Discovery Session 9

Sound to Light

In previous sessions, we learned how to build a basic hardware design for controlling the LEDs, we looked at the use
of virtual instruments, and finally processor cores. Now we want to extend our knowledge of the peripherals that are
provided on the NB3000; exploring the use of the hi-fidelity audio interface. This tutorial design will take audio samples
from the audio codec, pass them through for listening on the NB3000 speakers while driving two LEDs for left and right
level indicators.

This tutorial assumes you have a basic understanding of the process of placing and wiring objects in Altium Designer
(including components, net labels / net connectivity, and wires / buses) and a basic understanding of the process of
configuring and building a design using the Devices View (for specific details on this process, see Discovery Session
1 - Exploring a Simple LED Driver). It also assumes basic C programming skills. No additional information is
required.

This exercise uses the components listed in Table 1, to create the circuits shown in Figure 1 and Figure 2.

Component Library Name in Library
TSK3000A
TSK-3000A
32-hit RISC
ST OpenBus Palette TSK3000A
10 MEM

WB_INTERCON

OpenBus Palette Interconnect

WB_MEM CTRI SRAM

grorfire OpenBus Palette SRAM Controller

www.altium.com Alllum
1

DS0009 - Sound to Light

WB 128 1

OpenBus Palette

Audio Streaming Controller

WB_SPI |

OpenBus Palette

SPI Controller

WB_LED CTRL

OpenBus Palette

LED Controller

Ul

o o

INV

FPGA Configurable Generic.IntLib

INV

@n) [CIKBRD =

FPGA NB3000 Port-Plugin.IntLib

CLOCK_BOARD

FPGA NB3000 Port-Plugin.IntLib

TEST_BUTTON

CODECSPI_DOUT <+

CODECSPI_DIN =

Cs4270

CODECSPI_CLK |+

- =

_J_J_J_I_r

CODECSPI_CS <+

FPGA NB3000 Port-Plugin.IntLib

AUDIO_CODEC_CTRL

—=[AUDIO 12S BCIK
—={ AUDIO_I2S WCLK
—={ AUDIO [2S DOUT

-=[AUDIO_I2S_ MCLK

—< AUDIO_I2S DIN

(I
(2

FPGA NB3000 Port-Plugin.IntLib

AUDIO_CODEC

[LED R[7.0
= LED_G[7.0]
| LED_B[7.0

SN

FPGA NB3000 Port-Plugin.IntLib

LEDS_RGB

www.altium.com
DS0009 - Sound to Light

Altlium

= SRAMD D[15.0]
SRAMD_A[17.0]
SRAMD E
SRAMO_W
SRANMD O
SEAMD UB
SRAMD_LB

FPGA NB3000 Port-Plugin.IntLib

vvivyf

SRAMO

-1~ SRAMI_D[15.0]
«={ SRAMI_A[17.0]
SRAMI E
SRAMI_W
SRAMI_OE
SRAMI_UB
SRAMI LB

FPGA NB3000 Port-Plugin.IntLib

vYvywv

SRAM1

Table 1. List of components required by the design

125
i)
TEE30004
SPI
_ TSK-3000A
<P | ol 32-bitRISC E
Processor
LEDS

Figure 1. OpenBus document for the Snd2Light design.

U_SNDILIGHT OB
SND2LIGHT OB.OpenBus

AUDIO_I28 BCLK f=———— SCK
AUDIO 1258 WCLK p———— WS

D[15..0]
A[17.0]

= SRAMD_D[15.0]

SRAM

s

SRAMO_A[17.0]

CE r———
WE

O ——————
UB =
LB

D[15..0] se—SRANT_D[15..0] 5

- SRAMI_UE

SRAMO LB

RAMI_UB
SRAMI_LB

{1
SRAM_MEMO
SPLW _NB
__ CODECSPI DOUT_|e—— SPI_DOUT

CODECSPL_DIN e SPI_DIN |

CODECSPI_CLK_ |+ §PI_CLK 1 SP1 SRAM_MEM1 _y

CODECSPL 8 |—— SPLCS
(e CLK_BRD 't T I SO LEDS_LED[7.0] [_»
[@ [TEsTBUTON ¢ D; S RST 1

NV

Figure 2. Schematic top sheet for the Snd2Light design.

www.altium.com

DS0009 - Sound to Light

4 LED _R[7.0]
= [ED G[7.0] > gt
TGl SRERRNAN

GND

Altlium

1. As with earlier tutorials, the hardware for this design will be captured using OpenBus for the processor and
supporting I/O interface logic. It will also need a top-level schematic to connect that logic out to the FPGA
device pins, and an FPGA project file. Create a new FPGA project, schematic sheet and OpenBus document,
and save and name each of them Snd2Light.PrjFpg, Snd2Light.SchDoc and
Snd2Light_OB.OpenBus, respectively.

