Discovery Session 5

Scrolling the LEDs with a microprocessor

In the earlier sessions, the tricolor LEDs were controlled via FPGA instruments, either manually, or using the
NANOBOARD_INTERFACE with a script to drive the instrument. In this session a processor will be introduced to
control the LEDs. Rather than placing the processor and surrounding interface logic as traditional schematic
components, we will capture the hardware using OpenBus. OpenBus is a high-level capture system that removes all
of the low-level wiring and interconnectivity detail, allowing the system to be built very quickly. We will implement the
software portion of the design using Altium Designer’s Software Platform Builder, which provides an abstract API layer
between user code and the hardware.

This tutorial assumes you have a basic understanding of the process of placing and wiring objects in Altium Designer
(including components, net labels / net connectivity, and wires / buses) and a basic understanding of the process of
configuring and building a design using the Devices View (for specific details on this process, see Discovery Session
1 - Exploring a Simple LED Driver). It also assumes basic C programming skills. No additional information is
required.

This exercise uses the components listed in Table 1, to create the circuits shown in Figure 1 and Figure 2.

Component Library Name in Library
TSK3000A
TSK-3000A
32-hit RISC
e OpenBus Palette TSK3000A
10 MEM

WB_INTERCON

OpenBus Palette Interconnect

WB_LED CTRL

I“ln OpenBus Palette LED Controller

www.altium.com Alllum
1

DS0005 - Scrolling the LEDS with a microprocessor

WB_MEM_CTRL_SRAM

OpenBus Palette

SRAM Controller

@

CLK_BRD >

FPGA NB3000 Port-Plugin.IntLib

CLOCK_BOARD

|

TEST_BUTTON >

FPGA NB3000 Port-Plugin.IntLib

TEST_BUTTON

u?

-+ CLK

—= DELAYJ7.0]

INIT =

FPGA_STARTUP8

FPGA Generic.IntLib

FPGA_STARTUPS

u?

OR2S

FPGA Configurable Generic.IntLib

GATE (configured as a 2 input OR

gate with one input inverted).

—=[LED R[7.0]
—={ LED_G[7.0]
—{ LED_B[7.0

AR R RL RN

FPGA NB3000 Port-Plugin.IntLib

LEDS_RGB

<= SRAMO_D[15.0]
-

SEAMO_A[17.0]

SRAMO_E

SRAMO_W

SRAMO_OE

SRAMO_TUB

v by

Q
:
3

SRAMO_LB

KdR4016V1D-TCL0

FPGA NB3000 Port-Plugin.IntLib

SRAMO

SRAMI D[15.0]

SRAMI A[17.0]

SRAMI1_W

SRAM1 OE

SRAM1 _UB

A=

-

-~ SEAMI E
—=

==

—{=

1

SRAMI LB

SAMSUNG

KiR4016V1D-TCLD

FPGA NB3000 Port-Plugin.IntLib

SRAM1

Table 1. List of components required by the design

www.altium.com

DS0005 - Scrolling the LEDS with a microprocessor

Altlium

LEDS

WE_INTERCON_1

TEE30004 1

T5K-3000A
32-hit RISC
Processor

10

MELL

Figure 1. OpenBus document for the uP_KnightRider design.

U_uP_KnightRider OB
uF_KrightRider OB OpenBus

X_SRAM_MEMO <

¥_SRAM MEMI |

(W [CEERD >

u1

CLE INIT

VCCma3 DELAY[7..0]

FPGA_STARTUPS

@ [E=TeUTIoN

Uz

OR23

5 (LK I

‘D}_D RST I

LEDS_LED[7 0] [

WE_INTERCON_2

WE_MEM_CTRL_SRAMI6_&13

D[15..0] +1=
A[17..0] +
CE —+
WE =
OE ~~
UB ~5
LB ~=f

D[15.0] +1=2
A[17..0] »d
CE -~
WE =
COF ++
UB +=q
LB =t

Figure 2. Schematic top sheet for the uP_KnightRider design.

