The October Meeting

The October mesting of the Boston Computer
Society's Ti-99/4A User Group will take place on
Wednesday October 19 at 7:30 PM at the
Massachusetts College of Art on Huntington Avenue
in Boston.

The meeting topic has been slanted in favor of a
“suggestion” from the BCS front office. As |
mentioned last month, it appears that October is
something like national computers in education
month (along with national hot air campaigning
month too....). Since the Tl was marketed heavily as
an educational machine it seams reasonable that we
should be able to get one meetings worth of material
out of this. So that's the plan. The Plato educational
system will be demonstrated. With some bad luck, I'll
end up doing it and then y’all can see what 3+ years
at Boston University doesn’t do for your mind. There
are also lots of other T! cartridge educational
programs from assorted companies, some of which
will also be shown.

Keeping with the fine tradition of not devoting a single
meeting 1o just one topic, there willbe something else
at the meeting. 1hope to be able to preview at least
one new Genial Computerware product, but I can't
promise that yet.

The software library will continue to be available at
meetings. Disks are $3 each, or 4 for $10.

This user group meets once a month. This is
probably enough. | could never survive having to
deal with this insanity more than once a month. Ithas
been proposed that we have an informal gathering
ifonce amonth. Mike Wright has offered to make the

plans and answer questions in a slightly more
relaxed atmosphere than at a meeting. i believe that
| can get the BCS office meeting room for such a
purpose once a month. We can hold 10 or S0 people
there before it starts to get interesting. And there is
plenty of overflow space. A copy machine is
available to zap off copies of interesting newsletter
articles. Ifyou are in favor of such a meeting, scream
loudly and I'll make the necessary arrangements to
give it a try.

The advertisement we placed in MICROpendium to
promote the software library has received an
overwhelming response. The Tl mailbox atthe BCS
cffice has been tilled to capacity for weeks. 1t kinda
makes you understand where Jerry Price gets all his
money. Wonder if he can sue me for this??7?

As of late | have been using this space to print odd
recommendations of businesses in the Boston area.
Why? Because | need to fill the space. In July
Herrel's Ice Cream got the nod. | still recommend it,
but if you get down to Centra! Square in Cambridge
give Toscannini's Ice Cream a try toc. | can’t decide
which is better, but I'm having a lot of fun trying.

The best place for computer books in the area is
probably WordsWorth in Harvard Square. Not that
they have an overabundance of Tl books, butthey do
have a great selection and good prices. For the
overly techinical the Tech Coop in Kendall Square
has an amazing collection.

It

The Boston Computer Society
TI-99/4A User Group
y. One Center Plaza

ton, MA 02108

poT-pourrl
by Mike Wright

The Boston Computer Society (BCS) is considerad by many to
be one of the premier computer societies in the United States,
‘ if not in the world. The TI-99/4A user group of the BCS is
; considered to be one of the “big™ Ti groups, along with other
groups such as Los Angeles and Chicago.

However, some people are unclear as to exactly how the Ti
group fits into the BCS framework. These people include BCS
members and user groups who participate in the Tl exchange
1 newsletter program. This short article is an attempt to clarify the
situation:

The Boston Computer Society has offices at One Center Plaza,
Boston, MA 02108. K supports full-time employees who
maintain the membership lists, deal with correspondence, and
look after donated hardware and software, among a host of
other things.

Anyone can jointhe BCS by sending $36 to the above address.
This entitles you, among many other things, 1o beiong to two
user groups of your choice. (For a complete list of BCS benefits
you can request the booklet “The BCS Resource Guide™) User
groupsinclude IBM, Apple, Comiumodore, Tandy, Timex-Sinclair
and, of course, T!-99/4A (which is separate trom the TI
Professional}. The BCS has about 28,000 members, of whom
240 opted for TI-98/4A membership. It is estimated that there
are about 12,000 members in the IBM group.

Being a member of a group entitles you to receive the
publications mailed out by the group. This usually corresponds
to a newsletier, but in the case of the IBM group itis closerto a
fully fledged magazine.

For most groups, the newsletier is mailed 1o the member.
However, in the TI-99/4A group the procedure is slightly
different. it was decided that there would be two newsletters —
one that would be mailed out and one that would be available
at meetings. Since the TI-99/4A group has a meeting each
month — even during summer — the meeting newsletter
appears 12 times a year. The newsletter you are reading now
is the monthly meeting newsletter.

The mailout newsletter appears fourto six times a year and can
contain material from the meeting newsletter, or from other
sources. Different people within the TI-39/4A group are
responsible for producing each of the two newslelters.

The original idea was that the meeting newsletter would
encourage members to attend meetings. If you didn't come to
a meeting you missed out on the newsletter. While the idea has
some meril, there are times when you just cannot make a
meeling, even with the best will in the world. A New England
showstorm, a sickness, and an out-of-town business meeting
are all legitimate excuses.

Tl group expecting to get a fal newsletter, like the ones
produced by Los Angeles and Chicageo, and were upset when
they didn't. The out-of-staters were further upset when they
came across copies of the meeting newsletter and could not
understand why they were not receiving . This situation
typically arose when an out-ol-stater belonged to a user group
that exchanged newsletters with the BCS Tl group, because it
is the meeting newslelter that is used in the exchange program.

in an effort to make things a tad more equitable, it has been
suggestedthatthe two newsletters merge andthat the resultant
single newsletter be mailed to alf BCS members who elect to
jointhe T1.99/4A group. This suggestion wase helped by the fact
that the BCS main office has offered to do the copying and
mailing of the newsletter. However, it appears that the
exchange program will still be handled as before.

The only thingthat remains to be done is to synchronize the new
operation. ltis desired to have the new newsletter mailed out o
members so that they get it before the monthly meeting, which
is on the third Wednesday of each month. This means that ali
contributors must shorten their submission deadlilne — son ot
like everybody in a marching army troop changing step
logether.

However, once al! the problems are straightened out. we hope
that each BCS T1-99/4A member — both local and out-of-state
— will benefit from the change.

From Fayuh to Classic Falr?

There seems to be a 1ot of change in the air. Another suggestion
has been made that the BCS Ti group change the nature of the
annual T! Fayuh.

Untit now this has been apure Ti affair. But, following onthe idea
used in Computer Shopper, it is proposed thal we enlarge the
scope of the Fayuh to include other “classic™ computers, such
as Commodore, Atari and even IBM. Yep. He who owns a PCjr
is also just another orphan.

