The February Meeting

The February Meeting of the Boston Computer Society’s TI-
99/4A User Group will take place on Wednesday February
15 at 7:30 PM. As always, we'll be meeting at the
Massachusetts College of Art on Huntington Avenue in
Boston. We will attempt to start the meeting closer to 7:30
than 8:00 but this has become a challenge in recent months.
For cancellation information due to the weather call the
office at 367-8080 or me at 375-6003.

The meeting topic has been determined. The problem is that
I'm getting old and I can’t remember what it is. It is written
down on the cover of the newsletter that you'll be getting in
the mail in the next week or so. So whatever is says there,
that's what we’ll be doing - for at least part of the meeting.
One thing we'll be doing for certain, is the public debut of
my newest program. At the December meeting I took lots of
suggestions from those in attendence as to what you would
like to see. Corson’s request is included as an article in this
issue. Another suggestion that came out of that meeting is
currently under development. It is an extremely exciting
program, that many of you will certainly be interested in. A
significant portion is already operational, and by next month
THully intend to have a working version (though probably
not finished) to show.

The Fourth Annual New England TI Fayuh is still scheduled
for April 1 from 10 to 5 in Woburn Massachusetts at the
Ramada in that is off 195. This week mailings to many user
groups and dealers are going out. If a user group or dealers
wants information on exhibiting at the show, drop us a note
and we'll get it right out to you. Everyone is welcome.
Watch this newsletter for more details.

Fest-West is being held the weekend following our February
meeting in San Diego. We are making arrangements 5o that
the BCS can be represented. The last two shows (Los
Angeles and Las Vegas) | handled the BCS stuff off the
Genial Computerware table. It Iooks like this year the BCS
stuff (mostly the software library) will be handled by Mike
Wright, whose assistance in Chicago the past two years has
Seen invaluable

Intro to the UCSD P-System
By Ron Williams

This Month I will show you a few new staternents of the
Pascal programming language. The first statement is the
Case statement, it is very close to the On-Goto or On-Gosub
statement in Basic.

The Case statement is shown below:

CASE number of

; write{‘one’);
+ write('two’):
: write(‘three');
: write(‘fourf);
write(‘five’):
write('six");
write{‘seven’);
: write(‘eight’);
write('nine’};
write(‘'ten’);

W -donnos e

10
end;

The identifer number is declared as as an integer type
number. If the value of the identifer is any number 1-10 the
Case statement will cause the statement following the Colon
: to be executed for example if the value of number was 3 the
program will print out the string “three”. In UCSD Pascal
this statement is ok to be used in a program but in standard
Pascal and possibly other Pascal languages this statement
may not work if the value of the nurnber is another value
and not 1-10 but in UCSD Pascal if the value is not found the
statement will simply not ptint out anything and there will
be no errors. This could become a problem if you are trying
to convert this statement to be used with another Pascal
language. The If statemnent is close to the same statement in
Basic but it is much simpler to use.

An example is as follows:

The Boston Computer Society
TI-99/4A User Group
One Center Plaza
Boston, MA 02108

If number = 1
then
write{‘one’)
else
write(‘number not egual to one’);

This example shows that the IF statement can also include an
else clause if needed also the statement may use begin and
end statements if a condition is met and there are a lot of
things to be done. The If statement can also call a Procedure
or a Function within a program but I will go into more detail
about Procedures and Functions later. The If statement can
also be 2 lot more complex than this simple example, other
boolean operators may be used like OR, AND, NOT to make
this statement one of the most useful in Pascal the statement
may look like this:

If (number = 1} or (number = 3}
then
vriteln(‘stop’):

The If statement will be used a lot but keep in mind that in
somne cases the CASE statement may work a lot better like in
the first example I showed you if you were to write this
using If statements it would be very long and drawn out so
use lhe statement that will work with the least effort. Well so
long until next month.

Random Ramblings
By J. Peter Hoddie

This newsletter is produced using a Macintosh computer and
various pieces of software. The process is something like
this. Lots of people write their articles on their TI's. They
upload them to the TI99 BBS and then the articles are
downloaded to the Mac where they are loaded into Microsoft
Word and cleaned up and formatted a bit. Thesc files are
then pasted into the newsletter template in Aldus Pagemnaker
and then printed on the LaserWriter. The whole process is
pretty straight forward but getting to be a bit on the tedious
side. The part that takes the most time is cleaning up the
files from the TI so that they look OK on in the newsletter. I
have developed some techniques which can speed this
process up considerably. 1will gutline here the rules that
should be followed when writing newsletter articles to make
life as painless as possible for those of us charged with the
duty of putting your newsletter together.

