GigaComm™ (SiGe) SPICE Modeling Kit

Prepared by: Senad Lomigora and Paul Shockman

http://onsemi.com

APPLICATION NOTE

Objective

The objective of this kit is to provide sufficient circuit schematic and SPICE parameter information to perform system level interconnect modeling for devices in ON Semiconductor's high performance GigaComm (Silicon Germanium) logic family. The family have output edge rates as low as 20 ps and power supply levels of as low as 2.5 V. The kit is not intended to provide information necessary to perform circuit level modeling on the GigaComm (SiGe) devices.

Schematic Information

The kit contains representatives of input and output schematics, netlists, and waveform used for the GigaComm family devices. This application note will be modified as new devices are added. Table 1 describes the nomenclature used for modeling the schematic and netlist for GigaComm devices. The subcircuit models such as input or output buffer, ESD, and package may be used to simulate desired device input or output signal path. The block diagram of the input and output interconnects can be seen in Figure 1.

Table 1. Schematics and Netlist Nomenclature

Parameter	Function Description
V _{CC}	2.5/3.3 V for LVPECL and 0 V for LVECL
V _{EE}	-2.5/-3.3 V for LVPECL and 0 V for LVECL
V _{BB} or V _{MM}	Output Voltage Reference (See Device Data Sheet)
V _{CS}	Internally Generated Voltage (≈ V _{EE} + 1.1 V ± 50 mV)*
GND	Ground 0 V
IN	True Input to CKT
INB	Inverted Input to CKT
Q	True Output of CKT
QB	Inverted Output of CKT

^{*}Note that the NBSG16VS, NBSG53A, NBSG72A, and NBSG86A are using V_{CS} to modulate the output amplitude (see device specifics for more details).

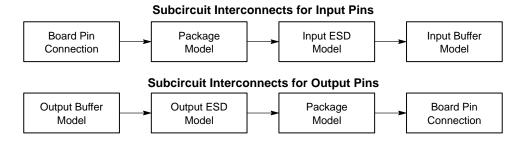


Figure 1. Input and Output Pins Interconnects

Package

A worst–case model for various package types is included to improve the accuracy of the system model (see Table 2). The package model represents the parasitics as they are measured a sizable distance from an AC ground pin. The package models should be placed on all external inputs to an input model, all external outputs for an output model and the V_{CC} line. Since the current in the V_{EE} pin is a constant, a package model for V_{EE} pin is not necessary. Please note that an internal V_{CS} voltage does not require a package model.

To shorten and speed up the simulation process, the simplified QFN or BGA package model should be used. The input and output buffers schematic include the simplified QFN package model (Figures 3, 4, and 7).

Table 2. Available Packages

Package Model	Page Number
16-FCBGA	12
16-QFN	17

Input Buffer

The "SG_INBUF" schematic and netlist are representing the input structures of devices for GigaComm family devices. The schematics require the addition of ESD and package models to be accurate; but are otherwise functionally correct. It is unnecessary to include an ESD or Package model for the V_{BB} or V_{MM} type pins of the models because V_{BB} type input is intended as an internal node for most applications. If a V_{BB} type input is modeled as an external node it is usually bypassed because it is a constant voltage, and adding ESD and Package parameters provide no additional benefit.

Output Buffer

Two output buffer schematics and netlists are modeled and can be seen on pages 5 and 7. The package models with all parasitics should be added for better accuracy. Any input or output that is driving or being driven by an off chip signal should include the ESD and package models. Open or floating pins will not require any ESD or package models. The output buffer models typically show internal differential inputs and outputs and should always be simulated with both output lines terminated, even when only one line or single ended use is intended. This will balance the output buffer's load.

Example of the Typical Interconnect Circuit

The output signal buffer SG_0BUF_01 with the ESD protection structure and the simplified package model properly terminated, driving the simplified input structure is shown in the Figure 12. The circuit provides working schematics of complete interconnect modeling. The output

waveform observed at the receiver of the interconnect example is shown in the Figure 13.

SPICE Netlist

The netlists are organized as a group of subcircuits. In each subcircuit model netlist, the model name should be followed by a list of external node interconnects. When copying "SUBCKT" netlist files to your text editor, use Adobe® Acrobat® Reader® 4.0 or higher to ensure proper conversion.

SPICE Parameter Information

In addition to the schematics and netlists there is a listing of the SPICE parameters for the transistors referenced in the schematics and netlists. These parameters represent a typical device of a given transistor. Varying the typical parameters will affect the DC and AC performance of the structures; but for the type of modeling intended by this note, the actual delay times are not necessary and are not modeled, as a result variation of the device parameters are meaningless. The performance levels are more easily varied by other methods and will be discussed in the next section. The resistors referenced in the schematics are polysilicon and have no parasitic capacitance in the real circuit and none is required in the model. The schematics display only the devices needed in the SPICE netlists.

Modeling Information

The bias drivers for the devices are not included as they are unnecessary for interconnect simulations and their use results in a large increase in model complexity and simulation time. The internal reference voltages (V_{BB} , V_{CS} , etc.) should be driven with ideal constant voltage sources. If a GigaComm device is used in positive mode the levels vary one to one with the power supply; but are constant as a function of temperature.

The schematics and SPICE parameters will provide a typical output waveform, which can be seen in Figures 8 and 9. Note that ESD and package models will add 5 ps-7 ps to rise and fall time of the output waveform. Simple adjustments can be made to the models allowing output characteristics to simulate conditions at or near the corners of the data book specifications. Consistent cross-point voltages need to be maintained.