= TED_R[7 0]

e SRR
._.; TED B[7.0] *“

GRD

1. Select File»xNew»Projects»FPGA Project to create a new, blank FPGA Project.

2. Select FilexNew»Schematic to add a new blank schematic to your FPGA project. This schematic sheet will
become the top level schematic in the project.

3. Select File»xNew»OpenBus System Document and add a new blank OpenBus document to your FPGA

project.

4. Select File»Save Project As to save the project documents. You will first be prompted to save the schematic,
followed by the OpenBus document, followed by the project itself. Name the documents
uP_KnightRider.SchDoc, uP_KnightRider_ OB.OpenBus and uP_KnightRider .PrjFpg,

respectively.

5. Make the OpenBus document the active document, and display the OpenBus Palette. The Palette can be
displayed via the OpenBus button, which is down the lower right of the workspace, or though the
View»Workspace Panels»OpenBus menu entries.

www.altium.com

DSO0005 - Scrolling the LEDS with a microprocessor

Altlium

6. From the Processors section of the OpenBus Palette, locate and click once to place the TSK3000A
processor, positioning it approximately in the center of the OpenBus document.

7. From the Connectors section of the OpenBus Palette, locate and place two of the Interconnect connectors,
placing one on either side of the TSK3000A.

8. From the Peripherals section of the OpenBus Palette, locate and place the LED Controller, placing it to the
left of the OpenBus document.

9. From the Memaories section of the OpenBus Palette, locate and place the SRAM Controller, placing it to the
right of the OpenBus document.

10. Arrange the OpenBus components as shown in Figure 1. Note that you can rotate an OpenBus component
while moving it by pressing the Spacebar. The OpenBus Ports (the smaller green or red circles on each
component) can also be dragged to change their position, note that there must be a Master (green) port
adjacent to each Slave (red) port.

11. To connect the ports on the OpenBus components, select the Place»Link OpenBus Ports command, or click
the button on the toolbar, as shown in Figure 3. Click once on the Master (green) port, then click on the
appropriate Slave (red) port, to connect the ports as shown in Figure 1. You can also wire in the reverse order,
clicking on the slave and then the master port, Altium Designer will automatically detect the port relationships
and set the direction correctly.

htRider ¢ o --mem ol B B e
rI:sr'J

~ Link OpenBus Po

Figure 3. OpenBus ports are linked by running the Link OpenBus Ports command.

12. Each OpenBus component must now be configured. To configure the LED Controller component, double-click
on it to open the Configure OpenBus LED Controller dialog. Disable the RGB option (since we are only using
the RED mode), and set the Component Designator to LEDS, as shown in Figure 4.

Contigure OpenBus LED Controller ? @

LED Controller (Wishbone)
ain

MNumber of LEDs: |8

Mlts

Bus Enable/Cutput

[Orae

General Properties

Component Designator |LEDS ‘Wisible
Interface Type Pins w

Signal Harnesses

Manage Signals. .. L ok Jl Cancel I

Figure 4. Configuring the LED Controller OpenBus component.

13. Double-click on the memaory controller on the right of the document, to open the Configure OpenBus SRAM
Controller dialog. The memory controller can be configured to support a variety of different memory types, for
this design we will be using Asynchronous SRAM — set the Memory Type option as required. The Size will be

www.altium.com Allium.
4

DS0005 - Scrolling the LEDS with a microprocessor

1MB, Layout 2x16-bit Wide Devices, and the designator X_SRAM. Leave the other options at their default
state, as shown in Figure 5.

