° Peoge
Classic 99 | =
' P eﬁg\e '-
The Official Newsletter of the Hoosier Users Group '
May - June 1999 The HUGger's Newsletter Volume 18 Number 3

, Officer's Corner

By Dan H.Eicher

The next meeting 18 May |6thl Hope to see yon

A big Hello to our newest member, Oliver Hebert from
Brewton, AL. Oliver has been a long time TI user and
programmer. Some of his credits include many great
programming articles in the Chicago newsletter and betn
testing and documentation of the Missing Link package for
extended basic.

Two highlights in this issue are the second part of Mike
Wrights article on ciacking Doom of Mondular so that it will
run under PC99 and an article by Guntis Sprenne. Guntis was
employed for many years as a field service engineer in TI's
Computer Division and has many insights into TI. Thanks
Guntis!

We had a great Apnil meeting! Bill setup his PC at home to
work as an ftp server, we managed to dial-in with my Geneve
and pull down some files. Bryant brought over an Amiga and
we attempted to get a TI emulator designed for that hardware
platform running (no luck, but Bryant promised to get it
working for us, and demo it a later meeting). We were able to
use a scan doubler that allowed him to hook up his Amigato a
standard VGA monitor. Hopefully someone will figure out a
way of doing this with 9938 and 9958 equpped TI
equipment.

We played with the SNUG systern, Trug (o computer form, [
tried to retype in my basic benchmark, it seemed to get hung
in an infinite loop despite looking it over and over, T couldn't
find the problem, fortunately, later I found a stored copy of
the program and was able to bench mark the SNUG system,

results later in this article. I found the bug was not a mis-type, but
instead was an error in the printed listing that was published in
January/February 1998 issue. The error was printed 180 If
A(K)=A(K+1) THEN 230, it should have been If A(K)<=A(K+1)
THEN 230! Lots of good talk and a good time was had by all!

COMDEX this year was rather disappointing. There were only
about half as many vendors as there were about 4 ycars ago.
Unfortunately, it was the half that I missed the most, the
hardware vendors! Bill Gates keynote address was how
Windows2000 was going to make life easier. The highlight of the
trip was chatting with Hal Shannafield and Steve Weber of the
Chicago 11 users group who also were visiting COMDEX.

Speaking of Bill Gates, I just finished a book by Stephen Manes
and Paul Andrews called “Gates™ It chronicles Bill Gates from
his early boyhood to about 1992, It gives some great insights into
the early Gates and Microsoft’s beginnings! Well worth reading,
available from the Marion County Public library.

SNUG Bench Mark

In the Jan/Feb '"98 issue, I published a basic program to bench

mark speed, I ran the test on a variety of different 9900 and 9995

machines in various basics dialects. Now that I have a new 9900

based system, the SNUG card sct, I want to sec how fast I could

get this system to go. So on the advice of Michael Becker, 1
continues oa next page

Table of Contents
1. MFM DRIVES
2. Article Update
3. News worthy notes from the TI LIST Server
4, Genial Travler now available on the net

5.MBX WEBSITE

6. T1 Reflections

7. CPU Reference List

8. Doom of Mondular Part 2 of 3

.

issued the following commands: CALL XBl6 runs the
".Extended Basic GPL interpreter in 16 bit mode, CALL MEM16
allows access to memory (the normal TI 32K) to be accessed at
Zero Wait states and 16bits at a time instead of 8 and CALL
‘FAST, which access GROM memory at CPU clock speed
instead of GROM clock speed which is 44 Kilohertz.
Here are the results:

GENEVE XBASIC ABASIC ABASIC
' (WITH TYPE OF INT)

SORT 7:05 422 3:14

PRINT 2:10 55 44

TOMMY TUTOR BASIC

SORT 9:21

PRINT 2:10

99/4A BASIC XBASIC XBASIC+32K

SORT 10:54 13:37 13:18

PRINT 11:38 4:30 4:30

SNUG XBASIC+CALL FAST+CALL XB16+CALL MEM16
SORT 11:00
PRINT 3:44

SNUG FAQ: The one problem with the snug card set is all the
documentation is in German. Now, at least the High Speed GPL
cards documentation has been translated. You can find the
translation on the web at Alan and Tina-Earl Bray’s web site,
Hitp://www bricktop.demon.co.ul/bricktop/

Because of the lack of English documentation I have passed
many mail messages back and forth with Michael Becker, I
have collected all of these in a file and changed them into a
question and answer fonnat, which I will be releasing shortly as

the SNUG FAQ.

Tim Tesch update: First off Tim has been faced with a family
tragedy. His older brother and his wife were killed in a tragic
traffic accident on March 27. Prior to this Tim had announced
because of work pressures {(on a good week, 70 hours) and a
general feeling of bum ont, he was going to cease working on
Myarc equipment. Qur hopes and best wishes are with Tim at
this time. Tim did give me one tip, JDR Microdevices
www jdr.com (1.800.538.5000) now has 512Kx8 flash eproms

(29C040)on sale for 5.69. These are very close to the parts that
were bemng used by Cecure for doing the P¥M upgrades to
Geneve’s. So if you have a Geneve, you might want to invest
in one of these in the hope that someone will write an article
on how to add them to the Geneve!

MFM DRIVES

While cmuising through March 1999 Computer Shopper, 1
came across an add by AA Computech, Inc. They have a very
good selection of MFM/RLL and SCSI hard drives and
controllers, Their price on MFM hard drives is more expensive
than you would find at a hamfest, but all their drives are
warrantied and tested.

1.800.360.6801 (www.aacomputech.com).

Article Update

This is an update to the article by Jacques Groslouis in the last
bi-monthly issue entitled Using Funnelweb with your Horizon
Ram Disk. Apparently, some of the article got lost, some place
between six different computers. Here is the update. Thanks
Jacques!

Hi Dan,

When I read my article appearing in your last newsletter I
noticed that a number of lines had been dropped. Apparently I
caused this problem when I transferred the article from my TI
to my PC. The omissions appear m the paragraphs at the
bottom of the first column on page 8 and continue to the top of
the next column. The paragraphs which contained missing
lines are reprinted below.