• To adjust rise and fall times:

Produce the desired rise and fall times output slew rates by adjusting collector load resistors to change the gates tail current. The V_{CS} voltage will affect the tail current in the output differential, which will interact with the load resistor and collector resistor to determine t_r and t_f at the output.

• To adjust the V_{OH}:

Adjust the V_{OH} and V_{OL} level by the same amount by

varying V_{CC} . The output levels will follow changes in V_{CC} at a 1:1 ratio.

• To adjust the V_{OL} only:

Adjust the V_{OL} level independently of the V_{OH} level by increasing or decreasing the collector load resistance. Note that the V_{OH} level will also change slightly due to an I_{BASE} R drop across the collector load resistor. The V_{OL} can be changed by varying the V_{CS} supply, and therefore the gate current through the current source resistor.

Device Specifics NBSG16VS

The NBSG16VS is a differential receiver/driver with variable output amplitude which is controlled by a voltage applied to V_{CRTL} over the range of V_{CC} to V_{CC} – 2 V. These V_{CTRL} voltages produce corresponding output amplitudes over the range of 75 mV to 750 mV (see Data Sheet Figure 10). The SPICE model for NBSG16VS simulates seven selected swings within the output amplitude range by adjusting V_{CS} to one of seven voltages per Table 3. Simulation tr/tf represents the worst case (fastest) edges. A DC offset must be applied to all voltages to convert LVNECL to LVPECL at a 1:1 ratio.

NBSG53A, NBSG72A, and NBSG86A

The NBSG53A, NBSG72A, and NBSG86A are multifunctional differential GigaComm devices with Output Level Select (OLS) capability. The OLS input pin is used to program the peak—to—peak output amplitude

between 0 mV and 800 mV in five discrete steps. When simulating output of the NBSG53A, NBSG72A, or NBSG86A, use Table 3, V_{CS} value from line 3, 5, 7, or 10 to obtain desired output amplitude swing.

Table 3. Required V_{CS} for Selected Output Amplitudes of the NBSG16VS

Output Amplitude (mV)		V _{CS} (V)
1.	75	V _{EE} + 0.865
2.	100	V _{EE} + 0.9
3.	200	V _{EE} + 0.98
4.	300	V _{EE} + 1.06
5.	400	V _{EE} + 1.15
6.	500	V _{EE} + 1.23
7.	600	V _{EE} + 1.3
8.	700	V _{EE} + 1.38
9.	750	V _{EE} + 1.42
10.	800	V _{EE} + 1.46

Summary

The information included in this kit provides adequate information to run a SPICE level system interconnect simulation. The block diagram in Figure 2 illustrates a typical situation, which can be modeled using the information in this kit. Device input or output models are presented in Table 4.

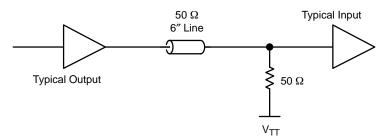


Figure 2. Typical Application for I/O SPICE Modeling Kit

Table 4. GigaComm Input/Output Buffer Selector Guide

Device	Function	Input Model	Output Model
NBSG11	2.5/3.3 V Differential Clock Driver with RSECL Outputs	SG_INBUF	SG_OBUF_01
NBSG14	2.5/3.3 V Differential Receiver/Driver with RSECL Outputs	SG_INBUF	SG_OBUF_01
NBSG16	2.5/3.3 V Differential Receiver/Driver with RSECL Outputs	SG_INBUF	SG_OBUF_01
NBSG16VS	2.5/3.3 V Differential Receiver/Driver with Variable Output Swing	SG_INBUF	SG_OBUF_01*
NBSG16M	2.5/3.3 V Differential CML Receiver/Driver	SG_INBUF	SG_0BUF_02
NBSG53A	2.5/3.3 V Selectable Differential Clock and Data D Flip-Flop/Clock Divider with Reset and OLS	SG_INBUF	SG_OBUF_01*
NBSG72A	3.5/3.3 V Differential CML 2x2 Crosspoint Switch with OLS	SG_INBUF	SG_OBUF_01*
NBSG86A	2.5/3.3 V Differential Smart Gate with OLS	SG_INBUF	SG_OBUF_01*

*Note: See Device Specifics and Table 3 for Details.

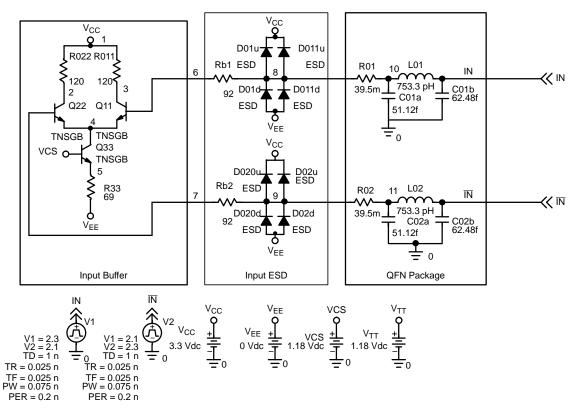


Figure 3. Simplified Input Circuitry - SG_INBUF

```
.SUBCKT SG_INBUF IN INB VCC VEE VCS
             3 6 4 TNSGB
Q_Q11
Q_Q22
              2 7 4 TNSGB
Q_Q33
              4 VCS 5 TNSGB
R_R011
              3 VCC 120
R_R022
              2 VCC 120
R_R33
             VEE 5 69
R_Rb1
              6 8 92
             9 7 92
R_Rb2
             8 10 39.5m
R_R01
             9 11 39.5m
R_R02
             10 IN 753.3pH
L_L01
             11 INB 753.3pH
L_L02
D_D01d
              VEE 8 ESD
D_D011d
               VEE 8 ESD
              VEE 9 ESD
D_D02d
D_D020d
               VEE 9 ESD
D_D01u
               8 VCC ESD
D_D011u
               8 VCC ESD
D_D02u
               9 VCC ESD
D_D020u
               9 VCC ESD
C_C01a
              0 10 51.12f
              0 11 51.12f
C_C02a
C_C01b
              0 IN 62.48f
C_C02b
              0 INB 62.48f
             VCC 0 3.3Vdc
V_VCC
V_VCS
             VCS 0 1.18Vdc
V_VEE
             VEE 0 0Vdc
V_V1
             IN 0 PULSE 2.3 2.1 1n 0.025n 0.025n 0.075n 0.2n
V_V2
            INB 0 PULSE 2.1 2.3 1n 0.025n 0.025n 0.075n 0.2n
.END SG_INBUF
```

