCode data type.
This product code must start with two numbers followed by a dash and
five more numbers. Example B-1 illustrates how to
express this data type within an XML Schema.

Example B-1. productCode
<xsd:simpleType name="productCode">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{2}-\d{5}"/>
 </xsd:restriction>
</xsd:simpleType>

Here, we see that productCode is a derivative of
the XML Schema built-in data type string that has
been restricted to only allow values that match the regular
expression \d{2}-\d{5}. If we were to express an
instance of this data type in XML, it would look something like Example B-2.

Example B-2. Instance of productCode
<pCode xsi:type="abc:productCode">12-12345</pCode>

In this simple example, we demonstrate several things: the
productCode is a derived simple type with an
atomic value, and we derive the productCode by
restricting the possible set of values that its base data type (in
this case string) can contain.

Now let's create an extended product code that may or may not
have an additional -[a-z] (a dash followed by any
lowercase letter). We could do this by deriving a new
productCodeEx
 simpleType and
changing the pattern to \d{2}-\d{5}(-[a-z]){0,1},
as in Example B-3.

Example B-3. Extended productCode
<xsd:simpleType name="productCodeEx">
 <xsd:restriction base="productCode">
 <xsd:pattern value="\d{2}-\d{5}(-[a-z]){0,1}"/>
 </xsd:restriction>
</xsd:simpleType>

Complex Types

 Now you've probably got the hang
of simple types and are itching to look at complex types. A complex
type is any data type that contains a collection of other primitive
data types. A telephone number is an example. It contains three
distinct pieces of information. A telephone number complex type in
XML Schema looks like Example B-4.

Example B-4. telephoneNumber type
<xsd:complexType name="telephoneNumber">
 <xsd:sequence>
 <xsd:element name="area">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="exchange">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="number">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{4}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

The telephoneNumber data type consists of a
sequence of three data elements, each of which are restricted
derivatives of the XML Schema string data type. An
instance of this data type would look something like Example B-5.

Example B-5. Instance of telephoneNumber
<telephone xsi:type="abc:telephoneNumber">
 <area>123</area>
 <exchange>123</exchange>
 <number>1234</number>
</telephone>

If I were to go back and create an extended version of this data type
that includes a country code, I would do so by creating a new
complexType derived by extension. This is shown in
Example B-6.

Example B-6. Extending telephoneNumber to include a country code
<xsd:complexType name="telephoneNumberEx">
 <xsd:complexContent>
 <xsd:extension base="telephoneNumber">
 <xsd:sequence>
 <xsd:element name="countryCode">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{2}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

An instance of the extended telephone number would look like Example B-7.

Example B-7. Instance of extended telephoneNumber
<telephone xsi:type="abc:telephoneNumber">
 <area>123</area>
 <exchange>123</exchange>
 <number>1234</number>
 <countryCode>01</countryCode>
</telephone>

Notice that the countryCode element is at the end
of the sequence of data elements. This is due to the way that XML
Schema enforces element ordering within data types. Because we are
deriving by extension, all new elements defined in the
telephoneNumberEx data type have to appear after
the elements defined in its base telephoneNumber
data type. If we wanted countryCode to appear
first in the sequence, we would actually have to derive by
restriction and redeclare each of the data elements, as in Example B-8.

Example B-8. restricted telephoneNumber
<xsd:complexType name="telephoneNumberEx">
 <xsd:complexContent>
 <xsd:restriction base="telephoneNumber">
 <xsd:sequence>
 <xsd:element name="countryCode">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{2}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="area">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="exchange">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="number">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{4}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

And that's the basics of defining data types with XML Schemas.
There are plenty of details that we are leaving out. It's
worthwhile taking the time to learn more about XML Schemas.

XML Spy

 XML Spy is perhaps
the best product available for working with XML Schemas. Its XML
development environment allows you to visually design XML Schemas
quickly and easily, hiding away the syntactic complexity that
normally trips people up. Figure B-2 shows a
screenshot of XML Spy's visual schema editor.

[image: A view of the XML Spy visual schema editor]

Figure B-2. A view of the XML Spy visual schema editor

XML Spy is a commercial product available from http://www.xmlspy.com. Though it's not
cheap (a few hundred U.S. dollars at the time of this writing), it is
well worth the price for serious developers.

Appendix C. Code Listings

 This appendix contains the source code
to the many example programs developed throughout the book. To
explain the programs, we often presented them piece by piece,
sometimes omitting repetitive
sections. Example C-1 through Example C-54 are
the full programs: intact, unabridged, in all their glory. You can
also download them from the web at http://www.oreilly.com/catalog/progwebsoap/.

Hello World in Perl

Example C-1. HelloWorld.pm (server)
package Hello;
sub sayHello {
 shift;
 my $self = "Hello " . shift;
}
1;

Example C-2. HelloWorld.cgi (server)
use SOAP::Transport::HTTP;
SOAP::Transport::HTTP::CGI
 -> dispatch_to('Hello::(?:sayHello)')
 -> handle
;

Example C-3. HelloWorldClient.pm (client)
use SOAP::Lite;
my $name = shift;
print "\n\nCalling the SOAP Server to say hello\n\n";
print "The SOAP Server says: ";
print SOAP::Lite
 -> uri('urn:Example1')
 -> proxy('http://localhost/cgi-bin/helloworld.cgi')
 -> sayHello($name)
 -> result . "\n\n";

Hello World Client in Visual Basic

Example C-4. Helloworld.vbs (client)
Dim x, h
Set x = CreateObject("MSXML2.DOMDocument")

x.loadXML "<s:Envelope 8
 xmlns:s='http://schemas.xmlsoap.org/soap/envelope/'8
 xmlns:xsi='http://www.w3.org/1999/XMLSchema-instance' 8
 xmlns:xsd='http://www.w3.org/1999/XMLSchema'><s:Body><m:sayHello 8
 xmlns:m='urn:Example1'><name xsi:type='xsd:string'>James</name> 8
 </m:sayHello></s:Body></s:Envelope>"8

msgbox x.xml, , "Input SOAP Message"
Set h = CreateObject("Microsoft.XMLHTTP")
h.open "POST", "http://localhost/cgi-bin/helloworld.cgi"
h.send (x)
while h.readyState <> 4
wend
msgbox h.responseText,,"Output SOAP Message"

Hello World over Jabber

Example C-5. HelloWorldJabber.pm (server)
use SOAP::Transport::JABBER;
my $server = SOAP::Transport::JABBER::Server
 -> new('jabber://soaplite_server:soapliteserver@jabber.org:5222')
 -> dispatch_to('Hello')
;
print "SOAP Jabber Server Started\n";
do { $server->handle } while sleep 1;

Example C-6. HelloWorldJabberClient.pm (client)
use SOAP::Lite;
my $name = shift;
print "\n\nCalling the SOAP Server to say hello\n\n";
print "The SOAP Server says: ";
print SOAP::Lite
 -> uri('urn:Example1')
 -> proxy('jabber://soaplite_client:soapliteclient@jabber.org:5222/' .
 'soaplite_server@jabber.org/')
 -> sayHello($name)
 -> result . "\n\n";

Hello World in Java

Example C-7. Hello.java (server)
package samples;
public class Hello {
 public String sayHello(String name) {
 return "Hello " + name;
 }
}

Example C-8. Hello.java Deployment Descriptor (server)
<dd:service xmlns:dd="http://xml.apache.org/xml-soap/deployment" id="urn:Example1">
 <dd:provider type="java"
 scope="Application"
 methods="sayHello">
 <dd:java class="samples.Hello"
 static="false" />
 </dd:provider>
 <dd:faultListener>
 org.apache.soap.server.DOMFaultListener
 </dd:faultListener>
 <dd:mappings />
</dd:service>

Example C-9. Hello_Client.java (client)
import java.io.*;
import java.net.*;
import java.util.*;
import org.apache.soap.*;
import org.apache.soap.rpc.*;

public class Hello_client {

 public static void main (String[] args)
 throws Exception {

 System.out.println("\n\nCalling the SOAP Server to say hello\n\n");
 URL url = new URL (args[0]);
 String name = args[1];

 Call call = new Call ();
 call.setTargetObjectURI("urn:Example1");
 call.setMethodName("sayHello");
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC;);
 Vector params = new Vector ();
 params.addElement (new Parameter("name", String.class, name, null));
 call.setParams (params);

 System.out.print("The SOAP Server says: ");

 Response resp = call.invoke(url, "");

 if (resp.generatedFault ()) {
 Fault fault = resp.getFault ();
 System.out.println ("\nOuch, the call failed: ");
 System.out.println (" Fault Code = " + fault.getFaultCode ());
 System.out.println (" Fault String = " + fault.getFaultString ());
 } else {
 Parameter result = resp.getReturnValue ();
 System.out.print(result.getValue ());
 System.out.println();
 }
 }
}

Hello, World in C# on .NET

Example C-10. Helloworld.asmx (server)
<%@ WebService Language="C#" Class="Example1" %>

using System.Web.Services;

[WebService(Namespace="urn:Example1")]
public class Example1 {

 [WebMethod]
 public string sayHello(string name) {
 return "Hello " + name;
 }

}

Example C-11. Helloworld.cs (client)
// HelloWorld.cs

using System.Diagnostics;
using System.Xml.Serialization;
using System;
using System.Web.Services.Protocols;
using System.Web.Services;

[System.Web.Services.WebServiceBindingAttribute(
 Name="Example1Soap",
 Namespace="urn:Example1")]
public class Example1 :
 System.Web.Services.Protocols.SoapHttpClientProtocol {

 public Example1() {
 this.Url = "http://localhost/helloworld.asmx ";
 }

 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 "urn:Example1/sayHello",
 RequestNamespace="urn:Example1",
 ResponseNamespace="urn:Example1",
 Use=System.Web.Services.Description.SoapBindingUse.Literal,
 ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
 public string sayHello(string name) {
 object[] results = this.Invoke("sayHello",
 new object[] {name});
 return ((string)(results[0]));
 }

 public static void Main(string[] args) {
 Console.WriteLine("Calling the SOAP Server to say hello");
 Example1 example1 = new Example1();
 Console.WriteLine("The SOAP Server says: " +
 example1.sayHello(args[0]));
 }
}