The idea is that such an event is more likely to attract generic
vendors — such as disk drive manufacturers and diskette
suppliers—and is also more likely to be a commercial success.

A step in this direction has already been taken for the last two
years at the TICOFF show in New Jersey. Although I tend 1o
breeze by the Atari and Commodore tables, it can be instructive
1o see what the competition is capable of. Your comments on
such a change are invited.

Another expansion box — 2

Here is more complete information on the expansion box
mentioned last month (page 4) that is planned for release
through Genial Computerware:

The box's approximate size is 13.5"W x 6.5"H x 11.5°D. It has

a steel base and an alumhum top. thas & honzontai slots fort:

for floppies or hard drives which has four cables carrying +5V
and +12V, and a supply for the cards capable of delivering 4A
at+7v,2Aat +15V, and 3A at -15V. Rememberthat Tl expects
each card to be able to stabilize its own voltages fromthose on
the bus.

The box has provision for mournting one full-height drive. It has
a tan which is used to cool the drive and power supplies. In
addition, there is a fronl connector for a keyboard, which would
be very convenient for Geneve users.

Unlike the T1 box, cards do not protrude fromthe rear. This has
the advantage of protecting cards like Tl's RS232 and Myarc’s
‘| Geneve when in transit. However, it may make some cards a
littte difficult o use, such as TI's p-code card which has a switch
to enahle it

According to Corson Wyman of Genial, it is hoped to have the
box ready for sale in October. The price will be approximately
$150. For up-to-date information you can contact: Genial
Computerware, PO Box 183, Grafton, MA 01518.

Keep the dust out

itis saidthat a 24-can soda cartonfromthe grocery store makes
a perfect cover for the TI-89/4A console. All you need to do is
cut openings for the cables and the foot of the PEB cable.

EZ-Drawer by Graphic Xpress

A program called EZ-Drawer by Graphic Xpress is available
from Mark Sisco, Graphic Xpress, 4564 Ridgebury Drive,
Dayton, OH 45440. It is a disk-pased assembly language
bitmap graphics generator.

A flyer for the program claims that you can use joystick,
keyboard or trackball to change background and fereground
colors with ease. You have available 31 graphic commands to
draw circles 4 ways, undo mistakes, draw lines, rectangles,
boxes, triangles, and freeform objects.

The program alsc has a multi-colortext mode, 4 auto-fill modes.
You can save pictures on disk for later viewing or editing and
dump pictures to an Epson or Tl Impact printer.

The program requires 32K memory, 1 disk drive, E/A, Xbasic or
Mini-Memory (must specity when ordering). The price of $15 +
$1 shipping and handling includes a 32-page manual.

I recently had the luxury of a factory upgrade to my Gramulator
that allows me to save and load Mitton Bradley MBX cartridges.

The upgrade consists of the addition of four chips — one 13-
input NAND gate, two dual-input NOR gates and a dual D 1lip-
{ fiop—a switch and some wiring changes. Externally, itis easily
| spotted by the maverick switch that is mounted al the right front
»Joorner on the Gramulator's top surface. The switch is labeled

et

R e £ % 4 o

For most operations you leave the switch set at NORM. This
even applies to Saving a Cartridge. However, when loading a
cartridge you will see that the FILES LOADED INTO display
now includes MBX RAM 3, MBEX RAM 2, MEX RAM 1 and MBX
RAM 0. Appendix E of the Gramulator manual shows the
physical addresses where these files are loaded. On an MBX
Gramulator the two exira 8K MBX RAM banks {2 and 3) are
used.

When running a loaded cartridge from power-up, be sure to
follow the manual directions. f you are running an MBX
cartridge set the MBX/NORM switch to MBX, set Write Protect
1o OFF, and set Bank Switching to ON.

Incidentally, most of the MBX cartridges were auto-stant. You
will have to follow the procedures in Appendix A of the
Gramulator manual to either eliminate the auto-star, or purge
the cartridge from Gramulator memory. The manual
recommends using a business card between the battery and
clip as away to remove power from memory. Not having a card
at hand, | found that a Tl overlay strip works just as well.

For me, the prime purpose of having the Gramulator was to
protect my cartridge collection. Now this useful and invaluable
device has been extended so that | can include my MBX
cartridges as well. The ability 1o save MBX cartridges is unique
to the Gramulator. Neither the MG Gram Kracker nor the
Mechatronics Gram Karte can do this.

The MBX upgradeis available as a kitcosting $15. This includes
the four chips, switch, wire and hookup direclions. Alternatively,
you can return your Gramulator to the factory, but the charge will
be $50.

The Gramulator and the optional MBX upgrade kit is available
from CaDD Electronics, 52 Audubon Road, Haverhill, MA
01830. Note the new telephone number: 603-895-0119,

CaDD is now in a position to deal with overseas orders, having
worked its way through the requirements of the US Customs
service and postal regulations.

Also, CaDD is preparing to release version 1.1 of the Memory
Editor in November. In general, this will be a tightening up and
improvement of the code, but it will inciude the ablity 1o do a
block memory move.

If there are any other features you would fike in the Memory
Editor, now’s the time to write in and ask. No premises, butifthe
idea is do-able and there is enough room, CaDD will try and
incorporate it. Now there's an opportunity that no Gramulator
owner should let slip by.

Nostalgia corner

This one comes from a 1983 Texas Instrumenis advertisement.
The headline says: “TI-39/2 Basic Computer”. There is a piclure
of Bil.Coslyeiging a 99/2 so that the entire keyboard canbe
‘seen — sort of iike those drink commercials where the fingers

e

have 1o be carefully moided to the can sothey don't obscure the
name. The sloganinthe Tl ad reads: “The one 16 start with and
get smart with”.

Unfortunately for T, Commodore was the one that got smart —
with its marketing. They pressured Tl to drop the price on the
99/4A so low that the 99/2 was no longer a contender in the
computer wars of 1983.

Triton Fall 1986 Catalog

It's good to see that Triton is still supporting the TI-99/4A user.
Their Fall 88 catalog has been released and containg the usual
mix of interesting and ho-hum ems at interesting and ho-bum
prices.

Both the Editor/Assembler and Tl Writer are now priced at
$14.95. There can't be many people who don't have these, but
if you don't they're a steal. Logo |l has dropped to $11.95, an
incredible price for a fully featured programming language that
includes teatures such as sprites.

