
Turbo BDM Light ColdFire interface

(c) 2006, Daniel Malík

rev 1.4

I am grateful to several people at Freescale Semiconductor. Creation of this
interface would never have been possible without their kind help and guidance.

1.0 Introduction to TBLCF

1.1 Purpose of this document

This document describes the Turbo BDM Light ColdFire (TBLCF) interface and
associated SW libraries and tools. TBLCF is a hardware interface which con-
nects between a USB equipped computer and the BDM debugging port of
Freescale Semiconductor ColdFire microprocessors/microcontrollers. It ena-
bles debuggers and other SW tools to communicate with the microcontroller,
download code into its on-chip flash, etc.

1.2 Aspirations and roots of TBLCF

TBLCF has its roots in my previous TBDML project. There are many similarities
between the two projects. Firmware for TBLCF is based on the firmware I have
developed for the TBDML.

TBCLF was developed with the following requirements in mind:

• very low cost (sub $10)

• ease of assembly and prototyping (widely available components)

• open-end SW interface with documented API for easy integration into
debuggers and new standalone tools

• easy SW migration under Linux

• support for at least one widely used debugger

• modern and widely available interface for communicating with the computer
(USB)

Unfortunately to achieve the performance required for this project I had to use
the 68HC908JB16 MCU which does not come in a DIL package. Since the
microcontroller is in SMD package, I have used majority of the remaining com-
ponents in SMD packages as well. However the choice of packages is not
important for functionality and can be completely arbitrary.

I am making all the SW I can open source. However some of the SW compo-
nents are distributed as binaries only due to licensing restrictions. If you would
like to receive source code to these components please obtain a permission
from Freescale Semiconductor prior to sending me your request.
Turbo BDM Light ColdFire interface 19 August 2006 1

2.0 Description of TBLCF

2.1 What you get

The TBLCF package consists of

• complete HW description which enables you to build the interface

• firmware for the interface, USB drivers and DLL interface library
(TBLCF.DLL) for Windows

• bootloader tool (TBLCF_BT) tool for programming firmware into the cable
after it is first built and for upgrades in case of bugs/enhancements

• unsecure tool (TBLCF_UNSEC) for mass erasing of on-chip flash of
secured devices

• interface for the CodeWarrior debugger

2.2 Hardware

TBLCF uses USB as the means of talking to the computer. Here is why:

• I like the concept of USB.

• USB provides power to the interface; no bulky wall adapters and no ineffi-
cient regulators with hot heatsinks are needed.

The TBLCF is based on MC68HC908JB16 MCU from Freescale Semiconduc-
tor. My reasons for selecting this MCU are:

• TBLCF was based on MC68HC908JB8 and the JB16 variant is compatible
with it to a large degree.

• The JB16 variant has a pre-programmed USB bootloader and therefore no
special hardware tools are needed to program the firmware into the on-chip
flash.

Schematic diagram of the TBLCF interface is shown in figure 1. The interface
has two main parts: the MC68HC908JB16 MCU itself and the BDM interface
driver based on 74VHC14 buffer with schmitt trigger inputs.
Turbo BDM Light ColdFire interface 19 August 2006 2

F
IG
U
R
E
 1
.
T
B
L
C
F
 s
c
h
e
m
a
ti
c

5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

V
H
C
1
4

J
T
A
G
:

T
M
S

T
D
I

T
C
L
K

T
D
O

U
S
B
 I
N
T
E
R
F
A
C
E

T
A
R
G
E
T
 B
D
M
 I
N
T
E
R
F
A
C
E

9
0
8
J
B
1
6

T
R
S
T

S
IG
N
A
L
 L
E
V
E
L
 T
R
A
N
S
L
A
T
O
R

T
B
L
C
F
_
2
0
 S
c
h
e
m
a
ti
c
 2
B

B

T
u
rb
o
 B
D
M
 L
ig
h
t
C
o
ld
 F
ir
e
 I
n
te
rf
a
c
e

(c
)
2
0
0
6
 D
a
n
ie
l
M
a
lik

A

1
1

F
ri
d
a
y
,
A
p
ri
l
2
8
,
2
0
0
6

T
it
le

S
iz
e

D
o
c
u
m
e
n
t
N
u
m
b
e
r

R
e
v

D
a
te
:

S
h
e
e
t

o
f

U
S
B
D
M

U
S
B
D
P

U
S
B
D
M

D
S
C
L
K

T
C
L
K

D
S
I

D
S
O

R
S
T
I

B
K
P
T

U
S
B
D
P

T
A

R
S
T
O

D
S
O

D
S
O
_
IN

T
C
L
K
_
O
U
T

D
S
I

R
S
T
I_
O
U
T

B
K
P
T

T
A

R
S
T
I

B
K
P
T
_
O
U
T

T
A
_
O
U
T

D
S
I_
O
U
T

T
C
L
K

D
S
O
_
IN

T
A
_
O
U
T

R
S
T
I_
O
U
T

D
S
I_
O
U
T

D
S
C
L
K

D
S
C
L
K
_
O
U
T

T
C
L
K
_
O
U
T

R
S
T
O
_
IN

B
K
P
T
_
O
U
T

D
S
C
L
K
_
O
U
T

R
S
T
O

R
S
T
O
_
IN

R
S
T
O
_
IN

+
3
.3
V

G
N
D

G
N
D

+
5
V

G
N
D

+
3
.3
V

G
N
D

G
N
D

V
D
D
_
IO

+
3
.3
V

V
D
D
_
IO

G
N
D

G
N
D

G
N
D

G
N
D

V
D
D
_
IO

G
N
D

G
N
D

G
N
D

V
D
D
_
IO

G
N
D

V
D
D
_
IO

G
N
D

+
5
V

+
5
V

+
5
V

+
5
V

+
5
V

+
5
V

G
N
D

G
N
D

D
2

F
D
L
L
4
1
4
8

M
M
S
D
4
1
4
8

1
2

+
C
3

1
0
0
u
/1
0

R
1

1
0
M

R
7

2
7
R

C
6

1
0
0
n

C
8

4
7
0
n

U
2
D

7
4
V
H
C
1
4

9
8

R
3

1
0
k

J
1

C
F
 B
D
M

2 4 6 8 1
0
1
2
1
4
1
6
1
8
2
0
2
2
2
4
2
6

1 3 5 7 9
1
1
1
3
1
5
1
7
1
9
2
1
2
3
2
5

U
2
B

7
4
V
H
C
1
4

3
4

D
1

L
E
D

1
2

Y
1

1
2
M
H
z

R
9

1
0
k

J
2

U
S
B

1 2 3 4

U
2
C

7
4
V
H
C
1
4

5
6

C
4

1
0
0
n

U
1

M
C
9
0
8
J
B
1
6
J
D
W
E

1 2 3 4 5 6 7 8 9
1
0

1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0

V
S
S

O
S
C
1

O
S
C
2

V
R
E
G

V
D
D

P
T
D
0
/1

P
T
E
1
/T
1
C
H
0
1

P
T
E
3
/D
+

P
T
E
4
/D
-

P
T
C
0
/T
x
D

IR
Q

P
T
A
7

P
T
A
6

P
T
A
5

P
T
A
4

P
T
A
3

P
T
A
2

P
T
A
1

P
T
A
0

R
S
T

R
5

1
0
k

C
1

2
2
p

R
6

1
0
k

R
4

1
0
k

D
3

F
D
L
L
4
1
4
8

M
M
S
D
4
1
4
8

1
2

R
8

2
7
R

U
2
E

7
4
V
H
C
1
4

1
1

1
0

+
C
7

1
0
0
u
/1
0

U
2
F

7
4
V
H
C
1
4

1
3

1
2

R
2

3
3
0
R

C
5

1
0
0
n

U
2
A

7
4
V
H
C
1
4

1
2

14 7

C
2

2
2
p

Turbo BDM Light ColdFire interface 19 August 2006 3

2.2.1 Remarks on the BDM interface driver

I have used the 74VHC14 to achieve low-cost translation of BDM signals with
voltages anywhere between 3.3V and 5V to the 5V logic of the MCU. The VHC
logic accepts overvoltage on inputs, however the output voltage swing is lim-
ited by the power rail voltages. When the 74VHC14 is powered by 3.3V source
resistors R3 and R4 would not be able to pull the signals above the 3.3V rail
and would only inject current into the power rail of the 74VHC14. 3.3V is below
the minimum high level input voltage of the MC68HC908JB16 and the circuit
would not be guaranteed to work. I have therefore added diodes D2 and D3 to
increase the high level voltages. A better alternative would be to use two
N-mosfet transistors, but that would increase the cost and complicate the PCB
layout (which was my main reason for not using them).

You will also notice that the RSTO_IN signal is brought to two different pins of
the MCU. This is strictly speaking not needed and a connection to pin PTE1
would be sufficient. However connecting the signal to PTA6 as well as PTE1
simplified my PCB design.

2.2.2 ColdFire BDM connector

The ColdFire BDM connector has been here for a long time. In the past boards
usually contained a lot of components and were fairly large. A 26-way connec-
tor with 0.1” spacing was therefore of a reasonable size. Size of boards is how-
ever shrinking and the connector is becoming too large for smaller
applications. I have made two optional enhancements to the BDM connector:

1. Where the 26-way connector is too large you can use a 10-way subset of the
connector (pins 1 through 10). The only signal which is missing the TA on pin
26, but this is only needed in systems with external memory bus where the
debugger is configured incorrectly and accesses an area for which a Transfer
Acknowledge is not generated (neither internally nor externally). I.e. the proba-
bility that it will be needed is quite low and the absence of the signal can be
compensated for by a careful use of the debugger. See figure 4 for a photo-
graph of the interface with a 10-way ribbon cable attached.

