

C# Cookbook™, Second Edition
by Jay Hilyard and Stephen Teilhet

Copyright © 2006, 2004 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Developmental Editor: Ralph Davis
Production Editor: Mary Brady
Copyeditor: Norma Emory
Proofreader: Genevieve Rajewski

Indexer: Ellen Troutman Zaig
Cover Designer: Emma Colby
Interior Designer: David Futato
Illustrators: Robert Romano, Jessamyn Read,

and Lesley Borash

Printing History:

January 2004: First Edition.
January 2006: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, C# Cookbook, the image of a garter snake, and
related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, MSDN, the .NET logo, Visual Basic, Visual C++, Visual Studio, and Windows are registered
trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-10063-9

[M]

,Copyright.8436 Page iv Monday, January 16, 2006 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

939

Chapter 17 CHAPTER 17

Security

17.0 Introduction
There are many ways to secure different parts of your application. The security of
running code in .NET revolves around the concept of Code Access Security (CAS).
CAS determines the trustworthiness of an assembly based upon its origin and the
characteristics of the assembly itself, such as its hash value. For example, code
installed locally on the machine is more trusted than code downloaded from the
Internet. The runtime will also validate an assembly’s metadata and type safety
before that code is allowed to run.

There are many ways to write secure code and protect data using the .NET Frame-
work. In this chapter, we explore such things as controlling access to types, encryp-
tion and decryption, random numbers, securely storing data, and using programmatic and
declarative security.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

950 | Chapter 17: Security

17.2 Encrypting and Decrypting a String

Problem
You have a string you want to be able to encrypt and decrypt—perhaps a password
or software key—which will be stored in some form accessible by users, such as in a
file, the registry, or even a field, that may be open to attack from malicious code.

Solution
Encrypting the string will prevent users from being able to read and decipher the
information. The CryptoString class shown in Example 17-5 contains two static
methods to encrypt and decrypt a string and two static properties to retrieve the gen-
erated key and inititialization vector (IV—a random number used as a starting point
to encrypt data) after encryption has occurred.

Example 17-5. CryptoString class

using System;

using System.Security.Cryptography;

public sealed class CryptoString

{

 private CryptoString() {}

 private static byte[] savedKey = null;

 private static byte[] savedIV = null;

 public static byte[] Key

 {

 get { return savedKey; }

 set { savedKey = value; }

 }

 public static byte[] IV

 {

 get { return savedIV; }

 set { savedIV = value; }

 }

 private static void RdGenerateSecretKey(RijndaelManaged rdProvider)

 {

 if (savedKey == null)

 {

 rdProvider.KeySize = 256;

 rdProvider.GenerateKey();

 savedKey = rdProvider.Key;

 }

 }

 private static void RdGenerateSecretInitVector(RijndaelManaged rdProvider)

 {

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Encrypting and Decrypting a String | 951

 if (savedIV == null)

 {

 rdProvider.GenerateIV();

 savedIV = rdProvider.IV;

 }

 }

 public static string Encrypt(string originalStr)

 {

 // Encode data string to be stored in memory.

 byte[] originalStrAsBytes = Encoding.ASCII.GetBytes(originalStr);

 byte[] originalBytes = {};

 // Create MemoryStream to contain output.

 using (MemoryStream memStream = new

 MemoryStream(originalStrAsBytes.Length))

 {

 using (RijndaelManaged rijndael = new RijndaelManaged())

 {

 // Generate and save secret key and init vector.

 RdGenerateSecretKey(rijndael);

 RdGenerateSecretInitVector(rijndael);

 if (savedKey == null || savedIV == null)

 {

 throw (new NullReferenceException(

 "savedKey and savedIV must be non-null."));

 }

 // Create encryptor and stream objects.

 using (ICryptoTransform rdTransform =

 rijndael.CreateEncryptor((byte[])savedKey.

 Clone(),(byte[])savedIV.Clone()))

 {

 using (CryptoStream cryptoStream = new CryptoStream(memStream,

 rdTransform, CryptoStreamMode.Write))

 {

 // Write encrypted data to the MemoryStream.

 cryptoStream.Write(originalStrAsBytes, 0,

 originalStrAsBytes.Length);

 cryptoStream.FlushFinalBlock();

 originalBytes = memStream.ToArray();

 }

 }

 }

 }

 // Convert encrypted string.

 string encryptedStr = Convert.ToBase64String(originalBytes);

 return (encryptedStr);

 }

Example 17-5. CryptoString class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

952 | Chapter 17: Security

Discussion
The CryptoString class contains only static members, except for the private instance
constructor, which prevents anyone from directly creating an object from this class.

This class uses the Rijndael algorithm to encrypt and decrypt a string. This algorithm
is found in the System.Security.Cryptography.RijndaelManaged class. This algorithm
requires a secret key and an initialization vector; both are byte arrays. A random
secret key can be generated for you by calling the GenerateKey method on the
RijndaelManaged class. This method accepts no parameters and returns void. The
generated key is placed in the Key property of the RijndaelManaged class. The

 public static string Decrypt(string encryptedStr)

 {

 // Unconvert encrypted string.

 byte[] encryptedStrAsBytes = Convert.FromBase64String(encryptedStr);

 byte[] initialText = new Byte[encryptedStrAsBytes.Length];

 using (RijndaelManaged rijndael = new RijndaelManaged())

 {

 using (MemoryStream memStream = new MemoryStream(encryptedStrAsBytes))

 {

 if (savedKey == null || savedIV == null)

 {

 throw (new NullReferenceException(

 "savedKey and savedIV must be non-null."));

 }

 // Create decryptor, and stream objects.

 using (ICryptoTransform rdTransform =

 rijndael.CreateDecryptor((byte[])savedKey.

 Clone(),(byte[])savedIV.Clone()))

 {

 using (CryptoStream cryptoStream = new CryptoStream(memStream,

 rdTransform, CryptoStreamMode.Read))

 {

 // Read in decrypted string as a byte[].

 cryptoStream.Read(initialText, 0, initialText.Length);

 }

 }

 }

 }

 // Convert byte[] to string.

 string decryptedStr = Encoding.ASCII.GetString(initialText);

 return (decryptedStr);

 }

}

Example 17-5. CryptoString class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Encrypting and Decrypting a String | 953

GenerateIV method generates a random initialization vector and places this vector in
the IV property of the RijndaelManaged class.

The byte array values in the Key and IV properties must be stored for later use and
not modified. This is due to the nature of private-key encryption classes, such as
RijndaelManaged. The Key and IV values must be used by both the encryption and
decryption routines to successfully encrypt and decrypt data.

The SavedKey and SavedIV private static fields contain the secret key and initializa-
tion vector, respectively. The secret key is used by both the encryption and decryp-
tion methods to encrypt and decrypt data. This is why there are public properties for
these values, so they can be stored somewhere secure for later use. This means that
any strings encrypted by this object must be decrypted by this object. The initializa-
tion vector is used to prevent anyone from attempting to decipher the secret key.

Two methods in the CryptoString class, RdGenerateSecretKey and RdGenerateSecretInitVector,
are used to generate a secret key and initialization vector when none exists. The
RdGenerateSecretKey method generates the secret key, which is placed in the
SavedKey field. Likewise, the RdGenerateSecretInitVector generates the initialization
vector, which is placed in the SavedIV field. There is only one key and one IV gener-
ated for this class. This enables the encryption and decryption routines to have
access to the same key and IV information at all times.