Onthe other hand, cartridges such as The Great Word Race for
$22.95, Stargazer 1/2/3 for $39.95 and Scholastic's spelling for
ages 11-12 al $17.95 seem a bit high — moslly because we've
become conditioned 1o cheap software in the T! world.

Triton is still plugging the Triton Turbo XT at $498, but | haven't
met many people who have one, or that intend to buy it. For
about the same prica these days you can pick up a complete
clone, so why bother with the bridge box and the Tl keyboard?
i you're not on their mailing list and would like a catalog, write
to: Triton Products Company, PO Box 8123, San Francisco, CA
94128. To order, call toll-free 800-227-6900 Mon-Fri 6am to
6pm, Sat 9am to 4pm Pacific time.

¢.Column
By Donald L. Mahler

First of all, some odds and ends:

1) Clint's QDE,QDA, etc. will not run in MDOS1.086 (in fact,
he wrote a new version of QDA!) BUT the original programs
run without problems in MDOS 1.08! (the modified QDA will
NOT)

2) Y you had problems with Kirkwood's SEARCH program in
the Feb MICROPENDIUM, do not dismay; the main program
was correct, but there was a typo in the supplied strien(); it
should read:

atrlen(s)
char *s;
{ int n; n=0;
while (*s++}
++n;
returninj};}

/* NOT ++s; */

Another form of this function, using an array instealof'a:
pointer: 24 Yo RO
R .

/* (? Warren Agee)*/
strlen{s)
char s([];
{int n; n=0;
while(s([n])

n++;

returni(n};}

The program this month is greatly modified from one 1

downloaded from CI3; the original used fixed values for the

number and base, 50 | made it variable, but the assembly

portion which is the essential function is not my work. As it

stands now, you ¢an change anhy number to any base:

/*
/*
*/
/%

CHANGING BASES */

modified by dlm

extern printf();
extern scanf();
main{}

{

char s[20];

int n,b;

puts (“Enter number:
scanf (“%d4d", &n) ;
puts {(“\n Enter base
scanf (“%d”,&k);

printf (*¥%d in base
itoneb(n,s,b);
puts(s}: }
#asm
ITONER MOV (@2(14),7
MOV R6(14),2
LI 6, BUF#
CLR 5
ITONBl CLR 1
pIv 7,1
AT 2,48
CcI 2,58
JL ITONBZ
Al 2.7
ITONEZ SWPB 2
MOVB 2, *6+
IRC 5
MOV 1,2
JNE ITONB%
MOV @4(14),7
IJTONB3 DEC &
MOVB #*6,*7+
DEC 5
JNE ITONB3
5B *7,%7
B *13
*
BUF # BSS B
%gndasm

extracted from C.Pulley’s RUNOFF by W.Agee

*/

n)'_

)

to use:

%d is: “,n,b);

BAEE

N

WORK BUFFER
DIGIT COUNTER

N/BASE, REM IN 2
MAKE CHAR

IF REM<Z

TO BUF

COUNT

QUOTTENT

IF MORE DIGITS

S

STORE IN REVERSE

IF MORE
ZERQ BYTE

e A'Es

Review of Tl-Base
By Joe Rawlins

This is my first attempt at a product review, | hope not my last.
| am tardy in getting it to Peter, he requested it for the August
meeting. [mind you, 'm not complaing. I'll take anyhing anytime
lcan get it. -jph] | just could not get into the program. | had no
motivation. For me to use a program | need a reason that my
mind thinks is important.

t wanted to use TI-BASE on a Church maiting list that | maintain
in PRBASE. However, that reason soon vanished when 1 found
that there was not any simple way to convert my PRBASE file
to TI-BASE. Idid not wantto enter almost 400 records manually
again (Dennis Faherty has told me that he will be working on
utilities to handie this as soon as he has finished Version 2). |
stili needed a reason, which happened on Friday September
2nd. A data-base of 286 AT clones.

Some basics of TI-BASE Version 1.1. ltis arelationaldata-base
with a command language similar in struclure to dBASE I
PLUS. The minimum system requirments are 32K and ohe disk
drive, two drives and/ora RAM disk are highly recommend . For
your money ($24.95 + $2.50 shp) you receive a 40 page user's
guide, a TI-BASE systems disk, a supplemental TUTOR disk,
and a keyboard overlay. The disks are not copy protected so
that a working copy may be made and the origina! put away for
safe keeping.

TI-BASE is easily loaded from the Editor/Assembler, Mini
Memory, or Extended Basic modules, the procedures are
explained well in the documentation, However it does not tell
you that with a Tl disk controller it takes 1 minutes ang 50
seconds to load (an eternity when you are use fo loading
programs from a RAM disk). You canload from a RAM disk by
placing all the files on the system disk on your RAM disk,
howeveryour RAM disk must be named TIBASE and can notbe
numbered greater than DSK3 (hopefully the latter stipulation
willbe changedwith Version 2). Evenonthe RAM disk load time
is 40 seconds.

After the system is loaded you are prompied 1o enter the date
in the format MM/DD/YY, 1here is not any error checking done
on this entry and anything or nothing may be entered, however
the DATE directive will not respond with the correct information
it it is not entered correctly. The system will then atlempt to
execute afile named SETUP from the drive which TI-BASE was
loaded. SETUP contain the system defauit status and anything
you want to include.

You are now presented with a screen showing your system
status, as described in the SETUP file, and the imposing “”
prompt at the lower left of the screen above the activity bar. On
page 2-1 of the documentation, a command file named TUTOR
on the supplemeniat disk is mentioned. A new user is advised
to run this file from the dot prompt by typing DO TUTOR. it may
answer a ot of questions for the novice user. Help is also
available from the dot prompt by pressing Function-7. With the
k ﬁg% screen help you get basically the same dialogue and

"i?j.‘i PER

examples as in the manual for the covered areas. If you dignt
understand the manua! the help screens are not much help
{OBASE ul+ sutfers from this same probiem), however if you
have just forgotten a directive structure and you khow it is onthe
help screens it is handy.

