The June Meeting

The June meeting of the Boston Computer
Society's TI User Group will be held on
Wednesday June 21 at 7:30 PM. The
location is Room 540 of the Massachusetts

College of Art on Huntington Avenue in
Boston.

There will be new disks in the software
library. With a little bit of luck the new
software library catalogs should also be
complete.

The meeting topic is up in the air. Read the
column to the right and you'll understand
why, at least a bit. I would suppose that if
by some chance Press were to be released
that it would be shown but I really can't
speculate on that. Depending on the
progress I make on my primary project
(tentative title: Sign Shop) a version of that
program may be demoed.

Beyond that I have no clue. As always, the
meeting should be interesting, informative,
and entertaining. The June meeting would
probably also be a good time for the group
to discuss future meeting topics as the well
of ideas seems to running a bit dry at
present. Think of a meeting topic and
suggest it in June. Perhaps even you could
do a presentation...

Random Ramblings
By J. Peter Hoddie

[have been thinking about how to write this
column for several weeks now. Literally dozens of
approaches have passed through my mind, but I
haven’t been able to bring myself to sit down and
actually write it. So, as usual, time has run out. It
12:33 in the afternoon on the day of the meeting.
Thanks to the miracle of desk top publishing and a
new copier at the BCS office this newsletter should
still reach your hands at the meeting tonight.

This month, rather than my usual round up of BCS
news, TI world news, and the odd program or
whatever, I get to make the announcement I had
promised last month. In short, I'm leaving the
Boston area at the beginning of June. As many of
you know, I've been a student since I began
volunteering for the BCS. I've spent the last four
years at Boston University’'s College of
Engineering. Graduation is this Sunday. That
means the next step for me is to seek employment.
My current plans are to move out to the Silicon
Valley area to search for a job.

Being about 3000 miles away obviously means that
I'm not going to be able to continue my current
level of involvement with the BCS. I've been co-
director of the TI group along with Justin Dowling
for about five years now. Since taking over from
Bob Schledwitz, Justin and I have helped this user
group become one of the most recognized and
respected in the country. In that time, the software

The Boston Computer Society
TI-99/4A User Group
One Center Plaza
Boston, MA 02108

library was started, the newsletter has gone
through multiple incamations in reaching its
present semi-regular format, we've held four very
successful annual TI shows, and put up two
 bulletin board systems. Most imporlanily
however, we have held a meeting every month.

I do not intend to terminate my involvement with
the BCS entirely either. The BCS TI User Group
has been a great influence and education for me
over the past five years. Icouldn’t just walk away
from it if I wanted to. I hope to continue my
monthly contribution to the newsletter. Over the
past few months, Justin has been patiently
learning how to turn out a newsletter that look like
this using the Macintosh, so the format shouldn’t
be adversely effected. One thing I have always
wanted to include in the newsletter is a Question
and Answer column. The only problem is that no
one ever gives me any written questions to use.
Since I won’t be at meetings, if you have a
question that can’t be handled by someone within
the group (and with the talent we have that is
pretty unlikely) write it down and send it to my
through the BCS TI User Group (this applies to
members of other user groups who get this
newsletter as well) and I'll try to answer itin a
future newsletter. Ialso hope to be able to work
some more on the software library. Because of
school and such, I have been unable to really put
the time into the software library lately that it
deserves. Ishould have a bit more lime in the next
few months, so I should be able to update some
disks and add a bunch more.

Beyond the newsletter and software library I also
hope to check into the bulletin boards a couple
times a week. This should provide a reasonable
means of communication for many. Actually, just
last week I picked up a brand new US Robotics
Courier 2400e Modem from the BCS office that
will be going on BBS #1 pretty soon. From my
limited testing over the past few days, the modem
works very well and because of some of its
features may actually improve BBS service for all
callers, not just those at 2400. 1 also have some half
finished enhancements to the BBS that may go into
place before I leave.

Just so that everyone really knows what I'm
planning in my life over the next few months (ie.
let’s squash the rumors before they get silly...) I
will be staying temporarily with some relatives
until I can find my own place to live, generate
some income, and purchase a vehicle (minor
details, right?). To keep my relatives from going
insane, I will not make their telephone number
available to the TI community at large. When I get
my own phone number 'l publish it here so yall
can call be as usual. Clearly one cannot hope to
make a respectable living in the TI world any
longer (although as a college student, I managed
quite well from TI world revenues). Thus,Iam
hoping to work for a company doing work for the
Macintosh computer. My primary reason for
focusing on the Mag, is that it is a home computer
more so than most of what is out there. PC’s are
big, ugly, scary machines. The Mac in my mind is
much closer to what a home computer should be.
And because of my long and positive involvement
with the TI which was certainly a home computer,
I want to continue to pursue that aspect of
computers. Business applications tend to be much
more boring. Besides, I would much rather goto a
trade show and discuss program ideas with a
bunch of normal individuals than a bunch of
businessmen in suits.

