Programmer’s Guide

Publication number 01660-97033
Second edition, January 2000

For Safety information, Warranties, and Regulatory
information, see the pages behind the index

© Copyright Agilent Technologies 1992-2000
All Rights Reserved

Agilent Technologies
1660A/AS-Series Logic
Analyzers



ii



In This Book

This programmer’s guide contains general
information, mainframe level commands,
logic analyzer commands, oscilloscope
module commands, and programming
examples for programming the
1660-series logic analyzers. This guide
focuses on how to program the
instrument over the GPIB and the
RS-232C interfaces.

Instruments covered by the
1660-Series Programmer’s Guide
The 1660-series logic analyzers are
available with or without oscilloscope
measurement capabilities. The
1660A-series logic analyzers contain only
a logic analyzer. The 1660AS-series logic
analyzers contain both a logic analyzer
and a digitizing oscilloscope.

What is in the 1660-Series
Programmer’s Guide?

The 1660-Series Programmer’s Guide
is organized in five parts.

Part 1 Part 1 consists of chapters 1
through 7 and contains general
information about programming basics,
GPIB and RS-232C interface
requirements, documentation
conventions, status reporting , and error
messages.

10

"

12

13

14

Introduction to Programming

Programming Over GPIB

Programming Over RS-232C

Programming and
Documentation Conventions

Message Communication
and System Functions

Status Reporting

Error Message

Common Commands

Mainframe Commands

SYSTem Subsystem

MMEMory Subsystem

INTermodule Subsystem

MACHine Subsystem

WLISt Subsystem

il



If you are already familiar with IEEE 488.2 programming and GPIB or
RS-232C, you may want to just scan these chapters. If you are new to
programmiung the system, you should read part 1.

Chapter 1 is divided into two sections. The first section, "Talking to the
Instrument," concentrates on program syntax, and the second section,
"Receiving Information from the Instrument," discusses how to send queries
and how to retrieve query results from the instrument.

Read either chapter 2, "Programming Over GPIB," or chapter 3,
"Programming Over RS-232C" for information concerning the physical
connection between the 1660-series logic analyzer and your controller.

Chapter 4, "Programming and Documentation Conventions," gives an
overview of all instructions and also explains the notation conventions used
in the syntax definitions and examples.

Chapter 5, "Message Communication and System Functions," provides an
overview of the operation of instruments that operate in compliance with the
IEEE 488.2 standard.

Chapter 6 explains status reporting and how it can be used to monitor the
flow of your programs and measurement process.

Chapter 7 contains error message descriptions.

Part 2 Part 2, chapters 8 through 12, explain each command in the
command set for the mainframe. These chapters are organized in
subsystems with each subsystem representing a front-panel menu.

The commands explained in this part give you access to common commands,
mainframe commands, system level commands, disk commands, and
intermodule measurement commands. This part is designed to provide a
concise description of each command.

Part 3 Part 3, chapters 13 through 25 explain each command in the
subsystem command set for the logic analyzer. Chapter 26 contains
information on the SYSTem:DATA and SYSTem:SETup commands for
the logic analyzer.

The commands explained in this part give you access to all the commands
used to operate the logic analyzer portion of the 1660-series system. This
part is designed to provide a concise description of each command.

Part 4 Part 4, chapters 27 through 35 explain each command in the
subsystem command set for the oscilloscope.

iv



The commands explained in this part give
you access to all the commands used to
operate the oscilloscope portion of the
1660-series system. This part is designed
to provide a concise description of each
command.

Part 5 Part 5, chapter 36 contains
program examples of actual tasks that
show you how to get started in
programming the 1660-series logic
analyzers. The complexity of your
programs and the tasks they accomplish
are limited only by your imagination.
These examples are written in HP BASIC
6.2; however, the program concepts can
be used in any other popular
programming language that allows
communications over GPIB or RS-232
buses.

15

16

17

18

19

20

21

22

23

24

25

26

2]

28

SFORmat Subsystem

STRigger (STRace) Subsystem

SLISt Subsystem

SWAVeform Subsystem

SCHart Subsystem

COMPare Subsystem

TFORmat Subsystem

TRIGger {TRACe} Subsystem

TWAVeform Subsystem

TLISt Subsystem

SYMbol Subsystem

DATA and SETup Commands

Oscilloscope Root Level
Commands

ACQuire Subsystem




Vi



29

30

31

32

33

34

35

36

CHANnel Subsystem

DISPlay Subsystem

MARKer Subsystem

MEASure Subsystem

TiMebase Subsystem

TRIGger Subsystem

WAVeform Subsystem

Programming Examples

Index

vii



viii



Part 1

Contents

General Information
Introduction to Programming

Talking to the Instrument 1-3

Initialization 1-4

Instruction Syntax 1-5
Output Command 1-5

Device Address 1-6
Instructions 1-6

Instruction Terminator 1-7
Header Types 1-8

Duplicate Keywords 1-9
Query Usage 1-10

Program Header Options 1-11
Parameter Data Types 1-12
Selecting Multiple Subsystems 1-14

Receiving Information from the Instrument 1-15

Response Header Options 1-16

Response Data Formats 1-17

String Variables 1-18

Numeric Base 1-19

Numeric Variables 1-19

Definite-Length Block Response Data 1-20
Multiple Queries 1-21

Instrument Status 1-22

Programming Over GPIB

Interface Capabilities 2-3

Command and Data Concepts 2-3

Addressing 2-3

Communicating Over the GPIB Bus (HP 9000 Series 200/300 Controller) 2-4
Local, Remote, and Local Lockout 2-5

Bus Commands 2-6

Contents-1



Contents

3 Programming Over RS-232C

Interface Operation 3-3

RS-232C Cables 3-3

Minimum Three-Wire Interface with Software Protocol 3-4
Extended Interface with Hardware Handshake 3-4

Cable Examples 3-6

Configuring the Logic Analzer Interface 3-8

Interface Capabilities 3-9

RS-232C Bus Addressing 3-10

Lockout Command 3-11

4 Programming and Documentation Conventions

Truncation Rule 4-3

Infinity Representation 4-4

Sequential and Overlapped Commands 4-4
Response Generation 4-4

Syntax Diagrams 4-4

Notation Conventions and Definitions 4-5
The Command Tree 4-5

Tree Traversal Rules 4-6

Command Set Organization 4-14
Subsystems 4-15

Program Examples 4-16

5 Message Communication and System Functions

Protocols 5-3
Syntax Diagrams 5-5
Syntax Overview 5-7

6 Status Reporting

Event Status Register 6-4

Service Request Enable Register 6-4
Bit Definitions 6-4

Key Features 6-6

Serial Poll 6-7

Contents-2



7 Error Messages

Part 2

Device Dependent Errors 7-3
Command Errors 7-3
Execution Errors 7-4
Internal Errors 7-4

Query Errors 7-5

Mainframe Commands

Common Commands

*CLS (Clear Status) 8-5

*ESE (Event Status Enable) 8-6
*ESR (Event Status Register) 8-7
*IDN (Identification Number) 8-9
*[ST (Individual Status) 8-9

*OPC (Operation Complete) 8-11
*OPT (Option Identification) 8-12
*PRE (Parallel Poll Enable Register Enable) 8-13
*RST (Reset) 8-14

*SRE (Service Request Enable) 8-15
*STB (Status Byte) 8-16

*TRG (Trigger) 8-17

*TST (Test) 8-18

*WAI (Wait) 8-19

Mainframe Commands

BEEPer 9-6

CAPability 9-7

CARDcage 9-8

CESE (Combined Event Status Enable) 9-9
CESR (Combined Event Status Register) 9-10
EOI (End Or Identify) 9-11

LER (LCL Event Register) 9-11

LOCKout 9-12

MENU 9-12

Contents

Contents-3



10

11

Contents

MESE<N> (Module Event Status Enable) 9-14
MESR<N> (Module Event Status Register) 9-16
RMODe 9-18

RTC (Real-time Clock) 9-19

SELect 9-20

SETColor 9-22

STARt 9-23

STOP 9-24

SYSTem Subsystem

DATA 10-5

DSP (Display) 10-6
ERRor 10-7
HEADer 10-8
LONGform 10-9
PRINt 10-10
SETup 10-11

MMEMory Subsystem

AUToload 11-8

CATalog 11-9

COPY 11-10

DOWNIoad 11-11
INITialize 11-13

LOAD [:CONFig] 11-14
LOAD :JASSembler 11-15
MSI (Mass Storage Is) 11-16
PACK 11-17

PURGe 11-17

REName 11-18

STORe [:CONFig] 11-19
UPLoad 11-20

VOLume 11-21

Contents-4



12 INTermodule Subsystem
INTermodule 12-5

Part 3

13

14

DELete 12-5
HTIMe 12-6
INPort 12-6
INSert 12-7
SKEW<N> 12-8
TREE 12-9
TTIMe 12-10

Logic Analyzer Commands

MACHine Subsystem

MACHine 13-4
ARM 13-5
ASSign 13-5
LEVelarm 13-6
NAME 13-7
REName 13-8
RESource 13-9
TYPE 13-10

WLISt Subsystem

WLISt 14-4
DELay 14-5
INSert 14-6
LINE 14-7
OSTate 14-8
OTIMe 14-8
RANGe 14-9
REMove 14-10
XOTime 14-10
XSTate 14-11
XTIMe 14-11

Contents

Contents-5



Contents

15 SFORmat Subsystem

SFORmat 15-6
CLOCk 15-6
LABel 15-7
MASTer 15-9
MODE 15-10
MOPQual 15-11
MQUal 15-12
REMove 15-13
SETHold 15-13
SLAVe 15-15
SOPQual 15-16
SQUal 15-17
THReshold 15-18

16 STRigger (STRace) Subsystem

Qualifier 16-7
STRigger (STRace) 16-9
ACQuisition 16-9
BRANch 16-10
CLEar 16-12
FIND 16-13
RANGe 16-14
SEQuence 16-16
STORe 16-17

TAG 16-18
TAKenbranch 16-19
TCONtrol 16-20
TERM 16-21
TIMER 16-22
TPOSition 16-23

17 SLISt Subsystem

SLISt 17-7
COLumn 17-7

Contents-6



18

CLRPattern 17-8
DATA 17-9
LINE 17-9
MMODe 17-10
OPATtern 17-11
OSEarch 17-12
OSTate 17-13
OTAG 17-13
OVERlay 17-14
REMove 17-15
RUNTil 17-15
TAVerage 17-17
TMAXimum 17-17
TMINimum 17-18
VRUNs 17-18
XOTag 17-19
XOTime 17-19
XPATtern 17-20
XSEarch 17-21
XSTate 17-22
XTAG 17-22

SWAVeform Subsystem

SWAVeform 18-4
ACCumulate 18-5
ACQuisition 18-5
CENTer 18-6
CLRPattern 18-6
CLRStat 18-7
DELay 18-7
INSert 18-8
RANGe 18-8
REMove 18-9
TAKenbranch 18-9
TPOSition 18-10

Contents

Contents-7



Contents

19 SCHart Subsystem

SCHart 19-4
ACCumulate 19-4
HAXis 19-5
VAXis 19-7

20 COMPare Subsystem

COMPare 20-4
CLEar 20-5
CMASk 20-5
COPY 20-6
DATA 20-7
FIND 20-9
LINE 20-10
MENU 20-10
RANGe 20-11
RUNTil 20-12
SET 20-13

21 TFORmat Subsystem

TFORmat 21-4
ACQMode 21-5
LABel 21-6
REMove 21-7
THReshold 21-8

22 TTRigger (TTRace) Subsystem

Qualifier 22-6

TTRigger (TTRace) 22-8
ACQuisition 22-9
BRANch 22-9

CLEar 22-12

FIND 22-13

GLEDge 22-14

RANGe 22-15

Contents-8



23

SEQuence 22-17
SPERiod 22-18
TCONtrol 22-19
TERM 22-20
TIMER 22-21
TPOSition 22-22

TWAVeform Subsystem

TWAVeform 23-7
ACCumulate 23-7
ACQuisition 23-8
CENTer 23-8
CLRPattern 23-9
CLRStat 23-9
DELay 23-9
INSert 23-10
MMODe 23-11
OCONdition 23-12
OPATtern 23-13
OSEarch 23-14
OTIMe 23-15
RANGe 23-16
REMove 23-16
RUNTil 23-17
SPERiod 23-18
TAVerage 23-19
TMAXimum 23-19
TMINimum 23-20
TPOSition 23-20
VRUNs 23-21
XCONdition 23-22
XOTime 23-22
XPATtern 23-23
XSEarch 23-24
XTIMe 23-25

Contents

Contents-9



Contents

24 TLISt Subsystem

25

TLISt 24-7
COLumn 24-7
CLRPattern 24-8
DATA 24-9
LINE 24-9
MMODe 24-10
OCONdition 24-11
OPATtern 24-11
OSEarch 24-12
OSTate 24-13
OTAG 24-14
REMove 24-14
RUNTil 24-15
TAVerage 24-16
TMAXimum 24-16
TMINimum 24-17
VRUNs 24-17
XCONdition 24-18
XOTag 24-18
XOTime 24-19
XPATtern 24-19
XSEarch 24-20
XSTate 24-21
XTAG 24-22

SYMBol Subsystem

SYMBol 25-4
BASE 25-5
PATTern 25-6
RANGe 25-6
REMove 25-7
WIDTh 25-8

Contents-10



26

Part 4

27

28

29

30

DATA and SETup Commands

Data Format 26-3

:SYSTem:DATA 26-4

Section Header Description 26-6
Section Data 26-6

Data Preamble Description 26-6
Acquisition Data Description 26-10
Time Tag Data Description 26-12
Glitch Data Description 26-14
SYSTem:SETup 26-15

RTC_INFO Section Description 26-17

Oscilloscope Commands

Oscilloscope Root Level Commands

AUToscale 27-3
DIGitize 27-5

ACQuire Subsystem

COUNt 28-4
TYPE 28-4

CHANnRel Subsystem

COUPling 29-4
ECL 29-5
OFFSet 29-6
PROBe 29-7
RANGe 29-8
TTL 29-9

DISPlay Subsystem

ACCumulate 30-4
CONNect 30-5
INSert 30-5

Contents

Contents-11



31

32

Contents

LABel 30-7
MINus 30-8
OVERlay 30-8
PLUS 30-9
REMove 30-9

MARKer Subsystem

AVOLt 31-6
ABVolt? 31-7
BVOLt 31-7
CENTer 31-8
MSTats 31-8
OAUTo 31-9
OTIMe 31-10
RUNTil 31-11
SHOW 31-12
TAVerage? 31-12
TMAXimum? 31-13
TMINimum? 31-13
TMODe 31-14
VMODe 31-15
VOTime? 31-16
VRUNs? 31-16
VXTime? 31-17
XAUTo 31-18
XOTime? 31-19
XTIMe 31-19

MEASure Subsystem

ALL? 32-5
FALLtime? 32-6
FREQuency? 32-6
NWIDth? 32-7
OVERshoot? 32-7
PERiod? 32-8
PREShoot? 32-8

Contents-12



33

34

35

PWIDth? 32-9
RISetime? 32-9
SOURce 32-10
VAMPlitude? 32-11
VBASe? 32-11
VMAX? 32-12
VMIN? 32-12
VPP? 32-13
VTOP? 32-13

TIMebase Subsystem

DELay 33-4
MODE 33-5
RANGe 33-6

TRIGger Subsystem

CONDition 34-5
DELay 34-7
LEVel 34-8
LOGic 34-10
MODE 34-11
PATH 34-12
SLOPe 34-12
SOURce 34-13

WAVeform Subsystem

Format for Data Transfer 35-4
Data Conversion 35-6
COUNt? 35-9

DATA? 35-9

FORMat 35-10

POINts? 35-10

PREamble? 35-11

RECord 35-12

SOURce 35-12

Contents

Contents-13



Part 5

36

Contents

SPERiod? 35-13
TYPE? 35-13
VALid? 35-14
XINCrement? 35-15
XORigin? 35-16
XREFerence? 35-16
YINCrement? 35-17
YORigin? 35-17
YREFerence? 35-18

Programming Examples

Programming Examples

Making a Timing analyzer measurement 36-3

Making a State analyzer measurement 36-5

Making a State Compare measurement 36-9
Transferring the logic analyzer configuration 36-14
Transferring the logic analyzer acquired data 36-17
Checking for measurement completion 36-21
Sending queries to the logic analyzer 36-22

Getting ASCII Data with PRINt? ALL Query 36-24
Reading the disk with the CATalog? ALL query 36-25
Reading the Disk with the CATalog? Query 36-26
Printing to the disk 36-27

Transferring waveform data in Byte format 36-28
Transferring waveform data in Word format 36-30
Using AUToscale and the MEASure:ALL? Query 36-32
Using Sub-routines in a measurement program 36-33

Contents-14



Part 1

General Information






Introduction to Programming



Introduction

This chapter introduces you to the basics of remote programming and
is organized in two sections. The first section, "Talking to the
Instrument," concentrates on initializing the bus, program syntax and
the elements of a syntax instuction. The second section, "Receiving
Information from the Instrument," discusses how queries are sent and
how to retrieve query results from the mainframe instruments.

The programming instructions explained in this book conform to
IEEE Std 488.2-1987, "IEEE Standard Codes, Formats, Protocols, and
Common Commands." These programming instructions provide a
means of remotely controlling the 1660-series logic analyzers. There
are three general categories of use. You can:

e Set up the instrument and start measurements
e Retrieve setup information and measurement results
e Send measurement data to the instrument

The instructions listed in this manual give you access to the
measurements and front panel features of the 1660-series logic
analyzers. The complexity of your programs and the tasks they
accomplish are limited only by your imagination. This programming
reference is designed to provide a concise description of each
instruction.

1-2



Example

Talking to the Instrument

In general, computers acting as controllers communicate with the instrument
by sending and receiving messages over a remote interface, such as GPIB or
RS-232C. Instructions for programming the 1660-series logic analyzers will
normally appear as ASCII character strings embedded inside the output
statements of a "host" language available on your controller. The host
language’s input statements are used to read in responses from the
1660-series logic analyzers.

For example, HP 9000 Series 200/300 BASIC uses the OUTPUT statement for
sending commands and queries to the 1660-series logic analyzers. After a
query is sent, the response can be read in using the ENTER statement. All
programming examples in this manual are presented in HP BASIC.

This Basic statement sends a command that causes the logic analyzer’s

machine 1 to be a state analyzer:

OUTPUT XXX;":MACHINE1l:TYPE STATE" <terminators>

Each part of the above statement is explained in this section.

1-3




Introduction to Programming
Initialization

Initialization

To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. BASIC provides a
CLEAR command that clears the interface buffer. If you are using GPIB,
CLEAR will also reset the parser in the logic analyzer. The parser is the
program resident in the logic analyzer that reads the instructions you send to
it from the controller.

After clearing the interface, you could preset the logic analyzer to a known
state by loading a predefined configuration file from the disk.

Refer to your controller manual and programming language reference manual
for information on initializing the interface.

Example This BASIC statement would load the configuration file "DEFAULT " (if it
exists) into the logic analyzer.

OUTPUT XXX;":MMEMORY:LOAD:CONFIG 'DEFAULT ‘"

Refer to chapter 10, "MMEMory Subsystem" for more information on the
LOAD command.

Example Program This program demonstrates the basic command structure used to program
the 1660-series logic analyzers.

10 CLEAR XXX !Initialize instrument interface
20 OUTPUT XXX;":SYSTEM:HEADER ON" !Turn headers on

30 OUTPUT XXX;":SYSTEM:LONGFORM ON" !Turn longform on

40 OUTPUT XXX;":MMEM:LOAD:CONFIG 'TEST E'" !Load configuration file
50 OUTPUT XXX;":MENU FORMAT,1" !Select Format menu for machine 1

60 OUTPUT XXX;":RMODE SINGLE" ISelect run mode

70 OUTPUT XXX;":START" IRun the measurement

1-4



Introduction to Programming
Instruction Syntax

Figure 1-1

Instruction Syntax

To program the logic analyzer remotely, you must have an understanding of
the command format and structure. The IEEE 488.2 standard governs syntax
rules pertaining to how individual elements, such as headers, separators,
parameters and terminators, may be grouped together to form complete
instructions. Syntax definitions are also given to show how query responses
will be formatted. Figure 1-1 shows the three main syntactical parts of a
typical program statement: Output Command, Device Address, and
Instruction. The instruction is further broken down into three parts:
Instruction header, White space, and Instruction parameters.

INSTRUGTION
1

OUTPUT XXX;":SYSTEM:MENU DISPLAY,2"

QUTPUT COMMAND
DEVICE ADDRESS
INSTRUCTION HEADER

WHITE SPACE

INSTRUCTION PARAMETERS

21650830

Program Message Syntax

Output Command

The output command depends on the language you choose to use.
Throughout this guide, HP 9000 Series 200/300 BASIC 6.2 is used in the
programming examples. If you use another language, you will need to find
the equivalents of Basic Commands, like OUTPUT, ENTER and CLEAR in
order to convert the examples. The instructions are always shown between
the double quotes.

1-5



Introduction to Programming
Device Address

Device Address

The location where the device address must be specified also depends on the
host language that you are using. In some languages, this could be specified
outside the output command. In BASIC, this is always specified after the
keyword OUTPUT. The examples in this manual use a generic address of
XXX. When writing programs, the number you use will depend on the cable
you use, in addition to the actual address. If you are using an GPIB, see
chapter 2, "Programming over GPIB." If you are using RS-232C, see

chapter 3, "Programming Over RS-232C."

Instructions

Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as BASIC, Pascal or C.
The only time a parameter is not meant to be expressed as a string is when
the instruction’s syntax definition specifies block data. There are just a few
instructions which use block data.

Instructions are composed of two main parts: the header, which specifies the
command or query to be sent; and the parameters, which provide additional
data needed to clarify the meaning of the instruction. Many queries do not
use any parameters.

Instruction Header

The instruction header is one or more keywords separated by colons (:). The
command tree in figure 4-1 illustrates how all the keywords can be joined
together to form a complete header (see chapter 4, "Programming and
Documentation Conventions").

The example in figure 1-1 shows a command. Queries are indicated by
adding a question mark (?) to the end of the header. Many instructions can
be used as either commands or queries, depending on whether or not you
have included the question mark. The command and query forms of an
instruction usually have different parameters.

1-6



Introduction to Programming
Instruction Terminator

When you look up a query in this programmer’s reference, you'll find a
paragraph labeled "Returned Format" under the one labeled "Query." The
syntax definition by "Returned format" will always show the instruction
header in square brackets, like [:SYSTem:MENU], which means the text
between the brackets is optional. It is also a quick way to see what the
header looks like.

White Space

White space is used to separate the instruction header from the instruction
parameters. If the instruction does not use any parameters, white space
does not need to be included. White space is defined as one or more spaces.
ASCII defines a space to be a character, represented by a byte, that has a
decimal value of 32. Tabs can be used only if your controller first converts
them to space characters before sending the string to the instrument.

Instruction Parameters

Instruction parameters are used to clarify the meaning of the command or
query. They provide necessary data, such as: whether a function should be
on or off, which waveform is to be displayed, or which pattern is to be looked
for. Each instruction’s syntax definition shows the parameters, as well as the
range of acceptable values they accept. This chapter’s "Parameter Data
Types" section has all of the general rules about acceptable values.

When there is more than one parameter, they are separated by commas ().
White space surrounding the commas is optional.

Instruction Terminator

An instruction is executed after the instruction terminator is received. The
terminator is the NL (New Line) character. The NL character is an ASCII
linefeed character (decimal 10).

The NL (New Line) terminator has the same function as an EOS (End Of
String) and EOT (End Of Text) terminator.

1-7




Introduction to Programming
Header Types

Example

Example

Example

Header Types

There are three types of headers: Simple Command, Compound Command,
and Common Command.

Simple Command Header

Simple command headers contain a single keyword. START and STOP are
examples of simple command headers typically used in this logic analyzer.
The syntax is: <function><terminators>

When parameters (indicated by <data>) must be included with the simple
command header, the syntax is: <function><white_ space><datas>
<terminator>

:RMODE SINGLE<terminator>

Compound Command Header

Compound command headers are a combination of two or more program
keywords. The first keyword selects the subsystem, and the last keyword
selects the function within that subsystem. Sometimes you may need to list
more than one subsystem before being allowed to specify the function. The
keywords within the compound header are separated by colons. For
example, to execute a single function within a subsystem, use the following:
:<subsystems>:<function><white space><datas><terminators>

: SYSTEM : LONGFORM ON
To traverse down one level of a subsystem to execute a subsystem within
that subsystem, use the following:

<subsystem>:<subsystem>:<function><white space>
<data><terminator>

:MMEMORY : LOAD : CONFIG "FILE "




Example

Introduction to Programming
Duplicate Keywords

Common Command Header

Common command headers control IEEE 488.2 functions within the logic
analyzer, such as, clear status. The syntax is:
*<command headers><terminators

No white space or separator is allowed between the asterisk and the
command header. *CLS is an example of a common command header.

Combined Commands in the Same Subsystem

To execute more than one function within the same subsystem, a semicolon
(;) is used to separate the functions:
:<subsystem>:<function><white
space><data>;<function><white space><data><terminator>

:SYSTEM : LONGFORM ON;HEADER ON

Duplicate Keywords

Identical function keywords can be used for more than one subsystem. For

example, the function keyword MMODE may be used to specify the marker

mode in the subsystem for state listing or the timing waveforms:

e :SLIST:MMODE PATTERN - sets the marker mode to pattern in
the state listing.

e :TWAVEFORM:MMODE TIME - sets the marker mode to time in the
timing waveforms.

SLIST and TWAVEFORM are subsystem selectors, and they determine which
marker mode is being modified.

1-9



Introduction to Programming
Query Usage

Example

Query Usage

Logic analyzer instructions that are immediately followed by a question mark
(?) are queries. After receiving a query, the logic analyzer parser places the
response in the output buffer. The output message remains in the buffer
until it is read or until another logic analyzer instruction is issued. When
read, the message is transmitted across the bus to the designated listener
(typically a controller).

Query commands are used to find out how the logic analyzer is currently
configured. They are also used to get results of measurements made by the
logic analyzer.

This instruction places the current full-screen time for machine 1 in the
output buffer.

:MACHINEL : TWAVEFORM : RANGE?

In order to prevent the loss of data in the output buffer, the output buffer
must be read before the next program message is sent. Sending another
command before reading the result of the query will cause the output buffer
to be cleared and the current response to be lost. This will also generate a
"QUERY UNTERMINATED" error in the error queue. For example, when you
send the query : TWAVEFORM : RANGE? you must follow that with an input
statement. In Basic, this is usually done with an ENTER statement.

