

VID28 Series Stepper Motor

Description

VID28-XX series

Is a precise stepping motor of patent design, with a reduction ratio of 1/180. It's an innovation products based on our company product VID29-xx, and it can drive two point independently, this motor could help dashboard designer save space in dial surface design and benefit for new concept design. It's mainly used in dashboard instrumentation or other digital indicator equipments, to transfer digital signals directly and accurately to analog display output.

VID28-XX series

Is driven by dual signals of 2 sequent logic pulse. It can be driven in $3.5V \sim 10V$ providing shaft stepping angle resolution $1/12^\circ$. The pointer can move with a speed more than 500Hz.

VID28-XX series

A new and modern design increase high efficiency, high position accuracy and extremely robust gear system. The special gear shape is helpful to decrease friction and noise. It chooses appropriate material for each component to increase durability and safety of the motor. All these futures enhance VID motor's stability and long life time.

The main features are:

- High µ-step resolution: 1/12°.
- Wide working voltage: 3.5~10V.
- Wide working temperature: -40~105°C.
- Low current consumption: less than20mA, 5V, 2X100mW.
- Extremely robust construction: 64mm×35mm×9.2mm.
- Liability and long life guaranteed.
- Directly driven by a µ-controller.

Typical application:

perfect combination of digital accuracy and analog facility

© 2005 HONG KONG VID COMPANY LIMITED Email: <u>vid.info@wellgain.com</u> | Website: <u>www.vid.wellgain.com</u>

Step Definition and Rotor Movement

VID28- \times × series is driven by dual signals of 2 sequent logic pulse singnals and the outer shaft is Its work diagram is as following:

In order to make the motor run more stablely and reduce its noise, micro stepping technology is recommended. The micro pulse sequence which is more precise and near to sine wave, which could drive motor with 1/12° micro step of the pointer. The diagram is as following:

For more details about the micro stepping driving signals, please see specified files.

Absolute Maximum Ratings

Driving voltage (Ub)	.10V
EMI tolerance (1 kHz;AM 80%; 100 kHz - 2 GHz)	80 V/m
Solder temperature (10 sec)	380°C

Electrical and Mechanical Characteristics

1. The electrical and mechanical characteristics of inner shaft refer to VID29 spec.

2. The following list is only for out shaft

Parameter	Symbol	Test Conditions	Min.	Тур.	Мах	Units
Electrical Charac	cteristic	S				
Operating Temperature	Ta		-40		105	°C
Coil Resistance	R₅		260	280	300	Ω
Operating Current	I _m	f _a =200Hz			20	mA
Start-Stop Frequency	f _{ss}	$J_{L}=0.2x10^{-6}kgm^{2}$	125		125	Hz
Maximum Driving Frequency	f _{mm}	J _L =0.2x10 ⁻⁶ kgm ²	400		400	Hz
Mechanical Char	acterist	ics				
Dynamic Torque	M200	f _a =200Hz		1.1		mNm
	M400	t _a =400Hz		0.7		mNm
Static Torque	Ms	U _b =5V	3.5	4.0		mNm
Equivalent Motor Inertia @ Output	J _m			5.064 E-7		Kgm ²
Gear ratio				180:1		
Step size in full step mode				1		Degree
Step size in partial step mode				1/3		Degree
Step size in micro step mode				1/12		Degree
Backlash				0.7	1.2	Degree
Noise						
		@100°/sec		34		
Noise Level	SPL	@200°/sec		41		dBA
		@400°/sec		44		

 T_{amb} =25°C, In micro step mode @ Max. voltage 4.2V, unless other specified.

