
ColdFire Ethernet
By Eric Gregori

1.0: Embedded Ethernet

 Ethernet has become a reality for low cost embedded systems. The Ethernet
standard (ieee 802.3) was originally designed for networking computers over Local
Area Networks. The standard has become so popular that it is currently hard to find a PC
or laptop without a Ethernet port. The ieee802.3 specification (Ethernet) defines a
mechanical/electrical connection between devices (physical layer), and a multi node
addressable communications protocol (MAC layer).

1.1: The Ethernet Physical Layer

 The Ethernet physical layer defines the physical connections between nodes. The
802.3 standard defines many physical layers including everything from coaxial cable to
fiber optics. An through the years, the common choice has changed drastically from
thick multi stranded cables with large connectors (called thicknet) to the small RJ-45, 8
pin connector we are use to today.
 The common modern copper physical layer is referred to as 100Base-TX. This
copper based twisted pair medium contains 8 wires grouped in 4 twisted pairs. 2 twisted
pairs are used for communications in each direction. The cable is referred to as a
category 5 (cat 5 for short). The category 5 standard defines a cable consisting of 4
twisted pairs capable of carrying frequencies up to 100mhz .

The modern Ethernet jack

Most modern building and residents are wired using Category 5 cables for their

PC networks and broadband. Making this an ideal medium for distributed
processing/sensing in a building or residential environment.

1.2: The Ethernet MAC layer

 The MAC (Media Access Control) protocol layer defines the communication
that occurs over the physical layer. Ethernet is a multi node protocol , so each node has a
unique address. This address is defined in the MAC layer. For Ethernet, MAC addresses
are 48 bits long (6 bytes or octets). The devices MAC address never changes, usually it
is programmed at the factory. The MAC address must be unique, so MAC addresses are
managed/distributed by the ieee.
 The MAC address, along with various other fields is contained in the Ethernet
MAC header. As the name implies, the header sits in front of the Ethernet packet. It
contains the MAC address of the source node, along with the MAC address of the
destination node, and a type field.

Preamble Destination
Address

Source
Address

Frame
Type

Frame
User Data

FCS
Checksum

8 Bytes 6 Bytes 6 Bytes 2 Bytes 46 – 1500 Byte 4 Bytes

Ethernet MAC header

 Ethernet can be used directly without any additional layers. It provides a simple
point to point communication mechanism, with some error checking (FCS checksum).
Ethernet by itself does not provide the higher levels of communications robustness we
have become accustomed to. Additional layers are required to add features such as:
multiple ports, packet re-transmission, packet timeouts and connections. These
additional layers are defined by the 7 layer OSI model.

1.3: 7 Layer OSI model

 The 7 layer OSI model defines the functions of the various layers in a
communication stack. The lowest layers (Physical and MAC / Data Link layers) are
traditionally implemented in hardware. The 5 layers above the MAC / DDL are usually
implemented in software.
 The network or IP layer (for a TCP/IP stack) provides an additional layer of
addressing (the IP addresses we are use to xx.xx.xx.xx) and multiplexing. Multiplexing
splits a single communications channel into multiple time divided communications
channels (ports in TCP/IP lingo).
 The transport layer adds the most critical feature to the communications stack.
The transport layer is the tcp in tcp/ip. This layer is responsible for creating a virtual
connection between 2 logical points (not nodes). The logical points are referred to as
sockets. The sockets API is actually defined by the session layer.
 Finally, the application layer. This application defines the common protocols
used on the internet; http, smtp, tftp. This layer can also be used for custom protocols.

Physical Layer (10BaseT / 100BaseT)

Data Link / MAC Layer (Ethernet)

Network Layer (IP)

Network Layer
(ICMP)

Transport Layer
(UDP)

Network Layer
(ARP)

Transport Layer
(TCP)

Application Layer
(HTTP/TFTP/DNS/…)

Application
Layer

(DHCP)

Session/Presentation Layer
(Socket Interface)

7 Layer OSI model

2.0: The ColdFire family of Microcontroller

 The ColdFire family of Microcontrollers are based on the 32 bit ColdFire cores.
The ColdFire core is available in 4 varieties, each a superset of the core below it. The
cores are completely scalable, with the differences being additional instructions or add on
modules (MMU for instance). The V1 core contains the base register and instruction set.
The V2 core adds to the V1 core additional instructions and addressing modes, along
with a optional eMAC (Multiply and Accumulate unit).