In Basic, the input statement, ENTER XXX; Range, passes the value across
the bus to the controller and places it in the variable Range.

Additional details on how to use queries is in the next section of this chapter,
"Receiving Information for the Instrument."

1-10



Introduction to Programming
Program Header Options

Example

Program Header Options

Program headers can be sent using any combination of uppercase or
lowercase ASCII characters. Logic analyzer responses, however, are always
returned in uppercase.

Both program command and query headers may be sent in either long form
(complete spelling), short form (abbreviated spelling), or any combination of
long form and short form.

Programs written in long form are easily read and are almost self-
documenting. The short form syntax conserves the amount of controller
memory needed for program storage and reduces the amount of I/O activity.

The rules for short form syntax are discussed in chapter 4, "Programming and
Documentation Conventions."

Either of the following examples turns on the headers and long form.
Long form:

OUTPUT XXX;":SYSTEM:HEADER ON; LONGFORM ON"

Short form:

OUTPUT XXX;":SYST:HEAD ON;LONG ON"




Introduction to Programming
Parameter Data Types

Example

Example

Parameter Data Types

There are three main types of data which are used in parameters. They are
numeric, string, and keyword. A fourth type, block data, is used only for a few
instructions: the DATA and SETup instructions in the SYSTem subsystem
(see chapter 10); the CATalog, UPLoad, and DOWNIload instructions in the
MMEMory subsystem (see chapter 11). These syntax rules also show how
data may be formatted when sent back from the 1660-series logic analyzers
as aresponse.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are allowed to include one or more white spaces
around the commas, but it is not mandatory.

Numeric data

For numeric data, you have the option of using exponential notation or using
suffixes to indicate which unit is being used. However, exponential notation
is only applicable to the decimal number base. Tables 5-1 and 5-2 in chapter
5, "Message Communications and System Functions," list all available
suffixes. Do not combine an exponent with a unit.

The following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K.

The base of a number is shown with a prefix. The available bases are binary
(#B), octal (#Q), hexadecimal (#H) and decimal (default).

The following numbers are all equal:

#B11100 = #Q34 = #HIC = 28

You may not specify a base in conjunction with either exponents or unit
suffixes. Additionally, negative numbers must be expressed in decimal.

1-12



Introduction to Programming
Parameter Data Types

When a syntax definition specifies that a number is an integer, that means
that the number should be whole. Any fractional part would be ignored,
truncating the number. Numeric parameters that accept fractional values are
called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you send a byte representing the ASCII code for the
character "9" (which is 57, or 0011 1001 in binary). A three-digit number,
like 102, will take up three bytes (ASCII codes 49, 48 and 50). This is taken
care of automatically when you include the entire instruction in a string.

String data

String data may be delimited with either single (*) or double (") quotes.
String parameters representing labels are case-sensitive. For instance, the
labels "Bus A" and "bus a" are unique and should not be used
indiscriminately. Also pay attention to the presence of spaces, because they
act as legal characters just like any other. So, the labels "In"and" In"are
also two different labels.

Keyword data

In many cases a parameter must be a keyword. The available keywords are
always included with the instruction’s syntax definition. When sending
commands, either the longform or shortform (if one exists) may be used.
Uppercase and lowercase letters may be mixed freely. When receiving
responses, upper-case letters will be used exclusively. The use of longform
or shortform in a response depends on the setting you last specified via the
SYSTem:LONGform command (see chapter 10).




Introduction to Programming
Selecting Multiple Subsystems

Example

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon.
The colon following the semicolon enables you to enter a new subsystem.
<instruction header><datas>;:<instruction headers><data>
<terminator>

Multiple commands may be any combination of simple, compound and
common commands.

:MACHINE1 :ASSIGN2; : SYSTEM:HEADERS ON

1-14



Example

Receiving Information from the Instrument

After receiving a query (logic analyzer instruction followed by a question
mark), the logic analyzer interrogates the requested function and places the
answer in its output queue. The answer remains in the output queue until it
is read, or, until another command is issued. When read, the message is
transmitted across the bus to the designated listener (typically a controller).
The input statement for receiving a response message from an logic
analyzer’s output queue usually has two parameters: the device address and
a format specification for handling the response message.

All results for queries sent in a program message must be read before another
program message is sent. For example, when you send the query
:MACHINE1 : ASSIGN?, you must follow that query with an input statement.
In Basic, this is usually done with an ENTER statement.

The format for handling the response messages is dependent on both the
controller and the programming language.

To read the result of the query command : SYSTEM : LONGFORM? you can
execute this Basic statement to enter the current setting for the long form
command in the numeric variable Setting.

ENTER XXX; Setting




Introduction to Programming
Response Header Options

Examples

Response Header Options

The format of the returned ASCII string depends on the current settings of
the SYSTEM HEADER and LONGFORM commands. The general format is
<instruction header><space><data><terminator>

The header identifies the data that follows (the parameters) and is controlled
by issuing a : SYSTEM:HEADER ON/OFF command. If the state of the
header command is OFF, only the data is returned by the query.

The format of the header is controlled by the :SYSTEM:LONGFORM ON/OFF
command. Iflong form is OFF | the header will be in its short form and the
header will vary in length, depending on the particular query. The separator
between the header and the data always consists of one space.

A command or query may be sent in either long form or short form, or in any
combination of long form and short form. The HEADER and LONGFORM
commands only control the format of the returned data, and, they have no
affect on the way commands are sent.

Refer to chapter 10, "SYSTem Subsystem" for information on turning the
HEADER and LONGFORM commands on and off.

The following examples show some possible responses for a
:MACHINE] : SFORMAT : THRESHOLD2? query:

with HEADER OFF*:

<data><terminators>
with HEADER ON and LONGFORM OFF:

:MACH1:SFOR:THR2 <white space><data><terminators>

with HEADER ON and LONGFORM ON:

:MACHINEL : SFORMAT : THRESHOLD2 <white space><data><terminators>

1-16



Introduction to Programming
Response Data Formats

Examples

Response Data Formats

Both numbers and strings are returned as a series of ASCII characters, as
described in the following sections. Keywords in the data are returned in the
same format as the header, as specified by the LONGform command. Like
the headers, the keywords will always be in uppercase.

The following are possible responses to the MACHINE1: TFORMAT: LAB?
' ADDR’ query.

Header on; Longform on

MACHINE1: TFORMAT:LABEL "ADDR ",19,POSITIVE<terminators

Header on;Longform off

MACH1:TFOR:LAB "ADDR ",19,POS<terminator>

Header off; Longform on

"ADDR ",19,POSITIVE<terminators

Header off; Longform off

"ADDR ",19,POS<terminators

Refer to the individual commands in Parts 2 through 4 of this guide for
information on the format (alpha or numeric) of the data returned from each
query.




Introduction to Programming
String Variables

String Variables

Because there are so many ways to code numbers, the 1660-series logic
analyzers handle almost all data as ASCII strings. Depending on your host
language, you may be able to use other types when reading in responses.

Sometimes it is helpful to use string variables in place of constants to send
instructions to the 1660-series logic analyzers, such as, including the headers
with a query response.

Example This example combines variables and constants in order to make it easier to

10
20
30
40

switch from MACHINE1 to MACHINEZ. In BASIC, the & operator is used for
string concatenation.

OUTPUT XXX;":SELECT 1" !1Select the logic analyzer
LET Machine$ = ":MACHINE2" !1Send all instructions to machine 2
OUTPUT XXX; Machine$ & ":TYPE STATE" !Make machine a state analyzer

! Assign all labels to be positive
OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’‘CHAN 1’, POS"

50 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL 'CHAN 2‘, POS"

60 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’‘OUT’, POS"

99 END
If you want to observe the headers for queries, you must bring the returned
data into a string variable. Reading queries into string variables requires little
attention to formatting,.

Example This command line places the output of the query in the string variable

Result$.

ENTER XXX;Result$

In the language used for this book (HP BASIC 6.2), string variables are case-
sensitive and must be expressed exactly the same each time they are used.

The output of the logic analyzer may be numeric or character data depending
on what is queried. Refer to the specific commands, in Part 2 of this guide,
for the formats and types of data returned from queries.

1-18



Introduction to Programming
Numeric Base

Example The following example shows logic analyzer data being returned to a string
variable with headers off:
10 OUTPUT XXX;":SYSTEM:HEADER OFF"
20 DIM Rang$[30]
30 OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"
40 ENTER XXX;Rangs$
50 PRINT Rang$
60 END
After running this program, the controller displays: +1.00000E-05
Numeric Base
Most numeric data will be returned in the same base as shown onscreen.
When the prefix #B precedes the returned data, the value is in the binary
base. Likewise, #Q is the octal base and #H is the hexadecimal base. If no
prefix precedes the returned numeric data, then the value is in the decimal
base.
Numeric Variables
If your host language can convert from ASCII to a numeric format, then you
can use numeric variables. Turning off the response headers will help you
avoid accidently trying to convert the header into a number.

Example The following example shows logic analyzer data being returned to a numeric

variable.

10 OUTPUT XXX;":SYSTEM:HEADER OFF"

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"
30 ENTER XXX;Rang

40 PRINT Rang

50 END




Introduction to Programming
Definite-Length Block Response Data

This time the format of the number (such as, whether or not exponential
notation is used) is dependant upon your host language. In Basic, the output
will look like: 1.E-5

Definite-Length Block Response Data

Definite-length block response data, also refered to as block data, allows any
type of device-dependent data to be transmitted over the system interface as
a series of data bytes. Definite-length blick data is particularly useful for
sending large quantities of data, or, for sending 8-bit extended ASCII codes.
The syntax is a pound sign ( # ) followed by a non-zero digit representing the
number of digits in the decimal integer. Following the non zero digit is the
decimal integer that states the number of 8-bit data bytes to follow. This
number is followed by the actual data.

Indefinite-length block data is not supported on the 1660-series logic
analyzers.

For example, for transmitting 80 bytes of data, the syntax would be:

NUMBER OF DIGITS
THAT FOLLOW

ACTUAL DATA

st

#800000080<eighty bytes of data><terminator>
A e Y

NUMBER OF BYTES
TO BE TRANSMITTED 16500/8L22

Figure 1-2

Definite-length Block Response Data

The "8" states the number of digits that follow, and "00000080" states the
number of bytes to be transmitted, which is 80.

1-20



Introduction to Programming
Multiple Queries

Example

Example

Example

Multiple Queries

You can send multiple queries to the logic analyzer within a single program
message, but you must also read them back within a single program message.
This can be accomplished by either reading them back into a string variable
or into multiple numeric variables.

You can read the result of the query :SYSTEM:HEADER?;,LONGFORM? into
the string variable Results$ with the command:

ENTER XXX; Resultss$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon.

The response of the query :SYSTEM:HEADER?:LONGFORM? with HEADER
and LONGFORM turned on is:

:SYSTEM:HEADER 1; :SYSTEM: LONGFORM 1

If you do not need to see the headers when the numeric values are returned,
then you could use numeric variables. When you are receiving numeric data
into numeric variables, the headers should be turned off. Otherwise the
headers may cause misinterpretation of returned data.

The following program message is used to read the query
:SYSTEM:HEADERS?;LONGFORM? into multiple numeric variables:

ENTER XXX; Resultl, Result2

1-21



Introduction to Programming
Instrument Status

Instrument Status

Status registers track the current status of the logic analyzer. By checking
the instrument status, you can find out whether an operation has been
completed, whether the instrument is receiving triggers, and more.
Chapter 6, "Status Reporting," explains how to check the status of the
instrument.

1-22



Programming Over GPIB



Introduction

This section describes the interface functions and some general
concepts of the GPIB. In general, these functions are defined by IEEE
488.1 (GPIB bus standard). They deal with general bus management
issues, as well as messages which can be sent over the bus as bus
commands.




Programming Over GPIB
Interface Capabilities

Interface Capabilities

The interface capabilities of the 1660-series logic analyzers, as defined by
IEEE 488.1 are SH1, AH1, T5, TEO, L3, LEO, SR1, RL1, PP0, DC1, DT1, CO,
and E2.

Command and Data Concepts

The GPIB has two modes of operation: command mode and data mode. The
bus is in command mode when the ATN line is true. The command mode is
used to send talk and listen addresses and various bus commands, such as a
group execute trigger (GET). The bus is in the data mode when the ATN line
is false. The data mode is used to convey device-dependent messages across
the bus. These device-dependent messages include all of the instrument
commands and responses found in chapters 8 through 35 of this manual.

Addressing

By using the front-panel I/O and SELECT keys, the GPIB interface can be
placed in either talk only mode, "Printer connected to GPIB," or in addressed
talk/listen mode, "Controller connected to GPIB," (see chapter 16, "The
RS-232/GPIB Menu" in the Agilent Technologies 1660-Series Logic
Analyzer User’s Reference). Talk only mode must be used when you want
the logic analyzer to talk directly to a printer without the aid of a controller.
Addressed talk/listen mode is used when the logic analyzer will operate in
conjunction with a controller. When the logic analyzer is in the addressed
talk/listen mode, the following is true:

e FEach device on the GPIB resides at a particular address ranging from 0 to
30.

o The active controller specifies which devices will talk and which will listen.

e An instrument, therefore, may be talk-addressed, listen-addressed, or
unaddressed by the controller.

2-3




Programming Over GPIB
Communicating Over the GPIB Bus (HP 9000 Series 200/300 Controller)

If the controller addresses the instrument to talk, it will remain configured to
talk until it receives:

e an interface clear message (IFC)
e another instrument’s talk address (OTA)
e its own listen address (MLA)

e a universal untalk (UNT) command.

If the controller addresses the instrument to listen, it will remain configured
to listen until it receives:

e an interface clear message (IFC)
e its own talk address (MTA)

e a universal unlisten (UNL) command.

Communicating Over the GPIB Bus (HP 9000 Series
200/300 Controller)

Because GPIB can address multiple devices through the same interface card,
the device address passed with the program message must include not only
the correct instrument address, but also the correct interface code.

Interface Select Code (Selects the Interface)

Each interface card has its own interface select code. This code is used by
the controller to direct commands and communications to the proper
interface. The default is always "7" for GPIB controllers.

Instrument Address (Selects the Instrument)

Each instrument on the GPIB port must have a unique instrument address
between decimals 0 and 30. The device address passed with the program
message must include not only the correct instrument address, but also the
correct interface select code.




Example

Programming Over GPIB
Local, Remote, and Local Lockout

For example, if the instrument address is 4 and the interface select code is 7,
the instruction will cause an action in the instrument at device address 704.

DEVICE ADDRESS = (Interface Select Code) X 100 + (Instrument
Address)

Hint

Local, Remote, and Local Lockout

The local, remote, and remote with local lockout modes may be used for
various degrees of front-panel control while a program is running. The logic
analyzer will accept and execute bus commands while in local mode, and the
front panel will also be entirely active. If the 1660-series logic analyzer is in
remote mode, the logic analyzer will go from remote to local with any front
panel activity. In remote with local lockout mode, all controls (except the
power switch) are entirely locked out. Local control can only be restored by
the controller.

Cycling the power will also restore local control, but this will also reset
certain GPIB states. It also resets the logic analyzer to the power-on defaults
and purges any acquired data in the acquisition memory.

The instrument is placed in remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to listen.
The instrument can be placed in local lockout mode by sending the local
lockout (LLO) command (see SYSTem:LOCKout in chapter 9, "Mainframe
Commands"). The instrument can be returned to local mode by either
setting the REN line false, or sending the instrument the go to local (GTL)
command.

2-5




Programming Over GPIB
Bus Commands

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE
488.2 defines many of the actions which are taken when these commands are
received by the logic analyzer.

Device Clear

The device clear (DCL) or selected device clear (SDC) commands clear the
input and output buffers, reset the parser, clear any pending commands, and
clear the Request-OPC flag.

Group Execute Trigger (GET)

The group execute trigger command will cause the same action as the
START command for Group Run: the instrument will acquire data for the
active waveform and listing displays.

Interface Clear (IFC)

This command halts all bus activity. This includes unaddressing all listeners
and the talker, disabling serial poll on all devices, and returning control to the
system controller.

2-6



Programming Over RS-232C



Introduction

This chapter describes the interface functions and some general
concepts of the RS-232C. The RS-232C interface on this instrument is
Agilent Technologies’ implementation of EIA Recommended Standard
RS-232C, "Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data
Interchange." With this interface, data is sent one bit at a time, and
characters are not synchronized with preceding or subsequent data
characters. Each character is sent as a complete entity without
relationship to other events.

3-2



Programming Over RS-232C
Interface Operation

Interface Operation

The 1660-series logic analyzers can be programmed with a controller over
RS-232C using either a minimum three-wire or extended hardwire interface.
The operation and exact connections for these interfaces are described in
more detail in the following sections. When you are programming a
1660-series logic analyzer over RS-232C with a controller, you are normally
operating directly between two DTE (Data Terminal Equipment) devices as
compared to operating between a DTE device and a DCE (Data
Communications Equipment) device.

When operating directly between two DTE devices, certain considerations
must be taken into account. For a three-wire operation, XON/XOFF must be
used to handle protocol between the devices. For extended hardwire
operation, protocol may be handled either with XON/XOFF or by
manipulating the CTS and RTS lines of the RS-232C link. For both three-
wire and extended hardwire operation, the DCD and DSR inputs to the logic
analyzer must remain high for proper operation.

With extended hardwire operation, a high on the CTS input allows the logic
analyzer to send data, and a low disables the logic analyzer data transmission.
Likewise, a high on the RTS line allows the controller to send data, and a low
signals a request for the controller to disable data transmission. Because
three-wire operation has no control over the CTS input, internal pull-up
resistors in the logic analyzer assure that this line remains high for proper
three-wire operation.

RS-232C Cables

Selecting a cable for the RS-232C interface depends on your specific
application, and, whether you wish to use software or hardware handshake
protocol. The following paragraphs describe which lines of the 1660-series
logic analyzer are used to control the handshake operation of the RS-232C
relative to the system. To locate the proper cable for your application, refer
to the reference manual for your computer or controller. Your computer or
controller manual should describe the exact handshake protocol your
controller can use to operate over the RS-232C bus. Also in this chapter you
will find cable recommendations for hardware handshake.

3-3




Programming Over RS-232C
Minimum Three-Wire Interface with Software Protocol

Minimum Three-Wire Interface with Software Protocol

With a three-wire interface, the software (as compared to interface
hardware) controls the data flow between the logic analyzer and the
controller. The three-wire interface provides no hardware means to control
data flow between the controller and the logic analyzer. Therefore,
XON/OFF protocol is the only means to control this data flow. The
three-wire interface provides a much simpler connection between devices
since you can ignore hardware handshake requirements.

The communications software you are using in your computer/controller must
be capable of using XON/XOFF exclusively in order to use three-wire interface
cables. For example, some communications software packages can use
XON/XOFF but are also dependent on the CTS, and DSR lines being true to
communicate.

The logic analyzer uses the following connections on its RS-232C interface for
three-wire communication:

e Pin 7 SGND (Signal Ground)
e Pin2 TD (Transmit Data from logic analyzer)

e Pin3 RD (Receive Data into logic analyzer)

The TD (Transmit Data) line from the logic analyzer must connect to the RD
(Receive Data) line on the controller. Likewise, the RD line from the logic
analyzer must connect to the TD line on the controller. Internal pull-up
resistors in the logic analyzer assure the DCD, DSR, and CTS lines remain
high when you are using a three-wire interface.

Extended Interface with Hardware Handshake

With the extended interface, both the software and the hardware can control
the data flow between the logic analyzer and the controller. This allows you
to have more control of data flow between devices. The logic analyzer uses
the following connections on its RS-232C interface for extended interface
communication:




Programming Over RS-232C
Extended Interface with Hardware Handshake

e Pin 7 SGND (Signal Ground)
e Pin2 TD (Transmit Data from logic analyzer)

e Pin3 RD (Receive Data into logic analyzer)

The additional lines you use depends on your controller’s implementation of
the extended hardwire interface.

e Pin4 RTS (Request To Send) is an output from the logic analyzer which
can be used to control incoming data flow.

e Pin5 CTS (Clear To Send) is an input to the logic analyzer which
controls data flow from the logic analyzer.

e Pin6 DSR (Data Set Ready) is an input to the logic analyzer which
controls data flow from the logic analyzer within two bytes.

e Pin8 DCD (Data Carrier Detect) is an input to the logic analyzer which
controls data flow from the logic analyzer within two bytes.

e Pin 20 DTR (Data Terminal Ready) is an output from the logic analyzer
which is enabled as long as the logic analyzer is turned on.

The TD (Transmit Data) line from the logic analyzer must connect to the RD
(Receive Data) line on the controller. Likewise, the RD line from the logic
analyzer must connect to the TD line on the controller.

The RTS (Request To Send), is an output from the logic analyzer which can
be used to control incoming data flow. A true on the RTS line allows the
controller to send data and a false signals a request for the controller to
disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data Carrier
Detect) lines are inputs to the logic analyzer, which control data flow from
the logic analyzer. Internal pull-up resistors in the logic analyzer assure the
DCD and DSR lines remain high when they are not connected. If DCD or
DSR are connected to the controller, the controller must keep these lines
along with the CTS line high to enable the logic analyzer to send data to the
controller. A low on any one of these lines will disable the logic analyzer data
transmission. Pulling the CTS line low during data transmission will stop
logic analyzer data transmission immediately. Pulling either the DSR or DCD
line low during data transmission will stop logic analyzer data transmission,
but as many as two additional bytes may be transmitted from the logic
analyzer.

3-5




Programming Over RS-232C
Cable Examples

Figure 3-1

Cable Examples

HP 9000 Series 300

Figure 3-1 is an example of how to connect the 1660-series logic analyzer to
the HP 98628A Interface card of an HP 9000 series 300 controller. For more
information on cabling, refer to the reference manual for your specific
controller.

Because this example does not have the correct connections for hardware

handshake, you must use the XON/XOFF protocol when connecting the logic
analyzer.

HP 1660—SERIES
REAR PANEL

HP 98628
INTERFACE CARD
—
=
13242N [j] 5061-4216
(MALE-TO-MALED DCE OPT.002
(FEMALE-TO-FEMALE)
01660b24
Cable Example

HP Vectra Personal Computers and Compatibles

Figures 3-2 through 3-4 give examples of three cables that will work for the
extended interface with hardware handshake. Keep in mind that these
cables should work if your computer’s serial interface supports the four
common RS-232C handshake signals as defined by the RS-232C standard.
The four common handshake signals are Data Carrier Detect (DCD), Data
Terminal Ready (DTR), Clear to Send (CTS), and Ready to Send (RTS).
Figure 3-2 shows the schematic of a 25-pin female to 25-pin male cable. The
following cables support this configuration:

e HP 17255D, DB-25(F) to DB-25(M), 1.2 meter

e HP 17255F, DB-25(F) to DB-25(M), 1.2 meter, shielded.

In addition to the female-to-male cables with this configuration, a
male-to-male cable 1.2 meters in length is also available:

e HP 17255M, DB-25(M) to DB-25(M), 1.2 meter

3-6



Programming Over RS-232C
Cable Examples

Figure 3-2
25-pin F 25—pin M
1 - ]
2 -
3 - 2
5 -t I 20
6
/ - -/
20 T—: 5
6
54600M26
25-pin (F) to 25-pin (M) Cable
Figure 3-3 shows the schematic of a 25-pin male to 25-pin male cable 5
meters in length. The following cable supports this configuration:
e HP 13242G, DB-25(M) to DB-256(M), 5 meter
Figure 3-3
25—pin 25—pin M
L
-
2
B g
20

JAAALA A A=

{VV( \

O @ NN N

n — O

54600M24

25-pin (M) to 25-pin (M) Cable

3-7



Programming Over RS-232C
Configuring the Logic Analzer Interface

Figure 3-4 shows the schematic of a 9-pin female to 25-pin male cable. The
following cables support this configuration:

- e HP 24542G, DB-9(F) to DB-25(M), 3 meter
e HP 24542H, DB-9(F) to DB-25(M), 3 meter, shielded

e HP 45911-60009, DB-9(F) to DB-25(M), 1.5 meter

Figure 3-4
9-pin F 25-pin M

1 - 4
o - 2
3 > 3
4 p 5
e
> = -/
6 -t 20

8 4—‘
/ - 3
54600M25

9-pin (F) to 25-pin (M) Cable

Configuring the Logic Analzer Interface

The RS-232C menu field in the System Configuration Menu allows you access
to the RS-232C Configuration menu where the RS-232C interface is
configured. If you are not familiar with how to configure the RS-232C
interface, refer to the Agilent Technologies 1660-Series Logic Analyzer
User’s Reference.

3-8



Programming Over RS-232C
Interface Capabilities

Interface Capabilities

The baud rate, stopbits, parity, protocol, and databits must be configured
exactly the same for both the controller and the logic analyzer to properly
communicate over the RS-232C bus. The RS-232C interface capabilities of
the 1660-series logic analyzers are listed below:

e Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2k
e Stop Bits: 1, 1.5, or 2

Parity: None, Odd, or Even

Protocol: None or XON/XOFF

Data Bits: 8

Protocol

NONE With a three-wire interface, selecting NONE for the protocol
does not allow the sending or receiving device to control dataflow. No
control over the data flow increases the possibility of missing data or
transferring incomplete data.

With an extended hardwire interface, selecting NONE allows a hardware
handshake to occur. With hardware handshake, the hardware signals control
dataflow.

XON/XOFF XON/XOFF stands for Transmit On/Transmit Off. With this
mode, the receiver (controller or logic analyzer) controls dataflow, and,
can request that the sender (logic analyzer or controller) stop dataflow.
By sending XOFF (ASCII 19) over its transmit data line, the receiver
requests that the sender disables data transmission. A subsequent XON
(ASCII 17) allows the sending device to resume data transmission.

Data Bits

Data bits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7 or
8 bits, depending on the application. The 1660-series logic analyzer supports
8 bit only.

8 Bit Mode Information is usually stored in bytes (8 bits at a time).
With 8-bit mode, you can send and receive data just as it is stored,
without the need to convert the data.

3-9




- See Also

Programming Over RS-232C
RS-232C Bus Addressing

The controller and the 1660-series logic analyzer must be in the same bit
mode to properly communicate over the RS-232C. This means that the
controller must have the capability to send and receive 8 bit data.

For more information on the RS-232C interface, refer to the Agilent
Technologies 1660-Series Logic Analyzer User’s Reference. For
information on RS-232C voltage levels and connector pinouts, refer to the
Agilent Technologies 1660-Series Logic Analyzer Service Guide.

RS-232C Bus Addressing

The RS-232C address you must use is dependent on the computer or
controller you are using to communicate with the logic analyzer.