Configure OpenDus SRAM Controller

Configure Memory Controller

temony Type Clock cycles for Reading

Asynchronous SRAM _= Clack cycles for read operation: 2 s
Choose the number of clock cycles for each read operation.
Size of Static RéAM amap A, zero wait-state read will be 2 clock cycles or 30ns for a B0

tHz spstemn clock.
1 MB [256K. % 32-bit) w

Select the size (in bptez] of the phpgical Rak aray that the

i i il Clock cycles forwiiting
contraller will be working with. CE CHCIes ror ng

Cucles for address setup: 1 Lk
tdemony Lapout
e . Cucles for write pulze: 1 —_
1 & 32-bit wide Device v
Cycles for post-write address hald: 1 =

Chooge the memony lapow;,

Choose the number of extra cycles ta add for each stage of a
write operation. Each stage must be at least onz clock cycle
z0 a minimal write is three clock cycles or B0ns far a B0 MHz

This will determine:
The number ping added to the contraller bo allow it connect to
the memories az well az the number of acceszes required to

read or write a single 32-bt word, swstem clock.
Gereral Properties
Component Designator |(%_SRAM Interface Type | Signal Hamesses o

Wizible

-

Figure 5. Configure the memory as 1 MB of SRAM.

14. The Interconnect components will be configured correctly, as Altium Designer automatically detects what is
connected to them.

15. The processor has 3 different areas that can be configured: Memory, Peripherals, and the processor itself. To
access each of these, right-click on the processor to display the floating menu. From this menu select
Configure TSK3000A. This dialog is used to configure the hardware aspects of the TSK3000A, including the
amount of internal memory, and if the on-chip debug capabilities are enabled. Leave these options at their
default state.

16. Right-click again on the TSK3000A and select Configure Processor Memory from the floating menu. This
dialog shows how the memory is allocated within the processor’s address space. Close the dialog without
changing any of the options.

17. Right-click again on the TSK3000A and select Configure Processor Peripheral from the floating menu. This
dialog shows where the peripherals sit within the processor’s address space. Close the dialog without
changing any of the options.

18. This completes the OpenBus part of the design, save the OpenBus document.

www.altium.com Allium.
5

DS0005 - Scrolling the LEDS with a microprocessor

19.

20.

21.

22.

23.

Switch to the uP_KnightRider schematic document. The schematic is used to wire the circuitry on the
OpenBus document through to the FPGA device pins, and can also include other FPGA hardware that is not
available as OpenBus components.

To make the OpenBus document a child of the schematic, select Design»Create Sheet Symbol from Sheet
or HDL from the menus. When the Choose Document to Place dialog opens, select
uP_KnightRider_OB.OpenBus and click OK. A sheet symbol will appear floating on the cursor, position it
approximately in the middle of the schematic sheet.

Click once on the green Sheet Symbol to select it, then click and drag on the lower middle handle to resize it,
as shown in Figure 6.

Click and drag on each Sheet Entry to reposition it, as shown in Figure 6. The exact location is not critical.

U_uP_KnightRider_OB
uP_KnightRider_OB.OpenBus

X_SRAM MEMO < |

X_SRAM_MEM1 <

> CLK.I

LEDS LED[7.0] [
> RSTI

Figure 6. Resize the Sheet Symbol, and position the Sheet Entries.

Right-click on the uP_KnightRider.PrjFpg project file in the Projects panel, and select Compile from the menu.
When the project is compiled the OpenBus document will move to become a child of the schematic document,
as shown in Figure 7. Note: You will receive compiler errors in the Messages panel, because we have not
completed the wiring yet — you can ignore these and close the Messages panel for now.

‘whorkspacel Daniwik. -
| (P_KnightRider. Prfpg '
(%) File Wiew O Stucture E ditor

__3 mpile: FPGA Praoject uPr_KnightRider.Perpg

o
Fecompile FPaGs, Project LC@_KnightRichE:r'.Per|:g

=X
iy uP_Kn
+ | Settings add Mews bo Project >
% Add Existing ko Project...

Save Project

Save Project As...

Open Project Documents

Hide all In Project

lrea Dvmiark Deeoraanks

Figure 7. When the project is compiled the OpenBus document will become a child document of the schematic.

www.altium.com Alllum
§]

DS0005 - Scrolling the LEDS with a microprocessor

24. Place the following components onto the schematic, arranging them approximately in the positions shown in

Figure 2:
a. CLOCK_BOARD
b. TEST BUTTON
c. FPGA_STARTUPS8
d. GATE
e. LEDS RGB
f. SRAMO
g. SRAM1

25. When you place the GATE component, you'll need to configure it (right-click menu) as a 2-input OR gate with
one input inverted (see figure).

