GenREF
v1.00

MDOS Reterence guide.

(C) Copyright 1989
J. Paul Charlton
ALL RIGHTS RESERVED

MEMORY - CONTENTS

Memory management OVEIVIEWmecssesecrssasarsscssemssussssemscesssssmsssassasssssss 1
Calling memory functions weereeneasssanensanasanns 2
AVAIlADIE MEMOTY «coucuvreremenecsrenremee s sosnssnsenssssessemsensssesssssassossosmssesssassssasessesne 3
AllOCate MEMOLY ...ceeeeirereeneransrrserenrmseesemsneasssaans etvteearesrasesesssseneaseseansnsares 3
Release memory............. seressssssassssessaras - crrrsassas st eneasaens 9
MaD MEIMIOLY.....oirnrerismmsssnsrammsssssssssmmrsssssssersosssassssssssssssasssssnssasssssnssrosnonsassoen 12
GEt MEMOTY LSLuuivisviirnsisssiseinissnncnssssessermsssisionsassmessssssisasssrsssssatarsssssssssssssess 14
Declare shared mMemOTY........ovevccerreeenreasmsmmssesssssasmasessessasensesersessessrsensesenss 16
Release shared MEMOTY ... 18
Use Shareq MEMOrY.....coeeeuiuececesreeereereesee s e sessssasssenssesssesssss et sesnsssssessssnans 19
Get size of shared group......vue.. EeerIIs e eo e e R Le bt es AT TY a b br e bR s bR R nE R ap Ry e nanis 20
FTee 188K ettt ssss e aes s sa s s e s s r s sasae 21
Get MEIMOTY PALE.coucurerreerrsrereereseesemsesssseasesemsessssemssssasessssssssssssssssessssensasassasasess 21
S T 10T 10T T OO 22
Free memOry NOGe ... esessssen s eesacssssreasesessassesssssasserensaressessae 23
Link MEMOTY NOGE e cuieecmceriremcnsenesiesensessasessassssnssnseussesasnssssensasssmemsesensseins 23

Get Memory list (SYSEEIM) cuvveeureeecerevereeemrecusaseesessssssnesssensssessssssssssseesssensnsene 24

MEMORY MANAGEMENT OVERVIEW

The memory management routines in MDOS are provided to aid a
programmer in writing applications which are larger than the 64 Kbytes directly
addressable by the CPU’s 16 address lines. They also serve the purpose of
providing each task with it’s own private address space, separate from other the
memory accessible to other tasks.

Each task under MDOS can have 2 Mbytes of virtual memory, using 21 address
bits. The 21 addresses bits consist of two fields. The first field includes the eight
most significant address bits, and is referred to as the virtual page number. The
second field consists of the thirteen least significant address bits, and is referred to
as the page offset.

The physical memory in the Geneve computer has 21 address lines, for a
maximum of 2 MBytes of physical memory. Like virtual memory, each physical
address can be thought of as a 21 bit address of two fields, with the first eight bit
field called the physical page number, and the final thirteen bit field referred to as
the page offset.

NOTE: It can be easy to confuse physical pages with virtual pages, so be careful
when reading the opcode descriptions below.,

The 16 address lines provided by the 9995 processor can be thought of two
fields. The first field is the most significant three bits of the address and is called
the "window number”. The least significant thirteen bits are the page offset. These
16 address bits can be referred to as the linear address space of the CPU.

The virtual address space and the linear address space are of the most interest
to people writing tasks which run under MDOS. The memory management
routines provide transparent methods of assigning physical memory pages into your
task’s virtual address space and transparent methods of viewing any 8k block of a
task’s virtual address space within one of the seven usable 8k memory windows in
the linear address space.

MEM - 2 GenREF v1.00

MDOS maintains two arrays to manage the physical memory pages belonging
to your task. The first array, which only contains 8 physical page numbers, is part
of the Geneve hardware and is called the "mapper”. The mapper is used to assign a
physical memory page to each of the eight 8k windows addressable in the 9995’s
linear address space. The second array, which is actually stored as a singly linked
list- within MDOS, is stored in RAM under control of the MDOS memory
management routines and is referred to as "the virtual page list". Each node in the
virtual page list comsists of a physical page number, and various attributes for that
page. Various attributes used in the virtual page list allow for pages to be
unassigned (correspond to no useful physical page), for pages to be shared, for
pages to be disk-resident (swapped out), and for pages to be private (accessible to
only your task.)

CALLING MEMORY FUNCTIONS

The MDOS memory management functions must be called from within a
machine code program running as a task under MDOS. You pass arguments to the
memory management functions using only a few registers of your program’s
workspace.

The MDOS memory management functions are invoked from a machine code
program when software trap number zero (XOP 0) is called with a library number
of 7. The calling program’s R0 must contain the opcode of the routine within the
memory management library which is to be performed. The following code
fragment will allocate memory to your task.

LI RO,1

LI R1,7 56k bytes

LI R2,1 starting @> 2000
SETO R3 try fast pages
XOP @SEVEN,0

MOV RO,RO

INE MEMERR

SEVEN DATA 7

GenREF v1.00 MEM -3

AVAILABLE MEMORY

Funetion You would use this operation in a program when you want to
determine how much memory is available for use. It returns the total
number of 8k pages installed, the number of zero wait state 8k pages
available, and the total number of 8k pages available (both fast and

slow pages).

Parameters R0 = 0 (opcode)

Results RO = { (no error)
R1 = total number of free pages
R2 = number of free zero wait state pages
R3 = total number of installed pages

ALLOCATE MEMORY

Function This routine allows you to assign physical pages of memory from
system list of free pages to virtual pages belonging to your task. You
must use this function if you wish to use more memory than your
program occupied on disk as a program image file. You must also
use this function if you wish to use more than 64k of memory in a
program you have written. This routine will not reassign pages which
have already been allocated, even if the block of pages you specify
overlaps pages which have already been assigned to your task.

On successful return, all pages in the range R2,(R2+RI1-1) are
available for use by your task.

Parameters RO = 1 (opcode)
R1 = page count
R2 = starting page
R3 = speed flag 0 (use first available memory page)
< >0 (use zero wait state pages, if available)
Results RO = error code
R1 = new count

R2 = fast count

MEM - 4

GenREF v1.00

Parameter description

Page count

Starting page

Speed flag

This is the number of consecutive memory pages you wish to have for
your prograrm, it is not necessarily the number of pages which will be
returned to your program. As an example, to allocate 20k bytes of
memory for your program, you must actually ask for three 8k memory
pages. The number of pages you need to ask for can be calculated
from the number of bytes you need as follows:

pages = (bytes + > 1fff) / >>2000

This is the virtual page number within your task’s memory at which
you wanl to allocate more memory pages. If yoy were to think of
your task’s memory as having addresses ranging from > 000000 to
> 1fffff (0 to 2 MB), this number is the address divided by 8192
(remainder is discarded.)

If this flag is non-zero, MDOS will attempt to assign zero wait state
memory pages to your task. If there are not enough zero wait state
pages available to satisfy your request, MDOS will assign slow pages
to your task in order to satisfy the request.

If this flag is zero, and your computer has 512k of (one wait state)
ram on the motherboard, MDOS will first attempt to assign slow
pages to your task. If there are not enough slow pages, MDOS will
continue by allocating fast pages to your task.

If this flag is zero, and your computer has 1024k of (zero wait state)
ram on the motherboard, MDOS will first attempt to assign fast
pages to your task. If there are not enough fast pages, MDOS will
continue by allocating slow pages to your task.

The "fast count” returned to you reflects the number of fast pages
allocated as a result of the operation, and the “fast count” subtracted
from the "new count” returned to you reflects the number of slow
pages allocated as a result of the operation.

If the "fast count” returned to you is non-zero, and different from the
number of pages you requested, there is no convenient method of
determining which pages are fast, and which are slow. The easiest
deterministic method of telling which pages are fast and which are
slow is to ask MDOS for one page at a time, and look at the “fast
count" resulting from each single-page allocation.

Error code

New count

GenREF v1.00 MEM -5

0 = No error. This indicates that the pages you specified can now be
used by your task.

1 = Insufficient memory. When you get this error, there were not
enough pages free in the system to accommodate your request for
more memory. No additional pages have been assigned to your task,
even if there were some free memory pages in the system.

(NOTE: Calling the "Available memory” operation to determine the
amount of memory available, followed by the "Allocate memory"
operation with fewer pages than reported to you from "Available
memory" can still fail, since another task may have allocated pages in
between your two calls. Do not rely on being able to call the two
routines in succession without checking the error code returned from
the "Allocate memory" operation.)

7 = Attempt to overwrite shared page. You will get this error if any
page in the range R2..(R2+R1-1) is already allocated to your task
with a "shared" attribute. No additional pages have been assigned to
your task if you receive this error, even if there were enough free
memory pages in the system to accommodate your request.

8 = Out of table space. You will receive this error if too many tasks
have large gaps of unassigned pages in their memory maps. The
current versions of MDOS allow 480 virtual pages between all tasks
which are currently executing. Note that there are only 256 possible
physical pages, and that there are only 128 physical pages even if you
have the 512k expansion ram, so tasks would have to be pretty
wasteful (have more gaps than actual pages) in order to use up all 480
virtual pages allowed by MDOS. If you get this error, your program
should just give up and tell the user to try later.

This is the number of pages which were newly assigned to your task,
and is only valid if you did not receive an error from the "allocate
memory” call. This number can be less than the number of pages you
requested if some of the pages in the range R2.(R2+R1-1) were
already assigned to your task. '

MEM - 6

Fast count

Example 1.1

NOTE:

GenREF v1.00

This is the number of fast pages which were newly assigned to your
task, and is only valid if you did not receive an crror from the

"allocate memory” call.

You would use this to check if MDOS

actually assigned any fast pages to your task.

RO=1 Opcode

R1=2 Number of pages to get

R2=4 Virtual page number

R3=0 Speed flag

Virtual Physical Physical

Page Page Page
Before After

0 >3F >3F

1 >3E >3E

2 >3D >3D

3 (>FF) (>FF)

4 (>FF) >33

5 (>FF) >34

6 (=FF) (>FF)

7 >3C >3C

8 >3B >3B

9 >3A >3A

10 >39 >39

11 >38 >38

12 >37 >37

13 >36 >36

14 >35 >35

15 >34 >34

Filling a hole

hole
new page
new page
hole

The pages (>FF) represent holes in the tasks virtual memory map.
The physical page >FF is actually part of the boot rom on your
computer, and cannot be overwritten by your task.

Example 1.2

RO=1
R1=1
R2=17

Virtual
Page

Voo~ AW — O

P e ek et ek ek ke
STt B W N R O

GenREF v1.00 MEM - 7
Creating a hole
Opcode

Number of pages to get
Virtual page number

Speed flag

Physical Physical

Page Page

Before After

>3F >3F

>3E >3E

>3D >3D

(>FF) (> FF) hole
(>FF) (>FF) hole
(>FF) (=FF) hole
(>FF) (>FF) hole
>3C >3C

>3B >3B

>3A >3A

>139 >39

>38 >38

>37 >37

>36 >36

>35 >35

>34 >34

(null) (>FF) new hole

(null) >33 new page

MEM - 8

Example 1.3

GenREF v1.00

Notice that this routine only fills holes, it does not assign a new
physical page to a virtual page which is already assigned to your task.

Overlaying pages

RO=1 Opcode
R1=5 Number of pages to get
R2=1 Virtual page number
R3=0 Speed flag
Virtual Physical Physical
Page Page Page

Before After
0 =>3F >>3F
1 >3E >3E no change
2 >3D >3D no change
3 (>FF) >33 new page
4 (>FF) >32 new page
5 (>FF) >31 new page
6 (>FF) (>FF) hole
7 >3C >3C
8 >3B >3B
9 >3A - >3A
10 >39 >39
11 > 38 >38
12 >37 >37
13 >36 >36
14 >35 >35
15 >34 >34

Notice that even though you asked for 5 pages, only 3 were actually
assigned, since two of the specified pages had already been assigned.

GenREF v1.00 MEM - 9

RELEASE MEMORY

Funection

Parameters

Results

You will use this routine to return unused memory to MDOS, this is
useful if your program uses lots of temporary data. This is also one
of the functions used by MDOS to free memory when your task is
terminated. Any page which is released by your task which is also
currently mapped into your task’s 64k of execution pages will be
removed from the execution pages available to your task, and its entry
in the mapper will be replaced by page > FF.

You may not release virtual page zero of your task using this function
(although page zero may be accessed by your task, it doesn’t really
belong to your task.)

This opcode cannot be used to free shared pages belonging to a task.
Shared memory pages must be freed with opcode #6."