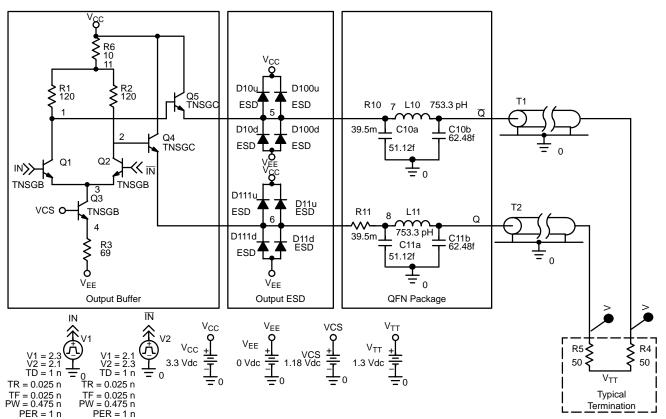


Figure 4. Simplified Output Signal Buffer Circuitry - SG_OBUF_01

.SUBCKT SG_OBUF_01 IN INB VCC VEE VTT VCS Q QB

```
1 IN 3 TNSGB
Q_Q1
             2 INB 3 TNSGB
Q_Q2
             3 VCS 4 TNSGB
Q_Q3
Q_Q4
             VCC 2 6 TNSGC
             VCC 1 5 TNSGC
Q_Q5
             1 11 120
2 11 120
R_R1
R_R2
R_R3
             VEE 4 69
R_R4
             10 VTT 50
R_R5
             9 VTT 50
R R6
             11 VCC
                    10
R_R10
              5 7 39.5m
              6 8 39.5m
R_R11
C_C10b
               0 QB 62.48f
               0 8 51.12f
C_C11a
C_C11b
               0 Q
                    62.48f
C_C10a
               0 7
                    51.12f
L L10
              7 OB 753.3pH
              8 Q 753.3pH
L_L11
D_D111d
                VEE 6 ESD
D_D111u
                6 VCC ESD
D_D100u
                5 VCC ESD
D_D10u
               5 VCC ESD
D_D11u
               6 VCC ESD
D D100d
                VEE 5 ESD
D_D10d
               VEE 5 ESD
D D11d
               VEE 6 ESD
V_VCC
              VCC 0 3.3Vdc
              VCS 0 1.18Vdc
V_VCS
V_VTT
              VTT 0 1.3Vdc
V_VEE
              VEE 0 0Vdc
V_V1
             IN 0 PULSE 2.3 2.1 1n 0.025n 0.025n 0.075n 0.2n
V_V2
             INB 0 PULSE 2.1 2.3 1n 0.025n 0.025n 0.075n 0.2n
T_T1
             QB 0 10 0 Z0=50 TD=80ps
T_T2
             Q 0 9 0 Z0=50 TD=80ps
.END SG_OBUF_01
```

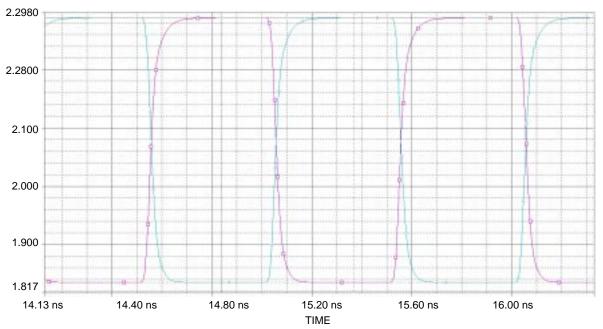


Figure 5. Typical Output Waveform of the SG_OBUF_01 at 1 GHz (tr = 34 ps, tf = 32 ps, Voutpp = 451 mV, Voh = 2.288 V, Vol=1.835 V)

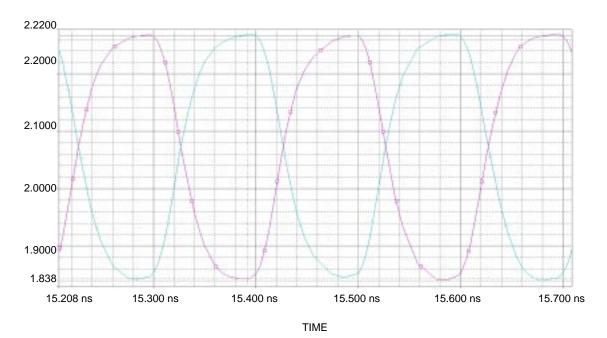


Figure 6. Typical Output Waveform of the SG_OBUF_01 at 5 GHz (tr = 32 ps, tf = 30 ps, Voutpp = 422 mV, Voh = 2.26 V, Vol = 1.84 V)

