
DS0009 - Sound to Light 1

Overview
In previous sessions, we learned how to build a basic hardware design for controlling the LEDs, we looked at the use
of virtual instruments, and finally processor cores. Now we want to extend our knowledge of the peripherals that are
provided on the NB3000; exploring the use of the hi-fidelity audio interface. This tutorial design will take audio samples
from the audio codec, pass them through for listening on the NB3000 speakers while driving two LEDs for left and right
level indicators.

Prerequisites
This tutorial assumes you have a basic understanding of the process of placing and wiring objects in Altium Designer
(including components, net labels / net connectivity, and wires / buses) and a basic understanding of the process of
configuring and building a design using the Devices View (for specific details on this process, see Discovery Session
1 – Exploring a Simple LED Driver). It also assumes basic C programming skills. No additional information is
required.

Design detail
This exercise uses the components listed in Table 1, to create the circuits shown in Figure 1 and Figure 2.

Component Library Name in Library

OpenBus Palette TSK3000A

OpenBus Palette Interconnect

OpenBus Palette SRAM Controller

Discovery Session 9
Sound to Light

DS0009 - Sound to Light 2

OpenBus Palette Audio Streaming Controller

OpenBus Palette SPI Controller

OpenBus Palette LED Controller

U1

INV

FPGA Configurable Generic.IntLib INV

CLK_BRD

FPGA NB3000 Port-Plugin.IntLib CLOCK_BOARD

TEST_BUTTON

FPGA NB3000 Port-Plugin.IntLib TEST_BUTTON

CODECSPI_DOUT
CODECSPI_DIN

CODECSPI_CS

CODECSPI_CLKCS4270

FPGA NB3000 Port-Plugin.IntLib AUDIO_CODEC_CTRL

AUDIO_I2S_BCLK
AUDIO_I2S_WCLK
AUDIO_I2S_DOUT
AUDIO_I2S_DIN

AUDIO_I2S_MCLK

FPGA NB3000 Port-Plugin.IntLib AUDIO_CODEC

LED_R[7..0]
LED_G[7..0]
LED_B[7..0]

FPGA NB3000 Port-Plugin.IntLib LEDS_RGB

DS0009 - Sound to Light 3

FPGA NB3000 Port-Plugin.IntLib SRAM0

FPGA NB3000 Port-Plugin.IntLib SRAM1

Table 1. List of components required by the design

Figure 1. OpenBus document for the Snd2Light design.

Figure 2. Schematic top sheet for the Snd2Light design.

DS0009 - Sound to Light 4

Tutorial steps – preparing the OpenBus hardware
1. As with earlier tutorials, the hardware for this design will be captured using OpenBus for the processor and

supporting I/O interface logic. It will also need a top-level schematic to connect that logic out to the FPGA
device pins, and an FPGA project file. Create a new FPGA project, schematic sheet and OpenBus document,
and save and name each of them Snd2Light.PrjFpg, Snd2Light.SchDoc and
Snd2Light_OB.OpenBus, respectively.

2. Make the OpenBus document the active document, and place the following components from the OpenBus
Palette:

a. TSK3000A processor
b. 2 Interconnect connectors (place one on either side of the processor)
c. SRAM Controller
d. LED Controller
e. Audio Streaming Controller
f. SPI Controller

3. Arrange the OpenBus components as shown in Figure 1.

4. The Interconnect on the I/O side of the processor needs a total of 3 slave ports, add these using the Add Port
 button on the toolbar.

5. Place Links between the OpenBus components (shown in Figure 1).

6. Each OpenBus component must now be configured. Configure the LED Controller component as shown in
Figure 3, then click OK to close the dialog.

Figure 3. Configure the LED Controller OpenBus component.

7. Configure the SPI Controller as shown in Figure 4 (un-check Enable Mode Pin), then click OK to close the
dialog.

DS0009 - Sound to Light 5

Figure 4. Configure the SPI Controller.

