FEH I ATYYN ™ MM * IO
1A PNy B9 Imie @I

AZ/BF CANTERBURY DR

GreEENSspOorRD HEG
27488

MARrRCH 1591

YorLoume § Humeser 3

George von Seth, Pres. (292-2035) Bob Carmany, Newsletter Ed (855-1538,
Tony Kleen, Sec/Treas (824-6£344) Bill Woodruff,Pgm/Library (223-1392)
BBS: (919)621-2623 —--R0O3

+—t—t—t—t—t—F—p—t =ttt —t—t—t—f—F—F—t—tmf b —f—fm b — bk — b — b — b —F —— —f—
The Guilford 99'er Users' Group Newsletter is free to dues paving members
{One copy per family, please). Dues are $12.00 per family, per year. Send
check to:Tony Kleen c/o 3202 Canterbury Dr., Greensboro, NC 27408. The
Software Library is for dues paying members only. {Bob Carmany Ed)
t—t—F—F—t—t—t—F—F—Ft—Ft—F—t—t—F—t—F—F—F—t b= —b == — bbb —F—F—F—t—F—F—F—+—F—F—

CUR NEXT MEETING

DATE: March 5, 1991 Time: 7:;30 PM. Place: Glenwood Recreation
Center, 2010 3. Chapman Street.

Program for -this meeting will be a program swap. We plan to have
the UG library at the meeting and there will be other stuff

available from private collections as well. Bring a supply of
disks for the programs that you want!!

MINUTES
The meeting was brought to order {or 3t least g recesblence of orger) by oor C*==:ﬂ=rt, Geprge wn Seth, Therz were 7
sembers present, and 7 guests. Inbroduciions were shared with our guests and it was iearsed that they were attending our
geeting in hopes that it was vet annther ciub espousing the IBM PE. e apparently picued their interpst zs they did stay, and

particigate in, the entire meeting,

First order of business, the ainutes of last eonth’s meeting, were read and zp ke sero
the treasurer’s report. As of this writing, se have $188.71 in the treasury. Six mepbers have paid their vearly 4

hew businecs topir: Hod de we recruat new meabers? Newsletter erdtor Bob Carkany proposed that we send poste
our old sembers informing them that we still exist, and thst they are welcome back., 1 wac drafted tg draft the =
the invitztions.

Arother method would be to advertise via the community center’s monthly prosciional mpaterial. ['1} reviem this
possibility with the cemter’s stafé later thic month.

Also suggested was MICROpendium support. ¥ mioht place an ad, O we pight re
that 1 aight he able to check intr that. teo. 1'e glad nothing else was suggested! had

Hob Carmany presentes our descastration this aonth. Wis topic was "The Poor Man's ltia‘ar“ He showed us how we could
use TI-Writer lor the TIM clones) to sort, accueslste, cut, and otherwise edit z file similar to or &t izmast with the sae
functionality as Meliiplan, Several XB proprass were used by ceveral avthers {Resmer, Clulow, Wentiel),

fs the title sugpesie, if you doa’t wish to shell out cash For Multiplam or a datahase snFtuare patkagey AMD vowe have
very little veluses of datay you £an opt to use 1B prograes and TIH to manipulate thic data for you! Thank you Beb for veur
Fine demonsiration (2= Bob ALBAYS does!,

Bob alse whelled uur appelite by desonstrating Furnelweb’s 4,31 versien, DISKREVIEY was Tony's answer fn zeverat file
copying ané sector editing programs. 1 plan to oot ay copy this month!

The azesting was agisurned, bet ihe crowd lingered for nearly an hour afterwards sharing war stories ‘i teratly) and
distuseing 7199 poseibilities and triusphe,

By the way, next sonth’s progras will be a disk cwap., Eill, or whoever has ‘he library by nest geeting, #ill bring the
tlub’s diskettes. ¥e'll have tuo svstems at the meeting for copying your Faverite softsare,

IF vy BAVEN'T £8 YET PAID YGUR DUES, YO RE DUE 70 PAY TubH wou!!!

teive 3 mailing 1ist. It was supgested

Resperdfully subgriisod,

Ty Kieen

Yoluge 2 Muzber 3 Page |

FfONY ON TIBASE

I've got two topics on VDPram paging.
The first, presented here, is *+/C pag-
ing. The ’#%/C! is an abbreviation for
any command file. Next month’s article
will be on #*/I paging; the ‘**/I' being
an abbreviation for any install file.

