
DS0006 - uP KnightRider withControl 1

Overview
In the previous session you programmed a processor to display the KnightRider pattern on the tricolor LEDs. What the
design did not include was any means of controlling the rate of the KnightRider pattern.

In this session a custom instrument will be added, controlling a delay in the embedded code that is creating the
KnightRider pattern on the LEDs.

Prerequisites
This tutorial assumes you have completed the previous tutorial, Discovery Session 5 – scrolling the LEDs with a
microprocessor. The set of project files created in that tutorial are used as the starting point for this tutorial.

Design detail
This exercise uses the component listed in Table 1 to extend the OpenBus design originally created in Session 5, to
give the OpenBus design shown in Figure 1. Note that the top schematic sheet remains the same.

Component Library Name in Library

OpenBus Palette Custom Instrument

Table 1. List of components required by the design

Figure 1. OpenBus document for the uP_KnightRider_wControl design.

Discovery Session 6
Adding control to the uP scrolling LEDS

DS0006 - uP KnightRider withControl 2

Tutorial steps – updating the OpenBus hardware
1. Copy the contents of the Session 5 \Project folder to the Session 6 \Project folder.

2. Open the FPGA project uP_KnightRider.PrjFpg in the Session 6 Project folder, then right-click on the
FPGA project in the Projects panel and select Save Project As, naming it as
uP_KnightRider_wControl.PrjFpg.

3. Open the OpenBus document (uP_KnightRider_OB.OpenBus) in the project.

4. Open the OpenBus Palette, then locate and place the Custom Instrument peripheral, placing it below the
LEDs OpenBus component.

5. To wire this component in, add an OpenBus Port to the Interconnect on the IO side of the processor, then

place a Link between the new port and the new Custom Instrument. Arrange the OpenBus components
as shown in Figure 1.

6. The Custom Instrument will be used to control the rate of the KnightRider pattern on the LEDs. To configure it,
double-click on the Custom Instrument component to open the Configure OpenBus Custom Instrument dialog.

7. The dialog has 3 tabs. Bring the Properties tab forward if it is not already. This instrument will be used to
output a value that sets a delay in the embedded code. To do that edit the default Output Signals entry,
changing it to Delay[7..0]. The Initial value will be left at zero.

8. There are no inputs needed to the instrument, so remove the default Input Signal with .

9. Switch to the Layout tab to display the design of the custom instrument. Click once in the main area of the
instrument face, then using the small resize handle that appears decrease the height of the instrument so that
it occupies about half the height area available in the dialog, as shown in Figure 3.

10. The height will be controlled via a TrackBar, click to place one from the Instrument Controls section of the
dialog (as shown in Figure 2), then click on the instrument face to place it. The new TrackBar can be dragged
to re position it.

Figure 2. Place a TrackBar to control the rate of the LEDs.

11. While the TrackBar is selected, edit the MaxValue to be 255, the Name to be FaderDelay, and the
SignalName to be Delay[7..0] as shown in Figure 3.

DS0006 - uP KnightRider withControl 3

Figure 3. Place a TrackBar, and configure the MaxValue and the Name.

12. To display the current setting of the TrackBar we’ll add a NumericPanel. Click to place one from the
Instrument Controls section of the dialog, as shown in Figure 4, then click on the instrument face to place it.
Position it below the TrackBar.

Figure 4. The NumericPanel will display the current delay setting.

13. Configure the following properties of the NumericPanel: DigitsInGroup to 3, Digits to 3, Name to
DisplayDelay, and Radix to rdxDecimal.

14. The next step is to put some code behind the custom instrument, code that will update the NumericPanel to
show the current value for the delay slider. Select the FaderDelay slider again, switch to the Events sub-tab of
the Layout tab, and double-click the OnChange event value box - enter the following code:

procedure TDesignedAreaPanel.FaderDelayChange(Sender: TObject);

begin

 DisplayDelay.Value := FaderDelay.Value;
end;

15. Click the Accept button to save these changes you have made to the Custom Instrument.

16. Compile the FPGA project and check and resolve any errors detailed in the Messages panel.

17. This completes the OpenBus part of the design, save the OpenBus document.

DS0006 - uP KnightRider withControl 4

Tutorial steps – updating the software platform
18. The software platform needs to be updated, to include the new Custom Instrument. To do this, open the

SwPlatform document in the Embedded project and click the Import from FPGA Project button. The Custom
Instrument wrapper will be added.

