SIP: Creating next-generation telecom applications
The Session Initiation Protocol makes developing apps for
telecommunications networks easier than ever

Level: Introductory

Developer, Ubiquity Software Corporation
First published by IBM developerWorks at http://www.ibm.com/developerWorks/.

Available from at UDN Developer Network at
https://developer.ubiguitysoftware.com/support/whitepapers/sip-creating-next-
generation-telecom-applications/

30 Sep 2003

Developing applications to run on a telecommunications network has
never been easier. Instead of yesterday's proprietary protocols and
interfaces, you now can use open, Internet-based standards such as
the Session Initiation Protocol (SIP). Combined with the power and
simplicity of Java technology in the form of the SIP Servlet API, an
application developer can create and deploy new services to users in a
fraction of the time it previously took.

Taking advantage of this revolution means being conversant with SIP.
In this article, you'll discover how SIP operates and, building on that
knowledge, you will learn how to use the Java SIP Servlet API to build
the exciting new applications of the future. The SIP tour concludes
with code examples that demonstrate SIP application development in
action.

The era of separate voice and data networks is gradually nearing an
end. In the future, a single, converged network will provide the basis
for all forms of communication. In addition to reducing costs, that
convergence will enable a whole new range of services. The Session
Initiation Protocol (SIP) will be the control mechanism at the center of
this revolution.

SIP's momentum has grown, with network equipment vendors and
telecommunication service providers increasingly accepting it as the
protocol of choice. Additionally, the 3rd. Generation Partnership Project
(3GPP) recently adopted SIP as the call control mechanism for next-
generation networks. Moreover, the adoption of Voice Over IP in
enterprises also continues at a quick pace. Considering all that, expect
big things in the telecommunications application development space.



In this article, you'll discover the SIP protocol and the SIP Servlet API.
You'll see the role played by User Agents (UA) and proxy servers in
SIP, and find out how to establish communication between two
devices. That provides a basis for the introduction of the SIP Servlet
API and related concepts. SIP servlet behavior such as proxying,
acting as an originating and terminating UA, and acting as a Back-to-
Back User Agent (B2BUA) are also covered. Finally, sample SIP serviet
code illustrates just how easy it is to program using the SIP Servlet
API.

What is SIP?

The SIP application-layer protocol allows for the creation and
management of multimedia communication sessions between devices.
In 1999 the Internet Engineering Task Force (IETF) approved SIP as
Request For Comment (RFC) 2543, which built on the Multiparty
Multimedia Session Control (MMUSIC) Working Group's earlier
development of multimedia on the Internet. Since then, SIP has
evolved through several RFC revisions to the current RFC 3261.

Any media can be exchanged during a SIP session and any protocol
can be used. SIP commonly works with:

Session Description Protocol (SDP), which is used to determine which
media, will be used. See RFC 2327.

Real Time Protocol (RTP), which actually transports the media data
during the session. See RFC 1889.

The protocol does not concern itself with the nature or content of a
call, so it leaves users free to choose how they will use the session and
exchange communication media. SIP sessions are therefore not limited
to voice. Once a session has been established, users can exchange any
type of media.

SIP concepts
The SIP RFC defines several key concepts and elements required in a
SIP network:

o A user agent (UA), an end-point, lets users create and manage a
communication session. A UA, either a SIP telephone or a
software application, handles session setup and management
tasks such as transfer, termination, and service invocation, to
name a few. In addition, UAs can identify user availability and
negotiate session capability.