There have been many individuals in the BCS who
have helped me out at many levels since I first
became involved. There is no way to describe the
help provided to me by Tom Ward and Wendell
Davis way back in the early days. They loaned me
a second disk drive, 1200 baud modem, and
countless hours of time, patience, and support in
getting the bhulletin boards, and software library
together. Without their initial support, the I have
no idea where me or the user group would be.
Also may thanks to the only two people (apart
from Justin...) who were at my first BCS TI
Meeting, Dennis Kelly and Bill Tormey who have
helped set up and take down nearly every meeting
for as long as I can remember. There were also the
early “techie” crowd who really helped to expand
my programming horizons, in particular John
Bonavia and David Taub. There’s Walt Howe
who provided one of my first real links to the rest
of the world through his CompuServe activities.

An odd assortment of thanks to one Corson
Wyman who put me together with MYARC for
what turned out to be a stormy relationship.
Arnold Carlson and Stan Jacobsen get credit for
actually suggesting that we do a show in Boston,
and for working at the BCS shows and also
countless Ken Gorden extranvaganzas. There are
the now gone people like Jay Giurleo, Greg
Knightes (though Greg still frequents Delphi), and
(the famous in song and legend) Brenda Lyons.
Cynthia Becker has since moved out to Seattle
after providing many newsletter articles, disks for
the software library, and incredible enthusiasm
especially on the BBS. Donald Mahler has
provided countless ¢99 articles, and much BBS
support in addition to keeping my honest on
several counts and providing many new disks for
the library. Mike Wright provided us with some
of the most controversial and fascinating
perspectives on the TI world for many months,
and continues to handle the arduous task of
managing the newsletter exchange. Mike has also
worked many a TI show for the BCS. Joyce
Corker’s TI-Writer Tips and Tricks provided a
great publicity boon for the BCS and the
importance of her work on the early TI Faires can
never be overstated. Joe Rawlins has been a long
time volunteer, providing articles, lugging
equipment to meetings, and generally helping out.
Also many thanks to Bill Wallbanik.

There are probably a dozen or three people I've
left out of the list above and I apologize. Part of
the problem is I'm running out of time to type this.
The other part of the problem is a failing memory -
T'hear old age does that to you.

I do want to put in a little hit about the future of
the group. In my mind there is some phenomenal
‘talent brewing in our user group. Mark Van
Copennole (creator of the Grammulator) is not
only talented with hardware, but he has become a
formidable assembly programmer and a good
speaker as a result of the Grammulator project.
Walt Howe was born to lead the TI User group
meetings. With his booming voice, incredible
breadth of TI knowledge, and ability to give clear
explanations Walt should be an important factor in
the future. Donald Mahler is not only a ¢99 guru,

many other things. Aaron West is probably the
best assembly coder in the TI world today. Fm not
kidding either. Some of the code I've seen from
him makes Paul Charlton look bad. An example
of Aaron’s work is elsewhere in this newsletter.
Aaron’s father Don West has an extraordinary
sense of what programs should do, and I expect he
could provide some excellent review style
presentations given a little encouragement. Mike
Wright has one of the most extensive collections of
TI memorabilia and such that exists outside of the
Traver home. If he could be convinced to just
demo one TI rarity every other month or so it
would be amazing. Mike has managed to uncover
many things TI worked hard to bury. Justin
Dowling has been doing some pretty high
powered work with data base programs and RAM
disks and such and should be able to provide some
“power user” presentations. Joe Rawlins has a
way of coming up with an interesting little
program or modification that's worth a look. I
think the answer here, is that with me gone there is
a great opportunity for some of our more talented
members to step forward. I've been iunning
meetings for like five years and you people must
be getting bored of the same old jokes and typos.
Support these people, and consider stepping
forward yourself once in a while to help out.

And just to make sure no one misunderstands: no I
am not leaving the TI community. Iam leaving
Boston. With some luck I'll make it back for a
meeting or two in the future. I'have TI projects
under way that I intend to finish. I like the TI
computer more than any other machine at there
because it truly is a home computer. I will
continue with Genial Computerware as well. I
also have no intention of becoming actively
involved with any West Coast TI user groups. I
hope to continue my association with the BCS T1
Group for as long as possible.

Vil

¢ Column
By Donald L.Mahler

Clint Pulley has released his C99MDOS. Unlike his earlier
bits-and-pieces updates for the 9640, which required using

 older files, this is complete in itself, 50 9640 users can discard
all older files and depend completely on this file. Besides a
70 page'manual, which includes references to suggested
texts, it includes the newest versions of the compiler, QDE,
assembler, LDR, headers, a graphics library, and a floating
point library. {while we still do not have a floating point data
type, it is much simpler to use that the older floating point
routines used with the 99/4A). In order to fit everything on a
DSSD or two SSSD dsks, all files are archived and a copy of
Barry Boone’s ARCHIVER is included. The AUTOEXEC file
copies the compiler, assembler, loader, and other frequently

used files onto the Geneve ramdsk, so editing, compiling, etc.

is extremely fast.

The process of writing a ¢ program now runs like this:

1)Call up QDE, using a name something like B:file_r

2)Write your cfile. Instead of using individual extern()
statements, use #include “a:topic_h”. For example, stdio_h
will load fopen, fclose, fread, fwrite, getc, putc, printf,
Sprintf, scant, sscanf, etc. Save to dsk by pressing ESC twice,
and answering “Y”

3)Load C99, the automatic compiler assembler. Format is
“C99 Bifile_c Bifile_o” Program will be compiled and
assembled, showing any errors.