If your TI is connected to a PC by means of a serial cable from
your RS232 card you can configure your printer name under
FWB to be as follows: PIORS232. BA=9600.LF

When you call PF from Text Editor or CTRL P from
DiskReview this long line will come up and an error will be
sounded if you press ENTER. In order to send your file to your
printer space out the dash after PIO and in order to send the
file to your PC delete PIO. This saves having to remember the
RS8232 settings. To receive a file into Text Editor or TIW you
must save (SF) the file to RS232.BA=0600 but there is no
practical way of saving this setting in advance. However Bruce
Harrison's new AMS TRANSFER program is very useful and
can instead be used to download a text file. It will run without
an AMS card but the size of the file which can be transferred
is reduced.

continues on next page

FWB uses high memory location >A000 to >A050 for a 'Mail News worthy notes from the TI LIST Server '
Box' to store test file names for use by a varicty of other oo Ty er,

programs. If you want to include the same feature in an pye 14 circumstances beyond our control, we have been forcedto
XBasic program merge the Following program into your recchedule TIMIJG9 to Saturday, June 12th. The conference site
XBasic program. You can call it from your program by using ;4 hours will remain as originally announced. (7:00 AM to 7:00
CALL MAILBX("TARGET_FILE"). PM at Spang Mansion on Kolthoff Drive in Brookpark, Ohio.)

Only the date has been changed to Saturday, June 12th. Please

The program REM which you both published suffers from a .. cont our sincere apologies for any inconvenience this change

number of dropped characters. For reasons that 1 do not
understand a number of minuses () and a few blank spaces
were dropped when I transferred a LISTing of the program

may have caused.

We are happy to announce today that we have secured Spang

from my TI to my PC using a RS232 cable. My speculation is - nangion for Friday evening, June 11th from 7:00PM to 10:00PM

that [may have to lower the baud rate I use. You may wantto gy ¢he preconference get together. If you are planning to arrive

make reference to the attachment which contains the affected on Friday, June 11th for TIMUGZAE99 or are a local Tler, why not

lines in your next publication. cometo the get together social at Spang Mansion? This will give

you a chance to have a good time renewing old acquaintances
The same problem has found its way into the program

MAILBX where a minus sign should appear in front of 24577
and a space should appear between CALL and LOAD.

and swapping tales, ideas and information as well as finding out
just where Spang Mansion is located before the conference on
Saturday moming. Snacks and soft drinks will be served.

180 CALL PEEK(2,A) Please remember Spang Mansion is a Brookpark, Ohio
200 CRLL LOAD(2,0) NONSMOKING, public facility and this restriction is strictly
210 PRINT " Welcome to my TI Computer”: epfyeed Also, DO NOT bring any equipment or valuables to the
e get together to be left over night at Spang Mansion. Over night
security will NOT be provided.

Glenn Bernasek, Secretary TIChips

230 CALL
SAY ("I+UNDERSTAND+THE1+Y+TWO+K+PROBLEM.

Do+YOU") GBBasics@aol.com

240 t@p

380 CALL TI Disk Controller Chips Compendium

SAY ("DID+YOU+HEAR+THE1+ONE+ABOUT+THE L Bv Michael Becker

#TEXAS INSTRUMENTS# HOME+COMPUTFER"™) WD 1771 = 40pin, singledensity only! The chip in TI's

450 CALL SPRITE(#2,100,7,R+B,CB,5SX, SY) Disk Controller PHP1240, inverted Databus.!

460 CALL SPRITE(#3,100,6,RB,C,SX,SY) WD1770 = 28pin, doubledensity, chip in MYARC. Not ﬁllly

470 CALL SPRITE(#4,100,14,R,C+B, SX,SY) compatible with WD 1771

480 CALL SPRITE(#5,100,2,RB,CB,SX,0) WD1772 = 28pin, same as 1770, but faster step rates. late
490 CALL SPRITE(#6,100,8,R+B,C,0,SY) MYARC FDC.

200 CALL SPRITE(#7,100,4,R,CB,0,SY)

WD1773 = 28pin, doubledensity, commandcompatible with
510 CALL SPRITE(#8,100,10,RB,C+B,SX,0}

1771, but noninveried Databus. late Corcomp,

. ATRONIC, BwG.
Sorry for any inconvenience these omissions may have wps793 =40 pin, softwarecompatible with 1773, used in
cansed. early Corcomp from Anaheim!
Regards for now,
Jacques All WD17xx have builtin digital dataseparators, sometimes not

Jgroslou@nbnet.nb.ca used (ex: in Tl's DC!) all WD27xx have built in analog (PLL)

dataseps. (hard to adjust!!! Was the reason CC changed
toWD1773 t00).

- 'Thie International TI99/4A and GENEVE Fair
will be held in 1999 on Friday October 1 through Sunday
October 3.

Welcome to the 14th International TI meeting in Europe. This
exciting event is centrally located in the heart of Gemany
near Stuitgart in Freiberg/Neckar.

Friday 10am to 5pm

Saturday 8am to Spm

Sunday 8am to 5pm

For more information, Oliver Amcld has created the
following web page:
https://www.planetinterkom dec/oliver.amold/default html

Clipboard99 now available!

Just wanted to let everyone know that I made the old
TMS9900 Clipboard files available from anonymous fip. 1
was looking for a site to place them on when I just realized |
could have done that here at work. I received permission
from my superviscr to create and maintain a TI99/4A library
here, so it will make a decent repository for the goodies I put
together as they become available.

The files are archived using Barry Boone's Archiver v3 .03
They are named CLIP1A, CLIP1B, etc. The number denotes
the volume (111) and the 'A' or 'B' denotes the side of the
disk. The Clipboard was designed to fit on a S8/SD "flippy"
disk some of the filenames on each side clash if I remember
correctly, so vou'll want to make sure each side is on a
separate disk. Keep in mind [was just a teenager when 1
worked on these long ago (about 10 years), so take some of
verbiage contained within them with a grain of salt, (I
remember staying up late into the wee hours of the moming
along with Jon Dycr in order to get the last two or threc
articles completed.)