1. When entering your article make sure you use a left
margin of zero. It is a major hassle to go through and pull all
of those leading spaces out.

2. The newsletter is formatted with a blank line between each
paragraph. If you don’t put it in, I have to and sometimes
miss one. Also section heading don’t usually get a blank line
after them, just one above.

3. If you are just writing a straight article, i.e. no tables or

¢.COLUMN

programs, then just make sure that there is a carriage return
(that little c/r symbol) at the end of each paragraph. Or at
least a blank line between each paragraph. These are the
only safe approaches to dividing paragraphs. Anything else
may cause problems.

4. If you are mixing text and program/tables it gets slightly
interesting. The Mac reformats things on the fly which
means that each line of code must be a separate paragraph.
However it is a holy pain to put a carriage return at the end
of every line of code. Therefore I worked out this odd
system. I specified two new formatter dot commands that
get interpreted on the Mac end of things. They are MT {for
TEXT MODE) and .MP (for FPROGRAM MODE). We assume
you start in text mode. When you get to the program portion
of your article include line with .MP on it. When the
program is over, include a MT, and that’s it. You can have
as many MP and MT commands as you like in the article. |
realize that this is a bit of a hassle, but it is nothing compared
to what I sometimes have to go through to accomplish the
same thing manually.

5. Don't bother with any other formatting commands since -
they all get tossed away by the Mac.

6. Don"t archive your article. If the article is archived, 1 have
to download it to my 9640, unarchive it, reupload to the BBS,
and then download it onto the Mac. This is counter-
productive.

Hopefully one day this will be a bit easier. This isn’t realty
all that complicated. If you have any questions, please let me
know. Your articles are greatly appreciated.

By the way, if you'd like to write for the newsletter and don’t
have a modem you can provide us with a disk and we’ll
transfer the file to the bulletin board for you. If you want to
write the article by hand, I'll even type it in for you.
Anything to encourage you to contribute to this newsletter!

by Donald L.Mahler 4

In looking over the last few c.columns, I find that I have been
devoting almost all of the space to <99 on the 9640, which
probably findsa rather limited audience. So this month we shall
gobackto working with things that work on either machine. As
you rember, *name is a “pointer” and “points” to value at
address “name”. *(name+1) will be the value at the next
address;since an integer uses two bytes, it will actually be TWO

higher! Take a look at this program:
/* pointer arith pal_c*/
extern printf();

main ()

{int *number,i: *number=2;

for(iml;i<m=10;1i++)
{ *{number+i)=2*(* (numbexr+i-1));)
for(i=0;i<=10;1i++)

iprintf ("The %d th term is %d

i7" i+l, * (number+i)) ;

printf(the address is %u \n\n"”, (number+i)):
i

The value at address “number” is setat 2, and higher powersof
2 are placed at subsequent even addresses.

We can use pointers with arrays. When we remember that the
NAME of an array is a pointer to the first element of the array,
the following program seems obvious:

/* arrays and pointers pl24_c */
extern printf();
main{)
{int item([5],i, *point;
for(imQ;i<=q;++i)
item[i] = 4 * i;
point = &item[0): /*address of item[0} */
printf (“Output array two ways:”};
for(i=Q;i<=4;++i)
printf(*\n%d &d",item[i}, *(point+i));

printf (“\n\nOutput elements 2, 3, and 4 of
array”);
peint = gitem{2)];
tor (i=0;i<=2;++1i)

printf(™\n%d %d”,*(point+i),item[2+i]);
} .