4)Load LDR. Format is “LDR B:file_o, library, library”, as, for
example, “LDR Bfile_o, A:FLOATLIB,D:C9LIB” (Remember
we are in MDOS so we can call drives a,b,c.etc). ¢ program
will load and run. If you want to save as a program file
which will run from MDOS, use “LDR
B.file_o,aFLOATLIB,d:C9SLIB b:programname”.

Asa trial, I converted some of my old simple programs from
earlier c.columns:

/* Volume of a box */
#include a:”stdio_h”
#include a:”"float h”
#define x 8
char *op:;
main{)
{float al[x],blx],c[x];
floating pt numbers */
float j{x),k([x]; char *s;
printf (“WOLUME OF A BOX\n\n"):
puts (“Enter length:\n"):;
fpget {s,a);
and puts in fp a*/
Puts (“Enter width:\n"};
fpget (s,b);
puts (“Enter height:\n");
fpget (s,c);
flop(a,”*”,b, 3):
multiplication */
locate(30,3);
printf (“*Volume =
fpput {k, 8) ; }
point value */

/* for calculations */

/*declare

/*picks up value

flop(j,"*",c,k); /*

)
/*outputs floating

Or another way of doing this:
f*Volume of a box #2 */
#include a:”stdie_h”

#include a:”"float_h"
#define x 8
echar opl2]:
char s{x},alxl,bix],cix];
main ()
{fleat [x].klx]1,11x),m[x],plx];:
printf (“"WOLUME OF A BOX\n\n”):
puts(“Enter
length<sp>height<sp>width:\n");
scanf (“%s %s %s”,a,b,c);
stof(a, j); stof(b,k}): stof(c,m; /
*string to fp */
flop(J,"* " kep);
locate (30,3):
printf (*Volume = “);
fpput (1, s) ; }

£lop(p, "*",m, 1) ;

Another example:

/* USING SSCANF AND PRINTF */

#include “a:stdio_h"

char str[) = “ATDP6177393421";

main ()

{ char d4[10); int a,e,n;

printf (“Original string is %s”,str);
ascanf (atz,"%45%3d%3d%4d”,d, «a, se,&n); /

*picks bits out of string */
putchar{*\n’);
printf{*Dial code ig %4s \n”,d};
printf(“Area code is %3d \n”,a);
printf (“*Exchange is %3d ™,e};
printf (“and number is %4d”,n);: }

/* DEMQ OF SPRINTF */

#include a:“conio_h”

char *fn,*1ln;

main ()

{char buf{72],a; int i;

a- ‘L'; fn - “Dounald”; 1ln =
i=24;

printf (“"First name is %s ,last name is
and inital %c”,fn,ln,a);:

printf (*\n User number is %d \n”,1i):
sprintf (buf, "%-7s%2c%83s%3d\n"”, £n,a, 1n, 1) ;
printf(“Here is full name\n\n\n"”):

puts (buf) ; }

“Mahler”;

For the first two examples, remember to use FLOATLIB and
C99LIB with LDK; for the third and fourth examples, you
need only the C99LIB. C9IMDOS will be added to our
library as two S5 disks very shortly if it is not already.

Introduction to the UCSD P-System
By Ron Williams

This month I will cover the writeln procedure in more detail.
This procedure is one of the most used procedures in pascal
as most of the writing to the screen and other devices will
use this procedure. The writeln procedure writes text files
and can not write records like the procedure PUT can. One of

the great things about writeln is that it can also format
output to the screen, printer or other device when writing
out the data.

The following program is a demo of formatting with the
writeln statement as you can see | have gave you the option
of directing the output to the screen or to the printer. If you
output to the printer you can study the output in much
greater detail.

program testwrite (input,output);

const
pi = 3.14159;
var
pfile : text;
choice : char:

count,count2 : integer;

(* This program will demo the *)
(* use of writeln in pascal *)
(* The program uses loops to *)
(* show output formatting *)

begin
page {(output);
gotoxy(l,1};
write('(l)screen (2)printer=>');
read (choice};
case choice of

‘17 : rewrite(pfile,’console:’);
‘27 : rewrite(pfile,’printer:’);
end;
gotoxy(1l,4):

for count:=1 to €6 do
writeln{pfile,pi:8:count);
writeln{pfile);
for count:=1 to 8 do
. writeln(pfile,pi:count;1);
writeln(pfile):;
for count:=1 to 8 do
for count2:=1 to 6 do
writeln (pfile, pi:count:count2):
close (pfile, lock);
page (output) ;
end.

This program will first show in the first loop how to print a
real number with a different number of spaces after the
decimal point. The first value after the colon : is the number
of spaces to print over from the left edge of the paper or
screen and the second nurnber is the number of decimals to
print after the decimal point notice as the values in the loops
change the output also changes. If the valve given is not
really possible like printing one space over after wanting two
spaces after the decimal point the program will print the
number in scientific notation so make sure the values work.