V4 Core with MMU, I/D - cache, MAC, FPU
410 (Dhrystone 2.1) MIPS at 266 MHz

V3 Core with I/D - cache, eMAC (Multiply and Accumulate)
211(Dhrystone 2.1)MIPS at 240MHz

V2 Core with optional I/D - cache, eMAC (Multiply and Accumulate)
159 (Dhrystone 2.1) MIPS @ 166 MHz

V1 Core
47 (Dhrystone 2.1) MIPS @ 50 MHz

All cores share a common integer register set

16 – 32 bit Data registers (D0 – D7)
16 – 32 bit Address registers (A0 – A7)
32 bit Program Counter
16 bit CCR

The ColdFire cores have scalable instruction sets, features, and performance

2.1: The advantage of a 32 bit architecture

 The true 32 bit architecture of ColdFire Microcontrollers lends itself well to
efficient communication stack data movement. In a communication stack such as TCP/IP
the packet comes in at the bottom of the stack, and propogates up. Data to send, starts at
the top of the stack as a buffer, and works it’s way to the bottom of the stack to be sent
out as a packet.

Movement up and down the stack is an area of inheritant inneficinecy in a
communications stack. To improve efficiency higher performance stacks use pointers
instead of copying the data multiple times (this is sometimes referred to as zero copy).
Pointer arithmetic is significantly more efficient with a 32 bit core using true 32 bit
registers.

This is a big advantage for the ColdFire 32 bit architecture. In addition,
advanced addressing modes with offset capability can make extracting data from
individual fields in a header a single instruction operation.

Application
Layer

(DHCP)

Applica
 HTTP/TF

tion Layer
(TP/DNS/…)

3.0: The ColdFire Fast Ethernet Controller (FEC)

 The FEC module is the ColdFire interface to the Ethernet world. The FEC
module is consistant from the highest performance V4 core based part, all the way down
to the V1 core. This consistency means that drivers written for one Ethernet enabled
ColdFire processor will work on any Ethernet enabled ColdFire processor (memory
allocation would be the biggest difference).
 The FEC module is high performance Ethernet engine with a very rich heritage.
The FEC module started out in the MPC860T. This high performance Power
Architecture based part quickly became a power house in the Ethernet world, going into
high performance routers and telephone equipment. The MPC860T was so popular in the
Ethernet trade that if you make a call today, chances are that somewhere along the route
the voice data of your call will pass through a MPC860T. The MPC860T came out in the
mid 1990’s. The FEC module has been tested and improved upon for over 10 years in
some of the highest performance Ethernet environments. The FEC module from the
MPC860 is now in the ColdFire line of processors.

Physical Layer (10BaseT / 100BaseT)

Data Link / MAC Layer (Ethernet)

 Layer (IP) Network

Network Layer
(ICMP)

Transport Layer
(UDP)

Network Layer
(ARP)

Session/Presentation Layer
(Socket In

Transport Layer
(TCP)

terface)

Data in
buffer

Going up,
each layer
extracts
header

fields from
the packet

Going
down
Each

layers adds
a header to
the front of

the data
in the
buffer

packet

3.1: ColdFire FEC features

• The Ethernet Media Access Controller (MAC) is designed to support
10 and 100 Mbps Ethernet/IEEE 802.3 networks.

• IEEE 802.3 full duplex flow control

• Support for full-duplex operation (200 Mbps throughput)

• Retransmission from transmit FIFO following a collision

(no processor bus utilization)

• Automatic internal flushing of the receive FIFO for runts (collision fragments)

and address recognition rejects (no processor bus utilization)

• Address recognition
— Frames with broadcast address may be always accepted or always rejected
— Exact match for single 48-bit individual (unicast) address
— Hash (64-bit hash) check of individual (unicast) addresses
— Hash (64-bit hash) check of group (multicast) addresses
— Promiscuous mode

• Dedicated DMA controller to allow for packet transmission and reception with no
processor overhead.

 The Fast Ethernet Controller supports both 100Mbps and 10Mbps, allowing the
ColdFire to interface to both old (10BaseT networks) and newer (100BaseTX)
networks (with the appropriate 10/100 PHY). Full duplex operation means that packets
can be sent and received at the same time (remember the PHY uses separate wires for
TX and RX). At 100Mbps this translates to a maximum 200Mbps throughoutput.
 The hardware performs all the functions of the 802.3 Ethernet MAC layer
without software intervention. The software simply initializes the FEC, writes the nodes
MAC address into the MAC address register, and initializes the RX and TX buffer rings.
The FEC will automatically receive, process, and verify (via CRC) incoming packets,
and DMA the packet into a RX buffer. For TX, the FEC is triggers by software, then
automatically DMA’s the packet from the TX buffer, calculates a CRC, serializes the
packet, and sends it out to the PHY. If a collision is detected, the FEC will perform a
random backoff, and retry, without processor intervention. After the packet is
transmitted, the FEC reports a status.

 The advantage of this high level of functional integration into the FEC is reduced
software overhead. The software simply has to create the packet and give it to the FEC
for transmission via the TX ring buffer. On the receive side, the software simply has to
take the packet from the RX ring buffer. The ring buffers are managed by the FEC
hardware.