19. Click to select the new Custom Instrument wrapper, and then click the Grow Stack Up button to open the
Grow Stack dialog, from where you can add the Custom Instrument Driver. Once you have closed the
dialog, the software platform will look like Figure 5.

Figure 5. The I/O wrappers and low-level drivers are managed by the Software Platform.

20. The software platform is now ready; the last phase is to update the embedded application to include a delay.
Select File»Save All to save all your work.

DS0006 - uP KnightRider withControl 5

Tutorial steps – updating the embedded code
21. With the SwPlatform document still open and the Custom Instrument Driver selected, hit F1 to bring up the

Knowledge Center panel. Note the data type instrument_t which will be used for connecting our code to
the custom instrument hardware, through functions such as instrument_open.

22. Click on the instrument_open link to see the implementation details, noting that we will also need to use
#include <drv_instrument.h> in our code. Close the Knowledge Center panel.

23. Open the existing main.c document from the uP_KnightRider embedded project. Near the top, under the
existing #includes, add the following to include the driver and related information:

#include <drv_instrument.h>
#include "instruments.h"

24. Further down below the existing function prototypes, add the following variables:

instrument_t * ctrl_spd;
unsigned char inst_delay = 255;

25. Add the following line of code to the void init(void), after the ptrLEDs = led_open(LEDS); code:

ctrl_spd = instrument_open(CUSTOM_INSTRUMENT_1);

26. Finally, modify the main program loop as depicted, the before and after are shown below:

while(1)
 {
 if (Tick)
 {
 UpdateKnightRiderLEDs();
 Tick = 0;
 }
 }

↓

while (1)
{
 if (Tick)
 {
 if (inst_delay++ == 255)
 {

 /*
 * Read Custom Instrument Slider Value and subtract it from
 * delay time (higher slider = less delay = faster chasing).
 */

 inst_delay = instrument_get_value(ctrl_spd, CUSTOM_INSTRUMENT_1_DELAY);
 UpdateKnightRiderLEDs();
 }
 Tick = 0;
 }
}

27. Save your work using File»Save All and open the Devices View.

28. Build and download your updated project – if you get any errors during compilation you will need to go back
and double-check your work, ensuring all fields, names and code have been entered correctly.

29. Open the Custom Instrument – adjust the slider upwards to speed up the rate of the LED scanning pattern.

30. To improve the resolution of the slider, reduce the periodicity of the timer interrupt down to 1000
microseconds, the before and after are shown below:

DS0006 - uP KnightRider withControl 6

void init(void)
 {
 ...
 timer_register_handler(0, 20000L, (void*)TimerTick);
 }

↓

void init(void)
 {
 ...
 timer_register_handler(0, 1000L, (void*)TimerTick);
 }

Some additional items for you to try
Below are some suggestions for additional things you might try as you further explore the tools and the new
environment. These changes are not required by later exercises and it’s recommended you save a backup of
your current source files first:

• Improve the speed control algorithm so that the adjustment is perceptually linear rather than exponential.
• Extend the design to have Red, Green and Blue LED sets scanning separately.
• Extend the instrument to have three sliders for Red, Green and Blue LED scan speeds.

DS0006 - uP KnightRider withControl 7

Revision History

Date Revision No. Changes

29-Jul-2009 1.0 New document release

Software, hardware, documentation and related materials:

Copyright © 2009 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in whole
or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in published
reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium Designer, Board Insight,
Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological Autorouting and their respective
logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced
herein are the property of their respective owners and no trademark rights to the same are claimed.

	Overview
	Prerequisites
	Design detail
	Tutorial steps – updating the OpenBus hardware
	Tutorial steps – updating the software platform
	Tutorial steps – updating the embedded code
	Some additional items for you to try
	Revision History