HP Vectra Personal Computers or compatibles

If you are using an HP Vectra Personal Computer or compatible, it must have
an unused serial port to which you connect the logic analyzer’s RS-232C port.
The proper address for the serial port is dependent on the hardware
configuration of your computer. Additionally, your communications software
must be configured to address the proper serial port. Refer to your computer
and communications software manuals for more information on setting up
your serial port address.

HP 9000 Series 300 Controllers

Each RS-232C interface card for the HP 9000 Series 300 Controller has its
own interface select code. This code is used by the controller for directing
commands and communications to the proper interface by specifying the
correct interface code for the device address.

Generally, the interface select code can be any decimal value between 0 and
31, except for those interface codes which are reserved by the controller for
internal peripherals and other internal interfaces. This value can be selected
through switches on the interface card. For example, if your RS-232C
interface select code is 9, the device address required to communicate over
the RS-232C bus is 9. For more information, refer to the reference manual
for your interface card or controller.

3-10



Programming Over RS-232C
Lockout Command

Lockout Command

To lockout the front-panel controls, use the SYSTem command LOCKout.
When this function is on, all controls (except the power switch) are entirely
locked out. Local control can only be restored by sending the :LOCKout OFF
command.

Hint Cycling the power will also restore local control, but this will also reset
certain RS-232C states. It also resets the logic analyzer to the power-on
defaults and purges any acquired data in the acquisition memory of all the
installed modules.

See Also For more information on this command see chapter 10, "System Commands."

3-11



3-12



Programming and
Documentation Conventions



Introduction

This chapter covers the programming conventions used in
programming the instrument, as well as the documentation
conventions used in this manual. This chapter also contains a detailed
description of the command tree and command tree traversal.

4-2



Programming and Documentation Conventions
Truncation Rule

Truncation Rule

The truncation rule for the keywords used in headers and parameters is:

e If the longform has four or fewer characters, there is no change in the
shortform. When the longform has more than four characters the
shortform is just the first four characters, unless the fourth character is
a vowel. In that case only the first three characters are used.

There are some commands that do not conform to the truncation rule by design.
These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table 4-1.

Table 4-1 Truncation Examples

Long Form Short Form
OFF OFF

DATA DATA
START STAR
LONGFORM LONG
DELAY DEL
ACCUMULATE ACC

4-3



Programming and Documentation Conventions
Infinity Representation

Infinity Representation

The representation of infinity is 9.9E+37 for real numbers and 32767 for
integers. This is also the value returned when a measurement cannot be
made.

Sequential and Overlapped Commands

IEEE 488.2 makes the distinction between sequential and overlapped
commands. Sequential commands finish their task before the execution of
the next command starts. Overlapped commands run concurrently; therefore,
the command following an overlapped command may be started before the
overlapped command is completed. The overlapped commands for the
1660-series logic analyzers are STARt and STOP.

Response Generation

IEEE 488.2 defines two times at which query responses may be buffered.
The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read the
response. The 1660-series logic analyzers will buffer responses to a query
when it is parsed.

Syntax Diagrams

At the beginning of each chapter in Parts 2 through 4, "Commands," is a
syntax diagram showing the proper syntax for each command. All characters
contained in a circle or oblong are literals, and must be entered exactly as
shown. Words and phrases contained in rectangles are names of items used
with the command and are described in the accompanying text of each
command. Each line can only be entered from one direction as indicated by
the arrow on the entry line. Any combination of commands and arguments
that can be generated by following the lines in the proper direction is
syntactically correct. An argument is optional if there is a path around it.
When there is a rectangle which contains the word "space," a white space
character must be entered. White space is optional in many other places.

4-4



Programming and Documentation Conventions
Notation Conventions and Definitions

XXX

<NL>

Notation Conventions and Definitions

The following conventions are used in this manual when describing
programming rules and example.

Angular brackets enclose words or characters that are used to symbolize a
program code parameter or a bus command

"is defined as." For example, A ::= B indicates that A can be replaced by B in
any statement containing A.

n

or." Indicates a choice of one element from a list. For example, A |B
indicates A or B, but not both.

An ellipsis (trailing dots) is used to indicate that the preceding element may
be repeated one or more times.

Square brackets indicate that the enclosed items are optional.
When several items are enclosed by braces and separated by vertical bars (1),
one, and only one of these elements must be selected.

Three Xs after an ENTER or OUTPUT statement represent the device
address required by your controller.

Linefeed (ASCII decimal 10).

The Command Tree

The command tree (figure 4-1) shows all commands in the 1660-series logic
analyzers and the relationship of the commands to each other. Parameters
are not shown in this figure. The command tree allows you to see what the
1660-series logig analyzer parser expects to receive. All legal headers can be
created by traversing down the tree, adding keywords until the end of a
branch has been reached.

4-5




Programming and Documentation Conventions
Tree Traversal Rules

Command Types

As shown in chapter 1, "Header Types," there are three types of headers.
Each header has a corresponding command type. This section shows how
they relate to the command tree.

System Commands The system commands reside at the top level of
the command tree. These commands are always parsable if they occur at
the beginning of a program message, or are preceded by a colon. START
and STOP are examples of system commands.

Subsystem Commands Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands Common commands are independent of the tree,
and do not affect the position of the parser within the tree. *CLS and
*RST are examples of common commands.

Tree Traversal Rules

Command headers are created by traversing down the command tree. For
each group of keywords not separated by a branch, one keyword must be
selected. As shown on the tree, branches are always preceded by colons. Do
not add spaces around the colons. The following two rules apply to traversing
the tree:

A leading colon (the first character of a header) or a <terminator> places the
parser at the root of the command tree.

Executing a subsystem command places you in that subsystem until a leading
colon or a <terminator> is found. The parser will stay at the colon above the
keyword where the last header terminated. Any command below that point
can be sent within the current program message without sending the
keywords(s) which appear above them.

4-6



Example 1

Example 2

Example 3

Programming and Documentation Conventions
Tree Traversal Rules

The following examples are written using HP BASIC 6.2 on a HP 9000 Series
200/300 Controller. The quoted string is placed on the bus, followed by a
carriage return and linefeed (CRLF). The three Xs (XXX) shown in this
manual after an ENTER or OUTPUT statement represents the device address
required by your controller.

In this example, the colon between SYSTEM and HEADER is necessary since
SYSTEM:HEADER is a compound command. The semicolon between the
HEADER command and the LONGFORM command is the required <program
message unit separators> .The LONGFORM command does not need
SYSTEM preceding it, since the SYSTEM: HEADER command sets the parser
to the SYSTEM node in the tree.

OUTPUT XXX;":SYSTEM:HEADER ON; LONGFORM ON"

In the first line of this example, the subsystem selector is implied for the
STORE command in the compound command. The STORE command must
be in the same program message as the INITIALIZE command, since the
<program message terminators> will place the parser back at the root
of the command tree.

A second way to send these commands is by placing MMEMORY : before the
STORE command as shown in the fourth line of this example 2.

OUTPUT XXX;":MMEMORY:INITIALIZE;STORE ’'FILE ',’'FILE
DESCRIPTION’"

or

OUTPUT XXX;":MMEMORY:INITIALIZE"
OUTPUT XXX;":MMEMORY:STORE ’'FILE ' ,'FILE DESCRIPTION'"

In this example, the leading colon before SYSTEM tells the parser to go back
to the root of the command tree. The parser can then see the
SYSTEM:PRINT command.

OUTPUT XXX;":MMEM:CATALOG?; : SYSTEM: PRINT ALL"

4-7




Programming and Documentation Conventions

Tree Traversal Rules

Figure 4-1
SElLect (x)
I -
X=0
Common SYSTem: MMEMory : INTermodule:
Commands ‘ ‘ ‘
*CLS BEEPer DATA AUToload DELete
«ESE CAPabi lity DSP CATalog HT IMe
*ESR CARDcage ERRor COPY INPort
* TDN CESE HEADer DOWN I oad INSer t
*IST CESR LONGform INITialize SKEW<N>
*OPC EOI PRINt LOAD[:CONfig] TREE
«OPT LER SETup LOAD: IASSembler TTIMe
*PRE LOCKout MSI
*RST MENU PACK
*SRE MESE <N> PURge
*STB ME SR<N> REName
*TRG RMODe STORe[:CONfig]l
*TST RTC UPLoad
*WA T SElLect VOLume
SETColor
STARt
STOP
\ \ \ \ | \ >
SFORmat: STRigger: SLISt: SWAVeform: SCHar t: COMPare:
| | | |
CLOCk ACQuistion COLumn ACCumulate ACCumulate CLEar
LABe | BRANch CLRPattern ACQuisition HAXis CMASK
MASTer CLEar DATA CENter VAXis COPY
MODE FIND LINE CLRPattern DATA
MOPQua | RANGe MMODe CLRStat FIND
MQUa | SEQuence OPATtern DELay LINE
REMove STORe OSEarch INSert MENU
SETHo I d TAG OSTate RANGe RANGe
SLAVe TAKenbranch OTAG REMove RUNT i |
SOPQual TCONtrol OVER I ay TAKenbranch SET
SQUal TERM REMove TPOSition
THReshold TIMER RUNT i |
TPOSition TAVerage
TMAX imum
TMINimum
VRUNs
XOTag
XOT ime
XPATtern
XSEarch
XSTate 01660B36
XTAG

1660-Series Logic Analyzer Command Tree

4-8



Figure 4-1 (continued)

Programming and Documentation Conventions

Tree Traversal Rules

- A

X=1
MACHine {1]2} WLISt:
|
DELay
ARM INSert
ASSign LINE
LEVelarm ©OSlate
NAME OTIMe
TYPE RANGe
REName §E¥Qve
ime
RESource YeTate
XTIMe
414.>444T447
TFORmat: TTRigger: TWAVeform:
| | |
ACQMode ACQuisition ACCumulate
LABe | BRANch ACQuisition
REMove CLEar CENTer
THReshold FIND CLRPattern
GLEDge CLRStat
RANGe DELay
SEQuence INSert
SPERIod MMOD e
TCONtrol OCONdition
TERM OPATtern
TIMER OSEarch
TPOSition OTIMe
RANGe
REMove
RUNT I |
SPERIod
TAVerage
TMAX imum
TMIN imum
TPOSition
VRUNs
XCONdition
XOT ime
XPATtern
XSEarch
XTIMe

1660-Series Logic Analyzer Command Tree (continued)

TLISt: SYMBo | :

| \
COLumn SYMBo |
CLRPattern BASE
DATA PATTern
LINE RANGe
MMOD e REMove
OCONdition WIDTh
OPATtern
OSEarch
OSTate
OTAG
REMove
RUNT i |
TAVerage
TMAX i mum
TMINimum
VRUNs
XCONdition
XOTag
XOT ime
XPATtern
XSEarch
XSTate
XTAG

01660842

4-9



Programming and Documentation Conventions
Tree Traversal Rules

Figure 4-1 (continued)

X=2
[ I I I I I I I
MODULE LEVEL :ACQuire :CHANnel :DISPlay :MARKer :MEASure :TIMebase :TRIGger :WAVeform
AUToscale COUNt COUPIling ACCumulate ABVolt ALL DELay CONDition COUNt
DIGitize TYPE ECL CONNect AVolt FALLtime MODE DELay DATA
OFFSet INSert BVolt FREQuency  RANGe LEVel FORMat
PROBe MINus CENTer NWIDth LOGic POINts
RANGe PLUS MSTats OVERshoot MODE PREamb I e
TTL OVER Il ay OAUTo PERiod PATH RECord
REMove OTIMe PREShoot SLOPe SQURce
LABe | RUNT i | PWIDth SOURCe SPERiod
SHOW RISEtime TYPE
TAVerage SOURce VALid
TMAX imum  VAMP | i tude XINCrement
TMINimum VBASe XORigin
TMODe VMAX XREFerence
VMODe VMIN YINCrement
VOT ime VPP YORigin
VRUNs VTOP YREFerence
VXT ime
XAUTo
XOTIMe
YT TMe 01660843

1660-Series Logic Analyzer Command Tree (continued)

4-10



Table 4-2

Programming and Documentation Conventions

Tree Traversal Rules

Alphabetic Command Cross-Reference

Command

ABVOLt
ACCumulate

ACQMode
ACQuisition

ALL

ARM
ASSign
AUToload
AUToscale
AVOLt
BASE
BEEPer
BRANCch
BVOLt
CAPability
CARDcage
CATalog
CENTer
CESE
CESR
CLEar
CLOCk
CLRPattern
CLRStat
CMASk
COLumn
CONDition
CONNect
CoPY
COUNt
COUPIling
DATA

DELay
DELete

DIGitize
DOWNIload

Subsystem

MARKer

SCHart, SWAVeform, TWAVeform,
DISPlay

TFORmat

STRigger, SWAVeform, TTRigger,
TWAVeform

MEASure

MACHine

MACHine

MMEMory

MODULE LEVEL

MARKer

SYMBol

Mainframe

STRigger, TTRigger

MARKer

Mainframe

Mainframe

MMEMory

SWAVeform, TWAVeform, MARKer
Mainframe

Mainframe

COMPare, STRigger, TTRigger
SFORmat

SLISt, SWAVeform, TLISt, TWAVeform
SWAVeform, TWAVeform
COMPare

SLISt, TLISt

TRIGger

DISPlay

COMPare, MMEMory

ACQuire, WAVeforml

CHANNel

COMPare, SLISt, SYSTem, TLISt,
WAVeform

SWAVeform, TWAVeform, WLISt,
TIMebase. TRIGger

INTermodule

ROOT

MMEMory

Command

DSP

ECL

EOI

ERRor
FALLtime
FIND
FORMat
FREQuency
GLEDge
HAXis
HEADer
HTIMe
MOPQual
MaQuUal
MSI
NAME
MACHine
O0CONdition
OPATtern
0SEarch
OSTate
O0TAG
SLISt, TLISt
0TIMe
OVERIlay
PACK
MMEMory
PATTern
PRINt
PURGe
RANGe

REMove

WLISt
REName
REName
RESource
RMODe
RTC

Subsystem

SYSTem
CHANnel
Mainframe
SYSTem
MEASure
COMPare, STRigger, TTRigger
WAVeform
MEASure
TTRigger
SCHart
SYSTem
INTermodule
SFORmat
SFORmat
MMEMory

TLISt, TWAVeform
SLISt, TLISt, TWAVeform
SLISt, TLISt, TWAVeform
SLISt, TLISt, WLISt

TWAVeform, WLISt
SLISt

SYMBol

SYSTem

MMEMory

COMPare, STRigger, SWAVeform,
SYMBol, TTRigger, TWAVeform, WLISt
SFORmat, SLISt, SWAVeform, SYMBol,
TFORmat, TLISt, TWAVeform,

MACHine
MMEMory
MACHine
Mainframe
Mainframe




Programming and Documentation Conventions

Tree Traversal Rules

Table 4-2 (continued)

Alphabetic Command Cross-Reference (continued)

Command Subsystem

INITialize MMEMory

INPort INTermodule

INSert INTermodule, SWAVeform, TWAVeform,
WLISt, DISPlay

LABel SFORmat, TFORmat, DISPlay

LER Mainframe

LEVel TRIGger

LEVelarm MACHine

LINE COMPare, SLISt, TLISt, WLISt

LOAD MMEMory

LOCKout Mainframe

LOGic TRIGger

LONGform SYSTem

MASTer SFORmat

MENU COMPare, Mainframe

MESE Mainframe

MESR Mainframe

MINus DISPlay

MMODe SLISt, TLISt, TWAVeform

MODE SFORmat, TIMebase, TRIGger

MOPQual SFORmat

MaQuUal SFORmat

MSI MMEMory

MSTats MARKer

NAME MACHine

NWIDth MEASure

0AUTo MARKer

0CONdition TLISt, TWAVeform

OFFSet CHANnel

OPATtern SLISt, TLISt, TWAVeform

0SEarch SLISt, TLISt, TWAVeform

0STate SLISt, TLISt, WLISt

0TAG SLISt, TLISt

0TIMe TWAVeform, WLISt, MARKer

OVERIlay SLISt, DISPlay

OVERshoot MEASure

PACK MMEMory

PATH TRIGger

PERiod MEASure

PATTern SYMBol

Command

PLUS
POINts
PRINt
PREamble
PREShoot
PROBe
PURGe
PWIDth
RANGe

RECord
TREE
TTIMe
TYPE
UPLoad
VAXis
VOLume
VRUNs
WIDTh
XCONdition
XQTag
X0Time
XPATtern
XSEarch
XSTate
XTAG
XTIMe

Subsystem

DISPlay

WAVeform

SYSTem

WAVeform

MEASure

CHANnel

MMEMory

MEASure

COMPare, STRigger, SWAVeform,
SYMBol, TTRigger, TWAVeform, WLISt,
CHANnel, TIMebase
WAVeform

INTermodule

INTermodule

MACHine

MMEMory

SCHart

MMEMory

SLISt, TLISt, TWAVeform
SYMBol

TLISt, TWAVeform

SLISt, TLISt

SLISt, TLISt, TWAVeform, WLISt
SLISt, TLISt, TWAVeform

SLISt, TLISt, TWAVeform

SLISt, TLISt, WLISt

SLISt, TLISt

TWAVeform, WLISt

4-12



Table 4-2 (continued)

Programming and Documentation Conventions

Tree Traversal Rules

Alphabetic Command Cross-Reference (continued)

Command
REMove

REName
REName
RESource
RISetime
RMODe
RTC
RUNTIl

SELect
SEQuence
SET
SETColor
SETHold
SETup
SHOW
SKEW
SLAVe
SLOPe
SOPQual
SOURce
SPERiod
SQual
STARt
STOP
STORe
TAG
TAKenbranch
TAVerage
TCONtrol
TERM
THReshold
TIMER
TMAXimum
TMINimum
TMODe

Subsystem

SFORmat, SLISt, SWAVeform, SYMBol,
TFORmat, TLISt, TWAVeform, DISPlay
MACHine

MMEMory

MACHine

MEASure

Mainframe

Mainframe

COMPare, SLISt, TLISt, TWAVeform,
MARKer

Mainframe

STRigger, TTRigger

COMPare

Mainframe

SFORmat

SYSTem

MARKer

INTermodule

SFORmat

TRIGger

SFORmat

MEASure, TRIGger, WAVeform
TTRigger, TWAVeform, WAVeform
SFORmat

Mainframe

Mainframe

MMEMory, STRigger

STRigger

STRigger, SWAVeform

SLISt, TLISt, TWAVeform, MARKer
STRigger, TTRigger

STRigger, TTRigger

SFORmat, TFORmat

STRigger, TTRigger

SLISt, TLISt, TWAVeform, MARKer
SLISt, TLISt, TWAVeform, MARKer
MARKer

Command
TPOSition

TREE
TTIMe

TTL

TYPE
UPLoad
VALid
VAMPIitude
VAXis
VBAse
VOLume
VRUNs
WIDTh
XCONdition
XQTag
X0Time
XPATtern
XSEarch
XSTate
XTAG
XTIMe

Subsystem

STRigger, SWAVeform, TTRigger,
TWAVeform

Intermodule

INTermodule

CHANnel

MACHine, ACQuire, WAVeform
MMEMory

WAVeform

MEASure

SCHart

MEASure

MMEMory

SLISt, TLISt, TWAVeform
SYMBol

TLISt, TWAVeform

SLISt, TLISt

SLISt, TLISt, TWAVeform, WLISt
SLISt, TLISt, TWAVeform

SLISt, TLISt, TWAVeform

SLISt, TLISt, WLISt

SLISt, TLISt

TWAVeform, WLISt




Table 4-2 (continued)

Programming and Documentation Conventions
Command Set Organization

Alphabetic Command Cross-Reference (continued)

Command
VMAX
VMIN
VMODe
VOLume
VOTime
VPP
VRUNs
VTOP
VXTime
WIDTh
XAUTo
XCONdition
XINCrement

XORigin
XQTag
X0Time
XPATtern
XREFerence

XSEarch

Subsystem Command Subsystem

MEASure
MEASure
MARKer

XSTate SLISt, TLISt, WLISt
XTAG SLISt, TLISt
XTIMe TWAVeform, WLISt, MARKer

MMEMory YINCrement  WAVeform

MARKer
MEASure

YORigin WAVeform
YREFerence WAVeform

SLISt, TLISt, TWAVeform, MARKer

MEASure
MARKer
SYMBol
MARKer

TLISt, TWAVeform
WAVeform

WAVeform

SLISt, TLISt

SLISt, TLISt, TWAVeform, WLISt, MARKer
SLISt, TLISt, TWAVeform

WAVeform

SLISt, TLISt, TWAVeform

Command Set Organization

The command set for the 1660-series logic analyzers is divided into 28
separate groups: common commands, mainframe commands, system
commands and 23 sets of subsystem commands. Each of the 28 groups of
commands is described in a seperate chapter in Parts 2 through 4,
"Commands." Each of the chapters contain a brief description of the
subsystem, a set of syntax diagrams for those commands, and finally, the
commands for that subsystem in alphabetical order. The commands are
shown in the long form and short form using upper and lowercase letters. As
an example AUToload indicates that the long form of the command is
AUTOLOAD and the short form of the command is AUT. Each of the
commands contain a description of the command, its arguments, and the
command syntax.

4-14



Programming and Documentation Conventions
Subsystems

Subsystems

There are 23 subsystems in this instrument. In the command tree (figure
4-1) they are shown as branches, with the node above showing the name of
the subsystem. Only one subsystem may be selected at a time. At power on,
the command parser is set to the root of the command tree; therefore, no
subsystem is selected. The 23 subsystems in the 1660-series logic analyzers
are:

e SYSTem - controls some basic functions of the instrument.

o MMEMory - provides access to the internal disk drive.

o [NTermodule - provides access to the Intermodule bus (IMB).

e MACHiIne - provides access to analyzer functions and subsystems.
o WLISt - allows access to the mixed (timing/state) functions.

e SFORmat - allows access to the state format functions.

e STRigger - allows access to the state trigger functions.

e SLISt - allows access to the state listing functions.

o SWAVeform - allows access to the state waveforms functions.

e SCHart - allows access to the state chart functions.

o (COMPare - allows access to the compare functions.

o TFORmat - allows access to the timing format functions.

o TTRigger - allows access to the timing trigger functions.

o TWAVeform - allows access to the timing waveforms functions.

e TLISt - allows access to the timing listing functions.

e SYMBol - allows access to the symbol specification functions.

o ACQuire - sets up acquisition conditions for the digitize function.
e CHANNel - controls the oscilloscope channel display and vertical axis.
e DISPlay - allows data to be displayed.

o MARKer - allows access to the oscilloscope’s time and voltage markers.
e MEASure - allows automatic parametric measurements.

e TIMebase - controls the oscilloscope timebase and horizontal axis.




Programming and Documentation Conventions
Program Examples

o TRIGger - allows access to the oscilloscope’s trigger functions.

e WAVeform - used to transfer waveform data from the oscilloscope to a
controller.

Example

Program Examples

The program examples in the following chapters and chapter 36,
"Programming Examples," were written on an HP 9000 Series 200/300
controller using the HP BASIC 6.2 language. The programs always assume a
generic address for the 1660-series logic analyzers of XXX.

In the examples, you should pay special attention to the ways in which the
command and/or query can be sent. Keywords can be sent using either the
long form or short form (if one exists for that word). With the exception of
some string parameters, the parser is not case-sensitive. Uppercase and
lowercase letters may be mixed freely. System commands like HEADer and
LONGform allow you to dictate what forms the responses take, but they have
no affect on how you must structure your commands and queries.

The following commands all set the Timing Waveform Delay to 100 ms.

Keywords in long form, numbers using the decimal format.

OUTPUT XXX;":MACHINEL:TWAVEFORM:DELAY .1"

Keywords in short form, numbers using an exponential format.

OUTPUT XXX;":MACH1:TWAV:DEL 1E-1"

Keywords in short form using lowercase letters, numbers using a suffix.

OUTPUT XXX;":machl:twav:del 100ms"

In these examples, the colon shown as the first character of the command is
optional on the 1660-series logic analyzers. The space between DELay and the
argument is required.

4-16



Message Communication and
System Functions



Introduction

This chapter describes the operation of instruments that operate in
compliance with the IEEE 488.2 (syntax) standard. It is intended to
give you enough basic information about the IEEE 488.2 Standard to
successfully program the logic analyzer. You can find additional
detailed information about the IEEE 488.2 Standard in ANSI/IEEE Std
488.2-1987, "IEEE Standard Codes, Formats, Protocols, and
Common Commands."

The 1660-series logic analyzer is designed to be compatible with other
Agilent Technologies IEEE 488.2 compatible instruments.
Instruments that are compatible with IEEE 488.2 must also be
compatible with IEEE 488.1 (GPIB bus standard); however, IEEE
488.1 compatible instruments may or may not conform to the IEEE
488.2 standard. The IEEE 488.2 standard defines the message
exchange protocols by which the instrument and the controller will
communicate. It also defines some common capabilities, which are
found in all IEEE 488.2 instruments. This chapter also contains a few
items which are not specifically defined by IEEE 488.2, but deal with
message communication or system functions.

The syntax and protocol for RS-232C program messages and response
messages for the 1660-series logic analyzer are structured very similar
to those described by 488.2. In most cases, the same structure shown
in this chapter for 488.2 will also work for RS-232C. Because of this,
no additional information has been included for RS-232C.




Message Communication and System Functions
Protocols

Protocols

The protocols of IEEE 488.2 define the overall scheme used by the controller
and the instrument to communicate. This includes defining when it is
appropriate for devices to talk or listen, and what happens when the protocol
is not followed.

Functional Elements

Before proceeding with the description of the protocol, a few system
components should be understood.

Input Buffer The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Output Queue The output queue of the instrument is the memory area
where all output data (<response messages>) are stored until read by
the controller.

Parser The instrument’s parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. "Parsing" refers to the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
instrument recognizes a <program message terminator> (defined later in
this chapter) or the input buffer becomes full. If you wish to send a long
sequence of commands to be executed and then talk to another
instrument while they are executing, you should send all the commands
before sending the <program message terminators.

5-3




Message Communication and System Functions
Protocols

Protocol Overview

The instrument and controller communicate using <program message>s and
<response message>s. These messages serve as the containers into which
sets of program commands or instrument responses are placed. <program
message>s are sent by the controller to the instrument, and <response
message>s are sent from the instrument to the controller in response to a
query message. A <query message> is defined as being a <program
message> which contains one or more queries. The instrument will only talk
when it has received a valid query message, and therefore has something to
say. The controller should only attempt to read a response after sending a
complete query message, but before sending another <program message>.
The basic rule to remember is that the instrument will only talk when
prompted to, and it then expects to talk before being told to do something
else.