4.0: ColdFire TCP/IP stack

 TCP/IP (Transmission Control Protocol / Internet Protocol) is the
communication protocol of the internet. The acronym is derived from 2 layers of the
communication stack, TCP and IP. The term TCP/IP actually describes multiple
protocols within both the stack. Each protocol is defined by a RFC (Request For
Comment).
 Proper TCP/IP stack operation requires multi-tasking. The ColdFire TCP/IP stack
is integrated with a simple operating system. This simple round-robin OS can also be
used by the application code. The OC is non-preemptive, but does provide 2 modes of
operation (single stack (superloop) and multi-stack). Additional OS features include a
interactive real-time upgradeable menu system, user timers, and heap memory
management.

4.1: ColdFire TCP/UDP/IP Stack features

HTTP (HyperText Transport Protocol), Serial to Ethernet, TFTP (Trivial File Transfer)
Mini IP Application’s Interface
DHCP (Dynamic Host Configuration Protocol) or manual IP configuration, DNS
TCP (Transmission Control Protocl), UDP (User Datagram Protocol)
ICMP (Internet Control Messaging Protocol), BOOTP (BOOTstrap Protocol)
ARP (Address Resolution Protocol), IP (Internet Protocol)

ColdFire TCP/IP Stack and RTOS

ColdFire Hardware (FEC, PHY, Timers, A/D, GPIO, RAM, SPI, SCI, IIC)

Hardware Abstration Layer (drivers)
ifec.c , iuart.c , mii.c , m5223evb.c , tecnova_i2c.c ,

freescale_serial_flash.c

Scheduler / API
task.c

Timers
timeouts.c

Application
Allports.c

Packet manager
q.c , pktalloc.c

init
main.c

Heap Manager
memio.c

Menu system
menu.c , nrmenus.c

TCP/IP stack

 The TCP/IP stack implements the protocols described in the following RFC’s
(please refer to http://www.rfc-editor.org/rfcxx00.html for details);

 RFC791 Internet protocol (IP)
 RFC792 Internet Control Message protocol (ICMP)
 RFC768 User Datagram Protocol (UDP)
 RFC793 Transmission Control Protocol (TCP)
 RFC826 Ethernet Address Resolution Protocol (ARP)
 RFC1035 Domain Name Server (DNS)
 RFC2131 Dynamic Host Configuration Protocol
 RFC2132 DHCP options

 The Session / Presentation layer is a mini-socket interface similar the familiar
BSD socket interface. The stack has been optimized for embedded application using
zero-copy functionality for minimum RAM usage.

Freescale
Web Server

Freescale
Compile Time FFS

Freescale
Run Time FFS

Freescale
Hardware API

Freescale
Ethernet PHY

ColdFire_TCP/IP_Lite FEC Driver
ColdFire_TCP/IP_Lite IP layer

ColdFire_TCP/IP_Lite TCP ColdFire_TCP/IP_Lite UDP ColdFire_TCP/IP_Lite ICMP

ColdFire_TCP/IP_Lite RTOS and Console
ColdFire_TCP/IP_Lite Mini-Socket TCP API

FFS = Flash File

4.2: DHCP client

 The Dynamic Host Configuration Protocol is used to aquire network parameters
at runtime. The DHCP protocol is define in RFC2131 and RFC2132. The stack runs a
DHCP client which searches for a DHCP server (this is referred to as discovery).

Packets are transferred using the UDP layer, and BOOTP ports (67 and 68).
Since the IP stack does not have a IP address yet, discovery is done using strictly
broadcast addresses. Included in the discovery packet is a unique transaction ID (xid).

http://www.rfc-editor.org/rfcxx00.html

A listening DHCP server sends a offer message containing the xid sent by the client and
the suggested network parmaeters, again using broadcast addressing. Also encoded in the
offer is a unique server ID. The client will use this server ID when sending a request
packet back to the server indicating that it accepts the network parameters that were
offered. Finally the server ACKS the client using it’s new IP address.

4.3: DNS Client

 The DNS client is used to communicate with the DNS (Domain Name Server).
The purpose of the DNS system is to translate Domain Names into IP addresses. The
DNS protocol is described in RFC1035. DNS can use UDP or TCP, with port 53. The
DNS protocol is stateless, all the information is contained in a single message. This
message is fully documented in RFC1035.

5.0: Available examples and Appnotes

 Appnotes are available at www.freescale.com

5.1: HTTP web server and flash file system

 The HTTP web server and flash file system is described in detail in appnote:

 AN3455 – ColdFire Lite HTTP Server

• HTTP1.0 compliant server with connection persistance and multiple sessions
(HTTP1.1 will be available in future revisions).

• Supports multiple HTTP connections.

• Includes a Flash File System supporting both ColdFire internal flash and external

SPI flash.

• Web pages can be updated in flash over Ethernet, or built in at compile time.

• Supports the HTTP GET method, with a simple mechanism for adding other
methods.

• Dynamic HTML support with replace and conditional tokens.

