MDOS PROGRAMMING REFERENCE

Current Versions:

MDOS 5.0
TASM 3.5
LDR 4.1

User Manual
v3.5
Index

1. Introduction
2. Running TASM

Examples

Errors

Instruction Set

Operand Addressing Modes
Upper and Lower Case
Labels

Comments

Expressions
Psuedo-Instructions

WO~ s LB =

acros
Macreo Definition
Macro Bedy
Macro Formal Parameters
Local Labels
Protected Valuea
Invoking a Macro
LIST Directive

Wil w i w = NN DN NN

SIS W N =)

4. Sysgen Limits
5. Include (COPY) files

6. Known Dugs, Deficiencies, Differences

1. Introduction

TASM is an Assembler for the TMS99xx series of TI processors that runs
on several machines, including:

5640 Geneve
IBM PC or Compatible
AMIGA

Actually, since TASM is written entirely in ¢, it can be ported to
any machine supporting a good C compiler. In the Geneve version,
TASM is generated using the TIC C Compiler.

TASM will take an input source file that contains Assembly source
statements, and create from that file an Object File and a Listing
File, i.e.:

Source File —-——— e > Object File
DV80 i DF80 X or .X

_Sor .8 I
: t——— > Listing File

DV132 P or .P

The listing file can be printed: the object file is compatible with
the standard loaders available for the TI-99/4A and Geneve.

Features of TASM are guite extensive, including:

Two-Pass Assembler

Extensive Symbol Table Size (1000 Symbols on Geneve)
Conditional Assemblies

MACRO Facility

Support for TMS9900, TMS9995, & TMS99000 Instruction sets
Versions available for several different machines
Extensive error checking

Fast hash table storage of symbols

Supports special "link chains" for GENEVE paging

O0QCODOCOO

TASM has its roots in a99%, a cross-assembler originally developed at the
University of Arizona by Dr. Bruce Wampler. This assembler was converted to the
present TI-99/4A cross—assembler by Alan Beard (LGMA Products) and Ron Lepine
{(Moderator of the TI Conference on Byte Information Exchange). TASM was recoded
to operate specifically with TIC, the Full-C compiler for the Geneve and
TI-99/4A; the resulting program is TASM, this assembler.

TASM gets around several problems with using other assemblers with TIC,
including:

Runs in MDOS Native Mode {(not GPL mode)

Two-Pass, so backward REF chains are allowed
Special Geneve Paging chains supported (-X Option)
Supports 31-character external names

MACRO capability

Extensions

Q00000

TASM does NOT support the debug code generation mode of GenASM, Also, because
TASM is a two-pass assembler (GenASM is one-pass) and because it is written in
C, it is slower than GenASM.

TASM is copyrighted by LGMA Products, you may freely use this program for
non-commercial applications. You may not distribute TASM on any medium without
the express permission of LGMA Products.

2. Running TASM

Regardless of what machine environment you are using, TASM is always
started in the same manner:

TASM [+/-options] sourcefile

A source file on the GENEVE is a normal Display/Variable 80 file.
Under MSDOS and Amiga, it is a normal TEXT type of file. The source
file must have an extension of:

MYARC GENEVE: S

MEDOS, AMIGA: .8 or .s
TASM optionally produces as output the following files:

Object File: X, X, or .x

Listing File: _F, .P, Oor .p

TASM allows you to specify parameters that allows options to be turned
ON and OFF for the subsequent assemblies. These options are specified with
a8 + to turn ON the option, a - to turn OFF the option. The options are:

0 generate object file X or .X {default

- — yes)
L - generate listing file L or .L (default

no)

R - use register definitions (e.g. R1 instead of 1) {default = yes)

C - generate compressed object (default = yes)

G - allow TMS9995 instructions {default = yes)

M - generate long name (»>6 characters) references (default = ves)

X - generate special GENEVE X-REF chains (default = no)

H - allow TMS99105A & TMS99110A extensions {(default = no)
2,1 Examples

For example, to assemble a source file, called A99P1_3, you could type:
TASM A99P1_S
This will create the file:

A99P1_X

and will NOT create a listing file, will assemble using register
definitions, TMS89995 instruction set, long name references, no special
REF chaing, and no TMS99XXX instructions.

This is equivalent to:

TASM -LXH +ORCG A9OP1_S

TASM is a twc pass assembler. At the end of the first pass, it displays
the value of the last memory location used. It displays the number of errocs
detected at the end of the second pass.

2.2 Errors

TASM will detect most syntax errors. Offending lines are displayed on
the terminal screen, followed by the error message. In addition, the
offending lines are marked in the ’'.P’ listing file (if generated).

2.3 Instruction set

TASM supports the complete instruction set as described in the TI-99/4A
Editor/Assembler User’s Guide.

If the +G parameter is chosen (default=yes), then four additional
opcodes are recognized for the TMS9995 microprocessor, as follows:

MPYS - Signed Multiply

DIVS - BSigned Divide

LST Load Status Register
LwF - Load Workspace Pointer

If the +H parameter is chosen, then 24 new opcodes for the TMS99105A/

TMS99110A processors, as well as the four additional TMS9995 instructions
are recognized:

BIND - Branch Auto-Increment

BLSK - Branch and Link through Stack
TMB - Test Memory Bit

TCMB - Test and Clear Memory Bit
TSMB — Test and Set Memory Bit

AM — Add Double

5M - Subtract Double

SLAM - Shift Left Arithmetic Double
SRAM - Shift Right Arithmetic Double
LDS - Long Distance Source

LDD - Long Distance Destination

AR — Add Real

SR — Subtract Real
MR - Multiply Real
DR — Divide Real
LR - Load Real
STR - Store Heal

CIR - Convert Integer to Real
CRI - Convert Real to Int
NEGR — Negate Real

CRE - Convert Real to Ext Int
CER - Convert Ext Int to Real
CR — Compare Reals

MM - Multiply Multiple

Refer to the TI TMS9995 Data Manual, and the TMS99105A/TMS99110A manuals
for a description of the new instructions..

2.4 Operand Addressing Modes

TASM supports all TI-990 addressing modes. The symbols RO-R15 are
predefined for registers (if the -R option was not chosen). Any symbols used as
operands may use the rules for labels described below. In addition{ expressions
as described below may also be used. For example, "CLR @VAR+4" is a legal
operation which refers toc the contents of the 2nd word following the label VAR.
(VAR+0 1s the word at VAR, VAR+2 is the 1st word, VAR+4 the 2nd following word.)

2.5 Upper and Lower Case

TASM is totally case insensitive. Thus ‘ABC’ is treated as being
identical to ‘abc’. This is true for opcodes, operands, and labels.

2.6 Labels

TASM allows labels to be up to 128 characters long. Labels can begin with
any character except: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, >, @, (,), *, ;, =, *, ",
comma, space,tab, or :. Following characters may use 0 to 9 and in addition.

Labels are defined by appearing in the label field, which is a symbol beginning
in column 1. Labels are terminated by a space or tab, as well as a colon. If
a label is followed by a colon, it need not begin in column 1, but must be the
first symbol on the line. The following are valid labels:

SHORT:
A_LABEL, WITH_UNDERSCORE
TEMP§

2.7 Comments

Comment lines are indicated by the first character in the line being a
semi-colon or an asterick. Commcnts may be included on the same line as an
instruction by preceding them by a blank or a semi-colon.

There are certain cases were you must precede the comment with a semi—colon.
In particular, if the first character of your comment beings with a comma (,) or
colon (:}, then it must be preceded by a semi-colon.

2.8 Expressions
| More general expressions are allowed in TASM. The operations +, —, *, /,

| (logical or), and & (logical and) are supported. Expressions may not use
parens, and are evaluated strictly left to right. (* does not have precedence

over +, for example.) In general, expressions may use any symbol defined
anywhere in the program, as well as constants. Hex constants begin with ».

Regtrictions: the current version of TASM does not allow spaces between
expression symbols and operators. Symbols used in an expression in an "EQU"
direclive must not be forward references.

2.9 Psuedo-Instructions

AQRG <address»

The AQRG statement works exactly the same as in the 99/4 assembler. If AORG
is omitted, the assembly is assumed to be relocatable as if the statement RORG
0 preceded any object code generation.

RORG <address>

The RORG statement works exactly the same as in the 99/4 assembler. If RORG
is omitted, TASM defaults to a starting relocatable address of >0000.

You should not mix AORG mode with RORG mode.

BSS <blocksize:»

This reserves a block of of memory of <blocksize> bytes. If <blocksize>
is odd, it will NOT be rounded up to an even size.

DATA <valuelist>»

This reserves a word of storage for each item in the list. Items are
separated by commas. Unlike the UNIBUG assembler, you may have several values
following the DATA statement, each taking one word of memory.

END <label>»

Denotes the end of the program. Every program must have an END statement.

The <label> field is optional, and if specified, generates an cbject tag 1’ for
absolute entry point, or an object tag 2’ for relative entry point, and denctes
the entry point into the program for the loader.

<label> EQU <valuc:»

This directive will give <value> to the symbol <label>. The value may be
any expression, but must not use any symbols defined after the EQU statement (a
forward reference is not allowed, in other words). It is possible, however, to
use the <label> of the EQU anywhere in the program.

This reserves storage for the given string. The string is delimeted

by two matching characters, e.qg.:
"string" or /string/ or ‘string’

If double single quotes are included in the string, they will be interpreted
as a single quote, i.e.:

'don’’t do it’

BYTE <valuelist>

This reserves a byte of storage for each item in the list. Items are
separated by commas. Note it is possible to leave the location counter odd with
this statement (as with the TEXT directive). This allows you to freely mix TEXT
and BYTE expressions.

DORG <address:»

The DORG statement works exactly the same as in the 99/4 assembler.
It differs from AORG in that object code generation is suppressed.

DXQP <symbol>,<term>

The DXOP statement allows you to define an XOP; exactly the same as defined
in the 99/4 assembler, page 233 of E/A manual. The DXOP actually defines
internally a MACRO, the following two code segments are similar:

SYSC MACRO
X0P %1,0
ENDM

..and...
DXOP SYSC,0
You can then use the defined X0P in following statements, i.e.:

SYsC @VID
VID DATA 6

DEF <labels[,<label>r ... [,<label>]

Provides an external definition. Most useful to indicate an entry point
into the program for the load and run option. Multiple labels are allowed per
one DEF statement. Each label must be sepereated by a comma, and the DEF list
must be terminated by a blank or tab.

IDT <ident>

An up to six character program identifier can be provided. Merely
includes it in the object file.

Causes a page eject on the listing file.

TITL <up—-to-50-character-title»

An up to 50 character title line can be included within quotes. This
line will be put at the top of each listing page.

REF <label>»[,<labels] ... [,<label>]

Provides an external reference. The <label» field must be specified
in ancther program using the DEF statement. Multiple labels are allowed
per one REF statement. Each label must be sepereated by a comma, and the
REF list must be terminated by a blank or tab.

The RT psuedo instruction provides a convenient means of executing a
standard TI return from subroutine. It actually generates the same code ag the
instruction:

B *R11

The COPY psuedo instruction provides a means for including source files with
the compilation. This is useful say, to create a small module which "INCLUDES"
or "COPIES" other modules in its address space. It is also useful to COPY in
common equate files (e.g. what was created for the MYARC GENEVE).

The SYNTAX of the command is:
CoPY "<¢filename>"

where <filename> is the D0OS full file name (not the TI-99 file name). For
example, on the Amiga, an eguates file called "vid.eq9" exists in directory
"df2:equates/", so the COPY directive would be:

COPY "df2:equates/vid.eq9"

A& COPY’d file may not contain another COPY command, or an error will result.

IFxx <expression> / ELSE / ENDIF

The IFxx/ELSE/ENDIF statements allow you to create modules with conditionally
assembled code. The <expression» is evaluated, and if the expression is
non-zero, then the following code is assembled. If the expression is zero, then
the following code is not assembled, until an ELSE or ENDIF statement is
encountered.

This is especially useful in writing code for two different machines or operating
systems. Only one source module need be maintained, and the proper code for each
operating system can be generated by merely setting an equate in the program Or
in an eguate file.

For example, Lo generate code for MDOS or GPL, one could create a flag

gset to one ar zern, e.g.:
MDOS EQU 0 ; MD0OS=1, GPL={

and then generate twn sets nf code, i.e.:

IFEQ MDOS

XOP @DKEYOP, 0 ; In MDOS, call keyboard XOP
ELSE

BLWP @KSCAN ' ; In GPL, call keyboard scan
ENDIF

Note that if the MDOS flag is set to non-zero, then the XOP code will be
generated, else the KSCAN routine will be called. The ELSE condition is
optional, however the ENDIF statement must be present.

The following conditionals, when TRUE, will cause any following code to be
assembled up to any following ELSE or ENDIF statement:

IF - 1if expression NOT 0

IFEQ - 1if eupression 0

IFNE - 1if expression not 0 (same as IF)

IFLT — if expression less than 0

IFLE - if expression less than or equal to 0
IFCT - if eupression greater than 0 :
IFGE — 1if expression greater than or equal to 0

3. Macros

A macro is a facility for text replacement. A single line of source
assembly code that uses a macro will be replaced by possibly many lines of
assembly code defined in the body of the macro definition. Thus, to use a macro,
it must first be defined, then "called" from within the assembly language
program. While a macro may be considered to be somewhat like a subroutine, there
is a major difference. When a subrouline is valled, the PC changes value, and
the program begins executing code in a different place in memory. When a macro
is called, the code from the macro body is actually substituted at the place of
the call. This substitution process is called expanding the macro. Macros may
have parameters that can be substituted within the body when the macro is
expanded. Figure 1 illustrates a macro definition and call:

SOURCE CODE EXPANDED CODE
AQRG »300 AORG »300
JLSEQ MACRO ; "Jump <="
_JLT %1 ; %1 is param
JEQ %1
EWDM ; end
I r
C R1,R2 ; compare C R1,R2
JLSEQ' LBLY ; Jmp <= JLT LBL1 [expansion]
JEQ LBL1
A R1,R2 A R1,R2
LBL1 - LBL1

Figure 1. A Macro Example

This macro allows a jump on arithmetic less than or equal using one line of
assembly source code. It 1is expanded at assembly time to two actual
instructions, JLT and JEQ, using the parameter provided in the call: LBL1. The
macro definition starts with the directive MACRQ and ends with the directive
ENDM. Parameters in the definition are denoted with a %, and provided in the
call just like an ordinary operand.