Example C-12. Modified Perl HelloWorld_Client.pm for use with .NET (client)
use SOAP::Lite;

my $name = shift;

print "\n\nCalling the SOAP Server to say hello\n\n";

print "The SOAP Server says: ";

print SOAP::Lite
 -> uri('urn:Example1')
 -> on_action(sub{sprintf '%s/%s', @_ })
 -> proxy('http://localhost:8080/helloworld/example1.asmx')
 -> sayHello(SOAP::Data->name(name => $name->type->('string')->uri('urn:Example1'))
 -> result . "\n\n";

Publisher Service

Example C-13. Publisher.pm (server)
package Publisher;

use strict;

package Publisher::DB;

use DBI;
use vars qw($CONNECT);

$CONNECT = "DBI:CSV:f_dir=/home/soaplite/book;csv_sep_char=\0";

my $dbh;

sub dbh {
 shift;
 unless ($dbh) {
 $dbh = DBI->connect(shift || $CONNECT);
 $dbh->{'RaiseError'} = 1;
 }
 return $dbh;
}

END { $dbh->disconnect if $dbh; }

sub create {
 my $dbh = shift->dbh;

 $dbh->do($_) foreach split /;/, '

 CREATE TABLE members (
 memberID integer,
 email char(100),
 password char(25),
 firstName char(50),
 lastName char(50),
 title char(50),
 company char(50),
 url char(255),
 subscribed integer
);

 CREATE TABLE items (
 itemID	integer,
 memberID	integer,
 type integer,
 title 	char(255),
 description char(512),
 postStamp	integer
)

';

}

sub insert_member {
 my $dbh = shift->dbh;
 my $newMemberID = 1 + $dbh->selectrow_array(
 "SELECT memberID FROM members ORDER BY memberID DESC");

 my %parameters = (@_, memberID => $newMemberID, subscribed => 0);
 my $names = join ', ', keys %parameters;
 my $placeholders = join ', ', ('?') x keys %parameters;

 $dbh->do("INSERT INTO members ($names) VALUES ($placeholders)", {},
 values %parameters);
 return $newMemberID;
}

sub select_member {
 my $dbh = shift->dbh;
 my %parameters = @_;

 my $where = join ' AND ', map {"$_ = ?"} keys %parameters;
 $where = "WHERE $where" if $where;

 # returns row in array context and first element (memberID) in scalar
 return $dbh->selectrow_array("SELECT * FROM members $where", {},
 values %parameters);
}

sub update_member {
 my $dbh = shift->dbh;
 my($memberID, %parameters) = @_;

 my $set = join ', ', map {"$_ = ?"} keys %parameters;

 $dbh->do("UPDATE members SET $set WHERE memberID = ?", {},
 values %parameters, $memberID);
 return $memberID;
}

sub insert_item {
 my $dbh = shift->dbh;
 my $newItemID = 1 + $dbh->selectrow_array(
 "SELECT itemID FROM items ORDER BY itemID DESC");

 my %parameters = (@_, itemID => $newItemID, postStamp => time());
 my $names = join ', ', keys %parameters;
 my $placeholders = join ', ', ('?') x keys %parameters;

 $dbh->do("INSERT INTO items ($names) VALUES ($placeholders)", {},
 values %parameters);

 return $newItemID;
}

sub select_item {
 my $dbh = shift->dbh;
 my %parameters = @_;

 my $where = join ' AND ', map {"$_ = ?"} keys %parameters;

 return $dbh->selectrow_array("SELECT * FROM items WHERE $where", {},
 values %parameters);
}

sub select_all_items {
 my $dbh = shift->dbh;
 my %parameters = @_;

 my $where = join ' AND ', map {"$_ = ?"} keys %parameters;
 $where = "WHERE $where" if $where;

 return $dbh->selectall_arrayref("SELECT type, title, description,
 postStamp, memberID FROM items $where", {}, values %parameters);
}

sub delete_item {
 my $dbh = shift->dbh;
 my $itemID = shift;

 $dbh->do('DELETE FROM items WHERE itemID = ?', {}, $itemID);
 return $itemID;
}

==

package Publisher;

use POSIX qw(strftime);

@Publisher::ISA = qw(SOAP::Server::Parameters);

--
private functions
--

use Digest::MD5 qw(md5);

my $calculateAuthInfo = sub {
 return md5(join '', 'unique (yet persistent) string', @_);
};

my $checkAuthInfo = sub {
 my $authInfo = shift;
 my $signature = $calculateAuthInfo->(@{$authInfo}{qw(memberID email
 time)});
 die "Authentication information is not valid\n" if $signature ne
 $authInfo->{signature};
 die "Authentication information is expired\n"
 if time() > $authInfo->{time};
 return $authInfo->{memberID};
};

my $makeAuthInfo = sub {
 my($memberID, $email) = @_;
 my $time = time()+20*60;
 my $signature = $calculateAuthInfo->($memberID, $email, $time);
 return +{memberID => $memberID, time => $time, email => $email,
 signature => $signature};
};

--
public functions
--

sub register {
 my $self = shift;
 my $envelope = pop;
 my %parameters = %{$envelope->method() || {}};

 die "Wrong parameters: register(email, password, firstName, lastName [,
 title][, company][, url])\n"
 unless 4 == map {defined} @parameters{qw(email password firstName
 lastName)};

 my $email = $parameters{email};
 die "Member with email ($email) already registered\n"
 if Publisher::DB->select_member(email => $email);
 return Publisher::DB->insert_member(%parameters);
}

sub modify {
 my $self = shift;
 my $envelope = pop;
 my %parameters = %{$envelope->method() || {}};

 my $memberID = $checkAuthInfo->($envelope->valueof('//authInfo'));
 Publisher::DB->update_member($memberID, %parameters);
 return;
}

sub login {
 my $self = shift;
 my %parameters = %{pop->method() || {}};

 my $email = $parameters{email};
 my $memberID = Publisher::DB->select_member(email => $email,
 password => $parameters{password});
 die "Credentials are wrong\n" unless $memberID;
 return bless $makeAuthInfo->($memberID, $email) => 'authInfo';
}

sub subscribe {
 my $self = shift;
 my $memberID = $checkAuthInfo->(pop->valueof('//authInfo'));

 Publisher::DB->update_member($memberID, subscribed => 1);
 return;
}

sub unsubscribe {
 my $self = shift;
 my $memberID = $checkAuthInfo->(pop->valueof('//authInfo'));

 Publisher::DB->update_member($memberID, subscribed => 0);
 return;
}

my %type2code = (news => 1, article => 2, resource => 3);
my %code2type = reverse %type2code;

sub postItem {
 my $self = shift;
 my $envelope = pop;
 my $memberID = $checkAuthInfo->($envelope->valueof('//authInfo'));
 my %parameters = %{$envelope->method() || {}};

 die "Wrong parameter(s): postItem(type, title, description)\n"
 unless 3 == map {defined} @parameters{qw(type title description)};

 $parameters{type} = $type2code{lc $parameters{type}}
 or die "Wrong type of item ($parameters{type})\n";
 return Publisher::DB->insert_item(memberID => $memberID, %parameters);
}

sub removeItem {
 my $self = shift;
 my $memberID = $checkAuthInfo->(pop->valueof('//authInfo'));
 die "Wrong parameter(s): removeItem(itemID)\n" unless @_ == 1;

 my $itemID = shift;
 die "Specified item ($itemID) can't be found or removed\n"
 unless Publisher::DB->select_item(memberID => $memberID, itemID => $itemID);
 Publisher::DB->delete_item($itemID);
 return;
}

my $browse = sub {
 my $envelope = pop;
 my %parameters = %{$envelope->method() || {}};

 my($type, $format, $maxRows, $query) = @parameters{qw(type format maxRows query)};
 $type = {all => 'all', %type2code}->{lc($type) || 'all'} or
 die "Wrong type of item ($type)\n";

 $maxRows ||= 25;
 $format ||= 'XML';
 my $items = Publisher::DB->select_all_items($type ne 'all' ? (type => $type) : ());
 my %members;
 my @items = map {
 my($type, $title, $description, $date, $memberID) = @$_;
 my($email, $firstName, $lastName) = @{
 $members{$memberID} ||= [Publisher::DB->select_member(memberID => $memberID)]
 }[1,3,4];
 +{
 $format =~ /^XML/ ? (
 type => $code2type{$type},
 title => $title,
 description => $description,
 date => strftime("%Y-%m-%d", gmtime($date)),
 creator => "$firstName $lastName ($email)"
) : (
 category => $code2type{$type},
 title => "$title by $firstName $lastName ($email) on "
 . strftime("%Y-%m-%d", gmtime($date)),
 description => $description,
)
 }
 } @{$items}[0..(!$query && $maxRows <= $#$items ? $maxRows-1 : $#$items)];
 if ($query) {
 my $regexp = join '', map {
 /\s+and\s+/io ? '&&' : /\s+or\s+/io ? '||' : /[()]/ ? $_ : $_ ? '/' . quotemeta($_) . '/o' : ''
 } split /(\(|\)|\s+and\s+|\s+or\s+)/io, $query;
 eval "*checkfor = sub { for (\@_) { return 1 if $regexp; } return }" or die;
 @items = grep {checkfor(values %$_)} @items;
 splice(@items, $maxRows <= $#items ? $maxRows : $#items+1);
 }
 return $format =~ /^(XML|RSS)str$/
 ? SOAP::Serializer
 -> autotype(0)
 -> readable(1)
 -> serialize(SOAP::Data->name(($1 eq 'XML' ? 'itemList' : 'channel')
 => \SOAP::Data->name(item => @items)))
 : [@items];
};

sub browse {
 my $self = shift;
 return SOAP::Data->name(browse => $browse->(@_));
}

sub search {
 my $self = shift;
 return SOAP::Data->name(search => $browse->(@_));
}

==

1;

Example C-14. Publisher.daemon (server)
#!/bin/perl

use SOAP::Transport::HTTP;

use Publisher;