2. I have added the RSTO signal to pin 1 of the connector which was so far
unused. This enables the interface to detect resets of the microcontroller
caused by for example the COP/watchdog circuit or a user RESET button.

Note that the above enhancements are suggestions only and the interface will
operate even with the original 26-way connector. Pins 11 and 12 of the 26-way
connector can be removed to make the interface compatible with both the 10-
way and 26-way ribbon cables.
Turbo BDM Light ColdFire interface 19 August 2006 4

2.2.3 Printed Circuit Board

The PCB I have designed for TBLCF is shown in figure 2.

The PCB is designed to be single sided only (with no wire links!). The design
rules have been set to 12 mil spacing and 14 mil minimum copper width. The
dimensions of the PCB are 37.08 x 38.1 mm. The PCB should be fairly inex-
pensive to produce (it is costing me around $2 a piece in small quantity with
solder mask and both silk screens).

You can use my gerber files to have the PCB made professionally. Alternatively
you can make the PCB in your garage or garden shed, design your own PCB
or you can also populate the interface on a piece of prototyping board.

Note that the PCB has been provided with footprint for the USB B connector.
This is actually a violation of the USB specification as low-speed devices
should have the cable hard-wired to them, but I have found a detachable cable
very useful. If you do not feel like violating the specification, you can solder the
cable straight into the PCB. The PCB is marked with wire colours and two extra
holes are provided for strapping the cable to the PCB in case you wish to do
this.

Connector J1 can be populated with either a 26-way header (for use with a 26-
way or a 10-way flat cable) or with a 26-way/10-way plug. Note that a plug
needs to be populated from the bottom side to keep the pin assignment cor-
rect! I have populated my first prototype with a 26-way 90 degree plug as
shown in figure 3.

FIGURE 2. TBLCF PCB
Turbo BDM Light ColdFire interface 19 August 2006 5

2.2.4 Getting the components

To make life slightly easier for you I have listed order numbers of the compo-
nents needed to build the interface in the table below. However please note
that you will probably be able to get the components at a much lower price at
your local high street shop. You might also want to try to get some of the com-
ponents for free as samples (Freescale Semiconductor and ON Semiconductor
offer free samples of the parts I am using in the design and this is how I am get-
ting parts myself).

FIGURE 3. TBLCF plugged into MCF52235 evaluation board

FIGURE 4. Bottom and top view of TBLCF with a 10-way ribbon cable
Turbo BDM Light ColdFire interface 19 August 2006 6

2.3 Software

The basic SW package for the TBLCF interface consists of six different compo-
nents:

• firmware in the MC68HC908JB16

• interface DLL (TBLCF.DLL)

• USB driver (LIBUSB)

• SW interface for the CodeWarrior debugger

• bootloader utility for re-programming firmware of the cable (TBLCF_BT)

• unsecure utility (TBLCF_UNSEC)

All the components are intended to be used as binaries by majority of users.
For those who would like to look deeper I am providing source code of the
firmware, the interface DLL, unsecure utility and the bootloader application.

The LIBUSB is open source software available under combination of GNU gen-
eral and lesser general public licenses.

The SW interface for the CodeWarrior debugger was created based on infor-
mation which is not available in the public domain. The license attached to this
information is preventing me from disclosing the source code.

2.3.1 TBLCF DLL API

Debuggers and other tools should primarily use the TBLCF DLL to interface to
the TBLCF tool. This section describes the API the TBLCF DLL v1.0 offers.

unsigned char tblcf_dll_version(void)

Returns version of the DLL in BCD format (major in upper nibble and minor in
lower nibble).

Item Quantity Reference Value Farnel # DigiKey #

1 2 C1,C2 22p 3606041 311-1154-1-ND

2 2 C3,C7 100u/10 9451080 493-1040-ND

3 3 C4,C5,C6 100n 644316 490-1825-1-ND

4 1 C8 470n 757688 PCC1901CT-ND

5 1 D1 LED 1142517 SSL-LX3044LGD

6 2 D2,D3 FDLL4148 9843710 FDLL4148CT-ND

7 1 J1 CF BDM 3167070 HRP26H-ND

8 1 J2 USB 1097897 609-1039-ND

9 1 R1 10M 9237119 RHM10MECT-ND

10 1 R2 330R 9337326 RHM330FCT-ND

11 5 R3,R4,R5,R6,R9 10k 9337016 RHM10.0KFCT-ND

12 2 R7,R8 27R 9337261 RHM27.0FCT-ND

13 1 U1 MC68HC908JB16JDWE MC908JB16JDWE-ND

14 1 U2 74VHC14 1014104 74VHC14M-ND

15 1 Y1 12MHz 9712950 535-9037-ND
Turbo BDM Light ColdFire interface 19 August 2006 7

unsigned char tblcf_init(void)

