T (A" QU a2 ar A iih
HiTnOAir Y 1T
AL B
s S
ARV
s
L]
WE'RE
UMBER 1¢
4 SUPFORTING THE TEXAS INSTRUMENTS TI-99/74R COMPUTER
—, DGuriwnLrForDo 29 ErRs UL
3282 CAamTERBURY DR
GrREENsSBDORD NC s
27488
Carvmany, Rob
15@4 Larson Street
-
ﬁ’@ - Greensbora N
a74@7

UnLume 8 NuMmMaer 5 _) VHHYV iﬁ?lw

George von Seth, Pres. (292-2035) Bob Carmany, Newsletter Ed (855-1538)
Tony Kleen, Sec/Treas (524-6344) Bill Woodruff,Pgms/Library (228-18%2) -~
BBS: (919)621-2623 —RO3

TR YUV TSN UGN TP RN I WO SV SOLIND MUY NPUE MY SV VPO NP LGP SYSPUN SUSSEIE SPRSIT SURBIS SYSSSIF SRV SPUVUIY RUPEY UVI0H FOUSION SOSISOT SR ISEYY SIS SRR SRR Sypr MU TOUvpt gu
Ll il nileay nAe slienae miendis shamnbh Sl D SRR I SR S SR BN RN I N NEMEMAE D AN S SRR RN R RN R R R S A

T T T T

The Guilford 99'er Users' Group Newsletter is free to dueg paying members
{One copy per family, please). Dues are $12.00 per family, per year. Send
check to:Tony Kleen ¢/o 3202 Canterbury Dr., Greensboro, NC 27408. The

Software Library is for dues paying members only. {Bob Carmany Ed)}
B S S e e R N I o [WY S

OUR NEXT MEETING

DATE: May 7, 1591 Time: 7:30 PM. Place: Glenwood Recreation
Center, 2010 S. Chapman Street.

Program for this meeting will be a progress report on the UG
Library and a brief look at some of the programs we have in it.
There will alsc be a gshort FORTH demonstration as well. Be sure
stop by and see what is available in YOUR library!!'!

MINUTES

The April meeting of the Guilford 9%er Users’' Group was held on Tuesday
the 2nd, at the Glenweood Recreation Center on Chapman Street in Greensboro,
NC. There were six members present, and cone newly registered member.
Welcome to qQur newest member, Roy West. Glad to have you with us, Roy.

-

The Secretary/Treasurer's report was approved as read. As of 04/18/91,
we have $142.91 on deposit.

A discussion regarding the continuation of mid-month classes will be
held at next moth's meeting. No c¢lasses were scheduled for mid-April as we
would all probably be completing our annual IRS misery.

The remainder of our meeting centered on upgrading our club's disk
library. Bob led the discussion by showing us four software packages that
could be used to catalogue the disks. Each package had its plusses and
minuses., CMINDEX is TI-Writer compatible, but needs an external sort and
allows 300 or less records per sort. PRBASE allows reporting and has an
internal sort and stores 708 records per digk. CATLIB/CATCOM autoloade disk
and filenames, has reporting available, stores up to 1200 filenames but is
unruly to use. '

After all the pros and cons were discussed, we felt that PRBASE would
best fit our needs. Bob volunteered to take the library home and start
editing. Thank you, Bob.
Everyone is to bring two diskettes to the next meeting. The PRBASE
format will be transferred top these disks so that each of us might take a
couple of library disks home and catalogue them.
Respectfully Submitted, ™
Tony Kleen
BITS AND FPIECES

Volume 8 Number 3 Page 1

. Cataloging the UG library has turned out to be a bit more of a task than
f‘had anticipated. I had hoped to have everything done by this month's
meeting. Unfortunately, it doesn't look like it will be finished by then. I
do hope to have most of the "hard" woark done by then. That is, the labeling
and arranging of the library. From there, it is just a matter of typing the
program names, descriptions, etc. into PR-BASE. As a result, it won't be
necessary to bring any disks to the meeting (see 'MINUTES').

This exercise with PRBASE has produced some unexpected dividends. The
qQuestion about being able to ocutput the data as a D/V 80 file was a lingering
one and I think that I have come up with a solution. After a bit of
pondering, I finally figured cut a way to generate a D/V 80 file from some of
the PRBASE report formats. All that is required is to designate your
selected disk drive as the output for your reports. It works fine for
80-character records or multi-line 80-character records but 132 character
records are a bit of a problem. With those, you have to be careful or the
result is a fractured mess of dis-jointed garbage.