3.1 Macro Definition
A macro is defined with an initial line of the form:
MACRONAME MACRO.

The macro name may be any standard label, and must be present with the MACRO
directive. When assembling, the macro definition table is checked last. Thus,
it is not legal to define a macro with the same name as a valid instruction such
as MOV or INC since TASM will match the regular MOV instruction first and never
get to the macro definition table.

3.2 Macro body

The body of a macro consists of any number of legal TI assembly language
instructions. There must not be calls to other macros within the body of a macro
definition. Nested macros are not allowed. The macro is ended with the ENDM
directive. Macros definitions appear in the .P file with dashes in place of the
usual address/value fields.

3.3 Macro Formal Parameters

Any macro definition may use up to 9 parameters. Parameters are implicitly
defined, and can appear in the body of the macro definition as the symbols %1 to
%9. Any given parameter may be used as often as needed within the macro body.
Parameters will be expanded whenever they are found within the macro body,
regardless of the context. Thus, you may not use an unprotected % in a macro body
(See Protected values, below). Parameters must be used in order from %1 to %9.

3.4 Local Labels

It is sometimes necessary to use labels within a macro definition. IFf a
standard label were used, it would result in a multiple definition of a label
error whenever the macro was called more than once. TASM allows local labels to
be defined within the body of a macro that will be expanded to unique labels
whenever the macro is called. Local labels have Lhe [orm ?x.

The ? denotes a local label, and the x is any letter from a to z that the
programmer chooses. Thus, any one macro may have up to 26 local labels. Labels
may be re-used in different macro definitions — ?a can be used in more than cne
macro definition. When local labels are expanded, the ?x portion remains
constant, and two additional letters are automatically appended to generate a
unique label of the form ?xyz. Each time any macro 1s called, the label
generator produces a new label, whether labels are used or not. Thus, the very
first macro call will have generated labels of the form ?xaa, the second macro
call ?xab, and so on. Thus up to 676 macro calls may appear in any one program
-— far more than will ever be needed for this class. The ? is a special
character, just like the % and may require protection.

3.5 Protected Values

Sometimes you may want to protect portions of the macro body. For example,
you may have a string with a ? or % within the macro body definition. If such
values are left as is, they would be confused with parameters or local labels.
Square brackets ([and]) may be used to protect any portion of a macro body.
Ehus a string text(?] would be expanded to text? with no label expansion of the

3.6 Invoking a Macro

A macro is invoked by using the macro name followed by any parameters. A

macro call will look just like a regular instruction in the source code, and may
be followed by up to 9 operands. The operands in the order given are then

substituted for the formal parameters %1 to %9 in the macro body as the macro is
expanded.

3.7 LIST Directive

The LIST assembler directive is used to control the listing of generated
code for macro calls and TEXT directives. These directives affect only the .P
file, and in no way change the code generated in the .x object code file.

LIST TEXT
LIST NOTEXT ; default

The TEXT and NOTEXT options control how generated code for TEXT directives is
listed in the .P file. With NOTEXT, the default, the starting address of the
string is given, along with the number of bytes the string takes in the value
field. Using the LIST TEXT option has TASM list the address and value of each
word of data generated by the TEXT directive in the .P file. The NOTEXT option
makes the .P file much smaller. ‘

LIST MOBJECT
LIST MNEVER
LIST MONCE ; default
LIST MALWAYS

These LIST options control the .P expansion of macro calls., The MOBJECT option
is the defaulted option and causes the MACRO not to be expaned in the listing,
only the original source line and the resultant object are listed. The MNEVER
option forces TASM to never list the expanded code produced by a macre call. The
default MONCE option will have TASM list the full expansion of a macro the first
time it is called. Subsequent calls to the same macro will not be expanded in
the listing. The MALWAYS option will have TASM show the full macro expansion
every time a macro is called. This option is most useful for debugging to make
sure the parameter expansion and label generation works as expected. Comments
present in the original macro definition will be removed from the expanded code.
Expanded code is also formatted on tab stops. This automatic provision means that
strings may have some spaces replaced with tab stops. This can be avoided by
being sure string defined with TEXT directives ingide the macro body usc doublc
quotation marks: '

"STRING".
Other forms of the LIST statement:

LIST
LIST "file_name"

These directives serve two distinct purposes. The LIST statement with no
arguments restores output to the listing file which had been previously disabled
using the UNL {(unlist} command. The list statement with a file name enclosed in
double cuotation marks will cause the listed output to be redirected from the
file specified on the -1 command line switch to the file name specified.

4.0 Sysgen Limits

The TASM assembler has certain limitations that are changed only during
sysgen of the TASM program. These limits are currently set to:

MSDOS/Amniga Geneve
Symbol Table Space 12000 BYTES 10000 BYTES
Maximum # of Symbols 2000 1000
Maximum # of Macros 80 25

Maximum Chars in a Macro 250 BYTES 250 BYTES

5.0 Include (COPY) Files

Include files or COPY files are used extensively in most modern operating systems
to provide the user with a symhnlic way of interfacing to other programs or
operating system calls. The MYARC DOS package provides a very structured method
of interfacing to system services, the XOP interface, COPY files are provided to
give the user a symbolic mechinism of using the XOP interface.

For example, the following assembly statements within a program set the video
mode to graphics mode 6:

COPY "HPS1.INCLUDE.VIDEO I"
LI RO,SETVID
LI R1,GRAPH6
¥OP @DVIDXP, O
DVIDXPF DATA VIDXOP

This provides readable source. The following source is equivalent to the
previous code, but does not use symbols and therefore is not very readable:

LI RO,0

LI R1,8

X0P @SIX,0
81X DATA 6

The TASM package includes a number of COPY files that provide definition of the
Geneve XOP Libraries. For a definition of what these libraries are and how they
work, the most definitive document is contained within Paul Charlton’s GenASM
program. The 9640 Windows library is described in Beery Miller’s 9640 Windows
user manual. The video library is currently only defined as postings on various
BBS’s, and has non-working sections.

The header files provided are:

keyboard i : Keyboard Library
video i : Video Library

memory i : Memory Library

io i : Input/Output Library
utIlity i Utility Library

math i : Math Library

windows i : 9640 windows Library

These files can be used by placing the files in an "INCLUDE" directory. For
example, suppose you place all six files in the "HDS1.INCLUDE" directory on your
hard disk. You can then utilize the header files you need by placing the
statement:

COPY "HDS1.INCLUDE.FILENAME I"

in your Assembly program,

The following example program sets the videoc mode to text mode (40 column mode)
and writes a string of text to it:

CorY "HDS1.INCLUDE.VIDEQ I"

DEF START -
START EQU §

LI RO,SETVID

LI R1,TEXT1

X0P @DVIDXP,O0

L1 RO,WRITET

LI R1,STRING

XOP @DVIDXP,O
*

BLWP @0 ; BXIT
*

STRING TEXT ’Set Video Mode to 40 Columns’
BYTE »>0QD, »0A, >00
EVEN

DVIDXP DATA VIDXQOP
END

6. Known Bugs/Deficiencies/Differences

a. The following code acts differently if assembled under TIC rather than
the standard TI assembler:

. RORG 0
ADDRS EQU 4
NEWADR EQU $+ADDRS

The symbol "NEWADR" is calculated as an absolute symbol. In the TI
assembler, it is treated as a relative symbol.

b. Under unknown circumstances, occasionally the disk directdry that
is being used for assemblies will "wipe—out", and be not accesszble

to later disk operations {(a DEVICE ERROR results). I wonder if this
is related to MDOS hard disk wipeouts in genseral.

The following was changed in version 3.5:

TASM - Changes for Version v3.5
1. The problem with the "BYTE" directive being first has been fixed.

2. The startup library changed to have a control “c handler (you can
now control "¢ out of an asgsembly).

3. Eputc() references in the source were changed to putc() (functionally
identical).

a.l.beard 29-Feb-1992

LDR v4.1 Release Notes 92/09/10

LDR v4.1 is fucticnally identical to LDR v4.0 as released with the TICRUN
package. The documentation for LDR contained in that package is still
applicable. The only change in v4.1 is the addition of code to handle the
"D" (byte data) tag generated by Paul Charlton’s GenASM assempler. It is
now possible to assemble TIC object files with GenASM provided that TIC
was invoked with the "-a" option to produce GenASM-compatible output.

LDR v4.71 is an update to TICRUN. The fairware terms and conditions which
apply to TICRUN also apply to LDR wv4.1.

Clint Pulley

T AW [

*% Filename: geneve_i

*% Release: version 1.5
*% Date: 26/July/1991
*%

*k This file contains miscellaneous definitions for the 964(GENEVE
XK that are hardware dependent.

*k
**% Copyright 1961 by LGMA Products

*k

X Revision History:

* %

*% 26/Jul/91 Initial Release

K&

WSP EQU >FO00 WORKSPACE OFFSET (USUAL USER WORKSPACE)
CLOCK1 EQU_ »>F130 REAL - TIME CLOCK

VDPORO EQU »>F100 9938 CHIP PORT 0

VDPOR1 EQU »F102 9938 CHIP PORT 1

VDPORZ EQU »>F104 9938 CHIP PORT 2

VDPOR3 EQU »>F106 9938 CHIP PORT 3

BANKCD EQU >8E00 BANK CODE FOR VDP BANKING
*

L ||

MEMORY MANAGEMENT RQUTINES:
X0P @seven, ZERO seven is the system routine code for memory *¥
management .
ZERO is the system XOP code

OPCODE : FUNCTION

00 - return number of free pages in system

01 - get # pages @ local page #, speed

02 - return # pages @ local page #

03 — map local page # @ execution page

04 - get address map (execution address, size of area

to build 1list in)

05 — declare shared pages (type,# pages,local page #)

06 - release shared pages (type)

07 . - get shared pages (type, local page #)

08 - size of shared page group (type)

09 - move memory from LOCAL1 to LOCAL2 With LENCTH
errors :

060 no error!

01 not enough free pages

02 can't remap execution page zero

03 no page at LOCAL address

04 wuser area not large enough for list

05 shared typc already defined

06 shared type doesn’'t exist

07 can’t overlay shared and private memory

08 out of table space (actually, 08 should request more space,
but we are going to staticly allocate a table because
we don‘t have a lot of time)

I R O I B B R R R R

LELE LRttt s St e PR bR PR s P et sttty eI T TSI T T
REGISTER UOAGE

* %

in all cases, R0 of caller’s WS has the opcode zero through nine
also, user’s equal flag is set by contents of error flag

QP#0 IN: nil
QUT: RO=error code
Ri=number of free pages in system
R2=number of fast free pages in system
R3=total number of system pages

OP#1 IN: R1=number of pages to get
RZ2=local page address
R3=speed flag non-zero =»> fast
QUT: RO=error code

R1=# of pages actually fetched
R2=# of fast pages actually fetched

QP#2 IN: R1=# of pages to return to system
R2=local page address
QuT: RO=error code
OP#3 IN: Ri1=1ocal page #
R2=execution page #
QUT: RO=error code
OP#4 IN: Rl=execution address

R2=size of area for map
OUuT: RO=error code

x—:e-x-x-xx-x-x-xx-xx-xﬁ**:&'****x-x-x-x-x-*

OP#5 IN: R1=# of pages to be declared shared
R2=local page address
R3=type number

QUT: RO=error code
QP#6 IN: Rl=type
ouT: RO=error code
OP#7 IN: Ri=type
Ri=local page # for start of shared area
CUT: RO=error code
OFP48 IN: Ri1=type
QUT: RO=error code

Rl1=-number of pages in shared group

0OP#9 IN: Ri= >00 <MSB of 24 bit local address DESTINATION>
. R2= <LSWord of 24 bit local address DESTINATION:
R3= »>00 <«MSB of 24 bit local address SOURCE>
R4= <LSWord of 24 bit local address SOURCE>
R5= byte count

L A B R R O B S O B A R

KRR KA AR KRR KA KK A A AR A KA AR AR KA KRR ARRAAARK A RRARARAARRR AR AR AR A&
¥

*+

XOPS for use by 0S only (not accessible to user task)

opcode #A : page get

in: r(=>000a
r1=page number to get,» 255 means first available
r2=gpeed flag <> 0 means fast

out: r=error code

ri=pointer to node

opcode #B : add page to free pages in system

in: r0=>000B
ri=page number
out: r0= error if no free nodes available
opcode #C : add a node to the list of free nodes
in: r0=>000C
ri=pointer to nocde
out: ng errors

opcode #D : link a nude tu the specified node
in: r0=>000D
ri=pointer to node
rZ2=pointer to node to link to
out: ng errors

opcode #E : get address map (system)
cut; RO= count of valid pages
system >1F00 has map
system »>1FFE has count of pages

Mo N N o oo o o3 N N N N M b 3 X% % XN A X

definitions:
page: 8k bytes of memory, addressed by the 13 least significant address bits

execution page: these are numbered ¢ to 7, indexed solely by the
3 most significant bits of the cpu’s address

physical page: these are numbered from 0 to 255

function of the mapper: to translate an execution page into a physical page

example:
EXECUTION ADDRESS: eee iiii} iiiiiiii 64 Kbyte range
: |
map?er I
v v
PHYSICAL ADDRESS: P prpp pPpp 1iiii ididiidiii 2 Mbyte range
"eca" is the execution page

"popppppp" is the physical page

B R D R R o e b o e e e e R R e e e T
in our case:

local page = virtual page

virtual addressing: a method of allowing a task to access more memcry than
is directly accessible through the address bits
of the CPU. allowing a task to own more physical pages
than the 8 execution pages which are directly accessible
through the mapper

in the mapping of MDOS, the execution pages for a task are a subset of the
virtual pages belonging to the task.

for each task, MDOS maintains a list of physical pages which can be used by the
task. 1If the pages in this list are numbered, beginning with 0, the number
asaigned to each position in the list is the same as the virtual page number
within the task. The list is allowed to have holes it, which correspond to no
physical page.