Protocol Operation

When the instrument is turned on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchanging complete
<program message>s and <response message>s. This means that the
controller should always terminate a <program message> before attempting
toread a response. The instrument will terminate <response message>s
except during a hardcopy output.

If a query message is sent, the next message passing over the bus should be
the <response message>. The controller should always read the complete
<response message> associated with a query message before sending another
<program message> to the same instrument.

The instrument allows the controller to send multiple queries in one query
message. This is referred to as sending a "compound query." As will be
noted later in this chapter, multiple queries in a query message are separated
by semicolons. The responses to each of the queries in a compound query
will also be separated by semicolons.

Commands are executed in the order they are received.




Message Communication and System Functions
Syntax Diagrams

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner. Some of the protocol exceptions are shown
below.

Command Error A command error will be reported if the instrument
detects a syntax error or an unrecognized command header.

Execution Error An execution error will be reported if a parameter is
found to be out of range, or if the current settings do not allow execution
of a requested command or query.

Device-specific Error A device-specific error will be reported if the
instrument is unable to execute a command for a strictly device
dependent reason.

Query Error A query error will be reported if the proper protocol for
reading a query is not followed. This includes the interrupted and
unterminated conditions described in the following paragraphs.

Syntax Diagrams

The example syntax diagram is in this chapter are similar to the syntax
diagrams in the IEEE 488.2 specification. Commands and queries are sent to
the instrument as a sequence of data bytes. The allowable byte sequence for
each functional element is defined by the syntax diagram that is shown.

The allowable byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows. If there is a path around an element,
that element is optional. If there is a path from right to left around one or
more elements, that element or those elements may be repeated as many
times as desired.

5-5




Message Communication and System Functions
Syntax Diagrams

Figure 5-1

—
\
space H arm_source }—»
{ASSIQH >“ space H pod_list }—V
ASSIGN?
{LEV@\OFM space H arm_level }—D
NAME space H machine,nome}—b

NAME ?

APCRENQmeH space Wres,id
DEF u\t>

a
—P(RENome?H space }—>1 res,?d}
—P(RESourceH space }—>1 res_terms }—b

—»{ RESource?

TYPE?
16550802

:MACHine

Example syntax diagram

5-6



Message Communication and System Functions
Syntax Overview

Syntax Overview

This overview is intended to give a quick glance at the syntax defined by
IEEE 488.2. It will help you understand many of the things about the syntax
you need to know.

IEEE 488.2 defines the blocks used to build messages which are sent to the
instrument. A whole string of commands can therefore be broken up into
individual components.

Figure 5-1 is an example syntax diagram and figure 5-2 shows a breakdown of
an example <program message>. There are a few key items to notice:

e A semicolon separates commands from one another. Each <program
message unit> serves as a container for one command. The <program
message unit>s are separated by a semicolon.

® A <program message> is terminated by a <NL> (new line). The
recognition of the <program message terminator>, or <PMT>, by the
parser serves as a signal for the parser to begin execution of commands.
The <PMT> also affects command tree traversal (Chapter 4,
"Programming and Documentation Conventions").

e Multiple data parameters are separated by a comma.

o The first data parameter is separated from the header with one or more
spaces.

® The header MACHINE1:ASSIGN 2,3 is an example of a compound header.
It places the parser in the machine subsystem until the <NL> is
encountered.

e A colon preceding the command header returns you to the top of the
command tree.

5-7



Message Communication and System Functions
Syntax Overview

Figure 5-2
: TWAVEFORM: OSEARCH 3@, TRIGGER  DELAY 3.8 ns <NL>

—

<progrom messoge unit>
TWAVEFORM: OSEARCH 38, TRIGGER

<command progrom header> <progrom header seporotor> <progrom daoto>
TWAVEF ORM: OSEARCH 5P 32 , TRIGGER

N
—

P, sp

<white spaoce> <white spoce> [<white space>

<program mnemanic> . <program mnemanic> <program datao> <progrom doto separator> <progrom daoto>
TWAVEFORM OSEARCH 30 , TRIGGER
<decimal humeric program dato> <progrom data>
30 TRIGGER

<program message unit separator>
SP ; &P [
<prograom messoge terminator>
SP <NL>

<progrom messoge unit>
<white space> N <white space> DELAY 3.8 ns

/////////////////////::;// ~<\\\\\\\\\\\\\ <white space> NL

<program header> <progrom header separator> <progrom data>
DELAY 3.8 ns

<white space> <decimal progrom dota> <suffix prograom dota>
3.8 SP ns

<white space> <suffix multiplier> <suffix unit>

n s
16500/BL31

<program message> Parse Tree




Message Communication and System Functions
Syntax Overview

Upper/Lower Case Equivalence

Upper and lower case letters are equivalent. The mnemonic SINGLE has
the same semantic meaning as the mnemonic single.

<white space>

<white space> is defined to be one or more characters from the ASCII set of
0 - 32 decimal, excluding 10 decimal (NL). <white space> is used by several
instrument listening components of the syntax. It is usually optional, and can
be used to increase the readability of a program.

Suffix Multiplier The suffix multipliers that the instrument will accept
are shown in table 5-1.

Table 5-1 <suffix mult>
Value Mnemonic
1E18 EX
1E15 PE
1E12 T
1E9 G
1E6 MA
1E3 K
1E-3 M
1E-6 u
1E-9 N
1E-12 P
1E-15 F
1E-18 A

5-9



Message Communication and System Functions
Syntax Overview

Suffix Unit The suffix units that the instrument will accept are shown
in table 5-2.

Table 5-2

<suffix unit>

Suffix Referenced Unit
v Volt

S Second

5-10



Status Reporting



Introduction

Status reporting allows you to use information about the instrument in
your programs, so that you have better control of the measurement
process. For example, you can use status reporting to determine
when a measurement is complete, thus controlling your program, so
that it does not get ahead of the instrument. This chapter describes
the status registers, status bytes and status bits defined by IEEE

488.2 and discusses how they are implemented in the 1660-series
logic analyzers. Also in this chapter is a sample set of steps you use to
perform a serial poll over GPIB.

The status reporting feature available over the bus is the serial poll.
IEEE 488.2 defines data structures, commands, and common bit
definitions. There are also instrument-defined structures and bits.

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if
the queue is not empty. For registers, the summary bit is set if any
enabled bit in the event register is set. The events are enabled via the
corresponding event enable register. Events captured by an event
register remain set until the register is read or cleared. Registers are
read with their associated commands. The *CLS command clears all
event registers and all queues except the output queue. If *CLS is
sent immediately following a <program message terminator>, the
output queue will also be cleared.

6-2



Status Reporting

Figure 6-1
EVENT REGISTER
{MESR)
ENABLE
REGISTER
(MESE )
LOGIGAL OR

P[UlclE[DIQIRIO] L] event

olr[MIx|o|v|alp| |c| E¥EN&ters

N|Q E|E|E|C|C L {ESR)

NOTE: URQ AND RQC NOT IMPLEMENTED

ENABLE
1| REGISTERS
(ESE)

LOGICAL OR
QUEUES:
O-OUTPUT
M-MESSAGE

ounz|lw— =
<rzla— O |

wnwoa
@0 Mg

— O |-
W0 |-
%)

—
>
o
<
%3

(+STB)

] SERVICE
REQUEST
ENABLE 18500802
— REGISTER
{*SRE)

Status Byte Structures and Concepts

6-3



Status Reporting
Event Status Register

Event Status Register

The Event Status Register is an IEEE 488.2 defined register. The bits in this
register are "latched." That is, once an event happens which sets a bit, that
bit will only be cleared if the register is read.

Service Request Enable Register

The Service Request Enable Register is an 8-bit register. Each bit enables
the corresponding bit in the status byte to cause a service request. The sixth
bit does not logically exist and is always returned as a zero. To read and
write to this register, use the *SRE? and *SRE commands.

Bit Definitions

The following mnemonics are used in figure 6-1 and in chapter 8, "Common
Commands:"

MAV - message available
Indicates whether there is a response in the output queue.

ESB - event status bit

Indicates if any of the conditions in the Standard Event Status Register are
set and enabled.

MSS - master summary status

Indicates whether the device has a reason for requesting service. This bit is
returned for the *STB? query.

RQS - request service

Indicates if the device is requesting service. This bit is returned during a
serial poll. RQS will be set to 0 after being read via a serial poll (MSS is not
reset by *STB?).




Status Reporting
Bit Definitions

MSG - message

Indicates whether there is a message in the message queue (Not
implemented in the 1660-series logic analyzers).

PON - power on
Indicates power has been turned on.

URQ - user request
Always returns a 0 from the 1660-series logic analyzer.

CME - command error
Indicates whether the parser detected an error.

The error numbers and strings for CME, EXE, DDE, and QYE can be read from a
device-defined queue (which is not part of IEEE 488.2) with the query
:SYSTEM:ERROR?.

EXE - execution error

Indicates whether a parameter was out of range, or inconsistent with current
settings.

DDE - device specific error

Indicates whether the device was unable to complete an operation for device
dependent reasons.

QYE - query error
Indicates whether the protocol for queries has been violated.

RQC - request control
Always returns a 0 from the 1660-series logic analyzer.

OPC - operation complete

Indicates whether the device has completed all pending operations. OPC is
controlled by the *OPC common command. Because this command can
appear after any other command, it serves as a general-purpose operation
complete message generator.

6-5




Status Reporting
Key Features

LCL - remote to local
Indicates whether a remote to local transition has occurred.

MSB - module summary bit

Indicates that an enable event in one of the modules Status registers has
occurred.

Example

Key Features

A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete

The IEEE 488.2 structure provides one technique that can be used to find
out if any operation is finished. The *OPC command, when sent to the
instrument after the operation of interest, will set the OPC bit in the
Standard Event Status Register. If the OPC bit and the RQS bit have been
enabled, a service request will be generated. The commands that affect the
OPC bit are the overlapped commands.

OUTPUT XXX;"*SRE 32 ; *ESE 1" I!enables an OPC service
request

Status Byte

The Status Byte contains the basic status information which is sent over the
bus in a serial poll. If the device is requesting service (RQS set), and the
controller serial-polls the device, the RQS bit is cleared. The MSS (Master
Summary Status) bit (read with *STB?) and other bits of the Status Byte are
not be cleared by reading them. Only the RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command.

6-6



Status Reporting
Serial Poll

Figure 6-2.

,— STATUS SUMMARY MESSAGES —

-§—— READ BY SERIAL POLL

REQUEST 13 eselmav] 3] 2 [ 9 [ @] [ svatus BviE recisTER
GENERATION s
A <a—— READ BY +S5T8?
- &
FY KV
o O,
& A /JV
Z e ®)
§ I'y /y
5 (®)
F I/V
- ®
iy
- (&

L (XTI Te] e e

*SRE <NRf>
*SRE?

15508/8L24

Service Request Enabling

Serial Poll

The 1660-series logic analyzer supports the IEEE 488.1 serial poll feature.
When a serial poll of the instrument is requested, the RQS bit is returned on
bit 6 of the status byte.

6-7



Status Reporting
Serial Poll

Using Serial Poll (GPIB)

This example will show how to use the service request by conducting a serial
poll of all instruments on the GPIB bus. In this example, assume that there
are two instruments on the bus: a Logic Analyzer at address 7 and a printer at
address 1.

The program command for serial poll using HP BASIC 6.2 is Stat =
SPOLL(707). The address 707 is the address of the logic analyzer in the this
example. The command for checking the printer is Stat = SPOLL(701)
because the address of that instrument is 01 on bus address 7. This
command reads the contents of the GPIB Status Register into the variable
called Stat. At that time bit 6 of the variable Stat can be tested to see if it is
set (bit 6 = 1).

The serial poll operation can be conducted in the following manner:

1 Enable interrupts on the bus. This allows the controller to see the
SRQ line.

2 Disable interrupts on the bus.

3 If the SRQ line is high (some instrument is requesting service) then
check the instrument at address 1 to see if bit 6 of its status register is
high.

4 To check whether bit 6 of an instruments status register is high, use
the following BASIC statemente: IF BIT (Stat, 6) THEN

5 If bit 6 of the instrument at address 1 is not high, then check the
instrument at address 7 to see if bit 6 of its status register is high.

6 Assoon as the instrument with status bit 6 high is found check the
rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than
simply reading the register. This command clears the bus automatically,
addresses the talker and listener, sends SPE (serial poll enable) and SPD
(serial poll disable) bus commands, and reads the data. For more
information about serial poll, refer to your controller manual, and
programming language reference manuals.

After the serial poll is completed, the RQS bit in the 1660-series logic
analyzer Status Byte Register will be reset if it was set. Once a bit in the
Status Byte Register is set, it will remain set until the status is cleared with a
*CLS command, or the instrument is reset.




Error Messages



Introduction

This chapter lists the error messages that relate to the 1660-series
logic analyzers.




Error Messages

Device Dependent Errors

Device Dependent Errors

200
201
202
203
300

Label not found
Pattern string invalid
Qualifier invalid
Data not available
RS-232C error

Command Errors

-100
-101
-110
-111
-120
-121
-123
-129
-130
-131
-132
-133
-134
-139
-142
-143
-144

Command error (unknown command) (generic error)
Invalid character received

Command header error

Header delimiter error

Numeric argument error

Wrong data type (numeric expected)

Numeric overflow

Missing numeric argument

Non numeric argument error (character,string, or block)
Wrong data type (character expected)

Wrong data type (string expected)

Wrong data type (block type #D required)

Data overflow (string or block too long)

Missing non numeric argument

Too many arguments

Argument delimiter error

Invalid message unit delimiter




Error Messages
Execution Errors

Execution Errors

-200 Can Not Do (generic execution error)
-201 Not executable in Local Mode

-202 Settings lost due to return-to-local or power on
-203 Trigger ignored

-211 Legal command, but settings conflict
-212 Argument out of range

-221 Busy doing something else

-222 Insufficient capability or configuration
-232 Output buffer full or overflow

-240 Mass Memory error (generic)

-241 Mass storage device not present

-242 No media

-243 Bad media

-244 Media full

-245 Directory full

-246 File name not found

-247 Duplicate file name

-248 Media protected

Internal Errors

-300 Device Failure (generic hardware error)
-301 Interrupt fault

-302 System Error

-303 Time out

-310 RAM error

-311 RAM failure (hardware error)

-312 RAM data loss (software error)

-313 Calibration data loss

-320 ROM error




Error Messages
Query Errors

-321 ROM checksum

-322 Hardware and Firmware incompatible
-330 Power on test failed

-340 Self Test failed

-350 Too Many Errors (Error queue overflow)

Query Errors

-400 Query Error (generic)

-410 Query INTERRUPTED

-420 Query UNTERMINATED

-421 Query received. Indefinite block response in progress
-422 Addressed to Talk, Nothing to Say

-430 Query DEADLOCKED

7-5




7-6



Part 2

Mainframe Commands






Common Commands



Introduction

The common commands are defined by the IEEE 488.2 standard.
These commands must be supported by all instruments that comply
with this standard. Refer to figure 8-1 and table 8-1 for the common
commands syntax diagram.

The common commands control some of the basic instrument
functions; such as, instrument identification and reset, how status is
read and cleared, and how commands and queries are received and
processed by the instrument. The common commands are:

o *CLS

o *ESE

e *ESR

e *IDN

o *[ST

e *OPC

e *OPT

e *PRE

o *RST

o *SRE

e *STB

o *TRG

e *TST

o F*WAI

Common commands can be received and processed by the 1660-series
logic analyzers, whether they are sent over the bus as separate
program messages or within other program messages. If an
instrument subsystem has been selected and a common command is

received by the instrument, the logic analyzer will remain in the
selected subsystem.

8-2



Example

Example

Common Commands

If the program message in this example is received by the logic
analyzer, it will initialize the disk and store the file and clear the status
information. This is not be the case if some other type of command is
received within the program message.

" :MMEMORY : INITIALIZE; *CLS; STORE 'FILE ' ,'DESCRIPTION’"

This program message initializes the disk, selects the module in slot A,
then stores the file. In this example, :MMEMORY must be sent again
in order to reenter the memory subsystem and store the file.

" :MMEMORY : INITIALIZE; : SELECT 1; :MMEMORY:STORE ’'FILE ',
'DESCRIPTION’ "

Status Registers

Each status register has an associated status enable (mask) register.
By setting the bits in the status enable register you can select the
status information you wish to use. Any status bits that have not been
masked (enabled in the enable register) will not be used to report
status summary information to bits in other status registers.

Refer to chapter 6, "Status Reporting," for a complete discussion of
how to read the status registers and how to use the status information
available from this instrument.

8-3




Figure 8-1

Common Commands

*CLS

space }—D{ mask ’—P

*ESE?

+*ESR?

*TDN?

«*I8T?

*OPC

+OPC?

T

*OPT?

space H pre_mask }—b

*PRE?

0y

*RST

space }——{ mask ’——

*3SRE?

*STB?

*TRG

*TST?

HE0E

SWAT /

16500/5x01

Common Commands Syntax Diagram

8-4



Common Commands
*CLS (Clear Status)

Table 8-1 Common Command Parameter Values
Parameter Values
mask An integer, 0 through 255.
pre_mask An integer, 0 through 65535.
*CLS (Clear Status)
Command *CLS

The *CLS common command clears all event status registers, queues, and
data structures, including the device defined error queue and status byte. If
the *CLS command immediately follows a <program message terminator>,
the output queue and the MAV (Message Available) bit will be cleared. Refer
to chapter 6, "Status Reporting," for a complete discussion of status.

Example OUTPUT XXX;"*CLS"

8-5



Common Commands
*ESE (Event Status Enable)

Command

<mask>

Example

Query

Returned Format

Example

*ESE (Event Status Enable)

*ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a bit to enable the
status indicators detailed in table 8-2. A 1 in any bit position of the Standard
Event Status Enable Register enables the corresponding status in the
Standard Event Status Enable Register. Refer to Chapter 6, "Status
Reporting" for a complete discussion of status.

An integer from 0 to 255

In this example, the *ESE 32 command will enable CME (Command Error),
bit 5 of the Standard Event Status Enable Register. Therefore, when a
command error occurs, the event summary bit (ESB) in the Status Byte
Register will also be set.

OUTPUT XXX;"*ESE 32"

*ESE?

The *ESE query returns the current contents of the enable register.
<mask><NL>

OUTPUT XXX;"*ESE?"

8-6



Common Commands
*ESR (Event Status Register)

Table 8-2 Standard Event Status Enable Register
Bit Position Bit Weight Enables
7 128 PON - Power On
6 64 URQ - User Request
5 32 CME - Command Error
4 16 EXE - Execution Error
3 8 DDE - Device Dependent Error
2 4 QYE - Query Error
1 2 RQC - Request Control
0 1 OPC - Operation Complete

*ESR (Event Status Register)

Query *ESR?

The *ESR query returns the contents of the Standard Event Status Register.
Reading the register clears the Standard Event Status Register.
Returned Format <status><NL>

<status> Aninteger from 0 to 255

Example If a command error has occurred, and bit 5 of the ESE register is set, the
string variable Esr_event$ will have bit 5 (the CME bit) set.
10 OUTPUT XXX;"*ESE 32 lEnables bit 5 of the status register
20 OUTPUT XXX;"*ESR?" !Queries the status register
30 ENTER XXX; Esr_event$ !Reads the query buffer

8-7



Common Commands
*ESR (Event Status Register)

Table 8-3 shows the Standard Event Status Register. The table details the
meaning of each bit position in the Standard Event Status Register and the
bit weight. When you read Standard Event Status Register, the value
returned is the total bit weight of all the bits that are high at the time you
read the byte.

Table 8-3 The Standard Event Status Register

Bit Position Bit Weight Bit Name Condition

7 128 PON 0 = register read - not in power up mode
1= power up

6 64 URQ 0 = user request - not used - always zero

5 32 CME 0=no command errors

1=a command eror has been detected

4 16 EXE 0 =no execution errors
1 =an execution error has been detected

3 8 DDE 0=no device dependent error has been detected
1=a device dependent error has been detected

2 4 QYE 0=no query errors

1=a query error has been detected
1 2 RQC 0 = request control - not used - always zero
0 1 0PC 0 = operation is not complete

1 = operation is complete




Common Commands
*IDN (ldentification Number)

Query

Returned Format

<revision
code>

Example

*IDN (Identification Number)

*IDN?

The *IDN? query allows the instrument to identify itself. It returns the string:

"HEWLETT-PACKARD, 1660A, 0, REV <revision code>"

An *IDN? query must be the last query in a message. Any queries after the
*[DN? in the program message are ignored.
HEWLETT-PACKARD,1660A,0,REV <revision codes

Four digit-code in the format XX . XX representing the current ROM revision.

OUTPUT XXX;"*IDN?"

Query

Returned Format
<id>
1

0

*IST (Individual Status)

*IST?

The *IST query allows the instrument to identify itself during parallel poll by
allowing the controller to read the current state of the IEEE 488.1 defined
"ist" local message in the instrument. The response to this query is
dependent upon the current status of the instrument.

Figure 8-2 shows the *IST data structure.
<id><NL>

Oorl
Indicates the "ist" local message is false.

Indicates the "ist" local message is true.

8-9




Common Commands
*IST (Individual Status)

Example OUTPUT XXX;"*IST?"
Figure 8-2
DEVICE DEFINED CONDITIONS SUMMARY MESSAGE
DE SN Tone [ [ a3z 1 ]e] o[ 8] [ 7 Juss[ese[uav]a 2] [o |STFf\ETc:§sBT’B)EgE
&
A
-t} &
D
o S
Igp.
- of
~ @y
\
B (j? Y
p
5 ﬁ? Y
] - Q)
g Y X
S D
R &
T
~ ON
P
- %)
3 5
< &
/
B ’ é& Y
» e
- j&? Y
) r?
INDI\*IDUAL [1s][a]af2]nre]e]s] [7]s][s]a]a]a]1]e |ENZABRLAE:RZEEGIP50TLELR
SmTIAS TTU?S +PRE?

16500/68L20

*|ST Data Structure

8-10



Common Commands
*0PC (Operation Complete)

Command

Example

Query

Returned Format

Example

*OPC (Operation Complete)

*OPC

The *OPC command will cause the instrument to set the operation complete
bit in the Standard Event Status Register when all pending device operations
have finished. The commands which affect this bit are the overlapped
commands. An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are still in progress. The overlapped commands for the
1660-series logic analyzers are STARt and STOP.

OUTPUT XXX;"*OPC"

*OPC?

The *OPC query places an ASCII "1" in the output queue when all pending
device operations have been completed.
1<NL>

OUTPUT XXX;"*OPC?"

8-11




Common Commands
*OPT (Option Identification)

*OPT (Option Identification)

Query *QPT?

The *OPT query identifies the software installed in the 1660-series logic
analyzer. This query returns nine parameters. The first parameter indicates
whether you are in the system. The next two parameters indicate any
software options installed, and the next parameter indicates whether
intermodule is available for the system. The last five parameters list the
installed software for the modules in slot A through E for an 16500A logic
analysis mainframe. However, the 1660-series logic analyzers have only two
slots (A and B); therefore, only the first and second parameters of the last
five parameters will be relevant. A zero in any of the last eight parameters
indicates that the corresponding software is not currently installed. The
name returned for software options and module software is the same name
that appears in the field in the upper-left corner of the menu for each option

or module.
Returned Format {sYsTEM}, {<option>|0}, {<option>|0}, {INTERMODULE |0}, {<module>|0}

, {<module>|0}, {<module>|0}, {<module>|0}, {<module>|0}<NL>

<option> Name of software option.

<module> Name of module software.

Example OUTPUT XXX;"*OPT?"

8-12



Common Commands
*PRE (Parallel Poll Enable Register Enable)

Command

<pre_mask>

Example

Query

Returned format

<mask>

Example

*PRE (Parallel Poll Enable Register Enable)

*PRE <mask>

The *PRE command sets the parallel poll register enable bits. The Parallel
Poll Enable Register contains a mask value that is ANDed with the bits in the
Status Bit Register to enable an "ist" during a parallel poll. Refer to table 8-4
for the bits in the Parallel Poll Enable Register and for what they mask.

An integer from 0 to 65535.

This example will allow the 1660-series logic analyzers to generate an "ist"
when a message is available in the output queue. When a message is
available, the MAV (Message Available) bit in the Status Byte Register will be
high.

Output XXX;"*PRE 16"

*PRE?
The *PRE? query returns the current value of the register.

<mask><NL>

An integer from 0 through 65535 representing the sum of all bits that are set. .

OUTPUT XXX;"*PRE?"




Table 8-4

Common Commands
*RST (Reset)

1660-Series Logic Analyzer Parallel Poll Enable Register

Bit Position Bit Weight Enables

15-8 Not used

7 128 Not used

6 64 MSS - Master Summary Status
5 32 ESB - Event Status

4 16 MAYV - Message Available

3 8 LCL - Local

2 4 Not used

1 2 Not used

0 1 MSB - Module Summary

*RST (Reset)

The *RST command is not implemented on the 1660-series logic analyzer.
The 1660-series logic analyzer will accept this command, but the command
has no affect on the logic analyzer.

The *RST command is generally used to place the logic analyzer in a
predefined state. Because the 1660-series logic analyzer allows you to store
predefined configuration files for individual modules, or for the entire system,
resetting the logic analyzer can be accomplished by simply loading the
appropriate configuration file. For more information, refer to chapter 11,
"MMEMory Subsystem."

8-14



Common Commands
*SRE (Service Request Enable)

Command

<mask>

Example

Query

Returned Format

<mask>

Example

*SRE (Service Request Enable)

*SRE <mask>

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A zero
will disable the bit. Refer to table 8-5 for the bits in the Service Request
Enable Register and what they mask.

Refer to Chapter 6, "Status Reporting," for a complete discussion of status.

An integer from 0 to 255

This example enables a service request to be generated when a message is
available in the output queue. When a message is available, the MAV
(Message Available) bit will be high.

OUTPUT XXX;"*SRE 16"
*SRE?
The *SRE query returns the current value.

<mask><NL>

An integer from 0 to 255 representing the sum of all bits that are set.

OUTPUT XXX;"*SRE?"




Common Commands
*STB (Status Byte)

Table 8-5 1660-Series Logic Analyzer Service Request Enable Register
Bit Position Bit Weight Enables
15-8 not used
7 128 not used
6 64 MSS - Master Summary Status (always 0)
5 32 ESB - Event Status
4 16 MAYV - Message Available
3 8 LCL- Local
2 4 not used
1 2 not used
0 1 MSB - Module Summary
*STB (Status Byte)
Query *STRB?

