President Ira Llieberman 820-6332

Vice-pres Jeff Bleam 346-7590
Secretary Ann Halko 262-8206
Treasurer Barbara Rejician 767-9679
Vol. V, No. 5 September, 1987
Editor Jack Zawediuk 821-1043

LEHIGH 99 'ER COMPUTER GCROUP

Ladadad e R N R A R R R VT VY VYV PPN

Next meeting: 7:30 PM, Monday
October 19,1987

PRESIDENT E

For those of you who may have
missed some of our meetings over
the summer due to vacations, etc.
let me try to bring you up to date
on a few of the things that have
happened. '

Plrst of course, I took
over as President at the July
meeting. Mark DeNardo who has
been heading our group for the
last few years felt his job was
taking more of his time and wanted
to limit his involvement. He will
continue to bring the clubs'
system to the meetings and provide
or co-ordinate demos for us as
much as possible. Jeff Bleam, who
has been handling one of our disk
libraries, will also now be our
Vice-President. Ann Halko and
Barbara Rejiclian agreed to remain
as our Secretary and Treasurer for
another term. Jack Zawediuk has
graciously agreed to be the
newsletter editor.

At the July meeting a motion
was passed to establish a seperate
class of membership for cassette
users at $12 with no initation
fee. These members will have
access to the cassette library
only and can move up to the
regular (disk) membership with the
payment of an additional $12.

Thls should help us to get
some of those younger TI owners
who have never expanded their
systems to join and make use of
our organization. Remember we have
several hundred programs on
cassette and almost no one making
use of them. PLEASE pass the word
on to others you know who have
TI's or may have put them up on
the shelf.

Conference Room A-D, Second Floor
Sacred Heart Hospital

4th and Chew Streets

Allentown, Pennsylvania

Attendance at the August meeting
was small but Mark DeNardo gave a
demo of TI/Funlwriter and showed how
to make use of these programs
without going back and forth between
the editor and formatter.

A group of us are planning to
attend the TI Computer Expo in
Harrisburg on Sat Sept. 12 and will
report on it at the Sept. 2ist
meeting.

Remember, we're still meeting
the 3rd Monday of each month at the
address listed at the top of this
newsletter. Alsc up there are the
names of the officers, the editor
and our phone numbers. Use them for
any questions. 1 hope to see most of
you returning to the meetinas this

fall. S
EDITOR ... ;

I first want to apologize for not
writing a newsletter last month.
Having two weeks vacation, both of
which I spent in the mountains and a:
week of car repalrs, ate up the
month kind of fast. One thing about
the mountains you get time to catch
up on your reading. The many news
letters I read brought a lot of new
information and programs being
offered. One program I sent for
just came this week. It's PRINTIT by
Rodger Merritt. It does banners,
titles (or letterheads) in fancy
fonts with graphics, catalogs any
disk, and prints a catalog or label
in subscript. It will also print
graph paper. Included on the disks
are programs to design your own
fonts and graphics. I havent used it
much yet but so far I find it eazy
to follow the menus. and get it to
print out the samples. I know
you've all heard this before hut,

Page 2

It's not impossible for you to write
something for this newsletter! It
doesn't take THAT LONG to write down
what you think about a program. We
don't need a punch by punch review.
A few lines do help others decide if
they can make use of a program. If
you are not into reviews how about
a comment on anything computer
related. You can share the your
knoledge on disks, drives, modem,
console, or anything, good or bad.
It helps others very much to know
before they buy.

Don't tell yourself your going to
do it, DO IT!!!

SAMPLEiaRa bl 76467 § #

FILES FREE 692 USED 28

P ILENANE .lll FmTP VILENANE WIZE runuwp

B MR MW T IAR

HOME SECURTY SYSTEM

How about a home security system
for under $100.00 ? How about under
$850.00 ? Do I have your attention
now ?7 Well you may be well on your
way to accomplishing it.

The hardware and software
project I'm propos. ing will start
with a bare console (we don't want
to tie up your expanded system), and
a few locally available parts. 1If
you, like I . have a spare console
or maybe you're one of the many who
bought your TI during the big
sellout and still havent found a use
for it, this series may be for you.

