o/

Practical Transformation
Using XSLT and XPath
(XSL Transformationsand
the XML Path Language)

Crane Softwrights Ltd.
http://www.CraneSoftwrights.com

+/[ISBN 1-894049::CSL::Courses::PTUX//DOCUMENT Practical Transformation Using XSLT and XPath 2004-02-03 23:50UTC//EN
Eleventh Edition - 2004-02-03 http://www.CraneSoftwrights.com
ISBN 1-894049-12-8 Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
’\v‘l/

Practical Transformation
Using XSLT and XPath
(XSL Transformations and
the XML Path Language)

Crane Softwrights Ltd.

http://www.CraneSoftwrights.com
Copyrights

- Pursuantttntt p: / / www. W3. or g/ Consorti uni Legal /i pr-notice. ht m , some information included in this
publication is from copyrighted material from the World Wide Web Consortium as described in
http://ww. w3. or g/ Consortiuni Legal / copyri ght - docunment.s. ht m : Copyright (C) 1995-2004 World
Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved. The status and titles of the documents referenced are listed in th
body of this work where first used.

- Other original material herein is copyright (C) 1998-2004 Crane Softwrights Ltd. This is commercial material and may
not be copied or distributed by any means whatsoever without the expressed permission of Crane Softwrights Ltd.

Disclaimer

- By purchasing and/or using any product from Crane Softwrights Ltd. ("Crane"), the product user ("reader") understan
that this product may contain errors and/or other inaccuracies that may result in a failure to use the product itself or o
software claiming to utilize any proposed or finalized standards or recommendations referenced therein. Consequent
is provided "AS IS" and Crane disclaims any warranty, conditions, or liability obligations to the reader of any kind. The
reader understands and agrees that Crane does not make any express, implied, or statutory warranty or condition of
kind for the product including, but not limited to, any warranty or condition with regard to satisfactory quality, merchantak
quality, merchantability or fithess for any particular purpose, or such arising by law, statute, usage of trade, course of
dealing or otherwise. In no event will Crane be liable for (a) punitive or aggravated damages; (b) any direct or indirec
damages, including any lost profits, lost savings, damaged data or other commercial or economic loss, or any other incid
or consequential damages even if Crane or any of its representatives have been advised of the possibility of such dar
or they are foreseeable; or (c) for any claim of any kind by any other party. Reader acknowledges and agrees that they
the entire risk as to the ‘quality of the product.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 1 of 148

http://www.w3.org/Consortium/Legal/ipr-notice.html
http://www.w3.org/Consortium/Legal/copyright-documents.html

Practical Transformation Using XSLT and XPath

Practical Transformation Using XSLT and XPath /
(Prelude) (cont.) ’\v‘[

Preface
The main content of this book is in an unconventional style primarily in-bulleted form

derivations of the book are used for instructor-led training, requiring the succinct
presentation

- note the exercises included in instructor-led training sessions are not included in

the book

derivations of the book can be licensed and branded for customer use in delivering
training
the objective of this style is to convey the essence and details desired in a compact, easil
perused form, thereby reducing the search for key words and phrases in lengthy
paragraphs
each chapter of the book corresponds to a module of the training
each page of the book corresponds to a frame presented in the training
a summary of subsections and their pages is at the back of the book

Much of the content is hyperlinked both internally and externally to the book in the 1-up
full-page sized electronic renditions:

(note the Acrobat Reader "back" keystroke sequence is "Ctrl-Left")

page references (e.g.: Chapter 2 Getting started with XSLT and XPath (page 37))
external references (e.¢t:t p: / / www. w3: or g/ TR/ 1999/ REGC- xsl t - 19991116)

chapter references in book summary

section references in chapter summary

subsection references in table of contents at the back of the book

hyperlinks are not present in the cut, stacked, half-page, or 2-up renditions of the materia

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Page 2 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.w3.org/TR/1999/REC-xslt-19991116

Practical Transformation Using XSLT and XPath

Practical Transformation Using XSLT and XPath /

s

- Introduction - Transforming structured information

- Chapter 1 - The context of XSL Transformations and the XML Path Language
- Chapter 2 - Getting started with XSLT and XPath

- Chapter 3 - XPath data model

- Chapter 4 - XSLT processing model

- Chapter 5 - The XSLT transformation environment

- Chapter 6 - XSLT stylesheet management

- Chapter 7 - XSLT process control and result tree instructions

- Chapter 8 - XPath and XSLT expressions and advanced techniques
- Chapter 9 - Sorting and grouping

- Annex A - XML to HTML transformation

- Annex B - XSL formatting semantics introduction

- Annex C - Instruction, function and grammar summaries

- Annex D - Sample tool information

- Conclusion - Where to go from here?

Series: Practical Transformation Using XSLT and XPath
Reference: PTUX
Pre-requisites:
- knowledge of XML syntax
- knowledge of HTML
Outcomes:

- awareness of documentation

- introduction to objectives and purpose

- exposure to example scripts

- understanding of processing model and data model

- basic XSLT script writing for transformation

- an overview of every element and function in the recommendations
- introduction to XSL formatting semantics

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 3 of 148

Practical Transformation Using XSLT and XPath

Transforming structured information /
Introduction - Practical Transformation Using XSLT and XPath }\ & (
L/

This book is oriented to the stylesheet writer, not the processor implementer

- certain behaviors important to an implementer are not included
- objective to help a stylesheet writer understand the language facilities needed to solve
their problem
- a language reference arranged thematically to assist comprehension
- a different arrangement than the Recommendations themselves

First two modules are introductory in nature

- overview of context of XSLT and XPath amongst other members of the XML family
of Recommendations

- basic flow diagrams illustrate use of XSLT

- basic terminology and approaches are defined and explained

Third and fourth modules cover essential bases of understanding

- data model and processing model for document representation and behavior
- important to understand the models in order to apply the language features

Fifth through ninth modules address XSLT vocabulary

- every element, attribute and function not already covered when describing the models
- no particular order of the modules, but example code only uses constructs already
introduced in earlier content

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 4 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Transforming structured information (cont.) /
Introduction - Practical Transformation Using XSLT and XPath }\m(

First two annexes overview HTML and XSL-FO as related to using XSLT
- considerations of using XSLT features to address basic result vocabulary requireme
Third annex includes a number of handy summaries derived from the Recommendations

- alphabetical lists of elements and functions
- print-oriented summaries of all productions

Last annex addresses questions regarding tools

- lists of questions for processor implementers when assessing tool capabilities
- detailed XT documentation illustrating a real-world use of extension facilities
- summary example invocation information for XT, Saxon, Xalan and MSXML

External ZIP file included with the purchase of the book

- all of the complete scripts utilized in the documentation as stand-alone files ready fc
analysis and/or modification
- sample invocation scripts for Windows environments

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 5 of 148

Practical Transformation Using XSLT and XPath

Chapter 1 - The context of XSL Transformations /
and the XML Path Language ’\v‘[

- Introduction - Overview
- Section 1 - The XML family of Recommendations
- Section 2 - Transformation data flows

Outcomes:

- an understanding of the roles of and relationships between the members of the XML
family of Recommendations (related to XSLT and XPath)

- an awareness of available documentation and a small subset of publicly available
resources

- an understanding of the data flows possible when using XSLT in different contexts and
scenarios

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 6 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Overview /

Chapter 1 - The context of XSL Transformations and the XML Path Language }\WA‘

This chapter reviews the roles of the following Recommendations in the XML family and
overviews contexts in which XSLT and XPath are used.

Extensible Markup Language (XML)

- hierarchically describes an instance of information
- using embedded markup according to rules specified in the Recommendation
- according to a vocabulary (a set of element types each with a name, a structur
and optionally some attributes) described by the user
- optionally specifies a mechanism for the formal definition of a vocabulary
- controls the instantiation of new information
- validates existing information

XML Path Language (XPath)
- the document component addressing basis for XSLT and XPointer
Extensible Stylesheet Language Family (XSLT/XSL/XSL-FO)

- XSL Transformations (XSLT)

- specifies the transformation of XML-encoded information into a hierarchy using
the same or a different document maak@iarily for the kinds of transformations
for use with XSL

- XSL (Formatting Semantics, a.k.a. XSL-FO)

- specifies the vocabulary and semantics of the formatting of information for
paginated presentation

- colloquially referred to at times as XSL Formatting Objects

Namespaces
- disambiguates vocabularies when mixing information from different sources

Stylesheet Association

- names resources as candidates to be utilized as a stylesheet
- does not maodify the structural markup of the data
- used to specify the rendering of an instance of information

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 7 of 148

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
L/

Section 1 - The XML family of Recommendations

- http://ww. w3. or g/ TR/ REC- xmi
A Recommendation fulfilling two objectives for information representation:

- capturing information in hierarchical markup according to XML-defined constraints
- restricting and/or validating hierarchical markup according to user-specified constraints

XML defines basic constraints on physical and logical hierarchies

- the concept of well-formedness with a syntax for markup languages

- the vocabulary and hierarchy of constructs in an instance of informatmnoplisit
according to the specified rules governing syntactic structures
- alanguage for specifying how a system can constrain the allowed logical hierarchy of
information structures

- the semantics of the user's vocabulary are not formally defined using XML constructs
- can be described in XML comments using natural language
- are defined by the applications acting on the information

Physical hierarchy:

- single collection of information ("XML instance") from multiple physical resources
("XML entities")
- an XML file is not required to be comprised of more than one physical entity
- physical modularization typically used for larger information sets
- inappropriately used for XML fragment sharing due to parsing context
- resource is nested syntactically using XML external parsed general entity construct
- each physical resource has a well-formed logical hierarchy
- unparsed data entities in a declared notation are outside of the parsed hierarchy

Files:
adir/a.xml - sd;
adir/c.xml > bxm —pd.xml
adir/x.gif
bdir/b.xml &b;

se;
bdir/e.xml ©
bdir/ddir/d.xml | xml oxml
a.xm

. &cC

a.xml:

<!ENTITY SYSTEM "../bdir/b.xml">

b
<!ENTITY c SYSTEM "c.xml"> Lentonym ent=tx"
<!ENTITY d SYSTEM "../bdir/ddir/d.xml">
<!ENTITY e SYSTEM "../bdir/e.xml">
<!NOTATION gif-file SYSTEM "gif-uri">
<!ENTITY x SYSTEM "x.gif" NDATA gif-file>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 8 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.w3.org/TR/REC-xml

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.) /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\m(

Section 1 - The XML family of Recommendations

Logical hierarchy:

- single collection of information ("XML instance") comprised of multiple constructs
("XML elements, attributes, text, etc.")

- each piece is expressed using an XML construct at a user-defined granularity
- the breakdown of the information is hierarchical

0 <?xm version="1.0"?>

02 <pur chase>

s <custoner db="cust123"/>

0« <product db="prod345">

05 <anount >23. 45</ anount >

s </ product >

oz </ pur chase>

The implicit document model exists by the mere presence of logical hierarchy

- the markup of the XML constructs demarcates the locations of the information in the
hierarchy
- data model is comprised of family-tree-like relationships of parent, child, sibling, etc

(XML instance)
purchase
customer » db product » db
amount

(text)

The physical hierarchy does not affect the logical hierarchy

- the syntactic boundaries of the physical hierarchy is not reflected in the information
model of an XML document

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 9 of 148

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.) /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\m(

Section 1 - The XML family of Recommendations

XML allows user constraints on the logical hierarchy

defines the concept of validity with a syntax for a meta-markup language
Document Type Definition (DTD) describes the document model as a structural schema
- the vocabulary and hierarchy of constructs of informati@xmicit according to
user-specified rules governing the logical structure
other structural and content schema languages exist for XML
- validation constraints extend to values found within.the document content in the
document structure
- different approaches to describing models provide different benefits
constrains during generation and confirms during processing
does not convey semantics of information being marked up

o1 <?xm version="1.0"?>

02 <! DOCTYPE purchase |

03 <! ELEMENT purchase (customer, product+)>
o« <! ELEMENT cust oner EMPTY>

os < ATTLI ST custonmer db CDATA #REQUI RED>

os <! ELEMENT product (amount)>

o <! ATTLI ST product db CDATA #REQUI RED>

s <! ELEMENT anount (#PCDATA) >

oo <! ATTLI ST anount currency (GBP| CAD| UsSD) "UsD'>]>
10 <pur chase>

n <customer db="cust123"/>

12 <product db="prod345">

13 <anount >23. 45</ anount >

12 </ product >

15 </ pur chase>

The DTD can supplement the data model with additional information:

(XML instance)
purchase

customer » db product » db

amount » currency

(text)

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 10 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.) /

Chapter 1 - The context of XSL Transformations and the XML Path Language }\ &
Section 1 - The XML family of Recommendations M

Only declarations affecting the information set of the instance are significant to styleshee
processing that is focused on the implicit logical model of the instance:

- some attribute declarations in DTD are significant
- attribute list declarations impact stylesheet processing by modifying the informatic
set of the instance
- supply of defaulted attribute values for attributes not specified in start tags
of elements
- declaration of D-typed attributes (for D/l DREF processing) that confer
element identification uniqueness in an instance
- attribute information does not affect the well-formed nature of an XML
instance
- all content model declarations are not significant
- what the logical model could contain does not affect what the actual logical mod
does contain

No respect of element content white space implied by the content models

a content model is defined as either element content (a content model wHbDDATA)
or mixed content (a content model WitPCDATA)
the term "element content white space" is defined in
http: // www. W3. or g/ TR/ xml - i nf oset
- sometimes colloquially termed elsewhere as "ignorable white space"”
all white space is significant to an XSLT processor
some recognition of white space can be influenced by the XSLT stylesheet

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 11 of 148

http://www.w3.org/TR/xml-infoset

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.) /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\m(

Section 1 - The XML family of Recommendations

XML 1.0 Recommendation describes behavior

- required of an XML processor
- how it must process an XML stream and identify constituent data

- the information it must provide to an application
- note that programming interfaces that have been standardized are separate initiatives

and arenot defined by the XML Recommendation
- tree-oriented paradigm using DOM (Document Object Model)
- stream-oriented paradigm using SAX (Simple APl for XML)

No rendition or transformation concepts or constructs

- information representation only, not information presentation or processing

- XML only unambiguously identifies constituent parts of a stream of hierarchical
information

- no inherent meanings or semantics of any kind associated with element types

- no defined controls for implying rendering semantics

- thexni : space attribute signals whether white space in content is significant to the data

definition

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 12 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XML information links

Section 1 - The XML family of Recommendations

Chapter 1 - The context of XSL Transformations and the XML Path Language }\WA‘/

Links to useful information

ht t p:
htt p:
htt p:
ht t p:
ht t p:
ht t p:
ht t p:
htt p:
htt p:

/I waw. xnl . comf axm / axnl . ht M - annotated version

/1 xm . cover pages. or g/ xnm . ht i - Robin Cover's famous resource collection
/1 xm . cover pages. org/ xl | . ht i - Extensible Linking Language

/1 www. ucc. i e/ xm / - Peter Flynn FAQ

/ I www. xml books. com’ - a summary of available printed books

/I waww. Cr aneSof t wri ghts. coni | i nks/ trn-20040203. ht m- training material

/ I www. Cr aneSof t wri ght's. conml r esour ces - free resources

/1 XMLQui | d. i nf o - consulting and training expertise

/1 xm . cover pages. or g/ el enent sAndAttrs. ht i - a summary of opinions

Related initiatives

ht t p:
ht t p:

/1 www. w3. or g/ TR/ xm schema- 0/ - W3C XML Schema
/ I www. oasi s- open. or g/ conmi tt ees/ rel ax- ng/ - RELAX NG (based on

RELAX and TREX)

http:
htt p:
ht t p:

/I www. ascc. net / xnml / schemat r on/ - Schematron
/ | www. W3. or g/ TR/ DOM Level -2/ = Document Object Model Level 2
/ I www. saxpr oj ect . org - Simple API for XML

Examples of processors

ht t p:
ht t p:
htt p:
htt p:
htt p:
ht t p:

/1 ww. j cl ark. com’ xnl / xpl- = XP (Java)

/I xm . apache. or g/ - Xerces (Java, C++ and Perl Interfaces)

/ 1 ww. xm soft. org - XML for Ghome

/I waw. t ext ual i ty. conf Lark/ - Lark (Java)

//ww. | tg.ed.ac. uk/software/ xm / - LT XML

[/ medn. m crosoft.com downl oads/ webt echnol ogy/ xm / mexmnl . asp -

Microsoft

ht t p:
htt p:

/ I ww. a- dos. com- XML processor and associated tools
/1 www. xml sof twar e.con - list of tools

The above list is just some of the early or interesting processors of the very many that ar
available commercially and publicly.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 13 of 148

http://www.xml.com/axml/axml.html
http://xml.coverpages.org/xml.html
http://xml.coverpages.org/xll.html
http://www.ucc.ie/xml/
http://www.xmlbooks.com/
http://www.CraneSoftwrights.com/links/trn-20040203.htm
http://www.CraneSoftwrights.com/resources
http://XMLGuild.info
http://xml.coverpages.org/elementsAndAttrs.html
http://www.w3.org/TR/xmlschema-0/
http://www.oasis-open.org/committees/relax-ng/
http://www.ascc.net/xml/schematron/
http://www.w3.org/TR/DOM-Level-2/
http://www.saxproject.org
http://www.jclark.com/xml/xp/
http://xml.apache.org/
http://www.xmlsoft.org
http://www.textuality.com/Lark/
http://www.ltg.ed.ac.uk/software/xml/
http://msdn.microsoft.com/downloads/webtechnology/xml/msxml.asp
http://www.a-dos.com
http://www.xmlsoftware.com/

Practical Transformation Using XSLT and XPath

XML Path Language (XPath) /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
L/

Section 1 - The XML family of Recommendations

Addressing structured information

- http://ww. w3. or g/ TR/ xpat h
- a data model for representing an XML document as an abstract node tree
- the original markup syntax is not preserved
- the user constraints on the document model (e.g. DTD. content models) are not
germane
- any logical or physical modularization (the use of entities) is not preserved
- a mechanism for addressing information found in the document node tree
- the address specifies how to traversal the data model of the instance
- a core upon which extended functionality specific to each of XSLT and XPointer is
added
- an expression of boolean, numeric, string and node values as different data types
- a set of functions working on the values

Addressing identifies a hierarchical position or positions

- common semantics and syntax for addressing a logical hierarchy

- document order, a.k.a. parse order, a.k.a. depth first order
- no representation of the physical hierarchy of an XML document
- a compact non-XML syntax

- for use in attribute values of XML documents

- select="id("'start')//question[@nswer="y']"

- select all question elements whasewer attribute is §" that are descendants
of the element in the current document whose unique identifier és '

XPath 1.0 i;nota query language

- only based on XML 1.0 and Namespaces in XML 1.0

- one aspect of querying is addressing information that needs to be found

- other aspects of querying involve working with the information that is addressed before
returning a result to the requestor

- XPath is used only to address components of an XML instance, and in and of itself does
not provide any traditional query capabilities (though hopefully would be considered as
the addressing scheme by those defining such capabilities)

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 14 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.w3.org/TR/xpath

Practical Transformation Using XSLT and XPath

Styling structured information /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ A (
L/

Section 1 - The XML family of Recommendations

Styling istransformingandformattinginformation

- the application of two processes to information to create a rendered result
- the ordering of information for creation isn't necessarily (or shouldn't be constrained 1
the ordering of information for presentation or other downstream processes
- itis a common (though misdirected) first step for people working with these
technologies to focus on presentation
- the ordering should be based on business rules and inherent information propert
not on artificial presentation requirements
- downstream orderings can be derived from constraints imposed upstream in tf
process
- information created richly upstream can be manipulated into less-richly
distinguished information downstream, but not easily the other way around
- exception when the business rules are presentation or appearance oriented (e
book publishing)
- the need to present information in more'than one ordering requires transformation
- the need to present information in more than one appearance requires formatting

W3C XSL Working Group

- chartered to define a style specification language that covers at least the formatting
functionality of both CSS and DSSSL
- not intended to replace CSS, but to provide functionality beyond that defined by CS
- e.g. add element reordering and pagination semantics

Two W3C Recommendations

- designed to work together to fulfill these two objectives
- XSL Transformations (XSLT)
- transforming information obtained from a source into a particular reorganizatiol
of that information to be used as a result
- Extensible Stylesheet Language (XSL/XSL-FO)
- specifying and interpreting formatting semantics for the rendering of paginated
information
- the acronym XSL-FO is unofficial but in wide use, including at the W3C, for jus
the formatting objects, properties and property values
- XSL normatively includes XSLT by reference in chapter 2
- XSLT has specific features designed to be used for XSL-FO

XSLT and XSL-FO are endorsed by members of WSSSL
- an association of researchers and developers passionate about markup technologie

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 15 of 148

Practical Transformation Using XSLT and XPath

Extensible Stylesheet Language (XSL/XSL-FO) /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
L/

Section 1 - The XML family of Recommendations

- http://ww. w3. or g/ TR/ xsl
Paginated flow and formatting semantics vocabulary

- capturing agreed-upon formatting semantics for rendering information in a paginated
form on different types of media
XSLT is normatively referenced as an integral component of XSL as a language to
transform an instance of an arbitrary vocabulary into the XSL-FO XML vocabulary
XSL-FO can be regarded simply as a "pagination markup language”
flow semantics from the DSSSL heritage

- e.g. headers, footers, page numbers, page number citations, columns, etc.
formatting semantics from the CSS heritage

- e.g. visual properties (font, color, etc.) and aural properties (speak, volume, etc.)