Returned Format

<value>

Example

The *STB query returns the current value of the instrument’s status byte.
The MSS (Master Summary Status) bit, and, not the RQS (Request Service)
bit is reported on bit 6. The MSS indicates whether or not the device has at
least one reason for requesting service. Refer to table 8-6 for the meaning of
the bits in the status byte.

Refer to Chapter 6, "Status Reporting" for a complete discussion of status.

<value><NL>

An integer from 0 through 255

OUTPUT XXX;"*STB?"

8-16



Common Commands
*TRG (Trigger)

Table 8-6 The Status Byte Register
Bit Position Bit Weight Bit Name Condition
7 128 0=not Used
6 64 MSS 0 = instrument has no reason for service
1 =instrument is requesting service
5 32 ESB 0 = no event status conditions have occurred
1=an enabled event status condition has occurred
4 16 MAV 0 = no output messages are ready
1=an output message is ready
3 8 LCL 0 = a remote-to-local transition has not occurred
1 = a remote-to-local transition has occurred
2 4 not used
1 2 not used
0 1 MSB 0 = a module or the system has activity to report
1=no activity to report
0 = False = Low
1="True = High
*TRG (Trigger)
Command *TRG
The *TRG command has the same effect as a Group Execute Trigger (GET).
That effect is as if the START command had been sent for intermodule group
run. If no modules are configured in the Intermodule menu, this command
has no effect.
Example OUTPUT XXX; "*TRG"




Common Commands
*TST (Test)

*TST (Test)

Query *TST?

The *TST query returns the results of the power-up self-test. The result of
that test is a 9-bit mapped value which is placed in the output queue. A one
in the corresponding bit means that the test failed and a zero in the
corresponding bit means that the test passed. Refer to table 8-7 for the
meaning of the bits returned by a TST? query.

Returned Format <result><NL>

<result> Aninteger 0 through 511

Example 10 OUTPUT XXX;"*TST?"
20 ENTER XXX;Tst value

Table 8-7 Bits Returned by *TST? Query (Power-Up Test Results)

Bit Position Bit Weight Test

8 256 Disk Test

7 128 not used

6 64 not used

5 32 Front-panel Test
4 16 HIL Test

3 8 Display Test

2 4 Interupt Test

1 2 RAM Test

0 1 ROM Test

8-18



Common Commands
*WAI (Wait)

*WAI (Wait)

Command *WAT

The *WAI command causes the device to wait until completing all of the
overlapped commands before executing any further commands or queries.
An overlapped command is a command that allows execution of subsequent
commands while the device operations initiated by the overlapped command
are still in progress. Some examples of overlapped commands for the
1660-series logic analyzers are STARt and STOP.

Example: OUTPUT XXX; "*WAI"




8-20



Mainframe Commands



Introduction

Mainframe commands control the basic operation of the instrument
for the 1660-series logic analyzers. The 1660-series logic analyzers are
similar to a 16500A logic analysis system with either a single logic
analyzer module (1660A) or one logic analyzer and one oscilloscope
module (1660AS) installed.

The main difference in mainframe commands for the 1660-series logic
analyzers is the number of modules. In the 1660 series logic analyzers,
module 0 contains the system level commands, module 1 contains the
logic analyzer level commands, and module 2 contains the
oscilloscope module commands. The command parser in the
1660-series logic analyzers is designed to accept programs written for
the 16500A logic analysis system with a 165650A logic analyzer and/or
oscilloscope modules. The main difference is how you specify the
SELECT command. Remember, the 1660-series logic analyzer is
equivalent only to a mainframe with up to two modules; therefore, if
you specify 3 through 10 for the SELECT command in your program,
the command parser will take no action.

This chapter contains mainframe commands with a syntax example
for each command. Each syntax example contains parameters for the
1600-series logic analyzers only. Refer to figure 9-1 and table 9-1 for
the Mainframe commands syntax diagram. The mainframe commands
are:

o BEEPer e MESE

o CAPability e MESR

e CARDcage e RMODe
e CESE e RTC

e CESR e SELect

e EOI e SETColor
e LER e STARt

¢ LOCKout e STOP

e MENU




Figure 9-1

—=( )Y (BEerer)

Mainframe Commands

2t

e BEEPer? )

CAPability?

CARDcage?

CESE space }—D‘ value i

CESE?

Hil

CESR?

space OfFF |@

E01?

00 ¢
i

LOCKou't OFF [0

i

LOCKout?

-

Mainframe Commands Syntax Diagram

9-3




Mainframe Commands

Figure 9-1 (continued)

y

MENU space }—P{ modul e }

MENU?

o] mens

SINGle

REPetitive

RMODe?
0wl zraee ol |-+l } (-l | =)o o]

‘ minute o second

space }—P‘ modul e }
—»{ SELect?
—®={ SETColor L:\DEFGUt

o S

SETColor? space }—»‘ color }

STARt
STOP

016608506

Mainframe Commands Syntax Diagram (continued)




Table 9-1

Mainframe Commands

Mainframe Parameter Values

Parameter

value
module
menu
enable_value
index
day
month
year
hour
minute
second
color
hue

sat

lum

Values

An integer from 0 to 65535.

An integer 0 through 2 (3 through 10 unused).
An integer.

An integer from 0 to 255.

An integer from 0to 5.

An integer from 1 through 31

An integer from 1 through 12

An integer from 1990 through 2089
An integer from 0 through 23

An integer from 0 through 59

An integer from 0 through 59

An integer from 1to 7.

An integer from 0 to 100.

An integer from 0 to 100.

An integer from 0 to 100.

9-5




Mainframe Commands
BEEPer

Command

Example

Query

Returned Format

Example

BEEPer

:BEEPer [{ON|1}|{OFF|0}]

The BEEPer command sets the beeper mode, which turns the beeper sound
of the instrument on and off. When BEEPer is sent with no argument, the
beeper will be sounded without affecting the current mode.

OUTPUT XXX;":BEEPER"OUTPUT XXX;":BEEP ON"

:BEEPer?

The BEEPer? query returns the mode currently selected.
[:BEEPer] {1|0}<NL>

OUTPUT XXX;":BEEPER?"

9-6



Mainframe Commands
CAPability

CAPability

Query :CAPability?

The CAPability query returns the HP-SL (HP System Language) and lower
level capability sets implemented in the device.

Table 9-2 lists the capability sets implemented in the 1660-series logic
analyzers.

Returned Format [:CAPability]
IEEE488,1987,SH1,AH1,T5,L4,SR1,RL1,PP1,DC1,DT1, CO,E2<NL>

Example OUTPUT XXX;":CAPABILITY?"

Table 9-2 1660-Series Logic Analyzer Capability Sets
Mnemonic Capability Name Implementation
SH Source Handshake SH1
AH Acceptor Handshake AH1
T Talker (or TE - Extended Talker) 5

Listener (or LE - Extended Listener) L4

SR Service Request SR1
RL Remote Local RL1
PP Parallel Poll PP1
DC Device Clear DC1
DT Device Trigger DT1
C Any Controller co
E Electrical Characteristic E2

9-7



Mainframe Commands
CARDcage

CARDcage

Query : CARDcage?

The CARDcage query returns a series of integers which identify the modules
that are installed in the mainframe. The returned string is in two parts. The
first five two-digit numbers identify the card type. The identification number
for the logic analyzer is 32. The identification number for the oscilloscope is
13. A "-1"in the first part of the string indicates no card is installed in the
slot.

The five single-digit numbers in the second part of the string indicate which
slots have cards installed. The module assignment for the logic analyzer will
always be 1. The second number will contain a 0 unless the oscilloscope
module is installed (1660AS), in which case it will return a 1. The possible
values for the module assignment are 0 and 1 where 0 indicates the module
software is not recognized or not loaded.

Returned Format [ :CARDcagel
<ID>,<ID>,<ID>,<ID>,<ID><assign>, <assign>,<assign>,
- <assign>, <assign><NL>
<ID> Aninteger indicating the card identification number.

<assign> Aninteger indicating the module assignment.

Example OUTPUT XXX;":CARDCAGE?"




Mainframe Commands
CESE (Combined Event Status Enable)

CESE (Combined Event Status Enable)

Command :CESE <value>

The CESE command sets the Combined Event Status Enable register. This
register is the enable register for the CESR register and contains the
combined status of all of the MESE (Module Event Status Enable) registers
of the 1660-series logic analyzer. Table 9-3 lists the bit values for the CESE
register.

<value> Aninteger from 0 to 65535

Example OUTPUT XXX;":CESE 32"

Query :CESE?

The CESE? query returns the current setting.

Returned Format [:CESE] <value><NL>
Example OUTPUT XXX;":CESE?"
Table 9-3 1660-Series Logic Analyzer Combined Event Status Enable Register
Bit Weight Enables
3to 15 not used
2 4 oscilloscope
1 2 logic analyzer
0 1 Intermodule

9-9



Mainframe Commands
CESR (Combined Event Status Register)

CESR (Combined Event Status Register)

Query :CESR?

The CESR query returns the contents of the Combined Event Status register.
This register contains the combined status of all of the MESRs (Module Event
Status Registers) of the 1660-series logic analyzer. Table 9-4 lists the bit
values for the CESR register.

Returned Format [:CESR] <value><NL>

<value> Aninteger from 0 to 65535

Example OUTPUT XXX;":CESR?"
Table 9-4 1660-Series Logic Analyzer Combined Event Status Register
Bit Bit Weight Bit Name Condition
3to 15 0 =not used
2 4 Oscilloscope 0 = No new status
1 = Status to report
1 2 Logic analyzer 0 = No new status
1 = Status to report
0 1 Intermodule 0 = No new status

1 = Status to report

9-10



Mainframe Commands
EOI (End Or Identify)

Command

Example

Query

Returned Format

EOI (End Or Identify)

:EOI {{oN|1}|{oFF|0}}

The EOI command specifies whether or not the last byte of a reply from the
instrument is to be sent with the EOI bus control line set true or not. If EOI
is turned off, the logic analyzer will no longer be sending IEEE 488.2
compliant responses.

OUTPUT XXX;":EOI ON"

:EOI?

The EOI? query returns the current status of EOIL.
[:EOI] {1]|0}<NL>

Example OUTPUT XXX;":EOI?"
LER (LCL Event Register)
Query : LER?

Returned Format

Example

The LER query allows the LCL Event Register to be read. After the LCL
Event Register is read, it is cleared. A one indicates a remote-to-local
transition has taken place. A zero indicates a remote-to-local transition has
not taken place.

[:LER] {0]|1}<NL>

OUTPUT XXX;":LER?"

9-11




Mainframe Commands
LOCKout

LOCKout

Command :LOCKout {{oN|1}|{oFF|0}}

The LOCKout command locks out or restores front panel operation. When
this function is on, all controls (except the power switch) are entirely locked

out.
Example OUTPUT XXX;":LOCKOUT ON"
Query : LOCKout?

The LOCKout query returns the current status of the LOCKout command.

Returned Format [:LOCKout] {0]|1}<NL>

Example OUTPUT XXX;":LOCKOUT?"
MENU

Command :MENU <modules> [, <menus>]

The MENU command puts a menu on the display. The first parameter
specifies the desired module. The optional second parameter specifies the
desired menu in the module (defaults to 0). Table 9-5 lists the parameters
and the menus.

<module> Selects module or system (integer) 0 selects the system, 1 selects the logic
analyzer, and 2 selects the oscilloscope. -2, -1 and 3 to 10 unused)

<menu> Selects menu (integer)

9-12



Mainframe Commands
MENU

Example OUTPUT XXX;":MENU 0,1"

Table 9-5 Menu Parameter Values
Parameters Menu
0,0 System RS-232/GPIB
0,2 System Disk
0,3 System Utilities
04 System Test
1,0 Analyzer Configuration
11 Format 1
1,2 Format 2
13 Trigger 1
14 Trigger 2
15 Waveform 1
1,6 Waveform 2
1,7 Listing 1
18 Listing 2
19 Mixed
1,10 Compare 1
1,1 Compare 2
1,12 Chart 1
1,13 Chart2
2,0 Channel
2,1 Trigger
2,2 Display
2,3 Auto-measure
2,4 Marker
25 Calibration




Query

Returned Format

Mainframe Commands
MESE<N> (Module Event Status Enable)

:MENU?

The MENU query returns the current menu selection.
[ :MENU] <module>, <menu><NL>

Example OUTPUT XXX;":MENU?"
MESE<N> (Module Event Status Enable)
Command :MESE<N> <enable value>

<N>

<enable value>

Example

Query

Returned Format

Example

The MESE command sets the Module Event Status Enable register. This
register is the enable register for the MESR register. The <N> index
specifies the module, and the parameter specifies the enable value. For the
1660-series logic analyzer, the <N> index 0, 1, or 2 refers to system, logic
analyzer, or oscilloscope respectively.

An integer 0 through 2 (3 through 10 unused).

An integer from 0 through 255

OUTPUT XXX;":MESE1l 3"

:MESE<N>?

The query returns the current setting. Tables 9-6, 9-7, and 9-8 list the
Module Event Status Enable register bits, bit weights, and what each bit
masks for the mainframe, logic analyzer, and oscilloscope respectively.
[:MESE<N>] <enable value><NL>

OUTPUT XXX;":MESE1?"

9-14



Mainframe Commands
MESE<N> (Module Event Status Enable)

Table 9-6 1660-Series Mainframe (Intermodule) Module Event Status Enable Register

Bit Position Bit Weight Enables

7 128 not used

6 84 not used

5 32 not used

4 16 not used

3 8 not used

2 4 not used

1 2 RNT - Intermodule Run Until Satisfied

0 1 MC - Intermodule Measurement Complete

Table 9-7 1660-Series Logic Analyzer Module Event Status Enable Register

Bit Position Bit Weight Enables

7 128 not used

6 84 not used

5 32 not used

4 16 not used

3 8 Pattern searches failed

2 4 Trigger found

1 2 RNT - Run Until Satisfied

0 1 MC - Measurement Complete




Mainframe Commands
MESR<N> (Module Event Status Register)

Table 9-8 1660-Series Oscilloscope Module Event Status Enable Register
Bit Position Bit Weight Enables
7 128 not used
6 84 not used
5 32 not used
4 16 Number of averages met
3 8 Auto triggered
2 4 Trigger received
1 2 RNT - Run Until Satisfied
0 1 MC - Measurement Complete
MESR<N> (Module Event Status Register)
Query :MESR<N>?

Returned Format

<N>

<enable value>

Example

The MESR query returns the contents of the Module Event Status register.
The <N> index specifies the module. For the 1660 series logic analyzer, the
<N> index 0, 1, or 2 refers to system, logic analyzer, or oscilloscope
respectively.

Refer to table 9-9 for information about the Module Event Status Register
bits and their bit weights for the system, table 9-10 for the logic analyzer, and
table 9-11 for the oscilloscope.

[:MESR<N>] <enable value><NL>

An integer 0 through 10 (3 through 10 unused).

An integer from 0 through 255

OUTPUT XXX;":MESR1?"

9-16



Mainframe Commands
MESR<N> (Module Event Status Register)

Table 9-9 1660-Series Logic Analyzer Mainframe Module Event Status Register

Bit Bit Weight Bit Name Condition

7 128 0 =not used

6 64 0=not used

5 32 0=not used

4 16 0=not used

3 0 =not used

2 0 =not used

1 RNT 0 = Intermodule Run until not satisfied

1 = Intermodule Run until satisfied

0 1 MC 0 = Intermodule Measurement not satisfied
1 = Intermodule Measurement satisfied

Table 9-10 1660-Series Logic Analyzer Module Event Status Register

Bit Bit Weight Condition

7 128 0 =not used

6 64 0=not used

5 32 0=not used

4 16 0=not used

3 8 1= 0ne or more pattern searches failed
0 = Pattern searches did not fail

2 4 1 =Trigger found
0 =Trigger not found

1 2 0 =Run until not satisfied

1 = Run until satisfied

0 1 0 = Measurement not satisfied
1 = Measurement satisfied




Table 9-11

Mainframe Commands
RMODe

1660-Series Oscilloscope Module Event Status Register

Bit Bit Weight Bit Name Condition
7 128 0 =not used
6 64 0=not used
5 32 0=not used
4 16 1 =Number of averages satisfied
0= Number of averages not satisfied
3 8 1= Auto trigger received
0= Auto trigger not received
2 4 1= Trigger received
0=Trigger not received
1 2 RNT 1= Run until satisfied

0 = Run until not satisfied

0 1 MC 1=Measurement complete
0 = Measurement not complete

Example

RMODe

:RMODe {SINGle|REPetitive}

The RMODe command specifies the run mode for the selected module (or
Intermodule). If the selected module is in the intermodule configuration,
then the intermodule run mode will be set by this command.

After specifying the run mode, use the STARt command to start the acquisition.

OUTPUT XXX;":RMODE SINGLE"

9-18



Query

Returned Format

Example

Mainframe Commands
RTC (Real-time Clock)

:RMODe?

The query returns the current setting.
[:RMODe] ({SINGle|REPetitive}<NL>

OUTPUT XXX;":RMODE?"

Command

<day>
<months>
<year>
<hour>
<minute>

<second>

Example

RTC (Real-time Clock)

:RTC {<day>,<month>, <year>, <hours, <minutes,
<second>|DEFault}

The real-time clock command allows you to set the real-time clock to the
current date and time. The DEFault option sets the real-time clock to 01
January 1990, 12:00:00 (24-hour format).

integer from 1 to 31
integer from 1 to 12
integer from 1990 to 2089
integer from 0 to 23
integer from 0 to 59

integer from 0 to 59

This example sets the real-time clock for 1 January 1992, 20:00:00 (8 PM).

OUTPUT XXX;":RTC 1,1,1992,20,0,0"




Query

Returned Format

Example

Mainframe Commands
SELect

:RTC?

The RTC query returns the real-time clock setting,.

[:RTC] <day>, <months>, <year>, <hour>, <minute>, <second>

OUTPUT XXX;":RTC?"

Command

<module>

Example

SELect

:SELect <module>

The SELect command selects which module (or system) will have parser
control. SELect defaults to System (0) at power up. The appropriate module
(or system) must be selected before any module (or system) specific
commands can be sent. SELECT 0 selects the System, SELECT 1 selects the
logic analyzer (state and timing), and SELECT 2 selects the oscilloscope
module. Select -2, -1 and, 3 through 10 are accepted but no action will be
taken. When a module is selected, the parser recognizes the module’s
commands and the System/Intermodule commands. When SELECT 0 is
used, only the System/Intermodule commands are recognized by the parser.
Figure 9-2 shows the command tree for the SELect command.

The command parser in the 1660-series logic analyzers is designed to accept
programs written for the 16500A logic analysis system with a 16550A logic
analyzer module; however, if the parameters 3 through 10 are sent, the
1660-series logic analyzer will take no action.

An integer 0 through 2 (-2, -1, and 3 through 10 unused).

OUTPUT XXX;":SELECT 0"

9-20



Query

Returned Format

Example

Figure 9-2

Mainframe Commands
SELect

:SELect?

The SELect? query returns the current module selection.
[:SELect] <module><NL>

OUTPUT XXX;":SELECT?"

:SELECT
Q (SELECTS SYSTEM/INTERMODULE)
1 (SELECTS MODULE IN SLOT A)
2 (SELECTS MODULE IN SLOT B)

Not Used

Select Command Tree

9-21



Mainframe Commands
SETColor

SETColor

Command :SETColor {<colors,<hue>,<sat>,<lum>|DEFault}

The SETColor command is used to change one of the selections on the CRT,
or to return to the default screen colors. Four parameters are sent with the
command to change a color:

e (Color Number (first parameter)
e Hue (second parameter)

e Saturation (third parameter)

e Luminosity (last parameter)

<color> Aninteger from 1 to 7
<hue> An integer from 0 to 100.
<sat> Aninteger from 0 to 100.

<lum> An integer from 0 to 100

Color Number 0 cannot be changed.

Example OUTPUT XXX;":SETCOLOR 3,60,100,60"
OUTPUT XXX;":SETC DEFAULT"

Query :SETColor? <color>

The SETColor query returns the luminosity values for a specified grey scale.
Returned Format [:SETColor] <colors,<hues,<sat>,<lum><NL>

Example OUTPUT XXX;":SETCOLOR? 3"

9-22



Mainframe Commands
STARt

Command

Example

STARt

: STARE

The STARt command starts the selected module (or Intermodule) running in
the specified run mode (see RMODe). If the specified module is in the
Intermodule configuration, then the Intermodule run will be started.

The STARt command is an overlapped command. An overlapped command is a
command that allows execution of subsequent commands while the device
operations initiated by the overlapped command are still in progress.

OUTPUT XXX;":START"

9-23




Mainframe Commands

STOP
STOP
Command : STOP
The STOP command stops the selected module (or Intermodule). If the
specified module is in the Intermodule configuration, then the Intermodule
run will be stopped.
The STOP command is an overlapped command. An overlapped command is a
command that allows execution of subsequent commands while the device
operations initiated by the overlapped command are still in progress.
Example OUTPUT XXX;":STOP"

9-24



10

SYSTem Subsystem



Introduction

SYSTem subsystem commands control functions that are common to
the entire 1660-Series logic analysis system, including formatting
query responses and enabling reading and writing to the advisory line
of the instrument. The command parser in the 1660-series logic
analyzer is designed to accept programs written for the 16500A logic
analysis system with a 165650A logic analyzer module and a 16532A
oscilloscope module.

Refer to figure 10-1 and table 10-1 for the System Subsystem
commands syntax diagram. The SYSTem Subsystem commands are:
e DATA

e DSP

e ERRor

e HEADer

o LONGform

e PRINt

e SETup

10-2



SYSTem Subsystem

:SYSTem ' DATA space }—P‘ block_data I
DATA?
}—P‘ string }

space

HEADer space »( OFF|0
oNft

= HEADer?

ADQONGmrm =} space } »( OFF|0
ONJ1

—><LONGform?

PRINt space

JS[REEH

‘ DISK . pathname
PARTIAl ‘ ‘ eij

O 05+ w(omens

PRINt? space »{ SCReen

SETup space }—P‘ block_data }
SETup?

1650051

Figure 10-1

System Subsystem Commands Syntax Diagram

10-3



Table 10-1

SYSTem Subsystem

System Subsystem Commands Syntax Diagram (Continued)

SYSTem Parameter Values

Parameter Values
block_data Data in IEEE 488.2 format.
string A string of up to 68 alphanumeric characters.

10-4



SYSTem Subsystem
DATA

Command

Example

<block_data>

<block_length
specifiers>

<length>

<section>

<section_
header>

<section datas>

DATA

:SYSTem:DATA <block datax>

The DATA command allows you to send and receive acquired data to and
from a controller in block form. This helps saving block data for:

e Reloading to the logic analyzer or oscilloscope
® Processing data later in the logic analyzer or oscilloscope

e Processing data in the controller.

The format and length of block data depends on the instruction being used
and the configuration of the instrument. This chapter describes briefly the
syntax of the Data command and query. Because the mainframe by itself
does not have acquired data, and the capabilities of the DATA command and
query vary for each module, the DATA command and query are described in
detail in the respective modules command section. See chapter 26, "DATA
and SETup Commands" for additional information when using the logic
analyzer, or chapter 35, "WAVeform Subsystem" when using the oscilloscope
module.

OUTPUT XXX;":SYSTEM:DATA" <block datas

<block length specifiers><section>

#8<length>

The total length of all sections in byte format (must be represented with 8
digits)

<section_header><section_data>

16 bytes, described in the "Section Header Description" section in the
individual modules command section.

The format depends on the type of data

10-5




Query

Returned Format

Example

SYSTem Subsystem
DSP (Display)

:SYSTem:DATA?

The SYSTem:DATA query returns the block data. The data sent by the
SYSTem:DATA query reflects the configuration of the machines when the
last run was performed. Any changes made since then through either
front-panel operations or programming commands do not affect the stored
configuration.

[:SYSTem:DATA] <block data><NL>

See chapter 36, "Programming Examples" for an example on transferring data.

Command

<strings>

DSP (Display)
:SYSTem:DSP <strings>
The DSP command writes the specified quoted string to a device-dependent

portion of the instrument display.

A string of up to 68 alphanumeric characters

OUTPUT XXX;":SYSTEM:DSP ’'The message goes here’"

10-6



SYSTem Subsystem
ERRor

Query

Returned Formats

<error_number>

<error_string>

Examples

ERRor

:SYSTem:ERRor? [NUMeric|STRing]

The ERRor query returns the oldest error from the error queue. The optional
parameter determines whether the error string should be returned along with
the error number. If no parameter is received, or if the parameter is
NUMeric, then only the error number is returned. If the value of the
parameter is STRing, then the error should be returned in the following form:

<error numbers>, <error message (string)>

A complete list of error messages for the 1660A-series logic analyzer is shown
in chapter 7, "Error Messages." If no errors are present in the error queue, a
zero (No Error) is returned.

Numeric:

[:SYSTem:ERRor] <error_ number><NL>

String:

[:SYSTem:ERRor] <error_numbers, <error_string><NL>

An integer

A string of alphanumeric characters

Numeric:

10 OUTPUT XXX;":SYSTEM:ERROR?"

20 ENTER XXX;Numeric

String:

50 OUTPUT XXX;":SYST:ERR? STRING"
60 ENTER XXX;Strings

10-7




SYSTem Subsystem
HEADer

Command

Example

Query

Returned Format

Example

HEADer

:SYSTem:HEADer {{ON|1}|{OFF|0}}

The HEADer command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query responses will
include the command header.

OUTPUT XXX;":SYSTEM:HEADER ON"

:SYSTem:HEADer?

The HEADer query returns the current state of the HEADer command.
[:SYSTem:HEADer] {1|0}<NL>

OUTPUT XXX;":SYSTEM:HEADER?"

Headers should be turned off when returning values to numeric variables.

10-8



SYSTem Subsystem
LONGform

Command

Example

Query

Returned Format

Example

LONGform

:SYSTem:LONGform {{ON|1}|{OFF|0}}

The LONGform command sets the longform variable, which tells the
instrument how to format query responses. If the LONGform command is set
to OFF, command headers and alpha arguments are sent from the instrument
in the abbreviated form. If the the LONGform command is set to ON, the
whole word will be output. This command has no affect on the input data
messages to the instrument. Headers and arguments may be input in either
the longform or shortform regardless of how the LONGform command is set.

OUTPUT XXX;":SYSTEM:LONGFORM ON"

:SYSTem: LONGform?

The query returns the status of the LONGform command.
[:SYSTem: LONGform] {1]0}<NL>

OUTPUT XXX;":SYSTEM:LONGFORM?"