$Publisher::DB::CONNECT =
 "DBI:CSV:f_dir=d:/book;csv_sep_char=\0";
$authinfo = 'http://www.soaplite.com/authInfo';

my $server = SOAP::Transport::HTTP::CGI
 -> dispatch_to('Publisher');

$server->serializer->maptype({authInfo => $authinfo});
$server->handle;

Example C-15. Client.java (client)
import java.io.*;
import java.net.*;
import java.util.*;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.w3c.dom.*;

import org.apache.soap.util.xml.*;
import org.apache.soap.*;
import org.apache.soap.encoding.*;
import org.apache.soap.encoding.soapenc.*;
import org.apache.soap.rpc.*;

public class Client {

 private URL url;
 private String uri;
 private authInfo authInfo;

 public Client (String url, String uri) throws Exception {
 try {
 this.uri = uri;
 this.url = new URL(url);
 } catch (Exception e) {
 throw new Exception(e.getMessage());
 }
 }

 public Header makeAuthHeader (authInfo auth) throws Exception {
 if (auth == null) {
 throw new Exception(
 "Oops, you are not logged in. Please login first"); }
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setNamespaceAware(true);
 dbf.setValidating(false);
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.newDocument();
 Element authEl =
 doc.createElementNS("http://www.soaplite.com/authInfo",
 "auth:authInfo");
 Element emailEl = doc.createElement("email");
 emailEl.appendChild(doc.createTextNode(auth.getEmail()));
 Element signatureEl = doc.createElement("signature");
 signatureEl.setAttribute("xmlns:enc", Constants.NS_URI_SOAP_ENC);
 signatureEl.setAttribute("xsi:type", "enc:base64");
 signatureEl.appendChild(doc.createTextNode(
 Base64.encode(auth.getSignature())));
 Element memberIdEl = doc.createElement("memberID");
 memberIdEl.appendChild(doc.createTextNode(String.valueOf(
 auth.getMemberID())));
 Element timeEl = doc.createElement("time");
 timeEl.appendChild(doc.createTextNode(String.valueOf(
 auth.getTime())));
 authEl.appendChild(emailEl);
 authEl.appendChild(signatureEl);
 authEl.appendChild(memberIdEl);
 authEl.appendChild(timeEl);
 Vector headerEntries = new Vector();
 headerEntries.add(authEl);
 Header header = new Header();
 header.setHeaderEntries(headerEntries);
 return header;
 }

 private Call initCall () {
 Call call = new Call();
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 call.setTargetObjectURI(uri);
 return call;
 }

 private Object invokeCall (Call call) throws Exception {
 try {
 Response response = call.invoke(url, "");

 if (!response.generatedFault()) {
 return response.getReturnValue() == null
 ? null : response.getReturnValue().getValue();
 } else {
 Fault f = response.getFault();
 throw new Exception("Fault = " + f.getFaultCode() + ", " +
 f.getFaultString());
 }
 } catch (SOAPException e) {
 throw new Exception("SOAPException = " + e.getFaultCode() + ", " +
 e.getMessage());
 }
 }

 public void login (String email, String password) throws Exception {
 Call call = initCall();

 SOAPMappingRegistry smr = new SOAPMappingRegistry();
 BeanSerializer beanSer = new BeanSerializer();
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("http://www.soaplite.com/Publisher",
 "authInfo"),
 authInfo.class, beanSer, beanSer);

 Vector params = new Vector ();
 params.add(new Parameter("email", String.class, email, null));
 params.add(new Parameter("password", String.class, password, null));
 call.setParams(params);
 call.setMethodName("login");
 call.setSOAPMappingRegistry(smr);

 authInfo = (authInfo) invokeCall(call);

 System.out.println(authInfo.getEmail() + " logged in.");
 }

 public void register (String email, String password,
 String firstName, String lastName,
 String title, String company, String url)
 throws Exception {
 Call call = initCall();

 Vector params = new Vector ();
 params.add(new Parameter("email", String.class, email, null));
 params.add(new Parameter("password", String.class, password, null));
 params.add(new Parameter("firstName", String.class, firstName, null));
 params.add(new Parameter("lastName", String.class, lastName, null));
 if (url != null)
 params.add(new Parameter("url", String.class, url, null));
 if (title != null)
 params.add(new Parameter("title", String.class, title, null));
 if (company != null)
 params.add(new Parameter("company", String.class, company, null));
 call.setParams(params);
 call.setMethodName("register");
 invokeCall(call);
 System.out.println("Registered.");
 }

 public void postItem (String type, String title,
 String description)
 throws Exception {
 Call call = initCall();
 Vector params = new Vector ();
 params.add(new Parameter("type", String.class, type, null));
 params.add(new Parameter("title", String.class, title, null));
 params.add(new Parameter("description", String.class, description,
 null));
 call.setParams(params);
 call.setMethodName("postItem");
 call.setHeader(makeAuthHeader(authInfo));
 Integer itemID = (Integer)invokeCall(call);
 System.out.println("Posted item " + itemID + ".");
 }

 public void removeItem (Integer itemID) throws Exception {
 Call call = initCall();
 Vector params = new Vector ();
 params.add(new Parameter("itemID", Integer.class, itemID, null));
 call.setParams(params);
 call.setMethodName("removeItem");
 call.setHeader(makeAuthHeader(authInfo));
 invokeCall(call);
 System.out.println("Removed item " + itemID + ".");
 }

 public void browse (String type, String format,
 Integer maxRows)
 throws Exception {
 Call call = initCall();
 Vector params = new Vector ();
 params.add(new Parameter("format", String.class, format != null ?
 format : "XMLstr", null));
 if (type != null) params.add(new Parameter("type", String.class,
 type, null));
 if (maxRows != null) params.add(new Parameter("maxRows",
 Integer.class, maxRows, null));
 call.setParams(params);
 call.setMethodName("browse");
 System.out.println((String)invokeCall(call));
 }

 public static void main(String[] args) {

 String myname = Client.class.getName();

 if (args.length < 1) {
 System.err.println("Usage:\n java " + myname +
 " SOAP-router-URL");
 System.exit (1);
 }

 try {
 Client client = new Client(args[0],
 "http://www.soaplite.com/Publisher");

 InputStream in = System.in;
 InputStreamReader isr = new InputStreamReader(in);
 BufferedReader br = new BufferedReader(isr);
 String action = null;
 while (!("quit".equals(action))) {
 System.out.print("> ");
 action = br.readLine();

 if ("register".equals(action)) {

 String email = null;
 String password = null;
 String firstName = null;
 String lastName = null;
 String title = null;
 String company = null;
 String url = null;

 System.out.print("\n\nIn order to register, you must answer the following questions.");
 System.out.print("\n\nWhat is your email address: ");
 email = br.readLine();
 System.out.print("\nWhat is your first name: ");
 firstName = br.readLine();
 System.out.print("\nWhat is your last name: ");
 lastName = br.readLine();
 System.out.print("\nWhat is your job title: ");
 title = br.readLine();
 System.out.print("\nWhat company do you work for: ");
 company = br.readLine();
 System.out.print("\nWhat is your company or personal URL: ");
 url = br.readLine();
 System.out.print("\nFinally, what password do you want to use: ");
 password = br.readLine();

 System.out.println("\nAttempting to register....");
 client.register(email, password, firstName,
 lastName, title, company, url);
 System.out.println();
 }

 if ("login".equals(action)) {
 String id = null;
 String pwd = null;

 System.out.print("\n\nWhat is your user id: ");
 id = br.readLine();
 System.out.print("\nWhat is your password: ");
 pwd = br.readLine();

 System.out.println("\nAttempting to login....");
 client.login(id,pwd);
 System.out.println();
 }

 if ("post".equals(action)) {

 String type = null;
 String title = null;
 String desc = null;

 System.out.print("\n\nWhat type of item [1 = News, 2 = Article,
 3 = Resource]: ");
 type = br.readLine();
 if (type.equals("1")) type = "news";
 if (type.equals("2")) type = "article";
 if (type.equals("3")) type = "resource";
 System.out.println("\nWhat is the title: ");
 title = br.readLine();
 System.out.println("\nWhat is the description: ");
 desc = br.readLine();

 System.out.println("\nAttempting to post item....");
 client.postItem(type, title, desc);
 System.out.println();
 }

 if ("remove".equals(action)) {
 System.out.print("\n\nPlease enter the numeric ID of the item to remove: ");
 String id = br.readLine();
 try {
 System.out.println("\nAttempting to remove item....");
 client.removeItem(Integer.valueOf(id));
 } catch (Exception ex) {
 System.out.println("\nCould not remove item!");
 }
 System.out.println();
 }

 if ("browse".equals(action)) {
 System.out.print("\n\nWhat is the maximum number of rows
 to return
(blank to return all): ");
 String mRows = br.readLine();
 System.out.print("\nType of resource to browse ([0] = All, [1] = News,
 [2] = Article, [3] = Resource): ");
 String type = br.readLine();
 if (type.equals("0")) type = "all";
 if (type.equals("1")) type = "news";
 if (type.equals("2")) type = "article";
 if (type.equals("3")) type = "resource";
 System.out.print("\nHow would you like to see the results ([1] = XML,
 [2] = RSS): ");
 String format = br.readLine();
 if (format.equals("1")) format = "XMLstr";
 if (format.equals("2")) format = "RSSstr";

 System.out.println("\nAttempting to browse....");
 try {
 Integer ival = null;
 if (!("".equals(mRows))) {
 ival = Integer.valueOf(mRows);
 }
 client.browse(type, format, ival);
 } catch (Exception ex) {
 System.out.println(ex);
 System.out.println("\nCould not browse!");
 }
 }

 if ("help".equals(action)) {
 System.out.println("\nActions: register | login | post | remove | browse");
 }
 }
 } catch (Exception e) {
 System.err.println("Caught Exception: " + e.getMessage());
 }
 }
}