George got his Quest back from Ron Kleinachafer and now has it up and
running. In addition to finding the fault (a faulty plated through hole
under one of the chips, Ron modified the heat sink under the voltage
regulator. With all the work that Ron did on the Quest, George got another
good deal. I went over the other night and George now has the Quest as DSK4
and DSKS and his HORIZON RAMdisk as DSK6. I guess George can learn to live
with 3/4 meg of RAMdisk.)

Ron said they have had five of the Quests back for various reasons. All
of them except George's ended up being assembly faults. Dry solder joints,
bad soldering technique and solder bridges were the other minor errors were
7/~e main problem. One even came back with the battery pack acldered in
- .Ckwards. Actually 99% of the problems with hardware projects turn out to
be errors by the peron assembling the kit.

™ I found out how frustrating that sort of thing can be when I put
together the Eprom cartridge board that I acquired. There was about 1/64th
of an inch clearance between the pin pads and a trace on the underside of the
bcard. Needless to say a couple of solder bridges didn't help it work too
well. It took a couple of hours with a multimeter, soldering iron., and a
sharp knife to get it up and running properly. The lesson to be learned from
all this is tc take your time with these hardware projects and check
everything carefully!

Back to the Quest modification for a minute. Ron used a piece of
Aluminum and made a heat sink approximately 1-1/8" by 1-7/8" that is bent up
over the batteries. The surface area ig much more extensive than the
original. A bit of heat sink grease and everything runs much cooler. I
imagine that the same principle could be applie to the HORIZON (or other)
RAMdisks but I haven't taken a good look at the construction to see what
could be arranged. If anyone is interested, I have the complete drawings.

It might be worth the time and effort —--particularly if your P-Box is getting
fuil.

ARCHIVING—A HEADACHE?
By: Andy Frueh., Lima UG

A lot of people are puzzled by archiving and how to use Barry Boone's
Arxchiver. What follows is both a reference guide and explanation of Archiver
" I. It is not meant to totally replace the documentation for this program.
Actually, I haven't seen a distribution copy that comes with a set of

instructions. There may be hidden features of ArcIII that aren't obviocus to me

(for example, Disk Utilities by John Birdwell has a feature to figure
decimal-to—-hex conversions).

Volume 8 Number 5 Pa

_Q
o
J

What exactly is archiving? Putting it 2imply. when you archive you take a
file or a set c¢f files, and group them as one file then compress them sc they‘\
take up less disk space. 3Some scftware comes archived. These ALMOST always
include the archiving program. Examples are Jack Sughrue's PLUS! and the
Complete Adventure disk szet.

What iz the purpose of archiving? Well it started out as a money saver
for modem users. It is faster, and thus cheaper, to gend 90 archived sectors
as 1 file, than 120 sectors for 3 programs. Now it is also a means of backing
up disks. You can save each of your disks as a cone file, squashed archive.
You can specify whether you want compressed files or not. The reascon you have
@ choice is that some unusual files actually take up more space when they are
compressed. Ancther useful application of archiving is when you have programs
you want to keep, but don't need ready to uge. You can keep archives of all
these files instead of taking up disk space.

OK. now that you have the '"what", here's the "how". As far as I know, the
only archiver is Barry Boone's program. Its operation is completely different
from Archiver II. Rather than add new features to past versions, Archiver was
completely re-written. It usually contains an XB LOAD program, but may be
icaded from E/A. The program's fillename is usually ARCl. It can be found on
almest all of the bulletin boards, as a commercial version with Geneve
utilities, in user group libraries, with other Fairware programs or frem the
author. Chances are, you can definitely get a copy.

First things first, so get the program loaded. After that, you should see
a Fairware notice. Press any key to pass this. You then see a menu. Each =y
menu option is described in detail below.