8. Configure the Audio Streaming Controller as shown in Figure 5, and then click Manage Signals to open the
OpenBus Signal Manager dialog.

Figure 5. Configure the Audio Streaming Controller.

9. Set the Interrupt for the Audio Streaming Controller (I2S) to INT_I1, as shown in Figure 6.

DS0009 - Sound to Light 6

Figure 6. Set the Audio Streaming Controller to use Interrupt 1.

10. Configure the OpenBus SRAM Controller to: Memory Type Asynchronous SRAM, Size will be 1MB, Layout
2x16-bit Wide Devices, and the Designator to SRAM. Leave the other options at their default state, as shown
in Figure 7.

Figure 7. Configure the memory as 1 MB of SRAM.

DS0009 - Sound to Light 7

11. The Interconnect components will be correctly configured, as Altium Designer automatically detects what is
connected to them.

12. Right-click on the TSK3000 processor and select Configure TSK3000A from the floating menu. Set the
Internal Processor Memory to 32 K Bytes. Click OK to close the Configure OpenBus TSK3000A dialog.

13. This completes the OpenBus part of the design, save the OpenBus document.

Tutorial steps – preparing the remaining FPGA hardware
14. Switch to the Snd2Light schematic document. The schematic is used to wire the circuitry on the OpenBus

document through to the FPGA device pins, and can also include other FPGA hardware that is not available
as OpenBus components.

15. To make the OpenBus document a child of the schematic, select Design»Create Sheet Symbol from Sheet
or HDL from the menus. When the Choose Document to Place dialog opens, select Snd2Light_OB.OpenBus
and click OK. A sheet symbol will appear floating on the cursor, position it approximately in the middle of the
schematic sheet.

16. Resize the Sheet Symbol, and reposition the Sheet Entries to approximately match the Sheet Symbol shown
in Figure 2.

17. Right-click on the Snd2Light.PrjFpg project file in the Projects panel, and select Compile from the menu.
When the project is compiled the OpenBus document will move to become a child of the schematic document,
as shown in Figure 8. Note: You will receive compiler errors in the Messages panel because we have not
completed the wiring yet – you can ignore these and close the Messages panel for now.

Figure 8. When the project is compiled the OpenBus document will become a child document of the schematic.

18. Using the detail in Table 1 as a reference, locate and place the following components onto the schematic,
arranging them approximately in the positions shown in Figure 2:

a. CLOCK_BOARD
b. TEST_BUTTON
c. INV
d. LEDS_RGB
e. AUDIO_CODEC_CTRL
f. AUDIO_CODEC
g. SRAM0
h. SRAM1

DS0009 - Sound to Light 8

19. Wire up the components on the lower end of the sheet symbol, as shown in Figure 9.

Figure 9. Wire the lower section of circuitry.

20. To wire the memory components on the right-hand side of the sheet symbol, right click on the Sheet Entry
SRAM_MEM0, and choose Sheet Entry Actions»Place Harness Connector of Type… from the floating
menu.

21. A Harness Connector will appear floating on the cursor. It may be oriented the wrong way, if it needs to be
flipped along the X axis press the X key on the keyboard. Place it so that the tip of the brace touches the
Sheet Entry, as shown in Figure 10.

Figure 10. Flip the Signal Harness and place it so that it touches the Sheet Entry.

22. To drag the Harness Connector and automatically add the Harness line, hold Ctrl and click and hold on the
Harness Connector, then drag it across so that each Harness Entry touches a pin on the memory port plug-in,
as shown in Figure 11.

Figure 11. Drag the Harness Connector so that each entry touches a port on the memory port plug-in.

23. Repeat this process for the second memory Sheet Entry, SRAM_MEM1, connecting it to the second memory
port plug-in.

DS0009 - Sound to Light 9

24. Place Harness Connectors and Signal Harnesses for the AUDIO_CODEC and the SPI_BUS using the same
technique.

25. To annotate all of the components (assign designators), select Tools»Annotate Schematics Quietly from
the menus.

26. To check that there are no errors in the schematic, compile the project using the Project»Recompile FPGA
Project command. The Messages panel will detail any errors or warnings.