Target of transformation

- the stylesheet writer transforms a source document into a hierarchy that uses only the
formatting vocabulary in the result tree
- stylesheet is responsible for constructing the result tree that expresses the desired
rendering of the information found in the source tree
- the XML document gets transformed into its appearance
- stylesheet cannot use any user constructs as they would not be recognized by an XSL
rendering processor
- for example, the rendering engine doesn't know what an invoice number or customer
number is that may be represented in the source XML
- the rendering engine does know what a block of text is and what properties of the
block can be manipulated for appearance's sake
- the stylesheet transforms the invoice number and customer number into two blocks
of text with specified spacing , font metrics, and area geometry

Device-independent formatting constructs

- the XSL-FO vocabulary describes two media interpretations for objects and properties:
- visual media
- aural media
- a further distinction is also made at times for interactive media
- the results of applying a single stylesheet can be rendered on different types of renderin
devices, e.g.: print, display, audio, etc.
- may still be appropriate to have separate stylesheets for dissimilar media
- device independence allows the information to be rendered on different media, but
a given rendering may not be conducive to consumption

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 16 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.w3.org/TR/xsl

Practical Transformation Using XSLT and XPath

Extensible Stylesheet Language Transformations

(XSLT) ’\v‘/

Chapter 1 - The context of XSL Transformations and the XML Path Language
Section 1 - The XML family of Recommendations

- http://ww. wW3. org/ TR/ xsl t
Transformation by example

a vocabulary for specifying templates of the result that are filled-in with information
from the source
- the stylesheet includes examples of each of the components of the result
- the stylesheet writer declares how the XSLT processor builds the result from tt
supplied examples
- the primary memory management and manipulation (node traversal and node creat
is handled by the XSLT processor using declarative constructs, in contrast to a
transformation programming language or interface (e.g. the DOM - Document Obje
Model) where the programmer is responsible for handling low-level manipulation usir
imperative constructs
- includes constructs to iterate over structures and information found in the source
- the information being transformed can be traversed in different ways any number of
times required for the desired result
- straightforward problems are solved in straightforward ways without needing to kno
programming
- useful, commonly-required facilities are implemented by the processor and can
triggered by the stylesheet
- the language is Turing complete, thus arbitrarily complex algorithms can be
implemented (though not necessarily in a pretty fashion)
includes constructs to manage stylesheets by sharing components

Notintended for general purpose XML transformations

- designed for downstream-processing transformations suited for use with XSL formatti
vocabulary
- includes facilities for working with the XSL vocabulary easily
- still powerful enough fomastdownstream-processing transformation needs
- an XSLT stylesheet can be (and is) called a transformation script
- absolutely general purpose when the output from XSLT is going to be input to ¢
XML processor
- does not include certain features appropriate for syntax-level general purpose
transfarmations
- ‘unsuitable for original markup syntax preservation requirements

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 17 of 148

http://www.w3.org/TR/xslt

Practical Transformation Using XSLT and XPath
Extensible Stylesheet Language Transformations

(XSLT) (cont.) ’\v‘]/

Chapter 1 - The context of XSL Transformations and the XML Path Language
Section 1 - The XML family of Recommendations

Document model and vocabulary independent

- an XSLT stylesheet is independent of any Document Type Definition (DTD) or schema
that may have been used to constrain the instance being processed
an XSLT processor can process well-formed XML documents without a model
- behavior is specified against the presence of markup in an instance as the implicit
model, not against the allowed markup prescribed by any explicit model
one stylesheet can process instances of different document models
multiple instances following different document models can be used in a single
transformation
different stylesheets can process a given single instance to produce different results

XML source and stylesheet

- all inputs must be conforming well-formed XML documents
- one or more source files and one or more stylesheet files
- starting with a single source file and a single stylesheet file
- Recommendation does not support SGML instances as input because of XML markup
conventions
- seenhttp://tidy.sourceforge.net/ forinterpretation and conversion of
instances of the HTML vocabulary into XHTML markup conventions
- seehttp://ww. ccil.org/~cowan/ XM/ t agsoup for interpretation and
conversion of streams of arbitrary HTML constructs
- seehttp://ww. jcl ark. conm sp/ sx. ht min the SP package
http://ww. j cl ar k. con sp for conversion of SGML instances to XML instances
without document type declarations
- seehttp://ww. CraneSof t wi ghts. com resour ces/ n2x for conversion of
SGML instances to XML instances with document type declarations

Validation unnecessary (but convenient)

- an XSLT processor need not implement a validating XML processor
- must implement at least a non-validating XML processor to ensure well-formedness
- validation is convenient when debugging stylesheet development
- if the source document does not validate to the model expected by the stylesheet
writer, then a correctly functioning stylesheet may exhibit incorrect behavior
- time spent debugging the working stylesheet is wasted if the source was incorrect
all along

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 18 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://tidy.sourceforge.net/
http://www.ccil.org/~cowan/XML/tagsoup
http://www.jclark.com/sp/sx.htm
http://www.jclark.com/sp
http://www.CraneSoftwrights.com/resources/n2x

Practical Transformation Using XSLT and XPath
Extensible Stylesheet Language Transformations

(XSLT) (cont.) ’\v‘]/

Chapter 1 - The context of XSL Transformations and the XML Path Language
Section 1 - The XML family of Recommendations

Multiple source files possible

- one primary source file

- stylesheet may access arbitrary other source files (including itself as a source file)
- names of resources hardwired within the stylesheet
- names of resources found within source files

- multiple accesses to the same resource refer to a single abstract representation
- one is not built for each access to a named resource

Stylesheet supplements source

- arbitrary information unrelated to the source can be injected into the result at any tir
from the stylesheet
- synthesis of primary file and any number of supplemental files
- supplemental files can be included or imported
- powerful for sharing and exploiting fragments of stylesheets
- entire stylesheet and all supplemental fragments read in and processed before proce:
source data

Extensible language design supplements processing

- an XSLT processanaysupport extensions specified in the stylesheet but is not oblige
to do so
- extended instructions
- extended functions
- extended serialization conventions
- extended sorting schemes
- access to non-standardized extensions is specified in standardized ways

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 19 of 148

Practical Transformation Using XSLT and XPath
Extensible Stylesheet Language Transformations

(XSLT) (cont.) ’\v‘]/

Chapter 1 - The context of XSL Transformations and the XML Path Language
Section 1 - The XML family of Recommendations

Abstract structure result

- the result of transformation is built from instantiated templates as an internal hierarchical
tree thatmaybe serialized externally as markup
- the XSLT processor may, but is not obliged to, externalize the result tree in XML or
some other type of syntax if requested by the stylesheet writer
- the stylesheet writer has little or no control over the constructs chosen by the XSLT
processor for serialization
- the stylesheet writer can request certain behaviors that the XSLT processor is not
obliged to respect
- final result is guaranteed to comply with lexical requirements of the output method
(when not coerced by certain stylesheet controls)
- another reason source tree markup syntax preservation cannot be implemented
with XSLT
- the design of the language allows the XSLT processor to immediately serialize the result
tree as markup while it is being built by the stylesheet, and not maintain the complete
result in memory
- the stylesheet may request the XSLT processor emit the result tree using built-in available
lexical conventions (XML, HTML or text-only conventions)

Result-tree-oriented objective

- result generated in result-tree parse order

- stylesheet design is oriented to the production of the result
- the source trees can be traversed in any predictable order and not necessarily in parse

order

- information in the source trees can be ignored or selectively processed
- the result tree is emitted as if produced internally in parse order

- this is not an implementation constraint, but an implementation must act as if the

tree were created in parse order
- an important distinction for parallelism

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 20 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Historical development of the XSL and XSLT /
Recommendations ’\v‘[

Chapter 1 - The context of XSL Transformations and the XML Path Language
Section 1 - The XML family of Recommendations

Recommendation release history:

first concept description floated in August 1997 with no official status within the Worlc
Wide Web Consortium (W3C)
- http://ww. w3. or g/ TR/ NOTE- XSL. ht m
the XSL Working Group officially chartered in early 1998
- http://ww. w3. org/ Styl e/ XSL/
agreed upon requirements for XSL by the Working Group:
- http://ww. w3. or g/ TR/ WD- XSLReq
the XSL 1.0 Recommendation (XSL-FO) published October 15, 2001
- http://ww. w3. or g/ TR/ 2001/ REC- xsl - 20011015/
- some software only supports Candidate Recommendation:
- http://ww. w3. or g/ TR/ 2000/ CR-xsl - 20001121/
the XSLT/XPath 1.0 Recommendations published November 16, 1999
- http://ww. w3. or g/ TR/ 1999/ REC- xsl t-19991116
- http://ww. w3. org/ 1999/ 11/ REC- xsl t-19991116- err at a - errata
- http://ww. w3. or g/ TR/ 1999/ REC- xpat h-19991116
- http://ww. w3. org/ 1999/ 11/ REC- xpat h- 19991116- err at a - errata
XSLT 1.1 (work abandoned)
- http://ww. w3. or g/ TR/ 2000/ WD- xsl.t 11r eq- 20000825 - requirements
- http://ww. w3. or g/ TR/ 2000/ WD- xsl t 11- 20001212
- no incompatible changes to XSLT 1.0 in XSLT 1.1, only additional functionality
- too many interactions with plans for XSLT 2.0, so functionality to be folded into
XSLT 2.0 release
XSLT/XPath 2.0 (work in progress)
- http://ww. w3. or g/ TR/ 2001/ \D- xsl t 20r eq- 20010214 - requirements
- http://ww. w3. org/ TR/ xpat h20/ - current XPath work
- http://ww. w3. org/ TR/ quer y- dat anodel / - shared data model with
XQuery
- http://ww. w3. or g/ TR/ xquer y- oper at or s/ - shared operators with
XQuery
- http: //ww. w3. or g/ TR/ xquery/ - standalone query work
- http://ww. w3. or g/ TR/ xsl t 20/ - current XSLT work
XSL-FO 1.1 (work in progress)
- http://www W3. or g/ TR/ xsl 11/

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 21 of 148

http://www.w3.org/TR/NOTE-XSL.html
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/WD-XSLReq
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/2000/CR-xsl-20001121/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/1999/11/REC-xslt-19991116-errata
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/1999/11/REC-xpath-19991116-errata
http://www.w3.org/TR/2000/WD-xslt11req-20000825
http://www.w3.org/TR/2000/WD-xslt11-20001212
http://www.w3.org/TR/2001/WD-xslt20req-20010214
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/query-datamodel/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xsl11/

Practical Transformation Using XSLT and XPath

XSL information links

Section 1 - The XML family of Recommendations

Chapter 1 - The context of XSL Transformations and the XML Path Language }\WA‘/

Links to useful information

http://xn . coverpages. org/ xsl . ht i - Robin Cover

htt p: // www. mul berryt ech. comi xsl / xsl -1ist/ - mail list

http://ww. dpawson. co. uk - an XSL/XSLT FAQ

http://ww. zvon. or g/ HTM_onl y/ XSLTut or i al / Books/ Book1/ i ndex. ht m -
numerous example XSLT scripts and fragments

http://ww. nag. co. uk/ proj ect s/ QpenMat h/ cor ecd/ - OpenMath project work

by David Carlisle

http://ww. CraneSof twr i ghts. comi | i nks/trn-20040203. ht m-.comprehensive
XSLT/XPath and XSL-FO training material

http://ww. CraneSof t wi ghts. conl resour ces-free XSLT and XSL-FO resources
http://incremental devel opment. com xsl trick/ -"Stupid XSLT Tricks"
http://ww. xm sof t ware. com’ - list of tools

http://xn . cover pages. or g/ xsl Sof tware. htni - list of tools

http://ww. exsl t.org/ - community effort for XSLT extensions

http://exsl fo.sf.net - community effort for XSL-FO extensions

http://foa. sourceforge. net/ - open'source FO GUI authoring tool

http://ww. xsl fast.com - commercial FO GUI authoring tool
http://ww.inventivedesi gners. com -commercial FO GUI authoring tool
http://wwv. abi sour ce. com’ - word processing with "Save As..." for XSL-FO

htt p: // ww. Ant ennaHouse. com’ XSLsanpl e/ XSLsanpl e. ht m- paginating XHTML

| SBN 1-56609- 159- 4 - "The Non-Designer's Design Book", Robin Williams, Peachpit
Press, Inc., 1994

| SBN 0- 8230-2121- 1/ 0- 8230- 2122- X - "Graphic design for the electronic age; The
manual for traditional and desktop publishing”, Jan V. White, Xerox Press, 1988 (out
of print but worthwhile to search for as a used book)

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Page 22 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://xml.coverpages.org/xsl.html
http://www.mulberrytech.com/xsl/xsl-list/
http://www.dpawson.co.uk
http://www.zvon.org/HTMLonly/XSLTutorial/Books/Book1/index.html
http://www.nag.co.uk/projects/OpenMath/corecd/
http://www.CraneSoftwrights.com/links/trn-20040203.htm
http://www.CraneSoftwrights.com/resources
http://incrementaldevelopment.com/xsltrick/
http://www.xmlsoftware.com/
http://xml.coverpages.org/xslSoftware.html
http://www.exslt.org/
http://exslfo.sf.net
http://foa.sourceforge.net/
http://www.xslfast.com/
http://www.inventivedesigners.com/
http://www.abisource.com/
http://www.AntennaHouse.com/XSLsample/XSLsample.htm

Practical Transformation Using XSLT and XPath

XSL information links (cont.)

Section 1 - The XML family of Recommendations

Chapter 1 - The context of XSL Transformations and the XML Path Language }\WA‘/

Examples of XSLT processors

http://ww. jcl ark. com’ xm / xt. ht i - James Clark
http://saxon. sour cef or ge. net - Mike Kay
http://msdn. m crosoft. conf downl oads/ webt echnol ogy/ xm / mexmi . asp -
updated web release of XML/XSLT processor for Internet Explorer 5 (IE6 follows th
W3C specifications)

- http://ww. netcruci bl e. com xsl t/ nmsxm - f ag.-ht m--useful FAQ
http://technet.oracle.comtech/xm/ - Oracle
http://xn . apache. or g/ xal an/ i ndex. ht i - Apache Project JAVA-based
implementation (originally from IBM/Lotus AlphaWorks)
htt p://al phawor ks. i bm conl t ech/ Lot usXSL- IBM/Lotus AlphaWorks wrapper
for Xalan
http://ww. xm soft. org - XSLT for Ghome
http://ww. Dat aPower . com- XSLT-dedicated hardware
htt p: // ww. sar vega. com- XSLT-dedicated hardware
http://ww. anbrosoft. coml gregor. html - XSLT compiler
http://ww. i nfoteria. com-iXSLT -commercial implementation
htt p: //ww. uni corn-enterprises. com - Unicorn XSLT Processor
http://ww. a- dos. com- XSLT processor and associated tools

The above list is just some of the early or interesting processors of the very many that ar
available commercially and publicly.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 23 of 148

http://www.jclark.com/xml/xt.html
http://saxon.sourceforge.net
http://msdn.microsoft.com/downloads/webtechnology/xml/msxml.asp
http://www.netcrucible.com/xslt/msxml-faq.htm
http://technet.oracle.com/tech/xml/
http://xml.apache.org/xalan/index.html
http://alphaworks.ibm.com/tech/LotusXSL
http://www.xmlsoft.org
http://www.DataPower.com
http://www.sarvega.com
http://www.ambrosoft.com/gregor.html
http://www.infoteria.com
http://www.unicorn-enterprises.com/
http://www.a-dos.com

Practical Transformation Using XSLT and XPath

XSL information links (cont.) /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
L/

Section 1 - The XML family of Recommendations

Examples of XSL formatting object rendering processors

- http://ww. Ant ennaHouse. coni - AntennaHouse Windows-based and multi-platform
versions

- http://ww:. Render X. coml RenderX - direct to PDF

- http://ww. 3b2. com- Advent 3B2 - direct to PDF

- http://ww. Arbor Text . com- Epic composition tool

- http://ww. Adobe. com- Adobe Document Server

- http://ww. xrd pdf . cont i bex - lbex C# .NET - direct to PDF

- http://ww. Lunasi|.com- Java/COM - direct to PDF

- http://xm . apache. org/ fop/ - FOP - direct to PDF, PCL, others

- http://xmroff.sourceforge. net/ - open source to PDF

- http://ww. hcu. ox. ac. uk/ TEl / Sof t war e/ passi vet ex - Passive TeX - TeX to
PDF

- http://ww. uni corn-enterprises.com - Unicorn UFO - TeX to PDF

- http://ww:. al phawor ks. i bm cont t ech/ xf¢ - IBM XFC - direct to PDF

- http://ww. xm m nd. conl f oconverter - Pixware XFC - XSL-FO to RTF

- http://ww. jfor.org/ - XSL-FO to RTF

- http://ww. xsmi | es. org/ - XML browser using FOP

The above list is just some of the early processors of what is anticipated to be very many the
will be available commercially and publicly.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 24 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.AntennaHouse.com/
http://www.RenderX.com/
http://www.3b2.com
http://www.ArborText.com
http://www.adobe.com
http://www.xmlpdf.com/ibex
http://www.Lunasil.com
http://xml.apache.org/fop/
http://xmlroff.sourceforge.net/
http://www.hcu.ox.ac.uk/TEI/Software/passivetex
http://www.unicorn-enterprises.com/
http://www.alphaworks.ibm.com/tech/xfc
http://www.xmlmind.com/foconverter
http://www.jfor.org/
http://www.xsmiles.org/

Practical Transformation Using XSLT and XPath

Namespaces /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
Section 1 - The XML family of Recommendations M

- http://ww. w3. or g/ TR/ REC- xml - nanes
- http://ww. neggi nson. com docs/ nanmespaces/ nanespace- questi ons. htmni

An important role in information representation:

- vocabulary distinction in a single XML document
- mixing information from different document models
- possible use for resource discovery being considered
- generalized associated information regarding information in an instance
- possible access to document model, stylesheets, validation algorithms, access
libraries, etc.

Vocabulary distinction

- specifies a simple method for qualifying element and attribute names used in XML
documents
- allows the same element type name to be used from different vocabularies in a give
document
- consider two vocabularies each defining the element type narsed>", each
with very different semantics
- in SVG (Scalable Vector Graphics) the elemeddt > refers to setting a
value within the scope of contained markup
- in MathML (Mathematical Markup Languagejet > refers to a collection
of constructs treated as a set
- any document needing to mix elements from the two vocabularies may need tc
use the same name
- without namespaces an application cannot distinguish which construct is
being used
- a namespace prefix differentiates the element type name suffix in an instance
- <svg: set>
- <mat h: set >
- composite name lexically parses as an XML name
- the use of the colon is defined by the namespaces recommendation
- also used to uniquely distinguish identification labels in some Recommendations
- e.g.: customized sort scheme label

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 25 of 148

http://www.w3.org/TR/REC-xml-names
http://www.megginson.com/docs/namespaces/namespace-questions.html

Practical Transformation Using XSLT and XPath

Namespaces (cont.) /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
L/

Section 1 - The XML family of Recommendations

URI value association

associates element type name prefixes with Universal Resource Identifier (URI)
referencesvhether or not any kind of resource exists at the URI
- URI domain ownership under auspices of established organization
- URI conflicts avoided if rules followed
examples:
- xm ns:svg="http://ww. w3. or g/ 2000/ svg- 20000629"
- xm ns: mat h="ht t p: / / waww. W3. or g/ 1998/ Mat h/ Mat hM."
- xm ns: ex1="urn:isbn: 1- 894049: exanpl e"
- xm ns:ex2="ftp://ftp. CraneSof t wi ghts. conl ns/ exanpl e2"
explicitly does not expect nor require to de-reference any kind of information from the
given URI
- note that the Resource Description Framework (RDF) recommendation does have
a convention of looking to the URI for information, though this is outside the scope
of the Namespaces recommendation
according to the recommendation, the URIn$y used to disambiguate otherwise
identical unqualified members of different vocabularies

The choice of the prefix is arbitrary and can be any lexically valid name

- the name need not be consistent with the use (though this helps legibility)
- the name is never a mandatory aspect of any Recommendation
- the prefix is discarded by the XML namespace-aware processor along the lines of:
- <{http://ww. w3. or g/ 2000/ svg- 20000629} set >
- <{http://ww. w3. org/ 1998/ Mat h/ Mat hM_} set >
- the above use of " and '} " are for example purposes only
- note how the/™ characters of the URI would be unacceptable given the lexical
rules of names, thus, the URI could never be used directly in the tags of an XML
document
- the prefix is merely a syntactic shortcut preventing the need to specify long distinguishing
strings

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 26 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Namespaces (cont.) /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
L/

Section 1 - The XML family of Recommendations

Namespaces in XSLT and XSL-FO

- Recommendations utilize namespaces to distinguish the desired result tree vocabule
from the transformation instruction vocabularies
- http://ww. w3. org/ 1999/ XSL/ Tr ansf orm
- XSL transformation instruction vocabulary
- the use of any archaic URI values for the vocabulary will not be recognized by
XSLT processor
- http://ww. w3. or g/ 1999/ XSL/ For mat
- XSL formatting result vocabulary
- the year represents when the W3C allocated the URI to the working group, not
version of XSL the URI represents

Extension identification

- XSLT processors are allowed to recognize other namespaces in order to implemen
extensions not defined by the Recommendation:

- functions

instructions

sort methods

system properties

serialization methods

- e.0..http://ww. jcl ar k. con xt
- extensions available when using XT

- e.0.:http://icl.com saxon
- extensions available when using Saxon

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 27 of 148

Practical Transformation Using XSLT and XPath

Stylesheet association /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
L/

Section 1 - The XML family of Recommendations

- http://ww. w3. org/ TR/ xnl - st yl esheet
Relating documents to stylesheets

- associating one or more stylesheets with a given XML document

- same pseudo-attributes and semantics as in the HTML 4.0 recommendation elements:
- <LI NK REL="styl esheet">
- <LINK REL="al ternate styl esheet">

Ancillary markup

- not part of the structural markup of an instance, thusit is marked up using a processing
instruction rather than first-class (declared or declarable in a document model) markup

Typical examples of use:

o1 <?xml -styl esheet href="fancy.xsl" type="text/xsl"?>
o1 <?xXm -styl esheet href="normal .css" type="text/css"?>
Less typical examples provided for by the design:

o1 <?xml -styl esheet alternate="yes" title="small"
02 href ="smal | . xsl " type="application/xslt+xm"?>

- provide the processor with an alternate stylesheet if some external stimulus triggers it
by name

o1 <?xm -styl esheet href="#stylel" type="application/xslt+xm"?>

- instruct the processor to find the stylesheet embedded in the source document at the
named location

Important note aboutype= values for associating XSLT:

- type="text/xsl" is notaregistered MIME type

- the only type recognized by IE for the use of XSLT
- type="application/ xslt+xm " has been proposed in IETF RFC 3023
- type="text/xm " is reported to be supported by some processors

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 28 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.w3.org/TR/xml-stylesheet

Practical Transformation Using XSLT and XPath

Transformation from XML to XML /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
Section 2 - Transformation data flows M

The normative behavior of XSLT is to transform an XML input into a hierarchical result tree
that result tree may be emitted as an XML instance:

source)
document XML »| XSLT “Resut - XML
Process o

A

transformation
result

script XSLT documents
v
XSLT | oo L 3 XML
Process e

source

document XML

XSLT

e
transformation Process o
seript Yot 7y
Of note:

- a given XSLT stylesheet can be applied to more one XML document

- a given XML document can have more than one XSLT stylesheet applied

- the diagram depicts the target of transformation as the abstract result tree within the
XSLT transformation process

- the serialization of the abstract result tree to the emitted XML is under the control of
the XSLT processor

Diagram legend

- processes represented by rectangles
- hierarchical structures represented by triangles
- atree structure with the single root at the left point and the tree expanding and
getting larger towards the leaves at the right edge
- unstructured files represented by parallelograms

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 29 of 148

Practical Transformation Using XSLT and XPath

Transformation from XML to non-XML /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
Section 2 - Transformation data flows M

An XSLT processor may choose to recognize the stylesheet writer's desire to serialize a
non-XML representation of the result tree:

- triggered through using an output serialization method supported by the XSLT processor

transformation transformation
script script
XSLT/
HTML XSLT
xmLl > XSET e CHTML xm . XSET i Ly Text
Process " Process | - /
source result source result
document document document document

The XSLT Recommendation documents two non-XML tree serialization methods:

- htm
- HTML markup and structural conventions
- some older HTML user.agents (e.g. browsers) will not correctly recognize
elements in the HTML vocabulary when the instance is marked up using
XML conventions (e.gsbr / > must be
), thus necessitating the
interpretation of HTML semantics when the result tree is emitted
- using this will not validate the result tree output as being HTML
- if the result is declared HTML but the desired output isn't HTML, the
HTML semantics could interfere with the markup generated
- HTML built-in character entities (e.g.: accented letters, non-breaking space, etc.)
- text
- simple text content with-all element start and end tags removed and ignored
- none of the characters are escaped on output
- example of use: creating operating system batch and script files from structured
XML documents

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 30 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Transforming and rendering XML information /
using XSLT and XSL-FO ’\v‘[

Chapter 1 - The context of XSL Transformations and the XML Path Language
Section 2 - Transformation data flows

When the XSLT result tree is specified to utilize the XSL-FO formatting vocabulary:

the normative behavior is to interpret the result tree according to the formatting seman
defined in XSL for the XSL-FO formatting vocabulary
an inboard XSLT processor can effect the transformation to an XSL-FO result tree
the XSL-FO result tree need not be serialized in XML markup to be conforming to tt
recommendation