To use a data-base you must have a data-base . There are
several on the TUTOR disk, used as examples and in the
command file TUTOR. You must CREATE your own for your
specific application. A new data-base is defined with the
directive CREATE DSKn.Filename at the dot prompt. You now
have an interactive screen where you enter Fieldnames, field
Type, field Width, and Decimals(it Type is N}. You may define
upto 17 fields foryourdata-base . i you need more fields inyour
data-base a second, orup to 5 data-bases , each withup to 17
fields, could be related by a common field and open ai the same
time in TI-BASE. Once all the fields have been defined
Function-8(EXECUTE) creates the data-base and asks if you
want to input data at this time. A yes will let you enter data VIA
an interactive display. No returns you to the dot prompt and the
dala-base structure is ready for you to USE on the specified
disk.

If you have only a single unrelated data-base and wish lo enter
data simpfy type, at the dot prompt, USE DSKn.Filename and
then APPEND when the dot prompt returns. This gets you the
interactive data entry screen or EDIT (record #) 10 edil existing
data, much like PRBASE. If you have created several data-
bases that are related and you want to enter all the data at once
for each related record a command file is convenient if not
necessary.

Command files may be created with the EA Editor or
TiWriter(PF oplion C), a more convenient tool is included with
TI-BASE. MODIFY COMMAND editor is entered from the dot
prompt by typing MODIFY COMMAND (filename). You have a
full screen 40 column text editor that will accept about 40 lines
of text using the EA or XB modules, or 102 lines using the MM
module. I have found that 40 lines are adeguate since you may
next command files up to 5 deep (40°5=200). The size of a
command file that may be loaded into the editor can become
smaller it you enter the editor with data-bases open or local
space not cleared. ¥ you do this and your file is too large 10 fit
the available memory you receive an error message stating
“can not get dynamic memaory” and you are relurned to the dot
prompt. You may now CLOSE ALL data-bases , CLEAR
LOCAL, and reenter the editor. The portion of your command
file that would notfit is GONE! GONE! GONE! Hopefully this will
be corrected in Version 2.

I created two data-bases and a short commandfile to enter data
in sequence in one and then the other using the REPLACE
directive on the second to relate the two with the same Model
name.

* Command file CLONE
*

SET TALK CFF
SET RECNUM ON

SET HEADING ON
CLEAR LOCAL
LOCAL AGAIN N 2
REPLACE AGAIN WITH 1
CLEAR
SELECT 2
USE SPEC
SELECT 1
USE N286
WHILE AGAIN=1
AFPPEND
REPLACE TOTAL WITH PRICE + EGA MON_:
PR + HD_PRICE
SELECT 2
APPEND BLANK
REPLACE 2 .MODEL WITH 1.MODEL
EDIT
CLEAR
SELECT 1
WRITE 10,5 “1. For another entry”
WRITE 12,5 “2. To end entries”
READ 14,20, AGAIN
ENDWHILE
CLEAR
WRITE 10,11 “CLCSING DATA BASES...”
CLEAR LOCAL
CLOSE ALL
CLEAR
RETURN

Byusing APPEND, APPEND BLANK, and EDIT directives Iwas
able 1o write a relatively simple command file to enter my data
{lalso used REPLACE {o calculate a TOTAL so that field did not
have to be input). | have included this command file to show
some of the power that is available with TI-BASE and a little
work on your part.

The structure of your data-base may be changed with the
directive MODIFY STRUCTURE. Fieldnames may be changed
with outdisturbing the data, however if the record size is change
existing data will be deleted. A way around this is to duplicate
the data-base structure and dala files with different names,
make yourchanges to the duplicate, then wright a command file
to replace each tield of each record with data from the old file.

UH-OH! This review almost turned into a tutorial,

Back to the review. The command language contains 45
directives for data manipulation and disk management. Disk
management directives include: CATALOG, COPY, DELETE,
and FCRMAT, all of which seem to operate faultiessly.

There are a tew BUGS with the directives READ and
REPLACE. READ will not accept character input into a
character variable. READ and REPLACE used with a numeric
variable or field need the variable or field to be one space
greater than what is read (ie. a numeric field, width defined as
1, and you try to REPLACE fiekdname with the number 2, will
resultin an* being place inthe field to indicate that the field size
was too small). Hopefully these will be corrected in Version 2

User Group Newsletter - Saptember 1988

" Page 6

also.

The 40 page manual is barely adequate for a novice data-base
programer. Most examples deal with numeric rather than
character handling.

The manual should never hava made it out the door of a good
printing shop. On most pages the letters are broken and the
punctuation marks are hard to read. Other pages have pluggy
letters, while yet others have dark and light print on the same
page. Not very professional.

I would recommend TI-BASE 1o anyone who needs more than
PRBASE offers and can do a little programing. Actually a quite
impressive performer for the memory consiraints imposed by
the Ti.

Random Ramblings
By J. Peter Hoddie

Over the summer | presented a number of assembly language
programiming examples. The response was nol exactly
overwhelming, so this month I'll switch gears and try writing
something about the language that we all love to hate - BASIC.
Mostly 'll stick with Extendced BASIC since if you don't got that,
well ‘nough said. I'm also going to iry to keep each programas
short as possible. If you're like me you probably hate keying in
long programs. Besides they are also toughertoread. ALL the
programs inthis articte take up only 3 or 4 sectors on disk. Yet
they all do something almost useful!

First I'd like o present the one program I've probably typed in
more times than any other. This is program just totals a whole
pile of numbers as you type them in. It acts like a primitive
calculator. And my 9640 is much less likely to be buried under
papers on my desk than a little calculator.

10 7 =0
20 INPUT 2
30 T-T+2Z
40 PRINT T
50 GOTO 20

This program has some pretty exciting features. It displays the
last 12 values entered on the screen, it displays the total after
each number, and it is rather short. To clear the total back to
zero either restart the program, or enter the negative of the ast
displayedtotal humber. OK. Abitdull? So I'litry something else.

What follows is a set of programs which will allow you to
maintain a catalog of alithe files you have on all your disks. Or
at least a whole bunch of them. To perform sorting on the list,
Fwill explain how 1o use my sort program on BCS disk XXXXXX
to do that, since assembly language still has a few advantages.
This set of programs is user hostile, mostly. 1t is not intended
to be a commercial application. it does illustrate that a little
BASIC code goes a long way. You can add disks 1o the list,

create a sub-list based on several criteria, print the list or a part |-

of it, search it, and even edit it in TWriter if so inspired. Sc#'ne ﬂ §
of you will see this code, and have ideas forimprovements. Try

tout. Please send me a copy of yourversion so it can be printed
here for others to use.

