SUILFORD 99 'ERS NEWSLETTER

Alles ZFu Ende ?

BuerrpaerINne THE Texns Imcsreuvmoumys TI=99748 ComPurTER

v GuriLForRD 997 Ers UG

e 3282 CAnTERBURY DR

GrREENSEDROD HNC

27488

Dob Carmany, Pres. and Newsletter Editor (8535-1538)

Tony Kleen, Sec/Treas (924-6344) Bill Woodruff ,Pgm/Library (228-1892)
EBS: (519)621-2623 —~RCS

B e s L e e e e e S K S s Has e Sl tals St SR EIDRF R SRU SIS SN SHY R SN SUUNT ST SR SO WL SO SHT TSt S
The Guilford 99'er Users' Group Newsletter iz free to dues paying members
(One copy per family, please). Dues are $12.00 per family, per year. Send
check to:Tony Xleen c¢/o 3202 Canterbury Dr., Greensboro, NC 27408. The
Software Library is for dues paying members only. (Bob Carmany Ed)

b " s
T T

it e e S tar s See SIS IEL S S SRS SR SR A SRS SRR SEL R S SENT SRR RIE S

NEXT THREE MEETINGS

DATE: October 6, 1992 Time: 7:30 FM. Place: Glenwood Recreation

November 3, 1982 Center, 2010 S.
December 1, 1992 Chapman Street
- — T T

BITIS AND BYTES
By Bob Carmany

It has been almost two years since I came into possession of one of the
HV99 Eprommers. To be honest, I really didn't know exactly what I was going
to do with it in the beginning. After all, it would eprom a few then-common
eproms up to the 16K 27128's in the 21/25V range. Shortly after I started
putting F'WEB, ARCHIVER, and a few other programs into eproms (and thus into
cartridges), new low/voltage eproms started hitting the market. These 12.5V
eproms could be eagily "fried"” by the unmodified HV99 eprommer. Ron
Kleinschafer came to the rescue a little over a year ago with a simple (for
him) modification to drop the voltage by meand of a couple of resistors and a
switch. Now, it could handle ANY eprom up to the 27128's in ANY commercially
produced configuration. ' It was almost perfect!!:

The software worked flawlessly and it was now just a matter of finding
something besides program material to stuff into an eprom. I already had the
EVEN and ODD console ROMs on disk and ready to go and the next project was to
amass a collection of DSRs (Device Service Routines) for the various TI and
non-TI peripherals available.

On my last trip to Oz, I "innocently'" mentioned to Tony McGovern that a
DSR dump program would be nice. About 30 minutes later, he had put the
finishing touches on a F'WEB-dependent program that did just that! It was
relatively c¢rude ——— an unequivocal BK dump to disk without the required 6
byte header for the eprommer but it worked! A trip to Ron Kieinschafer's and
& bit was added to stuff the unique 6 byte header on the DSR dump to allow
the code to be nearly ready to use without modification. Along the way, I
managed to collect "a few" DSRe from various devices like the HFDC controller
and some CorComp devices. I didn't realize until much later that they were
raw dumps and lacked the reguired header for the eprommer. That created a
bit of a problem!

Here's what the Eprom screen looks like:

16K Eprom {Y¥/N) : N
RAM Start Address : >

Volume 9 Number 4 Page 1

RAM Last Address : >
Eprom Start Address : >

Preparing a file for the eprommer was fairly easy. The first thing that
was required was to do a dummy read of a portion of memory —-—preferably an 8K
gegment —— with the eprom program. That filled the space with >FF which made
it easy to find the true end of the file with SUPERBUG (included as a part of
the Eprom software. You simply enter the two values as "Start” and "Last”
RAM addresses. The first 6 bytes of the file were copied on a piece of paper
and then replaced with the 6 hyte eprom header: >0000 >2000 >6000.

The next step was to load the file into memory 6 bytes past the starting
read address. For example, if you did your dummy read from >C000Q to >ECOOD,
you would load the DSR file at >C006 with the Eprom software. I hope you are
with me so far! Using SUPERBUG, ycu change the first 6 bytes (>FF) to the 6
byte eprom header (>0000 >2000 >6000) and then change the next 6 bvytes back
to the originals that you copied down on paper.