The files on this FTP site have a TIFILES header, this means
that you will need to transfer them from your PC to your
TI99/4a via a terminal program or perhaps using Magic File
Manipulator. (If you want high speeds!) If you are using
VIT9. vou can use the XMDM2TT utility pragram in order to
strip the TIFII:ES header and make the file usable by V9T9. I
would assume that the other TIEmulator has such a utility as
well. Make sure you set your FTP client to binary mode

before downloading the files. When you have them on your

—

target machine (emulator) just use Archiver 3.03 to unarchive
them to the disks of your choice.

Now, the best for last: the site to fip to is "gcomm.com”. Enter
'anonymous’ for user and your email address for the password.
The files are located in "library\TI99/4A". This site does not
have any upload access, so0 if you have anything you would like
to share, you may have to email it to me. At some point I will
create an index file with a list of the files and their descriptions.
If you have any problems using the site, please let me know.

Regards,

Joe Delekto

<jdelekto@gecomm. com>

[Editors Note: These articles are great!]

Genial Travler now available on the net

Another Herculean task by Mike Wright!

Mike contacted Barry Traver and received permission to convern
the ENTIRE collection of Genial Travler over to PDF’s and
PC99 and publish them! These can be retneved, free of charge
from Don O’Neil’s fip site fip. whtech.com/pub/genitrav the two
files, both self extracting PC archives, penitravexe (15
Megabytes) - a self extracting PC archive file with the text of all
articles in Adobe PDF format and gtdisks.exe (2 Megabytes) all
the disk in PC99 format! A big hat’s off to Mike for rescuing
these excellent articles and program from unavatilability!

HOOSIER USERS GROUP OFFICERS
Area Code (317)

President Dan H. Eicher
email: eicher@delphi.com

862-1860
Vice-President Bryant C. Pedigo 255-7381
_email: bpedigo@freewwweb.com

Secretary/Treasurer Greg Larson
email: greg.larson@icsbbs.org

783-4575

MBX Website

Here is another interesting web site, with reviews,
advertisements and manuals for the Milton Bradley MBX
system (as well as other TI game related mformation}!
Hitp:/fwww robpatton.com/ti_mbx htm

Also, you can download and play mpeg files of a number of
cartridges at: fip://robpatton.com/cvgac/ti994a/ -also- available
at the same fip site is a number of TI related ROMS.

TI Reflections

By Guntis Sprenne

My pame is Guntis Sprenne, and I was lucky enough to work
for TI's Computer Division as a Field Service Tech for 13 plus
years. EICHER, after a few off-topic postings to the TI 99/4A
listserver, asked that I write up a short article on working for T1
and the ‘other” TI computer equipment. The only waming I'll
give is that most of this is from the top of my head and may not
be all that complete, though it should be fairly accurate.

TI’s computer group was known by many names over the vears
- DSD (Digital Systems Division); DSG (Digital Svstems
Group), and probably others. I started working for TI right out
of college and was happy working on the hardware and
software, and got paid every two weeks. So minor details like
the official name of the part of TI I worked for weren't real
important — until much later.

Anyway, TI's service group was fairly informal in the carly
years. I started in 1974 and was one the the first field techs in
the Southeast. I was something like the 14th or 17th in the
southeast. Eventually there were upwards of 150 in the

Southeast, though that number changed up and down during the
years.

Once, while at training in Houston, we got to tour the plant at
Stafford. We were shown some of the early TI minicomputers.

As we were told, the computer division started out because of
TI’s efforts to automate the semi-conductor production lines
{which we also saw on our tour). TI started building machines
controllers for the semi-conductor equipment, which evolved
from dedicated hardwarc to programmable hardware — using
paper tape probably though I can’t remember what it
really was. These machines were ‘named” HSM-xxxx. Our
guide told us that no one — except maybe deep in the design area

— knew what HSM stood for, though one of the guesses was
High Speed Machine. -

As the story goes, that machine evolved into the 960 and the
980 and was commercialized. Parts of the CRU bus and
TILINE data/memory buses were evident in these machines.
As this was before marketing hype took over, they had a
maximum of 64K words of memory, though they used a 16
bit memory word. In today’s terms it would have adddressed
amax of 128K bytes. Clock speed I can’t remember.

The 960’s I worked on were used as data concentrators and
machine tool controllers. I had one 980 in my area, but was
not trained on it; it was used as a process controller in the

making of nylon or rayon.

The basis of TI’s commercial line was the 990 series. These
were nice machines that used the CRU and TILINE. The
CRU is a scrial input/output mechanism, while the TILINE
was a high speed parallel data bus. Since the CRU concept is
used in the /4A T’ll skip over most of that. Memory capacity
was a maximum of 2 megabytes, with a 64K word ‘page"
limit due to the 16 bat data width. The 2 megabyte memory
was addressed by using a paging mechanism that provided a
20 bit backplane addess bus.

One note about the CRU and the chassis. The slots were
numbered 1 through 13 (or 6, or 17, depending on the chassis
- I'll use the 13 slot chassis for this example). Each slot
could hold a full size board (CPU, Memory, Disk Controller,
etc) or two half slot boards along with a center support piece.
The CRU address was hard wired to the slots, with most
(there were exceptions) CRU boards using the slot address.
Slot 13 right was address >00, left was >20, slot 12 right was
>40, left was >60, and so on.

The TILINE was rather mnovative. High‘speed devices —
disk drives, tape drives, memory controllers, then in later
years multiterminal controllers - each had a dedicated
memory address, which was selectable by a set of switches.
Commands were passed to the controiler by addressing
(usually) a set of 16 ‘registers’ in memory. Though the
memory controller used only 1 or 2 words, as did the status
register. These registers — starting at >F800 (TI used the >’
symbol to denote a hexadecimal number; using 378h or

continues on next page

- "0x378 still seems odd to me) were mapped to high memory,
so the theorctical 2 gigabytc limit was reduccd by a littlc bit.

Memory was mapped in three segments, the total of which
could not exceed 64K words. This did allow for some
interesting programming, as the core of the progam could stay
the same in one segment while it “talked’ to different areas of
memory in the other segments. Remember I was basically a
hardware person, though I was very familiar with the OS - [
was one of the very few, if not the only, Field Tech to take the
Tech Support O/S training class.