The first program is what | call “Main.” twhen you runt, it adds
then disk located in DSK2 to the database file you specify. Hthe
database fiie does not exist, a new one is created. You are not
warned of this occurrence. To add another disk, change the
disk in drive two and run #t again. If you only have one drive,
sorry. The program could be modified for that situation. but |
didn't do it that way inthis version. If you prefer not to use DSK2
as the input drive, change the code in line 150.

For those of you into serious XB programming, the PRINT
USING clause inline 220 is worth checking out. lis areally easy
way to right justify numeric fields. | suspect there is a more
elegant approach but my XB manual is al home, and I'm at
schoo! so my memory will have to do. Here’s the program (3
sectors on disk):

100 IMAGE ###d4+
110 DIM FN$(127),FS(127),FT(127),FL{127)

120 INPUT “Database file: ™: 2§ :; OPEN
#1:2%, APPEND
130 FOR Z=1 TO 7 :: READ TS({(Z):: NEXT 2

140 DATA DIS/FIX,DIS/VAR, INT/FIX,INT/
VAR, PROGRAM, DIR, EMULATE

150 OPEN #2:“DSKZ2.”, INPUT + INTERNAL, FIXED
160 INPUT #2:DNS :: Z=0

170 INPUT #2:FNE (2) LET(2),FL{2),F5(2)

180 IF FNS5(Z)="" THEN 210

190 z=zZ+1 :: GOTO 170

200 CLOSE #2

210 FOR 2=0 TO Z-1 :: PRINT

#1:FNS{Z) ; TAB(12) ; TS (ABS(FT(Z))}; TAB(20) ;
220 PRINT #1,USING 100:F3(Z2);:: PRINT
#1:TAB (28);:: PRINT #1,USING 100:FL({Z):::
PRINT #1:TARB{35);DN§ :: NEXT 2%

230 CLOSE #1

The format of the outpul file is Display/Variable 80, so it ¢can be
edited in Ti-Writer. Each file on the disk is listed on a separate
line. The filename is listed. followed by its type (DIS/VAR.
PROGRAM, etc.). Thenthe file lengthin sectors is given. Inthe
final field, the name of the disk that the file was on is listed. The
fields are listed in columns which makes sorting a piece of cake.

Before going on 1o the next “big” piece of the program, fwant to
present another of my favorite short XB programs. This one just
lists a file to the screen. It is very useful for looking at a file
without having to load up TI-Writerorwhatever. linclude it here
because it can be used to look at a database file quickly.

10 ON ERRCR 50

20 LINPUT “Filename: ™:A$
30 OPEN #1:AS, INPUT

40 LINPUT #1:AS :: PRINT AS
50 END

1 GOTO 40

L The next program has many tunctions. With this program you
: :ca? search a database, print it out, print selected records, copy

a database, combine two databases, create a new database
using all or some records from an existing database, and
probably something else. You can search for a match, non-
match, for a file that contains or does not contain a string, and
for a field that starts with a string or does not start with a string.
In addition you can request all records.

This program is really a general purpose engine for processing
aninput file. It could be used on a database containing other
types of data with little or no effort. You could use TI-Writer to
enterthe data, or create another program to build the database,
like as the one that scans disks above.

Here's the program. Instructions follow the listing. (4 seclorson
disk)

5 ON ERROR 1000 :: ON WARNING NEXT

10 INPUT “Input file: “:I$§
15 OPEN #1:I$%, INPUT
20 INPUT “Output file: “:0% :: IF 05$="" THEN

30 ELSE 0=2

25 IF ASC(03%}=ASC(“+"”)THEN CPEN
#0:S5EGS5(0%,2,LEN{0S%)-1) ,APPEND ELSE OPEN
#0:0%, OUTPUT

30 INPUT “Start column: “:P1 :: INPUT
“Length: “:;Me IF P2<]1 THEN 30

40 PRINT “1 for EQUALS”:"2 for CONTAINS”:"3
for STARRTS WITH”:”4 for ALL”™ :: INPUT “Your
choigce: ™:T :: IF ABS{T)>»4 THEN 40
45 IF T>0 THEN TF=-1 ELSE TF=0

50 T=ABRS(T):: IF T<>4 THEN LINPUT
String: ™:8§% ::
100 LINPUT #1:25%

“Search
IF LEN(S5)>P2 THEN 50

105 ON T GOTO 110,120,130,140

110 IF (SEGS(25,P1,P2)=8S$)=TF THEN 140 ELSE
150

120 IF (POS(SEG$(Z$,P1,P2),S$,1)<>0)=TF THEN
140 ELSE 150

130 IF (SEG$(Z%,P1,MIN(F2,LEN(5%))=5%)-TF

THEN 140 ELSE 150
140 PRINT #0:Z$
150 GOTC 1060

1000 END

The program staris by askingtor an“Input file " Give it the name
of the database file you want to process. Next it asks for an
“Cutput file.” To send output to the screen (for your edification
or otherwise), just press ENTER for the output file. Otherwise,
give it the name of the file to create. To append to an existing
tile, enter a plus sign (*+™) before the filename, and all output will
be added to that file. For exampie, an output file of
“+DSK1.FILE”would cause all output to be appended to the file
“DSK1.FILE” while an output file of “DSK1.FILE” would cause
a new file to be created.

Next you are prompted for a start column, and field length to
search on. These refer to the numbers described below. For
example, to searchthe filenames themselves, enferastariof 4,
and a length of 10. The length value must be larger than zero.

After defining the field 1o work with, you are queried for the type
of search to perform. Each option is now described.

1 for EQUALS: This allows you to search for all records that
maich exactly. For example, if you only wanted to find all fites
named “CONTROL" you would use this oplion.

2 for CONTAINS: This allows you to search for all records that’

contain a particular siring. For example, if you wanted te find all
the files that contained the word “PLATC™ somewhere in the
filename, you would use this option.

3 for STARTS WITH: This allows you to search for ali records
that begin with a particular string. For example, to find ali files
that being with the letters “ED."

4 for ALL: This option automaticaily selects all records.

To select the search method, enter the corresponding number.
You can “NOT" any of these options by entering the negative of
the number. Forexample, entering -2 tells the programto select
ali records that DO NOT CONTAIN the search string. This
feature can be very useful when trying to eliminate certain files

For example to eliminate all files named LOAD, use search
method -1 (NOT EQUALS) with a search string of LOAD.