1) Archive Files - These options are largely self-explanatery. As you may
have guessed, this option archives files. Pressing one will deliver a set of
prompts. These are "Source Drive (1-2)". Yes, you can have drive numbered
from 1-9 and A-Z. Then comes, "Output Drive (1-Z)". You may use one drive.
Archiver will prompt you to change disks when needed. It iz highly recommended
that you use a blank cutput disk, since archives may fill or almost fill a
disk. Next comes "Output Filename"”. This is usually the name of the disk you
are archiving, or some related heading. For example, a set of D/V 80 articles
may be named "ARTICLES". The following prompt is "Pack all Files? (Y/N)". If
you answer "Y" then all the files on the source disk are archived. If you
answer ""N", then when Archiver is working. vou are asked "Tnclude filename?
(Y/N)" If you answer "“Y" then that file is archived, otherwise it is ignored.
This is a handy feature if you have programs and files for example, and need
them seperated. This process repeats for each of the files on the source disk.
The final prompt is "Compress? (Y/N)". Saying "Y" and Archiver attempts to
squash each file so it takes up less space. Remember that some unusual file
types will actually get LARGER if compression is attempted. When all the
prompts are answered, press REDO Lo correct an error in your answers, BACK to
return to the menu, or any other key to continue. When Archiver is done
performing any operation, pressing a key goes back tc the main menu.

2) Extract Files - This is the opposite of archiving. It will let you
pull (extract) files from an ARC file. You are first asked for the source —
drive. Next you input the source filename. After that. you are asked for tF ™
output drive. It must be stressed that the output drive for ALL operations ot
Archiver should be different than the input drive. You may run out of spave or
overwrite a file accidently. Output disks should be blank.

The next prompt asks, "Extract all files?" If you answer "Y" then every

Volume 8 Number 5 Page 3

%;}e gtored in the ARC file will be taken cut. If you answer "N" then when

-racting starts, the program asks, "Include filename?" for every separate
file in the archive. HAgain, press REDO (to restart this option), BACK (returns
to main menu). or any other keyv to centinue.

3) Catalog Disk - This is fairly self explanatory. Simply input the
source drive name. The program will ask if you want a printout. If you answer
yYes. then you are asked for the printer name. If there are more files than can
be displayed, then [more] is printed on the screen and pressing a key advances
the screen.

4} Catalog ARC File — If you aren't sure what files are contained in an
archive file, than this option tells you. You are asked for the source drive,
source filename, and whether cor not you want a printout of the list of files.

3) File Copy — This cption will copy a file (obviously). Simply supply
the source drive and filename. and the output drive and filename.

6) File Rename - Again, this option should explain itself. Give the
source drive and filename, then the output filename.

7) File Delete - Supply the source drive and filename.

8) File Un/Protect - ¥You first supply the source drive and filename. You
are then asked "Protecti?"” If you answer "Y" the file is protected. Otherwise,
file protection is lifted.

9) List Text File — This will display or print a D/V 80 file. Give the
gource drive and filename. You are then asked if you want the file printed or
not.

10) Load FW - This returns to Funnelweb. Simply give the drive number on
which the UTIL1 file is located.

NOTE: When an I/C error occurs, pressing a key returns to the main menu.
If you have a Geneve, this is for you. Using a sector editor, find the string
04EQ8C00 and replace it with DB018CO0.

I think that this should get people on the road to understanding archiver.
Remember that it ia fairware, so if you find it very useful, send the author
(Barry Bocne) a donation. :

[This article/item comes from the January 1991 issue of BITS, BYTES PIXELS
(Charles Good, editor), the newsletter of the Lima COH 99/4A User Group, P.O.
Box 647, Venedocia, 0OH 45894.]

CFrU FPAD NMOD
By Neil Quigg Hunter Valley UG

BACKGRCUND :

g~ As many interested TI faithful may have noticed. TI in their infinite
wisdom managed to waste a congidarable amount of available 9900 address
map in the area >8000 to >9FFF. O©One section of this area is dedicated to
the CPU PAD RAM. This small block of 256 bytes is decoded into a 1 Kbyte
block and responds to the address bases of >8000, >8100, >8200, and >8300
and it is noted in varocius instruction manual that software should be
written to conform to the base of »8300,

o Volume 8 Number 5 Page 4

THE DETAILS: .
‘ﬁ\
For the intrepid user club hackers with the do-it-yourself bug and a
little practice with the soldering iron, this 256 bytes of PAD can be very
simply increased to 512 bytes. All that iz required is two 6810 memory
chips, some fine insulated wire, a soldering iron and sclder, and a littie
patience. =

THE METHOD:

Step 1. Open the conscle and remove the main circuit board in its tin
casing, take care not tc damage the keyboard connection,

Step 2. Remove the casing from the board to give access to the
electronics.

Step 3. Locate the two existing 6810 memory chips near the cartridge
port connector and unsolder pin 12 of each chip.

