

Copyright © 2003-2017 Terasic Inc. All Rights Reserved.

ter <mark>asIC</mark>

CHAPTER 1	INTRODUCTION	
1.1 DE10-NA	ANO OPENCL BSP	
1.2 System F	REQUIREMENTS	
	Architecture	
1.4 EXECUTE	OPENCL DEMO ON DE10-NANO	5
CHAPTER 2	OPENCL ON WINDOWS	
2.1 Softwar	E INSTALLATION	
2.2 OPENCL	LICENSE INSTALLATION	
2.3 OPENCL	ENVIRONMENT CONFIGURATION	
2.4 OPENCL	ENVIRONMENT VERIFICATION	14
2.5 COMPILE	AND EXECUTE OPENCL PROJECT	
CHAPTER 3	OPENCL ON LINUX	
3.1 Softwar	E INSTALLATION	
3.2 OPENCL	LICENSE INSTALLATION	
3.3 CONFIGUI	RATION OF ENVIRONMENT VARIABLES	
3.4 VERIFICA	TION OF OPENCL ENVIRONMENT	
3.5 BUILD AN	ID EXECUTE OPENCL PROJECT	

DE10-Nano is a robust hardware design platform built with Intel System-on-Chip (SoC) FPGA. It is designed for Intel University Program. This document gives introduction on how to setup OpenCL development environment, compile, and execute example projects for DE10-Nano. Users can refer to Intel SDK for OpenCL Programming Guide for more details about OpenCL coding instruction.

http://www.altera.com/literature/hb/opencl-sdk/aocl_programming_guide.pdf

1.1 DE10-Nano OpenCL BSP

The DE10-Nano OpenCL Board Support Package (BSP) contains required resources for users to develop OpenCL project based on DE10-Nano Board. The BSP is available from the website:

http://de10-Nano.terasic.com/cd

For Windows Host, please download DE10-Nano_OpenCL_BSP_1.0.zip. For Linux, please download the DE10-Nano_OpenCL_BSP_1.0.tar.gz. The CentOS 7.0 Linux distribution is recommended for the OpenCL application. These two compressed files are different in the compression type only and their contents are the same. **Figure 1-1** shows the contents of OpenCL BSP for DE10-Nano.

erasiC

📙 arm32	2017/5/2 15:52
de10_nano_sharedonly	2017/5/3 14:00
📙 driver	2017/5/2 15:52
🔜 examples	2017/5/2 15:52
board_env.xml	2017/5/2 16:35
💼 de10_nano_opencl.zip	2017/5/3 13:41
README.txt	2017/5/2 16:36

Figure 1-1 Contents of OpenCL BSP for DE10-Nano

1.2 System Requirements

The following items are required to setup OpenCL for DE10-Nano board:

- Terasic DE10-Nano board
- microSD card with at least 4GB capacity
- microSD card reader
- USB cable (type A to mini-B)
- Ethernet cable or USB-Storage
- Host PC with
 - USB host port
 - 32GB memory is recommended
 - 64-bit Windows 7 or Linux
 - Win32 Disk Imager
 - PuTTY or Minicom(Linux) utility
 - Intel Quartus Prime v16.1 installed with valid license
 - Intel OpenCL v16.1 installed with valid license
 - Intel SoC EDS v16.1 installed

1.3 OpenCL Architecture

An OpenCL project consists of OpenCL Kernel and Host Program, as shown in **Figure 1-2**. The Kernel is realized on the FPGA part of SoC FPGA. The Host Program is not the ARM part of the SoC FPGA. It is cross-compiled by Intel SoC EDS installed on Windows or Linux. The Kernel is developed in Quartus and OpenCL SDK is installed on Windows or Linux.

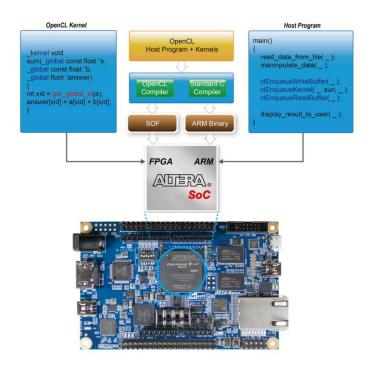


Figure 1-2 Intel SoC FPGA OpenCL architecture

1.4 Execute OpenCL Demo on DE10-Nano

This section describes how to execute OpenCL demo on DE10-Nano from the Linux image file included in DE10-Nano Board Support Package (BSP). Windows or Linux Host is required to setup the demo.

• Using Windows Host PC

The following software should be installed on the Windows host PC to complete the setup.

- Disk Imager available from <u>http://sourceforge.net/projects/win32diskimager</u>
- PuTTY- available from <u>https://the.earth.li/~sgtatham/putty/latest/w32/putty.exe</u>

The procedures to execute the hello_world and vector_add demos are:

- 1. Download DE10-Nano BSP from <u>http://de10-Nano.terasic.com/cd_and</u> extract the Linux image file **de10_nano_opencl.img** from **de10_nano_opencl.zip**
- 2. Write the Linux image file **de10_nano_opencl.img** into a microSD card with Disk Imager Utility.
- 3. Insert the microSD card into the microSD card socket(J11).