The first operating system was known as DX10. OQur best
guess for DX was Data eXchange. [started with version 3,
which had a friendly user interface. Version 2 — which I only
saw once — made UNIX look user friendly. It was pre-emptive
multitaksing. One of my early systems sustems supported
about 8 users and 3 printers, had 128Kbytes of memory (later
upgraded to 256Kbytes), 10 meg of disk storage, and did a
small companies payroll, receivables, payables, inventory,
order tracking, and a few other things. DX10 handled up to
about 20 terminals with good response, maxing out around 40
or 50, but then the response was fairly slow.

'The next operating system was DNOS. For a change, we were
told what it stood for - Distributed Network Operating
System. It handled probably up to 50 users well. The
downside was that with only a few users the response was the
same as with 50. Part of the trade-off when selecting which
O/S to use was determinig the system load — up to a certain
number, DX 10 was betier/faster. After that DNOS did better.
And, as the name implics, DNOS had network support and
could utilize rsources on other machines, and users could log
onto their machine, and start a session on another machine and
have it appear as if they were logged onto that machine.
Though it was nothing like the Tnternet is taday.

Terminals were “dumb’ terminals with an 80 character by 24
line screen — what ever processing power they had (if any) was
to control the display and the transfer of data. The orginal
terminals — the 91land 9xx — was only a power supply and
video receiver. The character generator and video generator
were located on the terminal controller in the CPU chassis.
The 911 /O cable was 8 wires - COAX, shield, and three sets
of differential control lines using a 9 pin D connector (same as
is used for serial pords today). The upside of this terminal was

continues on next page

Tenative HOOSIER USERS GROUP Meeting
Schedule

May 16 July 18
September 19 November 21
December 12 - Holiday Dinner 2nd Sunday

Mark your calendars!!

Hoosicr Uscer Group mecting placc TO BE
ANNOUNCED prior to meeting. Meetings start
at 2:00pm.

HUG supports the following computers:

TI 99/4A and Myarc 9640 Geneve, TI CC-40 and
TI-74 BasicCalc.

H ER S&T BB

Hoosier Users Group, indianapolis, IN
300/1200/2400/4800/9600 8N1
317-782-9942

Sysop: William M. Lucid
email: lucid@indy.net

i o

b o A WA i . R,

it

the effective data rate was 19.2 Kbytes/sec. Then came serial port
based (erminals — starling with the 931, These used a bit of smartls
to package the data coming and going, but still displayed only
text. Due to the advances in electromics, they were more
configurable. The 924 and the 928 (an HP 700 series terminal
with customer ROM) followed.

Another note is that the terminals, even once serial based, used a
proprietary protocol. Eventualty TI released Terminal emulators
for the TIPC and for IBM/clone PCs, and at least 2 vendors
released their versions of TI emulators.

Now that I"ve coverd terminals, I'll back to the CPUs. TI had
what could be called a “beta’ 990 CPU known as the 990/9.
Housed in a multi-slot chassis, it was a TTL logic implementation
of the same 990 instruction set used in the 99/4A home computer
(which was produced by the Consumer Electronics Group - I'm

|| - not sure if that was the official name — the same group that did

calculators, watches, Speak & Spell, otc). It saw work basically as
a data concentrator. In my area it was used by a national hotel
chain to take the input from several terminals and send it out over
a leased line to the mainframe, where-ever it happened to be. This
CPU had a power switch, and a recessed button to reboot. The
system ROM contained enough code to download the rest of the
O/S from the mainframe. There was no hard drive storage (this is
back in the davs when a 10 meg hard drive ran about $10,000 to
$15,000 (more or less)). '

The next was the 990/10. Again a TTL implementation, it was
housed in a 13 slot chassis. The first two slots were the CPU (slot
1 was the SMT (System Master Interface) card, and slot 2 was the
AU (Arithmetic Unit) card), next was the memory controller (16
K words of RAM with ECC - Error Correcting Code; it could
correct a single bit error and detect multi-bit errors), then memory
expansion boards. Slot 7 was reserved for the disk controller.
Then the various terminal and printer controllers and /O cards.

Back to the TILINE. The 990 chassis supported 16 vectored
mterrups. 0 to 2 were reserved for the system, 5 was the clock,
and the rest were available for other uses, though DXI0 and
DNOS had standards that were usually followed: The primary
disk controller, for example, was int 13. There was an interrupt
conﬁguraﬁon method where you could assign interrupts to slots,
though usually the standard configuration was used. Another
feature of the TILINE was direct memory access by the various
TILINE controliers. One of the lines, equiped with a jumper, was
the TILAG line — or TILine Access Granted line. When a TILINE

board was inserted in the slot, the jumper was removed, and
then the cuntoller could take contrul of the TILINE
{memory/data bus) and transfer data straight to/from memory.
The lower the board in the chassis, the higher priority it had
for gaining control of the TILINE. R

The operating systems - 'both DNOS and DX10 - were
custom built for each customer. To those of you familiar
with UNIX, the idea was- the same, though the front end —
defining ports, devices, etc — was much friendlier. A
SYSGEN - 8YStem GENeration - took anywhere from 20 to
50 minutes, depending on the configuration and CPU.

The onginal 13 and 17 slot chassis came with programmer’s
front panels: 16 LEDs, 16 switches to toggle the LEDs, and
16 switches for various data entry functions. It was possible
to read and wnte disk sectors using just the front panel by
entering the controller commands to the correct memory
I had one customer,

locations, who while a good

programmer, would skip the testing phase whén he generated
a new system. | had to several times walk him through

continues on next page

Disclaimer
Yhis newsletter is brought to you thro

dfforts of officers and members of the

; u have an article you would like to s
pquest for an article, mail it to:

resetting the flag bit in the ‘boot sector’ that would boot the
old version of the OS (at least he was good cnough to keep

the old system as the secondary).

The 13a chassis came standard with an operators panel which
featured a four digit hex display with only 4 switches — top
row: Halt, Load and bottom row: Run, Alt. Load. The RUN
button is rarely used since the LOAD button performs the
RUN function after loading. Hitting the HALT button (after
the first HALT) increments the Program Counter {(PC), which
is where the RUN button comes in handy to resume operation
at a new PC though this is only practical if the new PC is
near and above the halted PC. There is no decrement PC
from this front panel. With the programmers' panel you could
enter the PC into the LEDs, then there is a button to enter the
LED pattemn into the PC. This way any PC could be selected.
There were also buttons for reading/setting the WP
{Workspace Pinter); reading the status register, etc.

