
DS0012 - Using the Touch Screen 1

Overview
In this session we will implement the touch screen IO and discover how to display (x, y) points detected whenever
pressure is applied – sending them to the Terminal instrument in Altium Designer.

Prerequisites
This tutorial assumes you have an elementary understanding of how to create a System-on-FPGA design in Altium
Designer using OpenBus and Schematic Documents, how to configure peripherals and break-out their connections, as
well as create a linked embedded project containing the Software Platform Builder. No additional information is
required.

Design detail
This exercise uses the following components:

Component Library Name in Library

OpenBus Palette TSK3000A

OpenBus Palette Interconnect

OpenBus Palette Arbiter

OpenBus Palette SRAM Controller

OpenBus Palette Terminal instrument

Discovery Session 12
Using the Touch Screen

DS0012 - Using the Touch Screen 2

OpenBus Palette VGA 32-Bit ILI9320

OpenBus Palette SPI

OpenBus Palette Touchscreen Pen Control

FPGA Generic.IntLib IOBUF16B

 FPGA Generic.IntLib INV

CLK_BRD

FPGA NB3000 Port-Plugin.IntLib CLOCK_BOARD

TFT_BLIGHT
TFT_CS
TFT_RD
TFT_RS

TFT_WR
TFT_RESET

TFT_DB[15..0]

FPGA NB3000 Port-Plugin.IntLib TFT_LCD

TFT_TSC_BUSY
TFT_TSC_CLK

TFT_TSC_CS_N

TFT_TSC_DIN
TFT_TSC_IRQ_N

TFT_TSC_DOUT

FPGA NB3000 Port-Plugin.IntLib TFT_PEN

FPGA NB3000 Port-Plugin.IntLib

SRAM0

SRAM1

TEST_BUTTON

FPGA NB3000 Port-Plugin.IntLib TEST_BUTTON

Table 1. List of components required by the design

DS0012 - Using the Touch Screen 3

Tutorial steps – preparing the hardware
1. Create a new FPGA project in a new folder and name it TFT_TOUCH.PrjFpg. Add a new OpenBus document

and a Schematic document, saving them respectively as TFT_TOUCH_OB.OpenBus and
TFT_TOUCH_TOP.SchDoc.

2. In the OpenBus document, create a system design with the following components from the OpenBus Palette:

a. TSK-3000A CPU
b. Wishbone Interconnect (x2)
c. Wishbone Arbiter
d. Terminal Instrument
e. Touchscreen Pen Control
f. SPI Controller
g. VGA 32-Bit ILI9320
h. SRAM Controller

Figure 1. OpenBus System for the TFT_TOUCH design.

3. Join up the components as shown in Figure 1.

4. Configure the SRAM controller (called XRAM in Figure 1) to be Asynchronous SRAM, 1 MB (256K x 32-bit), 2
x 16-bit Wide Devices.

5. Configure the SPI device to use 32-bit transfers and uncheck the Enable Mode Pin option.

6. Make sure the TFT controller (designator WB_ILI9320_1) is the high-priority master (0) to the Arbiter
(designator WB_MULTIMASTER_1), then save your work.

7. Select Tools»OpenBus Signal Manager from the menus, to open the OpenBus Signal Manager dialog.
Select the Interrupts tab and assign the ILI9320 Controller (TFT controller) interrupt to INT_I0 of the
TSK3000A.

8. In the schematic document, add all the components listed in Table 1.

9. Add the necessary Sheet Symbol for the OpenBus system document using Design»Create Sheet Symbol
from Sheet of HDL.

DS0012 - Using the Touch Screen 4

Figure 2. Top-level schematic for the TFT_TOUCH design.

10. Wire up the top-level schematic as shown in Figure 2, using the pre-defined Harness Connectors as done in
prior sessions.

11. Save your work using File»Save All.

12. Compile the FPGA project to ensure there are no errors in your wiring.

Tutorial Steps – Setting up the Embedded Project
13. Create a new embedded project in the workspace and save it as Embedded_TFT_TOUCH.PrjEmb.

14. Use the Structure Editor view in Projects panel to link the new embedded project to your FPGA project, as
done in earlier sessions.

15. Add a new Software Platform Builder document to the project and name it TFT_TOUCH.SwPlatform.

16. In the TFT_TOUCH.SwPlatform document, import the C code wrappers from the FPGA project, and grow
the software stacks up to contain the Graphics, Pointer and Serial IO services. It should look like Figure 3.

DS0012 - Using the Touch Screen 5

Figure 3. Software Platform for the TFT_TOUCH design.

17. In the TFT_TOUCH.SwPlatform file, select the Touchscreen Context. In the right-hand panel ensure that
the Settings field is set to NB3000, by clicking in the field and selecting from the drop-down that appears.

18. Next, select the Pointer Context, and in the right-hand panel set the Left Boundary and Top Boundary fields
to 0, the Right Boundary to 320 and the Bottom Boundary to 240.