In the final program, we use alloc to reserve space. Note that
we assign the size of the array from WITHIN the program:

/* ARRAY OF POINTERS */
/* USING ALLOC */
/* MOD FROM CRIRLIAN BY DLM*/
#define MAY 10
#include dsk.atoi
extern printf();
extern malloc();
main ()
{int *grade[MAX], i, i,n,nt,temp;
char buf{80];
printf ("Enter num students:”);
if ((n=atoi (gets (buf}})>MAx)
{printf {"Num too large: prog
terminated”);
exit();)

printf (“\n Enter num tests”):
nt=atoi (gets(buf));
temp=(nt+l) *2;
for(i=1;i<=n;++i)
grade[i-1] = alloc(temp);
printf(“Enter indicated grade:"):;
for(i=1l;i<mn;i+4)

{printf(“\n student number %3d”,i);
for(j=1; j<=nt; ++3)

{printf (“\n%3d: P

* (grade[i-1)+j~1l}=atoi{gets(buf)); 1} }

for(i=l;i<=n;++1i}

{ *(grade[i-1]+nt)=0;

for (i=0;j<=nt-1;3j++)
{grade[i-l]+nt)={grade(i~

1]1+nt)+* (gradefi-1]+3): }

printf (*\n Student number

for(i=1l;i<=n;++1)

{temp=* (grade[i-1]+nt);

* {(grade [i-1)+4nt)=*(grade[i-1l]+nt)/nt;

if (2* (tempint)>=nt) ++*(gradeli-1])+nt):

printf (“\n $3d

%$3d”,1i,*(gradefi-1]+nt));

|

Average”);

/* alloc() */

#define ALLOCBYTES 256 /* size of available
space in bytees (should be even) */

int allecfirst = 0; /* is free
position set */

char allocbuf [ALLOCBYTES]:
alloc */

char *allocp;

peosition */

/* storage for

/* next free

alloc(n)
int n;
{ if(!'allocfirst)
{ ++allocfirst;
allocp = allocbuf; }
if{is_odd(n))
++n; /* make sure it’s even */
if (allocp + n <= allocbuf + ALLOCBYTES)
{ allocp = allocp + n;
return{allocp - n); }
else
return{0); }
free(p)
char *p;
{ if{p >= allocbuf & allocbuf + ALLOCBYTES)
allocp = p; |}
is_odd(n)
int n:
{ returni{n % 2);: }

We can also use arrays with functions, as the following
program shows:

/*ARRAYS AND FUNCTIONS */
[*modified from Chirlian by dlm */
extern printf{);
main{)
{int 1list1{10),1ist2[10],41,sum;
/*build the first array */
for(i=0;i<=9;i++)

ablefi) = 1 +(i*2);
sum=Ffixer{listl,list2);
printf {(*Sum = %5d4%, sum);
*/

/* original array

/* print out new array @ */
for(i=0;i<=9;i++)
printf (*\n%5d”, list2({i}):}

fizer{cld, new)

int old[],new(];

{int total,i;

total=0;

for (i=0;i<=9;++i)

{total=total+ocld[i]}; /* add elements */
/*compute new array-each element is */
/* three times size of orig element */
new(il]=3 * o5ld{i); 1}

return total; |}

Notice that the function has changed the value of the

variables!

Column Manipulator

By]J. Peter Hoddie

Written on January 5, 1988

at the request of Wm. Corson Wyman

Column Manipulator is a little Extended BASIC program
designed to allow a series of text manipulations to be
executed on an entire text file. The program only operates in
batch mode. An input file must be created with TI-Writer or
MY-Word and run through the program at the prompt for
“Procedure file.” The format for commands is very rigid (no
fancy parsing, I wrote this in 60 minutes). The procedure file
has a header portion which can be used to define the input
and output files as well as the fields. Each field is defined by
a starting position (starting from 1) and a length (better be
greater than zero!). The format for the procedure file is the
command as the first thing on the line, in capital letters.
Parameters for the command then follow, each separated by
one space. There may be no spaces to the left of the
conunand and trailing spaces are ignored. The general
format is

COMMAND parameterl parameter2

Defining Fields

To define your fields, use the field command in the
procedure file. There may be up to 40 fields. The general
format is

FIELD field number field start field_length
The field number is from 1 to 40. The field_start is the
starting column number {starting at 1) of the field. The
field_length is the number of characters in the field. You
may redefine any field, but only the last field definition is
used.

The Rest of the Procedure

This utility provides 5 commands for manipulating each line

of text. These commands must appear between BEGIN and

END commands in your procedure file. You should set up

;rizl)u; fields first. Thus the general format of the procedure
eis

FIELD 1 a b

FIELD 2 ¢ d

FIELD 3 e £

BEGIN

END

The set of commands between the BEGIN and END will be
executed for every line of the text in the input file with the
results being sent to the output file.