Initialises the USB interface and returns number of TBLCF devices found
attached to the computer. This function needs to be called before a device can
be opened.

unsigned char tblcf_open(unsigned char device_no)

Opens communication with device number device_no. First device has number
0. Returns 0 on success and non-zero on failure. A device must be open before
any communication with the device can take place.

void tblcf_close(void)

Closes communication with the currently opened device.

unsigned int tblcf_get_version(void)

Returns version of HW (MSB) and SW (LSB) of the TBLCF interface in BCD
format.

unsigned char tblcf_get_last_sts(void)

Returns status of the last executed command: 0 on success and non-zero on
failure.

unsigned char tblcf_request_boot(void)

Requests execution of the pre-programmed bootloader firmware on next
power-up. Returns 0 on success and non-zero on failure.

unsigned char tblcf_set_target_type(target_type_e target_type)

This function sets target MCU interface type. target_type can be either
CF_BDM or JTAG. Returns 0 on success and non-zero on failure.

unsigned char tblcf_target_reset(target_mode_e target_mode)

Resets the target MCU to normal or BDM mode. target_mode can be either
BDM_MODE or NORMAL_MODE. Returns 0 on success and non-zero on fail-
ure.

unsigned char tblcf_bdm_sts(bdm_status_t *bdm_status)

bdm_status is a pointer to user allocated structure which the function fills with
current state of BDM communication. Returns 0 on success and non-zero on
failure.

The structure has the following format:

typedef struct {
reset_state_e reset_state;
Turbo BDM Light ColdFire interface 19 August 2006 8

reset_detection_e reset_detection;
} bdmcf_status_t;

reset_state can be either RSTO_ACTIVE (RSTO input low) or
RSTO_INACTIVE (RSTO input high).

reset_detection can be either RESET_DETECTED (active to inactive transition
detected on the RSTO input) or RESET_NOT_DETECTED. reset_detection
defaults to RESET_NOT_DETECTED after each call of the function.

unsigned char tblcf_target_halt(void)

Brings the target into BDM mode (i.e. debug mode with user code execution
halted). Returns 0 on success and non-zero on failure.

unsigned char tblcf_target_go(void)

Starts target code execution from current PC address. Returns 0 on success
and non-zero on failure.

unsigned char tblcf_target_step(void)

Steps over a single target instruction. Returns 0 on success and non-zero on
failure.

unsigned char tblcf_resynchronize(void)

Resynchronizes BDM communication with the target. This call is useful when
the interface is operating in a very noisy environment and the target picks up
an extra pulse on the DSCLK signal. This function resynchronizes the target
and the interface and ensures correct exchange of commands without the
need for asserting the RSTI signal. Returns 0 on success and non-zero on fail-
ure.

unsigned char tblcf_assert_ta(unsigned char duration_10us)

Asserts the TA signal for the specified duration (in 10us increments). The
Transfer Acknowledge signal must be asserted by the interface in case the
debugger has attempted to access a location on the external bus which is not
configured for auto acknowledgement and there is no external hardware to
assert the TA signal. Returns 0 on success and non-zero on failure.

unsigned char tblcf_read_creg(unsigned int address, unsigned long int *
result)

Reads control register from the specified address and stores the result in the
user supplied variable. byte from memory at the supplied address. Returns 0
on success and non-zero on failure.
Turbo BDM Light ColdFire interface 19 August 2006 9

void tblcf_write_creg(unsigned int address, unsigned long int value)

Writes the specified value to the control register at the specified address.

unsigned char tblcf_read_dreg(unsigned char dreg_index, unsigned long
int * result)

Reads contents of the specified debug register and stores the result into the
user supplied variable. Returns 0 on success and non-zero on failure. Note that
current ColdFire devices only support reading of the Configuration/Status Reg-
ister (CSR).

void tblcf_write_dreg(unsigned char dreg_index, unsigned long int value)

Writes the specified value to the specified debug register.

unsigned char tblcf_read_reg(unsigned char reg_index, unsigned long
int * result)

Reads the specified data/address register and stores the result into the user
supplied variable. Returns 0 on success and non-zero on failure.

void tblcf_write_reg(unsigned char reg_index, unsigned long int value)

Writes the specified value to the specified data/address register.

unsigned char tblcf_read_mem8(unsigned long int address, unsigned
char * result)

Reads an 8-bit value from memory at the specified address. The result is
stored into the user supplied variable. Returns 0 on success and non-zero on
failure.

unsigned char tblcf_read_mem16(unsigned long int address, unsigned
int * result)

Reads a 16-bit value from memory at the specified address. The result is
stored into the user supplied variable. Returns 0 on success and non-zero on
failure. Note that the address will be aligned to a word boundary.

unsigned char tblcf_read_mem32(unsigned long int address, unsigned
long int * result)