The four digit display helped users tell the service techs the
error code. I had the misfortune of having a customer read an
error code from a programmer’s panel in hex which indicated
a memory problem; unfortunately, the customer’s binary to
hex conversion skills were lacking, and it took me a while to
determine that the problem was with the disk controller — of
course it didn’t help that the problem was heat related and the
system had been off for several hours. The Operator’s Panel
alsc helped users with the Alternate Load procedure — no
more remembering controller address, unit number, etc. Just
hit a button and it loads (well, as long as the primary drive is
offling). Though techs them had to carry a
programmer’s panel to be able to do other low-level
functions.

spare

The OS and hardware also had built-in features for adding
Adding a CRU chassis was
straightforward. CRU addresses just kept going up, and the
switches on the expansion boards were easy to set (as long as
you understood the CRU). TILINE expansion was another
matter. On of my log-time customers was consolidating two
systems. This included upgrading a CPU, moving all disk
and tape drives to one system, converting the second chassis
to a TILINE expansion chassis, and regenerating the system.
When I called him to make final arrangements — we started at
4:00 PM on a Wednesday and had to have the system up and
running by 8:00 AM the next morming — he told me there was

expansion chassis,

a problem. When I asked him what it was, he said the three
different cngincers had given him three different answers on
how the expansion boards should be configured. And these
were TI engineers. As things go, that was the hardest part,'
but we managed, and the working configuration was none of the
above three. We even beat the deadline, though I watched the'
sun come up as I drove home.,

That’s about it, though I didn’t even mention TI's pr_intcrs,
terminals, laptops, disk drives (yes, TI made its own winchester
drives for a short while), and other computers.

[Editor's note: for a list of CPU references, see insert]

'PrS the \aieéhi +hin
i
éfo? Porarﬂ-g ?4(3,

do 1%
(o171 8
~;>|Jr Ziov\!n ahc\..‘\rm\@u

#, // /:“y (g

W A I, {
f- @

S sewn

}

sALY

Doom of Mondular Part 2 of 3
By Mike Wright of Cadd Electronics

180 CALL INIT:
190 REM ZAP
200 RETURN NEXT

210 N$=NS&CHRS (16) &CHRS (17) : :OPEN
#1:N5$,UPDATE, RELATIVE, INTERNAL, FIXED 255
211 INPUT #1,REC 062:NS

continues on next page

+CALL LOAD(31804,0,36)

3

WP R St oty

R Py
RSt

CPU

Description

HMS

Used as a mchine/process controller in at least the Stafford plant (outside of Houston). Early version of
the 960 & 980, and eventually the 990,

960

First commercial version. A CRU based computer.

580

The close second commercial version. The TILINE {or a preliminary version) appeared here.

990/9

‘Beta’ Version, saw limited commercial use, mainly as a terminal concnetrator. A TTL implmentation of
the 990 imnstruction set. The chassis was a motherboard/backplane — even the power supply (shileded)
plugged on to the backplane. No controls other than a power switch and system load button. Software
was downloaded from the mainframe — no hard drives. I don’t remember much about this CPU

990/10

First 990 commercial version. Also a TTL implmentation with the CPU taking up 2 boards. Memory
had ECC — Error Correcting Code — it could correct a single bit error and detect multibit errors.
Removeable media drives up to 200 megabytes (unformatted) were available. This was before
winchester drives. Standard 13 slot chassis, a 6 slot chassis was also available.

990/12

Bit slice processor implementation. 2 to 10 times faster than the /10, depending on configuration
(hardware and software). Also a 2 board CPU Standard 17 slot chassis. Power supply was modular —
had +5vde and +/-12vde modules; depending on hardware a second or third module could be added (4

total — minimumu of 1 cach).

990/4

Single-chip 990 implementation. I'm not sure if this is the same chip used in the 99/4A. No onboard /O
or memory. Limited use. This was a single board CPU

990/5

Single chip implementation (TMS9000), also a single board. Had built-in serial VO (3 ports) and limited
on-board memory. Used the 6 slot chassis with disk controller for a complete, if small, system.

990/10a

Single-chip implementation using the 99000 chip~EsSetitially the same as the 990/10 except for being a
single board and complyving with then new FC(’f RFI rules. Used anewer versmn of the 12 slot chassts.

The /10a was about 1.5 to 2 times faster than' the plain /10, R

990/12a

Bit slice processor implementation. Used LhE same 13 slot chassis the /10a did (see note below). This
was a 2 board CPU.

77x

These were TMS 9900 based computers houscd in a combination display/keyboard housing. The first
system used tape cartridges (simular in size to the QIC-2120) for program and data storage. Then came
versions with hard and floppy drives in an external case. And finally one in a chassis with a separate
display. While similar to the 990s, it was slightly different.

PCs

The TIPC was an Inte] 8088 based PC, not totally IBM compatible. There was also a ‘portable’ version
which was TIPC compatible. Next was the Business Pre, which was an IBM AT compatible that also
hed the option of being TIPC compatiblc. After the B-Pro, TI started putting it’s name on other vendor’s
PC’s (ACER and AST, maybe others)

12306135

Intel CPU / XENIX based multinser systems

15%x%

68w / TTNTX System V based multiuser systems

LISP

First a 68xxx based, then a dedicated LISP processor based CPU used for Artificial Intelligence
development. Everything — OS and applications — was LISP.

Notes:

This list is incomplete — this is just what [remember, and not even all of that.
it our guide at the Stafford plant could be believed (probably not) the HMS stood for “High Speed Machine™.

All of the 990 series boards starting with the 990/10 were interchangeable — as long as the chassis could power
it (the +5vde module in the 17 slot chassis put out 40 amps!). Of course, using non-FCC boards in the 132
chassis violated some government rules conceming RFI — practically everything worked OK.

The 990 used a dual I/O scheme — the CRU and the TILINE, The CRU was serial based, while the TILINE
was a parallel bus.

