The Boston Computer Society
TI-99/4A User Group
Newsletter

May 1990
Edited by J. Peter Hoddie

The Fayuh

On May 5 the Fifth Annual BCS TI Fayuh was held in Waltham. This year it was held
together with some participation from the Commodore user group, although it was
overwhelmingly Tl in neture. While attendance wasn’t huge, a the local crowd was
there in force, and was very enthusiastic. Rave 99 was there showing their
standard compliment of fine products, along with a new expansion box. Priced at
around $300 it was an amazingly slick unit. heard rumor that of 10 available for
sale, 8 were spoken for by 1 PM. Itis slated to ship sometime in June. Bud Mills
traveled up to the show again this year, to demonstrate and promote his ever
widening line of peripherals. fisgard was represented in part by Mickey Schmidtt
who again trekked up from Pittsburgh. Mickey was also selling booklet aimed at
helping cassette owners get the most aut of their system. The booklet was a
compilation of articles she had previously published, reprinted with assistance from
Mike Wright. For the first time in my life | had the pleasure of meeting John
Willforth - the Ti community's famous hardware guru who was also visiting from
Pittsburgh. MYARC was represented by Paul Chariton, who was also helping me out
at the JP Software table. Also present at the JP table was Mi Kyung Kim, the artist
responsible for the GENEVE swan and many other MY-Rrt pictures, attending her first
Tl show. MI Kyung was selling a disk of five new MY-Art pictures she has craated.
The disk is available for $5 from JP Software, with the profits going to the Red Cross
in San Francisco. Mi Kyung also amazed attendees by creating some pretty amazing
MY-firt images during the show. Wayne Stith was also there. Wayne spent much of
the day demonstrating his TRIAD for the 9640 - and amazing all who saw it. John
Birdwell was not there, but his new version of Disk Utilities (currently celled Disk
One) was well receiving by those who got a chance to see it.

Terrie Masters was there, piaying Chainlink ot the JP Software table, and otherwise
promoting her current Interests (I hear rumor of a new publication). Rnother person
there from the west coast was Ken Hamai, UCSD P-System fan, and all around
entertaining kinda guy. The prize for furthest distance traveled goes to an
Australian man, whose name | missed. RAlsc present was Jeff Guide, head SYSOP of
the TI-Net on Delphi, and Jim Horn - Jeff's counterport on CompuServe. For the 1irst
time in awhile, Steve Lamberti of Texaments was at a Tl show, promoting TI-Base
and its many fine add-on products. The local deals were there too, Ken Gilchrist and
Frank Billarl. The Connecticut Users Group put together s fine display as always.
Jack Sugrue was up and around again, as enthusiastic as ever. Mike Wright
managed to dig up a few more treasures In his effort to create the perfect Tl shrine.
Barry Traver was sorely missed, but family matters came up. Corson Wyman was
there, the last weekend before his wedding - the ceremony performed by, who
else?, Barry Traver. As always, Corson was most helpful - proving equipment, time,
and enthusiasm to kil for. The regular BCS crew was there too - Justin Dowling -
whe did a great job organizing the whole thing, Donald Mahler ~ sort of the ultimate
BCS volunteer, Tom Ward - one of the most under-appreciated members of the Ti
community, and many many others.

BCS TI-99/4A Newsletter - May 1990 - Page 1

If you weren’t at the show you missed something. There were lots of folks from all
over the place. If you had a question, there was someone there who could have
answered it. If you had an idea for & program, there was someone there who might
have been talked into writing It. 1f you wanted an informative way to spend a
Saturday afternoon, you missed & great informational gathering. (You missing some
great Indian food too.) The people were there. The information was there. The
products were there. The rest is really in your court.

The show was a good lime. | came three thousand miles Tor it, and I think it was
worth it. These Tl gatherings are as much about the computer as they are an
opportunity to get together with a group of old friends. Most vendors had good
things to say about thelr seles. The crowd was very interested in the products, and

asked lots of questions - which makes the show mere interesting from my point of
view.

If you've got ideas about how to moke the show better, you shou!d start talking
now. Tell us the things you like, the things you don’t like, and what you'd be willing
to do to help out next time around. The TI community may not be growing but there
Is still enough people, enough talent, and enough interest to keep things going if
everyone is willing to do just a little bit. (end of sermon - and, by the way, probably
the reason 1 did this newsletter rather than sleep and try to recover from this cold).