- 4. Make sure the DIP switch (SW10) MSEL[4:0] = 01010.
- 5. Connect your host PC to the UART-to-USB port (J4) on DE10-Nano via an USB cable. Users need to install the UART-to-USB device driver as described in the DE10-Nano Getting Started Guide.
- 6. Launch PuTTY utility on your host PC. Make sure the baud rate is set to 115200.
- 7. Power on DE10-Nano to boot Linux. Login Linux with username 'root' (password is not required).
- 8. Type "source ./init_opencl.sh" to load the OpenCL Linux kernel driver and setup environment variable for OpenCL Run-Time library, which is already installed on the microSD card.
- 9. Launch hello-world demo:
 - Type "cd hello_world/" to go to the hello_world folder.
 - Type "aocl program /dev/acl0 hello_world.aocx" to reconfigure the FPGA with the hello_world kernel.
 - Type "./hello_world" to launch the hello_world host application, as shown in Figure 1-3.
- 10. Launch vectorAdd demo:
 - Type "cd ..." to return to the home directory.
 - Type "cd vector_add" to go to the vector_add folder.
 - Type "aocl program /dev/acl0 vectorAdd.aocx" to reconfigure the FPGA with the vectorADD kernel.
 - Type "./vector_add" to launch the vector_add host application, as shown in Figure 1-4.

root@socfpga:~# source ./init opencl.sh	
root@socfpga:~# cd hello world/	
root@socfpga:~/hello world# aocl program	/dev/acl0 hello world.accx
	me/root/opencl arm32 rte/board/c5soc/arm
32/bin	
Reprogramming was successful!	
root@socfpga:~/hello world# ./hello worl	d
Querying platform for info:	
CL PLATFORM NAME	= Intel(R) FPGA SDK for OpenCL(TM)
CL PLATFORM VENDOR	= Altera Corporation
CL PLATFORM VERSION	= OpenCL 1.0 Intel(R) FPGA SDK for Open
CL(TM), Version 16.1	openob 110 inser(k) from bbk for open
Querying device for info:	
Querying device for into.	
CL DEVICE NAME	= de10 nano sharedonly : Cyclone V SoC
Development Kit	ders_hano_sharedonry . cycrone v Soc
CL DEVICE VENDOR	= Intel(R) Corporation
CL DEVICE VENDOR ID	= 4466
CL DEVICE VERSION	= OpenCL 1.0 Intel(R) FPGA SDK for Open
CL(TM), Version 16.1	- Openel 1.0 Inter(k) FFGA SDK 101 Open
	= 16.1
CL_DRIVER_VERSION CL DEVICE ADDRESS BITS	= 64
CL_DEVICE_AVAILABLE	= true
CL_DEVICE_ENDIAN_LITTLE	= true
CL_DEVICE_GLOBAL_MEM_CACHE_SIZE	= 32768 = 0
CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE	
CL_DEVICE_GLOBAL_MEM_SIZE	= 536870912
CL_DEVICE_IMAGE_SUPPORT	= true
CL_DEVICE_LOCAL_MEM_SIZE	= 16384
CL_DEVICE_MAX_CLOCK_FREQUENCY	= 1000 = 1
CL_DEVICE_MAX_COMPUTE_UNITS	
CL_DEVICE_MAX_CONSTANT_ARGS	= 8
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE	= 134217728
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS CL DEVICE MAX WORK ITEM DIMENSIONS	= 3
CL DEVICE MAX WORK TIEM DIMENSIONS CL DEVICE MIN DATA TYPE ALIGN SIZE	= 8192 = 1024
CL_DEVICE_MIN_DAIA_IIPE_ALIGN_SIZE CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR	= 4
CL DEVICE PREFERRED VECTOR WIDTH CHAR	= 2
	= 1
CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG	= 1
CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT	= 1 = 0
CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE	
Command queue out of order? Command queue profiling enabled?	= false
	= true
Using AOCX: hello_world.aocx	
Reprogramming device [0] with handle 1	
Vornol initialization is semilate	
Kernel initialization is complete.	
Launching the kernel	

Figure 1-3 Hello-world demo

root@socfpga:~/hello_world# cd .. root@socfpga:~# cd vector add/ root@socfpga:~/vector_add# aocl program /dev/acl0 vectorAdd.aocx aocl program: Running reprogram from /home/root/opencl arm32 rte/board/c5soc/arm 32/bin Reprogramming was successful! root@socfpga:~/vector_add# ./vector add Initializing OpenCL Platform: Intel(R) FPGA SDK for OpenCL(TM) Using 1 device(s) de10 nano sharedonly : Cyclone V SoC Development Kit Using AOCX: vectorAdd.aocx Reprogramming device [0] with handle 1 Launching for device 0 (1000000 elements) Time: 158.630 ms Kernel time (device 0): 8.531 ms Verification: PASS root@socfpga:~/vector add#

Figure 1-4 vector_add demo

• Using Linux Host PC with Root Privilege

The following software should be installed on the Linux host PC to complete the setup.