A sample of the output from the first loop is shown below:

3.1

3.14186
3.14158
+3.1415900000000e+000

A sample of the output from the second loop is shown
below:

+3.1415800000000e+000
+3.1415%00000000e+000
+3.1415800000000e+000
3.1
3.1
3.1
3.1
3.1

S0 far I have shown output with real numbers well writeln
can also output strings, integers, and packed array of
characters. The only real difference is that you would not use
two colons like with real numbers. The number after the
colon would only be for the number of spaces to print over
from the left edge of the paper or from the last write on the
same line. The value of the number after the colon if not
possible will try to print the number or string as well as
possible and if to small will chop off any characters on the
end. One more point I would like to make is that write and
wrriteln is right justifed unlike print in basic I know this will
sometimes be a problem for beginning pascal programmers
but soon you will grow to get used to it and may even find it
much easier to format the printout of numbers I know I did.
Just keep in mind that the number will be printed from the
left over X amount of characters. Well thats it for this month,
Thanks.

Music Maker Cracked!
By Aaron West

The article “Music Maker on Disk” (December 1987,P16-20)
made me a little upset at myself, for not having released this
information sooner. I modified the TI-Debugger to debounce
our load interrupt switch so that it would retum to the
calling program, and about a year ago I used it to figure
Music Maker’s data structure out and transfer a file from
cassette to disk. Then I wrote a program to slowly play
Music Maker songs in Extended BASIC. 1 was thinking of
writing a program to convert Music Maker songs to format
that would play quickly in XBASIC, but I left that project,
thinking I'd write a better (although probably simpler) Music
Maker later. After seeing the article, 1 wrote a non-working
assembly cassette-to~disk program, and then this simpler,
working, load-interrupt switch version:

* MUSIC MAKER CASSETTE-TO-DISK#2 (MMCD2)
* 70 USE:

* 1 LOAD TN E/A#3 TOADARUN RIT DON/T RUN
* 2 INSERT MUSIC MAKER CARTRIDGE

* 2 GO TO MUSIC MAKER

* 3 PRESS LOAD INTERRUPT SWITCH

* 4 LOAD FROM CASSETTE

* 5 PRESS LOAD INTERRUPT SWITCH

* 6 SAVE TO DISK

* DONE! GO TO STEP 3 FOR ANQTHER
REF VMEBR, VMBW

Hs BSsS 32
WPPCST DATA WS-32+6
AORG -4 LD.INT WP,PBC
DATA WS, MMCD
RORG
BUFLEN EQU »>3FFF->3BE3
BUF BSS BUFLEN SAVE DISK BUFFERS HERE
MMCD

MOV @WPPCST, -4 LD.INT.TRASH IN RO-R2

LWPI WS KEEP RTWP VALUES IN R13-R15
CLR RO
DB
INCT RO DEBOUNCE LD.INT.SWITCH
JNO DB 16384x; APPROX 1/B SECOND

MOV @»8370,R0 ENDVDD->3FFF?
CI RO, >3FFF
JEQ MVPTRS
LI RO, >3FFF
MOV RO, @>8370 MAKE END VDP=>3FFF
LI RO,>3BE4 DISK BUFFER START
LI R1, BUOF

L1 RZ, BOFLEN

BLWP RVMBR

JMP RTN

YES; MOVE POINTERS

* MOVE POINTERS FROM »3FFD TQ »>3BE1
MVPTRS)
LI RO, >3BE3 ENDVDP FOR CALL FILES (1}
MOV RO, @>8370
LI RC,>3FFD FIRST PTR IS AT END
LI R2,2 2 BYTES PER PTR
LI R]1,R3*24WS
MOVPTR
BLWP @VMBR R3=PTR
Al RO, ~BUFLEN MOVE DOWN
BLWP AVMBW
Al RO,BUFLEN-2 PREV.ADR-2Z
MOV R3,R3 =07

JNE MOVETR MOVE UNTIL PTR={0

LI RO,>3BE4 RESTORE VDP

LI R1, BOF CPU ADR OF DISK BUFFER

LI R2, BUFLEN

BLWP @VMBW WRITE DATA BACK TO VDP
RTN

STWP RO

MOV RO,€-4 PUT WP BACK IN LD.INT WP

RTWP

END

Now for the interesting part; Music Maker’s data format:
Cassette save: VDP >0300 to ENDVDP. ENDVDFP=>3FFF
without disk, >3BE3 with.

Disk: 128 byte records. REC 0 is at VDP >05C6 to >0645.
RECs 1 to 114 are at VDP >0300 to >3BE3. Last byte is REC
114, byte >63.

VDP >059E=Timing: >(404 for 4/4, >0208 for 2/8, etc.

VDP >05A5=#Sharps; VDP >05A6=#Flats

VDP >05AE=LOW (>006E=110 Hz) & VDP >05B0=HIGH
(=-0370=880} for discrete 5.G.

VDP >05C5=5peed 1-30; REC 6, byte 69.

VDP >0606-0641=2 byte frequencies for discrete sound
graphs; starts at 110. 7

note values per octave. Note numbers 0,2,3,5,7,8,10 in each
octave.

{GROM>6160-619B=Default frequencies for discrete sound
graphs.)

VDP >0784-07B9=>>8314-8349; scratch pad memory is used
by Music Maker.

VDT >0784=Mode:>0000=traditional, >0001=sound graph.
(>8314)

VDP >0787=50und graph mode:>00=discrete,
>01=Continous. (>8317)

VDP >07B2=No. of measures (2 bytes); REC 10, byte 50-51.
(>8342)

VDP >1000=First measure; REC 27, byte 0.
ENDVDP-2=Pointer to first measure (>1000).
ENDVDP-2*(measure#-1)=Pointer to measure.