RO = 2 {opcode)
R1 = page count
R2 = starting page
RO = error code

IPParameter description

Page count

Starting page

Error code

This the number of memory pages you wish to free from your
program. It is not necessarily the same as the number of physical
memory pages which will actually be freed from your task. Shared
pages, and unallocated pages in the range R2:(R2+R1-1) will not be
released from your task. No pages will be released if this count is
Zero.

This is the page number of the first virtual memory page you wish to
have released from your task. This procedure will attempt to release
all of your task’s virtual memory pages in the range R2: (R2+R1 1)
into the free page pool.

0 = No Error. This indicates that the non-shared pages in the range
specified have been released from your task back to the free pages in
the system.

2 = Attempt to free page zero. This indicates that you tried to free
virtual page zero of your task. No pages were actually released from
your task.

MEM - 10

Example 2.1

GenREF v1.00

8 = Out of table space. MDOS was unable to free a page because
there weren’'t enough virtual pages nodes available to create a new
page in the free pool. When you receive this error, it is possible that
some, but not all, of the pages in the range R2:(R2+R1-1) have been
moved to the free pool. You will receive this error if too many tasks
have large gaps of unassigned pages in their memory maps. The
current versions of MDOS allow 480 virtual pages between all tasks
which are currently executing. Note that there are only 256 possible
physical pages, and that there are only 128 physical pages even if you
have the 512k expansion ram, so tasks would have to be pretty
wasteful (have more gaps than actual pages) in order to use up all 480
virtual pages allowed by MDOS. If you get this error, your program
should just give up and tell the user to try later.

Making a Hole

RO=2 Opcode
R1=9 Number of pages to release
R2=2 First virtual page to release
Virtual Physical Physical
Page Page Page
Before After
0 >3F >3F
1 >3E >3E
2 >3D (>FF) new hole
3 (>FF) (>FF) hole
4 (>FF) {>FF) hole
5 (>FF) (>FF) hole
6 (>FF) (>FF) hole
7 >3C (> FF) new hole
8 >3B (>FF) new hole
9 >3A (>FF) new hole
10 >39 (>FF) new hole
11 >38 >38
12 >37 =37
13 >36 >36
14 >35 >35
15 >34 >34

Note that only five pages were actually released from your task to
MDOS, since some of the pages in the specified range were already
unassigned,

Example 2.2

GenREF v1.00 MEM - 11
Making list shorter
R0O=2 Opcode

R1=8 Number of pages to release
R2=10 First virtual page to release

Virtual Physical Physical
Page Page Page
Defore After
0 >3F >3F
1 >3E >3E
2 >3D >3D
3 (>FF) (>FF)
4 (>FF) (>FF)
5 (>FF) (>FF)
6 (>FF) (>FF)
7 >3C >3C
8 >3B >3B
9 >3A >3A
10 >39 ~null freed
11 >38 null freed
12 >37 null freed
13 >36 null freed
14 >35 mull freed
15 >34 null freed

The list was truncated, since all of the pages at the tail of the list
were unassigned. Also note that we really told it to release pages 10
to 18, but we only had pages up to 15 to begin with. No error is
reported when you attempt to release unassigned pages.

MEM - 12

GenREF v1.00

MAP MEMORY

Function

Parameters

Results

This routine can be used to place a physical page into the mapper
chip for the specified virtual page belonging to your task. You can
think of the mapper as providing seven usable 8k "memory windows”
into your task’s virtual memory space. You tell this routine which of
the seven windows to use, and which part of virtual memory to look
at. This routine can not be used to overwrite page zero of your task.

You should use this routine for mapping memory if you want your
program to be able to use transparent demand paging in future
versions of MDOS which support page swapping to hard disk.

(NOTE: If you are using window number seven, the one which Is at
>E000 in your direct address space; the data from offset > 1000 to
> 1140 in the page will be corrupted by writes 10 addresses in the
range >F000 to >F140. Do not use window number seven unless it
is ok for the data in the specified range to be corrupted.)

On successful return, the specified virtual page belonging to your task
has been mapped into the window you specified and is available for
use.

RO = 3 (opcode)
R1 page number
R2 window number

o

RO error code
mapper = new page

Parameter description

Window number This parameter, in the range 1.7, is used to tell MDOS

which of the seven 8k byte windows in the processor’s 16-bit address
space to use for the specified virtual page belonging to your task.

Processor address = Window_number * > 2000

Page number This is the virtnal page number within your task that you wish to have

mapped into the specified window in the processor’s 16-bit address
space. Virtual memory in the address range (page * > 2000):(page *
>2000 +> 1fff) will be accessible to your program with the 16-bit
addresses {window * >2000):(window * >2000 + > 1fff),

Error code

Mapper

GenREF v1.00 MEM - 13

0 = No Error. This indicates that the specified virtual memory page
of your task has been mapped into the specified memory window.

2 = Header page mapping violation. You attempted to map a virtual
page into window zero, which is reserved for your task’s header by
MDOS. Alternatively, you attempted to map virtual page zero, your
task’s header, into some other memory window. Your task’s memory
map has not been changed if you get this error.

3 = Unassigned virtual page, or Invalid memory window. The virtual
page you specified has never been allocated by your task, and contains
no valid data (it is a "hole" in your address space.) Alternatively, you
specified a window number larger than seven. Your task’s memory
map has not be changed if you get this error.

In MDOS mode, the mapper is 8 bytes long, and located at > F110 in
the processor’s 16-bit address space. Each byte in the mapper
contains a physical memory page number, in the range > 00:>FF.
Assignments are as follows: '

Mapper register = >F110 + Window_number

Note that each mapper register corresponds to a specific 8k block in
the processor’s 16-bit address space. After successful completion of
the "Map Memory” function, the mapper register corresponding to
the window you specified will contain the physical page number of the
virtual page you specified.

Symbolicly:
mapper[window number] = task_pages[virtual page number]

MEM - 14

GenREF v1.00

GET MEMORY LIST

Function

Parameters

Results

This operation returns an array of physical page numbers (each is one
byte) corresponding to the virtual pages belonging to your task. You
are allowed to specify the address of the first byte in the array, and
the maximum number of elements in the array.

This array of physical page numbers is useful if you need to speed up
memory paging in your task by use of your own paging code. If your
program performs its own paging, you will need to call this opcode
after every call to a memory management function which adds or
removes pages from your virtual address space. (Opcodes 1,2,6,7)

In future versions of MDOS which support transparent demand
paging, this operation will also "lock” all of your task’s virtual pages
into RAM, making them ineligible for paging. To "unlock” your
virtual pages, another opcode will be provided for your use.
(Normally, only pages which are currently mapped into one of the
seven processor windows for your task would be "locked” into RAM.)

On successful return, the array will contain the physical page numbers
for the virtual pages in your task.

RO = 4 (opcode)
R1 = array start
R2 = array size

RO = error code
R1 = array used

Parameter description

Array start

Array size

You specify the address of the first byte in your array using this
parameter, The plysical page number of your task’s header page,
virtual page number zero, is placed in the first byte of the array. This
is a 16-bit processor address for a location which is currently mapped
mnto your task’s memory windows.

This is the maximum number of physical page numbers which can be
returned to your task. The indexes of the array elements can range
from zero to (array size)-1.

Error code

Array used

GenREF v1.00 MEM - 15

0 = No Error. This indicates that the array contains all of the
physical page associations for the virtual pages in your task. The
number of actual array elements used can be. less than the maximum
size you specified for the array.

8 = Array not large enough. Your array was not large enough to
hold all of the physical page numbers in use by your task. When you
get this error, the contents of the array are valid up to the maximum
element which you allowed.

This indicates the number of valid pages returned in the array. When
you perform your own paging, you should make sure that you never
index into the array after the last valid page (You will end up
mapping a page which doesn’t belong to your task.)

Sample Code

Assuming that you've already called this opcode, the follow code
fragment will map in a data item pointed to by a 32 bit address.

assume: r1,r2 = 32 bit pointer, @paglst are bytes from opcode #4

movb r2,r1 ok, since only low 5 bits of rl are used
andi r1,>¢01f . keep 8 bits, zap the others

sr¢ 11,13 rotate to make an index into the page list
andi r2,> 1fff mask off the high three bits, they’re now
= in R1 ...

*

movb @pagist(rl),@mapper+4 put it at > 8000

movb @paglst+ 1(r1),@mapper +5 put next page at >a000

*

* it is not necessary to place two pages into the mapper if you

* know for certain that the record accessed by the pointer does not

* cross page boundaries, the above code is just a method of playing it
* safe

x

mov (@> 8000+ field_offset(r2),r3

* this of course assumes that there is some record addressed by the
* initial pointer, and that the record contains fields of some
* data structure. fields are easy to set up with a DORG statement

* for each record type in use by an application
*

MEM - 16

GenREF v1.00

DECLARE SHARED MEMORY

Function

Parameters

Results

This routine is used to declare a range of pages currently belonging to
your task as “"shared” memory pages, which means that they can be
used by other tasks. An example of two tasks sharing memory would
be an editor which "shared" all of its text buffer with an assembler, so
that the assembler could assemble from RAM rather than from disk.

Each group of pages declared as shared has a type, which you assign.
When another application wants to share those memory pages with
your task, it will ask MDOS to use a certain type of shared pages.
An editor buffer could be declared as one specific type, while object
code would be declared as a separate type, so that programs would
not use the wrong sort of data as input (You wouldn’t want a Fortran
cornpiler to use a binary program as its input!)

It is recommended that "types" be assigned by the distributor of
MDOS, so that incompatible applications do not try to use the same
"type” if you decide to use a "type" please correspond with the
distributor of MDOS to coordinate your development efforts with
others.

A "shared" type may only be declared once, and always resides in a
group of consecutive virtual pages. If all applications using a "shared"
group of pages release those pages, the "type” may be redeclared.
(MDOS keeps a count of the number of applications using a shared
group, and if the count ever becomes zero, the type is made free for
re-usc)

NOTE: It is not possible to declare page 0 to be part of a shared
group. Page 0 is always private, since it contains the information
which MDOS uses to distinguish between tasks.

RO = 5 (opcode)
R1 = page count
R2 = starting page
R3 = shared type
RO = error code

GenREF v1.00 MEM - 17

Parameter description

Page count

This is the number of consecutive virtual pages belonging to your task
which will be declared as a shared page group for use by other tasks.

Starting page This is the virtual page number within your task of the first virtual

Shared type

Error code

page which will become part of the shared page group. Pages in the
range (start_page):(start_page+page_count-1) will belong to the
group.

This must be in the range >01:>FE, and should be a code unique to
the format of data which you are sharing with other tasks. It is
recommended that you use a common sct of source code routines for
data access for all of your tasks which use the data.

0 = No Error. This indicates that virtual pages you specified can now
be shared by other tasks running under MDOS.

3 = Bad page. At least one of the pages in the range
(start_page):(start_page +page_count-1) has never been allocated by
your task. The shared group has not been defined if you get this
error.

5 = Invalid type code. Your "shared type" parameter was not in the
range >01:>FE, or your "shared type” code has already been
declared by another task. The shared group does not contain the
pages you specified if you get this error.

7 = Invalid page declaration. At least one of the pages in the range
(start_page):(start_page+page_count-1) is unallocated, already
declared as shared, or is virtual page number zero. The shared group
has not been defined if you get this error.

8 = Out of table space. MDOS was unable to create the shared type
because weren’t enough virtual pages nodes available to create a
shared page group descriptor list. You will receive this error if too
many tasks have large gaps of unassigned pages in their memory
maps. The current versions of MDOS allow 4380 virmual pages
between all tasks which are currently executing. Note that there are
only 256 possible physical pages, and that there are only 128 physical
pages even if you have the 512k expansion ram, so tasks would have
to be pretty wasteful (have more gaps than actual pages) in order to
use up all 480 virtual pages allowed by MDOS. If you get this error,
your program should just give up and tell the user to try later.

MEM - 18

GenREF v1.00

RELEASE SHARED MEMORY

Funection

Parameters

Results

This operation removes all shared memory pages of the specified type
from your task’s virtual memory list. If your task was the only task
using the shared page group, the group will become undefined, and

‘must be redeclared before use. Any page which is released by your

task which is also currently mapped into your task’s 64k of execution
pages will be removed from the execution pages available to your
task, and its entry in the mapper will be replaced by page > FF.

RO = 6 (opcode)
R1 = shared type
RO = error code

Parameter description

Shared type

Error code

This is a shared group type number, in the range >01:>FE, and
must have been previously defined by another task.

0 = No Error. This indicates that all of the pages from the shared
group you specified have been released from your task.

6 = Invalid type. The type you specified was not in the range
>01:>FE, or hasn’t yet been declared by another task.

8 = Out of table space. MDOS was unable to free a page because
there weren’t enough virtual pages nodes available to create a new
page in the free pool. When you receive this error, it is possible that
some, but not all, of the pages belonging to the shared group have
been moved to the free pool. If you get this error, your program
should just give up and tell the user to try later.