The Encrypt and Decrypt methods of the CryptoString class do the actual work of
encrypting and decrypting a string. The Encrypt method accepts a string that you
want to encrypt and returns an encrypted string. The following code calls this
method and passes in a string to be encrypted:

string encryptedString = CryptoString.Encrypt("MyPassword");

Console.WriteLine("encryptedString: {0}", encryptedString);

// Get the key and IV used so you can decrypt it later.

byte [] key = CryptoString.Key;

byte [] IV = CryptoString.IV;

Once the string is encrypted, the key and IV are stored for later decryption. This
method displays:

encryptedString: Ah4vkmVKpwMYRT97Q8cVgQ==

Note that your output may differ since you will be using a different key and IV value.
The following code sets the key and IV used to encrypt the string, then calls the
Decrypt method to decrypt the previously encrypted string:

CryptoString.Key = key;

CryptoString.IV = IV;

string decryptedString = CryptoString.Decrypt(encryptedString);

Console.WriteLine("decryptedString: {0}", decryptedString);

This method displays:

decryptedString: MyPassword

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

954 | Chapter 17: Security

There does not seem to be any problem with using escape sequences such as \r, \n,
\r\n, or \t in the string to be encrypted. In addition, using a quoted string literal,
with or without escaped characters, works without a problem:

@"MyPassword"

See Also
See Recipe 17.3; see the “System.Cryptography Namespace,” “MemoryStream
Class,” “ICryptoTransform Interface,” and “RijndaelManaged Class” topics in the
MSDN documentation.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

960 | Chapter 17: Security

17.4 Cleaning up Cryptography Information

Problem
You will be using the cryptography classes in the FCL to encrypt and/or decrypt
data. In doing so, you want to make sure that no data (e.g., seed values or keys) is
left in memory for longer than you are using the cryptography classes. Hackers can
sometimes find this information in memory and use it to break your encryption or,
worse, to break your encryption, modify the data, and then reencrypt the data and
pass it on to your application.

Solution
In order to clear out the key and initialization vector (or seed), you need to call the
Clear method on whichever SymmetricAlgorithm- or AsymmetricAlgorithm-derived
class you are using. Clear reinitializes the Key and IV properties, preventing them
from being found in memory. This is done after saving the key and IV so that you
can decrypt later. Example 17-7 encodes a string, then cleans up immediately after-
ward to provide the smallest window possible for potential attackers.

Example 17-7. Cleaning up cryptography information

using System;

using System.Text;

using System.IO;

using System.Security.Cryptography;

string originalStr = "SuperSecret information";

// Encode data string to be stored in memory.

byte[] originalStrAsBytes = Encoding.ASCII.GetBytes(originalStr);

// Create MemoryStream to contain output.

MemoryStream memStream = new MemoryStream(originalStrAsBytes.Length);

RijndaelManaged rijndael = new RijndaelManaged();

// Generate secret key and init vector.

rijndael.KeySize = 256;

rijndael.GenerateKey();

rijndael.GenerateIV();

// Save the key and IV for later decryption.

byte [] key = rijndael.Key;

byte [] IV = rijndael.IV;

// Create encryptor, and stream objects.

ICryptoTransform transform = rijndael.CreateEncryptor(rijndael.Key,

 rijndael.IV);

CryptoStream cryptoStream = new CryptoStream(memStream, transform,

 CryptoStreamMode.Write);

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Cleaning up Cryptography Information | 961

You can also make your life a little easier by taking advantage of the using state-
ment, instead of having to remember to manually call each of the Close methods
individually. This code block shows how to use the using statement:

public static void CleanUpCryptoWithUsing()

{

 string originalStr = "SuperSecret information";

 // Encode data string to be stored in memory.

 byte[] originalStrAsBytes = Encoding.ASCII.GetBytes(originalStr);

 byte[] originalBytes = { };

 // Create MemoryStream to contain output.

 using (MemoryStream memStream = new MemoryStream(originalStrAsBytes.Length))

 {

 using (RijndaelManaged rijndael = new RijndaelManaged())

 {

 // Generate secret key and init vector.

 rijndael.KeySize = 256;

 rijndael.GenerateKey();

 rijndael.GenerateIV();

 // Save off the key and IV for later decryption.

 byte[] key = rijndael.Key;

 byte[] IV = rijndael.IV;

 // Create encryptor, and stream objects.

 using (ICryptoTransform transform =

 rijndael.CreateEncryptor(rijndael.Key, rijndael.IV))

 {

 using (CryptoStream cryptoStream = new

 CryptoStream(memStream, transform,

 CryptoStreamMode.Write))

 {

 // Write encrypted data to the MemoryStream.

 cryptoStream.Write(originalStrAsBytes, 0,

 originalStrAsBytes.Length);

 cryptoStream.FlushFinalBlock();

 }

// Write encrypted data to the MemoryStream.

cryptoStream.Write(originalStrAsBytes, 0, originalStrAsBytes.Length);

cryptoStream.FlushFinalBlock();

// Release all resources as soon as we are done with them

// to prevent retaining any information in memory.

memStream.Close();

cryptoStream.Close();

transform.Dispose();

// This clear statement regens both the key and the init vector so that

// what is left in memory is no longer the values you used to encrypt with.

rijndael.Clear();

Example 17-7. Cleaning up cryptography information (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

962 | Chapter 17: Security

 }

 }

 }

}

Discussion
To make sure your data is safe, you need to close the MemoryStream and CryptoStream

objects as soon as possible, as well as calling Dispose on the ICryptoTransform imple-
mentation to clear out any resources used in this encryption. The using statement
makes this process much easier, makes your code easier to read, and leads to fewer
programming mistakes.

See Also
See the “SymmetricAlgorithm.Clear Method” and “AsymmetricAlgorithm.Clear Method”
topics in the MSDN documentation.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

A Better Random Number Generator | 973

17.7 A Better Random Number Generator

Problem
You need a random number with which to generate items such as a sequence of ses-
sion keys. The random number must be as unpredictable as possible so that the like-
lihood of predicting the sequence of keys is as low as possible.

Solution
Use the class System.Security.Cryptography.RNGCryptoServiceProvider.

The RNGCryptoServiceProvider is used to populate a random byte array using the
GetBytes method that is then printed out as a string in the following example:

public static void BetterRandomString()

{

 // Create a stronger hash code using RNGCryptoServiceProvider.

 byte[] random = new byte[64];

 RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

 // Populate with random bytes.

 rng.GetBytes(random);

 // Convert random bytes to string.

 string randomBase64 = Convert.ToBase64String(random);

 // Display.

 Console.WriteLine("Random string: {0} ",randomBase64);

}

The output of this method is shown here:

Random string:

xDNitrreUpMmlO7Opd6AFvMC8VIG9+sAGfyvdZr2lEY1M3n2v3Ap4JIkYfJWW+sZaJjJMxj475VlVQFoRKvFI

g==

Discussion
Random provides methods like Next, NextBytes, and NextDouble to generate random
information for integers, arrays of bytes, and doubles, respectively. These methods
can produce a moderate level of unpredictability, but to truly generate a more unpre-
dictable random series, you need to use the RNGCryptoServiceProvider.

RNGCryptoServiceProvider can be customized to use any of the underlying Win32
Crypto API providers. You pass a CspParameters class in the constructor to deter-
mine exactly which provider is responsible for generating the random byte sequence.
CspParameters allows you to customize items such as the key container name, the
provider type code, the provider name, and the key number used.

The GetBytes method populates the entire length of the byte array with random
bytes.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

974 | Chapter 17: Security

See Also
See the “RNGCryptoServiceProvider Class,” “CspParameters Class,” and “Crypto-
graphic Provider Types” topics in the MSDN documentation.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

982 | Chapter 17: Security

17.9 Making a Security Assert Safe

Problem
You want to assert that at a particular point in the call stack, a given permission is
available for all subsequent calls. However, doing this can easily open a security hole
to allow other malicious code to spoof your code or to create a back door into your
component. You want to assert a given security permission, but you want to do so in
a secure and efficient manner.

Solution
In order to make this approach secure, you need to call Demand on the permissions
that the subsequent calls need. This makes sure that code that doesn’t have these
permissions can’t slip by due to the Assert. The Demand is done to ensure that you
have indeed been granted this permission before using the Assert to short-circuit the
stackwalk. This is demonstrated by the function CallSecureFunctionSafelyAndEfficiently,
which performs a Demand and an Assert before calling SecureFunction, which in turn
does a Demand for a ReflectionPermission.