After you have specified the search method, you must specify
ihe search string at the next prompt. The search string prompt
is skipped if you selected 4 for ALL. Once the search string is
specified, the program goes to work reading the input file, and
writing the match records to the output file.

IWARNING: If you search using the EQUAL TO aoption, the
search string you enter must be exactly the same asthe field you
are searching. This includes length. |f you are searching the
10 characterfilename field for the file “EDITOR" you must enter
it with 4 trailing spaces, or there will be no match. EQUAL TO
means what it says. In most cases you will probably want to use
the STARTS WITH option (why do you think | put i there?77?)]

That's allthere is to using the program. | suppose ! should now
explain how to do the operations described in the introduction,
so here goes.

To combine two files, use the name of the file you want to

append as the input file, and the name of the file to append to
as the output file, preceded with a plus sign.

To print afile, specify an outputfile of “P10" and a search method
of ALL (4).

To print records that malch a search specification, enter an
output file of “PIO” and enter the search criterion normally.

To copy a database, enter the original name forthe inputfile, the
new name for output file, and specify search method of ALL (4).

This program could be modified to be much more user friendly.
For example, instead of entering the Start Column and Length
it could be changed to present a lis! of {ield names 1o search.
Other search options could be added. A major improvemeni
would be to do all screen access with DISPLAY and ACCEPT
AT, which would keep the screen {rom scrolling so much and
generally look a lot more professional.

. | would recommend Andy Dessoff's sor package with works

For the disk files database, the field layoul is as follows:

Contents Start Column Length
Filename 1 10
Filetype 12 7
Record Size 20 5
File 5ize 28 5
Diskname 35 10

Using the two main programs presented here, it is possible 1o
¢o most basic dalabase operations. You can add records,
search, print, select, merge, create sub-databases, and even
adit if you use TI-Writer. The missing feature is sorling. Soring
inBASIC is slow. Agood solution is to use an existing assembly
language sort program. 1t just so happens lwrote one of those,
and it is on BCS disk #83, complete with source code. Others
are available. If you got serious about modifying this program

within Extended BASIC, so you can cak it from your XB
program. it is probably the fastest, most full featured sort
available from XB. I you can deal with loading up a2 100%
assembly language program, | believe my sort is a bit faster,
with a larger capacity. The other nice thing about using mine,
is thal is works with the Start Column and Length numbers
above. You don't have o count columns lo determing your
tields. Notethat my sort programis also fairware andif you stan
using it you owe me a few bucks.
-

Another program that would be hice 1o add to this systemis one
which allowed you to print out reports in a format that wasn't just
a record dump. Alas this would be challenging to fit into 5
sectors, and | just don't have the time this month.

Someone with some time and inspiration could turn these
programs into something truly useful, This sort of BASIC
programming is what | do to proto-type some assembly
routines. Its a good way to prove that an algorithm or congept
worke before going to the pain of coding it in assembly. | also
hope that this column proves that you ¢an do useful work in a
short BASIC program. Barry Traver has spent years preaching
the virtues of Extended BASIC. He does have a point. The one
thing that is lost in using BASIC is speed of execution. Onthe
olher side, development time is cut by using a high{er) level
language.

For those of you into really serious BASIC programming, there
are some pretty neat tricks in these short programs. There
includes a pretty painless way to output to the screen or disk,
how to handle both negalive and positive logic, and something
else. Perhaps in a future column I'll get around to explaining
how the stuff really works.

Bitmap mode on the TI-99/4A

by Mike Wright. Version 08-Aug-88

Supplement 1o the BCS THIG/MA Lesr Group S bev 1088 ing newslet

There are four graphics modes available or the
TI-99/4A. They are called:

Graphics

The display is 24 rows by 32 columns. This is the mode
used by Basic and Extended Basic.

Text

The display is 24 rows by 40 columns. This is the mode
used by TI-Writer and the editor supplied with the
Editor/Assembler.

Multi-color

The display is 48 rows by 64 columns. There is not
much practical application for this mode.

Bitmap

The display is 192 rows by 256 columns making a total
of 49152 pixels. This mode cannot be accessed from
Basic or Extended Basic because it requires too much
VDP memory. It can be accessed from a TMS-9900
assembly language program, or from Forth.

The TMS-9918A Video Display Processor (VDF)
is capable of displaying 16 colors. It would scem
desirable if each of the 49152 pixels could have its own
color. This is not possible in the 16K of VDP RAM on
the TI-99/4A.

A display of 192x256 requires 49152 bits. At 8 bits
to a byte, this requires 6144 bytes just to keep a record
of which pixels are on or off.

Now add the requirement that each pixel be 1 of 16
colors. 16 colors can be represented by 4 bits. Thus
cach pixel would need 5 bits (1 for on/off, and 4 for
color) to represent this. This calculates to 192x256x5
or 245760 bits. At 8 bits to a byte, this requires 30720
bytes — nearly double the 16384 available in VDP
RAM.

Instead, TI compromised and allowed 8 consecutive
pixels to share the same foreground and background
color. One byte (8 bits) is used to record 16 fore-
ground and 16 background colors for 8 pixels, Thus
the size of this color table calculates to:

192x256/8 = 6144 “pixels”

Even with this reduction, the color table takes up
more than a third of the available VDP memory.

As an exercise, you should calculate the amount of
VDF RAM required by a 6400200 display with each
pixel having 16 colors.

VDP write-only registers
When an assembly language program is run using
3. LOAD AND RUN

from the Editor/Assembler module, the VDP pro-
cessor is in graphics mode. To change the mode you

must place values in the 8 write-only registers of the
TMS-9518A VDP processor.

There is no direct TMS-990) assembly language
instruction that allows you to do this. Instead you have
to write to the port connecting the VDP processor and
the 9900 central processor. However, it is easier 1o usc
the TI-provided utility called VWTR,

The 8 VDP registers are described in Sec. 21.1,
p326 of the Editor/Assembler manual. VWTR is
described in Sec. 16.1, p249 of the Editor/Assembler
Manyal.

To write to a VDP register using VWTR you place
the VDP register number and the value to be written
in RO. You then do a BLWP @VWTR. The VDP register
number is placed in the left byte of RO. The value to be
written is placed in the right byte of RO.