The final step is to go through the file and find the end and change the
last value in the read to the actual file length. That value is entered as
RAM Last Address"” and the screen prompts are followed for =zaving a file. It
sounds a lot more complicated than it really is —— the software has all of
the prompts an-screen.

T think that my newxt A/L project is going to be a modification of the
DSR dump program to compare the individual bytes of the DSR files with >FFFF
and compute and install the correst file length without having to look for it
in memory —— I'm basically lazy!

Anyway, after a bit of jiggling and tweaking. I have a fairly
substantial collection of DSRs with which to reconsrtuct failed originals.
Moat of them. you see, fit vaery neatly into a 2532 eprom.

In the course of my explerations inte the world of DSR2, I have found
some interesting bits of information. HNot all Disk Controllers are alike.

By comparing the individual files, I have found at least three different
versions in the Tl Disk Controller alone. That might explain some of the
idiosyncracies of different systems. I haven't had the opprotunity to look
at the Myarc or Corcomp DSRs in volume to see if there are variations there
but I suspect that there are modifications and different versions.

Incidently, here are a few CRU addresses of various devices. If you
know of any more, let me know. There might be a DSR that I den't yet have
lurking cut there somewhere!

Product CRU Address

Myarc HFDC , >1000 ->1F00 (16 different)
TI Disk Centreller >1100

CorComp Disk Controller >1100

Myarc Floppy Disk Controller >1100

R3232/PI0 #1 >1300

RS232/PI0 #2 >1500

Volume 9 Number 4 Page 2

HORIZON RAMdisk : >1000->1700 {8 different)
Myarc RAMdisk >1000

CorComp RAMdisk >1000, >1400

Foundation RAMdisk >1E00

Quest RAMdisk >1000, >1400, >16Q0

GRAM Karte »1000->1FD0Q (16 different)
P-GRAM Card >1000->1700 (8 different)
Mechatronics 80—column >1000

DIJIT AVPC 80-column >1400

Mechatronic EPROMmer >1900

HV99 EPROMMER >1900

Mechatronic 128K+Printer >1400

TI Thermal Printer ' >1800

Corcomp Triple Tech >1D00

P-code for Pascal >»1FQDO

For further information, you can use any CRU address for your
peripherals that isn't already in use. That is why some of the devices have
the capability of being addressed at more than one address. TI peripherals
are generally at odd addresses starting at >1100.

After a few delays, I finally got the third Quest RAMdisk up and
running. A local firm, Electronics South, programmed the GAL chips for me.
They really have a first-rate operation. It took about 15-20 seconds per
chip and there were NO problems with anything.

Trying to get the HORIZON to interface with the three Quests was a real
problem, though. I have packed it away for future use. It seems that the
ROS 8.14B doesn't co—-exist with much of anything. I have had some feedback
that it isn't just the Quest cards that get "fragged” by the HORIZON either!

As most of you know, Myarc is no longer in business. Cecure
Electronics, 7759 Scepter Dr. #7, Franklin WI, is dong repairs on the Myarc
stuff that is still around including the HFDC. It appears that they do
custom repairs, design, and fabrication of circuit boards, etc. They also
got glowing reviews in a past isaue of MICROpendium. It looks like an
address that you might want to Keep!

Volume 9 Number 4 Page 3

RF MOD REPAIR
Many TI owners are not as affluent as I am and use a TV instead of a
monitor. Occasionally, the RF modulator needs to be fine tuned to
eliminate annoying background noise, such ag humming or buzzing. A simple
internal adjustment on the modulator will often alleviate this problem.

The following procedure is to be done when all equipment is on and
operating. (If you have the old version of the TI900 Videc Mcdulator,

this procedure will not work.)
You will need a small, flat, thin-bladed screwdriver.
1> Turn the volume of the TV all the way down, but do NOT turn it off.

2> Select the Master Title Screen on the computer.

3> Using the title screen color grid, fine tune the TV to the best color
picture you can.

4> Using the screwdriver, pry off the lid of the modulator by lifting
under one edge of the lid near the indentation holding it on.

