
SIP: Creating next-generation telecom applications
The Session Initiation Protocol makes developing apps for
telecommunications networks easier than ever

Level: Introductory
Developer, Ubiquity Software Corporation
First published by IBM developerWorks at http://www.ibm.com/developerWorks/.

Available from at UDN Developer Network at

https://developer.ubiquitysoftware.com/support/whitepapers/sip-creating-next-

generation-telecom-applications/

30 Sep 2003

Developing applications to run on a telecommunications network has

never been easier. Instead of yesterday's proprietary protocols and
interfaces, you now can use open, Internet-based standards such as

the Session Initiation Protocol (SIP). Combined with the power and
simplicity of Java technology in the form of the SIP Servlet API, an

application developer can create and deploy new services to users in a
fraction of the time it previously took.

Taking advantage of this revolution means being conversant with SIP.
In this article, you'll discover how SIP operates and, building on that

knowledge, you will learn how to use the Java SIP Servlet API to build
the exciting new applications of the future. The SIP tour concludes

with code examples that demonstrate SIP application development in
action.

The era of separate voice and data networks is gradually nearing an

end. In the future, a single, converged network will provide the basis
for all forms of communication. In addition to reducing costs, that

convergence will enable a whole new range of services. The Session
Initiation Protocol (SIP) will be the control mechanism at the center of

this revolution.

SIP's momentum has grown, with network equipment vendors and

telecommunication service providers increasingly accepting it as the
protocol of choice. Additionally, the 3rd. Generation Partnership Project

(3GPP) recently adopted SIP as the call control mechanism for next-
generation networks. Moreover, the adoption of Voice Over IP in

enterprises also continues at a quick pace. Considering all that, expect
big things in the telecommunications application development space.

In this article, you'll discover the SIP protocol and the SIP Servlet API.

You'll see the role played by User Agents (UA) and proxy servers in
SIP, and find out how to establish communication between two

devices. That provides a basis for the introduction of the SIP Servlet
API and related concepts. SIP servlet behavior such as proxying,

acting as an originating and terminating UA, and acting as a Back-to-
Back User Agent (B2BUA) are also covered. Finally, sample SIP servlet

code illustrates just how easy it is to program using the SIP Servlet
API.

What is SIP?

The SIP application-layer protocol allows for the creation and

management of multimedia communication sessions between devices.
In 1999 the Internet Engineering Task Force (IETF) approved SIP as

Request For Comment (RFC) 2543, which built on the Multiparty
Multimedia Session Control (MMUSIC) Working Group's earlier

development of multimedia on the Internet. Since then, SIP has

evolved through several RFC revisions to the current RFC 3261.

Any media can be exchanged during a SIP session and any protocol
can be used. SIP commonly works with:

Session Description Protocol (SDP), which is used to determine which
media, will be used. See RFC 2327.

Real Time Protocol (RTP), which actually transports the media data
during the session. See RFC 1889.

The protocol does not concern itself with the nature or content of a

call, so it leaves users free to choose how they will use the session and
exchange communication media. SIP sessions are therefore not limited

to voice. Once a session has been established, users can exchange any
type of media.

SIP concepts

The SIP RFC defines several key concepts and elements required in a

SIP network:

• A user agent (UA), an end-point, lets users create and manage a
communication session. A UA, either a SIP telephone or a

software application, handles session setup and management
tasks such as transfer, termination, and service invocation, to

name a few. In addition, UAs can identify user availability and
negotiate session capability.

• A session establishes when the UA (the caller) invites another UA

(the callee) to join a communication session.
• A SIP messageis a text-based entity. There are two types of

messages: requests and responses. Requests are sent from one
UA to another, which in turn sends a response back. (The

following section discusses SIP messages in greater detail.) Any
messages that pass from a caller to a callee move downstream;

conversely, any messages that move in the opposite direction
move upstream.