VDP >0680-073F=temp. measure buffer for edit.

VDP >0520-052F=50und list buffer:

GROM>A(40- AQ4F=Default sound list:[>0B 8C1A AC1A
CC1A E09FBFDFFF 02}{00 0520}
GROM>AQ50-A057=Noise values >EQEIEZE3ESEYEAEB.
Last 4 should be >E4E5EBE7.

Because of this bug noises 5-8 are the same as 1-4 (white
noisc.)

GROM>AQ58-A0ED=Sound chip note value table. Each 2-
byte (word) value has offset >8000 {refer to E/ A ref.manual.)
GROM>AQEE-A12D=Dbyte note nos. First is >24, last is >.
>00is 110 Hz, >01 is

110027(1/12) Hz, >02 is 110*27(2/12) Hz, nis 110421/
12)*n Hz.

GROM>A12E-A152=Note table offsets for 37 notes on a staff

1. Traditional mode; four bytes per note:

Byte 1:Voice >01 to >04 or >FF (-1) to >FC (-4); upside down
note is negative.

Byte 2:Note table pointer; even no. >7E to >00. >7E is lowest.
-6=next higher

note, subtact 2 from >7E-(>06*note) for sharp, add 2 for flat.
>FF=blank.

This byte is the offset to the table at GROM>A058.

Byte 3:Volume >90-9F,>B0-BF,>D0-DF,>F)-FF for voice
1,234.

Byte 4:Length >01-10 (note lengths 1-16), »21-30 (rest lengths
1-16). The _

length is the number of spaces used by the note, rest, or
blank (invisible)

rests. 1=16th note, 2=8th, 3=dotted 8th, 4=4th, 6=dotted 4th,
etc.

2. Sound graphs; 3 bytes per note. Length is always 1:
Byte 1:>00-03 voice (corresponds to voice 14)

Byte 2:note >00-FF. In discrete mode, >00 (lowest) to >1D
are offsets to the table at VDP >0606. >FF is a blank space.
Continuous mode allows >00 to >77.

Byte 3:Volume >90-9F,>B0-BF,>D0-DF,>F0-FF as above.

All 4 notes are always specified, in order, e.g. 000590
O1FFBF 02FFDF 03FFFF.
Each measure is 20 notes * 4 voices * 3 bytes = 240 bytes! That
allows only 46 measures with disk, 51 without. There are no
measure pointers. Continuous mode uses a simple multiplier
to convert note numbers into frequencies. This multiplier
seems to be INT((880-110)/120) default or INT(HIGH-
LOW)/120) if the range values are changed, and is placed at
>8346 (2 bytes.)

VDP >05AE=LOW (2 bytes) & VDP >05B0=HIGH.

The following program converts a traditional mode Music
Maker file to one of three data formats, and the next three
programs play the song in the corresponding formats.

90 REM MMCONV: Music Maker Convert, version
1.4 by Aaron West.

100 DIM NF(64):: FOR I=0 TO 63 ::

RF {1) =RSC(SEGS$ (“@AABCBCDDEFFGHGHI I JKKLMMNONODP
QRRSTSTUUVWWXYYZ [Z [\\]~"_*_‘aabccd”,64-I,1)) -
64 :: NEXT I

110 DISPLAY AT (2,0)ERASE ALL:"MUSIC MAKER
FILE CONVERTER”: :”ENTER DSKn. FOR A W

HOLE DISK”: :”INPUT FILE NAME?”: :”"DSK1.”

120 DISPLAY AT(10,1) :"QUTPUT FILE NAMFE? " :

:”"DSK1.%: + :”"MODE:1=COMPRESSED DF128"
:” 1 2=NUMERIC IF252": 3=DATA
MERGE DV1é63"

130 ON WARNING NEXT :: ACCEPT AT{8,0)SIZE(-
28)BEEP:IFS :;: ACCEPT AT (12,0)51IZE(-2
8)BEEP:OFS$:: ACCEPT AT(17,3)SIZE (~1)BEEP:SM
140 DIM F$(127):: IDS$=IF$:: ODS$=OFS5 ::
AF=LEN (IF§)=5 :: IF AF THEN OPEN #1:IF$,
INPUT , INTERNAL,FIXED ELSE 170

150 INPUT #1:FS$(FC),A,B,C :: IF A=1 AND B=59
AND C-=128 THEN PRINT IF$&F${(FC):: F
C=FC+1

160 IF B THEN 150 ELSE CLOSE #1 ::
PRINT :”"WRITTNG:"

170 IF AF THEN IF NOT FC THEN
IF$=IDS&F$ (FC) :: OFS=OD$&SEGS (F$(FC),1,8)¢"/
"&STRS

(8M) :: PRINT OF$:: FC=FC-1 ELSE STOP

180 OPEN #1:IF$,RELATIVE, INPUT

190 SY$="" :: LN=1000 :: LINPUT #1,REC 6:L5
i: LINPUT #1,REC 10:M$:: NM=ASC(SEG
$(M$,51,l))*256+ASC(SEG$(M$,52,1))

200 IF ASC({SEGS$(MS$,6,1))THEN PRINT

“INVALID: SOUND GRAPHS MODE” :; GOTOQ 310 ELSE
T(1),T(2),T(3)=1 :: ND,P,L=0 :; LINPUT #1,REC
27:p$

210 IF SM=1 THEN OPEN #2:0F$,FIXED 128, QUTPUT
ELSE IF SM=2 THEN OPEN #2:0F$, INTE

RNAL, FIXED 252,0QUTPUT ELSE OPEN

#2:0F$, VARIABLE 163, OUTPUT

220 MT={ASC(SEGS$(LS$,31,1))*32/

FC=FC-1 ::