- Minicom a terminal which can be installed via command "yum install minicom" or "apt-get install minicom"
- 1. Download DE10-Nano BSP from <u>http://de10-Nano.terasic.com/cd</u> and extract the linux image file **de10_nano_opencl.img** from **de10_nano_opencl.zip.**
- 2. Write the Linux image file **de10_Nano_opencl.img** into the microSD card with Disk Imager.
 - Insert the microSD card into a card reader and connect it to the host PC. If the microSD card already contains an image, existing partitions will be mounted automatically. Please unmounts all the partitions.
 - Type dmesg|tail command to check which device name is assigned to the microSD card. It's likely to be /dev/sdb (change /dev/sdb to the device name found in the previous step).
 - Run "sudo dd if=de10_nano_opencl.img of=/dev/sdb bs=1M"
 - Run "sync"

- 3. Insert the microSD card into the microSD card slot (J11) of DE10-Nano.
 - 4. The DIP switch (SW10) on DE10-Nano for MSEL[4:0] must be set to 01010.
 - 5. Connect the host PC to the UART-to-USB port (J4) on DE10-Nano with an USB cable. Users should install the UART-to-USB device Linux driver as described in the FTDI driver download web page http://www.ftdichip.com/Drivers/VCP.htm.
 - 6. Launch Minicom utility ("minicom -s" for the configuration when it's launched the first time) on the host PC. The baud rate should be set to 115200. Shutdown the hardware flow control.
 - 7. Power on DE10-Nano to boot Linux and log in as root. There's no password required.
 - 8. Type "source ./init_opencl.sh" to load the OpenCL Linux kernel driver and setup environment variables for OpenCL Run-Time Environment that is already installed on the microSD card.
 - 9. Launch hello world demo:

erasic

- Type "cd hello_world/" to change the current directory to the hello_world folder.
- Type "aocl program /dev/acl0 hello_world.aocx" to reconfigure the FPGA with the hello_world kernel.
- Type "./hello_world" to launch the hello_world host application, as shown in **Figure** 1-3.

10. Launch vector Add demo:

- Type "cd .." to return to the home directory.
- Type "cd vector_add" to change the directory to the vector_add folder.
- Type "aocl program /dev/acl0 vectorAdd.aocx" to reconfigure the FPGA with the vectorADD kernel.
- Type "./vector_add" to launch the vector_add host application, as shown in Figure 1-4.

Chapter 2

OpenCL on Windows

This chapter describes how to setup DE10-Nano OpenCL development environment in Windows 64-bit and then build and execute OpenCL project on DE10-Nano. For more details about getting started with Intel OpenCL for Cyclone V SoC, please refer to:

http://www.altera.com/literature/hb/opencl-sdk/aocl_c5soc_getting_started.pdf

2.1 Software Installation

This section describes how to install the software required for developing OpenCL project on DE10-Nano.

• Install Intel Quartus Prime and OpenCL SDK

Intel Quartus Prime and OpenCL SDK are available from the website:

http://dl.altera.com/opencl

For Quartus Prime installation, please make sure the Cyclone V device package is selected.

• Install Intel SoC EDS

Intel SoC EDS tool is required to cross-compile the Host Program for ARM processor. The software is available from the website:

http://dl.altera.com/soceds

Please make sure the DS-5 is installed during the installation of SoC EDS.

• Install DE10-Nano OpenCL Board Support Package (BSP)

After Quartus Prime and OpenCL SDK are installed, please create a new folder "terasic" under the folder "D:\intelFPGA\16.1\hld\board", assuming Intel Quartus Prime is installed under the folder "D:\intelFPGA\16.1". Please download the DE10-Nano BSP file **DE10-Nano_OpenCL_BSP_1.0.zip** from

http://de10-Nano.terasic.com/cd

Please uncompress the zip file and copy the "de10_Nano" folder to the "terasic" folder created previously, as shown in **Figure 2-1**.

D:\intelFPGA\16.1\hld\board						
^	名称 ^	修改日期				
	a10_ref	2016/11/24 9:21				
	c5soc	2017/4/10 14:23				
	📙 custom_platform_toolkit	2016/11/24 9:21				
	📕 dspba_sil_jtag	2016/11/24 9:21				
	dspba_sil_pcie	2016/11/24 9:21				
	ray_tracing	2017/3/2 11:40				
	s5_ref	2016/11/24 9:21				
	terasic	2017/5/3 15:20				

Figure 2-1 Location of "D:/intelFPGA/16.1/hld/board/terasic" folder

2.2 OpenCL License Installation

An OpenCL license is required for Intel OpenCL SDK to compile OpenCL project. Users can purchase the OpenCL license from either Intel PSG or Terasic. A file named "license.dat" will be given upon purchasing OpenCL SDK license. For license installation, please place the file "license.dat" in the local disk drive "c:\" and create a Windows environment variable LM_LICENSE_FILE with value "c:\license.dat". The value of this environment variable needs to

match the actual location of "license.dat" file.