The code listing for CallSecureFunctionSafelyAndEfficiently is shown in Example 17-14.

Example 17-14. CallSecureFunctionSafelyAndEfficiently function

public static void CallSecureFunctionSafelyAndEfficiently()

{

 // Set up a permission to be able to access nonpublic members

 // via reflection.

 ReflectionPermission perm =

 new ReflectionPermission(ReflectionPermissionFlag.MemberAccess);

 // Demand the permission set we have compiled before using Assert

 // to make sure we have the right before we Assert it. We do

 // the Demand to ensure that we have checked for this permission

 // before using Assert to short-circuit stackwalking for it, which

 // helps us stay secure, while performing better.

 perm.Demand();

 // Assert this right before calling into the function that

 // would also perform the Demand to short-circuit the stack walk

 // each call would generate. The Assert helps us to optimize

 // our use of SecureFunction.

 perm.Assert();

 // We call the secure function 100 times but only generate

 // the stackwalk from the function to this calling function

 // instead of walking the whole stack 100 times.

 for(int i=0;i<100;i++)

 {

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Making a Security Assert Safe | 983

The code listing for SecureFunction is shown here:

public static void SecureFunction()

{

 // Set up a permission to be able to access nonpublic members

 // via reflection.

 ReflectionPermission perm =

 new ReflectionPermission(ReflectionPermissionFlag.MemberAccess);

 // Demand the right to do this and cause a stackwalk.

 perm.Demand();

 // Perform the action here...

}

Discussion
In the demonstration function CallSecureFunctionSafelyAndEfficiently, the func-
tion you are calling (SecureFunction) performs a Demand on a ReflectionPermission to
ensure that the code can access nonpublic members of classes via reflection. Nor-
mally, this would result in a stackwalk for every call to SecureFunction. The Demand in
CallSecureFunctionSafelyAndEfficiently is there only to protect against the usage of
the Assert in the first place. To make this more efficient, you can use Assert to state
that all functions issuing Demands that are called from this one do not have to stack-
walk any further. The Assert says stop checking for this permission in the call stack.
In order to do this, you need the permission to call Assert.

The problem comes in with this Assert as it opens up a potential luring attack where
SecureFunction is called via CallSecureFunctionSafelyAndEfficiently, which calls
Assert to stop the Demand stackwalks from SecureFunction. If unauthorized code with-
out this ReflectionPermission were able to call CallSecureFunctionSafelyAndEfficiently,
the Assert would prevent the SecureFunction Demand call from determining that there
is some code in the call stack without the proper rights. This is the power of the call
stack checking in the CLR when a Demand occurs.

In order to protect against this, you issue a Demand for the ReflectionPermission

needed by SecureFunction in CallSecureFunctionSafelyAndEfficiently to close this
hole before issuing the Assert. The combination of this Demand and the Assert causes
you to do one stack walk instead of the original 100 that would have been caused by
the Demand in SecureFunction but to still maintain secure access to this functionality.

Security optimization techniques, such as using Assert in this case (even though it
isn’t the primary reason to use Assert), can help class library as well as control devel-
opers who are trusted to perform Asserts in order to speed the interaction of their

 SecureFunction();

 }

}

Example 17-14. CallSecureFunctionSafelyAndEfficiently function (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

984 | Chapter 17: Security

code with the CLR; but if used improperly, these techniques can also open up holes
in the security picture. This example shows that you can have both performance and
security where secure access is concerned.

If you are using Assert, be mindful that stackwalk overrides should never be made in
a class constructor. Constructors are not guaranteed to have any particular security
context, nor are they guaranteed to execute at a specific point in time. This lack leads
to the call stack not being well defined, and Assert used here can produce unex-
pected results.

One other thing to remember with Assert is that you can have only one active Assert

in a function at a given time. If you Assert the same permission twice, a
SecurityException is thrown by the CLR. You must revert the original Assert first
using RevertAssert. Then you can declare the second Assert.

See Also
See the “CodeAccessSecurity.Assert Method,” “CodeAccessSecurity.Demand Method,”
“CodeAccessSecurity.RevertAssert Method,” and “Overriding Security Checks” top-
ics in the MSDN documentation.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

990 | Chapter 17: Security

17.12 Minimizing the Attack Surface of an Assembly

Problem
Someone attacking your assembly will first attempt to find out as many things as
possible about your assembly and then use this information in constructing the
attack(s). The more surface area you give to attackers, the more they have to work
with. You need to minimize what your assembly is allowed to do so that, if an
attacker is successful in taking it over, the attacker will not have the necessary privi-
leges to do any damage to the system.

Solution
Use the SecurityAction.RequestRefuse enumeration member to indicate, at an
assembly level, the permissions that you do not wish this assembly to have. This will
force the CLR to refuse these permissions to your code and will ensure that, even if
another part of the system is compromised, your code cannot be used to perform
functions that it does not need the rights to do.

The following example allows the assembly to perform file I/O as part of its minimal
permission set but explicitly refuses to allow this assembly to have permissions to
skip verification:

[assembly: FileIOPermission(SecurityAction.RequestMinimum,Unrestricted=true)]

[assembly: SecurityPermission(SecurityAction.RequestRefuse,

 SkipVerification=false)]

Discussion
Once you have determined what permissions your assembly needs as part of your
normal security testing, you can use RequestRefuse to lock down your code. If this
seems extreme, think of scenarios in which your code could be accessing a data store
containing sensitive information, such as Social Security numbers or salary informa-
tion. This proactive step can help you show your customers that you take security
seriously and can help defend your interests in case a break-in occurs on a system
that your code is part of.

One serious consideration with this approach is that the use of RequestRefuse marks
your assembly as partially trusted. This in turn prevents it from calling any strong-
named assembly that hasn’t been marked with the AllowPartiallyTrustedCallers

attribute.

See Also
See Chapter 8 of Microsoft Patterns & Practices Group: http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp; see the “Secu-
rityAction Enumeration” and “Global Attributes” topics in the MSDN documentation.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Obtaining Security/Audit Information | 991

17.13 Obtaining Security/Audit Information

Problem
You need to obtain the security rights and/or audit information for a file or registry
key.

Solution
When obtaining security/audit information for a file, use the static GetAccessControl

method of the File class to obtain a System.Security.AccessControl.FileSecurity

object. Use the FileSecurity object to access the security and audit information for
the file. These steps are demonstrated in Example 17-15.

Example 17-15. Obtaining security audit information

public static void ViewFileRights()

{

 // Get security information from a file.

 string file = @"c:\FOO.TXT";

 FileSecurity fileSec = File.GetAccessControl(file);

 DisplayFileSecurityInfo(fileSec);

}

public static void DisplayFileSecurityInfo(FileSecurity fileSec)

{

 Console.WriteLine("GetSecurityDescriptorSddlForm: {0}",

 fileSec.GetSecurityDescriptorSddlForm(AccessControlSections.All));

 foreach (FileSystemAccessRule ace in

 fileSec.GetAccessRules(true, true, typeof(NTAccount)))

 {

 Console.WriteLine("\tIdentityReference.Value: {0}",

 ace.IdentityReference.Value);

 Console.WriteLine("\tAccessControlType: {0}", ace.AccessControlType);

 Console.WriteLine("\tFileSystemRights: {0}", ace.FileSystemRights);

 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);

 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);

 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");

 }

 foreach (FileSystemAuditRule ace in

 fileSec.GetAuditRules(true, true, typeof(NTAccount)))

 {

 Console.WriteLine("\tIdentityReference.Value: {0}",

 ace.IdentityReference.Value);

 Console.WriteLine("\tAuditFlags: {0}", ace.AuditFlags);

 Console.WriteLine("\tFileSystemRights: {0}", ace.FileSystemRights);

 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

992 | Chapter 17: Security

These methods produce the following output:

GetSecurityDescriptorSddlForm: O:BAG:SYD:PAI(A;;FA;;;SY)(A;;FA;;;BA)

 IdentityReference.Value: NT AUTHORITY\SYSTEM

 AccessControlType: Allow

 FileSystemRights: FullControl

 InheritanceFlags: None

 IsInherited: False

 PropagationFlags: None

 IdentityReference.Value: BUILTIN\Administrators

 AccessControlType: Allow

 FileSystemRights: FullControl

 InheritanceFlags: None

 IsInherited: False

 PropagationFlags: None

GetGroup(typeof(NTAccount)).Value: NT AUTHORITY\SYSTEM

GetOwner(typeof(NTAccount)).Value: BUILTIN\Administrators

When obtaining security/audit information for a registry key, use the GetAccess-

Control instance method of the Microsoft.Win32.RegistryKey class to obtain a System.