The basic system I have in mind
will require a console, some sort of
entry keypad , switches at required
doors and-or windows and an
amplifier and speaker to sound the
alarm.

This might sound a bit like we're
sarting to get in deep but just a
keypad at the front door will start
a burgler thinking.

I'm going to try to keep the
basic system as simple and the cost
as low as possible. As we progress
I hope to expand with LED'S at the
keyboard, to tell you when the
systems armed. Maybe even speach to
tell you it's armed. Hopefully I or
someone can work out an internal
clock with the possibility of
turning lights on and off. Another
project will be battery backup for
power failures.

LEHIGH 99'ER

What I have in mind is tapping
into the keyboard, primarily the
numeric keys and hooking up a keypad
at the front door. You don't even
have to use all the digits just four
can give you many combinations. 2314
134234231 as many as you like. The
door and window switches can be
connected to any other key. We will
also need an amplifier and speaker.
We will use the audio out, amplify
it to produce a alarm sound at the
speaker.

Other security systems don't give

you the programmable options we will -

have. With this system you can
change your access code as often as
needed. If you go on vacation and
have a frend or neighbor watching
your house you can easlily change the
code to one they want and change it
back when you return. Or how about
speech? When someone is punching in
the wrong codes the computer can
tell them (THIRD TRY-ALARM WILL
SOUND IF YOU TRY TO ENTER-WAIT TEN
MINUTES BEFORE RETRY). What about
an automatic dialer to the police?

Next month hopefully, I'll have
the basic program writen , them 1I'il
start working on the hardware. (no I
don't have a system built yet but I
have confidence it will work)

Any comments or ldeas please
don't hesitate to call.

Jack Zawediuk
719 N. 12TH. ST.
Allentown, PA.
18102
(215) 821-1043

FOTH fOOTwwhvﬂ

FMS FOR FLIN KEY
l lBﬁ[H OF KREYBORRD

2 WIRES 1O
FEPMRLE JALCK
RADID SHACK
PRRT 44-610

FOOT SUYITLCH
——ARALE JALK

September, 1937 __

September, 1987

Computer Survival Column

You own a computer (A TI99/4a) and
the manufacturer decides to stop
making that model. What do you do?

Well first you should look at why
you bought the computer in the first
place. Did you buy it to learn? Or
did you buy it to write programs or
letters? Or did you just buy it (or
receive it) because they were really
cheap at the time?

Well now that you answered that
question, you can now answer some
more. If you said something other
than because it was cheap, or you've
now used it for more than because it's
cheap, then let's continue to explore
how to survive with your Orphaned
Computer.

I']ll zero in on the TI and my
thoughts on how to survive, even after
several years being orphaned.

If you have an expanded system (at
least a disk system), then consider
making sure it has all the
capabilities you'll need in the future
before the devices start to disappear.
The following list is probably the
hardware you want to get.

1) printer port (PIO) 2) Serial
port (RS232)

normally with 1) 3) 32K
Expansion

These devices will open your system
to any printer, any modem and the £full
power of the TI system (Extended
Basic) respectively. These are
important to be able to use your
computer to its full capability.

Now that you have decided to expand
your system, we'll talk about
software. TI Extended Basic (or any
of the other mfg's new EXB's) is the
essential primary software you'll
need. It will open you system to many
of the good software programs you that
will make your computer useful.

Next you'll need a word processor
to write letters. This according to
surveys is the primary use of a home
computer. The most popular for the TI
are TI-Writer, Funnel Writer. Both
require 32K and a Disk System. Funnel
Writer requires EXBasic.