I had planned to write about both kinds
of paging (**/C and **/I) in this one
article but decided it was too much to
cover. [T 2150 suspect that-Bob, our
newsletter editor, would not care to de-
vote an entire newsletter to just ome
article,

Ckay, here's our problem. We‘ve got
the latest version of TIBase, V3.0,
which allows us to execute our *+/C
files out of VDP memory., BUT... TIBase
linits us to only 2546 bytes of VDPram
for our use. AND.., We've got wore code
in our #/C files than will fit in memory
at any ocne time. AND... We don’t (as
yet) own a RAMdisk.

New that you’ve read the first few
paragraphs, let me help you decide to
read the rest of the article. Let’s
answer a couple of questions.

{?) who would want to read the rest of
this article? (*] Anyone who has a
TIBase application (a collection of *t/¢
files) that will not entirely fit in the
VDPran memory. (*) Anyome who would
like to improve the execute time of
their ##/C files to that of a RiKdisk.

(?) What do you expect to do after you
read this article? (*) To execute all

of your application’s ++/C files from
the VDPram memory.

..... Ny basic examples.....

Immediately following are my three
*/C files (BOOT, PRX1, and PROC2) that
I'l]l use for my basic examples. You’ll
need to use your imagination to somehow
assume that BOOT contains 500 bytes
(characters} of informaticn; that PROCI

Yeluze 8 Huzber I

contains 1000 bytes; and that PROC2
contains 1500 bytes. As the ##/C files
are listed here, they contain no where
near those numbars,

3 *
* BOOT/C (V1.00) basic example #
x

* (assume 500 bytes used)
L
LOCAL A C 1
WHILE 1=1
CLEAR
DISPLAY "Enter A character.”
READCHAR 22,1 A
IF A:IIEII
RETURN
ELSE
IF A="1"
DO PROCL
ELSE
DO PROC2
ENDIF
ENDIF
ENDWHILE
%

X
¥ PROCL/C (V1.00) basic example
*

- W

* (assume 1000 bytes used)
*

REPLACE A WITH " "
*

* *
PROC2/C (V1.00) basic example '
%

% (assume 1500 bytes used)
*

REPLACE A WITE " ¥
&

sssvoYDPLAD.

version 3.0 has added an INSTALL capa-
bility which allovs compand files to be
loaded intc the VDP (visual display pro-
cessor) and processed there as opposed
to executing from a mechanical device.
Executing a command file from VDPram is
sinilar to executing from RANdisk. Both
execute from memory chips as opposed to
rechanical devices. Executing from men-
ory is, on average, twenty times faster
than from diskette.

Heltiple command files can be loaded

inte the VDPram area, as long as the
'condensed’ files contain no more than
2546 bytes, the size of the VDPram. I
say ‘cendensed’ files because TIBase
will strip the leading and trailing
blanks (spaces) from every command line
in your ##/C file, prior to ADDing that
file to VDPram. Also, comment lines are
discarded.

The INSTALL capability alsc allows us
to individually load and remove **/C
files at will. If we wanted to, we
could have a single #*/C that ADDed and
REHOVEd other **/C files at will! This
4 /C file could be thought of as the
'process’ that will be doing our loading
and unloading: the first requirement for

‘paging’.

Paging is the process of loading (and
unloading) overlays inte (and out of)
memory. Let’s break this definition
dovm,

paging is what? Lt is the "process of
loading (and unloading)". We've just
dicussed how this process can be done
with the ITNSTALL capability of V3.0.

Load (and unload) what? We load (and
unload) overlays. Again, INSTALL capa-
bilities allow us to load and unload
(ADD and RENOVE) command files. Over-
lays are synonymous with #*/C files.

Into (and out of) what? The VDPram,

..... Paging **/C files.....

The INSTALL capability gives us every
thing we need for paging. We create a
single command file to process the
loading and unloading of other command
files into and out of the INSTALL’s
VDPram area. The single command file
will load other commard files with the
INSTALL ADD directive, and will just as
easily unload with the INSTALL REMOVE
directive.