Configure U? [(Generic Gate)

Generic Gate

Main
CQukput Option: |Normal V3

|:| Reqgister Outputs

Opkions

Input Type: Biit

When Input Type is set to Bit, a logical
operation is performed on all the input bits
of the gate, Changing Input Tvpe to Bus wil
result in a bitwise operation, where the
operation is performed on the
corresponding bit of each input bus, Mote
that the output will also be a bus.

2 X

Inputs
Mumber OF Inputs: |2
|:| Merge Inputs As Bus

Fin Mo,
ul
1 v

Invert

I Inverk Al ‘ llnvert MNone ‘

L [o]'4] I Cancel

|

Figure 8. Configuring the GATE component as a 2-input OR gate with one input inverted.

26. Wire up the components on the left side of the sheet symbol, as shown in Figure 9. Note that the Delay pin on
the FPGA_STARTUP8 component is wired to VCC using a VCC Bus Power Port.

@ CLE_BRED

s CLEI
Ul U2
— 1 CLK INIT
> RST.I
VCC[met3 DELAY(T..0] —t
FPGA STARTUFS OR2S

@)

[TEST BUTTON =

Figure 9. Wire the discrete components.

www.altium.com
DS0005 - Scrolling the LEDS with a microprocessor

Altlium

27. To wire the memory components on the right-hand side of the sheet symbol, right click on the Sheet Entry
X_SRAM_MEMO, and choose Sheet Entry Actions»Place Harness Connector of Type from the floating
menu.

28. A Harness Connector will appear floating on the cursor. It may be oriented the wrong way, if it needs to be
flipped along the X axis press the X key on the keyboard. Place it so that the tip of the brace touches the
Sheet Entry, as shown in Figure 10.

EMO <

D[15..0] »
A[17.0] »

WB_MEM_CTRL SRAMI6 Al8

== SRAMO D
a3 SRAMO A
~= SRAM0 E
~= SRAMO W
~= SRAMO O
~

~

SRAMO U
SRAMO Ll

Figure 10. Flip the Signal Harness and place it so that it touches the Sheet Entry.

29. To drag the Harness Connector and automatically add the Harness line, hold Ctrl and click and hold on the
Harness Connector, then drag it across so that each Harness Entry touches a pin on the memory port plug-in,

as shown in Figure 11.

EMO <
[

Figure 11. Drag the Harness Connector so that each entry touches a port on the memory port plug-in.

WB_MEM_CTRL SRAMI6 Al8

D[15..0] -x=SRAMO D

A[17..0] =3 SRAMO A
CE ~={ SRAMO E
WE ~+={ SRAMO W
OE ~={ SRAMO O
UB ~=/ SRAMO U
LB ~={ SRAMO]

30. Repeat this process for the second memory Sheet Entry, X SRAM_MEM1, connecting it to the second

memory port plug-in.

31. Wire the LED_R[7..0] pin on the LEDs to their Sheet Entry, using a Bus line.

32. Wire the 2 unused pins on the LEDs to a Bus Ground Power Port, as shown in Figure 12.

www.altium.com
DSO0005 - Scrolling the LEDS with a microprocessor

Altlium

33.

34.

35.

36.

LEDS LED[7..0] [LED R[7..0]

E LED GI7.0] > NNNENMINNY

Figure 12. Wire the red pin of the LEDSs, using a Bus line, and then wire the unused pins to ground, using a Bus Ground.

To annotate all of the components (assign designators), select Tools»Annotate Schematics Quietly from
the menus.

To check that there are no errors in the schematic, Compile the project using the Project»Recompile FPGA
Project command. The Messages panel will detail any errors or warnings, if there are none (the Messages
panel is empty) then you have successfully captured and wired the FPGA hardware. Resolve any errors or
warnings before continuing.