Security.AccessControl.RegistrySecurity object. Use the RegistrySecurity object to
access the security and audit information for the registry key. These steps are demon-
strated in Example 17-16.

 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);

 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");

 }

 Console.WriteLine("GetGroup(typeof(NTAccount)).Value: {0}",

 fileSec.GetGroup(typeof(NTAccount)).Value);

 Console.WriteLine("GetOwner(typeof(NTAccount)).Value: {0}",

 fileSec.GetOwner(typeof(NTAccount)).Value);

 Console.WriteLine("---------------------------------------\r\n\r\n\r\n");

}

Example 17-16. Getting security or audit information for a registry key

public static void ViewRegKeyRights()

{

 // Get security information from a registry key.

 using (RegistryKey regKey =

 Registry.LocalMachine.OpenSubKey(@"SOFTWARE\MyCompany\MyApp"))

 {

Example 17-15. Obtaining security audit information (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Obtaining Security/Audit Information | 993

These methods produce the following output:

 RegistrySecurity regSecurity = regKey.GetAccessControl();

 DisplayRegKeySecurityInfo(regSecurity);

 }

}

public static void DisplayRegKeySecurityInfo(RegistrySecurity regSec)

{

 Console.WriteLine("GetSecurityDescriptorSddlForm: {0}",

 regSec.GetSecurityDescriptorSddlForm(AccessControlSections.All));

 foreach (RegistryAccessRule ace in

 regSec.GetAccessRules(true, true, typeof(NTAccount)))

 {

 Console.WriteLine("\tIdentityReference.Value: {0}",

 ace.IdentityReference.Value);

 Console.WriteLine("\tAccessControlType: {0}", ace.AccessControlType);

 Console.WriteLine("\tRegistryRights: {0}", ace.RegistryRights.ToString());

 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);

 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);

 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");

 }

 foreach (RegistryAuditRule ace in

 regSec.GetAuditRules(true, true, typeof(NTAccount)))

 {

 Console.WriteLine("\tIdentityReference.Value: {0}",

 ace.IdentityReference.Value);

 Console.WriteLine("\tAuditFlags: {0}", ace.AuditFlags);

 Console.WriteLine("\tRegistryRights: {0}", ace.RegistryRights.ToString());

 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);

 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);

 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");

 }

 Console.WriteLine("GetGroup(typeof(NTAccount)).Value: {0}",

 regSec.GetGroup(typeof(NTAccount)).Value);

 Console.WriteLine("GetOwner(typeof(NTAccount)).Value: {0}",

 regSec.GetOwner(typeof(NTAccount)).Value);

 Console.WriteLine("---------------------------------------\r\n\r\n\r\n");

}

Example 17-16. Getting security or audit information for a registry key (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

994 | Chapter 17: Security

GetSecurityDescriptorSddlForm: O:S-1-5-21-329068152-1383384898-682003330-1004G:S-1-

5-21-329068152-1383384898-682003330-513D:

AI(A;ID;KR;;;BU)(A;CIIOID;GR;;;BU)(A;ID;KA;;;BA)(A;CIIOID;GA;;;BA)(A;ID;KA;;;SY)(A;CI

IOID;GA;;;SY)(A;ID;KA;;;S-1-5-21-329068152-1383384898-682003330-

1004)(A;CIIOID;GA;;;CO)

 IdentityReference.Value: BUILTIN\Users

 AccessControlType: Allow

 RegistryRights: ReadKey

 InheritanceFlags: None

 IsInherited: True

 PropagationFlags: None

 IdentityReference.Value: BUILTIN\Users

 AccessControlType: Allow

 RegistryRights: -2147483648

 InheritanceFlags: ContainerInherit

 IsInherited: True

 PropagationFlags: InheritOnly

 IdentityReference.Value: BUILTIN\Administrators

 AccessControlType: Allow

 RegistryRights: FullControl

 InheritanceFlags: None

 IsInherited: True

 PropagationFlags: None

 IdentityReference.Value: BUILTIN\Administrators

 AccessControlType: Allow

 RegistryRights: 268435456

 InheritanceFlags: ContainerInherit

 IsInherited: True

 PropagationFlags: InheritOnly

 IdentityReference.Value: NT AUTHORITY\SYSTEM

 AccessControlType: Allow

 RegistryRights: FullControl

 InheritanceFlags: None

 IsInherited: True

 PropagationFlags: None

 IdentityReference.Value: NT AUTHORITY\SYSTEM

 AccessControlType: Allow

 RegistryRights: 268435456

 InheritanceFlags: ContainerInherit

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Obtaining Security/Audit Information | 995

 IsInherited: True

 PropagationFlags: InheritOnly

 IdentityReference.Value: OPERATOR-C1EFE0\Admin

 AccessControlType: Allow

 RegistryRights: FullControl

 InheritanceFlags: None

 IsInherited: True

 PropagationFlags: None

 IdentityReference.Value: CREATOR OWNER

 AccessControlType: Allow

 RegistryRights: 268435456

 InheritanceFlags: ContainerInherit

 IsInherited: True

 PropagationFlags: InheritOnly

GetGroup(typeof(NTAccount)).Value: OPERATOR-C1EFE0\None

GetOwner(typeof(NTAccount)).Value: OPERATOR-C1EFE0\Admin

Discussion
The essential method that is used to obtain the security information for a file or reg-
istry key is the GetAccessControl method. When this method is called on the
RegistryKey object, a RegistrySecurity object is returned. However, when this
method is called on a File class, a FileSecurity object is returned. The
RegistrySecurity and FileSecurity objects essentially represent a Discretionary
Access Control List (DACL), which is what developers writing code in unmanaged
languages such as C++ are used to working with.

The RegistrySecurity and FileSecurity objects each contains a list of security rules
that has been applied to the system object that it represents. The RegistrySecurity

object contains a list of RegistryAccessRule objects, and the FileSecurity object con-
tains a list of FileSystemAccessRule objects. These rule objects are the equivalent of
the Access Control Entries (ACE) that make up the list of security rules within a
DACL.

System objects other than just the File class and RegistryKey object allow security
privileges to be queried. Table 17-1 lists all the .NET Framework classes that return a
security object type and what that type is. In addition, the rule-object type that is
contained in the security object is also listed.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

996 | Chapter 17: Security

The abstraction of a system object’s DACL through the *Security objects and the
abstraction of a DACL’s ACE through the *AccessRule objects allows easy access to
the security privileges of that system object. In previous versions of the .NET Frame-
work, these DACLs and their ACEs would have been accessible only in unmanaged
code. With the latest .NET Framework, you now have access to view and program
these objects.

See Also
See Recipe 17.14; see the “System.IO.File.GetAccessControl Method,” “System.
Security.AccessControl.FileSecurity Class,” “Microsoft.Win32.RegistryKey.GetAc-
cessControl Method,” and “System.Security.AccessControl.RegistrySecurity Class”
topics in the MSDN documentation.

17.14 Granting/Revoking Access to a File
or Registry Key

Problem
You need to change the security privileges of either a file or registry key
programmatically.

Solution
The code shown in Example 17-17 grants and then revokes the ability to perform
write actions on a registry key.