27. Resolve any other errors or warnings, and Save All the files.

Tutorial steps – mapping the hardware design to the target hardware
28. To create the connectivity from the ports on the top schematic sheet through to the actual pins on the target

FPGA, the design must be constrained. This is done by constraint files, which detail port-to-pin mapping,
along with other relevant design specifications, such as clock allocations, target device, and so on. To
constrain the design you will need an NB3000 connected to your PC via a USB cable, once you have this,
open the Devices view (View»Devices) in Altium Designer and enable the Live checkbox at the top right of
the view.

29. An icon of the NB3000 will appear, right-click on it and select Configure FPGA Project»Snd2Light.PrjFpg
from the menu, as shown in Figure 12.

Figure 12. Configure the design to run on the NB3000.

30. The Configuration Manager will open automatically, showing the constraint files that have been detected and
added to the project, and the configuration that has been created. A configuration is simply a set of constraint
files, using configurations allows you to divide your constraints into separate constraint files. Click OK to close
the dialog.

31. Select File»Save All to save your work. The hardware design is now complete; the next step is to write the
embedded code.

DS0009 - Sound to Light 10

Tutorial steps – creating the embedded project
32. Create a new embedded project, and save it as Snd2Light.PrjEmb in a sub-folder below the FPGA project

called \Embedded.

33. To make the embedded project a child of the FPGA project, switch the Projects panel to the Structure Editor
mode, then right click on the icon for the TSK3000A processor and select Set Embedded Project from the
menu, as shown in Figure 13.

Figure 13. Make the embedded project a child of the FPGA project.

34. Switch the Projects panel back to File View mode.

35. Right-click on the Snd2Light.PrjEmb embedded project, and click Project Options. Click on the Configure
Memory tab – you can see that the memory map defined in hardware has been automatically imported into
the embedded project, as shown in the upper part of Figure 14.

36. Optionally you can rename the SRAM section to XRAM (to clarify it is external to the FPGA) though this is not
strictly necessary.

DS0009 - Sound to Light 11

Figure 14. Embedded project memory map.

37. Double-click on the TSK3000A row in the memory table (Figure 14) and configure the memory as ROM
instead of Non-Volatile RAM, as shown in Figure 15. Doing this means that the TSK3000A will boot from
internal memory automatically, whenever the design is downloaded to the NB3000. Click OK to apply the
changes and close both dialogs.

DS0009 - Sound to Light 12

Figure 15. Setting the boot memory to Memory Type: ROM.

38. Add a SwPlatform file to the embedded project, and save it as Snd2Light.SwPlatform in this embedded
sub-folder.

39. In the Software Platform document, the Import from FPGA button will now be active, click this to instruct
Altium Designer to examine the FPGA project and attach any required I/O wrappers. The low-level wrappers
for the I2S Master Controller, the LED Controller and the SPI Master Controller will be added, as shown in
Figure 16.

Figure 16. First add the wrappers.

40. Click on each wrapper in turn, then click the Grow Stack Up button, adding the driver of the same name to
each wrapper, as shown in Figure 17.

Figure 17. Then add the drivers.

41. Select the SPI Driver, and configure the SPI channels to 18 in the settings on the right hand side of the
SwPlatform.

DS0009 - Sound to Light 13

42. Select the SPI Driver and click the Grow Stack Up button to open the Grow Stack dialog. The audio codec on
the NB3000 is a Cirrus Logic CS4270, select the driver for this and click OK to close the dialog, as shown in
Figure 18. This device uses SPI for configuration and control, and I2S for digitized audio data transfer.

Figure 18. Then add the specific audio driver.

43. With this driver selected in the SwPlatform, click the Grow Stack Up button again to open the Grow Stack
dialog and add the Audio Service, as shown in Figure 19.