2. Make the OpenBus document the active document, and place the following components from the OpenBus

Palette:
a. TSK3000A processor
b. 2 Interconnect connectors (place one on either side of the processor)
c. SRAM Controller
d. LED Controller
e. Audio Streaming Controller

f. SPI Controller
3. Arrange the OpenBus components as shown in Figure 1.

4. The Interconnect on the I/O side of the processor needs a total of 3 slave ports, add these using the Add Port
button on the toolbar.
5. Place Links between the OpenBus components (shown in Figure 1).

6. Each OpenBus component must now be configured. Configure the LED Controller component as shown in
Figure 3, then click OK to close the dialog.

Configure OpenBus LED Controller

LED Controller (Wishbone)

Main

Mumber of LEDs: |3

4|

Bus Enable/Output

[reaE

General Properties
Zomponent Designator |LEDS Wisible
Interface Tyvpe Fins w

Pins
Signal Harnesses

Manage Signals. .. L [0]4]I Zancel I

Figure 3. Configure the LED Controller OpenBus component.

7. Configure the SPI Controller as shown in Figure 4 (un-check Enable Mode Pin), then click OK to close the
dialog.

www.altium.com Allium.
4

DS0009 - Sound to Light

Configure OpenBus SPI

SPl Master Controller

Select

Enable the mode pin when communicating with devices multiplexed
over a zingle channel az on the Manoboard.

[rata Trangfer Size
e (O

Setting the transfer zize to 8 will rezult in a small but relative zlow
core while a core supporting 32 bit transfers will be big but fast,

General Properties

Component Designator | 5P Yizible
Interface Type Signal Harnesses o
Manage Signals. .. L]] I LCancel

Figure 4. Configure the SPI Controller.

OpenBus Signal Manager dialog.

Configure OpenBus Audic Straaming Controllar

Wishbone I12S Controller
All FPGA platforms

[25 Channels 125 Hardware Buffer

) Receive Only
I e Hw Ruffer

) Tranzmit Only

4k zamrlesz [A
(%) Receive and ~ranzmit
eneral Properties
Componer: Designator 125 "izible
Interface Type Signal Harnezzes v
Mariaue Sigrials... L Ok J l Cancel

Figure 5. Configure the Audio Streaming Controller.

9. Setthe Interrupt for the Audio Streaming Controller (I12S) to INT_I1, as shown in Figure 6.

www.altium.com
DS0009 - Sound to Light

8. Configure the Audio Streaming Controller as shown in Figure 5, and then click Manage Signals to open the

Alllum

UOpernBus S5ignal Manager

Clocks | Resets | Inberruats Exte-nal connection summary
! _ TSK30004(TSKS00CA] s
IName Kind and Palarity Interrupt
-1 - Audio Sreaming Controller{I23) |
—~ : T -]
=} &% Interrupt pins Mok Conrecked .
—4INT IO INT IO '
e I INT_I2
INT _IZ INT_I3
- INT I3 INT_T4
ol INT 15 v
—o INT _14 Mok Exporfed
—of INT_IS Mot Exported
—q INT_I& Mok Exported
—f INT_I7 Mok Experbed
—of INT_I& Mok Expl:rtec! s
L Tk] [Cancel

Figure 6. Set the Audio Streaming Controller to use Interrupt 1.

10. Configure the OpenBus SRAM Controller to: Memory Type Asynchronous SRAM, Size will be 1MB, Layout
2x16-bit Wide Devices, and the Designator to SRAM. Leave the other options at their default state, as shown
in Figure 7.

