
The Vala language is, as programming
languages go, very much a new kid on the
block and is still under many programmers'
radar. We will use Vala to communicate with
LedBorg from www.piborg.com/ledborg over
the internet. [Ed: also in this issue we will see
how we can perform a similar activity with
Python in The Python Pit.]

Vala is a C# style language built on the GLib
object system providing easy access to the
base GNOME libraries and subsystems. The
compiler, valac, turns the Vala code into C,
and in turn triggers the system's C compiler
to produce native code. This means that,
unlike C#, there is no .NET framework or
virtual machine. Effectively, it is a higherlevel
way of writing C apps. The project's home
page is https://live.gnome.org/Vala .

Although Vala is based around the GLib and
GNOME libraries, it's not only for developing
GNOME desktop apps and is also good for
writing consolebased apps and services.

LedBorg
LedBorg is preassembled, it sits on the
GPIO pins and has an ultrabright RGB LED.
Each channel red, green and blue, has
three intensities: off, halfbrightness, and full
brightness.

The LedBorg driver creates the device file
/dev/ledborg. This is a great example of the
UNIX philosophy at work with devices
exposed as files instead of mysterious APIs.
We can read and write to /dev/ledborg just
like we would with any other file, for example:

echo "202" > /dev/ledborg

The three digits control R, G and B, with
each set to either 0, 1 or 2, corresponding to
the three intensities, eg: '202' makes the
LedBorg light up bright purple (red+blue).

Network Control
I decided that an easy way to control
LedBorg remotely was to use the wellknown

HTTP protocol. Using LibSoup in Vala, it is
easy to set up a lightweight HTTP server
that can respond to requests. Testing would
be straightforward from any web browser on
the network.

The server takes GET requests in the
following URL format:
/?action=SetColour&red=x&green=y&blue=z
where x, y, and z are integers between 0 and
2.

For the ease of getting started, the program
also responds to all requests with a very
minimal HTML form containing dropdown
selectors for the three colours, and a submit
button.

The Code
To try out this code, you will need to have the
following packages installed plus
dependencies. Assuming Raspbian/Debian is
the running OS:

$ sudo aptget install valac \
libsoup2.4dev

After entering the code, below, and saving as
LedBorgSimpleServer.vala it can then be
compiled with the following command:

$ valac pkg libsoup2.4 pkg \
gio2.0 pkg posix thread v \
LedBorgSimpleServer.vala

You may want to enter this command line in
a text file and save it as compile.sh then
make it executable by running

$ chmod +x compile.sh

You can recompile with

$./compile.sh

The v flag generates verbose output, giving
an idea of what it is doing. If you want to see
the generated C code, add the C flag to get
LedBorgSimpleServer.c

Run the program with

Introducing Vala
Writing a simple web controller for the LedBorg RPi addon

22

https://live.gnome.org/Vala
http://www.piborg.com/ledborg

./LedBorgSimpleServer and navigate to your
Pi's IP address in a browser, adding :9999 to
specify the port number, eg:
http://192.168.1.69:9999 .

The code is missing some robustness: we
are not checking for the presence of the red,
green and blue GET parameters, nor are we
validating their values. Nor is feedback in the
HTML sent back to the client, to say whether
the operation was successful, what colour
has been set, or if the device wasn't found.

These additions can be an exercise for the

reader!
// LedBorgSimpleServer.vala

// the namespaces we'll be using
using GLib;
using Soup;

// our main class
public class LedBorgSimpleServer : GLib.Object {
// define the port number to listen on
static const int LISTEN_PORT = 9999;

// define the device file to write to
static const string DEVICE =
"/dev/ledborg";

// the method executed when run
public static int main (string[] args) {
// set up http server
var server = new Soup.Server(
Soup.SERVER_PORT, LISTEN_PORT);

// handle requests from the client
server.add_handler("/",
default_handler);

// get the running http server
server.run();

return 0;
}

// default http handler
public static void default_handler(Soup.Server

server, Soup.Message msg, string path,
GLib.HashTable<string, string>? query,
Soup.ClientContext client)
{
// action a request
if(query != null)
{
// check parameter to be sure
if(query["action"] == "SetColour")
{
// get RGB from url params
string red = query["red"];
string green = query["green"];

string blue = query["blue"];

/* build our RGB colour string
Each 0, 1 or 2:
off, half or full brightnesss */
string colour = red + green +
blue;

// do colour change
do_colour_change(colour);

}
}

// build the html for the client
string html = """

<html>
<head>
<title>LedBorgSimpleServer</title>

</head>
<body>
<form method="get" action="/">
Red:<select name="red">
<option value="0">Off</option>
<option value="1">1/2</option>
<option value="2">Full</option>
</select>
Green:<select name="green">
<option value="0">Off</option>
<option value="1">1/2</option>
<option value="2">Full</option>

</select>
Blue:<select name="blue">
<option value="0">Off</option>
<option value="1">1/2</option>
<option value="2">Full</option>
</select>
<input type="submit" name="action"

value="SetColour" />
</form>

</body>
</html>

""";

// send the html back to the client
msg.set_status_full(
Soup.KnownStatusCode.OK, "OK");

msg.set_response("text/html",
Soup.MemoryUse.COPY, html.data);

}

// do the colour change
public static void
do_colour_change(string colour)

{
/* Here we use posix file handling
to write to the file instead of
vala's gio file handling, as we
don't want the safety of
gio getting in the way when
operating in /dev */
// open the file for writing
Posix.FILE f = Posix.FILE.open(
DEVICE, "w");

// write the colour string to file
f.puts(colour);

}
}

Article by Ross Taylor

23

