
USB adaptor of some kind, it’s most likely
going to be /dev/sdx where ‘x’ is the digit
representing the highest device of this kind.
To find out, run the fdisk ­l command. The tail
end of the output from this command can be
seen at the top of this page. I can recognise
the card by the size, 8Gb (or 7948Mb as
listed above) which is the only device or
partition that I have of this size. Also shown
are the two partitions on the device and
seeing that one of them is small and W95
FAT32 (LBA) and the other is Linux, then I
am certain that this is my SD card.

In the above, the suffixes 'p1' and 'p2' in the
Device Boot column indicate the partitions on
the card. The card itself is the device named
/dev/mmcblk0 and we need the device name,
not the partition names.

Make a Backup
To make a backup switch to your backup
directory, where you intend to keep the copy
of your SD card, and run the following
command, typed all on one line:

$ dd if=/dev/mmcblk0 of=Rpi_8gb_backup.

img bs=2M

The output from the above command will be
similar to the following:

3790+0 records in

3790+0 records out

7948206080 bytes (7.9 GB) copied,

1369.42 s, 5.8 MB/s

That’s it. The whole 8Gb SD card has been
(slowly) copied to my computer. How do I
know it worked? Type ls ­l ­h and you will see
the new file name and size.

Compressing the Backup
Once created and checked, the backup
image can be compressed to save space.

This is a simple matter of using the gzip
command:

$ gzip ­9 Rpi_8gb_backup.img

This command attempts to perform
maximum compression. This uses a lot of
CPU but will result in the smallest output file.
You may adjust the trade off between CPU
and file sizes by changing the '­9' option to a
smaller number. The quickest compression
will be obtained with the '­1' option at the
expense of the file size being larger.

The use of gzip in this manner requires that
you have enough space to save both the full
size image file and the compressed image
for as long as the gzip command is running.
Once complete, the full sized file will be
deleted leaving only a compressed file,
named as per the original file name but with
an additional '.gz' extension. In this example
my compressed image file would be
Rpi_8gb_backup.img.gz.

Compression on the Fly
If you only wish to make a backup or if you
don't have enough available space to hold
both the full sized image and the
compressed image, then you may wish to
consider compressing on the fly.

Unless otherwise instructed, the dd
command defaults its output file to be the
console. You can use this feature to pipe the
output through gzip and create a
compressed image file in a single step. You
will not need as much disc space because
the full sized image file is never created, only
the smaller compressed one. The command
to do this is:

$ dd if=/dev/mmcblk0 bs=2M | \

gzip ­9 ­ > Rpi_8gb_backup.img.gz

The trailing "\" must be at the very end of the

Disk /dev/mmcblk0: 7948 MB, 7948206080 bytes

4 heads, 16 sectors/track, 242560 cylinders, total 15523840 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x000dbfc6

Device Boot Start End Blocks Id System

/dev/mmcblk0p1 8192 122879 57344 c W95 FAT32 (LBA)

/dev/mmcblk0p2 122880 15523839 7700480 83 Linux

13