Configure OpenBus SRAM Controller s E

Configure Memory Controller

temary Tepe Clock cycles for Beading

Aspnchronous SRAM ™~ Clock cycles for read operation: 2 >

Choose the nurber of clack cycles for sach read operation,
Size of Static RAM array &, zero wait-state read will be 2 clock cycles or 40ns for a B0

. MHz spztemn clock,
1 MB (256K, & 32-hit) w

Select the zize [in butes) of the phwzical Rk aray that the

controller will be warking with, Flock eycles forwrting

Cycles for address setup: 1 :::

temony Layout
— - . Cocles for wite pulze: 1 =
2 # 16-bit Wide Devices v —
T Cycles for post-write address bold: 1 :C:

Chooze the memany layaut.

Choose the nurber af extra cycles ta add far each stage of a
write aperation. Each stage must be at lzast anc clock cycle
=0 a minimal write iz three clock cpcles or B0ns for 2 50 MHz

Thiz will determine;
The rurmber ping added to the controller ta allow it connect to
the memaonies az well az the number of acceszes required to

read or write a single 32-bit word, sustem clock,
General Properties
Component Designator | SRAK Irterface Type | Signal Hamesses v

Wizihle

-

Figure 7. Configure the memory as 1 MB of SRAM.

www.altium.com Allium.
§]

DS0009 - Sound to Light

11.

12.

13.

14.

15.

16.

17.

18.

The Interconnect components will be correctly configured, as Altium Designer automatically detects what is
connected to them.

Right-click on the TSK3000 processor and select Configure TSK3000A from the floating menu. Set the
Internal Processor Memory to 32 K Bytes. Click OK to close the Configure OpenBus TSK3000A dialog.

This completes the OpenBus part of the design, save the OpenBus document.

Switch to the Snd2Light schematic document. The schematic is used to wire the circuitry on the OpenBus
document through to the FPGA device pins, and can also include other FPGA hardware that is not available
as OpenBus components.

To make the OpenBus document a child of the schematic, select Design»Create Sheet Symbol from Sheet
or HDL from the menus. When the Choose Document to Place dialog opens, select Snd2Light_ OB.OpenBus
and click OK. A sheet symbol will appear floating on the cursor, position it approximately in the middle of the
schematic sheet.

Resize the Sheet Symbol, and reposition the Sheet Entries to approximately match the Sheet Symbol shown
in Figure 2.

Right-click on the Snd2Light.PrjFpg project file in the Projects panel, and select Compile from the menu.
When the project is compiled the OpenBus document will move to become a child of the schematic document,
as shown in Figure 8. Note: You will receive compiler errors in the Messages panel because we have not
completed the wiring yet — you can ignore these and close the Messages panel for now.

‘whorkspacel Daniwik -
| UP_KrightRider PiFpg |[_preieet_|
(%) File Wiew () Structure E ditar

uP'_KnightRider. PriFpg =
=l Source Documents

__3’ Compile FPGa Project uPI_KnightRider.Perpg

=4 :JF'_Fi.r'uigl'ntFi ider. SchDoc * Recompile FPGA Project lﬂ$_l<nightRicler.Per|:g
& uP_KnightRider_0B .Ope
1 Settings Add Mew ko Project »

% Add Existing ko Project..,
Save Praject

Save Praject As...

Open Project Documents

Hide all In Project

"lnra DvAdiact Piaciirnanke

Figure 8. When the project is compiled the OpenBus document will become a child document of the schematic.

Using the detail in Table 1 as a reference, locate and place the following components onto the schematic,
arranging them approximately in the positions shown in Figure 2;

a. CLOCK_BOARD
TEST_BUTTON

INV

LEDS_RGB
AUDIO_CODEC_CTRL
AUDIO_CODEC
SRAMO

SRAM1

b.
c.
d.
e.
f.

g.
h.

www.altium.com Allium.
7

DS0009 - Sound to Light

19. Wire up the components on the lower end of the sheet symbol, as shown in Figure 9.

i) [CLE_BRD o T " CLK L LEDS_LED[7.0]

W [T > 1 ReLI

Figure 9. Wire the lower section of circuitry.

20. To wire the memory components on the right-hand side of the sheet symbol, right click on the Sheet Entry
SRAM_MEMO, and choose Sheet Entry Actions»Place Harness Connector of Type... from the floating
menu.

21. A Harness Connector will appear floating on the cursor. It may be oriented the wrong way, if it needs to be
flipped along the X axis press the X key on the keyboard. Place it so that the tip of the brace touches the
Sheet Entry, as shown in Figure 10.