Introduction to the UCSD P-System
By Ron Wililams
Using Units

This month | am going to show you how to create a P-System unit and also how to
add the unit to your system. A unit is a separate compiled section of code that is
called by a program or programs. The great thing about a unit is once it is in your
library you can call it to be used by any program. $o making a unit for getting the
system volumes you could use this unit by many programs that need the volume
names. All you have to do is put ot the beginning of your program a uses statement
this will tell the compiler to look for a unit to be linked to the host program, fAfter
the unit is called by the program the computer will then search the drives for the
unit. Many different procedures or functions can be put in one unit Just call them
like a regular function or procedure as If the program had them all compliled
together. The P-System unit has two main parts the interface section and the
implementation section. The interface section declares how the host program
communicates with the unit while the implementation section defines how the unit
accomplishes its task this Is the sectlon that the code rfor the unit is stored. When
you start a unit you declare it like this 'UNIT <UNIT NAME>' you use the statement
UNIT and not PROGRAM, After this you start the interface section and this is where you
put any functions or procedures to be called by the host program. The
implementation section is where the code for the procedures and functions in the
interface section is put. A unit can put in the system librery or it can be in a library
defined by the program LIBRARY.CODE on the P-System utilities disk. You do not even
have to put the unit in a library if you use the compiler directive 'su’ this directive
will tell the compller where to find the unit. 1 like to compile a new unit and use it
for a while before | add it to a library as | sometimes have my boot disks very full
of data, and each time | change a library | have to (K)runch all this information back
together. The following unit | put together so you will see how a unit and host
_program work together. The unit is very simple it just gets the volume names as
they are stored in memory. The only information the unit needs |s the volume
number as they are called by the P-System (4,5,9,10). | have included volume

BCS T1-99/4A Newsletter - May 1990 - Page 2

number 10 for you people lucky enough to have four drives on your system. Here's
the code for the unit and host program, Thanks:

Unit getvol;
Interface
Procedure volume (driveno : integer ; var volout : string);
Implemention
Procedure volume;
Type
instring = string{12]:
Vel = record
case boolean of
true : (address : integer);
false : (ptr : ~instring);
end;
Var
velumes : vol;

Begin
case drivenc of
4 : begin
’ volumes.address:=14022;
volout i=volumes.ptr";
end;

5 : begin
volumes,address:=14034;
volout i=volumes.ptr*;

end;

9 : begin
volumes.address:=]14082;
volout:=volumes.ptr";

end;

10 : begin
volumes,address:=14094;
volout:=volumes,ptr";

end;
end;
end;
Begin
End,

Program testunit;
USES (*$U #9:unitvol.code*} getvol;
var
velin : integer;
outvel @ string[l2];
Begin
outvol:=" Y
page (output);
Writeln('This program tests the'};
Writelin('getvol unit thils unit '1:
Writeln('will get the volume names');
Writeln('from memory locations and');
Writeln('can be called by giving a');
Writeln('drive number then printing'):
Writeln('out the string with the');
Writeln('volume number in it');
writeln;
write('Enter volume number=>1};
readln(volin);
volume (volin, outveol) ;
Writeln;
Writeln ('Volume in #',volin,' is=',ocutvel);
end.

ﬂ

BCS TI-99/4A Newsletter - May 1990 - Page 3

Introduction to the UCSD P-System
By Ron Willlams
Configuring your System

So far | have nnt covered how to make life a little easier using the P-System. | know
that you would like to set your system up the way you need it for your use. | will
now go into where files should be for your system to boot up the way you want it
to. First you should know that some files must be on volume #4 or you will not be
able to make the system boot correctly. One of the most important files on volume
#4 Is SYSTEM.PASCAL this is the operating system file you need this file on volume
#4. This file is a supplemental file to the operating system file on volume #14, The
file st¥sTEM.s¥NTAX should be on this volume as well this is where the compiler error
codes are kept if you don't have this file available you will just get numbers for
compiler errors. This can be a problem 1 don't like to look in books and manuals to
find the meanings to the error numbers as this can take a lot of time. If you have a
file called sYSTEM.CHARAC at boot up you will not get Tl's default character set. This is
good because you will not have true lower case characters with Ti's character set. A
file on volume #4 that tells the system where the library files are located is called
USERLIB.TEXT. This is a simple text file created with the editor that has the file
names of all the libraries in the system and which volumes that they are located on.
If you have this file on volume #4 you can then put the libraries on any volume to
save space on velume #4, Just type In the tile names just as you would to execute a
fite, volume number or name aleng with the file name.)

The compiler file, assembler flle, and filer files can all be put on volume #535 to save
space on volume #4 for writing programs. Some of the most used files from the
utilities disk | also have on this volume. | will print out at the end of this article file
listings from the disks | use to boot my system to help clear up any questions on
where files should be put.