This is WSDL for the Hello World service.
Example C-16. WSDL for the Hello World service
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorld"
 targetNamespace="urn:HelloWorld"
 xmlns:tns="urn:HelloWorld"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:message name="sayHello_IN">
 <part name="name" type="xsd:string" />
 </wsdl:message>
 <wsdl:message name="sayHello_OUT">
 <part name="greeting" type="xsd:string" />
 </wsdl:message>
 <wsdl:portType name="HelloWorldInterface">
 <wsdl:operation name="sayHello" >
 <wsdl:input message="tns:sayHello_IN" />
 <wsdl:output message="tns:sayHello_OUT" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="HelloWorldBinding"
 type="tns:HelloWorldInterface">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="sayHello">
 <soap:operation soapAction="urn:Hello" />
 <wsdl:input>
 <soap:body use="encoded"
 namespace="urn:Hello"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="encoded"
 namespace="urn:Hello"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="HelloWorldService">
 <wsdl:port name="Perl_HelloWorld" binding="tns:Binding_Name">
 <soap:address
 location="http://localhost/cgi-bin/hello.cgi" />
 </wsdl:port>
 <wsdl:port name="Java_HelloWorld" binding="tns:Binding_Name">
 <soap:address
 location="http://localhost:8080/soap/servlet/rpcrouter" />
 </wsdl:port>
 <wsdl:port name="NET_HelloWorld" binding="tns:Binding_Name">
 <soap:address
 location="http://localhost/helloworld.asmx" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Example C-17. Authinfo.java (client)
public class authInfo {
 private int memberID;
 private long time;
 private String email;
 private byte [] signature;

 public authInfo() { }

 public authInfo(int memberID, long time, String email, byte[] signature) {
 this.memberID = memberID;
 this.time = time;
 this.email = email;
 this.signature = signature;
 }

 public void setMemberID(int memberID) {
 this.memberID = memberID;
 }

 public int getMemberID() {
 return memberID;
 }

 public void setTime(long time) {
 this.time = time;
 }
 public long getTime() {
 return time;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getEmail() {
 return email;
 }

 public void setSignature(byte [] signature) {
 this.signature = signature;
 }

 public byte [] getSignature() {
 return signature;
 }

 public String toString() {
 return "[" + memberID + "] " + email;
 }
}

SAML Generation

Example C-18. Assertion.java
package saml;

import java.util.Date;
import org.w3c.dom.Element;
import org.w3c.dom.Document;

public abstract class Assertion implements AssertionAbstractType {

 private IDType assertionID;
 private String issuer;
 private Date issueInstant;

 public String getVersion() {
 return "1.0";
 }

 public IDType getAssertionID() {
 return this.assertionID;
 }

 public void setAssertionID(IDType assertionID) {
 this.assertionID = assertionID;
 }

 public String getIssuer() {
 return this.issuer;
 }

 public void setIssuer(String issuer) {
 this.issuer = issuer;
 }

 public Date getIssueInstant() {
 return this.issueInstant;
 }

 public void setIssueInstant(Date issueInstant) {
 this.issueInstant = issueInstant;
 }

 protected void serializeAttributes(Element e) {
 e.setAttribute("Version", getVersion());
 if (assertionID != null)
 e.setAttribute("AssertionID", assertionID.getText());
 if (issuer != null)
 e.setAttribute("Issuer", issuer);
 if (issueInstant != null)
 e.setAttribute("IssueInstant", issueInstant.toString());
 }

 protected void deserializeAttributes(Element source) {
 String s1 = source.getAttribute("AssertionID");
 String s2 = source.getAttribute("Issuer");
 String s3 = source.getAttribute("IssueInstant");
 if (s1 != null) setAssertionID(new IDType(s1));
 if (s2 != null) setIssuer(s2);
 if (s3 != null) setIssueInstant(new Date(s3));
 }

 public abstract void serialize(Element parent);
}

Example C-19. AssertionAbstractType.java
package saml;

import java.util.Date;

public interface AssertionAbstractType {

 public String getVersion();
 public IDType getAssertionID();
 public void setAssertionID(IDType assertionID);
 public String getIssuer();
 public void setIssuer(String issuer);
 public Date getIssueInstant();
 public void setIssueInstant(Date issueInstant);
}

Example C-20. AssertionFactory.java
package saml;

import java.util.Date;

public class AssertionFactory {

 public static AuthenticationAssertion newInstance(String id,
 String issuerName,
 Date issueInstant,
 String name,
 String domain,
 String method,
 Date authInstant,
 String ip,
 String dns) {

 AuthenticationAssertion aa = new AuthenticationAssertion();
 IDType aid = new IDType(id);
 aa.setAssertionID(aid);
 aa.setIssuer(issuerName);
 aa.setIssueInstant(issueInstant);
 Subject subject = new Subject();
 {
 NameIdentifier ni = new NameIdentifier();
 ni.setName(name);
 ni.setSecurityDomain(domain);
 subject.setNameIdentifier(ni);
 aa.setSubject(subject);
 }
 aa.setAuthenticationMethod(new AuthenticationMethod(method));
 aa.setAuthenticationInstant(
 new AuthenticationInstant(authInstant));
 AuthenticationLocale locale = new AuthenticationLocale();
 locale.setIP(ip);
 locale.setDNSDomain(dns);
 aa.setAuthenticationLocale(locale);
 return aa;
 }

}

Example C-21. AssertionID.java
package saml;

import org.w3c.dom.Element;
import org.w3c.dom.Document;

public class AssertionID extends IDType {

 public AssertionID() {}

 public AssertionID(String value) { super(value); }

 public void serialize(Element parent) {
 Document doc = parent.getOwnerDocument();
 Element e = doc.createElementNS(SAMLUtil.NS, "AssertionID");
 e.appendChild(doc.createTextNode(getText()));
 parent.appendChild(e);
 }

 public void deserialize(Element source) {
 String id = SAMLUtil.getInnerText(source);
 setText(id);
 }
}

Example C-22. AssertionSigner.java
package saml;

import java.io.FileInputStream;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.SignatureException;
import java.security.UnrecoverableKeyException;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import com.ibm.xml.dsig.*;
import org.w3c.dom.*;

public class AssertionSigner {

 public static Element sign(AuthenticationAssertion assertion,
 String keystorepath,
 String alias,
 String storepass,
 String keypass)
 throws Exception {

 Document doc = SAMLUtil.newDocument();
 Element root = doc.createElement("root");
 assertion.serialize(root);

 //** Prepare the signature **//
 SignatureGenerator siggen = new SignatureGenerator(doc,
 DigestMethod.SHA1,
 Canonicalizer.W3C,
 SignatureMethod.DSA, null);
 siggen.addReference(
 siggen.createReference(
 siggen.wrapWithObject(root.getFirstChild(),
 assertion.getAssertionID().getText())
)
);

 //** Prepare the key **//
 KeyStore keystore = KeyStore.getInstance("JKS");
 keystore.load(new FileInputStream(keystorepath),
 storepass.toCharArray());
 X509Certificate cert =
 (X509Certificate)keystore.getCertificate(alias);
 Key key = keystore.getKey(alias, keypass.toCharArray());
 if (key == null) {
 throw new IllegalArgumentException("Invalid Key Info");
 }
 KeyInfo keyInfo = new KeyInfo();
 KeyInfo.X509Data x5data = new KeyInfo.X509Data();
 x5data.setCertificate(cert);
 x5data.setParameters(cert, true, true, true);
 keyInfo.setX509Data(new KeyInfo.X509Data[] { x5data });
 keyInfo.setKeyValue(cert.getPublicKey());
 siggen.setKeyInfoGenerator(keyInfo);

 //** Sign it **//
 Element sig = siggen.getSignatureElement();
 SignatureContext context = new SignatureContext();
 context.sign(sig, key);
 return sig;
 }

}

Example C-23. AssertionSpecifier.java
package saml;

import org.w3c.dom.Element;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;

public class AssertionSpecifier implements AssertionSpecifierType {

 private AssertionID assertionID;
 private Assertion assertion;

 public AssertionID getAssertionID() {
 return this.assertionID;
 }

 public void setAssertionID(AssertionID assertionID) {
 this.assertionID = assertionID;
 }

 public Assertion getAssertion() {
 return this.assertion;
 }

 public void setAssertion(Assertion assertion) {
 this.assertion = assertion;
 }

 public void serialize(Element parent) {
 Document doc = parent.getOwnerDocument();
 Element e = doc.createElementNS(SAMLUtil.NS, "AssertionSpecifier");
 if (assertionID != null) assertionID.serialize(e);
 if (assertion != null) assertion.serialize(e);
 parent.appendChild(e);
 }

 public void deserialize(Element source) {
 NodeList nl = source.getChildNodes();
 for (int n = 0; n < nl.getLength(); n++) {
 Node node = nl.item(n);
 if (node.getNodeType() == Node.ELEMENT_NODE) {
 Element e = (Element)node;
 if ("AssertionID".equals(e.getLocalName())) {
 AssertionID aid = new AssertionID();
 aid.deserialize(e);
 setAssertionID(aid);
 }
 if ("AuthenticationAssertion".equals(e.getLocalName())) {
 AuthenticationAssertion aa = new AuthenticationAssertion();
 aa.deserialize(e);
 setAssertion(aa);
 }
 }
 }
 }
}

Example C-24. AssertionSpecifierType.java
package saml;

public interface AssertionSpecifierType {

 public AssertionID getAssertionID();
 public void setAssertionID(AssertionID assertionID);
 public Assertion getAssertion();
 public void setAssertion(Assertion assertion);