» A session establishes when the UA (the caller) invites another UA
(the callee) to join a communication session.

o A SIP messageis a text-based entity. There are two types of
messages: requests and responses. Requests are sent from one
UA to another, which in turn sends a response back. (The
following section discusses SIP messages in greater detail.) Any
messages that pass from a caller to a callee move downstream;
conversely, any messages that move in the opposite direction
move upstream.

o« A SIP proxy server typically handles registrations, implementing
call-routing policies, and performing authentication and
authorization. As its primary task, the SIP proxy server ensures
that a request is sent to another entity closer to the targeted
user. A proxy interprets, and, if necessary, rewrites specific parts
of a request message before forwarding it. A SIP message might
pass through several SIP proxy servers as it travels to the callee
UA. A UA is usually configured to send any requests it originates
to a specific SIP proxy server. The proxy server is known as an
outbound proxy in this situation.

e A SIP address (also known as a SIP URL) uniquely identifies a
user during the creation of a communication session. The
address resembles an e-mail address except that it has a sip:
prefix. For example, the telephone on your desk might have the
following SIP address: sip:user@194.195.100.20.

Typically, you want people to call you using a SIP address with your
company's domain name, for example, sip:user@ubiquity.net. To that
end, SIP lets you perform a registration process to associate your SIP
address with one or more UAs. Subsequently, when a call is made to
the SIP address it goes to a SIP proxy server. The SIP proxy server
performs a registration lookup that determines which UA the call
should be directed to. You can also modify and delete registration
information at any time.

The registration of several UAs against a single SIP address might
cause several UAs to be notified and start ringing -- a process known
as forking. There are two types of forking: sequential and parallel.
With sequential forking, each UA is alerted in sequence after ringing
for a certain time period. In contrast, with parallel forking all UAs are
alerted simultaneously, and the session establishes with the first UA to
answer or, depending on timing, more than one UA.



A Call represents all messages that pass between a caller UA and
callee UA(s).

A Dialog is the SIP relationship between two UAs that persists for a
period of time. It consists of the SIP messages that pass between the
UAs, including those that pass through proxies.

A Transaction occurs between a client and a server and comprises all
the messages from the first request sent from the client to the server,
up to a final response sent from the server to the client.

SIP messages

SIP-based communication uses a text-based request/response model
similar to the HTTP protocol. A client makes a request to a server, with
the server returning the response to the client. The SIP specification
defines six types of request messages and six types of response
messages, as listed in Table 1.

SIP

Request Description Table 1

REGISTER |Creates and manages registrations.

Initiates a communication session and is sent from the caller to the callee inviting

INVITE them to join the session.

ACK Sent by the caller after a final response has been received for an INVITE request.
BYE Sent from caller or callee to terminate the session.

CANCEL Used to CANCEL an INVITE request for which a final response has not yet been

received.

OPTIONS Request media information.

SIP Description




Response

1Ixx . . o
Information Provides progress response to the caller, for example 100 Trying, 180 Ringing.
2xx Success Confirms that a request has been accepted.

3xx Redirect |Notifies the caller of an alternative location to where the request should be sent.

4xx Request Indicates that a request has not been processed successfully; for example, 404 Not
Failure Found.

Indicates that the server itself has erred. For example, a 503 response indicates

'E;(ﬁusrgrver that a server is temporarily unable to process the request due to overloading or
maintenance of the server.
g;(ﬁuféobal Indicates a global failure regarding a particular user.

Response messages might be provisional or final. A provisional
response indicates progress and does not terminate a SIP transaction.
1xx responses are provisional. Final responses terminate a SIP
transaction. All 2xx, 3xx, 4xx, 5xx, and 6xx responses are final.

A request message is structured as: request-line, then headers,
followed by a body. The request-line, the first line in the message,
contains a method name, a request-URI, the protocol version
separated by a single space (SP) character, and a Carriage Return Line
Feed (CRLF). Listing 1 shows an example request (without a body):

Listing 1. INVITE request

INVITE sip:callee@143.145.52.13 S1P/2.0

Call-1ID: 1661063781111548084@143.145.52.134

Vvia: SIP/2.0/UDP 143.145.52.134:5070;branch=z9hG4bkCc1Cc334860000F6D31DE9
via: SIP/2.0/UDP app.ubiquity.net

From: sip:caller@ubiquity.net;tag=1738655730
To:sip:callee@143.145.52.13

CSeq:1 INVITE

contact:sip:143.145.52.134:5070

Accept:application/sdp

User-Agent:Ubiquity Third Party call Control/-7671573430297227200
Max-Forwards: 70