Reads a 32-bit value from memory at the specified address. The result is
stored into the user supplied variable. Returns 0 on success and non-zero on
failure. Note that the address will be aligned to a long word boundary.

void tblcf_write_mem8(unsigned long int address, unsigned char value)

Writes the specified 8-bit value at the specified address.
Turbo BDM Light ColdFire interface 19 August 2006 10

void tblcf_write_mem16(unsigned long int address, unsigned int value)

Writes the specified 16-bit value at the specified address. Note that the
address will be aligned to a word boundary.

void tblcf_write_mem32(unsigned long int address, unsigned long int
value)

Writes the specified 32-bit value at the specified address. Note that the
address will be aligned to a long word boundary.

unsigned char tblcf_read_block8(unsigned long int address, unsigned
long int bytecount, unsigned char *buffer)

Reads a block of 8-bit values from memory from the specified address. The
result is stored into the user supplied buffer. Returns 0 on success and non-
zero on failure.

unsigned char tblcf_read_block16(unsigned long int address, unsigned
long int bytecount, unsigned char *buffer)

Reads a block of 16-bit values from memory from the specified address. The
result is stored into the user supplied buffer. Returns 0 on success and non-
zero on failure. An 8-bit read is performed at the beginning of the block if the
address is not aligned to a word boundary. An 8-bit read is performed at the
end of the block in case the block does not end at a word boundary.

unsigned char tblcf_read_block32(unsigned long int address, unsigned
long int bytecount, unsigned char *buffer)

Reads a block of 32-bit values from memory from the specified address. The
result is stored into the user supplied buffer. Returns 0 on success and non-
zero on failure. 8-bit and/or 16-bit reads are performed at the beginning of the
block if the address is not aligned to a long word boundary. 8-bit and/or 16-bit
reads are performed at the end of the block in case the block does not end at a
long word boundary.

unsigned char tblcf_write_block8(unsigned long int address, unsigned
long int bytecount, unsigned char *buffer)

Writes a block of 8-bit values to memory from the specified address. Returns 0
on success and non-zero on failure. Always returns 0 in case the firmware was
not compiled with the WRITE_BLOCK_CHECK symbol defined.

unsigned char tblcf_write_block16(unsigned long int address, unsigned
long int bytecount, unsigned char *buffer)

Writes a block of 16-bit values to memory from the specified address. Returns
0 on success and non-zero on failure. Always returns 0 in case the firmware
was not compiled with the WRITE_BLOCK_CHECK symbol defined. An 8-bit
write is performed at the beginning of the block if the address is not aligned to a
Turbo BDM Light ColdFire interface 19 August 2006 11

word boundary. An 8-bit write is performed at the end of the block in case the
block does not end at a word boundary.

unsigned char tblcf_write_block16(unsigned long int address, unsigned
long int bytecount, unsigned char *buffer)

Writes a block of 16-bit values to memory from the specified address. Returns
0 on success and non-zero on failure. Always returns 0 in case the firmware
was not compiled with the WRITE_BLOCK_CHECK symbol defined. 8-bit and/
or 16-bit writes are performed at the beginning of the block if the address is not
aligned to a long word boundary. 8-bit and/or 16-bit writes are performed at the
end of the block in case the block does not end at a long word boundary.

unsigned char tblcf_jtag_sel_shift(unsigned char mode)

Transitions the JTAG state machine from RUN-TEST/IDLE state to SHIFT-DR
state (mode equal to zero) or SHIFT-IR state (mode not equal to zero). This
function is to be used in conjunction with tblcf_jtag_write and tblcf_jtag_read to
write instructions and read/write data. Returns 0 on success and non-zero on
failure.

unsigned char tblcf_jtag_sel_reset(void)

Transitions the JTAG state machine from RUN-TEST/IDLE state to TEST-
LOGIC-RESET state. This transition is required in order to execute the LOCK-
OUT RECOVERY instruction which erases the on-chip flash. Returns 0 on suc-
cess and non-zero on failure.

void tblcf_jtag_write(unsigned char bit_count, unsigned char exit,
unsigned char *buffer)

Writes JTAG data. Expects the JTAG state machine to be in the appropriate
SHIFT state. Leaves the JTAG state unchanged (exit equal to zero) or transi-
tions the state machine to RUN-TEST/IDLE state (exit not equal to zero). Data
is shifted in starting with LSB of the last byte in the buffer. Parameter bit_count
specifies the number of bits to shift in.

unsigned char tblcf_jtag_read(unsigned char bit_count, unsigned char
exit, unsigned char *buffer)

Reads JTAG data. Expects the JTAG state machine to be in the appropriate
SHIFT state. Leaves the JTAG state unchanged (exit equal to zero) or transi-
tions the state machine to RUN-TEST/IDLE state (exit not equal to zero). Data
shifted out is stored starting with LSB of the last byte in the buffer. Parameter
bit_count specifies the number of bits to shift out.
Turbo BDM Light ColdFire interface 19 August 2006 12

3.0 Firmware (re)programming and installation

The interface operates in one of two modes. The bootloader (also called In-Cir-
cuit Programming = ICP) mode and the normal operation (debugging cable)
mode. The transitions between the two modes are outlined in figure 5.