5> Lift off the 1id and turn the TV volume up to half.

6> Insert the acrewdriver blade into the slot of the small bhox labelled
CVl and turn it slightly until the background noise is at a minimum.
{This should take less than 1/8th of a turn.}

7> After bending the modulator lip edge back into place, put it back over
the medulator box and press it firmly in place until it snaps.

This should take care of the any broblems with background ncise.
SCROLI., DEMO

Here's a little demo which will allow you to scroll part of a screen and
only takes up two lines of program code.

160 CALL SCREEN(15):: PRINT : : : :"T HIS PROGRAM WILL ACCEPT

ANY INPUT AND SCROLL UP 1 LINE."

110 PRINT : :"BUT ONLY THE BOTTOM HALF F OF THE SCREEN WILL SCROLL. THE
TOP HALF WILL STAY INTACT."

120 PRINT :" “:orof ot o ¢ o:o: @ :: B$=RPTS("
",252)

130 ACCEPT AT(24,1)3IZE(28):A% :: A$= ASSHPTS(" ",b2B-LEN(A$))::

Bg~-SEG$ (B%,29,224)8A% :: DISPLAY AT(15,1):B8% :: GOTO 130

If you want te¢ scroll down, change the "29" to a "1" in line 130. To
change the location where scrolling occurs. change the DISPLAY AT. If it
is higher than 15, it will split the screen so that the top and bottom
will scroll and the middle stays the same. (You will also need to change
the ACCEPT AT s¢ that it lines up with the scrolling =screen)

You are limited to 9 lines because strings are limited to 255 characters
and 9 lines takes up 2832.

This gem comes from the lightpen author, Edwin McFall. I hope you can

Volume 9 Number 4 . Page 4

r;{f

& ——

find some use for it.

BASTC TIPS

1. HOW TC DISABLE THE "FUNCTION-QUIT" HARDWARE RESET: TI Basic and
Extended Basic has two ways to exit, one by typing in "BYE" which will
properly close all files, or by pressing "Function=(QUIT}". The latter
method really should not be used at all since files will not be closed and
unpredictable things can happen if functien quit is pressed while files
are open. Unfortunately, many of us had the nasty experience of
accidentally hitting "Function (Quit" with the result that everything in
memory was lost and files were scrambled. 1IF you have Extended Basic and
32K memory, the following will disable "Function Quit": CALL INIT::CALL
LOAD(-31806.16}. This can be typed in as a direct command, or could be
the first line of an extended basic program.

2. HOW TO SPEED UP EXTENDED BASIC. While XB offers faster execution
speed for some applications compared to console basic, XB can be speeded
up even further by disabling sprite graphics {(naturally this works only if
the program dces not use sprite graphics). The program statement is:

CALL INIT::CALL LOAD(-31878.0). There are several different releases or
versions of Extended Basic and the speed-up effect will be more pronounced
with some versicons than with others. 32K memory is reguired.

3. HOW TC RECOVER MEMORY IN TI BASIC/EXTENDED BASIC WITH DISK DRIVE
ATTACHED. The TI cperating system automatically sets aside memory to
serve three concurrent open files. A minimum of 334 bytes of memory are
taken up by general expansion overhead plus 518 more bytes for each ¢f the
three files opened up by default, or a teotal of just about 2K. If you
Know that you will have only one file open, kKey 1in the following DIRECT
COMAND: CALL FILES({1l) {Press ENTER) NEW (Press ENTER). This sequence will
recover 1K of precious memory. Please note that this sequence can be
keved in as a command only and cannot be used as a program statement.
Don't forget the NEW or results will be unpredictable. This prodecure can
be used with both TI Basic or Extended Basic. With TI Basic and attached
disk this is more essential than ever .since TI Basic will only address 16K
and you can ill afford to lose much of that.

MIEMORY CAILC

In a way computer merchandising and advertising resembles the
"Horsepower-War" in automobiles of not too many vears agoe. Manufacturers
tout their wares as 64K or 128K machines but fail to tell that the
operating system is disk-based and after it is read in, only 48 or even
32K of user space remains....