- useful for diagnostics to evaluate results of transformation

transformation

script

XSLT/ XSL Processor Aural

XSL-FO > Aural
] Process

result :

tree . '

XML » XSLT 1 | ysiFo » _Print _P”/“tJ
Process } Process
- Display .
D
source Process isplay
document ‘

; XSL Formatting and
optional XSL-FO Flow Object Semantics
serialized . Interpretatior?
XML in Each Domain

Of note:

the stylesheet contains only the XSLT transformation vocabulary, the XSL formattin
vocabulary, and extension transformation or foreign object vocabularies
the source XML contains the user's vocabularies
the result of transformation contains exclusively the XSL formatting vocabulary and
any extension formatting vocabularies
- does not contain any constructs of the source XML vocabulary
- may or may not be serialized as XML markup (useful for diagnostics)
the rendering processes implement for each medium the common formatting semar
described by the XSL recommendation
- for.example, space specified before blocks of text can be rendered visually as
vertical gap between left-to-right line-oriented paragraphs or aurally as timed
silence before vocalized content

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 31 of 148

Practical Transformation Using XSLT and XPath

XML to binary or other formats /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
Section 2 - Transformation data flows M

Some non-XML requirements are neither text nor HTML

- need to produce composition codes for legacy system
- binary files with complex encoding
- custom files with complex or repetitive sequences

One can capture the semantics of the required output format in a custom XML vocabulary

- e.g.: "CVML" for "Custom Vocabulary Markup Language"
- designed specifically to represent meaningful concepts for output

transformation
script
XSLT/ Custom
Vocabulary
cvmL Semantics
Interpretation
o CVML
XML g P:(oscl;:s *’F?S““ +—»< CVML Interpreter ')\l(:llnl_-
(SAX/DOM)
source result]
result file
document document

A single translation program (drawn as "CVML Interpreter"):

- can interpret all XML instances using the custom vocabulary markup language (e.g.
CVML) to produce the output according to the programmed semantics
- isindependenbf the XSLT stylesheets used to produce the instances of the custom
vocabulary
- allows any number of stylesheets to be written without impacting the translation to the
final output
- divorces the need to know syntactic output details
- output is described abstractly by semantics of the vocabulary
- output is serialized following specific syntactic requirements

Note how this methodology is no different in concept than the methodology for rendition
according to the standardized semantics of XSL formatting objects.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 32 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XML to binary or other formats (cont.) /

Chapter 1 - The context of XSL Transformations and the XML Path Language }\ &
Section 2 - Transformation data flows M

The XSLT recommendation is extensible providing for vendor-specific or application-specif
output methods:

- xm ns: prefix="processor-recogni zed- UR "
- prefix:serialization-method-nane
- vendors can choose to support additional built-in tree serialization methods
- output can be textual, binary, dynamic process (e.g.: database load), auditory,
any desired activity or result

The ability to specify vendor-specific or implementation-specific output methods allows
custom semantics to be interpreteithin the modified XSLT processor, thus not requiring
the intermediate file:

transformation Gustom
script Vocabul;ry
Semantics
XSLT/ Interpretation
CVML
result !
vy tree - C
VML
XML > P::i‘:::s —» CVML —» Interpreter > l)\l(:\)nnL-
| (SAX/DOM) /
source Customized XSLT Processor result file
document

XT implements an extension serialization method:

- NXML - Non-XML text environment (documented in detail in Extension method:
Non-XML serialization (page 125))
- xm ns: prefix="http://ww.jclark.con xt"
- met hod="prefi x: nxm "

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 33 of 148

Practical Transformation Using XSLT and XPath

XSLT as an application front-end /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
L/

Section 2 - Transformation data flows

A legacy application can utilize an XSLT processor to accommodate arbitrary XML
vocabularies

- making an application XML-aware involves using an XML processor to accommodate
a vocabulary expressing application data semantics
- event driven using SAX processing and programming
- tree driven using DOM processing and programming
- without XSLT, each different XML vocabulary would need to be accommodated
by different application integration logic
- an application can engage an XSLT processor and directly access the result tree
- single process programmed to interpret a single markup language
- each different XML vocabulary is accommodated by only writing a different XSLT
stylesheet
- each stylesheet produces the same application-oriented markup language
- no reification of the result tree is required

Application source XML-Aware Application
. documents CVML o
o/ s penten oMM o | e > PP
XML XML (SAX/DOM)
transformation
script
XSLT/ User-XSLT-1
source CVML
documents XML/XSLT-Enabled Application
User-XML-1)
U-1 result -
v tree -
XML XSLT CVML Application
Process > CVML > Interpreter —» SZFr)nantics
(SAX/DOM)
* A
uU-2
XML
source
documents XSLT/
User-XML-2 CVML | transformation
script
User-XSLT-2

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 34 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Chapter 1 - The context of XSL Transformations and the XML Path Language

Practical Transformation Using XSLT and XPath

Three-tiered architectures

Section 2 - Transformation data flows

o/

To support a legacy of user agents that do not support XML.:

web servers can detect the level of support of user agents
where XML and XSLT are not supported in a user agent:

- the host can take on the burden of transformation

where XML and XSLT are supported in a user agent

- the burden of transformation can be distributed to the agent
- the XML information can be massaged before being sent to the agent

transformation

script XSLT

source

document XML

transformation

script XSLT

transformation

script XSLT

Copyright © Crane Softwrights Ltd.

Web Host

> XSLT
Process

HTML

allows information to be maintained in XML yet still be available to all users

HTML Browser

XSLT

» Display

NS

XML Browser

XML

XSLT
Process

i

XML Browser

XSLT
Process

XML

XSLT
Process

XML

XSLT
Process

i

XML Browser

| XML

XSLT

Process Display

i

XML Browser

XSLT

XSLT

Displ
Process Isplay

i

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ

Page 35 of 148

Practical Transformation Using XSLT and XPath

Three-tiered architectures (cont.) /
Chapter 1 - The context of XSL Transformations and the XML Path Language }\ & (
L/

Section 2 - Transformation data flows

Always performing server-side transformation:

good business sense in some cases
- even if technically it is possible to send semantically-rich information
never send unprocessed semantically-rich XML
- or only send it to those who are entitled to it
- for security reasons
- for payment reasons
translation into a presentation-orientation
- using a markup language inherently supported by the user agent (e.g. HTML)
- using a custom, semantic-less markup language with an associated stylesheet
"semantic firewall"
- to protect the investment in rich markup from being seen where not desired
- no consensus in the community that semantic firewalls are a "good thing"

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 36 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 2 - Getting started with XSLT and XPath

o/

Introduction - Analyzing a simple stylesheet

Section 1 - Stylesheet examples

Section 2 - Syntax basics - stylesheets, templates, instructions
- Section 3 - More stylesheet examples

Outcomes:

- analyze the different components of a few example scripts
- introduce the concepts of instructions and templates

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 37 of 148

Practical Transformation Using XSLT and XPath

Analyzing a simple stylesheet

Chapter 2 - Getting started with XSLT and XPath }\WA‘/

A few simple stylesheets:

- using Saxon
- using Internet Explorer 5 or greater
- for IE5, the updated MSXML processor (at least the third Web Release of March
2000) is needed to support the W3C XSLT 1.0 Recommendation
- the IE6 production release supports the W3C XSLT 1.0 Recommendation

Dissect example stylesheets

- identify stylesheet components as an introduction to basic concepts covered in more
detail in the later chapters

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 38 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Some simple examples

Chapter 2 - Getting started with XSLT and XPath }\WA‘/

Section 1 - Stylesheet examples

Consider the following XML filehel | 0. xml obtained from the XML 1.0 Recommendation
and modified to declare an associated stylesheet:

o1 <?xm version="1.0"?>
02 <?Xm - styl esheet type="text/xsl" href="hello.xsl"?>
s <greeting>Hell o worl d. </ greeting>

Consider the following XSLT fil&el | oht m xsl to produce HTML, noting how much it
looks like an HTML document yet contains XSLT instructions:

o1 <?xm version="1.0"?><!--hell ohtm xsl-->

02<l--XSLT 1.0 - http://ww. CraneSoftwights.comltraining -->
os<htm xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or n{

04 xsl :version="1.0">

s <head><title>Geeting</title></head>

s <body><p>Wbrds of greeting:

07 <i ><u><xsl : val ue- of sel ect="greeting"/></u></i>
08 </ p></ body>
0o </ html >

Using an MSDOS command line invocation to execute the stand-alone processor explici
with a supplied stylesheet, we see the following result:

o1 C.\ xsl t\sanp>saxon -0 hell oht mhtm hell o.xm hel |l ohtm xsl

02

03 C:\ xsl t\sanp>type hell ohtm htm

oa <ht ml >

s <head>

s <meta http-equiv="Content-Type" content="text/htm; charset=utf-8">
v <title>Geeting</title>

e </ head>

0o <body>

10 <p>Wbrds of greeting:
<i><u>Hell o worl d. </ u></i></p>
1 </ body>

12 </ htm >

13 C\ xsl t\ sanp>

Note how the end result contains a mixture of the stylesheet markup and the source inst:
content, without any use of the XSLT vocabulary. The processor has recognized the use
HTML by the type of the document element and has engaged SGML markup convention

The<net a>element on line 6 added by Saxon is ensuring the character set of the web p:
is properly recognized by conforming user agents.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 39 of 148

Practical Transformation Using XSLT and XPath

Some simple examples (cont.)

Chapter 2 - Getting started with XSLT and XPath }\WA‘/

Section 1 - Stylesheet examples

Consider next the following XSLT fileel | 0. xsI to produce XML output using the HTML
vocabulary, where the output is serialized as XML.:

o <?xm version="1.0"?><!--hello.xsl-->

02<!--XSLT 1.0 - http://ww. CraneSoftwrights.comtraining -->
03

oa <Xsl :transform xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or n¥
05 version="1.0">

06

o7 <Xsl : out put net hod="xm " omt-xmnl-declarati on="yes"/>

08

0o <xsl :tenpl ate match="/">

10 <i ><u><xsl : val ue- of sel ect="greeting"/></u></i>
u </ xsl:tenpl at e>

12

13 </ xsl :transforne

Remember that the syntax of the stylesheet does not represent the syntax of the result, onl
the nodes of the result; the following is the node tree (not showing attribute and namespace
nodes) of the stylesheet:

Element local-name="transform" f\

namespace="http://www.w3.0rg/1999/XSL/Transform" \\ /
|

Element local-name="output" f Element local-name="template" / \
namespace="http://www.w3.org/ k J namespace="http://www.w3.org/ /

1999/XSL/Transform" _ 1999/XSL/Transform"

Element local-name="b"

namespace="""
Element local-name="i" \
namespace="" /

Not shown: root, attribute and namespace nodes

Element local-name="u" \

namespace=""

Element local-name="value-of"
namespace="http://www.w3.0rg/1999/XSL/Transform"

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 40 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Some simple examples (cont.) /

Chapter 2 - Getting started with XSLT and XPath }\ —
Section 1 - Stylesheet examples M

Using an MSDOS command line invocation to execute the Saxon processor we see the
following result:

o C:\ xsl t\ sanmp>t ype hel |l 0. xm

02 <?xm version="1.0"7?>

03 <?Xm - styl esheet type="text/xsl" href="hello.xsl"?>
oa <greeting>Hell o worl d. </ greeting>

s C:\ xsl t\sanp>saxon -0 hello.htm-a hello.xm

s C:\ xsl t\sanp>type hello. htm

0o <i ><u>Hel | o worl d. </ u></i>

10 G\ xsl t\ sanp>

- the producediel | o. ht mfile can be viewed with a browser to see the results using tht
menu selection View/Source to examine the contents of the document:

w~ Metscape - [file: /4 /2% 7C/samp/hello_htm]
File Edit “iew Go Bookmarks Options Directory Window Help

Laocation; IfiIe:;’;";’HZ?D"sampa’hello.htm j

Hello world. b Netscape - [Source of: file: #/ /%% 7C/samp/hello.htm] =] E3

=b==i==u=Hello world. = u==/i==/b=

=g |Document: Done [2= e

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 41 of 148

Practical Transformation Using XSLT and XPath

Some simple examples (cont.)

Chapter 2 - Getting started with XSLT and XPath }\WA‘/

Section 1 - Stylesheet examples

Using thensxn . bat invocation batch file (described in Invoking the Microsoft MSXML
processor (page 134)) at an MSDOS command line to execute the MSXML processor:

o C\ xslt\sanp>msxm hello.xm hello.xsl hello-ns. htm
03 C:\ xsl t\sanp>type hello-ns. htm

0a <i ><u>Hel | o worl d. </ u></i>

os C:\ xsl t\ sanp>

Using |IE to directly view the file will show the interpreted result on the browser canvas, in
such a way that the menu function View/Source reveals the untouched XML:

} ¥:\sampihello_xml - Microsoft Internet Explorer

Fil= Edit Search Help

{7xml version="1.8"7> =
<?uml-stylesheet type="text/xsl" href="hello.xsl"?>
{greeting>Hello world.<{/greeting>

o

4 r A
|@ Done - - — r =

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 42 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Stylesheet requirements

Chapter 2 - Getting started with XSLT and XPath }\WA‘/

Section 2 - Syntax basics - stylesheets, templates, instructions

An XSLT stylesheet:

- must identify the namespace prefix with which to recognize the XSLT vocabulary
- atypical namespace declaration attribute declares a particular URI for a given
prefix:
- xmns:prefix="http://ww.w3. org/ 1999/ XSL/ Transf or nf
- as a common practice the prefis!'" is used to identify the XSLT
vocabulary, though this is not mandatory
- the default namespace should not be used to identify the XSLT vocabular
- technically possible for elements of the vocabulary, but doing so
prevents XSLT vocabulary attributes to be used wherever possible
- not an issue for small stylesheets, but a maintenance headache if a la
stylesheet needs to begin using XSLT attributes
- extensions beyond the XSLT recommendationare outside the scope of the XS
vocabulary so must use another URI for such constructs
- must also indicate the version of XSLT required by the stylesheet

- in the start tag of an a element in the XSLT namespace
- versi on="ver si on- nunber"
- attributes not in any namespace that are attached to an element in the XS

namespace are regarded as being in the XSLT namespace

- in the start tag of an element not in the XSLT namespace

- prefix:version="version-nunber"”

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 43 of 148

Practical Transformation Using XSLT and XPath

Instructions and literal result elements

Chapter 2 - Getting started with XSLT and XPath }\WA‘/

Section 2 - Syntax basics - stylesheets, templates, instructions

An XSLT instruction:

- stylesheet file only
- recognized in the stylesheet tree and not in the source tree
- instruction defined by the XSLT recommendation and specified using the prefix
associated with the XSLT URI
- is a control construct
- the wrapper and top-level elements
- procedural and process-control instructions
- logical and physical stylesheet maintenance facilities
- is a value placeholder
- any calculated value is replaced in-situ
- <xsl :val ue-of select="greeting"/>
- this example instruction calculates the concatenation of all text portions of all
descendents of the first of the selected points in the source tree
- thesel ect = attribute is an expression specifying the point in the source tree or,
more generally, the outcome of an arbitrary expression evaluation which in this
case is a node set
- the value greet i ng" indicates the name of a direct element child node of the
current source tree focus, which at the time of execution in this example is the root
of the document (henegyr eeti ng>must be the document element)
- may be custom extension
- a non-standardized instruction implemented by the XSLT processor
- implements extensibility
- standardized fallback features allow any conforming XSLT processor to still
interpret a stylesheet that is using extensions
- specified using a namespace prefix associated with a URI known to the processol

A literal result element:

- any element not recognized to be an instruction
- used in stylesheet file
- any vocabulary thatisn't a declared instruction vocabulary
- represents a result tree node
- element and its associated attributes are to be added to the result

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 44 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Templates and template rules

Chapter 2 - Getting started with XSLT and XPath

A\ /4
Section 2 - Syntax basics - stylesheets, templates, instructions M

An XSLT template:

- specifies a fragment of the result tree as a tree of nodes
- see the nodes in Some simple examples (page 40)

- expressed in syntax as a well-formed package of markup
- may or may not include XSLT instructions

o1 <i ><u><xsl : val ue- of sel ect="greeting"/></u></i>
- a representation of the desired nodes to add to the result tree
- the XSLT processor recognizes any constructs therein from the XSLT vocabulary a
XSLT instructions and acts on them
- regards all other constructs not from the XSLT vocabulary as literal result elemer
that comprise a representation of a tree fragment to add to the result tree

An XSLT template rule:

- aresult tree construction rule associated with source tree nodes
- specifies the template to add to the result tree when processing a source tree r
- a "matching pattern" describes the nodes of the source tree

o <xsl :tenplate match="/">
02 <i ><u><xsl : val ue- of sel ect ="greeting"/></u></i>
03 </ xsl : tenpl at e>

- prepares the XSLT processor for building a portion of the source tree for whenever
stylesheet asks the processor to visit the given source tree node
- uses therat ch= attribute as a "pattern” describing the characteristics of the source tr
node associated with the given template
- the pattern value/ ™ indicates the root of the source document (distinct from anc
the hierarchical parent of the document element of the source document, therefc
the very top of the hierarchy)
- a composite stylesheet must declare all the stylesheet writer's template rules to be
by the XSLT processor
- a simplified stylesheet defines in its entirety the one and only template rule for the
stylesheet, that being for the root node

XSLT processor first visits the source tree root node:

- the root node template rule is automatically processed
- all subsequent processing controlled by the stylesheet

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 45 of 148

Practical Transformation Using XSLT and XPath

Simplified stylesheets

Chapter 2 - Getting started with XSLT and XPath }\WA‘/

Section 2 - Syntax basics - stylesheets, templates, instructions

A simplified declared XSLT stylesheet:

- can be declared inside an arbitrary XML document (e.g. an XHTML document) by using
namespace declarations for XSLT constructs found within
- the entire stylesheet file is a template for the entire result tree
- regarded as the template rule for the root node
- identifiable components of this implicitly declared XSLT script:

XML Declaration ‘ XSLT Namespace Declaration

<?xml version="1.0"7?>
<html xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"

xsl:version="1.0"> “““““4 Version of XSLT required
<head><title>Greeting</title></head> by the Stylesheet
<body><p>Words of greeting:

Result Tree <i><u><xsl:value-of select="greeting"/></u></i>
Template </p></body>
</html> Literal Result Elements ‘ ‘ XSLT Instruction ‘

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 46 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Composite stylesheets

Chapter 2 - Getting started with XSLT and XPath }\WA‘/

Section 2 - Syntax basics - stylesheets, templates, instructions

A composite stylesheet:

- can be written as an entire XML document (or embedded fragmentin an XML docume
by using a stylesheet document element as the explicit container

- composite stylesheets can be utilized by other explicitly declared stylesheets

- identifiable components of this composite XSLT script:

XML Declaration
Document ‘ XSLT Namespace Declaration ‘
Element

<?xml version="1.0"7?>

<xsl:transform xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"

Top—IeveI version="1.0">
Elements Version of XSLT
) required by the
<xsl:output method="xml" indent="yes"/> Stylesheet Result Tree
Template

{<xsl :template match="/">

<i><u><xsl:value-of select="greeting"/></u></i> >
</xsl:template>

Template
Rule

Literal Result Elements ‘XSLT Instruction ‘

</xsl:transform>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 47 of 148

Practical Transformation Using XSLT and XPath

Approaches to stylesheet design

Chapter 2 - Getting started with XSLT and XPath }\WA‘/

Section 2 - Syntax basics - stylesheets, templates, instructions

Pulling the input data

- known source structure
- the hierarchy of the source file is known by the stylesheet writer
- the stylesheet "pulls" information:
- from known locations in the source node tree
- <xsl :val ue- of sel ect =" XPat h- expression"/>
- for extraction or calculation
- <xsl :copy-of sel ect="XPat h-expression"/>
- for wholesale copying of source tree nodes
- <xsl :for-each sel ect =" XPat h- node- set - expressi on" >
- for iteration over a collection of nodes
- stylesheet-determined result order
- implements "stylesheet-driven" document processing
- the result tree is built by the stylesheet obtaining each result component from
the source, in result order, and framing each component as required with
literal markup from the stylesheet
- if the result can be described as a single template using only the "pull"
instructions, the stylesheet can be simply declared as a single result template

For example

- consider a mixture ofsal e> and<pur chase> elements present in an arbitrary order
- to process all of the sales records together, they are pulled from the source tree:
- <xsl :for-each select="//sal e">
...tenplate for the result tree for the sale..
</ xsl :for-each>
- to process all of the purchase records together, they are pulled from the source tree:
- <xsl :for-each select="//purchase">

...tenmplate for the result tree for the purchase..
</ xsl : f or-each>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 48 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Approaches to stylesheet design (cont.)

Chapter 2 - Getting started with XSLT and XPath }\WA‘/

Section 2 - Syntax basics - stylesheets, templates, instructions

Pushing the input data

arbitrary or unexpected source structure
- the structure of the source file is not in either an expected or explicit order
- source file order must be accommodated by stylesheet
the stylesheet "pushes" information:
- visits known (using names) or unknown (using a wild card) source tree nodes
- <xsl :appl y-tenpl at es sel ect =" XPat h- node- expr essi on">
template rules prepare for source tree node visitations:
- <xsl :tenpl at e mat ch="XPat h-pattern">
source-determined result order
- implements "event-driven" document processing
- the<xsl : t enpl at e> template rule is the event handler
- the type of event described as a qualification of the source informatio
in thenat ch= attribute
- the<xsl : appl y-t enpl at es> instruction is the event generator
- selects the source information the XSLT processor is to visit

For example

- consider a mixture ofsal e> and<pur chase> elements present in an arbitrary order
- to process all of the records in the order they appear in the document, they are pusl
through the stylesheet by specifying the union of all such nodes:
- <xsl :apply-tenpl ates select="//sale
/| purchase"/ >
- each construct being pushed must somehow be handled by the stylesheet:
- <xsl :tenpl ate match="sal e">

...tenplate for the result tree for the sale..
</ xsl:tenpl ate>

- <xsl :tenpl ate mat ch="purchase">
...tenplate for the result tree for the purchase..
</ xsl:tenpl ate>

Note it is not necessary to exclusively use one approach or the other

- stylesheets alternately push some of the input data through the XSLT processor (de
driven) and pull the same or other input data where required (stylesheet driven)

- the pulling of data that is relative to the data being pushed can be done in the templ
catching the data being pushed

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 49 of 148

Practical Transformation Using XSLT and XPath

Processing XML data with multiple XSLT

N /
stylesheets ’\v[
Chapter 2 - Getting started with XSLT and XPath

Section 3 - More stylesheet examples

Consider the data filer od. xm containing some sales data information:

o1 <?xm version="1.0"?><!--prod. xm -->
02 <! DOCTYPE sal es [
03

oa <! ELEMENT sal es (products, record)> <!--sales information--3>

os <! ELEMENT products (product+)> <I--product record-->
os <! ELEMENT product (#PCDATA)> <I--product informtion-->
o7 < ATTLI ST product id |ID #REQUI RED>

os <! ELEMENT record (cust+)> <l--sales record-->
oo < ELEMENT cust (prodsale+)> <l--customer sales record-->
10 < ATTLI ST cust num CDATA #REQUI RED> <l --custoner nunber-->
u <! ELEMENT prodsal e (#PCDATA) > <l--product sale record-->
12 < ATTLI ST prodsal e idref |DREF #REQUI RED>

13] >

1 <sal es>

15 <product s><product id="pl">Packi ng Boxes</ product >

16 <product id="p2">Packi ng Tape</ product ></ pr oduct s>
17 <record><cust nunm="Cl001">

18 <prodsal e idref="pl">100</prodsal e>

19 <prodsal e idref="p2">200</ prodsal e></ cust >

20 <cust num="C1002" >

21 <prodsal e idref="p2">50</prodsal e></ cust >

22 <cust num="C1003" >

23 <prodsal e idref="pl">75</prodsal e>

24 <prodsal e idref="p2">15</ prodsal e></ cust ></recor d>

2 </ sal es>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 50 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Processing XML data with multiple XSLT /
stylesheets (cont.) ’\v‘[

Chapter 2 - Getting started with XSLT and XPath
Section 3 - More stylesheet examples

Very dissimilar reports could be generated for the one data file by using different styleshe

wi~/Metscape - [Product Sales Summary] wi~Metscape - [Record of Sales]
File Edit “iew Go Bookmarks Options Directary File Edit “iew Go Bookmarks Options
Wwindow Help Directary “window Help
(Watet= i twod file: /7 o sarnpe prod-imp. bt (et i twl file: /7 i zarnpy prod-gxp. bty
Product Sales Summary Record of Sales
B T = 1001 - Packing Tape - 200
oxes =S e C1002 - Packing Tape - 50
| C1001| 100 200 e C1003 - Packing Boxes - 75
21002 a0 = 1003 - Packing Tape - 15
| C1003| 75| 15
Totals: | 175| 265
w=m| |[Document Done | =Y | =@l |Document C| =

Of note:

- items are rearranged from one authored order to two different presentation orders
- transformation includes calculation of sum of marked up values

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 51 of 148

Practical Transformation Using XSLT and XPath

Processing XML data with multiple XSLT
stylesheets (cont.)

