
21

BIG WORLD
Ada, a language for everyone

Baby steps in a...

By Luke A. Guest

Introduction

In this article I will introduce the Ada
programming language, its history, what it can
be used for and also, how you can use it with
your Raspberry Pi computer. This article has a
number of coloured sideboxes which provide
extra information as I introduce Ada, you
should read these so you gain a deeper
understanding of the language. So let's get
started...

You probably know what other programming
languages look like, most of these are not very
readable and seem to be a jumble of words
(sometimes, not even words) and weird
symbols. All languages provide various
symbols, but Ada was designed so that its
programs were easier to read by other people,
even many years after they were originally
written.

Unlike Python or Ruby, Ada is a compiled
language, much like C. This means we have to
pass Ada programs (source) through something
called a compiler which converts this source
into machine language so that it can be run
directly on the computer.

In this article, I will be using a Debian based
system image, so Debian Squeeze or Raspbian
will be fine. Debian provides an Ada compiler, if
you are using a different Linux distribution such
as Fedora, you will have to check their package
managers for the compiler. The compiler is
called GNAT so you know what to look for.

Before we get started, I will assume you are
running a graphical environment, such as
LXDE (after typing startx or booting directly into
it, see MagPI issue 3 page 3 for more info),
even though in this article we will be using the
console only to start.

I have tested the examples in this text by
logging into a remote shell on my Raspberry Pi.

Getting started

Before we can start typing in Ada code and
running it on the computer, we need to install a
few tools. We will need the terminal, a compiler
and an editor, start LXTerminal and type in the
following commands to install the tools we
need:

$ sudo aptget install gnat

You will be asked for your password, enter this,
when APT asks you if you want to continue
press the return key at this point to let APT
install its packages.

Then create a directory for this article's source,
we will need to change to this directory as we
will be running commands directly inside it:

$ mkdir p \
$HOME/src/baby_steps/lesson1

$ cd $HOME/src/baby_steps/lesson1

Let us create a new Ada source file in this
window by typing the following in the shell:

$ nano w hello.adb

Inside nano, type in the program in Listing 1
(without the line numbers), typing Ctrl+O to
save the program.

Now inside LXTerminal, create a new terminal
tab with Ctrl+Shift+T, this will automatically
make the new shell's current directory be the
same one we are using for this program. We
can now compile this program with the
following shell command:

22

$ gnatmake hello

The program, gnatmake, is the front end to the
Ada compiler, as you will see when you
compile the program, it calls other programs,
including gcc, gnatbind and gnatlink.

You can now run the compiled program with the
following command:

$./hello

The result is that the program prints what is in
the double quotes in the program to the shell,
in other words, "Hello, from Ada.” You have just
written your first Ada program!

Simple types and maths

Unlike other languages, such as C, Ada is a
what is called a strongly typed language. What
is this type thing? Well, every value in Ada has
a type, for example, the number 10 is an
integer number, so if we wanted to store values
of numbers we would define a variable of type
integer, see the sidebar for more information on
types. Exit nano using CTRL+X and create a
new file called simple_types.adb and type in
the source from Listing 2.

Using what you learnt from the previous
example, type in and save this code, then
compile it with gnatmake and finally, run the

with Ada.Text_IO;
use Ada.Text_IO;

 Print a message out to the screen.
procedure Hello is
begin

Put_Line ("Hello, from Ada.");
end Hello;

1
2
3
4
5
6
7
8

Listing 1: hello.adb

Line 4: starts with 2 hyphens (or dashes), this is a

comment. Anything placed after the hyphens is

ignored by the compiler up to the end of the line.

In Ada, a main program can be called almost

anything you like, but the filename must match this

name (in lower case letters) and have ".adb"

appended to the name. In our example, our main

program is called "Hello" (lines 5 and 8) and its

filename is "hello.adb," the adb means "Ada Body."

Line 5 states our program is a procedure, this is 1

type of Ada's subprograms, the other being a

function. Both types of subprogram are used for

specific reasons, a procedure does not return any

values to the caller whereas a function does.

"main" subprograms are procedures.

Line 7 is a call to a subprogram found within a

package called Ada.Text_IO, lines 1 and 2. The

Put_Line procedure prints whatever is in the string

(between double quotes ") to the console.

Line 1 states that we wish to use the facilities

provided by the Ada.Text_IO package, and Line 2

tells the compiler we don't want to have to write the

subprogram call in full, in other words, if line 2

didn't exist we would have had to type in

Ada.Text_IO.Put_Line. There are reasons to do

this, but we will cover this another time.

As all subprograms must have a beginning (line 6),

they must also have an ending, line 8. In Ada, all

subprograms must state what it is ending by

specifying its name again. Ada enforces this as

this is an aid to being more readable.

Each Ada program is made up of a number of

statements, a statement ends with a semicolon (;).

Every statement you write must have a semicolon

otherwise the program will not compile.

In Ada, there are some words which are defined by

the language, these are called keywords, you

cannot use these keyword names for your own

types, variables or subprograms.

23

Types enable the compiler to make sure that only

variables of the same type can be used together,

for example, X := Y + 10; X, Y and 10 are all

integers, if X was something else, say of type

Boolean, this program would not make sense and

it would not compile; the compiler would give you

a very helpful message to find your error.

Cool features: Types

with Ada.Text_IO;
use Ada.Text_IO;

procedure Simple_Types is
X : Integer := 10;
Y : constant Integer := 20;
Result : Integer := 0;

begin
Result := X + Y;

Put_Line ("Result = " & Integer'Image (Result));
end Simple_Types;

1
2
3
4
5
6
7
8
9
10
11
12

Listing 2: simple_types.adb

So, we've already seen lines 1, 2, 4, 8 and 12. So

what's new? We have not seen the variable and

constant definitions before, these are on lines 5, 6

and 7. Here we define 2 variables, X and Result

which are integer types and 1 constant, Y, which is

also an integer type.

The difference between a variable and a constant

is that you can assign a value to a variable within

the program, see line 9, where we assign X + Y to

Result. In Ada the symbol := means assign or give

the variable on the left the value of what is on the

right, in our case this is 10 + 20 which makes

Result equal 30. To make something constant we

use the keyword "constant" before the type name

(integer).

So what happens if you try to assign a value to Y
in the program source? Try this yourself and see

what happens when you compile the program. It

will not compile, because you cannot assign to a

constant once it has already been assigned to.

On line 11, there is something strange

Integer'Image. What is this? This is an attribute of

Integer. See the sidebar entitled "Cool features:

Attributes" for more on these.

Also, on line 11, we have another symbol, &, which

means string concatenation. This means we can

"add" strings together, the left side of & is added to

the right side of & and then Put_Line prints

everything to the screen.

program in the terminal and see what happens.

Exercises

1. Change line 9 to each of the following, compile
and run, what is the value of Result?

a) X – Y
b) Y X
c) X * Y
d) X / Y
e) Y / X

2. Use this time to play around with various
numbers, variables and constants and see
what results you get in the console.

Numeric types

Along with Integer types there are two more
types which are based on the Integer type
called Natural and Positive types; these are
subtype's of Integer in that they restrict the
range of values allowed to be assigned to
variables of these types.

