
Introduction

Following on from the issue 4 article on
transistors, I would like to describe my use of
the 2N7000 Enhancement FET. I used this
device only because I had some on hand
from previous projects. Other types could be
better suited as I will explain later.

Their use provides some interesting
behaviours to buffer circuits which may prove
beneficial in some applications.

The data sheet can be found here:
http://pdf1.alldatasheet.com/datasheet­
pdf/view/2842/MOTOROLA/2N7000.html

Now, the FET's Gate is, in simplistic terms,
insulated from the Source and Drain
connections. Only the voltage relative to the
Source (Vgs) is important. Once again I state
in simplistic terms. Even if the GPIO pin is
configured as an INPUT with the Pi's own
Pull Up or Down resistors active, the FET will
change state due to the extremely high input
impedance of the FET.

From the data­sheet it can been seen that at
around Vgs of 2.5v at room temperature the
device starts to conduct. By 3.3v it can
certainly operate an LED or small relay. As I
stated above other FETs may be more
suitable in their Vgs characteristics.

Now consider the following application: Test
all inputs at start­up. Very simple code can
be written to test all used inputs at start­up.
By pulling the inputs up then down and
testing for the condition in software and
visually for an LED flash one can verify both
the wiring and the buffer FET. This may
seem trivial, but if the LED were replaced
with the start circuit for some equipment

which must be started in a correct sequence,
this code would eliminate the FET as a
source of error. As a maintenance engineer I
like diagnostics to make my life easier!

It also has the advantage that one GPIO can
be used for both input and output with, in Fig
1's case, a visual indication of button press
too.

This is my first ever stab at a Python script. It
is bound to be very inelegant, but it just
about does what we need. It has been tested
in Python 3 only. Try running it with a finger
on the button to simulate an input being
stuck.

Of course one could arrange the switch to
pull the input up. That way the LED would not
be on all the time. Script adjustments will be
necessary.

Star Letter: An FET Buffer
Stage for GPIO Access

In response to the In Control article from Issue 4, Clive Tombs
shares his own example of connecting to GPIO pins.

Figure 1: FET Buffer

10

With a change in resistor values the FET
status can remain unchanged if the button is
pressed when the GPIO is set as output.
Eg: if R1 is 330Ω and the switch is connected
through about 4k7Ω the Vgs will still be in excess
of 3.0v with the button pressed if GPIO pin is
output set high.

2N7000s are available for 10p each. Other,
superb devices are now available. Some like the
2SK4043LS can switch pulses of 80A with as
little as 2.5v Vgs. A single transistor could never
do that as driven by the PI. And the 2SK3018, a
surface mount device designed for small Vgs
conditions like here in the PI.

#input test with visual indication
import RPi.GPIO as GPIO
import time

change to BCM GPIO numbering
GPIO.setmode(GPIO.BCM)

(pull_up_down be PUD_OFF, PUD_UP or
PUD_DOWN, default PUD_OFF)
GPIO.setup(4, GPIO.IN,
pull_up_down=GPIO.PUD_UP)

test for pin able to go high
if GPIO.input(4):

print ('Input True Good')
time.sleep(0.2)
GPIO.setup(4, GPIO.IN,

pull_up_down=GPIO.PUD_DOWN)
else:

print ('Fault Input ­ pin4')
time.sleep(1)
quit()

test for input able to go low
if GPIO.input(4):

print ('Faulty Input ­ pin4')
time.sleep(1)
quit()

else:
print ('Input False Good')
time.sleep(1)

if it gets to here, inputs' states
are both achievable
print ('Inputs tested Good')

commence the button demo
print ('Press the Button')

while True:
set pin high and
wait for button press
GPIO.setup(4, GPIO.IN,

pull_up_down=GPIO.PUD_UP)

button pressed

if not GPIO.input(4):
print ('button pressed')
time.sleep(1)

button released
if GPIO.input(4):

print ('button released')
flash = 20
GPIO.setup(4, GPIO.OUT)

flash until
while flash > 0:

GPIO.output(4, True)
time.sleep(0.1)
GPIO.output(4, False)
time.sleep(0.1)
flash ­= 1

print ('press button')

There is a lot to be said for the FET in this
application.

Clive Tombs

Editors Note

We love hearing from our readers. If you
have a comment on an article or a cool
Raspberry Pi related tip to share, please
send it to us and we'll try to get it in an
upcoming issue.

DID YOU
KNOW?

The "In Control" series in issues 2, 3 and 4
is a great place to start and learn how to
use the GPIO. If you have not started yet
but want to have a go, there have been
some updates to the RasPi GPIO Python
library that you need to know before
starting.

1) The RasPi GPIO library can now be
easily installed with:
$sudo apt­get install python­rpi.gpio

or
$sudo apt­get install python3­rpi.gpio

2) Add the following line to each program:
import RPi.GPIO as GPIO

11