• Serial interface support for Dynamic HTML variables.

• Provides run time and compile time flash file systems.

• Long file name support with subdirectories.

• ‘DIR’ command supported on serial interface.

• PC utilities for compressing compile time and run time downloadable images of

multi-page web pages.

• PC utility for downloading run time downloadable web page image through port
80 (to get through firewalls).

• 32 byte ascii key for web page download security.

5.2: UDP/TCP clients and servers example source code

 The ColdFire Lite stack project includes almost a dozen built in usage examples.
These examples are designed to highlite various features in the stack, and demonstrate
how to use them. The TCP/IP stack and RTOS, along with all the sample applications
listed below are discussed in appnote AN3470.

Code examples include;
ColdFire_Lite

Barebones TCP/IP stack

ColdFire_Lite_RTOS
How to use the RTOS application

ColdFire_Lite_TFTP
TFTP server application

ColdFire_Lite_UDP_client
UDP client application for UDP performance testing

ColdFire_Lite_UDP_server
UDP server application for UDP performance testing

ColdFire_Lite_TCP_client
TCP client application for TCP performance testing

ColdFire_Lite_TCP_server
TCP server application for TCP performance testing

ColdFire_Lite_TCP_serial_client

TCP to serial / serial to TCP client

ColdFire_Lite_TCP_serial_server
TCP to serial / serial to TCP server

ColdFire_Lite_TCP_with_Web_Server
Web (HTTP) server with dynamic HTML

5.3: ColdFire_Lite_TCP_alarm

The alarm demo application includes both PC side and ColdFire side firmware. This
code is an example of a remote sensor application. Where a remote sensor
periodically sends data over TCP to a host server.

Remote Sensors connect with host over the internet to report and receive data.

router

internet

ethernet

5.4: HTTP Client Firmware

 The HTTP client provides the ability to read web pages and XML data from the
internet using a ColdFire processor. The HTTP client uses the DHCP client to
automatically aquire a IP address and other TCP/IP information includeing the IP
addresses of any DNS server. Then the HTTP client uses the DNS client to translate any
user provided URL’s to real IP addresses.
 The HTTP client uses the GET method to request a page from the server. Along
with the GET request is the HTTP header. The HTTP header is hardcoded in the HTTP
client via constant strings declared in the file emg_http_client.c.

5.5: The WGET command – An example of using the HTTP Client

 The wget command is a command often found in Linux distributions that transfers
files using the HTTP protocol. The wget command is a console based HTTP client.
Using the menuing system provided by the ColdFire TCP/IP stack (and explained in the
AN3470 appnote) and the HTTP client, wget functionality can be added to the ColdFire
TCP/IP stack.

5.6: RSS/XML character data filter

 To extract the character data (the information you actually want to read) from
the RSS stream, all the Meta-Text must be filtered out. Any HTML that can be
processed must be translated and processed. For instance, a
 is HTML for a new line.
This would appear as
 in the RSS stream. The filter must correctly translate

 into a carriage return and line feed. Other HTML tags that are routinely
embedded in character data include paragraph tags <p> and image tags . In
the stream these tags appear as <p> and repectively. The
paragraph tab can be translated to a carriage return and line feed, but the image tag must
be ignored unless the embedded system can process images.
 The filter takes in a XML or RSS data stream, and a list of tags. It outputs the
character data only from the selected tags. The tag list is a array of pointer to the tag
strings the filter should be filtering character data from.
 Normally the filter returns 0. When the filter processes the ‘>’ in a tag that is in
the list, the filter returns the index into the filter array for the tag that it found plus 1.
Example: after detecting a <title> tag in a RSS or XML stream the filter will return 1.
After detecting a <description> tag in a stream the filter will return 2. Normally the filter
returns 0.

6.0: Example Embedded Appliance - RSS/XML Feed Reader

 The RSS/XML Feed reader is an embedded appliance that allows users to display
and “hear” real-time content from the World Wide Web. The purpose for the embedded
appliance is to provide instant real-time information without booting a PC. There are
many types of real-time data available on the web; weather (current and forecast) data,
on-line DVD queue data, on-line auction data, sports score data, real-time news data,
real-time stock data, medical and health data, and much more. All this data is available on
the web as either XML or RSS feeds. This appliance connects to the web, get’s the
desired feed, and parses the text information or character data from the feed. That data is
displayed on the LCD, the serial port, and spoken through the text to speech processor.

For complete details on the RSS feed reader please reference AN3518.

Sports weather

DVD queues

 on-line auctions
News
 Stocks

medical and health

World Wide Web

ColdFire

ColdFire TCP/IP
HTTP Client

RSS/XML Parser

LCD

Text to Speech
Voice
Synthesizer

ethernet

serial

6.1: M52233DEMO board from FreeScale Semiconductor

 The M52233DEMO board is a reference board used to evaluate the ColdFire
MC52233 processor from FreeScale Semiconductor. The DEMO board includes a serial
port, USB BDM debug port, and a Ethernet port. The board along with the free (up to
128K of flash) CodeWarrior tools are all you need to get up and running on your
ethernet projects. FreeScale provides a free public source TCP/IP stack on there website.
This TCP/IP stack is what the application in this article run on. The ColdFire TCP/IP
stack is documented thoroughly in the AN3470 application note from FreeScale.