GenREF v1.00 MEM - 19

USE SHARED MEMORY

Function

Parameters

Results

This operation will include the pages from the shared type specified in
your task’s list of virtual pages. The shared type must be been
previously declared by another-task. When you call this function, all
pages in the range (start_page):(start_page +shared_size-1) must not
be allocated by your task, since you are not permitted to overlay
shared and existing pages in your virtual page list.

RO = 7 (opcode)
R1 = shared type
R2 = start page

RO = error code

Parameter description

Shared type This is a type code for a shared page group which must have been

Start page

Error code

declared by another task. If your task has enough contiguous
available virtual pages beginning with the start page you specified, all
of the pages from the shared page group will be mapped in at the
specified virtual page address.

This is the virtual page number within your task of the first virtual
page which will be used by the shared page group. After calling this
operation, you must explicitly map in the virtual pages which have just
been assigned, since they will not be automatically placed into your
task’s mapper registers.

0 = No Error. The shared page group of the type you requested was
already defined and was successfully mapped into your task’s virtual
page list.

2 = Attempt to overlay page zero. You specified virtual page zero as
the start page for the shared memory group. No pages from the
memory group have been allocated to your task if you get this error,

6 = Invalid shared type. The type you specified was not in the range
>01:>FE or has not yet been defined for use by another task. No
pages from the memory group have been allocated to your task if you
get this error.

MEM - 20

GenREF v1.00

7 = Attempt to overlay shared and private memory. Your task did
not have enough contiguous free virtual pages starting with the virtual
page specified to map in the pages from the shared group. No pages
from the memory group have been allocated to your task if you get
this error.

8 = Qut of table space. There were not enough free nodes available
to extend your task’s virtual page list. MDOS is out of table space.
At this point, your task should give up and tell the user to try later.
No pages from the memory group have been allocated to your task if
you get this error.

GET SIZE OF SHARED GROUP

Function

Parameters

Results

This operation reports the number of pages which belong to a shared
page group. It should be used by your task before you have the
shared page group assigned into your virtual page list, so that you
know in advance if your task has enongh nmused contignous pages to
overlay the shared page group.

RO = 8 (opcode)
R1 = shared type
RO = error code
R1 = shared size

Parameter description

Shared type

Error code

Shared size

This is a type code for a shared page group which must have been
declared by another task. On successful return, the number of pages
in this page group is returned to your task.

0 = No Error. The shared page group of the type you requested was
already defined and its size was returned to you.

6 = Invalid shared type. The type you specified was not in the range
>01:>FE or has not yet been defined for use by another task.

On successful return, this will contain the size, in 8k pages, of the
specified shared page group.

GenREF v1.00 MEM - 21

FREE TASK

Function

Parameters

Results

This routine can not be directly used by tasks under MDOS, it is
reserved for use by system library functions.

This is used to free all memory pages, except the task’s header, from
the task’s list of virtual pages. If the task is using a shared page
group, its reference to the group will be removed, and the group itself
will be removed if this was the last task using the shared page group.

RO = 9 {opcode)
R1 = first node
RO = error code

Parameter description

First node

Error code

This is the MEMLST pointer from the task’s header.
0 = No Error. The pages belonging to the task were freed.

>FFFF = Invalid opcode. You attempted to call this from a user
task.

GET MEMORY PAGE

Function

Parameters

Results

This routine can not be directly used by tasks under MDOS, it is
reserved for use by system library functions.

It is used to get a single memory page, by specific physical page
number, or by speed priority.

RO = 10 (opcode)
R1 = physical page
R2 = speed flag

RO = error code
R1 = node pointer

MEM - 22

GenREF v1.00

Parameter description

Physical page

Speed flag

Error code

Node pointer

If this is in the range >00:>FF, MDOS will return a pointer to the
memory node for the page, only if the page is currently unassigned.

If this is larger than >FF, MDOS will return a pointer to the
memory node for the the first free page in the system with the
specified speed attribute.

This parameter is used only if the physical page number specified is
larger than >FF. If this is zero, MDOS will allocate the first
memory page available in the free list. If this is non-zero, MDOS will
attempt to allocate the first zero wait state page available from the
free list, if there are no zero wait state pages available, MDOS will
allocate the first free page it finds.

0 = No Error. The page was reserved as specified, it is not assigned
to any task, and it is not available for use.

1 = Page not available. The specified page was not free, or there are
no free pages in the entire system.

>FFFF = Invalid opcode. You attempted to call this from a user
task. .

This is pointer to a 4 byte memory node inside of the memory
library’s address space. '

FREE MEMORY PAGE

Function

Parameters

Results

This routine can not be directly used by tasks under MDOS, it is
reserved for use by system library functions.

Adds the specified physical page to the list of pages available for use
by user tasks.

RO = 11 (opcode)
R1 = page number
RO = error code

Parameter description

Page number

This a simply a physical page number to be freed.

GenREF v1.00 MEM - 23

Error code 0 = No Error. The page was reserved as specified, it is not assigned
to any task, and it is not available for use.
8 = Out of table space. MDOS was unable to create a free page
because there weren’t enough virtual pages nodes available to create a
new page in the free pool.
>FFFF = Invalid opcode. You attempted to call this from a user
task.

FREE MEMORY NODE

Function This routine can not be directly used by tasks under MDOS, it is
reserved for use by system library functions.
This operation will add the specified 4-byte node to the memory
nodes available for use by the other memory management library
functions.

Parameters R0 = 12 (opcode)
R1 = node address

Results RO = error code

Parameter description

Node address This is the address of the 4-byte node within the memory

management library’s address space.

Error code 0 = No Error. The node was added to the free node list.
>FFFF = Invalid opcode. You attempted to call this from a user
task.
LINK MEMORY NODE
Function This routine can not be directly used by tasks under MDOS, it is

reserved for use by system library functions.

This is used to link memory nodes together. It can be used to link
page nodes onto a task’s virtual memory list, to link page nodes to the
systemn free page list, and to link nodes into the free node list.

MEM - 24

Parameters

Results

GenREF v1.00
RO = 13 (opcode)
R1 = new node
R2 = pld node
RO = error code

Parameter description

New node The node to be inserted into a list after the old node.
Old node The node, in a node kst, after which the new node is to be inserted.
Error code 0 = No Error. The nodes were linked together.
>FFFF = Invalid opcode. You attempted to call this from a user
task.
GET MEMORY LIST (system)
Function This routine can not be directly used by tasks under MDOS, it is
reserved for use by system library functions.
This rontine will return a task’s virtual page list to location > 1F00 in
system page zero. This is used primary by the DSR routines to locate
data pointed to by a task’s PAB buffer address.
Parameters RO = 14 (opcode)
Results RO = -1 (error code)
RO = page count (no error)

Parameter description

Error code

Page count

>FFFF = Invalid opcode. You attempted ta call this fram a user
task.

This is the number of valid pages in the page list at > 1F00 in system
page zero. This count is also returned at > 1FFE.

DSR - CONTENTS

Page
Overviewcvivreennes ereesssesesbesseesesstessanen st rtiatsasnaea b e s aaesebabaa ety eabesan TR |
AVAIlADIE AEVICESvreerereareersencmsessssensasensescssessmasasssessosessanns vorssrsrssessassnanasaraasns 1
Calling DSR fURCHONScovimissimississssssissssmissssessamsissssssnsisnssnsnsssssssassassansassnavess 1
Open.............. reevmsberenens reereNeseseeasasssasetesetabesesessasaTstasasatetsetebereRs tsnnnssanernessrraene 3

ClOSE..uevrerisrerissorsssessssassssersasasatssnssssasssssssasavanssssssassessnsassssmsrassnsserassassssassneas RSN

Create Directory..........cccoeeeeee e E et s e s enann s 3
DElEte . ettt b sns verrssserssasnaens S 25

Delete record..eccneen. reveeesaiaseessteesesnnttassesnes ntsanaesanetanesaene s sbeenres s ranenesnnne 27

Status.. .) . . eeremsameseesasiessseresarstrsasenssansserarstansanaesisann 28

P O et eeeeete st et stsiesssasebasssbaate e e s arr et et isaae s s A nnnsnseamsaneanansnan 38
RBTIAITIE et eeecs s tsessesn e s srsssssnm s st sommesvmaesas sratbeamssssnessbrasbnssont P 39

FOTITIA s cvieeesisisirersnessesesonsessssossorssenspessssossssssnssassssnssnsssssansansassssssssrantansnsessnssasnnnse 42

DSR OVERVIEW

The MDOS device drivers (Device Service Routines) are used to transfer data
from your program to a mass storage device, from a mass storage device to your
program; and to transfer data between your program and a character oriented
device like a terminal, modem or printer. The device drivers are also used to
control device characteristics such as baud rate, creating subdirectories, and
initializing new media.

Available Devices

DSK1 ... DSKS
HDS1 ... HDS3
RS8232,

RS232/1, R§232/2
RS232/3, RS232/4

PIO,
PIO/1, PIO/2

WDS1 ... WDS4

DSK1 through DSK9 are block oriented devices with a floppy
disk directory structure. Each of these devices is limited to
3200 sectors. The assignment of these names to actual
drives/ramdisks can vary depending on your hardware
configuration.

HDS1 through HDS3 are block oriented devices with a
winchester disk directory structure. See your HFDC owner’s
manual for more information on these devices.

RS232 through RS232/4 are serial bidirectional asynchronous
character devices, both input and output is buffer with spoolers
whose size you configured with your AUTOEXEC file.

PIO through PIO/2 are parallel bidirectional character devices,
usually used to send data to a printer. Both input and output
is buffered with spoolers whose size was set with your

AUTOEXEC file.

WDS1 through WDS4 arc uscd to address the Pcrsonality

Card winchester disk system. These devices do not support all
MDQOS DSR operations.

CALLING DSR FUNCTIONS

The MDOS device drivers must be called from within a machine code program
running as a task under MDOS. You pass arguments to the DSR using a small
area of memory known as a PAB (Peripheral Access Block.) The primary parts of

a

DSR-2 GenREF v1.00

PAB are an opcode, an error flag, and a full filename, other areas of the PAB have
meanings which are specific to the file operation you wish to perform.

The MDOS device drivers are invoked from a machine code program when
software trap number zero (XOP 0) is called with a library number of 8. The
calling program’s RO must contain the 16-bit address of the PAB at the time of the
XOP. The calling program’s RO must be located between > A000 and >FFDS§ in
memory, and should be located in the PAD ram at >F000 if possible. The
following code fragment will rename a file on floppy drive # 1.

I RO,PABADR
XOP @EIGHT,0
MOVB @PABADRK+2,R0 check for error
INE ERROR
BL @PRINT
TEXT "File rename successful’
BYTE =>0D,>0A0
NEWNAM TEXT "NEWFILE’
PABADR BYTE >0D rename opcode
BYTE >00
DATA 0
DATA NEWNAM assumes NEWNAM is mapped in
DATA 0,0,0,0
DATA NAMLEN
NAME TEXT 'DSK1.0LDFILE’
NAMLEN EQU $-NAME

In the preceding example, three hidden assumptions were made. First, it is
assumed that the program’s registers are correctly located, with the Workspace
Pointer register of the 9995 containing a value from > A000 to >FFD38. Second, it
is assumed that PABADR is located on a page which is currently mapped into a
memory page which has the same 16-bit address page number as its Virtual address
page number (read the section on Memory Management.) The third assumption is
that NEWNAM is actually at the virtual address NEWNAM, not in some overlay

segment with a different virtual address.

Always check these three assumptions in your own programs!

GenREF v1.00 DSR-3

OPEN

Function

PAB format

For block devices, such as hard disk and floppy disk, this operation
must be used to prepare a structured file for access with READ and
WRITE opcodes. You must close the file before terminating your
task. No other task in MDOS is permitted to open the file while your
task has it open.

For character devices, such as RS232 and PIO, this operation is only
used 10 change the operating modes of the device port you specified
as part of the file name. Multiple tasks are allowed simultaneous
access to the RS232 and PIO ports...user beware. You do not need to
open a character device before reading and writing to it.

Paragleters passed to OPEN

byte offset size parameter

0 1 byte opcode = >00

1 1 byte mode flags

6 2 bytes records 1o reserve for newly created file
8 2 bytes record length

15 1 byte name length

16 string file name

Parameters returned from OPEN

byte offset size parameter

2 1 byte error code

8 2 bytes your record length
12 2 bytes actual record length

Parameter description

Opcode

>00 is the opcode for the OPEN function in the DSR.

This opcode only applies to structured files with the display or
internal attributes. You will get an error if you attempt to open a
non-structured file in this manner.

DSR-4
Flag byte

Bit
0 (Isb)

2,1

5,6

GenREF v1.00

Meaning

0=

01

10

11

[« YOO

—_ O
1l

i

00

Sequential access file, you must use sequential access for files
with variable record lengths.

relative access file, this can only be used with fixed record
length files.