• A SIP proxy server typically handles registrations, implementing
call-routing policies, and performing authentication and

authorization. As its primary task, the SIP proxy server ensures
that a request is sent to another entity closer to the targeted

user. A proxy interprets, and, if necessary, rewrites specific parts
of a request message before forwarding it. A SIP message might

pass through several SIP proxy servers as it travels to the callee

UA. A UA is usually configured to send any requests it originates
to a specific SIP proxy server. The proxy server is known as an

outbound proxy in this situation.
• A SIP address (also known as a SIP URL) uniquely identifies a

user during the creation of a communication session. The
address resembles an e-mail address except that it has a sip:

prefix. For example, the telephone on your desk might have the
following SIP address: sip:user@194.195.100.20.

Typically, you want people to call you using a SIP address with your

company's domain name, for example, sip:user@ubiquity.net. To that

end, SIP lets you perform a registration process to associate your SIP
address with one or more UAs. Subsequently, when a call is made to

the SIP address it goes to a SIP proxy server. The SIP proxy server
performs a registration lookup that determines which UA the call

should be directed to. You can also modify and delete registration
information at any time.

The registration of several UAs against a single SIP address might

cause several UAs to be notified and start ringing -- a process known
as forking. There are two types of forking: sequential and parallel.

With sequential forking, each UA is alerted in sequence after ringing
for a certain time period. In contrast, with parallel forking all UAs are

alerted simultaneously, and the session establishes with the first UA to
answer or, depending on timing, more than one UA.

A Call represents all messages that pass between a caller UA and
callee UA(s).

A Dialog is the SIP relationship between two UAs that persists for a
period of time. It consists of the SIP messages that pass between the

UAs, including those that pass through proxies.

A Transaction occurs between a client and a server and comprises all

the messages from the first request sent from the client to the server,

up to a final response sent from the server to the client.

SIP messages

SIP-based communication uses a text-based request/response model
similar to the HTTP protocol. A client makes a request to a server, with

the server returning the response to the client. The SIP specification
defines six types of request messages and six types of response

messages, as listed in Table 1.

SIP
Request

Description Table 1

REGISTER Creates and manages registrations.

INVITE
Initiates a communication session and is sent from the caller to the callee inviting
them to join the session.

ACK Sent by the caller after a final response has been received for an INVITE request.

BYE Sent from caller or callee to terminate the session.

CANCEL
Used to CANCEL an INVITE request for which a final response has not yet been
received.

OPTIONS Request media information.

SIP Description

Response

1xx
Information

Provides progress response to the caller, for example 100 Trying, 180 Ringing.

2xx Success Confirms that a request has been accepted.

3xx Redirect Notifies the caller of an alternative location to where the request should be sent.

4xx Request
Failure

Indicates that a request has not been processed successfully; for example, 404 Not
Found.

5xx Server
Failure

Indicates that the server itself has erred. For example, a 503 response indicates
that a server is temporarily unable to process the request due to overloading or
maintenance of the server.

6xx Global
Failure

Indicates a global failure regarding a particular user.

Response messages might be provisional or final. A provisional

response indicates progress and does not terminate a SIP transaction.
1xx responses are provisional. Final responses terminate a SIP

transaction. All 2xx, 3xx, 4xx, 5xx, and 6xx responses are final.
A request message is structured as: request-line, then headers,

followed by a body. The request-line, the first line in the message,
contains a method name, a request-URI, the protocol version

separated by a single space (SP) character, and a Carriage Return Line
Feed (CRLF). Listing 1 shows an example request (without a body):

Listing 1. INVITE request

INVITE sip:callee@143.145.52.13 SIP/2.0
Call-ID: 1661063781111548084@143.145.52.134
Via: SIP/2.0/UDP 143.145.52.134:5070;branch=z9hG4bKC1C334860000F6D31DE9
Via: SIP/2.0/UDP app.ubiquity.net
From: sip:caller@ubiquity.net;tag=1738655730
To:sip:callee@143.145.52.13
CSeq:1 INVITE
contact:sip:143.145.52.134:5070
Accept:application/sdp
User-Agent:Ubiquity Third Party Call Control/-7671573430297227200
Max-Forwards: 70
Content-Length: 0