10-9




SYSTem Subsystem
PRINt

Command
<pathnames>
<start>, <end>

Query

PRINt

:SYSTem:PRINt {ALL|PARTial,<starts>,<end>},
DISK, <pathnames>

:SYSTem:PRINt SCReen{BTIF|CTIF|PCX|EPS},
DISK, <pathname>

The PRINt command initiates a print of the screen or listing buffer over the
current PRINTER communication interface to the printer or to a file on the
disk. The PRINT SCREEN option allows you to specify a graphics type.
BTIF format is black & white, CTIF and PCX format is color. If a file
extension is not specified, one is appended automatically to the file name.
The PRINT PARTIAL option allows you to specify a START and END state
number.

A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN when the file resides in the present working directory, or a
string of up to 64 alphanumeric characters for DOS in the following forms:
NNNNNNNN.NNN or \WAME_DIRIFILENAME when the file does not reside
in the present working directory.

An integer specifying a state number.

This instuctrion prints the screen to the printer:
OUTPUT XXX;":SYSTEM:PRINT SCREEN"

This instruction prints all, to a file named STATE:
OUTPUT 707;":SYSTEM:PRINT ALL, DISK,’STATE’"

This instruction prints partial data to a file named LIST.
OUTPUT 707;":SYSTEM:PRINT PARTIAL,-9,30, DISK,’list’

:SYSTem:PRINt? {SCReen|ALL}

The PRINt query sends the screen or listing buffer data over the current
CONTROLLER communication interface to the controller.

10-10



SYSTem Subsystem
SETup

The print query should NOT be sent with any other command or query on the
same command line. The print query never returns a header. Also, since
response data from a print query may be sent directly to a printer without
modification, the data is not returned in block mode.

Example
OUTPUT 707;" :SYSTEM: PRINT? SCREEN"

Command

<block_data>

<block_length
specifiers>

<length>

<section>

<section_
header>

<section data>

SETup

:SYStem:SETup <block data>

The :SYStem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller. This chapter describes
briefly the syntax of the Setup command and query. Because of the
capabilites and importance of the Setup command and query, a complete
chapter is dedicated to it. The dedicated chapter is chapter 26, "DATA and
SETup Commands."

<block length specifiers><section>

#8<length>

The total length of all sections in byte format (must be represented with 8
digits)

<section_header><section_data>

16 bytes, described in the "Section Header Description" section in chapter 26.

Format depends on the type of data

10-11




Example

Query

Returned Format

Example

SYSTem Subsystem
SETup

The total length of a section is 16 (for the section header) plus the length of
the section data. So when calculating the value for <lengths, don’t forget
to include the length of the section headers.

OUTPUT XXX USING "#,K";":SYSTEM:SETUP " <block data>

:SYStem: SETup?

The SYStem:SETup query returns a block of data that contains the current
configuration to the controller.
[:SYStem: SETup] <block data><NL>

See "Transferring the logic analyzer configuration" in chapter 27,
"Programming Examples" for an example.

10-12



11

MMEMory Subsystem



Introduction

The MMEMory (mass memory) subsystem commands provide access
to disk drive. The 1600-series logic analyzers support both LIF
(Logical Information Format) and DOS (Disk Operating System)
formats.

The 1660-series logic analyzers have only one disk drive; however,
programs written for the 16500A logic analysis system that contain
the MSI (Mass Storage Is) parameter will be accepted but no action is
taken. Refer to figure 11-1 and table 11-1 for the MMEMory
Subsystem commands syntax diagram. The MMEMory subsystem
commands are:

AUToload
CATalog
COPY
DOWNIload
INITialize
LOAD
MSI
PACK
PURGe
REName
STORe
UPLoad
VOLume

11-2



MMEMory Subsystem

________________________________________________________________________________________|
<msus> refers to the mass storage unit specifier; however, it is not needed for
the 1660-series logic analyzers since they have only one drive. The <msus>
parameter is shown in the command syntax examples as a reminder that for the
the 16500A logic analysis system can be used on the 1660-series logic analyzers.

If you are not going to store information to the configuration disk, or if the disk
you are using contains information you need, it is advisable to write protect
your disk. This will protect the contents of the disk from accidental damage due
to incorrect commands being mistakenly sent.

11-3



MMEMory Subsystem

Figure 11-1

:

-
]

:MMEMory o AUToload space

~
0FF |0 )

—»{ AUToload?

CATalog?

ALL

¢

COPY 4% space }—P{ name }

block_data

-
-4

01660507

Mmemory Subsystem Commands Syntax Diagram

11-4



MMEMory Subsystem

Figure 11-1

\

—»{ INITialize

space @

msus L

LOAD =} space H name
’ CONFig

’ msus ° modu l e

LOAD . ﬂlASSemb\er)—b{ space }—P{ io,ngme}—>
C (17
o o

KP‘ space H msus }—}

\

K»‘ space H msus }—} 01660508 4

Mmemory Subsystem Commands Syntax Diagram (Continued)

11-5



Figure 11-1

MMEMory Subsystem

\

PURGe space }—>1 name }

e wf e

new_name

STORe

0 CONFig

° msus

<—>i description

module

UPLoad? space H name }

msus

Y

= VOLume?
LP{ space }—P{ msus }—j‘

Mmemory Subsystem Commands Syntax Diagram (Continued)

01660509

11-6



Table 11-1

MMEMory Subsystem

MMEMory Parameter Values

Parameter

auto_file

msus

name

description

type
block_data

ia_name

new_name

module

Values

A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"

or

A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

Mass Storage Unit specifier (not needed by 1660-series.
16500A <msus > is accepted but no action is taken).

A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"

or

A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

A string of up to 32 alphanumeric characters.
An integer, refer to table 11-2.
Data in IEEE 488.2 format.

A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"

or

A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"

or

A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

An integer, 0 through 2.

11-7




MMEMory Subsystem
AUToload

Command

<auto_file>

<msus>

Examples

Returned Format

AUToload

:MMEMory:AUToload {{OFF|0}|{<auto files>}} [, <msus>]

The AUToload command controls the autoload feature which designates a set
of configuration files to be loaded automatically the next time the instrument
is turned on. The OFF parameter (or 0) disables the autoload feature. A
string parameter may be specified instead to represent the desired autoload
file. If the file is on the current disk, the autoload feature is enabled to the
specified file.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).

OUTPUT XXX;":MMEMORY:AUTOLOAD OFF"
OUTPUT XXX;":MMEMORY:AUTOLOAD ’'FILE1l A""
OUTPUT XXX;":MMEMORY:AUTOLOAD ’'FILE2 ', INTERNALO"

:MMEMory:AUToload?

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload file. The appropriate slot designator is
included in the filename and refers to the slot designator A for the logic
analyzer or B for the oscilloscope. If the slot designator is _ (underscore)
the file is for the system.

[ :MMEMory :AUToload] {0|<auto file>},<msus><NL>

11-8



<auto_file>

MMEMory Subsystem
CATalog

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN

Example OUTPUT XXX;":MMEMORY : AUTOLOAD?"
CATalog
Query :MMEMory:CATalog? [[All,] [<msus>]]

The CATalog query returns the directory of the disk in one of two block data
formats. The directory consists of a 51 character string for each file on the
disk when the ALL option is not used. Each file entry is formatted as follows:

"NNNNNNNNNN TTTTTTT FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"
where N is the filename, T is the file type (see table 11-2), and F is the file
description.

The optional parameter ALL returns the directory of the disk in a
70-character string as follows:

"NNNNNNNNNNNN TTTTTTT FFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEFF
DDMMMYY HH:MM:SS"

where N is the filename, T is the file type (see table 11-2), F is the file
description, and, D, M, Y, and HH:MM:SS are the date, month, year, and time
respectively in 24-hour format.

The <msus> is not needed by 1660-series; however, the 165600A <msus> is
accepted but no action is taken.

11-9




<msus>

Returned Format

<block_data>

Example 1

Example 2

MMEMory Subsystem
COPY

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).
[ :MMEMory:CATalog] <block data>

ASCII block containing <filename> <file type>
<file description>

This example is for sending the CATALOG? ALL query:

OUTPUT 707;":MMEMORY:CATALOG? ALL"

This example is for sending the CATALOG? query without the ALL option.
Keep in mind if you do not use the ALL option with a DOS disk, each
filename entry will be truncated at 51 characters:

OUTPUT 707;":MMEMORY : CATALOG? "

Command

COPY

:MMEMory: COPY <name>[,<msus>],<new name>[, <msus>]

The COPY command copies one file to a new file or an entire disk’s contents
to another disk. The two <name> parameters are the filenames. The first
pair of parameters specifies the source file. The second pair specifies the
destination file. An error is generated if the source file doesn’t exist, or if the
destination file already exists.

The <msus> is not needed by 1660-series. 16500A <msus> is accepted but
no action is taken.

11-10



<name>

<new_name>

<msus>

MMEMory Subsystem
DOWNIoad

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN
A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN

or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).

Examples To copy the contents of "FILE1" to "FILE2:
OUTPUT XXX;":MMEMORY:COPY ’'FILEl’,’FILE2’'"
DOWNIoad
Command :MMEMory:DOWNload <names>[,<msus>],<descriptions,

<type>, <block data>

The DOWNIload command downloads a file to the mass storage device. The
<name> parameter specifies the filename, the <descriptions> parameter
specifies the file descriptor, and the <block data> contains the contents
of the file to be downloaded.

The <msus> is not needed by 1660-series. 16500A <msus> is accepted but
no action is taken.

Table 11-2 lists the file types for the <type> parameter.

11-11




MMEMory Subsystem
DOWNIoad

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN

<msus> Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).

<description> A string of up to 32 alphanumeric characters
<type> Aninteger (see table 11-2)

<block _data> Contents of file in block data format

Example

OUTPUT XXX;":MMEMORY:DOWNLOAD ’'SETUP ' ,INTERNALO,’'FILE CREATED FROM SETUP
QUERY’, -16127,#800000643..."

Table 11-2 File Types

File File Type
1660-Series System Software —-15608
1660-Series ROM Software -15609
1660-Series System Configuration —-15605
1660-Series Logic Analyzer Configuration —-16095
1660-Series Logic Analyzer Software —-15607
1660-Series Logic Analyzer with Oscilloscope Configuration ~ —16115
1660-Series Oscilloscope Software —-15606
Autoload File —-15615
Inverse Assembler —-15614
Text Type (LIF from Print to Disk) 5813

11-12



MMEMory Subsystem
INITialize

Command

<msus>

Examples

INITialize

:MMEMory:INITialize [{LIF|DOS}[,<msus>]]

The INITialize command formats the disk in either LIF (Logical Information
Format) or DOS (Disk Operating System). The <msus> is not needed by
1660-series. 16500A <msus> is accepted but no action is taken. If no
format is specified, then the initialize command will format the disk in the LIF
format.

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).

OUTPUT XXX;":MMEMORY:INITIALIZE DOS"
OUTPUT XXX;":MMEMORY:INITIALIZE LIF,INTERNALO"

Once executed, the initialize command formats the specified disk, permanently
erasing all existing information from the disk. After that, there is no way to
retrieve the original information.

11-13




MMEMory Subsystem
LOAD [:CONFig]

Command

<name>

<msus>

<module>

Examples

LOAD [:CONFig]

:MMEMory:LOAD [: CONfig] <name> [, <msus>] [, <modules>]

The LOAD command loads a configuration file from the disk into the logic
analyzer, oscilloscope, software options, or the system. The <name>
parameter specifies the filename from the disk. The optional <module>
parameter specifies which module(s) to load the file into. The accepted
values are 0 for system, 1 for logic analyzer, and 2 for the oscilloscope. Not
specifying the <module> parameter is equivalent to performing a 'LOAD
ALL’ from the front panel which loads the appropriate file for the system,
logic analyzer, oscilloscope, and any software option.

A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN

or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).

An integer, 0 through 2

OUTPUT XXX;":MMEMORY:LOAD:CONFIG 'FILE '"
OUTPUT XXX;":MMEMORY:LOAD 'FILE ',0"
OUTPUT XXX;":MMEM:LOAD:CONFIG ’'FILE A’, INTERNALO,1"

11-14



MMEMory Subsystem
LOAD :IASSembler

Command

<IA name>

<msus>

<module>

Examples

LOAD :IASSembler

:MMEMory: LOAD:IASSembler <IA name>[,<msus>], {1]|2}
[, <module>]

This variation of the LOAD command allows inverse assembler files to be
loaded into a module that performs state analysis. The <IA name>
parameter specifies the inverse assembler filename from the desired
<msus>. The parameter after the optional <msus> specifies which machine
to load the inverse assembler into.

The optional <module> parameter is used to specify which slot the state
analyzer in. 1 refers to the logic analyzer. If this parameter is not specified,
the state analyzer will be selected.

A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN

or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).

An integer, always 1

OUTPUT XXX;":MMEMORY:LOAD:IASSEMBLER 'I68020 IP’,1"
OUTPUT XXX;":MMEM:LOAD:IASS 'I68020 IP’,INTERNALO,1,2"

11-15




MMEMory Subsystem
MSI (Mass Storage Is)

Command

<msus>

Examples

Query

Returned Format

Example

MSI (Mass Storage Is)

:MMEMory:MSTI [<msus>]

The MSI command selects a default mass storage device; however, it is not
needed by 1660-series logic analyzers because they have only one disk drive.
If the 165600A <msus> is sent to the 1660-series logic analyzer, it is accepted
but no action is taken.

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).

OUTPUT XXX;":MMEMORY:MSI"
OUTPUT XXX;":MMEM:MSI INTERNALO"

:MMEMory:MSI?

The MSI? query returns the current MSI setting. Because the 1660-series
logic analyzers have only one disk drive, InternalO0 is always returned.
[ :MMEMory:MSI] <msus><NL>

OUTPUT XXX;":MMEMORY:MSI?"

11-16



MMEMory Subsystem
PACK

Command

<msus>

Examples

PACK

:MMEMory: PACK [<msus>]

The PACK command packs the files on the LIF disk the disk in the drive. If a
DOS disk is in the drive when the PACK command is sent, no action is taken.

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).

OUTPUT XXX;":MMEMORY:PACK"
OUTPUT XXX;":MMEM:PACK INTERNALO"

Command

<name>

<msus>

PURGe

:MMEMory: PURGe <name> [, <msus>]

The PURGe command deletes a file from the disk in the drive. The <name>
parameter specifies the filename to be deleted.

A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN

or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).

11-17




Examples

MMEMory Subsystem
REName

OUTPUT XXX;":MMEMORY:PURGE 'FILE1'"
OUTPUT XXX;":MMEM:PURG 'FILEl’, INTERNALO"

Once executed, the purge command permanently erases all the existing
information about the specified file. After that, there is no way to retrieve the
original information.

Command

<name>

<msus>

<new name>

REName

:MMEMory:REName <name>[,<msus>],<new_name>

The REName command renames a file on the disk in the drive. The <name>
parameter specifies the filename to be changed and the <new _name>
parameter specifies the new filename.

You cannot rename a file to an already existing filename.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).

A string of up to 10 alphanumeric characters for LIF in the following form:
NNNNNNNNNN

or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN

11-18



Examples

MMEMory Subsystem
STORe [:CONFig]

OUTPUT XXX;":MMEMORY:RENAME ’'OLDFILE’,'NEWFILE’'"
OUTPUT XXX;":MMEM:REN ’'OLDFILE’ [, INTERNAL1], 'NEWFILE’"

Command

<name>

<msus>

<description>

<module>

STORe [:CONFig]

:MMEMory:STORe [:CONfig]<names[,<msus>],
<descriptions> [, <modules]

The STORe command stores module or system configurations onto a disk.
The [:CONFig] specifier is optional and has no effect on the command. The
<name> parameter specifies the file on the disk. The <description>
parameter describes the contents of the file. The optional <module>
parameter allows you to store the configuration for either the system, the
logic analyzer, or the oscilloscope. 2 refers to the oscilloscope, 1 refers to the
logic analyzer, and 0O refers to the system.

If the optional <module> parameter is not specified, the configurations for
the system, logic analyzer, and oscilloscope are stored.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).

A string of up to 32 alphanumeric characters

An integer, 0 through 2

11-19




MMEMory Subsystem
UPLoad

Examples OUTPUT XXX;":MMEM:STOR ‘DEFAULTS’,’SETUPS FOR ALL MODULES'"
OUTPUT XXX;":MMEMORY :STORE:CONFIG ‘STATEDATA’, INTERNALO,
'ANALYZER 1 CONFIG’,1"
The appropriate module designator "_X"is added to all files when they are
stored. "X" refers to either an __ (double underscore) for the system or an _A
for the logic analyzer.
UPLoad
Query :MMEMory:UPLoad? <names> [, <msus>]

<name>

<msus>

Returned Format

The UPLoad query uploads a file. The <name> parameter specifies the file to
be uploaded from the disk. The contents of the file are sent out of the
instrument in block data form.

This command should only be used for 16550A or 1660-series configuration files.

A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN . NNN

Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is
accepted but no action is taken).
[ :MMEMory :UPLoad] <block data><NL>

11-20



MMEMory Subsystem
VOLume

Example

10 DIM Block$[32000] lallocate enough memory for block data

20 DIM Specifiers[2]

30 OUTPUT XXX;":EOI ON"

40 OUTPUT XXX;":SYSTEM HEAD OFF"

50 OUTPUT XXX;":MMEMORY :UPLOAD? 'FILE1’" Isend upload query

60 ENTER XXX USING "#,2A";Specifiers lread in #8

70 ENTER XXX USING "#,8D";Length !read in block length

80 ENTER XXX USING "-K";Block$ lread in file

90 END
VOLume

Query :MMEMory:VOLume? [<msus>]
TheVOLume query returns the volume type of the disk. The volume types
are DOS or LIF. Question marks (???) are returned if there is no disk, if the
disk is not formatted, or if a disk has a format other than DOS or LIF.

<msus> Mass Storage Unit Specifier (not needed by 1660-series. 16500A <msus> is

accepted but no action is taken)

Returned Format [ :MMEMory :VOLume] {DOS |LIF|??? }<NL>

Example OUTPUT XXX;":MMEMORY : VOLUME?"

11-21




11-22



12

INTermodule Subsystem



Introduction

The INTermodule subsystem commands specify intermodule arming
from the rear-panel input BNC (ARMIN) or to the rear-panel output
BNC (ARMOUT). Refer to figure 12-1 and table 12-1 for the
INTermodule Subsystem commands syntax diagram. The
INTermodule commands are:

e DELete

e HTIMe

e INPort

e INSert

o SKEW

e TREE

e TTIMe

12-2



Figure 12-1

:INTermodule

-

INTermodule Subsystem

et

)

)

real

e

HTIMe?
INPort space OFFIQ}
INPort?
INSert space module

Wil

-

Intermodule Subsystem Commands Syntax Diagram

module

12-3




Figure 12-1

INTermodule Subsystem

| i

->

TREE space ’—P‘ modu le

o module

module

modul e

© e e R Ly

TREE?

= TTIMe? )

J

16500/8%06

Intermodule Subsystem Commands Syntax Diagram (Continued)

12-4



Table 12-

1

INTermodule Subsystem
:INTermodule

INTermodule Parameter Values

Parameter Value

module An integer, 1to 10 (3 through 10 unused)
index An integer, 1to 10 (3 through 10 unused)
setting A numeric,—1.0to 1.0 in seconds.

Selector

Example

:INTermodule

: INTermodule

The INTermodule selector specifies INTermodule as the subsystem the
commands or queries following will refer to. Because the INTermodule
command is a root level command, it will normally appear as the first element
of a compound header.

OUTPUT XXX;":INTERMODULE:HTIME?"

Command

<module>

Example

DELete

:DELete {ALL|OUT|<module>}

The DELete command is used to delete a module, PORT OUT, or an entire
intermodule tree. The <module> parameter sent with the delete command
refers to the slot location of the module. The logic analyzer is slot 1 and the
oscilloscope is slot 2.

An integer, 1 through 10 (3 through 10 unused)

OUTPUT XXX;":INTERMODULE:DELETE ALL"
OUTPUT XXX;":INTERMODULE:DELETE 1"

12-5




INTermodule Subsystem
HTIMe

Query

Returned Format

<value_1>

<value_2>

Example

HTIMe

:HTIMe?

The HTIMe query returns a value representing the internal hardware skew in
the Intermodule configuration. If there is no internal skew, or if intermodule
bus is not configured, 9.9E37 is returned.

The internal hardware skew is only a display adjustment for time-correlated
waveforms. The value returned is the average propagation delay of the trigger
lines through the intermodule bus circuitry. The value is for reference only
because the value returned by TTIMe includes the internal hardware skew
represented by HTIMe.

[:INTermodule :HTIMe]
<value_1>,<value 2>,<value 3>,<value_4>,<value_5><NL>

Skew for logic analyzer (real number)

Skew for oscilloscope (real number)

OUTPUT XXX;":INTERMODULE:HTIME?"

- Command

Example

INPort

:INPort {{ON|1}|{OFF|0}}

The INPort command causes intermodule acquisitions to be armed from the
Input port.

OUTPUT XXX;":INTERMODULE: INPORT ON"

12-6



Query

Returned Format

Example

INTermodule Subsystem
INSert

: INPort?

The INPort query returns the current setting.
[:INTermodule:INPort] {1|0}<NL>

OUTPUT XXX;":INTERMODULE: INPORT?"

Command

<module>

Examples

INSert

:INSert {<module>|OUT}, {GROUP |<module>}

The INSert command adds PORT OUT to the Intermodule configuration. The
first parameter selects the logic analyzer or PORT OUT to be added to the
intermodule configuration, and the second parameter tells the instrument
where the logic analyzer or PORT OUT will be located. A "1" corresponds to
the slot location of the logic analyzer, and a "2" corresponds to the slot
location of the oscilloscope.

An integer, 1 through 10 (3 through 10 unused)

OUTPUT XXX;":INTERMODULE: INSERT 1,GROUP"
OUTPUT XXX;":INTERMODULE: INSERT 2,GROUP"
OUTPUT XXX;":INTERMODULE:INSERT OUT,2"

12-7




INTermodule Subsystem
SKEW<N>

SKEW<N>

Command : SKEW<N> <settings>

The SKEW command sets the skew value for a module. The <N> index value
is the module number (1 corresponds to the logic analyzer, 2 corresponds to
the oscilloscope, and 3 through 10 unused). The <setting> parameter is the
skew setting (- 1.0 to 1.0) in seconds.

<N> Aninteger, 1 through 10 (3 through 10 unused)

<setting> A real number from -1.0 to 1.0 seconds

Example OUTPUT XXX;":INTERMODULE:SKEW1l 3.0E-9"

Query : SKEW<N>?

The query returns the user defined skew setting.
Returned Format [INTermodule: SKEW<N>] <setting><NL>

Example OUTPUT XXX;":INTERMODULE:SKEW1?"

12-8



INTermodule Subsystem
TREE

Command

<module>

Example

Query

Returned Format

Example

TREE

: TREE <module>, <module>

The TREE command allows an intermodule setup to be specified in one
command. The first parameter is the intermodule arm value for module A
(logic analyzer). The second parameter corresponds to the intermodule arm
value for PORT OUT. A -1 means the module is not in the intermodule tree,
a 0 value means the module is armed from the Intermodule run button
(Group run), and a positive value indicates the module is being armed by
another module with the slot location 1 to 10. A 1 corresponds to the slot
location of the module A (logic analyzer, 2 corresponds to the slot location of
the module B (oscilloscope) and 3 through 10 are unused.

An integer, —1 through 10 (3 through 10 unused)

OUTPUT XXX;":INTERMODULE:TREE O0,-1,-1,-1,1"

: TREE?

The TREE? query returns a string that represents the intermodule tree. A —1
means the module is not in the intermodule tree, a 0 value means the module
is armed from the Intermodule run button (Group run), and a positive value
indicates the module is being armed by another module with the slot location
1to 10. A 1 corresponds to the slot location of the module A (logic analyzer)
and 2 through 10 are unused.

[INTermodule: TREE]

<module_1>, <module_2>,<module_3>, <module 4>,<module_ 5><NL>

OUTPUT XXX;":INTERMODULE:TREE?"

12-9




INTermodule Subsystem
TTIMe

Query

Returned Format

<value_1>
<value_2>

<value 3>

<value_ 10)

Example

TTIMe

: TTIMe?

The TTIMe query returns values representing the absolute intermodule
trigger time for all of the modules in the Intermodule configuration. The first
value is the trigger time for the module in slot A, the second value is for the
module in slot B, the third value is for slot C, etc.

The value 9.9E37 is returned when:
® The module in the corresponding slot is not time correlated; or

e A time correlatable module did not trigger.

The trigger times returned by this command have already been offset by the
INTermodule:SKEW values and internal hardware skews (INTermodule:HTIMe).

[:INTermodule:TTIMe]
<value_1>,<value 2>,<value 3>,<value_4>,<value_5><NL>

Trigger time for module in slot A (real number)
Trigger time for module in slot B (real number)

Trigger time for module in slot C (real number)

NOT USED

Trigger time for module in slot J (real number)

OUTPUT XXX;":INTERMODULE:TTIME?"

12-10



Part 3

Logic Analyzer Commands






13

MACHine Subsystem



Introduction

The MACHine subsystem contains the commands that control the
machine level of operation of the logic analyzer. The functions of

three of these commands reside in the State/Timing Configuration
menu. These commands are:

e ASSign

e NAME

e TYPE

Even though the functions of the following commands reside in the

Trace menu they are at the machine level of the command tree and

are therefore located in the MACHine subsystem. These commands
are:

e ARM

e LEVelarm

e REName

e RESource

13-2



MACHine Subsystem

Figure 13-1

:MACHine

space H arm_source }—>
space H pod_list }—V
—»{ ASSIGN?
—PCLEVe\QrmH space H arm_level }—V
space H mochime,mome}—>

NAME ?
—»CRENomeH space

DEFault

—PCRENQme?H space }—P{ res,ﬁd}
{RESOLMC@H space H res_terms }—»
—®{ RESource?

TYPE?
16550802

Machine Subsystem Syntax Diagram

13-3



MACHine Subsystem

MACHine
Table 13-1 Machine Parameter Values
Parameter Values
arm_source {RUN| INTermodule |[MACHine{1|2}}
pod_list {NONE | <pod num> [, <pod nums>] ...}
pod_num {1|2|3|4|5]|6]|7]|8}
arm_level An integer from 1to 11 representing sequence level
machine_name A string of up to 10 alphanumeric characters
res_id <state_terms> for state analyzer or
{<state terms>|GLEDge{1|2}} fortiming analyzer
new_text A string of up to 8 alphanumeric characters
state_terms {A|B|C|D|E|F|G|H|I|J|RANGE{1|2} |TIMER{1|2}}
res_terms {<res id>[,<res id>]...}
MACHine
Selector :MACHine<N>

The MACHine <N> selector specifies which of the two analyzers (machines)
available in the 1660-series logic analyzer the commands or queries following
will refer to. Because the MACHine<N> command is a root level command, it
will normally appear as the first element of a compound header.

