
DS0005 - Scrolling the LEDS with a microprocessor 1

Overview
In the earlier sessions, the tricolor LEDs were controlled via FPGA instruments, either manually, or using the
NANOBOARD_INTERFACE with a script to drive the instrument. In this session a processor will be introduced to
control the LEDs. Rather than placing the processor and surrounding interface logic as traditional schematic
components, we will capture the hardware using OpenBus. OpenBus is a high-level capture system that removes all
of the low-level wiring and interconnectivity detail, allowing the system to be built very quickly. We will implement the
software portion of the design using Altium Designer’s Software Platform Builder, which provides an abstract API layer
between user code and the hardware.

Prerequisites
This tutorial assumes you have a basic understanding of the process of placing and wiring objects in Altium Designer
(including components, net labels / net connectivity, and wires / buses) and a basic understanding of the process of
configuring and building a design using the Devices View (for specific details on this process, see Discovery Session
1 – Exploring a Simple LED Driver). It also assumes basic C programming skills. No additional information is
required.

Design detail
This exercise uses the components listed in Table 1, to create the circuits shown in Figure 1 and Figure 2.

Component Library Name in Library

OpenBus Palette TSK3000A

OpenBus Palette Interconnect

OpenBus Palette LED Controller

Discovery Session 5
Scrolling the LEDs with a microprocessor

DS0005 - Scrolling the LEDS with a microprocessor 2

OpenBus Palette SRAM Controller

CLK_BRD

FPGA NB3000 Port-Plugin.IntLib CLOCK_BOARD

TEST_BUTTON

FPGA NB3000 Port-Plugin.IntLib TEST_BUTTON

CLK

DELAY[7..0]

INIT

U?

FPGA_STARTUP8

FPGA Generic.IntLib FPGA_STARTUP8

FPGA Configurable Generic.IntLib GATE (configured as a 2 input OR
gate with one input inverted).

LED_R[7..0]
LED_G[7..0]
LED_B[7..0]

FPGA NB3000 Port-Plugin.IntLib LEDS_RGB

FPGA NB3000 Port-Plugin.IntLib SRAM0

FPGA NB3000 Port-Plugin.IntLib SRAM1

Table 1. List of components required by the design

DS0005 - Scrolling the LEDS with a microprocessor 3

Figure 1. OpenBus document for the uP_KnightRider design.

Figure 2. Schematic top sheet for the uP_KnightRider design.

Tutorial steps – preparing the OpenBus hardware
1. Select File»New»Projects»FPGA Project to create a new, blank FPGA Project.

2. Select File»New»Schematic to add a new blank schematic to your FPGA project. This schematic sheet will
become the top level schematic in the project.

3. Select File»New»OpenBus System Document and add a new blank OpenBus document to your FPGA
project.

4. Select File»Save Project As to save the project documents. You will first be prompted to save the schematic,
followed by the OpenBus document, followed by the project itself. Name the documents
uP_KnightRider.SchDoc, uP_KnightRider_OB.OpenBus and uP_KnightRider.PrjFpg,
respectively.

5. Make the OpenBus document the active document, and display the OpenBus Palette. The Palette can be
displayed via the OpenBus button, which is down the lower right of the workspace, or though the
View»Workspace Panels»OpenBus menu entries.

DS0005 - Scrolling the LEDS with a microprocessor 4

6. From the Processors section of the OpenBus Palette, locate and click once to place the TSK3000A
processor, positioning it approximately in the center of the OpenBus document.

7. From the Connectors section of the OpenBus Palette, locate and place two of the Interconnect connectors,
placing one on either side of the TSK3000A.

8. From the Peripherals section of the OpenBus Palette, locate and place the LED Controller, placing it to the
left of the OpenBus document.

9. From the Memories section of the OpenBus Palette, locate and place the SRAM Controller, placing it to the
right of the OpenBus document.

10. Arrange the OpenBus components as shown in Figure 1. Note that you can rotate an OpenBus component
while moving it by pressing the Spacebar. The OpenBus Ports (the smaller green or red circles on each
component) can also be dragged to change their position, note that there must be a Master (green) port
adjacent to each Slave (red) port.