Continued on Page 8

*31 uo suaq

-wnu 3uoyd 3INd uaAad PINOD nod--auayl Ind 03 juem JY61w NOA uoijew.iojul

jarlotte TI 99/4a Users Grqup

LEHIGH 99'ER

FAST TERM OVERLAY

*aje(d ut atl{ mou

ayj
*Aeuano senbad ayy Joj 0[S S, ,J4aINdwod

J3yl0 JBA33IPYM JO) 3JP. SAPIS Ay} uo ,strey,

pInoys Aetl4ano a8y3 30 3ISaJs 3yl

ay3 o3ul umop druls syl jo abpa wo3ljoq ayjl apris ued noA ‘acetd ut
Ae{J3A0 3y} 3Ind NOA uaym pue *‘dtu3s HLI/NLIS 343 $0 SPud ayjl e saut]

*3N0 3T 3INI UaAYI--"333 *}J03S UBACI--Jaded sataeay

pajjop ay3y duug

*abed sty3 40 Ino Iybtru N>

sAR1J43A0 (N4 © 3Ew pue Ja3jjzaq auo

40 asatd ¢ uo 3t ajsed noA 3sabbns |

3q ued apis ayy e weubetp ayj

*ua} 40

*AG awo3 03 Asea Afdtej aue sdrulsg

Asas weuboud e una 3 ,U0p NOA 41 Alre1dadsa ‘3sfuosy 03 Asea st 31
*S3p03 3y} pPaJalsew [[1Iun ‘altym @ Jojy uajindwad ayj Jeau p.ed

wayy ob prnom 1 3ybnoyy 1

Ing

sJ3quawal 03 3ITNI1441p aJe 3WOS 404 Ydtlym pJeoq 3yl

GXs © pey [
punoJe SuOTIRUTIQWOD A3y snoJawnu Butaey

‘weuboud e yns St waadj 3Ise4

6oud

SNOt4eA 30 Ae(J4an0 uabuer e @yt pInom I 3Iybnoyly ualjo aaey |

*SUO13JUN} [B133dS 3ABY MOJ O3} 3y} UPYY J3UJ0 SA3: ydtym Ul Swed

sSww T3 343Q0y AQ

Page 3
elelel. I
b Lled 1
88N~
Fepx-
nYIe
ow |ohon
53 |a~an
r C an
o -0
©D
ww | MOMO0
29 o404
78 [Jdxzx>
me (zrzrr
22 lan<zo
-3
G Dt T
53 |83
n< [l Mok &4
5| ?34
v
wm - 30
o o na
m - - O)
X r
-] m
== |nnm =
E3 |ann o
Z3 | A=t
o - 2Z2Z 2
[By ¢ -e -
PI2l.p2 9
2. HN N
s v -t -4
o w4
3 - ©
T8 | 3YZ2rr
. o | MDIDOO
-3 |§zRon
83 | p4_und
- 0n M40
o< |moO=d>Q
3w oroxe
> |gxm-r
TS [Zm ~m
-2 m
Ox Z ~
22| 8
om v
® 5 |onmmm
oec | 0000
D | Dttt
5T |FZZZ2
5: ogz-m
.
= |
— v
Zs | =2
Z O T e
[= IS zx
€8 | » &m
v o
@ jow E
2 |sq
S I m
- |- mn
oo -
<
===~ "'m
nm
2 00
——
X Z2Z
rx

e e B AR R v

foovie
| Page 4

|

PUNNBLVEB FARM EXTENDED BASIC TUTORIAL
PART 1

Extended Basic Tutorials from FUNNELVEB FARM

1. INTRODUCTION

In this series of notes on TI Extended Basic
for the TI-99/4A ve wvill concentrate on
those features vhich have not received due
attention in User-group nevsletters or
commercial magazines. In fact most of the
programs published in these sources make
little use of that most poverful feature of
XB, the user defined sub program, or of some
other features of XB. Vorse still is to
find commercially available game programs
wvhich are object lessons in hov to vrite
tangled and obscure code. The trigger for
this set of tutorial notes vas a totally
erronecus comment in the TI.S.H.U.G
Nevsdigest in June 1983. Some of the books I
have seen on TI Basic don’t even treat that
simpler language correctly, and I don’t knov
of any systematic attempts to explore the
vorkings of XB. The best helper is TI's
Extended Basic Tutorial tape or disk. The
programs in this collection are unprotected
and so open for inspection and it’s vorth
looking at their listings to see an example
of hov sub programs can give an easily
understood overall structure to a progras. .