WB MEM CTRL SRAMI6 Al8
D[15..0] » o SRAMO D
A[17..0] » SRAMO A
CE » ~={ SRAMO E
EMO < ¢ WE - ~= SRAMO W
OE » ~= SRAMO O
UB » ~={ SRAMO U
LB - - SRAMO L]

Figure 10. Flip the Signal Harness and place it so that it touches the Sheet Entry.

22. To drag the Harness Connector and automatically add the Harness line, hold Ctrl and click and hold on the
Harness Connector, then drag it across so that each Harness Entry touches a pin on the memory port plug-in,
as shown in Figure 11.

WB MEM CTRL SRAMI6 AlS

D[15..0] SRAMO D

A[17..0] == SRAMO A

‘ CE ~{ SRAMO E

EMO < WE ~=/ SRAMO W
F OE ~= SRAMO O

UB =/ SRAMO U

LB ~={ SRAMO LI

Figure 11. Drag the Harness Connector so that each entry touches a port on the memory port plug-in.

23. Repeat this process for the second memory Sheet Entry, SRAM_MEM1, connecting it to the second memory
port plug-in.

www.altium.com Alllum
8

DS0009 - Sound to Light

24,

25.

26.

27.

28.

29.

30.

31.

www.altium.com
DS0009 - Sound to Light

Place Harness Connectors and Signal Harnesses for the AUDIO_CODEC and the SPI_BUS using the same
technique.

To annotate all of the components (assign designators), select Tools»Annotate Schematics Quietly from
the menus.

To check that there are no errors in the schematic, compile the project using the Project»Recompile FPGA
Project command. The Messages panel will detail any errors or warnings.

Resolve any other errors or warnings, and Save All the files.

To create the connectivity from the ports on the top schematic sheet through to the actual pins on the target
FPGA, the design must be constrained. This is done by constraint files, which detail port-to-pin mapping,
along with other relevant design specifications, such as clock allocations, target device, and so on. To
constrain the design you will need an NB3000 connected to your PC via a USB cable, once you have this,
open the Devices view (View»Devices) in Altium Designer and enable the Live checkbox at the top right of

the view.

An icon of the NB3000 will appear, right-click on it and select Configure FPGA Project»Snd2Light.PrjFpg
from the menu, as shown in Figure 12.

¥ Connected Live Settings...

Configure Fpga Project # ” I uP_KnightRider . PriFpg

Yiew Configuration. .. New FPGA Project

Instrurent...

About...

O XILINX

Spartan3ah KC351400AM-4F GETEC
Reset

Figure 12. Configure the design to run on the NB3000.

The Configuration Manager will open automatically, showing the constraint files that have been detected and
added to the project, and the configuration that has been created. A configuration is simply a set of constraint
files, using configurations allows you to divide your constraints into separate constraint files. Click OK to close

the dialog.

Select File»Save All to save your work. The hardware design is now complete; the next step is to write the
embedded code.

Altlium

32.

33.

34.
35.

36.

Create a new embedded project, and save it as Shd2Light_PrjEmb in a sub-folder below the FPGA project
called \Embedded.

To make the embedded project a child of the FPGA project, switch the Projects panel to the Structure Editor
mode, then right click on the icon for the TSK3000A processor and select Set Embedded Project from the
menu, as shown in Figure 13.

Workzpacel.Denwrk -
uP_knightRider. PrEmb
(O File Wiew (%) Structure Editor

= @] uP_KnightRider_PriFpg
=1 L2 uP_KnightRider. SchDoc
2 .

& Devices | [2 uP_k

.1Ll] = chtRider P | SE'N:;mbedded Project... |
g
¥ marenila Al Dradacke

Figure 13. Make the embedded project a child of the FPGA project.
Switch the Projects panel back to File View mode.

Right-click on the Snd2Light.PrjEmb embedded project, and click Project Options. Click on the Configure
Memory tab — you can see that the memory map defined in hardware has been automatically imported into
the embedded project, as shown in the upper part of Figure 14.