Back to our **/C eyamples, No modi-
fications need to be done to any of the
files except the onme that is qoing to
control the ADDing / REROVEing; the
BOOT,

% *
* BOOT/C (V1.01) control *+/C paging., *
] *

* (assume 500 bytes used)
*
LOCAL 4 ¢ 1
WHILE 1=1
CLEAR
DISPLAY "Enter A character."
READCHAR 22,1 A
IF A="E"
- RETURN
ELSE
IF A="1"
INSTALL ADD PROCY (==
DO PROC]
INSTALL REHOVE PROC1 (==
ELSE - '
INSTALL ADD PROC2 (==
DO PROC2
INSTALL REMOVE PROC2 (o=
ENDIF
ENDIF
ENDWHILE
%

As you can see, we ADD the **/C file
that is going to be executed by the Do
directive, just before we eyecute it.
Then, immediately after we've executed
the *+/C file, we RENOVE it from VDPram.
By the way, the arrows are for display
only. Don‘t put these in a cormand
file.

We've still got one small problenm. Our
controlling #*/C file, BOOT, ADDs and
REKOVEs all our other #*/C files, but
BOOT/C remains on disk. How to get the
BOOT itself into VDPram. Enter the fol-
lowing at the .DOT prompt:

INSTALL CLEAR
INSTALL ADD BOOT
DG EOOT

You have other alternatives, of course.
You could add the first two directives
to you SETUP/C file, and enter ’BOOT’ ur
'DO BOOT! at the .DOT prompt, Either

way, let’s assume you've started
RhkRRRRREREERERRRIA R IR RERIEXR IR IR hR R &4k

Ynlume & Yugher 3

executing the BOOT command file.

At this noxent, you‘ve only got BOOT
in VDPram. It uses only 500 bytes of
VDPram, which gives us 2046 bytes of
available space for loading other /¢
files. Since PROCI uses 1000 bytes and
PROC2 uses 1500 bytes, for a total of
2500 bytes, we don’t have enough space
for all three #x/C files in VDPram at
the same time. We definitely want to
execute our command files out of VDPram
for the 20 fold increase in processing
speed, so what do we do? We ‘page’ one
#3/C into VDPram when we need it, and
‘page’ it out when we're done.

When we page PROCL into VDPram, we use
500 plus 1000 bytes, or 1500 bytes of
VDPran. When we page PROC2, we use 2000
bytes of VDPram. Both values, 1500 and
2000, are below the VDPram space con-
straint of 2546!

What have we gained? (*) Well, for
one thing, we now have a method whereby
We can execute every one of our #+/C
files from VDPram. (*) Executing out of
the VDPram gives us a 20-fold improva-
ment over executing **/C files from
diskette. If you do not own a RAMdisk,
I highly recowmand you use a paging
technique.

There are some constraints to keep in
nind. VDPram has only 2546 bytes of
space. Any number of ##/C files added
to VDPram at the same time cannot exceed
this limitation.

What if PROC1 needs 3000 bytes? Since
BOOT uses 500 bytes, we only have room
for a 2046 byte file. (%) Simply break
the PROCL Into two or more smaller com-
nand files, each requiring less than
2046 bytes. BOOT would then need to be
Ahkkdhdkndkhhkhhhkhbkhskthdihibbddihhdstk

-

fage Z

nodified as follows:

*
* BOOT/C (V1.02) control several »

[——

* {assume 500 bytes used)
*
LOCAL AC1
WHILE 1=1
CLEAR
DISPLAY "Enter A character."
READCHAR 22,1 A
IF A:"E"
RETURN
ELSE
IF A="1"
INSTALL ADD PROCIA (=
DO PROC1A (=
INSTALL REMOVE PROC1A ¢
INSTALL ADD PROCIB ¢==
DO PROCIB (e
INSTALL REMOVE PROCIB ¢==
ELSE
INSTALL ADD PROC2 (==
DO PROC2
INSTALL REMOVE PROC2 ==
ENDIF
ENDIF

ENDWHILE
] *

What if wmy application has 50 commr==
files? Do I have to add/remove every
one of those 507 (%) With #4/C paging,
YES!

The usefulness of **/C paging declines
as you add more overlays to be paged.
Your control ##/C file requires 25 bytes
every time you type the INSTALL ADD and
the INSTALL REMOVE directives into it.
If we had 50 #*/C files, we'd need 50
times 25, or 1250 bytes, just to control
our paging. That's half our VDPram
area! What a waste!

But there is a better way. I current-
1y have an application that uses 50 com-
mand files, yet all T have on my disk
are 5 files that I page in and out. How
do I do it? ... I'I1 show you next
nonth.

Jodrdedh e de ok ok e o ok ok ook o o o ok e o e o e e

.-Base Topic - Xenu Presentations.
oy Tony Kleen, Guilford TI9%r Users Grp

Article 04; Copyrighted January 1991
Reproduction, for gain, is prohibited.