A response message is structured as: status-line, then headers,

followed by body. The status-line consists of the protocol version
followed by a numeric status-code and its associated textual phrase,

with each element separated by a single SP character and terminated
by a CRLF. Listing 2 shows the 100 TRYING response associated with

the INVITE in Listing 1:

Listing 2. 100 TRYING response

SIP/2.0 100 Trying
Via: SIP/2.0/UDP 143.145.52.134:5070;branch=

z9hG4bKC1C334860000F6D31DE90,SIP/2.0/UDP app.ubiquity.net
From: sip:caller@ubiquity.net;tag=1738655730
To: sip:callee@143.145.52.13;tag=4E880060-97A
Date: Sun, 05 Mar 2000 23:01:39 GMT
Call-ID: 1661063781111548084@193.195.52.134
Server: Cisco-SIPGateway/IOS-12.x
CSeq: 1 INVITE
Allow-Events: telephone-event
Content-Length: 0

All SIP message headers include a field name followed by a field value.
SIP headers can be categorized into five groups:

• Request headers
• Response headers
• General headers

• Entity headers
• User-defined headers

Furthermore, every SIP message requires several mandatory headers:

• To: A SIP address containing the request's destination.
• From: Indicates who has originated the request.

• CSeq: Contains a command sequence, which ensures that
messages are dealt with in the order they were generated.

• Call-ID: The SIP proxy server uses the Call-ID header, a
randomly generated string that uniquely identifies the session, to

identify messages belonging to a session.

• Via: Contains information about what SIP devices the message
has passed through as it moves between caller and callee. The

Via header, moreover, routes a response in the reverse
direction, through the same SIP devices as the request.

• Contact: Contains the actual location of the callee, which might
be different from the address of the originator in the From

header.

Other optional headers convey important information such as content
type and content length.

A basic call flow
Table 2 illustrates an example SIP message flow that establishes a communication session between
two UAs. A SIP proxy server is part of the network.

1 INVITE sent from ua1 to proxy

2 100 Trying response sent from proxy to ua1. The proxy will now forward the request

downstream toward ua2.

3 INVITE sent from proxy to ua2.

4 100 Trying response sent from ua2 to proxy.

5 180 Ringing response sent from ua2 to proxy, which indicates that ua2 is alerting the user.

6 180 Ringing response sent from proxy to ua1

7 200 OK response sent from ua2 to proxy, which indicates that ua2 has accepted the call.

8 200 OK response sent from proxy to ua1.

9 ACK sent from ua1 directly to ua2, which represents the start of the session.

 ...

 COMMUNICATION SESSION ESTABLISHED

 ...

10 BYE sent from either UA to the other bypassing the proxy.

11 200 OK response from other party bypassing the proxy.

The example above shows only the simplest SIP call flow. Such call
flows can quickly become more complex as the number of involved SIP

entities grows. For example, if a single SIP address has two registered

end-points, the proxy server will need to perform call forking.
A couple of other points should be noted. The original INVITE is known

as an initial request, whereas the BYE request is known as a
subsequent request. Also, the BYE request and any other subsequent

requests pass directly between the two UAs rather than through the
proxy. However, a proxy does have a method of ensuring it sees all

subsequent requests as well.

Record routing

Typically, you'll employ a SIP proxy server only when you establish a

communication session to perform registration lookups and forward
the message. All subsequent requests then pass directly between

caller and callee. A proxy, however, might want to see all subsequent
SIP messages generated during the session. A user might want a

proxy server to do this to generate billing records. To do so, the proxy
server will need to see both the initial INVITE and terminating BYE

requests. The proxy server will, in this case, enable record routing,

which results in a Record-Route header being added to a request. Each
proxy server that wants to remain on the signaling path will insert a

Record-Route header into the initial INVITE as it passes from caller to
callee.