For example, to write the value >2C 10 VDP
register 7:

LI RO,>072C
BLWP @VWTR

Enabling bitmap mode

To enable bitmap mode, you must set up the VDP
registers. The values you place in these registers tell
the chip where to place certain tables in VDP mem-
ory. By reading the TI Editor/Assembler manual (Sec.
21.1 VDP write-only registers, p326) you may get the
impression that there is a Jot of flexibility in placing
these tables when enabling bitmap mode.

For example, the manual says that the base address
of the color table is calculated by multiplying the value
placed in VDP Register 3 by >40. This implies that
the cokor table can be located at various locations in
VDP memory. In practice, the various tables nearly
always appear in the same place in VDFP memory.

There are also errors in the Editor/Assembler man-
ual which are confusing when trying to work out where
the tables should go. For example, on p335 the manual
originally said that a value of >04 was required in
VDP register 3 to place the color table at >2000. A
subsequent correction published by TI changed the
value to >FF. If you then read p327 and multiply this

value by >40, you will find the basc address is
theoretically >3FCO0, which is not the correct answer.

To avoid this kind of frustration, use the values in
this article. They do work.

The 1ables that have to be set up are:

Pattern Descriptor Table

This starts at VDP > 0000 and is 6144 bytes Jong. You
can think of it as being a “CALL CHAR.”. To describe
a “character” you need B bytes. Since there are 768
(32 x 24) characters on the screen, you need 8x 768 =
6144 bytes for the table.

To place the table:

LI RO,>0403
BLWP EVWTR

Screen Image Table

This starts at VDP > 1800 and is 768 bytes long. Each
byte points to an 8-byte pattern in the Pattern Descrip-
tor Table. Since a byte can only have 256 possible
values, the first 256 entries in the Screen Image Table
point to the first 2048 entries in the Pattern Descriptor
Table, the next 256 entries in the SIT point to the next
2048 entries in the PDT, and the last 256 entries in the
SIT point 1o the last 2048 enrries in the PDT.

This makes a total of 768 entries in the SIT pointing
to 768 x 8 = 6144 entries in the PDT.

To place the table:

LI RO,>0206
BLWP @VWTR
Sprite attribute list

This starts at VDP > 1B00 and is 256 bytes long. Each
sprite attribute takes 4 bytes. They represent the bit
row, bit column, character code, and early clock (left
nybble) and color (right nybble) of the sprite,
To place the table:
LI RO,>0536
BLWP EVWTR
The sprite descriptor list will then start at VDP
>1C00 and the sprite motion table will be at VDP

>1F00. There is no auto-motion of sprites in bitmap
modc.

In addition, all unused sprites should be disabled by
placing a byte of > DO after the last sprite entry. Since
we are not using sprites, it should be placed at the
beginning of the Sprite Attribute List at >1B00.

To disable sprites:

LI RO,>1B0O
LI R1,>D00O
BLWP @VSBW

Color table

This starts at VDP >2000 and is 6144 bytes long.
Each byte describes the color of 8 consecutive pixels.
The left nybble describes the color of the pixels that
are on. This can be one of the 16 available colors. The
right nybble describes the color of the pixels that are

off. This can be one of the 16 available colors.
There are 256 x 192 = 49152 pixels on the screen,
One byte is required to describe the color of 8 pixels.
Therefore the length of the table is:
49152 / 8 = 6144 bytes

To place the 1able:
LI
¢ BLWP

RO,>03FF
@VWIR

{nitialize the Screen Image Table

The SIT is 768 bytes long. It needs to contain >00
through >FF repeated three times. Each byte will
then point to a corresponding 8 bytes in the Pattern

Descriptor Table.
To initialize the SIT:

LI RO,>1800
CLR R2

BITL CLR R1

BIT2 BLWP @VSBW
INC RO
AT R1,>0100
cI R1,>0000
JNE BIT2
InNC R2
cI R2,3
JNE BIT1

initiatize the Pattern Descriptor Table

The PDT is 6144 bytes long. It starts at >0000 and
ends at > 17FF. To initialize it, we place 0's through-
out the table. This means that no pixels are on,

To initialize the PDT:
CLR RO
CLR Rl
BIT3 BLWP @VSBW
INC RO
CI RO,>1800
JNE BIT3

initiatize the Color Table

The Color Table is 6144 bytes long. It starts at > 2000
and ends at >37FF. To initialize it, we place 0’5
throughout the table. This makes the foreground and
background color of any pixel to be transparent. Thas
even if a pixel is on, it will have the same color as the
screen.

To initialize the Color Table:
LI RO,>2000
CLR R1
BIT4 BLWP eVsEW
INC RO
CI RO,>3800
JNE BIT4

Enable bitmap mode

Bit 6 of VDP Register O must he set to enable bhitmap
mode. Bits 0-5 must be off. Bit 7 is always 0, unless
you are using an external video input signal to the
VDP chip.

To enable bitmap mode:

LI RO,>0002
BLWP @VWTR

Set the screen color

You should select the background screen color. If not
it will default to the standard Editor/Assembler green.

To sct the screen color to transparent:
LT RO,>0700
BLWP @VWTR

Manipulating the tables

Once VDP tables are in place and initialized, and
bitmap mode is enabled, you make changes to the
screen display by changing values in the tables.

The most fundamental problem to solve is the
addressing of a single pixel.

The bitmap screcn has 192 rows, numbered 0—191,
and 256 columns, numbered 0—255. It would have
been convenient if the bitmap was lincar, but on most
computers the design of the VDP chip precludes this.

The TI implementation has pixels 0—7 at the top
left corner of the screen, Pixels 8—15 are immediately
below 0—7. This arrangement continues for a total of
8 rows through pixel 63. Pixel 64 is then found on the
top row, next to pixel 7. In effect, you have 8x8
“characters”, each containing 64 pixels.

Plxel numbers on bitmap screen
1 2] a3l &} s| s] 7] sl es| o] 67] e8] eof 70| 7if -
10| 11] 12 13} 14| 13| 72 7
16| 17] 18} 19| 20| mf 2| 2| o] @] | 4 -

D

56] 57] 38| 59f 60]-61] 62] 53{120§121]122| 123 124]125{126J127 -

These 8B units continue horizontally for 32
“characters”. At this stage the last pixel in the first
“character row” (8th pixel row) is 2047. At the start of
the next pixel row, pixel 2048 is below pixel 56.