Ccontent-Length: 0

A response message is structured as: status-line, then headers,
followed by body. The status-/ine consists of the protocol version
followed by a numeric status-code and its associated textual phrase,
with each element separated by a single SP character and terminated
by a CRLF. Listing 2 shows the 100 TRYING response associated with
the INVITE in Listing 1:

Listing 2. 100 TRYING response

SIP/2.0 100 Trying
Via: SIP/2.0/uDP 143.145.52.134:5070;branch=



z9hG4bKC1C334860000F6D31DE90,SIP/2.0/UDP app.ubiquity.net
From: sip:caller@ubiquity.net;tag=1738655730

To: sip:callee@143.145.52.13;tag=4E880060-97A

Date: Sun, 05 Mar 2000 23:01:39 GMT

Call-ID: 1661063781111548084@193.195.52.134

Server: Cisco-SIPGateway/I0S-12.x

CSeq: 1 INVITE

Allow-Events: telephone-event

Content-Length: 0

All SIP message headers include a field name followed by a field value.
SIP headers can be categorized into five groups:

 Request headers

» Response headers

o General headers

o Entity headers

o User-defined headers

Furthermore, every SIP message requires several mandatory headers:

o To: A SIP address containing the request's destination.

« From: Indicates who has originated the request.

« CSeq: Contains a command sequence, which ensures that
messages are dealt with in the order they were generated.

o Call-ID: The SIP proxy server uses the Call-ID header, a
randomly generated string that uniquely identifies the session, to
identify messages belonging to a session.

o Via: Contains information about what SIP devices the message
has passed through as it moves between caller and callee. The
Via header, moreover, routes a response in the reverse
direction, through the same SIP devices as the request.

o Contact: Contains the actual location of the callee, which might
be different from the address of the originator in the From
header.

Other optional headers convey important information such as content
type and content length.

A basic call flow

Table 2 illustrates an example SIP message flow that establishes a communication session between
two UAs. A SIP proxy server is part of the network.

1 |INVITE sent from ual to proxy

2 100 Trying response sent from proxy to ual. The proxy will now forward the request



downstream toward ua2.

INVITE sent from proxy to ua2.

100 Trying response sent from ua2 to proxy.

180 Ringing response sent from ua2 to proxy, which indicates that ua2 is alerting the user.
180 Ringing response sent from proxy to ual

200 OK response sent from ua2 to proxy, which indicates that ua2 has accepted the call.
200 OK response sent from proxy to ual.

Ol N/ | b~ W

ACK sent from ual directly to ua2, which represents the start of the session.
COMMUNICATION SESSION ESTABLISHED

10 |IBYE sent from either UA to the other bypassing the proxy.
11 |200 OK response from other party bypassing the proxy.

The example above shows only the simplest SIP call flow. Such call
flows can quickly become more complex as the number of involved SIP
entities grows. For example, if a single SIP address has two registered
end-points, the proxy server will need to perform call forking.

A couple of other points should be noted. The original INVITE is known
as an initial request, whereas the BYE request is known as a
subsequent request. Also, the BYE request and any other subsequent
requests pass directly between the two UAs rather than through the
proxy. However, a proxy does have a method of ensuring it sees all
subsequent requests as well.

Record routing

Typically, you'll employ a SIP proxy server only when you establish a
communication session to perform registration lookups and forward
the message. All subsequent requests then pass directly between
caller and callee. A proxy, however, might want to see all subsequent
SIP messages generated during the session. A user might want a
proxy server to do this to generate billing records. To do so, the proxy
server will need to see both the initial INVITE and terminating BYE
requests. The proxy server will, in this case, enable record routing,
which results in a Record-Route header being added to a request. Each
proxy server that wants to remain on the signaling path will insert a
Record-Route header into the initial INVITE as it passes from caller to
callee.