}

Example C-25. AuthenticationAssertion.java
package saml;

import java.util.Date;
import org.w3c.dom.Element;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;

public class AuthenticationAssertion
 extends SubjectAssertion implements AuthenticationAssertionType {

 private AuthenticationMethod method;
 private AuthenticationInstant instant;
 private AuthenticationLocale locale;

 public AuthenticationMethod getAuthenticationMethod() {
 return this.method;
 }

 public void setAuthenticationMethod(AuthenticationMethod method) {
 this.method = method;
 }

 public AuthenticationInstant getAuthenticationInstant() {
 return this.instant;
 }

 public void setAuthenticationInstant(AuthenticationInstant instant) {
 this.instant = instant;
 }

 public AuthenticationLocale getAuthenticationLocale() {
 return this.locale;
 }

 public void setAuthenticationLocale(AuthenticationLocale locale) {
 this.locale = locale;
 }

 public void serialize(Element parent) {
 Document doc = parent.getOwnerDocument();
 Element e = doc.createElementNS(SAMLUtil.NS, "AuthenticationAssertion");
 e.setAttribute("xmlns", SAMLUtil.NS);
 serializeAttributes(e);
 serializeSubject(e);
 if (method != null) method.serialize(e);
 if (instant != null) instant.serialize(e);
 if (locale != null) locale.serialize(e);
 parent.appendChild(e);
 }

 public void deserialize(Element source) {
 deserializeAttributes(source);
 NodeList nl = source.getChildNodes();
 for (int n = 0; n < nl.getLength(); n++) {
 Node node = nl.item(n);
 if (node.getNodeType() == Node.ELEMENT_NODE) {
 Element e = (Element)node;
 if ("Subject".equals(e.getLocalName())) {
 Subject subject = new Subject();
 subject.deserialize(e);
 setSubject(subject);
 }
 if ("AuthenticationMethod".equals(e.getLocalName())) {
 AuthenticationMethod method = new AuthenticationMethod();
 method.deserialize(e);
 setAuthenticationMethod(method);
 }
 if ("AuthenticationInstant".equals(e.getLocalName())) {
 AuthenticationInstant instant = new AuthenticationInstant();
 instant.deserialize(e);
 setAuthenticationInstant(instant);
 }
 if ("AuthenticationLocale".equals(e.getLocalName())) {
 AuthenticationLocale locale = new AuthenticationLocale();
 locale.deserialize(e);
 setAuthenticationLocale(locale);
 }
 }
 }
 }
}

Example C-26. AuthenticationAssertionType.java
package saml;

import java.util.Date;

public interface AuthenticationAssertionType extends SubjectAssertionAbstractType {

 public AuthenticationMethod getAuthenticationMethod();
 public void setAuthenticationMethod(AuthenticationMethod method);
 public AuthenticationInstant getAuthenticationInstant();
 public void setAuthenticationInstant(AuthenticationInstant instant);
 public AuthenticationLocale getAuthenticationLocale();
 public void setAuthenticationLocale(AuthenticationLocale locale);

}

Example C-27. AuthenticationInstant.java
package saml;

import java.util.Date;
import org.w3c.dom.Element;
import org.w3c.dom.Document;

public class AuthenticationInstant {

 private Date instant;

 public AuthenticationInstant() {}

 public AuthenticationInstant(Date instant) {
 setValue(instant);
 }

 public Date getValue() {
 return this.instant;
 }

 public void setValue(Date value) {
 this.instant = value;
 }

 public void serialize(Element parent) {
 Document doc = parent.getOwnerDocument();
 Element e = doc.createElement("AuthenticationInstant");
 e.appendChild(doc.createTextNode(instant.toString()));
 parent.appendChild(e);
 }

 public void deserialize(Element source) {
 String value = SAMLUtil.getInnerText(source);
 instant = new Date(value);
 }
}

Example C-28. AuthenticationLocale.java
package saml;

import org.w3c.dom.Element;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;

public class AuthenticationLocale implements AuthenticationLocaleType {

 private String ip;
 private String domain;

 public String getIP() {
 return this.ip;
 }

 public void setIP(String ip) {
 this.ip = ip;
 }

 public String getDNSDomain() {
 return this.domain;
 }

 public void setDNSDomain(String domain) {
 this.domain = domain;
 }

 public void serialize(Element parent) {
 Document doc = parent.getOwnerDocument();
 Element e = doc.createElementNS(SAMLUtil.NS, "AuthenticationLocale");
 if (ip != null) {
 Element e1 = doc.createElement("IP");
 e1.appendChild(doc.createTextNode(ip));
 e.appendChild(e1);
 }
 if (domain != null) {
 Element e2 = doc.createElement("DNS_Domain");
 e2.appendChild(doc.createTextNode(domain));
 e.appendChild(e2);
 }
 parent.appendChild(e);
 }

 public void deserialize(Element source) {
 NodeList nl = source.getChildNodes();
 for (int n = 0; n < nl.getLength(); n++) {
 Node node = nl.item(n);
 if (node.getNodeType() == Node.ELEMENT_NODE) {
 Element e = (Element)node;
 if ("IP".equals(e.getLocalName())) {
 String ip = SAMLUtil.getInnerText(e);
 setIP(ip);
 }
 if ("DNS_Domain".equals(e.getLocalName())) {
 String dns = SAMLUtil.getInnerText(e);
 setDNSDomain(dns);
 }
 }
 }
 }
}

Example C-29. AuthenticationLocaleType.java
package saml;

public interface AuthenticationLocaleType {

 public String getIP();
 public void setIP(String ip);
 public String getDNSDomain();
 public void setDNSDomain(String domain);

}

Example C-30. AuthenticationMethod.java
package saml;

import org.w3c.dom.Element;
import org.w3c.dom.Document;

public class AuthenticationMethod {

 private String value;

 public AuthenticationMethod() {}

 public AuthenticationMethod(String value) {
 setText(value);
 }

 public String getText() {
 return this.value;
 }

 public void setText(String value) {
 this.value = value;
 }

 public void serialize(Element parent) {
 Document doc = parent.getOwnerDocument();
 Element e = doc.createElementNS(SAMLUtil.NS, "AuthenticationMethod");
 e.appendChild(doc.createTextNode(value));
 parent.appendChild(e);
 }

 public void deserialize(Element source) {
 String s = SAMLUtil.getInnerText(source);
 setText(s);
 }
}

Example C-31. IDType.java
package saml;

public class IDType {

 private String value;

 public IDType() {}

 public IDType(String value) {
 setText(value);
 }

 public String getText() {
 return this.value;
 }

 public void setText(String value) {
 this.value = value;
 }

}

Example C-32. NameIdentifier.java
package saml;

import org.w3c.dom.Element;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;

public class NameIdentifier implements NameIdentifierType {

 private String domain;
 private String name;

 public String getSecurityDomain() {
 return this.domain;
 }

 public void setSecurityDomain(String securityDomain) {
 this.domain = securityDomain;
 }

 public String getName() {
 return this.name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void serialize(Element parent) {
 Document doc = parent.getOwnerDocument();
 Element e = doc.createElementNS(SAMLUtil.NS, "NameIdentifier");
 Element e1 = doc.createElement("SecurityDomain");
 e1.appendChild(doc.createTextNode(domain));
 e.appendChild(e1);
 Element e2 = doc.createElement("Name");
 e2.appendChild(doc.createTextNode(name));
 e.appendChild(e2);
 parent.appendChild(e);
 }

 public void deserialize(Element source) {
 NodeList nl = source.getChildNodes();
 for (int n = 0; n < nl.getLength(); n++) {
 Node node = nl.item(n);
 if (node.getNodeType() == Node.ELEMENT_NODE) {
 Element e = (Element)node;
 if ("SecurityDomain".equals(e.getLocalName())) {
 String sd = SAMLUtil.getInnerText(e);
 setSecurityDomain(sd);
 }
 if ("Name".equals(e.getLocalName())) {
 String name = SAMLUtil.getInnerText(e);
 setName(name);
 }
 }
 }
 }
}

Example C-33. NameIdentifierType.java
package saml;

public interface NameIdentifierType {

 public String getSecurityDomain();
 public void setSecurityDomain(String securityDomain);
 public String getName();
 public void setName(String name);

}

Example C-34. SAMLUtil.java
package saml;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
import org.w3c.dom.Document;
import org.w3c.dom.Node;

public class SAMLUtil {

 public static final String NS =
 "http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-15.xsd";

 public static String getInnerText(Node e) {
 NodeList nl = e.getChildNodes();
 StringBuffer strbuf = new StringBuffer();
 for (int n = 0; n < nl.getLength(); n++) {
 Node node = nl.item(n);
 if (node.getNodeType() == Node.TEXT_NODE) {
 strbuf.append(node.getNodeValue());
 } else {
 strbuf.append(getInnerText(node));
 }
 }
 return strbuf.toString();
 }

 public static Document newDocument() {
 try {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(false);
 dbf.setNamespaceAware(true);
 DocumentBuilder db = dbf.newDocumentBuilder();
 return db.newDocument();
 } catch (Exception e) {
 return null;
 }
 }

}

Example C-35. Subject.java
package saml;

import java.util.List;
import java.util.Vector;
import java.util.Iterator;
import org.w3c.dom.Element;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;

public class Subject implements SubjectType {

 private List nameid = new Vector();

 public NameIdentifier getNameIdentifier(int index) {
 return (NameIdentifier)this.nameid.get(index);
 }

 public void setNameIdentifier(NameIdentifier nameIdentifier) {
 this.nameid.add(nameIdentifier);
 }

 public void serialize(Element parent) {
 Document doc = parent.getOwnerDocument();
 Element e = doc.createElementNS(SAMLUtil.NS, "Subject");
 for (Iterator i = nameid.iterator(); i.hasNext();) {
 NameIdentifier ni = (NameIdentifier)i.next();
 ni.serialize(e);
 }
 parent.appendChild(e);
 }

 public void deserialize(Element source) {
 NodeList nl = source.getElementsByTagName("NameIdentifier");
 for (int n = 0; n < nl.getLength(); n++) {
 Element e = (Element)nl.item(n);
 NameIdentifier ni = new NameIdentifier();
 ni.deserialize(e);
 setNameIdentifier(ni);
 }
 }
}

Example C-36. SubjectAssertion.java
package saml;

import org.w3c.dom.Element;

public abstract class SubjectAssertion
 extends Assertion implements SubjectAssertionAbstractType {

 private Subject subject;

 public Subject getSubject() {
 return this.subject;
 }

 public void setSubject(Subject subject) {
 this.subject = subject;
 }

 protected void serializeSubject(Element e) {
 subject.serialize(e);
 }
}

Example C-37. SubjectAssertionAbstractType.java
package saml;

public interface SubjectAssertionAbstractType extends AssertionAbstractType {

 public Subject getSubject();
 public void setSubject(Subject subject);