ASC(SEGS$(L$,32,1)))"3 :: FOR M=1 TO NM :: FOR
=1
TO 3 1 VS{X)="" :: NEXT X

230 IF LEN{V$(1))*LEN(VS(2)) *LEN(VS$ (3))=MT

THEN 260 ELSE IF P>127 THEN P=0 :: LI

NPUT #1:P$

240 FOR X=1 TO 4 :: D8 (X)=SEG$ {P§,P4+X,1) ::
NEXT X :: P=P+4 :: V=ASC(DS5(1l)):: IF

V>4 THEN V=256-V

250

V$(V)=VS$ (V) &RPTS (D$§ (2) DS (3) ,ASC (DS (4)) AND
31):: GOTO 230

260 FOR N=1 TO LEN(V${1))STEP 2 ::
Y$=SEGS (V5 (1),N,2)&SEGS (VS {2),N, 2) aSEGS (VS (3)

(N, 2):: IF Y5=8¥5 AND L<15 THEN L=L+1 ELSE
GOSUB 320 :: L=0 :: SY$=¥$§

270 NEXT N :: SY¥$=Y5 :: NEXT M

280 GOSUB 320 :: X=-1 :: IF SM-2 THEN ND=9%
1 GOSUB 350 :: GOTO 300

290 GOSUBR 350 :: IF ND THEN 290

300 CLOSE #2

310 CLOSE #1 :: IF AF THEN 170 ELSE STOP
320 IF SYS$="" THEN RETURN

330 FOR ¥=1 TO 3

NT (V) =NF (ASC (SEGS (SY$,V+V-1,1)) /2 AND 63)::
VL(V)=ASC(SEGS(S
Y5,V+V,1))AND 15 ::
340

Z, W= 00T (1) N (2) *40HNT (3) *1600) *EE536L(1) *256 8L (2) *16FVL: () 4409
350 IF SM>1 THEN ND-ND+1 :: IF X+1 THEN X=W/
104857600 :: GOTO 380 ELSE 380 ELSE
O$=MN

360 IF X<0 THEN W=2432-1

370 FOR X=1 TO 4 :: W=INT(W) /256 ::
0$=CHRS { (W—INT (W)) *256)&05 :: NEXT X
T #2:08;:: RETURN

380 IF SM=2 THEN IF ND<28 THEN PRINT #2:X,::
RETURN ELSE PRINT #2:X :: ND=0 :: R

ETURN

390 X3=STRS5(X)::
535=83$5&CHR$ (200) &CHRS (LEN (XS$)}&X$:: IF
ND<12 THEN S53$=S33&CHR

£(179) :: RETURN ELSE ND-0

400 PRINT #2:CHRS (INT(LN/

256)) 8CHRS {(LN) &CHRS (147) §535&CHRS (0) : :
LN=LN+10 :: S38=

“# +: RETURN

NEXT V

:: PRIN

90 REM MMPLAY1: Enter the name of your type 1
compressed file to play.

100 NL=150 :: DIM F(40),PL$(9%):: H=2"~(1/
12):: F{0)=110 :: FOR I=1 TO 40 :: F(I)
=F({I~1})*H :: NEXT I

110 DISPLAY AT (3,C)ERASE ALL:“MUSIC MAKER
PLAY1": : : :"INPUT FILE NAME?”: :"DSK
1.7

120 ACCEPT AT(9,0)5IZE (-28)BEEP:IFS : QOPEN
#1:1F$,RELATIVE,INPUT
130 FOR I=0 TO 99 ::

LINPUT #1:PL$(I)

IF EQCF (1) THEN 150 ELSE

140 NEXT I
150 P$=PLS{PL):: PL=PL+1 :: FOR I=1 TO 128
STEP 4 :: Y=(ASC({SEGS$(PS$,I1,1))*256+AS

C(SEGS (PSS, I+1,1))) /1600 :: N3=INT(Y):: IF

N3>39 THEN STOP

160 Y={(Y-N3)*40 :: N2=INT(Y¥):: Y=(Y-N2)*40 ::
N1=INT(Y)

170 L=ASC(SEGS$(P5,I+2,1))::

Y=ASC(SEG$ (P5,I43,1)):: V1=L+L AND 30 ::
L=INT(L/16)

+1 :: VZ=({Y AND 24Q)/8 :: V3=Y+Y AND 30

180 CALL

SOUND (NL*L, F (N1) ,V1,F (N2),V2,F {N3},V3) :: NEXT
I :: GOTO 150

MMPLAY2: Enter the name of the type 2 file to
play.