The callee UA is obliged to retain the information contained within the
Record-Route header and then return a response containing a copy of

the Record-Route headers. The callee UA eventually receives the
response and is obliged to retain the information contained within the

Record-Route headers. At each UA, that information is stored as a

route set. The information in the route set adds Route headers to a

subsequent request. A proxy server will then use the information
contained within the Route headers to decide to which SIP device to

send a request.

Advanced services

In addition to supporting basic functionality, a SIP server can present
itself as a service creation platform -- letting a developer extend a SIP

proxy server's basic functionality and create new applications and
services.

Early attempts at providing service creation platforms resulted in
proprietary application creation models and environments. Although

meeting the requirements of the time, development communities often
prefer a more open model. To address that problem, the SIP Servlet

API has been proposed.

SIP servlets: Basic concepts

Conventional telephony applications are expensive to develop, both in
terms of cost and time.

The SIP Servlet API, developed under the Java Community Process
(JCP) as Java Specification Request (JSR) 116, provides a specification

and a set of neutral interfaces that deliver a consistent, open platform
on which to develop and deploy portable services. Because the API

extends the HTTP Servlet model, they share common concepts such as
the service method, a JAR-based file format, and deployment

descriptors.

A standard SIP proxy server can act as the basis of a SIP application
server. The container, a component of the application server (SIP

A/S), provides the environment specified in the SIP Servlet API

specification in which a SIP servlet can exist. The container loads and
initializes a servlet and invokes the appropriate servlet methods when

a SIP message arrives. When the SIP A/S stops, the container
destroys each servlet. The container, therefore, performs many of the

functions an HTTP servlet container performs.

A SIP servlet consists of a class that extends

javax.servlet.sip.Servlet and implements the appropriate service

method. The compiled class is then packaged in a Servlet Archive or
SAR file together with a SIP deployment descriptor.

The XML-based deployment descriptor contains servlet configuration

information and the message-matching rules, together with more
general information such as the servlet name. The SAR file is deployed

to the SIP application server.

The SIP Servlet API includes a set of objects and interfaces that
provide high-level abstraction of many of the SIP concepts -- freeing

you from worrying about SIP's fine details such as managing
transactions. Some of the most important items are detailed in Table

3.

Class/Interface Description

SipServlet

The base SIP servlet object that should be subclassed to create a SIP servlet.

This class receives incoming messages through the service method, which
calls doRequest or doResponse for incoming requests and responses,

respectively. These two methods in turn dispatch a request method or status
code to one of the following methods:

• doInvite: For SIP INVITE requests

• doAck: For SIP ACK requests

• doOptions: For SIP OPTIONS requests

• doBye: For SIP BYE requests

• doCancel: For SIP CANCEL requests

• doRegister: For SIP REGISTER requests

• doSubscribe: For SIP SUBSCRIBE requests

• doNotify: For SIP NOTIFY requests

• doMessage: For SIP MESSAGE requests

• doInfo: For SIP INFO requests

• doProvisionalResponse: For SIP 1xx informational responses

• doSuccessResponse: For SIP 2xx responses

• doRedirectResponse: For SIP 3xx responses

• doErrorResponse: For SIP 4xx, 5xx, and 6xx responses

ServletConfig Used by a servlet container to pass configuration information to a servlet
during initialization.

ServletContext Used by a servlet to communicate with its servlet container; for example, to
store attributes, dispatch requests, or write to a log file.

SipServletMessage Defines common aspects of SIP requests and responses.

SipServletRequest Provides high-level access to a SIP request message.

SipServletResponse Provides high-level access to a SIP response message.

SipFactory Factory interface for a variety of SIP Servlet API abstractions.

SipAddress Represents SIP From and To header.

SipSession
Associates SIP messages belonging to the same SIP session. This is also
known as a call log. Two messages belong to the same SipSession if they
have identical Call-ID, From, and To headers as described in RFC 3261.

SipApplicationSession Represents application instances, acts as a store for application data and
provides access to contained protocol sessions.

Proxy
Represents the operation of proxying a SIP request and provides control over
how that proxying is carried out; for example, record-routing and supervised
mode.