Table 17-1. List of all *Security and *AccessRule objects and the types to which they apply

Class
Object returned by the
GetAccessControl method

Rule-object type contained
within the security object

Directory DirectorySecurity FileSystemAccessRule

DirectoryInfo DirectorySecurity FileSystemAccessRule

EventWaitHandle EventWaitHandleSecurity EventWaitHandleAccessRule

File FileSecurity FileSystemAccessRule

FileInfo FileSecurity FileSystemAccessRule

FileStream FileSecurity FileSystemAccessRule

Mutex MutexSecurity MutexAccessRule

RegistryKey RegistrySecurity RegistryAccessRule

Semaphore SemaphoreSecurity SemaphoreAccessRule

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Granting/Revoking Access to a File or Registry Key | 997

The code shown in Example 17-18 grants and then revokes the ability to delete a file.

Example 17-17. Granting and revoking the right to perform write actions on a registry key

public static void GrantRevokeRegKeyRights()

{

 NTAccount user = new NTAccount(@"WRKSTN\ST");

 using (RegistryKey regKey = Registry.LocalMachine.OpenSubKey(

 @"SOFTWARE\MyCompany\MyApp"))

 {

 GrantRegKeyRights(regKey, user, RegistryRights.WriteKey,

 InheritanceFlags.None, PropagationFlags.None, AccessControlType.Allow);

 RevokeRegKeyRights(regKey, user, RegistryRights.WriteKey,

 InheritanceFlags.None, PropagationFlags.None,

 AccessControlType.Allow)

 }

}

public static void GrantRegKeyRights(RegistryKey regKey,

 NTAccount user,

 RegistryRights rightsFlags,

 InheritanceFlags inherFlags,

 PropagationFlags propFlags,

 AccessControlType actFlags)

{

 RegistrySecurity regSecurity = regKey.GetAccessControl();

 RegistryAccessRule rule = new RegistryAccessRule(user, rightsFlags, inherFlags,

 propFlags, actFlags);

 regSecurity.AddAccessRule(rule);

 regKey.SetAccessControl(regSecurity);

}

public static void RevokeRegKeyRights(RegistryKey regKey,

 NTAccount user,

 RegistryRights rightsFlags,

 InheritanceFlags inherFlags,

 PropagationFlags propFlags,

 AccessControlType actFlags)

{

 RegistrySecurity regSecurity = regKey.GetAccessControl();

 RegistryAccessRule rule = new RegistryAccessRule(user, rightsFlags, inherFlags,

 propFlags, actFlags);

 regSecurity.RemoveAccessRuleSpecific(rule);

 regKey.SetAccessControl(regSecurity);

}

Example 17-18. Granting and revoking the right to delete a file

public static void GrantRevokeFileRights()

{

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

998 | Chapter 17: Security

Discussion
When granting or revoking access rights on a file or registry key, you need two
things. The first is a valid NTAccount object. This object essentially encapsulates a
user or group account. A valid NTAccount object is required in order to create either a
new RegistryAccessRule or a new FileSystemAccessRule. The NTAccount identifies the
user or group this access rule will apply to. Note that the string passed in to the
NTAccount constructor must be changed to a valid user or group name that exists on
your machine. If you pass in the name of an existing user or group account that has

 NTAccount user = new NTAccount(@"WRKSTN\ST");

 string file = @"c:\FOO.TXT";

 GrantFileRights(file, user, FileSystemRights.Delete, InheritanceFlags.None,

 PropagationFlags.None, AccessControlType.Allow);

 RevokeFileRights(file, user, FileSystemRights.Delete, InheritanceFlags.None,

 PropagationFlags.None, AccessControlType.Allow);

}

public static void GrantFileRights(string file,

 NTAccount user,

 FileSystemRights rightsFlags,

 InheritanceFlags inherFlags,

 PropagationFlags propFlags,

 AccessControlType actFlags)

{

 FileSecurity fileSecurity = File.GetAccessControl(file);

 FileSystemAccessRule rule = new FileSystemAccessRule(user, rightsFlags,

 inherFlags, propFlags,

 actFlags);

 fileSecurity.AddAccessRule(rule);

 File.SetAccessControl(file, fileSecurity);

}

public static void RevokeFileRights(string file,

 NTAccount user,

 FileSystemRights rightsFlags,

 InheritanceFlags inherFlags,

 PropagationFlags propFlags,

 AccessControlType actFlags)

{

 FileSecurity fileSecurity = File.GetAccessControl(file);

 FileSystemAccessRule rule = new FileSystemAccessRule(user, rightsFlags,

 inherFlags, propFlags,

 actFlags);

 fileSecurity.RemoveAccessRuleSpecific(rule);

 File.SetAccessControl(file, fileSecurity);

}

Example 17-18. Granting and revoking the right to delete a file (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Granting/Revoking Access to a File or Registry Key | 999

been disabled, an IdentityNotMappedException will be thrown with the message
“Some or all identity references could not be translated.”

The second item that is needed is either a valid RegistryKey object, if you are modify-
ing security access to a registry key or a string containing a valid path and filename to
an existing file. These objects will have security permissions either granted to them
or revoked from them.

Once these two items have been obtained, you can use the second item to obtain a
security object, which contains the list of access-rule objects. For example, the fol-
lowing code obtains the security object for the registry key HKEY-LOCAL_
MACHINE\SOFTWARE\MyCompany\MyApp:

RegistryKey regKey = Registry.LocalMachine.OpenSubKey(

 @"SOFTWARE\MyCompany\MyApp");

RegistrySecurity regSecurity = regKey.GetAccessControl();

The following code obtains the security object for the FOO.TXT file:

string file = @"c:\FOO.TXT";

FileSecurity fileSecurity = File.GetAccessControl(file);

Now that you have your particular security object, you can create an access-rule
object that will be added to this security object. To do this, you need to create a new
access rule. For a registry key, you have to create a new RegistryAccessRule object,
and for a file, you have to create a new FileSystemAccessRule object. To add this
access rule to the correct security object, you call the SetAccessControl method on
the security object. Note that RegistryAccessRule objects can be added only to
RegistrySecurity objects and FileSystemAccessRule objects can be added only to
FileSecurity objects.

To remove an access-rule object from a system object, you follow the same set of
steps, except that you call the RemoveAccessRuleSpecific method instead of
AddAccessRule. RemoveAccessRuleSpecific accepts an access-rule object and attempts
to remove the rule that exactly matches this rule object from the security object. As
always, you must remember to call the SetAccessControl method to apply any
changes to the actual system object.

For a list of other classes that allow security permissions to be modified programmat-
ically, see Recipe 17.13.

See Also
See Recipe 17.13; see the “System.IO.File.GetAccessControl Method,” “System.Secu-
rity.AccessControl.FileSecurity Class,” “System.Security.AccessControl.FileSystemAc-
cessRule Class,” “Microsoft.Win32.RegistryKey.GetAccessControl Method,” “System.
Security.AccessControl.RegistrySecurity Class,” and “System.Security.AccessControl.
RegistryAccessRule Class” topics in the MSDN documentation.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

1000 | Chapter 17: Security

17.15 Protecting String Data with Secure Strings

Problem
You need to store sensitive information, such as a Social Security number, in a string.
However, you do not want prying eyes to be able to view this data in memory.

Solution
Use the SecureString object. To place text from a stream object within a
SecureString object, use the following method:

public static SecureString CreateSecureString(StreamReader secretStream)

{

 SecureString secretStr = new SecureString();

 char buf;

 while (secretStream.Peek() >= 0)

 {

 buf = (char)secretStream.Read();

 secretStr.AppendChar(buf);

 }

 // Make the secretStr object read-only.

 secretStr.MakeReadOnly();

 return (secretStr);

}

To pull the text out of a SecureString object, use the following method:

public static void ReadSecureString(SecureString secretStr)

{

 // In order to read back the string, you need to use some special methods.

 IntPtr secretStrPtr = Marshal.SecureStringToBSTR(secretStr);

 string nonSecureStr = Marshal.PtrToStringBSTR(secretStrPtr);

 // Use the unprotected string.