Installation of the device drivers is a two stage process. After the interface is
built it will default into the ICP mode. An ICP driver must be installed to work
with the interface and program the on-chip flash with firmware. Once the inter-
face is programmed, another driver must be installed to use it. You can skip the
first stage of this process if your device is pre-programmed with the firmware
using a different programming method (e.g. a standalone flash programmer) or
programmed with firmware already using a different computer.

Installation of the ICP driver and programming of the firmware into the on-chip
flash is described in section 3.1. Returning the interface into the ICP mode
when firmware is already programmed (needed for firmware upgrade) it is
described in section 3.4.

The following sections assume that you have downloaded the zip file with the
binary version of the drivers and unzipped it into a suitable directory on your
computer.

FIGURE 5. Transitions between modes of operation

Normal operation
(debugging cable)

Bootloader operation
(flash programming)

Execution of
‘BOOT’ command
(”tblcf_bt -U”)
and power cycle

Programming
of firmware

(”tblcf_bt <S19>”)
and power cycle
Turbo BDM Light ColdFire interface 19 August 2006 13

3.1 Programming firmware into TBLCF

1. After you build the interface it is ready to be connected to your computer.
Windows will detect attachment of an unknown device a will start the driver
installation procedure (see figure 6).

Note: Plug the USB cable in quickly. The power supply pins of the connec-
tor are longer to ensure that they make contact first. However if you plug in
the cable very slowly the JB16 microcontroller will reset and start running
the bootloader code before the signal pins make contact - Windows will not
recognize the device. Unplug the cable and try again if this happens.

2. Select that Windows should not search for the drivers. Then select “Install
from a list or specific location” when prompted for installation mode (see
figure 7

FIGURE 6. “Found new hardware” window

FIGURE 7. Installation mode
Turbo BDM Light ColdFire interface 19 August 2006 14

3. Point the installation wizard to the directory where you have unzipped the
driver binary package (see figure 8).

4. The wizard will then copy the ICP drivers (see figure 9).

5. After the driver files are copied the interface is ready to be programmed
with firmware (see figure 10).

FIGURE 8. Location of drivers

FIGURE 9. Copying the driver files

FIGURE 10. Drivers for In-Circuit Programming (ICP) mode installed
Turbo BDM Light ColdFire interface 19 August 2006 15

6. When the ICP drivers have been installed you can use the TBLCF_BT tool
to program the firmware into the interface. The command and a typical
response of the tool are shown in figure 11.

7. The interface is now fully programmed and ready to be used. You now
need to disconnect the interface from the USB bus to reset the MCU.

Note: The algorithm of the bootloader is such that the code of the application
will only be executed upon power-up in case the flash contents was marked as
correct by the bootloader tool (after verification against the supplied S-record
file). The only critical part of the programming procedure is upgrade of the boot
sector contents. Should programming of the boot sector fail for whatever rea-
son, DO NOT UNPLUG the interface from the USB bus of the computer. As
long as power is maintained the interface remains in the bootloader mode and
re-programming of the boot sector can be attempted several times until suc-
cessful. Programming of the boot sector should only be required when pro-
gramming a newly assembled interface. The bootloader code should remain
the same for future versions of the firmware and no upgrades of the boot sector
should be required.

3.2 Installing drivers for TBLCF use

Once the interface is programmed with firmware and connected to the compu-
ter, Windows will detect attachment of an unknown device a will start the driver
installation procedure. The steps required to install the drivers is exactly the
same as detailed in section 3.1 on page 14. The correct driver is selected auto-

D:\tblcf>tblcf_bt -B tblcf.abs.s19

Turbo BDM Light ColdFire Bootloader ver 1.0. Compiled on Apr 29 2006, 17:35:29.

S-rec: "D:\Documents\projects\bdm_cf\sw.jb16\tblcf_firmware\bin\tblcf.abs"

found 4 buses

found 1 HC08JB16 ICP device(s)

Boot sector contents different, performing mass erase

Mass erase done, programming boot sector

Programming done, verifying boot sector

Verification done, boot sector OK. You can start breathing again.

Erasing block at address: 0xF800

Programming block from 0xBA00 to 0xCD5A

Verifying block from 0xBA00 to 0xCD5A - OK

Programming block from 0xF9CF to 0xF9FF

Verifying block from 0xF9CF to 0xF9FF - OK

All flash programmed and verified, enabling the application

Flash programming complete, disconnect & reconnect the device

FIGURE 11. Programming the firmware into the on-chip flash
Turbo BDM Light ColdFire interface 19 August 2006 16

matically. The only difference you will see is in step 4 where the name of the
attached device will be different (see figure 12).