Update mode, can only be used with fixed record length files.
You are allowed to READ and WRITE records (o the file.
Output mode, this is used to create a new file. You are only
allowed to WRITE records to this file. If the file already
existed on disk, the old contents of the file will be forgotten.
You will get an error if there is already a Protected file with
the name you specified.

Input mode, this is used prepare for reading from an existing
file. You will get an error if the file doesn’t already exist.
Append mode, this is used to prepare for writing to the end of
an existing file, or for creating a new file. You will get an
error if you try to use this with a fixed record length file.

Use display format data
Use internal format data

This bit has no effect on the data actually stored in the file. It
is provided by the programmer as an indication of the type of
data in the file. You will get an error if this flag does not
match the attributes of a file you are opening for update,
input, or append modes.

File will use variable record lengths
File will use fixed record lengths

This flag will affect how data is stored in the file, and whether
you can use relative record access within the file,

RESERVED, set to ZERO.

IGNORED

For RS232 and PIO devices only, setting this bit to one will
cause the driver to change the mode of the port as specified in
the switches you placed after the device name in the filename.
The mode will be set after all data currently in the output
spooler for the specified device has been processed.

Error code
| >00

>20

>40

>30

=>C0

>E0

Reserved Records

GenREF v1.00 DSR-5

No error occurred, the file is open and ready for reads and

. writes.

Write Protection violation. A file you were trying to open for
UPDATE, APPEND, or OUTPUT could not be created
because the floppy disk has a write-protect tab, Alternatively,
an existing file which you were trying to open for UPDATE,
APPEND, or OUTPUT has the "protected” attribute bit set in
its directory entry.

Invalid attributes. You specified a record length which was
different than that of an existing file. Or, you tried to open a
fixed file in APPEND mode. Or, the attributes you specified
in the mode byte do not agree with the file attributes of an
existing file on the disk.

Out of space. There are not enough free sectors on the device
to create the file you specified; or, the directory on the
specified device already has the maximum of 127 entries; or,
there are too many files open in MDOS, by your task and
other tasks.

Media error. For some reason, MDOS encountered an
unrecoverable error when trying to access the specified device.
For floppy disks, this could mean that the drive is empty. For
hard disks,. this means that there is no device present, or that
MDOS was unable to read a needed sector from the hard
drive.

General purpose error. An error which didn’t fit any of the
previous descriptions. You will get this error if a file you
specified for INPUT mode does not yet exist. You will also
get this error if any subdirectory specified as part of the
filename does not exist on the specified device.

If this parameter is set to zero during the OPEN call, no space
will be reserved for a newly created file. You can reserve
sectors for a file when you open the file by setting this
parameter to the number of records you expect to put into a
newly created file, Reserving space during the OPEN call can
greatly decrease the time needed to write records to a new file
since MDOS doesn’t have to spend time allocating more
sectors for the file each'time you want to write more records
to the file. For files with record lengths less than 2535
characters, the number of sectors reserved is calculated with
the following formula: Sectors = Records/
INT(256/Record_Size). For files with record lengths longer
than 255 characters, the number of sectors reserved is
calculated with the formula: Scctors =
INT((Records*Record_Size)/256). Note that if you specified a
record length of ZERO, a record length of 80 will be used by
MDOS.

DSR-6

Record Length

Actual Length

Filename length

Ilename string

GenREF v1.00

For variable files with record lengths less than 255, the record
size is the record length plus one. For fixed files, the record
size is the same as the record length. For variable files with
records lengths greater than 255, the record size is the record
length plus two.

This parameter specifies the default record length for a file. If
you are creating the file, and this parameter has a zero value,
MDQOS will use a record length of 80 characters. If the file
already exists, passing a zero value for this parameter will
cause MDOS to use the record length of the existing file. If
the file already exists, and you specify a non-zero value for this
parameter which is different from the record length of the file,
you will get an error. Specifying a zero value will always open
any structured file.

On return, this will be the same as you set it, unless you
initially specified a zero length. If you specified a zero length,
and the file already existed, this will have the true record
length of the file. If you specified a zero length, and you were
creating a new file, this will have a value of 80,

On return, if the file you were trying to access already existed,
this will contain the record length of the file, This is returned
even if you get an error for specifying an incorrect record

length for a file which already exists. If vou just created the

file, this will contain your record length.

This is a count of the number of characters in the filename
string.

For block devices, such as disks and hard disks, this string
must contain the name of the device you wish to access,
followed by a list of the subdirectories separated by periods,
tollowed by the name of the file you wish to access. (Example:
"HDS1L.SOURCE.UTILEXAMPLE") The length of the
name, inciuding the period separators, must be limited to 40
characters. For the OPEN calll, MDOS will not create
directories as specified in your pathname. If the specified
directories did not exist, you will get an error. Floppy disks
are currently limited to one subdirectory level. The individual
names for the subdirectories and your filename are limited to
ten characters, you will get an error if you try to use more
than ten characters.

For character devices, such as R5232 and P10, this string must
contain the name of the device you wish to set the switches
for, followed by a list of switches you wish to set separated by
periods.

PIO

CR

IB

HS

RS232

CR

LF

NU

BA = baudrate
DA =databits

PA=parity
™

CH

GenREF v1.00 DSR-7

(Example: "RS232/2.BA=9600.DA=8.PA=N.CR") Note that
the switches are set only if you set bit seven of the flag byte to
a one. The switches will not take affect until all output

- previously loaded into the spooler for the specified device has

been processed.

The following switch extensions may be used with the PIO
ports.

Turn off carriage returns and line-feeds after cach variable
record sent.

Turn off line-feeds after each variable record sent, each
variable record is still followed by a carriage return.

Print nulls after each variable record to allow for a low slew-
rate printer.

Reconfigure the spooler to recognize a printer with an
Inverted-Busy handshake signal. (If your printer doesn’t seem
to work with MDOS, try turning this switch on.)

Reconfigure the spooler to perform a full handshake with the
printer for each byte sent (instead of just strobe.) (If your
printer doesn’t scem to work with MDQOS, try turning this
switch on.)

The following switch extensions may be used with the RS232
ports.

Turn off carriage returns and line-feeds after each variable
record sent.

Turn off line-feeds after each variable record semt, each
variable record is still followed by a carriage return.

Print nulls after each variable record to allow for a low slew-
rate printer.

(110,300,600,1200,2400,4800,9600,19200)

(78)

(O,E,N) for (Odd,Even,None), respectively.

Use two stopbits on transmission instead of one stopbit. (If
your device doesn’t seem to work with MDOS, try turning this
switch on.) :
Check parity on each input character.

DSR-8

GenREF v1.00

CLOSE

Function

PAB format

This operation must be performed to close an open file. It will
cause MDOS to write any modified file buffers associated with
the file; and if the file was modified, MDOS will write out a
new copy of the file’s directory entry.

You must perform this operation on every file you have open
before causing your program to terminate,

This operation has no effect on a character devices such as
RS232 and PIO.

Parameters passed to CLOSE

byte offset size parameter

0 1 byte opcode = > 01
15 1 byte name length
16 string file name

Parameters returned from CLOSE
byte offset size parameter

2 1 byte error code

GenREF v1.00 DSR-9

Parameter description

Opcode >01 is the opcode for the CLOSE function in the DSR.

Error code

>00 No error occurred, the file is now closed, or the file wasn't
even open.

>20 Write Protection violation. MDOS was unable to flush the

file's buffers to disk. This should only happen if the user
switched floppy disks while the file was open.

>C0 Media error. For some reason, MDOS encountered an
unrecoverable error when trying to flush the buffers for the
specified file. For floppy disks, this could mean that the user
prematurely removed the disk from the drive. Alternatively,
MDOS was unable to locate the place on the disk where the
flushed data was to be written.

>E0 General purpose crror. An error which didn’t fit any of the
previous descriptions.

DSR-10

GenREF v1.00

READ

Function

PAB format

This operation is used to transfer data from the specified
device/file to a buffer you specify. For block devices such as
floppy and hard disk, the file must already be open.

You can read from a character device such as RS232 at any
time, no OPEN operation needs to be performed.

Reading from a character device is designed to accept input
from a user typing at a terminal. For variable record length
files, MDOS will interpret certain control characters
(described later in this section) input from the device as
editing commands for the current input line, and display
appropriate changes on the user’s terminal.

Parameters passed to READ

byte offset size parameter

0 1 byte opcode = >02
3 3 bytes buffer address
6 2 bytes record number
8 2 bytes record length
10 1 byte CPU/VDP flag
15 1 byte name length

16 string file name

Parameters returned from RCAD

byte offset size parameter

2 1 byte error code

6 2 bytes next record number
11 1 byte ZERO

12 2 bytes character count

GenREF v1.00 DSR-11

Parameter description

Opcode
Error code

>00
> A0

>C0

>E0

Buffer Address

Record Number

> 02 is the opcode for the READ function in the DSR.

No error occurred, the read was successful.

You attempted to read past the end of the file’s previous
contents. Your buffer does not contain valid data.

For block devices, media crror. For some reason, MDOS
encountered an unrecoverable error when trying read data
from the specified file, For floppy disks, this could mean that
the user prematurely removed the disk from the drive,
Alternatively, MDOS was unable to locate the place on the
disk where the data was to be read from.

For RS232 character devices, the hardware detected an error
such as incorrect parity, byte too long, character buffer
overflow (a character was lost.)
General purpose error. An error which didn’t fit any of the
previous descriptions. You will get this error if the file you
specified is not currently open.

This is where you specify the address to which data is to be
transferred.

For transfers to VDP ram, only the lowest 17 bits of the 3
bytes are significant.

For transfers to CPU ram, only the lowest 21 bits of the 3
bytes are significant. For CPU ram transfers, the lowest 13
bits are an offset into one of your task’s memory pages, and
the other 8 bits specify which of your task’s pages the transfer
starts on. This address is not necessarily the same as the 16-
bit CPU address your task will use to examine the data,
depending on how your task has altered the map of its
execution memory pages (see the section on Memory
Management.)

The record number is only valid for Fixed record files. You
will get an error if you set the record number higher than the
highest record ever written to the file. It is possible to read a
buffer full of garbage if you specify a record number which has
never been written to.

On return, the record number has been incremented by one
from the value you passed. Note that no distinction is made
between Relative and Sequential access for Fixed files. All
access

DSR-12

Record Length

CPU/VDP Flag

Character Count

NOTE:

Filename length

Filename string

GenREF v1.00

to fixed files is treated as sequential unless you change the
record number within your program.

For block devices, your program should not alter this value.

For character devices, set this value to the length of your input
buffer.

If this byte is zero, data will be transferred to a buffer in the
memory belonging to your task, at the address specified in the
buffer address. If this byte is non-zero, data will be
transferred to VDP ram.

On return, this contains the number of characters placed into
your input buffer. For fixed files on block devices, this is
always the same as the record length for the file. If you were
reading fixed records from a character device, this value may
be smaller than the record length if no input was available.

For variable record length files on block devices, this count can
actually be larger than the specified record length, for
compatibility with existing applications like TI-Extended Basic.
(The notable example is I/V 163 Merge format files, which
can have records longer than 163 characters.)

This is a count of the number of characters in the filename
string.

For block devices, such as disks and hard disks, this string
must contain the name of a file which you currently have
opened. For character devices, this is simply the name of the
device, all switches afler the name are ignored.

GenREF v1.00 DSR-13

WRITE

Funetion

PAB format

This operation is used to transfer data from a buffer you
specify to the specified device/file. For block devices such as
floppy and hard disk, the file must already be open.

You can write to a character device such as RS232 or PIO at
any time, no OPEN operation needs to be performed.

Writing to a character device with fixed record lengths causes
the number of characters you specified to be written to the
device, no end of line markers (except possibly NULLS) are
added to the data. Writing to a character device with variable
record lengths causes the number of characters you specified
to be written to the device, possibly followed by a carriage
return and a linefeed, just a linefeed, or no extra characters,
depending on the switches you set with an OPEN call
NULLS may be added to your data if you turned NULLS on
with an OPEN call.

Parameters passed to WRITE

byte offset size parameter

0 1 byte opcode = >03
3 3 bytes buffer address
6 2 bytes record number
8 2 bytes record length
10 1 byte CPU/VDP flag
15 1 byte name length

16 string file name

Parameters returned from WRITE
byte offset size parameter

2 1 byte error code
6 2 bytes next record number

DSR-14

GenREF v1.00

Parameter description

Opcode
Error code

=00
=20

>80
>0

>E0

Buffer Address

Record Number

>03 is the opcode for the WRITE function in the DSR.

No error occurred, the write was successful.

Write protection. MDOS was unable to write data to the file.
If the file was opened in OUTPUT mode, this means that the
user has switched disks since the file was opened, and that the
new disk is write-protected. For a file opened in APPEND or
UPDATE mode, this probably means that the disk was write-
protected from the outset.