11. To connect the ports on the OpenBus components, select the Place»Link OpenBus Ports command, or click
the button on the toolbar, as shown in Figure 3. Click once on the Master (green) port, then click on the
appropriate Slave (red) port, to connect the ports as shown in Figure 1. You can also wire in the reverse order,
clicking on the slave and then the master port, Altium Designer will automatically detect the port relationships
and set the direction correctly.

Figure 3. OpenBus ports are linked by running the Link OpenBus Ports command.

12. Each OpenBus component must now be configured. To configure the LED Controller component, double-click
on it to open the Configure OpenBus LED Controller dialog. Disable the RGB option (since we are only using
the RED mode), and set the Component Designator to LEDS, as shown in Figure 4.

Figure 4. Configuring the LED Controller OpenBus component.

13. Double-click on the memory controller on the right of the document, to open the Configure OpenBus SRAM
Controller dialog. The memory controller can be configured to support a variety of different memory types, for
this design we will be using Asynchronous SRAM – set the Memory Type option as required. The Size will be

DS0005 - Scrolling the LEDS with a microprocessor 5

1MB, Layout 2x16-bit Wide Devices, and the designator X_SRAM. Leave the other options at their default
state, as shown in Figure 5.

Figure 5. Configure the memory as 1 MB of SRAM.

14. The Interconnect components will be configured correctly, as Altium Designer automatically detects what is
connected to them.

15. The processor has 3 different areas that can be configured: Memory, Peripherals, and the processor itself. To
access each of these, right-click on the processor to display the floating menu. From this menu select
Configure TSK3000A. This dialog is used to configure the hardware aspects of the TSK3000A, including the
amount of internal memory, and if the on-chip debug capabilities are enabled. Leave these options at their
default state.

16. Right-click again on the TSK3000A and select Configure Processor Memory from the floating menu. This
dialog shows how the memory is allocated within the processor’s address space. Close the dialog without
changing any of the options.

17. Right-click again on the TSK3000A and select Configure Processor Peripheral from the floating menu. This
dialog shows where the peripherals sit within the processor’s address space. Close the dialog without
changing any of the options.

18. This completes the OpenBus part of the design, save the OpenBus document.

DS0005 - Scrolling the LEDS with a microprocessor 6

Tutorial steps – preparing the remaining FPGA hardware
19. Switch to the uP_KnightRider schematic document. The schematic is used to wire the circuitry on the

OpenBus document through to the FPGA device pins, and can also include other FPGA hardware that is not
available as OpenBus components.

20. To make the OpenBus document a child of the schematic, select Design»Create Sheet Symbol from Sheet
or HDL from the menus. When the Choose Document to Place dialog opens, select
uP_KnightRider_OB.OpenBus and click OK. A sheet symbol will appear floating on the cursor, position it
approximately in the middle of the schematic sheet.

21. Click once on the green Sheet Symbol to select it, then click and drag on the lower middle handle to resize it,
as shown in Figure 6.

22. Click and drag on each Sheet Entry to reposition it, as shown in Figure 6. The exact location is not critical.

X_SRAM_MEM0

X_SRAM_MEM1

LEDS_LED[7..0]
RST_I

CLK_I

U_uP_KnightRider_OB
uP_KnightRider_OB.OpenBus

Figure 6. Resize the Sheet Symbol, and position the Sheet Entries.

23. Right-click on the uP_KnightRider.PrjFpg project file in the Projects panel, and select Compile from the menu.
When the project is compiled the OpenBus document will move to become a child of the schematic document,
as shown in Figure 7. Note: You will receive compiler errors in the Messages panel, because we have not
completed the wiring yet – you can ignore these and close the Messages panel for now.

Figure 7. When the project is compiled the OpenBus document will become a child document of the schematic.

DS0005 - Scrolling the LEDS with a microprocessor 7

24. Place the following components onto the schematic, arranging them approximately in the positions shown in
Figure 2:

a. CLOCK_BOARD
b. TEST_BUTTON
c. FPGA_STARTUP8
d. GATE
e. LEDS_RGB
f. SRAM0
g. SRAM1

25. When you place the GATE component, you’ll need to configure it (right-click menu) as a 2-input OR gate with
one input inverted (see figure).

Figure 8. Configuring the GATE component as a 2-input OR gate with one input inverted.

26. Wire up the components on the left side of the sheet symbol, as shown in Figure 9. Note that the Delay pin on
the FPGA_STARTUP8 component is wired to VCC using a VCC Bus Power Port.