The file | use to set up my system at boot up is called sYSTEM. STARTUP and is located
on volume #4, This file is the first file the system executes after booting. In this file
| have a program that sets my printer to 'P10' and polls the drives to see if the disks
I have are DSDD or $SSD or any other setting. Polling the drives is needed on my
system as | have a MYARC disk drive controller and it will not read DSDD disks
correctly in the P-System unless the drives are read first for disk formats. The part
of the program that sets my printer to 'P10' is just a modified version of the
program MODRS232 on the P-System utilities disk. The program then uses the chain
command to go directly to the filer program and starts the date command. So right
after the system boots | am in the filer program and the computer is waiting for me
to set the correct date. Before 1 did this many times ! forgot to set the date and so
my files were not dated correctly. The chain command used is on page 51 in the
compiler manual. The program that uses this command must be compiled using the
unit COMMANDID. At the top of my program | put USES {$U $5:COMMANDIO.CODE}
COMMANDTO; the unit is on volume #5 In my system. At the end of my program Just
before 'END.' | put the following statements:

MYOPTICNS :=CONCAT (**SYSTEM_FILER. PI="D%, ' ' 1 wty,
CHAIN (MYOPTIONS) ;

The variable myoptions is of string data type. The command will execute the file
SYSTEM.FILER @fter the program SYSTEM, STARTUP stops. The chain command will also
do simple commands that you would normally type in after the program chained to
starts that Is how you can start the date command. Look at the aboue statements
ond | think you can see what | mean. | will now show you listings o7 my disks to

BCS TI-99/4A Newsletter - May 1990 - Page 4

help you slong farther. A few of the files on volume #5 like TEXTFILE.CODE, P-
DIR2.CODE and PASCDVE0.CODE are programs that [wrote they have nothing to do
with the booting of the system. Also you will find o few files that were taken from
the P-system utilities disk these programs are ones which | use quite often.

DISK4:
SYSTEM.PASCAL
SYSTEM.STARTUP
SYSTEM.SYNTAX
SYSTEM,LIBRARY
SYSTEM.CHARAC
SPECIALLIE.CODE
USERLIB.TEXT

< UNUSED >

6
3
14
43
2
15
4

263

20~0ct-B1
29%-Jan-B9
12-Jan-B2
17-May-B7
14-Jan-8B2
Z24-Jan—-B8
31-Jan-B8

10
16
18
33
76
78
93
a7

Code
Code
Text
Data
Data
Code
Text

7/7 files, 263 unused, 263 in largest

DISKES;
SYSTEM,FILER
SYSTEM.COMPILER
SCREEROPS.CODE
SYSTEM.EDITCR
SYSTEM.ASSMBLER
SYSTEM. LINKER
9300,0PCODES
9900, ERRORS
COMMANDIGC.CODE
DFORMAT.CODE
LIBRARY ,.CODE
SETLIYPE.CODE
PASCDVAO . CODE
TEXTFILE,.CODE
P-DIRZ.CODE

< UNUSED >
15/15 files,

34
99
12
45
49
28

s
-~ -l am

10
16

w

R unused,

13-Mar-B81
27-Apr-82
2-Jun-81
6-Nov-81
10-Apr-81
4-Apr-81
20-Dec-78
23-Sep=-80
2-Jun-81
9-Mar—-87
19-Cct-81
10-Feb-82
24~-Jan-B#
13-Aug-B8
25-Jun-gB8

10

44
143
155
200
249
277
280
287
295
302
315
322
329
339
355

5 in largest

Code
Code
Code
Code
Code
Code
Data
Data
Code
Code
Code
Code
Mnde
Code
Code

That’s It for this month | hope that this information will help you set up your system '
Just how you want it.

e "

ForTl Card on a 96407
From Delphi’s Message Base

The following information is taken from the message base on Delphi. It contains
information about how the ForTl twelve voice music card’s hardware appears on the
9640. | do not know of anyone who is successfully using a ForTl on the 9640. Can
anyone out there help?