The last stage of hardware capture is to create the connectivity from the ports on the top schematic sheet,
through to the actual pins on the target FPGA. This mapping is done by constraint files, which detail port-to-pin
mapping, along with other relevant design specifications, such as clock allocations and so on. To constrain the
design you will need an NB3000 connected to your PC via a USB cable, once you have this, open the Devices
view (View»Devices) in Altium Designer and enable the Live checkbox at the top right of the view.

An icon of the NB3000 will appear, right-click on it and select Configure FPGA
Project»uP_KnightRider.PrjFpg from the menu, as shown in Figure 13.

» Connected Live Settings...

=
_—e
SR 3000Xl|— Configure Fpga Projeck k || r uP_knightRider.PriFpg
anoBoard-
Yiew Configuration... New FRGA Praject
Instrurent...
About...
MMMy
£ SPARTAN:3 E
> = @ 7

0 XUNX

Spartan3ah KC351400AM-4F GETEC
Reszet

Figure 13. Configure the design to run on the NB3000.

www.altium.com Alllum
9

DSO0005 - Scrolling the LEDS with a microprocessor

37.

38.

39.

40.

41.

42.

The Configuration Manager will open automatically, showing the constraint files that have been detected and

added to the project, and the configuration that has been created. A configuration is simply a set of constraint
files, using configurations allows you to divide your constraints into separate constraint files. Click OK to close
the dialog.

Select File»Save All to save your work. The hardware design is now complete; the next step is to write the
embedded code.

Create a new embedded project, and save it as uP_KnightRider _PrjEmb in a sub-folder below the FPGA
project called \Embedded.

To make the embedded project a child of the FPGA project, switch the Projects panel to the Structure Editor
mode, then right click on the icon for the TSK3000A processor and select Set Embedded Project from the
menu, as shown in Figure 14.

Wiorkzpacel Dartwrk -

LUP_K.nightRider. FriE mb
) File Wiew (%) Stoucture Editor

= @] uP_KnightRider.PriFpg
=4 uP_EnightRider. SchDoc
T

_:il'

@ Devices| = uP_k

| Si Embedded Praject. ..

¥ Caranila 0l Dvmdacke

Figure 14. Make the embedded project a child of the FPGA project.

uP_KnightRider PriE mt

Right-click on the uP_KnightRider.PrjEmb embedded project, and click Project Options. Click on the
Configure Memory tab — you can see that the memory map defined in hardware has been automatically
imported into the embedded project. (Refer to Figure 15).

Double-click on the TSK3000A_1 row in the memory table (see Figure 15) and configure the memory as ROM
instead of Non-Volatile RAM (see Figure 16). This forces code we will add later to boot from the TSK3000A
internal memory automatically. Click OK twice to apply the changes.

www.altium.com Alllum

DSO0005 - Scrolling the LEDS with a microprocessor 10

ions for Embedded Project up_Knig

Cornpiler Options || Files ‘With Options | Parameters | Device Sheets | Configure Memory | Locate Options | Sections/Feserved Areas

Memony Architecture Device Memory Application Memory

OxFFFF_FFFF OxFFFF_FFFF 0xFFFF FFFF
OxFFFF_FFFF OxFFFF_FFFF

Processor 1/0 Space
10 Port Ox010F_FFFF

of the processor
OxFFOQ- 0000

OxFFOO_00000
OxFEFF_FFFF

0x0l0F FFFF X_SHAH [Volalile HAM]
- "wE_INTERCON_2

X_SRAM

External-Memory Space WB_IHTEFIEDNJ

0x0100_0000

O0x0100_0000

Ax0100 g
Ox00FF_FFFF

0x0000_OFFF

0x0000_OFFF

Internal-Memory TSK30004_1 (ROM)
‘Where the TSK2000A 1 -
boot code resides -
Ox0000_000o 0x0000_ 0000 Ox0000_0o00o0
Ox0000_0o00 0x0000_0000 Ox0000_0o00
Address Size Locate Type Irkerrupts

4096

01000000 0x100000 Volatile Rat

Automatically import when compiling FPGA project

L (]9 J [Cancel

Figure 15. Embedded project memory map.