The procedures below show how to create the **LM_LICENSE_FILE** environment variable in Windows 7:

- 1. Open the Start Menu and right click on **Computer**. Select **Properties**.
- 2. Select Advanced system settings.
- 3. Select **Environment Variables** from the **Advanced** tab.
- 4. Select New.
- 5. In the New User Variable dialog shown in Figure 2-2, type "LM_LICENSE_FILE" in the Variable name field. Then if you use a license file type "c:\license.dat" in the Variable value field, else a floating license on a license server type "port number @server IP address".

r Edit User Variable		23
Variable name: Variable value:	LM_LICENSE_FILE c:\license.dat	
	ОК	Cancel
Edit User Variable		x
Variable <u>n</u> ame:	LM_LICENSE_FILE	
Variable <u>v</u> alue:	1800@192.168.1.56	Cancel

Figure 2-2 Setup LM_LICENSE_FILE environment variable

2.3 OpenCL Environment Configuration

Please add the following paths into the PATH environment variable:

• OpenCL Configuration

For the operating system to find the OpenCL utilities correctly, users need to add the following

ter <mark>asIC</mark>

paths into the PATH environment variable:

- 1. %ALTERAOCLSDKROOT%\bin
- 2. %ALTERAOCLSDKROOT%\host\windows64\bin

Here are the procedures to add these two paths to the **PATH** environment variable on Windows 7:

- 1. Open the Start Menu and right click on **Computer**. Select **Properties**.
- 2. Select Advanced system settings.
- 3. Select Environment Variables from the Advanced tab
- 4. Select **PATH** item and click the **Edit** button.
- 5. In the **Edit User Variable** dialog shown in **Figure 2-3**, add the following two strings into the **Value** edit box. The strings should be separated by the symbol ";".
 - %ALTERAOCLSDKROOT%\bin
 - %ALTERAOCLSDKROOT%\host\windows64\bin

Edit User Variable	×
Variable <u>n</u> ame:	РАТН
Variable <u>v</u> alue:	%ALTERAOCLSDKROOT%\bin;%ALTERAOC
	OK Cancel

Figure 2-3 Modify PATH Environment Variable

• DE10-Nano BSP Configuration

For Intel OpenCL SDK to find the kit location of DE10-Nano correctly, Users need to create an environment variable **AOCL_BOARD_PACKAGE_ROOT** and set its value as:

 $``\% ALTERAOCLSDKROOT\% \board\de10_nano''$

The procedures to create the required **AOCL_BOARD_PACKAGE_ROOT** environment variable in Windows 7 are:

- 1. Open the Start Menu and right click on **Computer**. Select **Properties**.
- 2. Select Advanced system settings.
- 3. Select Environment Variables from the Advanced tab.
- 4. Select New.
- 5. In the New User Variable dialog shown in Figure 2-4, type

DE10-Nano OpenCL

13

www.terasic.com May 3, 2017 "AOCL_BOARD_PACKAGE_ROOT" in the Variable name field and type "%ALTERAOCLSDKROOT%\board\de10_nano" in the Variable value field.

New User Variable	—
Variable name: Variable value:	AOCL_BOARD_PACKAGE_ROOT
	OK Cancel

Figure 2-4 Setup AOCL_BOARD_PACKAGE_ROOT environment variable

2.4 OpenCL Environment Verification

This section shows how to confirm the OpenCL environment is setup correctly. Please open **Command Prompt** window by clicking Windows **Start** button and click **All Programs**. Click **Accessories** and then click **Command Prompt**.

• Verify Utility

Type "aocl version" command in the command prompt window and see if the version displayed matches the number shown in **Figure 2-5**. If the 'aocl' command cannot be found, please check if the "% ALTERAOCLSDKROOT%\bin" path is added to the **PATH** environment variable correctly.

```
C:\Users\matthew>aocl version
aocl 16.1.0.196 (Intel(R) FPGA SDK for OpenCL(TM), Version 16.1.0 Build 196, Cop
yright (C) 2016 Intel Corporation)
C:\Users\matthew>_
```


• Verify Target Board

Type "aoc --list-boards" command in the command prompt window and make sure "de10_Nano_sharedonly" is listed in the **Board list**, as shown in **Figure 2-6**. If "de10_nano

_sharedonly" is not listed, please check if the **AOCL_BOARD_PACKAGE_ROOT** environment variable is assigned correctly.

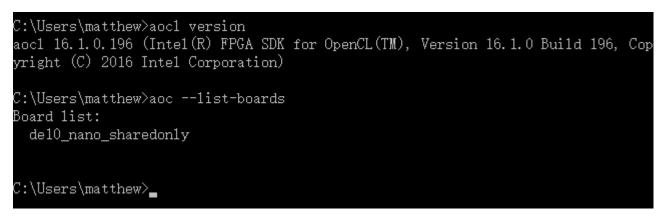


Figure 2-6 'de10_nano_sharedonly' is listed in the Board list

How to Check Environment Variables

The value of environment variables can be retrieved by typing 'echo' in the command prompt window. For example, type "echo %AOCL_BOARD_PACKAGE_ROOT%" can retrieve the value of environment variable **AOCL_BOARD_PACKAGE_ROOT**.