While running, the SIP A/S receives various SIP messages. If the
request is an initial request -- that is, a request that the container has

no prior knowledge of -- the container then uses the message-
matching rules contained in the deployment descriptor to determine

whether to pass a message to a servlet. Depending on the rules, the
servlet's service method is called. The default implementation of the

service method attempts to identify the request type and call one of

the doXXX methods, for example, doInvite().

Processing a request involves either forwarding the message or

returning a final response. In the former case, the appropriate
response is received at some point in the future because a response

always follows a reverse path to a request. Once a final response to an
initial request has been received, an entity known as an application

path is established. The application path ensures that any subsequent

requests are routed correctly.

Create a simple servlet

To show how easy it is to work with the SIP servlet model, let's create
a sample servlet. The servlet will listen for INVITE requests and always

forward the INVITE on to the destination UA. Listing 3 shows a simple
servlet:

Listing 3. Sample servlet

public class SampleServlet extends SipServlet
{
private static final String SERVLET_INFO = "SampleServlet, "+
"1.0, Copyright Ubiquity Software Corporation, 2003"

 public void doInvite(SipServletRequest a_Request)
 throws ServletException, java.io.IOException
 {
 try
 {
 a_Request.send();
 }
 catch (IOException e)
 {
 throw new ServletException("Could not send request", e);
 }
 }

public String getServletInfo()
{
return "SampleServlet, 1.0, Copyright © Ubiquity, 2003";
}
}

Listing 4 shows the accompanying deployment descriptor. Note the rule matching that specifies this
servlet should process INVITE requests only:

Listing 4. Deployment descriptor

<sip-app>
 <display-name>Sample Servlet</display-name>
 <servlet>
 <servlet-name>SampleServlet</servlet-name>
 <display-name>SampleServlet</display-name>
 <servlet-class>net.ubiquity.servlet.sample.SampleServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>SampleServlet</servlet-name>
 <pattern>
 <equal>
 <var>request.method</var>
 <value>INVITE</value>
 </equal>
 </pattern>
 </servlet-mapping>
</sip-app>
</code>

The simplest action a servlet can take is to send the message on

without modification -- exactly what the sample servlet does. With
only the sample servlet loaded, the request will be sent from the SIP

A/S toward the specified callee UA. As stated earlier, any responses
sent from the callee back to the caller will take the reverse path,

although the SIP A/S will not present them to the servlet in this case.

Proxy behavior

As mentioned above, a servlet can simply send a message without
modification. However, if the request must be sent downstream and

requires further processing after the response is received, you'll need
to create a proxy object. You'll also need a proxy object if a request

must be sent to several locations, as happens with parallel or
sequential forking. The proxy object also lets you specify that all

subsequent requests pass to a servlet (the aforementioned record-

routing process).

If a servlet must perform one or more of these activities, the

SipServletRequest's getProxy() method must be called to obtain a

proxy object. You then call the proxy object's appropriate methods to
obtain the desired behavior. For example, the code in Listing 5 proxies

a request with record-routing enabled and in supervised mode:

Listing 5. Record routing

public void doInvite(SipServletRequest a_Request) throws ServletException,
IOException
{
 // Required by the Ubiquity Container to establish session state.
 SipApplicationSession appSession = a_Request.getApplicationSession();
 SipSession sipSession = a_Request.getSession();

 Proxy p = a_Request.getProxy(true);

 // Proxy in supervised mode. This ensures that we see the response which will
 // be passed to us through the appropriate doResponse method.
 p.setSupervised(true);

 // If you want to see the ACK and the BYE, use RecordRouting.
 p.setRecordRoute(true);

 System.out.println("Proxying request: " + a_Request.getRequestURI());

 p.proxyTo(a_Request.getRequestURI());
}

public void doAck(SipServletRequest a_Request) throws ServletException, IOException
{
 System.out.println("ACK: " + a_Request);
}

public void doBye(SipServletRequest a_Request) throws ServletException, IOException
{
 System.out.println("BYE: " + a_Request);
}

public void doProvisionalResponse(SipServletResponse a_Response) throws
ServletException, IOException
{
 System.out.println("Provisional response: " + a_Response);
}

public void doSuccessResponse(SipServletResponse a_Response) throws
ServletException, IOException
{
 System.out.println("Success response: " + a_Response);
}

To reiterate, the above code will cause the servlet to receive any

responses through the doResponse() method, which will normally

send the response back to the originating UA. Any subsequent

requests in the session will also invoke the servlet's service()

method, for example the BYE request sent by either UA to terminate

the session.