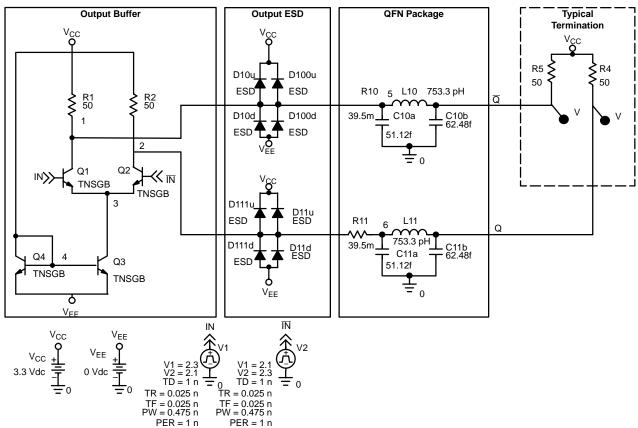


Figure 7. Simplified Output Signal Buffer Circuitry - SG_OBUF_02

```
.SBUCKT SG_OBUF02 IN INB VEE VCC VCS Q QB
             1 IN 3 TNSGB
Q_Q1
             2 INB 3 TNSGB
Q_Q2
             3 4 VEE TNSGB
Q_Q3
             4 4 VEE TNSGB
Q_Q4
             1 VCC 50
R_R1
R_R2
             2 VCC 50
R_R3
             QB VCC 50
R_R4
             Q VCC 50
R R10
             1 5 39.5m
              2 6 39.5m
R_R11
              5 QB 753.3pH
L_L10
L_L11
              6 Q 753.3pH
              0 QB 62.48f
C_C10b
              0 5 51.12f
C_C10a
C_C11a
              0 6 51.12f
C_C11b
              0 Q 62.48f
D_D10d
              VEE 1 ESD
D_D11d
              VEE 2 ESD
D_D111u
               2 VCC ESD
               VEE 2 ESD
D_D111d
D_D100u
               1 VCC ESD
D_D10u
               1 VCC ESD
D_D11u
               2 VCC ESD
D_D100d
               VEE 1 ESD
              VEE 0 0Vdc
V_VEE
V_VCC
             VCC 0 3.3Vdc
I_I1
             VCC 4 DC 16mAdc
             IN 0 PULSE 2.3 2.1 1n 0.025n 0.025n 0.475n 1n
V_V1
             INB 0 PULSE 2.1 2.3 1n 0.025n 0.025n 0.475n 1n
V_V2
.END SG_OBUF02
```

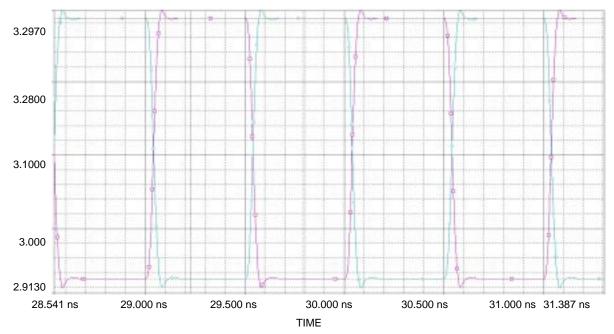


Figure 8. Typical Output Waveform of the SG_OBUF_02 at 1 GHz (tr = 30 ps, tf = 28 ps, Voutpp = 354 mV, Voh = 3.29 V, Vol = 2.93 V)

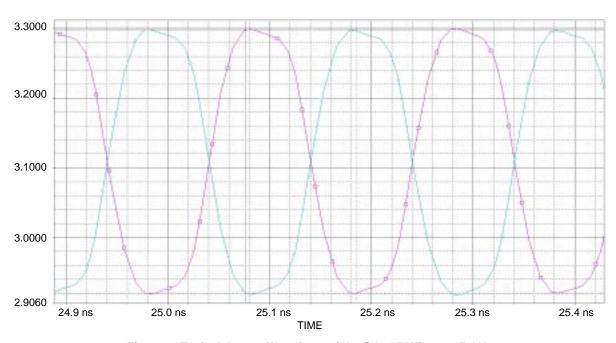


Figure 9. Typical Output Waveform of the SG_OBUF_02 at 5 GHz (tr = 29 ps, tf = 28 ps, Voutpp = 364 mV, Voh = 3.29 V, Vol = 2.92 V)

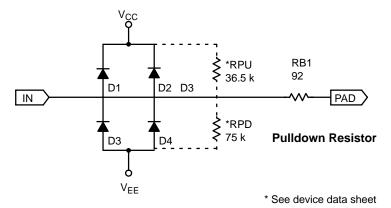


Figure 10. Input ESD

.SUBCKT	IN_ESD	VCC VEE	IN PAD
D1	IN	VCC	ESD
D2	IN	VCC	ESD
D3	VEE	IN	ESD
D4	VEE	IN	ESD
RPD	IN	VEE	75K
RPU	IN	VCC	36.5K
RB1	IN	PAD	92
.ENDS I	N_ESD		

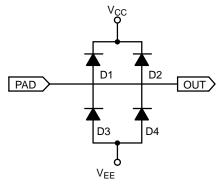


Figure 11. Output ESD

.SUBCKT	OUT_ESD	VCC VEE	OUT
D1	OUT	VCC	ESD
D2	OUT	VCC	ESD
D3	VEE	OUT	ESD
D4	VEE	OUT	ESD
ENDS OF	TT ESD		

********Transistor and Diod Models for GigaComm*************

.MODEL TNSGC NPN (IS=1.47e-16 BF=180 NF=1 VAF=96.3 IKF=1.62e-01 ISE=2.96e-15 NE=2.5 BR=20.2 VAR=2.76 IKR=1.34e-02 ISC=2.14e-16 NC=1.426 RB=25 IRB=1.50e-03 RBM=4 RE=1 RC=7 CJE=3.34e-15 VJE=.8867 MJE=.2868 TF=2.00e-12 ITF=0.25e-01 XTF=0.7 VTF=0.35 PTF=20 TR=0.5e-9 CJC=1.08e-15 VJC=0.632 MJC=0.301 XCJC=.3 CJS=8.12e-16 VJS=.4193 MJS=0.256 EG=1.119 XTI=3.999 XTB=0.8826 FC=0.9)