Out of space. The disk is full.

For block devices, media error. For some reason, MDOS
encountered an unrecoverable error when trying read the
sector usage bitmap information or trying to write data into
the file itself. For floppy disks, this could mean that the user
prematurely removed the disk from the drive. Alternatively,
MDOS was unable to locate the place on the disk where the
data was to be written,

General purpose error. An error which didn’t fit any of the
previous descriptions. You will get this error if the file you
specified is not currently open.

This is where you specify the address from which data is to be
transferred.

For transfers from VDP ram, only the lowest 17 bits of the 3
bytes are significant.

For transfers from CPU ram, only the lowest 21 bits of the 3
bytes are significant. For CPU ram transfers, the lowest 13
bits are an offset into one of your task’s memory pages, and
the other 8 bits specify which of your task’s pages the transfer
starts on. This address is not necessarily the same as the 16-
bit CPU address your task will use to initialize the data,
depending on how your task has altered the map of its
execution memory pages (see the section on Memory
Management.)

The record number is only valid for Fixed record files.
Writing to a record past the end of the current file contents
will cause the file to be expanded, possibly causing a disk full
error.

On return, the record number has been incremented by one
from the value you passed. Note that no distinction is made
between

Record Length

CPU/VDP Flag

Filename length

Filename string

GenREF v1.00 DSR-15

Relative and Sequential access for Fixed files. All access to
fixed files is treated as sequential unless you change the record
number within your program.

 For block devices, your program should not alter this value.

For character devices, set this value to the length of your
output buffer.

If this byte is zero, data will be transferred from a buffer in

the memory belonging to your task, at the address specified in
the buffer address. If this byte is non-zero, data will be
transferred from VDP ram.

This is a count of the number of characters in the filename
string.

For block devices, such as disks and hard disks, this string
must contain the name of a file which you currently have
opened. For character devices, this is simply the name of the
device, all switches after the name are ignored.

DSR-16

GenREF v1.00

RESTORE

Function

PAB format

For block devices, such as hard disk and floppy disk, this resets
the file so the the next record read will come from the
beginning of the file, or the next record written will go at the
beginning of the file. The only exception is fixed record files
with the relative mode on, those files will be restored to the
record number you specify.

This is the only opcode which makes a distinction between
sequential and relative access fixed files.

Parameters passed to RESTORE.

byte offset size parameter

0 1 byte opcode = >04
1 1 byte mode flags

6 2 bytes record number
15 1 byte name length
16 string file name

Parameters returned from RESTORE

byte offset size parameter
2 1 byte error code
6 2 bytes record number

Parameter description

Opcode

.Flag byte

> 04 is the opcode for the RESTORE function

This opeode must be used on a file which was opened with the
OPEN opcode. It does not apply to character devices such as
RS232 and PIO.

Only the least significant bit has meaning to the restore
opcode, and only for fixed files. If the least significant bit is
set to one, for a fixed record file, the file pointer will be
moved to the record you specified in the record number,
Otherwise, the file pointer will be moved to the start of the
file.

Error code
>60

>EQ0

Record number

Filename length

Filename string

GenREF v1.00 DSR-17

Bad opcode. You attempted to use the RESTORE operation

- on a character device.

General purpose error. An error which didn’t fit any of the
previous descriptions. You will get this error if the file you
specified is not currently open.

For fixed files with the relative access mode bit set, this is the
record number for subsequent access to the file. This is pretty
useless, because you can always set the record number on any
read or write.

Upon return, this contains zero for sequential access fixed
files, and the record number you specified for relative access
fixed files.

This is a count of the number of characters in the filename
string.

For block devices, such as disks and hard disks, this string
must contain the name of a file which you currently have
opened.

DSR-18

GenREF v1.00

LOAD

Function

PAB format

For block devices, such as hard disk and floppy disk, this
operation is used to read a program image file into memory at
the buffer address you specified.

For character devices, this operation is not implemented, but
there was some thought about using the 1K XMODEM
protocol to implement this operation.

Parameters passed to LOAD

byte offset size parameter

0 1 byte opcode = >05
3 3 bytes buffer address
10 1 byte CPU/VDP flag
11 3 bytes buffer size

15 1 byte name length

16 string file name

Parameters returned from LOAD

byte offset size parameter
2 1 byte error code
6 1 byte >0

7 3 bytes image size

Parameter description

Opcode

Error code
>40
> 60
>80
>C0

> 05 is the opcode for the LOAD function in the DSR.

This opcode can only be used to transfer an entire program
image from a block oriented storage device to memory. You
will get an error if you try to load any other type of file.

Bad attributes. You attempted to load a file which wasn’t a
program image.

Bad opcode. You attempted to load from a character oriented
device such as RS5232 or P1O.

Buffer overrun. The image file on disk is larger than the
maximum buffer size you specified.

Media error. For some reason, MDOS encountered an
unrecoverable error while trying to locate or read from the
specified file. This could mean that a floppy drive is empty, o
there _

>E0

Buffer Address

Image Size

CPU/VDP Flag

Buffer Size

Filename length

Filename string

GenREF v1.00 DSR-19

is a bad sector on the floppy drive.
General purpose error. An error which didn’t fit any of the
previous descriptions. You will get this error if the file does

. not exist on the specified device.

This is where you specify the address to which data is to be
transferred.

For transfers to VDP ram, only the lowest 17 bits of the 3
bytes are significant.

For transfers to CPU ram, only the lowest 21 bits of the 3
bytes are significant. For CPU ram transfers, the lowest 13
bits are an offset into one of your task’s memory pages, and
the other 8 bits specify which of your task’s pages the transfer
starts on. 'Lhis address is not necessarily the same as the 16-
bit CPU address your task will use to examine the data,
depending on how your task has altered the map of its
execution memory pages {see the section on Memory
Management.)

These three bytes give the actual size of the image file on disk.
This value is returned to you even if the file was not loaded
because it was larger than your buffer. Note that image files
loaded from the WDSx personality card winchester are limited
to 16384 - (buffer_address MOD 8192) bytes in length.

If this byte is zero, data will be transferred to a buffer in the
memory belonging to your task, at the address specified in the
buffer address. If this byte is non-zero, data will be
transferred to VDP ram.

You use these three bytes to inform MDOS of the maximum
number of characters you wish to load as an image file. If the
image file is longer than the size you specify here, none of the
image file will be loaded, and you will get an error.

This is a count of the number of characters in the filename
string.

For block devices, such as disks and hard disks, this string
must contain the name of the device you wish to access,
followed by a list of the subdirectories separated by periods,
followed by the name of the file you wish to access. {(Example:
"HDS1.SOURCE.UTILEXAMPLE") The length of the
name, including the period separators, must be limited to 40
characters. This file must already exist on the device you are
accessing.

DSR-20

GenREF v1.00

SAVE

Function

PAB format

For block devices, such as hard disk and floppy disk, this
operation is used to write a program image file to disk from
memory at the buffer address you specified. If the file doesn’t
already exist, a new file will be created if there is room on the
disk. If the file already exists, it must be an unprotected
program image file, or you will get an error. When you are
saving an image file, any subdirectories specified in the
filename must already exist, they will not be created for you.
You will get an error if the specified subdirectories do not
already exist.

For character devices, this operation is not implemented, but
there was some (hought about using the 1K XMODEM
protocol to implement this operation.

Parameters passed to SAVE for image files.

byte offset size parameter

0 1 byte opcode = >06
3 3 bytes buffer address
10 1 byte CPU/VDP flag
11 3 bytes buffer size

15 1 byte name length

16 string file name

Parameters returned from SAVE.

byte offset size parameter
2 1 byte error code

Parameter description

Opcode

> (6 is the opcode for the SAVE function in the DSR.

This opcode can be used to transfer an entire program image
from memory to a block oriented storage device.

Error code

>20

>40
>60

>80

>C0

Buffer Address

GenREF v1.00 DSR-21

Write Protection violation. The file could not be created

. because the floppy disk has a write-protect tab. Alternatively,

the file already exists, and has the "protected” attribute set in
its directory entry.

Bad attributes. You attempted to save over an existing file
which wasn’t a program image.

Bad opcode. You attempted to save an image on a character
oricnted device such as RS232 or PIO.

Out of space. There are not enough free sectors on the device
to create the file you specified; or, the directory on the
specified device already has the maximum of 127 entries.

For block devices, media error. For some reason, MDQS
encountered an unrecoverable error when trying read the
sector usage bitmap information or trying to write data into
the file itself. For floppy disks, this could mean that the user
prematurely removed the disk from the drive. Alternatively,
MDOS was unable to locate the place on the disk where the
data was to be written.

General purpose error. An error which didn’t fit any of the
previous descriptions. You will get this error if any
subdirectory specified as part of the filename does not exist on
the specified device.

This is where you specify the address from which data is to be
transferred.

For transfers from VDP ram, only the lowest 17 bits of the 3
bytes are significant.

For transfers from CPU ram, only the lowest 21 bits of the 3
bytes are significant. For CPU ram transfers, the lowest 13
bits are an offset into one of your task’s memory pages, and
the other 8 bits specify which of your 1ask’s pages the transfer
starts on. This address is not necessarily the same as the 16-
bit CPU address your task will use to initialize the data,
depending on how your task has altered the map of its
execution memory pages (see the section on Memory
Management.)

DSR-22
CPU/VDP Flag

Buffer Size

Filename length

Filename string

GenREF v1.00

If this hyte is zero, data will be transferred from a buffer in
the memory belonging to your task, at the address specified in
the buffer address. If this byte is non-zero, data will be
transferred from VDP ram,

You use these three bytes to inform MDOS of the number of
characters you wish to save as an image file.

This is a count of the number of characters in the filename
string.

For block devices, such as disks and hard disks, this string
must contain the name of the device you wish to access,
followed by a list of the subdirectories separated by periods,
followed by the name of the file you wish to save into.
(Example: "HDS1L.SOURCE.UTILEXAMPLE") The length
of the name, including the period separators, must be limited
to 40 characters.

GenREF v1.00 DSR-23

CREATE DIRECTORY

Function

PAB format

For block devices, this operation is used to create a new
subdirectory on the specified device. You can create a new
subdirectory by using a filename which ends in a period
separator character. Any intermediate subdirectories specified
in your filename must already exist, they will not be created
for you. A filename of "HDSI.ILEVELLLEVEI2IEVEL3."
would create a subdirectory named "LEVEL3" only if
subdirectories "LEVEL1" and "LEVEL2" already existed on
"HDS1", Note that only one level of subdirectories is allowed
on a floppy disk device.

For character devices, this operation is not implemented.

Parameters passed to CREATE DIRECTORY

byte offset size parameter

0 1 byte opcode = >06
15 1 byte name length
16 . string file name

Parameters returned from CREATE DIRECTORY

byte offset size parameter
2 1 byte error code
6 1 byte =>00

Parameter description

Opcode

>06 is the opcode for the CREATE DIRECTORY function
in the DSR. This is the same opcode as the SAVE function of
the DSR, the DSR distinguishes between the two uses by
looking for a period character at the end of the filename you
specified.

DSR-24

" Error code
>20
> 60

>80

>C0

=>EQ

Filename length

Filename string

GenREF v1.00

Write Protection violation. The subdirectory could not be
created because a floppy disk has a write-protect tab.

Bad opcode. You attempted to create a subdirectory on a
character oriented device such as RS232 or P10.

Out of space. There are not enough free sectors on the device
to create the subdirectory you specified; or, the directory on
the specified device already has the maximum of 114
subdirectory entries.

For block devices, media error. For some reason, MDOS
encountered an unrecoverable error when trying read the
sector usage bitmap information or trying to write data into
the subdirectory itself. For floppy disks, this could mean that
the user prematurely removed the disk from the drive.
Alternatively, MDOS was unable to locate the place on the
disk where the data was to be written.

General purpose error. An error which didn’t fit any of the
previous descriptions. You will get this error if any
subdirectory specified as part of the filename (other than the

" last one in the filename, the one you wish to create) does not

exist on the specified device.

This 15 a count of the number of characters in the filename
string,

For block devices, such as disks and hard- disks, this string
must contain the name of the device you wish to access,
followed by a list of the subdirectories separated by periods,
followed by the name of the subdirectory you wish to create,
followed by another period. (Example:
"HDS1.SOURCE.UTILNEWDIR.") The length of the name,
including the period separators, must be limited to 40
characters,

GenREF v1.00 DSR-25

DELETE

Function

PAB format

This operation serves three purposes.

For block devices, such as hard disk and floppy disk, this can
be used to delete a file from a directory, returning sectors
allocated to the file into available space on the disk. This

operation can also be used to remove a subdirectory from a
disk if the subdirectory is empty.