Step 4. Carefully remove the pin from the circuit board and bend it
¢lear of any contact.,

Step 5. Bend pins 10 and 12 of the new 6810 chips so that they will be
clear of contact and place the chips in piggy-back fashion on top of the
existing 6810 chips. Solder the remaining 22 pins of each chip to the
criginal chip.

.

Step 6. With some of the fine wire connect pin 12 of the new chips to
the hole in the circuit board from which pin 12 of the original chip was
removed.

Step 7. Connect pin 10 of the new chips to pin 12 of the original chips
and also to pin 1 of either of the system ROM chips on the circuit board.
These are the two 24-pin chips located adjacent to the 6810 chips.

Step B. Visually check all connections and then reassemble the console
taking special care to align the metal casing correctly on the circuit
board.

FINAL NOTES:

The medification can now be tested by using a debug program or any
program that allows direct access to memory locations. If the operation
has been a success, you will be able to load different data into memory at
>8200 to that at >8300.

The extra PAD memory can now be used for such things as return vector
stacks and workspace areas and presumably many other handy little things.

SHORT BYTES
DISPLAY MASTER

Have you ever wanted to use your computer in some kind of display? T use
to have a booth at our local home show, and it would have been nice to have a
presentation using the computer rather than using a slide show. Well, now You
can do it with the Display Master software. Display Master was written by
Chris Faherty, the whiz kid who did TI ARTIST. Display Master will let you
combine pictures and windowed captions to create a sort of slide show.

Volume 8 Number 3 Page 5

All you do is use a Dis/Var 80 editor to create a command file and that's
>ut all there is to it. I think the documentation could have been better
written, but after you play with it for a little bit, it all seems to sink in.
This is where the ARTIST companion products come in real handy..you can combine
instances, pictures, use the different typestyles, etc. to create some type of

presentation.

Display Master lets you do captions either alone or with a picture and you
can also overlay the windows (with the captions) in a Mac-like manner.
Probably the greatest thing about Display Maater is it's price of only $14.95.
Any dealer of TI ARTIST should be able to get it, if not then try Texaments.
Display Master really ties the whole TI ARTIST package together!!

AT, NOTES
By Bob Carmany

The first thing toc do is to find a book for the beginner dealing with the
basic ideas of Assembly Language (hereafter called "A/L"). I discovered much
to my dismay that the rather extensive manual that comes with the E/A cartridge
assumes a prior knowledge of A/L. Anyway, I finally found a rather elementary
text on the subject and decided to spend some time learning to program in A/L
-— after all, it was supposed to bhe easy!

I qu10kly discovered that books aren't written i1n logical order. This one
was making comparisons between XB and A/L coding and I decided that wasn't the
best way to start. You have tco understand some basics before you can get tha
#~., For example, there was a good deal of discussion of converting numbers
~-0m one base to another —-—— a good place to start!

There are three numbsr bases that we have to deal with in A/L programming.
I could see that this was going to ha fun! Binary (zero's and cne's) is the
only language that the computer understands. Fortunately, we no longer have to
program in binary —-— an interpreter does that for us. The other two number
bases are hexidecimal (base 16) and decimal (what we all learned in school). I
could see that this was getting easier all the time. One of the number bases
had already been eliminated. All I had to do was learn how to convert a number
from decimal to hexidecimal and vice versza.

OK. let's gee what the book has to say! You take the decimal number and
divide it by radix 16. I didn't know there was gardening involved in this! I
have a whole row of radixes planted out back ——— my error, that's radishes!
Sorry, back to the task at hand. This iz awful! You have to keep track of
these "F's" and "A's" when you divide the numbers for the conversions. Anyway,
I managed to get through the exercises in the book but it must have had the
wrong answers in a couple of places because they didn't agree with my results
at all! I could see right off that I had been sold a "blind horse" by Ron and
Tony! You know what? I got through the whole chapter and you know what the
book 3a2id? "The easiest way is to use a decimal to hexidecimal calculator or a
computer program to do the calculations for you”. Hmmm! I think I just happen
te have a program that does that. In fact, it gives you the equivalent in all
three bases! ©So much for that chapter and here is the conversion program.