Vell, wvhat are ve going to talk about then?
Intentions at the moment are to look at: (1)
User-defined sub programs (2) Prescan svitch
commands (3) Coding for faster running (4)
Bugs in Extended Basic (5) Crunching program
length (6) XB and the Peripheral Box (7)
Linking in Assembler routines

Initially the discussion will be restricted
to things vhich can be done vith the console
and XB only. Actually, for most game
programming the presence of the memory
expansion doesn’t speed up XB all that much
as speed still seems to be limited by the
built-in sub programs (CALL COINC, etc)
vhich are executed from GROM through the GPL
interpreter. The real virtue of the
expansion system for game programming, apart
from alloving longer programs, is that GPL

. can be shoved aside for machine code
routines in the speed critical parts of the
game, vhich are usually only a very small

part of the code for a game. Even so,
careful attention to XB programaing can
often provide the necessary speed.

LEHIGH 99'BR

*

September, 1587

As an example, the speed of the puck in .
TEX-BOUNCE 1is e factor of 10 faster in the
finally released version than it vas in the
first pass at coding the game.

Other topics wvill depend mainly on
suggestions from the people folloving this
tutorial series. Othervise it will be

vhatever catches our fancy here at Funnelveb
Farm.

II. Sub programs in OVERVIEV

Every dialect of Basic, TI Extended Basic
being no exception, allovs the use of
subroutines. Each of these is a section of
code vith the end marked by & RETURN
statement, vwvhich is entered by a GOSUB
statement elsevhere in the program. Vhen
RETURN is reached control passes back to the

statement folloving the GOSUB. Look at the
code segments.

2000

L KEY(Q,X,Y):: IF Ya=l
RETURN ELSE 2000

be called from a number of places in
_iVery useful, but there are
the 1line number of the
subroutine _ other than by
RESequencing ' gf the vhole program (and many
dialects of Basic for microcomputers aren’t

even that héﬂpful) then the GOSUBs vill go

astray. Another trouble, which you usually
find vhen you resume vork on a program after
a lapse of time, is that the statement GOSUB
2000 doesn’t carry the slightest clue as to
vhat is at 2000 unless you go and look there

or use REM statements. Even more confusingly
the 2000 vill usually change on

RESequencing, hiding even . that aid to

memory. There is an even more subtle problem

-- you don’t really care vhat the variable

"Y" in the subroutine vas called as it vas

only a passing detail in the subroutine.

Hovever, if "Y" {8 used as a variable

anyvhere else in the program its value vill

be affected.

problems. I

The internal vorkings of the subroutine are
not separated from the rest of the program,
but XB does provide four vays of isolating
parts of a prograa.

= | -

i

PR
September, 1987

“(1) Built-in sub programs

(2) DEF of functions

(3) CALL LINK to machine code routines
(4) User defined BASIC sub programs
The first of these, built-in sub programs,
are already vell knovn from console Basic.
The important thing is that they have
recognizable names in CALL statements, and
that information passes to and from the sub
programs through a vell defined list of
parameters and return variables. No obscure
Peeks and Pokes are needed. The price paid
for the pover and expressiveness of TI Basic
.and XB 1is the slowvness of the GROM/GPL
implementation.

DEF function is a primitive form of user
defined sub program found in almost all
BASICs. Often its use is restricted to a
special set of variable names, FNA,FNB,...
but TI Basic allows complete freedom in
naming DEFed functions (as long as they
don’t clash with variable names). The
*dummy"” variable "X" is used as in a
mathematical function, not as an array index

100 DEF CUBE(X)=X#X#X

doesn’t clash wvith or affect a variable of
the same name "X" elsevhere in the program.
"CUBE" can’t then be a variable vhose value
is assigned any other vay, but "X" may be.
Though DEF does help program clarity it
executes very slovly in TI Basic, and more

slovly than user defined sub program CALLs
in XB.
CALL LINK to machine code routines goes

under various names in other dialects of
basic 1f it is provided (eg USR() in some).
It is only available in XB vhen the memory
expansion is attached, as the TI/994A
console has only 256 bytes of CPU RAM for
the TMS9900 1lurking in there. Ve will take
up this topic later.