For character devices, this operation can be used to flush the
output spooler for the device, causing all characters still in the
output spooler to be purged. '

Parameters passed to DELETE.

byte offset size parameter

0 1 byte opcode = >07
15 1 byte name length
16 string file name

Parameteré returned from DELETE

byte offset size parameter
2 1 byte error code

Parameter description

Opcode
Error code

>20

>0

=07 is the opcode for the DELETE function.

Write Protection violation. For files, the specified file could
not be deleted because the disk is physically write-protected, or
the "protected” mode bit is set in the file’s directory entry. For
subdirectories, the directory could not be deleted because the
disk is physically write protected, or the directory still has
subordinate files and directories within it (the directory is not
empty.)

For block devices, media error. For some reason, MDOS
encountered an unrecoverable error when trying to update the
sector usage bitmap information or trying to write data into
the subdirectory itself. For floppy disks, this could mean that
the user prematurely removed’ the disk from the drive,
Alternatively, MDOS was unable to locate the place on the
disk

DSR-26

>E0

Filename length

Filename string

GenREF v1.00

where the data was to be written.

General purpose error. An error which didn't fit any of the
previous descriptions. You will get this error if any
subditectory specified as part of the filename (other than the
last one in the filename, the one you wish to create) does not
exist on the specified device. You will also get this error if the
specified file/subdirectory did not exist.

This is a count of the number of characters in the filename
string.

To delete files on block devices, such as disks and hard disks,
this string must contain the name of the device you wish to
access, followed by a list of the subdirectories separated by
periods, followed by the name of the file you wish to delete.
(Example: "HDS1L.SOURCE.UTILEXAMPLE") The length
of the name, including the period separators, must be limited
to 40 characters. :

To delete a subdirectory from a block device, such as disks and
hard disks, this string must contain the name of the device you
wish to access, followed by a list of the subdirectories
separated by periods, followed by the name of the subdirectory
you wish to create, followed by another period. (Example:
"HDS1.SOURCE.UTILNEWDIR.") The length of the name,
including the period separators, must be limited to 40
characters,

To purge the output spooler on a character device such as
RS232 or PIO, this string must contain the name of the device.
Any switches and other characters following the device name
will be ignored.

GenREF vi00 DSR-27

DELETE RECORD

Function

PADB format

This operation is not currently implemented in MDOS. It
would be used to delete a record from a key indexed file
(possibly implemented as a B-Tree.)

Parameters passed to DELETE RECORD.

byte offset size parameter

0 1 byte opcode = >08
15 1 byte name length
16 string file name

Parameters returned from DELETE RECORD

byte offset size parameter
2 1 byte error code = >60

Parameter description

Opcode

Error code
>60

Filename length

Filename string

> 08 is the opcode for the DELETE RECORD function.

Bad opcode. This opcode is not implemented in MDOS.

This is a count of the number of characters in the filename
string.

This would be the name of a currently open file on a block
device.

DSR-28

GenREF v1.00

STATUS

Function

PAB format

For block devices, such as hard disk and floppy disk, this
operation gives you information about the attributes of a
specified file, as well as information regarding space available
on the disk.

Parameters passed to STATUS.

byte offset size parameter

0 1 byte opcode = >09
15 1 byte name length
16 string file name

Parameters returned from STATUS

byte offset size parameter
2 1 byte error code
14 1 byte attribute byte

Parameter description

Opcode

Error code
>60

>C0

>E0

> 09 is the opcode for the STATUS function.

This opcode can be used on any file, even if it is open. It does
not apply to character devices such as RS232 and PIO.

Bad opcode. You attempted to use the STATUS operation on
a character device.

Media error. For some reason, MDOS encountered an
unrecoverable error while trying to locate or read from the
specified file. This could mean that a floppy drive is empty, or
there is a bad sector on the floppy drive.

General purpose error. An error which didn’t fit any of the
previous descriptions.

Attribute byte

GenREF v1.00 DSR-29

Bit Meaning

0 (Isb) =

1 0=
1=
2 0=
1=
3 0=
1=
4 0
1=
5
6 0=
1=
7 (msb) 0=
1=

Filename length

Filename string

. Not at end of file.

At end of open file, read is not possible without EOF error.
Write is possible if the file was opened for writing,

There is room on the disk to expand the file.
Disk is full, there is no room to make the file larger.

If the file is a data file, it has fixed length records.
If the file is a data file, is has variable length records.

If file exists, it is a data file.
If file exists, it is a program image file.

If the file is a data file, it contains display format data.
If the file is a data file, it contains internal format data.

This bit is not used.

If the file exists, it is protected against write operations.
If the file exists, write operations are allowed.

File exists, all other bits specify file attributes.
File does not exist, all other bits must be ignored.

This is a count of the number of characters in the filename
string,

For block devices, such as disks and hard disks, this string
must contain the name of a file for which you want to obtain
information.

DSR-30

GenREF v1.00

FILE ID

Function

The file ID can be transferred from a file to your program via
the BREAD function. You can cause MDOS to create a new
file with all of the characteristics in a file ID provided by your
task by use of the BWRITE function. The file ID is
transferred between MDOS and your task is the buffer whose
address you specify in the "buffer address” field of the PAB
used by BREAD and BWRITE.

The file ID tells you and MDOS everything there is to know
about the file other than where it is actually located on the

disk.

File ID format in buffer

offset
0

(Isb)

LS IR S]

4-6
(msb)

size
2 bytes

1 byte

RESERVED

0=
1=

RESERVED

0=
1=

1 byte

2 bytes

1 byte

Extended record length for files with records longer than 255
bytes. All 16 bits are significant, so a record whose length is
specified here can be from 256 to 65535 bytes long.

File stats flag hits.

Data file.

Program image file.

If data file, contains display format data.
If data file, contains internal format data.

File is not protected.
File is write protected.

If data file, contains fixed length records.
If data file, contains variable length records.

For data files, this is the number of records which can fit into
on one sector. This byte is zero for program images files and
files with record lengths longer than 256 bytes.

This is the 16 least significant bits of a 20 bit number
representing the number of sectors reserved for the file. The
four most significant bits are at offset 18 in the buffer,

This is the number of bytes used in the last sector of the file.
A zero value in this hyte means that all 256 hytes in the last
sector are used. This is used in determining the length of
program image files, and to determine the EOF for variable
record length files.

7

8

10

12

14
16

18

19

1 byte

2 bytes

2 bytes

2 bytes

2 bytes
2 bytes

1 byte

1 byte

GenREF v1.00 DSR-31

This is the record length for data files with records shorter
than 2356 bytes. This is zero for program image files and data
files with records longer than 255 bytes.

" These two bytes must be reversed to form a 16 bit number

which is the least significant 16 bits of a 20 bit number used to
determine the EOF mark for files. The four most significant
bits are at offset 19 in the buffer.

For files with fixed record lengths, this is one greater than the
highest record ever written to in the file.

For program image files, this is the number of sectors actually
used in the file. This, in conjunction with the number of bytes
used in the last sector, is used to determine the number of
bytes in the program image.

For variable record files, this is simply the number of sectors
actually used in the file, and is only used when you want to
APPEND data to the file.

Date of file creation. This has three fields packed into the 16
available bits. The 7 most significant bits are the last two
digits of the year, The next 4 bits are the month. The 5 least
significant bits are the day of the month. The date 12 May
1988 would be encoded as (88*512 + 5*32 + 12) = >B0AC

Time of file creation. This has three fields packed into the 16
available bits. The 5 most significant bits are the hour, from 0
to 23. The next 6 bits are the minute, from 0 to 59. The 5
least significant bits are the seconds, divided by 2. The time
10:58:13 would be encoded as (10*2048 + 58*32 + 13/2) =
> 5746

Date of file update, Same format as the creation date.
Time of file update. Same format as the creation time.

This contains the most significant 4 bits of the number of
sectors reserved for the file.

This contains the most significant 4 bits of the number of
sectors used by the file.

DSR-32

GenREF v1.00

BREAD

Function

PAB format

For block devices, such as hard disk and floppy disk, this
operation is used to read sectors directly from the disk or from
within any type of file located on the disk into memory at the
buffer address you specified. It can also be used to read
subdirectory headers from a floppy disk.

With files on a block device, if you specify a sector count of
zero, this can also be used to read the file’s ID into the buffer
you specified.

The values returned in the PAB are defined to make error
recovery routines easy to code.

Parameters passed to BREAD.

byte offset size parameter

0 1 byte opcode = >0A

3 3 bytes buffer address

6 2 bytes LSW sector offset
10 1 byte CPU/VDP flag
12 2 bytes sector count

14 1 byte MSB sector offset
15 1 byte name length

16 string file name

Parameters returﬂed from BREAD,

byte offset size parameter

2 1 byte error code

3 3 bytes updated buffer address

6 2 bytes updated LSW sector offset
12 2 bytes remaining sectors

14 1 byte updated MSB sector offset

Parameter description

Opcode

> (A is the opcode for the BREAD function in the DSR.

Error code

>60

>AD

>C0

>E)

Buffer Address

Sector offset

GenREF v1.00 DSR-33

Bad opcode. You attempted to read from a character oriented

_ device such as RS232 or PIO.

Read past end of file. When you are reading sectors directly
from a disk, this error is reported when you attempted to read
a sector number higher than any sector on the disk. When you
are reading from a file, this error is reported to you when you
attempt to read a sector past the last sector reserved for file
(not at the last sector used by the file.)

Media error. For some reason, MDOS encountered an
unrecoverable error while trying to locate or read from the
specified file, This could mean that a floppy drive is empty, or
there is a bad sector on the block device.

General purpose error. An error which didn’t fit any of the
previous descriptions. You will get this error if the file does
not exist on the specified device.

This is where you specify the address. to which data is to be
transferred.

For transfers to VDP ram, only the lowest 17 bits of the 3
bytes are significant,

For transfers to CPU ram, only the lowest 21 bits of the 3
bytes are significant. For CPU ram transfers, the lowest 13
bits are an offset into one of your task’s memory pages, and
the other 8 bits specify which of your task’s pages the transfer
starts on. This address is not necessarily the same as the 16-
bit CPU address your task will use to examine the data,
depending on how your task bas altered the map of its
execution memory pages (see the section on Memory
Management.)

On return from the BREAD function with a non-zero sector
count, the buffer address will be updated to point to the first
byte in memory after the data you just loaded. If there were
no errors this will be your initial buffer address + 256 *
sectors. If there were errors, this will point to the where the
first bad sector encountered would have been loaded.

The two bytes at offset 6 in the PAB, along with the byte at
offset 14 in the PAB, form a 20 bit sector offset within the
specified file or device. Sector numbering starts at zero, not at
one.

On return from the BREAD function, this is updated to

contain the offset of the sector in the file after the last sector

successfully

DSR-34

CPU/VDP Flag

Sector count

Filename length

Filename string

GenREF v1.00

read. If there was an error while reading sectors, this will
contain the offset of the sector which MDQS was unable to
read.

If this byte is zero, data will be transferred to a buffer in the
memory belonging to your task, at the address specified in the
buffer address. If this byte is non-zero, data will be
transferred to VDP ram,

To read sectors from a disk or from a file, this must be sect to
a non-zero number which tells MDOS how many sectors you
want to read. To read a file ID from a file into your buffer,
you must set this to zero.

On return, this will contain the number of sectors not read due
to an error condition.

This is a count of the number of characters in the filename
string.

For access to a file on a block device, such as disk or hard
disk, this string must contain the name of the device you wish
to access, followed by a list of the subdirectories separated by
periods, followed by the name of the file you wish 10 access.
(Example: "HDS1.SOURCE.UTILEXAMPLE") The length
of the name, including the period separators, must be limited
to 40 characters. This file must already exist on the device you
are accessing. You must specify a sector count of zero if you
want to read the file ID into your buffer.

For direct access to sectors on a block device, this string must
contain the name of the device you wish to access, followed by

a period. (Example: "HDS1.")

For direct access to the pointers of a floppy disk subdirectory,
this string must contain the name of the floppy disk device,
followed by a period, followed by the subdirectory name,
followed by another period. (Example: "DSK1.SUBDIR.")
For this subdirectory, reading from sector zero or sector one
will return information unique to that subdirectory in the same
format as sector zero and sector one of the main floppy disk.
Access to any sector beyond sector one will simply read the
corresponding sector from the disk, as if no subdirectory had
been specified.

GenREF v1.00 DSR-35

BWRITE

Function

PAB format

For block devices, such as hard disk and floppy disk, this
operation is used to write sectors directly to the disk or into
any type of file located on the disk from memory at the buffer
address you specified.

With files on a block device, if you specify a sector count of
zero, this can also be used to create a new file with the
characteristics described in a file ID in the buffer you

specified.

The values rewurned in the PAB are defined to make error
recovery routines easy to code.