Optionally you can rename the SRAM section to XRAM (to clarify it is external to the FPGA) though this is not
strictly necessary.

www.altium.com Alllum

DS0009 - Sound to Light 10

Options for Embedded Project Sn

Carnpiler Options | Files 'with Opt

iohs || Parameters

Device Sheetz | Configure Memaony | Locate Options

Sections/Rezerved Areas

Memory Architecture

OxFFFF_FFFF

Device Memory

0xFFFF_FFFF

Application Memory

OxFFFF FFFF

Processor |70 Space
10 Port
of the processor

0xFFFF_FFFF

OxFFOO_ g0

External-Memory Space

0xFEFF_FFFF

0x0100~ 0000

Internal-Memory
Where the
boat code resides

0x00FF_FFFE

Ox0000_0o000

0xFFFF_FFFF

OxFFOQ-"0000

SRAM
INTERCON_MEM

0x010F_FFFF

0x 0100 0000

XRAM [Yolatile RAM)

0x010F_FFFF

0x0100_ 0000

TSK3I000A

0x0000_7FFF

0x0000_0000

TSK3000A [ROM]

0x0000_7FFF

0x0000_0ooo

0x0000_0000

0x0000_0000

0x0000_0000

Mame

HRAM

Address

Ox01 000000

Size

Locate Type Interrupts

Wolatile Rk

Automatically import when compiling FPGA project

[ok

” Cancel ‘

Figure 14. Embedded project memory map.

37. Double-click on the TSK3000A row in the memory table (Figure 14) and configure the memory as ROM
instead of Non-Volatile RAM, as shown in Figure 15. Doing this means that the TSK3000A will boot from
internal memory automatically, whenever the design is downloaded to the NB3000. Click OK to apply the

changes and close both dialogs.

www.altium.com

DS0009 - Sound to Light

Alllum

11

38.

39.

40.

41.

www.altium.com

Logical Memory Block

1 arme Address Baze
TSK20004 1]
The unigue identifier of thiz memory device. Thiz iz the processar's view of where the
When the FPIGA project is compiled these memony appears in the address space.
memong details will be pazzed to the embedded
software projsct, The size can be specified a5 @ decimal or hex
Thiz identifier wil alzo be uzed to uniguely value.
identify the output HEX file. Exarnples: 10000, 0=10000, 1k, 64k, 1k
MHames cannot contain spaces.
Tvpe Size
Memary Type: | ROM ¥ 32k

3 m— F This represents the amount of memomn that is
eionE Spest Eilr?-t{.!legﬁyﬂﬁhd available ko the proceszsor from thiz device,
Chooze the type Reserved - The zize can be specified az a decimal ar hex
rnarnony device, walue.

The linker will uze the relative :peed settings of

the: different memanes to bty and optimize oweral Examples: 10000, 0=10000, 1k, G4k, 1b4
performance.

L ok J I Lancel

Figure 15. Setting the boot memory to Memory Type: ROM.

Add a SwPlatform file to the embedded project, and save it as Snd2Light.SwPlatform in this embedded
sub-folder.

In the Software Platform document, the Import from FPGA button will now be active, click this to instruct
Altium Designer to examine the FPGA project and attach any required 1/0 wrappers. The low-level wrappers
for the 12S Master Controller, the LED Controller and the SPI Master Controller will be added, as shown in
Figure 16.

125 Master Controller LED Controller SPI Master Controller

125 I LEDS §eEoe | o SP

Figure 16. First add the wrappers.

Click on each wrapper in turn, then click the Grow Stack Up button, adding the driver of the same name to
each wrapper, as shown in Figure 17.

I25 Driver || | LED Controller Driver ™| | SPI Driver |
DRY 125 1 T DRY_LED 1 poood DRY_SPI_1

I25 Master Controller LED Controller SPI Master Controller
125 I LEDS §eEoe | o SP

Figure 17. Then add the drivers.

Select the SPI Driver, and configure the SPI channels to 18 in the settings on the right hand side of the
SwPlatform.

DS0009 - Sound to Light

Altlium

12

42. Select the SPI Driver and click the Grow Stack Up button to open the Grow Stack dialog. The audio codec on
the NB3000 is a Cirrus Logic CS4270, select the driver for this and click OK to close the dialog, as shown in
Figure 18. This device uses SPI for configuration and control, and I12S for digitized audio data transfer.

I25 Driver || | LED Controller Driver ™
DRY_I25_1 i { DRY _LED 1 iiﬁﬂﬁ
I25 Master Controller LED Controller

125 I LEDS inco

Figure 18. Then add the specific audio driver.