Figure 9. Wire the discrete components.

DS0005 - Scrolling the LEDS with a microprocessor 8

27. To wire the memory components on the right-hand side of the sheet symbol, right click on the Sheet Entry
X_SRAM_MEM0, and choose Sheet Entry Actions»Place Harness Connector of Type from the floating
menu.

28. A Harness Connector will appear floating on the cursor. It may be oriented the wrong way, if it needs to be
flipped along the X axis press the X key on the keyboard. Place it so that the tip of the brace touches the
Sheet Entry, as shown in Figure 10.

Figure 10. Flip the Signal Harness and place it so that it touches the Sheet Entry.

29. To drag the Harness Connector and automatically add the Harness line, hold Ctrl and click and hold on the
Harness Connector, then drag it across so that each Harness Entry touches a pin on the memory port plug-in,
as shown in Figure 11.

Figure 11. Drag the Harness Connector so that each entry touches a port on the memory port plug-in.

30. Repeat this process for the second memory Sheet Entry, X_SRAM_MEM1, connecting it to the second
memory port plug-in.

31. Wire the LED_R[7..0] pin on the LEDs to their Sheet Entry, using a Bus line.

32. Wire the 2 unused pins on the LEDs to a Bus Ground Power Port, as shown in Figure 12.

DS0005 - Scrolling the LEDS with a microprocessor 9

Figure 12. Wire the red pin of the LEDs, using a Bus line, and then wire the unused pins to ground, using a Bus Ground.

33. To annotate all of the components (assign designators), select Tools»Annotate Schematics Quietly from
the menus.

34. To check that there are no errors in the schematic, Compile the project using the Project»Recompile FPGA
Project command. The Messages panel will detail any errors or warnings, if there are none (the Messages
panel is empty) then you have successfully captured and wired the FPGA hardware. Resolve any errors or
warnings before continuing.

Tutorial steps – mapping the hardware design to the target hardware
35. The last stage of hardware capture is to create the connectivity from the ports on the top schematic sheet,

through to the actual pins on the target FPGA. This mapping is done by constraint files, which detail port-to-pin
mapping, along with other relevant design specifications, such as clock allocations and so on. To constrain the
design you will need an NB3000 connected to your PC via a USB cable, once you have this, open the Devices
view (View»Devices) in Altium Designer and enable the Live checkbox at the top right of the view.

36. An icon of the NB3000 will appear, right-click on it and select Configure FPGA
Project»uP_KnightRider.PrjFpg from the menu, as shown in Figure 13.

Figure 13. Configure the design to run on the NB3000.

DS0005 - Scrolling the LEDS with a microprocessor 10

37. The Configuration Manager will open automatically, showing the constraint files that have been detected and
added to the project, and the configuration that has been created. A configuration is simply a set of constraint
files, using configurations allows you to divide your constraints into separate constraint files. Click OK to close
the dialog.

38. Select File»Save All to save your work. The hardware design is now complete; the next step is to write the
embedded code.

Tutorial steps – creating the embedded project
39. Create a new embedded project, and save it as uP_KnightRider.PrjEmb in a sub-folder below the FPGA

project called \Embedded.

40. To make the embedded project a child of the FPGA project, switch the Projects panel to the Structure Editor
mode, then right click on the icon for the TSK3000A processor and select Set Embedded Project from the
menu, as shown in Figure 14.

Figure 14. Make the embedded project a child of the FPGA project.

41. Right-click on the uP_KnightRider.PrjEmb embedded project, and click Project Options. Click on the
Configure Memory tab – you can see that the memory map defined in hardware has been automatically
imported into the embedded project. (Refer to Figure 15).

42. Double-click on the TSK3000A_1 row in the memory table (see Figure 15) and configure the memory as ROM
instead of Non-Volatile RAM (see Figure 16). This forces code we will add later to boot from the TSK3000A
internal memory automatically. Click OK twice to apply the changes.

DS0005 - Scrolling the LEDS with a microprocessor 11

Figure 15. Embedded project memory map.

Figure 16. Setting the boot memory to Memory Type: ROM.

43. Switch the Projects panel back to File View mode.

DS0005 - Scrolling the LEDS with a microprocessor 12

44. Add a SwPlatform file to the embedded project, and save it as uP_KnightRider.SwPlatform in this
embedded sub-folder.

45. In the Software Platform document, the Import from FPGA button will now be active, click this to instruct
Altium Designer to examine the FPGA project and attach any required I/O wrappers.

