
line, just before you press the Return key. It
indicates to the shell that the command is not
yet complete and more text will follow.

Continued over page...
Because you are redirecting the output from
gzip to a file, it is your responsibility to supply
the file name and the '.gz' extension. You
must also include the hyphen after the '­9' in
the gzip command. This tells gzip to write its
output to the console which, in this case, has
been redirected to a file named
Rpi_8gb_backup.img.gz.

Splitting the Backup
As mentioned previously, some file systems
cannot cope with files larger than a specific
size. FAT32, for example, has a 4Gb limit
and 32­bit operating systems can also only
cope with 4Gb for each individual file. If you
intend to create or copy your backups with
these types of systems or devices, then you
must split the image files into appropriate
sized chunks.

Once again, a pipe comes to the rescue. The
split utility in Linux is designed to allow a
large file to be split into a number of smaller
files, each of a given size. If we wish to
create a compressed backup of an SD card,
ready for burning onto one or more CDs or
DVDs, then the following command will
backup the card, compress the backup on
the fly and then split the compressed image
into a number of 2Gb files ready to be
burned onto DVDs.

$ dd if=/dev/mmcblk0 bs=2M | \

gzip ­9 ­ | \

split ­­bytes=2G ­ \

Rpi_8gb_backup.img.gz.part_

Remember to press the Return key
immediately after typing the "\" on each line.

The split command, similar to gzip, requires
a hyphen as the input file name. In the above
there is no input file name as we are reading
from a pipe, so the hyphen tells split to read
the input from the console which, in this
case, is the piped output from gzip.

The final parameter to split defines the root
part of the output file names. Each one will
be called 'Rpi_8gb_backup.img.gz.part_xx'.

The 'xx' part will be 'aa', 'ab', 'ac' and so on.

It is possible that compressing the SD image
will make the file small enough to fit within
the file system limits of your chosen output
device. In this case, you may rename the
single part file back to the original name.

Restoring Backup Files
Having the backup image compressed or
split into a number of sections means that
restoring the backup takes a little more work.
Once again the process is relatively simple
and involves piping a number of commands
together to form a chain of utilities, with the
final output going into the dd command. This
then writes the data back to the SD card.

The simplest case is when the image file has
been compressed but not split. To restore
this directly to the SD card, without having to
create a full sized uncompressed image, type
the following command:

$ gunzip Rpi_8gb_backup.img.gz ­c | \

dd of=/dev/mmcblk0 bs=2M

The '­c' in the gunzip command above is
required to tell gunzip to write the
decompresssed data to the console. The dd
command reads its input, unless otherwise
specified, from the console so the output
from gunzip passes straight into dd and out
to the SD card.

If the backup is split into chunks, then we
need to concatenate these together in the
correct order and pipe that to the above
command pipeline, as follows:

$ cat Rpi_8gb_backup.img.gz.part_* | \

gunzip ­c | \

dd of=/dev/mmcblk0 bs=2M

The list of files to be joined back together
again must be specified in the correct order.
However, using a wild card to the cat
command causes them to be read in
alphbetical order, which is exactly how we
want them to be.

Coming in Part 2
In part 2 of this article, I will show you how
you can check that the backup was
successful and how you can use the backup

14