Defining Input and Output Files

You may specify the input and output files using the INPUT
and OUTPUT commands in your procedure file. These must
occur before the BEGIN statement. The formats for each are
the same

INPUT filename

OUTPUT filename

1f these commands are not present in your procedure file you
will be prompted for them.

The Text Manipulation Commands
DELETE field number
Deletes the field specified by field_number from the line.

INSERT field number count
Inserts count number of blank spaces before the
field_number specified.

MOVE field numberl field number2
Moves field_numberl from where it is currently located to
before field_number2. : :

COPY field numberl field number2

Puls a copy field_number! before field_number2. The
original field_numberl is not removed as with the MOVE
command.

FILL field numberl fill text

Takes fill_text (which may contain embedded spaces) and
puts it into field_numberl. If the text is longer than the field.
the text is truncated. If the text is shorter than the field, it is
padded with spaces.

A Warning .
If you use commands to move a field or delete a field or just
about any of the text manipulation commands (except FILL),
the fields may nol be where you expect them. The field
definitions are not changed when fields are moved, so you
have to keep track of where things went. Be aware of this
fact since or you may be in for some unpleasant surprises.
Other approaches to writing this sort of program can remove
that problem but have other problems.

The Program

5 CALL CLEAR :: PRINT “COLUMN MANIPULATIONS*: :¥RY
J. PETER HODDIE”:”AT THE REQUEST OF”:“Wm. CORSON
WYMAN":

10 DIM F(40,2)},PROCS$(100)

50 COM$="DELETEINSERTMOVE COPY FILL FIELD “

€0 GOSUB 2000

€1 PRINT “PARSING STARTUF DATR...": :

85 FOR LOOF=0 TO P_START-1 :: CS$=PROCS (LOOP)::
GOSUB 100 :: NEXT LOOP

66 PRINT “PROCESSING FILE...": : 2025 INPUT #1:235

70 OPEN #1:1%,INPUT :: OPEN #2:05,0UTPUT 2030 IF SEGS(25,1,5)="BEGIN” THEN P_START=Z
85 INDUT #1:1% :: FOR LOOP-P_START TO P_END i3 GOTO 2025

C$=PROCS (LOOP) : : GOSUB 100 :: NEXT LOOP ;: PRINT 2035 IF SEGS(Z5,1,3)="END” THEN 2050

#2:L% 2036 IF SEGS(2S5,1,5)="INPUT” THEN

85 IF EOF(1)THEN 90 ELSE 80 I15=SEGS (Z$,POS(25," “,1}+1,255)

90 CLOSE #1 :: CLOSE #2 :: PRINT “FINISHED...” ;:: 2037 IF SEGS$ (Z$,1, 6)="OUTPUT” THEN

END 0$=SEGS (25, P05 {25,* “,1)+1,255)

100 ! COMMAND PROCESSOR 2040 PROCS (2)=28

105 Z=POS{C5,* “,1):: IF 2Z=0 THEN RETORN 2042 Z=3Z+1

110 2$=5SEGS$(C5,1,2-1):: Z$=SEGS (254~ *,1,6):: || 2045 GOTO 2025

C5=8EGS (C§, 2+1, 255) 2050 CLOSE #1 :: P_END=Z-1

120 2=pOS(COM$,25,1):: IF Z=0 THEN RETURN ELSE ON || 207¢ IF I$="" THEN INPUT “INPUT FILE: “:I$:: IF
{2+5) /& GOTO 600,700,800, %00,1 1$="" THEN 2070

000, 1100,1200, 1300,1400 2080 IF O$=%" THEN INPUT “OUTPUT FILE: "“:0$:: IF
400 PF=POS (C$," *,1):: IF PF=0 AND LEN{C$)=0 THEN CS="~ THEN 2080

PRINT “ERRCR IN INPUT” :: STOP 2090 RETURN

405 IF PF=0 THEN PF=LEN(C$)+1

410 Z5=SEGS(C$,1,PF):: CSwSEGS (CS,PF+1,255)
420 RETURN

€00 ! DELETE FIELD

610 GOSUB 400 :: Z=VAL({ZS)

€20 L$=SEGS (L$,1,F(2,1)-

1) 6SEGS (LS, F(2,1)+F (Z, 2), 255)