What I'1l be doing the rest of the
article will be to present the command
file code for each alternative, and
follow that code with a brief discus-
sion.

*

One of my requirepents for a ‘good’
software system is that it be menu driv-
en. You start with the master menu (the
trunk of a tree?), which has its possi-
ble selections listed. You request cne
of the master menu selections (a tree’s
link?) and are presented with more selec
tions. You select ome of these options
{a tree branch?) and are presented a-
nother set of selections (andther lit-
tlier branch?) or you may execute some
spall process (the tree’s leaf?). You
get the picture? of a tree? Henu driven
systems can be 1ikened to trees. You
start with the trunk (the master memu)
and keep branching out (the limb) until
you finally get to the minute process
{the leaf).

If you use the tree structure, you’ll
nost likely be presenting a multitude of
screens to the user. The purpose of this
article is to demonstrate five alterna-
tive methods of presenting menu screens.
I'11 label these methods as follows: {)
the inline display; () the inline write;
{) the file list; () the database write;
() and the database display.

First off, let’s give a general idea
of what the menu is going to look like:

MASTER MENU
; 1 - Selection one

¢ 2 = Selection two

: 3 - Selection three

+ H - Help

: B - Eyit

1< > Your selection, please.

Yolupe § Mugber 3

 DEHOL/C The Inline Display
%

]

* (initialize)
IOCALAC1

*

WHILE 1=1
* (display the menu)
CLEAR
DISPLAY * MASTER MENU"
DISPLAY " "
DISPLAY * 1 - Selection cone"
DISPLAY " "
DISPLAY * 2 - Selection two"
DISPLAY ™ "
DISPLAY " 3
DISPLAY " "
DISPLAY " H - Help"
DISPLAY *
DISPLAY " E
DISPLAY " "
DISPLAY " ¥
DISPLAY "< > Your selection, please "
DISPLAY *
DISPLAY *
DISPLAY "
DISPLAY *
DISPLAY "
DISPLAY *
DISPLAY *

- Selection three"

=

- Bxit"

s 32 =5 3T = 3 =

*

% (User entry)
READCHAR 14,2 A
*

+ (process the selection)
DOCASE
CASE A="E"
RETURN
CASE A="H"
DO HELP
CASE A="1"
DO PROCL
CASE A="2"
DO PROC2
CASE A="3"
DO PRXC3
ENDCASE

ENDWHILE
%

There are four main seqments to this
command file: {)initialize; ()display;
(Juser entry; and ()process, I have de-
fined one variable ‘A’ in the initialize
sequent.

You should notice that all but the
‘initialize’ seqment lies between the
(WHILE 1=1) / (ENDWHILE) directives.
Using a ’WHILE 1=1' gives us an infinite
loop. Mot to worry, since this is what
I vant. We will continue to loop through
these three sequents (display, enter,
process) until the user calls it quits,
by selecting the <E>xit option. If the
user selects one of the other options
{1, 2, 3, or H), we process the appro~
priate DO directive. If the user
selects an invalid option, we process
nothing, and return to the DISPLAY seg-
ment of the WHILE/ENDWHILE loop.

Now to the DISPLAY nt. First off,
I CLEAR the screen. This is optional,
as everything on the screen is scrolied
to the top, and off the screen; except
for lines 23 and 24! If you don't CLEAR,
and TI-Base has previously printed an
€rror message, you won’t have a clean
screen.

As you can see from the coding, it
takes twenty-one DISPLAY directives to
complete the screen display. 7his
amount of code is a major drawback if
you're using the VDP memory, ie., the
IRSTALL ADD directive. You’re using up
ten to twenty percent of the VDP memory
just to display one screen.

% %
* DENO2/C The Inline Write *
x %

*

t (initialize)

[OCALAC]

*

WHILE 1=1

* (display the memu)
CLEAR
WRITE 1,2 "HMASTER MENU"
WRITE 3,2 "1 - Selection one"
WRITE 5,2 "2 - Selection two"
WRITE 7,2 "3 - Selection three"
WRITE 9,2 "H - Help"

WRITE 11,2 "F - Exit"
WRITE 14,1 "< > Your selection,"
WRITE 14,22 "please"

*

% (Dser entry)
READCHAR 14,2 &
*

* {process the selection)
DOCASE
CASE A="E"
RETURN
CASE A="H"
DO HELP
CASE A="1M
DO PROCL
CASE a="2"
DO PROC2
CASE 3="3"
DO PROC3
ENDCASE
ENDWHILE
¥ %

dqgain, we have the same four seqments
as the ‘inline display’. Our advantage
over the first altermative is in the
‘display’ sequent and is that we write
only those lines and columns that have
information. We save VDP memory; again
assuning we will want to use the INSTALL
area. Also, as we are printing to the
terminal‘s screen, it appears that we
are painting the screen top to bottom.
Sore people like the ‘painting’ method
better than the ‘bottoem to top screll-
ing’ nethod.