 Console.WriteLine("nonSecureStr = {0}", nonSecureStr);

 Marshal.ZeroFreeBSTR(secretStrPtr);

 if (!secretStr.IsReadOnly())

 {

 secretStr.Clear();

 }

}

Discussion
A SecureString object is designed specifically to contain string data that you want to
keep secret. Some of the data you may want to store in a SecureString object would

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Protecting String Data with Secure Strings | 1001

be a Social Security number, a credit card number, a PIN number, a password, an
employee ID, or any other type of sensitive information.

This string data is automatically encrypted immediately upon being added to the
SecureString object, and it is automatically decrypted when the string data is
extracted from the SecureString object. The encryption is one of the highlights of
using this object. In addition to encryption, there will be only one copy of a
SecureString object in memory at any one time. This is in direct contrast to a String

object, which creates multiple copies in memory whenever the text in the String

object is modified.

Another feature of a SecureString object is that when the MakeReadOnly method is
called, the SecureString becomes immutable. Any attempt to modify the string data
within the read-only SecureString object causes an InvalidOperationException to be
thrown. Once a SecureString object is made read-only, it cannot go back to a read/
write state. However, you need to be careful when calling the Copy method on an
existing SecureString object. This method will create a new instance of the
SecureString object on which it was called, with a copy of its data. However, this
new SecureString object is now readable and writable. You should review your code
to determine if this new SecureString object should be made read-only similarly to
its original SecureString object.

The SecureString object can be used only on Windows 2000 (with
Service Pack 3 or greater) or later operating systems.

In this recipe you create a SecureString object from data read in from a stream. This
data could also come from a char* using unsafe code. The SecureString object con-
tains a constructor that accepts a parameter of this type in addition to an integer
parameter that takes a length value, which determines the number of characters to
pull from the char*.

Getting data out of a SecureString object is not obvious at first glance. There are no
methods to return the data contained within a SecureString object. In order to
accomplish this, you must use two static methods on the Marshal class. The first is
the SecureStringToBSTR, which accepts your SecureString object and returns an
IntPtr. This IntPtr is then passed into the PtrToStringBSTR method, also on the
Marshal class. The PtrToStringBSTR method then returns an unsecure String object
containing your decrypted string data.

Once you are done using the SecureString object, you should call the static
ZeroFreeBSTR method on the Marshal class to zero out any memory allocated when
extracting the data from the SecureStirng. As an added safeguard, you should call
the Clear method of the SecureString object to zero out the encrypted string from
memory. If you have made your SecureString object read-only, you will not be able
to call the Clear method to wipe out its data. In this situation, you must either call

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

1002 | Chapter 17: Security

the Dispose method on the SecureString object or rely on the garbage collector to
remove the SecureString object and its data from memory.

Notice that when you pull a SecureString object into an unsecure String, its data
becomes viewable by a malicious hacker. So it may seem pointless to go through the
trouble of using a SecureString when you are just going to convert it into an unse-
cure String. However, by using a SecureString, you narrow the window of opportu-
nity for a malicious hacker to view this data in memory. In addition, some APIs
accept a SecureString as a parameter so that you don’t have to convert it to an unse-
cure String. The ProcessStartInfo, for example, accepts a password in its Password

property as a SecureString object.

The SecureString object is not a silver bullet for securing your data. It
is, however, another layer of defense you can add to your application.

See Also
See the “SecureString Class” topic in the MSDN documentation.

17.16 Securing Stream Data

Problem
You want to use the TCP server in Recipe 16.1 to communicate with the TCP client
in Recipe 16.2. However, you need the communication to be secure.

Solution
Replace the NetworkStream class with the more secure SslStream class on both the cli-
ent and the server. The code for the more secure TCP client, TCPClient_SSL, is shown
in Example 17-19 (changes are highlighted).

Example 17-19. TCPClient_SSL class

class TCPClient_SSL

{

 private TcpClient _client = null;

 private IPAddress _address = IPAddress.Parse("127.0.0.1");

 private int _port = 5;

 private IPEndPoint _endPoint = null;

 public TCPClient_SSL(string address, string port)

 {

 _address = IPAddress.Parse(address);

 _port = Convert.ToInt32(port);

 _endPoint = new IPEndPoint(_address, _port);

 }

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Securing Stream Data | 1003

 public void ConnectToServer(string msg)

 {

 try

 {

 using (client = new TcpClient())

 {

 client.Connect(_endPoint);

 using (SslStream sslStream = new SslStream(_client.GetStream(),

 false, new RemoteCertificateValidationCallback(

 CertificateValidationCallback)))

 {

 sslStream.AuthenticateAsClient("MyTestCert2");

 // Get the bytes to send for the message.

 byte[] bytes = Encoding.ASCII.GetBytes(msg);

 // Send message.

 Console.WriteLine("Sending message to server: " + msg);

 sslStream.Write(bytes, 0, bytes.Length);

 // Get the response.

 // Buffer to store the response bytes.

 bytes = new byte[1024];

 // Display the response.

 int bytesRead = sslStream.Read(bytes, 0, bytes.Length);

 string serverResponse = Encoding.ASCII.GetString(bytes, 0,

 bytesRead);

 Console.WriteLine("Server said: " + serverResponse);

 }

 }

 }

 catch (SocketException e)

 {

 Console.WriteLine("There was an error talking to the server: {0}",

 e.ToString());

 }

 }

 private bool CertificateValidationCallback(object sender,

 X509Certificate certificate,

 X509Chain chain,

 SslPolicyErrors sslPolicyErrors)

 {

 if (sslPolicyErrors == SslPolicyErrors.None)

 {

 return true;

 }

 else

 {

 if (sslPolicyErrors == SslPolicyErrors.RemoteCertificateChainErrors)

Example 17-19. TCPClient_SSL class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

1004 | Chapter 17: Security

The new code for the more secure TCP server, TCPServer_SSL, is shown in
Example 17-20 (changes are highlighted).

 {

 Console.WriteLine("The X509Chain.ChainStatus returned an array " +

 "of X509ChainStatus objects containing error information.");

 }

 else if (sslPolicyErrors ==

 SslPolicyErrors.RemoteCertificateNameMismatch)

 {

 Console.WriteLine("There was a mismatch of the name " +

 "on a certificate.");

 }

 else if (sslPolicyErrors ==

 SslPolicyErrors.RemoteCertificateNotAvailable)

 {

 Console.WriteLine("No certificate was available.");

 }

 else

 {

 Console.WriteLine("SSL Certificate Validation Error!");

 }

 }

 Console.WriteLine(Environment.NewLine +

 "SSL Certificate Validation Error!");

 Console.WriteLine(sslPolicyErrors.ToString());

 return false;

 }

}

Example 17-20. TCPServer_SSL class

class TCPServer_SSL

{

 private TcpListener _listener = null;

 private IPAddress _address = IPAddress.Parse("127.0.0.1");

 private int _port = 55555;

 #region CTORs

 public TCPServer_SSL()

 {

 }

 public TCPServer_SSL(string address, string port)

 {

 _port = Convert.ToInt32(port);

 _address = IPAddress.Parse(address);

 }

 #endregion // CTORs

Example 17-19. TCPClient_SSL class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Securing Stream Data | 1005

 #region Properties

 public IPAddress Address

 {

 get { return _address; }

 set { _address = value; }

 }

 public int Port

 {

 get { return _port; }

 set { _port = value; }

 }

 #endregion

 public void Listen()

 {

 try

 {

 using(listener = new TcpListener(_address, _port))

 {

 // Fire up the server.

 listener.Start();

 // Enter the listening loop.

 while (true)

 {

 Console.Write("Looking for someone to talk to... ");

 // Wait for connection.

 TcpClient newClient = _listener.AcceptTcpClient();

 Console.WriteLine("Connected to new client");

 // Spin a thread to take care of the client.

 ThreadPool.QueueUserWorkItem(new WaitCallback(ProcessClient),

 newClient);

 }

 }

 }

 catch (SocketException e)

 {

 Console.WriteLine("SocketException: {0}", e);

 }

 finally

 {

 // Shut it down.