© 2005 HONG KONG VID COMPANY LIMITED

Email: vid.info@wellgain.com | Website: www.vid.wellgain.com

Others							
Angle of	Inner Shaft	@400°/se	Motors with		315	Degree	
Rotation	OuterShaft	С	internal Stop		280	Degree	
Force allo	wed on the						
pointe Axial for Axial for Perpendic Imposed a	r shaft: ce (push) rce (pull) cular force acceleration	Fa Fa Fq α _₽			60 60 6 1000	N N rad/s ²	
Number o pointer	of allowed insertion				1	Times	

Note: f_a – full-step frequency J_L – Load inertia

Driving Pulse and Control Circuit

Partial-Step Driving Mode

In partial-step driving mode, the motor can be directly driven by a standard logic voltage level with less than 20mA current consumption. The bit-time sequence determines the turning direction of the motor. The time sequence diagram is as following:

Driving Pulse in Partial Mode

Driving Diagram in Partial Mode

μ-Step Driving Mode

In μ -step driving mode, the motor can be driven by a current-level sequence. A μ -step is a 0.083° of pointer. The driving pulses consist of many different current level pulse sequences. The μ -step provides the pointer shaft continuous, smooth movement.

Example of driving Pulses in µ-step Mode

© 2005 HONG KONG VID COMPANY LIMITED Email: <u>vid.info@wellgain.com</u> | Website: <u>www.vid.wellgain.com</u>

In general the peak amplitude should be between 12.9mA and 16.07mA.

Suggested Installation

The VID29 can be easily installed. The four contact pins can be soldered on PCB circuits. If the application is subject in very strong vibrations, screws might be necessary. **Installation Diagram**

Pin Connection

VID28-XX Pin Connection

Schematic

© 2005 HONG KONG VID COMPANY LIMITED Email: <u>vid.info@wellgain.com</u> | Website: <u>www.vid.wellgain.com</u>

Typical torque and noise

Torque in micro step driving mode, @ Max voltage U_b= 4.2V

Temperature

Reliability Test (stepper motor)

Temperature Cycle Test

- Low Temperature:-40°C±2°C
- High Temperature:+105°C±2°C
- Dwell time:1 Hrs/each
- Transfer Time: 1.5 hrs
- Cycle:50 Cycles
- Motor Status : running
- The test was carried out accordin IEC68-2-14 and PF-9688(DaimlerChrysler) Temperature change like the following curve

Thermal Shock Test

- Low Temperature:-40°C±2°C
- High Temperature:+85°C±2°C
- Dwell time: 30 Minutes/each
- Transfer Time: within 30 seconds
- Cycle:100 Cycles
- Motor Status: non-running
- The test was carried out according to IEC68-2-14 and PF-9688(DaimlerChrysler)

Humidity Test

- Temperature:+50°C±2°C
- Humidity:94±2%RH
- Duration:144 Hrs
- Motor Status: non-running
- The test was carried out according to IEC68-2-3 and PF-9688(DaimlerChrysler)

High Temperature Test

- Temperature:+105°C±2°C
- Duration:168 Hrs
- Motor Status : running
- The test was carried out according to IEC68-2-2 and PF-9688(DaimlerChrysler)

Mechanical Vibration Lest

- Pulse shape:sine pulse form
- Range of frequency:5Hz \sim 200Hz(logarithm sweep)
- Sweep cycle: 315 sec.
- Direction:X.Y axis
- Duration:8 hrs /each Direction
- Acceleration : 6 g
- Motor Status : running
- The test was carried out according to IEC68-2-6

Frequency change with time :

Mechanical Shock Test

- Height: 1 m
- Direction:X/Y/Z
- Motor Status : non-running
- The test was carried out according to IEC68-2-62 and ISO 1

© 2005 HONG KONG VID COMPANY LIMITED Email: vid.info@wellgain.com | Website: www.vid.wellgain.com

2

Packing Sketch Map

Tray for 50 stepper motors VID28 Material : PP Weight : Tray 1x210g=210g Motors 100x9g=900g Total 1110g	
Stack for 500 motors VID28: Material : 11Trays (including Cover) strappedtogether with plastic band Weight : Trays 10x1110g=11100g Cover tray 1x210g=210g Plastic strap 2x15g=30g Total 11340g	
Master-carton for 500 motors VID28:Material : cardboard710g/mWeight : Master-carton1x900g=900gPE bag2x50g=100gProduction1x11340g=11340gPE4x60g=240gTotal12580g	
A cardboard of motors 12580g Plastic strap 2x15g=30g Total 12610g	