Another advantage of ‘painting’ is
that the user can be reading your screen
text as the rest of the screen is still
being printed.

% %
t DEN03/C The File List
*

%

* (initialjize)
LOCAL A ¢ 1

SET PRINTER=DISPLAY

SET CRLF OFF
%

WHILE 1=1
* (display the menu)
CLEAR

LIST DSK1.DEMO3/L

Yoluae 9 Nuaber 3

* (User entry)
READCHAR 14,2 A
*
* (process the selection)
DOCASE
CASE A="p"
SET PRINTER=PIO.CR.LF
SET CRLF ON
RETURN
CASE A="H"
DO HELP
CASE A="1"
DO PROCL
CASE A=m2"
DO PROC2
CASE A="3"
DO PROC3
ENDCASE
ENDWHILE
3

if you don’t have version 3.0, the
'file list’ alternative is not available
to you, Notice that this alternative
involves more initialization. We SET
the PRINTER for DISPLAYing the printout
at the terminal screen. The CRLF is
also turned OFF; otherwise, we'd be
double spacing the lines. Alse, notice
that the <E>xit process has changed. We
have to reSET the PRINTER to our
PIO.CR.LF, and reSET the CRLF to its ON
status.

The two segments menticned 50 far have
minor changes compared to the display
sequent. One directive will display the
entire screen!

Now for the downside. We LIST a file
naged DEHO3/L. This file has to be 21
lines long and 40 columns wide and must
contain the information to be displayed,
that is, that NASTER MENU screen at the
bottom of the first column of this ar-
ticle. What we’re doing is printing a
file that contains the 840 screen dis-
play characters (21 rows times 40 col-
urns). Also a downer, we need a differ-
ent file for every menu screen we print.
If we have ten menu’s, we have 10 dif-
ferent list files. BUT, if you've only
got one or two screens, this is a viable
option,

o
:Y]

(1=}
m
[,)

%
% DERO4/C The Database Write
]
&
* (initialize)
OCAL AC 1
LOCALBC1
USE DENOO4LR
SET SPACES=0
*
WHILE 1-1
* (display the menu)
CLEAR
REPLACE B WITH 1
GO0
WHILE B¢21
WRITE B,1 LINES
REPLACE B WITH B+l
HOVE
ENDWHILE
%
t (User entry)
READCHAR 14,2 A
]
* (process the selection)
DOCASE
CASE A="E"
CLOSE
SET SPACES=1
RETURN
CASE A="B"
DO HELP
CASE A="1"
DO PROCL
CASE A="2"
DO PROC2
CASE A="3"
DO PROC3
ERDCASE
ENDWHILE

-5
4

Again, the initialization is differ-
ent. This time, we have an extra var-
iable, B. In addition, we're using a
database named DENO4DB. The database
will contain one field, named LINES;
which is 40 characters in length. we
will require 21 rous per screen display,
just like the ‘1ist file’ alternative.
One other item in the initializatien.
We're SETting SPACES to zero, so that
double spacing doesn’t occur.

The display segment is different.

y

eammprmon -

+'s an extra WHILE/ENDWHILE loop.

. heed a counter, B, to tell us when
we've printed 21 lines. Notice, too,
that we GO to row number zero prior to
displaying. To display the 2nd menmu, we
would GO to row number 21 instead.

I’11 bet you're already getting ahead
of me. 1 variation of this alternative
would be to have two additienal fields
in the database; SCREEN-NUN and ROW-
NUMBER. You could SORT the database QN
SCREEN-NUBER, and ROW-NUNBER. Assuming
you're displaying SCREEN-NUM equal to
01, your logic would look like this:

FIND 01

WHILE SCREEN-NUN=01
WRITE ROW-NUMBER,1 LINES
MOVE

ENDWHILE

If you have two or more blank lines
per screen, you'd be saving some disk
file space on this variation. The pro-
cess would run faster, too, since you’re

writing fewer lines.
*i*ii*:**i*:**ii**i**itttt***i**l‘lﬁ!*li*

Yoluse 3 Number 3

* *
* DEMOS/C The Database Display *
* *
*

* (initialize)