The DEMO board includes a 40 pin header connector giving the user access to
most of the signals from the ColdFire microcontroller. The demo board includes a 3-axis
accelerometer connected to 3 of the ColdFire’s analog ports. The board also includes a
potentiometer, and 2 user buttons.

6.2: LCD

 The parallel LCD is a 4 X 20 character display that uses the standard Hitachi
instruction set. The LCD is used in it’s 4 bit mode, requiring only 6 connections to the
micro. The 4 bit data bus, a clock signal (E), and a register select line (RS). The
firmware includes a library to drive the LCD.

6.3: Voice Synthesizer

 The RCSystems V-Stamp Voice Synthesizer is a easy to use text to speech
processor. The V-Stamp is a fully self contained module, requiring only power, a
speaker, a resistor, 2 capacitor, and a serial connection to an embedded system. The V-
Stamp communicates with the embedded system using a UART. The module
automatically sets it’s baudrate to that of the embedded systems. From both a hardware
and firmware point of view, there is very little work required to add the V-Stamp module
to the RSS Feed Reader.

6.4: Firmware

void emg_rss_reader_task(void)

emg_HTTP_client_connect()

emg_HTTP_client_get()

rss_tcp_callback()

emg_content_length_filter()

EMG_rss_text_filter()

lcd_print_char() printf() C
H
A
R
A
C
T
E
R

B
U
F
F
E
R

output_rss_text()

6.5: HTTP Protocol

 HTTP (Hyper-Text Transport Protocol) is the communication protocol of the
World Wide Web. HTTP is used to transfer web pages (Hyper-Text documents) across
the internet. A HTTP connection has 2 parts, the HTTP client (web browser) and the
HTTP server. The HTTP client is used to receive and view the web page. The HTTP
server is used to store, organize, and transfer the web pages.

HTTP Protocol
HTTP
Server
And
File

System

Web Browser

(HTTP Client)

 HTTP is defined by RFC2616, and RFC1945. RFC (Requests For Comments)
are technical specifications that define the internet. RFC’s are published by the Internet
Engineering Task Force (IETF). See - http://www.rfc-editor.org/ - for more info on
RFC’s. RFC2616 defines HTTP version 1.1, the latest version. RFC1945 defines HTTP
verion 1.0.

HTTP is a request response protocol. The client requests a web page from the
server, the server responds with the web page contents (HTML (Hyper-Text Markup
Language)). HTTP can be used to send any type of data, including binary data. The
client requests a file using the GET method (HTTP is a ascii protocol). The server
responds with a HTTP header followed by the file contents. The client can also send a
file using a POST method. Within the request the HTTP version is also embedded in
ascii. This tells the server the limitations of the client.

Web Client HTTP Server

GET /filename.htm HTTP/1.1

TCP/IP Connect

HTTP/1.1 200 OK

TCP/IP Close

HTTP server sends filename.htm

HTTP Request

GET /filename.htm HTTP/1.1
Web Browser

(HTTP Client)
HTTP
Server
And
File

System
HTTP Response

HTTP/1.1 200 OK

http://www.rfc-editor.org/

6.6: Really Simple Syndication (RSS)

 RSS feeds are available everywhere on the internet. They are used to convey
information like local weather, search engine results, DVD queue information, DVD new
releases, headline news, and even sports news. The idea behind the RSS feed is to
convey textual, dynamic information in a standard simple format.
 RSS originated in 1999, with the idea to provide content in a simple easy to
understand format. Instead of describing a document like HTML (HyperText Markup
Language) RSS feeds use XML to describe data. A RSS feed is simply a XML
document containing data. The methods used to convey the data within the XML
document are described in the RSS 2.0 specification. All RSS files must conform to the
XML 1.0 specification. RSS feeds generally use HTTP as the transport mechanism.

6.7: Extensible Markup Language (XML)

 The XML 1.0 specification can be found at www.w3.org/TR/REC-xml/

XML is a language used to describe and p
structures in C. Data is organized into ele

arse information. XML is very similar to
ments, with each element assigned to a tag.

he dat

ethod of grouping data of
C structure, the particular piece of data is

eferen

T a in the element is surrounded by a start and end tag. End tag names must be the
same as the start tag names. End tags are identified by the addition of a ‘/’ before the tag
name. The name in the start and end tags gives the element’s type.