Processor Memory Definition

Logical Memory Block

Mame Address Basze

TSK30008_1 0x0

The unique identifier of thiz memomn device. Thiz iz the processzor's view of where the
when the FPGA project iz compiled theze memory appears in the address zpace.
memory detailz will be paszed to the embedded

software project. The gize can be specified ag a decimal or hex
Thiz identifier will alzo be used ta uniguely value.

identify the output HEX file. E=amples: 10000, 0+10000, 1k, B4k, 1M

Mames cannot contain zpaces.

Tope Size
Memory Type: | ROM w 4096

M Sneed: - Thi§ represents the amaount of MEmary t_hat is
emory Speed: | Wolatile HAM available to the processor from this device.
MNanAfolatile RAM

Reserved

Choose the type The size can be specified az a decimal or hex
memory device. walue,

The linker will uze the relative speed settings of

the different memaries ta try and optimize overall Examples: 10000, 0x10000, 1k, B4k, 1M
perfarmance.

‘ ok J LCancel

Figure 16. Setting the boot memory to Memory Type: ROM.

43. Switch the Projects panel back to File View mode.

www.altium.com Allium.

DSO0005 - Scrolling the LEDS with a microprocessor 11

44. Add a SwPlatform file to the embedded project, and save it as uP_KnightRider.SwPlatform in this
embedded sub-folder.

45. In the Software Platform document, the Import from FPGA button will now be active, click this to instruct
Altium Designer to examine the FPGA project and attach any required 1/0O wrappers.

46. The low-level wrapper for the LED Controller will be added, click once to select this wrapper and then click the
Grow Stack Up button.

47. The Grow Stack dialog will open, showing the software stack that is available, LED Controller Driver. Click to
select it, and click OK to close the dialog. The Device Stack should now appear as shown in Figure 17.

I=8LED Controller Driver
D DRY_LED_1
Default On Intensity 10

LED Controller Driver

DRV_LED_1 [T
LED Controller
LEDS pooae

o Import from FPGA l l) Add Mew Wrapper... o Remove from

Type Included Service Description
| & system |AlwaysIncuded |InterruptManagement [Inkerrupk managemert routines

4 Swstem Always Incuded Software Timer Managemer Software timing services (clock, delays, periodic software tir
Automatic Mo Relevant Stacks Generic Device [JO Standard POSIX device I/ routines
Optional Mot Currently Incluc Message Queuss Support Support For POSIX message communications
Optional Mot Currently Incluc Signalling Support Basic support For POSIY signals
Optional Mot Currently Incluc Multithreading Support Basic support For POSTY multi-threading

4 Tystem Always Incuded Software Platform Configur. Global configuration for the Software Platform

Figure 17. The 1/0O wrappers and low-level drivers are managed by the Software Platform.

48. Select File»Save All to save all your work.

www.altium.com Alllum

DSO0005 - Scrolling the LEDS with a microprocessor 12

49.

50.

51.

To build our embedded code, we will need to include and use functions provided by the Software Platform
Builder that we have just configured. Each low-level wrapper and driver in the Software Platform has a set of
data types and functions pre-defined, the details of which are documented extensively via Altium Designer’s
Knowledge Center panel. At any time you can select a wrapper, driver or context software stack object and
press F1 to open the Knowledge Center panel at the page detailing that object. You can also select any driver
functions within the code editor and press F1 for help on that function.

In the file uP_KnightRider._.SwPlatform select the LED Controller Driver as shown in Figure 17 and press
F1. You should see the Knowledge Center panel open with the LED Controller Driver details shown as in
Figure 18.

Knowledge Center v X

LED Controller Driver

This is the driver for the LED Caontraller.

The WH_LED_CTRL componentis a configurable LED Controllerwhich controls the
intensity of LED's within an FPGA design.

To open an LED Controller driver, use the led _open(function. The intensity value of an
LED when itis on can be setusing the led set on intensity() function. To turn an LED
onioff, use either led turn ond ar |ed o offi

The LED IDs needed to change individual LED settings are specified in the led_info h

headerfile.