100 ON WARNING NEXT :: CALL CLEAR :: H$="012345678%ABCDEF" :: PRINT "DEPRESS YOU
B~ALPHA LOCK KEY'": :“PRESS LETTER FOR INPUT BASE":
110 PRINT : :"D=DEC # H=HEX # B=BIN #": : :: CALL SOUND(80,660,6)

120 CALL KEY(0,K,3):: IF 5<1 THEN 120 ELSE ON POS("DHB".CHR$(K).1}+1 GOTO 110.13
0,140,150

Volume B8 Number 5 Pace £/

130 INPUT "DEC #=":DEC :: IF DEC<-32768 OR DEC>65535 THEN 130 ELSE A,DEC-INT(DEC
~65536*(DEC<0)):: GOSUB 200 :: GOSUB 220 :: GOTO 160 N

140 PRINT "HEX #=" :: ACCEPT AT(23,7)BEEP SIZE(4)VALIDATE(H$):HEX$:: GOSUB 180
:: GOSUB 200 :: GOTO 160

150 PRINT "BIN #=" :: ACCEPT AT(23,7)BEEP SIZE(16)VALIDATE("10"):BIN$:: GOSUB 1
90 :: GOSUB 220 :: GOSUB 210

160 A=INT(DEC/256):: PRINT :"D=";DEC:;TAB(12);A;DEC-A6 :: IF DEC>32767 THEN FR
INT " ";DEC-65536

170 PRINT "H= ";HEX$:"B= ";SEG$(BINS$,1,8)8&" "&SEG$(BINS$.9.8):: HEX$,BINg=""
A .DEC=0 :: GOTO 110

180 HEX$=SEG$("0000",1,4-LEN(HEX$))&HEX$:: FOR I=1 TO 4 ::
A,DEC=DEC+(POS (H$,SEG$ (HEX$,1,1),1)~-1) (4-I):: NEXT I :: RETURN

150 FOR I=1 TO LEN(BIN$):: DEC=DEC-2 (I-1)*(SEG$(BINS, (LEN(BIN$)+1-I),1)="1"):;
NEXT I :: RETURN

200 A=A/2 :: BIN$=STR$(~(A-INT(A)<>0))&BIN$:: A=INT(A):: IF A THEN 200
210 BIN$=-SEG$(RPT$("00",8),1,16-LEN(BINS))&DIN$:: RETURN
220 A=DEC+65536* (DEC>32767)

230 HEX$=SEGS$ (H$, (INT(A/4096)AND 15)+1,1)&SEGS (H$. (INT(A/256)AND
15)+1,1)&3EG$ (H $, (INT(A/16)AND 15)+1,1)8SEG$(HS, (A AND 15)+1,1):: RETURN

Maybe this isn't going to be so bad after all. I managed to finesse
having to calculate all of those conversions by hand with a short program that
I found in my library. Let's see, there is something about registers in the
next chapter.

This one starts of with a rather innocent statement. It says that there
are three internal registers in the TI CPU -—- the Program Counter. the
Workspace Pointer, and the Status Register. No worries, mate! This doesn't
look to be too difficult! The Program Counter (PC) is a special register that
keeps track of the address of the instruction to be performed. After the
instruction is performed. the CPU adjusts the address to the next instruction.
Right ——- the same thing as a line number in XB! Geez, I might have to
apologize to Ron and Tony for what I wrote earlier. This isn't too bad so
far!

Now for the Workspace Pointer (WP) is another register that contains the
address of the program's workspace. Whew! A sentence that says absolutely
nething! OK, a workspace ig a memory area of 16 words of memory that are
accessed faster than the rest of the computer's memory. Each of these words is
referred to as a working register. Aha! I bet that is what they are talking
abcut with those RO to R15 things in the A/L source code. That means that the
Workspace Pointer must point to the first of the working registers — RO ——
and the rest must fcllow immediately in memory. This stuff is getting a little
more complicated but I think I can grasp the concept. _\

Now for the last of these registers ——— the Status Register (SR). The ; °
bock says that it holds the individual status bits that are affected by the
instructions are executed. Now that makes no sense at all to me. It seems
that each of the status bits is affected differently depending on the
instruction executed and they can be read by the conditional jump instructions
to make the program branch te another routine. That sound like the "IF -~-THEN"

Volume 8 Number 5 Page 7

gtement in XB. I guess I'1ll have to wait until I work with the individual
jtructions to see which of the 16 status bits they affect. Hey! They even
provided a chart:

Name " Abbreviation Bit Position
Logical Greater Than L> 0
Arithmetic Greater Than A> 1

Equal EQ 2

carry CcY 3
Overflow oV 4

0dd Parity OP 5
Extended Operation X 6

Not Used - 7-11
Interrupt Mask I0-I3 12-15

I've heard of some of these at one time or another but I guess I'1ll just
have to wait and see how they can be tested and used by the various A/L
instructions.