Parameters passed to BWRITE.

byte offset size . parameter

0 1 byte opcode = >0B

3 3 bytes buffer address

6 2 bytes LSW sector offset
10 1 byte CPU/VDP flag
12 2 bytes sector count

14 1 byte MSB sector offset
15 1 byte name length

16 string file name

Parameters returned from BWRITE.

byte offset size parameter

2 1 byte error code

3 3 bytes updated buffer address

6 2 bytes updated LSW sector offset
12 2 bytes remaining sectors

14 1 byte updated MSD sector offset

Parameter description

Opcode

> 0B is the opcode for the BWRITE function in the DSR.

IDSR-36

Error code
> 60

>80

> AQ

>C0

>E0

Buffer Address

GenREF v1.00

Bad opcode. You attempted to write to a character oriented
device such as RS232 or PIO.

Disk full. When you were creating a new file, there weren’t
enough sectors left on the disk to create the file. Alternatively,
the specified subdirectory already had 127 file entries, and your
new file could not be added to the directory.

Write past end of file. When you are writing sectors directly
to a disk, this error is reported when you attempted to write to
a sector number higher than any sector on the disk. When you
are writing to a file, this error is reported to you when you
attempt to write to a sector past the last sector reserved for
file (not at the last sector used by the file.)

Media error. For some reason, MDOS encountered an
unrecoverable error while trying to locate the specified file, or
while trying to write to the file, or when trying to find more
sectors for the file. This could mean that a floppy drive is
empty, or there is a bad sector on the block device.

General purpose error. An error which didn’t fit any of the
previous descriptions. You will get this error if the file does
not exist on the specified device (unless you were just creating
the file.)

This is where you specify the address from which data is to be
transferred.

For transfers from VDP ram, only the lowest 17 bits of the 3
bytes are significant.

For transfers from CPU ram, only the lowest 21 bits of the 3
bytes are significant. For CPU ram transfers, the lowest 13
bits are an offset into one of your task’s memory pages, and
the other 8 bits specify which of your task’s pages the transfer
starts on. This address is not necessarily the same as the 16-
bit CPU address your task will use to initialize the data,
depending on how your task has altered the map of its
execution memory pages (see the section on Memory
Management.)

On return from the BWRITE function with a non-zero sector
count, the buffer address will be updated to point to the first
byte in memory after the data you just saved. If there were no
errors this will be your initial buffer address + 256 * sectors.
If there were errors, this will point to the first sector of data in
your buffer which was not saved to the block device.

Sector offset

CPU/VDP Flag

Sector count

Filename length

Filename string

GenREF v1.00 . DSR-37

The two bytes at offset 6 in the PAB, along with the byte at
offset 14 in the PAB, form a 20 bit sector offset within the
specified file or device. Sector numbering starts at zero, not at

. One.

On return from the BWRITE function, this is updated to
contain the offset of the sector in the file after the last sector
successfully written. If there was an error while writing
sectors, this will contain the offset of the sector which MDOS
was unable to write data into.

If this byte is zero, data will be transferred from a buffer in
the memory belonging to your task, at the address specified in
the buffer address. If this byte is non-zero, data will be
transferred from VDP ram.

To write sectors to a disk or to a file, this must be set to a
non-zero number which tells MDOS how many sectors you
want to write.

To create a new file, with the file ID from your buffer, you
must set this to zero.

On return, this will contain the number of sectors not written
due to an error condition.

This is a count of the number of characters in the filename
string.

For access to a file on a block device, such as disk or hard
disk, this string must contain the name of the device you wish
to access, followed by a list of the subdirectories separated by
periods, followed by the name of the file you wish to access.
(Example: "HDSLSOURCE.UTILEXAMPLE") The length
of the name, including the period separators, must be limited
to 40 characters. This file must already exist on the device you
are accessing (unless you are in the process of creating the file
with your own file ID.) You must specity a sector count of
zero if you want to create a new file with the ID information
in your buffer.

For direct access to sectors on a block device, this string must
contain the name of the device you wish to access, followed by
a period. (Example: "HDS1.")

DSR-38

GenREF v1.00

PROTECT

Function

PAB format

For block devices, such as hard disk and floppy disk, this
operation can be used to remove or set write-protection for
the specified file.

Parameters passed to PROTECT.

byte offset size parameter

0 1 byte opcode = >0C
2 1 byte protection flag.
15 1 byte name length

16 string file name

Parameters returned from PROTECT.

byte offset size parameter
2 1 bytc error code

Parameter description

Opcode

Protection flag

Error code

=20

> 60

=>C0

>E(

>0C is the opcodé for the PROTECT function.
This opcode should only be used on a file which is not open.

If this byte is zero, the specified file will be made into an
unprotected file, If this byte is non-zero, the file will have the
write-protect bit set in its directory entry.

Write Protection violation. For files, the protection of the
specified file could not be changed because the disk is
physically write-protected.

Bad opcode. You attempted to use the PROTECT operation
on a character device.

Media error. For some reason, MDOS encountered an
unrecoverable error while trying to locate or update the
directory entry for the specified file. This could mean that a
floppy drive is empty, or there is a bad sector on the floppy
drive.

General purpose error. An error which didn’t fit any of the
previous descriptions. You will get this error if the file you
specified does not exist on the specified device.

GenRET v1.00

DSR-39

RENAME

Function

For block devices, such as hard disk and floppy disk, this

operation can be used to rename a file or a subdirectory on
the device. It can also be used to change the volume label on
a block device. After a rename operation of a file or
subdirectory, the filename in the PAB will be updated to
reflect the new name of the file or subdirectory.

PAR format

byte offset size
0

1 byte
3 3 bytes
10 1 byte
15 1 byte
16 string
(@buffer 10 bytes

Parameters passed to RENAME.

parameter
opcode = >0D
buffer address
CPU/VDP flag
name length
file name

new file name

Parameters returned from RENAME

byte offset size

2 1 byte
15 1 byte
16 string

Parameter description

Opcode

parameter
error code
name lecngth
new file name

> 0D is the opcode for the RENAME function.

This opcode should only be used on a file which is not open.

DSR-40

Error code

>20
> 60

>C0

>E0D

Buffer Address

New name

CPU/VDP Flag

Filename length

GenREF v1.00

Write Protection violation. The name of the specified file or
subdirectory could not be changed because the disk is
physically write-protected.

Bad opcode. You attempted to use the RENAME operation
on a character device.

Media error. For some reason, MDOS encountered an
unrecoverable error while trying to locate or update the
directory entry for the specified file. This could mean that a
floppy drive is empty, or there is a bad sector on the floppy
drive.

General purpose error. An error which didn't fit any of the
previous descriptions. You will get this error if the file you
specified does not exist on the specified device.

This is where you specify the address from which MDOS will
obtain the new name for the file.

For transfers from VDP ram, only the lowest 17 bits of the 3
bytes are significant.

For transfers from CPU ram, only the lowest 21 bits of the 3
bytes are significant. For CPU ram transfers, the lowest 13
bits are an offset into one of your task’s memory pages, and
the other 8 bits specify which of your task’s pages the transfer
starts on. ‘This address is not necessarily the same as the 16-
bit CPU address your task will use to set the filename,
depending on how your task has altered the map of its
execution memory pages (see the section on Memory
Management.)

The buffer must contain ten characters for the new name of
the file or directory. If the name is shorter than ten
characters, you must add enough trailing spaces to the name to
make the buffer contain ten characters.

If this byte is zero, data will be transferred to a butfer in the
memory belonging to your task, at the address specified in the
buffer address. If this byte is non-zero, data will be
transferred to VDP ram.

This is a count of the number of characters in the filename
string.

On return from the RENAME operation, this contains the
length of the new filename.

Filename string

GenREF v1.00 DSR-41

To rename a file on a block device such as disks and hard
disks, this string must contain the name of the device you wish
to access, followed by a list of the subdirectories separated by

. periods, followed by the name of the file you wish to rename.

(Example: "HDS1.SOURCE.UTIL.FILE") The length of the
name, including the period separators, must be limited to 40
characters.

To rename a subdirectory on a block device such as disks and
hard disks, this string must contain the name of the device you
wish to access, followed by a list of the subdirectories
separated by periods, followed by the name of the subdirectory
you wish to rename, followed by another period. (Example:
"HDS1LSOURCE.UTIL.DIRECT.") The length of the name,
including the period separators, must be limited to 40
characters.

To change the name of a volume in a block device, this string
must contain only the name of the device, and the buffer must
contain the new name for the volume.

DSR-42

GenREF v1.00

FORMAT

Function

For floppy disk block devices, this operation is used to

initialize blank diskettes, or to reinitialize used diskettes
(erasing the previous contents of the disk.)

PAB format

byte offset

R I SR T S OS]

5
6

[

size

1 byte
1 byte
1 byte
1 byte
1 byte
1 byte
1 byte
string

Parameters passed to FORMAT.

parameter
opcode = >0E
tracks

skew

interlace
density

sides

name length
device name

Parameters returned from FORMAT

byte offset
2

8

11

12

Parameter description

Opcode

size,

1 byte

~ 2 bytes
1 byte

1 byte

parameter

error code
sector count
actual sides
sectors per track

>(QE is the opcode for the FORMAT function.

This opcode should only be used on a device which does not
have any open files.

Error code

>20

>60

>C0

>E0

Tracks

Skew

Interlace

GenREF v1.00 DSR-43

Write Protection violation. The name of the specified file or

- subdirectory could not be changed because the disk is

physically write-protected.

Bad opcode. You attempted to use the FORMAT operation
on a character or winchester device,

Media error. For some reason, MDOS encountered an
unrecoverable error while trying to initialize the disk. This
could mean that a floppy drive is empty, there is a bad sector
on the floppy drive, or the disk drive is defective.

General purpose error. An error which didn’t fit any of the
previous descriptions.

This is the number of tracks per side to format on the
specified device. For double sided disks, this must be either 40
or 80. For single sided disks, this can range from 1 to 40, or
80. Track counts between 40 and 80 can not be used. Track
counts larger than 80 cannot be used.

This is the rotational delay between the last sector on a
specified track, and sector zero on the next track, specified in
sectors, This delay can be optimized so that sector zero of the
subsequent track is ready as soon as a hecad step operation
between tracks is complete, eliminating an extra rotation of the
floppy disk after a head step. One disk revolution is 200
milliseconds on a standard 5.25" floppy disk. The optimum
delay for a single-track head step is about 35 milliseconds.
The optimum skew is generally (35/200) multiplied by the
sectors per track, rounded up to the next highest integer.

Skew is NOT the spacing between the =zero sector on
consecutive tracks.

Interlace is used to adjust rotational declays between
consecutively numbered sectors on the same track. After
reading a sector from the disk, MDOS will immediately
process data from the sector, returning information from the
sector to the calling task. In the time MDOS spends
processing the data, the disk is still turning and several sectors
may pass the head of the disk drive. If one of those sectors
which went by as MDOS was processing the data happened to
be the next sector that MDOS needed, MDOS would have to
wait for the disk to spin around again before it could read that
sector from the disk. Interlace is used to specify how many
sectors are likely to go by as MDOS is processing the current
sector. Interlace is the number of revolutions of the disk it
would take MDQOS to read an entire track, assuming that
MDOS

DSR-44

Density

Sides

Sector Count

Actual sides

Sectors

Device name length

Device name

GenREF v1.00

could read consecutively numbered sectors from the track
without the extra rotational delay. With an interlace of 2,
consecutively numbered sectors on a track would have another
sector between them, a sector which MDOS will miss as it is
processing the data from the first sector.

Setting this byte to > 02 will cause MDOS to format the disk
with 18 sectors per track on a double-density controller card.
Setting this byte to any other value will cause MDOS to format
the disk with 9 sectars per track on all controller cards.

Setting this byte to > 02 will cause MDOS to format both sides
of a disk in a double-sided drive. If the drive is not double-
sided, and you set this byte to > (2, only one side of the disk
will be formatted. Setting this byte to any value other than
> 02 will cause MDOS to only format one side of the disk.

On return from the FORMAT operation, this is a 16 bit
integer which indicates the number of sectors available on a
freshly formatted diskette.

On return from the FORMAT operation, this is the number of
sides of the disk that MDOS formatted. For a single sided
drive, this will always be >01. For a double sided drive, the
number here will depend on the number of sides you asked to
be formatted.

On return from the FORMAT operation, this byte will contain
a >09 for single density disks, and >12 for double density
disks. '

This is a count of the number of characters in the filename

string.

For block devices, such as disks and hard disks, this string
must contain the name of the device you wish to format,
followed by a period. (Example: “DSK1.")