19. Select the Serial Device I/O Context and note it’s ID. Then in the Software Services (lower) pane of the
TFT_TOUCH.SwPlatform file select Serial Device I/O Services. Check the boxes and link Standard Input,
Standard Output and Standard Error to the SERIAL_1 device (Terminal Instrument). This allows you to use
C Standard IO printf() to put text on the terminal in Altium Designer. It should look like Figure 3.

20. Add a source code file main.c to your embedded project, and add the code to it as shown in Table 2. Save
your work.

DS0012 - Using the Touch Screen 6

#include <stdio.h>

#include <graphics.h>
#include <touchscreen.h>
#include <pointer.h>
#include "generic_devices.h"
#include "devices.h"

#define WIDTH 320
#define HEIGHT 240

// Function prototypes
static void draw_mark(int x, int y, int width, int height, void *vp);

char *cal1 = "Touch screen at marker";
char *cal2 = "Calibration done";

// Pointers for LCD, Touch panel, and graphics drivers
graphics_t * display;
canvas_t * canvas;
touchscreen_t * tft_touch;
touchscreen_data_t * position;
touchscreen_callback_t callback;
pointer_t * ptr;
pointer_state_t * pointer_state;

void main (void)
{
 // Open instances of drivers for LCD, Touch and Graphics
 tft_touch = touchscreen_open(TOUCHSCREEN_1);
 ptr = pointer_open(POINTER_1);
 display = graphics_open(GRAPHICS_1);
 canvas = graphics_get_canvas(display, GRAPHICS_1);

 // Tell Touch driver which function to call for display during calibration
 touchscreen_set_callback(tft_touch, draw_mark, canvas);
 while(!touchscreen_calibrate(tft_touch, 320, 240));
 graphics_fill_canvas(canvas, 0x080008);
 graphics_set_visible_canvas(display, canvas);
 while(1)
 {
 if (pointer_update(ptr, pointer_state))
 {
 // Send point to Terminal in Devices View.
 printf("Touched screen at point (%d,%d)\n",
 pointer_state->x,
 pointer_state->y);
 }
 }
}

// Calibration call-back function - used to display a cross-hair at
// Calibration points on TFT panel.
static void draw_mark(int x, int y, int width, int height, void *vp)
{
 graphics_draw_circle(canvas, x, y, 10, 0xff00ff);
 graphics_draw_line(canvas, x - 15, y, x + 15, y, 0x00ffff);
 graphics_draw_line(canvas, x, y - 15, x, y + 15, 0x00ffff);
 graphics_draw_string(canvas, 50, 50, cal1, NULL, 0xffffff, 0);
 graphics_set_visible_canvas(display, canvas);
}

Table 2. Code for Main.c

DS0012 - Using the Touch Screen 7

21. In the Embedded Project Options, go to Configure Memory tab, and split the external SRAM into 512K of
ROM, and 512K of RAM, as shown in Figure 4

Figure 4. Embedded project memory configuration.

DS0012 - Using the Touch Screen 8

Tutorial Steps – running the design

22. Open Devices View - you should see your connection to the NB3000. Right-click on the NB3000 icon and
Auto-Configure your project. At this point it’s a good idea to do File»Save All.

23. Build and download the project.

24. You will need to click the Up to Date Download button under the TSK-3000A soft-chain icon in
Devices View once the hardware design has been downloaded.

25. Follow the prompts on-screen on the NB3000 TFT Panel for calibration.

26. Open the TERMINAL instrument in Devices View. Note the coordinates are received wherever you press the
TFT panel.

Some additional items for you to try
• Referring to the Graphics Context documentation in the Knowledge Center panel, modify the code to draw

lines between each point where the stylus (pen) touches the TFT screen.
• Modify the code to print the co-ordinates to the TFT screen as a text string, as well as to the Terminal

Instrument.

• Modify the call-back function draw_mark to display some shapes other than the cross-hair and circle. Try
squares, triangles etc.

• Remove the Terminal Instrument from the design and re-build it to work just with the TFT for visual feedback.
• Note that the graphics drivers used in this project make use of “double buffering” – where you can change

screens on the TFT rapidly by switching canvases (a canvas is a screen-sized pixel buffer in memory that the
TFT panel reads it’s pixel data from). See if you can find where in the SwPlatform file you can specify how
many canvas buffers you want.

DS0012 - Using the Touch Screen 9

Revision History

Date Revision No. Changes

29-Jul-2009 1.0 New document release

Software, hardware, documentation and related materials:

Copyright © 2009 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in whole
or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in published
reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium Designer, Board Insight,
Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological Autorouting and their respective
logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced
herein are the property of their respective owners and no trademark rights to the same are claimed.

	Overview
	Prerequisites
	Design detail
	Tutorial steps – preparing the hardware
	Tutorial Steps – Setting up the Embedded Project
	Tutorial Steps – running the design
	Some additional items for you to try
	Revision History