An example of the virtual page list maintained by MDO3 for a task
with 128k of memory:

physical page numbers:
>3f >3e >3d >b8 >b8 >b8 b8 >3c »3b >3a »39 »38 37 »36 »>35% >34

virtual (local) page numbers:
0 1 2 3 4] 5] ! 8 Y 10 11 12 13 14 15

¢<——— HOLE —---—-> ({physical page >b8 does not correspond
to any device which can be located in the
PE BOX)
the wvirtual address is:
»2000 * (virtual page number} + { index into page <13 bits>)

note: the virtual page list is limited to 256 bytes in length. therefore,
no task may have more than 2 Mbyte of virtual memory

since this task has a hole containing 4 pages, it really only uses 96k
of physical memory, even though it has 128k of virtual memory.

*%% this example is the basis of the examples which follow ***

memery mangement opcodes:

B R R Lt o b e o o o T o S S A AR A N e A S R L L L L X S R

#0 this returns the number of unassigned physical pages in the system

B o R R R R o B o A R e P L L e L A R L L L R sy

#1 this routines allows you to fill holes in your virtual
page list, it will also crcate a new hole if the first page
you are allocating has a higher virtual page number than
any which have been previously assigned.

in the abowve cxample, if this routine were passed the arguments:
ri=2 "# of pages to get
r2=4 Virtual page #
r3=don't care

+ then the routine would take unassigned physical pages
{(if available) and assign them to virtual pages #4 & #5
creating a virtual page map like:

physical page numbers:
»3f »3e »3d >b8 »33 »32 >b8 >3c >3b >3a »39 »38 »37 »>36 »>35 >34

virtual (local) page numbers:
0 1 2 3 4 5 6 7 8 9 ¢ 11 12 13 14 15

1 i
<hoie> <hoie>
the routine could create a new hole if you gave it arguments like:
ri=1
r£=17
r3=don‘t care

results:

physical page numbers:
»>3f >3e »>3d >b8 >b8 :b8 >b8 >3c »3b :3a »39 »38 »37 »36 »35 >34 L8 »33

virtual (local) page numbers:
0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 17

¢<———— hole ————— > choles

notice that this routine only _fills_ holes, it does not assign
a new physical page to a virtual page which is already assigned

example:

ri1=5
r2=1
r3=don’t care

results:

rhysical page numbers:
33f 33e >3d >33 >332 >31 b8 >3~ »3h 33a 339 »3I8 »37 336 35 >34

virtual (local) page numbers:
0 1 2 3 4 5 ? 7 8 9 10 11 12 13 14 15
<--— 3 pages ——>
<had» <new pages ><hoie>

notice that the arguments asked for 5 pages, but only 3 were actually
assigned, since two of the target pages had already been assigned

L . L T L o e A A R A A A R b o N o T

#2 this routine releases pages which have been assigned to the
virtual address space of a task, thus creating holes in the list
it also ensurcs that there is no hole at the end of the list which
is not foilowed by an assigned page
note: you can not release page #0 (it isn’t really owned by the task,
it belongs to MDOS and is also the "header" page for the task)

arguments:
ri1=9
r2=2

results:

physical page numbers:
>3f >3e »b8 »b8 »b8 >b8 >b8 >b8 >b8 b8 >b8 »38 »>37 »36 335 >34

virtual (local) page numbers:
0 2 3 4 3 6 7 8 9 10 11 12 13 14 15

note that some of the pages released were already unassigned, this is
quite ok...

arguments:
ri1=10
rz=1z

physical page numbers:
»>3f >3e >34 >b8 >b8 b8 »b8 »3c »3b »3a »>39 »38

virtual {local) page numbers:
0 1 2 3 4 5 6 7T 8 9 0 11

the list was truncated, since all of the pages at the tail of the list
were unassigned. Also note that we really told it to release

pﬁges 12 to 21, but we only had pages up to 15 to begin with...this is
ok.

arguments:
ri=12
r2=2

physical page numbers:
>3f »3e b8 >b8 >b8 >b8 >b8 >b8 >b8 »b8 >b8 »b8 >b8 >b8 »35 >34

virtual (local) page numbers:
t] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
¢«——— giant hole - - >

R N e b B b 0 T b L e R e e E e LS e R TR L b E T T T ararars

#3 map a virtual page into the execution (cpu visible) address space
arguments:
ri=virtual page number (index into list of physical pages)
r2=execution page number (index into the mapper)

rhysical page numbers:
>3f >3e >3d >b8 b8 :b8 >b8 »3c >3b :3a »>39 »38 >37 »36 »35 »34

virtual {(local) pagc numbers: .
0 1 2 3 4 5 6 7 3 9 M 11 12 13 14 15

mapper:

>3f >b8 >b8 b8 >bB »bB >b8 b8

example arguments:

ri=14
r2=2

resukt-—-new contents of mapper:
>3f »b8 >?5 *>b8 »>b8 >b8 »b8 »b8
|
virtual page # 14 is now located at »>4000 (cpu address)

another way to see this is to say that data at a virtual address of
>0001_c000 is addressable at >4000

R I R b i o o A e AL R Al s b 3
#4 return a list of virtual pages

rl= execution address at which to place the list
r2= length reserved for list

you’ll get an error code if the list is longer than the reserved area
returns (*R2), physical pages numbers:
>3f »3e »3d >b8 >b8 >b8 b8 »3c »3b >3a »39 38 »37 »36 35 >34

getting such a list is useful if your application does

lots of paging around to get at the data it needs to use.
1t is quite useful if your application also needs to use

pointers longer than 16 bits to maintain some complex data
structure, if you are maintaining 32 bit pointers, here is
how to get at the data addressed by the pointer:

assume: rl1,r2 = 32 bit pointer, @paglst are bytes from opcode #4

movb r2,rt ok, since only low 5 bits of r1 are used
andi r1,>e01f keep 8 bits, zap the others
sre r1,13 rotate them to make an index into the page list
andi r2,»1fff mask off the high three bits, they’re now
* in R1

*

movb @paglst(r1),@mapper+4 put it at »8000
movb @paglst+1(rl1),Gmapper+5 put next page at >a000

it is not necessary to place two pages intoc the mapper if you

know for certain that the record accessed by the pointer does not
cross page boundaries, the above code is just a method of playing it
safe .

* O % A %

mov @>B000+field offset(r2),r3

this of course assumes that there is some record addressed by the
initial pointer, and that the record contains fields of some

data structure. fields are easy toc set up with a DORG statement
for each record type in use by an application

3 % & ¥ % X

LR R e D R R R R R R R
#5 declare shared pages

any task may declare a subgset of itg wvirtual address gpace to be
"shared"

each set of shared pages is given a "type" so that other applications
can later assign a certain '"type" of shared pages into their

* virtual address spage without knowlege of which physical pages
belong to a "shared" group

it is recommended that "types" be assigned by the distributor of MDOS,
so that incompatible applications do not try to use the same "type"
if you decide to use a "type" please correspond with the distributor
of MDOS to coordinate your development efforts with others.

a "shared" type may only be declared once, and always resides in a
group of consecutive virtual pages. If all applications using a
‘shared" group of pages release those pages, the "type" may be
redeclared

{MDOS keeps a count of the number of applications using a shared group,
and if the count ever becomes zero, the type is made free for re-use)

*** it is not possible to declare page 0 to be part of a shared group
*** page 0 is _always_ private, since it contains the information
**¥* which MDOS uses to distinguish between tasks.

arguments:
r1=5 number of pages to be shared in this "type" (40 Kbytes)
r2=8 beginning virtual page number
r3=1 type -
results:

physical page numbers:

»>3f »3e »3d b8 »b8 »>b8 »b8 »3c »3b »>3a >39 »>38 >37 >36 35 >34
virtual {local) page numbers:
] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
<— shared pages —»
{—— type #1 —->
let us call the above page list "task #1", for the next few examples

B L Ik L b o L e e e b it b Lok o o S T P O O A G o AT AT S AT T R AP RVRFRVR AN

#7 get "shared" pages (we'll come back to opcode #6 later)

1) the "type" must have be declared by a previous call to #5
by another task

2) if shared type has 5 pages, there must be a hole of at least
5 pages in the virtual page list for the shared tvpe to map into
it is not possible to overlay shared and non-shared pages, nor
is it possible to overlap different "types" of shared pages

task #2, initially 24k
vp: 1 2 3 4 5 6 7 8 9
pp: 220 »21 »22 >b8 >b8 >b8 b8 »b8 >23
task #2 calls opcode #7
arguments:
ri=1
r2=3
results, task #2

vp: 1 2 3 4 5 6 7 8 9
pp: 320 »>21 322 >3h 3a »39 338 37 »23

¢{— shared pages ——»

note that arguments of: r1=1, r2=4 would generate an error,
since page #9 has already been assigned

also note that it is ok tc have the shared group at

»1 0000 in task #1, but at
>0 6000 in task #2

also note that physical pages 237 to »3b can now be accessed
by both tasks.

alse: a task may use more than one "shared type" simultaneously
shared pages can be a good way to communicate between tasks,
it is also a good way to reduce memory usage for
an application which is used by more than one user at a time,
s since you could "share" Lhe object code of the application
between the users, and have more memory available for
each users’ data.

R R R T SR TR o A S A A NV R A N N A R RN R R AR R R A S S A I A VRIS

#6 release shared pages

only the "type" argument is needed, since MDOS keeps track of

the number of pages in each "type", and its location within the
virtual address space of the tasks which are using the "type"

if task #2 were to call opcode #6 with
ri=1

the following would result:
1 2 3 4 5 6 7 8 9
ppe: »20 >21 »22 >b8 >b8 >b8 >b8 »b8 »>23
<— the shared pages are no longer here —»
R R R R L L L R R e s St

#8 get size of shared group

if any task were to call this, they can obtain the number of pages
used by each active type

example: task #3

argument:

ri1=1
return: .

r0=0 {assuming task #1, above, still had shared
pages}

r1=5 size of shared type #1 in above example

L X A R e R E R S E S S S S A S S A S SR S R TS A A A PRV SE SRR R G S ey

this is _fun_ stuff...<sic>

** Filename: memory i

*% Release: Version 1.5

**x Date: 26/July /1991

*% Thig file contains the definitions for the MDOS Memory library
*% Copyright 1991 by LGMA Products

** Revision History:

%%k

*% 26/Jul/91 Re-released as memory i

*x 20/Dec/81 Updated, fixed opcodes & added mapper register address
** 30/Nov/87 Initial Release

MEMXOP EQU 7 ; MEMORY MANAGEMENT XOP NUMBER

*x%x

**x QOpcodes
*x

RETFRE EQU 0 ; RETURN FREE PAGES IN SYSTEM

x*

GETLCP EQU 1 ; GET # PAGES @LOCAL PAGE #, SPEED

RETLCP EQU 2 ; RETURN # PAGES QLOCAL PAGE #

MAPLCP EQU 3 ; MAP LOCAL PAGE @ EXECUTION PAGE

GETMAP EQU 4 ; GET ADDRESS MAP

DECSEP EQU] ; DECLARE SHARED PAGES (TYPE, #PAGES,LOCAL P#)
RELSHP EQU 6 ; RELEASE SHARED PAGES (TYPE)

GETSHP EQU 7 ; GET SHARED PAGES

SIZSHF EQU 8 ; SIZE OF SHARED PAGE GROUP (TYPE)

MOVMML EQU 9 ; MOVE MEMORY LOCAL1 TQ LOCALZ2 WITH LENGTH
LIBSET EQU 10 ; SET LIBRARY PAGES

*k

:: Error Returns

MEMNON EQU 0 ; NO ERRCR

NOTENF EQU 1 ; NOT ENOUGH FREE MEMORY

CANREM EQU 2 ; CAN'T REMAP EXECUTION PBAGE 0

NOPAGE EQU 3 ; NO PAGE AT LOCAL ADDRESS

USEFUL EQU 1 ; USER AREA NOT LARGE ENUF FOR LIST
SHATYP EQU 5 ; SHARED TYPE ALREADY DEFINED

SHAEXI EQU 6 ; SHARED TYPE DOESN’T EXIST

CANQVR EQU 7 ; CAN'T OVERLAY SHARED & PRIVATE MEMORY
EETTAB EQU 8 ; OUT OF TABLE SPACE

** MAPPER REGISTER ADDRESS
* %k

MMRREG EQU >F110 ; MAFPER REGISTER START ADDRESS (8 PAGES)

B I 2 B R D O A S SR B N

LR S R R I R

I/0 library .