}

Example C-38. SubjectType.java
package saml;

public interface SubjectType {

 public NameIdentifier getNameIdentifier(int index);
 public void setNameIdentifier(NameIdentifier nameIdentifier);

}

Codeshare

Example C-39. CodeShareOwner.wsdl
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="CodeShare_Interfaces"
 targetNamespace="urn:CodeShare_Interfaces"
 xmlns:tns="urn:CodeShare_Interfaces"
 xmlns:types="urn:CodeShare_Interfaces:DataTypes"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>
 <xsd:schema version="1.0"
 targetNamespace="urn:CodeShare_Interfaces:DataTypes"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xmlns:se="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema" >
 <xsd:import namespace="http://schemas.xmlsoap.org/soap/encoding/"
 schemaLocation="http://schemas.xmlsoap.org/soap/encoding/"/>
 <xsd:element name="item">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:all>
 <xsd:element name="path" type="xsd:string"
 nullable="true" minOccurs="0"/>
 <xsd:element name="title" type="xsd:string"
 nullable="true" minOccurs="0"/>
 <xsd:element name="fullpath" type="xsd:string"
 nullable="true" minOccurs="0"/>
 <xsd:element name="type" type="xsd:string"
 nullable="true" minOccurs="0"/>
 </xsd:all>
 <xsd:any namespace='xmlns:dc="http://purl.org/dc/elements/1.1/"'
 processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="ArrayOfItems">
 <xsd:annotation>
 <xsd:documentation>
 Array of CodeShare item elements
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="se:Array">
 <xsd:attribute ref="se:arrayType"
 wsdl:arrayType="types:item[]" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>

 <wsdl:message name="search">
 <part name="p1" type="xsd:string" />
 <part name="p2" type="xsd:string" />
 </wsdl:message>
 <wsdl:message name="searchResponse">
 <part name="response" type="types:ArrayOfItems" />
 </wsdl:message>

 <wsdl:message name="get">
 <part name="p1" type="xsd:string" />
 <part name="p2" type="xsd:string" />
 </wsdl:message>
 <wsdl:message name="getResponse">
 <part name="response" type="types:ArrayOfItems" />
 </wsdl:message>

 <wsdl:message name="info">
 <part name="p1" type="xsd:string" />
 <part name="p2" type="xsd:string" />
 </wsdl:message>
 <wsdl:message name="infoResponse">
 <part name="response" type="types:ArrayOfItems" />
 </wsdl:message>

 <wsdl:message name="list">
 <part name="p1" type="xsd:string" />
 <part name="p2" type="xsd:string" />
 </wsdl:message>
 <wsdl:message name="listResponse">
 <part name="response" type="types:ArrayOfItems" />
 </wsdl:message>

 <wsdl:portType name="CodeShareOwnerInterface">
 <wsdl:operation name="search" parameterOrder="p1 p2">
 <wsdl:input name="search" message="tns:search" />
 <wsdl:output name="searchResponse"
 message="tns:searchResponse" />
 </wsdl:operation>
 <wsdl:operation name="get" parameterOrder="p1 p2">
 <wsdl:input name="search" message="tns:search" />
 <wsdl:output name="searchResponse"
 message="tns:searchResponse" />
 </wsdl:operation>
 <wsdl:operation name="info" parameterOrder="p1 p2">
 <wsdl:input name="search" message="tns:search" />
 <wsdl:output name="searchResponse"
 message="tns:searchResponse" />
 </wsdl:operation>
 <wsdl:operation name="list" parameterOrder="p1 p2">
 <wsdl:input name="search" message="tns:search" />
 <wsdl:output name="searchResponse"
 message="tns:searchResponse" />
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="CodeShareOwner_SOAP_HTTP"
 type="tns:CodeShareOwnerInterface">

 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="search">
 <soap:operation soapAction="urn:CodeShareOwner#search" />
 <wsdl:input>
 <soap:body use="encoded" namespace="urn:CodeShareOwner"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output name="Name">
 <soap:body use="encoded" namespace="urn:CodeShareOwner"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>

 <wsdl:operation name="get">
 <soap:operation soapAction="urn:CodeShareOwner#get" />
 <wsdl:input>
 <soap:body use="encoded" namespace="urn:CodeShareOwner"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="encoded" namespace="urn:CodeShareOwner"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="info">
 <soap:operation soapAction="urn:CodeShareOwner#info" />
 <wsdl:input>
 <soap:body use="encoded" namespace="urn:CodeShareOwner"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="encoded" namespace="urn:CodeShareOwner"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="list">
 <soap:operation soapAction="urn:CodeShareOwner#list"/>
 <wsdl:input>
 <soap:body use="encoded" namespace="urn:CodeShareOwner"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="encoded" namespace="urn:CodeShareOwner"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

	
</wsdl:definitions>

Example C-40. AuthenticationService.java
package codeshare;

import org.w3c.dom.Element;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import saml.*;

public class AuthenticationService {

 private static String users = "users.xml";
 private static Document doc;
 static {
 doc = XMLUtil.get(users);
 if (doc == null) {
 doc = SAMLUtil.newDocument();
 Element u = doc.createElement("users");
 doc.appendChild(u);
 XMLUtil.put(users, doc);
 }
 }

 public static boolean register(String userid, String password) {
 Element e = doc.getDocumentElement();
 NodeList nl = e.getElementsByTagName("user");
 for (int n = 0; n < nl.getLength(); n++) {
 Element ex = (Element)nl.item(n);
 if (ex.getAttribute("id").equals(userid)) {
 throw new IllegalArgumentException("A user with that ID already exists!");
 }
 }
 Element u = doc.createElement("user");
 u.setAttribute("id", userid);
 u.setAttribute("password", password);
 e.appendChild(u);
 XMLUtil.put(users, doc);
 return true;
 }

 public static Element login(String userid, String password)
 throws Exception {
 Element el = doc.getDocumentElement();
 NodeList nl = el.getElementsByTagName("user");
 for (int n = 0; n < nl.getLength(); n++) {
 Element e = (Element)nl.item(n);
 if (e.getAttribute("id").equals(userid) &&
 e.getAttribute("password").equals(password)) {

 AuthenticationAssertion aa = AssertionFactory.newInstance(
 new String(new Long(
 System.currentTimeMillis()).toString()),
 "CodeShare.org",
 new java.util.Date(),
 userid,
 "CodeShare.org",
 "http://codeshare.org",
 new java.util.Date(),
 java.net.InetAddress.
 getLocalHost().getHostAddress(),
 java.net.InetAddress.
 getLocalHost().getHostName());

 Element sa = AssertionSigner.sign(aa, "CodeShare.db",
 "CodeShare", "CodeShare", "CodeShare");
 return sa;
 }
 }
 return null;
 }

}

Example C-41. Authentication Service Deployment Descriptor
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:CodeShareService-ClientService">
 <isd:provider type="java"
 scope="Application"
 methods="register login">
 <isd:java class="codeshare.AuthenticationService"/>
 </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener
 </isd:faultListener>
</isd:service>

Example C-42. VerificationService.java
package codeshare;

import org.w3c.dom.Element;
import com.ibm.xml.dsig.*;
import java.security.Key;

public class VerificationService {

 public static boolean isValid(Element signature) throws Exception {

 Key key = null;
 Element keyInfoElement = KeyInfo.searchForKeyInfo(signature);
 if (keyInfoElement != null) {
 KeyInfo keyInfo = new KeyInfo(keyInfoElement);
 key = keyInfo.getKeyValue();
 }
 SignatureContext context = new SignatureContext();
 Validity validity = context.verify(signature, key);
 return validity.getCoreValidity();
 }

}

Example C-43. Verification Service Deployment Descriptor
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:CodeShareService-Verification">
 <isd:provider type="java"
 scope="Application"
 methods="verify">
 <isd:java class="codeshare.VerificationService"/>
 </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener
 </isd:faultListener>
</isd:service>

Example C-44. MasterIndexService.java
package codeshare;

import org.w3c.dom.Element;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;
import saml.*;

/**
 * Master Index Service
 */

public class MasterIndexService {

 private static String owners = "owners.xml";
 private static Document doc;
 static {
 doc = XMLUtil.get(owners);
 if (doc == null) {
 doc = SAMLUtil.newDocument();
 Element u = doc.createElement("owners");
 doc.appendChild(u);
 XMLUtil.put(owners, doc);
 }
 }

 public static boolean register(String ownerid, String password, String url) {
 Element e = doc.getDocumentElement();
 NodeList nl = e.getElementsByTagName("owner");
 for (int n = 0; n < nl.getLength(); n++) {
 Element ex = (Element)nl.item(n);
 if (ex.getAttribute("id").equals(ownerid)) {
 throw new IllegalArgumentException("An owner with that ID already exists!");
 }
 }
 Element u = doc.createElement("owner");
 u.setAttribute("id", ownerid);
 u.setAttribute("password", password);
 u.setAttribute("url", url);
 e.appendChild(u);
 XMLUtil.put(owners, doc);
 return true;
 }

 public static boolean login(String ownerid, String password, Element index) {
 Element el = doc.getDocumentElement();
 NodeList nl = el.getElementsByTagName("owner");
 for (int n = 0; n < nl.getLength(); n++) {
 Element e = (Element)nl.item(n);
 if (e.getAttribute("id").equals(ownerid) &&
 e.getAttribute("password").equals(password)) {
 Element i = (Element)doc.importNode(index, true);
 NodeList c = e.getElementsByTagName("index");
 if (c.getLength() > 0) {
 Node node = c.item(1);
 e.replaceChild(node, i);
 } else {
 e.appendChild(i);
 }
 XMLUtil.put(owners, doc);
 return true;
 }
 }
 return false;
 }

 public static boolean update(String ownerid, String password,
 Element index) {
 Element el = doc.getDocumentElement();
 NodeList nl = el.getElementsByTagName("owner");
 for (int n = 0; n < nl.getLength(); n++) {
 Element e = (Element)nl.item(n);
 if (e.getAttribute("id").equals(ownerid) &&
 e.getAttribute("password").equals(password)) {
 Element i = (Element)doc.importNode(index, true);
 NodeList c = e.getElementsByTagName("index");
 if (c.getLength() > 0) {
 Node node = c.item(1);
 e.replaceChild(node, i);
 } else {
 e.appendChild(i);
 }
 XMLUtil.put(owners, doc);
 return true;
 }
 }
 return false;
 }