6.7.1: Tags

<TITLE>Advanced ColdFire TCPIP Clients</TITLE>

TITLE is the type, <TITLE> is the start tag, and </TITLE> is the end tag. The data is
between the tags. Just like a C data structure, the data is associated with the type. The
data between the start and end tags is referred to as the element’s content.
 Elements can contain other elements, providing a m
different type under a single name. Just like a
r ced by specifying a path to the data.

<APPNOTES>
 <BYEG>
 <AN3455>ColdFire HTTP server</AN3455>
 <AN3470>ColdFire TCP/IP Stack</AN3470>
 <AN3492>ColdFire USB Stack</AN3492>
 </BYEG>
</APPNOTES>

6.7.2: Special Characters and escape sequences

 The ‘&’ , ‘<’, and ‘>’ characters are special XML characters. These characters
are used as indicated above to define XML tags, and define escape sequences. Escapes
sequences are a method of specifiying a character via a code as opposed to a single

mbol

ence <.
‘>’ is indicated using the escape sequence >

icated using the escape sequence &

tion. Any text
tion is ignored by the XML parser, allowing the use of special

t being escaped. A CDATA section starts with a ‘<!CDATA[‘ string,
nd is terminated with a ‘]]>’ string. Anything between the brackets is ignored by XML.

<![CDATA[character data here is ignored by XML parser]]>

and the escape sequence are ignored by the XML parser, and are interpreted

6.7.4: F ment

at is not markup constitutes the
haracter data of the document”. That would include all the text between the brackets in

cape

ncapsulated by tags. Where
e tag names describe the data. It even looks like a C structure. To find the desired data

 the

gs.

sy . Escape sequences start with a ‘&’ ampersand, and end with a ‘;’ semicolon.

‘<’ is indicated using the escape sequ

‘&’ is ind

6.7.3: CDATA sections, the exception to the rule

 All rules have exceptions, and in XML it’s the CDATA sec
specified in a CDATA sec
characters withou
a

 <![CDATA[<THIS_IS_NOT_A_TAG> <]]>

 Since the text between the brackets is ignored by the XML parser, both the tag

as text or character data.

inding the text or character data in a XML docu

 From the XML 1.0 specification, “All text th
c
a CDATA section, and any text not between ‘<’, ‘>’ brackets in the main body. Es
sequences in the main body represent a single piece of character data.
 To filter out the character data from a XML document simply remove all the tags
and ‘<’, ‘>’ brackets. Then translate the escape sequences into actual characters.

6.7.5: Sample XML file

In the sample XML document below, notice how data is e
th
in a XML document simply look for the start and end tags with the name of the type of
data you are looking for. The actual data associated with the desired type is between
ta

http://www.weather.gov/data/current_obs/KUGN.xml

<?
-

xml version="1.0" encoding="ISO-8859-1" ?>
 <c

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

urrent_observation version="1.0"

xsi:noNamespaceSchemaLocation="http://www.weather.gov/data/current_ob
s/current_observation.xsd">

>N <credit
 <c
-

OAA's National Weather Service</credit>
redit_URL>http://weather.gov/</credit_URL>

 <im
 <u /images/xml_logo.gif</url>
 <ti eather Service</title>
 <li

 <s
 <s
 <lo
 <s _id>KUGN</station_id>
 <la tude>42.420</latitude>
 <lo
 <observation_time>Last Updated on Jul 28, 10:52 am CDT</observation_time>
 2:00 -0500

 <w
 <t
 <t
 <t

 21 MPH</wind_string>
>Northeast</wind_dir>

h>
 ring>29.98" (1014.1 mb)</pressure_string>

heat_index_string>

g>

bility_mi>
eather.gov/weather/images/fcicons/</icon_url_base>

w.weather.gov/data/obhistory/KUGN.html

ov/data/METAR/KUGN.1.txt</ob_url>
claimer.html</disclaimer_url>

yright_url>
/notice.html</privacy_policy_url>

age>
rl>http://weather.gov
le>NOAA's National Wt

nk>http://weather.gov</link>
</image>
uggested_pickup>15 minutes after the hour</suggested_pickup>
uggested_pickup_period>60</suggested_pickup_period>
cation>Chicago / Waukegan, Waukegan Regional Airport, IL</location>

tation
ti
ngitude>-87.870</longitude>

 <observation_time_rfc822>Sat, 28 Jul 2007 10:5
CDT</observation_time_rfc822>
eather>Overcast</weather>

emperature_string>73 F (23 C)</temperature_string>
emp_f>73</temp_f>
emp_c>23</temp_c>