XOP @eight, 0

PASS: rO=pointer to PAB in local memory {64k addressable by CPU)

PAB = peripheral access block

PAB format

*2
]
[l
o
L]

AR WM 2O~ U b W =

k=) e =3

Byte 1,

7605

i/o opcode
mode flags

returned

error code

buffer address, high byte i
buffer address, middle byte | task-virtual
I

buffer address, low byte

address

\ record number

\ logical record length
memory type flag, »00 is CPU, non-zero is VDP
character count, high byte
character count, middle byte
character count, low byte
status byte
name length <byte count»
text of name

mode flags:

meaning

O=sequential file access

1=relative file access <fixed files only>
Q0=update mode, r/w access, fixed files only
01=output mode, write only, erase old file *
contents

10-input mode, read only

11=append mode, write only to EOF, not for fixed
O0=display format data .
1=internal format data

O=fixed record lengths

1=variable record lengths

not used, set to zero!

errcor codes:

3210
| Pl
i f

v .

—

extended code for error #7, mask gtherwise

000 non-existent device name
001 operation aborted due to write protection
010 bad open allribute (filetype,Tecord length,mode)

011 illegal

operation (bad opcode on this device)

100 out of table space, no free buffers

101 attempt

to read past end of file

110 low-level device error (parity, bad media)
111 catch-all for other errors
(mismatch between program and data file,
non-existent file opened for input, etc)

PAB usage, by opcode:

UPEN

pab in

E I B R R R A R

* * X

b R R e G O B

byte 0 00
1 mode flags
2 —
3 -
4 —
5
6 \ number of records to reserve space for
7 \ on an open which creates a new file
8 \ logical record length to use. if this is zero and the
9 \ file exists, uses file’s record length, otherwise
+ if zero, and file doesn’t exist, defaults to 80
10 -
1 -
12 -
13 -
14 -
15 name length <byte count:
16+ text of name
OPEN pabb oul
byte 0 -
1 -
% error code
4 -
5 —
6 —
7 -
8 \
9 \ returned record length, different only if zerc was *
passed
10 - -
Tt 0
12 \ trug record length of file, will not agree with bytes *
8,
13 \ if there was a mismatch on the OPEN
14 -
15 name length <byte count>
16+ text of name
CLOSE pab in requires prior QPEN
byte 0 01
} ; mode flags
3 —
4 -
5 —
6 -
7 -
8 -
9 -
10 -
11 -
12 -
13 -
14 -
15 name length <byte count>
16+ text of name
CLOSE pab out

% % 5 3k 3 3k 3 3R M O Ok 2 W oM W N X M N N N N N M o N S O F B % % O 3 2 % % Ob X o ¥ % 3 % 3 O 5 3 3% % 3o Mo N N NN NS S

byte ? -
2 error code
3 —
4 —
5 —_
6 -
7 -
8 —
9 -
10 -
11 -
12 -
13 -
14 -
15 name length <byte count:>
16+ text of name
READ pab in requires prior QPEN
byte 0 02
1 mode flags
2 —_
3 \
3 .
5 \ buffer address
6
7 \ on FIXED files, record number to read from
8
9 \ logical record length, as returned by OPEN
10 transfer flag: (0 is cpu, non-zero is VDP
11 -
12 -
13 -
14 -
15 name length <byte count:>
16+ text of name
READ pab out
byte 0 -
1 —
2 error code
3 P
4 —
5 -
6 \ for fixed files
7 \ (passed record number}+1
8 —
9 —
10 -
11 0
12 \
13 \ number of chars transfered to buffer
14 -
15 name length <byte count>
16+ text of name
WRITE : pab in requires prior OPEN
byte 0 03
1 mode flags

b R B A O B R R R R e B R R R R S R

3 \
4 A
5 \ buffer address
6
g \ for fixed files, record number to write to
9 \ logical record length, as returned by OPEN
10 transfer flag: 0 is cpu, non-zero is VDP
11
12
13 \ number of chars to write from buffer into record
14 -
15 name length <byte count»
16+ text of name
WRITE pab out
byte 0 -
1 -
2 error code
3 -
4 -
5 —
6 \ for fixed files,
7 \ (passed record number)+1
B —
9 -
10 -
11 -
12 -
13 -
14 -
15 name length <byte count>
16+ text of name
RESTORE pak in regquires priocr OPEN
byte 0 04
1 mode flags
2 —
3 -
4 -
5 -
& \ for fixed files in relalive access mode, record number
7 \ to position the r/w pointer—all others go to file start
8 -
9 —
10 -
11 -
12 -
13 -
14 -
15 name length <byte count>
16+ text of name
RESTQORE pab out
byte 0 -
1 _
2 error code
3 —
4 -
5 -
6 \

MM 3 3 % 2% S OF M b 3 e 3 b ook M % 3 3% ook 2k 2 3k 3 DRk 3 0 2 30 O 2 oM 2 X o oMo X M o oob o2k oM oo o oo R W N NN N %

LOAD
byte

LOAD

byte

SAVE

byte

[T QA SR U Y
Nk W= OG-

+

[Y
W = OO I e wbh = O

—_
G
+

W = OWEO I N W — O

—_

— o
Lo

16+

WOkt —=O

\ updated record number for fixed files

name length <byte count:
text of name

pab in
05

\

\ buffer address

transfer flag: 0 ig epu, non-zeroc is VDp

\

\ maximum number of chars to allow from IMAGE file

;ame length <byte count>
text of name

pab out

error code

0

\ number of bytes in IMAGE file, returned even when
\ LOAD fails due to buffer size

name length <byte count>
text of name

pab in

06

A\
\
\ buffer address

O % % X o N o o M Ok 3 N X M M MW R N OB N R O N O N % N N M % N N O O O N F ¥ N

{ransfer flag: 0 is cpu, non-zero is VDP

\ number of bytes to save as an IMAGE

— ol b
s B — O

15 name length <byte count»
16+ text of name
SAVE pab out
byte 0 -
1 -
% error code
4 -
5 -
6 -
7 -
8 -
g -
10 -
11 -~
12 -
13 -
14 -
15 name length <byte count>
16+ text of name

DELETE file pab in
07

byte

| I S I |

name length <byte count>
text of name

SINEWwN OO0~ d b — O

+

Ak md ah ok med -

DELETE file pab out

byte

error code

—_
W OO -1 W —O
|

LR N A B A B B R R R R e R S R I R R

15
16+
DELETE rec
byte 0
1
2
3
4
5
&
7
8
9
10
11
12
13
14
15
16+
DELETE rec
byte 0
1
2
3
4
5
6
7
8
2]
10
11
12
13
14
15
16+
STATUS
byte 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16+

name length <byte count:
text of name

pab in reserved for key-indexed files
08 not yet supported

name length <byte count»
text of name

pab out

error code= >60, bad opcode

name length <byte count»
text of name

pab in can be used ¢n open or closed file

09

name length <byte count>
text of name

3 o3 3 3 5 3 M S X 5 % 5k X b ok W % 5 3 2k % B OF 3 % 30 S 3F ok 3k b oF 3 3 3k 3k M M 2 b e Dk 2k k3 2 3 36 3 2k M MO0k Ok 2 X M O X MM oM X NN

STATUS
byte

0
1
2
3
4
3
6
7
8
9
0
1
2
3
4

lsb bit

BREAD
byte

N R WN=2OWUN TV bW = O

+

—_ e e ek k-

BREAD

o
-
+
@
Wy — O

0
1

v e W N

~1

pab out

error code

Elag byte

O=not at end cof file
1=at end of open file, read not
O=there is space to expand file

possible, write is

1=media is full, no room to expand file

0=fixed records

1=variable rerords

0=data

1=program image

O=Display format data
1=zinternal format data
currently unused, always zero

O0=file is not protected against writes
1=file is protected against writes
0=file exists
1=file does not exist
name length <byte count:>
text of name
pab in read sectors from any disk file
0a
\
\ buffer address
\ sector offsel within file to begin read
transfer flag, 0 is cpu, non-zero is VDP
0
\ number of sectors to read from file

\ if =zero, transfers files ID

name length <byte count>
text of name

pab out

error code
\ updated to peint to location

info into buffer

in memory after the

L T T T < O T 1 O | O (- e B e e e e

S 5% ok S o W o3 ok S M 5 5 b 3k M N 3 M AL Il U0 B oo Nn e

\ last bvte successfully read from disk

\ (sector offset of last sector read)+1
\ if read errcr, points to the bad sector

0
\ count of number of sectors
\ not read due to error condition

name length <byte count>
text of name

D b = SO0 IO U

+

@buffer is file ID info as follows:

BIT:

byte:

-
—

extended record length, used for files with records
longer than 255 bytes
file status flags

1 0 MEANING
| +-> 0-DATA 1-PROGRAM
+-——> 0-ASCII 1-BINARY
————— > 2 RESERVED .
0-NOT PROTECTED 1-PROTECTED
-6 RESERVED

)
2
Msb 7
|
|
|
I
+ 0-FIXED RECORD 1-VARIABLE LENGTH

|
|
|
|
|
|
|
|
|
~
~1 =

3 number of records which can fit in a sector (256 bytes)
0 for program image, extended record lengths
4,5 number of sectors reserved for file
6 number of bytes used in last sector of file
(0 means all 256 are used)
7 logical record length
0 for program image, extended record lengths
8,9 (bytca reverged)
for fixed files, (highest used record number)+1
for program image, variable files, number of sectors
actually used
date of creation bits: yyyy yyyM MMMd dddd
time of creaticon hhhh hmmm mmms ssss
seconds are / 2, with remainder
discarded

~ -
— s
=

—
[\ N

dale of last change
time of last change

JE—
~Jn

—
[ap)

BWRITE pab in write sectors to any disk file

byte UB

-~ |
-

\ buffer address

\ sector offset within file to begin write

transfer flag, 0 is cpu, non-zero is VDP
0
\ number of sectors to write to file

N-=OWR~-OWUMEWN —=C

PRSTRE ,

b B B R R e R SR B R R R R R R A B R S R)

13 \ if zero, creates file with ID info from buffer
\ buffer info described in BREAD

14 -

15 name length <hyte count>»

16+ text of name
BWRITE pab out
byte 0 —

1 -

2 error cede

3 \ points to location in memory after last byte

4 \ successfully written to digk

5

6 \ (sector offset of last sector written)+1

7 \ if write error, points to the bad sector

8 -

9 -

10 -

11 0

12 \ count of number of sectors not

13 \ written due to error condition

14 -

15 name length <byte count>

16+ text of name
PROTECT pab in change file protection
byte 0 0cC

1 —

2 protect flag, zero is unprotect file

3 . non-zero is protect file

4 -

5 -

6 -

7 —

a -

9 -

10 -

11 -

12 -

13 -

14 -

15 name length <byte count:

16+ text of name
PROTECT pab out
byte 0 -

error code

Wl b = OW 0~ ke b I
|

U SR N S QY

b3 3 OF o Ok Bb OF H M M 3 % M 3E 3 Ok 3 M o M M M N oM N N XN N N NN N NN NN M NN NN SO E A A E NN E AR

-
e

RENAME
byte

N W =CONIN TR Wk O

+

[N N G e Sy

name length <byte count:>
text of name

pab in rename a file

0D

\
\
\ buffer address

transfer flag, 0 is cpu, non-zero is VDP

name length <byte count>
text of file to rename

@buffer = new 10 character filename

RENAME

byte

[T
G Who =W ~ToUIR Wk =2

FORMAT
byte

N—_OWR~NhUNiaWhk =S

—

pab out

error code

name length <byte count»
text of name

pab in format a floppy diskette
QE

Lracks per side

skew between adjacent tracks

interlace of individual tracks

density ({2=double, other is single)

number of sides to format 2Z=double, other is single

name length <byte count>

oo o k2 2 ok 26 2 3 3k 3 M M ook b o 3 3 A M O O % O X F O M B R 2 M M R oo o M AR XN N R

16+ physical drive spec, ie: "DSK1."

FORMAT pab out
byte ? -
2 error code
3 _
4 —
5 -
6 —
7 —-
8 \
g \ total number of sectors formatted
10 -
11 number of gides formatted (1,2}
12 sectors per track
13 -
14

name length <byte count>
text of name

_
v un
r

available devices under MDOS:

DSK1 \

DSKZ2 \

DSK3

DSKA4 \ £floppy volumcs

DSK5 internal ramdisk

DSK6 Horizons ramdisk at »1400 cru base
DSK7 Horizons ramdisk at »>1600 cru base

WDSx personality card winchester device

PIO \
PICG/1 \
PI0/2 \ parallel printer spooler devices

RS232 \
RS232/1 \

R3232/2 \

RS5232/3

R5232/4 \ serial port input and output spoolers

the following switch extensions may be used with the PIO ports

.CR turn off cr/lf after each variable record sent

.LF Lurn off 1f after each variable record sent

.NU print nulls after each variable record to allow for a low
slew-rate printer

.IB reconfigure the spooler to recognize a printer with an
Inverted-Busy handshake signal

.HS reconfigure the spooler to perform a full handshake with
the printer for each byte sent (instead of just strobe)

the following switch extensions may be used with the RS232 ports

.CR turn off cr/lf after each variable record sent

LLP turn off 1f after each variable record sent

.NU print nulls after each variable record to allow for a low
slew-rate printer

.BA=baudrate (110,300,600,1200,2400, 4800,9600,19200)

.DA=databits (7,8)

.PA=0,E,N
.TW use two stopbits on transmissicn
.CH check parity

Note that none of the RS232 switches take effect unless they are
found as a special record within spooler itself

The only way to place the switches into the spooler is to perform

an OPEN call to the RS5232 with the high bit of the flag byte set to 1
ie: the first two bytes of the PAB could be >0080, which would append
the switch record onto the end of the spooler, so as not to affect
characters which may have been placed into the spooler while other
switches may have been extant

¥ X X o o Mo o N o o o oo F

** Filename: Io i

**x Release: Version 1.5

* % Date: 26/July/1991

% This file contains the definitions for the MDOS I/0 library
*% Copyright 1991 by LGMA Products

% Revision History:

** 26/Jul/91 Re-Release as Io i
*% 23/Feb/88 Change Program Size parameter (16k tco large)
*¥%x 09/Jan/88 Corrected PABCHC offset
% 20/Dec/B7 Updated, added PRGSIZ equate
:: 30/Nov/87 Initial Release
I0XQP EQU 8 ; INPUT/QUTPUT XOP NUMBER
k%
%% PAB FORMAT:
Kk
PABOPC EQU 0 ; OPCODE
PABMOD EQU 1 : MODE
PABERR EQU 2 ; ERRCR
PABBUF EQU 3 ; BUFFER ADDRESS (3 BYTES)
PABREC EQU 6 : RECORD NUMBER {2 BYTES)
PABLOG EQU 8 ; LOGICAL RECORD LENGTH (2 BYTES)
PABMEM EQU 10 ; PAB MEMORY FLAG (0=CPU, <>0=VDP)
PABCHS EQU 11 ; PAB CHARACTER COUNT (2 BYTES)
PABCHC EQU 12 ; CHARACTER COUNT (3 BYTES)
PABSTA EQU 14 ; DAB STATUS BYTE
PABFLN EQU 15 ; FILE NAME LENGTH
186 ; FILE NAME TEXT START

PABTXT EQU
* %

*% FILE MODE BITS:
k%

FVARIA EQU >10 ; VARIABLE FILE
FINTER EQU >08 ; INTERNAL

FINPUT EQU 504 ; INPUT

FOUTPU EQU >02 ; OUTPUT

FAPPEN EQU >06 ; APPEND

FRELAT EQU >01 ; RELATIVE MODE

*%

** PAB OPCODES:

k%

OPCOPE EQU »00 ; OPEN

CGPCCLO EQU > 01 ; CLOSE

OPCREAR EQU »02 ; READ

OPCWRI EQU »03 ; WRITE

OPCRES EQU >04 ; RESTORE

OPCLOA EQU 05 ; LOAD {PROGRAM FILE)
OPCSAV EQU >06 ; SAVE (PROGRAM FILE)
OPCDEF EQU 507 : DELETE FILE

OPCDER EQU >08 ; DELETE RECORD
OPCSTA EQU >09 ; RETURN FILE STATUS
OPCBRE EQU >O0A : BINARY READ

OPCBWR EQU >0B ; BINARY WRITE
OPCPRO EQU >0C ; PROTECT BIT

OPCREN EQU >0D ; RENAME FILE

OPCFOR EQU »0E ; FORMAT A FLOPPY

*%

:: ERROR CODES RETURNED:

NONEXI EQU >00 ; NON-EXISTANT DEVICE NAME

WRIPRO EQU »Q1 E OPERATION ABORTED DUE TO WRITE PROTECTION
BADOPE EQU >02 ; BAD QPEN ATTRIBUTE

ILLOPE EQU >(3 ; ILLEGAL OPERATION (E.G. BAD QPCODE)
QUTBUF EQU >04 ; OUT QF TABLE OR BUFFER SPACE

REAEQF EQU >05 ; ATTEMPT TO READ PAST ECQF

LLDEVE EQU >06 ; LOW LEVEL DEVICE ERROR (E.G. PARITY)
CATCHA EQU >07 ; CATCH ALL FOR OTHER ERRORS

*%

** Qther misc. eguates
%

PRGSIZ EQU »3E00 ; MAXIMUM SIZE CF A PROGRAM LOADER FILE

. o9 | .

video library ... xop @six,0

NOTE: all opcode numbers in this library are subject to revision,
though the functions they perform will remain the same
note: all parameters, including register set, must reside between

XM M oo b N XM X X N M NN NN NN N NN

>E000 & >FFF8 of the ralling task.
all opcodes passed in caller RO
SetVideoMode op 00
Rix = Video mode

video modes:
Q000 Text 1 mode
0001 Text 2 mode
0002 MultiColor mode
0003 Graphic 1 mode

0004 Graphic 2 mode
0005 Graphic 3 mode
0006 Graphic 4 mode
Q007 Craphic 5 mode
Qoos Graphic & mede
0009 Graphic 7 mode
GetvideoMode op 01
.
* R0x = Returned video mode
*
* SetCurPos op 02
*
* R1x = Page number
* R2x = Row number
* R3x = Column number
*
* GetCurPos op 03
*
¥ R1x = Page number
*
* R0x = Returned row number
* Rlix = Returned columu number
*
* SetDisPage op 04
*
* R1x = Page number
*
* GetDisPage op 05
*
K ——_—-.—
* ROXx = Returned page number
*
* ScrollwinUp op 06
x
* Rlx = Number of lines to scroll
* R2x = Row number of upper left corner
* R3x = Column number of upper left corner
* R4x = Row number of lower right corner
* R5x = Column number of lower right cormer
* R6x = Character value for blank lines
* R7h = Foreground color for blank lines
* R71 = Background color for blank lines

o s Mook N oM o2 M oM N N O N O N N R N

oM X N N o M N N O M oM oM N NN N

% o N N % M oM M b N M oMM O M N NN

ScrollWinbDown op 07

Rix Number of lines to scroll

RZ2x = Row number of upper left corner

R3x = Column number of upper left corner
R4x = Row number of lower right corner
R5x = Column number of lower right corner
R6x = Character valuve for blank lines

R7h = Foreground color for blank lines
R71 = Background color for blank lines
ScrollWinleft op 08

R1x = Number of lines to scroll

R2x = Row number of upper left corner

R3z = Column number of upper left corner
R4x = row number of lower right corner
R5x = Column number of lower right corner
Réx = Character value for blank lines

R7h = Foreground color for blank lines
R71 = Background color for blank lines
ScrollWinRight op 09

R1x = Number of lines to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner
R4x = row number of lower right corner
Rbx = Column number of lower right corner
Rb6x = Character value for blank lines

R7h = Foreground cclor for blank lines
R71 = Background color for blank lines
WriteCharColor op 0A

Rizx = ASCII character to write to screen
R2h = Foreground color for character

R2l = Background color for character in graphics modes
R3x = Number of times to write character and color
ReadCharColor op 0B

ROx = ASCII character read from screen

R1h = Poreground color for character
= Background color for character in graphics modes

SetBorderColor op 0C

R1x = Color to render border

SetColPalette op 0D

Rix = Palette register number

R2x = Color to put into palette register
SetPixelColor op 0OE

R1x = X coordinate of pixel

R2x = Y coordinate of pixel

R3h = Foreground color to render pixel

R31 = Background color to render pixel in graphics 2-3

SE 3 S SF SE 5k 3E BE M X 3k O M N O 3k 3 oM M X N o N oo o N3 N NN MM SN NN NN N NN NE N NN

GetPixelColor

Rix = X coordinate of pixel

R2x = Y coordinate of pixel

ROh = Returned foreground color of pixel

ROl = Returned background color of pixel in graphics 2-3
SetVectorColor op 10

R1x = X coordinate of first pixel

R2x = Y coordinate of first pixel

R3x = X coordinate of second pixel

R4z = Y coordinate of second pixel

R5h = Foreground color to render vector

R51 = Background color to render vector in graphics 2-3
ColorSRCH op 11

Rix = X coordinate of source point

R2x = Y coordinate of source point

R31l = Color for search

R3h = Direction for search (300=LEFT, >FF=RIGHT)

ST = if EQUAL, color found

R0x = X coordinate of location where color was found
R1x = Y coordinate of location where color was found
HElochkMove cp 12

Rix = Row number of upper left corner of source

R2x = Column number of upper left corner of source

R3x = Row number of upper left corner of destination
Rix = Column number of upper left corner of destination
R5x = Number of rows

R6x = Number of columns

R71 = Pixcl color for blank pixels

HBlockCopy op 13

Rix = Row number of upper left corner of source

RZ2x = Column number of upper left corner of source

R3x = Row number of upper left corner of destination
R4x = Column number of upper left corner of destination
RS5x = Number of rows

R6x = Number of columns

LBlockMove op 14

R1x = Row number of upper left corner of source

RZ2x = Column number of upper left corner of source

R3x = Row number of upper left corner of destination
R4x = Column number of upper left corner of destination
Rbx = Number of rows

R6x = Number of columns

R7] = Pixel color for blank pixels

R7h = Logic operation to be performed on destination
LBlockCopy op 15

R1x = Row number of upper left corner of source

R2x = Column number of upper left corner of source

R3x = Row number of upper left corner of destination
Rédx = Column number of upper left corner of destination
R5x = Number of rows

op OF

B 2 3 ¥ o o3 o Mo o o N o M oA N oMo oM M M M N S OOF 3 M 2 N 3 3 o % Ok % b o N Ok NN N X% oo oM oo MM

R6x

Number of columns

R7h Logic operation to be performed on destination
BScrollUp op 16

R1x = Number of pixels to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner
R4x = Row number of lower right corner
R5x = Column number of lower right corner
Réh = Pixel color for blank pixels
BScrollbDown ap 17

R1x = Number of pixels to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner
R4x = Row number of lower right corner
R5x = Column number of lower right corner
R6h = Pixel color for blank pixels
BScrollLeft op 18

Ri1x = Number of pixels to scroll

R2x = Row number of upper left corner

R3x = Column number of upper left corner
Rix = Row number of lower right corner
R5x = Column number of lower right corner
R6h = Pixel color for blank pixels
BScrollRight op 19

R1x = Number of pixels to screoll

R2x = Row number of upper left corner

R3x = Column number of upper left corner
Rdx = Row number of lower right corner
R5x = Column number of lower right corner
Rbh = Pixel color for blank pixels
SpriteDef op 1A

R1x = Pointer to sprite data

R2x = # of sprites to define

SpriteDel op 1B

R1x = Pointer to list of sprite #'s

R2x = # of sprites to delete (>FFFF for all)
Spritelocate op 1C

Rix = Pointer to location data

R2x = # of sprites to locate

SpriteMotion op 1D

R1x = Pointer to motijion data

R2x = # of sprites to put in motion
SpriteColor op fE

R1Xx = Pointer to color data

R2x = # of sprites to color

SpritePattern op 1F

.**X—H-X-H-X-X-*X-%*)E>(->t->(->(-************H-X-X-:(-N-)t-****x*ﬂ-*****ﬂ-ﬂ-**%***)(-)l-)t-ﬁ-!i—*’(-**x-

R1x = Pointer Lo pattern # data

RZx = # of sprites to pattern

SpriteMagnify op 20

Rtx = MagFac (1-4, just like XB)

SpritePosition op 21

R1x = # of sprite to get position of

ROx = Returned Row of sprite

R1x = Returned Column of sprite

SpriteCocinc op 22

R1x = Type (O=sprites, 1=locations, 2=any two sprites)
R2x = # of coincidence checks

R3x = Pointer to test field

R4x = Pointer to result field

ROx = # of coincidences detected

SpritePatbDef op 23

R1x = CPU address of sprite pattern definitions
R2x = # of sprite patterns tc define

CharPatDer cp 24

R1x = CPU address of character pattern definitions
R2x = # of character patterns to define
SetMargins op 25

R1x = Page number

RZx = Top margin

R3x = Bottom margin

R4x = Left margin

R5x = Right margin

GetMargins op 26

R1x = Page number

R0x = Returned top margin

R1x = Returned bottom margin

R2x% = Returned left margin

R3x = Returned right margin

WriteTTY op 27

R1x = CPU address of string

R2x = # of characters in string (0=NULL terminated)
SetTTYPos op 28

R1x = Page number

R2x = Row number

R3x = Column number

GetTTYPos op 29

R1x = Page number

*

ROX = Returned row number

Rix Returned column number
SetMouse op ZA
R1x = new Xposition for mouse

R2% = new Yposition for mouse

% % M X % N M N ¥ N

R3ix scale factor for mouse speed (0 to 7) O=fastest
GetMouse op 2B
R1® = Returned Xposition for mouse

R2x = Returned Yposition for mouse

R61 =~ Attenuation for Meoisc Cencrator
R7x = duration of noise in 60th seconds

*

x

*

*

*

* Rix = bl b2 b3 0 xxxX XXXX XXxX {highest bits)

* \ bl= left 1=down

* \ b2= middle 1=down

: \ b3= right 1=down

* GetMouseRel op 2C

*

L JIEEEE)

* R1x = Returned X displacement since last call to GetMouse or GetMouseRel
: R2x = Returned Y displacement since last call to GetMouse or GetMouseRel
: MakeSound op 2D

* R1x = Generator 1 frequency in Hz

¥ R2x = Generator 2 frequency in Hz

* R3x = Generator 3 frequenry in H=z

* R4h = Attenuation for Geneérator 1 (0-15)

* R4l = Attenuation for Generator 2 (0-15)

* ROh = Attenuation for Generator 3 (0-15)

* R6h = anntrol for noise generator: bits= 0000 Ow t1 &2

* i +——+-— 00= 6991 Hz

* | 01= 3496 Hz

* I 10= 1738 Hz

* i 11= game Hz as Gen
* #3

* o —— 0= periodic noise
* 1= white noise
*

*

* %

* SoundStatus op 2E

SetvideoMode
Rizx = video mode

Video modes:
0000 Text 1 mode
0001 Text 2 mode
0Q02 MultiColor mode
0003 Graphic 1 mode
0004 Graphic 2 mode
0005 Graphic 3 mode

LA A R R

* 0006 Graphic 4 mode

L 0007 Graphic 5 mode

* 0008 Graphic 6 mode

* 0009 Graphic 7 mode

* gooa Text 2 mode —- 26 lines
x

X 0 1 g ¢ R

* GetvideoMode

*

Returned video mode

Number of columns

Number of rows

Number of Graphics columns (pixels)

Number of Graphics rows (pixels)

Current page offset (in pixel rows, use for chip commands)
Color of screen border