You should have your TI Extended Basic
Manual handy and look through the section on
sub programs. The discussion given |is
essentially correct but far too brief, and

leaves too many things unsaid. From
experiment and experience I have found that
things wvork just the wvay one would

reasonably expect them to do (this is not
alvays so in other parts of XB). The main
thing is to get into the right frame of mind
for your expectations. This process is

LEHIGH 99'ER

Page 5

helped by figuring out, in general terms at
least, just hov the computer does vhat it
does. Unfortunately wmost TI99/4A manuals
avoid explanations in depth presumably in
the spirit of “Home Computing”. TI's
approach can fall short of the mark, so ve

are nov going to try to do vhat TI chickened
out of.

The user defined sub program feature of XB
allovs you to vrite your own sub programs in
Basic which may be CALLed up from the main
program by name in the same vay that the
built-in ones are. Unlike the routines
accessed by GOSUBs the internal vorkings of
a sub program do not affect the main program
except as alloved by the parameter list
attached to the sub program CALL. Unlike the
built-in sub programs vhich pass information
in only one direction, either in or out for
each parameter in the 1list, a user sub
program may use any one variable in the list
to pass information in either direction.
These sub programs provide the programaing
concept knovn as “procedures” in other
computer languages, for instance Pascal,
Logo, FORTRAN. Lack of proper "procedures"
has alvays been the major limitation of
BASIC as a computer language. TI XB is one
of the BASICs that does provide this

~ facility. Not all BASICs, even those of very

recent vintage are so civilized. For example
the magazine Australian Personal Computer in._
an older issue (Mar 84) carried a reviev of
the IBM PCjr computer just released in the
US. The Cartridge Basic for this machine
apparently does not support procedures.

Perhaps IBM doesn’t really vant or expect
anyone to program their owvn machine
seriously in Basic. You will find that with
true sub programs available, that you can’t
even conceive any more of hov one could bear
vriting substantial programs without them
(even vithin the 14 Kbyte limit of the
unexpanded TI-99/4A 1let alone on a machine
vith more memory).

The details of hov procedures or sub
programs vork vary from one language to
another. The common feature is that the
variables within a procedure are localized
vithin that procedure. Hov they communicate
vith the rest of the program, and vhat
happens to them vhen the sub program has run
its course varies from language to language.
XB goes its ovn vell defined vay, but is not
at all flexible in how it does {t.

(

/

Page 6

_ program names

Nov let’s look at hov Extended Basic handles
sub programs. The RUNning of any XB program
goes in tvo steps. The first is the prescan,
that interval of time after you type RUN and
press ENTER, and before anything happens.
During this time the XB interpreter scans
through the program, checking a fev things
for correctness that it couldn’t possibly
check as the lines vere entered one by one,
such as there being a NEXT for each FOR. The
TI BASICS do only the most rudimentary
syntax checking as each line is entered, and
leave detailed checking until each line is
executed. This is not the best vay to do
things but ve are stuck vith it and it does
have one use. At the same time XB extracts
the names of all variables, sets aside space
for them, and sets up the procedure by vhich

it associates variable names vith storage

locations during the running of a progras.

Just hov XB does this is not immediately
clear, but it must involve a search through
the variable names every time one |is
encountered to trade off speed for economy
of storage. :

XB also recognizes vhich built-in sub
programs are actually CALLed. Hov can it
tell the difference betveen a sub program
name and a variable name? That’s easy since
built-in sub program names are alvays
preceded by CALL. This is vhy sub prograa
names are not reserved vords and can also be
used as variable names. This process means
that the slov search through the GROM
library tables is only done at pre-scan, and
Basic then has its ovn list for each program
of vhere to go in GROM for the GPL routine
vithout having to conduct the GROM search
every time it encounters a sub program name
vhile executing a program. In Command Mode
the computer has no vay provided to find
user defined sub program names in an XB
program in memory even in BREAK status. XB
also establishes the process for looking up

the DATA and IMAGE statements in the
program.
Vell then, what does XB do vith user sub

of all XB locates the sub
that aren’t built into the
language. It can do this by finding each
name after a CALL or SUB statement, and then
looking it wup -in the GROM library index of
built-in sub program names. You can run a
quick check on this process by entering the
one line program™ 100 CALL NOTHING

programs? First

LEHIGH 99'ER

o~
September, 1987

TI Basic wvill go out of its tiny 26K brain
and halt execution with a BAD NAME IN 100
error message, vhile XB, being somevhat
smarter, vill try to execute line 100, but

halts vith a SUBPROGRAM NOT FOUND IN 100
message.