 <relative_humidity>81</relative_humidity>
 <wind_string>From the Northeast at 13 Gusting to
 <wind_dir
 <wind_degrees>30</wind_degrees>
 <wind_mph>12.65</wind_mph>
 <wind_gust_mph>21</wind_gust_mp
 <pressure_st
 <pressure_mb>1014.1</pressure_mb>
 <pressure_in>29.98</pressure_in>
 <dewpoint_string>67 F (19 C)</dewpoint_string>
 <dewpoint_f>67</dewpoint_f>
 <dewpoint_c>19</dewpoint_c>
 <heat_index_string>73 F (23 C)</
 <heat_index_f>73</heat_index_f>
 <heat_index_c>23</heat_index_c>

indchill_string>NA</windchill_strin <w
 <windchill_f>NA</windchill_f>
 <windchill_c>NA</windchill_c>
 <visibility_mi>10.00</visi
 <icon_url_base>http://w
 <icon_url_name>ovc.jpg</icon_url_name>

<two_day_history_url>http://ww
</two_day_history_url>

 <ob_url>http://www.nws.noaa.g
 <disclaimer_url>http://weather.gov/dis
 <copyright_url>http://weather.gov/disclaimer.html</cop
 <privacy_policy_url>http://weather.gov

 </current_observation>

6.7.6: The problem with XML documents

ments is the flexibility of the tag names. The creator
me to describe the data. A standard is required to

 is associated with type. That standard is the

lements defined in the specification, this appnote will

<title>The name of the channel</title>

nel</description>

itle</title>

mpared to a newspaper. The channel is
items are the articles in the paper, the titles are the titles of the

 the descriptions are the text of the articles.

ve. Notice the structure
es. Those tags

 feeds will contain title and description
gs.

/data/current_obs/KUGN.rss

 The problem with XML docu
of the XML document can use any na
“standardize” the tag names, and how data
RSS standard.

6.8: The RSS Specification

 RSS is a dialect of XML. RSS embeds HTML constructs into the XML
architecture. RSS also defines a set group of elements, and a general template using those
elements. There are many e
concentrate on the elements of interest for the RSS appliance.

6.8.1: A typical RSS file:

<channel>

 <link>URL to the HTML website corresponding to this channel</link>
 <description>Text describing the chan
 <item>
 < title>Item1 Title</title>
 <link>URL of item 1</link>
 <description>Text for item 1</description>
 </item>
 <item>
 <title>Item2 T
 <link>URL of item 2</link>
 <description>Text for item 2</description>
 </item>
</channel>

 The organization of the RSS file can be co
the name of the paper, the
articles, and

6.8.2: Sample RSS file

The sample RSS file is the same data as the sample XML file abo
and tag names. The RSS standard defines the title and description tag nam
contain the data we need. All RSS 2.0 compliant
ta

http://www.weather.gov

<? ?>
-

xml version="1.0" encoding="ISO-8859-1"
 <rss version="2. nts/1.1/">
-

0" xmlns:dc="http://purl.org/dc/eleme
 <c
 <ti go / Waukegan, Waukegan Regional Airport, IL - via

tional Weather Service</title>
 <li k>htt
 <la
 <t
 <d al Weather

 <la age>
 <managingEditor>robert.bunge@noaa.gov</managingEditor>
 <w
-

hannel>
r at Chicatle>Weathe

OAA's NaN
n p://www.weather.gov/data/current_obs/</link>
stBuildDate>Sat, 28 Jul 2007 16:32:11 UT</lastBuildDate>

tl>60</ttl>
scription>Weather conditions from NOAA's Natione

Service.</description>
nguage>en-us</langu

ebMaster>w-nws.webmaster@noaa.gov</webMaster>
 <im
 <u
 <ti OAA - National Weather Service</title>
 <li k>http://www.weather.gov/data/current_obs/</link>

-

age>
rl>http://www.weather.gov/images/xml_logo.gif</url>
tle>N
n
</image>

 <it
 <ti e>Overcast and 73 degrees F at Chicago / Waukegan, Waukegan Regional

k>

em>
tl
Airport, IL</title>

 <link>http://weather.noaa.gov/weather/current/KUGN.html</lin
- <description>

<img src="http://weather.gov/weather/images/fcicons/ovc.jpg"
ercast"

 29.98"
st Updated

DT</guid>

ML character data filter

e
t be translated and processed. For instance, a
 is HTML for a new line.

appear as
 in the RSS stream. The filter must correctly translate
outinely

 >. In
> and repectively. The

- <![CDATA[

class="noaaWeatherIcon" width="55" height="58" alt="Ov
style="float:left;" />

]]>
 Winds are Northeast at 13 Gusting to 21 MPH. The pressure is

(1014.1 mb) and the humidity is 81%. The heat index is 73. La
on Jul 28, 10:52 am CDT.