Much to the credit of TI, the 99/4A operating system from the very
beginning was in the form of scolid-state read-only memory chips which does
not require a separate disk-based program to be read-in. The advantage to
the user is that such a sgystem is very efficient, very fast and very
dependable. Compared to other systems the 99/4A seems to lack horsepower
(memory)}, which really is not true as the following tabulation will show.

A 99/47 system can have three types of memory chips: RAM
{random-access read/write chips, available for user programs and data),.
RCM (Read-only memory, mainly operating system), and GROM (a type of

Volume 9 Number 4 Page 5

read—only chip programmed by TI in Graphics Programming Language (GPL},
mainly Basic and Extended Basic interpreters). Here is how the numbers
stack up:

Console Operating System........... RCM........ 8K
R38232 Deviece Service Routines...... ROM........2k
Disk Device Service Routine=....... ROM........ 8K
Extended Basic Support............. ROM....... 12K
TI Basic Interpreter (Console)..... GROM. 18K
Extended Basic Interpreter......... GROM. 24K
Speech Support (Synthesizer)....... ROM....... 32K
Console Random Access Memory....... RAM.......,. 8K
Video Display Memory............... RAM, 16K
Memory Expansion (Assembler Rout.).RAM........ 8K
Memory Expansion (X-Basic)......... RAM....... 24K

This table shows that a 99/4A system with diskette drive, speech

synthegizer, and RS232 card, using Extended Basic controls a total of 160K

as RAM, ROM or GROM...not bad at alil.
HYFPHENATOR
A TI-Writer Utility

One of the nice features of TI-Writer is the ability to type in word-wrap
mode, which speeds up typing by allowing you to concentrate on text
without having to worry about exceeding the right margin.

There is a draw-back, though to word-wrap in that longer words which
would exceed the right margin are screolled to the next line in their
entirety.

The disadvantage of this system becomes obvious when text is printed osut
using the FORMATTEH when there iz a tendency for the right margin to have
the "jaggies”.

Using the right-margin-flush feature (.AD) of FORMATTER provides only a
partial cure since now FORMATTER inserts blank spaces between words to
fill up the line. The amount of white space inserted varies with the
number of characters that need to be filled with the regult that text can
be rather blotchy in appearance.

The only sure way to improve the appearance is to re—edit word-wrap text
and to hyphenate as much as possible where lines break.

Unfortunately, the EDITOR of TI-Writer is not quite up to that task:

At the most, the EDITOR can display 80 characters per line whereas the
FORMATTER and meost printers can handle Elite (up to 96 characters) or
Compressed (up to 132 characters) per line. In such a case the EDITOR is
of no helyp,.

A further hindrance is that the EDITCR will display imbedded print
commands which is helpful in creating text but a seriocug obstacle in fine
tuning right margins. Typical examples are string commands to turn super-

or subscript on or off or the "ampersand” or "at" commands of TI-Writer
for underlining and double strike.

Volume 9 Number 4 Page 6

Quite often for ease in typing and editing users elect to fix the right
margin at 40 characters to do away with horizontal screolling. An attempt
to judge the final appearance of text by resetting tabs to final form and
using the "Reformat" command can be misleading since previously entered
indentations are then ignored.

HYPHENATOR 12 an editing utility for TI-writer that succeeds in addressing
all these problems:

HYPHENATOR can handle print widths ., or right margins of up te 160
characters.

BYPHENATOR properly accounts for imbedded print commands, be they the
TI-Writer "at" or "ampersand" type or special character mode (CTRL U)
transliterate symbols,

HYPHENATCOR makes ibL possible Lo change margin settings within a document
for quoted text that needs to be indented further.

HYPHENATOR recognizes a double "ampersand"” or "at" symbol as a character
to be printed rather than as a non-printing control character.

HYPHENATOR allows for the FORMATTER idiosyncracy of inserting twe blanks
following a pericd even though only one space might have been Kkeyed in.