The callee UA is obliged to retain the information contained within the
Record-Route header and then return a response containing a copy of
the Record-Route headers. The callee UA eventually receives the
response and is obliged to retain the information contained within the
Record-Route headers. At each UA, that information is stored as a



route set. The information in the route set adds Route headers to a
subsequent request. A proxy server will then use the information
contained within the Route headers to decide to which SIP device to
send a request.

Advanced services

In addition to supporting basic functionality, a SIP server can present
itself as a service creation platform -- letting a developer extend a SIP
proxy server's basic functionality and create new applications and
services.

Early attempts at providing service creation platforms resulted in
proprietary application creation models and environments. Although
meeting the requirements of the time, development communities often
prefer a more open model. To address that problem, the SIP Servlet
API has been proposed.

SIP serviets: Basic concepts

Conventional telephony applications are expensive to develop, both in
terms of cost and time.

The SIP Servlet API, developed under the Java Community Process
(JCP) as Java Specification Request (JSR) 116, provides a specification
and a set of neutral interfaces that deliver a consistent, open platform
on which to develop and deploy portable services. Because the API
extends the HTTP Servlet model, they share common concepts such as
the service method, a JAR-based file format, and deployment
descriptors.

A standard SIP proxy server can act as the basis of a SIP application
server. The container, a component of the application server (SIP
A/S), provides the environment specified in the SIP Servlet API
specification in which a SIP servlet can exist. The container loads and
initializes a servlet and invokes the appropriate servlet methods when
a SIP message arrives. When the SIP A/S stops, the container
destroys each servlet. The container, therefore, performs many of the
functions an HTTP servlet container performs.

A SIP servlet consists of a class that extends
javax.servlet.sip.Servlet and implements the appropriate service
method. The compiled class is then packaged in a Servlet Archive or
SAR file together with a SIP deployment descriptor.



The XML-based deployment descriptor contains servlet configuration
information and the message-matching rules, together with more
general information such as the servlet name. The SAR file is deployed
to the SIP application server.

The SIP Servlet API includes a set of objects and interfaces that
provide high-level abstraction of many of the SIP concepts -- freeing
you from worrying about SIP's fine details such as managing
transactions. Some of the most important items are detailed in Table

3.

Class/Interface

SipServlet

ServletConfig

ServletContext

SipServletMessage
SipServletRequest
SipServletResponse
SipFactory

SipAddress

SipSession

SipApplicationSession

Proxy

Description

The base SIP servlet object that should be subclassed to create a SIP servlet.
This class receives incoming messages through the service method, which
calls doRequest Or doResponse for incoming requests and responses,
respectively. These two methods in turn dispatch a request method or status
code to one of the following methods:

doInvite: For SIP INVITE requests

doack: For SIP ACK requests

dooptions: For SIP OPTIONS requests

doBye: For SIP BYE requests

doCancel: For SIP CANCEL requests

doRegister: For SIP REGISTER requests

dosubscribe: For SIP SUBSCRIBE requests

doNotify: For SIP NOTIFY requests

doMessage: For SIP MESSAGE requests

doInfo: For SIP INFO requests

doProvisionalResponse: For SIP 1xx informational responses
doSuccessResponse: For SIP 2xx responses

® doRedirectResponse: For SIP 3xx responses

L doErrorResponse: For SIP 4xx, 5xx, and 6xx responses

Used by a servlet container to pass configuration information to a servlet
during initialization.

Used by a servlet to communicate with its servlet container; for example, to
store attributes, dispatch requests, or write to a log file.

Defines common aspects of SIP requests and responses.
Provides high-level access to a SIP request message.
Provides high-level access to a SIP response message.
Factory interface for a variety of SIP Servlet API abstractions.
Represents SIP From and To header.

Associates SIP messages belonging to the same SIP session. This is also
known as a call log. Two messages belong to the same SipSession if they
have identical Call-ID, From, and To headers as described in RFC 3261.

Represents application instances, acts as a store for application data and
provides access to contained protocol sessions.

Represents the operation of proxying a SIP request and provides control over
how that proxying is carried out; for example, record-routing and supervised
mode.