Chapter 2 - Getting started with XSLT and XPath
Section 3 - More stylesheet examples

w/

Any result vocabulary can be used; for example, WML rendered on a mobile device:

E DwWG1 - Openwave M=IEI|| B OWG1 - Dpenwave |_ (O] x|

Page 52 of 148

File Info Edit Settings Location Help

File Info Edit Settings Location Help

Go Ifi|8:.-"a":-::a"$am|:l.-"|3[0d.wm| j

Go Ifi|8:.-"a":-::a"$am|:l.-"|3[0d.wm|

Record of Sales
ipCustomer C1l001
2 Customer C1002
3 Customer C1003

E DwWG1 - Openwave |_ (O] x|

File Info Edit Settings Location Help

clool

Items: 2

Total: 300

Packing Boxes - 100
Packing Tape - 200

E DwWG1 - Openwave |_ (O] x|

File Info Edit Settings Location Help

Go Ifi|8:.-"a":-::a"$am|:l.-"|3[0d.wm| j

cloo02
Items: 1
Tatal: 50

Packing Tape - 50

Go Ifi|8:.-"a":-::a"$am|:l.-"|3[0d.wm|

clo003

Items: 2

Tatal: S0

Packing Boxes - 75
Packing Tape - 15

Image of UF.SOK courtesy Openwawe Systems Inc. Opemwave, Openwase 1ogo,

and UP.SDOK are trademarks of Openwawve Systems Inc. All rights reserwed.

Eleventh Edition - 2004-

02-03 - ISBN 1-894049-12-8

TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ

Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Processing XML data with multiple XSLT /
stylesheets (cont.) ’\v‘[

Chapter 2 - Getting started with XSLT and XPath
Section 3 - More stylesheet examples

The simplified stylesheet od- si m xs| for the table (page 51) for the XML (page 50):

o1 <?xm version="1.0"?><!--prod-simxsl-->

02<l--XSLT 1.0 - http://ww. CraneSoftwights.conftraining -->
os<htm xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or n{

04 xsl :version="1.0">

s <head><title>Product Sales Summary</titl e></head>

s <body><h2>Product Sal es Sunmmary</ h2>

oo <table sunmmary="Product Sal es Summary" border="1">

08 <lI--list products-->
09 <tr align="center"><th/>

10 <xsl :for-each select="//product">

1 <t h><xsl : val ue-of select="."/></th>

12 </ xsl:for-each></tr>

13 <l--list custoners-->
14 <xsl :for-each sel ect="/sal es/record/cust">

15 <xsl :vari abl e nane="custoner" select="."/>

16 <tr align="right">

17 <t d><xsl : val ue-of sel ect="@wunl'/></td>

18 <xsl:for-each select="//product"> <I'--each product-->
19 <t d><xsl : val ue- of sel ect ="$cust oner/ prodsal e

20 [@dref=current()/@d]"/>
21

22 </td></xsl:for-each>

23 </tr></xsl:for-each>

24 <l--summari ze-->
25 <tr align="right"><td>Tot al s: </ b></td>

26 <xsl :for-each sel ect="//product">

27 <xsl :vari abl e nanme="pid" select="@d"/>

28 <t d><i ><xsl : val ue- of

29 sel ect="sunm(// prodsal e[@dref=%pid])"/></i>
30 </td></xsl:for-each></tr>

31 </t abl e>
32 </ body></htnl >

Information from the stylesheet and pulled from the source document:

the header and body title are hardwired content from stylesheet

the table's header row comes from each product name in source

the customer information is iterated over to produce rows (note use of variable)
- ‘sale information produces columns

total information is generated by stylesheet usung) built-in function (no custom

node-traversal programming needed)

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 53 of 148

Practical Transformation Using XSLT and XPath

Processing XML data with multiple XSLT /
stylesheets (cont.) ’\v‘[

Chapter 2 - Getting started with XSLT and XPath
Section 3 - More stylesheet examples

The composite stylesheatod- com xs| for the list (page 51) for the XML (page 50):

o <?xm version="1.0"?><!--prod-com xsl -->

02<l--XSLT 1.0 - http://ww. CraneSoftwights.conftraining -->

03 <xsl : styl esheet xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf
04 version="1.0">

05

s <xsl :tenplate match="/"> <l--root rule-->
o7 <htm ><head><titl|l e>Record of Sal es</title></head>

08 <body><h2>Record of Sal es</h2>

09 <xsl : appl y-tenpl ates sel ect="/sal es/record"/ >

10 </ body></ ht m ></ xsl : t enpl at e>

12 <xsl :tenplate match="record"> <l --processing for each record-->
13 <xsl : appl y-tenpl at es/ ></ ul ></ xsl : t enpl at e>

15 <xsl : tenpl at e mat ch="pr odsal e" > <l --processing for each sale-->

16 <l i><xsl:val ue-of select="../@un/> <l--use parent's attr-->
17 <xsl:text> - </xs|.text>

18 <xsl : val ue-of select="id(@dref)"/> <l--go indirect-->
19 <xsl:text> - </xsl:text>

20 <xsl :val ue-of select="."/></I|i></xsl:tenplate>

21
22

23 <[xsl : styl esheet >
Source document is pushed through the stylesheet:

- the header and body title are hardwired content from stylesheet

- the root rule pushes all sales records through the stylesheet

- each record produces thel > unordered list wrapper for list items and pushes child
elements through the stylesheet

- each child element pushed through produces a list item that pulls information from the
parent and from an arbitrary place of the source

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 54 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Processing XML data with multiple XSLT /
stylesheets (cont.) ’\v‘[

Chapter 2 - Getting started with XSLT and XPath
Section 3 - More stylesheet examples

The composite stylesheatod- wr . xsI for the WML (page 52) for the XML (page 50):

o <?xm version="1.0"?><!--prod-wr.xsl-->

02<l--XSLT 1.0 - http://ww. CraneSoftwights.conftraining -->
03 <xsl : styl esheet version="1.0"

04 xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

os <xsl : out put doctype-systen="http://CRANE/ wr 13. dtd"/>

06

o7 <xsl :tenpl ate match="/"> <l--root rule-->
s <wml ><card title="Record of Sales"> <!--index card-->
09 <p><enrRecord of Sal es</enk</p>

10 <p><sel ect nanme="cards">

1 <xsl : appl y-t enpl at es node="head"

12 sel ect ="/sal es/record/ cust"/>

13 </ sel ect ></ p></ card>

14 <xsl : appl y-tenpl ates sel ect="/sal es/record/cust"/>
15 </wm ></xsl| :tenpl at e>

17 <xSl :tenpl ate match="cust" node="head"><!--index entry-->
18 <option onpick="#{ @un}" >
19 <xsl : text/>Cust oner <xsl:val ue-of sel ect="@uni/>

20 </option></xsl:tenpl ate>

22 <xsl:tenplate match="cust"><!--custoner's card in deck-->
23 <card id="{@um" title="Custoner {@un}">

20 <p><enp<xsl :val ue-of select="@unl"/></enr</p>

s <p>ltens: <xsl:val ue-of select="count(prodsale)"/></p>
6 <p>Total: <xsl:value-of select="sun(prodsale)"/></p>

a7 <xsl :apply-tenpl at es/ ></card></ xsl : t enpl at e>

20 <xsl : tenpl ate mat ch="prodsal e"><!--proc for each sale-->

0 <p><xsl:val ue-of select="id(@dref)"/> <!--indirect-->
31 <xsl:text> - </xsl:text>
32 <xsl :val ue-of select="."/></p></xsl:tenpl ate>

33
34

35 </ xsl : styl esheet >
Source document is pushed through the stylesheet:

- the document element of the resukisgd >
- the same source is visited twice using different template rules for processing to prod:
different results

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 55 of 148

Practical Transformation Using XSLT and XPath

Chapter 3 - XPath data model

w/

- Introduction - The need for abstractions

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 56 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The need for abstractions

Chapter 3 - XPath data model }\kA‘(/

Dealing with information, not markup

- all input and output information manipulated in an abstract fashion

- minimum of three information structures: stylesheet, main source, result

- multiple source documents may be read as separate structures
- the result structure is constructed from the structures created from the styleshe
document and all source documents
- knowledge of input markup and control of output markup out of the hands of the
stylesheet writer
- the writer deals with nodes of information, not characters of markup

Traversing a source document or stylesheet document predictably

- interpreted as an abstract tree of nodes
- the contents of the documents are described according to a data model for the X
markup
- will be expressed in terms of a future version of the XML Information Set
- all nodes created are typed, and have a value that can be used as a string of t
- some nodes have an associated name, while other nodes are unnamed
- the XSLT processor performs all operations using the node trees, not using the
documents directly
- the actual markup used in‘inputinstances is not preserved
- there are no constraints or requirements of the XML source in that any
well-formed markup chosen by the author of an XML document is represente
abstractly in the tree
- XPath node tree navigation
- the stylesheet can navigate around the source node tree in many directions
- thirteen axes of direction that can be traversed relative to the context (current) nc
- the stylesheet s responsible for specifying which source nodes get processed w
and how

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 57 of 148

Practical Transformation Using XSLT and XPath
The need for abstractions (cont.)

Chapter 3 - XPath data model }\WA‘/

Consider the following depiction of a node tree:

(1) not shown: attribute and e ... *.@ncestor-or-self:
namespace nodes and axes

(2) letter order indicates nodes

' ancestor:; . *
in document order X

preceding:: Y AN &

parent:: @ @

preceding-sibling:: '.'I [OOSR L following-sibling::

self::

child::

descendant::

descendant-or-self::

the root of the tree is at the top

the leaves of the tree are towards the bottom

the context node in this example is in the center with the bold circle

the dotted lines completely surround the nodes of the tree that are members of each ax
relative to the context node

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 58 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The need for abstractions (cont.)

Chapter 3 - XPath data model }\kA‘(/

Building a result predictably

- created as an abstract tree of nodes
- the content of the desired result is described according to the same data mode
XML markup as is used for input
- the processing of a template builds a portion of the result as sub-tree of nodes
reflecting the output information
- the interpretation of a result template must be reliable and reproducible
- the XSLT processor acts on instructions the same way every time
- serialization instantiates markup syntax
- the emission of the result node tree (if so desired)
- in XML markup according to the standard
- the stylesheet writer doest control which markup constructs are used for
representing XML information
- the XSLT processor can make arbitrary decisions as long as the end resul
well formed
- using alternative markup or syntax conventions if made available by the XSLT
processor (e.g.: recognition of the desire to emit HTML 4.0 markup)

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 59 of 148

Practical Transformation Using XSLT and XPath
The need for abstractions (cont.)

Chapter 3 - XPath data model }\WA‘/

The XSLT instructions covered in this chapter are:

- <xsl:strip-space>
- Indicate those source tree nodes in which white-space-only text nodes are not to
be preserved.
- <xsl : preserve-space>
- Indicate those source tree nodes in which white-space-only text nodes are to be
preserved

The functions covered in this chapter are:

- last ()
- the number of nodes in the current node list
- position()
- the number of the current node in the current node list

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 60 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 4 - XSLT processing model

o/

- Introduction - A predictable behavior for XSLT processors

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 61 of 148

Practical Transformation Using XSLT and XPath

A predictable behavior for XSLT processors

Chapter 4 - XSLT processing model }\WA‘/

XSLT is designed to ensure predictability

- predictable processing behavior every time

all aspects of the processing are well-defined

processor sees stylesheet as a tree of nodes

some nodes of which are from the XSLT instruction vocabulary
some nodes of which may be from an extension instruction vocabulary
the remainder of which are literal result elements that are to be used in the result

processor sees the primary source file as a tree of nodes

the markup of the XML source document is not material
the vocabulary used in the source is not material to the XSLT processor

processing starts with the template rule for the root node

the only action presumed by the XSLT processor is that the template for the root
node be found and added to the result tree

the stylesheet shapes the content of the result tree

the stylesheet writer must plan the flow of the stylesheet process according to the
document order of the result

other source trees are created from other source files on request by the styleshee
components from the source trees are obtained where required when executing
instructions found in the stylesheet

once a portion of the result tree is.completely generated there is no method of
returning to modify the result tree in any way

the result tree of nodes may be serialized

interpreted XSL formatting objects (e.g.: display, print, aural, etc.)

XML markup

HTML markup

simple text

syntax conventions recognized by the particular implementation of the processor
(binary or text)

remember the XSLT processomist required to support any particulest hod=

and may choose to output the tree as XML only if at all

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Page 62 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

A predictable behavior for XSLT processors

(cont.) }\VAI/

Chapter 4 - XSLT processing model

A simple illustration of the basic process

- the stylesheet includes a single instruction that obtains information from a particular
point in the source tree

- not shown in this illustration are built in instructions and other templates copying the
child nodes of the target point in the source tree

XSL
Stylesheet d> Formatting
XSLT/XSL Objects
XML
XSL
H |::> Formatting

Objects
XSLT Processor
Stylesheet % g

XSL
Node Tree d> Formatting
(Templates) Objects

Source Result
gl [O B~
, [> XML

Source Tree o Tree

Result

d> HTML
Legend: ﬁ>
Q Source @ Literal Result Instruction

Node Node Node -

XML ' Instruction Execution

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 63 of 148

Practical Transformation Using XSLT and XPath

A predictable behavior for XSLT processors

(cont.) }\VAI/

Chapter 4 - XSLT processing model

The XSLT instructions covered in this chapter are as follows.
Instructions to pull information from the source tree or to calculate values:

- <xsl : val ue- of >
- add to the result tree the evaluation of an expression or the value of a source tree
node
- <xsl : copy- of >
- add to the result tree a copy of nodes from the source tree
- <xsl :for-each>
- iterate over a selection of source tree nodes using a supplied template

Instructions to push information from the source tree through the stylesheet:

- <xsl : appl y-tenpl at es>

- supply a selection of source tree nodes to push through template rules
- <xsl :tenpl at e>

- define a template rule

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 64 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 5 - The XSLT transformation environment

o/

- Introduction - The XSLT transformation environment

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 65 of 148

Practical Transformation Using XSLT and XPath

The XSLT transformation environment

Chapter 5 - The XSLT transformation environment }\WA‘/

Different ways are available to communicate to and from an XSLT processor

- some aspects of transformation are under stylesheet control
- others cannot be manipulated under stylesheet control

The XSLT instructions covered in this chapter are as follows.
Wrapping the content of a stylesheet:

- <xsl :styl esheet >

- encapsulate a stylesheet specification
- <xsl :transfornp

- encapsulate a stylesheet specification

Serializing the result tree:

- <xsl : nanespace- al i as>
- specify a result tree namespace translation
- <xsl : out put >
- specify the desired serialization of the result tree

Communicating with the operator:

- <xsl : nmessage>
- report a stylesheet condition to the operator
- <xsl : paranp
- supply a parameterized value from the operator

The functions covered in this chapter are as follows.
Environment functions:

- system property()
- accessing system-defined property strings

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 66 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 6 - XSLT stylesheet management /
o/

- Introduction - Why modularize logical and physical structure of stylesheets?

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 67 of 148

Practical Transformation Using XSLT and XPath

Why modularize logical and physical structure of
stylesheets?

Chapter 6 - XSLT stylesheet management

w/

Modularizing the logical structure supports development

- manipulating or reusing stylesheet fragments within a given stylesheet

(miml
Il
M
RN

D

This chapter overviews logical modularization using:

Page 68 of 148

XML internal general entities
XML internal general entities in marked sections in external parameter entities
XSLT variable bindings
XSLT named templates

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ

declaration and reuse of syntactic packages of stylesheet markup
parameterization of a template

writing a template once and using it many places
defining a value and referencing it many places

Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Why modularize logical and physical structure of

stylesheets? (cont.) ’\v‘l/

Chapter 6 - XSLT stylesheet management

Modularizing the physical entity structure supports reuse

- compartmentalization of code
- sharing and reuse of stylesheet fragments across an organization
- support for organizational rules for source code control and management
- access to any built-in custom extension function
- if available in the XSLT processor implementation

LA

y

B

This chapter overviews physical modularization using:

XML external parsed general entities
XSLT included files

XSLT imported files

XSLT extension functions

XSLT extension elements (instructions)

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 69 of 148

Practical Transformation Using XSLT and XPath

Why modularize logical and physical structure of

stylesheets? (cont.) ’\v‘l/

Chapter 6 - XSLT stylesheet management

The XSLT instructions covered in this chapter are as follows.
Instructions related to logical modularization:

<xsl:call-tenpl at e>

- process a stand-alone template on demand
<xsl :tenpl at e>

- declare a template to be called by name
<xsl : vari abl e>

- declare a non-parameterized variable and its bound value
<xsl : par an

- declare a parameterized variable and its default bound value
<xsl :wt h-parane

- specify a binding value for a parameterized variable

Instructions related to physical modularization:

<xsl :i ncl ude>
- include a stylesheet without overriding stylesheet constructs
<xsl:inport>
- import a stylesheet while overriding stylesheet constructs
<xsl : appl y-i nports>
- bypass the importation of template rules
<xsl:fall back>
- accommodate the lack of implementation of an instruction element

The functions covered in this chapter are as follows.
Availability functions:

- el enent - avai | abl e()

- determine the availability of an instruction element
- function-avail abl e()

- determine the availability of a function

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 70 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 7 - XSLT process control and result tree

Instructions }\VAI/

- Introduction - Managing the creation of result nodes

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 71 of 148

Practical Transformation Using XSLT and XPath

Managing the creation of result nodes

Chapter 7 - XSLT process control and result tree instructions }\WA‘/

Source tree not always processed one-to-one for the result:

may need to skip source nodes
may need to select between alternative results based on source
- arbitrary algorithm depending on the content
may need to reflect the positions of source tree nodes in different contexts
may need to create arbitrary result tree nodes
- independent of the source tree nodes

XSLT supports:

- selective template selection
- numbering of information found in the source tree
- synthesis of nodes and text in the result tree

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 72 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Managing the creation of result nodes (cont.)

Chapter 7 - XSLT process control and result tree instructions }\WA‘/

The XSLT instructions covered in this chapter are as follows.
Instructions related to process control:

<xsl:if>

- single-state conditional inclusion of a template
<xsl : choose>

- multiple-state conditional inclusion of one of a number of templates
<xsl : when>

- single-state conditional inclusion of a template within a multiple-state condition
<xsl : ot herw se>

- default-state conditional inclusion of a template within'a multiple-state conditiot

Instructions related to building the result tree:

- <xsl : nunber >
add a string to the result tree representing the position of the current node
- <xsl:attribute>
instantiate an attribute node in the result tree
- <xsl:attribute-set>
declare a set of attribute nodes for use in the result tree
- <xsl : comment >
instantiate a comment node inthe result tree
- <xsl : el enent >
instantiate an element node in the result tree
- <xsl :processing-instruction>
instantiate a processing instruction node in the result tree
- <xsl:text>
instantiate a text node in the result tree
- <xsl : copy>
instantiate a copy of the current node in the result tree
- <xsl : copy- of >
- instantiate a complete copy of a specified node in the result tree

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 73 of 148

Practical Transformation Using XSLT and XPath

Chapter 8 - XPath and XSLT expressions and /
advanced techniques ’\v‘[

- Introduction - XPath and XSLT functions and advanced techniques

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 74 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath and XSLT functions and advanced

techniques ’\v‘[/

Chapter 8 - XPath and XSLT expressions and advanced techniques

Powerful functions and expression support

this chapter describes functions and expressions to manipulate variables and value
the XPath and XSLT data types
- the XSLT processor implements the algorithms for publishing-oriented facilities
so that the stylesheet writer doesn't have to
value manipulation
- boolean functions and operators
- number functions and operators
- string functions
- node set functions and operator
access to the source node tree
- id()
- returns nodes with unique identifiers
- key()
- returns nodes that have stylesheet-declared relationships
- current()
- returns the current node of the start of expression evaluation
access to document model information
- unparsed-entity-uri ()
- returns URI associated with declared entity
access to multiple node trees
- docunent ()
- returns root nodes of source node trees from external files

Advanced techniques

- this chapter also describes an approach to walking the source node tree in search c
information in such a way that is impossible through available pattern matching
techniques.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 75 of 148

Practical Transformation Using XSLT and XPath

XPath and XSLT functions and advanced /
techniques (cont.) »\vl

Chapter 8 - XPath and XSLT expressions and advanced techniques

The XSLT instructions covered in this chapter are as follows.
Instruction related to string formatting:

- <xsl : deci mal - f or mat >
- control the formatting of numbers when added to the result tree

Instruction related to advanced access to the source node tree;

- <xsl : key>
- declare key nodes in the source tree node for bulk processing

Instruction related to advanced algorithmic techniques:

- <xsl:call-tenpl ate>
- use named templates with subroutine-like control

The functions covered in this chapter are as follows.
Functions related to boolean data types:

- bool ean()
- casting an argument to a booleanvalue
fal se()
- afixed boolean value
I ang()
- finding the in-scope language as specifieciny: | ang=
not ()
- inverting the boolean value of the argument
true()
- afixed boolean value

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 76 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath and XSLT functions and advanced
techniques (cont.)

Chapter 8 - XPath and XSLT expressions and advanced techniques

o/

Functions related to number data types:

ceiling()
- rounding a number up
fl oor ()

- rounding a number down
f or mat - nunber ()

- adding punctuation and controlling number display

nunber ()

- casting an argument to a number
round()

- rounding a number

sum)
- summing the numeric values of nodes

Functions related to string data types:

concat ()

- string concatenation
cont ai ns()

- string detection
normal i ze- space()

- normalizing extraneous spaces in a string
starts-w th()

- establishing the presence of a string
string()

- casting an argument to a string
string-1ength()

- finding the length of a string
substring()

- returning a portion of a string
substring-after()

- returning a portion of a string
substring-before()

- returning a portion of a string
translate()

- translating characters found in a string

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ

Page 77 of 148

Practical Transformation Using XSLT and XPath

XPath and XSLT functions and advanced
techniques (cont.)