" 212 PRINT #1,REC 0:N$

215CALLPEEK (31952, A, B} 1 : CALLPEEK (A* 256+B65534
s A, B)

220 C=A*256+B65534::CALL PEEK(4096,A,B)::CALL

LOAD(C,07) : :CALL LOAD(C+6,A,B,0) : :ON ERRCR
200::GOTO 230
230 RUN "DSKLl.AAAAAARAAM"

There are a couple of tricky things going in this program:

Line 160; Loads the assembly language program BOOT. That
meant we had to find the assembly code and disassemble it.

Lines 160 and 210: Manipulates the string N$ which
eventually contains the filename DSK1.ZAPSDATA(16)(17).
The last two characters are non ASCII characters.

Line 180: 31804 = >83C4, the address of the userdefined
interrupt.

Lines 211212; At this stage the seemingly innocuous INPUT
and PRINT statements didn't look dangerous,

Line 220: Calculates the address of the highest line number in
the program (230). 4096 = >F000. This address contains
>0F0D and was stored there by the program BOOT. CALL
LOAINC,07) changes the length of ling 230 to 7 bytes. The b
ytes >0F, >0D, >00 are moved into line 230 so that is now
reads; RUN "DSK1.(0F)(0D)"(00). (Note that the parentheses
show unprintable ASCII characters.)

Line 230: Disguises the next program in the chain. This is a
"standard” XB trick. You make the last line in the program
RIN"DSK1.1234567890", and then CALL PEEK to find the
Basic line number table and the line, and then you poke the
filename into the bytes occupied by "1234567890" (or in this
case "AAAAAAAAAA").

10. DSK1.BOOT

The last two program names had been LOAD, and GAME.
This meant that the scarch for BOOT would be at entry 15 in
sector 1. It was. We used dskoutx to extract the program and,
since this was an assembly language program, we ran the
PC9S uility eaulasc (Editor/Assembler uncompressed to
ASCII). This utility does not, unfortunately, return a
disassembled version of the file. However, the file was short
enough to hand disassemble. We then entered the

|

disassembled statements as 9900 source code (BOOT _S), added
somc comments and labels, and then assembled the file.
99/4ASSEMBLER VERSION 1.2 PAGE 0001
cGol1 *

0002 * Symbiotech boot loader

0003 ~*)
0004 NREF ROOT '

2005

0006 83C4 USRINT EQU >83C4 * address of
userdefined interrupt ‘

04007

0008 FOO0D AORG
0008
0o01c¢
0011
0012
0013
0014
0015
001e
0017
FooA
ools
0018

>F000

FNAME
FQ00Q0 0000
UDIMSK
F002 C200

DATA >0000

DATA >C200

BOOT
F004
Foo8
QDOF
roocC
FOOE

0300
0200

LIMI >0000 FO06 0000
LI RO,>0DOF* becomes fname 0FO0D

vecu
€800
for Basic F010
0020 F012 0200
routine in UDI FO014 FQIC
0021 FO0lé <800 MOV RO, AUSRINT
(022 FOlA 045B B *R1l

0023
0024
0025
FRZ0
ocze
B3CO
0427
0028
0029 END
0000 ERRORS

SWEB RU

MOV RO, @FNAME* save the filename
F000

LI RO,MYINT* put my interrupt

F0lg B3C4

MYINT
FO1lC DB20
8345

F022 02EQ

MOVB GUDIMSK, @-8345 FOG1E F0Q02

LWPI >83C0* GPL workspace F024

FO026& 0380 RTWP

If you step through the code you will see that the value >0F0D
gets stored at >F000. (We didn't appreciate the significance of
this until much later.)

But even more devious is the setting up of a userdefined interrupt
routine at >FOIC (label MYINT) by plugging this value into
>83C4. This routine will now move the byte value >C2 at >F002
into >8345 cvery 1/60th of a sccond. >8345 is uscd by Extended

continues on next page

Basic as a system flag, The flag bits are:
0= 1= autonum

}=1=0nbreakncxt

2 =unused
3=1=trace
1=1=editmode

5=] = on warning stop
6 = 1 = on warning next

7 = unused

So the value >C2 (1100 0010) sets autonum on, ON BREAK
NEXT, and ON WARNING NEXT. This means that even if
you think you are defeating the protection by removing the ON
BREAK NEXT in the Basic code, if you allow this routine to be
called, ON BREAK NEXT will be set until the computer is
switched off (or until the userdefined interrupt is moved or
changed) and vou will not be able to press F4 (BREAK) to see
how the program is executing.

11. DSK1.ZAPSDATA

The first thing to remember about this filename is that it has two
non ASCII characters appended to it to become
DSK1.ZAPSDATA(16)(17). Since the string "ZAP..." is greater
than "LOAD", XB will look ahead in sector 1 to find 1t. Sure
enough, at entry 63 + 32 = 95 there is a pointer to sector >0087
(0135). At that sector there is an FDR for ZAPSDATA(16)(17)

The next problem now had to be solved. dskoutx, which was
based on dskout, assumes legal filenames. There was no way to
enter this name on the command line. There may have been a
more elegant way of doing this, but we resorted to simply
hardcoding the filename in the program and recompiling. (We
ended up doing this a number of times). The extracted file was
large, and didn't seem to conform to any recognized structure. It
contained FDRs, pieces of the uninitialized disk, and a mixture
‘of Basic and asscmbly codc. Something was not right. But
according to the Basic code in DSK1.GAME, record 062 of this
file was to be read, and then written to record 0. We then
examined the data chain pointer of the FDR more closely. It
contained >01, >40, >16. Using the swap trick above, this meant
the data for this file began in sector >001 and continued for
>164 sectors! We had stumbled across something that we didn't
even know could be done in Basic. The statement:

OPEN #1:N$,UPDATE,RELATIVE,INTERNAL FIXED 255

with an FDR as set up above, essentially allows Basic to read ’
and write disk sectors!

So this meant that the program was going to read record 062 (=
sector 63) and write it to record 0 (= sector 1). But... sector 1 is
the disk's File Descriptor Index Record. This meant that all we
had leamned about the placerdcnt of the files was now invalid. It
was a new ball game.