The program is a stand-alone utility that can be loaded using the LOAD AND
RUN option of the Editor/Assembler or Mini-Memory cartridge. After
loading, HYPHENATOR will prompt for the name of the input file (the name
of the document created with TI- Writer EDITOR) and a name for an output
file which HYPHENATOR will create in TI-Writer format. The use of either
a single disk drive or two disk drives is supported. The original text
file will not be altered in any way.

Cnce the proper files are set up, HYPHENATOR will read in a paragraph of
text which can be up to 5280 characters long (a full page,
single-spaced) .

According te the margin and indentation information for which HYPHENATOR
has prompted, the first block of text will be displayed (five lines) with
an end-of-line marker exactly on that character which would be the last
character to be printed by FORMATTER, with all non—-printing characters,
extra spaces., etc. already accounted for.

If the end-ocf-line marker points to a space or the last character of a
word, no further action is necessary except for pressing the (ENTER> key
to bring up the next line.

If the ECOL marker points to the middle of a word, a decision needs to be
made whether hyphenation is possible. If yes the editing cursor <{FCTN S>
should be moved to the lagt character prior to the hyphen and a hyphen
symboel keyed in. HYPHENATOR will supply the necessary prompta to complete
the job.

If hyphenation should not be possible, moving the cursor to the first
blank and pressing <ENTER> weuld complete the job.

Once all the lines of a particular block have been edited a screen message

Volume 9 Number 4 Page 7

will prompt for writing the block out to the disk file.

For speed and convenience, HYPHENATOR has a number of imbedded defaults.
Thus empty lines or lines with only format control characters are written
to the output file without user intervention,

An "Oops" feature can be invoked at any time by pressing <CTRL 1> to go
back to the beginning of the paragraph. This comes in handy if there
shonld be any second thoughts about a line just completed. :

¢CTRL 3> and <CTRL 4> toggle the screen display color which make it
possible to display many combinations of screen and text color.

{<CTRL 2> invckes the margin/indentation set c¢pticon to change these values
at any time.

<CTRL 9> writes cut the remainder of an input file without further editing
to the output file. This comes in handy where only a portion of text
needs that final touch.

Any time a line of text is displayed on the screen, minor editing is
poassible. Thus “recieve" can be changed to "receive". The limitation is
that the new Lext must have Lhe same length a3 the original text.

HYPHENATOR is written in Assembler and thus is very fast. A test with a
59 sector compressed print deocument could be "fine-tuned"” in under twenty
minutes.

The use of a pocket dictionary in conjunction with HYPHENATOR is strongly
recommended. Due to the memory limitations of the 99/4A system,
HYPHENATOR can only show WHERE to hyphenate. The "IF" and "HOW" is up to
the user. This is where a pocket dictionary comes in handy.

All-in—all, HYPHENATOR is an excellent utility along the lines cof Tom
Kirk's AUTO SPELL CHECK to make a good product, such as TI-Writer., even
better.

Exploring BASIC Programs

By Tim MacEachern

The program listed below demonstrates how BASIC programs are stored
in the 99/4A. The program as listed will work in Extended BASIC with the
Memory Expansion card or peripheral attached. A similar program can be run
in normal BASIC with the Editor/Assembler or Mini Memory module ingerted.
To convert this program to normal BASIC simply change the calls to
subroutine ‘PEEK' in lines 200,240 and 260 into calls to subroutine
'PEERV'. That is, add a 'V' between the 'PEEK' and the '{' in each line.
This program will not work properly in Extended BASIC unless you have the
memory expansion.

The techniques used in this pregram are intended to make it as easy
to understand as possible., while still showing how the DEF statement in
BASIC can be used to do all the hard work for you. For instance, lines 100
to 130 of the program create a function HEX which will convert a string of
hexadecimal (base 16) digits into a decimal number. As can be seen in
lines 150 and 170, this allows us to write the actual hexadecimal
addresses as used by assembler language programmers.

Line 120 takes the string of hexadecimal digits yiven to it end pads
it with leading zeroes to make sure that there are four hex digits. Then

Volume 9 Number 4 Page 8

function HEX4 is called to -evaluate this four-digit hex number. In line
120, HEX4 splits the number into two two-digit hex numbers and combines
them to get the proper decimal result. Similarly, line 110 splits a
two—digit hex number into two one-digit numbers. Line 100 then is used to
figure out the value of each separate hexadecimal digit.