C54270 Audio Codec |
Driver

DRY_C54270_1

SPI Driver

DRY_SPI_1

SPI Master Controller

SPI

43. With this driver selected in the SwPlatform, click the Grow Stack Up button again to open the Grow Stack
dialog and add the Audio Service, as shown in Figure 19.

44. Set the Audio Context settings on the right hand side of the SwPlatform to: Default sample frequency
44100, Default mode Stereo, Default sample size 16.

Audio Context |

ALUDIC 1
AT

54270 Audio Codec
Driver

DRY_C54270_1

125 Driver || | LED Controller Driver | | SPI Driver

DRY 125 1 i { DRY_LED_1 iiﬁﬁﬁ DRY_SPI_1

125 Master Controller LED Controller SPI Master Controller
125 T LEDS goeee| |

Figure 19. Then add the Audio Context, to configure the Audio Codec.

45. This Audio Context must now be linked to the 12S driver, to do this click the Link to Existing Stack button. All
stack elements will grey out, except the I12S Driver, select it to create the link, as shown in Figure 20.

www.altium.com

DS0009 - Sound to Light

Altlium

13

Audio Context |

ALDIO 1
125 Driver C54270 Audio Codec

Driver

DRY_C54270_1

SPI Driver LED Controller Driver ™
DRY_I25_1 L= Rv_sP1_t ' DRY_LED 1 pabie
125 Master Controller SPI Master Controller LED Controller
125 =" spr SPU| | ieos ghoee

Figure 20. Then Link the Context to the I12S, so that Altium Designer knows both of these stacks are used with the 4270

Audio Codec.

46. Select File»Save All to save all your work.

Just as in previous sessions, we need to include and use functions provided by the Software Platform Builder for our

embedded code. It is strongly recommended to explore the driver and context function documentation by using the F1

help key within the Software Platform Builder.

47. Firstly, include the necessary header files for the C standard integer definitions as well as the drivers:

#include <stdint.h>
#include <devices.h>
#include <audio.h>
#include <drv_led.h>
#include <led_info.h>

48. Next we’'ll define our internal audio buffer size:

#define AUDIO_BUF_SIZE 512
#define LEFT 0
#define RIGHT 1

49. Add the following arrays for our stereo pass-through buffer, as well as the left and right buffers used for the

absolute averaging filters:

/* bufffers */
// audio

intl6_t stereo buf[AUDIO_BUF_SIZE] = {0};
intlé_t audio_buf I[AUDIO_BUF_SI1ZE/2] = {0};
intlé_t audio buf r[AUDIO_BUF_SI1ZE/2] = {0};

50. Of course, we need handles for the audio and LED drivers:

// contexts for drivers

audio_t *audio;
led_t *leds;

51. Now, add a few function prototypes for some handy functions:

/* function prototypes */

int get_audio(intl6_t *buffer, int size);

int put_audio(intl6é_t *buffer, int n);

uint8_t abs_ave(intl6_t *buffer, int n);

void update_intensity(uint8_t intensity, uint8_t channel);

www.altium.com Alllum

DS0009 - Sound to Light

14

52. Now for our main function:

void main(void)

t
int i, j;
audio = audio_open(AUDIO_1);
leds = led_open(LEDS);
led_turn_on(leds, LEDS_LEDO);
led_turn_on(leds, LEDS_LED7);

while (1)

// get audio to left and right buffers for processing.

get_audio(stereo_buf, AUDIO_BUF_SIZE);
for (i =0, j = 0; i < AUDIO_BUF_SIZE ; i++, j++)

audio_buf_r[j] = stereo_buf[i++];
audio_buf_I[j] = stereo_buf[i];
¥

// Loop left and right channels through.
put_audio(stereo_buf, AUDIO_BUF_SIZE);

// Put the D.C. average value of the wavelet on LEDs

update_intensity(abs_ave(audio_buf I, AUDIO_BUF_SIZE/2),LEFT);
update_intensity(abs_ave(audio buf r, AUDIO_BUF_SIZE/2),RIGHT);

53. Now, we add the full function definitions for get_audio and put_audio, which use the audio_record and
audio_play functions of the audio context to fill our software buffers and write them out, respectively. These
offer some ability to fill a much larger software buffer than what would be available in the hardware buffer:

int get_audio(intl6_t *buffer, int n)