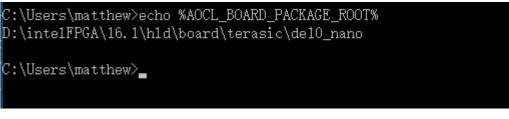


Figure 2-7 The value of AOCL_BOARD_PACKAGE_ROOT environment variable

2.5 Compile and Execute OpenCL Project

This section shows how to compile and execute OpenCL kernel and OpenCL Host Program provided in the DE10-Nano BSP. Users can follow the same procedures to compile and execute other OpenCL examples for DE10-Nano.

• Compile OpenCL Kernel

The utility aoc (Intel SDK for OpenCL Kernel Compiler) is used to compile OpenCL kernel. Type

"cd D:\intelFPGA\16.1\hld\board\terasic\de10_nano\examples\boardtest" in the command prompt window to change the current directory to the folder **boardtest** and then type:

"aoc device/boardtest.cl -o bin/boardtest.aocx --board de10_nano_sharedonly --report"

to compile the OpenCL kernel. It will take approximately an hour to complete the compilation. When the compilation process is complete, an OpenCL image file **boardtest.aocx** is generated under the **bin** folder. **Figure 2-8** shows the OpenCL kernel is compiled successfully. For the parameters of **aoc** used to compile boardtest.cl, please refer to the README.txt included in the **boardtest** folder. For more details about the usage of **aoc**, please refer to the **Intel SDK for OpenCL Programming Guide**:

http://www.altera.com/literature/hb/opencl-sdk/aocl_programming_guide.pdf

global const uint *index, 10 warnings generated. Warning: Kernel 'mem_stream' has unused argument 'arg' Warning: Kernel ' mem_stream' has unused argument 'arg2 Warning: Kernel ' mem_writestream' has unused argument argí Warning: Kernel ' mem_writestream' has unused argument 'arg2' ∛arning: Kernel ' kclk' has unused argument src Warning: Kernel 'kclk' has unused argument dsť ∛arning: Kernel 'kclk' has unused argument ' arg arning: Kernel 'kclk' has unused argument arg2 Estimated Resource Usage Summary + Usage Resource Logic utilization 51% ALUTs 30% Dedicated logic registers 23% Memory blocks 33% DSP blocks 2%

D:\inte1FPGA\16.1\h1d\board\de10_standard\examples\boardtest>

Figure 2-8 Screenshot of OpenCL kernel compiled successfully

• Compile Host Program

The Host Program is compiled in Intel SoC EDS. Please launch embedded command shell by executing the "Embedded_Command_Shell.bat", as shown in **Figure 2-9**, under the folder "D:\intelFPGA\16.1\embedded", assuming Intel SoC EDS is installed under the directory "D:\intelFPGA\16.1"

ter asic

	\intelFl	PGA\16.1\embedded				
	^		修改日期	类型	大小	
*		drivers	2017/1/4 14:53	文件夹		
*		ds-5	2017/1/4 15:08	文件夹		
*		ds-5_installer	2017/1/4 14:54	文件夹		
*		embeddedsw	2017/1/4 14:53	文件夹		
		examples	2017/1/4 16:55	文件夹		
*		host_tools	2017/1/4 14:53	文件夹		
		ip	2017/1/4 14:53	文件夹		
dard	4	Embedded_Command_Shell.bat	2016/10/25 17:41	Windows 批处理	2 KB	
		embedded_command_shell.sh	2016/10/25 17:41	SH 文件	2 KB	
iew		env.sh	2016/10/25 17:41	SH 文件	10 KB	
		version.txt	2016/10/25 17:41	文本文档	1 KB	

Figure 2-9 Location of embedded_command_Shell.bat

Type the following in the command shell:

erasic

"cd /cygdrive/D/intelFPGA/16.1/hld/board/terasic/de10_nano/examples/boardtest/" to change the current directory to the folder where the board test project is located. Type "make" to build the host project shown in **Figure 2-10**. If the compilation is successful, a binary file **boardtest_host** will be generated under the boardtest folder.

Figure 2-10 Type 'make' to build the boardtest host project

• Execute Board Test Project

Please boot DE10-Nano with the Linux image generated from Chapter 1.4 for DE10-Nano OpenCL. Users need to copy both the kernel file **boardtest.aocx** and host file **boardtest_host** generated from the previous section from the host PC to Linux running on DE10-Nano. Users can copy the file by typing Linux "scp" command through Ethernet or USB storage.

After these two files are copied to Linux running on DE10-Nano, please go to the terminal and type "source ./init_opencl.sh" to setup OpneCL environment. Type "chmod +x boardtest_host" to add execution attribute to the host file and type "aocl program /dev/acl0 boardtest.aocx" to configure the FPGA, as shown in **Figure 2-11**. Type "./boardtest_host" to launch the host application, as shown in **Figure 2-12**.