Like the speech synthesizer, the ForTl card is located at page >BC. Itis not fully
decoded, and therefore could respond at pages >3C, >7C, and >FC as well. Here is the
ForTl address bus mapping:

Address bit Source Selects Address Sound Chips Selected
AME.A NC X l >8400 ALL
AMD . A NC X ! >8402 2=-4
AMC.A Mapper 1 | >8404 1,3,4
AMB. A L 1 | >8406 3,4
AMA.A v 1 | >B408 1,2,4
A0 " 1 | >840A 2,4
Al 'y 0 | >840C 1,4
AZ ' 0 | >B40E 4

BCS TI-99/4A Newsletter - May 1990 - Page 5

A3 9995 0 I >8410 1-3
A4 v o} | >8412 2,3
A5 v 1 | >B414 1,3
Ab " X | >B416 3

A7 vt X | >B418 1,2
AB A b4 I >B41A 2

RY T X { >841cC 1
AlQ v X | >B41E None
All v CE4 active LOW sound chip 4 enable
A12 L CE3 "y LI} e 11t 3 LI)
Al3 T CEZ 11 L it 11 2 LI}
A14 LI | CEl T 1r "t t 1 T
AlS " 0

On the 99/4A, writing to >8400 will load data into all ForTl sound chips as well as the
console sound chip. Writing to any ForTl sound chip will also write to the console
seund chip, 1 think. The only way to write to the console sound ¢hip without writing
to the ForTl sound chips is by using address >841E. Note that the states of A6-A10 do
not matter, such that >8400,>8420, >8440, >8460, etc., are all equivalent ways of
accessing ALL sound chips, and so forth.

Jeff White

P.S.: When | put >BC at >8004 in the GPL mapper, the system stops.

e e ——————]

MY-firt File Formats
By J. Peter Hoddle

Recently I received a request from an individual about the MY-RArt file format. Since
this information Is not entirely obrious, and is not widely available (but was once
published on CompuServe).

There are two different MY-Art file types: low-res and hi-res. Both files save in
neerly the same format - a form of run length encoding. The first two bytes of the
file are a flag indicating whether or not the file is hi-res or lo-res. These are not
always accurate. Earlier rersion of MY-fArt sometimes saved them incorrectiy. In

an ideal world, the first word is “>0FFF” to indicate hi-res and the first word is
“>FFOD” to Indicate lo-res,

In hi-res mode the user can only access 16 colors, but can choose them from a
palette of 256 colors. The hi-res mode header includes this coler information, the
lo-res header does not. The hi-res mode color header information lists 16 colors,
each entry is one word long. The default color header is as follows (taken from the
MacFlix source code). '

DATA >0Q000,>0200,>3000

DATZ >3200,>0003,>0203,>3003

DATaA »3203,>7204,>0700,>7000

DATA >7700,>0007,>0707,>7007

DATA >7707

In hi-res mode, the horizontal scan lines data then follows. Itis encoded with the
color code in the high nybble and the number of pixels in that color is stored in the
remaining three nybbles. The count should not be greater that >0200 (512 decimal)
since that is the maximum number of bits on one horizontal line in hi-res mode.
There are 212 horizontal lines in total. A blank tine appears as >F200 (color is white,
and 512 bytes).

BCS TI-99/4A Newsletter - May 1990 - Page 6

In lo-res mode, the horizontal scan line data is stored in & similar format. In lo-res
mode however, there are only 256 pisels across the screen and there are 256 colors
to choose from. Therefore, the coloris stored in the high byte and the pixe! count |s
stored in the low byte. The pixe! count is one based, and the number 256 Is stored
as a zero (since it can’t run into the next byte). Thererore, a blank line in this mode
would appear as >0000. Again there are 212 horizontal lines.

Both of these file formats are stored as DIS/FI{ 128 data. if the data does not
completely fill a sector, the remaining space in the sectoris ignored. There is no end
of data mark. The picture data Is considered to have ended when 212 horizontal
scan lines have been read.

If you are writing a program to import or display MY-Art pictures, you should
consider totaling the number of dots in each horizontal scan line to make sure they
total 256 or 512 (depending on the moude you are In). IT you rind a line that goes
over this you should alert the user to the error. This helps to avoid crashes caused
by corrupted files.

fis noted above, sometimes the header work indicating whether the file is in hi-res
or Jo-res mode is incorrect. There Is a way to determine nearly for certain what type
the file is. Ignore the header word and assume that the file is hi-res mode. This
means thet the data immediately following the header word should be a line of
horizontal data. Start parsing the data (but not displaying it) and see if it totals 512
pinels of data, or it runs over. If the data you are parsing is hi-res data, then it will
total 512 pisels. Ifitis lo-res you wlil be totaling the color data, which most
certainiy will not exactly equal 512 pixels. Adding this sort of test requires a little

entra effort, but It spares your users the pain of trying to display files in the wrong
way.

BCS TI-99/4A Newsletler - May 1990 - Page 7