Functions

led_turn_omn Turn on the LED

led_turn off Turn off the LED

led_turn all_on Turn on all LEDs

led_turn_all_off Turn off all LEDs

led_set_on_intensity Sets the intensity of the LED when it is turned aon

led_set all on intensity Sets the intensity of all LEDs when turned on

led_set_intensity Sets the intensity of an LED

led open Open an instance of an LED Controller driver
Documentation Library Open The Altium ik
[gMew Features in the Latest Release of Alkum Designer ~

A Getting Started
[The Alkiumn Designer Environment
[Design Management

g Front-End Design -

» Search 'wiki i

Figure 18. LED Controller Driver reference.

In the Knowledge Center panel, click on the link to the Ied_open function. Note that the Knowledge Center
panel now displays the information for the function required to open an instance of the LED driver (or another
way of putting it would be to connect to the LED driver).

Note that the syntax shows an led_ t* data type for accessing the LED controller. This — like any other driver
in the Software Platform Builder — is a predefined data type pointer that is used to address each instance of
the associated hardware. The ID parameter is the number indicating which instance you wish to initialize a
driver for. For example, if you have three LED controllers in your hardware design, their ID’s would be 0, 1 and
2 respectively. You would call this function three times, each with the respective ID of the LED controller tied
to it in hardware, assigning the returned pointer values to three Ied_t* pointers. These pointers are then
used whenever calling other driver functions for writing brightness values to various LEDs. Click the LED
Controller Driver link to return to the driver overview, and make a note of the functions provided to turn LEDs
on and off, or set their intensity (PWM) value. Close the Knowledge Center panel.

www.altium.com Alllum

DSO0005 - Scrolling the LEDS with a microprocessor 13

52.

Right-click on the embedded project up_KnightRider.PrjEmb and click Add New to Project » C File. Save
the newly created C code document as main.c in your Embedded Project folder. Add the following code to
the project, shown in Table 2.

// #include for LED driver:
#include <drv_led.h>

// #include for SwPlatform device names:
#include <devices.h>

// #include SwPlatform-generated LED hardware configuration info:
#include "led_info.h"

// led_t pointer for attaching to driver instance:
led_t * ptrLEDs;

// Another useful variable:
unsigned char brightness = 0;

void main(void)

{

ptrLEDs = led_open(DRV_LED_1); // initialize driver

led_set_intensity(ptrLEDs, LEDS LED7, 0x80); // set LEDO to 50%

while (1)

{

// waste some time:

for (int 1 = 0; 1 < OxFFFF; 1++){ __asm('NOP");}

// Ramp up LED7 brightness:
led_set_intensity(ptrLEDs, LEDS LEDO, brightness++);

3

3
Table 2. Initial LED test code.

53. In the Projects panel, drill down into the Generated»Header Documents section and open devices.h and
led_info.h. If they are not showing you will need to first re-compile your embedded project. These
documents are automatically generated from the Software Platform Builder to make code more readable as
well as provide a re-configurable abstraction of user code from low-level drivers. Note that the naming
convention for these C macros is to use all upper-case characters. With syntax-highlighting it's easy to see
where these are used in the code (again, refer to Table 2).

54. Switch to Devices View (View»Devices View) and build and download the project to the NB3000. You will
see the LED at the far left on at half brightness, and the one at far right ramping up brightness continuously.

55. The initial test code uses a software loop to implement a timing delay but that consumes unnecessary
processor cycles. A better implementation is to use a timer. Open the uP_KnightRider Software Platform
document again and in the Software Services section, locate and select the Software Timer Management
service. In the far right pane check the Use Software Timers box.

56. Delete the code in main.c and add the code in Table 3.

57. While in the code editor, click the Compile and Download button to re-compile and launch the new code.

Note that you must have Debug selected instead of Simulate.