46. The low-level wrapper for the LED Controller will be added, click once to select this wrapper and then click the
Grow Stack Up button.

47. The Grow Stack dialog will open, showing the software stack that is available, LED Controller Driver. Click to
select it, and click OK to close the dialog. The Device Stack should now appear as shown in Figure 17.

Figure 17. The I/O wrappers and low-level drivers are managed by the Software Platform.

48. Select File»Save All to save all your work.

DS0005 - Scrolling the LEDS with a microprocessor 13

Tutorial steps – writing the embedded code

To build our embedded code, we will need to include and use functions provided by the Software Platform
Builder that we have just configured. Each low-level wrapper and driver in the Software Platform has a set of
data types and functions pre-defined, the details of which are documented extensively via Altium Designer’s
Knowledge Center panel. At any time you can select a wrapper, driver or context software stack object and
press F1 to open the Knowledge Center panel at the page detailing that object. You can also select any driver
functions within the code editor and press F1 for help on that function.

49. In the file uP_KnightRider.SwPlatform select the LED Controller Driver as shown in Figure 17 and press
F1. You should see the Knowledge Center panel open with the LED Controller Driver details shown as in
Figure 18.

Figure 18. LED Controller Driver reference.

50. In the Knowledge Center panel, click on the link to the led_open function. Note that the Knowledge Center
panel now displays the information for the function required to open an instance of the LED driver (or another
way of putting it would be to connect to the LED driver).

51. Note that the syntax shows an led_t* data type for accessing the LED controller. This – like any other driver
in the Software Platform Builder – is a predefined data type pointer that is used to address each instance of
the associated hardware. The ID parameter is the number indicating which instance you wish to initialize a
driver for. For example, if you have three LED controllers in your hardware design, their ID’s would be 0, 1 and
2 respectively. You would call this function three times, each with the respective ID of the LED controller tied
to it in hardware, assigning the returned pointer values to three led_t* pointers. These pointers are then
used whenever calling other driver functions for writing brightness values to various LEDs. Click the LED
Controller Driver link to return to the driver overview, and make a note of the functions provided to turn LEDs
on and off, or set their intensity (PWM) value. Close the Knowledge Center panel.

DS0005 - Scrolling the LEDS with a microprocessor 14

52. Right-click on the embedded project up_KnightRider.PrjEmb and click Add New to Project » C File. Save
the newly created C code document as main.c in your Embedded Project folder. Add the following code to
the project, shown in Table 2.

// #include for LED driver:

#include <drv_led.h>

// #include for SwPlatform device names:

#include <devices.h>

// #include SwPlatform-generated LED hardware configuration info:

#include "led_info.h"

// led_t pointer for attaching to driver instance:

led_t * ptrLEDs;

// Another useful variable:

unsigned char brightness = 0;

void main(void)
{
 ptrLEDs = led_open(DRV_LED_1); // initialize driver
 led_set_intensity(ptrLEDs, LEDS_LED7, 0x80); // set LED0 to 50%

 while (1)
 {

 // waste some time:

 for (int i = 0; i < 0xffff; i++){ __asm("NOP");}

 // Ramp up LED7 brightness:

 led_set_intensity(ptrLEDs, LEDS_LED0, brightness++);
 }
}

Table 2. Initial LED test code.

53. In the Projects panel, drill down into the Generated»Header Documents section and open devices.h and
led_info.h. If they are not showing you will need to first re-compile your embedded project. These
documents are automatically generated from the Software Platform Builder to make code more readable as
well as provide a re-configurable abstraction of user code from low-level drivers. Note that the naming
convention for these C macros is to use all upper-case characters. With syntax-highlighting it’s easy to see
where these are used in the code (again, refer to Table 2).

54. Switch to Devices View (View»Devices View) and build and download the project to the NB3000. You will
see the LED at the far left on at half brightness, and the one at far right ramping up brightness continuously.

55. The initial test code uses a software loop to implement a timing delay but that consumes unnecessary
processor cycles. A better implementation is to use a timer. Open the uP_KnightRider Software Platform
document again and in the Software Services section, locate and select the Software Timer Management
service. In the far right pane check the Use Software Timers box.