- 12. Time for a regroup

We now decided that things were getting devilishly tricky. So
we took a notebook, the dump of the disk, and made a list of
what we thought each sector contained. Using the information
we had already deduced, we flagged dummy FDRs, bad scctors
and so on. The result of this investigation was to find some
sectors that looked suspiciously like FDRs, but didn't have any
ASCII in their filenames.

The FDRs found were:
OFOD at >0048 (0072)
120D at >0077 {0119)
1B18130d at >007D (125)
1B13180D at >0081 (0129)

We went ahead and extracted them by hardcoding the names
inta dskoutx and recompiling the code. They all turned out to
be Basic programs.

13. Listing for OFOD

100 GOTO 120 !COPYRIGHT 1984 SYMBIOTECH, INC
ALL RTGHTS RRESFERVED

110 REM ZAP

120 ON BREAK NEXT::0ON WARNING NEXT::GOTO 140
130 REM ZAP

140 ON ERROR 260::0PEN
#l:“DSKl.TITLEDATA"&CHR$(16),INPUT,INTERNAL,RE
LATIVE, FIXED 255

150 GOSUB 420::CALL
CHAR(09Z,"913D455D21110C03C0308884324281B2AYBS
AABA848830 C0O030C11214C428159D") ::NS="D3K1."
160 FOR R=2 TO 20::RN=RZ2::INPUT #1,REC
RN:X$::DISPLAY AT(R,1):X5::NEXT R

170 GOSUB 280::CALL
COLOR(089,02,15,13,14,15,14,15,02,09,14,15,11,1
5,14) : :N5=N$&"ZAPS DATA"

180 FOR C=2 TO 7::CALL COLOR({C,02,14)::NEXT C
190 DISPLAY

continues on next page

'+ AT{07,09)ST2E(14): "LN+DF+HJ+8:+46": : DISPLAY

.{T(eg,om 3IEE{14):"MOIECGIIKIO; 157"
' 200 DISPLAY AT(09,14) SIZE(2):"PR"::DISPLAY
'AT(10,14) SIZE(2):"Qs"
‘;id DISPLAY AT(11,10) SIZE(1l): "46+DF +DF+
<>"::DISPLAY AT(12,10)
SIZE(ll):"57+EG+EG+f?"
220 DISPLAY AT(15,14) SIZE(2):"] "::DISPLAY

AT (16,14) SIZE(2):"™\ ""::G0TC 240
230 REM ZAP
240 CLOSE #1::CALL LOAD("DSK1.BOOQTS")::CALL

LINK("BOQTS™) : :NS=N$&CHRS$ {16) &CHRS (17} ::GOT
0 390

250 REM ZAP

260 CALL INIT::CALL LOAD(21804,0,36)

270 REM ZAP

290 CALL

CHAR (52, "007F387C383838383838383838387F0000
EOF 0381COE060606060E1C3870E000™)

300 CALLCHAR (56,"007C387C383683838383838383
§387F00000000000000000000008183878F800™)
310 CALLCHAR(60,"00TE3F67232120202020202020
20700007EFCIEIC1CICICICICICICLICLC3EGO™)

330 CALLCHAR{&8,"000F1B3(¢3930383936838393838
180F000F0183C1C1CICICIC1C1C1CICIBFOOO™)

340 CALLCHAR{72,"007F3B87F3F3B3B3939368383838
387CO00F838F0E08080808080804040201000")

350 CALLCHAR(76,"007B207830302031323363C3C3C
3C18000DE040E040484C464341C1Clc1cOB800™)

360 CALLCHAR(80,"000000007E42424242427E0000
00000000000007E40407C40404000600000000")

370 CALL CHAR({43,"0000000000000000™)

380 RETURN

390 QPEN
#1:N$,UPDATE, RELATIVE, INTERNAL, FIXED 255
391 INPUT #1,REC 0U64:NS)
392 PRINT #1,REC 0:N$

393 CALL PEEK(31952,A,B)::CALL

PEEK (A* 256+B65534,A,B) : : C=A* 256+B65534: : CAL
L PEEK(3840,A,B)::CALL LOAD{C,7)::CALL

LOAD (C+6,A, B, 0)

400 ON ERROR 410::GOTC 480

410 RETURN NEXT S

420 CALLCHAR{128,"FF3FQF0300000000FFFFFFFFF
F3FOFO3FFCFOCO0Q000000FFFFFFFFFFFCFOCO™)
430 CALL CHAR{136, "FFFFFFFFFFFFFFFE")}

440 CALL CHAR{096,"FFFFFFFFFFEFEFFE")

450 CALLCHAR(112, "FFFFFFFFFFFEFFFFEF3F0F030
OCQ0QQOFFFFFEFFIFIFOFU3IFFFCFUCOU00U00U0D0™)
460 CALL CHAR(116,"FFFFFFFFFFFCFOCO"™)}

470 RETURN
480 RUN "DSK1.2222722727227%"

Here are some of the highlights of 0F0D:
Line 140: The file TITLEDATA(16) has a nonASCII (16) character
appended to it. ¥

Line 240; There is another assembly language program called
BOOTS to be loaded. N$ eventnally contains
DSK1.ZAPSDATA(16)(17).

Line 260: Causes a jump to CPU address >0024, which is the start
of the console powerup routine. This line is executed if there are
any crrors because of ON ERROR 260 in line 140.

Line 391: For the second time, a hidden File Descriptor Index
Record is retrieved and overlaid on sector 1. This time the source
record is 064 (sector 65).

14, Trying a first rn

At this stage we didn't feel like spending the time to figure out the
file loading sequence. So we guessed that DSK1.GAME called
DSKI1.0FOD. We now started to make a fresh disk, and used the
Disk Manager to copy the files that we had managed to extract. We
also changed the Basic and got rid of things like ON BREAK
NEXT, REM'ed out things like CALL LOAD("DSK1.BOOT"}), and
changed the RUN DSK1. XXX to real filenames. So now we were
able to deal with things like TITLEDATA, and not
TITLEDATA(16)17). We also REM'ed out all CALL LOADs that
would retumn to the title screen. We also renamed the LOAD
program to ZLOAD so that it would not be autoloaded by XB.

We now started XB, entered OLD DSK1.ZLOAD, and RUN. At
this stage we got a black screen with "PRESENTING" and then
from OFOD we got the Doom of Mondular title screen.