}

Example C-45. Master Index Service Deployment Descriptor
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:CodeShareService-MasterIndex">
 <isd:provider type="java"
 scope="Application"
 methods="register update">
 <isd:java class="codeshare.IndexService"/>
 </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener
 </isd:faultListener>
</isd:service>

Example C-46. OwnerService.java
package codeshare;

import org.apache.regexp.RE;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
import saml.SAMLUtil;

public class OwnerService {
 private static String index = "index.xml";
 private static org.w3c.dom.Document doc;
 static {
 doc = XMLUtil.get(index);
 if (doc == null)
 {
 doc = SAMLUtil.newDocument();
 Element e = doc.createElement("index");
 doc.appendChild(e);
 XMLUtil.put(index, doc);
 }
 }

 public org.w3c.dom.Element search(String p1) {
 return search(p1, "dc:Title");
 }

 public Element search(String p1, String p2)
 {
 Element e = doc.getDocumentElement();
 NodeList nl = e.getElementsByTagName(p2);

 Document d = SAMLUtil.newDocument();
 Element list = doc.createElement("list");
 d.appendChild(list);

 for (int n = 0; n < nl.getLength(); n++)
 {
 Element next = (Element)nl.item(n);
 try
 {
 RE targetRE = new RE(p1);
 if (targetRE.match(SAMLUtil.getInnerText(next.getText())))
 {
 Element item = (Element)d.importNode(next);
 list.appendChild(item);
 }
 }
 catch (Exception exc) {}
 }
 return list;
 }

 public Element list(String p1)
 {
 return search(p1, "dc:Title");
 }

 public Element list(String p1, String p2)
 {
 Element e = doc.getDocumentElement();
 NodeList nl = e.getElementsByTagName(p2);

 Document d = SAMLUtil.newDocument();
 Element list = doc.createElement("list");
 d.appendChild(list);

 for (int n = 0; n < nl.getLength(); n++)
 {
 Element next = (Element)nl.item(n);
 try
 {
 RE targetRE = new RE(p1);
 if (targetRE.match(SAMLUtil.getInnerText(next.getText())))
 {
 Element item = (Element)d.importNode(next);
 list.appendChild(item);
 }
 }
 catch (Exception exc) {}
 }
 return list;
 }

 public Element info(String p1) {
 throw new IllegalArgumentException("Not Implemented");
 }

 public Element get(String p1) {
 throw new IllegalArgumentException("Not Implemented");
 }
}

Example C-47. Owner Service Deployment Descriptor
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
 id="urn:CodeShareService-OwnerService">
 <isd:provider type="java"
 scope="Application"
 methods="list search">
 <isd:java class="codeshare.OwnerService"/>
 </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener
 </isd:faultListener>
</isd:service>

Example C-48. XMLUtil.java
package codeshare;

import java.io.FileWriter;
import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.apache.xml.serialize.*;

public class XMLUtil {

 public static Document get(String path) {
 try {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(false);
 dbf.setNamespaceAware(true);
 DocumentBuilder db = dbf.newDocumentBuilder();
 return db.parse(path);
 } catch (Exception e) {
 return null;
 }
 }

 public synchronized static boolean put(String path, Document doc) {
 try {
 FileWriter fw = new FileWriter(path);
 OutputFormat of = new OutputFormat();
 of.setIndenting(true);
 XMLSerializer x = new XMLSerializer(fw, of);
 x.serialize(doc);
 fw.close();
 return true;
 } catch (Exception e) {
 return false;
 }
 }

}

Example C-49. Codeshare/Owner.pm
package CodeShare::Owner;

use strict;

my $index; # parsed index file
my $DC_NS = "http://purl.org/dc/elements/1.1/"; # Dublin Code namespace
my @ELEMENTS = qw(Title Creator Date Subject Description);

sub init {
 my($class, $root) = @_;
 open(F, $root) or die "$root: $!\n";
 $index = SOAP::Custom::XML::Deserializer->deserialize(join '', <F>)->root;
 close(F) or die "$root: $!\n";
}

sub traverse {
 my($self, %params) = @_;

 my $start = $params{start};

 my $type = $start->SOAP::Data::name; # file|project|directory
 my $location = ref $start->location ? $start->location->value : '';

 # path to current structure. Empty for projects
 my $path = $type eq 'directory' ||
 $type eq 'file' ? join('/', $params{path} || (), $location) : '';
 my $prefix = $type eq 'project' ? $location : $params{prefix} || '';
 my $fullpath = join '/', $prefix, $path; # full path. Used to GET files

 my $where = $params{where};
 my $matched =
 $params{get} && $params{matched} ||
 $params{what} &&
 # check only subelements in Dublin Core namespace
 $start->$where() =~ /$params{what}/ && $start->$where()->uri eq $DC_NS;

 return
 # current element
 ($matched
 ? +{ type => $type,
 path => $path,
 ($params{get} ? (fullpath => $fullpath) : ()),
 map { ref $start->$_() ? ($_ => $start->$_()->value) : ()
 } @ELEMENTS
 }
 : ()
),

 # and everything below
 map { $self->traverse(start => $_, where => $where, what => $params{what},
 path => $path, prefix => $prefix,
 get => ($params{get} || 0), matched => $matched) }
 $start->project, $start->directory, ($type eq 'file' ? () : $start->file)
 ;
}

sub list {

 print("\nHandling a list request...");

 my($self, $what) = @_;

 [map { my $e = $_; +{ map {$_ => $e->{$_}} qw(type path Title file fullpath) } }
 $self->traverse(start => $index, where => 'Title', what => $what, get => 1)
];
}

sub get {

 print("\nHandling a get request...");

 my $results = shift->list(@_);

 [map { $_->{type} eq 'file' && open(F, delete $_->{fullpath})
 ? ($_->{file} = join('', <F>), close F) : (); $_ }
 @$results
];
}

sub search { # same as info(), but returns only 'type', 'path' and 'Title'

 print("\nHandling a search request...");

 my $results = shift->info(@_);

 [map { my $e = $_; +{ map {$_ => $e->{$_}} qw(type path Title) } }
 @$results
];
}

sub info {

 print("\nHandling an info request...");

 my($self, $what, $where) = @_;

 [$self->traverse(start => $index,
 where => $where || 'Title', what => $what || '.')
];
}

1;

Example C-50. Codeshare.pl (standalone HTTP Daemon)
#!perl -w
#!d:\perl\bin\perl.exe

use SOAP::Transport::HTTP;
use CodeShare::Owner;

print "\n\nWelcome to CodeShare! The Open source code sharing network!";
print "\nCopyright(c) 2001, James Snell, Pavel Kulchenko, Doug Tidwell\n\n";

CodeShare::Owner->init(shift or die "Usage: $0 <path/to/index.xml>\n");

my $daemon = SOAP::Transport::HTTP::Daemon
 -> new (LocalPort => 8080)
 -> dispatch_to('CodeShare::Owner::(?:get|search|info|list)')
;
print "CodeShare Owner Server started at ", $daemon->url, "\n";
print "Waiting for a request...\n";
$daemon->handle;

Example C-51. Codeshare.cgi (alternative to standalone HTTP daemon)
#!/usr/bin/env perl
-- Copyright (C) 2001 Pavel Kulchenko --

use strict;
use SOAP::Transport::HTTP;
use CodeShare::Owner;

CodeShare::Owner->init('../Projects/index.xml');

my $daemon = SOAP::Transport::HTTP::CGI
 -> dispatch_to('CodeShare::Owner::(?:get|search|info|list)')
 -> handle;
;

Example C-52. Startserver.bat
@echo off

start "CodeShare Owner Server" perl cs_server.pl ..\Projects\index.xml

Example C-53. Startserver.sh
perl cs_server.pl ../Projects/index.xml

Example C-54. Codeshare_client.pl
#!/bin/env perl
#!d:\perl\bin\perl.exe

use strict;
use SOAP::Lite;
use File::Path;

print "\n\nWelcome to CodeShare! The Open source code sharing network!";
print "\nCopyright(c) 2001, James Snell, Pavel Kulchenko, Doug Tidwell\n\n";

@ARGV or die "Usage: $0 CodeShareServer [commands...] [-dump [filename]] \n";
my $proxy = shift;
my $uri = 'http://namespaces.soaplite.com/CodeShare/Owner';
my $soap = SOAP::Lite->proxy($proxy)->uri($uri)->on_fault(sub{});

my($dump, $file) = @ARGV > 0 && @ARGV[-1] eq '-dump' ? splice(@ARGV, -1, 1) :
 @ARGV > 1 && @ARGV[-2] eq '-dump' ? splice(@ARGV, -2, 2) :
 (undef, undef);
if ($dump) {
 print STDERR "Wiredumps are logged in '$file'\n" if $file;
 $file ||= '&STDOUT'; # STDOUT by default
 open(F, ">>$file") or die "$file: $!\n"; # open in append mode
 select((select(F), $|=1)[0]); # select non-buffered output
 $soap->on_debug(sub{print F @_}); # debug goes there
 eval "END { close F }"; # close handle when we are done
}

print STDERR "Usage: { search | info | get | list | quit | help } [parameters...]\n> ";

while (defined($_ = shift || <>)) {
 next unless /\w/;
 my($method, $modifier, $parameters) = m!^\s*(\w+)(?:\s*/(\w*)\s)?\s*(.*)!;

 last if $method =~ /^q(?:uit)?$/i;
 help(), next if $method =~ /^h(?:elp)?$/i;

 my $res = eval "\$soap->$method('$parameters', '$modifier')";

 # check for errors
 $@ and print(STDERR join "\n", $@, ''), next;
 defined($res) && $res->fault and print(STDERR join "\n", $res->faultstring, ''), next;
 !$soap->transport->is_success and print(STDERR join "\n", $soap->transport->status, ''), next;