Chapter 8 - XPath and XSLT expressions and advanced techniques

w/

Functions related to node data types:

count ()
- node counting
generate-id()
- establishing uniqueness in source node trees
| ocal - nanme()
- obtaining the local part of a node name
- nanme()
- obtaining a node name
nanmespace-uri ()
- obtaining the namespace URI for a node

Other functions:

- current()

- current node access
docunent ()

- access to multiple source documents
- id()

- accessing ID values in source node trees
key()

- accessing key nodes from key tables
unpar sed-entity-uri()

- finding the URI of an unparsed entity

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 78 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ

Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Chapter 9 - Sorting and grouping

o/

- Introduction - Sorting and grouping

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 79 of 148

Practical Transformation Using XSLT and XPath
Sorting and grouping

Chapter 9 - Sorting and grouping }\WA‘/

Sorting

An important part of many transformations is the need to re-order the source tree nodes intt
a sorted order for processing into result tree nodes:

- designed for sorting the current node list using a single value for each node
- value may be simple node value or may be any XPath evaluation relative to node
- multiple sort criteria when processing a set of nodes
- items being sorted are selected from the tree and the selection itself is sorted, no
the tree
- sorting can be language based, numeric based or based on custom semantics

This chapter covers how to specify sort criteria when writing XSLT stylesheets.

Grouping and uniqueness

Another important part of many transformations is the need to infer structure from the results
of sorting information, which is a process often called "grouping":

- composite information that must be separated and grouped by a common component
- selecting a single piece of composite information obtains all components
- a simple sort doesn't partition the composite information into constituent pieces
- no explicit support yet to group together a sequence of duplicate source tree nodes
- this is noted as a future consideration for XSLT
- this is a common requirement that exists today in many information processing
situations
- specific application of the generalized problem of finding unique values from a set
- often necessary to find unique values in a set of values
- unique values make up the group headings

This chapter covers two technigues of using XSLT to group constructs when processing:

- using reverse-document-order axes
- the "Muenchian Method" of usingsl : key>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 80 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Sorting and grouping (cont.)

Chapter 9 - Sorting and grouping }\kA‘(/

The XSLT instruction covered in this chapter is:

- <xsl :sort>
- specify a criterion with which to sort a set of nodes

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 81 of 148

Practical Transformation Using XSLT and XPath

Annex A - XML to HTML transformation

w/

- Introduction - Historical web standards for presentation

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 82 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Historical web standards for presentation /
Annex A - XML to HTML transformation }\ a (
L/

Recognizing that the purpose of many XSLT transformations will be to render informatior
over the World Wide Web, it is important to understand what different user-agent technolog
are currently available to be used:

- user agents do not inherently understand the presentation semantics associated witl
custom XML vocabularies

- can translate instances of our vocabularies into instances of a user agent vocabulary
HTML)

- can annotate instances of our vocabularies with formatting properties recognized by
user agent (e.g. CSS)

Hypertext Markup Language (HTML)

- alanguage for sharing text and graphics
- a hyperlinking facility for relating information

Extensible Hypertext Markup Language (XHTML)

- modularization of HTML
- reformulating HTML as XML
- support of arbitrary XML in HTML

Cascading Stylesheets (CSS)

- getting away from the built-in user agent rendering semantics
- describes document tree ornamentation with formatting properties

User Agent Screen Painting
- direct control of the user agent canvas

This annex overviews considerations for producing different flavors of HTML to support
different user agents. As well, stylesheet fragments illustrating common requirements to m
up images and links are described.

Issues of compatibility between different user agent implementations and recommended
markup practices are not reviewed in this material. A discussion of such issues can be fc
athttp://ww. w3. org/ TR/ xht m 1/ #gui del i nes.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 83 of 148

http://www.w3.org/TR/xhtml1/#guidelines

Practical Transformation Using XSLT and XPath

Annex B - XSL formatting semantics introduction

w/

- Introduction - Formatting objectives
Outcomes:
- awareness of the formatting objectives of the XSL development committee

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 84 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Formatting objectives

Annex B - XSL formatting semantics introduction }\WA‘/

The Extensible Stylesheet Language (XSL)

A catalogue of formatting objects and flow objects (each with properties controlling behavic
for rendering information to multiple media.

- addresses basic word-processing-level pagination

- semantic model for formatting
- expressed in terms of which XSL concepts can be described

- described as a vocabulary that can be serialized as XML markup
Sophisticated pagination and support for layout-driven documents

- DSSSL
- Document Style Semantics and Specification Language 1SO-10179

- W3C Common Formatting Model
- effort initially based on CSS

- vocabulary accommodates both heritages
- some constructs can be specified different ways with different names
- writing-direction-independent (absolute) and writing-direction-dependent (writing

mode relative) properties
Well-defined constructs

- express formatting intent

- according to the XSL formatting model
- available to the stylesheet writer

- for specification of a layout using the XSL formatting vocabulary
- managed and interpreted by the formatter

- that process responsible for rendering

- in response to a description of the layout

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 85 of 148

Practical Transformation Using XSLT and XPath

Formatting objectives (cont.)

Annex B - XSL formatting semantics introduction }\WA‘/

Effecting the formatting of XML with XSL formatting semantics

- transformation stylesheet
- itis the stylesheet writer's responsibility to write an XSLT transformation of the

XML source file into a result node tree composed entirely of formatting and flow
objects using the XSL vocabulary

- semantics interpretation
- an XSL processor implementing XSL formatting semantics recognizes the

vocabulary and renders the result

- unlike CSS
- the user's vocabulary is not supplemented with formatting properties

Intermediate result of rendering

- the XSL processor may, but need not, emit the result node tree as XML markup
- formatting and flow objects are XML elements
- properties are attribute/value pairs specified in the XML elements

- very useful for debugging stylesheets

This chapter briefly introduces concepts and basic constructs used in the XSL-FO 1.0
Recommendation, without going into the details of the vocabulary or markup required to
support these concepts. The topic of formatting objects and their semantics and markup
warrants an entire tutorial on its own and is thus separate from this tutorial.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 86 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Annex C - Instruction, function and grammar

summaries ’\v‘[/

- Introduction - Quick summaries
- Section 1 - Vocabulary and functions
- Section 2 - Grammars

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 87 of 148

Practical Transformation Using XSLT and XPath

Quick summaries

Annex C - Instruction, function and grammar summaries }\WA‘/

The XSLT 1.0 Recommendationratt p: / / www. w3. or g/ TR/ 1999/ REC- xsl t 19991116
and XPath 1.0 Recommendatiomat p: / / waww. w3. or g/ TR/ 1999/ REC- xpat-h- 19991116
are excellent and rigorous references to the facilities and function of these two
Recommendations.

This annex lists alphabetized references to the XSLT elements and the XSLT and XPath
built-in functions. Each entry notes the chapter in this book where the construct is primarily
described.

Also included is a summary of the grammars for patterns and string expressions from XSLT
and XPath, rendered with cross-references not found in the recommendations themselves.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 88 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

Practical Transformation Using XSLT and XPath

XSLT element summary /
Annex C - Instruction, function and grammar summaries }\ & (
Section 1 - Vocabulary and functions M

All elements in the XSLT vocabulary in alphabetical order follow. Note that the Kleene
operators '?', *' and '+' (respectively zero or one, zero or more, and one or more) are use
denote the cardinality of attributes and contained constructs. The content model operatol
and '|' (respectively sequence and alternation) are also used. The brace brackets '{' and
denote the use of an attribute value template. This information is mechanically derived fr
the XSLT 1.0 Recommendation.

appl y-i nmport s (instruction) - Why modularize logical and physical structure of
stylesheets? (page 70)

- XSLT 5.6 Overriding Template Rules
- o <xsl : appl y-inports/>

appl y-t enpl at es (instruction) - A predictable behavior for XSLT processors (page 64)

- XSLT 5.4 Applying Template Rules

- o <xsl : appl y-tenpl at es node="gnane" ?
02 sel ect =" node- set - expressi on" ?>
s (<xsl:sort>|<xsl:wth-paranp)*
0a </ Xxsl : appl y-tenpl at es>

attri but e (instruction) - Managing the creation of result nodes (page 73)

- XSLT 7.1 Creating Elements and Attributes

- oo <xsl:attribute name="gnane| {string-expression}"
02 nanespace="uri-reference|{string-expression}"?>

03 tenplate
oa </ Xxsl :attribute>
attribute-set (top level element) - Managing the creation of result nodes (page 73)

- XSLT 7.1 Creating Elements and Attributes

- o <xsl:attribute-set nane="gnane"
02 use-attri but e-set s="gnanes" ?>
3 <xsl:attribute>*
</ xsl:attribute-set>

cal | -tenpl at e (instruction) - Why modularize logical and physical structure of
stylesheets? (page 70)

- XSLT 6 Named Templates

- o <xsl:call-tenplate nanme="gnane" >
02 <xsl:wth-paranp*
03 <[xsl :icall-tenpl ate>

choose (instruction) - Managing the creation of result nodes (page 73)

- XSLT 9.2 Conditional Processing witi! : choose
- 0. <xsl : choose>

02 (<xsl:when>+, <xsl : ot herw se>?)

03 </ Xsl : choose>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 89 of 148

http://www.w3.org/TR/1999/REC-xslt-19991116.html#apply-imports
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Applying-Template-Rules
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Creating-Elements-and-Attributes
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Creating-Elements-and-Attributes
http://www.w3.org/TR/1999/REC-xslt-19991116.html#named-templates
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Conditional-Processing-with-xsl:choose

Practical Transformation Using XSLT and XPath
comment (instruction) - Managing the creation of result nodes (page 73)

- XSLT 7.4 Creating Comments
- o <xsl : comrent >

2 tenplate
03 </ xsl : comrent >

copy (instruction) - Managing the creation of result nodes (page 73)

- XSLT 7.5 Copying
- o1 <xSl:copy use-attribute-sets="gnanes"?>

2 tenplate
03 </ xsl : copy>

copy- of (instruction) - Managing the creation of result nodes (page 73)

- XSLT 11.3 Using Values of Variables and Parameters x¢ith copy- of
- o <xsl:copy-of sel ect="expression"/>

deci nal - f or mat (top level element) - XPath and XSLT functions ‘and advanced
techniques (page 76)

- XSLT 12.3 Number Formatting
- o <xsl : deci mal -f ormat deci nmal - separ at or ="char" ?

02 digit="char"?

03 gr oupi ng- separ at or="char"?
04 infinity="string"?

05 m nus-si gn="char"?

06 name="gnanme" ?

07 NaN="string"?

08 pattern-separator="char"?
09 per-mlle="char"?

10 per cent ="char™"?

1 zero-digit="char"?/ >

el ement (instruction) - Managing the creation of result nodes (page 73)

- XSLT 7.1 Creating Elements and Attributes
- a <xsl: el enent nanme="gnane|{string-expression}"

02 namespace="uri -reference| {string-expression}"?
03 use-attri but e- set s="gnanes" ?>
04 tengl ate

os </ xsl : el ement >

fal | back (instruction) - Why modularize logical and physical structure of
stylesheets? (page 70)

- XSLT 15 Fallback
- o <xsl :fall back>

02 tenplate
s </xsl : fall back>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 90 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Creating-Comments
http://www.w3.org/TR/1999/REC-xslt-19991116.html#copying
http://www.w3.org/TR/1999/REC-xslt-19991116.html#copy-of
http://www.w3.org/TR/1999/REC-xslt-19991116.html#format-number
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Creating-Elements-and-Attributes
http://www.w3.org/TR/1999/REC-xslt-19991116.html#fallback

Practical Transformation Using XSLT and XPath
f or - each (instruction) - A predictable behavior for XSLT processors (page 64)
- XSLT 8 Repetition

- nn<xsl:for-each sel ect ="node-set - expressi on">

o2 (<xsl:sort>*, tenpl ate)
03 </ xsl : for-each>

i f (instruction) - Managing the creation of result nodes (page 73)

- XSLT 9.1 Conditional Processing wit3| : i f
- a<xsl:if test="bool ean- expressi on">

02 tenplate
s</xsl:if>

i mport - Why modularize logical and physical structure of stylesheets? (page 70)

- XSLT 2.6 Combining Stylesheets
- o <xsl:inport href="uri-reference"/>

i ncl ude (top level element) - Why modularize logical and physical structure of
stylesheets? (page 70)

- XSLT 2.6 Combining Stylesheets
- 01 <XSl :include href="uri-reference"l>

key (top level element) - XPath and XSLT functions and advanced techniques (page 76)

- XSLT 12.2 Keys
- o1 <xsl: key match="pattern"

02 name="gnane"
03 use="expressi on"/ >

message (instruction) - The XSLT transformation environment (page 66)

- XSLT 13 Messages
- o <Xsl : message term nat e="yes| no" ?>

2 tenplate
03 </ Xxsl : message>

nanmespace- al i as (top level element) - The XSLT transformation environment (page 66)

- XSLT 7.1 Creating Elements and Attributes

- o <XsSl : nanmespace-alias result-prefix="prefix|#default"
02 styl esheet-prefix="prefix|#default"/>

nunber (instruction) - Managing the creation of result nodes (page 73)

- XSLT 7.7 Numbering
- o <XSl“ nunber count="pattern"?

02 format="string|{string-expression}"?

03 from="pattern"?

04 groupi ng- separator="char| {string-expression}"?
05 gr oupi ng- si ze="nunber | {stri ng- expressi on}"?

06 | ang="nnt oken| {stri ng- expressi on}"?

07

| etter-val ue="al phabetic|traditional |{string-expression}"?
08 | evel ="single|multiplelany"?

09 val ue="nunber - expr essi on"?/ >

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 91 of 148

http://www.w3.org/TR/1999/REC-xslt-19991116.html#for-each
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Conditional-Processing-with-xsl:if
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Combining-Stylesheets
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Combining-Stylesheets
http://www.w3.org/TR/1999/REC-xslt-19991116.html#key
http://www.w3.org/TR/1999/REC-xslt-19991116.html#message
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Creating-Elements-and-Attributes
http://www.w3.org/TR/1999/REC-xslt-19991116.html#number

Practical Transformation Using XSLT and XPath
ot her wi se - Managing the creation of result nodes (page 73)

- XSLT 9.2 Conditional Processing witis! : choose
- o <Xsl: ot herw se>

2 tenplate
s </ xsl : ot herw se>

out put (top level element) - The XSLT transformation environment (page 66)

- XSLT 16 Output
- o <xSl : out put cdat a-secti on-el enent s="gnanes"?

02 doctype-public="string"?

03 doct ype-systenr"string"?

04 encodi ng="string"?

05 i ndent ="yes| no" ?

06 nmedi a-type="string"?

07 met hod="xnl | ht m | t ext | gnane- but - not -ncnane" ?
08 om t-xm -decl arati on="yes| no"?

09 st andal one="yes| no"?

10 ver si on="nnt oken" ?/ >

par am(top level element) - Why modularize logical and physical structure of
stylesheets? (page 70)

- XSLT 11 Variables and Parameters

- o <xsl : par am nane="gnane"
02 sel ect =" expressi on" ?>

03 tenplate
0a </ Xsl : par anp

preserve- space (top level element) - The need for abstractions (page 60)

- XSLT 3.4 Whitespace Stripping
- o <Xsl: preserve-space el enments="t okens"/>

processi ng-i nstruction (instruction) - Managing the creation of result nodes (page 73)

- XSLT 7.3 Creating Processing Instructions
- o <XSl : processi ng-instruction name="ncnane| {stri ng-expression}">
02 t engl ate
03 </ Xsl : processing-instruction>
sort - Sorting and grouping (page 81)

- XSLT 10 Sorting

- o<xsl:sort case-order="upper-first|lower-first|{string-expression}"?
02
dat a-t ype="text | nunber | gnane- but - not - ncnane| {stri ng- expressi on}"?

03 | ang="nnt oken| { st ri ng- expressi on}"?
04 order ="ascendi ng| descendi ng| {stri ng- expressi on}"?
05 sel ect ="string-expression"?/>

stri p-space (toplevel element) - The need for abstractions (page 60)

- XSLT 3.4 Whitespace Stripping
- o <XSl:strip-space el enents="t okens"/>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 92 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Conditional-Processing-with-xsl:choose
http://www.w3.org/TR/1999/REC-xslt-19991116.html#output
http://www.w3.org/TR/1999/REC-xslt-19991116.html#variables
http://www.w3.org/TR/1999/REC-xslt-19991116.html#strip
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Creating-Processing-Instructions
http://www.w3.org/TR/1999/REC-xslt-19991116.html#sorting
http://www.w3.org/TR/1999/REC-xslt-19991116.html#strip

Practical Transformation Using XSLT and XPath
styl esheet - The XSLT transformation environment (page 66)

- XSLT 2.2 Stylesheet Element
- o <xsl : styl esheet version="nunber"

02 excl ude-resul t-prefixes="t okens"?
03 ext ensi on-el enent - prefi xes="t okens"?
04 id="id"?>

os (<xsl:inport>*, top-I|evel-el enents)
s </ Xsl : styl esheet >

t enpl at e (top level element) - A predictable behavior for XSLT processors (page 64)

- XSLT 5.3 Defining Template Rules
- a<xsl:tenplate match="pattern"?

02 node="gnane" ?
03 name="gnane" ?
04 priority="nunber"?>

os (<xsl:paranmp*, tenpl ate)
s </ xsl : tenpl at e>

t ext (instruction) - Managing the creation of result nodes (page 73)

- XSLT 7.2 Creating Text

- o <xsl:text disabl e-out put-escapi ng="yes| no"?>
oo #PCDATA
0z </ xsl : t ext >

transform- The XSLT transformation environment (page 66)

- XSLT 2.2 Stylesheet Element
- o1 <Xsl :transform versi on="nunber"

02 excl ude-resul t-prefi xes="t okens"?
03 ext ension-el ement - prefi xes="t okens"?
04 id="id"?>

os (<xsl:inport>* top-|evel-el enents)
o6 </ Xxsl : transfornp

val ue- of (instruction) - A predictable behavior for XSLT processors (page 64)

- XSLT 7.6 Computing Generated Text
- o <xsl :val ue-of select="string-expression"
02 di sabl e- out put - escapi ng="yes| no" ?/ >
vari abl e (top level element) - Why modularize logical and physical structure of
stylesheets? (page 70)

- XSLT 11 Variables and Parameters
- o <xsl:variabl e nane="gnane"
02 sel ect =" expr essi on" ?>

03 - tenplate
04 </ xsl : vari abl e>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 93 of 148

http://www.w3.org/TR/1999/REC-xslt-19991116.html#stylesheet-element
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Defining-Template-Rules
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Creating-Text
http://www.w3.org/TR/1999/REC-xslt-19991116.html#stylesheet-element
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Computing-Generated-Text
http://www.w3.org/TR/1999/REC-xslt-19991116.html#variables

Practical Transformation Using XSLT and XPath
when - Managing the creation of result nodes (page 73)

- XSLT 9.2 Conditional Processing witi! : choose
- o <xsl : when test ="Dbool ean- expressi on">
o2 tenplate
03 </ xsl : when>
wi t h- param- Why modularize logical and physical structure of stylesheets? (page 70)

- XSLT 11.6 Passing Parameters to Templates
- o1 <XSl : Wi t h- par am nane="gnange"
02 sel ect =" expressi on" ?>

03 tenplate
0a </ Xsl : Wi t h- par ane

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 94 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Conditional-Processing-with-xsl:choose
http://www.w3.org/TR/1999/REC-xslt-19991116.html#section-Passing-Parameters-to-Templates

Practical Transformation Using XSLT and XPath

XPath and XSLT function summary /
Annex C - Instruction, function and grammar summaries }\ & (
Section 1 - Vocabulary and functions M

All functions of both XPath and XSLT in alphabetical order follow. This information is
mechanically derived from the XPath 1.0 and XSLT 1.0 Recommendations.

bool ean - XPath and XSLT functions and advanced techniques (page 76)

- XPath 4.3 Boolean Functions
- bool ean bool ean(obj ect)

cei | i ng - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.4 Number Functions
- nunber ceiling(nunber)

concat - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.2 String Functions
- string concat(string, string, string*)

cont ai ns - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.2 String Functions
- bool ean contains(string, string)

count - XPath and XSLT functions and advanced techniques (page 78)

- XPath 4.1 Node Set Functions
- nunber count(node-set)

current - XPath and XSLT functions and advanced techniques (page 78)

- XSLT 12.4 Miscellaneous Additional Functions
- node-set current()

document - XPath and XSLT functions and advanced techniques (page 78)

- XSLT 12.1 Multiple Source Documents
- node-set docunent (-obj ect, node-set?)

el ement - avai | abl e - Why modularize logical and physical structure of stylesheets? {j@age

- XSLT 15 Fallback
- bool ean el enment-avail able(string)

fal se - XPath and XSLT functions and advanced techniques (page 76)

- XPath 4.3 Boolean Functions
- bool ean fal se()

f1 oor - XPath and XSLT functions and advanced techniques (page 77)

= XPath 4.4 Number Functions
- nunber floor(nunber)

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 95 of 148

http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-boolean
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-ceiling
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-concat
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-contains
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-count
http://www.w3.org/TR/1999/REC-xslt-19991116.html#function-current
http://www.w3.org/TR/1999/REC-xslt-19991116.html#function-document
http://www.w3.org/TR/1999/REC-xslt-19991116.html#function-element-available
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-false
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-floor

Practical Transformation Using XSLT and XPath
f or mat - nunber - XPath and XSLT functions and advanced techniques (page 77)

- XSLT 12.3 Number Formatting
- string format-nunmber(nunber, string, string?)

f uncti on-avai | abl e - Why modularize logical and physical structure of
stylesheets? (page 70)

- XSLT 15 Fallback
- bool ean function-available(string)

generate-id- XPath and XSLT functions and advanced techniques (page 78)

- XSLT 12.4 Miscellaneous Additional Functions
- string generate-id(node-set?)
i d - XPath and XSLT functions and advanced techniques (page 78)

- XPath 4.1 Node Set Functions
- node-set id(object)
key - XPath and XSLT functions and advanced techniques (page 78)

- XSLT 12.2 Keys
- node-set key(string, object)

| ang - XPath and XSLT functions and advanced techniques (page 76)

- XPath 4.3 Boolean Functions
- bool ean lang(string)

| ast - The need for abstractions (page 60)

- XPath 4.1 Node Set Functions
- nunber |ast()

| ocal - nane - XPath and XSLT functions and advanced techniques (page 78)

- XPath 4.1 Node Set Functions
- string | ocal -name(node-set?)

nanme - XPath and XSLT functions and advanced techniques (page 78)

- XPath 4.1 Node Set Functions
- string nane(node-set?.)

namespace-uri - XPath and XSLT functions and advanced techniques (page 78)

- XPath 4.1 Node Set Functions
- string nanmespace-uri(node-set?)

nor mal i ze-space - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.2 String Functions
- string normalize-space(string?)
not - XPath and XSLT functions and advanced techniques (page 76)

- XPath 4.3 Boolean Functions
- bool ean not(bool ean)

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 96 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.w3.org/TR/1999/REC-xslt-19991116.html#function-format-number
http://www.w3.org/TR/1999/REC-xslt-19991116.html#function-function-available
http://www.w3.org/TR/1999/REC-xslt-19991116.html#function-generate-id
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-id
http://www.w3.org/TR/1999/REC-xslt-19991116.html#function-key
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-lang
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-last
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-local-name
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-name
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-namespace-uri
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-normalize-space
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-not