.MODEL TNSGB NPN (IS=2.18e-17 BF=179 NF=1 VAF=96.5 IKF=2.42e-02 ISE=3.83e-16 NE=2.5 BR=20.4 VAR=2.76 IKR=1.98e-03 ISC=2.91e-17 NC=1.426 RB=55 IRB=1.12e-04 RBM=48 RE=6 RC=11 CJE=4.98e-16 VJE=.8867 MJE=.2868 TF=2.00e-12 ITF=0.4e-02 XTF=0.7 VTF=0.6 PTF=20 TR=0.5e-9 CJC=1.55e-16 VJC=0.632 MJC=0.301 XCJC=0.3 CJS=1.71e-16 VJS=.4193 MJS=0.256 EG=1.119 XTI=3.999 XTB=0.8826 FC=0.9)

.MODEL ESD D (IS=9.99E-21 CJO=65.2E-15 RS=50.1 VJ=0.82 M=0.25 BV= 35)

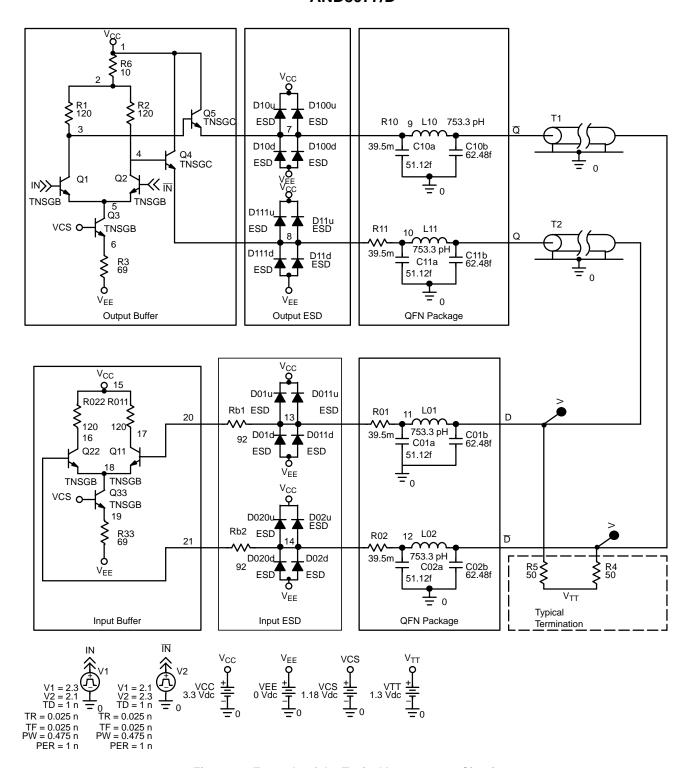


Figure 12. Example of the Typical Interconnect Circuit

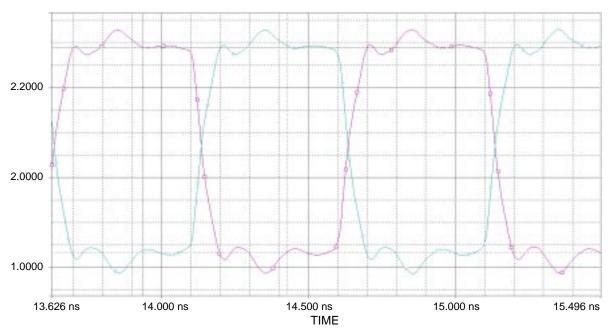


Figure 13. Output Waveform of the Interconnect Example Shown in Figure 12 (Frequency = 1 GHz, tr = 49 ps, tf = 53 ps, Voutpp = 455 mV)

```
Package Models
* Package: 16 pin PBGA
* Model for 16 pins
* Note:
* 1. The model assume ground plane is 15 mil below package
* 2. The resistance model was calculated at 10 GHz
* PBGA drawing:
* Case Outline
*****************
* Conductor number-pin designation cross reference:
   Conductor
              Pin
      1
                 A1
       2
                 Α2
      3
                 A3
       4
                 Α4
      5
                 В1
      6
                 В2
      7
                 В3
      8
                 В4
      9
                 C1
      10
                 C2
     11
                 C3
     12
                 C4
      13
                 D1
      14
                 D2
      15
                 D3
      16
* number of lumps: 1
* COMPRESSION OF SUBCIRCUITS PERFORMED: discard ratio is 0.050
.SUBCKT PACKAGE N011 N010 N021 N020 N031 N030 N041 N040
+ N051 N050 N061 N060 N071 N070 N081 N080 N091 N090
+ N10I N100 N11I N110 N12I N120 N13I N130 N14I N140
+ N15I N150 N16I N160 BD_GND
       N01I N01C
R01
                      1.640e-01
C01
      N01C
             BD_GND 6.333e-14
            N010
                      8.325e-10
L01
      N01C
             N02C
R02
       N02I
                       8.500e-02
             BD_GND
C02
       N02C
                       6.275e-14
             N020
L02
       N02C
                       4.373e-10
      NO3I
            N03C
R03
                       8.500e-02
      N03C
C03
            BD_GND 6.016e-14
L03
      N03C N03O
                      4.361e-10
R04
      N04I N04C
                      1.640e-01
C04
      N04C BD_GND 6.660e-14
L04
      N04C N04O
                      8.264e-10
R05
      N05I N05C
                      8.600e-02
      N05C BD_GND 5.632e-14
C05
L05
      N05C N05O
                      4.274e-10
R06
      N06I N06C
                      8.600e-02
```