Using nested DEF statements asg in this program can simplify
development of a working program, but be warned that DEF statements take
congiderably longer to run than the exact same code put directly into your
lines wherever needed. Still, you may find it convenient to write some
programs that consist scolely ¢of DEF statements ! After such a program is
RUN in normal BASIC (or in Extended BASIC without the memory expansion),
the defined functions will be available to use in BASIC's calculator mode.
For instance. if your program consisted of lines 100 to 130 only. it would
provide a conversion function from hex to decimal that you could use while
in caleculator or direct command mode.

Let's get back to the program. Line 140 defines a function that is
used to convert a 16-bit unsigned number (from 0 to 65535) into a lé6-bit
signed number (from -32768 to 32767). For some strange reason BASIC
insists on signed numbers for addresses passed to PEEK, PEEKV, LOAD and
POKEV. Sc whenever an unsigned address is calculated function MA is used
to convert it to a signed number. This function works by comparing its
argument to the largest positive value allowed. If the number is too big
the comparison yvields a value of -1, The rest of the expression then
caused 63536 to be subtracted from the argument value, giving the correct
result. If the original number is okay (from 0 to 32767) the comparison
yields a result of 0 and the value of the function is the same as the
value of its pearameter. It seems complicated to write functions like this,
but try to figure them out - you may find them fascinating.

BASIC stores your program in two sections. In the top of memory it
storaes each line of the program, not necessarily in the correct order. As
& matter of fact, each time you edit a line, it becomes the last line in
this area, with all other lines packed together above it. Each statement
is made up of three parts. The first byte is the length of the rest of the
statement in memory. The Jjast byte is zero, and in between are bytes that
represent the particular BASIC statement you have written. BASIC keywords
are translated into a single byte each (known as a token) while strings
and numeric constants are represented as a leading teoken (199 or 200)
followed by a length byte, followed by the ASCII character values of the
string. By running this program you can determine how other elements of a
BASIC program are stored.

Underneath the statements (that is, lower in memory) is a list of
statement numbers and pointers to the first token in each statement. Each
statement in your program has a four-byte entry in this list. The bottom
two bytes store Lthe statement number. The top two bytes are a peointer to
the first token in the statement (the byte following the length byte}.
This program goes through this list and prints out each token in the
statements of vour program.

Pointers to the top byte in the statement pointer list and the bottom
byte in the list are stored in the scratchpad RAM and read by lines 150 to
180. The loop that starts in line 190 examines each statement in the
program. If you have gotten this far in the article, you will understand
how the rest of the lines in the program print out each token of each
line.

TIM MCEACHERN
PC BOX 1105
DARTMOUTH, N.S.

Volume 9 Number 4 Page 9

CANADA B2Y-4BB

100
110
120
130
140
150
160
170
180
is0
200
210
220
230
240
250
260
270
280
290
300
310

DEF HEX1 (X$1=POS("1234567B9ABCDEF",X$,1)

DEF HEXE(X$)'HEX1(SEG$(X$.1,1))+HEX1{SEG$(X$.2.1})
DEF HEX4(X$)=HEX2(SEG$(X$,1.2))6+HEX2(SEG$(X$.3,2))
DEF HEX(X%)=HEX4(SEG$ ("0000"S X$.LEN(X$)+1,4))
DEF MA(X)=X+65536* (X >32767)

CALL PEEK(MA(HEX("8332")).A.B)

TOSL=MA(A6+B)

CALL PEEK(MA{HEX("8330")),A.B)

BOSL-MA{AG6+B)

FOR PTR=TOSL-3 TC BOSL STEP —4

CALL PEEK(PTR.A.B,C.D)

PRINT "STATEMENT #";A6+B

PRINT "TOKENS:"

SPTR=MA (C6+D)

CALL PEEK(SPTR-1,L)

FOR I=0 TO L-1

CALL PEEK{(SPTR+I.X)

PRINT X;

NEXT I

PRINT : :

NEXT PTR

END

Volume 9 Number 4

Page 10