Practical Transformation Using XSLT and XPath
nunber - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.4 Number Functions
- nunber nunber(object?)

posi ti on - The need for abstractions (page 60)

- XPath 4.1 Node Set Functions
- nunber position()

round - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.4 Number Functions
- nunber round(nunber)

starts-wi th - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.2 String Functions
- boolean starts-with(string, string)

string - XPath and XSLT functions and advanced techniques (page 77)
- XPath 4.2 String Functions
- string string(object?)
string-1ength - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.2 String Functions
- nunber string-length(string?)

substring-after - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.2 String Functions
- string substring-after(string, string)

subst ring- bef ore - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.2 String Functions
- string substring-before(string, string)

substring - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.2 String Functions
- string substring(string, nunber, nunber?)

sum- XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.4 Number Functions
- nunber sun{ node-set)

syst em property = The XSLT transformation environment (page 66)
- XSLT 12.4 Miscellaneous Additional Functions
- object system property(string)
t ransl at e - XPath and XSLT functions and advanced techniques (page 77)

- XPath 4.2 String Functions
- string translate(string, string, string)

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 97 of 148

http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-number
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-position
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-round
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-starts-with
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-string
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-string-length
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-substring-after
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-substring-before
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-substring
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-sum
http://www.w3.org/TR/1999/REC-xslt-19991116.html#function-system-property
http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-translate

Practical Transformation Using XSLT and XPath
true - XPath and XSLT functions and advanced techniques (page 76)

- XPath 4.3 Boolean Functions
- bool ean true()

unpar sed-entity-uri - XPath and XSLT functions and advanced techniques (page 78)

- XSLT 12.4 Miscellaneous Additional Functions
- string unparsed-entity-uri(string)

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 98 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.w3.org/TR/1999/REC-xpath-19991116.html#function-true
http://www.w3.org/TR/1999/REC-xslt-19991116.html#function-unparsed-entity-uri

Practical Transformation Using XSLT and XPath

XPath grammar productions

Annex C - Instruction, function and grammar summaries }\ & (
Section 2 - Grammars M
Location Paths (2)

[1] Locat i onPat h = Rel ati veLocat i onPat h[3]

| Absol uteLocati onPat h[2]
'/ Rel ativeLocati onPat h[3]?
| Abbrevi at edAbsol ut eLocat i onPat h[10]
[3] Rel ati veLocati onPat h = Step[4]
| Rel ativeLocationPath[3] '/' Step[4]
| Abbrevi at edRel ati veLocat i onPat h[11]

[2] Absol ut eLocat i onPat h

Location Steps (2.1)

[4] St ep ;= AXi sSpeci fi er[5] NodeTest[7] Predicate[8]*
| Abbreviat edSt ep[12]

[5] Axi sSpeci fier = AXi sNane[6]
| Abbrevi at edAxi sSpeci fi er [13]

Axes (2.2)

[6] Axi sName = '"ancestor'
"ancestor-or-self'
"attribute'

"child

‘ descendant"
“descendant - or-sel f'
"follow ng
"foll owi ng-sibling
' nanespace'’

parent’
“precedi ng’

" precedi ng-si bling'
"sel f°

Node Tests (2.3)
[7] NodeTest = NameTest [37]
| NodeType[38] ")
| ' processi ng-i nst ruction' ' (' Literal [29]

)

Predicates (2.4)
[8] Predicate
[9] Predi cateExpr

Abbreviated Syntax (2.5)

"[' PredicateExpr[9] ']
Expr [14]

[10] = "'//' RelativeLocati onPat h[3]
Abbr evi at edAbsol ut eLocat i onPat h
[11] = Rel ativelLocationPath[3] '//' Step[4]

Abbr evi at edRel at i veLocat i onPat h

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 99 of 148

Practical Transformation Using XSLT and XPath

[12] Abbr evi at edSt ep =

| .
[13] =@
Abbr evi at edAxi sSpeci fi er

Expressions (3)

Basics (3.1)
[14] Expr = O Expr[21]
[15] Pri mar yExpr = Vari abl eRef er ence[36]
| " (" Expr[14] ')’
| Literal [29]
| Nunber [30]
|

Functi onCal | [16]
Function Calls (3.2)

[16] Functi onCal | = FunctionName[35] ' (' (Argunent[17] (
Argument [17])*)2 ")’

[17] Ar gunent 1= Expr[14]

Node-sets (3.3)

[18] Uni onExpr ::= Pat hExpr [19]
| Uni onExpr[18] '|' PathExpr[19]

[19] Pat hExpr ::= Locat i onPat h[1]

| FilterExpr[20]

| FilterExpr[20] '/' RelativelLocationPat h[3]

| FilterExpr[20] '//' Rel ativeLlocati onPat h[3]
[20] Fi | t er Expr := Pri mar yExpr [15]

| FilterExpr[20] Predicate[8]

Booleans (3.4)

[21] O Expr = AndExpr [22]
| O Expr[21] 'or' AndExpr[22]
[22] AndExpr = Equal i t yExpr [23]
| AndExpr[22] ' and' EqualityExpr[23]
[23] Equal i t yExpr = Rel ati onal Expr [24]
| EqualityExpr[23] '=' Rel ational Expr[24]
| EqualityExpr[23] '!'=" Rel ational Expr[24]
[24] Rel at i onal Expr = Addi ti veExpr [25]

| Rel ational Expr[24] ' <' AdditiveExpr[25]
| Rel ational Expr[24] ' > AdditiveExpr[25]
| Rel ational Expr[24] ' <=' Additi veExpr [25]
| Rel ational Expr[24] ' >=' Additi veExpr [25]

Numbers (3.5)

[25] Addi t i veExpr = Ml tiplicativeExpr[26]
| AdditiveExpr[25] '+ MiltiplicativeExpr[26]
| AdditiveExpr[25] '-' MiltiplicativeExpr[26]
[26] Mul-ti pl i cativeExpr ;= Unar yExpr [27]

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 100 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

| MultiplicativeExpr[26] Ml ti pl yQper at or [34]

Unar yExpr [27]

| MultiplicativeExpr[26] 'div' UnaryExpr[27]

| MultiplicativeExpr[26] ' nod' UnaryExpr[27]
[27] Unar yExpr ::= Uni onExpr [18]

| '-' UnaryExpr[27]

Lexical Structure (3.7)

[28] Expr Token =0t L@ |
BERN RS

| NaneTest [37]

| NodeType[38]

| Qperator [32]

| Functi onNane[35]

| Axi sNane[6]

| Literal [29]

| Nunber [30]

| Vari abl eRef er ence[36]

[29] Li t er al =t [At]r o

I A

Digits[31] ('.' Digits[31]?)?

| Di gi t s[31]

[0-9] +

Qper at or Nanme[33]

|

|

|

[30] Number

[31]Digits >
[32] Oper at or >

Mul ti pl yQper at or [34]

LA N I R I = He
<= S >
[33] Oper at or Nane ‘and’ | 'or' | "nmod' | 'div

[

Q\ane[XML-Names-6] - NodeType[38]
'$" QNane[XML-Names-6]

[34] mul ti pl yOper at or
[35] Funct i onNane

[36] Vari abl eRef er ence
[37] NaneTest

| NCName[XML-Names-4] ':' ' *
| QName[XML-Names-6]

[38] NodeType = ' comment’
| "text’
| ' processing-instruction'
| ' node'

[39] Expr Wi t espace = S[XML-3]

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 101 of 148

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-NCName
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml#NT-S

Practical Transformation Using XSLT and XPath

XSLT grammar productions

Annex C - Instruction, function and grammar summaries }\WA‘/

Section 2 - Grammars

Template Rules (5)
Patterns (5.2)

[1] Pattern ;= Locat i onPat hPat t er n[2]

| Pattern[l] '|' LocationPathPattern[2]
[2] Locat i onPat hPat t ern ="'/' RelativePathPattern[4]?

| IdKeyPattern[3] (('/' | */1")

Rel ati vePat hPat t er n[4]) ?
| '//'? RelativePathPattern[4]
[3] | dKeyPat t ern n='id (' Literal [XPath-29]')"
| 'key' ' (' Literal[XPath-29]',"
Li t er al [XPath-29] ')"
[4] Rel ati vePat hPatt ern .= StepPat tern[5]
| RelativePathPattern[4] '/' StepPattern[5]
| RelativePathPattern[4] '//' StepPattern[5]

[5] St epPattern = Chi | dOr At t ri‘but eAxi sSpeci fi er [6]

NodeTest [XPath-7] Pr edi cat e[XPath-8F
[6] .= Abbr evi at edAxi sSpeci fi er [XPath-13]
Chi I dOr At tri but eAxi sSpeci fi er | ('child | "attribute')

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 102 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Annex D - Sample tool information

o/

Introduction - Sample questions for vendors
Section 1 - Java-based XSLT processors
Section 2 - Mike Kay's Saxon

Section 3 - Apache Xalan

Section 4 - James Clark's XT

Section 5 - Microsoft Internet Explorer

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 103 of 148

Practical Transformation Using XSLT and XPath

Sample questions for vendors /
Annex D - Sample tool information }\ - (
L/

Answers to the following questions may prove useful when trying to better understand an
XSLT product offering from a vendor. The specific questions are grouped under topical
guestions. This by no means makes up a complete list of questions as you may have your ow
criteria to add, nonetheless, they do cover aspects of XSLT that mayimpact on the styleshee
and transformation specifications you write.

- how is the product identified?
- what is the name of the XSLT processor in product literature?
- what value is returned by tlwgl : vendor system property?
- what value is returned by tlagl : vendor - ur | system property?
- what version of XSLT is supported (also returned byxthe ver si on system
property)?
- to which email address or URL are questions forwarded for more information in
general?
- to which email address or URL are questions forwarded for more information
specific to the answers to these technical questions?
- what output serialization methods are supported for the result node tree?
- XML?
- HTML?
- text?
- XSL formatting and flow objects?
- in what ways are the formatting objects interpreted (direct to screen? HTML?
PostScript? PDF? TeX? etc.)?
- other non-XML text-oriented methods different than the standard text method (e.g.
NXML by XT)?
- what are the semantics and vocabulary for each such environment?
- other custom serialization methods?
- what are the semantics and vocabulary for each such environment?
- what customization is available to implement one's own interpretation of result
tree semantics?
- is there access to the result tree as either a DOM tree or SAX events?
- does such access still oblige serialization to an external file?

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 104 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sample questions for vendors (cont.)

Annex D - Sample tool information }\WA‘/

- how does the processor differ from the W3C working drafts or recommendations?
- upon which dated W3C documents describing XSL, XSLT and XPath is the
software based?
- which constructs or functions are not implemented at all?
- which constructs or functions are implemented differently than in the W3C
description?
- what namespace URI values are used for those available constructs or functio
described differently or not described in W3C version?
- is the W3C recommended stylesheet association technique implemented for tf
direct processing XML instances?
- if so, can it be selectively engaged and disengaged?
- are any extension functions or extension elements implemented?
- what is the recognized extension namespace and the utility of the extension
functions and elements implemented?
- is there an extension function for the conversion of a result tree fragment
a node-set?
- are there any built-in extension functions or extension elements for the writir
of templates to an output URL?
- is the XT-defined extension elememnfocunent > and associated
namespace explicitly supported?
- can additional extension functions or extension elements (beyond those suppli
by the vendor) be added by the user?
- how so?
- are any extensions defined é¥sl t . or g supported?

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 105 of 148

Annex D - Sample tool information

Practical Transformation Using XSLT and XPath

Sample questions for vendors (cont.) /

W

- how are particular XSLT facilities implemented?

what is the implementation in the processadrmfent =" yes" for <xsl : out put >?
Is a method provided for defining top-lew&k| : par anm> constructs at invocation
time?

how is the<xsl : nessage> construct implemented?

which UCS/Unicode format tokens are supporteciat : number >?

which| ang= values are supported fexsl : sort >?

- how are XSLT errors reported or gracefully handled?

regarding template conflict resolution?

regarding improper content of result tree nodes (e.g. comments, processing
instructions)?

regarding invocation of unimplemented functions or features?

regarding any other areas?

can fatal error reporting (e.g. template conflict resolution or other errors) be
selectively turned on to diagnose stylesheets targeted for use with other XSLT
processors that fail on an error?

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Page 106 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Annex D - Sample tool information

Practical Transformation Using XSLT and XPath

Sample questions for vendors (cont.) /

s

- what are the details of the implementation and invocation of the XSLT processor?

which hardware/operating system platforms support the processor?
which character sets are supported for the input file encoding and output
serialization?

what is the XML processor used within the XSLT processor?

- does the XML processor support minimally declared internal declaration
subsets with only attribute list declarations Dftyped attributes?

- does the XML processor support XML Inclusions (Xinclude)?

- does the XML processor support catalogues for public identifiers?

- does the XML processor validate the source file?

- can this be turned on and off?
can the processor be embedded in other applications?
- can the processor be configured as a servlet in a web server?
- is there access to the result tree as either a DOM tree or SAX events?
Is the source code of the processor available?
- in what language is the processor written?
for Windows-based environments:

- can the processor be invoked from the MSDOS command-line box?

- can the processor be invoked from a GUI interface?

- what other methods of invocation can be triggered (DLL, RPC, etc.)?

- can error messages be explicitly redirected to a file using an invocation
parameter (since, for example, Windows-95 does not allow for redirection
of the standard error port to a file)?

does the processor take advantage of parallelism when executing the styleshe
or is the stylesheet always processed serially?

does the processor implement tail recursion for called named templates?
does the processorimplement lazy evaluation for XPath location path expressi
evaluation?

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 107 of 148

Practical Transformation Using XSLT and XPath
Working with Java-based processors /
Annex D - Sample tool information }\ & (
Section 1 - Java-based XSLT processors M

An environment for j ar Java object files

- http://java. sun.comj 2se/
An environment for Windows-basedxe compiled Java object files

- http://ww. nm crosoft.comjava
- requires Internet Explorer 4 or above

Typical messages or indications when the Microsoft Java Virtual Machine is either not found
or needs to be updated to a more current version are as follows:

- The Mcrosoft virtual nmachi ne cannot be found.

- The parameter is incorrect.

Invalid class.

the output generated using Saxon is always the empty file

When attempting to execute the Java runtime environment or the WindowvBles, typical
messages when the program cannot be found on the execution path are as follows:

- Bad command or file name
- The name specified is not recogni zed as an. .

Recall that in any version of Windows the execution path can be temporarily changed in an
MSDOS window by the command:

- set path=directory-with-exe-file; %ath%

- note that when using Windows NT, the control panel setting of the system path
environment variable does not impact any already-open command line windows and it
IS necessary to exit and restart the command line window

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 108 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://java.sun.com/j2se/
http://www.microsoft.com/java

Practical Transformation Using XSLT and XPath
Invoking Saxon /
Annex D - Sample tool information }\ & (
Section 2 - Mike Kay's Saxon M

Using Saxon as a Java program

A source version of the tool is available through links in the web-based documentation, wh
includes details on the invocation parameters:

- http://saxon. sf. net
Requires the following file to be found on the class path:
- saxon.j ar

A sample invocation batch file using Java runtime environment JRE is as follows (a derivat
of this file can be found in thepr og directory of the sample files):

o @cho of f

o2 REM xsl tj avasaxon. bat

os REM check argunents: %l=source XM, %2=script XSL, 9%3=result XM
i f a% == a goto :noout

05

s REM envi ronnment: SET saxon=p:\ saxon\ saxonj avacur\
o echo | nvoki ng Saxon jar. ..

s j ava -cp "%axon% ¥%saxon¥saxon.jar" A

09 comicl.saxon. Styl eSheet -0 %3 % %R

10 REM post - process results

ugoto :done

12

13 . hoout

1w echo Saxon Args: input sytlesheet out put

15 got o :done

16

17 > done

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 109 of 148

http://saxon.sf.net

Practical Transformation Using XSLT and XPath

Invoking Saxon (cont.) /
Annex D - Sample tool information }\ & (
Section 2 - Mike Kay's Saxon M

Note how on line 8 in the above example, the invocation file is expecting.the environment
variable namedaxon to be set to the directory in which the required Java files are found
(commented out in line 6):

- set saxon=directory-with-required-files

- note the trailing directory separator character must be included in the value

- this is not obligatory as the invocation file can be changed to specify the locations of
the. j ar files explicitly

Note also that the invocation file is not complete with respect to passing top-level parametel
binding values.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 110 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Invoking Saxon (cont.) /
Annex D - Sample tool information }\ & (
Section 2 - Mike Kay's Saxon M

Using Saxon as a Windows executable

An executable version of the tool nanszdon. exe and using the Microsoft Java Virtual
Machine is available through links in the web-based documentation:

- is described in the information file for "Instant Saxonhtatp: / / saxon. sf . net
- requiressaxon. exe file to be found on the execution path

A batch file can wrap the invocation of Saxon with preprocessing and post-processing
commands, rather than invoking Saxon directly:

o @cho off

02 REM xsl| saxon. bat

s REM ar gunents: %=source XM, % =script XSL, %B=result XM
o« €cho | nvoki ng Saxon executable. ...

05

os REM do preprocessing here

07

sl f exist ..\prog\saxon.exe goto :usedirect
09

10 : usepath

usaxon -o %3 %W w2

12 got o :done

13

14 > usedi rect

15..\prog\saxon -0 %3 % W

1 got o :done

17

18 - done

19

20 REM do post processing here

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 111 of 148

http://saxon.sf.net

Practical Transformation Using XSLT and XPath

Invoking Saxon (cont.) /
Annex D - Sample tool information }\ & (
Section 2 - Mike Kay's Saxon M

This indirect invocation appears to behave the same way as direct invocation:
o G\ xsl t\sanp>. .\ prog\xsl saxon hello.xm hello.xsl hello.htm

03 C:\ xsl t\sanp>type hello. htm
0a <i ><u>Hel | o worl d. </ u></i>
os C.\ xsl t\ sanp>
Not shown above are two (of many) aspects of invocation not engaged by the example batc
file:
- additional command line parameters following the source, stylesheet and output provide
binding values for top-level parameters:
- par anet er - nane=par anet er - val ue
- using the a command line option engages the recognition of the stylesheet association

processing instruction

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 112 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Invoking Xalan

Annex D - Sample tool information }\ & /
Section 3 - Apache Xalan M

Using Xalan as a Java program

A source version of the tool is available through links in the web-based documentation, wh
includes details on the use of the processor:

- http://xm . apache. or g/ xal an- |
- includes Xerces XML processoyar file

Version 2.0D06 requires the following files to be found on the class path:

- xal an.j ar
- xerces.jar

A sample invocation batch file using the Java runtime environment is as follows (this file ¢
be found in the pr og directory of the sample files):

o @cho of f

02 REM xsl t j avaxal an. bat

s REM check argunents: %l=source XM., 9%2=script XSL, %3=result XM
wif a% == a goto :noout

05

61 f not exist ..\prog\xalan.jar goto :noenv

o1 f not exist ..\prog\xerces.jar goto :noenv

08

wecho I nvoking Xal an/ Xerces jar: "%" with "9%" to "u%3"

onjava -cp "..\prog\xal an.jar;..\prog\xerces.jar"

or g. apache. xal an. xslt. Process -in % -xsl % -out %3

1 goto :done

12

13 1 noenv

wif not exist ..\prog\xalan.jar echo "xalan.jar" does not exist in
..\ prog\

51 f not exist ..\prog\xerces.jar echo "xerces.jar" does not exist in
..\ prog\

1 got 0 : done

17

18 . hoout

1vecho Xal an Args: input styl esheet out put

20 got 0 : done

21

22 > done

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 113 of 148

http://xml.apache.org/xalan-j

Practical Transformation Using XSLT and XPath

XT differences from W3C XSLT/XPath /
Recommendations ’\v‘[

Annex D - Sample tool information
Section 4 - James Clark's XT

This is a Java-based implementation of XSLT and XPath that:

- Is described in the information file t p: / / ww. j cl ar k. com? xm / xt. ht i in detall

- follows the XSL Transformations recommendation very closely with few exceptions
(noted in detail in the information file)

- notably, there is no implementation<ofs! : key>

- does not interpret the XSL Formatting Object vocabulary

- does not report very many kinds of errors and will recover silently in many areas

- is acknowledged by the author to be only a beta release

- is documented regarding how to be used as a servlet

- is available with full source code

- is available as a Windows executable dependent only on the Microsoft Java Virtual
Machine

Although a few of the more esoteric features are not implemented, the tool can be used for
most typical uses of the XSLT recommendation.

XT includes implementations of element, function and serialization method extensions
illustrating the extensibility of the XSLT language.

A support site dedicated to XT istatt p: / /www. 4xt . org/ .