 _listener.Stop();

 }

 Console.WriteLine("\nHit any key (where is ANYKEY?) to continue...");

 Console.Read();

 }

 private void ProcessClient(object client)

Example 17-20. TCPServer_SSL class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

1006 | Chapter 17: Security

Discussion
For more information about the inner workings of the TCP server and client and
how to run these applications, see Recipes 16.1 and 16.2. In this recipe, you will
cover only the changes needed to convert the TCP server and client to use the
SslStream object for secure communication.

 {

 using (TcpClient newClient = (TcpClient)client)

 {

 // Buffer for reading data.

 byte[] bytes = new byte[1024];

 string clientData = null;

 using (SslStream sslStream = new SslStream(newClient.GetStream()))

 {

sslStream.AuthenticateAsServer(GetServerCert("MyTestCert2"), false,

 SslProtocols.Default, true);

 // Loop to receive all the data sent by the client.

 int bytesRead = 0;

 while ((bytesRead = sslStream.Read(bytes, 0, bytes.Length)) != 0)

 {

 // Translate data bytes to an ASCII string.

 clientData = Encoding.ASCII.GetString(bytes, 0, bytesRead);

 Console.WriteLine("Client says: {0}", clientData);

 // Thank them for their input.

 bytes = Encoding.ASCII.GetBytes("Thanks call again!");

 // Send back a response.

 sslStream.Write(bytes, 0, bytes.Length);

 }

 }

 }

 }

 private static X509Certificate GetServerCert(string subjectName)

 {

 X509Store store = new X509Store(StoreName.My, StoreLocation.LocalMachine);

 store.Open(OpenFlags.ReadOnly);

 X509CertificateCollection certificate =

 store.Certificates.Find(X509FindType.FindBySubjectName,

 subjectName, true);

 if (certificate.Count > 0)

 return (certificate[0]);

 else

 return (null);

 }

}

Example 17-20. TCPServer_SSL class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Securing Stream Data | 1007

The SslStream object uses the SSL protocol to provide a secure encrypted channel on
which to send data. However, encryption is just one of the security features built into
the SslStream object. Another feature of SslStream is that it prevents malicious or
even accidental modification to the data. Even though the data is encrypted, it may
become modified during transit. To determine if this has occurred, the data is signed
with a hash before it is sent. When it is received, the data is rehashed and the two
hashes are compared. If both hashes are equivalent, the message arrived intact; if the
hashes are not equivalent, then something modified the data during transit.

The SslStream object also has the ability to use client and/or server certificates to
authenticate the client and/or the server. These certificates are used to prove the
identity of the issuer. For example, if a client attaches to a server using SSL, the
server must provide a certificate to the client that is used to prove that the server is
who it says it is. The SslStream object also allows the client to pass a certificate to the
server if the client also needs to prove who it is to the server.

To allow the TCP server and client to communicate successfully, you need to set up
an X.509 certificate that will be used to authenticate the TCP server. To do this, you
set up a test certificate using the makecert.exe utility. This utility can be found in the
<drive>:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin directory. The syntax
for creating a simple certificate is as follows:

makecert -r -pe -n "CN=MyTestCert2" -e 01/01/2036

 -sr localMachine c:\MyAppTestCert.cer

The options are defined as follows:

-r

The certificate will be self-signed.

-pe

The certificate’s private key will be exportable so that it can be included in the
certificate.

-n "CN=MyTestCert2"

The publisher’s certificate name. The name follows the "CN=" text.

-e 01/01/2036

The date at which this certificate expires.

-sr localMachine

The store where this certificate will be located. In this case, it is localMachine.
However, you can also specify currentUser (which is the default if this switch is
omitted).

The final argument to the makecert.exe utility is the output filename, in this case c:\
MyAppTestCert.cer. This will create the certificate in the c:\MyAppTestCert.cer file on
the hard drive.

The next step involves opening Windows Explorer and right-clicking on the c:\
MyAppTestCert.cer file. This will display a pop-up menu with the Install Certificate

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

1008 | Chapter 17: Security

menu item. Click this menu item and a wizard will be started to allow you to import
this .cer file into the certificate store. The first dialog box of the wizard is shown in
Figure 17-2. Click the Next button to go to the next step in the wizard.

The next step in the wizard allows you to choose the certificate store in which you
want to install your certificate. This dialog is shown in Figure 17-3. Keep the defaults
and click the Next button.

The final step in the wizard is shown in Figure 17-4. On this dialog, click the Finish
button.

After you click the Finish button, the message box shown in Figure 17-5 is dis-
played, warning you to verify the certificate that you wish to install. Click the Yes
button to install the certificate.

Finally, the message box in Figure 17-6 is displayed, indicating that the import was
successful.

At this point you can run the TCP server and client and they should communicate
successfully.

To use the SslStream in the TCP server project, you need to create a new SslStream

object to wrap the TcpClient object:

SslStream sslStream = new SslStream(newClient.GetStream());

Figure 17-2. The first step of the Certificate Import Wizard

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Securing Stream Data | 1009

Before you can use this new stream object, you must authenticate the server using
the following line of code:

sslStream.AuthenticateAsServer(GetServerCert("MyTestCert2"),

 false, SslProtocols.Default, true);

Figure 17-3. Specifying a certificate store in the Certificate Import Wizard

Figure 17-4. The last step of the Certificate Import Wizard

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

1010 | Chapter 17: Security

The GetServerCert method finds the server certificate used to authenticate the server.
Notice the name passed in to this method; it is the same as the publisher’s certificate
name switch used with the makecert.exe utility (see the –n switch). This certificate is
returned from the GetServerCert method as an X509Certificate object. The next
argument to the AuthenticateAsServer method is false, indicating that a client certif-
icate is not required. The SslProtocols.Default argument indicates that the authenti-
cation mechanism (SSL 2.0, SSL 3.0, TLS 1.0, or PCT 1.0) is chosen based on what is
available to the client and server. The final argument indicates that the certificate will
be checked to see whether it has been revoked.

To use the SslStream in the TCP client project, you create a new SslStream object, a
bit differently from how it was created in the TCP server project:

SslStream sslStream = new SslStream(_client.GetStream(), false,

 new RemoteCertificateValidationCallback(CertificateValidationCallback));

This constructor accepts a stream from the _client field, a false indicating that the
stream associated with the _client field will be closed when the Close method of the
SslStream object is called, and a delegate that validates the server certificate. The
CertificateValidationCallback method is called whenever a server certificate needs
to be validated. The server certificate is checked and any errors are passed into this
delegate method to allow you to handle them as you wish.

The AuthenticateAsClient method is called next to authenticate the server:

sslStream.AuthenticateAsClient("MyTestCert2");

Figure 17-5. The security warning

Figure 17-6. The import successful message

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Encrypting web.config Information | 1011

As you can see, with a little extra work, you can replace the current stream type you
are using with the SslStream to gain the benefits of the SSL protocol.

See Also
See the “SslStream Class” topic in the MSDN documentation.

17.17 Encrypting web.config Information

Problem
You need to encrypt data within a web.config file programmatically.

Solution
 To encrypt data within a web.config file section, use the following method:

public static void EncryptWebConfigData(string appPath,

 string protectedSection,

 string dataProtectionProvider)

{

 System.Configuration.Configuration webConfig =

 WebConfigurationManager.OpenWebConfiguration(appPath);

 ConfigurationSection webConfigSection = webConfig.GetSection(protectedSection);

 if (!webConfigSection.SectionInformation.IsProtected)

 {

 webConfigSection.SectionInformation.ProtectSection(dataProtectionProvider);

 webConfig.Save();

 }

}

To decrypt data within a web.config file section, use the following method:

public static void DecryptWebConfigData(string appPath, string protectedSection)

{

 System.Configuration.Configuration webConfig =

 WebConfigurationManager.OpenWebConfiguration(appPath);

 ConfigurationSection webConfigSection = webConfig.GetSection(protectedSection);

 if (webConfigSection.SectionInformation.IsProtected)

 {

 webConfigSection.SectionInformation.UnprotectSection();

 webConfig.Save();

 }

}

You will need to add the System.Web and System.Configuration DLLs to your project
before this code will compile.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

1012 | Chapter 17: Security

Discussion
To encrypt data, you can call the EncryptWebConfigData method with the following
arguments:

EncryptWebConfigData("/WebApplication1", "appSettings",

 "DataProtectionConfigurationProvider");

The first argument is the virtual path to the web application, the second argument is
the section that you want to encrypt, and the last argument is the data protection
provider that you want to use to encrypt the data.