Foreground color of text

Background color of text

* % % % O X oA N XN
2o}
[
™
LI L T T | [T

* SetCurPos

*

* R1x = Row number

* R2x = Column number
*

Xo02ve

* GetCurPos

* e
* R0x = Returned row number

* Rix = Returned column number
*

X903ve

* SetDisPage
*
* Rix
* R2x
*

X904LS DATA X904M0, X904M1,X904M2, XS04M3

Page number
Initialize tables? (0=YES !'0=NO)

nu

* GetDisPage

* ROx = Returned page numher
*

X905vC
X905L1 MOV @PAGE, *R13
RT
* ScrollWinUp
*
* R1x = Number nof lines to scroll
* R2x = Row number of upper left corner
* R3x = Column number of upper left corner
* R4x = Row number of lower right corner
*¥ Rox = Column number of lower right corner
* Réx = Character value for blank lines
* R7h = Foreground color for blank lines
*¥ R71 = Background color for blank lines
*
X906L5 DATA X906M0, X906M0, X906M2, X906M0
* ScrollWinDown
w*
* R1x = Number of lines to scroll
* R2x = Row number of upper left corner
* R3x = Column number of upper left corner
* R4x = Row number ol lower right corner
* R5X = Column number of lower right corner
* R6x = Character value for blank lines
* R7h = Foreground color for blank lines
: R71 = Backyround color for pblank lines

X907LS DATA X907M0,X907M0,X907M2,X907M0

* ScrollwinLeft -
*

* R1x = Number of lines to scroll
* RZ2x = Row number of upper left corner
* R3X = Column number of upper left corner

* R4x = Row number of lower right corner

* R5% = Column number of lower right corner
* Rb6x = Character value for blank lines

* R7h = Foreground color for blank lines

* R71 = Background color for hlank lines

*

X908L3 DATA X908M0,X908M0, X908M2, X908M0
* ScrollwinRight

*

* R1x = Number of lines to scroll

* R2x = Row number of upper left corner

* Rix = Column number of upper left corner
* R4x = Row number of lower right corner

* R5x = Coplumn number of lower right corner
* R6x = Character value for blank lines

* R7h = Foreground color for blank lines

* R71 = Background color for blank lines
X909LS DATA X909M0, X909M0, X909M2, X909M0O
* CALL COLOR (ONLY WORKS IN SCREEN CODE 3)
*

* Rith = Foreground color

* R11 - Background color

* RZx = Charset # (if mode 3)

*

X90AVC

* GCharColor

X

* R1x = Row

* R2x = Col

W ome

* R0x = ASCII character read from screen

* R1h = Foreground color for character

* R11 = Background color for character

®

XS50BLS DATA X90BM0, X90BM1, X90BM2, X90BM3

* SetBorderColor
*

* R1x = Color to render border

NIBBLE JUSTIFIED MOST (0-G-R-B

X90cve

* SetColPalette

*x

* R1x = Palette register number

* R2x = Color to put into palette register.
* {(G,R,B —— AS BOOK DESCRIBES)

A900vC

* SetPixelColor

*

* R1x = X coordinate of pixel

*# R2X = Y coordinate of pixel

* R3h = Foreground color to render pixel

* R31 = Background color to render pixel in graphics 2-3
: R4h = Logic operation tc be performed

X90ELS DATA X90EMOQ, X90EMO, X90EMO, X90EMO

* GetPixelColor

X coordinate of pixel
¥ coordinate of pixel

* ok o %
e}
o
"

* ROh = Returned foreground color of pixel
* R0l = Returned background color of pixel in graphics 2-3
*

X90FLS DATA X90FMO, X90FMO, X50FM0, X90FMO

* SetvectorColor (DRAWING A LINE)

%

* R1x = X coordinate of first pixel

* R2x = ¥ coordinate aof first pixel

* R3x = X coordinate of second pixel

* R4x = Y coordinate of second pixel

* R5h = Foreground color to render vector

* R51 = Background cclor to render wector in graphice 2-3
* R6h = Logic operation to be performed

*

XS10LS DATA X910M0,X910M0, X910M0, X910M0

* ColorsRCH (FOR FILLS)

*

* Rix = X goordinate of source point

* R2x = ¥ coordinate of source point

* R31 = Color for search

¥ R3h = Direction for search (>00=LEFT, >FF=RIGHT)

K m——_ .

* 8T = if EQUAL, color found

* ROx = X coordinate of location where color was found
* R1x = ¥ coordinate of location where color was found
*

X811veC

* HBlockMove

*

* Rix = Row number of upper left corner of source

* R2x = Column number of upper left corner of source

* R3Ix = Row number of upper left corner of destination
¥ Rdx = Column number of upper left corner of destination
* ROx = Number of rows

* R6x = Number of columns

* R71 = Pixel color for blank pixels

*

x912vC

* HBlockCopy

*

* Rix = How number of upper left corner of source

* RZ2x = Column number of upper left corner of source

* R3x = Row number of upper left corner of destination
* R4x = Column number of upper left corner of destination
¥ Rbx = Number of rows

* Réx = Number of columns

*

X913vC

* LBlockMove

*

* Rix = Row number of upper left corner of source

* RZx = Column number of upper left corner of source

* R3x = Row number of upper left corner of destination
* R4x = Column number of upper left corner of destination
* R5x = Number of rows ,

* Réx = Number of columns

* R71
* R7h
*

X914vC

Pixel color for blank pixels
Logic operation to be performed on

LBlockCopy

R1x
R2x

Row number of upper left corner of
Column number of upper left corner
Row number of upper left corner of
Column number of upper left corner
Number of rows

Number of cnolumns

Logic operation to be performed on

% % Ok Ob k% A % R X
o
B
x X
[I I T R TR

BScrollUp

Rix
R2%

*

*

* Number of pixels to scroll
x

* R3x

L3

*

*

Row number of upper left corner
Column number of upper left corner
Row number of lower right corner
Column number of lower right corner

s}
o
»
{1 1 E I I B

R6h Pixel color for blank pixels
X916vVC
* BScrollbown
x
* R1x = Number of pixels to scroll
* R2Xx = Row number of upper left corner
* R3x = Column number of upper left corner
* R4x = Row number of lower right corner
* R5x = Column number of lower right corner
* Rbh = Pixel color for blank pixels
*
X917vC
* BScrollLeft
*
* R1x = Number of pixels to scroll
* R2x = Row number of upper left corner
* R3x = Column number of upper left corner
* R4x - Row number of lower righl corner
* R5x = Column number of lower right corner
* R6h = Pixel color for blank pixels
*
X918vVC
* BScrollRight
*x
* R1x = Number of pixels to scroll
* R2Xx = Row number of upper left corner
* R3x = Column number of upper left corner
* R4x = Row number cf lower right corner
* R5x = Column number of lower right corner
* Ro6h = Pixel color for bhlank pixels
*
X919vC

fi#### SEE ADDENDUM FOR MOR ON

* SpriteDef
*
* R1x = Pointer to sprite data
* R2x = # of sprites to define

destination

source

of source
destination

of destination

destination

SPRITES #####

X91AvVC

* SpriteDel

: R1x = Polnter to list of sprite #'s

: R2x = # of sprites to delete (>FFFF for all)

X91BVC

: SpriteLocate

* R1%x = Pointer to location data

: Rix = # of sprites to locate

X91Cve

: SpriteMotion

* R1x = Pointer to motion data

: R2x = # of sprites to put in motion

X91pvC

: SpriteColor

* Rix = Pointer to color data LIST=SP#,8P COL,....,SP#,5P COL
* R2x = # of sprites to color

§91EVC

* SpritePattern

: Rix = Pointer to pattern # data (SET POINTER TO SPRITE TABLE 0-255)

* R2x = # of sprites to pattern

* SpriteMagnify

*

* R1x = MagFac (1-4, Jjust like XB)
*

X9208M BYTE >00,201,202,>03

* SpritePosition / SpriteDistance
*
* R1x = # of sprite to get position of
* R2x = Type of Distance, 0 for none, 1 for Sprite, 2 for Location
* R3x = # of second sprite (type 1), or Pixel row (type 2)
* R4x = Pixel column (typec 2)
* e
* ROX = Returned Row of sprite
* R1x = Returned Column of sprite
* R2x - Distence (if sccond sprite # was given)
R3X = Distance squared (if second sprite # was given)
X921vC
* SpriteCoinc
*
* R1x = Type {O=sprites, 1=locations, 2=any two sprites)
* R2x = # of coincidence checks (if1,2) IF 2 PUTS THE RESULT IN R4 ONLY 2
* R3x = Pointer to test field 0 SP#, SP#, TOLER t SP#,DR,DC,TOL
* R4x = Pointer to result field 0 one COINC PAIR row,col if coinc
L 1 SP#, DR, DC
* 2 DR,DC (2 IS ALL, 3P TO 5P IS 0)

* ROx = # of coincildences detected (DR,DC)

*
X922L5 DATA X922T0,X922T1,X922T2

* SpritePatDefGet
*

* R1x = CPU address of sprite pattern definitions

* RZ2x = # of sprite patterns to define or get

* R3x = Starting pattern #

* R4x = 0 if Def, »FFFF if Get

*

X923VC

: CharPatDefGet

* Rix = CPU address of character pattern definitions

*¥ R2x = # of character patterns to define or get (SPRITE & CHAR DATA SAME
* R3x = Starting pattern # ONLY IN MODE 1,1)
* Rdx = 0 if Def, »>FFFF if Get

*

X924LS DATA X924M0, X924M0, X924M2, X924M0

* SetTextWindow

*

* R1x = Top row

* R2% = Left column

* R3x = Bottom row

* R4x = Right column

*

xX925ve

* GetTextWindow

*

*

* ROX = Returned top row

* R1x = Returned left column
* RZ2x = Returned bottom row

* R3x = Returned right column
*

X926vVC

* WriteTTVY

*

* Rlx = CPU address of string
* R2x = # of characters in string {(0=NULL terminated)
*

X927L3 DATA X92700,X92701,X92700,X92700

* RestoreCharSpritePat

*

* R1x = Restore Chars? (0=No)

* R2x = Restore Sprites? (0=No)

*

X928VC

: SetTextColor

* Rlh = Foreground color for text
* R1l = Background color for text
*

X929vC

* WriteCharString

*

* R1x = Address of string

* R2x = # of characters in string

* R3x = 0 if change cursor position, »FFFF if leave cursor at beginning
*

X92ALS DATA X92AM0, X92aM1,X92AM2,X92AM3

: HCharColor
* R1x = Row
*¥ R2x = Col
* R3x = ASCII character to write to screen
* R4x = Number of times to write character and color
* R5h = Foreground color for character
* R51 = Background color for character
*
X92CLS DATA X92CM0, X92CM1 ,X92CM2, X92CM3
* YCharColor
*
* R1x = Row
* R2x = Col
* R3x = ASCII character to write to screen
* RA4x = Number of times to write character and color
* R5h = Foreground color for character
* R3]l = Background color for character
)
¥92DLS DATA ¥92DM0, X92DM1, X92DM2, XS 2DM3
HChar
Rl Row
R2x Col

o nmn

ASCII character to write to screen

e R -
s
(VY]
"

R4x = Number of times to write character and color
92EVC
VChar
R1x = Row
Col

4 3 % A % %
]
2%]
®
mun

Rix = ASCII character to write to screen
Ré=x Number of times to write character and color
X92FVC
* VWIR — wrile Lu videu registers, with register save
*
* R1x = VDP register #
*¥ R21 = Value to put into VDP register
x
X935vC

* VRFR - read from video registers, actually, a read from stored values
* Rix = VDP register #
* ROl = Value read from VDP register

X936VC

* GetTables

*
s
—
»

= Pointer in user data, to put copy of tables (24 bytes)

*® A

Copies of this data are put into user data:

* CTABLE DATA 0
* PTABLE DATA 0
* SCRIMG DATA 0
* SPRATT DATA 0
* SPRPAT DATA 0
* SPRCOL DATA 0

*
X937vC
GetPalRegs

Ri1x
R2x
*

Pointer in user data, to put copy of Palette Registers (32 bytes)

*
*
*
® FORMAT (0=SQUASHED !0=BY THE BOOK, EXPANDED)

o

X938vVC
PrintScreen

*®

*

* R1x 0 for shades, 1 for ocutline
* R2x = 0 for normal density (double), 1 for hi density {quad)
*

X92BVC
MCUSE SAME VIDEQ
RO 2A-SET MOUSE

R1 —X POSTION
R2 Y POSITION

R3 SCALE FACTOR (-7 O FASTEST
RO 2ZB-GET ABSOLUTE (WHOLE REGISTER)
R1 RETURNED X

R2 RETURNED ¥

R3 MOST SIGNIFICANT 3 BITS L BUTTON, 1 DOWN, 0 NOT DOWN

R0 2C-GET RELATIVE (HOW MUCH MOUSE HAS MOVED SINCE LAST CALL TQ GET MOUSE)
"1 RETURNED X

R2 RETURNED Y

R3 MOST 3 BITS L BUTTON,1 DOWN O NOT DOWN

##4### DEFINE SPRITES
POINTER I3 TO WORDS (SPRITE MQDE 1)

15T WORD IN LIST I3 SPRITE # (BASE 0)
2ND WORD IN LIST IS CHAR CODE (-255
3RD WORD IN LIST IS POSITION

4TH WORD IN LIST IS VOLOCITY

3TH WORD IN LIST IS VOLOCITY

6TH WORD IN LIST IS COLOR

POINTER IS TO WORDS (SPRITE MODE 2)