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 114 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.jclark.com/xml/xt.html
http://www.4xt.org/

Practical Transformation Using XSLT and XPath

Extension element: Multiple output documents /
Annex D - Sample tool information }\ = (
Section 4 - James Clark's XT M

Creating separate result trees

xm ns: prefix="http://ww.jclark.conf xt"

<prefix: docunment >

only thehr ef = attribute is required, other attributes are optional

hr ef =" out put - URL- of - docunment " (an attribute value template) specifies the name
and location of the document created by the processor

other attributes are identical to and override any stylesheet ggelofout put > (e.g.

met hod=, described in Chapter 5 The XSLT transformation environment (page 65)),
and arenot attribute value templates

the template content of this extension instruction element is written to the specified Ul

Consider the need to create a number of inter-linked HTML documents from a single XM
source as in this following example:

the content of each HTML file comes from portions of the source tree
the XML use ofl D andi DREF typed attributes ensure self-referentially correct linking
in the source:
- <link idref="doc2"/>is a link to.document 2 found in the content portion of
document 1
- <linkend id="doc2"/> is the target of the link and is found in document 2
the corresponding emission of the links must create HTML hyperlink (anchor) markt
utilizing the document identifiers from ancestral elements:
- is needed in the generated t ht nlL. ht mas
the source
- is needed imul t ht n2. ht mas the target

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 115 of 148

Practical Transformation Using XSLT and XPath
Extension element: Multiple output documents /

V'S
(cont.) ’\M
Annex D - Sample tool information

Section 4 - James Clark's XT

The following XML sourcerul t ht m xnml describes two documents and links between them:

o1 <?xm version="1.0"7?>

02 <! DOCTYPE test |

os <! ATTLI ST linkend id | D #REQUI RED>

04] >

s <t est >

s <doc file="nulthtnl. htm'>

or <head><titl| e>Test Qutput 1</titl e></head>
s <body><I i nkend i d="docl1"/>

oo <p>This is a link to <link idref="doc2"/>
10 from docunent 1.</p>

u </ body>

12 </ doc>

1 <doc file="nmulthtnR. htni>

1w <head><titl e>Test Qutput 2</titl e></head>
15 <body><| i nkend i d="doc2"/>

s <p>This is a link to <link idref="docl"/>
17 from docunent 2. </p>

18 </ body>

19 </ doc>

20 </ test>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 116 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Extension element: Multiple output documents /

V'S
(cont.) ’\M
Annex D - Sample tool information

Section 4 - James Clark's XT

The following XSL sourceul t ht m xsl utilizes XT's extension instruction and creates the
described hyperlinked files:

o <?xm version="1.0"?><!--nul thtm xsl-->

02<!--XSLT 1.0 - http://ww. CraneSoftwrights.comtraining -->

o3 <XsSl : styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{
04 version="1.0"

05 xm ns: xt="http://ww.jclark.con xt"

06 ext ensi on-el ement - prefi xes="xt">

07

s <xsl :tenplate match="/">

oo <xsl:for-each select="//doc"> <!--copy docunents out as HITM.-->

10 <xt:docunment nmethod="htm" href="{@ile}">
11 <htnm >

12 <xsl :appl y-tenpl ates select="*"/>

13 </htm >

14 </ xt : docunent >

15 </xsl:for-each>
16 </ Xsl : tenpl at e>

18 <Xsl:tenplate match="link"> <!--create |link to other docunent-->
v

20 <xsl :val ue-of select="@dref"/>

21 </ a>

22 <[xsl : tenpl at e>

22 <xsl :tenpl ate match="I1i nkend" > <l--create anchor for |inks-->
s

26 <[xsl : tenpl at e>

27 <l--all other elenents just copied-->
23 <xsl:tenplate match="*|@">

29 <xsl:copy>

30 <xsl :apply-tenplates select="*|@|text()"/>

s </ xsl:copy>

32 <[xsl :tenpl at e>

33

aa </ xsl : styl esheet >

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 117 of 148

Practical Transformation Using XSLT and XPath
Extension element: Multiple output documents /

V'S
(cont.) ’\M
Annex D - Sample tool information

Section 4 - James Clark's XT

Each output file is produced containing the link to the other, as in the first document:

oo <htnml >

0z <head>

3<title>Test Qutput 1</title>

s </ head>

os <body>

s

o7 <p>This is a link to doc2</ a>
os from docunent 1.</p>

0o </ body>

w</htm >

And as in the second document:

oo <htnml >

0z <head>

3 <title>Test Qutput 2</title>

s </ head>

05 <b0dy>

s

o7 <p>This is a link to docl
s from docunent 2. </p>

g </ bOdy>

w</htm >

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 118 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Extension functions: Node set manipulation /
Annex D - Sample tool information }\ & (
Section 4 - James Clark's XT M

Creating and manipulating node sets:

- xmns:prefix="http://ww.jclark.con xt"
- prefix: node-set(result-tree-fragnment-or-node-set)
- used to convert a result tree fragment variable into a node set
- the node set returned is a single unnamed node similar to a root node in that t
child constructs of the variable declaration become child nodes of the unnamet
node returned by the function
- prefix:intersection(first-node-set, second-node-set)
- return as a node set the members of the first node-set argument that are also
members of the second node-set argument
- prefix:difference(first-node-set, second-node-set)
- return as a node set the members of the first node-set argument that are not men
of the second node-set argument

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 119 of 148

Practical Transformation Using XSLT and XPath
Extension functions: Node set manipulation (cont.) /
Annex D - Sample tool information }\ A (
Section 4 - James Clark's XT M

The stylesheett nodes. xsl! illustrates the use of all three:

o1 <?xm version="1.0"?><!--xtnodes. xsl -->

02<l--XSLT 1.0 - http://ww. CraneSoftwights.conftraining -->
03 <! DOCTYPE xsl : styl esheet |

oo <IENTITY nl " 
 ">

0s | >

s <XSl : styl esheet xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf
07 xm ns: xt="http://ww.jclark. conl xt"

08 version="1.0">

0o <xsl : out put net hod="text"/>

u<xsl:tenplate match="/"> <l--root rule-->
12 <xsl:variabl e nane="data"> <l--a fragnent wth 4 elenents-->
13 <a>The A el enent </ a>The B el enent </ b>

14 <c>The C el enent </ c><d>The D el enent </ d>

15 </ xsl:variabl e>

16 <l --process children of the node returned by the function-->
17 <xsl:for-each sel ect ="xt:node-set($data)/*">

18 <xsl :val ue-of select="."/><xsl:text>&nl;</xsl:text>

v </ xsl:for-each>

0 <!--determne intersection and difference using two children-->
a1 <xsl:text>Intersection: </xsl:text><xsl:text>&nl;</xsl:text>

22 <xsl:for-each select="xt:intersection(xt:node-set($data)/*,

23 Xt : node- set ($dat a)/ b|
24 xt: node-set ($data)/c)">
25 <xsl : val ue-of select="."/><xsl|:text>&nl; </ xsl:text>

26 </ xsl:for-each>
27 <Xsl:text>Di fference: </ xsl:text><xsl:text>&nl;</xsl:text>
28 <xsl:for-each sel ect="xt:difference(xt:node-set($data)/*,

29 Xt : node- set ($dat a)/ b|
30 xt: node-set ($data)/c)">
31 <xsl :val ue-of select="."/><xsl:text>&nl; </ xsl:text>

2 </ xsl:for-each>
a3 </ xsl :tenpl at e>
34

35 </ xsl : styl esheet >

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 120 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extension functions: Node set manipulation (cont.) /
Annex D - Sample tool information }\ A (
Section 4 - James Clark's XT M

The results when running the stylesheet with any file as input are as follows (note that sii
the stylesheet itself is an XML file, it is acceptable to be used as a source file; the stylest
Is not performing any operations on the source tree nodes):

o G\ xsl t\sanp>xt xtnodes. xsl xtnodes. xsl
02 The A el ement
s The B el ement
s The C el ement
os The D el ement
s | Nt ersecti on:
oz The B el ement
s The C el ement
e Di fference:

10 The A el enent
1 The D el enent
12

13 G\ xsl t\ sanp>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 121 of 148

Practical Transformation Using XSLT and XPath
Extension functions: Java library access /
Annex D - Sample tool information }\ & (
Section 4 - James Clark's XT M

The Java platform has a number of packages of classes that are formally described at:

- http://java. sun. com products/jdk/ 1.2/ docs/api/index. htm
- each package has a name, eig!"
- each class in each package has a name, B.ge

XT provides access to the methods in a class by declaring a namespace prefix whose associa
URI points to the class; access to the functions then uses the method names within that
namespace as in the following example for the class above:

- xmns:prefix="http://ww.jclark.com xt/javal/java.io.File"
- point to theFi | e class in the o package

- prefix:new(string)
- returns &i | e object with the given string as the file name

- prefix:exists(File-object)
- returnst r ue orf al se if the file exists or not

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 122 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://java.sun.com/products/jdk/1.2/docs/api/index.html

Practical Transformation Using XSLT and XPath

Extension functions: Java library access (cont.) /

Annex D - Sample tool information

&‘ N
Section 4 - James Clark's XT M

Consider a stylesheet that reads an instance of file names and reports whether or not the .
files exist:

o1 <?Xxm version="1.0"?><!--exists.xsl-->

02<!--XSLT 1.0 - http://ww. CraneSoftwrights.conmtraining -->
s <! DOCTYPE xsl : styl esheet [<!ENTITY nl "
">]>

oa <Xsl : styl esheet version="1.0"

05 xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf

06 xmns:file="http://ww.jclark.conm xt/javaljava.io.File">
07

o8 <xsl : out put net hod="text"/>

09

10 <xsl :tenplate match="/">

un <xsl:if test="not(function-available('file:exists') and

12 function-available('file:new))">

13 <xsl : nessage term nate="yes">

14 <xsl:text>Required Java file facilities </xsl:text>

15 <xsl :text>are not avail abl e</ xsl : t ext >

16 </ xsl : message>

17 </ xsl:if>

18 <xsl:for-each select="//file"> <l--process each file-->
19 <xsl:text>Fil e </xsl:text><xsl:val ue-of select="."/>

20 <xsl:text> </xsl:text> <l--display file nane-->
21 <xsl : choose> <I--report existence-->
22 <xsl:when test="file:exists(file:newmstring(.)))">

23 <xsl : text >exi st s&nl ; </ xsl : text >

24 </ xsl : when>

25 <xsl : ot herw se>

26 <xsl : t ext >does ‘not exi st &l ; </ xsl : text>

27 </ xsl : ot herw se>

28 </ xsl : choose>

20 </ xsl:for-each>
0 </ xsl :tenpl at e>
31

a2 <[xsl : styl esheet >

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 123 of 148

Practical Transformation Using XSLT and XPath
Extension functions: Java library access (cont.) /
Annex D - Sample tool information }\ A (
Section 4 - James Clark's XT M

Consider executing the stylesheet onethiest s. xml source file:

o <?xm version="1.0"?>
n<fil es>
ns<file>exists.xm</file>
oa <f il e>exists.junk</file>
s <file>exists.xsl</file>
6 </files>

The following is the result of executing the stylesheet:

o C:\ xsl t\sanp>xt exists.xm exists.xsl
oo File exists.xm: exists

o3 Fi |l e exists.junk: does not exist

o« Fil e exists.xsl: exists

05

s C:\ xsl t\ sanp>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 124 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Extension method: Non-XML serialization /
Annex D - Sample tool information }\ & (
Section 4 - James Clark's XT M

XT supports an extension output method to emit escapable non-XML text (different seman
than the XSLT text output method; available in XT in advance of the standardization of tt
text output method):

- named thedxn " method and requested using the extension namespace URI for XT
- xmns:prefix="http://ww.jclark.conf xt"
- met hod="prefix: nxm "

- expects the result tree to conform to a simple document model that follows

oo < ELEMENT nxm (escape*, (control | data)*)> <!--docunent elem-->
02 <I--tell XT which characters to escape when found in <data>-->
03 <! ELEMENT escape (#PCDATA | char)*>

oa <I ATTLI ST escape char CDATA #REQUI RED> <l--character val ue-->
05 <I--information in <data> is escaped by XT when necessary-->
os <! ELEMENT dat a (#PCDATA | data | control)*>

07 <l--all information in <control> is passed untouched by XT-->
os <! ELEMENT control (#PCDATA | char | data | control)*>

0o <I ELEMENT char EMPTY> <I--emt a single character by XT-->
10 <! ATTLI ST char nunmber NMIOKEN #REQUI RED> <! --character val ue-->

To create raw text output from an XML file source, transform the source into a result tree
instance according to the Non-XML document model and XT will interpret that instance in
a stream of text characters using the character set indicateddny thié ng= attribute (if
present) used in thexsl : out put > element.

This is different than the ramet hod="t ext " output method that is part of XSLT in that it
provides:

- a customizable escaping mechanism for characters that are sensitive to processes !
the output

- control over which contentis subject to the customized escaping and which content
written out in clear text

- the ability to specify the arithmetic value (possibly the result of a calculation) of a
character code point for serialization

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 125 of 148

Practical Transformation Using XSLT and XPath

Extension method: Non-XML serialization (cont.) /
Annex D - Sample tool information }\ A (
Section 4 - James Clark's XT M

Element typenxxn (line 1):
- required document element of result tree

Element typeescape (lines 2-4):
- optional and repeatable declaration of a sensitive character
- declares each characterdat a elements that is considered sensitive and needs to

be translated on output
- the attributechar = specifies the sensitive character needing translation

- the character data of the element is the sequence to emit in the output file in

place of the sensitive character
- only sensitive characters found in #uat a> elements are translated; those found

in the<cont r ol > elements are not touched

Element typeaiat a (lines 5-6):
- result content where sensitive characters are significant
- sensitive characters are translated to their declared replacement sequences
- all other data is written in clear non-escaped characters

Element typecont rol (lines 7-8):

- result content where all data is written in clear non-escaped characters
- sensitive characters are not recognized or treated specially

Element typehar (lines 9-10):

- a numerically calculated character
- an output character described by the numeric value oiutiteer = attribute

- useful when the character is unprintable
- for example, most control characters below hex 20 are not valid in an XML

file, so cannot be specified in either a source file or stylesheet file
- useful when the character is generated algorithmically
- is an attribute value template

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 126 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Extension method: Non-XML serialization (cont.) /
Annex D - Sample tool information }\ A (
Section 4 - James Clark's XT M

Consider the following stylesheet using the XT NXML serialization method:

o1 <?xm version="1.0"?><!--nxm . xsl-->

02<l--XSLT 1.0 - http://ww. CraneSoftwights.conftraining -->
03<l--XT (see http://ww.jclark.com xm/xt.htm)-->

oa <XSl : styl esheet xm ns: xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf
05 version="1.0">

06

o7 <!--encoding attribute fromsuffix of sun.io.BytelToCharLatinl-->
o8 <xsl : out put net hod="xt: nxm "

09 encodi ng="Lati n1"

10 xm ns: xt="http://ww.jclark.com xt"/>

11

12 <xsl :tenplate match="/"> <l--kind of text being produced-->
13 <nxmnl >

14 <escape char="\">\\</escape> <l --escape any back sl ashes-->
15 <dat a><xsl : appl y-t enpl at es/ ></ dat a> <I--transl ate <data>-->

16 </ nxm >
17 </ xsl : tenpl at e>

19 <xSl : tenpl at e mat ch="Nane| Addr ess" > <I--prefix information-->
20 <xsl:val ue-of select="nanme(.)"/> <xsl:value-of select="."/>
a1 </ xsl :tenpl at e>

23 <xsl :tenpl ate mat ch="char Val ue"> <!I'--don't translate <control >-->
24 <control ><xsl :text>\</xsl|:text>

25 <xsl :val ue-of sel ect="@al "/>-<char nunber="{@al }"/>
26 <xsl :text>\</xsl:text>

27 </control >

23 <[xsl :tenpl at e>

29

a0 </ xsl : styl esheet >

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 127 of 148

Practical Transformation Using XSLT and XPath

Extension method: Non-XML serialization (cont.) /
Annex D - Sample tool information }\ A (
Section 4 - James Clark's XT M

Consider an XML file of information to be translated to simple text with\thelaracter
used as an escape character and delimiter for explicit character numbers:

0 <?xm version="1.0"?>

02 <t est ><Name>Cr ane Softw i ghts Ltd. </ Nane>

0z <Addr ess>Box 266, Kars, ON Canada</ Address>

s <i Nfo>Test with chars:

s & t; \ &anp; <charVal ue val ="38"/> end. </i nf o>
s </t est>

The following is the output, with\X " representing a singleé ™ and a single\"™" delimiting
special characters:

oo Name: Crane Softwights Ltd.
02 Addr ess: Box 266, Kars, ON Canada
s Test with chars: < \\ & \38-& end.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 128 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Character encoding for the serialized result /
Annex D - Sample tool information }\ & (
Section 4 - James Clark's XT M

Serialization methodncodi ng= attribute of<xsl : out put > control element

- only for HTML, text and NXML serialization methods
- not supported for XML serialization, which is fixed as UTF-8
- the character set used when serializing the result tree (descr®edpter 5 The XSLT
transformation environment (page 65)) can be specified
- when not specified, this defaults to that supported by the Java virtual machine
- a specified attribute value is prefixed by the strisygn’ i 0. Byt eToChar " to
determine the Java virtual machine encoding class to be utilized
- for example, on the JRé&ncodi ng="15S08859_1" will engage the
"sun. i o. Byt eToChar | SO8859_1. cl ass" when serializing the result tree
- for example, on both the JRE and the Microsoft Java Machine
encodi ng="Lat i n1" willengage thesun. i o. Byt eToChar Lat i n1. cl ass"
when serializing the result tree
- to determine which encoding values are supported by a particular Java virtt
machine, review a listing of the methods in the class libraries in alphabetic
order to group all available classes contiguously

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 129 of 148

Practical Transformation Using XSLT and XPath

Invoking XT /
Annex D - Sample tool informati N
A el ot ormaton W/

Using XT as a Java program

A source version of the tool is available through links in the web-based documentation, which
includes details on the invocation parameters:

- http://ww. jclark.conlxm/xt.htni

One can use any Simple API for XML (SAX) driver, though such a driver is supplied for use
with the XP processor (XP itself is not supplied with XT); for example, the following files
would need to be found on the class path:

- xt.jar -fromhttp://ww. jclark.com xm /xt. htm
- xp.jar -fromhttp://ww.jclark.com xm /xp/index. ht m
- sax.jar - fromhttp://ww. saxproject.org

A sample invocation batch file using the Java runtime environment JRE is as follows (this
file can be found in thepr og directory of the sample files):

0 @cho off

02 REM xsl j avaxt . bat

s REM check argunents: %l=source XM., %2=script XSL, %3=result XM
o« REM envi ronnent: SET jcl ark=p:\jclark\

sjre -cp "%clark%t.jar;%clark%ax.jar;%clark%p.jar" »

06 comjclark.xsl.sax.Driver %4 9% %3

o7 REM post - process results

Note how on line 5 in the above example, the invocation file is expecting the environment
variable nameglcl ar k to be set to the directory in which the requirgdr files are found
(commented out in line 4):

- set jclark=directory-with-.jar-files

- note the trailing directory separator character must be included in the value

- this is not obligatory as the invocation file can be changed to specify the locations of
the. j ar files explicitly

Note also that the invocation file is not complete with respect to passing top-level parametel
binding values.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 130 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.jclark.com/xml/xt.html
http://www.jclark.com/xml/xt.html
http://www.jclark.com/xml/xp/index.html
http://www.saxproject.org

Practical Transformation Using XSLT and XPath
Invoking XT (cont.) /
Annex D - Sample tool information }\ & (
Section 4 - James Clark's XT M

Using XT as a Windows executable

A Windows executable version of the tool namedexe and using the Microsoft Java Virtual
Machine is available through links in the web-based documentation. A batch file can wra
the invocation of XT with preprocessing and post-processing commands, rather than invok
XT directly:

o1 @cho off

02 REM xsl xt . bat

s REM check argunents: %l=source XM., %2=script XSL, %B=result XM
Xt %W % 938

os REM post - process results

This indirect invocation appears to behave the same way as direct invocation:
oo C\xslt\sanp>..\prog\xslxt hello.xm hello.xsl hello.htm

02

s C:\ xsl t\sanp>t ype hel |l o. ht m

0a <i ><u>Hel | o worl d. </ u></i >
os C:\ xsl t\ sanp>

Not shown above are two aspects of invocation not engaged by the example batch file:

- additional command line parameters following the source, stylesheet and output prov
binding values for top-level parameters:
- paranet er - nane=par anet er-val ue
- the source and output arguments can specify directories instead of files to process a
the source files in the source directory with the specified stylesheet to produce
correspondingly named output files in the output directory:
- Xt input-directory stylesheet-file output-directory

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 131 of 148

Practical Transformation Using XSLT and XPath
Invoking the Microsoft MSXML processor /
Annex D - Sample tool information }\ & (
Section 5 - Microsoft Internet Explorer M

Installing the latest web release of MSXML with IE5

The latest MSXMLmsxm 3. exe is installed and engaged to override archaic implementations
of MSXML installed by Internet Explorer 5. This is not required for Internet Explorer 6 as
the product already includes an acceptable version of MSXML.

- installation package
- http://nmsdn. m crosoft. conf downl oads/ webt echnol ogy/ xm /nmsxnl . asp
- package registration utilitynl i nst . exe
- see link on above page for installation package
- latest Windows software installation utility (forsi files)
- http://ww. m crosoft.com msdownl oad/ pl atfor medk/ i nst msi . ht m
- separate versions for NT and other systems
- helpful documentation (unofficial FAQ)
- http://ww. netcruci bl e.com xslt/msxm -faqg. ht m

To determine the current release of an MSXML DLL module, use the Windows Explorer and
examine the properties. The DLL is found in¢let en82 directory of the windows directory.
The version tab of the properties dialogue includes an indication of the file version of the

DLL.

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 132 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://msdn.microsoft.com/downloads/webtechnology/xml/msxml.asp
http://www.microsoft.com/msdownload/platformsdk/instmsi.htm
http://www.netcrucible.com/xslt/msxml-faq.htm

Practical Transformation Using XSLT and XPath
Invoking the Microsoft MSXML processor (cont.) /
Annex D - Sample tool information }\ & (
Section 5 - Microsoft Internet Explorer M

Using the processor from within Internet Explorer

- recognizes the use of the stylesheet association processing instruction defined by V
- any associated stylesheet declaration in the XML file is.ignored

- can dynamically invoke the processor through scripting

- can utilize the processor on the server side for delivery of HTML

Note that when viewing an XML document, the |E standard menu function View/Source
reveals the XML source and not the HTML intermediate form, as in the following exampl

; X:‘sampihello.xml - Microsoft Internet Explorer

File Edit Search Help

{?xml version=""1.8"7> =
<7xml-stylesheet type="text/xsl"™ href="hello.xs1"7?>
{greeting>Hello world.</greeting>

.