IOCALAC]

USE DEMOO4DR

SET SPACES=0
&

WHILE 1=1
% (display the menu)
CLEAR

G0 0
DISPLAY 21 LINES
%

* (Dser entry)
READCHAR 14,2 A
*

* (process the selection)
DOCASE
CASE A="E"
CLOSE
SET SPACES=1
RETURY

CASE A="g"
Fhkk kA kh kbR khdk kb h R RRER kAL £ k4

DO HELP
CASE A="1"
DO PROC1
CASE A=“2“
D0 PROC2
CASE A="3n
D0 PROC3
ENDCASE
ENDWHILE
%

Here, we’ve greatly simplified the
‘display’ seqment. We just DISPLAY 21
LINES, after we position the database
with the GO directive. Keeps it pretty
simple, huh?

Now that I’ve presented all five al~
terntives, which do I recommend? Why all
of them, of course. Each has its pluses
and minuses, Each has it‘s own little
niche, Actually, I would recommend the
oné you are most comfortable with, and
understand how to use. If this helps
you further in understanding and using
Dennis Paherty’s fine dbase product, I

will have accomplished my purpose.
L rrrrryrm

RS T A T ;

DISK DRIVES
By Jin Ness

It’s funny (at jeast to me), but there are lots of people who seea to know ints of stuff about their coaputers, and &l
those tiny chips, and how the bits and bytes are handlad. And there seeas to be next to nobody that knows anything about disk
drives, and how they work, Sensing this huge gap in man’s krowledge, I decides tn Fisure out what makes thes tick,

The great thing about disk drives is that they can find files buried randoaly within 2 huge fisld of data, and they do it
pretty fast, Actually, they can do it so fast because it’s not at all random.

The aethanical concept is not all that cosplicated. A small motor spins at 300 rpe fat least in this country, with its
b0 hz power supply}, and there is a tiny steppirg motor attached to a read/write head. A stepping sotor is 3 cosmon item in
indexing applications, where you want a motor to move a precise distance and sop on a dime. The read/write head is just a
spaller version of what vou.have on a cazsette recorder.

The stepping setor “steps® the head from track to track on a d:skette. The tracks are concertric circles, not a lomg
spiral as you sould have on an albue. i

ANl of this is ultizately controlled by the disk software provided with vour cosputer. Usually this is lacated in ROM
within the sachine. In sost sachines, the RDN is only sophisticated enough to load in the official Disk Operating Systee
1D88) which 35 located on the disk in the drive when the machine is turned on, The DOS rontains all the #ile hangdling
software, copying software, etr, and because it is on disk, it can be wasily sedi¢ied and/or updated as tise goes by.-

fur friends at TI decided to put the whole thing in RDM, which has a few bad side effects, First, it makes it hard to
update and ieprove the software, which is located in the Bisk Controller Card. Secons, although the zachine is a 44k machine,
just like all the others, T1 has set aside so such aesory for special purposes, that there is only 32k left to play with,
They sel aside 8% for cariridges, 4k for disk drive, 4k for RS2Z32/PID cards, ¥ for the Cperating 3ystea (can’t complain about
that one), and Bk for various interfaces {speech, spund, YBP}. Dk those are all geed applicztions to kaye, but iIF you don’t
use thea, you still cam’t use thal mesory for oiher things.

Anyway, all of the controlling software for the 7199704 is located in the ROM card, ac 1 said. This scftware teils the
step sotor when to step to the mext track, when to return to the beginning, etc.

There is no standard far how a tompuier keeps track pof data, Inm the case of TI, there is a directory of existing files,
and & pap of where they are located, at the beginning of each disk. These files are nct mecessarily all in complete groups,
If you deiete a {2 sector file fres 2 disk, there is a 17 sector gap recorded in he sap., Then if vou zdd a3 20 sertor fils,
the scftware will put the first 12 sectors in the gap, and put the rest in the first available spot, Hhen you ask for a file
that is broken up this way, you can hear the disk head scooting alemg to read each individual segaent.

Because the disk drives theaselves are pretty standard, there are a few things that don’t change. For instante, there
are 48 tracks per inch in most 5 174" systees (There is a new 95 TPI systea around, not TI coepatitlel. And most systeas only
use 33 or 40 of the available 48 Ytracks. There are either 9 or 18 sectors per track (single or double density}, Each sector
holds 20b bytes of data. And the standard design allows 230,000 bils per secend to be written,

How, you say, 250k! That is about 23k bytes per second, right? How cose 1 can not load a 25k pga in one second, then?