The XB manual insists that all sub program
code comes at the end of the program, with
nothing but sub programs after the first SUB
statement (apart for REMarks vhich are
ignored anywvay). XB then scans and
establishes nev variable storage areas,
starting with the variable names in the SUB
xxx(parameter list), for each sub program
from SUB to SUBEND, as if it vere a separate
program. It seems that XB keeps only a
single master list for sub program names no
matter vhere found, and consulted vhenever
the interpreter encounters a CALL during
program execution. Any DATA statements are
also thrown into the common data pool. -

Try the folloving little program to convince

. yourself.

100 DATA 1

110 READ X :: PRINT X 33 READ X s: PRINT X
120 SUB NOTHING

130 DATA 2

140 SUBEND

Vhen you run this program it makes no
difference that the second data ites is
apparently located in a sub progras. Images
behave likevise. On the other hand DEFed
functions, if you care to use them, are
strictly confined to the particular part of
the prograa in vhich they are defined, be it
main or sub. During the pre-scan DEFed names

are kept vithin the allocation process
separately for each subprogram or the main-
progran.

Once again try a little programming

experiment to illustrate the point.

100 DEP X=1 :: PRINT X;Y :: CALL SP(Y)

:: PRINT X;Y
110 SUB SP(2) :: DEP X=2 :: 2aX :: DEF Y3
120 SUBEND ‘

This point is not explicitly made in the XB
manual and has been the subject of
misleading or incorrect comment in magazines
and nevsletters. A little reflection on hov
XB handles the details will usually clear up
difficulties.

e |

September, 1987

TI BASICs assign nominal values to all
variables mentioned in the program as part
of the prescan, zero for numeric and null
for strings, unlike some languages (some
Basics even) which wvill 1issue an error
message if an unassigned variable is
presumed upon. This means that XB can’t work
like TI LOGO which has a rule that {f it
finds an undefined variable within a
procedure it checks the chain of CALLing
procedures until it finds a value. Howvever,
unlike Pascal vhich erases all the
information 1left within a procedure vhen 1t
is finished vith it, XB retains from CALL to
CALL the values of variables entirely
-contained in the sub program. The values of
variables transferred into the sub program
through the SUB paraseter list will of
course take on their nevly passed values
each time the sub program is CAlLed.

A little program vill shov the difference.

100 FOR I=1 TO 9 :: CALL SBPR(O):: NEXT I
110 SUB SBPR(A):: A=A+1::BuBel::PRINT A;B
120 SUBEND

The first variable printed is reset to O
each time SBPR is called, while the second,
B, is incremented from its previous value
each time. Array variables are stored as a
vhole 1in one place in a program, vithin the
main program or sub program in vhich the
DIMension statement for the array occurs. XB
doesn’t tolerate attempts to re-dimension
arrays, so information on arrays can only be
passed dovn the chain of sub programs in one
direction. Any attempt by a XB sub program
to CALL itself, <either directly or
indirectly . from any sub program CALLed from
the first, no matter hov many times removed,
vill result in an error. Recursive
procedures, an essential part of TI LOGO,
are NOT possible with XB sub programs, since
CALLing a sub program does not set up a newv
private library of values.

All of this discussion of the behavior of TI
Extended Basic comes from programming
experience wvith Version 110 of XB on a
TI99/4A with 1981 title screen. Earlier
Versions and consoles are not common in
Australia, but TI generally seems to take a
lot of trouble to keep newv versions of
programs compatible with the old. On the
other hand TI has also been very reticent
about the details of how XB wvorks. The
Editor/Assembler manual has very little to

LEHIGH 99'ER

Page 7

say about it, less by far even than it tells
about console Basic. I am not presently
avare of any discussion of the syntax of the
Graphics Programming Language (GPL), 1let
alone of the source code for the GpL
interpreter vhich resides in the condole ROK
of every 99/4A.