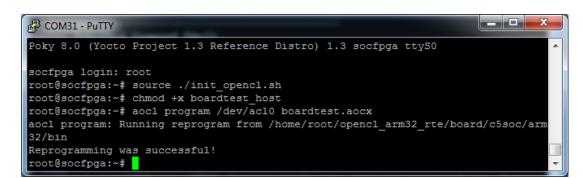


Figure 2-11 "aocl program /dev/acl0 boardtest.aocx" configures FPGA successfully

```
It is assumed that all memory interfaces have equal widths.
BOARD BANDWIDTH UTILIZATION = 42.06%
Warning : Board bandwidth utilization is less than 90%
 Kernel mem bandwidth assuming ideal memory: 15953 MB/s
           * If this is lower than your board's peak memory
           * bandwidth then your kernel's clock isn't fast enough
           * to saturate memory
              approx. fmax = 125
Kernel mem bandwidth assuming ideal memory is greater than board's peak memory b
andwidth. Success.
KERNEL-TO-MEMORY BANDWIDTH = 2692 MB/s/bank
         ******** TEST COMPLETED FOR DEVICE 0 **********************
BOARDTEST PASSED
root@socfpga:~/boardtest#
```

Figure 2-12 "boardtest_host" is executed successfully

erasic

Chapter 3

This chapter describes how to setup the environment for the development of OpenCL on Linux, build OpenCL project including kernel and host application, followed by execution and verification of OpenCL project.

For more details about OpenCL on Linux, please refer to the Getting Started Guild of Intel OpenCL Cyclone V SoC:

http://www.altera.com/literature/hb/opencl-sdk/aocl_c5soc_getting_started.pdf

3.1 Software Installation

This section describes where to download and how to install the software required for OpenCL on DE10-Nano.

• Download Intel Quartus Prime and OpenCL SDK

Intel Quartus Prime and OpenCL SDK are available from the website of Intel PSG:

http://dl.altera.com/opencl/

Follow the link and select Linux operation system with version 16.1, as shown in Figure 3-1.

Figure 3-1 Download the Linux version of OpenCL SDK v16.1 from the website of Intel PSG

Choose Direct Download as the download method since the download manager is for Windows only. Click the arrow to download Intel FPGA Design Software, as shown in **Figure 3-2**., and make sure the Cyclone V device is included. Users can download Intel SDK for OpenCL as standalone installer or RPM package.

Windows SDK	Linux SDK	RTE	Updates
Download and	install instru	ctions:	<u> ▼ More</u>
<u>Read Intel FPG</u>	A SDK for Ope	nCL Get	ting Started Guide
			ncludes Quartus Prime software and devices)
 System Requireme 	ents		

Figure 3-2 Download Intel OpenCL SDK Linux version with Cyclone V device support

• Install Intel SoC EDS

Intel SoC EDS tool is required to cross-compile the host program for ARM processor. The software is available from the website:

http://dl.altera.com/soceds

Please make sure DS-5 is installed during the installation of SoC EDS.

• Install DE10-Nano OpenCL Board Support Package (BSP)

After Quartus Prime and OpenCL SDK are installed, please copy the terasic folder to the Intel OpenCL SDK folder "/root/intelFPGA/16.1/", as shown in **Figure 3-3**.

<	Hom	ne intelFPGA 16.1 hld	board	Q = = ~	≡ _ ¤ ×
Ø	Recent				
ŵ	Home	a10_ref	c5soc	custom_platform_	dspba_sil_jtag
۵	Documents			toolkit	. , ,
∻	Downloads				
99	Music	dspba_sil_pcie	s5_ref	terasic	
Ō	Pictures				
	Videos				
0	Trash				

Figure 3-3 Copy the terasic folder to the /root/intelFPGA/16.1/hld/bolard folder

3.2 OpenCL License Installation

A license for OpenCL is required to compile OpenCL project with Intel OpenCL SDK. Users can purchase the OpenCL license from either Intel or Terasic. After users have obtained a license file "license.dat", named it needs to be placed in the local disk such as "/root/intelFPGA/16.1/hld/license.dat". Users also need to create an environment variable LM_LICENSE_FILE and set its value as "/root/intelFPGA/16.1/hld/license.dat", which corresponds to the actual location of the license file. If you use a floating license on a license server, please set its value as "port number@server IP address"

The next section will describe how to setup the license environment.

3.3 Configuration of Environment Variables

If users install the Intel FPGA development software and OpenCL SDK on a system that does not contain any .cshrc or bash resource file (.bashrc) in the directory, the ALTERALOCLSDKROOT

and PATH environment variables must be set manually. Users also need to create an environment variable **AOCL_BOARD_PACKAGE_ROOT** for Intel OpenCL SDK to find the kit location of DE10-Nano correctly. The value of this environment variable needs to be set as:

"\$ALTERAOCLSDKROOT/board/terasic/de10_nano"

Alternatively, users can edit the "/etc/profile", and append the environment variables to it. It can be done by typing "*gedit /etc/profile*" command in the terminal to open the **profile** file with the **gedit** editor tool and append the following settings to the **profile** file. After the edit is complete, save the file and type "*source /etc/profile*" command in the terminal to apply the settings.

export QUARTUS_ROOTDIR=/root/intelFPGA/16.1/quartus export ALTERAOCLSDKROOT=/root/intelFPGA/16.1/hld export PATH=\$PATH:\$QUARTUS_ROOTDIR/bin:/root/intelFPGA/16.1/embedded/ds-5/bin: \ /root/intelFPGA/16.1/embedded/ds-5/sw/gcc/bin:\$ALTERAOCLSDKROOT/bin: \ \$ALTERAOCLSDKROOT/linux64/bin: export LD_LIBRARY_PATH=\$ALTERAOCLSDKROOT/linux64/lib export AOCL_BOARD_PACKAGE_ROOT=\$ALTERAOCLSDKROOT/board/terasic/de10_nano export QUARTUS_64BIT=1 export LM_LICENSE_FILE=1800@192.168.1.56

3.4 Verification of OpenCL Environment

This section shows how to make sure the OpenCL environment is setup correctly. Please open the terminal window in Linux.