While running, the SIP A/S receives various SIP messages. If the
request is an initial request -- that is, a request that the container has
no prior knowledge of -- the container then uses the message-
matching rules contained in the deployment descriptor to determine
whether to pass a message to a servlet. Depending on the rules, the
servlet's service method is called. The default implementation of the
service method attempts to identify the request type and call one of
the doXXX methods, for example, doInvite ().

Processing a request involves either forwarding the message or
returning a final response. In the former case, the appropriate
response is received at some point in the future because a response
always follows a reverse path to a request. Once a final response to an
initial request has been received, an entity known as an application
path is established. The application path ensures that any subsequent
requests are routed correctly.

Create a simple servlet

To show how easy it is to work with the SIP servlet model, let's create

a sample servlet. The servlet will listen for INVITE requests and always
forward the INVITE on to the destination UA. Listing 3 shows a simple

servlet:

Listing 3. Sample servlet

public class SampleServlet extends SipServilet

n

private static final String SERVLET_INFO = "SampleServlet, +
"1.0, Copyright Ubiquity Software Corporation, 2003"

public void doInvite(SipServletRequest a_Request)
throws ServletException, java.io.IOException

try
{
a_Request.send();
}
catch (IOException e)
{
throw new ServiletException("Could not send request", e);

}

?ub11c String getServletInfo()
;eturn "SampleServlet, 1.0, Copyright © ubiquity, 2003";
}



Listing 4 shows the accompanying deployment descriptor. Note the rule matching that specifies this
servlet should process INVITE requests only:

Listing 4. Deployment descriptor

<Sip-app>
<dispTlay-name>Sample Servlet</display-name>
<serviet>
<servlet-name>SampleServiet</serviet-name>
<display-name>SampleServlet</display-name>
<servlet-class>net.ubiquity.serviet.sample.SampleServiet</servlet-class>
</serviet>

<servilet-mapping>
<servlet-name>SampleServiet</serviet-name>
<pattern>
<equal>
<var>request.method</var>
<value>INVITE</value>
</equal>
</pattern>
</servlet-mapping>
</sip-app>
</code>

The simplest action a servlet can take is to send the message on
without modification -- exactly what the sample servlet does. With
only the sample servlet loaded, the request will be sent from the SIP
A/S toward the specified callee UA. As stated earlier, any responses
sent from the callee back to the caller will take the reverse path,
although the SIP A/S will not present them to the servlet in this case.

Proxy behavior

As mentioned above, a servlet can simply send a message without
modification. However, if the request must be sent downstream and
requires further processing after the response is received, you'll need
to create a proxy object. You'll also need a proxy object if a request
must be sent to several locations, as happens with parallel or
sequential forking. The proxy object also lets you specify that all
subsequent requests pass to a servlet (the aforementioned record-
routing process).

If a servlet must perform one or more of these activities, the
SipServletRequest's getProxy () method must be called to obtain a
proxy object. You then call the proxy object's appropriate methods to
obtain the desired behavior. For example, the code in Listing 5 proxies
a request with record-routing enabled and in supervised mode:

Listing 5. Record routing



public void doInvite(SipServletRequest a_Request) throws ServletException,
IOException

// Required by the uUbiquity Container to establish session state.
SipApplicationSession appSession = a_Request.getApplicationSession();
SipSession sipSession = a_Request.getSession();

Proxy p = a_Request.getProxy(true);

// Proxy in supervised mode. This ensures that we see the response which will
// be passed to us through the appropriate doResponse method.
p.setSupervised(true);

// If you want to see the ACK and the BYE, use RecordRouting.
p.setRecordRoute(true);

System.out.println("Proxying request: + a_Request.getRequestURI());

! p.proxyTo(a_Request.getRequestURI());

public void doAck(SipServietRequest a_Request) throws ServietException, IOException

System.out.println("ACK: " + a_Request);

public void doBye(SipServietRequest a_Request) throws ServietException, IOException

n

System.out.println("BYE: + a_Request);

public void doProvisionalResponse(SipServletResponse a_Response) throws
ServletException, IOException

System.out.printin("Provisional response: + a_Response);

public void dosuccessResponse(SipServletResponse a_Response) throws
ServletException, IOException

System.out.println("Success response: + a_Response);

To reiterate, the above code will cause the servlet to receive any
responses through the doresponse () method, which will normally
send the response back to the originating UA. Any subsequent
requests in the session will also invoke the servlet's service ()
method, for example the BYE request sent by either UA to terminate
the session.