<N> {12} (the machine number)

Example OUTPUT XXX; ":MACHINE1l:NAME 'TIMING'"

13-4



MACHine Subsystem
ARM

ARM

Command :MACHine{1|2}:ARM <arm sources>

The ARM command specifies the arming source of the specified analyzer
(machine). The RUN option disables the arm source. For example, if you do
not want to use either the intermodule bus or the other machine to arm the
current machine, you specify the RUN option.

<arm_source> {RUN|INTermodule|MACHine{1|2}}

Example OUTPUT XXX;":MACHINEl:ARM MACHINE2"

Query :MACHine{1|2} :ARM?

The ARM query returns the source that the current analyzer (machine) wil

be armed by.
Returned Format [:MACHine{1|2}:ARM] <arm sources>
Example OUTPUT XXX;":MACHINE:ARM?"

ASSign
Command :MACHine{1|2}:ASSign <pod list>

The ASSign command assigns pods to a particular analyzer (machine). The
ASSign command will assign two pods for each pod number you specify
because pods must be assigned to analyzers in pairs.

<pod_list> ({NONE|<pod >#[, <pod >#]...}

<pod># {1]2]3|4|5]|6]|7|8}

13-5



MACHine Subsystem

LEVelarm
Example OUTPUT XXX;":MACHINEL:ASSIGN 5, 2, 1"
Query :MACHine{1|2}:ASSign?

The ASSign query returns which pods are assigned to the current analyzer
(machine).
Returned Format [:MACHine{1|2}:ASSign] <pod list><NL>

<pod_list> ({NONE|<pod >#[, <pod >#]...}

<pod># {1]2]3|4|5]|6]|7|8}

Example OUTPUT XXX;":MACHINEL:ASSIGN?"
LEVelarm
Command :MACHine{1|2}:LEVelarm <arm levels>

The LEVelarm command allows you to specify the sequence level for a
specified machine that will be armed by the Intermodule Bus or the other
machine. This command is only valid if the specified machine is on and the
arming source is not set to RUN with the ARM command.

<arm_level> Aninteger from 1 to the maximum number of levels specified in the
appropriate trigger menu.

Example OUTPUT XXX;":MACHINEl:LEVELARM 2"

Query :MACHine{1|2}:LEVelarm?

The LEVelarm query returns the current sequence level receiving the arming
for a specified machine.

13-6



Returned Format:

<arm_level>

MACHine Subsystem

[:MACHine{1|2}:LEVelarm] <arm level><NL>

An integer from 1 to 11 representing sequence level

NAME

Example OUTPUT XXX;":MACHINEL:LEVELARM? "
NAME
Command :MACHine{1|2}:NAME <machine name>

<machine name>

Example

Query

Returned Format

<machine name>

Example

The NAME command allows you to assign a name of up to 10 characters to a

particular analyzer (machine) for easier identification.

A string of up to 10 alphanumeric characters

OUTPUT XXX;":MACHINEl:NAME ’'DRAMTEST'"

:MACHine{1|2} :NAME?
The NAME query returns the current analyzer name as an ASCII string.

[:MACHine{1|2}:NAME] <machine name><NL>

A string of up to 10 alphanumeric characters

OUTPUT XXX;":MACHINE1:NAME?"

13-7




MACHine Subsystem
REName

Command

<res_id>

<new_text>

Example

Query

Returned Format

<res_id>

- <new_teXt >

Example

REName

:MACHine{1|2}:REName {<res id>, <new texts> |
DEFault}

The REName command allows you to assign a specific name of up to eight
characters to terms A through J, Range 1 and 2, and Timer 1 and 2 in the
state analyzer. In the timing analyzer, GLEDge (glitch/edge) 1 and 2 can be
renamed in addition to the terms available in the state analyzer. The
DEFault option sets all resource term names to the default names assigned
when turning on the instrument.

<state_ termss for state analyzer
or
{<state_ terms>|GLEDge {1 |2}} for timing analyzer

A string of up to 8 alphanumeric characters

OUTPUT XXX;":MACHINEl:RENAME A, 'DATA’'"

:MACHine{1|2}:RENAME? <res id>

The REName query returns the current names for specified terms assigned
to the specified analyzer.
[:MACHine{1|2}:RENAME] <res_id>,<new text><NL>

<state_ termss for state analyzer
or
{<state_ terms>|GLEDge {1 |2}} for timing analyzer

A string of up to 8 alphanumeric characters

OUTPUT XXX;":MACHINEl:RENAME? D"

13-8



MACHine Subsystem
RESource

Command

<res_terms>

Example

Query

Returned Format

<res_terms>

Example

RESource

:MACHine{1|2}:RESource <res_terms>

The RESource command allows you to assign resource terms A through J,
Range 1 and 2, and Timer 1 and 2 to a particular analyzer (machine 1 or 2).

In the timing analyzer only, two additional resource terms are available. These
terms are GLEDge (Glitch/Edge) 1 and 2. These terms will always be assigned to
the the machine that is configured as the timing analyzer.

{A|B|C|D|E|F|G|H|I|J|TIMerl|TIMer2 |RANGel |RANGe2}

OUTPUT XXX;":MACHINE1l:RESOURCE A, C,RANGEL1"

:MACHine{1|2} :RESOURCE?

The RESource query returns the current resource terms assigned to the
specified analyzer.
[:MACHine{1|2}:RESOURCE] <res_termss>[,<res_termss>,...]<NL>

{A|B|C|D|E|F|G|H|I|J|TIMerl|TIMer2 |RANGel |RANGe2}

OUTPUT XXX;":MACHINEl:RESOURCE?"

13-9




MACHine Subsystem
TYPE

TYPE

Command :MACHine{1|2}:TYPE <analyzer types>

The TYPE command specifies what type a specified analyzer (machine) will
be. The analyzer types are state or timing. The TYPE command also allows
you to turn off a particular machine.

Only one timing analyzer can be specified at a time.

<analyzer type> {OFF|STATe|TIMing}

Example OUTPUT XXX;":MACHINE1l:TYPE STATE"

Query :MACHine{1|2}:TYPE?

The TYPE query returns the current analyzer type for the specified analyzer.
Returned Format [:MACHine{1|2}:TYPE] <analyzer type><NL>

<analyzer type> {OFF|STATe|TIMing}

Example OUTPUT XXX;":MACHINE1l:TYPE?"

13-10



14

WLISt Subsystem



Introduction

The WLISt subsystem contains the commands available for the
Timing/State mixed mode display. The X and O markers can only be
placed on the waveforms in the waveform portion of the Timing/State
mixed mode display. The XSTate and OSTate queries return what
states the X and O markers are on. Because the markers can only be
placed on the timing waveforms, the queries return what state (state
acquisition memory location) the marked pattern is stored in.

In order to have mixed mode, one machine must be a state analyzer with time
tagging on (use MACHine<N>:STRigger:TAG TIME).

The WLISt subsystem commands are:

e DELay
e [NSert
o LINE

e OSTate
e OTIMe
e RANGe
e REMove
e XOTime
e XSTate
o XTIMe

14-2



WLISt Subsystem

Figure 14-1

., YT

DELay space }—>‘ delay_value }

label_name

INSert space >
O

space H | ine,num,mid,screen}
—»(LINE?
—P@ej %Spoce Htime,vo\ue }
—»CRANGe?
—»@) =}Spoce Htime,vo\ue }
W 16540509

WLISt Subsystem Syntax Diagram

14-3



WLISt Subsystem

WLISt
Table 14-1 WLISt Parameter Values
Parameter Value
delay_value Real number between —2500 s and +2500 s
module_spec {1]2|3|4|5|6|7|8|9|10} (slotwhere timing card is
installed, 2 through 10 unused)
bit_id An integer from 0 to 31
label_name String of up to 6 alphanumeric characters
line_num_mid_screen An integer from —8191 to +8191
waveform String containing <acquisition spec>{1]2}
time_value Real number
time_range Real number between 10 ns and 10 ks
WLISt
Selector :WLISt

The WLISt (Waveforms/LISting) selector is used as a part of a compound
header to access the settings normally found in the Mixed Mode menu.
Because the WLISt command is a root level command, it will always appear
as the first element of a compound header.

The WLISt subsystem is only available when one or more state analyzers, with
time tagging on, are specified.

Example OUTPUT XXX;":WLIST:XTIME 40.0E—6"

14-4



WLISt Subsystem
DELay

Command

<delay value>

Example

Query

Returned Format

<delay value>

Example

DELay

:MACHine{1|2}:WLISt:DELay <delay values

The DELay command specifies the amount of time between the timing
trigger and the horizontal center of the the timing waveform display. The
allowable values for delay are —2500 s to +2500 s.

Real number between —2500 s and +2500 s

OUTPUT XXX;":MACHINE1l:WLIST:DELAY 100E-6"

:MACHine{1|2}:WLISt:DELay?

The DELay query returns the current time offset (delay) value from the
trigger.
[:MACHine{1|2}:WLISt:DELay] <time value><NL>

Real number between —2500 s and +2500 s

OUTPUT XXX;":MACHINEl:WLIST:DELAY?"

14-5




WLISt Subsystem
INSert

Command

<module_ spec>
<label name>

<bit_ id>

Examples

INSert

:MACHine{1|2}:WLISt:INSert [<module spec>,]
<label names>[, {<bit id>|OVERlay|ALL}]

The INSert command inserts waveforms in the timing waveform display. The
waveforms are added from top to bottom up to a maximum of 96 waveforms.
Once 96 waveforms are present, each time you insert another waveform, it
replaces the last waveform.

The first parameter specifies from which module the waveform is coming
from; however, the 1660A-series logic analyzers are single-module
instruments. Therefore, this parameter is not needed. It is described here as
a reminder that programs for the 16500A logic analysis system can be used.
The second parameter specifies the label name that will be inserted. The
optional third parameter specifies the label bit number, overlay, or all. Ifa
number is specified, only the waveform for that bit number is added to the
screen.

If you specify OVERIay, all the bits of the label are displayed as a composite
overlaid waveform. If you specify ALL, all the bits are displayed sequentially.
If you do not specify the third parameter, ALL is assumed.

{11213141516171819110} (not needed)
String of up to 6 alphanumeric characters

An integer from 0 to 31

Inserting a logic analyzer waveform:

OUTPUT XXX;":MACHINE1l:WLIST:INSERT 3, 'WAVE’,10"

14-6



WLISt Subsystem
LINE

Command

<line num mid_
screen>

Example

Query

Returned Format

Example

LINE

:MACHine{1|2}:WLISt:LINE <line num mid screens

The LINE command allows you to scroll the state analyzer listing vertically.
The command specifies the state line number relative to the trigger that the
analyzer highlights at the center of the screen.

An integer from —8191 to +8191

OUTPUT XXX;":MACHINE1l:WLIST:LINE O"

:MACHine{1|2}:WLISt:LINE?

The LINE query returns the line number for the state currently in the box at
center screen.
[:MACHine{1|2}:WLISt:LINE] <line num mid_ screen><NL>

OUTPUT XXX;":MACHINE1l:WLIST:LINE?"

14-7




WLISt Subsystem
0STate

Query

Returned Format

<state_num>

OSTate

:WLISt:0STate?

The OSTate query returns the state where the O Marker is positioned. If data
is not valid, the query returns 32767.
[:WLISt:0STate] <state num><NL>

An integer from —8191 to +8191

Example OUTPUT XXX;":WLIST:OSTATE?"
OTIMe
Command :WLISt:0TIMe <time value>

<time_value>

Example

The OTIMe command positions the O Marker on the timing waveforms in the
mixed mode display. If the data is not valid, the command performs no
action.

A real number

OUTPUT XXX;":WLIST:OTIME 40.0E-6"

14-8



Query

Returned Format

<time_value>

WLISt Subsystem
RANGe

:WLISt:0TIMe?

The OTIMe query returns the O Marker position in time. If data is not valid,
the query returns 9.9E37.

[:WLISt:0TIMe] <time value><NL>

A real number

Examph OUTPUT XXX;":WLIST:O0TIME?"
RANGe
Command :MACHine{1|2}:WLISt:RANGe <time value>

<time_value>

Example

Query

Returned Format

<time_value>

Example

The RANGe command specifies the full-screen time in the timing waveform
menu. Itis equivalent to ten times the seconds per division setting on the
display. The allowable values for RANGe are from 10 ns to 10 ks.

A real number between 10 ns and 10 ks

OUTPUT XXX;":MACHINE1l:WLIST:RANGE 100E-9"

:MACHine{1|2}:WLISt :RANGe?
The RANGe query returns the current full-screen time.

[:MACHine{1|2}:WLISt:RANGe] <time value><NL>

A real number between 10 ns and 10 ks

OUTPUT XXX;":MACHINE1l:WLIST:RANGE?"

14-9




WLISt Subsystem
REMove

REMove

Command :MACHine{1|2}:WLISt:REMove

The REMove command deletes all waveforms from the display.

Example OUTPUT XXX;":MACHINE1l:WLIST:REMOVE"
XOTime
Query :MACHine{1|2}:WLISt:XOTime?

The XOTime query returns the time from the X marker to the O marker. If
data is not valid, the query returns 9.9E37.
Returned Format [:MACHine{1|2}:WLISt:XOTime] <time value><NL>

<time value> A real number

Example OUTPUT XXX;":MACHINE1l:WLIST:XOTIME?"

14-10



WLISt Subsystem
XSTate

XSTate

Query :WLISt:XSTate?

The XSTate query returns the state where the X Marker is positioned. If data
is not valid, the query returns 32767.
Returned Format [:WLISt:XSTate] <state num><NL>

<state num> Aninteger

Example OUTPUT XXX;":WLIST:XSTATE?"
XTIMe
Command :WLISt:XTIMe <time values>

The XTIMe command positions the X Marker on the timing waveforms in the
mixed mode display. If the data is not valid, the command performs no
action.

<time value> A real number

Example OUTPUT XXX;":WLIST:XTIME 40.0E—6"

14-11



WLISt Subsystem
XTIiMe

Query :WLISt:XTIMe?

The XTIMe query returns the X Marker position in time. If data is not valid,
the query returns 9.9E37.
Returned Format [:WLISt:XTIMe] <time value><NL>

<time value> A real number

Example OUTPUT XXX;":WLIST:XTIME?"

14-12



15

SFORmat Subsystem



Introduction

The SFORmat subsystem contains the commands available for the
State Format menu in the 1660A-series logic analyzers. These
commands are:

e CLOCk

o LABel

o MASTer

e MODE

e MOPQual

e MQUal

e REMove

e SETHold

e SLAVe

e SOPQual

e SQUal

e THReshold

156-2



Figure 15-1

SFORmat Subsystem

IR

’ Vo

Y

CLOCk<N> space }

DEMultiplex

—»{ CLOCk<N>?
LABe ! label_name J

e i € 1 iy I e Wiy W

LABe!? labe | _name
© & A
MASTer ? clock_id

DEEPmemory

o
space }—»1 clock_pair_id }
o o

i 16550510

§

SFORmat Subsystem Syntax Diagram




SFORmat Subsystem

Figure 15-1

—»(SETHo\dH space }—»{ pod_num o set_hold_value
»(SETHO\d?H space H pod_num }

SLAVe space }—»1 clock_id .
APCSLA\/e?H space H clock_id }

—»(SOPQUQ\H space }—»1 clock_pair_id ° qual_operation
—»(SOPQUG\?H space }—»{ clock_pair_id }

4><SQU0\ }P{ space H qual_num o ° qual_level
—»(SQUG\?)—P{ space H quo\,num}

A{THResho\d<N>>—>{ space @

\{THRes ho | d<N>?
16550508

SFORmat Subsystem Syntax Diagram (continued)

15-4



Table 15-1

SFORmat Subsystem

SFORmat Parameter Values

Parameter
<N>
label_name
polarity

clock_bits
upper_bits
lower_bits

clock_id
clock_spec
clock_pair_id
qual_operation
qual_num
qual_level
pod_num
set_hold_value

value

Values

{{z12}|{3]4]5]6}|{7]8}}

String of up to 6 alphanumeric characters
{Positive |NEGative}

Format (integer from 0 to 63) for a clock (clocks are assigned

in decreasing order)

Format (integer from 0 to 65535) for a pod (pods are assigned

in decreasing order)

Format (integer from 0 to 65535) for a pod (pods are assigned

in decreasing order)
{olx|L|m|N]P}

{OFF|RISing |FALLing |BOTH}
{112}
{AND|OR}
{12]3]4}
{OFF | LOW|HIGH}
{112]3]4]5]6[7]8}
{ol1]2]3]4]5]6[7]8]9}

voltage (real number) —6.00 to +6.00

15-5




SFORmat Subsystem
SFORmat

SFORmat

Selector :MACHine{1|2}:SFORmat

The SFORmat (State Format) selector is used as a part of a compound
header to access the settings in the State Format menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

Example OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"
CLOCk
Command :MACHine{1|2}:SFORmat : CLOCk<N> <clock mode>

The CLOCk command selects the clocking mode for a given pod when the
pod is assigned to the state analyzer. When the MASTer option is specified,
the pod will sample all 16 channels on the master clock. When the SLAVe
option is specified, the pod will sample all 16 channels on the slave

clock. When the DEMultiplex option is specified, only one pod of a pod pair
can acquire data. The 16 bits of the selected pod will be clocked by the
demultiplex master for labels with bits assigned under the Master pod. The
same 16 bits will be clocked by the demultiplex slave for labels with bits
assigned under the Slave pod. The master clock always follows the slave
clock when both are used.

<N>  {{1|2}] {3|4}|{5]6}|{7]|8}} 1through 8 for the HP 16604, 1 through
6 for the HP 1661A, 1 through 4 for the HP 1662A, and 1 through 2 for the HP
1663A.

<clock mode> {MASTer|SLAVe|DEMultiplex}

Example OUTPUT XXX;":MACHINE1:SFORMAT :CLOCK2 MASTER"

15-6



Query

Returned Format

SFORmat Subsystem
LABel

:MACHine{1|2} :SFORmat : CLOCk<N>?

The CLOCk query returns the current clocking mode for a given pod.
[:MACHine{1|2}:SFORmat: CLOCK<N>] <clock mode><NL>

Example OUTPUT XXX; ":MACHINEL:SFORMAT:CLOCK2?"
LABel
Command :MACHine{1|2}:SFORmat :LABel <name>, [<polaritys>,

<name>

<clock bits>, <upper bits>, <lower bits>
[,<upper bits>,<lower bits>]...]

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an existing
label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest numbered pod assigned to the machine you're
using. Each pod specification after that is assigned to the next highest
numbered pod. This way they match the left-to-right descending order of the
pods you see on the Format display. Not including enough pod specifications
results in the lowest numbered pod(s) being assigned a value of zero (all
channels excluded). If you include more pod specifications than there are
pods for that machine, the extra ones will be ignored. However, an error is
reported anytime when more than 13 pod specifications are listed.

The polarity can be specified at any point after the label name.

Because pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (2'°-1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channel. A "1"in a bit position
means the associated channel in that pod is assigned to that pod and bit. A
"0" in a bit position means the associated channel in that pod is excluded
from the label. For example, assigning #81111001100 is equivalent to
entering ".....¥¥¥* _** ! from the front panel.

A label can not have a total of more than 32 channels assigned to it.

String of up to 6 alphanumeric characters

156-7




<polaritys>

<clock bits>

<upper bits>

<lower bits>

Examples

Query

Returned Format

Example

SFORmat Subsystem
LABel

{POSitive|NEGative}

Format (integer from 0 to 63) for a clock (clocks are assigned in decreasing
order)

Format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

Format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ’'STAT’, POSITIVE,
0,127,40312"

OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ’'SIG 1’, #B1l1,
#B0000000011111111,#B0000000000000000 "

:MACHine{1|2}:SFORmat :LABel? <name>

The LABel query returns the current specification for the selected (by name)
label. If the label does not exist, nothing is returned. The polarity is always
returned as the first parameter. Numbers are always returned in decimal
format.

[:MACHine{1|2}:SFORmat:LABel] <name>,<polaritys>

[, <clock bits>, <upper bits>, <lower bits>]<NL>

OUTPUT XXX;":MACHINE2:SFORMAT:LABEL? ’'DATA’'"

15-8



SFORmat Subsystem
MASTer

Command Syntax:

<clock_id>

<clock_spec>

Example

Query

Returned Format

Example

MASTer

:MACHine{1|2}:SFORmat :MASTer <clock id>,
<clock spec>

The MASTer clock command allows you to specify a master clock for a given
machine. The master clock is used in all clocking modes (Master, Slave, and
Demultiplexed). Each command deals with only one clock (J,K,L, M,N,P);
therefore, a complete clock specification requires six commands, one for
each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.

Atleast one clock edge must be specified.

{T|x|L|M[N]|P}

{OFF |RISing|FALLing|BOTH}

OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

:MACHine{1|2}:SFORmat :MASTer? <clock id>

The MASTer query returns the clock specification for the specified clock.
[:MACHine{1|2}:SFORmat:MASTer] <clock id>, <clock spec><NL>

OUTPUT XXX; ":MACHINE2:SFORMAT:MASTER? <clock id>"

15-9




SFORmat Subsystem
MODE

MODE

Command :MACHine{1|2}:SFORmat :MODE <acqg mode>

The MODE command allows you to select the acquistion mode of the state
analyzer. The modes are either full-channel with 4 Kbit of memory depth per
channel or half-channel with 8 Kbit of memory depth per channel.

<acqg_mode> {FULL|DEEPmemory}

Example OUTPUT XXX;":MACHinel :SFORMAT:MODE FULL"

Query :MACHine{1|2} :SFORmat :MODE?

The MODE query returns the current acquistion mode.
Returned Format [:MACHine{1|2}:SFORmat:MODE] <acq_mode><NL>

Example OUTPUT XXX;":MACHINE1:SFORMAT :MODE?"

15-10



SFORmat Subsystem
MOPQual

Command

<clock _pair_id>

<qual_

operations>

Example

Query

Returned Format:

Example

MOPQual

:MACHine{1|2}:SFORmat :MOPQual <clock pair ids,
<qual operation>

The MOPQual (master operation qualifier) command allows you to specify
either the AND or the OR operation between master clock qualifier pair 1 and
2, or between master clock qualifier pair 3 and 4. For example, you can
specify a master clock operation qualifer 1 AND 2.

{112}

{AND|OR}

OUTPUT XXX;":MACHINE1:SFORMAT :MOPQUAL 1,AND"

:MACHine{1|2}:SFORmat :MOPQUal? <clock pair ids

The MOPQual query returns the operation qualifier specified for the master
clock.

[:MACHine{1|2}:SFORmat:MOPQUal <clock pair ids]
<qual_ operation><NL>

OUTPUT XXX;":MACHinel :SFORMAT :MOPQUAL? 1"

15-11




SFORmat Subsystem
MaQual

Command

<qual_num>

<clock_id>

<qual_level>

Example

Query

Returned Format

Example

MQUal
:MACHine{1|2} :SFORmat :MQUal

<gqual_num>, <clock id>,<qual_levels

The MQUal (master qualifier) command allows you to specify the level
qualifier for the master clock.

{{1]2}]{3]4}} 1through 4 for HP 1660A, HP 1661A, HP 1662A; or, 1 or 2
for HP 1663A.

{g|x|L|M[N]|P}

{OFF |LOW |HIGH}

OUTPUT XXX;":MACHINE2:SFORMAT:MQUAL 1,J,LOW"

:MACHine{1|2}:SFORmat :MQUal? <qual num>

The MQUal query returns the qualifier specified for the master clock.
[:MACHine{1|2}:SFORmat:MQUal] <qual level><NL>

OUTPUT XXX;":MACHINE2:SFORMAT :MQUAL? 1"

156-12



SFORmat Subsystem
REMove

REMove
Command :MACHine{1|2}:SFORmat :REMove {<names>|ALL}
The REMove command allows you to delete all labels or any one label for a
given machine.
<name> String of up to 6 alphanumeric characters
Examples OUTPUT XXX;":MACHINE2 :SFORMAT :REMOVE ‘A’ "
OUTPUT XXX;":MACHINE2 :SFORMAT :REMOVE ALL"
SETHold
Command :MACHine{1|2}:SFORmat : SETHold <pod num>,

<set_hold value>

The SETHold (setup/hold) command allows you to set the setup and hold
specification for the state analyzer.

Even though the command requires integers to specify the setup and hold, the
query returns the current settings in a string. For example, if you send the
integer 0 for the setup and hold value, the query will return 3.5/0.0 ns as an
ASCII string when you have one clock and one edge specified.

15-13




SFORmat Subsystem
SETHold

<pod_num> {{1]2}|{3]4}|{5]|6}|{7|8}} 1through 8 for the HP 16604, 1 through
6 for the HP 1661A, 1 through 4 for the HP 1662A, and 1 through 2 for the HP
1663A.

<set_hold  Aninteger {0|1]|2]3|4|5|6]|7|8|9} representing the setup and hold
value> valuesin table 15-2.

Table 15-2 Setup and hold values
For one clock and one For one clock and both For multiple clocks
edge edges
0=35/0.0ns 0=4.0/0.0 0=4.5/0.0
1=3.0/0.5ns 1=35/05 1=4.0/05
2=2510ns 2=3.0/1.0 2=35/1.0
3=20/15ns 3=2515 3=3.0/15
4=1520ns 4=20/2.0 4=25/2.0
5=1.0/25ns 5=1.5/25 5=2.0/25
6=05/3.0ns 6=1.0/3.0 6=15/3.0
7=0.0/35ns 7=05/35 7=1.0/35
N/A 8=0.0/4.0 8=0.5/4.0
N/A N/A 9=0.0/45

Example OUTPUT XXX;":MACHINE2:SFORMAT:SETHOLD 1,2"

Query :MACHine{1|2} :SFORMAT:SETHOLD? <pod num>

The SETHold query returns the current setup and hold settings.
Returned Format [:MACHine{1|2}:SFORmat:SETHold <pod num>] <set hold value><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:SETHOLD? 3"

15-14



SFORmat Subsystem
SLAVe

Command

<clock_id>

<clock_spec>

Example

Query

Returned Format

Example

SLAVe

:MACHine{1|2}:SFORmat : SLAVe
<clock_id>, <clock_spec>

The SLAVe clock command allows you to specify a slave clock for a given
machine. The slave clock is only used in the Slave and Demultiplexed
clocking modes. Each command deals with only one clock (J,K,L,M,N P);
therefore, a complete clock specification requires six commands, one for
each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.