BD_GND

BD_GND

N070

N07C

N06C N06O

N06C

N07I

N07C

N07C

C06

L06

R07

C07

L07

5.457e-14

3.049e-10

8.600e-02

3.049e-10

5.036e-14

R08	N08I	N08C	8.600e-02
C08	N08C	BD_GND	6.380e-14
L08	N08C	N080	4.280e-10
R09	N09I	N09C	8.600e-02
C09	N09C	BD_GND	6.423e-14
		-	
L09	N09C	N090	4.283e-10
R10	N10I	N10C	8.600e-02
KIU	NIUI		
C10	N10C	BD_GND	5.121e-14
L10	NT1 0 C		3.052e-10
ПТО	N10C	N100	
R11	N11I	N11C	8.600e-02
C11	NT110	DD CND	4.875e-14
	N11C	BD_GND	
L11	N11C	N110	3.048e-10
R12	N12I	NT1 2 C	8.600e-02
KIZ	NIZI	N12C	
C12	N12C	BD_GND	6.326e-14
L12	N12C	N120	4.274e-10
		NIZO	
R13	N13I	N13C	1.640e-01
C13	N13C	BD_GND	6.028e-14
		-	
L13	N13C	N130	8.314e-10
R14	N14I	N14C	8.500e-02
C14	N14C	BD_GND	5.872e-14
L14	N14C	N140	4.373e-10
	MIAC	11140	
R15	N15I	N15C	8.500e-02
C15	N15C	BD_GND	6.334e-14
L15	N15C	N150	4.362e-10
R16	N16I	N16C	1.640e-01
C16	N16C	BD_GND	6.609e-14
L16	N16C	N160	8.292e-10
K0102	L01	L02	0.2743
C0102	N01C	N02C	6.160e-14
K0103	L01	L03	0.0734
K0105	L01	L05	0.2311
C0105	N01C	N05C	2.312e-14
K0106	L01	L06	0.1381
C0106	N01C	N06C	8.262e-14
K0107	L01	L07	0.0626
K0109	L01	L09	0.0894
K0116	L01	L16 -	-0.0521
K0203	L02	L03	0.2951
C0203	N02C	N03C	6.784e-14
K0204	L02	L04	0.0682
K0205	L02	L05	0.1439
K0206	L02	L06	0.1457
C0206	N02C	N06C	3.281e-14
K0207	L02	L07	0.1096
K0304	L03	L04	
C0304			0.2694
	MU3C		
	N03C	N04C	5.694e-14
K0305	N03C L03		
	L03	N04C L05	5.694e-14 0.0515
K0306	L03 L03	N04C L05 L06	5.694e-14 0.0515 0.1089
	L03	N04C L05	5.694e-14 0.0515 0.1089 0.1457
K0306	L03 L03	N04C L05 L06	5.694e-14 0.0515 0.1089
K0306 K0307 C0307	L03 L03 L03 N03C	N04C L05 L06 L07 N07C	5.694e-14 0.0515 0.1089 0.1457 3.349e-14
К0306 К0307	L03 L03 L03 N03C L03	N04C L05 L06 L07 N07C L08	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395
K0306 K0307 C0307	L03 L03 L03 N03C	N04C L05 L06 L07 N07C	5.694e-14 0.0515 0.1089 0.1457 3.349e-14
K0306 K0307 C0307 K0308 K0406	L03 L03 L03 N03C L03 L04	N04C L05 L06 L07 N07C L08 L06	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608
K0306 K0307 C0307 K0308 K0406 K0407	L03 L03 N03C L03 L04 L04	N04C L05 L06 L07 N07C L08 L06 L07	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369
K0306 K0307 C0307 K0308 K0406	L03 L03 L03 N03C L03 L04 L04	N04C L05 L06 L07 N07C L08 L06	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608
K0306 K0307 C0307 K0308 K0406 K0407 C0407	L03 L03 L03 N03C L03 L04 L04	N04C L05 L06 L07 N07C L08 L06 L07	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369
K0306 K0307 C0307 K0308 K0406 K0407 C0407 K0408	L03 L03 L03 N03C L03 L04 L04 N04C	N04C L05 L06 L07 N07C L08 L06 L07 N07C	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369 8.300e-14 0.2289
K0306 K0307 C0307 K0308 K0406 K0407 C0407 K0408 C0408	L03 L03 L03 N03C L03 L04 L04 N04C L04	N04C L05 L06 L07 N07C L08 L06 L07 N07C L08 N08C	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369 8.300e-14 0.2289 2.259e-14
K0306 K0307 C0307 K0308 K0406 K0407 C0407 K0408	L03 L03 L03 N03C L03 L04 L04 N04C	N04C L05 L06 L07 N07C L08 L06 L07 N07C	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369 8.300e-14 0.2289
K0306 K0307 C0307 K0308 K0406 K0407 C0407 K0408 C0408 K0412	L03 L03 N03C L03 L04 L04 N04C L04 N04C L04	N04C L05 L06 L07 N07C L08 L06 L07 N07C L08 N08C L12	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369 8.300e-14 0.2289 2.259e-14 0.0932
K0306 K0307 C0307 K0308 K0406 K0407 C0407 K0408 C0408 K0412 K0413	L03 L03 N03C L03 L04 L04 N04C L04 N04C L04 L04 L04	N04C L05 L06 L07 N07C L08 L06 L07 N07C L08 N08C L12 L13	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369 8.300e-14 0.2289 2.259e-14 0.0932 -0.0518
K0306 K0307 C0307 K0308 K0406 K0407 C0407 K0408 C0408 K0412	L03 L03 N03C L03 L04 L04 N04C L04 N04C L04	N04C L05 L06 L07 N07C L08 L06 L07 N07C L08 N08C L12	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369 8.300e-14 0.2289 2.259e-14 0.0932
K0306 K0307 C0307 K0308 K0406 K0407 C0407 K0408 C0408 K0412 K0413 K0506	L03 L03 N03C L03 L04 L04 N04C L04 N04C L04 L04 L04 L05	N04C L05 L06 L07 N07C L08 L06 L07 N07C L08 N08C L12 L13	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369 8.300e-14 0.2289 2.259e-14 0.0932 -0.0518 0.1906
K0306 K0307 C0307 K0308 K0406 K0407 C0407 K0408 C0408 K0412 K0413 K0506 C0506	L03 L03 N03C L03 L04 L04 N04C L04 N04C L04 L04 L05 N05C	N04C L05 L06 L07 N07C L08 L06 L07 N07C L08 N08C L12 L13 L06 N06C	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369 8.300e-14 0.2289 2.259e-14 0.0932 -0.0518 0.1906 8.897e-14
K0306 K0307 C0307 K0308 K0406 K0407 C0407 K0408 C0408 K0412 K0413 K0506 C0506 K0507	L03 L03 N03C L03 L04 L04 N04C L04 N04C L04 L04 L05 N05C L05	N04C L05 L06 L07 N07C L08 L06 L07 N07C L08 N08C L12 L13 L06 N06C L07	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369 8.300e-14 0.2289 2.259e-14 0.0932 -0.0518 0.1906 8.897e-14 0.0682
K0306 K0307 C0307 K0308 K0406 K0407 C0407 K0408 C0408 K0412 K0413 K0506 C0506	L03 L03 N03C L03 L04 L04 N04C L04 N04C L04 L04 L05 N05C	N04C L05 L06 L07 N07C L08 L06 L07 N07C L08 N08C L12 L13 L06 N06C	5.694e-14 0.0515 0.1089 0.1457 3.349e-14 0.1395 0.0608 0.1369 8.300e-14 0.2289 2.259e-14 0.0932 -0.0518 0.1906 8.897e-14