Originating and terminating behavior

At its simplest level, the SIP servlet can implement a terminating UA.
In this case, a servlet simply performs some processing before
returning a final response to the request, as seen in Listing 6:

Listing 6. Simple servlet



public void doInvite(SipServletRequest a_Request) throws ServletException,
IOException

// Required by the uUbiquity Container to establish session state.
SipApplicationSession appSession = a_Request.getApplicationSession();
SipSession sipSession = a_Request.getSession();

// Act as a terminating user agent and return a 403 Forbidden response to the
request.

SipServietResponse response =
a_Request.createResponse(SipServietResponse.SC_FORBIDDEN) ;

response.send();

The SIP Servlet API also lets a servlet act as an originating UA; that is, create initial and subsequent
requests. A B2BUA would typically use such functionality. In this case, a servlet can use the
SipFactory tOo create a new sipaddress and a new sipservletRequest, Which can then be sent, as
seen in Listing 7:

Listing 7. Creating a UAC request

public void doInvite(SipServiletRequest a_Request) throws ServletException,
IOException
{

// Required by the ubiquity Container to establish session state.
SipApplicationSession appSession = a_Request.getApplicationsession();
SipSession sipSession = a_Request.getSession();

// Create a new request and proxy it to a new destination.
ServletContext sc = getServletContext();

_ SipFactory factory = ) ) )
(SipFactory)sc.getAttribute("javax.servlet.sip.SipFactory");

Address to = factory.createAddress("sip:callee@company.net:5060");
Address from = a_Request.getFrom();

SipServiletRequest newRequest = factory.createRequest(appSession, "INVITE", from,
to);

Proxy p = a_Request.getProxy(true);

p.setSupervised(true);
p.setRecordRoute(true);

n

System.out.println("Proxying request: + a_Request.getRequestURI());

p.proxyTo(newRequest.getRequestURI());

The SIP Servlet API does not currently let you create an initial request
in response to a non-SIP event -- a problem highlighted by the need to
obtain the sipApplicationSession from an existing request to create
a new request. Until the SIP servlet community resolves this issue, SIP
A/S vendors must implement their own functionality.

Acting as a B2BUA



A Back-to-Back User Agent acts as a middleman during a SIP call by
receiving all requests and then forwarding them on to a callee. It also
receives all responses before sending them back toward the caller. In
essence, instead of one dialog between two UAs, there are two
dialogs: one between the caller UA and the B2BUA, and the other
between the B2BUA and the callee UA.

Not unsurprisingly, such behavior can break services. To minimize the
risk, ensure all unknown headers are copied from an incoming request
to the outgoing request. Another problem with B2BUAs centers on the
session state they must keep to maintain the dialog. In the event of an
SIP A/S failure, such session state will be lost and the call will no
longer progress.

Despite these problems, a B2BUA proves useful in humerous
scenarios, such as implementing billing applications, third-party call
control, control of firewalls, and so on.

SIP: The future is actually now

This SIP introduction has only touched the surface of what SIP and the
SIP Servlet API can achieve. Indeed, in the interest of brevity I
skipped several important topics, including looping, spiraling, and
servlet application composition.

This article, however, should make clear that SIP is a relatively simple
protocol. And the SIP Servlet API provides a further level of
abstraction that makes a developer's life even easier. Although the SIP
Servlet model is still evolving, it does provide an excellent service
creation environment. With SIP on the scene, creating
telecommunications applications has never been easier.