100 NL=150 :: DIM F(40),N(1500):: H=2~(1/
12):: F{0}=110 :: FCR I=1 TO 40 ;:: F(XI}
=F(I-1)*H :; NEXT I

110 DISPLAY AT(3,0)ERASE ALL:“MUSIC MAKER
PLAYZ2": : : :"INPUT FILE NAME?”: :"DSK

1"

120 ACCEPT AT(9,0)SIZE(-28)BEEP:1F5 :: OPEN
#1:IF$,INTERNAL,FIXED,INPUT i1 FOR I

=0 TO 1500 STEP 28 :: FOR J=I TO I+26 STEP 9
1320 INPUT

FLN(T) N NiFH2) NI N(F) NIRS) MR N NG,
NEX

T J :: INPUT #1:N(J):: IF N(J¥<0 THEN 150

140 NEXT I

150 FOR I=0 TO 1500 :: ¥Y=N(I):: N3=INT(Y)::
IF ¥<0 THEN STOP

160 Y={Y-N23)=40 :: NZ=INT(Y):: Y=(¥Y~-N2)*40 ::
NI=INT(Y):: Y=(Y-N1}*16 :: L=INT (Y

Y Y=(Y-L)*409¢

170 V1-{(Y¥ AND 3840)/128 :.: Vv2=(Y AND 240)/8
1t V3=Y+Y AND 30

180 CALL

SOUND (NL*L+NL,F (N1) ,V1,F (N2} ,V2,F(N3),V3}:;:
NEXT I

MMPLAY3: To create a song program: 1. Load this program
2. MERGE your type 3 file in. 3. Save the finished version
under a new name.

100 NL=150 :: DIM F(40),NF(64):: H=24{1/12)::
F(0)=110 :: FOR I=1 TQO 40 :: F(I)=

F(I-1)*H :: NEXT I :: 2=1/104857600

110 READ Y :: IF ¥<0 THEN STQP ELSE Y=Y*Z
N3-INT (¥)

120 Y=(Y-N3)*40 :: N2=INT(Y}:: Y=(Y-N2)*40 ::
N1=INT(Y):: Y=(Y-N1)*16 :: L=INT(Y

):: ¥Y=(Y-1)*409¢

130 Vi=(Y AND 3840)/128 :: V2=(Y AND 240) /8
i1t V3=Y+Y AND 30

140 CALL

SOUND (NL*L+NL, F (N1),V1,F (N2} ,V2,F (N3),V3)::
GOTO 110

MMFLAY/AS: Requires MMPLAY object code from
MMPLAY/S in DSK1.

100 DIM PL5{99):: DISPLAY AT{3,0)ERASE
ALL: "MUSIC MAKER PLAY1,ASSEMBLY": : : :°I
NPUT DPRIVE?”: :"DSK1.”: :”FILE?”: :"NOTE

LENGTH? 4“%

110 DISPLAY AT(15,1) :"TRANSFPOSE? (0-40) 0"
ON WARNING NEXT

120 ACCEPT AT(9,0)SIZE(-28):D$:: ACCEPT
AT{11,7)SIZE{-10):F$:: OPEN #1:D$&F§,R
ELATIVE, INPUT

130 FOR I=0 TO 99 :: IF EOF(1)})THEN CLOSE #1i

:: GOTO 150 ELSE LINFUT #1:PLS$(I)
140 NEXT I

150 ACCEPT AT{13,14)SIZE{-2):NL ;:
ACCEPT AT{15,19)SIZE(-3):T :: ON E
RROR 170 :: CALL

LTNK (“PTAY”, T,PLS () ,NL, T, T, T})ELSE 120

160 ON ERRQR STOP :: GOTO 150

170 CALL INIT :: CALL LOAD (“DSK1.MMPLAY"):
RETURN

Here is the assembly play routine!

MMPLAY /S: assemble before using PLAY/AS.

* PLAY ROUTINE FOR 3 VOICES: CALL LINK
* (“PLAY”,P§,NL:SECONDS*60,tl1,t2,t3)
* (“PLAY”, #elements,PS5({),NL,t1,t2,t3)
* PS includes 32 note groups of 4

* bytes each. The 4 bytes (2 words) are
* 3 note#s (0-39) in the first word,
* and 3 volumes (0-15) and a time (0-15)
* in the 2nd. The time is actually 1-16.
* lst word=nl*40°24n2*40+n3 {0-63999)
* §5535 (>FFFF) flags end of list.
* nl-3=half step numbers:; Q=110 Hz,
* 12=220 Hz, 24=440 Hz, etc.

* 2nd word=time*16°3+v1*16"2+v2¥1l6+v3

* NL=no. of 60th sec’s per 16th note

* PE{0 - felements 1} are moved to himem
* s0 your program must not be too large.
* tl-3 are transpose values for voicel-3
* CALL LINK{“PST”,P} returns P=no. of

* notes te play, 0 if done.

*

ookl COPY “DSKé6.XBEQU”
DORG >2000 XB EQUATEES
NAMLNK BSS 2
FFALM BSS 2
LFALM BSS 2
INIFLG DATA >AASS
NUMASG BSS
NUMREF BSS
STRASG BSS
STRREF BSS
XMLLNK BSE
KSCAN BSS
VSBW BSS 4
VMBW BSS 4
VSBR BSS 4
4
4

e b s b B e

VMBR BSS

VWTR BSS

ERR

ENDBM EQU >8384

RORG

*** End of XBEQUates.
DEF PLAY,PST (PST=play status)

BUF EQU >Al101 HiMem buffer for array
DORG >R040 put values here

ADRE BSS 2 adr.of end of P5() buffer

IF NL THEN

-

NTLEN BSS
NTDUR BSS
BPTR BSS
TRANS BSsS
PINTWRS BSS
RORG
* Lowast 12

2 seconds*60 per 1l6th note
2 duration of note group

2 ptr.to current note group
4 transposition #s for vl-3
32 my workspace

S5 restore relocation counter
half atepsa: counter valuas

* First octave is these values shifted
* right 1, 2nd is shifted 2, etec.