C0509	N05C	N09C	6.387e-14
K0510	L05	L10	0.0534
K0513	L05	L13	0.0893
K0607	L06	L07	0.0808
K0608	L06	L08	0.0674
К0609	L06	L09	0.0536
K0610	L06	L10	0.0713
К0611	L06	L11	0.0503
к0708	L07	L08	0.1896
C0708	N07C	N08C	8.678e-14
K0710	L07	L10	0.0502
K0711	L07	L11	0.0718
K0712	L07	L12	0.0546
K0811	L08	L11	0.0549
K0812	L08	L12	0.2847
C0812	N08C	N12C	6.539e-14
K0816	L08	L16	0.0933
К0910	L09	L10	0.1903
C0910	N09C	N10C	8.903e-14
к0911	L09	L11	0.0679
к0913	L09	L13	0.2309
C0913	N09C	N13C	2.387e-14
к0914	L09	L14	0.1436
к0915	L09	L15	0.0510
K1011	L10	L11	0.0806
K1012	L10	L12	0.0675
K1013	L10	L13	0.1376
C1013	N10C	N13C	8.341e-14
K1014	L10	L14	0.1456
C1014	N10C	N14C	3.117e-14
K1015	L10	L15	0.1090
K1016	L10	L16	0.0609
K1112	L11	L12	0.1894
C1112	N11C	N12C	8.742e-14
K1113	L11	L13	0.0620
K1114	L11	L14	0.1089
K1115	L11	L15	0.1452
C1115	N11C	N15C	3.130e-14
K1116	L11	L16	0.1362
C1116	N11C	N16C	8.281e-14
K1215	L12	L15	0.1398
K1216	L12	L16	0.2292
C1216	N12C	N16C	2.266e-14
K1314	L13	L14	0.2736
C1314	N13C	N14C	5.822e-14
K1315	L13	L15	0.0724
K1415	L14	L15	0.2948
C1415	N14C	N15C	6.859e-14
K1416	L14	L16	0.0681
K1516	L15	L16	0.2704
C1516	N15C	N16C	6.064e-14
.ENDS			

```
* Package: 16 pin QFN
* Model for 16 pins
* Note:
* 1. The model assume ground plane is 15 mil below package
* 2. The model assume flag is grounded
* 3. The model is based on GigaComm device 1.475mm \times 1.475mm
* 4. Wire bond parasitics are lumped with lead frame post.
* 5. Lump element equivalent model valid up to 10 Ghz
*****************
* Lead Frame drawing: ASAT 3mm x 3mm QFN
* Case Outline:
* LC file : 16qfn3x3.LC
****************
* Package: GigaComm 16 pin 3mm x 3mm QFN
* Model for 16 pins
* Conductor number-pin designation cross reference:
   Conductor
               Pin
      1
                 1
       2
                 2
      3
                 3
       4
      5
                 5
       6
                  6
       7
                 7
      8
                 8
      9
                 9
      10
                10
      11
                11
      12
                12
      13
                13
      14
                14
      15
                15
      16
                16
* number of lumps: 1
* COMPRESSION OF SUBCIRCUITS PERFORMED: discard ratio is 0.050
.SUBCKT PACKAGE N011 N010 N021 N020 N031 N030 N041 N040
+ N051 N050 N061 N060 N071 N070 N081 N080 N091 N090
+ N10I N100 N11I N110 N12I N120 N13I N130 N14I N140
+ N15I N150 N16I N160 BD_GND
R01
     N01I N01C 4.300e-02
C01a
     N01C BD_GND 6.674e-14
C01b N010 BD_GND 8.157e-14
T<sub>1</sub>0.1
    N01C N01O 8.418e-10
R02 N02I N02 3.950e-02
C02a N02C BD_GND 5.153e-14
C02b N02O BD_GND 6.298e-14
    N02C
           N020
                  7.557e-10
L02
R03
    N03I N03C 3.950e-02
C03a
     N03C BD_GND 5.364e-14
            BD_GND
                     6.556e-14
C03b
      N030
           N030 7.550e-10
L03
      N03C
             N04C 4.300e-02
R04
      N04I
C04a
     N04C
            BD_GND 6.687e-14
C04b
      N040
             BD_GND
                      8.173e-14
```