3.3 Using the GDI interface for the CodeWarrior Debugger

The procedure detailed in this section shows how to configure the CodeWarrior
debugger to work with the TBLCF interface. Please make sure you download
the latest version of the CodeWarrior tools (version 6.3 or newer) as older ver-
sions of the debugger do not support the GDI API.

1. Open the CodeWarrior IDE and open your project.

2. Select “Preferences...” from the “Edit” drop-down menu.

3. Open the “Remote Connections” dialogue in the “Debugger” tree (see
figure 13).

4. Click “Add...”. Enter a name of your choice (e.g. “TBLCF GDI”), select the
“ColdFire GDI” from the “Debugger” drop-down list and enter path to the
tblcf_gdi.dll (see figure 14). Enter path to a configuration file in case you

FIGURE 12. Copying the driver and DLL files

FIGURE 13. “Remote Connections” dialogue
Turbo BDM Light ColdFire interface 19 August 2006 17

need to pass start-up options to the GDI DLL (see section 3.3.1 for more
details). Then click “OK”.

5. The new connection has now been created (see figure 15). Close the “IDE
Preferences” dialogue by clicking “OK”.

6. Select one of your project’s targets and open the target settings (Alt+F7).
Then select “Remote Debugging” settings in the “Debugger” tree. Select

FIGURE 14. “New Connection” dialogue

FIGURE 15. “IDE Preferences” dialogue with the new connection
Turbo BDM Light ColdFire interface 19 August 2006 18

the connection created previously from the “Connection” drop-down list
(see figure 16).

7. Close the target settings window by clicking “OK”. The target is now config-
ured and the debugger will use the TBLCF interface when started.

Note that each target within a project can be configured differently. I.e. you will
need to repeat steps 6 and 7 for every target within your project for which you
want to use the TBLCF interface.

3.3.1 Start-up options of the GDI DLL

The debugger environment is capable of passing configuration options to the
GDI DLL after start-up. These options can be used to alter functionality of the
DLL based on the requirements of the particular project. Each start-up option is
specified on a separate line, parameters are separated by a space character.
No comments are allowed in the file. The list of options which are currently sup-
ported is given below.

USB_DEVNO n

This option enables the user to specify which TBLCF interface to use in case
there are multiple interfaces connected to the PC. The parameter n is a
number between 0 and 9. The default value is 0.

3.4 Upgrading the firmware

Reprogramming of the firmware is performed in two steps. The first step is to
mark the current firmware as invalid which returns the interface to the boot-

FIGURE 16. “Remote Debugging” settings
Turbo BDM Light ColdFire interface 19 August 2006 19

loader (ICP) mode (see figure 5). The command for performing this step and a
typical response of the TBLCF_BT tool are shown in figure 17.

Once the device is disconnected and re-connected to the USB bus of the com-
puter it will start-up in the ICP mode. The new firmware is then programmed
into the on-chip flash as per step 6 on page 16 (providing the ICP driver is
already installed). In case the ICP driver has not been installed on your compu-
ter yet, you need to install it - see step 1 on page 14.

4.0 Utilities

4.1 Erasing secured devices

The newer members of the Cold Fire family are equipped with on-chip flash
memory. The contents of the on-chip flash can be secured to prevent unauthor-
ised copying and modification. Communication with the microcontroller over
the BDM port is not possible when the on-chip flash is secured. The only possi-
bility to unsecure the microcontroller and re-establish communication over the
BDM port is to erase the whole contents of the on-chip flash. This is achieved
by executing a special LOCKOUT_RECOVERY JTAG command.

4.1.1 Enabling the JTAG port

The JTAG port shares pins with the BDM port. A separate JTAG_EN input sig-
nal of the microcontroller selects either the JTAG port or the BDM port. This
input signal is typically connected to a jumper. Please make sure that the
JTAG_EN signal is in high logic state before attempting to unsecure the micro-
controller. Make sure you switch the JTAG_EN input signal to low again after
the unsecure procedure is completed.

Note that on some boards (such as the M5223EVB) there is more than one
jumper which needs to be changed when selecting the JTAG port. Please con-
sult the board manual or schematic before making any changes.

4.1.2 Executing LOCKOUT_RECOVERY

A special utility is provided in the TBLCF package for execution of the
LOCKOUT_RECOVERY JTAG instruction. Since the LOCKOUT_RECOVERY
instruction differs from one microcontroller to another, the TBLCF_UNSEC util-
ity requires that the user supplies the binary code of the instruction and its
length on the command line as parameters. The erasure procedure of the on-

D:\tblcf>tblcf_bt -U

Turbo BDM Light ColdFire Bootloader ver 1.0. Compiled on Apr 29 2006, 17:35:29.

found 4 buses

found 1 Turbo BDM Light ColdFire device(s)

HC08JB16 ICP will execute on next power-up.

Disconnect and reconnect the device.