Oh, yes, 1 senticred that most drives ace capable of transferring data at about 250,000 bite per second. And you were
asking how come your prograss don’t transfer that fast.

Two reascns, First, as 1 said, the transfer of data is sttually controlled by the ROM softuare in the T199/44. find to
be a5 good as it iz, it had to be a little bit siow. Not REAL slow (anyone ever use a 84 disk drive?), hut nst as fast as it
tould be. The cecond reason also has to do with software, but it is a universal problem assoriated with cingle density
storage.

The eajor difference between single and double density storage is the way in which the dats is coged. In order for the
software to keep track of where the read head is located on a particular track. there are clock or synch bits laid down with

Volime 8 Humher 2 Page 7

che data bits. In tihe old Fashioned cingle density Formaty a symch bit was faid down ahead of each "0° bit, =5 there were
never two "0* bits in a row. That kent the software froe getting last if there were a ot of "0° bits in series, Futting all
those synch bits on the disk took up a tresendous amoupt of space thet should be used for data.

So, some gemius came up with 2 way of enceding the clock bits in with the dzia hits, o that no URNBCESCA’Y SDace was
lost. Voila, double density storage was born! And double density, as used with the Corcemp software, is said e increase
transfer speed by at least 39, pastly because the number of bits to tramsfer ic rut way Gown,

So such for the exciting story of double density versus single density. ow about double sided versus single sided?
Well, obvisusly, it .reguires twn read/write heads in the grive. Did you know that when resfing & disk, the software reads,
First, a track fros side one, then the opposing track from side twa, and continues back and forth? You didn’t know that? There
is 2 sisple reason for doing it that way.

The disk head needs scmething ta beep the disk stationary against it. In a sizole sided drive, there is @ ssall are
holding the back side of the disk against the head. In a double sided drive, that are mould be in the way of the back side
read/write head, so the saiution was to use the two heads, directly acruss from one ancther, to hold the disk in nlace. in

order to keep thew across from one another, they aiternate reading or writing as 1 zaid above. Yary interesting, right? So if
you wreck one side of a dbl sided disk, you cam kiss the whole thing goodbye, :

L W] g § g 3 T A By

By Bob Carmany

.. How zany times have you actien out a disk With a_seloa

Murphy's Law, The usuzl scemaric is enter data at -z proept and get am error aessage or zoe the Brogran unceressrisusly crash.
After much head-scratthing (and an expletive or w0} you try again' Same result! Puzzled by this aberration, you 6o what you
should have done in the first place ---BEAB THE BOCS!

The nost frequent failing in getiing a program to work correctly is the cainous "uperator malfunction®, In short, the
progras is OK--you screwed up! The same goes for hardware projects. Most of the probleas that | have had corstruzting gear
for my computer have arisen because I either got in @ hurry or figured that the tack at hand was so chvious that 1 didn’t need
to do sore than glance at the docusentation, WRONG!!

While I’» thinking about it, is anyone interested in classes of any sort about the TI7 Aeseably Language, Forth,
Multi-Plam, BASIL, or just about anything else that you can think of? I'a sere that if there was same ipterest chown, we could
get something together! There are all sorts of possibilities. If you have a request, cee Deorge or ae at the next aeeting,

We are also soliciting [DEAS for what you would like to see in the newsletter in the upcoming zonths. What prograzs are
you having problems zastering? Are there any hints or shortcuts that you would like to see? Or, what kind of tutorial prograas
would you like to see in the rewsletter. You don’t ever have to write anythino --we’}® go that for you. Bring your
suggestions to the next aesting,

Hetoina T Slmdnn 7T Bemem O

D@-used program, stuffed it into the disk_ drive, snd eprountersd . .

R B

100t DIREET SOUND CONTROL
119 1 DEMO FROGRAM

120 1 BY Tim MacEachern
13

149 ' DARTMOUTH, NDVA SCOTIR
156 !