• Verify Utility

Type "aocl version" command in the terminal and make sure the aocl version reported matches the information shown in **Figure 3-4.** If the 'aocl' command cannot be found, please check if the "\$ALTERAOCLSDKROOT/bin" path is added to the **PATH** environment variable correctly.

```
[root@localhost de10_standard]# aocl version
aocl 16.1.0.196 (Intel(R) FPGA SDK for OpenCL(TM), Version 16.1.0 Build 196, Cop
yright (C) 2016 Intel Corporation)
[root@localhost de10_standard]#
```

Figure 3-4 The information about aocl version

• Verify Target Board

Type "aoc --list-boards" command in the terminal and make sure "de10_Nano_sharedonly" is displayed in the Board list, as shown in **Figure 3-5.** If "de10_nano_sharedonly" is not listed, please check if the **AOCL_BOARD_PACKAGE_ROOT** environment variable is assigned correctly.

```
[root@localhost de10_nano]# aoc --list-boards
Board list:
   de10_nano_sharedonly
   _____
```

[root@localhost de10_nano]# 📕

Figure 3-5 'de10_Nano_sharedonly' is shown in the Board list

• Check Environment Variables

The values of environment variables can be retrieved by typing 'echo' command in the terminal. For example, type "echo \$AOCL_BOARD_PACKAGE_ROOT" can dump the value of environment variable **AOCL_BOARD_PACKAGE_ROOT**, as shown in **Figure 3-6**.

```
[root@localhost de10_nano]# echo $AOCL BOARD PACKAGE_ROOT
/root/intelFPGA_pro/16.1/hld/board/de10_nano
[root@localhost de10_nano]#
[root@localhost de10_nano]#
```

Figure 3-6 Check the environment variable AOCL_BOARD_PACKAGE_ROOT

3.5 Build and Execute OpenCL Project

This section shows how to compile and test OpenCL example project and OpenCL host program provided in DE10-Nano BSP. Users can follow the same procedures to compile and test other OpenCL projects for DE10-Nano.

• Compile OpenCL Kernel

The utility **aoc** (Intel SDK for OpenCL Kernel Compiler) is used to compile OpenCL kernel. Type "*cd /root/intelFPGA/16.1/hld/board/terasic/de10_Nano/examples/boardtest*" in the terminal to change the current directory to the **boardtest** project folder. Type

"aoc device/boardtest.cl -o bin/boardtest.aocx --board de10_nano_sharedonly --report" to compile the OpenCL kernel. The compilation process will take about one hour. When the compilation process is complete, an OpenCL image file **boardtest.aocx** is generated under the **bin**

folder. Figure 3-7 shows the screenshot after the OpenCL kernel is compiled successfully. For the parameters of **aoc** used to compile boardtest.cl, please refer to the README.txt in the boardtest folder. For more information about the usage of **aoc**, please refer to the **Intel SDK for OpenCL Programming Guide**:

http://www.altera.com/literature/hb/opencl-sdk/aocl_programming_guide.pdf

[root@localhost boardtest]# aoc device/boardtest.cl -o bin/boardtest.aocx --sw-d imm-partition --board del0_standard_sharedonly --report aoc: Selected target board del0_standard_sharedonly /root/intelFPGA/16.1/hld/board/terasic/de10 standard/examples/boardtest/device/b oardtest.cl:76:20: warning: declaring kernel argument with no 'restrict' may lea d to low kernel performance __global uint *dst, /root/intelFPGA/16.1/hld/board/terasic/de10 standard/examples/boardtest/device/b oardtest.cl:77:26: warning: declaring kernel argument with no 'restrict' may lea d to low kernel performance __global const uint *index, 2 warnings generated. Warning: Kernel 'mem writestream' has unused argument 'arg' Warning: Kernel 'mem_writestream' has unused argument 'arg2' Warning: Kernel 'mem_readstream' has unused argument 'arg2' Warning: Kernel 'mem_read_writestream' has unused argument 'arg' +-----; Estimated Resource Usage Summary +----+ ; Resource + Usage +------; Logic utilization ; 50% ; 30% : ALUTs ; Dedicated logic registers ; 23% 31% ; Memory blocks ; DSP blocks 0% +----+ [root@localhost boardtest]#

Figure 3-7 OpenCL kernel is compiled successfully

• Compile Host Program

Intel SoC EDS is used to compile the host program. Please launch the embedded command shell by executing the "Embedded_Command_Shell.sh", as shown in **Figure 3-8**, under the folder "/root/intelFPGA/16.1/embedded", assuming Intel SoC EDS is installed under the directory "/root/intelFPGA/16.1/".