151 WORD 1IN LIST IS SPRITE # (BASE 0)
2ND WORD IN LIST IS CHAR CODE 0-255
3RD WORD IN LIST IS POSITION

4TH WORD IN LIST IS VOLOCITY

3TH WORD IN LIST IS VOLOCITY

NEXT 16 WORDS IN LIST ARE COLORS

#i#### SPRITE COLOR
SAME AS COLORS FCR SPRITE MODE 1 CR 2

** Filename: video i
*x Release: Version 1.5
*%x Date: 26/July/1991

** This file contains the definitions for the MDOS Video library
L Copyright 1991 by LGMA Products

*% Rewvision History:

*% 26/Jul /91 Re-release as wvideo i

** 09/Feb/89 Changed for 1.14 video XOP 6 modifications

*x (09/Sep/88 Changed names of VCHAR/HCHAR to VCHARW/HCHARW

*% 15/Rug/88 Updated for MDOS 1.06

:: 30/Nov /87 Initial Release

VIDXOP EQU 6 ; VIDEO LIBRARY X0OP NUMBER

**

% Graphics Mcdes:

*K

% mode size color sprite
* %k — -

TEXT1 EQU 0 ; TEXT 1 3 40x26 2 : N
TEXT2 EQU 1 ; TEXT 2 : 80x26 2 : N
MULTIC EQU 2 ; MULTICOLOR : 64x48 1% @ 1
GRAPH1 EQU 3 ; GRAPHIC 1 : 32x24 1% 1
GRAPHZ EQU 1 ; GRAPHIC 2 32x21 16 = 1
GRAPH3 EQU 5 ; GRAPHIC 3 256dx2124d 16 @ 2
GRAPH4 EQU 6 ; GRAPHIC 4 512dx212d4 16 : 2
GRAPHS EQU 7 ; GRAPHIC 5 512dx2124 : 4 @ 2
GRAPHG EQU 8 ; GRATPHIC 6 512dx212d 16 : 2
GRAPH7 EQU 9 ; GRAPHIC 7 256dx212d : 32 : 2
*%k

** QOpcodes:

*k

SETVID EQU >00 ; SetVideoMaode

GETVID EQU >01 ; GetVideoMode

SETCUR EQU >02 ; SetCurPos

GETCUR EQU »03 ; GetCurPos

SETDIS EQU »>04 ; SetDisPage

GETDIS EQU »05 ; GetDisPage

SCRWUP EQU >06 ; ScrollWinUp

SCRWDN EQU 207 ; ScrollwinbDown

SCRWLE EQU >08 ; ScrolliwinLeft

SCRWRI EQU >09 ; ScrollWinRight

CCOLOR EQU >0A ; CALL COLOR i 0.95
*CALLSC EQU >0A ; CallScreen | 1.14+
GETCCO EQU >0B ; GCharColor | 1.06
SETBOR EQU »0C ; SetBorderColor

SETCOP EQU >0D ; SetColPallette

SETPIC EQU >0BE ; SetPixelColor

GETPIC EQU >0F ; GetPixelColor

SETVTC EQU >10 ; SetVectorColor

COLSRC EQU >11 ; ColorSRCH

HBLMOV EQU »12 ; HBlockMove

HBLCOP EQU 513 ; HBlockCopy

LBLMOV EQU >14 ; LBlockMove

LBLCOP EQU *15 ; LBlockCopy

BSCRUP EQU »16 ; BScrollup

BSCRDN EQU >17 ; BScrollDown

BSCRLE EQU >18 ; BScrollleft

BSCRRI EQU »19 ; BScrollRight

SPRDEF EQU »1a ; SpriteDef

SPRDEL EQU >1B ; SpriteDel

SPRLOC EQU »>1C ; Spriteloc

SPRMOT EQU 1D ; SpriteMotion

SPRCOL EQU >1E ; SpriteColor

SPRPAT EQU »F ; SpritePattern

SPRMAG EQU >20 ; SpriteMagnify

SPRPOS EQU >21 ; SpritePosition

SPRCOTI EQU »22 ; SpriteCoincindence

SPRPAD EQU 23 ; SpritePatDefGet 1.06
CHAPAD EQU >24 ; CharPatDefGet 1.06
SETTWI EQU »25 ; SetTextWindow 1.06
GETTWI EQU >26 ; GetTextWindow 1.06
WRITET EQU »27 ; WriteTTY

RESTCH EQU »28 ; RestoreCharacters 1.06
SETTCO EQU »29 ; SetTextColor 1.06
WRICHS EQU >2A ; WriteCharString 1.06
PRISCR EQU >2B ; PrintScreen 1.06
HCHCOL EQU »2C ; HCharColor 1.06
VCHCCL EQU >2D ; VCharColor 1.06
HCHARW EQU >2E ; HChar 1.06
VCHARW EQU »2F ; VChar 1.06
SETMCU EQU »>30 ; SetMouse 1.06
GETMCOU EQU >31 ; GetMouse 1.06
GETMOR EQU »32 ; GetMouseRel 1.06
MAKSOU EQU $33 ; MakeSound 1.06
SNDSTA EQU >34 ; SoundStatus 1.06
VVWTR EQU >35 ; VDP Write Register 1.74+
VVRFR EQU »36 ; VDP Read Registers 1.14+
GETVTR EQI »37 ; Get Video Tables 1.14+
GETPAR EQRU >38 ; Get Pallette Registers 1.14+
SETEDG EQU >34 ; Set Edge Color 0.95h

o3 o N N oM M 3 N N - N o oM MO N N N E NN NN NN N E MO O MM N NN NN X NN N AN

utility library ...

oP

oP

OP

OP

oP

OP

oP

or

9133

OoP

#0

#1

#2

#3

#4

#5

#6

H#7

#8

IN:

QUT:

#9

in:

R1= POINTER TO TEXT OF STRING TO PARSE

R2=

XO0P @nine, 0

CHECK TIME FOR VALIDITY
PASS:
return:

CONVERT TIME TO STRING

r0=0
EQ hit set if time is valid
reset if time is invalid

PASSE: RO=1
Ri=pointer to string in local mem
(at least 10 bytes)
return: 8 character string
CONVERT STRING T0 TIME
PAS3S: RO=2
Ri=pointer to string in local mem
(at least 10 bytes)
return: EQ flag set if time was valid

CHECK DATE FOR VALIDITY
PASS:
return:

CONVERT DATE TO STRING

RO=3 .
EQ bit is set if date is valid

PASS: RO=4
Rl=pointer to string in local mem
(at least 10 bytes)
return: 8 character string
CONVERT STRING T0 DATE
PASS: RO=5
R1=pointer to string in local mem
(at least 10 bytes)
return: EQ flag set if date was valid

CONVERT MM,DD,Y¥YYY inte julian date

PA3S: RO=6
R1=month
R2=day
R3=year
return: R1=MSword of julian date
RZ2=LSword of julian date
return day of week
PASS: RO=7
return: Rl=day of week, 1-7

parse filename from logical descriptor to physical descriptor

~

exec address

TC LENGTH BYTE IN STRING OQUT BUFFER
(18t byte is maxlen for the buffer)
R3= FLAG TO CONTROL GENERATION OF ALIAS PREFIX

exec address

RO= pointer to ending delimiter
R1= 0 is no error, <»>0 is error
EQUAL FLAG set by contents of R

load program image task
rd=9

ri=pointer to length hyte of image name exec address

out: EQ set if no error
r0=error code
l=no erraor
1=not enough memory to load task
2=bad name for image
3=invalid header on task
4=task not found, hardware error, wrong file type for task

b . e A I

 TIRSES

General notes on user tasks within MDOS:

address:

>C000 to :0043 reserved for 08

>0044 to >0Q7fE can be used tor user defined XOPs

>0080 to >03ff reserved for 08

>0400 entry of user program

to »1£££ execution page 0 for this task

>2000 to »3fff execution page 1 for this task

>4000 to »>5fff execution page 2 for this task

»6000 to >7fff execution page 3 for this task

»B000 to »Offf execution page 4 for this task

»a000 to »bfff execution page 5 for this task

>c000 to »dfff execution page 6 for this task

»e000 to refff execution page 7 for this task (part 1)

>£000 to >f07f fast register locations for this task
{(all calls to 0S with X0P @op,0 must have
registers located here)

>£080 to >£13f reserved for 08

>£140 to >£££9 execution page 7 for this task (part 2)

>fffa to >Efff reserved for 05

all system routines are called through XOP zero, as follows:

XOP @libnum, 0 libnum is the address of a memory location
. containing the Library number to call

LIBNUM DATA >0006 ,
(for video library)
A subroutine will be provided to allow the task to fetch
the command line options with which it was invoked

% Filename: TaskHead I

%% Release: Version 1.5
** pate: 26/July/1991
*k

Kk This file contains the definitions for a task header
*x Copyright 1991 by LGMA Products
*% Revision History:

xx 26/Jul /91 Initial Release

*k

INTREG EQU »F080 ; INTERRUPT ROUTINE REGISTERS
XOPREG EQU »>FQJAQ AOP REGISTERS

SYS1 EQU >FOAQ SYSTEM 1 REGISTERS

5Y82 EQU »>FOCO SYSTEM 2 REGISTERS
SYSREG EQU »>FOEO SYSTEM REGISTERS

SCRATC EQU >FOEOQ SCRATCH AREA

MAPPER EQU »>F110 MAPPER REGISTERS

*

RSETVC EQU »>0000 ; RESET VECTOR

VEC990 EQU »>0004 9901 INTERRUPT

VECMID EQU »>0008 INTERNAL TIMER INTERRUPT
VECINT EQU »>000C INTERNAL TIMER INTERRUPT
VECEXT EQU 0010 EXTERNAL BUS INTERRUPT

*

mama ML R NNy

L

XOPTBL EQU »>0040 ; START QF XOP TABLE
SYSX0P EQU >Q040 SYSTEM WIDE XOP VECTCR
RSDBUG EQU »0044 RS232 DEBUG XOP

X0PUS2 EQU »0048 USER #2 XOP

X0PUS3 EQU >004C USER #3 XCOP
XOPUS4 EQU »>0050 USER #4 XOP
XOPUS5 EQU »0054 USER #5 XOP
XOPUSA ®QU >0058 USER #6 XOP
X0PUS7 EQU »005C USER #7 XOP
XOPUS8 EQU »0Q060 USER #8 XCP
XOPUSS EQU »0064 USER #9 XOP

XOPU10 EQU »>0068
XOPU11 EQU >006C
X0PU12 EQU 0070
X0PU13 EQU »0074
XOPU14 EQU >0078
X0PU15 EQU >007C
XOPCAL EQU »0080
INTCAL EQU >0086
KILLIT EQU >00AC
DELON EQU >00D8
ESCSEQ EQU »>00DA
ESCCNT EQU »00DC
ESCROU EQU >00DE
ESCDAT EQU »>00EQ
STDCLR EQU »>00E2

USER #10 XOP
USER #11 XOP
USER #12 XQP
USER #13 XOP
USER #14 XOP
USER #15 XOP
X0OP ENTRY
INTERRUPT ENTRY
INHIBIT INTERRUPTS & RESET
DELETE ON
ESCAPE SEQUENCE
ESCAPE COUNT
ESCAPE ROUTINE
ESCAPE DATA
STANDARD CLEAR

LINFLG EQU »>00E4 LINE FLAG
COTASK EQU :00E6 CC—TASK
PAGE EQU >00E8 PAGE #
PAGEPX EQU >0Q0EC PAGE PX

TURX EQU »>00EE
TURXMN EQU >00F0
TURXMX EQU »»>00F2
TURY EQU »00F4
TURYMN EQU >00F6
TURYMX EQU >00F8

A M TNE MY N MR NS ME M WA ML MDA M NS M ME MM W NI WA A M NI M ME AN ma e ME Ny N ar

CTLP

CTLS

BREARK
TSKTBL
MAXDRV
STATE
SLICE
PNAME
Uwp

urcC

UsT

MEMLST
TSKMAP
CURDRV
PATH#P
ELKDEV
FREPTR
PMTSTR
GPLPAR
CMDSTR
ALIASA
HANDLOQ
HANDL 1
HANDLZ

EQU
EQU
EQU
EQU
EQU

R R R L I R R R I R I R I T R T R E T R TE T TN

BREAK ON

TASK ID #

MAXTMUM ALIAS LETTER USER CAN SPECIFY
PROCESS STATE

OF SLICES LEFT TIL SWAPPED QUT
NAME OF THE TASK (8-CHARS)

USER WORKSPACE POINTER

USER PC

USER STATUS REGISTER

PCINTER TO MEMORY LIST

SAVED MEMORY MAP I[ISED NURTNG XOP'S
POINTER TC CURRENT DRIVE ENTRY
POINTER TO TEXT FOR PATH COMMAND
POINTER TG NAMES OF BLOCK DEVICES
POINTER TO FREE NODES

POINTER TO PROMPT STRING’S NODES

STRING TQO CONTROL SPEED QF GPL INSTRUCTIONS

STRING CONTAINING COMMAND LINE QPTIONS
POINTERS TO THE ALIAS STRINGS

; stdin HANDLE (0O=keyboard or screen)
; stdout

; stderr

I L

*

* math library ... XOP @TEN,U0

*

* all floating point argnments must be on an even byte boundary
* calling registers must be in PAD from >£000 to >£060

*

* floating point representation, radix 100:

*

* 0 = 00 00 xx XX XX XX XX XX

* +11 = e0 m0 m! m2 m3 m4d m5 mb

*

* o0 is int(log[100](n)) + >40

* m0 — m6 are numbers from >00 to 63 (0 to 99)

* m@ is most significant digits of mantissa,

* m6 is least significant digits of mantissa.