Originating and terminating behavior

At its simplest level, the SIP servlet can implement a terminating UA.
In this case, a servlet simply performs some processing before

returning a final response to the request, as seen in Listing 6:

Listing 6. Simple servlet

public void doInvite(SipServletRequest a_Request) throws ServletException,
IOException
{
 // Required by the Ubiquity Container to establish session state.
 SipApplicationSession appSession = a_Request.getApplicationSession();
 SipSession sipSession = a_Request.getSession();

 // Act as a terminating user agent and return a 403 Forbidden response to the
request.
 SipServletResponse response =
a_Request.createResponse(SipServletResponse.SC_FORBIDDEN);
 response.send();
}

The SIP Servlet API also lets a servlet act as an originating UA; that is, create initial and subsequent

requests. A B2BUA would typically use such functionality. In this case, a servlet can use the
SipFactory to create a new SipAddress and a new SipServletRequest, which can then be sent, as

seen in Listing 7:

Listing 7. Creating a UAC request

public void doInvite(SipServletRequest a_Request) throws ServletException,
IOException
{
 // Required by the Ubiquity Container to establish session state.
 SipApplicationSession appSession = a_Request.getApplicationSession();
 SipSession sipSession = a_Request.getSession();

 // Create a new request and proxy it to a new destination.

 ServletContext sc = getServletContext();

 SipFactory factory =
(SipFactory)sc.getAttribute("javax.servlet.sip.SipFactory");

 Address to = factory.createAddress("sip:callee@company.net:5060");
 Address from = a_Request.getFrom();

 SipServletRequest newRequest = factory.createRequest(appSession, "INVITE", from,
to);

 Proxy p = a_Request.getProxy(true);

 p.setSupervised(true);
 p.setRecordRoute(true);

 System.out.println("Proxying request: " + a_Request.getRequestURI());

 p.proxyTo(newRequest.getRequestURI());
}

The SIP Servlet API does not currently let you create an initial request
in response to a non-SIP event -- a problem highlighted by the need to

obtain the SipApplicationSession from an existing request to create

a new request. Until the SIP servlet community resolves this issue, SIP

A/S vendors must implement their own functionality.

Acting as a B2BUA

A Back-to-Back User Agent acts as a middleman during a SIP call by

receiving all requests and then forwarding them on to a callee. It also
receives all responses before sending them back toward the caller. In

essence, instead of one dialog between two UAs, there are two
dialogs: one between the caller UA and the B2BUA, and the other

between the B2BUA and the callee UA.

Not unsurprisingly, such behavior can break services. To minimize the
risk, ensure all unknown headers are copied from an incoming request

to the outgoing request. Another problem with B2BUAs centers on the
session state they must keep to maintain the dialog. In the event of an

SIP A/S failure, such session state will be lost and the call will no
longer progress.

Despite these problems, a B2BUA proves useful in numerous

scenarios, such as implementing billing applications, third-party call

control, control of firewalls, and so on.

SIP: The future is actually now

This SIP introduction has only touched the surface of what SIP and the
SIP Servlet API can achieve. Indeed, in the interest of brevity I

skipped several important topics, including looping, spiraling, and
servlet application composition.

This article, however, should make clear that SIP is a relatively simple

protocol. And the SIP Servlet API provides a further level of
abstraction that makes a developer's life even easier. Although the SIP

Servlet model is still evolving, it does provide an excellent service
creation environment. With SIP on the scene, creating

telecommunications applications has never been easier.