UTILITY - CONTENTS

Page
Utility Overview 1
Calling Utility FUNCHONScoeieccrirenisnnimcseneccnenssnsescssassssssessssssessssssssssssssssssessss 1
Validate Time 2
Read Time 3
St TUMIE covurrrrresssisssisssasinssssssssssssssssssasssssssssssosssssssassasssssissssosssssssssssssnsasarsasasas 4
Validate DAL ... ocrmimcciareensissencasmsssisssmmsssssssasmsasssssssasssssusssssssssasssnsessssssssssansess 5
REAA DAL ... sns s ssn s sssns s cscessssssessnas s eessesemses 6
Set Date... s i
JUHAN DAL ..t csitsre et sessmss st s aens 8
Day of WEEK ...oouirmissssasismssmiisimimsissmsmsisnssisssnssssmmss s ssassssssssssssssss 9
Parse FIlename ... sasssssssssssssessesssssaens 10
1080 TaSK..cciiiriciimnisisisissisciniscsnisimsnsscssss st sssssissss st ssssssssssssssssssssasonsesss 13
FOTK TaSK ittt ssssscssssesssssissessssessssnsassessossonsssns 14

UTILITY OVERVIEW

The memory management routines in MDOS are provided 1w aid a
programmer in writing applications which are larger than the 64 Kbytes directly
addressable by the CPU’s 16 address lines. They also serve the purpose of
providing each task with it’s own private address space, separate from other the
memory accessible to other tasks.

CALLING UTILITY FUNCTIONS

The MDOS utility functions must be called from within a machine code
program running as a task under MDOS. You pass arguments to the utility
functions using only a few registers of your program’s workspace.

‘The MDOS utility functions are invoked from a machine code program when
software trap number zero (XOP 0) is called with a library number of 9. The
calling program’s RO must contain the opcode of the routine within the utility
library which is to be performed. The following code fragment will return the day
of the week to the calling task.

LI RO,7

XOP @NINE,0

MOV R1,@WEEKDA
WEEKDA DATA 0 day of the week (1-7):(Sun-Sat)
%

NINE DATA 9

%

UTIL - 2 GenREF v1.00

VALIDATE TIME

Function This operation is used to check the time stored in the clock chip for
validity. It insures that the minutes and seconds are in the range 0:59,
and insures that the hours are in the range 0:23.

‘Parameters RO = 0 (opcode)

Results EQ status

Parameter description

EQstatus The equal status bit will be set if the time is valid, allowing you 1o
perform a "JEQ timeS$ok" right after the software trap.

GenREF v1.00 UTIL - 3

READ TIME

Function

Parameters

Results

This operation reads the time of day from the clock chip, and places
it into your string buffer as a formatted string, with colons between
the hours, minutes, and seconds.

RO
R1

1 (opcode)
buffer

(LI

Buffer contains time string "HH:MM:SS".

Parameter description

Buffer

The buffer address you pass for the string is a 16-bit address within
your task’s linear address space. The buffer must be ten characters
long, and the address you pass is the address of the second character
in the buffer.

On return, the first character of the buffer (offset 0) will comtain a
length byte. The next eight characters, starting at the address you
specified, will contain the formatted time string. The last charzcter in
the buffer (offset 9) will contain a zero byte, for a null terminated
string.

GenREF v1.00

SET TIME

Function

Parameters

Results

This operation will set the clock chip using the time in the formatting
string which the calling task passes as an argument.

RO = 2 (opcode)
R1 = string
EQ status

Parameter description

string

EQ status

The address you pass for the string is a 16-bit address within your
task’s lincar address space. The address you pass is the address of
the second character in the buffer (the first text character in the

string.)

The first character in the string buffer must be a length byte, giving
the number of text characters in the string. Any leading spaces in the
string will be ignored.

The text of the string must have the following format:
[h]h:[m]m[:[s][s]]
The equal status bit will be set if the time string is valid, allowing you

to perform a "JEQ time$ok" right after the software trap. The clock
chip is not altered unless the EQ status has been returnced.

GenREF v1.00 UTIL -5

VALIDATE DATE

Function This operation is used to check the date stored in the clock chip for
validity. It insures that the month is in the range 1:12, the day of the
month is the range 1:MAX_DAYS[month], the year is in the range
0:99, and that the day of the week based on the month-day-year in the
clock chip agrees with the day of the week stored in the clock chip
itself.

Parameters RO = 3 (opcode)
Results EQ status
Parameter description

EQstatus The equal status bit will be set if the date is valid, allowing you to
perform a "JEQ date$ok" right after the software trap.

UTIL - 6

GenREF v1.00

READ DATE

Function

‘Parameters

Resulfs

This operation reads the date from the clock chip, and places it into
your string buffer as a formatted string, with a dash between the
month, day, and year.

RO = 4 (opcode)
R1 = buffer

Buffer contains date string "mm-dd-yy".

Parameter description

Buffer

The buffer address you pass for the string is a 16-bit address within
your task’s linear address space. The buffer must be ten characters
long, and the address you pass is the address of the second character
in the buffer.

On return, the first character of the buffer (offset 0} will contain a
length byte. The next eight characters, starting at the address you
specified, will contain the formatted date string “mm-dd-yy". The last
character in the buffer (offset 9) will contain a zero byte, for a nuil
terminated string.

GenREF v1.00 UTIL - 7

SET DATE

Function

Parameters

Results

This operation will set the clock chip using the date in the formatting
string which the calling task passes as an argument.

RO = 5 (opcode)
R1 = string
EQ status

Parameter description

string

EQ status

The address you pass for the string is a 16-bit address within your
task’s linear address space. The address you pass is the address of
the second character in the buffer (the first text character in the
string.)

The first character in the string buffer must be a length byte, giving
the number of text characters in the string. Any leading spaces in the
string will be ignored.

"The text of the string must have the following format:
[m]m/{d]d[/y]ly]] [m}m-[d}d{-[y][¥]]
The equal status bit will be set if the date string is valid, allowing you

to perform a "JEQ date$ok” right after the software trap. The clock
chip is not altered unless the EQ status has been returned.

UTIHL - 8 GenREF v1.00

JULIAN DATE

Function This operation performs the function of a perpetual calendar, and will
work on any date after January 1st, 1 AD.

Parameters RO = 6 (opcode)
R1 = month
R2 = day
R3 = year
Results R1,R2 = julian date

Parameter description

Year This must be the full year, like "1989", not "89", for the year in which
this documentation was written.

Julian date This is the number of days since January 1st, 4712 B.C.

-

GenREF v1.00 UTIL - 9

DAY OF WEEK
Function Returns the day of the week, from one (Sunday) to seven (Saturday).
Parameters RO = 7 (opcode)
Results R1 = weekday

Parameter description

Weekday

This is a sixteen bit integer with a value from >0001 (Sunday) to
> 0007 (Saturday).

UTIL - 10

GenREF v1.00

PARSE FILENAME

Funection

Parameters

Results

This operation will convert a logical filename descriptor to a physical
filename descriptor recognized by the Device Service Routines. For
disk devices, the conversion may depend on the drive currently set for
the task and the current subdirectory on the drive (depending on the

ambiguity left in the name by the calling program.)

It is useful when you wish to make your application program
independent of which device it was loaded from or when your
application must ask a user for a filename.

RO = 8 (opcode)
R1 = logical name
R2 = physical name
R3 = alias flag

RO = delimiter

R1 = efror code
EQ status

Parameter description

Logical name This is the address of the first character in the string to be converted

to a physical device name.

At first, the name is compared to the names of all character devices
recognized by MDOS. If the string matches the name of any of the
character devices, the string will be copied without modification to
the specified string output buffer.

There are three separators regonized by this routine as part of a disk
pathname; COLON ", PERIOD ".", and BACKSLASH "\", If the
first separator found before a terminating delimiter is 2 PERIOD, the
entire string will be copied without modification to the specified string
output buiter,

The following characters indicate the end of the input string if they
are not contained inside of double-quote marks: SPACE, COMMA,
SLASH, SEMICOLON. The NIL character (> 00) always terminates
the input string, even if there are unmatched double quotes in the
string. These characters are referred to as "terminal characters”.

GenREF v1.00 UTIL - 11

The terminal characters along with the three separator characters are
known as "delimiters".

Remaining filenames are parsed as follows:

Part A, drive alias. All characters parsed during this phase are
ignored in subsequent phases of the parsing.

caller R3 alias flag <>0 -> null string
“volume:" + non-terminal -> "WDS.volume.”
“volume:" + terminal character -> "volume”

n" + terminal character -> "alias"

n;" + non-terminal, "\", or "." -> "alias."

all others -> "alias."

Part B, current directory. Using the characters remaining in the input
string after Part A.

" is first character -> null string
current dir is NULL -> pull string

" + terminator -> "CURDIR"

+ terminator -> "PARENTDIR"
“\" + non-delimiters -> "CURDIR."
A\S + non-delimiters -> "PARENTDIR."
all others g -> "CURDIR."

Part C, file specifier. This is the characters remaining in the string
after Part A and Part B have been done. These characters are copied
into the output buffer until a BACKSLASH, QUOTE, or terminator
is found. When a BACKSLASH is found, it is replaced by a
PERIOD. When a terminator is found, parsing of the input string is
stopped, and the address of the terminator is returned to the caller.
When a QUOTE is found, all characters until the next QUOTE or
NIL in the input string are copied to the output buffer (Unless two
matching QUOTES were adjacent to each other, in which case a
single QUOTE character will be placed into the output buffer.)

The resulting string in the output buffer is "PART A" + "PART B"
+ "PART C", and is returned to the caller.

UTIL - 12
Phys. name

Alias flag

Delimiter

Error code

GenREF v1.00
This is most useful when it specifies the name length byte in a PAB.

Note that the physical name can use the same buffer as the logical
name, and will simply overwrite the logical name after parsing is
complete. As a caller, you must specify the address of the length byte
in your string output buffer with this parameter. Before calling the
parse routine, you must set the length byte to the maximum length
allowed for the output string, which is returned in the form
"< len> < chars> < nil>",

This flag must be set to zero for normal processing. If this flag is
non-zero, no disk drive alias will be prepended to the output filename.
(This feature is used only by the CHDIR command of MDOS at
present.)

This is the address of the first character in your input string which
wasn’'t processed during the generation of the filename. Note that
this is designed in such a fashion that you generally don’t need your
own routine to parse filenames which are passed to your program as
command line parameters; just call the parse routine, check the
delimiter, and call the parse routine again for the next command line
parameter.

This is set to zero if no errors were encountered while parsing the
filename. This is non-zero under several conditions: the resulting
output string was too long for your buffer, a COLON is the first
character in the input string, a drive specified with "n:" does not have

an assigned alias, or a directory specifier of the form "." or "." was
not followed by a BACKSLASH or a terminator.

GenREF v1.00 _ UTIL - 13

LOAD TASK

Function This operation will load a chained program image file into memory,
and cause it to execute as a task under MDOS. Invocation of the new
task will start at address >0400 with a workspace of >F000, and
memory windows 0..6 of the task will initially contain the data loaded
from the program image.

Parameters RO = 9 (opcode)
R1 = physical name
Results RO = error code
K1 = child page zero (physical page number)

>(00E8 in child task contains the physical page number
of the parent’s page zero '

Parameter description

Phys. name This is the address of the length byte of a filename stored in the
format "<<len™> << chars>".

Error code .
0 = no error, task was loaded
1 = insufficient memory
2 = invalid filename
3 = image file found, with invalid header
Image file header
An image file header has the following format, compatible with
Genl INK.
byte 0 if > 00, last image in chain, otherwise bump
filename and load another image in the chain
byte 1 "G" (normal speed) or "F" (use fast memory)

byte 2,3 length of this image file
byte 4,5 load address of this image file

byte 6..len+6 image data bytes

UTIL - 14

GenREF v1.00

FORK TASK

Function

Parameters

Results

This operation causes the creation of a new task under MDOS. The
new task (child task) is an exact copy of the calling task (parent task).

The new task has a virtual memory address space which has cone
physical memory page for cach physical page used by the parent task.
If the parent task was using shared memory, the child task can also
use the same shared memory and communicate with the parent task.

Further note: The terms “parent” and “child" are used as a
convenience in differentiating between the calling task and the newly
created task. In MDOS itself, there is no concept of "task tree” or
parent-child relationship as there is in some other operating systems.
In MDOS, all tasks are peers.

RO = 10 (opeode)
parent task:
RO = -1 (error)

= otherwise, this is the physical page number of the
child task’s header page.

PC = program execution continues with the instruction after the
XOP call. This instruction must be a single word instruction
such as a Jump instruction.

child task:

RO = -1

PC = program execution continues with the 2nd instruction after
the XOP call. Note that the instruction after the XOP call
must be a single word instruction.

=>00E3 in child task contains the physical page number

of the parent’s page zero

GenREF v1.00 UTIL - 15

Parameter description

error An error code of -1 will be returned to the parent task if there is not
enongh’ memory available on your systern to create a clone of your

task.

Example code

XOP
JMP
CHILD © PRINT
BLWP
PARENT PRINT
BLWP

R0,10

@NINE,0

PARENT

"This 1s the child speaking...”
@0 exit

“Child: be quiet!”

@0

s