{
int s;
do
{
s = audio_record(audio, buffer, n);
n -=s;
buffer += s;
Jwhile (n = 0);
return s;
¥
int put_audio(intl6_t *buffer, int n)
int s;
do
{

s = audio_play(audio, buffer, n);
n -=s;
buffer += s;

} while (n = 0);

return O;

www.altium.com
DS0009 - Sound to Light

Alllum

15

54. Finally, we add the function definitions for the absolute average filter that drives the LEDs from the main
function, as well as the LED level decision function:

uint8_t abs_ave(intl6_t *buffer, int n)
{
intlé_t cusum = O;
for (int 1 = 0; 1 < nj; i++)
{
cusum += (buffer[i] < 0) ? -(buffer[i]/n) : buffer[i]/n;
return (uint8_t)(cusum);
3
void update_intensity(uint8_t intensity, uint8_t channel)
{
uint8_t b0 = 0;
uint8_t bl = 0;
uint8_t b2 = 0;
uint8_t b3 = 0;
if (intensity > OxFO)
b0 = bl = b2 = b3 = OxFF;
} else {
if (intensity > 0xCO)
{
b0 = bl = b2 = OxFF;
b3 = 0;
} else {
if (intensity > 0xA0)
{
b0 = bl = OxFF;
b2 = b3 = 0;
} else {
if (intensity > 0x40)
{
b0 = OxFF;
bl = b2 = b3 = 0;
} else {
if (intensity < 0x10)
{
b0 = bl = b2 = b3 = 0;
}
// if not down to Ox10 then no change.
¥
}
}
switch (channel)
{
case LEFT:
led_set_intensity(leds, LEDS_LED7, b3);
led_set_intensity(leds, LEDS_LED6, b2);
led_set_intensity(leds, LEDS_LED5, bl);
led_set_intensity(leds, LEDS_LED4, b0);
break;
case RIGHT:
led_set_intensity(leds, LEDS_LEDO, b3);
led_set_intensity(leds, LEDS_LED1, b2);
led_set_intensity(leds, LEDS_LED2, bl);
led_set_intensity(leds, LEDS_LED3, b0);
break;
default: break;
}
}

www.altium.com Allium.

DS0009 - Sound to Light

16

Now it's time to build and download the project:

55. Switch to Device View and click the Program FPGA button to build
and download the design to the NB3000.

56. Once you have built and downloaded the design, you need to plug in
a sound source (such as your PC or an MP3 Player) to the NB3000'’s
LINE IN on the front edge of the board (see Figure 21).

57. Optionally, plug some stereo headphones into the HEADPHONES
output on the front edge of the board, or listen to the sound play
through on the NB3000's speakers (the speakers are disabled if
headphones are plugged in).

Figure 21. NB3000 Line Input.

58. Play some sounds and observe the LED’s brightness on LED array,
with respect to the sound source that's playing.

In this tutorial, we are configuring the Audio Context and underlying drivers and hardware to take care of configuring
the codec and buffering the audio samples. The main C function simply passes the audio samples from input to output
unchanged. The audio buffer has left and right audio samples interleaved - which is the nature of most digital audio
interfaces - so our code has to split these into separate left and right buffers for actual stereo processing. In this case,
we are simply taking a small segment of sound defined by the buffer length, and passing it through Absolute Value
Averaging filters. The output of these filters then drives the LED intensity for left and right channel LEDs (see Figure
22).

==

| vyl

Figure 22. VU Meter Block Diagram (one channel).

www.altium.com Allium.

DS0009 - Sound to Light 17

Date Revision No. | Changes

23-Jul-2009 1.0 New document release

Software, hardware, documentation and related materials:
Copyright © 2009 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in whole
or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in published
reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium Designer, Board Insight,
Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological Autorouting and their respective
logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced
herein are the property of their respective owners and no trademark rights to the same are claimed.

www.altium.com Alllum

DS0009 - Sound to Light 18

	Overview
	Prerequisites
	Design detail
	Tutorial steps – preparing the OpenBus hardware
	Tutorial steps – preparing the remaining FPGA hardware
	Tutorial steps – mapping the hardware design to the target hardware
	Tutorial steps – creating the embedded project
	Tutorial steps – writing the embedded code
	Tutorial steps – running your design
	Code Explanation
	Revision History