150 ¢

170 8=~31744 'ADORESS OF 50U

NB CAIP 8400

180 vi=0 ! VOICE 1 FLAG

190 ¥2=32 ! VDICE 2 FLAG
00 V3=84 ' VOILE J FLAG
210 K=96 ! NOISE FLAG

220 C=128 ' COMNAND FLAG
23 F=0 ' FREQUENEY FLAG
240 A=1b ! ATTEMUATION FLAG
250 WHITE=0-! WHITE NOISE FL
g

260 PERIDBC=4 ! PERIODIC NOI
SE FLAG

270 CALL INIT 13 LALE CLEAR

280 ! DEMO--GTART YOICE DEE
290 94="SET VOILE § IN THREE
LOADE"

309 BOSUR 1010

310 CALL LOADIS,C+RI+A+0)! 5
ET ATIENUATION TO

320 CALL LOADIS,CeVI+FeQ}t 5
ET BOTTOM FOUR BITS OF COUMT
DOWM RATE T0 0

330 Cakb LDADAS,33)! SET TOP
& BITS OF COUNTDOWN RATE
340 50508 930 '
350 9%="5ET VOICE | IN A SIN

ELE LAY

Jh0 BOSUR 1010

370 CALL LOAD(S,Cevith+s 0,€
H1+F40,22)

380 ROSUE 930

390 Q%="ATTENUATION DEMD"
440 BOSUE 1019

41C CALL LDADIS,CeVithed 0,0
+V14F40, 0,363 STERT VDICE B

NE A3 R REFEREMLE (VERY QUIE
Tt

Yolupe 3 MNumber 3

420 TALL LOADIS,L+Y2+A+15,9,
C+Y2+F+0,0,48) ! TURN V2 OFF
BUT PRESET TO ONE

430 FOR 1=1 70 5
449 FOR ATTEN=IS 1O O STEP -
1
430 CALL LDADIS,C+V2+AATTEN
}
840 FOR BELRY=1 TG 40 1 NEX
T DELAY
470 KEXT ATTEN

480 NEXT 1

490 5OSUB 336

S0 0%="COUNTDOMN RATE DEMD®
519 BOSLR 1010

320 CALL LORBIS,C+¥1epel)! 5
ET ¥1 ATTENUATION
530 FOR RATE=D 79 1028 STEP
18

540 FOR BOTTOX4BETS=0 T 15
590 CALL LOAD{S,C+V1+F+BOTTO
MABITS, D, RATE/ L8}
569 NEXT BOTTCRABITS

570 NEXT RATE

580 GOSUB 930

590 Ge="CALCULATIDN OF RATE
FOR MIDDLE C{FREGUENEY 2
LY R R
00 G050 1010

610 FRED=2b1.5]
620 RATE=111880.8/FREQ

30 CALL LOADIS,Civi4Rs0,0,0
HVI+F+(RATE AND 15),0,RATE/L
b}
540 GOSUB 930

530 94="NOISE CONTROL OPTION
SI

460 GOSUE 1010
670 D%="WHITE NOISE TYPE &°
486 BOSUB 1010
690 CALL LOADIS,CeNeA+d, 0,0+
N+FHIHITE+D)
700 GO5UB 930
710 8="WHITE NDISE TYPE 1"
720 GOSUB 1010

Fage 9

730 CALL LDAD(S,CHNHA40, 8,0
NeF+HHITESLS

740 GOSUR 930

750 0%="HHITE NOISE TYPE 2*

750°6OSUD 1050

770 CALL LDAD(S,CeN+A+0,0,8+

NHFHIHTTE+2)

730 GOSUB 530

730 9%="WHITE HOISE TYPE 3"
00 GOSUB 1016

810 CALL LDAD(S,C+N+A+0,0,C+
N+F+HHITE+D)

820 FOR DELAY=1 0 500 :: NE
17 DELAY

930 0$="CONTROL NDISE TYPE 3
THROUSH FREQUENCY OF VOILE®

840 GOSUB 1010

350 FOR 1=1 10 10

8k0 RATE=RNDZ3

870 CALL LDAD(S,C+VA+A+15,0,

Coy3+F+{RATE AND 15,0, RATES
14,0, CelrF tHRITE+D)

830 FOR DELAY=1 70 309 11 ME
3T DELAY

230 MEXT |

360 £D5U5 930

919 3TP

9203 ' TURN OFF ALL VDICZS
930 FOR I=1 70 500 13 NEXT 1
940 DISPLAY AT{12,1}ERASE AL
L:"TURN OFF BLL YOILES"

950 FOR DELAY=1 T 300 :: NE
1T DELAY

950 CALL LOAD{E,Ceyispell)
970 CALL LOADLS, C+¥2+A+15)
930 CALL LGAD(S,C#V3+A+1D)
994 CALL LOADIS,E+N+aA+13)
1000 RETURN

1010 DISPLAY AT{12,1)ERASE &
LL:0%

1026 RETURN