Cebug TSK30004_1 (Device 2/00 - _,@

Figure 19. recompile and re-download, once you have switched to Debug mode.

www.altium.com Alllum

DSO0005 - Scrolling the LEDS with a microprocessor 14

#include <drv_led.h>
#include <timers.h>
#include <devices.h>
#include <stddef.h>
#include "led_info.h"
#define PRE_SCAN_VALUE 100
#define SCAN_ARRAY_SIZE 7

timer_handler_t TimerTick (void* context);
void UpdateKnightRiderLEDs (void);
void init(void);

led_t* ptrLEDs;
unsigned char ScanArray[LEDS_NUM_LED_IDS];
volatile unsigned char Tick = 0;

void main(void)

{
initQ);
led_turn_on(ptrLEDs, 0);
while(l)
it (Tick)
UpdateKnightRiderLEDs();
Tick = 0; // Clear timer flag.
}
¥
¥

// Initialize LED driver and TSK3000A timer.
void init(void)

ptrLEDs = led_open(LEDS);
timer_register_handler(0, 20000L, TimerTick);
3
// Callback function for Timer Interrupt - sets flag.
timer_handler_t TimerTick (void* context)

Tick = 1; //indicate to mainline that the timer tick has occurred.
return NULL;

¥
// Function to shift LED brightness pattern.
void UpdateKnightRiderLEDs (void)

{
static unsigned char Scanlndex = 0;
static unsigned char LEDScanlindexModifier = 1;
// Loop to set eight LEDs in linear brightness pattern
for (unsigned char i = 0; i < LEDS_NUM_LED_IDS; i++)
if (ScanArray[i] == PRE_SCAN_VALUE)
ScanArray[i1] = 255;
else
ScanArray[i] = ScanArray[i] >> 1;
}
ScanArray[Scanindex] = PRE_SCAN_VALUE;
Scanlndex += LEDScanlndexModifier;
if ((Scanlndex == (LEDS_NUM_LED_IDS-1)) || (Scanlndex == 0))
LEDScanIndexModifier *= -1;
for (unsigned char i = 0; i < LEDS_NUM_LED_IDS; i++)
{
led_set_intensity(ptrLEDs, i, ScanArray[il);
3
hs

Table 3. Final Code for uP_KnightRider.

www.altium.com

DS0005 - Scrolling the LEDS with a microprocessor

Alllum

15

58. You will now see the KnightRider LED chaser pattern moving back and forth on the LEDs. If it's not working,
go back over the code you have entered and ensure nothing is missing and no typographical errors exist.

In this tutorial we are using the TSK3000A processor’s internal timer. We can access the timers in any of the
supported 32-bit processors by including the timers.h header file in our code. When our main program
begins, the timer is initialized by the init() function which enables the timer and configures the interrupt
service routine to call our function TimerTick() whenever a timer interrupt occurs (set to every 20000uS).
The LED driver is also initialized.

Each time the timer ISR calls TimerTick() a flag is set by way of the variable Tick. This variable is
declared as volati le since it is being modified by the timer interrupt routine — this tells the compiler not to
optimize it as it could change at any point in time (that is, asynchronously from the main program loop). The
main program loop checks this flag continually and when set it updates the LED display using
UpdateKnightRiderLEDs(), and then clears the flag. This is a typical example of how you can
synchronize two processes in an embedded system.

For some fun, experiment with the timer_register_handler () function to change the interrupt frequency
and hence the speed of the LEDs updating.

www.altium.com Alllum

DSO0005 - Scrolling the LEDS with a microprocessor 16

Date Revision No. | Changes

29-Jul-2009 1.0 New document release

Software, hardware, documentation and related materials:
Copyright © 2009 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in whole
or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in published
reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium Designer, Board Insight,
Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological Autorouting and their respective
logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced
herein are the property of their respective owners and no trademark rights to the same are claimed.

www.altium.com Alllum

DSO0005 - Scrolling the LEDS with a microprocessor 17

	Overview
	Prerequisites
	Design detail
	Tutorial steps – preparing the OpenBus hardware
	Tutorial steps – preparing the remaining FPGA hardware
	Tutorial steps – mapping the hardware design to the target hardware
	Tutorial steps – creating the embedded project
	Tutorial steps – writing the embedded code
	Code Explanation
	Revision History