<	> 🗘 Hom	e intelFPGA 16.1 er	mbedded	Q = ::: v	= - • ×
Ø	Recent				
ŵ	Home	ds-5	ds-5_installer	(embedded_)	embeddedsw
۵	Documents			command_shell.sh	
÷	Downloads				
99	Music	env.sh	examples	host_tools	ip
۵	Pictures		·		·
)	Videos				
0	Trash	version.txt			

Figure 3-8 Location of Embedded_Command_Shell.sh

In the command shell, please type:

"cd /root/intelFPGA/16.1/hld/board/terasic/de10_Nano/examples/boardtest/"

and the current directory will be changed to the folder where the board test project is located. Type "make" to build the host project, as shown in **Figure 3-9**. If the host project is compiled successfully, a host binary file **boardtes_host** will be generated under the boardtest folder.

```
[root@localhost boardtest]# make
arm-linux-gnueabihf-g++ -fPIC host/main.cpp host/memspeed.cpp host/reorder.cp
p host/reorder_ocl.cpp host/hostspeed.cpp host/hostspeed_ocl.cpp host/acluti
l.cpp host/timer.cpp host/rwtest.cpp host/kernel_launch.cpp host/kernel_rw.c
pp -o boardtest_host -DLINUX -I/root/intelFPGA/16.1/hld/host/include -L/root/in
telFPGA/16.1/hld/board/terasic/de10_standard/arm32/lib -L/root/intelFPGA/16.1/hl
d/host/arm32/lib -L/root/intelFPGA/16.1/hld/host/arm32/lib -Wl,--no-as-needed -l
alteracl -lalterammdpcie -lstdc++ -lelf -lstdc++ -lrt
/root/intelFPGA/16.1/embedded/ds-5/sw/gcc/bin/../lib/gcc/arm-linux-gnueabihf/4.8
.3/../../../arm-linux-gnueabihf/bin/ld: warning: libacl_emulator_kernel_rt.so
, needed by /root/intelFPGA/16.1/hld/board/terasic/de10_standard/arm32/lib/libal
teracl.so, not found (try using -rpath or -rpath-link)
[root@localhost boardtest]#
```

Figure 3-9 Type 'make' to build the boardtest_host project

• Test boardtest project

Please boot DE10-Nano with the Linux image for DE10-Nano OpenCL described in Chapter 1.4. Users need to copy the generated kernel file **boardtest.aocx** and the host file **boardtest_host** from the host PC to the Linux system running on DE10-Nano. This can be done by establishing SSH connection via Ethernet with "scp" command or via usb-storage with "mount" command.

After these two files are copied to the Linux system running on DE10-Nano, please add executable attribution with "chmod" command and type "aocl program /dev/acl0 boardtest.aocx" to configure the FPGA, as shown in **Figure 3-10**. Type "./boardtest_host" to launch the host application, as shown in **Figure 3-11**.

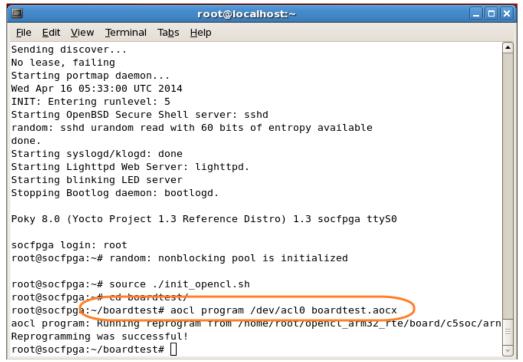


Figure 3-10 "aocl program /dev/acl0 boardtest.aocx" configures the FPGA successfully

			root@loo	alhost:	~					. o x
<u>F</u> ile <u>E</u> dit <u>N</u>	<u>V</u> iew <u>T</u> ermina	l Ta <u>b</u> s <u>H</u> e	lp							
OpenCL N	lotification	Callback:	Requested	memorv	obiect	size	exceeds	device	limits	-
	lotification			-	-					
	lotification									
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
	lotification		•	2	2					
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
	lotification			-	-					
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
	lotification									
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
	lotification									
	lotification		-	-	-					
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
	lotification									
	lotification									
	lotification				-					
OpenCL N	lotification	Callback:	Requested	memory	object	size	exceeds	device	limits	
	lotification			-	-					
	lotification									
	lotification									
	lotification									
	lotification		-	-	-					
	lotification		•	2	2					
	lotification		•	2	2					
	lotification			-	-					
	lotification									
	lotification									
	otification									
	lotification									
	lotification				2					
	lotification		Requested	memory	object	size	exceeds	device	limits	
Min time										
Max time										
Avg time										
Finished	4000 iterati	lons with (errors							_
										=
SNOOP TEST										
	ga:~/boardte			icom 2	1	VT103		Offlin		
CIRL-A Z	for help 11	5200 8N1	NOR Mir	ILCOM 2	1	VT102	-	Offline		_

Figure 3-11 "boardtest_host" test is successful