Now we are going to look at how A/L statements are actually written.

For the time being, the structure of the statements is all I can handle! Back
te the book!

It says that A/L statements can have up to four fields. Strangely enough,
not atl of them have to be present in a statement. In order, they are: Label,
Op(eration) Code or Directive, Operand, and Comment. A label, the book says,
"7 only required when you want to refer to a statement from another statement.
.- ceckon it is sort of analogous to a CALL statement in XB — a group of
statements that make up a rocutine. At least that's the sense of it that I can
discern! A label can be from 1 to 6 characters in length and the first
character must be a letter (A te Z). A label is the first entry in a statement
and each statement can have only one label. Logical enough! I think that I
can understand this!

The next part of an A/L statement is the Op-Code or directive. That tells
the program what operation to perform on the third field. A simple Directive
1s MOV for move word. Any of the Op—Codes can be used but they must be spelled
correctly (of course). Even my foggy mind can understand that!

The third field is the Operand field — the item to be manipulated by the
Op—~Code. There are some rules to follow with this lot as well. Whew! Talk
about structured programming!! More than one operand must De seperated by a
comma and spaces can only appear in an operand if they are between a pair of
apostrophies (the A/L equivalent of parentheses).

The last field is the Comment field. That is a freelance entry to explain
what the statement was supposed to do -—— and I emphasize SUPPOSED TO! It can
exXtend to the end of the line.

There are some general rules about the form of A/L source code. Each of
the fields must be seperated from the other by at least one space. By
convention, the fields are generally aligned when they are written. Oh yeg,
you can add general comments to your programs by using the asterisk "*" at the
beginning of the line. It functions as a REM statement in XB.

Although any text editor that outputs a D/V 80 file can be used to create
squrce code, the best that I have found is F'WEB in the ASMode. All of the

>$ have been fixed and the word-wrap has been turned off. 1In addition, the
code is saved without the tab settings. I find it very easy to use when I'm
about to "borrow” a bit of source code from an article somewhere. I haven't
gotten far enough with this stuff to write my own code yet!

Ok, let's see what a line of A/L source code might look like. This is for
structure only so I have just picked some stuff out of the book:

— — _Nolume 8 Number 5 Rarma R

START MOV @QA,R0QO Move A to Ragigter O ~

Here you have a Label, Op-Code, Operand, and Comment field.

Now, it is time to take a look at a compariscn between XB (which I
understand) and A/L (which I don't). This example is a bit primitive but it is
about all that I can muster right now.

100 DATA 1,7 Defines the two data items 1 and 7
110 READ X.Y Assigns the value 1 to X and 7 to Y
120 Z=X+Y Adde X and ¥ to get the value of Z

The same program written in A/L would look something like this:

X DATA 1 Assigns the name X to the value 1
Y - DATA 7 Azsigns the name Y to the value of 7
Z B35S 2 Reserves 2 bytes of memory for the value Z

MOV 8X,R0 Moves X to work Register 0

MOV @Y,R1 Moves Y to work Register 1

A RO,R1 Adds Register 0 to Register 1

MOV R1,@Z Moves the sum to Register 1 replacing the number there.

Amazing! I learned how to add 1 and 7 in a program. Watch out Ron
Kleinschafer and Tony McGovern——— I'm on the way!!

All you have to do from here is run the sgource code through the Assembler
and you have a D/F object code file that you can LOAD AND RUN. Type in the
input filename, an output filename and, after pressing <FCTN-6> the ASSEMBLER
EXECUTING message appears. If you are lucky, you get a "0000 ERRORS" message
when the Assembler iz through.

That would be a new experience for me! Even on stuff that I thought that
I had typed in accurately from a printed copy I usually get "double digit"
errors! 1 once typed in about 300 or so lines of scurce code directly (I
thought) from a couple of issues of MICROpendium. It took me two days just to
get the typos corrected in that mess!! After all of that, the silly program
wouldn't even run. You can imagine how "happy"” I was about that! Just wait
until I start writing my own programs —- triple digit errors may not be out of
the question!

So far, I have to admit that A/L isn't nearly as difficult to understand
as I thought that it would be. Of course, I haven't really started to do any
substantive programming. I've managed %o display a few bits of text on the
gcreen and manipulate some numbers here and there but nothing that would
qualify as a program. We'll have to see what fthe next month will bring!

_ Volume 8 Number 5 Page 9