 # check for result
 my @result = @{$res->result} or print(STDERR "No matches\n"), next;

 foreach (@result) {
 print(STDERR "$_->{type}: @{[join ', ', $_->{Title} || (), $_->{path} || ()]}\n");
 if ($method eq 'get') {
 if ($_->{type} eq 'directory') { File::Path::mkpath($_->{path}) }
 if ($_->{type} eq 'file') {
 open(F, '>'. $_->{path}) or warn "$_->{path}: $!\n";
 print F $_->{file};
 close(F) or warn "$_->{path}: $!\n";
 }
 } elsif ($method eq 'info') {
 foreach my $key (grep {$_ !~ /^(?:type|path)/} keys %$_) {
 print " $key: $_->{$key}\n";
 }
 }
 }
} continue {
 print STDERR "\n> ";
}

sub help {
 print "Short help about search, info, get and list commands is here\n";
}

Colophon
Our look is the result of reader comments, our own
experimentation, and feedback from distribution channels. Distinctive
covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.
The animal on the cover of Programming Web Services with SOAP is
a sea sponge. There are thousands of species of sponge (Phylum
Porifera). Sponges are simple, multicellular animals that feed and
breathe by filtering water. They are covered with tiny pores called
ostia, which lead to an internal system of canals coated with sticky
cells called choanocytes, or collar cells. These cells facilitate
water through the canals with constantly moving flagella, picking up
oxygen and pieces of food, and carrying out carbon dioxide and
waste. The water passes out of the sponge through larger pores called
oscula.
Free-standing and encrusting sea sponges live at the bottom of
the ocean, in deep and shallow waters. Free-standing sponges can grow
to gigantic sizes, and crab, shrimp, sea slugs, and starfish are often
found living inside. Encrusting sponges attach themselves to rocks,
shells, wood, and kelp. Some sponges produce toxic chemicals, possibly
to give them a bad taste to predators. Other sponges have sharp,
prickly spines as their only defense.
Colleen Gorman was the production editor and copyeditor for
Programming Web Services with SOAP. Linley Dolby and Matt Hutchinson
provided quality control. Phil Dangler and Camilla Ammirati provided
production support. John Bickelhaupt wrote the index.
Ellie Volckhausen designed the cover of this book, based on a
series design by Edie Freedman. The cover image is an original
illustration created by Susan Hart. Emma Colby produced the cover
layout with Quark™XPress 4.1 using Adobe's ITC Garamond
font.
Melanie Wang designed the interior layout, based on a series design by David Futato. Neil Walls converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike Sierra. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by Colleen Gorman.

OEBPS/tagoreillycom20070302oreillyimages149334.png.jpg
@ subt dialysigned puchos e
Pucasing S
e

P tepurtase e €)

@ i et

Stue
valdation

OEBPS/tagoreillycom20070302oreillyimages149387.png.jpg
v

OEBPS/tagoreillycom20070302oreillyimages149369.png
e
B fk yow Foore> Gogo-[o -
s [s oo oot g5l 5

soAp. - |

The following is sample SOAP request and response. The
placehaiders shown nsed to be repiaced with actal valses.

POST /helloworld. asmx HTTP/1.1
Host: localbost

Contenc-Type: text/xm
Contenc-length: Lengtn
SORPACC i0ns "urn: Example1/sagHello”

charseteur-s

<7xm1 version="1.0" encoding=rucz-77>
+Envelope wmins:xei=rhecp://wu.u3 . ore/ 2001/

wen: Exanp le1>
<nane>string</ nane>
</saztelio>
</soap:sody>
</soap:avelope>

@lows © Trustod skos

OEBPS/tagoreillycom20070302oreillyimages149405.png
Datatypes
<wsdypes’>
Messages
<usdimessagel>
Interfaces
<usdporTpel>
Senices

<sindng’>
R

OEBPS/tagoreillycom20070302oreillyimages149326.png
‘SOAP emveloge

SO header

Header bk

Header bk

SOAPbody

Mesagebody

OEBPS/tagoreillycom20070302oreillyimages149454.png.jpg
=loix

e EAU Boet 4 DD/Sdens Stemadesn AL Documert o Convert

Tt Yew owser Tk Wrdow Heb Lax
DEe? U@ S| tRR »~ Wéds Y BB
e ommia———-
W
e Nl ——r
= = g

i
Facets e x
e <8

. Spy v8.1 U [i

OEBPS/tagoreillycom20070302oreillyimages149294.png.jpg
Webservice

OEBPS/tagoreillycom20090112oreillyimages239126.jpg
Building Distributed Applications

Progmmming Web Services with

James Snell,
Doug Tidwell

O RE'LLY® b \1) & Pavel Kulchenko

OEBPS/tagoreillycom20070302oreillyimages149302.png
Ayt ot

Web application server

-

[—

OEBPS/tagoreillycom20070302oreillyimages149429.png

OEBPS/tagoreillycom20070302oreillyimages149381.png.jpg
=glxl
C Ga-r___»- K@l

autfg"
<string srlne=" e

[ioes D O

OEBPS/tagoreillycom20070302oreillyimages149314.png
Application 1

s
ik I

OEBPS/tagoreillycom20070302oreillyimages149318.png.jpg

OEBPS/tagoreillycom20070302oreillyimages149306.png.jpg
sevie
gty

-

senie senice
P o anumer

OEBPS/tagoreillycom20070302oreillyimages149445.png
o o CodeShare! The Open source code sharing netiark!
oy rantCe) 2001, Sames SneiT, Paud Kalchenka, Doup Tidwel]

search | info | get | Tist | quit | help) [parameters....]

OEBPS/tagoreillycom20070302oreillyimages149330.png
requestmessage
sonpctee soapsener

responsemessage

OEBPS/tagoreillycom20070302oreillyimages149357.png
G 3 ®

NET intemediate compiler

NET managed runtime

Gatbagecolction
Resoute nanagement
Vi service suppor. et

OEBPS/tagoreillycom20070302oreillyimages149346.png
Deployment descaiptor
N
<>

<f>

r—

Apacesoi?

OEBPS/tagoreillycom20070302oreillyimages149399.png
=101
BT e e - |
Adess [g focshostbelowor osmrwsol =]

encoding="utr-g" 7>

<dofnition

tsatianespaco- urniExamplo1”

‘sayHelloSoapin

‘sayHelloHttppostin’-
<m SayHelloHttpPostout”
“pertTyoe o= Example1Soap'
“operation name'sayHello ™

<input

25="s0:sayHelloSoapln' /-

e sisavHBlinSAARONY” /-
‘

Ejooe © Tnstedstes Y

OEBPS/tagoreillycom20070302oreillyimages149322.png
Appcten L mesage topiaon

OEBPS/tagoreillycom20070302oreillyimages149411.png

OEBPS/tagoreillycom20070302oreillyimages149423.png
s

s ldatonand dubectionand
nsemangeme, ity

st e
el Sexchngand Okt
retrising ode

OEBPS/tagoreillycom20070302oreillyimages149342.png
code

SOAP server 'WTTP dacmen

OEBPS/tagoreillycom20070302oreillyimages149441.png
Lcone o CodeShare! The Open sourco code sharing netuork!
opuriaht o> 2081 Janes Smell. Paul Kalchenko, Dous Tidvell

odeShare Ouner Server started at htp://dianond:8890,

iting for & request.

OEBPS/tagoreillycom20070302oreillyimages149363.png.jpg
The following operations are supperted. For a formal definton,
Plasea review he Seruice Descrption

OEBPS/tagoreillycom20070302oreillyimages149375.png
o £ Yow Foutes» Coogos[¥
T T T ——
sayHello

o tast, lck the ‘Tnvake’ button,

parameter Value

B T —

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/tagoreillycom20070302oreillyimages149310.png
Discorery
Descipion
Padaing
Tansport
Hework

OEBPS/tagoreillycom20070302oreillyimages149298.png
Ayt Appcatn dest
platon code

Pottom anslrguge
spe amminiarin

Patomandingoge
aosiconmncaion

OEBPS/tagoreillycom20070302oreillyimages149417.png.jpg
D

'unm

OEBPS/tagoreillycom20070302oreillyimages149393.png
ictions: register | Togin | post | remove | browse
[ieatn

hat 35 your user id: Janes

at 35 your passord: 4sjdskio

OEBPS/tagoreillycom20070302oreillyimages149435.png
"

4

nmmmmmmm

Oty St et

OEBPS/tagoreillycom20070302oreillyimages149338.png.jpg
HITP dient

OEBPS/tagoreillycom20070302oreillyimages149450.png
17 Riindnanpe oty

ey
T I —— E— — ——
avaton [terme | [e | e | [stttont | [ver [oMo] [t [
T T | —— | — 1
ok [ty | [e [| [oute] [y] avame [raon
sing vl
somalsiing neger
— T —
en e | E | e
Tonguage | [hame | [Toren] - [resatenee |] [snsneton | [pstvereger
Wane | [Wers st | [amsped
o] o] [orme e[t
Torrs | [gy
G ety
Deivinpintiepes daityis
Dtivinseiedops -~ - ~ - ~ dovettytmsonarsticion

Demerspes

OEBPS/tagoreillycom20070302oreillyimages149351.png
IS5 1P 1unnel Monitor: Tunneling localhost:8080 to localhost

From localhost:0080

CIE
from ocamostso

POST /soapiservebmpcrouter TP 1
Host lcalnost 6080

(Connecton Keep-Alte

S08PActon

< Enveiope
NG 5=t schemas xnisoap 0rs0aD
IS X" w3 0101 999PHLSC
nstance”

sminsox
< Body
<msayHelo xmin m=un Ecample! >

K —

[Pt 20008

3 0101 99PN

(Cortent Type:totr
(Cortent Lengtn: 245

<sEmeiope
“aring =" 3 rg200106fs030-¢
IS XSO M 301G/ 9BSHLSCH
nétance
i " o 0101 993MLSCI
<30y
“nsaelloResponse xmins:
<rotun sitype=sd sing'>

K —

m Exam

o

Ustening for connactions on port 5050