16. DSK1.BOOTS
It was now time to deal with DSKI.BOOTS, called out in
DSK1.0FOD. Fortunately this turned out to be a clone of

~'DSK1.BOOT. The only difference was that the code was AORG'ed

at >F100 and that the hidden file name was >120D.

17. Listing for 120D

100 ON BREAK NEXT::ON WARNING NEXT ! COPYRIGHT
1584
SYMBIOTECH, INC. ALL RIGHTS RESERVED

continues on next page

R i

110 CALL PEEK(31952,A,B)::CALL
PEEK{A*25G1D65534,A,B) ; :C=Ar 256 1B65534
111 CALL CLEAR::CALL CHARSET::CALL
'SCREEN (04)

112 CALL

THAR(112,"000000784478404000000038445448340
0000078447848440000003C40380478")

113 CALL
CHAR(116,"0000007C10101010") : : N$="DSK1."
120 CALL
CHAR(62,"3C4299A1A199423C000000000081423C00
000OFFFF000000") : :NS="DSK1."

125 DISPLAY AT{1,9):"WORLD OF
DOOM"::TAB(7) ; "regular

version”:; :TAB(6) ;"Doom of Mondular"

130 DISPLAY AT(08,01):TAB({7);"Copyright
>1984":TAB(5) ; "ALL RIGHTS '
RESERVED":TAE (&) ; "BY SYMBIOTECH, INC"

160 DISPLAY AT (13,1}:"This
protected under the laws of the United
States and
170 N$=NS$S&"ZAPSDATA"

180 DISPLAY AT{16,1):"and illegal

distribution may result in

program is

other countries,™

ciwvil

liability and criminal prosecution."

150 DISPLAY AT(24,1):"Please wait....... "
200 ON ERROR 230::CALL

LCAD ("DSK1.DBOOTER") : : CALL
LINK("BOOTER") : :NS=N$&CHRS$ (16) 4CHRS (17} ::G0
TO 270

210 REM ZAP

220 REM ZAP

230 CALL TNTT::CALL LOAD(31804,0,26)

240 REM ZAP

250 RETURN NEXT

260 REM ZAP

270 OPEN
#1:N§,UPDATE, RELATIVE, INTERNAL, FIXED 255
280 INPUT #1,REC 058:N$

290 PRINT #1,REC 0:NS$

300 CALL PEEK(10240,A,5,D,E)::CALL
LOAD(C,9) : :CALL

IOAD(C+6,A,D,B,E,0)::ON ERROR 250::60T0 320
310 REM ZAP

320 RUN

We were still not fully comfortable, but it was starting to
look a bit like what had gone before.

Line 200: Loads the assembiy language program DSK1 BOOTER.
Line 280: Yel anuther switch of sector 1. This time it is overlaid

with sector 59,

Line 300: 10240 = >2800. This contains the bytes for the next
hidden filename (1B13180D). These values were stored by the
assembly langauge program BOOTER.

18. DSK1.BOOTER

This loads the filename 1B13180D at >2800 in low memory. It also
resets the user defined interrupt to execute from >292C, which
performs the by now standard practice of loading a >C2 into >8345.

19. DSK1.1B13130D

100 GOTO 110 !'COPYRIGHT 1984 SYMBIOTECH, INC. ALL
RIGHTS RESERVED

110 ON BREAK NEXT::N$="DSK1."

120 ON WARNING NEXT

130 ON BREAK NEXRT: :NS=NS&"ZAFSDATA"

140 ON ERROR 200::CALL

LINK ("BOOTER") : : N$=N$&CHRS (16) &CHRS (17) : : CALL

LOAD (31806, 16)

150 CALL PEEK(31952,A,B)::CALL

PFRFK (A* 256+B65534 , A, BR) + : C=A* 256+B65534 » : CALL

PEEK (10240,A) : : A=A+6

160 OPEN #1:N$,UPDATE, RELATIVE, INTERNAL, FIXED 255
16l
¥$=""::2$="019024013032032032032032032000000130001
00008621025408600000000000000000000000000018708000
5000000"

162 FOR I=1 TO LEN(Z$) STEP
3::YS=Y5&CHRS (VAL (3EG3(23,TI,3)))::NEXT I

163 PRINT #1,REC 355:Y$&CHRS (0)::CLOSE #1::GOTO
220

200 CALL INIT::CALL LOAD (31804,0,36)

210 RETURN NEXT

220 CALL PEEK{10240,D,B,D,E)}::CALL LOAD(C,S}::CALL
LOAD (C+6,A,B,D,E, 0) : :ON ERROR 210

230 RUN

Stayed tuned for the conclusion in the next issue!

-Hoosier Users Group

Dan H. Eicher

4509 Northeastern Ave.

Indianapolis, IN 46239 .

Forwarding and Address
Correction Requested

AN Hoosier Users Group S&T BBS
LS 300/1200/2400/4800/9600 Baud N1
317-782-9942 24 Hours Daily

[rew-g -auoyd
drz ‘a1e1s ‘Ao
:SSIPPY
=111 14 N
aury uo Inyy

PRI T PP EIS:E RO SR M NEE TR SRR

6£79v NI ‘stodeuerpuy
AV WIMNSEAYUION 60GH
1R2UYOT] "H B
dnour) s1as() 1815004 :0} uoneoidde pajerdwoo
puag -dnoin sIasp] 121800} 0] a[qeded IapIo ASUOW JO Y2oU2 SYB "IBeK/(() (7§ oI8 S[emeual pue SANSIoqUISTI N

“IeaK 910 10] s1oeads 15003 [e1oads pue ssuianoe qnip [eRaeds swerioid jo Areiqr] #30NH

a1 03 550008 ‘sBunesm gnpo Jenal 1k YT Funoa pue souepusye SqqONH Y1 o sydu Fuipeo[umop pur dn ‘TapersmeN
o) o1 nok sepinue digsraquow 2Anay 'dnoln) s1ssp) J91SOOL] o3 U drysiequst 1oj monesydde ue puy [nok mofeg

dIHSHIIIWAIN d04 NOLLVOT'IddV

et it et e P i