FIGURE 17. Marking firmware as outdated
Turbo BDM Light ColdFire interface 19 August 2006 20

chip flash requires precise timing. Since the TBLCF interface has no capability
to measure the clock speed of the microcontroller it is also necessary to specify
the flash clock divider. Details on the LOCOUT_RECOVERY instruction can be
found in the JTAG section of the reference manual (specific to the particular
microcontroller). Procedure for calculating the flash clock divisor is detailed in
the Flash section of the reference manual.

The command and a typical response of the tool when unsecuring the
MCF52235 microcontroller are shown in figure 18. The LOCOUT_RECOVERY
instruction for the MCF52235 microcontroller is 0x17 in hexadecimal (first
parameter) and is 5 bits long (second parameter). On the M5223EVB the
device is clocked by a 25MHz crystal. This requires a clock divider between
125 and 166 for correct operation. The selected divider value of 0x4F (third
parameter) corresponds to division factor of 128.

5.0 Performance

5.1 Limits of target crystal frequency

In the current implementation the interface communicates with the target
device at a fixed frequency. The ColdFire BDM specifies that the device must
be running at a clock frequency at least 5 times higher than the BDM communi-
cation frequency. Based on this requirement I recommend to supply at least
4MHz clock frequency to the target ColdFire device to guarantee correct oper-
ation of the interface.

5.2 Response time and transfer rate

By the nature of the USB protocol the response time for low and full speed
devices cannot be below 1ms. I have tried to optimize the communication pro-
tocol on the USB to achieve maximum throughput. Practical limitations (caused
by the Windows operating system) cause additional delays however. Average

D:\tblcf>tblcf_unsec 17 5 4F

Turbo BDM Light ColdFire Unsecure Utility ver 1.0.

Compiled on May 11 2006, 13:21:20.

TBLCF DLL version: 10

Unsecure instruction: 0x17

Instruction length: 5

Flash clock divisor: 0x4F

found 4 busses

found 1 Turbo BDM Light ColdFire device(s)

Part ID: ACCAAAAB

Done.

FIGURE 18. Unsecuring the on-chip flash
Turbo BDM Light ColdFire interface 19 August 2006 21

(since under Windows nothing is certain) execution times for different kinds of
commands are detailed in the following table.

When programming the flash of the target MCU there is additional overhead
created by the flash programming routines. I have tested the flash program-
ming speed on the MCF52235 device with the following results:

6.0 Ideas for further work

1. At the moment the TBLCF interface is supported only under the CodeWar-
rior debugger. It would be nice to create support for GDB under Linux. The
LibUSBWin32 USB driver I am using should provide an easy migration
path to LibUSB under Linux.

2. It would be nice to figure out how to support lower clock frequencies for the
target device without compromising speed of operation of the interface.

7.0 Support

TBLCF is an interface which works with Freescale Semiconductor parts. How-
ever it is not a Freescale Semiconductor product. It is not sold nor supported by
Freescale Semiconductor.

TBLCF is an open source project. It comes free of charge and so do not expect
much in terms of support. If you discover any bugs or have difficulties with the
interface please let me know. However, the amount of time I can dedicate to
supporting this interface is limited, so please be patient.

8.0 License

I am making all the work (with the aforementioned exceptions) available for
everyone under the GNU general public license version 2. I do not want to
restrict support for the interface in commercial products and I can provide you

Command

type Description

Average

execution speed

Short Commands which transfer up to 5 bytes of data into

TBLCF and require no return values.

3ms

Typical Commands which transfer up to 5 bytes of data into

TBLCF and request up to 8 bytes of return values.

4ms

Data

transfer

Commands which transfer large blocks of data. 6.7 kB/s

Operation Throughput

Flash programming 6.6 kB/s

Flash programming and verification 4.6 kB/s
Turbo BDM Light ColdFire interface 19 August 2006 22

with a copy of the work under GNU lesser general public license which enables
use of the work in commercial applications - ask for it if you need it.

9.0 References

1. LIBUSB documentation, http://libusb.sourceforge.net/

2. BDM documentation, COLDFIRE2UM.PDF available from Freescale Sem-
iconductor
Turbo BDM Light ColdFire interface 19 August 2006 23

	1.0 Introduction to TBLCF
	1.1 Purpose of this document
	1.2 Aspirations and roots of TBLCF

	2.0 Description of TBLCF
	2.1 What you get
	2.2 Hardware
	2.3 Software

	3.0 Firmware (re)programming and installation
	3.1 Programming firmware into TBLCF
	3.2 Installing drivers for TBLCF use
	3.3 Using the GDI interface for the CodeWarrior Debugger
	3.4 Upgrading the firmware

	4.0 Utilities
	4.1 Erasing secured devices

	5.0 Performance
	5.1 Limits of target crystal frequency
	5.2 Response time and transfer rate

	6.0 Ideas for further work
	7.0 Support
	8.0 License
	9.0 References