44. Set the Audio Context settings on the right hand side of the SwPlatform to: Default sample frequency
44100, Default mode Stereo, Default sample size 16.

Figure 19. Then add the Audio Context, to configure the Audio Codec.

45. This Audio Context must now be linked to the I2S driver, to do this click the Link to Existing Stack button. All
stack elements will grey out, except the I2S Driver, select it to create the link, as shown in Figure 20.

DS0009 - Sound to Light 14

Figure 20. Then Link the Context to the I2S, so that Altium Designer knows both of these stacks are used with the 4270
Audio Codec.

46. Select File»Save All to save all your work.

Tutorial steps – writing the embedded code
Just as in previous sessions, we need to include and use functions provided by the Software Platform Builder for our
embedded code. It is strongly recommended to explore the driver and context function documentation by using the F1
help key within the Software Platform Builder.

47. Firstly, include the necessary header files for the C standard integer definitions as well as the drivers:

#include <stdint.h>
#include <devices.h>
#include <audio.h>
#include <drv_led.h>
#include <led_info.h>

48. Next we’ll define our internal audio buffer size:

#define AUDIO_BUF_SIZE 512
#define LEFT 0
#define RIGHT 1

49. Add the following arrays for our stereo pass-through buffer, as well as the left and right buffers used for the
absolute averaging filters:

/* bufffers */
// audio

int16_t stereo_buf[AUDIO_BUF_SIZE] = {0};
int16_t audio_buf_l[AUDIO_BUF_SIZE/2] = {0};
int16_t audio_buf_r[AUDIO_BUF_SIZE/2] = {0};

50. Of course, we need handles for the audio and LED drivers:

// contexts for drivers

audio_t *audio;
led_t *leds;

51. Now, add a few function prototypes for some handy functions:

/* function prototypes */

int get_audio(int16_t *buffer, int size);
int put_audio(int16_t *buffer, int n);
uint8_t abs_ave(int16_t *buffer, int n);
void update_intensity(uint8_t intensity, uint8_t channel);

DS0009 - Sound to Light 15

52. Now for our main function:

void main(void)
{
 int i, j;
 audio = audio_open(AUDIO_1);
 leds = led_open(LEDS);
 led_turn_on(leds, LEDS_LED0);
 led_turn_on(leds, LEDS_LED7);

 while (1)
 {

 // get audio to left and right buffers for processing.

 get_audio(stereo_buf, AUDIO_BUF_SIZE);
 for (i = 0, j = 0; i < AUDIO_BUF_SIZE ; i++, j++)
 {
 audio_buf_r[j] = stereo_buf[i++];
 audio_buf_l[j] = stereo_buf[i];
 }

 // Loop left and right channels through.

 put_audio(stereo_buf, AUDIO_BUF_SIZE);

 // Put the D.C. average value of the wavelet on LEDs

 update_intensity(abs_ave(audio_buf_l, AUDIO_BUF_SIZE/2),LEFT);
 update_intensity(abs_ave(audio_buf_r, AUDIO_BUF_SIZE/2),RIGHT);
 }
}

53. Now, we add the full function definitions for get_audio and put_audio, which use the audio_record and
audio_play functions of the audio context to fill our software buffers and write them out, respectively. These
offer some ability to fill a much larger software buffer than what would be available in the hardware buffer:

int get_audio(int16_t *buffer, int n)
{

 int s;

 do

 {
 s = audio_record(audio, buffer, n);
 n -= s;
 buffer += s;
 }while (n != 0);

 return s;
}

int put_audio(int16_t *buffer, int n)
{
 int s;

 do

 {
 s = audio_play(audio, buffer, n);
 n -= s;
 buffer += s;
 } while (n != 0);

 return 0;
}

DS0009 - Sound to Light 16

54. Finally, we add the function definitions for the absolute average filter that drives the LEDs from the main
function, as well as the LED level decision function:

uint8_t abs_ave(int16_t *buffer, int n)
{
 int16_t cusum = 0;
 for (int i = 0; i < n; i++)
 {
 cusum += (buffer[i] < 0) ? -(buffer[i]/n) : buffer[i]/n;
 }
 return (uint8_t)(cusum);
}

void update_intensity(uint8_t intensity, uint8_t channel)
{
 uint8_t b0 = 0;
 uint8_t b1 = 0;
 uint8_t b2 = 0;
 uint8_t b3 = 0;
 if (intensity > 0xF0)
 {
 b0 = b1 = b2 = b3 = 0xFF;
 } else {
 if (intensity > 0xC0)
 {
 b0 = b1 = b2 = 0xFF;
 b3 = 0;
 } else {
 if (intensity > 0xA0)
 {
 b0 = b1 = 0xFF;
 b2 = b3 = 0;
 } else {
 if (intensity > 0x40)
 {
 b0 = 0xFF;
 b1 = b2 = b3 = 0;
 } else {
 if (intensity < 0x10)
 {
 b0 = b1 = b2 = b3 = 0;
 }
 // if not down to 0x10 then no change.
 }
 }
 }
 }
 switch (channel)
 {
 case LEFT:
 led_set_intensity(leds, LEDS_LED7, b3);
 led_set_intensity(leds, LEDS_LED6, b2);
 led_set_intensity(leds, LEDS_LED5, b1);
 led_set_intensity(leds, LEDS_LED4, b0);
 break;
 case RIGHT:
 led_set_intensity(leds, LEDS_LED0, b3);
 led_set_intensity(leds, LEDS_LED1, b2);
 led_set_intensity(leds, LEDS_LED2, b1);
 led_set_intensity(leds, LEDS_LED3, b0);
 break;
 default: break;
 }
}

DS0009 - Sound to Light 17

Tutorial steps – running your design
Now it’s time to build and download the project:

55. Switch to Device View and click the Program FPGA button to build
and download the design to the NB3000.

56. Once you have built and downloaded the design, you need to plug in
a sound source (such as your PC or an MP3 Player) to the NB3000’s
LINE IN on the front edge of the board (see Figure 21).

57. Optionally, plug some stereo headphones into the HEADPHONES
output on the front edge of the board, or listen to the sound play
through on the NB3000’s speakers (the speakers are disabled if
headphones are plugged in).

58. Play some sounds and observe the LED’s brightness on LED array,
with respect to the sound source that’s playing.

Code Explanation

In this tutorial, we are configuring the Audio Context and underlying drivers and hardware to take care of configuring
the codec and buffering the audio samples. The main C function simply passes the audio samples from input to output
unchanged. The audio buffer has left and right audio samples interleaved - which is the nature of most digital audio
interfaces - so our code has to split these into separate left and right buffers for actual stereo processing. In this case,
we are simply taking a small segment of sound defined by the buffer length, and passing it through Absolute Value
Averaging filters. The output of these filters then drives the LED intensity for left and right channel LEDs (see Figure
22).

Figure 22. VU Meter Block Diagram (one channel).

Figure 21. NB3000 Line Input.

DS0009 - Sound to Light 18

Revision History

Software, hardware, documentation and related materials:

Copyright © 2009 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in whole
or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in published
reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium Designer, Board Insight,
Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological Autorouting and their respective
logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced
herein are the property of their respective owners and no trademark rights to the same are claimed.

Date Revision No. Changes

23-Jul-2009 1.0 New document release

	Overview
	Prerequisites
	Design detail
	Tutorial steps – preparing the OpenBus hardware
	Tutorial steps – preparing the remaining FPGA hardware
	Tutorial steps – mapping the hardware design to the target hardware
	Tutorial steps – creating the embedded project
	Tutorial steps – writing the embedded code
	Tutorial steps – running your design
	Code Explanation
	Revision History