S L

4 K 2
|@ Dane T T Tl T -

Using the processor outside of Internet Explorer:
- any associated stylesheet declaration in the XML file is ignored

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 133 of 148

Practical Transformation Using XSLT and XPath
Invoking the Microsoft MSXML processor (cont.) /
Annex D - Sample tool information }\ & (
Section 5 - Microsoft Internet Explorer M

The MSXML processor can be used from the MSDOS command line to emit transformations
using the system character set:

- acommand line scripting environment from Microsoft executes JavaScript applications
- http://msdn. m crosoft.conm scripting/w ndowshost/ - Windows Scripting
Host

The following is a simple script adapted from one posted to the XSL mail list. This invokes
the MSXML processor after loading two Document Object Model (DOM) objects. In the
following code, the processor uses the system character encoding when emitting the result
tree (for example, the Latinl character set on Western European Windows systems and the
Shift-JIS character set on Japanese Windows systems):

onl//File: mexm.js - 2000-04-20 16: 30

o2/ /1 nfo: http://ww. CraneSoftwights.com |inks/msxm .htm

s/ /Args: input-file style-file output-file

oavar xm = WScript. CreateCbject ("M crosoft.XM.DOM") ; /'1'i nput
os X . val i dat eOnPar se=f al se;

os XM . 1 oad(W5cri pt. Argunents(0));

orvar xsl = Wscript. CreateCbject ("M crosoft. XM.DOM') ; /lstyle
s XSl . val i dat eOnPar se=f al se;

oo XSl .l oad(Wscri pt. Argunents(1));

ovar out = WScript. CreateQbject("Scripting.FileSystentbject");//output
unvar replace = true; var unicode = false; //output file properties
rvar hdl = out.CreateTextFile(Wscript. Argunents(2), replace, unicode)
whdl .wite(xm.transformode(xsl.docunmentEl ement));

14 [| eof

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 134 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://msdn.microsoft.com/scripting/windowshost/

Practical Transformation Using XSLT and XPath
Invoking the Microsoft MSXML processor (cont.) /
Annex D - Sample tool information }\ & (
Section 5 - Microsoft Internet Explorer M

The following is a sample invocation batch file (tier i pt program is from the Windows
Scripting Host utility):

o1 @cho of f

02 REM nsxm . bat

os REM check argunents: %l=source XM, %=script MSXM., %3=result HTM
saCSCript //nologo ..\prog\nmsxm .js %4 %R 93

os REM post - process results

The following is a sample invocation:

oo G\ xslt\sanp>..\prog\nsxm hello.xm hello.xsl hello.nmhtm
02 C:\ xsl t\sanp>type hell o. mshtm

03 <i ><u>Hel | o worl d. </ u></i>

oa C:\ xsl t\ sanp>

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 135 of 148

Practical Transformation Using XSLT and XPath

Invoking the Microsoft MSXML processor (cont.) /
Annex D - Sample tool information }\ & (
Section 5 - Microsoft Internet Explorer M

In the following code, the processor uses the UTF-8 character encoding when emitting the
result tree (adapted with kind permission from Makoto Murata)

oo/ /File: mexmu8.js - 2000-04-20 16: 30

oo/ /Info: http://ww. CraneSoftwights.conml|inks/msxm . htm

oa//Args: input-file style-file output-file

oavar xm = WScript. CreateCbject("Mcrosoft. XM.DOM') ; I'I'i nput

os XM . val i dat eOnPar se=f al se;

os Xm . | oad(Wbcri pt. Argunents(0));

orvar xsl = Wbcript. CreateObject ("M crosoft. XM.DOM") ; /lstyle
s XSl . val i dat eOnPar se=f al se;

oo XSl . 1 oad(Wbcri pt. Argunments(1));

ovar out = WScript. CreateQbject ("M crosoft. XM.DOM') ; / | out put
uout.async = fal se;

12 out . val i dat eOnPar se=f al se;

13 Xm . transf or mMNodeToCbj ect (xsl, out);

120Ut . save(WBcri pt. Argunent s(2));

15 [[eof

The two above processes are distinguished by the target of the transformation process:

- the system character set is used when writing the result of transforming the input XML
document directly into a stream of characters

- the UTF-8 character set is used when writing-out the instance serialization of the object
created when transforming the input XML document into a new XML document object

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 136 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath
Invoking the Microsoft MSXML processor (cont.) /
Annex D - Sample tool information }\ & (
Section 5 - Microsoft Internet Explorer M

Using the processor stand-alone on a server

A host process can translate the XML to HTML using the MSXML processor before
transmitting the file to the browser:

- on Microsoft server platforms Active Server Pages (ASP) can be used
- the following JScript process uses the Microsoft implementation of the Document Obje
Model (DOM) and the Microsoft XSL processor to effect the transform

o1 <%@ LANGUAGE = JScri pt %

02 <%

s [/ Load the XM source

a var xm = Server.CreateQbject("Mcrosoft. XM.DOW') ;
s xm.async = fal se;

s Xm .validateOnParse = fal se;

ov xm .l oad(Server. MapPat h("hello.xm"));

e [/ Load the stylesheet file

o var xsl = Server.CreateObject ("M crosoft.XM.DOM') ;
10 Xsl.async = fal se;

u Xsl.validateOnParse = fal se;

12 Xsl .l oad(Server. MapPat h("hel | 0. xsI'"));

13 [/ Process it

12 Response. Wite(xnl .transfornmNode(xsl));

15 %

wi~ Metscape - [http://127.0.0.1 /servdemo/hello_asp]

File Edit “iew Go Bookmarks Options Directory Window Help

Lacatian; Ihtlp:.f'ﬂ 27.0.0.1 Azervdemoshello. azp j

Hello worid.

b= Metzcape - [Source of: http:/#127.0.0.1/servdemo/hello_asp]

<b==<i>=<u=Hello world.= u=</i>=

=8 [Dacument: Done =TT

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 137 of 148

Practical Transformation Using XSLT and XPath

Where to go from here? /
Conclusion - Practical Transformation Using XSLT and XPath }\ & (
L/

The work on XSL and XSLT continues:

all XSLT, XPath and XSL-FO are now full W3C Recommendations
long list of future feature considerations already being examined for new releases of the
technology
new products are continually being announced
feedback is necessary from users like you!
- use the XSL mail lists to contribute:
- http://ww. mul berrytech. com xsl/xsl-list/
- http://groups. yahoo. coni gr oup/ XSL- FO
- http://1ists.w3.org/Archives/ Public/ww-Xxsl -fol/
- contact the XSL editors with comments about the specification:
- Xsl-editors@a. org

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 138 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.mulberrytech.com/xsl/xsl-list/
http://groups.yahoo.com/group/XSL-FO
http://lists.w3.org/Archives/Public/www-xsl-fo/

Practical Transformation Using XSLT and XPath

Colophon /

Conclusion - Practical Transformation Using XSLT and XPath }\WA‘

These materials were produced using structured information technologies as follows:

- authored source materials
- content in numerous XML files maintained as external general entities for a
complete prose book that can be made into a subset for training
- specification of applicability of constructs for each configuration
- 45- and 90-minute lecture, half-, full-, two- and three-day lecture and
hands-on instruction, and book (prose) configurations
- an XSLT transformation creates the subset of effective constructs from
applying applicability to the complete file
- content from other presentations/tutorials included semantically (not
syntactically) during construct assembly
- customized appearance engaged with marked sections and both parameter ar
general entities
- different host company logos and venue and date marginalia
- changing a single external parameter entity to a key file includes suite of file
for given appearance
- accessible rendition in HTML
- an XSLT stylesheet produces a collection of HTML files using Saxon for multiple
file output
- mono-spaced fonts and list-depth notation conventions assist the comprehens
of the material when using screen-reader software
- printed handout deliverables
- an XSLT stylesheet produces an instance of XSL formatting objects (XSL-FO)
for rendering
- XPDFhttp://ww. fool abs. com xpdf extracts raw text from PDF files for the
back-of-the-book index methodology published as a free resource by Crane
Softwrights Ltd.
- XEP by RenderXt t p: / / ww. r ender x. comproduces PostScript from XSL-FO
- GhostScripht t p: / / www. Ghost Scri pt . comproduces PDF from PostScript
- the iTexthttp://i text.sf.net PDF manipulation library for Java is used for
page impaosition by a custom Pythatrt p: / / www. pyt hon. or g program running
under the Jythoht t p: / / ww. j yt hon. or g environment

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 139 of 148

http://www.foolabs.com/xpdf
http://www.renderx.com
http://www.GhostScript.com
http://itext.sf.net
http://www.python.org
http://www.jython.org

Practical Transformation Using XSLT and XPath

Obtaining a copy of the comprehensive tutorial /
Conclusion - Practical Transformation Using XSLT and XPath }\ & (
L/

This comprehensive tutorial on XSLT and XPath is available for subscription purchase and
free preview download:

- "Practical Transformation Using XSLT and XPath (XSL Transformations and the XML
Path Language)" Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
- the free download preview excerpt of the publication indicates the number of pages
for each topic
- the cost of purchase includes all future updates to the materials with email notification
- the materials are updated after new releases of the W3C specifications
- the materials are updated after incorporating comments gleaned during presentation
and from feedback from customers
- available in PDF
- formatted as 1-up or 2-up book pages per.imaged page
- dimensions in either US-letter or A4 page sizes
- available as either single sided or double sided
- accessible rendition available for use with screen readers
- free preview download includes full text of first two modules and two useful annexes
- site-wide and world-wide staff licenses(one-time fee) are available

Seenht t p: // www. CraneSoftwi ghts. conlinks/trn-20040203. ht mfor more details.
Feedback

- the unorthodox style has been well-accepted by customers as an efficient learning
presentation
- feedback from customers is important to improve or repair the content for future editions
- please send suggestions or comments (positive or negative) to
f eedback@r aneSof t wi ght's. com

US Government employee purchase

- US Government employees (not contractors) are entitled to obtain their personal prepaic
copies at no charge from a government intranet location
- visit the Crane web site for details

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 140 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

http://www.CraneSoftwrights.com/links/trn-20040203.htm
mailto:feedback@CraneSoftwrights.com

Practical Transformation Using XSLT and XPath
’\v‘l/

Practical Transformation
Using XSLT and XPath
(XSL Transformations and
the XML Path Language)

Crane Softwrights Ltd.
http://www.CraneSoftwrights.com

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 141 of 148

Practical Transformation Using XSLT and XPath

Practical Transformation Using XSLT and XPath

Table of contents

_/
Indexed by slide number }\M(

00T [Prelude T Practical Transformation Using XSLT and XPath (Prefudg)
003 Practical Transformation Using XSLT and XPath

004 [Introduction -1-1] Transforming structured informatias)

006 [1] The context of XSL Transformations and the XML Path Language
007 [Introduction 1-1-1] Overview

008 [1-1-1-1] Extensible Markup Language (XMhg9) (010) (011) (012)

013 [1-1-2-1] XML information links

014 [1-1-3-1] XML Path Language (XPath)

015 [1-1-4-1] Styling structured information

016 [1-1-5-1] Extensible Stylesheet Language (XSL/XSL-FO)

017 [1-1-6-1] Extensible Stylesheet Language Transformations (X&1sJ 019) (020)
021 [1-1-7-1] Historical development of the XSL and XSLT Recommendations
022 [1-1-8-1] XSL information linkg23) (024)

025 [1-1-9-1] Namespacems) (027)

028 [1-1-10-1] Stylesheet association

029 [1-2-1-1] Transformation from XML to XML

030 [1-2-2-1] Transformation from XML to non-XML

031 [1-2-3-1] Transforming and rendering XML information using XSLT and XSL-FO
032 [1-2-4-1] XML to binary or other formatss)

034 [1-2-5-1] XSLT as an application front-end

035 [1-2-6-1] Three-tiered architecturess)

037 [2] Getting started with XSLT and XPath

038 [Introduction 2-1-1] Analyzing a simple stylesheet

039 [2-1-1-1] Some simple example®) (041) (042)

043 [2-2-1-1] Stylesheet requirements

044 [2-2-2-1] Instructions and literal result elements

045 [2-2-3-1] Templates and template rules

046 [2-2-4-1] Simplified stylesheets

047 [2-2-5-1] Composite stylesheets

048 [2-2-6-1] Approaches to stylesheet degigs)

050 [2-3-1-1] Processing XML data with multiple XSLT styleshemsts (052) (053) (054) (055)
056 [3] XPath data model

057 [Introduction 3-1-1] The need for abstracti@as) (059) (060)

061 [4] XSLT processing model

062 [Introduction 4-1-1] A predictable behavior for XSLT proces@ess064)

065 [5] The XSLT transformation environment

066 [Introduction 5-1-1] The XSLT transformation environment

067 [6] XSLT stylesheet management

068 [Introduction 6-1-1] Why modularize logical and physical structure of styleshaejs?
(070)

071 [7] XSLT process control and result tree instructions

072 [Introduction 7-1-1] Managing the creation of result nguag

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 142 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

074 [8] XPath and XSLT expressions and advanced techniques

075 [Introduction 8-1-1] XPath and XSLT functions and advanced techniqegs77) (078)
079 [9] Sorting and grouping

080 [Introduction 9-1-1] Sorting and groupig1)

082 [A] XML to HTML transformation

083 [Introduction A-1-1] Historical web standards for presentation

084 [B] XSL formatting semantics introduction

085 [Introduction B-1-1] Formatting objectivess)

087 [C] Instruction, function and grammar summaries

088 [Introduction C-1-1] Quick summaries

089 [C-1-1-1] XSLT element summary

090 [C-1-2-1] XPath and XSLT function summary

091 [C-2-1-1] XPath grammar productions

092 [C-2-2-1] XSLT grammar productions

093 [D] Sample tool information

094 [Introduction D-1-1] Sample questions for vendas (096) (097)

098 [D-1-1-1] Working with Java-based processors

099 [D-2-1-1] Invoking Saxomnoo) (101) (102)

103 [D-3-1-1] Invoking Xalan

104 [D-4-1-1] XT differences from W3C XSLT/XPath Recommendations
105 [D-4-2-1] Extension element: Multiple output documerus (107) (108)
109 [D-4-3-1] Extension functions: Node set manipulation) (111)

112 [D-4-4-1] Extension functions: Java library acGess (114)

115 [D-4-5-1] Extension method: Non-XML serializatiame) (117) (118)

119 [D-4-6-1] Character encoding for the serialized result

120 [D-4-7-1] Invoking XT(121)

122 [D-5-1-1] Invoking the Microsoft MSXML processa@es) (124) (125) (126) (127)
128 [Conclusion -1-1] Where to go from here?

129 [Conclusion -2-1] Colophon

130 [Conclusion -3-1] Obtaining a copy of the comprehensive tutorial
131 [Postlude] Practical Transformation Using XSLT and XPath (Postlude)

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Copyright © Crane Softwrights Ltd. TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Page 143 of 148

Practical Transformation Using XSLT and XPath

Practical Transformation Using XSLT and XPath

Index }\WA‘/

A concat () tunction//

in chapter summary 77

in function summary 95
cont ai ns() function77

in chapter summary 77

in function summary 95
<xsl : copy> instruction73

in chapter summary 73

in instruction summary 90
<xsl : copy- of > instruction73

in chapter summary 64, 73

in instruction summary 90

referenced 48
count () function78

in chapter summary 78

in function summary 95
current () function78

in chapter summary 78

in function summary 95

D

data model of XML documents 9-10, 14,
57-60

debugging 18

<xsl : deci nal - f or mat > instruction76
in instruction summary 90

ancestor:: axis 58
ancestor-or-sel f:: axis 58
application front-end 34
<xsl : appl y-i nport s> instruction70
in chapter summary 70
in instruction summary 89
<xsl : appl y-t enpl at es> instruction64
in chapter summary 64
in instruction summary 89
referenced 49
<xsl : at t ri but e> instruction73
in chapter summary 73
in instruction summary 89
<xsl :attri but e-set > instruction73
in chapter summary 73
in instruction summary 89
aural media 16, 31
axis 58

B
binary serialization 32-33, 62
bool ean() function76

in chapter summary 76

in function summary 95

C default attributes 11
<xsl : cal | -t enpl at e> instruction70 descendant : : axis 58
in chapter summary 70, 76 descendant - or-sel f: : axis 58
in instruction summary 89 device independence 16
Cascading Stylesheets (CSS) 16, 85 docurrent () function78
cei li ng() function77 in chapter summary 78
in chapter summary 77 in function summary 95
in function summary 95 document model 9-10, 18, 25
child:: axis 58 Document Object Model (DOM) 12, 17
<xsl : choose> instruction73 document order 20
in chapter summary 73 Document Style Semantics and Specification
in instruction summary 89 Language (DSSSL) 16, 85
colophon 139 Document Type Definition (DTD) 10-11, 14,
<xsl :.coment > instruction73 18

in'chapter summary 73
in‘instruction summary 90

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 144 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

E
<xsl : el ement > instruction73
in chapter summary 73
in instruction summary 90
el ement - avai | abl e() function70
in chapter summary 70
in function summary 95
extensible design 19
Extensible Markup Language (XML) 8-12,
18, 20, 62

gener ate-i d() function78
in chapter summary 78
in function summary 96

H
hierarchies in an XML document
logical 9, 14
physical 8, 14
Hypertext Markup Language (HTML) 18, 20,
36, 39, 62, 83
serialization 30

Extensible Stylesheet Language Formatting
Objects (XSL-FO) 15, 16, 27, 31, 85-86l .
Extensible Stylesheet Language Transformak) function78

tions (XSLT) 15, 17-20, 27-28
extensions 27

F
<xsl : fal | back> instruction70
in chapter summary 70
in instruction summary 90
fal se() function76
in chapter summary 76
in function summary 95
f1 oor () function77
in chapter summary 77
in function summary 95
flow semantics 16
fol | owi ng: : axis 58
f ol | owi ng-si bling:: axis 58
<xsl : f or - each> instruction64
in chapter summary 64
in instruction summary 91
referenced 48
f or mat - nunber () function77
in chapter summary 77
in function summary 96
formatting 15
formatting semantics 16
f uncti on- avail-abl e() function70
in chapter summary 70
in function summary 96
functions 19, 75-78

G
general purpose XML transformations 17

in chapter summary 78
in function summary 96
<xsl : i f >instruction73
in chapter summary 73
in instruction summary 91
<xsl : i nport > instruction70
in chapter summary 70
in instruction summary 91
<xsl:incl ude> instruction70
in chapter summary 70
in.instruction summary 91
input file, see source file/tree (input)
instructions 19, 44
Internet Explorer (IE) 38, 42, 108, 132-137

J
Java 108, 122-124

K
key() function78

in chapter summary 78

in function summary 96
<xsl : key> instruction76

in chapter summary 76

in instruction summary 91

L
| ang() function76
in chapter summary 76
in function summary 96
| ast () function60
in chapter summary 60
in function summary 96
literal result element 44

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Copyright © Crane Softwrights Ltd.

TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ

Page 145 of 148

Practical Transformation Using XSLT and XPath

| ocal - name() function78 @

in chapter summary 78 <xsl : ot her wi se> instruction73

in function summary 96 in chapter summary 73
logical document hierarchy 9, 14 in instruction summary 92
M <xsl : out put > instruction66
mail lists 138 in chapter summary 66
markup In instruction summary 92

syntax preservation 17 P
Mathematical Markup Language (MathML)pagination

25 semantics 16

<xsl : message> instruction66 parallelism 20

in chapter summary 66 <xsl : par an® instruction70

in instruction summary 91 in chapter summary 66, 70
N in instruction summary 92

parent:: axis 58
parse order, see document order
physical document hierarchy 8, 14
posi tion() function60
in chapter summary 60
in function summary 97
precedi ng:: axis 58
pr ecedi ng-si bling:: axis 58
in function summary 96 <xsl : preserve- space> instruction60
namespaces 43 n _chapter_ summary 60
node 44 In Instruction summary 92
node tree 40. 57 processing model 62-64 _
node-set 119’_121 <xsl : processing-instruction> Instruc-

root node 45 tion 73

Non-XML serialization (NXML) 33, 125-128 :2 icnhs"’t‘futg{i gr‘:rglznrr?rg’a? -
nor mal i ze- space() function77 y

name() function78
in chapter summary 78
in function summary 96
<xsl : namespace- al i as> instruction66
in chapter summary 66
in instruction summary 91
namespace-uri () function78
in chapter summary 78

in chapter summary 77 pull 48

in function summary 96 purchasing 140
not () function76 push 49

in chapter summary 76 Q

in function summary 96 guery language 14
nunber () function77 R

in chapter summary 77

in function.summary 97
<xsl : number > instruction73

in chapter summary 73

in instruction summary 91

Resource Description Framework (RDF) 26
result tree 20, 59
root node, see node; root node
round() function77
in chapter summary 77
in function summary 97

S
Saxon XSLT processor 27, 38, 41, 109-112

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 146 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Scalable Vector Graphics (SVG) 25
sel f:: axis 58
serialization of result tree 19
Simple API for XML (SAX) 12
simplified stylesheet 46
<xsl : sort > instruction81

in chapter summary 81

in instruction summary 92
sorting 19
source file/tree (input) 18-20
Standard Generalized Markup Language

(SGML) 18

starts-wi th() function77

in chapter summary 77

in function summary 97
string() function77

in chapter summary 77

in function summary 97
string-1ength() function77

in chapter summary 77

in function summary 97
<xsl : stri p- space> instruction60

in chapter summary 60

in instruction summary 92
stylesheet 18-19, 43

association 28

modularization 68-70
<xsl : st yl esheet > instruction66

in chapter summary 66

in instruction summary 93
styling structured information 15
substring() function77

in chapter summary 77

in function summary 97
substring-after() function77

in chapter summary 77

in function summary 97
substri ng-bef ore() function77

in chapter summary 77

in function summary 97
sum() function77

in chapter summary 77

in function summary 97
syst em property() function66

in chapter summary 66

in function summary 97

T
template 17, 45, 59

rule 45
<xsl : t enpl at e> instruction64

in chapter summary 64, 70

in instruction summary 93

referenced 49
text

serialization 30, 62
<xsl : t ext > instruction73

in chapter summary 73

in instruction summary 93
<xsl : t r ansf.or m> instruction66

in chapter summary 66

in instruction summary 93
transforming information 15
transl at e() function77

in chapter summary 77

in function summary 97
true() function76

in chapter summary 76

in function summary 98
Turing complete 17
typographical conventions 2

U
Universal Resource ldentifier 26
unpar sed-entity-uri () function78
in chapter summary 78
in function summary 98

V
validation 18
<xsl : val ue- of > instruction64
in chapter summary 64
in instruction summary 93
referenced 48
<xsl : vari abl e> instruction70
in chapter summary 70
in instruction summary 93
vendor questions 104-107
ver si on= attribute
in <xsl : styl esheet> 43
in <xsl :transforne 43
visual media 16
vocabulary, XML 18, 25, 27

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8

Copyright © Crane Softwrights Ltd.

TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ

Page 147 of 148

Practical Transformation Using XSLT and XPath

w
W3C XSL Working Group 15
web server 35-36
well-formed XML 18
<xsl : when> instruction73

in chapter summary 73

in instruction summary 94
white-space characters 11
Wireless Markup Language (WML) 55
<xsl : wi t h- par an® instruction70

in chapter summary 70

in instruction summary 94
WSSSL 15

X

Xalan 113

XML, see Extensible Markup Language
(XML)

XML Path Language (XPath) 57-60

XML processor 12, 17-18

xm : space 12

XSL-FO, see Extensible Stylesheet Language
Formatting Objects (XSL-FO)

XSL-FO processor 16

XSLT, see Extensible Stylesheet Language
Transformations (XSLT)

XSLT processor 11, 17-20

XT XSLT processor 27, 33, 114-131

Y
Z

Eleventh Edition - 2004-02-03 - ISBN 1-894049-12-8
Page 148 of 148 TOC/Index:ABCDEFGHIJKLMNOPQRSTUVWXYZ

Copyright © Crane Softwrights Ltd.

	Prelude
	Overview
	Introduction
	Transforming structured information

	The context of XSL Transformations and the XML Path Language
	Introduction
	Overview

	The XML family of Recommendations
	Extensible Markup Language (XML)
	XML information links
	XML Path Language (XPath)
	Styling structured information
	Extensible Stylesheet Language (XSL/XSL-FO)
	Extensible Stylesheet Language Transformations (XSLT)
	Historical development of the XSL and XSLT Recommendations
	XSL information links
	Namespaces
	Stylesheet association

	Transformation data flows
	Transformation from XML to XML
	Transformation from XML to non-XML
	Transforming and rendering XML information using XSLT and XSL-FO
	XML to binary or other formats
	XSLT as an application front-end
	Three-tiered architectures

	Getting started with XSLT and XPath
	Introduction
	Analyzing a simple stylesheet

	Stylesheet examples
	Some simple examples

	Syntax basics - stylesheets, templates, instructions
	Stylesheet requirements
	Instructions and literal result elements
	Templates and template rules
	Simplified stylesheets
	Composite stylesheets
	Approaches to stylesheet design

	More stylesheet examples
	Processing XML data with multiple XSLT stylesheets

	XPath data model
	Introduction
	The need for abstractions

	XSLT processing model
	Introduction
	A predictable behavior for XSLT processors

	The XSLT transformation environment
	Introduction
	The XSLT transformation environment

	XSLT stylesheet management
	Introduction
	Why modularize logical and physical structure of stylesheets?

	XSLT process control and result tree instructions
	Introduction
	Managing the creation of result nodes

	XPath and XSLT expressions and advanced techniques
	Introduction
	XPath and XSLT functions and advanced techniques

	Sorting and grouping
	Introduction
	Sorting and grouping

	XML to HTML transformation
	Introduction
	Historical web standards for presentation

	XSL formatting semantics introduction
	Introduction
	Formatting objectives

	Instruction, function and grammar summaries
	Introduction
	Quick summaries

	Vocabulary and functions
	XSLT element summary
	XPath and XSLT function summary

	Grammars
	XPath grammar productions
	XSLT grammar productions

	Sample tool information
	Introduction
	Sample questions for vendors

	Java-based XSLT processors
	Working with Java-based processors

	Mike Kay's Saxon
	Invoking Saxon

	Apache Xalan
	Invoking Xalan

	James Clark's XT
	XT differences from W3C XSLT/XPath Recommendations
	Extension element: Multiple output documents
	Extension functions: Node set manipulation
	Extension functions: Java library access
	Extension method: Non-XML serialization
	Character encoding for the serialized result
	Invoking XT

	Microsoft Internet Explorer
	Invoking the Microsoft MSXML processor

	Conclusion
	Where to go from here?
	Colophon
	Obtaining a copy of the comprehensive tutorial

	Postlude
	Table of Contents
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