56. Delete the code in main.c and add the code in Table 3.

57. While in the code editor, click the Compile and Download button to re-compile and launch the new code.
Note that you must have Debug selected instead of Simulate.

Figure 19. recompile and re-download, once you have switched to Debug mode.

DS0005 - Scrolling the LEDS with a microprocessor 15

#include <drv_led.h>
#include <timers.h>
#include <devices.h>
#include <stddef.h>
#include "led_info.h"
#define PRE_SCAN_VALUE 100
#define SCAN_ARRAY_SIZE 7

timer_handler_t TimerTick (void* context);
void UpdateKnightRiderLEDs (void);
void init(void);

led_t* ptrLEDs;
unsigned char ScanArray[LEDS_NUM_LED_IDS];
volatile unsigned char Tick = 0;

void main(void)
{
 init();
 led_turn_on(ptrLEDs, 0);
 while(1)
 {
 if (Tick)
 {
 UpdateKnightRiderLEDs();
 Tick = 0; // Clear timer flag.
 }
 }
}

// Initialize LED driver and TSK3000A timer.

void init(void)
{
 ptrLEDs = led_open(LEDS);
 timer_register_handler(0, 20000L, TimerTick);
}

// Callback function for Timer Interrupt - sets flag.

timer_handler_t TimerTick (void* context)
{
 Tick = 1; //indicate to mainline that the timer tick has occurred.
 return NULL;
}

// Function to shift LED brightness pattern.

void UpdateKnightRiderLEDs (void)
{
 static unsigned char ScanIndex = 0;
 static unsigned char LEDScanIndexModifier = 1;

 // Loop to set eight LEDs in linear brightness pattern

 for (unsigned char i = 0; i < LEDS_NUM_LED_IDS; i++)
 {
 if (ScanArray[i] == PRE_SCAN_VALUE)
 ScanArray[i] = 255;

 else

 ScanArray[i] = ScanArray[i] >> 1;
 }
 ScanArray[ScanIndex] = PRE_SCAN_VALUE;
 ScanIndex += LEDScanIndexModifier;
 if ((ScanIndex == (LEDS_NUM_LED_IDS-1)) || (ScanIndex == 0))
 LEDScanIndexModifier *= -1;
 for (unsigned char i = 0; i < LEDS_NUM_LED_IDS; i++)
 {
 led_set_intensity(ptrLEDs, i, ScanArray[i]);
 }
}

Table 3. Final Code for uP_KnightRider.

DS0005 - Scrolling the LEDS with a microprocessor 16

58. You will now see the KnightRider LED chaser pattern moving back and forth on the LEDs. If it’s not working,
go back over the code you have entered and ensure nothing is missing and no typographical errors exist.

Code Explanation
In this tutorial we are using the TSK3000A processor’s internal timer. We can access the timers in any of the
supported 32-bit processors by including the timers.h header file in our code. When our main program
begins, the timer is initialized by the init() function which enables the timer and configures the interrupt
service routine to call our function TimerTick() whenever a timer interrupt occurs (set to every 20000µS).
The LED driver is also initialized.

Each time the timer ISR calls TimerTick() a flag is set by way of the variable Tick. This variable is
declared as volatile since it is being modified by the timer interrupt routine – this tells the compiler not to
optimize it as it could change at any point in time (that is, asynchronously from the main program loop). The
main program loop checks this flag continually and when set it updates the LED display using
UpdateKnightRiderLEDs(), and then clears the flag. This is a typical example of how you can
synchronize two processes in an embedded system.

For some fun, experiment with the timer_register_handler() function to change the interrupt frequency
and hence the speed of the LEDs updating.

DS0005 - Scrolling the LEDS with a microprocessor 17

Revision History

Date Revision No. Changes

29-Jul-2009 1.0 New document release

Software, hardware, documentation and related materials:

Copyright © 2009 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in whole
or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in published
reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local
statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium Designer, Board Insight,
Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological Autorouting and their respective
logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced
herein are the property of their respective owners and no trademark rights to the same are claimed.

	Overview
	Prerequisites
	Design detail
	Tutorial steps – preparing the OpenBus hardware
	Tutorial steps – preparing the remaining FPGA hardware
	Tutorial steps – mapping the hardware design to the target hardware
	Tutorial steps – creating the embedded project
	Tutorial steps – writing the embedded code
	Code Explanation
	Revision History