 </description>
 <guid isPermaLink="false">Sat, 28 Jul 2007 10:52:00 -0500 C
 </item>
 </channel>
 </rss>

6.9: RSS/X

 To extract the character data (the information you actually want to read) from
the RSS stream, all the Meta-Text must be filtered out. Any HTML that can b
processed mus
This would

 into a carriage return and line feed. Other HTML tags that are r
embedded in character data include paragraph tags <p> and image tags <IMG …

tream these tags appear as <pthe s

http://www.weather.gov/data/current_obs/KUGN.rss##

paragraph tab can be translated to a carriage return and line feed, but the image tag
be ignored unless the embedded system can process images.

 must

6.9.1: RSS/XML character data filter state machine

 The character data filter is implemented as a finite state machine. The state
machine uses only 2 global variables, a state variable of-course, and a FILO. The
purpose of the FILO is to store previous characters. Each byte entered into the filter is
shifted left into the FILO. So the most recent character is at location
filo_buff[FILO_BUFF_SIZE-1]. The FILO buffer size must be larger then the largest tag
name expected. The FILO buffer size is set with the FILO_BUFF_SIZE macro.

#define FILO_BUFF_SIZE 32

States:
 STATE_ZERO
 STATE_TAGSEARCH
 STATE_INTAG
 STATE_PRINT
 STATE_SKIP
 STATE_SKIP_NON_ASCII
 STATE_SKIP_SPACE
 STATE_CDATA
 STATE_CDATA_PRINT
 STATE_CDATA_SKIP_AMP
 STATE_SKIP_INTAG
 STATE_IN_AMPERSAND

Global Variables:

unsigned char filo_buff[FILO_BUFF_SIZE];
unsigned char state;

unsigned char EMG_rss_text_filter(unsigned char data, unsigned char **tag_filter)

TAGSEARCH

SKIP_INTAG

INTAG

NON_ASCII IN_AMPERSAND SKIP

PRINT

CDATA_PRINT

CDATA

CDATA_SKIP_AMP

SKIP_SPACE

<

<

<

<
&

&

&

&

&

>
>

>

>

<

“]]>”

&

;

;

]
<

>0x20

>0x20

=0x20

<0x20

<0x20

<0x21

“CDATA”

Tag found ‘>’

Tag found ‘ ’

EndTag found

 The filter takes in a XML or RSS data stream, and a list of tags. It outputs the
character data only from the selected tags. The tag list is a array of pointer to the tag
strings the filter should be filtering character data from.
 Normally the filter returns 0. When the filter processes the ‘>’ in a tag that is in
the list, the filter returns the index into the filter array for the tag that it found plus 1.
Example: after detecting a <title> tag in a RSS or XML stream the filter will return 1.
After detecting a <description> tag in a stream the filter will return 2. Normally the filter
returns 0.

Const unsigned char *tag_filter[] =
{
 {(const unsigned char *)”title”},
 {(const unsigned char *)”description”},
 {(const unsigned char *)””}
};

Sample tag_filter pointer array

Character Data filter
“Finite State Machine”

XML or RSS
data stream

Character data
from selected

tags

tag_filter array

Character Data Filter usage

6.10: Using the RSS/XML feed reader

 Using the RSS/XML feed reader firmware is easy:

1) Set the url variable to the URL or the desired RSS or XML server.

static const unsigned char url[] = "http://www.weather.gov/data/current_obs/KUGN.rss";

2) Set the tag_filter[] to the type of data you want to display.

For RSS feeds, <title> and <description> would be a first choice.
For XML feeds, this could be any tag name depending on the desired information.

const unsigned char *tag_filter[] =
{
 {(const unsigned char *)"title"},
 {(const unsigned char *)"description"},
 {(const unsigned char *)""}
};

3) Set the character buffer size big enough to collect your filtered data.
#define RSS_CHARACTER_BUFF_SIZE 2048

4) Compile the project and flash it to the board.

After the TCP/IP stack comes up it will use the DHCP client to automatically aquire a
IP address and DNS IP addresses.

Then it will display and speak a title screen.

And connect to the server specified in the URL.
The status of the connection is displayed and spoken.

The file is downloaded from the server using the HTTP client.

And finally displayed and spoken after the connection closes.

Then the RSS/XML feed reader sleeps waiting for eather SW1 or SW2 to be pushed.
This will initiate a connection to the server specified in the URL and start the
download/display/speak process all over again.

6.11: XML streams

For XML streams the EMG_rss_text_filter() return value is used to determine
which tag the FOLLOWING data will be from. This allows another const array
containing more descriptive names to be used to describe the data from the tag.
Simply use the EMG_rss_text_filter() return value – 1 to index into a descriptive
name array and send the indexed string into the character buffer before leaving the rss
callback function. The XML filter will then place the data from the tag in the
character filter directly after the descriptive name.

7.0: Conclusion

 Adding Ethernet to embedded products provides a level of connectivity never
before available in the embedded space. Embedded devices can be networked together
using the same cables and hardware used by the industry to connect PC together. The
embedded device can become part of the PC network. Ethernet and TCP/IP enable the
embedded device to connect to the ultimate network, the internet. Once the embedded
device is connected to the internet it available to the world (and controllable or viewable
from anywhere in the world). The possibilities are endless, from remote monitoring and
control, to distributed control, and even real-time worldwide data presentation (RSS feed
reader).