The EncryptWebConfigData method uses the virtual path passed into it to open the
web.config file. This is done using the OpenWebConfiguration static method of the
WebConfigurationManager class:

System.Configuration.Configuration webConfig =

 WebConfigurationManager.OpenWebConfiguration(appPath);

This method returns a System.Configuration.Configuration object, which you use to
get the section of the web.config file that you wish to encrypt. This is accomplished
through the GetSection method:

ConfigurationSection webConfigSection = webConfig.GetSection(protectedSection);

This method returns a ConfigurationSection object that you can use to encrypt the
section. This is done through a call to the ProtectSection method:

webConfigSection.SectionInformation.ProtectSection(dataProtectionProvider);

The dataProtectionProvider argument is a string identifying which data protection
provider you want to use to encrypt the section information. The two available pro-
viders are DpapiProtectedConfigurationProvider and RsaProtectedConfigurationProvider.
The DpapiProtectedConfigurationProvider class makes use of the Data Protection
API (DPAPI) to encrypt and decrypt data. The RsaProtectedConfigurationProvider

class makes use of the RsaCryptoServiceProvider class in the .NET Framework to
encrypt and decrypt data.

The final step to encrypting the section information is to call the Save method of the
System.Configuration.Configuration object. This saves the changes to the web.con-
fig file. If this method is not called, the encrypted data will not be saved.

To decrypt data within a web.config file, you can call the DecryptWebConfigData

method with the following parameters:

DecryptWebConfigData("/WebApplication1", "appSettings");

The first argument is the virtual path to the web application; the second argument is
the section that you want to encrypt.

The DecryptWebConfigData method operates very similarly to the EncryptWebConfigData

method, except that it calls the UnprotectSection method to decrypt the encrypted
data in the web.config file:

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Encrypting web.config Information | 1013

webConfigSection.SectionInformation.UnprotectSection();

If you encrypt data in the web.config file using this technique, the data will automati-
cally be decrypted when the web application accesses the encrypted data in the web.
config file.

See Also
See the “System.Configuration.Configuration Class” topic in the MSDN documenta-
tion.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

1016 | Chapter 17: Security

17.19 Achieving Secure Unicode Encoding

Problem
You want to make sure that your UnicodeEncoding or UTF8Encoding class detects any
errors, such as an invalid sequence of bytes.

Solution
Use the constructor for the UnicodeEncoding class that accepts three parameters:

UnicodeEncoding encoding = new UnicodeEncoding(false, true, true);

Or use the constructor for the UTF8Encoding class that accepts two parameters:

UTF8Encoding encoding = new UTF8Encoding(true, true);

Discussion
The final argument to both these constructors should be true. This turns on error
detection for this class. Error detection will help when an attacker somehow is able
to access and modify a Unicode- or a UTF8-encoded stream of characters. If the
attacker is not careful she can invalidate the encoded stream. If error detection is
turned on, it will be a first defense in catching these invalid encoded streams.

When error detection is turned on, errors such as the following are dealt with by
throwing an ArgumentException:

• Leftover bytes that do not make up a complete encoded character sequence
exist.

• An invalid encoded start character was detected. For example, a UTF8 character
does not fit into one of the following classes: Single-Byte, Double-Byte, Three-
Byte, Four-Byte, Five-Byte, or Six-Byte.

• Extra bits are found after processing an extra byte in a multibyte sequence.

• The leftover bytes in a sequence could not be used to create a complete
character.

• A high surrogate value is not followed by a low surrogate value.

• In the case of the GetBytes method, the byte[] that is used to hold the resulting
bytes is not large enough.

• In the case of the GetChars method, the char[] that is used to hold the resulting
characters is not large enough.

If you use a constructor other than the one shown in this recipe or if you set the last
parameter in this constructor to false, any errors in the encoding sequence are
ignored and no exception is thrown.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Obtaining a Safer File Handle | 1017

See Also
See the “UnicodeEncoding Class” and “UTF8Encoding Class” topic in the MSDN
documentation.

17.20 Obtaining a Safer File Handle

Problem
You want more security when manipulating an unmanaged file handle than a simple
IntPtr can provide.

Solution
Use the Microsoft.Win32.SafeHandles.SafeFileHandle object to wrap an existing
unmanaged file handle:

public static void WriteToFileHandle(IntPtr hFile)

{

 // Wrap our file handle in a safe handle wrapper object.

 using (Microsoft.Win32.SafeHandles.SafeFileHandle safeHFile =

 new Microsoft.Win32.SafeHandles.SafeFileHandle(hFile, true))

 {

 // Open a FileStream object using the passed-in safe file handle.

 using (FileStream fileStream = new FileStream(safeHFile,

 FileAccess.ReadWrite))

 {

 // Flush before we start to clear any pending unmanaged actions.

 fileStream.Flush();

 // Operate on file here.

 string line = "Using a safe file handle object";

 // Write to the file.

 byte[] bytes = Encoding.ASCII.GetBytes(line);

 fileStream.Write(bytes,0,bytes.Length);

 }

 }

 // Note that the hFile handle is invalid at this point.

}

The SafeFileHandle constructor takes two arguments. The first is an IntPtr that con-
tains a handle to an unmanaged resource. The second argument is a Boolean value,
where true indicates that the handle will always be released during finalization and
false indicates that the safeguards that force the handle to be released during final-
ization are turned off. Unless you have an extremely good reason to turn off these
safeguards, it is recommended that you always set this Boolean value to true.

This is the Title of the Book, eMatter Edition
Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

1018 | Chapter 17: Security

Discussion
A SafeFileHandle object contains a single handle to an unmanaged file resource. This
class has two major benefits over using an IntPtr to store a handle—critical finaliza-
tion and prevention of handle recycling attacks. The SafeFileHandle is seen by the
garbage collector as a critical finalizer, due to the fact that one of the SafeFileHandle’s
base classes is CriticalFinalizerObject. The garbage collector separates finalizers
into two categories: critical and noncritical. The noncritical finalizers are run first,
followed by the critical finalizers. If a FileStream’s finalizer flushes any data, it can
assume that the SafeFileHandle object is still valid, because the SafeFileHandle final-
izer is guaranteed to run after the FileStream’s.

The Close method on the FileStream object will also close its underly-
ing SafeFileHandle object.

Since the SafeFileHandle falls under critical finalization, it means that the underlying
unmanaged handle is always released (i.e., the SafeFileHandle.ReleaseHandle

method is always called), even in situations in which the AppDomain is corrupted
and/or shutting down or the thread is being aborted. This will prevent resource han-
dle leaks.

The SafeFileHandle object also helps to prevent handle recycling attacks. The operat-
ing system aggressively tries to recycle handles, so it is possible to close one handle
and open another soon afterward and get the same value for the new handle. One
way an attacker will take advantage of this is by forcing an accessible handle to close
on one thread while it is possibly still being used on another in the hope that the
handle will be recycled quickly and used as a handle to a new resource, possibly one
that the attacker does not have permission to access. If the application still has this
original handle and is actively using it, data corruption could be an issue.

Since this class inherits from the SafeHandleZeroOrMinusOneIsInvalid class, a handle
value of zero or minus one is considered an invalid handle.

See Also
See the “Microsoft.Win32.SafeHandles.SafeFileHandle Class” topic in the MSDN
documentation.