£30 RETURN

700 ! IMSERT FIELD

710 GOSUB 400 :: Z=VAL{Z25}:: GOSUB 400 ::
Z1=VAL(ZS)

720 L$=SEGS(L5,1,F(Z,1)~1) &RPTS (*

*,21) &SEG$ (L$,F(2.1),255)

730 RETURN

800 ! MOVE FIELD BEFOQRE FIELD P
810 GOSUB 400 :: Z=VAL(Z$):: GOSUB 400 ::
Z21=VAL(2$%)

820 F$=SEGS$ (L$,F(2,1).F(2Z.2)}! COPY ORIGINAL FTFLD
830 LS=SEG5(LS,1,F(Z,1)-

1} &SEGS (LS, F({Z,1)+F{Z,2),255) ! DELETE ORIGINAL
FIELD

840 LS'SEGS (L$IIPF(ZI! 1)“

1) 4F$4SEGS (LS, F (21,1),255)! MOVE THE FIELD...
850 RETURN

900 ! COPY FIELD BEFORE FIELD

910 GOSUB 400 :: Z=VAL(Z$):: GOSUB 400 ::
Z1=VAL (28}

920 LS=SEGS(LS,1,F(Z1,1)~

1} <SBCS (LS, F (2,1} ,F(2,2}) «SEGS (LS, F(Z1,1),255)
930 RETURN

1000 ! FILL FIELD WITH...

1010 GOSUB 400 :: Z=VAL(ZS5)

1020 IF LEN(C$)<F(Z2,2) THEN C$=CS&RPTS (™ ™, F(2,2)-
LER(CS) }

1025 IF LEN(CS)>F (Z,2) THEN C3=SEGS (C§,1,F(Z,2})
1050 L$=SEGS (L$,1,F(2,1) -
1)ECS&SEGS(LS,F(2,1)+F(Z,2),255}

1060 RETURN

1100 ! DEFINE FIELD NUMBER, START, LENGTH

1110 GOSUB 400 :: ZaVAL(2ZS):: GOSUB 400 ::
F{Z,1)=VAL(ZS):: GOSUB 400 :; F{(2,2)=VAL(Z$)::
RETURN

2000 ! LOAD PROCEDURE FILE

2010 INPUT “NAME OF PROCEDURE FILE: »:28
2015 OPEN #1:25, INPUT

2016 PRINT :"LOADING PROCEDURE FILE”: :

2020 z=0

2021 P_START=0

Print TI-Artist Pictures on a Laser Printer!!!!
By J. Peter Hoddie

As noted earlier in this newsletter, this newsletter is produced using an Apple
Macintosh and a LaserWriter printer. What many of you may not know is
_that the LaserWriter is the real magic in the combination. It provides for 300

- dots per inch of resolution on output. It also contains a magical language
called PostScript which allows for pages to be created with great detail and
accuracy. Ialways thought it would be nice to get high quality laser printed
copies of TI documents and pictures. At a recent computer show I picked up
the PostScript Language Reference Manual and wasted some time reading it
along with some other material on PostScript (Don Lancaster in Computer
Shopper is quite good on the subject). In any case, with much help from
Adobe’s manuals (the creators of PostScript), I managed to figure out how to
print TI-Artist pictures on the LaserWriter. I wrote a program on the TI
which creates a PostScript program from the TI-Artist picture. Then I send
this program to the LaserWriter using a Macintosh. In theory it could be
done directly, but alas there is no TI at the BCS office. You could upload the
file to a service bureau and get a printout for something like 50 cents a page
though. Anyhow, I worked all this out tonight (the night before the meeting)
and though some of you might find it interesting. If the program ever
becomes user friendly enough I'll release it somehow. Below is a sample of
what is possible (taken from a familiar source)....

TL=HRTIST

YERBION 2.0

TFNSCEBOT , THNC.

AL I S T T I R S S S S TR R R R R S RS S S S S S50 5555555

=D

FTRNINTTIONNRIRANEENY
LLLALL AR Riadniigl

©@1885 BH CHRIS FAHERTY