*

* in normalized numbers, decimal is between m{ and m
* -n is same as "n" except first word is negated ... —(e0 m0)
*

* exanples:

* decimal floating point

*

* 7 >40 07 »>00 »00 »>00 >00 »00 »00
* 70 >40 »46 >00 >00 »>00 00 >00 00
* 2,345,600 343 »02 »22 »38 »00 »>00 »00 >00
* 23,456,000 343 »17 >2D »3C »00 >00 >00 >00
* 0 >00 >00 »>XX 3XX >XX >XX >XX XX
* -1 »BF »F9 >00 »>00 »00 »00 »>00 00
* =70 >BF »>BA >00 00 »00 >00 »00 >00
: -2,345,600 »BC >FE »22 »>38 »00 >00 »>00 >00
¥ ppcode #HO .

* FCOMP floating point compare

* input: r0=0

* r2="fleat1

A r3="float2

*

* return: status reg = AG set iff (float2 » floatl)
* EQ set iff (floatZz = floatl)
*

* ppcode #1

* FSUB floating point subtract

* input: r0=1

* ri="result

* r2="floatt

* r3="float2

* return: rO=error code

: “r1 = float2 - floatl

* opcode #2

* FADD floating point add

* input: r0=2

* ri="result

* r2="float1

* r3="float2

* return: r0=error code

: *r1 = float2 + float1

* opceode #3

* FMULT floating point multiply

* input: rQ=3

* rt="result

: r2="float1

ri="float2

ook % % 3 b 3E OE N 3k 2 3 OF OF 3 M 0k 2 3k 3 R M Nk 3 % 2 M o N X oo M 3 MM o 0 M N M MO NN KKK

opcode
FDIV

opcede
PWR

opcode
EXP

opcode
LOG

opcode
SCR

cpcade
COos

opcode
SIN

opcode
TAN

return:

#4
floating
input:

return:

#5
floating
input:

return:

#6
floating
input:

return:

#7
floating
input:

return:

#8
floating
input:

return:

#9
floating
input:

return:

#10
floating
input:

return:

#11
floating
input:

point

point

point

point

peint

point

point

point

rO0=error code
“r1 = floatZ ¥ floatl

divide
ri=4
r1="result
r2="float1
r3="float?2
rQ=error code
“r1 = float2 / floati

power
r0=5
ri="result
r2="float1
r3="float2
rQ=error code
"r1 = float2 ~ floatt

ri=6

ri1="result
r2="float"
r0=error code
“r1 = e ™ float1

In(x)
r0=17
r1="result
r2="floatt
rQ=error code
“r1 = 1In(float1)}

sgri{x)
r0=8
ri="result
r2="float1
r0=error code
*r1 = sqr(float1)

cos(x)
r0=9
r1="result
r2="float"
rl=error code
*r1 = cos(float1)

sin(x)
r0=10
ri=*result
r2="float1
r0=error ccde
“r1 = sin(floatl)

tan{x)
=11
ri="result

o 3k 2 % % 3 X ¥ o ok ok b % 26 3 ok 3 bk 2 2% 2% 2k 26 3 3 2 o3 5 2 M 3k 3k 3 2 2o o3 Mo X M % M o 3 M o3 3 2 N N M O3 O O N O F MK

opcode
ATN

cpcode
GRI

cpcode
CrI

opcode
CIF

opcode
CSINT

cpcode
CSN

opcode
CHNO

return:

#12

r2="float1
rO=error code
“r1 = tan(float1)

tloating peint atn(x)

input:

return:

#13

ro=12

ri="result
r2="float1

r=error code

“r1 = atn(float1)

floating point greatest integer

input:

return:

#14
convert
input:

return:
#15

convert
input:

return:

#16
convert
input:

return:
#17

convert
input:

return:

#18
convert
input:

r0=13

r1="result
r2="float"
r0=err?r code

“r1 = || float1 |}

floating point to integer

r0=14
r2="float1
rO=error code
r1 = integer

integer to flnating point

string to

string to

r0=15

rt="result

rZ2=integer

rO=error code

*“r1 = float(integer)

integer

r0=16
rZ2="string
r0=error ccde
rt = integer

floating point
r0=17
ri="result
r2="string
r3=strilen
rO=error code

“r1 = float(string)

float to string

r0=18
ri="string
r2="float1
r3=opt1
bit 0: O=free form (ignore opt2, opt3)
1=fixed (opt2, opt3 are field sizes)
bit %: 1 for explicit sign
bit 2: 1 to show sign of positive number
as a "+’ instead of as a space.
{bit 1 must also be on)
bit 3: 1 for E-notation output
bit 4: 1 for extended E-notation

(bit 3 must also be 1)
r4=if fixed format, number of places to left
of decimal point, including explicit sign
rb=if fixed format, number of places to the
right of decimal point and including decimal
point
if fixed format, with exponent, r4,r5 exclude *
the
3 places for an exponent

% o % N N % %

return: rO=error code
“r1 = gstring

3% 3 5% b % %

*% Filename: math i

* % Release: Verslon 1.5
k¥ Date: 26/Iuly /1991
xK

*K This file contains the definitions for the MDOS MATH library

*% Copyright 1991 by LGMA Products

%%
** Revision History:

*K

*% 26/Jul/91 Re-released as math i

** 31/Bhug/88 Removed FAC & ARG Addresses

%% 22/Feb/88 Added temporary FAC addresses

% 27/Dec/87 Updated FAC & ARG addresses

*% 30/Nov/87 Initial Release

MATX0P EQU 10 ; XOP NUMBER FQOR LIBRARY

*k

¥ Opcodes

k%

FCOMP EQU 0 ; FLOATING COMPARE

¥FSUB EQU 1 ; FLOATING SUBTRACT

FADD EQU 2 ; FLOATING ADD

FMULT EQU 3 ; FLOATING MULTIDLY

FDIV EQU 4 ; FLOATING DIVIDE

PWR EQU 5 ; POWER FUNCTION

EXP EQU 6 ; EXPONENTIAL

LOC EQU 7 ; LOGORITHM

SOR EQU 8 ; SQUARE ROOT

CO3 EQU 9 ; COSINE

SIN EQU 10 ; SINE

TAN EQU 11 ; TANGENT

ATN EQU 12 ; ARC-TANGENT

GRI EQU 13 ; FLOATING POINT TO GREATEST INTEGER
CFI EQU 14 ; CONVERT FLOATING TCO INTEGER
CIF EQU 15 ; CONVERT INTEGER TO FLOATING
CSINT EQU 16 ; CONVERT STRING TC INTEGER
CSN EQU 17 ; CONVERT STRING TO NUMBER
CNS EQU 18 ; CONVERT FLOAT TO STRING

| 2500y $A2Y ‘

HMAAKARKRANARARANARNKRARRARARAARA

*

*

: keyboard XOP @FIVE,OQ

* IN: ROLsb = scan mode (like ti modes, 0-5)

*

* QUT: ROLsb = returned mode (same as »>8374 in 99/4a)
b R1Msb = returned scan code (same as »8375)

* R2Msb = joystick Y value (same as »8376)

* R2Lsb = Jjoystick X value {same as »8377)

: EQ bit in Status register set if there’s a new key in RO
* mode 7 = break key check return EQ=1 if Break on
* mode 8 = raw scan code returned in Ri1h

*

raw code returned is »FF if there was no code in *x
buffer

% Filename: keyboard i

** Release: Version 1.5
** Date: 26/July/ 1991
xK

** This file contains the definitions for the MDOS Keyboard library

Xk Copyright 1991 by LGMA Products

XK

% Revision History:

*k

k% 26/Jul/91 Re-release as keyboard i

ald 20/Dec/87 Added command line address

** 30/Nov/87 Initial Release

*k

KEYX0OP EQU 5 ; X0P NUMBER FOR LIBRARY

X%

** KEYBOARD MODES

* %

MOLAST EQU 0 ; USE LAST KEYBOARD MODE (MUST BE GOOD!)
MOLEFT EQU 1 ; USE LEFT SIDE OF KEYBOARD
MRIGHT EQU 2 ; USE RIGHT SIDE QF KEYBOARD
MSTAND EQU 3 ; STANDARD MODE

MPASCA EQU 4 ; PASCAL MODE

MBASIC EQU 5 ; BASIC MODE

MBREAK EQU 7 ; BREAK KEY CHECK

MRAW EQU 8 ; RAW KEY CHECK

*k

*% Command Line (MDOS)
KKk

CMDADR EQU >0128 ; COMMAND LINE ADDRESS/ADDRESS

Kk Filenam
*% Release
*% Date:

*% This fi
*% Mouse D

el mcuse i
: Version 1.5
26/August/1991

le contains the definitions for Bruce Hellstrom’s
river

*% Copyright 1991 by LGMA Products

** Revision History:

* %

* %k

X% 26/AUG/
*X

COMREG EQU
MSPD EQU
MSX EQU
MSY EQU
BUT1 EQU
BUT2 EQU
BUT3 EQU
MSSETX EQU
MSSETY EQU
*¥

** Function
*%

DEACTIVE EQU
ACTIVE EQU
HIDEMOUS EQU
SHOWMOUS EQU
SETSPEED EQU
DISABLE EQU
ALTBITMP EQU

* %
** Bit Maps
k%

ARROWP EQU
SLEEPYP EQU

TARGETP EQU
MENUP EQU
k%]

** Task page
* %

ENABLEB EQU
LOADEDB EQU

91 Initial Release

»F200 ; COMMAND REGISTER
3F201 : SPEED

»F202 ; MOUSE X COORD
»F204 ; MOUSE ¥ COORD
>F206 ; BUTTON 1 (LEFT)
>F208 ; BUOTTON 2 (MIDDLE)
»F20A ; BUTTON 3 (RIGHT)
»F20C ;

>F210 :

Codes for driver (in command register)

>FFFF ; DEACTIVATE THE MCUSE
>0001 ACTIVATE THE MOUSE

»0002 : HIDE THE MOUSE

»0003 ; SHOW THE MOUSE

»0400 ; SET MOUSE SPEED

»0005 ; DISABLE MOUSE COMMAND
»0600 ; TURN ON ALTERMNATE BITMAP

for various sprite definitions:

»0000 ; NORMAL ARROW
>0001 SLEEPY PGINTER
>0002 TARGET FCINTER
>0003 MENU POINTER

.- me e

0 equates for mouse

>0062 ; BYTE TO REENABLE THE MOUSE
>0063 ; WHETHER MOUSE IS LOADED QR NOT

o ' MISsc

E o R

*x Filename: Assembly 8

**%* Release: Version 7.5
*% Date: 26/July/1991
-

xx This tile contains the definitions for Interfacing TIC with
L Agsembly Language Subroutines

*%

*% Copyright 1991 by LGMA Products

KK

:: Define the Stack Frame:

TIC LOCAL EQU 0 /* Start of Local Variable Frame */
TIC_PARAM! EQU -12 /* Parameter 1 */
TIC PARAM2 EQU -14 /* Parameter 2 */
TIC_PARAM3 EQU -16 /* Parameter 3 */
TIC_PARAM{ EQU -18 /* Parameter 4 */
TIC_PARAMS EQU -20 /* Parameter 5 */
TIC PARAMG6 EQU ~22 /* Parameter 6 */
TIC PARAM7 EQU -24 /* Parameter 7 */
TIC_PARAME EQU -26 /* Parametar 8 */
TIC_PARAMS EQU -28 /* Parameter 9 */
*k

** Register Definitions:
*%

TEMP#REG1 EQU
TEMP#REG2 EQU
TEMP#REG3 EQU
SAVD#REG1 EQU
SAVD#REG2 EQU
SAVD#REG3 EQU
FRAME#PTR EQU
RETHRN#RG EQU
CALL#SUBR EQU
RETURN#SB EQU

/* 15t Temporary Register */

/* 2nd Temporary Register */

/* 3rd Temporary Register */

/* 18t Saved Temporary Register */
/* 2nd Saved Temporary Register */
3rd Save Temporary Register */
/* Pointer to start of Frame */

/* Return Register */

2 /* Call a Subroutine */

3 /* Return from a Subroutine */
STACKHPTR EQU 4 /* Stack Pointer */

CHSWITCH EQU 5 /* C$SWCH Routine */

— = 00] TNV P B
.-
*

MISC. NOTES

COLLECTED NOTES FROM PAUL CHARLTON ON 9640 ASSEMBLY AND LINKER
(Collected on CompuServe in October/November 1987)

DESCRIPTION OF LINKER PROGRAM:

this is a linker which runs from MDOS8 and creates MDOS program images
invoke with either "LINK" or "LINK <command filename>"
command file» is redirected keyboard input
commands are:
"filename" <-abject file to load
"@filename" <-save program image stating with "filename"
"1 exit to mdos
"2 list "ref/def" table. "*" before unresolved refs
have fun... $15 donation to author suggested
Paul Charlton 1599 Tibbits Ave Troy, Ny 12180-3723

REPLY TO QUERY BY DAVE RAMSEY ON USING THE LINKER:

RORG the object files...AORG files don’t set the max address counter

which is used by the SAVE routine (it only looks at the RELATIVE load
address defined by the loader)

also, RORG files will automatically start at >0400 and there

is no need to define such things as "sfirst,sload,slast"

load the file with the entry point 1st...

LZW compression should never increase file size if the bit-codes
are placed into variable fields within the files bytes

(as opposed to making all codes 12bit regardiess of whether all codes
are used ...CIS addressed this qguite well in the GIF spec)

REPLY TO QUERY ON 9640 PROGBAM HEADER BYTES:

the header for Geneve programs is gquite similar to TI header...
1st byte >00 or non->00, more to load flag if non-zero
2nd byte, ‘F’ or 'G' {this is what tells the loader it’s a 9640 mode pgm)
'F' means to load into fast memory if possible
' means slow memory
bytes 3 & 4 : length of current pgm image (not including 6 header bytes!)_
bytes 5,6 : load address of current pgm image
note that the entry address for all programs is at >0400 and that noc
application should need to turn off interrupts.

L.D.O.M. Oclober 13, 1996
<EQF>»