Although we wish to deal with single pixels, in
practice the smallest unit we can read or write from
VDP memory is a byte. The description of the bitmap

memory in bytes is similar to that for pixels.

Byte 0 is at the top left corner of the screen. Byte 1
is below it. This continues for 8 bytes. Byte 8 is then
next to hyte 0. This continues to byte 255 (the end of

ahe first 8x8 row of the screen). Byte 256 is immedi-
ately below byte 7, and so on.

Thus, to change a pixel on the screcn, we need to
calculate the byte in the Pattern Descriptor Table.
Once we have the byte, we need to set or clear the bit
representing the pixel and write the byte back to the
FDT.

The following Basic program will calculate the byte
number given the row and column:

100 INPUT ROW

110 INPUT COL

120 WHOLEROW = INT{ROW/8)*8

130 WHOLECOL = INT(COL/8)*8

140 REMROW = ROW - WHOLEROW

140 BYTE = {WHOLEROW*32}
+WHOLECOL+REMROW

150 PRINT BYTE

It would be easy to do this in assembly language.
However, since multiplications and divides are rela-
tively slow processes, TI provided a routine (o do this.
1t is on p336 of the Editor/Assembler Manual.

To use this routine you must enter it in your
program, probably as a subroutine. You then place the
row value of the pixel to be changed in R1, its column
value in RO, and BL to the routine. It returns the byte
to be changed in R4, and the pixel within that byte in
RS.

The color of the pixel can be calculated by adding
>2000 to R4. Remember that the foreground color
will affect all on pixels in the PDT byte, and that the
background color will show where the pixels are off.

References
The Editor/Assembler Manual

I believe it is next to impossible to read the description
starting on p334 and implement bitmap mode. How-
ever, you must read this section and absorb as much as
possible,

Enthusiast 60, Mar B4, p24

Bill Gronos provides an introduction to bitmap mode.
Some of the information is good, but I get confused by
the painted eggs and Godfrey Grafix. The table on p30
is laid out very badly typographically. The examples
provided do work, although Gronos prefers to write
direct to the VDP processor instead of using VWTR.

The advantage is that it’s faster.

National Ninety-Niner, Sep 84

A good example from John Phillips, formerly a TI
programmer. He places a sprite hand on the screen
and uses it to pull down a “window” of color. Well
commented and worth spending some time on.

Compute!'s Guide to TI-98/4A Assembly
Language by Peter Lotirup

The only real source for a discussion of bitmap mode.
The examples are designed for the Mini Memory, but
arc easily converted to run under the Editor/
Assembler.

The programs Hi-Res Bouncer (p212} and Hi-Res
Draw (p218) do work. Note the error on p213: There
is a BLWP @ > 6034 (VWTR) missing after address
>7D24,

16K YDP RAM In bitmap mode
Description Address (hex) | Address (dec) |@ Size (dec) Comment
Free >3FFF 16383 2048 Disk buffers
VDF >3800 14336 and PABs
- >37FF 14335 Each byte controls
Color 6144 5
table 14 oreground,’bac)fground
>2000 08192 color of 8 pixels
Sprite > 1FFF 08191 Auto sprite motion
motion 256 cannot be used
table >1F00 07936 in bitmap mode
Spr.ltc >1EFF 07935 B bytes/character.
descriptor 768 Starts with >80 (128
list >1C00 07168 risw)
Sprite > 1BFF 07167 4 bytes/sprite.
attribute 256 Bit row, bit column
list > 1BOO 06912 char code, early clock/color
Screen >1AFF 06911 Usually contains
image 768 >00 — >FF
table > 1800 06144 repeated 3 times
Pattern >17FF 06143 8 bytes for each entry
descriptor 6144 in screen image table.
table >0000 00000 Bx 768 = 6144

* % = ® »

MYWS

START

Bitmap demo program
Bupplement to BCS newslatter

August 1988

Mike Wright

DEF START

REF VWTR,VSBW
BSS 32

LWPI MYWS

Etep 1: set screen color

LI RO,>0700
BLWP VWTR

Etep 2: enable bitmap mode

LI RO, >0002
BLWE AVWTR

Step 3: Move screen image table to >1800

&
LI RO,>0206

BLWP VWTR
Step 4: Move the color table to >2000

LI RO, >03FF
BLWP @VWTR

Step 5: Move the pattern descriptor table to >0000

LI RO,>0403
BLWP @VWTR

Step 6; Move the sprite attribute list to >18B00

LI RO,>0536
BLWF GVWTR

Step 7: Disable all unused sprites

LI RO,>1B0OO
LI R1,>DO0GO
BLWP @VSBW

BIT1
BIT2

BIT3

BIT4

BITS
BITE

BIT7

Step 8: Initialize the screen J‘.'mage table

LI RO,>1800
CLR R2

CLR R1

BLWP evepw
INC RO

AI R1,>0100
c1 R1,>0000
JNE BIT2

INC R2

c1 R2,3

JNE BITL

Next byte in table
Hext incremental value
Pagged >FF00 yet?

No. Do next

Do next third of table
Done three thirds yet?
No. Do next

Step §: Clear the pattern descriptor table

CLR RO

CLR Rl

BLWP RVSEW
INC RO

CI RO,>1800
JNE BIT3
Step 10: Clear the coler table »
LI RO,>2000
CLR R1l

BLWP BVEBRW
INC RO

CI RO,>3B800
JNE BIT4

Put "char” on acreen

LI R6,>0200
LI R7,0

LI RE,0

MOV R8,RO
MOV R7,R1

BL @ROWCOL
MOV R4,RO

LI R1,>0F00
BLWP RVSEW

Color
Row Y
Row X

X position of pixel
Y position of pixel
PFind byte to change

R4 has the byte
*char” -- try different values in MSB
Put "char” on screen

ROWCOL:

Al

BLWP

Al
CIl
JLT

Al
IRC
CI
JLT

JMP

RO, >2000
R6, R1
RVSEW

RS, 8
RS, 255
BIT7

RE,>0100
R7
R7,192
BITE

BITS

XinRO, YinRl

MOV
SLA
s50C
ANDT
MOV
ANDI

R1,R4
R4,5
R1,R4
R4,>FFO7
RO, RS
RS5,7
RO, R4
RS,R4

Now do the color

Next "char” along row
Reached end of row yet?
No. do next "char”

Next sequential color
Next row

Done whole screen?
No. Do next

Do forever