When slave clock is being used at least one edge must be specified.

{T|x|L|M[N]|P}

{OFF |RISing|FALLing|BOTH}

OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE J, RISING"

:MACHine{1|2}:SFORmat : SLAVe?<clock id>

The SLAVe query returns the clock specification for the specified clock.
[:MACHine{1|2}:SFORmat:SLAVe] <clock id>, <clock spec><NL>

OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE? K"

15-15




SFORmat Subsystem
SOPQual

Command

<clock pair_id>

<qual_
operations>

Example

Query

Returned Format

Example

SOPQual

:MACHine{1|2}:SFORmat : SOPQual <clock pair ids,
<qual operations

The SOPQual (slave operation qualifier) command allows you to specify
either the AND or the OR operation between slave clock qualifier pair 1 and
2, or between slave clock qualifier pair 3 and 4. For example you can specify
a slave clock operation qualifer 1 AND 2.

{112}

{AND|OR}

OUTPUT XXX;":MACHine2 :SFORMAT:SOPQUAL 1,AND"

:MACHine{1|2}:SFORmat : SOPQual? <clock pair id>

The SOPQual query returns the operation qualifier specified for the slave
clock.

[:MACHine{1|2}:SFORmat:SOPQual <clock pair ids]
<qual_ operation><NL>

OUTPUT XXX;":MACHiNE2 :SFORMAT :SOPQUAL? 1"

15-16



SFORmat Subsystem
SQual

Command

<qual_num>

<clock_id>

<qual_level>

Example

Query

Returned Format

Example

SQUal
:MACHine{1|2}:SFORmat :SQUal <qual nums>,<clock ids>,

<qual_level>

The SQUal (slave qualifier) command allows you to specify the level qualifier
for the slave clock.

{{1]2}]{3]4}} 1through 4 for HP 1660A, HP 1661A, HP 1662A; or, 1 or 2
for HP 1663A.

{T|x|L|M[N]|P}

{OFF |LOW |HIGH}

OUTPUT XXX;":MACHINE2:SFORMAT:SQUAL 1,J,LOW"

:MACHine{1|2}:SFORmat : SQUal?<qual num>

The SQUal query returns the qualifier specified for the slave clock.
[:MACHine{1|2}:SFORmat:SQUal] <clock id>,<qual level><NL>

OUTPUT XXX;":MACHINE2:SFORMAT:SQUAL? 1"

156-17



SFORmat Subsystem
THReshold

Command
<N>
<value>
TTL
ECL
Example
Query

Returned Format

Example

THReshold

:MACHine{1|2} :SFORmat : THReshold<N>
{TTL|ECL|<values>}

The THReshold command allows you to set the voltage threshold for a given
pod to ECL, TTL, or a specific voltage from —6.00 V to +6.00 V in 0.05 volt
increments.

{{2]12} {34} |{5|6}|{7]8}} 1through 8 for the HP 16604, 1 through
6 for the HP 1661A, 1 through 4 for the HP 1662A, and 1 through 2 for the HP
1663A.

Voltage (real number) —6.00 to +6.00
Default value of +1.6 V

Default value of -1.3V

OUTPUT XXX;":MACHINE1:SFORMAT:THRESHOLD1 4.0"

:MACHine{1|2} :SFORmat : THReshold<N>?

The THReshold query returns the current threshold for a given pod.
[:MACHine{1|2}:SFORmat: THReshold<N>] <value><NL>

OUTPUT XXX;":MACHINEL :SFORMAT :THRESHOLD4?"

15-18



16

STRigger (STRace) Subsystem



Introduction

The STRigger subsystem contains the commands available for the
State Trigger menu in the 1660A-series logic analyzers. The State
Trigger subsystem will also accept the STRace Command as used in
previous 1650-series logic analyzers to eliminate the need to rewrite
programs containing STRace as the Command keyword. The
STRigger subsystem commands are:

o ACQuisition

e BRANch

e CLEar

e [IND

e RANGe

e SEQuence

e STORe

e TAG

e TAKenbranch

e TCONTtrol

e TERM

e TIMER

e TPOSition

16-2



Figure 16-1

STRigger (STRace) Subsystem

STRigger Subsystem Syntax Diagram

& —
y
=/ACQuisition>—>i space } »{ AUTomatic

G
{ACQuisitiom?
—P(BRANCh<N>/ =} space H branch_qualifier °
—PCBRANCh<N>°
—»CFIND<N>\ =} space Hproceed,quo\ ifier °
—»(FIND<N>7 >
—PCRANGGH space H label_name °

o

—»CSEQuemce D =} space H num_of_levels O
—®{ SEQuence?
—PC‘STOR6<N> =} space H store_qualifier }
/ 16550519 A

16-3



STRigger (STRace) Subsystem

Figure 16-1 (continued)

\

= STORe<N>7?

TAG space »{ OFF

state_tag_qual iﬁer}—/
—»(TAKenbronch >—>1 space } »{ STORe

—®{ TAKenbranch?
{TCONU’O\<N>>‘>‘ space }—P{ timer_num

CONTinue

—m{ TCONtrol<N>?
ED R e O

N GD S EE NGy

y

16550518

STRigger Subsystem Syntax Diagram (continued)

16-4



Figure 16-1 (continued)

STRigger (STRace) Subsystem

/
—P(TIMER<tImer,mum>>—>i space }—>1 timer_value }

—»CTIMER<timer,num>?

—®{ TPOSition —P‘ space }

- STARt\

CENTer

POSTstore

>
»
Lol

post_value

~»{ TPOSition?

STRigger Subsystem Suntax Diagram (continued)

16550504

16-5




STRigger (STRace) Subsystem

- Table 16-1 STRigger Parameter Values

Parameter Values

branch_qualifier <qualifiers>

to_lev_num integer from 1 to last level
proceed_qualifier <qualifiers

occurrence number from 1 to 1048575

label_name string of up to 6 alphanumeric characters
start_pattern w{#B{0|1} . . . |

#o{o|1|2|3|4|5|6|7} . . |
#H{O|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}
|
{O|1|2|3|4|5|6|7|8|9} Lo
stop_pattern {#B{0|1} . . . |
#o{o|1|2|3|4|5]|6|7} . |
#H{O|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}

{O|1|2|3|4|5|6|7|8|9} S
num_of_levels integer from 2to 12
lev_of_trig integer from 1 to (number of existing sequence levels — 1)
store_qualifier <qualifiers>
state_tag_qualifier <qualifiers>
timer_num {1]2}
timer_value 400 ns to 500 seconds
term_id {a|B|C|D|E|F|G|H|I|J}
pattern w{#B{O|1|X} . . . |

#ofo|1|2|3]4al5]6]7|x} . . . |
#H{O|l|2|3|4|5|6|7|8|9|A|B|C|D|E|F|x}

{o|1]2]3|4|5]6]|7|8|9} . . . }"
qualifier see "Qualifier" on page 16-7
post_value integer from 0 to 100 representing percentage

16-6



STRigger (STRace) Subsystem
Qualifier

<qualifiers>

<expression>

<expressionla>

<expressionla_

term>

<expressionlb>

<expressionlb
term>

<expression2as
<expression2bs>
<expression2cs
<expression2ds>
<expression2es
<expression2fs>
<expression2gs
<expression2h>

<boolean op>

<term3a>

Qualifier

The qualifier for the state trigger subsystem can be terms A through J, Timer
1 and 2, and Range 1 and 2. In addition, qualifiers can be the NOT boolean
function of terms, timers, and ranges. The qualifier can also be an expression
or combination of expressions as shown below and figure 16-2, "Complex
Qualifier," on page 16-11.

The following parameters show how qualifiers are specified in all commands
of the STRigger subsystem that use <qualifiers.

{"ANYSTATE" | "NOSTATE" | "<expression>"}

{<expressionla>|<expressionlb>|<expressionla> OR
<expressionlb>|<expressionla> AND <expressionlbs>}

{<expressionla term>| (<expressionla terms>[ OR
<expressionla term>]* )| (<expressionla term>[ AND
<expressionla_term>]* )}

{ <expression2as|<expression2bs>|<expression2cs|<expression2ds}

{<expressionlb terms| ( <expressionlb terms[ OR
<expressionlb term>]* )| (<expressionlb terms>[ AND
<expressionlb term>]* )}

{<expression2es|<expression2f>|<expression2gs>|<expression2hs>}

<term3as>|<term3b>| (<term3a> <boolean op> <term3bs) }
<term3c>|<range3as| (<term3c> <boolean op> <range3as>) }
<term3ds>}

<term3e>|<timer3as| (<term3e> <boolean op> <timer3as)}

{
{
{
{
{<term3f>|<term3g>| (<term3f> <boolean op> <term3gs) }
{<term3h>|<range3b>| (<term3h> <boolean op> <range3bs)}
{<term3is}

{<term3j>|<timer3b>| (<term3e> <boolean op> <timer3bs)}
{ AND | NAND | OR | NOR | XOR | NXOR }

{

A|NOTA}

16-7



<term3b>
<term3c>
<term3d>
<term3e>
<term3f>
<term3g>
<term3h>
<term3is>
<term3j>
<range3a>
<range3bs>
<timer3as>

<timer3b>

Examples

STRigger (STRace) Subsystem
Qualifier

Qualifier Rules
The following rules apply to qualifiers:

e Qualifiers are quoted strings and, therefore, need quotes.
e [xpressions are evaluated from left to right.

e Parenthesis are used to change the order evaluation and, therefore, are
optional.

® An expression must map into the combination logic presented in the
combination pop-up menu within the STRigger menu (see figure 16-2 on
page 16-12).

Y
"(AOR B )’

"(CAORB ) AND C )’

"(( A OR B ) AND C AND IN RANGE2 )’
"(( AOR B ) AND ( C AND IN RANGE1l ))’
"IN RANGE1l AND ( A OR B ) AND C’

16-8



STRigger (STRace) Subsystem
STRigger (STRace)

Selector

Example

STRigger (STRace)

:MACHine{1|2}:STRigger

The STRigger (STRace) (State Trigger) Command is used as a part of a
compound header to access the settings found in the State Trace menu. It
always follows the MACHine Command because it selects a branch directly
below the MACHine level in the command tree.

OUTPUT XXX;":MACHINE1l:STRIGGER:TAG TIME"

Command

Example

Query

Returned Format

Example

ACQuisition

:MACHine{1|2}:STRigger:ACQuisition
{AUTOmatic|MANual }

The ACQuisition command allows you to specify the acquisition mode for the
State analyzer.

OUTPUT XXX;":MACHINE1:STRIGGER:ACQUISITION AUTOMATIC"

:MACHine{1|2}:STRigger:ACQuisition?

The ACQuisition query returns the current acquisition mode specified.
[:MACHine{1|2}:STRigger:ACQuisition] {AUTOmatic|MANual}<NL>

OUTPUT XXX;":MACHINE1l:STRIGGER:ACQUISITION?"

16-9




STRigger (STRace) Subsystem
BRANch

_ prANel

Command :MACHine{1|2}:STRigger:BRANch<N>
<branch qualifier>,<to_level numbers

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the sequencer to
jump to the specified sequence level.

The terms used by the branch qualifier (A through J) are defined by the
TERM command. The meaning of IN_RANGE and OUT_RANGE is
determined by the RANGE command.

Within the limitations shown by the syntax definitions, complex expressions
may be formed using the AND and OR operators. Expressions are limited to
what you could manually enter through the State Trigger menu. Regarding
parentheses, the syntax definitions on the next page show only the required
ones. Additional parentheses are allowed as long as the meaning of the
expression is not changed. Figure 16-2 shows a complex expression as seen
in the State Trigger menu.

Example The following statements are all correct and have the same meaning. Notice
that the conventional rules for precedence are not followed. The expressions
are evaluated from left to right.

OUTPUT XXX;":MACHINE1l:STRIGGER:BRANCH1 'C AND D OR F OR G’, 1"

OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ' ((C AND D) OR
(FORG))", 1"

OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 'F OR (C AND D) OR
GI [l"

<N> Aninteger from 1 to <number of levelss

<to_level  Aninteger from 1 to <number of levels»>
number>

<number of  Aninteger from 2 to the number of existing sequence levels (maximum 12)
levels>

<branch  <qualifiers see "Qualifier" on page 16-7
qualifiers

16-10



Examples

Query

Returned Format

Example

Figure 16-2

STRigger (STRace) Subsystem

BRANch
OUTPUT XXX;":MACHINEl:STRIGGER:BRANCH1 ’'ANYSTATE’, 3"
OUTPUT XXX;":MACHINE2:STRIGGER:BRANCH2 'A’, 7"
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH3 ' ((A OR B) OR NOTG)',

in

:MACHine{1|2}:STRigger: BRANch<N>?

The BRANch query returns the current branch qualifier specification for a
given sequence level.

[:MACHine{1|2}:STRigger:BRANch<N>] <branch qualifiers,
<to_level num><NL>

OUTPUT XXX;":MACHINE1l:STRIGGER:BRANCH3?"

b Ca+hye(g+h) F
C
l or |-|
in_rangel
i
: timeri1>400ne [ or ]

i

J
h

in_rangez

3
)
or

j
: timer2>400ns ‘ o ]

Complex qualifier

o o
= =

Figure 16-2 is a front panel representation of the complex qualifier (a OR b)
AND (g OR h).

16-11




STRigger (STRace) Subsystem
CLEar

This example would be used to specify this complex qualifier.

OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ‘' ( (A OR B) AND
(GOR H))", 2"

Terms A through E, RANGE 1, and TIMER 1 must be grouped together and
terms F through J, RANGE 2, and TIMER 2 must be grouped together. In the
first level, terms from one group may not be mixed with terms from the other.
For example, the expression ((A OR IN_RANGE2) AND (C OR H)) is not allowed
because the term C cannot be specified in the E through J group.

In the first level, the operators you can use are AND, NAND, OR, NOR,
XOR, NXOR. Either AND or OR may be used at the second level to join the
two groups together. It is acceptable for a group to consist of a single term.
Thus, an expression like (B AND G) islegal, since the two operands are
both simple terms from separate groups.

Command

Example

CLEar

:MACHine{1|2}:STRigger:CLEar
{All|SEQuence |RESource}

The CLEar command allows you to clear all settings in the State Trigger
menu and replace them with the default, clear only the Sequence levels, or
clear only the resource term patterns.

OUTPUT XXX;":MACHINEl:STRIGGER:CLEAR RESOURCE"

16-12



STRigger (STRace) Subsystem
FIND

Command

<N>

<occurrence>

<proceed

qualifiers>

Examples

FIND

:MACHine{1|2}:STRigger: FIND<N>
<proceed qualifiers>, <occurrences

The FIND command defines the proceed qualifier for a given sequence level.
The qualifier tells the state analyzer when to proceed to the next sequence
level. When this proceed qualifier is matched the specified number of times,
the sequencer will proceed to the next sequence level. In the sequence level
where the trigger is specified, the FIND command specifies the trigger
qualifier (see SEQuence command).

The terms A through J are defined by the TERM command. The meaning of
IN_RANGE and OUT_RANGE is determined by the RANGe command.
Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. See figure 16-2 for a detailed
example.

An integer from 1 to (number of existing sequence levels —1)
An integer from 1 to 1048575

<qualifiers> see "Qualifier" on page 16-7

OUTPUT XXX;":MACHINE1l:STRIGGER:FIND1l 'ANYSTATE’, 1"
OUTPUT XXX;":MACHINE1:STRIGGER:FIND3 ’ ((NOTA AND NOTB) OR G)’, 1"

16-13




Returned Format

Example

STRigger (STRace) Subsystem
RANGe

:MACHine{1|2}:STRigger: FIND4?

The FIND query returns the current proceed qualifier specification for a
given sequence level.

[:MACHine{1|2}:STRigger:FIND<N>] <proceed qualifiers,
<occurrence><NL>

OUTPUT XXX;":MACHINE1l:STRIGGER:FIND<N>?"

Command

RANGe

:MACHine{1|2}:STRigger: RANGE
<label name>, <start pattern>,<stop_ patterns

The RANGe command allows you to specify a range recognizer term for the
specified machine. Since a range can only be defined across one label and,
since a label must contain 32 or less bits, the value of the start pattern or stop
pattern will be between (232)—1 and 0.

Because a label can only be defined across a maximum of two pods, a range
term is only available across a single label; therefore, the end points of the
range cannot be split between labels.

When these values are expressed in binary, they represent the bit values for
the label at one of the range recognizers’ end points. Don’t cares are not
allowed in the end point pattern specifications.

16-14



<label name>

<start_patterns

<stop patterns

Examples

Query

Returned Format

Example

STRigger (STRace) Subsystem
RANGe

String of up to 6 alphanumeric characters

w{#B{o|1} . . . |
#o{0]1|2|3]4]|5|6|7} .
#H{0|1|2|3]4|5|6|7|8|9|A|B|C|D|E|F}
{ol1]2]3|4|5]6]|7|8|9} . . . }"

w{#B{o|1} . . . |
#o{o|1|2|3]4]|5|6|7} . . . |
#H{0|1|2|3]4|5|6|7|8|9|A|B|C|D|E|F}
{o|1]2]3|4|5]6|7|8|9} . . . }"

OUTPUT XXX;":MACHINE1:STRIGGER:RANGE ’'DATA’, '127', '255'" "
OUTPUT XXX;":MACHINEL:STRIGGER:RANGE ’'ABC’, ’'#B00001111’,
’ #HCF I n

:MACHine{1|2}:STRigger:RANGe?

The RANGe query returns the range recognizer end point specifications for
the range.

[:MACHine{1|2}:STRAce:RANGe] <label name>,<start patterns,
<stop_pattern><NL>

OUTPUT XXX;":MACHINEL:STRIGGER:RANGE?"

16-15




STRigger (STRace) Subsystem
SEQuence

SEQuence

Command :MACHine{1|2}:STRigger: SEQuence
<number of levels>,
<level of triggers

The SEQuence command redefines the state analyzer trace sequence. First,
it deletes the current trace sequence. Then it inserts the number of levels
specified, with default settings, and assigns the trigger to be at a specified
sequence level. The number of levels can be between 2 and 12 when the
analyzer is armed by the RUN key.

<number of  Aninteger from 2 to 12
levels>

<level of_  Aninteger from 1 to (number of existing sequence levels —1)
triggers>

Example OUTPUT XXX;":MACHINE1:STRIGGER:SEQUENCE 4,3"

Query :MACHine{1|2}:STRigger:SEQuence?

The SEQuence query returns the current sequence specification.

Returned Format [:MACHine{1|2}:STRigger:SEQuence] <number of levelss,
<level of_ trigger><NL>

<number of  Aninteger from 2 to 12
levels>

<level_of_ Aninteger from 1 to (number of existing sequence levels —1)
triggers>

Example OUTPUT XXX;":MACHINEl:STRIGGER:SEQUENCE?"

16-16



STRigger (STRace) Subsystem
STORe

Command

<N>

<store_

qualifiers>

Examples

Query

Returned Format

Example

STORe

:MACHine{1|2}:STRigger:STORe<N> <store qualifiers

The STORe command defines the store qualifier for a given sequence level.
Any data matching the STORe qualifier will actually be stored in memory as
part of the current trace data. The qualifier may be a single term or a
complex expression. The terms A through J are defined by the TERM
command. The meaning of IN_RANGE1 and 2 and OUT_RANGEL and 2 is
determined by the RANGe command.

Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 16-2 on page 16-12.

An integer from 1 to the number of existing sequence levels (maximum 12)

<qualifiers> see "Qualifier" on page 16-7

OUTPUT XXX;":MACHINE1:STRIGGER:STORE1l ’'ANYSTATE’'"

OUTPUT XXX;":MACHINE1:STRIGGER:STORE2 'OUT RANGE1'"
OUTPUT XXX;":MACHINE1:STRIGGER:STORE3 ’ (NOTC AND NOTD AND
NOTH) " "

:MACHine{1|2}:STRigger: STORe<N>?

The STORe query returns the current store qualifier specification for a given
sequence level <N>.
[:MACHine{1|2}:STRigger:STORe<N>] <store qualifier><NL>

OUTPUT XXX;":MACHINE1l:STRIGGER:STORE4?"

16-17




STRigger (STRace) Subsystem
TAG

Command

<state_tag_
qualifiers

Examples

Query

Returned Format

Example

TAG

:MACHine{1|2}:STRigger: TAG
{OFF|TIME |<state tag qualifiers}

The TAG command selects the type of count tagging (state or time) to be
performed during data acquisition. State tagging is indicated when the
parameter is the state tag qualifier, which will be counted in the qualified
state mode. The qualifier may be a single term or a complex expression. The
terms A through J are defined by the TERM command. The terms
IN_RANGE1l and 2 and OUT_RANGE1 and 2 are defined by the RANGe
command.

Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. A detailed example is provided in
figure 16-2 on page 16-12.

<qualifiers> see "Qualifier" on page 16-7

OUTPUT XXX;":MACHINE1l:STRIGGER:TAG OFF"

OUTPUT XXX;":MACHINE1l:STRIGGER:TAG TIME"

OUTPUT XXX; ":MACHINE1:STRIGGER:TAG ' (IN_RANGE OR NOTF)'"
OUTPUT XXX; ":MACHINE1:STRIGGER:TAG ’ ( (IN_RANGE OR A) AND E)’'"

:MACHine{1|2}:STRigger: TAG?

The TAG query returns the current count tag specification.
[:MACHine{1|2}:STRigger:TAG]
{OFF|TIME |<state tag qualifiers>}<NL>

OUTPUT XXX;":MACHINEl:STRIGGER:TAG?"

16-18



STRigger (STRace) Subsystem
TAKenbranch

Command

Example

Query

Returned Format

Example

TAKenbranch

:MACHine{1|2}:STRigger: TAKenbranch {STORe |NOSTore}

The TAKenbranch command allows you to specify whether the state causing
a sequence level change is stored or not stored for the specified machine.
Both a state that causes the sequencer to proceed or a state that causes the
sequencer to branch is considered a sequence level change. A branch can
also jump to itself and this also considered a sequence level change. The
state causing the branch is defined by the BRANch command.

OUTPUT XXX;":MACHINE2:STRIGGER: TAKENBRANCH STORE"

:MACHine{1|2}:STRigger: TAKenbranch?

The TAKenbranch query returns the current setting.
[:MACHine{1|2}:STRigger:TAKenbranch] {STORe |NOSTore }<NL>

OUTPUT XXX;":MACHINE2:STRIGGER: TAKENBRANCH?

16-19




STRigger (STRace) Subsystem
TCONtrol

Command

<N>

<timer num>

Example

Query

Returned Format

<N>

<timer num>

Example

TCONtrol

:MACHine{1|2}:STRigger: TCONtrol<N> <timer num>,
{OFF | STARt | PAUSe | CONTinue }

The TCONtrol (timer control) command allows you to turn off, start, pause,
or continue the timer for the specified level. The time value of the timer is
defined by the TIMER command. There are two timers and they are
independently available for either machine. Neither timer can be assigned to
both machines simultaneously.

An integer from 1 to the number of existing sequence levels (maximum 12)

{112}

OUTPUT XXX;":MACHINE2:STRIGGER:TCONTROL6 1, PAUSE"

:MACHine{1|2}:STRigger: TCONTROL<N>? <timer num>

The TCONtrol query returns the current TCONtrol setting of the specified
level.

[:MACHine{1|2}:STRigger: TCONTROL<N> <timer nums>]
{OFF | STARt | PAUSe | CONTinue } <NL>

An integer from 1 to the number of existing sequence levels (maximum 12)

{112}

OUTPUT XXX;":MACHINE2:STRIGGER:TCONTROL?6 1"

16-20



STRigger (STRace) Subsystem
TERM

Command

<term_id»>
<label name>

<patterns

Example

TERM

:MACHine{1|2}:STRigger: TERM
<term_id>,<label name>,
<pattern>

The TERM command allows you to specify a pattern recognizer term in the
specified machine. Each command deals with only one label in the given
term; therefore, a complete specification could require several commands.
Since a label can contain 32 or less bits, the range of the pattern value will be
between 2° — 1 and 0. When the value of a pattern is expressed in binary, it
represents the bit values for the label inside the pattern recognizer term.
Because the pattern parameter may contain don’t cares and be represented
in several bases, it is handled as a string of characters rather than a number.
All 10 terms (A through J) are available for either machine but not both
simultaneously. If you send the TERM command to a machine with a term
that has not been assigned to that machine, an error message "Legal
command but settings conflict" is returned.

{a|B[c|D|E|F|G|H|I|J}
A string of up to 6 alphanumeric characters

w{#B{o|1|x} . . . |
#Q{0|1|2|3|4|5|6|7|X} .
#H{O|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X}
{o|1]2]3|4|5]6]|7|8|9} . . . }"

OUTPUT XXX;":MACHINE1l:STRIGGER:TERM A, 'DATA’,'255" "
OUTPUT XXX;":MACHINE1l:STRIGGER:TERM B,’ABC’,’'#BXXXX1101’ "

16-21




Returned Format

STRigger (STRace) Subsystem
TIMER

:MACHine{1|2}:STRigger: TERM?
<term_id>,<label name>

The TERM query returns the specification of the term specified by term
identification and label name.

[:MACHine{1|2}:STRAce:TERM]

<term_id>,<label name>, <pattern><NL>

Example OUTPUT XXX;":MACHINEl:STRIGGER:TERM? B, 'DATA’ "
TIMER
Command :MACHine{1|2}:STRigger: TIMER{1|2} <time values>

<time_value>

Example

The TIMER command sets the time value for the specified timer. The limits

of the timer are 400 ns to 500 seconds in 16 ns to 500 s increments. The
increment value varies with the time value of the specified timer. There are
two timers and they are independently available for either machine. Neither
timer can be assigned to both machines simultaneously.

A real number from 400 ns to 500 seconds in increments which vary from 16
ns to 500 us.

OUTPUT XXX;":MACHINE1l:STRIGGER:TIMER1 100E-6"

16-22



Query

Returned Format

<time_value>

Example

STRigger (STRace) Subsystem
TPOSition

:MACHine{1|2}:STRigger: TIMER{1|2}?

The TIMER query returns the current time value for the specified timer.
[:MACHine{1|2}:STRigger:TIMER{1|2}] <time value><NL>

A real number from 400 ns to 500 seconds in increments which vary from 16
ns to 500 us.

OUTPUT XXX;":MACHINE1l:STRIGGER:TIMER1?"

Command

<poststores

Examples

TPOSition

:MACHine{1|2}:STRigger: TPOSition
{STARt | CENTer |END | POSTstore, <poststores