Another "simple programeing experiment will
demonstrate vhat ve mean by saying that XB
sets up a separate Basic program for each
sub program. RUN the folloving

100 X=1 331 CALL SBPR :: BREAK

110 SUB SBPPR. 1: X=2 :: BREAK 1: SUBEND

Vhen the program BREAKS examine the value of
variable of X by entering the command PRINT
X, and then CONtinue to the next program
BREAK, which this time vill be in the main
program, vhere you can once again examine
variable values.

Ve wvill nov summarize the properties of XB
sub programs as procedures in complete XB
programs, leaving the details of joining up
the various procedures to the next section.
(a) XB treats each sub program as a separate
program, building a distinct table of named
(REFed) and DEFed variables for each.(b) All
DATA statements are treated as being in a
common pool equally accessible from all sub
programs or the main program as are also
IMAGE statements, CHARacters, SPRITEs,
COLORs, and file specifications.(c) All
other information is passed from the CAlling
main or sub program by the parameter lists
in CALL and SUB statements. XB doesn’t
provide for declaration of common variables
available on a global basis to all sub
programs as can be done in some languages.
(d) Variable values confined vithin a sub
program are static, and preserved for the
next time the sub program is CALLed. Some
languages such as Pascal delete all traces
of a procedure after it has been used.

(e) XB sub programs may not CALL themselves
directly or indirectly in a closed chain.
Subject to this restriction a sub program
may be CALLed from any other sub program.
(f) The MERGE command available in XB with a
disk system (32K memory expansion optional)
allovs a library of XB sub programs to be
stored on disk and incorporated as needed in
other programs.

THE END FOR NoOV.

Page 8 ,
Continued from Page 3

The Next most useful program is a
spreadsheet program. There is only
Multiplan (from TI) available for us.
It functions exactly like it does for
all other versions of Multiplan for
other computers. Any books written to
help learn it on any computer will
work on the TI. If you look around you
should be able to get it for under
830.

The next most important thing to do
is to join a Users Group. Here you can
get much help understanding your
Orphan. There also you will normally
£ind libraries of programs. Copywrited
programs that you can evaluate, and
determine if a program fills your
needs. If so you can buy for full
time use or borrow it if you only need
it occasionally. Shareware and Public
Domain programs which you can get for
a donation to the author if you decide
to use it. (By the way, now that the
manufacturer has abandoned you, other
users are your best source for
softwvare)

LEHIGH 99'ER

September, 1287

You can do quite a bit with an
Orphaned computer using the existing
software and hardware. You don't
always need the latest computer to be
able to use use it.

As with any purchase, you must use
common sense when deciding what to buy
or how to add to your computer. Be
sure you think any purchase out. "Buy
with your head not over it." Be sure
to check prices so you don't spend too
much for your expansions.

>M. De Nardo

sprite one liner
by Barron Bartlett

Want to frustrate and amaze your Atari, Apple,
VIG20 and Color Computer friends? Type in the
following in the command mode with Extended Basic.

CALL CLEAR :: CALL SCREEN(5): CALL MAGNIFY(2):
FOR Is1 TO 28 :: CALL SPRITE(#],64+1,16,80,80,3%1,8)::
NEHT I : FOR J=1 TO 5000 :: NEKT J

Hit ENTER and watch all 28 sprites do their tricks.
If you want to see it again, simply hit function
REDO, then ENTER again as many times as you wish.

0O DD D O B8 OO P2 B8 N DD PO DD D B8 P8 B 8 0D DS DD P8 08 DD D DS BSOS 0 B8 Pl P)OS P8 Ot O Ot) B8 IS B8 0D N1 B8 P8 D DD B0 B8 P DS B DD B P P D .89 08 B 08 D8 B8 P8 PO N B9 N P N 80 09

LEHIGH 99'ER COMPUTER OROUP
P.O. Box 4837 ®* 1501 Lehigh 8t.
Allentown, PA 18103