SNDTBL DATA

DATA
DATA
D12 DATA
D40 DATA
QUIET DATA

2034,1920,1812,1710,1614
1524,1438,1357,1281,1209
1141,1077

12 half steps per octave
40 possible half steps
>9FBF, >DFOF sound values

* Play STatus: returns 0 if not playing

PST MOV
BLWP
DATA
CLR
LI
BIWP
JMP

GETNUM MOV
MOV
CLR
BLWP
BL

8>83C4,€>834A ISR playing?
8XMLLNK return ISR address

»20 Convert Int.to Float
RO not an array

R1,1 parameter#l

@NUMASG return the value
GRT back to XB

R11,R12 save return adr
R10,R1 inteo Rl

RO not array
ENUMREF get float.value
@>12B8 CFI:float.to int.

* CFI uses RO tc R6 & R1l

INC
B
% Load PS(}
PLAY LI
MOV
MOVEB
SRL
JNC
BL
PLAYZ MOV
CLR
MOV
LI
MOV
SETO
GETSTR MOVB
MCVEB
ELWP
MOVB
MOVEB
SRL

INC

INC
MOV
BL
MOV
LI
TRANSZ2 BL
MOVB
CI

PLAY3 LI
MOV

R10 next parameter
*R12 return RO=int.
inte high memory;>A140 on
R10,1 parameter counter

R10,1 default 1 element
@>8300,R1 1st param. ID.
R1l,1 string parameter?
PLAY2 no, skip

@GETNUM get no. of elements
RO, R5 save it

RO element 0 or not array
R10,R1 param¥ to Rl

R2,BUF buffer for array
R4,@BFTR point to 1lst group
R6 max len.255

*R2,R4 save old byte

RE, *R2 set len.limit
@STRREF get P$(Rl1) or P3
*R2,R3 get len in R3

R4, *R2 restore old byte

R3,8 R3=st.ring length
R3,R2 go to end of string
RO next element

RO,R5 done enough?
GETSTR no, go on

R10 next param.

R4,Q8ADRE atore adr of end
AGETNUM get note length
RO, @NTLEN save it

R9,TRANS point to buffer
AGETNUM get a transposed
@>83El, *R9+ smave low byte
R9,TRANS+43 comp.with end
TRANS2 leop 3 times
R1,PINTR play interrupt adr
R1,8>83C4 install ISR

LI R1,BUF+]1 init.pointer—
MOV R1,8BPTR to first group
CLR @NTDUR init for first
GRT B R>6A return to XB
* Play INTeRrupt does the work
PINTR DEC R@NTDUR count down
JCT RT if >0 then lsave
LWPI PINTWS use my workspace
LI R3,>B400 sound chip write
MOV @BPTR,R2 start now
MOV *R2+,R6 get note#s
CI R6, 64000 in range?
JHE DONE no, end
MOV *R2+,R7 get volumes & time
MOV R2Z,4BPTR save pointer

MOV R7,Rl1 >Tabe a=vl, b=v2,..
SRL R1,12 >000T in R1
INC Rl make it 1 to 1le

MPY @NTLEN,R]l Time*NL
MOV R2,@NTDUR store duration
SLA R7,4 >abcQ for loop
LI R4,>8000 note/volume setter
LI R9, TRANS transpose #s
PINT2 CLR RS init for div
DIV AD40,RS div noted#s by 40
* RS=what's left; Ré=module 40 remainder

CLR RO init for div

MOVB *R9+,Rl get transpose#
SRA R1,8 make it a word val
A Ré,R1 Rl=note# for div

DIV @D12,RO div by 12
* RO-octave; Rl-half step 0-11

SLA R1,1 *2=table offset
MOV @SNDTBL{R1l),Rl =note

INC RO make it nonzero
S5RL RI1,R0 shift by octave+l
MOV R]1,RO =0abc order

SRC RO, 4 =cQab

SRL RO, 4 =0e0a

AR R4,RD =Vcla Voice=E,C, 8
MOVE RO, *R3 write >Ve (4 LSbs)

SLA R1,4 =abel

MOVE R1, *R3 write >ab (6 MSbs)
MOV R5,R6 for next div.

Al R4,>1000 wvol.set >9¢,B0,D0O
SRT. R7.,4 >0abe, >»0be, >0e00
AB R4,.R7 set voice command
MOVE R7, *R3 write volume

S1A R7,8 >bc00,>¢000,>0000

Al KE4,>1000 next wvoice
CI R4,>E000 neise set command

JLT PINT2 don’t set noise
RT LWPI >83ED restore GPLWS
RT return to interrupt handler

DONE CLR @>»83C4 wipe out ISR link
11 R1,QUIET stop sound

Q2 MOVB *R1+,*R3 >9F,BF,DF,OF
JLT @2 for vl,v2,v3,stop
JMP RT return
END