T O 4	NTO A C	NTO 4 O	0 407- 10
L04	N04C	N040	8.427e-10
R05	N05I	N05C	4.300e-02
C05a	N05C	BD_GND	6.633e-14
C05b	N050	BD_GND	8.107e-14
L05	N05C	N050	8.451e-10
R06	N06I	N06C	3.950e-02
C06a	N06C	BD_GND	5.202e-14
C06b	N060		6.358e-14
L06	N06C	N060	7.560e-10
R07	N07I	N07C	3.950e-02
C07a	N07C	BD_GND	5.243e-14
C07b	N070	BD_GND	6.408e-14
L07	N07C	N070	7.551e-10
R08	N08I	N08C	4.300e-02
C08a	N08C	BD_GND	6.682e-14
C08b	N08C		
		BD_GND	
L08	N08C	N080	8.432e-10
R09	N09I	N09C	4.300e-02
C09a	N09C	BD_GND	6.606e-14
C09b	N090	BD_GND	8.074e-14
L09	N09C	N090	8.418e-10
R10	N10I	N10C	3.950e-02
			5.112e-14
C10a	N10C	BD_GND	5.112e-14
C10b	N100		6.248e-14
L10	N10C		7.533e-10
R11	N11I	N11C	3.950e-02
C11a	N11C	BD_GND	5.166e-14
C11b	N110	BD_GND	6.314e-14
L11	N11C	N110	7.524e-10
R12	N12I	N12C	4.300e-02
C12a	N12C	BD_GND	
C12b	N120		8.294e-14
L12	N12C	N120	8.415e-10
R13	N13I	N13C	4.300e-02
C13a	N13C	BD_GND	6.628e-14
C13b	N130	BD_GND	8.101e-14
L13	N13C	_	8.426e-10
R14	777N14I	NT1 4 C	2 0500 02
	N14C		5.238e-14
C14a	N14C	BD_GND	5.238e-14
C14b	N140	BD_GND	6.402e-14
L14	N14C	IVITO	7.5500 10
R15		N15C	3.950e-02
C15a	N15C	BD_GND	5.310e-14
C15b	N150	BD_GND	6.490e-14
	N15C	N150	7.514e-10
	N16I	N16C	4.300e-02
	N16C	BD_GND	
C16b	N160	_	8.179e-14
	N16C	N160	8.412e-10
K0102	L01	L02	0.1711
C0102a		N02C	1.740e-14
C0102b	N010	N020	2.126e-14
K0103	L01	L03	0.0676
K0115	L01	L15	0.0549
K0115	L01	L16	0.1085
		N16C	
C0116a			4.797e-15
C0116b			
K0203		L03	
C0203a	N02C	N03C	1.622e-14
C0203b			1.983e-14
K0204	L02		0.0690
K0216	L02	L16	0.0555
10210			

K0304	L03	L04	0.1713
C0304a		N04C	
C0304b			2.131e-14
K0305	L03	L05	0.0563
K0405	L04	L05	0.1098
C0405a		N05C	
C0405b			5.803e-15
	L04		0.0560
к0506	L05	L06	0.1723
C0506a	N05C	N06C	1.739e-14
C0506b	N050		2.125e-14
K0507		L07	
К0607		L07	0 1578
C0607a	N06C		
C0607b	N060	N07C N07O	1.996e-14
K0608		L08	0.0676
к0708			0.1708
C0708a			1.748e-14
C0708b	N070	N080	2.136e-14
K0709	L07		0.0551
K0809	L08		0.1085
C0809a	N08C	N09C	
			5.863e-15
K0810			
K0910	L09	L10	
C0910a	N09C	N10C	1.734e-14
C0910b	N090	N100	2.119e-14
K0911		L11	
K1011			0.1574
C1011a	N10C		
C1011b	N100	N110	1.613e-14 1.972e-14
K1012	L10		0.0673
K1112		L12	0.1711
C1112a			1.751e-14
C1112b			2.139e-14
K1113	L11		0.0558
K1213	L12	L13 L13	0.1097
			4.797e-15
			5.863e-15
K1214			
K1314	L13	L14	0.1715
C1314a	N13C	N14C	
C1314b	N130	N140	
K1315	L13	L15	0.0678
K1415	L14		0.1573
C1415a	N14C	N15C	1.636e-14
C1415a	N140	N150	
K1416	L14		0.0682
K1416	L15	L16	
C1516a			
			2.137e-14
.ENDS PA		141.00	Z.13/E-14
*			

•

GigaComm is a trademark of Semiconductor Components Industries, LLC (SCILLC). Adobe, Acrobat, and Reader are registered trademarks of Adobe Systems Incorporated.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free LISA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.